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Abstract 
The work presented in this thesis is devoted to the study of mechanism of tyre force 

generation and its influence on handling dynamics of ground vehicles. The main part 
of the work involves the development of tyre models for use under steady-state and 
transient operating conditions. The general capability of these models is assessed in a 
full vehicle simulation environment. The interaction between tyre and vehicle 
dynamics is critically evaluated and the observed vehicle behaviour is related to the 
inherent characteristics of different tyre models. 

In the field of steady-state tyre modelling, two versions of a numerical tyre model are 
developed. The modelling procedure is carried out in accordance with the viscoelastic 
properties of rubber, which influence the mechanical properties of the tyre structure 
and play a significant role in the determination of friction in the tyre contact patch. 
Whilst the initial simple version of the tyre model assumes a parabolic pressure 
distribution along the contact, a later more elaborate model employs a numerical 
method for the calculation of the actual normal pressure distribution. The changes in 
the pressure distribution as a result of variations in the rolling velocity and normal 
load influence mainly the levels of self-aligning moment, whilst the force 
characteristics remain practically unaffected. The adoption of a velocity dependent 
friction law explains the force generating behaviour of tyres at high sliding velocities. 

The analysis is extended to the area of transient tyre behaviour with the development 
of a tyre model appropriate for the study of transient friction force generation within 
the contact patch. The model incorporates viscoelasticity and inertial contributions, 
and incorporates a numerical stick-slip law. These characteristics are combined 
together for the successful simulation of transient friction force generation. The 
methodologies developed for the modelling of transient friction and steady-state tyre 
force generation are combined and further extended in order to create a generic 
transient tyre model. This final model incorporates a discretised flexible viscoelastic 
belt with inertia and a separate fully-dynamic discretised tread, also with inertia and 
damping, for the simulation of actual prevailing conditions in the contact patch. The 
generic tyre model appears to be capable of performing under a variety of operating 
conditions, including periodic excitations and transient inputs which extend to the 
non-linear range of tyre behaviour. 

For the evaluation of the influence of the aforementioned tyre models on the handling 
responses of a vehicle, a comprehensive vehicle model is developed, appropriate for 
use in handling simulations. The two versions of the steady-state models and the 
generic transient model are interfaced with the vehicle model, and the response of the 
vehicle to a step-steer manoeuvre is compared with that obtained using the Magic 
Formula tyre model. The comparison between the responses is facilitated by the 
definition of a new measure, defined as the non-dimensional yaw impulse. It is found 
that the transience involved in tyre behaviour may largely affect the response of a 
vehicle to a prescribed input. 

Keywords: Tyre forces, viscoelastic contact mechanics of tyres, vehicle handling, 
transient manoeuvres, combined lateral and longitudinal slip 
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Chapter 1: Introduction 

Chapter 1: Introduction 

1.1 Handling, Stability and the Role of the Pneumatic Tyre 

Modern ground vehicles are expected to satisfy a large number of requirements that 

are very often in conflict with each other. For example, a passenger car needs to be 

powerful and at the same time fuel efficient. It has to achieve high standards of 

passive, and progressively active safety and protect passengers in case of collision, 

while being lightweight and providing enough internal space. Handling qualities and 

stability refer to the directional responsiveness of a vehicle and are related more than 

any other factor to the original purpose of an automobile, being the safe transportation 

of passengers and goods to desired destinations by responding smoothly to the driver's 

commands. 

Handling and stability are frequently used as synonyms, without due distinction. 

Although these two terms have a lot in common and are interrelated in many cases, 
there are a few differences, which are worth identifying by attempting to provide them 

with broad definitions. 

The stability of a ground vehicle can be described as its performance under 

manoeuvres, which result in alterations to the state of its motion in a generic, vectorial 

sense. Performance, in this context, is related to the capability of achieving high 

values of acceleration in braking, cornering, lane change and other manoeuvres, while 

the driver maintains control over the vehicle. Stability can also be defined in a more 

mathematical way. For example, by adopting some necessary simplifications, a 

vehicle's motion can be described by a linear system of differential equations. General 

theories that describe the mathematical stability of such systems can then be employed 

in order to assess the response of a vehicle to certain excitations. 

There seems to be a slightly different use of the term handling by test/competition 

drivers and research engineers. The former describe handling as the driver's 
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perception of the vehicle's stability [1]. It reflects the confidence a driver may or may 

not feel about the extent of a car's responsiveness to his commands. Usually, this 

feeling is related to the feedback provided via the steering wheel and the tendency of a 

car to roll during cornering or dive during braking, but more experienced drivers may 

also refer to a number of other subjective factors. A vehicle with good handling 

qualities is almost always good in terms of stability, but the converse of this argument 

is not necessarily held true. A stable vehicle may be described as poor in terms of 

handling, if the feedback to the driver is rather hazy, reducing his anticipation of the 

vehicle's motion [1]. On the other hand, handling is frequently used by researchers 

(for example in [2-4]) in order to describe stability issues. In this thesis, the term 

handling is used hereinafter to encompass the handling as well as the stability qualities 

of a vehicle. 

Very often, advances in technology precede the evolution of science and this fact is 

demonstrated dramatically in the area of ground transportation. It is believed that the 

wheel was invented in Mesopotamia or Asia sometime around 3500-4000 BC. From 

the early 19th century the importance of the independent steering of the front wheels of 

horse-drawn carriages was appreciated and the well-known Ackerman steering 

principle was soon established [5]. Nevertheless, the first attempts to study a vehicle's 

motion in a dynamic manner, paying attention to the relation of the forces involved 

and the resulting path came almost a hundred years later, in the beginning of the 20th 

century. Still, the importance of the forces generated on the contact patch between the 

tyres and the road was fully appreciated only after 1930. Today the use of pneumatic 

tyre has well established its position as the cornerstone in vehicle handling analyses. 

Apart from its original purpose as a cushion between the vehicle and the rough road, 

the tyre's role in the generation of all major controlling forces, including longitudinal 

traction, braking and lateral cornering forces is the factor that determines the handling 

behaviour of a vehicle. This role is demonstrated more than anywhere else in the area 

of racing. The choice of tyres hugely influences the overall performance of a 

competition vehicle and the competition between major tyre suppliers is often more 

interesting to follow than the rivalry between car manufacturers and drivers. 

Arguably, the pneumatic tyre is one of the most successful human inventions and one 

of the most difficult to study. For more than 50 years it has received enormous 
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attention by many researchers (see for example the collection of research 

achievements published in [6]) who have achieved insight into several aspects of tyre 

behaviour and their effects on the handling qualities of vehicles. The present research 

continues this evolutionary trend, mainly dealing with the steady-state and transient 

responses of the pneumatic tyre and their relation with the handling performance of 

ground vehicles. 

It should be noted that throughout the present thesis, for the sake of brevity, the word 

"Vehicle" is used in place of the most appropriate term: "Ground Vehicle". 

1.2 Brief Experimental and Theoretical Background 

Both the nature of, and the importance of handling investigations have been addressed 
in relation to the role of the pneumatic tyre in the mechanism of force generation. In 

order to clarify the matter, handling and tyre dynamics are discussed further in the 

following paragraphs. 

In general, handling investigations are conducted experimentally, analytically or 

numerically. Experimental testing usually involves driving a vehicle on a test track 

and measuring several kinematic outputs such as lateral acceleration, yaw velocity, 

roll angle and braking distance. Experimental investigations are most representative of 

reality and when conducted by professional test drivers provide a spherical perception 

of the vehicle's handling performance. The drawbacks include high costs, the fact that 

tests are carried out on the manufactured product and, for some tests, the possibility 

that the results might be affected by the drivers' subjective judgement. On the other 
hand, analytical approaches and computer simulations allow engineers to investigate 

the handling performance far ahead of the production phase, in a way that even the 

first prototypes can be more or less optimised. Apart from that, it is possible to 

investigate dangerous driving scenarios and precisely determine the effect of certain 

parameters. Finally, simulations are most valuable in designing control strategies for 

the improvement of the handling performance of ground vehicles. 

Irrespective of whether handling tests are carried out on a test track or on a computer 
in an office, they can be further divided into two categories, namely Steady-State or 
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Transient handling investigations. In general, the former category involves cornering 

at a constant radius with constant forward velocity. Given the magnitude of forward 

velocity, the required steer-angle for negotiating a corner of known radius of curvature 

is an important measure of the handling behaviour of a vehicle. As opposed to Steady- 

State, transient handling refers to rapidly changing driving commands, such as step- 

changes in the steer-angle, severe braking, hard acceleration, lane-change or a 

combination of these. 

For Steady-State predictions, relatively simple vehicle models, incorporating two or 

three degrees of freedom can be used as a starting point for analytical or numerical 

solutions. For instance, in analytical steady-state approaches, it is common practice [2] 

to reduce the degrees of freedom of the full vehicle and concentrate on the lateral and 

yaw velocities, assuming constant forward speed and steer-angle. For transient 

analyses the approach is mostly numerical, and the models usually take into account 

all the six possible motions of the vehicle in space. Depending on the level of detail 

required, a more realistic representation of the suspension system may be included, 

resulting in an increase in the number of degrees of freedom for the vehicle model. 

In line with this philosophy of vehicle handling analyses, tyre behaviour may be 

investigated experimentally, analytically or numerically and, as already implied, the 

distinction between Steady-State and Transient conditions applies in the case of 
features of tyre behaviour as well. Broadly, Steady-State tyre analysis refers to the 

generation of conditions similar to the ones observed in the neighbourhood of a wheel 

of a vehicle operating under Steady-State conditions, whereas Transient tyre analysis 

refers to the generation of conditions that characterise the neighbourhood of a wheel 

of a vehicle operating under Transient manoeuvres. The most common exception to 

this rough rule is related to braking. Although steady-state braking is an essential 
ingredient in tyre behavioural analyses, when referring to the handling characteristics 

of a vehicle as a whole, braking manoeuvres are mostly related to transient operating 

conditions. 

Steady State and Transient conditions alike may be generated experimentally with the 

aid of specially designed tyre test rigs, consisting of rotating drums or flat belts, which 
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represent the road surface and the necessary mechanisms, which support and move the 

tyre-rim system. 

Depending on the type of application, tyre data may be used in handling simulations 

directly as obtained by experiments or it may be generated within the simulation 

procedure, using tyre models of varying detail. In general, tyre models can be divided 

into two main categories, namely empirical or physical. Empirical models use 

analytical formulae, which are based on successful fitting of experimental 

measurements in the form of empirical relations, while physical models attempt a 

physical description of the tyre structure and the mechanics of its interaction with the 

road surface in a fundamental manner, based on established physics rather than pure 

observations or measurements. 

1.3 Problem Definition 

Prior to the broad expansion of powerful computer systems, handling studies were 

carried out using simple linear differential equations in order to describe the vehicle's 

motion. This approach is demonstrated in research papers [2] and text books [6], [7] 

and [8]. In this procedure the tyre behaviour is assumed to be linear, which is a valid 

simplification for a vehicle operating under low acceleration levels. In recent years, 

the evolution in the computer technology has enabled a more complex, non-linear 

modelling of the vehicle and tyre. A presentation of modern simulation methodologies 
is given in [9]. Lagrangian dynamics provide a well-defined, consistent method for 

modelling the entire vehicle in what has become known as a multi-body dynamics 

approach [10], [11]. Several components, such as the suspension links, can be 

modelled separately resulting in a non-linear system, incorporating hundreds of 
degrees of freedom and, of course, including the corresponding kinematic constraints. 
The Newton-Euler approach is less generic, as it lacks the ability to include the effect 

of holonomic constraints [11] in the equations of motion. Nevertheless, it can provide 

complex non-linear equations for the motion of the vehicle model. Regardless of the 

modelling approach, the differential-algebraic system of equations can be solved 

numerically on a modem computer with very high degree of accuracy. In terms of 

modelling, the weakest link in this procedure remains the pneumatic tyre. Unlike the 

vehicle itself, which is governed by the laws of rigid body motion in space, the tyre 
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demonstrates an extremely complex behaviour which spreads into the areas of contact 

mechanics, viscous friction, elasticity, vibration of structures, thermodynamics and 
hydrodynamics, requiring a multi-physics approach to deal with its complex 
behaviour. 

Typically, tyre force generation is studied either under steady-state operating 

conditions, or under transient manoeuvres. Even in steady state investigations, the 

influence of a number of factors such as the normal pressure distribution along the 

contact patch, the compliance of the tyre tread, belt and carcass and the friction 

between the tyre tread and the road is not yet fully understood. Although some very 

successful tyre models have been proposed (see for example [6]) and are widely used, 
it seems that no tyre model describes fully the aforementioned features, their 

interactions, and other relevant factors. 

Most importantly, the steady state analysis and the role of the aforementioned factors 

need to be expanded on in order to account for the various transient operating 

conditions. Again, significant progress has been achieved and the transience related to 

the complex deformation of the tyre under rapidly changing conditions have been 

investigated with the aid of a variety of elaborate tyre models such as those presented 
in [12-20]. In the majority of these approaches the models are primarily concerned 

with the transient response of the structure of the tyre, with less emphasis on frictional 

issues. On the other hand, the models discussed in [21-25], aim in a more accurate 

estimation of the friction forces. Finally, experimental studies [26-28] show the 

dependency of friction on the operating conditions and suggest the existence of 

phenomena such as stick-slip. In any case, the issue of fiction should be looked at 

more closely with an emphasis on transient behaviour. 

Consequently, there is a need for additional investigations towards attaining a better 

understanding of tyre force generation under both steady-state and transient operating 

conditions. A critical approach should be adopted, the inherent physical limitations of 

proposed tyre models need to be assessed and the role of friction force generation 

should be taken into account in a fundamental manner. 
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1.4 Aim and Objectives 

The aim and objectives of the present research follow directly from the problems 

stated in the preceding section. A theoretical investigation of tyre Steady-State 

dynamics serves as a starting point. The influence of certain parameters such as the 

normal pressure distribution and the frictional properties of the contact between the 

tread and the road will be investigated in parallel with the development of a new 
brush-type tyre model, appropriate for Steady-State studies. The inclusion of the 

aforementioned factors in the physical characteristics of the tyre model is of 

fundamental importance and requires extensive analysis. An increasingly complex 

treatment to the problem will be followed, based on the fundamentals of theory of 

contact mechanics. Through this procedure, the inherent limitations of the proposed 
brush-type models will be identified and assessed. 

Based on the knowledge gained from the steady-state model, an expansion of the 

theory in the area of transient tyre dynamics will be attempted. The key issue here is 

the interaction between the mechanism of friction force generation within the contact 

patch and the dynamics of the flexible structure of the tyre. 

The influence of tyre dynamics on the handling behaviour of vehicles will be 

evaluated by incorporating the models thus developed in a series of full vehicle 
handling simulations. The results will be compared with those obtained by well 

established and regarded empirical tyre models such as the widely used "Magic 

Formula". 

Towards the achievement of the aims stated thus far, a set of well defined tasks have 

been performed and are given below in the form of bullet points: 

- Development of a new, yet simple Steady-State brush model of the tyre, 
incorporating anisotropic bristles represented by viscoelastic Kelvin elements. The 

normal pressure distribution is assumed to be parabolic. 

- Enhancement of the tyre model in order to facilitate the on-line calculation of the 

normal pressure distribution depending on running conditions 
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- Modification of the initial Steady-State model for the simulation of transient 

conditions and the investigation of the role of the mechanism of friction generation 

- Development of a new transient tyre model with flexible belt and carcass, 
incorporating a separate tread for the simulation of the friction generation mechanism 

- Development of a vehicle model for the evaluation of the influence of tyre dynamics 

in vehicle handling 

1.5 Structure of the Thesis 

The work is organised in six chapters. A brief description of the issues discussed in 

each chapter is given below, in order to provide with an overall view of the approach 
followed in the thesis. 

Chapter 1- Introduction: The role of the pneumatic tyre in the handling behaviour of 

vehicles is addressed. Some fundamental ideas are presented and the areas of interest 

are highlighted. As a result, the aim and objectives of the investigations are defined 

and a brief description of the frame of work is given. 

Chapter 2- Review of Literature: The fields of tyre and vehicle dynamics have 

received the attention of numerous researchers. This chapter attempts to provide a 
critical review of the major findings. In particular, the areas of steady-state and 
transient tyre and vehicle handling dynamics are covered with extensive references to 

experimental, analytical and simulation techniques. Also, an extensive reference is 

made to work carried out in the area of friction mechanics, since friction represents 
the main limiting factor in the tyre-force generating procedure. 

Chapter 3- Steady-State Tyre Analysis: A physical description of the structure of the 

pneumatic tyre is provided and some important modelling considerations are 
discussed. These include the definition of coordinate systems and the representation of 
tyre forces, possible ways of modelling various parts of the tyre as well as modelling 

of viscoelasticity and friction. A separate section is dedicated to the "Magic Formula" 
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tyre model, which serves as a benchmark throughout the work reported in this thesis. 

The chapter closes with the step-by-step development of a simple and a more 

elaborate steady-state brush model. The behaviour of the models is investigated and 

the influence of several factors is analysed. 

Chapter 4- Transient Tyre Analysis: The necessity for the development of transient 

tyre models is discussed. Special reference is made to the modelling of viscoelastic 

friction between the tread and the road surface and the influence of some parameters 

such as sliding speed is investigated. The initial steady state tyre model undergoes two 

successive modifications, which result in two versions of a transient model, one with 
independent and one with interconnected bristles. Simulation results provide some 
insight into the qualities of the models. The rest of the chapter is dedicated to the 

development of the final, most elaborate transient model with flexible belt and carcass 

and a separate tread for the simulation of friction. 

Chapter 5- Tyre models in handling analysis: A relatively complex vehicle model is 

developed for the study of vehicle handling behaviour. Some fundamental 

considerations about coordinate systems, rigid body motions in space and the 

implementation in vehicle dynamics are presented. The Newton-Euler approach is 

chosen for the formulation of the differential system of equations and the numerical 

procedure is also discussed. The tyre models developed in the previous chapters work 
in combination with the vehicle model in a series of simulations. 

Chapter 6- Conclusion and Suggestions for Future Work: This chapter summarises 
the major findings of the research. The advantages as well as the shortcomings of the 

approach are pointed out and some suggestions for further improvement are given. 
Possible expansion of the theory in other areas is discussed and a set of experimental 

guidelines is proposed in order to investigate aspects of the theoretical predictions. 
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Chapter 2: Review of Literature 

2.1 Introduction 

This chapter is dedicated to the achievements previously accomplished in the fields of 

tyre and vehicle dynamics by other research workers. In particular, the issues of 

steady-state and transient tyre force and moment generation, vehicle modelling and 
handling performance are reviewed. A separate section is dedicated to the mechanics 

of friction. This section follows the discussion of tyre modelling which points out the 

special characteristics of tyre friction and the important issues that should be taken 

into account. All publications retrieved, are included in the list of references, at the 

end of the thesis. In the following pages the most representative approaches are 

critically analysed, while a significant amount of supporting literature concerning, for 

instance, the modelling of friction, the viscoelastic behaviour of rubber or numerical 

methods for use in vehicle dynamics may be referred to later in the thesis, when 
dealing with these relevant issues. 

The literature is divided into the following areas, according to the specific topics 
discussed: 

1) Steady-state tyre analysis 
2) Transient tyre analysis 
3) Mechanics of friction 

4) Vehicle modelling 
5) Vehicle handling analysis 

2.2 Steady-State Tyre Analysis 

The investigation of tyre force and moment generation is based on a significant 

amount of experimental measurements. Ultimately, the goal is to describe the 

procedure of force generation mathematically, with the development of tyre models of 
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varying complexity. There are a large number of different aspects of tyre behaviour, 

which should be taken into account and this has resulted in the development of tyre 

models from different perspectives. As already mentioned, a first classification 

separates steady-state from transient tyre models. Pacejka [6] suggests another very 

convenient distinction between in plane and out-of-plane models. In-plane tyre 

models are concerned with force vectors, which ideally lie within the centre plane of 

the wheel such as the braking force, rolling resistance and normal force, while out-of- 

plane models deal with forces that lie outside this centre plane, such as lateral forces 

and the resulting moments. Out-of-plane models are mainly related with the handling 

dynamics of a vehicle, since tyre lateral forces are primarily responsible for the 

change in the direction of a vehicle's motion. Nevertheless, lateral forces depend 

largely, not only on the vertical load of the tyre, but also on the possible application of 

a simultaneous braking or traction force. Therefore, out-of-plane models always 

incorporate a number of in-plane characteristics in order to account for the 

aforementioned effects. 

Traditionally, steady-state models, appropriate for handling applications, refer to out- 

of-plane models able to calculate the tyre lateral force, the resulting self-aligning 

moment and the longitudinal force (a conventionally in-plane characteristic) as 

functions of a time-invariant lateral slip angle, camber angle and longitudinal slip. 

Any analytical or numerical results are compared with experimental data obtained 

from specially designed experimental rigs. A large number of variations of a basic 

experimental concept can be found in literature. The following paragraph briefly 

presents this concept together with a number of common variations and some typical 

results. 

2.2.1. Experimental Measurements and Results 

Prior to discussing some of the most important steady-state modelling approaches, an 

experimental background is given. The principle is similar for both steady-state and 

transient measurements and will be covered only in this section. 

Tyre testing rigs are described in text books [6], [29] and research papers [30-37]. 

Moore [29] divides tyre-testing equipment into two main categories, namely 
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laboratory-based machines and field machines. The former consists of a wheel-hub 

assembly pressed against a rolling drum or a flat rolling belt, as a means of simulating 

the motion of a vertically loaded tyre rolling on the road surface. Joy et al [32] 

describe a tyre test-rig, based on a rotating steel drum with a maximum 

circumferential speed of 125 mph. The vertical load is imposed hydraulically on the 

wheel supporting mechanism, which presses the tyre against the external 

circumference of the drum. The design of the mechanism allows a range of slip angles 

between 0 and 12 degrees, while the camber angle can vary in the range ±5 degrees. 

A set of two dynamometers, which can operate alternatively as motors, is used for the 

simulation of traction and braking. Dunlop Ltd [29] has used a drum testing machine, 

where instead of the external, the internal drum surface is used. This arrangement 

permits the formation of a water film for the evaluation of tyre performance in wet 

conditions. Drum testing machines are favoured for their simplicity, low cost and the 

potential of using different road surface samples, mounted on the drum. The major 

drawback is the contact curvature imposed by the finite drum radius. This factor alters 

the normal pressure distribution along the contact patch and as shown by Pottinger et 

al [38], affects the cornering behaviour of tyres. To overcome this problem, 

researchers have used rotating flat-belt machines. The Calspan Corporation's machine 
described in [30], [35], consists of a wide stainless steel belt supported by two 0.7 m 
diameter drums. The belt is covered by a grit surface and is supported by an air- 
bearing pad under the footprint of the tyre. Slip angle, camber angle and normal load 

can be set automatically through a computer. Lagner [31] and Cabrera et al [37] 

follow a similar approach, replacing the air-bearing with hydrodynamic water- 
bearings. 

The need for measuring forces generated by tyres rolling on virtually any type of road 
has resulted in the development of field-testing equipment. Essentially, these 

machines consist of the upper half (wheel supporting and moving mechanism) of the 

laboratory machines, mounted on or pulled by dedicated vehicles. The drum or belt is 

replaced by the real road and data is collected by on-board acquisition systems. 
Gohring et al [36] use a mobile tyre testing apparatus and compare the results with 

those obtained in the laboratory, using a drum-type machine. It is reported that the 

results differ up to 40% in the measurement of cornering stiffness and this is due to 
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the interaction of two factors, namely the curvature of the drum and the difference in 

the frictional characteristics between the drum surface and the real road surface. 

In Steady-State measurements, side-slip angle, camber angle, longitudinal slip and 

vertical load are kept constant. In addition, air pressure and temperature are monitored 

through sliding electrical and pneumatic connections [29], [34]. Typically, graphs are 

produced showing the lateral tyre force as a function of steady-state slip angle for a 

given camber angle, longitudinal slip and normal load. The self-aligning moment, as a 

result of the interaction between lateral force and pneumatic trail [6], is plotted against 
the slip angle for the same conditions. Longitudinal forces are plotted against 
longitudinal slip, for a predefined vertical load, side-slip and camber angles. Finally, 
lateral force is also presented as a function of the longitudinal force for pre-specified 

side-slip angles. Figures 2.1-2.4 illustrate some typical experimental results from 

reference [36]. Figure 2.1 shows the non-linear increase in lateral force with the 
increase in side-slip angle for four different load cases of a commercial vehicle tyre. 
At high slip angles, towards the right end of the graph, if tyre friction was subjected to 

the laws of friction as stated by Amontons and Coulomb [39-40], the maximum force 

should be governed only by the normal load and the coefficient of sliding friction at a 

given speed. In particular, the maximum values of the lateral forces should be 

proportional to the normal load. However, it is clear that this is not the case, since, for 

example, the maximum lateral force at a vertical load of 40 kN is only approximately 
2.4 times higher than the maximum force at 10 kN. This behaviour influences greatly 
the handling properties of vehicles and will be discussed thoroughly later. Figure 2.2 

shows the variation of braking force with longitudinal slip for four different load 

cases, while figure 2.3 plots the braking forces corresponding to six combinations of 

simultaneous side-slip under the same vertical load. Apparently, not only the 

maximum braking force is reduced with the increase of slip angle, but the shape of the 

curve is altered as well. Figure 2.4 illustrates how the lateral force, corresponding to a 

specific slip angle, varies with the increase in the braking force. By varying the side 

slip angle, a parametric plot is obtained. The black line defined by the outer limits of 
the plots constitutes the traction limit of the tyre under combined braking and 

cornering manoeuvres for a specific vertical load. Finally, figure 2.5 illustrates an 

example of self-aligning moment plotted against slip-angle for varying vertical loads, 

as measured and fitted by Bakker et al [41]. 
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2.2.2 Modelling Approaches 

Pacejka and Sharp [42] have conducted a comprehensive review of modelling aspects 
in relation to the steady-state tyre force and moment generation. They distinguish two 

main categories of models, namely physical and empirical tyre models. Physical 

models are based on the mathematical representation of the most important physical 

properties of the tyre and can vary in complexity. The simplest among the physical 

models can be solved analytically, while the most complex models, incorporating 

detailed representations of the tyre structure, are solved numerically and can be 

computationally very time and memory intensive. Empirical models are based on the 

use of formulae that fit successfully a wide range of experimental results, such as the 

ones presented in the previous section. While providing little insight into the physics 

of tyre behaviour, empirical models have become very accurate and are also 

computationally very effective. Another important observation mentioned in [42] is 

the fact that all physical models require experimental identification of one or more 

parameters. This can be considered as inevitable proof of the complexity of the 

mechanics of the pneumatic tyre. 
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2.2.2.1 Physical Models with Analytical Solutions 

Temple and von Schlippe [43], [44], [45] propose a simple physical representation of 

the tyre for the calculation of the steady-state lateral force. This model is based on the 

assumption that the tread of the tyre is equivalent to a stretched string, restrained by 

lateral springs which represent the sidewall, as shown in figure 2.6. The free ends of 

the springs are connected to the wheel rim, which is travelling at a constant slip angle. 

As a result, the string deforms laterally, while the circumferential distribution of the 

lateral component of the force due to string tension is proportional to the second 

derivative of the lateral displacement with respect to the circumference. Over the part 

of the tyre not in contact with the ground, the distribution of lateral string force is 

balanced by the distribution of lateral forces generated by the springs. By solving the 

appropriate second order differential equation, the shape of the lateral deformation is 

calculated as a hyperbolic function of the free circumference. This function can be 

simplified to a pair of exponential functions, which describe the deformation of the 

string in front and behind the contact patch area. The lateral force and the self- 

aligning moment can be found easily by assuming a linear lateral displacement of the 

string along the length of the contact patch and applying integration techniques. The 

results are expressed as functions of the slope of the lateral displacement along the 

contact patch. For small slip-angles this slope can be assumed equal to the slip-angle, 
in which case both the lateral force and the self-aligning moment are proportional to 

the slip angle. Clearly, the model assumes that the combination of vertical load and 
lateral slip-angle is such that the tyre operates always in the linear range and does not 
include any provisions for a sliding region within the contact patch. 
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Figure 2.6 Representation of the tyre as a stretched string (a) or bending beam (b) (after [441) 

The cases of traction and braking are treated conceptually in a similar manner, by 

Julien [43] and by Wong [44]. The tyre tread is represented by an elastic band, the 

contact patch is assumed rectangular and the normal pressure distribution is 

considered uniform along the length of the contact patch. In this model there is 

provision for an adhesive, as well as a sliding zone within the contact patch. The 

longitudinal force is calculated by integrating the corresponding longitudinal force 

distribution along the length of the contact patch. The critical length after which the 

tread starts sliding is calculated as the length up to the point where the longitudinal 

force distribution becomes equal to the normal force distribution multiplied by the 

peak value of the coefficient of friction. The total force is equal to the sum of the 

elastic force developed in the leading adhesive region and the friction force developed 

in the trailing sliding region. The combination of a sliding and adhesive zone results in 

a non-linear model, able to depict the behaviour of the tyre at high slip ratios. A 

fundamental observation is that the adaptation of a uniform pressure distribution 

allows the entire contact area to be an adhesive region, when the slip ratio is low. 

Therefore, the initial part of a traction or braking curve should always be linear. In 

reality, the shape of the pressure distribution can vary from parabolic to trapezoidal 

and always allows for a small sliding region towards the trailing end of the contact 

patch. As a result, tyre force generation is, by definition, a non-linear problem. 

Fiala [45] proposes a more elaborate physical model, which is still in use and is 

offered as a standard model in multi-body software packages such as ADAMS. The 
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tyre is modelled as a flexible ring connected to a rigid disc through circumferentially 

distributed springs. When subjected to a lateral force, the ring deflects according to 

Eulerian beam theory in pure bending. The lateral force is considered as a point force, 

acting in the middle of the contact patch. By applying the corresponding boundary 

conditions, the lateral deformation of the ring is calculated and approximated by a 

quadratic polynomial through use of Taylor expansion. The contact area is assumed 

rectangular and the normal pressure is taken to be uniform in the lateral direction and 

quadratic along the length of the contact patch. The contact patch demonstrates an 

adhesive zone, where the tread deforms linearly and the lateral forces are dictated by 

the relative deformation of the tread with respect to the elastic beam, followed by a 

sliding zone, where the forces depend on the local normal pressure distribution and the 

coefficient of sliding friction. Consequently, the calculation of the total lateral force is 

performed by separate integration of the lateral force distribution along the adhering 

and sliding regions and superimposing them. This approach allows the model to 

extend its operation in the non-linear range, as opposed to the string model described 

in [43]. In addition, the assumption of a quadratic pressure distribution permits the 

existence of a sliding region even at low slip angles. 

Sakai [46-49], in a series of four papers, presents an in-depth study of the steady-state 
behaviour of tyres. He investigates the influence of several factors such as the shape 

of the normal pressure distribution and the variations of rubber friction due to changes 
in temperature, vertical force and sliding velocity. As a base model for his study he 

uses an enhanced version of Fiala's model. For the calculation of the lateral force and 

self-aligning moment, he uses successive approximation and this results in an extra 

term in the expression for the self-aligning moment, which is omitted by Fiala. It 

appears that the inclusion of this term yields better agreement between experimental 

and theoretical results for the self-aligning moment. Sakai [46] extends the capabilities 

of Fiala's model by assuming that the tread is characterised by a single spring 

constant, which affects both lateral and longitudinal directions. By using simple 

geometrical relations he expresses the lateral and longitudinal force distributions as 

functions of the slip angle and slip ratio and finally he considers the vectorial sum of 

both lateral and longitudinal forces when calculating the transition point from 

adhesion to sliding. Since, under combined cornering and braking/traction, the 
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direction of the friction force for the part of the tread within the sliding zone is not 

known, an approximate geometrical relation is used for its determination. 

Sakai [46] uses the enhanced model to illuminate some of the problems in the theory 

of steady-state tyre modelling, as proposed by Fiala. He reports that the shape of the 

contact patch is not rectangular, the normal pressure distribution is in reality more 

trapezoidal than parabolic and that it is also affected by the existence of camber angle. 

Furthermore, friction between the tread and the road should not be based on the 

Coulomb's law, as it depends on the vertical load, temperature, sliding velocity and 

additionally, stick-slip may develop within the contact area. In order to investigate the 

influence of these parameters, Sakai conducts a series of experimental studies in [47]. 

Based on the measurements, he derives empirical relations for the normal stiffness, the 

shape of the contact patch, the normal pressure distribution and some important 

structural mechanical properties such as the stiffness of various parts of the tyre and in 

various directions of deformation. Special attention is paid to the differences between 

rubber friction and friction between hard surfaces, as described by Amontons and 

Coulomb. It is observed that rubber friction consists of two separate terms, namely 

adhesion and deformation friction. The former corresponds to the same frictional 

mechanism observed between hard contacts, quantified by Coulomb's law of friction. 

The latter is due to hysteresis phenomena, attributed to the viscoelastic nature of 

rubber. It is mentioned that the highly deformable nature of rubber results in a non- 

proportional relation between vertical load and contact surface and this affects the 

adhesion term in a way that the coefficient of friction decreases, when the vertical 
load increases. Moore [29] explains this effect in some detail by pointing out that both 

terms of rubber friction are affected by viscoelasticity. The viscoelastic properties of 

rubber are discussed thoroughly by Ward [50] and Findley et al [51]. The linear 

viscoelastic constitutive equations are presented and the modelling of rubber, using 

combinations of linear springs and dampers is discussed. The most commonly used 
Maxwell, Kelvin and Burgers models are described and their agreement with simple 

creep and recovery tests is assessed. It is found that the generic Burgers model yields 

the best results in terms of agreement with the actual behaviour of rubber, while the 

Maxwell and Kelvin models pose certain limitations. The modelling of the rubber 

viscoelasticity is discussed in more detail in chapter 3. 
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Gim and Nikravesh [52-54] present a step-by-step analysis of tyre force and moment 

generation using a simple model and compare the results with experimental 

measurements. Initially, the force generation procedure is described for pure 

longitudinal slip, pure side-slip and pure camber conditions [52]. The model assumes 

parabolic normal pressure distribution and the friction coefficient is taken to be 

velocity dependent. The analysis is then extended to combined slip and camber 

situations in [53]. Finally, longitudinal and lateral forces show very good agreement 

with experimental results [54] under pure slip and combined slip conditions, while the 

self-aligning moment shows significant deviations from experimental measurements. 

It is suspected that the deviations in the self-aligning moment result from the 

assumption of a parabolic pressure distribution. Although the lateral and longitudinal 

forces depend mainly on the total normal force and the sliding conditions, the 

pneumatic trail changes significantly with any change in the normal pressure 

distribution and this affects the generation of self-aligning moment. 

Bernard et al [55] use a model with trapezoidal normal pressure distribution and 

assume anisotropic stiffness and friction in the longitudinal and lateral directions. 

Furthermore, the friction coefficient is speed dependent and the lateral stiffness 
depends on the slip angle, in an attempt to achieve better agreement with experimental 
results. 

Pacejka and Sharp [42], in their review of steady-state modelling aspects, provide an 

analytical description of a large family of physical models, based on the brush 

concept. The simplest brush models can be solved analytically and the authors have 

followed a step-by-step procedure starting from some fundamental definitions and 
building gradually on the complexity of the brush models until they reach the limits of 

analytic solutions. The generic brush model consists of a series of elastic bristles, 

radially distributed to a circular belt, which deforms in the radial direction under the 

application of a vertical load. As a result, a finite contact length arises and the bristles 

are assumed undeformed in the absence of friction. If the wheel deviates from the free 

rolling state under the presence of friction, the bristles deform within the horizontal 

plane of contact. Figure 2.7 depicts an arbitrary position of the rolling brush model, 

together with the possible situations of pure side-slip, pure longitudinal slip and the 

combination of the two. The deformation of the bristles apparently depends on their 
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elastic properties, the kinematic conditions imposed by the relative motion of the tyre 

with respect to the ground, the coefficient of friction and the normal pressure 

distribution. Under steady-state operating conditions the state of all the bristles at any 

instant of time can be obtained by following the motion of one representative bristle 

along the contact patch from the moment it enters until the moment it exits the contact 

patch. The concept of the bristle aids primarily the visualisation of the situation along 

the contact patch and is not important as a structural element of the tread. It is 

interesting to note that Pacejka and Sharp [42] include the model proposed by Bernard 

et al [55] in the section of their review dedicated to brush models. However, in the 

original manuscript there is no reference to a brush model consisting of bristles or 

elastic cones. Instead, Bernard et al [55] follow the motion of a point or segment of the 

tread and derive the equations for the deformation of the tread in a similar way as 

Pacejka and Sharp in [42] and Pacejka in [6]. Still, the brush concept is superior as an 

approach for explicitly introducing the relative displacement between the base and the 

tip of each bristle. 
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Figure 2.7 The brush model and the deflection of the bristles under pure cornering, braking and 

combined situations (after [6]) 

2.2.2.2 Physical Models with Numerical Solutions 

Tyre models, which can be solved analytically, are subjected to a number of 

simplifications, which may limit the accuracy of the results or totally exclude the 
22 
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possibility of investigating the influence of certain parameters. It is stated in [42] that 

analytical brush models are unable to represent accurately the situation within the 

sliding region. This is because the velocity vector of a tread segment (bristle) at the 

onset of sliding cannot be determined. In fact, the bristles move through a transition 

region within the sliding part of the contact patch, until the velocity of their tip relative 

to the road reaches the resultant slip velocity of the tyre (due to both side-slip and 

longitudinal slip). Another limitation may be related to the choice of normal pressure 
distribution. Apparently, it is possible to find the transition point from adhesion to 

sliding only when the normal pressure distribution is expressed by simple functions as 
demonstrated, for example, by Fiala [45], Sakai [46], Bernard et al [55] and Julien 

[43]. However, it is not possible to apply an experimentally measured pressure 
distribution or to calculate the pressure distribution on-line, taking into account the 

specific load conditions along the length of the contact area. These and other 

shortcomings have led to the development of physical models with a numerical 
formulation, which can be solved with the aid of a computer. It is important to 

mention that computer algorithms have been used for the automated calculation of 
forces based on models with analytical solutions, as demonstrated by Gim et al [52- 

53]. This fact does not immediately justify such models as "numerical". In general, 

numerical solutions refer to models, which are at least based on some kind of iterative 

procedure for the solution of algebraic or differential equations. 

Sakai [48] describes the motion of a tread block using a differential equation which 
initially takes into consideration elastic, damping, inertia and friction forces. The 

equation is simplified by neglecting the damping and inertial terms, and the rate of 

change of the displacement of the tread block is written finally as a function of the 

normal load, tread block deformation and friction. The equation is solved numerically 

along the length of the contact patch using the Runge-Kutta method. The omission of 
damping and inertial terms has led to a situation where the rate of change of 
deformation of the tread block cannot be calculated explicitly. Instead, at every time- 

step, the four intermediate slopes (rates of change) calculated as Runge-Kutta 

coefficients are checked against a velocity threshold in order to determine whether the 
tread at the specific point of the contact patch is operating under low or high speed 

sliding conditions. 
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Sharp et al [56] propose a computer based tyre model for the calculation of shear 

forces and the self-aligning moment. The model consists of a series of radial spokes, 

interconnected through the wheel hub and distributed uniformly in order to cover a 

full circle (360). The spokes are characterised by radial, longitudinal 

(circumferential) and lateral tip flexibilities, as well as a small amount of radial 

damping for the inclusion of hysteresis associated with rolling resistance. Under 

steady-state conditions, the motion of one spoke is representative of all spokes, as it 

moves from the leading to the trailing edge of the contact patch. In the general case, 

the vector of radial, tangential and lateral deflections can be determined by employing 

two constraint equations, the first one imposing the condition of constancy of vertical 

deflection, and the second one that the position of the spoke tip remains unchanged 
(no-sliding condition). The vector of deflections is then used to calculate the total 

shear and normal forces and compare the former with the latter, multiplied by the 

corresponding coefficient of friction. If the shear force is lower than the maximum 
friction force, then the assumption of no-sliding is deemed satisfied, the deflections 

are stored and the spoke proceeds to its next position. If the shear forces exceed the 

maximum friction force, then the deflections are reduced iteratively until equality is 

reached within a pre-specified tolerance. Because the coefficient of friction is a 
function of the sliding velocity, which in turn cannot be determined explicitly during 

the iterative procedure, a mean value for the velocity is used, equal to the 

corresponding shear deflection divided by the time-step. It is interesting to note that 

the model implies that the shear forces generated by the spoke are always equal to the 

friction force, which is a fundamentally unjustified assumption if one takes into 

account the viscoelastic and inertial properties of the tread. Also, similarly to Sakai's 

model [48], an approximation of the sliding velocity is used in order to calculate the 

coefficient of friction. Again, this is a result of the omission of damping and inertial 

contributions. Apart from these assumptions the model seems to be capable of 

achieving good qualitative and quantitative agreement with steady-state experimental 

results. Furthermore, it is unique in that it allows for on-line calculation of the normal 

pressure distribution based on the resultant vertical deflection of the spokes and a non- 

linear radial stiffness, which accounts for the effect of air-pressure inside the tyre. 

Finally, the spoke deflections are calculated in a generic way so as to accommodate 

immediately the inclusion of camber angle and spin. 

24 



Chapter 2: Review of Literature 

Levin [57] proposes a steady-state brush model, appropriate for tyres operating at high 

rolling velocities. One representative bristle incorporates radial, tangential and lateral 

stiffness and damping, while the mass is distributed along the tyre periphery, and is 

taken into account by attaching a point mass at the end of each bristle. A separate 

vertical Kelvin element is used for the connection between the point mass and the 

ground. The motion of the bristle is described by three differential equations for the 

normal, longitudinal and lateral degrees of freedom of the mass respectively. Under 

steady-state conditions, the rotational velocity of the wheel is constant and this 

enables the description of the problem as invariant in a temporal sense (omission of 

time), so that the equations of motion are written with respect to the angular position 

of the bristle as it travels along the contact patch. The deformation of the vertical 
Kelvin element yields the normal pressure distribution, while the lateral and 
longitudinal motions of the bristle determine the shear forces in relation to localised 

friction. Levin [57] finds that the sudden change in momentum, which takes place in 

the leading edge of the contact patch is due to an impact with the road. Thus, the 

proposed model predicts an extremely high peak for the normal pressure distribution 

at the leading edge, which may be observed experimentally only in studded tyres. On 

the contrary, normal tyres exhibit a much more subtle peak. As discussed later in the 

thesis, in reality the change in momentum takes place within the belt of the tyre, 

which deforms continuously under the application of vertical force and rolling motion. 

2.2.2.3 Empirical and Semi-Empirical Tyre Models 

All physical models presented in the preceding section are subjected to limitations 

resulting from the inherent difficulties in precisely modelling all the structural 

properties of the tyre and incorporating their influence in force and moment 

generation. Furthermore, models with numerical solution, which in general may be 

able to describe the tyre with greater accuracy, may increase significantly the 

computational burden, when used in conjunction with a handling simulation 

algorithm. 

An alternative to using a physical tyre model is the implementation of a direct or in- 

direct representation of experimental tyre data. Bakker et al [28] distinguish three 

possible ways of representing tyre data, namely by tables, graphs or formulae. The 
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first two possibilities of direct representation involve a great deal of measurements in 

order to cover all combinations of lateral and longitudinal slips under varying normal 

load and camber angle, possibly on terrains with different coefficients of friction. To 

minimise experimental effort, researchers have attempted to represent experimental 

data indirectly by developing mathematical functions, which successfully fit 

experimental results. In general, a wide range of functions have been used such as 

exponential, arctangent, polynomial, hyperbolic tangent and Fourier series. When the 

coefficients involved in the functions do not show any direct connection with the 

typifying parameters of a tyre (such as the cornering stiffness or the peak coefficient 

of friction), formulae are usually referred to as empirical. Ideally, the coefficients 

should have a physical meaning and their manipulation should allow for investigating 

the properties of hypothetical tyres [58]. In addition, if the formulae contain structures 
that find their origin in physical models, the approach may be referred to as semi- 

empirical [6]. 

In general, the representation of experimental data by series and polynomials is 

followed by problems such as waviness of the generated curves and unrealistic results, 

when extrapolating beyond the fitted range [58]. Schieschke [59], [42] uses a simple 

second order polynomial designed to change slope at the value of slip, where the 

maximum force is observed. Although the use of a low order polynomial improves 

waviness, it is required to use a second version of the same polynomial with adjusted 
coefficients for values of slip beyond the value, which corresponds to the maximum 
force. Alternatively, Sitchin [60] divides the data into five regions and uses different 

polynomials to fit data within each region. Rimondi et al [61] propose an interpolative 

tyre model for use under pure slip conditions. The lateral force is represented by an 

exponential function, which is designed to converge to the maximum friction force, 

which is calculated as the product of the normal force and the coefficient of friction. 

The cornering stiffness appears explicitly as a coefficient and the shape of the curve is 

optimised using an extra shape-factor. The use of an exponential function implies that 

the lateral force characteristic does not show a local peak before the saturated area of 

operation. The longitudinal force is expressed as a sum of exponential functions 

designed to provide, with the necessary local peak, which is almost always evident in 

longitudinal force characteristic curves. The self-aligning torque is calculated by 

multiplying the lateral force with the pneumatic trail, which in turn is given as a 
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function of slip angle and normal load. A desirable characteristic of the model is the 

fact that for both lateral and longitudinal forces, the stiffness coefficients, shape 

factors and coefficients of friction depend on the vertical load. Finally, the formulae 

proposed show good correspondence with the experimental results. 

The most successful formula for the representation of steady-state forces and moments 

is the well-known Magic Formula, initially conceived by Bakker et al [58]. The 

formula is the result of a joint project between Volvo and Delft University and, since 

its first release in 1987, has undergone a series of improvements [41], [62]. The 

formula is based on the recognition of the fundamental trends observed in a large 

number of experimental results. In particular, the equations for the lateral and 

longitudinal forces should be able to generate a peak force at a controllable slip 

angle/ratio and converge asymptotically to the saturated values at high slip angle/ratio. 

In addition, the slope at zero slip should represent the cornering or longitudinal 

stiffness of the tyre, while the overall curvature should be controlled separately with 

the aid of shape factors. The equation for the self-aligning moment should incorporate 

the aforementioned characteristics and, in addition, should be able to change polarity 

at high slip angles. It was found that these requirements are fulfilled exceptionally 

well with the use of a composite sinusoidal-arctangent function which retains the same 
form for the two forces (lateral and longitudinal) and the self- aligning moment. The 

differences between the three characteristic curves are handled by implementing 

different coefficients in the basic formula, while the effects of camber angle and 

rolling resistance are introduced by a horizontal and vertical shift of the initial curves. 
One of the major advantages of the formula is the fact that the stiffness at zero slip, 

the peak force and the slip value at which it occurs and the saturated values can be 

controlled independently. The coefficients involved in the formulae are computed as 
functions of the normal load and camber angle. In [58], [41], [62] the problem of 

combined slip conditions is solved by multiplying the pure slip curves by weighting 

functions, which are based on a physical representation of the force distribution in the 

contact patch at combined slip, initially for isotropic and later for anisotropic tyres. In 

this procedure the definition of a normalised theoretical slip is necessary, in order to 

account for the anisotropies in lateral and longitudinal directions. Especially for the 

case of self-aligning moment, carcass compliance, camber angle and static off-set 

cause a shift of the lines of action of lateral and longitudinal forces and the final 
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expression results from the addition of extra terms, which follow from the 

multiplication of the forces with the corresponding shifts. Bayle et al [63] propose a 

purely empirical method for dealing with combined slip conditions, based on 

composite cos-arctangent weighting functions. The use of a cosine function in 

conjunction with a peak coefficient larger than one, allows for the slight increase in 

lateral force with the introduction of a small brake-slip. The several coefficients 

contained in the formulae can be estimated from experimental results using regression 

techniques, as demonstrated by Oosten et al [64]. 

It is observed that characteristic curves generated by the same tyre show a similar 

shape when the tyre operates, for instance, under different normal loads or on tracks 

with varying coefficients of friction. If the characteristic curves are obtained 

experimentally at a reference condition, it is possible to estimate their shape under a 

much wider range of conditions, by employing the similarity concept. Radt et al [65] 

demonstrate a procedure for non-dimensionalising tyre data. As a basis for their 

analysis they use the analytical tyre model presented by Sakai [46]. The non- 
dimensional parameters are defined with the aid of the analytical equations for the 

forces and self-aligning moment. By applying the proposed non-dimensionalisation to 

experimental results, it is shown that characteristic curves obtained under different 

conditions approximately coincide with each other, when plotted in a non-dimensional 
form. This experimental finding suggests that similarity indeed exists between tyre 

characteristic curves. The similarity concept proves extremely useful for the extension 
of the range of operation of empirical and semi-empirical tyre models. Irrespective of 
the type of formula, the generated curves can be multiplied with specially selected 

coefficients in order to account for the effect of the change of various factors on the 

shape of the original curve (i. e. the one obtained under reference conditions). This use 

of the similarity concept is demonstrated in [6] for the case of a varying normal load 

and its influence in cornering stiffness, peak value and camber stiffness. 

2.3 Transient Tyre Analysis 

While steady-state tyre models provide a satisfactory description of force and moment 

generation for use in steady-state vehicle handling studies, a large variety of transient 

phenomena are related to the operation of tyres under time-varying conditions. The 
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coupling of in-plane and out-of-plane characteristics, as well as the compliance and 

the inertia of the tyre structure result in transient responses, which cannot be generated 

simply by applying a time-varying input to a steady-state tyre model. In general, 

transient studies are focused on the force and self-aligning moment responses to time- 

varying lateral and longitudinal slip, while the response of the self-aligning moment to 

time-varying yaw rotation around the wheel steering axis is also of high interest. To 

complicate things further, a time-varying camber angle or normal load may also be 

introduced. Tyre responses are usually investigated for step changes in the 

aforementioned input quantities, while the frequency response to sinusoidal 

excitations is also considered. In transient tyre models, attention is moved from the 

contact patch to the flexible belt and carcass of the tyre. Depending on the complexity 

required and the overall aim of the analysis, the following types of models can be 

found in literature, together with hybrids that incorporate more than one approach: 

- String based models 

- Single point contact models 

- Multi-spoke - brush based models 

- Rigid ring models 

- Models based on discretisation of the tyre (finite element models, discretised 
belt models) 

Similar to the steady-state analyses, transient models can be solved either analytically 
or numerically. In the steady-state case, the existence of a large number of effective 
and easy to employ analytical or numerical non-linear models has limited the use of 
the simple linear model. In transient investigations the linear theory is very often 

preferred for its relative simplicity and its ability to generate realistic results for a 

range of practically interesting operating conditions. 

Due to the high complexity of transient tyre models and the combination of non-linear 

with linear, kinematic with dynamic and transient with steady-state approaches 
(hybrid models), the idea of dividing transient models into discrete groups was 

abandoned. Instead, the most important approaches are presented below in a single 

section. 
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2.3.1 Transient Tyre Models 

Pacejka [13] has developed a theory for the prediction of the frequency response of a 

tyre, subjected to lateral wheel plane vibrations and swivelling motion around the 

steering axis. The tyre is modelled as a series of parallel flexible strings, which are 

kept under pretension by a uniform radial force distribution. The circular strings are 

elastically supported by the wheel rim, but are prevented from moving in the 

circumferential direction. In order to account for the longitudinal deformations which 

occur asymmetrically when the wheel is swivelled round the vertical axis, the strings 

are provided with elastic tread elements, which are flexible in the circumferential 
direction only. Initially the strings are assumed to be mass-less and the spatial 
differential equation for the lateral deformation of a string with respect to 

circumferential position is kept linear by assuming that no sliding occurs in the 

contact patch. The differential equation is solved for the free length of the string (an 

identical approach to that of von Schlippe [43]) to obtain the slopes at the leading and 

trailing edges of the contact patch. A fundamental observation is the fact that at the 

leading edge the slope should be continuous and this aids the formulation of the 

differential equation that describes the rate of change of lateral deformation at the 
front edge of the contact patch with respect to time. By combining the equations for 

the deformation of the string with the kinematic equation, which results from the 

rolling without sliding condition, the lateral displacement of the string can be obtained 
with respect to time and position on the contact patch. Lateral force and self-aligning 
moment are calculated by integrating the corresponding elastic forces and moments 

along the contact patch and are expressed in the frequency domain. Finally, an extra 
term is added to the self- aligning moment as a result of the effect of longitudinal 

stiffness of the tread when the wheel is swivelled about the vertical axis. Force and 

moment response to the variations of the non-dimensional frequency of lateral and 

yaw vibrations is provided via Nyquist and Bode diagrams. The gyroscopic moment is 

also taken into account in order to improve the accuracy of the moment response. 
Comparisons with experimental results show good qualitative and quantitative 

agreement at low frequencies, whereas at higher frequencies the effect of inertia is 

thought to play a more significant role. To account for this, a constant mass density 

along the circumference of the strings is introduced. The new differential equations 

are obtained using Laplace formulation and the resulting Nyquist diagrams for 
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hypothetical tyres show qualitative agreement with experimental results. Pacejka's 

analytical methodology [13] provides invaluable insight into the transient behaviour of 

tyres and can be used in a wide variety of transient phenomena such as the wheel 

shimmy phenomenon [66], [6], which is described as the self-excited oscillatory 

motion of a wheel about the vertical steering axis. 

The relaxation length is a quantity often encountered in transient tyre models and 

appears with various different definitions. In the case of the string model [13], the 

relaxation length is defined as the square root of the ratio of the total effective tension 

of the string and the lateral stiffness of the carcass per unit length of the tyre 

circumference. It appears that this is equivalent to a geometrical definition, which 
describes the relaxation length as the longitudinal distance calculated by dividing the 

lateral deflection at the leading edge by the tangent of the slip angle, for low lateral 

slips. The definition of the relaxation length might change slightly depending on the 

tyre model and might also vary depending on running conditions. In any case, it 

represents a structural property of the tyre and is directly connected to the kinematic 

transience in tyre behaviour. Various definitions of the relaxation length can be found 

in [67-68]. A definition, which illuminates the physical meaning of the relaxation 
length describes it as the distance travelled by a point on the tyre circumference until 
the tyre reaches a certain percent (c. a. 1-1/e or 63%) of the steady-state equilibrium 
deflection, after a step-change of the input. The physical significance and the 
derivation of this definition will become more apparent in chapter 4, where the 

relaxation length concept is discussed in more detail. 

The so-called single contact point transient tyre models are based on the 

representation of the tyre carcass as a single spring able to deform in lateral and 
longitudinal directions. In this case the relaxation length can be defined as the ratio 
between tyre cornering stiffness and carcass lateral stiffness [68]. The rate of change 

of slip angle is then described with the aid of a linear differential equation. Such 

models can be used for low frequency handling simulations, where the representation 

of tyre transience, based on the kinematic approach is sufficient. Clover and Bernard 

[69] use a single contact point transient model in order to investigate transient braking 

manoeuvres. For this purpose the authors provide an equivalent definition of the 
longitudinal relaxation length. The differential equation for the transient longitudinal 
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slip is combined with a steady-state representation of the braking force versus slip 

ratio, which is locally linearised. By introducing the wheel spin differential equation, a 
linear differential system is created with respect to the rotational wheel velocity and 
longitudinal slip ratio. The linearised equations can be used in vehicle simulations 

with the local linearization of the braking force being valid across one time step. In 

this way, the time-step of the handling simulation can be kept large and is not affected 
by the reduced time-step needed to simulate wheel-spin. Also, the authors find that at 
low vehicle speeds the corresponding algebraic system (after Laplace transformation) 

may be characterised by complex roots, a fact which implies the existence of 

oscillatory response under such conditions. 

Zdobyskaw [70] has established a theory for the determination of the necessary 

conditions for the occurrence of self-excited shimmy vibrations. The author assumes 

that self-excited vibrations might occur only when energy is transferred to the tyre 

from the external environment through the generalised force vector. This principle is 

applied to a series of different models such as the kinematic version of the Pacejka's 

model [13], Von Schlippe' s model [43], a single-point contact model and the 
dynamic version of the Pacejka's model [13]. It is pointed out that the single point 

model cannot generate shimmy vibrations, while Pacejka' s dynamic model is stable 
at low velocities and shows oscillations at higher velocities, which disappear only 
when increasing the exciting frequency. 

Maurice et al [14] have proposed an analytical methodology for the investigation of 
short wavelength side-slip variations. The approach follows from the recognition that 
the self-aligning moment cannot be calculated simply by using a single point, 

relaxation length based transient model. The general differential equations for the 
deformation of a rolling and slipping body are applied on a simple brush model and 
the frequency response functions for the force and self-aligning moment with respect 
to deviations of the steady-state slip angle are obtained. Bode plots show clearly that 

the lateral force transfer function can be approximated by a first order system, while 
the self-aligning moment demonstrates a less straight-forward behaviour. The first 

order transfer function for the lateral force is easily identified. The relaxation length, 

which represents the delay parameter of the system is found to be an order of 

magnitude lower than the values indicated by experimental measurements. This 

32 



Chapter 2: Review of Literature 

problem is resolved by connecting a lateral spring in series with the brush tread model 

in order to incorporate the effect of lateral carcass flexibility. The transfer function is 

modified accordingly and it is easily shown that the addition of the spring does not 

affect the steady-state characteristics. The self-aligning moment is treated by 

considering the frequency response function of the pneumatic trail with respect to 

side-slip variations. It is found that this function can be written approximately as a 

product of a first order function and the transfer function of a phase leading network. 

A procedure for the identification of the transfer function parameters is given and 

finally all equations are written in the time domain, where the transfer functions take 

the form of differential equations and are combined with the steady-state brush model 

or the Magic-Formula tyre model for use in vehicle handling simulations. 

Zhou et al [15] use a modified version of the steady-state numerical multi-spoke 

model presented in [56] for the simulation of transient tyre behaviour. The model 

includes three planes of spokes, as opposed to the single-plane steady-state model. 

The planes are equally spaced along the width of the tyre in order to account for 

anisotropies in the lateral direction and to improve the simulation of camber effect. 

Under transient conditions, the motion of one bristle is no longer representative of the 

motion of all bristles, thus, the state of each individual bristle at time t+dt is calculated 

by the state of the same bristle at time t. Also, the model incorporates a rigid mass-less 

spoke base with lateral and longitudinal degrees of freedom, which is elastically 

connected to the wheel hub. The exact positions of the spoke tips and the rigid base 

are calculated iteratively so that the corresponding elastic forces are in equilibrium, 

while the sliding condition is checked in the same manner as in [56]. The normal 

pressure distribution is calculated on-line as in [56] and there are no restrictions in the 

possible motions of the wheel. These qualities are rare to find in transient tyre models. 

Nevertheless, inertial effects are not taken into account and this limits the application 

of the model to relatively low-frequency excitations. It is likely that this problem 

could be resolved by using a spoke base with inertia, although this would complicate 

the numerical procedure by adding the essential integration scheme for the spoke base. 

Zanten et al [16] conduct a combined experimental - numerical investigation on the 

transient behaviour of tyres. They use a complete instrumented vehicle equipped with 

a rotating wheel dynamometer for the measurement of wheel forces and moments 

33 



Chapter 2: Review of Literature 

under braking, cornering and combined manoeuvres. In their numerical approach they 

use a rigid ring connected to the rim via lateral and circumferential springs and 

dampers in order to capture the transients involved in the motion of the tyre belt. The 

contact forces are obtained by a separate tread model, which is based on the brush 

concept. The bristles are mass-less and un-damped and their deflections are calculated 
by taking into account the transient kinematic conditions of the belt. Results are 

provided as graphs showing the adhesion coefficient plotted against slip ratio, slip 

angle or time. Plots obtained numerically show good agreement with experimental 

measurements. However, the selected way of presenting the results does not give any 
information about the frequency response of the tyre model. 

Mastinu et al [17] present tyre models appropriate for transient simulations. In [17] 

membrane theory is applied to obtain the normal pressure distribution and lateral 

stiffness of the carcass. The belt is discretised using finite elements for the 
determination of bending modal behaviour. Along the contact patch the belt is divided 

into an adequate number of elements, while the part of the belt outside the contact is 

modelled as a single bending element. The belt is connected to the rim by springs with 

a lateral stiffness that varies depending on the local radial deflection of the tyre. The 

tread is modelled as a one-dimensional series of mass-less undamped bristles with 
anisotropic stiffness in lateral and longitudinal directions. Lateral force and self- 
aligning moment depend on the relative deflections of the belt and tread elements, 
while longitudinal forces depend only on the deflections of the tread. In other words, 
the belt does not possess circumferential degrees of freedom. The tyre model operates 
under steady-state conditions with the motion of one tread element being 

representative of the motion of all elements, while the simulation of transient 

conditions is achieved by updating the states of all elements independently. An 

enhanced version of the model presented in [17], is given by Mastinu et al in [18]. 

While in [17] the normal pressure distribution is considered uniform in lateral 

direction, in [18] the effects of camber and lateral slip are taken into account and the 

pressure distribution varies both in the longitudinal and lateral directions. The contact 

area is divided laterally into parallel strips and the shear forces are calculated within 

each strip depending on the corresponding "slice" of normal pressure distribution. The 

transient version of the model is improved by introducing the gyroscopic, turn-slip 

(for a definition see [6]), and damping effects. Simulation results show good 
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agreement with measurements especially in the calculation of the size of the contact 

patch. Transient results show good agreement in terms of magnitude and phase angle 

for low frequency variations in the slip angle. Results are not provided for the 

frequency response of the longitudinal force, however a larger deviation between 

simulation and experiment would be expected due to the absence of a circumferential 

degree of freedom for the belt, which would result in an increase in the longitudinal 

relaxation length of the model. 

Ftire [19] is a commercially available tyre model, optimised for use in multi-body 
dynamics simulation environments. The main structure of the model is a tyre belt 

which consists of a number of discrete segments. The belt segments are elastically 
founded on the rim by distributed stiffness in the lateral, circumferential and radial 
directions. Adjacent segments are coupled by translational and bending springs and 

each segment can perform in-plane and out of plane motions. The radial stiffness is 

defined by a spring connected in parallel with a spring-damper series, in order to 

provide dynamic hardening as rolling velocity increases. For the simulation of the 

contact, each segment is associated to a number of mass-less tread bristles with non- 
linear radial, tangential and lateral stiffness and damping properties. The model is 

developed primarily for ride and comfort analyses and works in conjunction with a 

predefined road profile. The stiffness and damping parameters of the model are 
identified by a pre-processing procedure which uses experimentally measured in-plane 

and out-of-plane vibration modes of the tyre. 

A similar philosophy is followed in the tyre-model system RMOD-K [20] which is 

also used in multi-body simulation codes such as ADAMS. The model focuses mainly 

on ride and comfort studies and is characterised by the switching between individual 

tyre models depending on the operating conditions (hence its characterisation as a 

tyre-model system). For example, when the wheel negotiates a surface irregularity 

perpendicular to the direction of travel, a model incorporating a discretised two- 

dimensional belt is used, which neglects the effects of the width of the belt. On the 

other hand, when the irregularity is met by the tyre at an angle, a more complex three- 
dimensional tyre model is implemented, taking into account the effect of the cords of 
the carcass. 

35 



Chapter 2: Review of Literature 

2.4 The Mechanics of Friction 

The importance of the study of friction in tyre mechanics has already been 

highlighted. In section 2.2.1 the fact that tyre friction forces are not proportional to the 

normal load is demonstrated through experimental results [36], while in section 

2.2.2.1, some details of rubber friction are discussed, triggered by the research 

conducted by Sakai [48]. In the present section, a brief history of the evolution of 

friction science is given. Initially, the classical theory of dry friction between hard 

surfaces is discussed. The role of surface asperities and the mechanics behind friction 

force generation are presented. The range of the validity of the classical laws of 
friction is also discussed and the necessity of the separate study of elastomeric - in 

particular rubber - friction is pointed out. A brief description of the theory of rubber 

friction is presented and finally, a number of frequently used mathematical models for 

the simulation of friction force generation are discussed. 

2.4.1 Fundamentals of Friction - the Laws of Dry Friction 

The work of some of the pioneers in the study of friction is presented in the books by 

Dowson [39] and by Bowden and Tabor [40]. It is stated in [40] that the ancient 
Egyptians, Greeks and Romans were fully aware of the use of lubricants. Much later, 

in the middle of the fifteenth century, Leonardo da Vinci showed that the friction 

force is proportional to the vertical load. This early observation was reconsidered 200 

years later in what is probably the first scientific study of friction, by the French 

scientist: Guillaume Amontons. Amontons carried out friction measurements using an 

apparatus consisting of a spring, which provided the normal loading and a spring 
balance for the measurement of the force required to initiate sliding between two 

specimens [39]. Amontons presented his major findings together with an 
interpretation of his measurements in a classical paper in 1699 [39]. He reported that 

the resistive force (friction) is proportional to the normal load but independent of the 

size of the areas in contact. This observation summarises the first and second laws of 
dry friction. He also found that the friction between various surfaces is always equal 
to one third of the vertical load, provided that the surfaces are covered with pork fat. It 

is interesting to note that while Amontons' laws are usually referred to as laws of 
"dry" friction, the actual experiments were carried out with a thin film of pork fat 
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between the rubbing surfaces. The most interesting part of Amontons' work is 

probably the physical explanation of the mechanism of friction force generation in 

relation to his laws. Amontons attributed friction to the surface irregularities of the 

specimens in contact. He noted that these irregularities should be partly convex and 

partly concave and that during contact the former enter upon the latter. This 

interlocking of the irregularities should produce a certain resistance when one 

attempts to move them. In order for the interlocking to brake, the load, which presses 

the irregularities against each other needs to be increased and this is equivalent to 

raising a load along an inclining plane. It follows from this observation that the greater 

the load, the greater the resistive force. Amontons observed that when the contact area 
increases, the number of interacting asperities increases proportionally, but the vertical 
load on each interlocking of pair of asperities reduces so that the total load required to 

be raised for the initiation of sliding between the surfaces remains constant. This 

explains why friction is proportional to the load, but independent of the size of the 

rubbing surfaces. Amontons went further by recognising that these laws are valid for 

both "rigid" and "elastic" asperities. He supported this argument by using springs for 

the representation of elastic asperities. He pointed out that the force required to deflect 

the spring (elastic asperity) is in no way different from that required to raise a weight 

to comparable height equal to the strength of the spring. 

The next major contribution to the science of friction was provided by Charles 

Augustin Coulomb [39,40]. Coulomb reported his work on friction in a lengthy 

memoir, in 1785. He conducted detailed experiments to determine the frictional 

properties of various materials, including dry and lubricated oak, elm, iron and yellow 

copper. Similarly to Amontons, he observed that the friction force is almost 

proportional to the vertical load and independent of the size of the contact area. He 

considered the concept of cohesion, first introduced by Desagulier [39] as an 

additional friction-generating mechanism, which acts together with the interlocking of 
the asperities introduced by Amontons. Coulomb was the first to express the friction 

as an addition of two terms, the first term being associated with the effect of cohesion, 

and the second one resulting from the relative motion of the asperities. Coulomb also 
distinguished static from kinetic friction and found that, in general, kinetic friction is 
lower than static friction. An important observation was that kinetic friction is 
independent of the sliding velocity and this statement formed the third of the classical 
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laws of dry friction. Coulomb used the concept of interlocking asperities to explain the 

difference between static and kinetic friction. He argued that the meshing of the 

asperities is responsible for the higher values of static friction. Under the application 

of a tangential force the asperities deform until sliding begins. Once sliding is 

initiated, the asperities fold over, filling up the voids previously occupied by the 

opposing surfaces and thus reduce their slopes. This explains why the friction force 

generated during sliding is lower than static friction. 

The laws of Amontons and Coulomb have passed the test of time and still hold true 

for a wide range of conditions. Nevertheless, the next major step towards the better 

understanding of friction required the use of elaborate methodologies of the 20th 

century. A comprehensive analysis of the modem theories of friction is provided by 

Bowden and Tabor in [71]. Instruments such as the electron microscope and 

methodologies such as optical interference have allowed scientists to determine the 

exact shape and size of the asperities of assumedly flat surfaces. The modem view of 

friction pays much attention to the area of real or intimate contact, versus the area of 

apparent contact, as perceived by the early investigators. It is reported in [71] that 

even well polished surfaces consist of microscopic hills and valleys. As a result, when 

two surfaces come into contact, they will touch only on the summits of the hills and 

the area of intimate contact will be very small compared to the area of apparent 

contact. For example, for steel plates of a total area of 20 square centimetres, the real 

area of contact is approximately 1/200th of the apparent area for a vertical load of one 

ton, whereas the area of intimate contact drops to 1/100000th of the apparent area for a 
load of 2 kg (see [71]). This observation leads to some very interesting results, briefly 

summarised here. The case of rubbing metals is discussed in detail in [71] and it is 

noted that because the area of real contact is very small, the resulting pressure around 

the contact points (summits of the hills) exceeds in most practical applications the 

elastic limit of the materials involved. The materials flow plastically and any further 

increase in the normal load does not cause any increase in pressure. Consequently, the 

extra load is handled by an almost proportional increase in the area of real contact. 
This leads to the observation that the area of real contact is equal to the ratio of the 

normal load and the mean yield pressure of the materials [71]. In order to initiate 

sliding between the bodies in contact, the mean tangential strength of the plastic 
junctions needs to be reached. Therefore, the total force required is equal to the 
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product of the mean tangential strength (stress) and the total area of intimate contact. 

Finally, assuming that the tangential strength of the junctions is constant and because 

of the fact that the area of intimate contact is proportional to the normal load, the 

tangential force (friction) required, is also proportional to the normal load. Clearly, the 

result of this analysis agrees with the observations of Amontons. Nevertheless, it 

should be emphasised that Amontons' laws hold true only when the area of intimate 

contact increases proportionally with the applied load. It is noted in [71] that if, by 

some artificial device, the area of contact is prevented from increasing proportionally 

with the normal load, Amontons' laws would no longer be valid. The above analysis is 

carried out considering idealised asperities of spherical, conical and pyramidal shapes 

and applying the Hertzian contact theory [71], [72] for the determination of the 

pressure around the contact points. It should also be noted that the explanation of 

friction between metals given thus far, is based on the shearing of the metallic 

junctions formed at the points of contact of the surface asperities. In the case of hard 

metal surfaces rubbing against softer ones, for example steel rubbing against lead, the 

effect of ploughing action may become significant. The hills of the asperities of the 

harder material sink into the softer material and the total friction force is increased by 

the force required to displace the softer material from the front of the asperities of the 

harder one. 

While this theory makes use of the advanced concept of the area of real contact, it 

assumes that the contact conditions between the asperities are such that plastic flow is 

always the case and that the only way of increasing the load carrying potential is by 

increasing the area of real contact. However, the conditions upon which such an 

assumption is valid are not always very clear and one may expect partially plastic flow 

and partially elastic deformation or even pure elastic deformation within a contact. 

Archard [73] notes that when materials of similar hardness rub together repetitively, a 

protuberance may be plastically deformed at its first encounter with the other surface, 

but its relaxation would be elastic. At its subsequent encounters it would bear the 

same load by elastic deformation [73]. The obvious question that rises from this 

observation is how could the laws of Amontons' be still valid for elastic contacts, 

when it is known from the Hertzian theory [72] that for a single elastic contact the 

area increases proportionally to the 2/3 power of the load. Archard [73] starts from a 

perfectly polished sphere in contact with an ideal flat plane and, as expected, he 
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calculates that the area of contact is proportional o the 2/3 power of the load. Next, he 

assumes that the surface of the sphere is not completely flat. Instead, it is characterised 

by a surface finish represented by spherical protuberances of a radius much smaller 

than the radius of the sphere, evenly distributed over the surface of the sphere. By 

applying the Hertzian theory on the contacts between the small spheres and the flat 

surface, he calculates an overall area of real contact, which is proportional to the 8/9 

power of the load. By assuming even smaller protuberances on the small 

protuberances, he states a law, which indicates that the area of real contact is 

proportional to the 26/27 power of the load. By further assuming tiny protuberances 

on the smaller protuberances he finds that the area of real contact becomes almost 

proportional to the normal load. He also notes that the number of individual contacts 

between the sphere and the flat surface also become proportional to the load, as the 

number of scales of protuberances increase on the surface. Apparently, for a polished 

sphere, the number of contacts is constant and equal to one, while the area is 

proportional to the 2/3 power of the load. For a single series of protuberances the area 

is proportional to the 8/9 power of the load and the number of contacts proportional to 

the 2/3 power of the load and for a second series of protuberances, the number of 

contacts is proportional to the 8/9 power of the load, with the area being proportional 

to the 26/27 power of the load. Archard's analytical predictions are supported by 

experimental results [73], which show that under light loads, the coefficient of friction 

between abraded Perspex specimens remains constant for elastic contacts. This is 

attributed to the effect of the small protuberances. However, at higher loads the 

smaller protuberances deform flat and the contact conditions resemble those between 

perfectly polished surfaces, resulting in the reduction of the coefficient of friction. 

It is now clear that, for a constant shear strength of the junctions formed between 

rubbing surfaces, the main factor that influences the coefficient of friction is the total 

area of the formed junctions, or, in other words, the area of real contact. The 

approximate proportionality between the real contact surface and the normal load has 

been highlighted for plastic and elastic contacts. Greenwood and Williamson [74] 

focus on the features of a somewhat more realistic surface than the one used by 

Archard [73]. The authors consider the case of a rough surface in contact with a 

completely flat plane. The contact conditions are determined primarily by the distance 

between the flat plane and a reference plane in rough surfaces. Assuming a certain 
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distribution of the heights of the asperities, the probability of an asperity being 

deformed by the flat plane can be found as the area under the probability density 

function for asperities higher (with respect to the reference plane) than the distance 

between the reference plane and the flat plane [74]. Assuming a known number of 

asperities per unit area and also that all asperities have spherical summits with the 

same radius, Greenwood and Williamson derive equations for the total number of 

contact spots, the total conductance, the real contact area and the load, as functions of 

the separation between the flat plane and the reference plane, for a given distribution 

of the heights of asperities. The equations are applied initially for an exponential 

distribution, to find that the area of real contact, the conductance and the number of 

contact points are all exactly proportional to the normal load. Approximate 

proportionality is found for a Gaussian distribution, which is a better approximation of 

reality. Greenwood and Williamson extend their analysis further by using the 

distribution of heights of the asperities in order to determine the proportion of contacts 

operating under plastic flow, for a specific separation of the surfaces. The result is the 

definition of the plasticity index, which may be used for the prediction of the type of 

contact between surfaces. Low values of this index indicate elastic contacts, while 

large values indicate plastic contacts. The topography of real surfaces is studied 

experimentally, using a stylus profilometer connected to a data acquisition system. It 

is found that the distribution of heights, the distribution of peaks and the distribution 

of peak curvatures are approximately Gaussian. What is worth noting about this 

experimental technique is that a peak is defined as a point higher than its two adjacent 

points, with its curvature being calculated by three-point curve-fitting. 

In the field of surface modelling, Whitehouse and Archard [75] point out that the 

assumption of a single radius of curvature by Greenwood and Williamson is a major 

simplification. They propose an alternative surface representation, based on a random 

signal with an exponentially decaying autocorrelation function. It turns out that this 

choice results in a power spectral density, which is constant at lower frequencies 

(larger wavelengths of asperities) and cuts-off at 6 db per octave at higher frequencies 

(smaller wavelengths of asperities). Consequently, similarly to the idealised model 
introduced by Archard in [73], this model predicts the existence of asperities of large 

wavelengths with significant amplitude and asperities of short wavelengths with small 

amplitudes (the concept of protuberances on protuberances on protuberances). A local 
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peak is now defined as the product of the probabilities of three successive heights 

being shorter, higher and shorter respectively. In recognition that the shape of the 

autocorrelation function would affect the independence of these probabilities, the 

authors express the probability density of an ordinate being a peak, as a function of 

both the height of the ordinate and the correlation value. Finally, by using the concept 

of three-point curve fitting, they calculate the radius of the peaks and express the 

distribution of this radius with the value of correlation as a parameter. Archard's point 

of view that surface roughness consists of protuberances on protuberances on 

protuberances is strengthened by the late work of Greenwood and Wu [76]. The 

authors examine the similarities of Archard's theory with the fractal theory and report 

that the spectral density of a fractal curve is close to the spectral density of the surface 

model of Whitehouse and Archard [75]. The analysis is supported by measurements 

that show clearly the reduction of the curvature of the asperities as their wavelength 

increases. 

The previous analysis highlights the difficulties associated with the study of friction. 

The simple laws of friction by Amontons and Coulomb apply conditionally, the main 

requirement being that the area of real contact increases in proportion with the normal 

load. Whether this is the case, is determined mainly by the statistics of the surfaces in 

contact [73-75]. 

2.4.2 The Friction of Elastomers 

The term "elastomer" refers to a group of polymers characterised by high elasticity, 

viscous flow and a glass transition temperature [77] far below normal room 

temperature [78]. Rubber represents a sub-category of this group, but the words 
"elastomer" and "rubber" are interchangeable to such an extent that they are most 

often used as synonyms [78]. 

The reader may find an extensive analysis of a wide range of physical properties of 

rubber in relation to the structure of its molecules in [77]. From the point of view of 
the mechanical engineer, the most important among these properties are rubber's low 

elastic modulus, its large deformability with almost complete recoverability and its 
high internal damping - also known as internal friction. Internal damping results in the 
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generation of stresses, which depend highly on the rate of deformation applied on a 

rubber specimen. In general, internal damping is responsible for the time-dependent 

relationship between stress and strain for rubber [50]. The exact analogy between 

internal damping and viscous flow of a Newtonian liquid is demonstrated by Ward 

[50]. The combination of the elastic and viscous behaviour of rubber is commonly 

referred to as "viscoelasticity" [77], [50]. Details on the modelling of viscoelasticity 

and the response of rubber to certain stress and strain situations are given in chapter 3. 

Here, the unique frictional characteristics of rubber are discussed, in relation to its 

viscoelastic properties. 

Rubber friction has been studied by Grosch [79], Schallamach [80], Persson [81] and 

others. Grosch [79] reports the results of an extensive experimental investigation of 

rubber friction. The coefficient of friction is measured for a number of rubber 

compounds sliding against a glass plate (representing an ideally polished surface), 

silicon carbide paper (representing a rough surface) and silicon carbide paper covered 

with a thin layer of magnesia powder (representing a lubricated rough surface). The 

measurements are carried out in a controlled environment with the temperature 

ranging from -50°C to 100°C and the sliding speed varying from 0-3 cm/s, in order to 

eliminate frictional heating. The results are given as plots of the coefficient of friction 

versus the sliding velocity, in a logarithmic scale. It is reported that the variation with 

temperature of the coefficient of friction between a specific rubber and a specific 

substrate follows exactly the variation of the rubber's stress-strain frequency response 
function with temperature. The stress-strain frequency response of polymers is 

discussed thoroughly in [50] and it is shown that under different temperatures, rubber 

exhibits a frequency response function, which is displaced horizontally on the 

frequency axis. In particular, higher temperatures lead to a displacement of the 

frequency response function to the right, i. e. to higher frequency values. The 

quantification of this displacement is achieved with the Williams, Landel and Ferry 

Equation (W. L. F. ) [77], [50], which provides the horizontal displacement (in a 
logarithmic form) as a function of the current temperature and a reference 
temperature. Grosch [79] found that by applying the W. L. F. equation to friction 

measurements performed at different temperatures, it is possible to combine all 

experimental curves to a single "master" curve, corresponding to a reference 
temperature (usually 20°C). The results show that in all cases, the master curves 
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exhibit a distinct maximum [79]. As the sliding velocity approaches the value to 

which the maximum friction corresponds, steady friction changes to stick-slip friction. 

This phenomenon is attributed to the negative slope of the coefficient of friction, 

immediately after the peak value. Grosch also observes that the stick-slip phenomenon 

always starts at the same value of the frictional force (for a certain combination of 

materials) and does not depend on the sliding velocity or temperature. This can be 

seen as a direct proof that stick-slip follows the W. L. F. transform [79]. Grosch 

distinguishes two different behaviours in rubber friction, the first one occurring during 

sliding over smooth surfaces, the second one characterising sliding on rough surfaces. 

In the first case, the coefficient of friction exhibits a peak at relatively low velocities 

of a few cm/s at room temperature [79]. Grosch determined experimentally the 

frequency at which rubber's loss modulus (for a definition refer to chapter 3 and also 

to references [50], [51]) demonstrates a peak at the same temperature. By dividing the 

sliding velocity with this frequency for several rubber compounds he observed that the 

resulting wavelength (6X10"7 cm) is of molecular dimensions. This leads to the 

conclusion that rubber friction on smooth surfaces is a result of a dynamic excitation 

of molecular scale. In particular, the rubber molecules form adhesive bonds with the 

hard surface. Under the application of an external force the molecules stretch, the 

bonds with the surface brake and the molecules jump a distance approximately equal 

to the calculated wavelength, before a new bond is formed. When a rough surface is 

involved in the contact, the peak coefficient is observed at much higher sliding 

velocities of several thousands m/s. Grosch found that if one divides the velocity at 

which friction is maximum with the frequency at which the dynamic loss factor (for a 
definition refer to chapter 3 and also to references [50], [51]) reaches a maximum, the 

resulting wavelength is equal to the spacing between the particles of the abrasive 

paper. This observation indicates that rubber friction at high velocities is also a 
dynamic phenomenon, related to the large scale asperities of the rough surface. As a 

conclusion, rubber friction consists of two separate terms, the adhesion term and the 

deformation term (the latter referring to large scale deformation). Both terms depend 

on the bulk viscoelastic properties of rubber. 

Schallamach [80] provides a different view of rubber friction. He observes that when 
soft rubber compounds slide over hard surfaces, "waves of detachment" propagate 
along the contact, at velocities much higher than the imposed sliding velocity. The 
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waves appear as narrow bands, perpendicular to the direction of motion and the 

stereoscopic microscope reveals that the contact between the specimens is lost along 

the hills of the waves. Schallamach [80] attributes these waves (also known as 

Schallamach waves) to elastic instabilities due to the buckling of rubber in the front 

part of the contact area. He observes that the rubber involved in the leading part of the 

contact undergoes compression, while the rear part undergoes tension. This behaviour 

is confirmed by a mathematical model, which describes the deformation of the rubber 

surface by means of a differential equation. By assuming a parabolic normal pressure 
distribution along the contact between the rubber and the hard surface, Schallamach 

[80] calculates the strain distribution along the contact. The analytical results show 

qualitative agreement with experimental results, provided mainly as photographs of a 

deformed square grid drawn on transparent rubber compounds. Schallamach suggests 

that the macroscopic sliding of a rubber specimen on a hard surface (or a hard 

specimen on a rubber track) corresponds to the propagation of the waves from the 

front to the rear end of the contact patch. The energy loss associated with the 

propagation of the waves from the front to the rear manifests itself as friction. 

Schallamach recognises that the waves of detachment are not always the case and that 

the possibility of true frictional sliding should also be considered. He concludes that 

the actual frictional mechanism is the one that offers less resistance to motion and he 

observes that highly hysteretic rubbers require more energy for the maintenance of the 

waves of detachment; therefore such rubbers should promote true frictional sliding. 

Persson [81] supports the views of Grosch [79] and expresses the friction between 

rubber and a hard substrate directly as a function of the rubber's viscoelastic 

properties. Persson [81], like Grosch, distinguishes the friction related to the long- 

wavelength asperities of the hard substrate (deformation term), from the friction due 

to adhesive forces (adhesion term). The approach to adhesive friction is most 
interesting and illuminates issues such as the static friction of rubber. Persson 

calculates the conditions upon which a rubber with low elastic modulus would deform 

enough in order to completely fill in the asperities of a highly polished surface such as 

glass polished with alumina powder. He suggests that a complete filling of a single 

cavity would occur only when the adhesion energy throughout the cavity is just 

enough to sufficiently deform the solid, in order to occupy the cavity. Based on this 

condition, Persson calculates the frictional stress generated at low sliding velocities, 
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corresponding to a frequency range from 0.1-106 s"1 (frequency is always given as the 

ratio between the sliding velocity and the wavelength of the asperities). It appears that 

this stress can be expressed as a function of the viscoelastic properties of rubber. 

Through this procedure, it is shown that significant frictional stresses might occur at 

very low sliding velocities, even below 10-8 m/s for a wavelength of asperities below 
0 

1000 A. As a conclusion, it is shown that even the so-called static friction of rubber is 

strongly related to the bulk viscoelastic properties of the material. 

Finally, an interesting observation by both Persson [81] and Grosch [79], is that the 

coefficient of friction between rubber and hard surfaces remained approximately 

unaffected by the normal load for lightly to moderately loaded specimens. This can be 

explained by considering the theories of Archard [73], [75] and Greenwood and 

Williamson [74], [76]. Under light loads, rubber forms elastic contacts with a real area 

significantly smaller than the area of apparent contact. An increase in the vertical load 

would result in an almost proportional increase in the area of real contact, leaving the 

coefficient of friction unaffected. Nevertheless, due to its low elastic modulus, rubber 

deforms easily and if the normal load is high enough, a situation is reached where the 

area of real contact is almost equal to the area of apparent contact, i. e. the rubber fills 

in all the cavities. Any further increase in the normal load is not handled by a 

proportional increase in the area of contact and the coefficient of friction reduces. 

From a more practical point of view, Browne, Ludema and Clark [82] distinguish four 

separate terms in rubber friction. The first two, namely adhesion and deformation 

friction, are the same terms investigated by Grosch and Persson. Nevertheless, it is 

stated in [82] that the definition of adhesion friction is not very clear in the literature 

(a different approach to the adhesion component is evident by comparing the work of 

Grosch [79] and Persson [81]). To complicate things further, the deformation friction 

in [82] is studied for sliding on surfaces with a size of asperities that gives a possible 

peak of the deformation friction at sliding velocities where normally the adhesion 

peak is observed, according to Grosch [79]. The two extra friction terms dealt with in 

[82] are the viscous and tear terms. The former is due to very thin layers of lubricants 

(most frequently water) inevitably trapped within the contact between the rubber and 

the hard surface. The existence of such a film would reduce adhesional bonding 

between rubber molecules and the hard surface and consequently eliminate the 
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adhesion term of friction. Finally, the tear term accounts for the fact that some solid 

surfaces tear particles from the rubber. These particles do not remain attached to the 

hard surface and this mechanism can occur on contaminated surfaces where the 

coefficient of friction is low. 

Persson et al [83] examine the nature of static friction, kinetic friction and creep, with 

some reference to rubber friction. The authors focus on boundary lubrication and 

calculate the friction force as a function of sliding velocity using a numerical model of 

the molecular dynamics of the lubricant trapped within contact. Some interesting 

results are obtained regarding the transition between slip and stick. It is observed that 

in the case of a rigid body, the kinetic energy stored in its mass while sliding, needs to 

be converted into elastic energy in the lubrication film. From this requirement, a 

critical velocity is calculated for the transition between slip and stick, of the order of 

10 µ m/s. If, instead of a rigid body, a flexible one is considered, the authors note that 

for the transition from slip to stick, a full deceleration of the lump mass of the body is 

not required. Instead, the lower layer of the body sticks first, transmitting a wave 

along the height of the body. In this way, the kinetic energy is transformed into energy 

carried by the wave. Therefore, the stick slip phenomenon is not necessarily governed 

by the inertia of the sliding bodies. Finally, it is observed that due to the dependency 

of rubber friction to the relaxation time of the rubber, it is difficult to draw a fine line 

between static and kinetic friction. For a range of very low velocities (say 104 to 10"8 

m/s) rubber might or might not exhibit a peak coefficient of friction, so that static 

friction, as perceived macroscopically, depends on the initial dwell time and the rate 

of starting [83]. 

2.4.3 Friction Modelling 

It has now become clear that a spherical study of friction requires the contribution 
from various fields such as contact mechanics, surface statistics, molecular dynamics, 

viscoelasticity and others. In practical applications it is almost impossible to achieve 

such a complete representation, especially if one considers the dependency of friction 

on environmental conditions such as temperature, liquid or solid state lubrication 

(contamination of rubbing surfaces) and the co-existence of low and high sliding 

velocities. As a result, simple friction models are used for the representation of 
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friction in mechanical systems. The complexity of these models may vary from a 

constant coefficient of friction as dictated by the laws of Amontons and Coulomb, to 

more elaborate representations of friction, depending on the nature of the application 

and the level of accuracy required. The models discussed here are chosen based on 

their applicability in tyre friction. All such models originate mainly from 

investigations on the modelling of friction for use in control simulations [23], [84], 

[85]. The philosophy of these models is pretty much standard. The aim is to simulate 

the friction force as a function of the relative velocity and displacement of the rubbing 
bodies. For this purpose, simple differential representations are used [21], [23] which 

can be employed in real time simulations. 

A typical friction model, which conforms to the standards stated above and a good 

starting point for the discussion of such models is the model proposed by Dahl [22]. 

Dahl derived his model observing the behaviour of the friction force with respect to 

the relative displacement of the rubbing bodies. He noticed that as long as the relative 

velocity is positive, the friction force monotonically approaches a maximum value. 
When the direction of motion is reversed, i. e. the relative velocity becomes negative 

the friction force reduces till it approaches its minimum, i. e. the negative maximum. 
However, the friction slope always remains positive, irrespective of the sign of the 

sliding velocity. In this way, a hysteretic loop is formed [22] with an area equal to the 

work of the friction force. Dahl found that this behaviour can be represented by a 
differential equation that describes the slope of the friction with respect to 

displacement, as a function of the friction force itself and the sign of the sliding 

velocity [22]. The main characteristic of the Dahl model is that it does not account for 

a peak friction force, as the maximum friction (positive or negative) is reached 

asymptotically. A comparison between the Dahl model and simple Coulomb friction 

reveals the advantages of the former representation. In Coulomb friction, the friction 

force always opposes the motion and does not depend on the displacement. Thus, the 

maximum friction, either positive or negative in direction, is reached immediately. 

The main disadvantage is the ambiguity in the determination of the friction force at 

zero sliding velocity. This is an unwanted characteristic, especially for the simulation 

of dynamic systems involved in control investigations. 
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A similar approach is followed by Bliman [21]. Bliman provides the equations for his 

single-point-contact friction model and then extends the model for application in tyre 

force estimation. For this purpose, he assumes a rectangular contact patch with a 

uniform normal pressure distribution and derives the friction force equation in the 

form of a partial differential equation with respect to time and distance along the 

contact patch. The case of longitudinal tyre-force generation is compared with results 

obtained by the Magic Formula and good agreement is found. 

A similar approach is followed by Deur [24], and by Canudas de Wit et al [25]. In 

both cases the so-called LuGre friction model [23] is used for the calculation of tyre 

forces. The LuGre fiction model can be seen as an evolution of the Dahl model. Its 

main advantage over the Dahl model is its ability to generate a frictional peak at a pre- 

specified sliding velocity. This is achieved by incorporating the Stribeck effect [84] in 

the differential equation describing the friction model. The necessary modifications 
for the use of the LuGre friction model in tyre modelling are discussed with reference 

to the work carried out in [25]. The authors first present the lumped LuGre model, 

which is applicable for single point contacts, or completely rigid contacts (where the 

relative displacement is common for all points of the surfaces in contact). The 

distributed LuGre model is then derived for the case of a braking tyre, taking into 

account various normal pressure distributions, such as uniform and exponentially 
decreasing. The derivation is similar to that proposed by Bliman [21], where a partial 
differential equation is employed, describing the friction along the contact patch and 

with respect to time. The distributed LuGre model is used for the estimation of the 

steady-state friction under braking and traction situations. It is recognised that the 

distributed LuGre model theoretically incorporates an infinite number of states and 

therefore cannot be introduced in transient simulations. Hence, the distributed model 
is simplified to an average lumped LuGre model using the concept of a representative 

average displacement along the contact patch. This model is used for the generation of 

the transient braking force and the results are compared with experiments. The 

experiments involve hard braking from a given forward velocity, without the 

activation of an ABS system. There seems to be a good agreement between analytical 

and experimental results, yet some important observations can be made. The authors 

plot the experimental results in the form of friction coefficient versus time. In the 
beginning of the paper it is stated that a simple quarter car model including rotational 
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wheel dynamics can be used for the testing of the friction model. However, nowhere 

in the experimental section, is it stated explicitly that a complete parallel simulation is 

run for the generation of the friction force by the LuGre model. Instead, it seems that 

the authors have used various velocities obtained by the measurements in order to 

generate the necessary velocity and longitudinal slip information required by the 

LuGre model. This is confirmed by closely observing the comparison between the 

experimental findings and the simulation results in the time domain. Just before 

braking is applied, the experimentally measured coefficient of friction is relatively 

smooth and very close to zero (no friction force is yet generated). On the contrary, the 

numerically calculated coefficient shows significant fluctuations. It can be safely 

assumed that if the numerical results were obtained through a full simulation based on 

the simple system (vehicle - wheel - friction) proposed in the beginning of the paper, 

the coefficient of friction would appear as a perfectly straight line, crossing the zero 

point. The fluctuations of the friction coefficient (i. e. the friction force) may be 

attributed to the influence, on the LuGre model, of small fluctuations in the 

experimentally measured velocities. To resume, the friction coefficient is calculated 

using the LuGre model and experimentally measured velocities. In these calculations, 

the forward velocity of the vehicle is used, together with the rotational velocity of the 

wheel, as measured by the ABS sensor. These velocities generate the "macroscopic" 

longitudinal slip and not the actual slip conditions in the neighbourhood of the contact 

patch. This is somewhat equivalent to the treatments based on the relaxation length 

concept, where the required kinematic quantities, based on the motions of the vehicle 

and the wheel, are fed at each time-step into the differential equation which yields the 

transient slip ratio or slip angle [6] (i. e. the slip quantities in the neighbourhood of the 

contact patch). In the case of the LuGre model, a transient slip ratio is not defined, but 

the macroscopic kinematic quantities are passed to the appropriate differential 

equation for the estimation of the instantaneous friction force. Therefore, it may be 

argued that, provided the kinematic quantities, a relaxation-length based tyre model 

would yield similar results. As a conclusion, the usefulness of the LuGre model would 
be better emphasized by comparison of the numerical results with the results obtained 

using a relaxation-length based model. Finally, the LuGre model does not incorporate 

any carcass-belt dynamics. It is shown experimentally and numerically by Zegelaar 

and Pacejka [86] that under brake torque variations the tyre responds with an 
overshoot followed by decaying oscillations which coincide with certain vibratory 
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modes of the tyre structure. The LuGre model certainly does not incorporate such 

capabilities and its usefulness in the investigation of ABS systems where such 

vibrations are highly likely to be excited is expected to be limited. 

2.5 Vehicle Modelling 

In order to investigate a vehicle's dynamic behaviour either analytically, or with the 

aid of computer simulation, it is essential to define a vehicle model, which takes into 

account all the important parameters that affect the qualities under investigation. At 

the outset, the model should not be overcomplicated, as this would make it difficult to 

interpret the results, and decide which parameters are responsible for the outcome. 

Once these parameters are clearly identified, it is usually required to proceed with 

more elaborate models, in order to take into account the non-linearities, or to 

investigate the effect of under-estimated parameters and employed simplifications. 

This procedure has been followed by most researchers. 

Furthermore, the modelling approach differs according to the purpose of the study. 

Blundell [87-90] and Hegazy and Rahnejat [91] use a multi-body dynamics approach 

in order to compose highly complex, non-linear vehicle models, for the assessment of 

vehicle handling, using computer simulation. On the other hand, when the aim is to 

develop techniques for chassis control, researchers usually prefer less complicated 

models. This requirement follows directly from the advantage in expressing the 

transfer functions of controlled systems in an analytical form. 

2.5.1 Linear Models 

It should be noted from the very beginning that a vehicle's dynamic behaviour is 

highly non-linear. Therefore, one should always be aware of the limitations of the 

studies, which are carried out with linear models. Nevertheless, the linear theory 

provides accurate results for low lateral acceleration (up to 0.3-0.4 g), where the 

behaviour of most components resides still in the linear region. Furthermore, the linear 

theory is most effective in describing the fundamental laws, which govern a vehicle's 

motion. 
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The most popular example of linear model is the "bicycle model" with lateral and yaw 
degrees of freedom. Forward speed is assumed to be constant and is considered as a 

parameter, rather than a degree of freedom. The bicycle model is used in text books, 

such as that by Dixon [5], Ellis [7] and Wong [44]. Also, Pacejka [2] has conducted a 

comprehensive study on handling, which reveals the basic trends of vehicle behaviour, 

starting with a simple four-wheel linear model that is reduced to an equivalent bicycle 

model for the purpose of the analysis. 

When using a linear model, certain purpose-specific assumptions are made, which 

allow the implementation of linear relations, but also restrict the validity of the 

analysis to low lateral accelerations. For the case of the bicycle model the most 

important among these assumptions are: 

- The tyre behaviour is linear 

- There are no pitch and roll degrees of freedom and the load transfer 

during cornering is not taken into account 

- Neglecting the load transfer, the tyre forces are assumed to be 

independent of the normal forces on each wheel 

- Forward speed of the vehicle is constant 

- Steering angles are relatively small 

- No longitudinal forces are applied 

Considering the simplifications mentioned above, it is obvious that such a model 

cannot be used for accurate studies on the effects of braking and traction, while it is 

also inappropriate for simulating transient manoeuvres. 

2.5.2 Non-linear Models 

Non-linear models include one or more sources of non-linearity and are appropriate 
for use in studies, which involve high lateral accelerations - sometimes extended to 

the vehicle's limiting behaviour. These models provide the same results as the linear 

models at low lateral accelerations, a fact which validates the latter for use in such 

studies. The most common sources of non-linearity in vehicle dynamics include: 
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- Tyre forces and moments 

- Bump and rebound stop forces 

- Suspension kinematics 

- Steering characteristics 

- Suspension and Steering compliance due to bushings 

- Non-linear Spring and Anti-roll bar stiffness 

- Non-linear Damper characteristics 

The disadvantage in using non-linear models is the difficulty in obtaining analytical 

expressions for the results. Instead, researchers have to rely on data obtained via 

computer simulation, which - in many cases - is difficult to interpret effectively. 

In order to include - in an effective manner - all the sources of non-linearity 

mentioned above, a multi-body dynamic methodology is most appropriate. Blundell, 

in a series of four papers [87-90] provides a detailed description of the application of 

this methodology. In the first paper [87] he gives the background of multi-body 

dynamics, while in the second paper [88] he uses this methodology for modelling a 

vehicle's suspensions, including suspension and steering geometry and bushings. The 

third paper [89] is dedicated to tyre modelling aspects and describes the most 

frequently used non-linear tyre models, while in the last paper [90] he presents the 

results of the previous analysis by implementing a highly non-linear, multi-degree of 
freedom vehicle model in the ADAMS program (Automatic Dynamic Analysis of 
Mechanical Systems). 

The superiority of the multi-body dynamics approach lays mainly on the ability of 

including suspension geometry and kinematic constraints. Nevertheless, other 

researchers such as Pacejka and Allen have used much simpler models, which 

incorporate non-linear tyre behaviour and weight transfers, but do not pay much 

attention to the non-linearities that result from the suspension geometry and assembly 

constraints. Pacejka [2-4] published a series of papers on the investigation of Vehicle 

Handling, where he uses models of increasing complexity. Starting with the 

aforementioned bicycle model, he adds non-linear tyre characteristics. Then, he uses 

the concept of effective slip angle of the front and rear axles and subsequently defines 

the effective cornering stiffness of the axles. Finally, he takes into account the weight 
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transfer, roll angle and steer compliance by introducing coefficients, which at the end 

appear in the equation for the calculation of the effective cornering stiffness. Allen et 

al [92], in the first part of their study, use a similar approach (i. e. they introduce 

coefficients in order to include the roll and compliance effects in his analysis), without 

increasing the degrees of freedom of his bicycle model. 

It is interesting to note that both Pacejka and Allen have tried to include the effects of 

roll motion, without implementing this degree of freedom in the differential equations. 

2.6 Vehicle Handling Analysis 

2.6.1 Steady-State Handling 

Steady state analysis is concerned with a vehicle's directional behaviour under time 

invariant conditions. In particular, the vehicle is supposed to be negotiating a corner 

with constant radius, while maintaining a constant forward speed. Thus, there is an 

equilibrium state in which the tyres have developed appropriate slip angles and 

subsequently sufficient lateral force to compensate for the centrifugal force acting on 

the vehicle's centre of mass. Mathematically, this is not a time invariant condition, as 

circular motion is by definition a dynamic situation (see Rahnejat [93]). Nevertheless, 

the absolute values of velocities and forces remain constant, a fact which transforms 

the differential equations into simple algebraic equations, that can be easily solved in 

order to reveal the basic trends of handling behaviour. It is worth noting that the 

steady state analysis is almost always conducted with the use of the bicycle model 

possessing two degrees of freedom (i. e. yaw and lateral motions). 

This procedure is followed in text-books such as Wong [44] and Dixon [5], while it is 

also used by researchers like Pacejka [2-4], [94]. All these studies outline the 

relationship between the front and rear slip angles, as the most important factor that 
determines a vehicle's handling behaviour. Omission of the time derivatives in the 
2X2 system of differential equations for the yaw and lateral degrees of freedom yields 
the conditions for a steady turn. Assuming that the tyre behaviour is linear and after 
the consideration of the force and moment equilibrium, the following relation is 

obtained, which expresses the difference between front and rear slip angles af- cc., 
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as a function of the vehicle's forward speed, mass distribution between front and rear 

axles, cornering stiffness of the front and rear tyres and turning radius: 

1W1 W, UZ 
ar CCg of , 

(2.1) 

Where af9a, denote the slip angles of front and rear tyres, Wf, W, are the front and 

rear vehicle weights, Cpf and Ca, are the coefficients of cornering stiffness of the 

front and rear tyres respectively, U is the forward velocity and R is the turning 

radius. 

By simple geometrical considerations, Pacejka [2] derives for the case of the bicycle 

model a simple, yet very important relation: 

Bf=R+af-ar (2.2) 

This relation indicates that the front steering angle 8f depends - at any instant - on 

the turning radius R, the wheelbase 1 and the difference between front and rear slip 

angles af-a.. 

By combining equations 2.1 and 2.2, the following relation is obtained: 

I Wf W, UZ Sf 
R+ Cof Cp, gR 

(2.3) 

The term 
Cf 

- 
WE 

can be replaced by the Under Steer Coefficient K�S , so that: 
of ar 
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z 
8f=R+ Kus (2.4) 

g 

This final relationship clarifies the situation: It indicates that the front wheel steering 

angle, required in order to negotiate a given corner, depends on the turning radius, the 

vehicle's wheelbase, the forward (tangential) speed and the vehicle's under-steer 

coefficient, which is a function of the weight and cornering stiffness distribution 

between the front and rear part of the vehicle. 

In case of a linear vehicle model, the under-steer coefficient, Kus is used in order to 

classify vehicles, based on their cornering behaviour. According to this classification, 

a vehicle's handling behaviour is considered as under-steering when K. > 0, neutral- 

steering when Ku5 =0 and over-steering when K., <0. For the under-steering 

vehicle it is essential to increase the steering angle when the forward speed increases 

and vice versa, in order to follow a curve of constant radius. On the contrary, the over- 

steering vehicle requires the decrease of the steering angle as forward speed increases. 

Finally, the neutral-steering vehicle is capable of maintaining its path without 

adjusting the steering angle, regardless of the changes in forward speed. As it will be 

discussed later, the value of KW, is insufficient for assessing the steady-state handling 

behaviour of a vehicle, when the non-linear behaviour of tyres is taken into account. 

Pacejka [2] used the bicycle model in order to obtain a simple transfer function for the 

steering angle 8f with respect to the path curvature 1/R for steady state conditions. 

He then plotted the value of the transfer function versus the forward speed squared 
(U2 ), for the cases of under, over and neutral steering vehicles. With the aid of 

geometrical equation (2.2), he modified this plot in a way that it represents the 

difference of slip angles af-a, with respect to the non-dimensionalised lateral 

acceleration (UZ /Rg). Finally, by rotating the plot, Pacejka [2] introduces the 

Handling Diagram, which represents the non-dimensionalised lateral acceleration of 
the vehicle versus the difference between rear and front slip angles a, -af. When 
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both the vehicle and tyre operate in the linear range, the Handling Diagram consists of 

straight lines starting from the origin (0,0). The slope of these lines differs according 

to the handling behaviour: Under-steering vehicles give negative slope, neutral- 

steering vehicles are described by a vertical line, and over-steering vehicles attain a 

positive slope. 

The advantage of the Handling Diagram is that it can be extended for the assessment 

of vehicles and tyres with non-linear characteristics, as demonstrated by Pacejka in [2- 

4], [94] and [95]. In this case, the plots are no longer linear and the behaviour of a 

given vehicle may change from under to over-steering in high lateral accelerations. 

Since the tyre cornering stiffness depends on the slip angles, the under-steer 

coefficient Kus cannot be defined and the assessment of the vehicle's behaviour relies 

on the sign of the slope of the Handling Curve. A similar analysis is carried out by 

Lukowski et al [96], who have used a four wheel - two degree of freedom model and 

linear tyre characteristics to obtain the same handling diagrams as that of Pacejka. 

Allen et al, in the first part of the work described in [92], use a steady-state 

methodology for the assessment of vehicle handling behaviour under combined 

cornering and braking manoeuvres. The authors use a fairly accurate steady-state tyre 

model able to deal with combined longitudinal and lateral slip situations. The steady- 

state dynamics of the vehicle are dealt with in a simple manner: It is assumed that a 

steady-state solution is reached when the longitudinal tyre forces are sufficient to give 

the required braking or traction acceleration, while the lateral forces at each axle 

balance the resulting (due to cornering) centrifugal force. A computer program is 

developed, which cycles through the full braking-in-a-turn manoeuvring range. This 

procedure outlines the fact that the application of braking torque during cornering 

causes a shift of the vehicle's behaviour towards over-steer and can ultimately lead to 

spin-out of the vehicle. Pacejka [3] points out the inherent instability of over-steering 

vehicles by solving the characteristic equation of the 2X2 system of differential 

equations of the perturbed steady-state motion of the bicycle model. He finds that an 

under-steering vehicle is always stable, while the perturbed motion of an over-steering 

vehicle is always aperiodic i. e. diverts exponentially. Although the perturbed motion 

of a vehicle is by definition a transient situation, the author is not interested in the full 

transient response of the vehicle (for example the response to a step-steer input). 
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Instead, his aim is to investigate the stability of the steady-state motion, hence this 

study refers to steady-state operating conditions. 

Abe [97] conducted a theoretical analysis on vehicle cornering behaviour in 

acceleration and in braking for forward, rear and four wheel drive vehicles. By 

plotting the turning radius versus speed for different values of longitudinal 

acceleration and deceleration, he showed that for a forward drive vehicle, the 

application of driving torque on the front wheels and the weight transfer to the back of 

the vehicle result in the early saturation of the lateral forces of the front tyres, a fact 

which increases the turning radius (i. e. the vehicle exhibits an under-steering 

behaviour). The same behaviour, but less intense is observed in the case of the four 

wheel drive vehicles. On the contrary, for rear wheel drive vehicles, tyre force 

saturation first takes place at the back tyres, thus the turning radius decreases with 

speed and the vehicle becomes over-steering. Finally, regardless of the type of 

transmission, braking results in an over-steering behaviour, which is again expressed 

by the decrease of the turning radius with speed. This is caused by the combined effect 

of braking forces on the rear tyres and the weight transfer to the front of the vehicle. 

2.6.2 Transient Handling 

According to the definition given by SAE [98], a vehicle operates in transient state 

when either the vehicle's responses, the external forces relative to the vehicle, or the 

control positions are changing with time. This definition does not require that the 

vehicle has entered the non-linear region of operation. Nevertheless, the study of 

transient handling behaviour usually takes into account the most important sources of 

non-linearities. In reality, most of the transient handling studies involve high lateral 

accelerations, which result from relatively steep control inputs. Because the vehicle 

usually operates in the non-linear range, analytical expressions such as the ones 
derived for steady state handling are impossible, thus results are obtained either 

experimentally, or by simulation. 

Undoubtedly, the transient part of the handling response of a vehicle determines the 
driver's perception of its overall handling qualities. Under a pre-specified transient 

manoeuvre, the transient response time may be defined as the time needed by the 
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vehicle in order to reach a specific percentage of its final steady-state response. There 

is no universal agreement on the exact percentage that characterises better the 

transient response of a vehicle and various researchers have used different values. For 

example, Whitcomb and Milliken [99] assume this percentage to be 63%, while 
Bickerstaff [100] has chosen a value of 50%. 

Perhaps the most common transient manoeuvre involves a step increase in the steer- 

angle. Lee et al [101] use, among other, a transient step-steer manoeuvre for the 

assessment of the contribution of certain suspension parameters to the handling 

performance of a vehicle. Antoun et al [102] have developed a vehicle model which is 

subjected to an approximately step-steer command at a forward velocity of 96 Km/h, 

resulting in a lateral acceleration as high as 0.7 g. The vehicle model is based on a 

detailed multi-body approach using the ADAMS multi-body software and the 

simulated responses show generally very good agreement with experimental results. 
Nevertheless, the simulated response times seem to be shorter than the response times 

measured experimentally. This difference is attributed to the use of a steady-state tyre 

model which neglects the relaxation properties of the tyres. Hackert et al [103] have 

developed a multi-body model of a light truck for the investigation of transient 

responses, including the study of cross wind stability issues. Naude et al [104] use a 
double lane-change manoeuvre for the assessment of the transient behaviour of the 

vehicle. The model used in their investigation is an enhanced non-linear vehicle model 

appropriate for transient simulations, combined with a driver model which steers the 

vehicle using closed-loop control. Hegazy [105] has also developed a complex multi- 
body model which is tested under a double lane-change manoeuvre and a step-steer 
input. The adoption of a multi-body methodology allows the changes in suspension 

geometry to be monitored together with the yaw rate response and lateral acceleration 

response. 

In contrast with the aforementioned time domain studies, Allen et al [92] use a 
frequency domain methodology to analyse the steady-state behaviour of a vehicle. In 
his study he takes into account the effects of combined cornering and braking forces. 
Allen outlines the fact that the application of braking torque during cornering causes a 
shift of the vehicle's behaviour towards over-steer. Furthermore, he points out the 
inherent instability of over-steering vehicles by showing that the bandwidth of the 
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transfer function of yaw rate with respect to steering angle is proportional to the 

equivalent rear axle cornering coefficient. When the rear axle side-forces saturate 

under high g manoeuvres, the bandwidth approaches zero. 

2.7 Some Concluding Remarks on the State of the Art in Tyre Modelling 

A significant amount of modelling work has been discussed, both in the fields of 

steady-state and transient modelling. Also, the importance of tyre force generation in 

vehicle handling simulations has been highlighted. In this section, the main trends and 

the status of tyre modelling for vehicle handling studies are summarised. 

In steady-state studies, the Magic Formula [6], [58], [41], [62] seems to be the model 

of choice. Although a semi-empirical model with little physical significance, the 

Magic Formula possesses the distinctive and highly desired advantage of being easily 

adopted to experimental results. The formula is characterised by a very flexible, well 

defined mathematical structure which accounts in a straightforward way for almost all 

experimentally observed tendencies in steady-state tyre force generation. On the other 

hand, physical models ([46-49], [52-54], [56]), both analytical and numerical, are still 

struggling to compete in terms of accuracy and ease of use. In many cases good 

agreement is achieved between experimental and simulation results ([52-54], [56]), 

but there is a lack of confidence whether a physical model would be able to handle a 

very wide range of operating conditions. At this point, it should be emphasized that a 

tyre model can be judged from at least two different points of view. First, it can be 

evaluated in terms of being an all-around performer i. e. being able to deliver sensible 

results when used in simulations in a wide range of operating conditions. Second, it 

can be judged in terms of enabling the study and assessment of certain parameters that 

influence tyre force generation. Such parameters may be related to the friction law 

governing the contact, the shape of the normal pressure distribution, or other relevant 

issues. Probably the main strength of the current physical models lies in their 

potential to reveal the influence of such parameters. To this end, some purpose- 

specific models exist. For example, the model proposed in [106] aims to the 

investigation of the rolling conditions in terms of normal pressure distribution and 

rolling resistance. In some cases, a single physical model combines successfully the 

requirements for all-around performance together with a modelling approach that 
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reveals the influence of certain parameters, as demonstrated by the model proposed by 

Sharp and El-Nashar [56]. 

In the area of transient tyre modelling, it is recognised by the majority of researchers 

that the transient response of the tyre is mainly related to the dynamic properties of its 

structure, i. e. the carcass and the belt. In many cases, the contact conditions are treated 

in a simple manner and the main focus is on the response of the structure. This 

approach is followed for example in the development of the string-type model by 

Pacejka in [13]. In its simplest form, transient force generation is treated using the 

relaxation length concept [6], [67-69]. Again, the relaxation length is a measure of the 

influence of the structure of the tyre and needs to be combined with a steady-state 

model for the description of the situation in the contact patch. This view is also 

supported by the findings of Maurice et al [14] who show that the transient properties 

of a tyre may be successfully represented by a flexible carcass, while the behaviour 

within the contact may be represented using a brush-type model. It is clearly stated in 

[14] that the brush model is closely related to the tread behaviour, while the transient 

behaviour depends primarily on the modelling of the carcass. 

With the latest advances in computer technology, numerical transient tyre models 

have emerged [15], [17], [18], [19] where the tread deformation along the contact 

patch depends on the belt-carcass deformation and the tread forces are updated in a 

transient manner. These models are assumed to simulate, or at least have the potential 

to simulate transient force generation in a more realistic way. 

In the section dedicated to friction, a number of tyre models were presented [21], [22], 

[25], based on friction models previously developed for control studies. In [25], the 
LuGre model is used for the "dynamic" simulation of braking and traction. It seems 

that in this approach, the traditional connection between transient or "dynamic" 

behaviour and carcass dynamics is not emphasized. Most of the parameters of the 
LuGre friction model are identified through steady-state simulations and only one 

parameter is identified from transient simulations. The final model does not show any 
direct physical connection with the structural properties of the tyre, as for example is 

the case with the relaxation length concept. However, this category of models points 
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towards a very interesting direction, that is, the use of advanced friction models in tyre 
dynamics. 

There is a chance that the aforementioned or other friction models (possibly based on 
the observations stated in the section about friction) might yield more useful and 

realistic results if restricted to the area of contact. The overall behaviour would then 
be dictated by the interaction of the "frictionally advanced" tread and a flexible belt 

and carcass. 
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Chapter 3: Steady-State Tyre Analysis 

3.1 Introduction 

Traditionally steady-state tyre analysis serves as the starting point for the investigation 

of tyre handling dynamics. Not only does it form the background for transient 

approaches, but it also deals with several aspects of tyre mechanics, which are very 

often overlooked in transient analyses due to the difficulties involved. Some very 

effective steady-state models have been referred to in the previous chapter. However, 

there is still room for improvements, both in the understanding of tyre mechanics as 

well as the implications of various modelling approaches. Such investigations might 

lead to the development of new, more successful models or even improve the accuracy 

of the existing models by revealing the influence of certain parameters. 

3.2 General Considerations 

3.2.1 Construction of the Tyre 

Prior to discussing any modelling approach, it is beneficial to describe the physical 

structure of the pneumatic tyre and identify the structural parameters that influence its 

behaviour. 

The pneumatic tyre is a toroidal flexible tube, filled with compressed air. The pressure 
inside the tyre varies from 120 to 200 KPa for cars and up to a much higher 300 - 600 

KPa for trucks. In general, the toroidal tube is a composite structure, consisting of 

cords of high modulus of elasticity, enclosed in a much softer rubber matrix. Referring 

to figure 3.1, the most important structural elements of the tyre are the carcass, the belt 

and the tread. 

The carcass forms the hollow tube and is mainly responsible for the toroidal shape of 
the tyre. It consists of a number of layers of flexible cords extending from the inner 
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side of the rim to the outer side, along the rim circumference. The material of the 

cords was initially cotton (up to 1945), then rayon and finally nylon, polyester, steel, 

aramid and glass. The carcass is fitted on the rim with the aid of the beads. The beads 

are circular high tensile strength steel wires extending along the circumference of the 

rim. The cord layers composing the carcass are tied on the beads and thus may transfer 

forces from the carcass to the rim. The cord layers are enclosed in rubber compounds 

of various properties, depending on the type of application. In general, carcass rubber 

is soft in order to achieve good fatigue properties. In tubeless tyres the air pressure 

acts directly on the inside walls of the carcass and for this reason the inside surface is 

covered by a thin layer of rubber with high impermeability to air. In tubed tyres, a 

separate rubber tube is inflated with air and the carcass cords are tensioned through 

the contact of the inner inflated tube with the inside surface of the carcass. Tubeless 

tyres have become dominant for being more economical and demonstrating better 

puncture resistance compared to the tubed tyres. 

The alignment of the cords of the carcass influences largely the dynamic behaviour of 

the tyre. The direction of the cords is defined by the crown angle, which is described 

as the angle between the cords and the circumferential line of the tyre, as shown in 

figure 3.1. Experience shows that when the cords are laid in small angles, the tyre 

shows better handling behaviour, but poor ride characteristics. On the other hand, 

when the cords are positioned radially at a right angle with respect to the 

circumferential line, ride characteristics improve but the handling behaviour 

deteriorates. 

Based on the alignment of the tread cords, two main types of tyres can be found. As 

shown in figure 3.1(a). The bias-ply tyre is characterised by cord layers (plies) 

positioned in intermediate crown angles of approximately 400, in an attempt to 

combine good ride and handling characteristics. The number of plies in a bias-ply tyre 

varies from a minimum of two for light loading conditions, up to twenty for heavy 

vehicles. Bias-ply tyres show high rolling resistance and wear, as a result of the 

relative displacement of the cord layers during rolling. They are mainly used in cycles, 

motorcycles and agricultural vehicles. 
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Radial tyres have dominated the world of passenger, racing and recently heavy-duty 

vehicles. The carcass of a radial tyre consists of one or more layers of cords, 

positioned at right angles with respect to the tyre centre-line (crown angle of 90°), as 

shown in figure 3.1(b). Between the carcass and the tread, along the circumference of 

the tyre, lies a separate belt consisting of several cord layers of high modulus of 

elasticity, positioned at a low crown angle of approximately 20°. The belt constrains 

the radial layers of the carcass, thus, preventing buckling, but also increases the lateral 

stiffness of the tyre, a fact which influences cornering behaviour. The construction of 

the radial ply tyre reduces the relative deformation of the layers of cords during rolling 

and this results in the reduction of energy dissipation, compared to bias-ply tyres. 
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Figure 3.1 The construction of the tyre (after [441) 
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A less common type of tyre is the bias-belted tyre, which can be described as a bias- 

ply tyre with a separate belt. The belt constrains the carcass layers in a similar way, as 
in the case of radial ply tyres and reduces energy losses and tread wear compared to 

bias-ply tyres. 

The tread extends along the outer circumference of the tyre and serves as the contact 

interface between the tyre and the road. The tread is made of rubber and its shape 

depends largely on the type of application. At lower lateral accelerations (below 0.3g) 

the tread operates mainly in the adhesion region and the deformations of the carcass 

and belt affect mostly the behaviour of the tyre. At higher accelerations the friction 

limits of the tyre-ground interface are approached or even exceeded and the 

contribution of the tread in tyre behaviour becomes significant. The frictional potential 

between the tread and the road surface depends largely on the material and shape of 

the tread, the running conditions and the type of road surface. On high quality dry 

tarmac, such as that found on racing tracks, maximum friction is achieved by using 

tyres with un-patterned flat tread (slick tyres) made of soft rubber compounds. The 

tread behaves literally like gum and sticks on the ground with extremely high wear 

rates. Much harder rubber compounds are used for the tread of passenger car tyres in 

order to reduce wear, with a consequent reduction in friction levels. In addition, the 

tread of passenger and truck tyres is usually patterned with grooves and slots as shown 
in figure 3.1, in order to enable water drainage and eliminate the tendency to 

hydroplane. 

Section width 

Tread width 

Section 
height 

Outer 
diameter 

IRim 

diameter 

Figure 3.2 Principal dimensions of the tyre (after [51) 
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Figure 3.2 shows the most important dimensions of a tyre. The principal dimension is 

the rim diameter, usually given in inches. The rest of the dimensions may vary - for 

the same rim - within certain limits dictated by the type of the rim, the space available 

and the operating conditions. The section width is normally given in millimeters, 

while the section height is given as a percentage of the section width. The dimensions 

of a tyre are usually printed on the side of the carcass according to a generally adopted 

convention. For example, a tyre with dimensions "175/60 R13" is a tyre, which fits on 

a 13 inch diameter rim, has a section width of 175 mm and the section height is 0.6 

times that of the nominal section width. 

3.2.2 Modelling Representations of the Structure of the Tyre 

In the preceding section three main tyre structures were underlined, namely the 

carcass, the belt and the tread, while in chapter 2 the most representative modelling 

approaches were presented. In this section, an attempt is made to relate the structural 

elements of the tyre and various modelling representations. 

Under the application of lateral (cornering) and longitudinal (traction and braking) 

forces, the carcass deforms laterally as well as circumferentially. The nature of such 

deformations depends on the structure of the carcass, in other words the number and 

orientation of the plies, the rigidity of the ply cords and the properties of the rubber 

matrix within which they are enclosed. Additionally, the pre-tensioning of the carcass 
due to inflation pressure alters its mechanical properties. A detailed description of the 

composite structure of the carcass requires the combined modelling - possibly using 
finite element methodology - of the assumedly elastic cords and the much softer 

viscoelastic rubber matrix. For the purpose of vehicle dynamic analyses this approach 
is not favoured due to its complexity and its numerical intensiveness. Instead, as 
discussed in chapter 2, most researchers use simplified representations of the carcass, 

consisting mainly of lateral and circumferential (longitudinal) elastic elements with 

properties that are representative of the carcass as a whole. Furthermore, 

investigations are usually restricted within the area near the contact patch. Hence, the 

circumferential properties of the carcass are often referred to as longitudinal 

properties. In most steady-state approaches the lateral and longitudinal elements of the 

carcass lack damping and inertia, while their stiffness may vary with internal pressure 
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and normal load. The radial deformation of the carcass is of great importance for the 

estimation of rolling resistance and vertical deformation under the application of a 

normal load. Typically, radial elements are used for the modelling of the radial 

deflection of the carcass in the neighbourhood of the contact patch. If the main interest 

is the calculation of the normal pressure distribution, simple elastic elements may be 

used for a rough estimation. On the other hand, the calculation of rolling resistance 

requires the modelling of hysteresis losses and therefore radial elements with damping 

need to be introduced. The effect of inflation pressure on the radial stiffness of the tyre 

should also be taken into consideration. Well within the contact patch, the contact 

pressure is balanced by the inflation pressure, and this produces a more or less 

constant contact pressure, as opposed to the parabolic pressure distribution predicted 

by the classical Hertzian contact theory. Therefore, the shape of the contact pressure 

distribution becomes trapezoidal in the longitudinal direction. To account for this 

phenomenon, the radial stiffness of the carcass should vary with deflection in a non- 

linear manner, resulting in a radial force that converges asymptotically to a maximum 

value dictated by the inflation pressure. 

The tyre belt may be represented as a circumferential beam, subjected to lateral 

bending. In this case, the radial, lateral and circumferential carcass elements are 

evenly distributed along the length of the beam. Alternatively, the belt may be realised 
by connecting elastically adjacent carcass elements. In the steady-state investigations 

the beam is assumed to be mass-less, and its main purpose is to laterally offset the 

point of application of the longitudinal force under combined cornering and 
braking/traction. 

Although the belt is a typical structural feature of radial tyres, it can be used as a 

modelling element in any tyre, in order to account for the continuity of the 
deformation along the circumference of the tyre. In the event that the same tyre model 
is to be used for both bias-ply and radial tyres, the stiffness of the belt should be 

adjusted in conjunction with that of the carcass in order to yield realistic results for 
both types of tyres. 

The tread is modelled as a series of elastic or viscoelastic elements connected to the 
belt. Usually tread elements are considered as mass-less and their deformation is 
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mainly used to determine the frictional conditions between the road and the tread. 

Tread elements are able to deform laterally and longitudinally, but in some cases, an 

additional radial deflection might be introduced. 

Instead of using separate elements for the carcass, belt and tread, it is common to use a 

single series of flexible elements for the representation of the combined lateral and 

longitudinal deformations. In this case, the properties of the elements are carefully 

selected in order to represent the combined properties of the aforementioned 

structures. The size of the contact patch and the shape of the pressure distribution are 

assumed to be known apriori, or may be calculated using radial deflection elements. 

Finally, the rolling resistance predicted by a tyre model can be adjusted by changing 

the damping factor of the radial elements of the tyre carcass or tread. Again, it is 

shown that it is possible to predict the different behaviours of radial and bias-ply tyres 

by adjusting the value of a single parameter. In reality, the mechanism of intensive 

relative motion of the cord layers observed in bias-ply tyres during rolling is much 

more complicated to analyse. 

3.2.3 Some Aspects of Rubber Modelling 

Rubber represents approximately one third of the weight of a modem passenger tyre. 

With its incompressible nature (Poisson ratio near 0.5) and its viscoelastic behaviour, 

it influences the mechanical behaviour of the tyre, affecting the levels of energy 

dissipation, the shape of the contact pressure distribution and, last but not least, 

friction between the tread and the road. 

3.2.3.1 Viscoelasticity 

In general, viscoelastic materials demonstrate a time varying strain response under the 

application of a constant stress and vice versa. These phenomena are summarised 
below: 

- Instantaneous elasticity 

- Creep under constant stress 
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- Instantaneous recovery 

- Delayed recovery 

- Permanent set 

- Stress relaxation under constant strain 

The first four phenomena are related to the strain response of a viscoelastic material 

when a constant stress is applied for a certain period of time and then is removed from 

the specimen. This test is referred to as a creep and recovery test [50], [51], [107]. The 

stress relaxation refers to the decay in stress, when a viscoelastic material is subjected 

to a constant strain [50], [51]. In this section, the nature of viscoelasticity and possible 

ways of modelling viscoelastic behaviour are demonstrated through the 

creep/recovery test. The reader may refer to the literature [50], [51] for a study of the 

relaxation phenomenon. 

The linear theory of viscoelasticity yields simple linear constitutive equations that 

describe the relation between stress, strain and time [50], [51]. These equations are 
based on a number of viscoelastic models of varying complexity. The basic elements 

of such models are the linear spring and linear damper. 

The Burger's model is the simplest model capable of reproducing the full range of 

phenomena observed in a creep/recovery test. It consists of two springs and two 
dampers connected as shown in figure 3.3 (a). The constitutive equation of the 
Burger's model reads [51]: 

+ 
ill 

+ ý7ý 
+! 

lz- Q+ 171.172 
171 + 

171.172 
- 

(RI 

R2 Rz R, -R2 R2 

Where: 

as is the stress 

s is the strain 

p11,2 are the damping coefficients 

R,, 2 are the stiffness coefficients 
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Figure 3.3 Creep and recovery of Burger's model (after [511) 

Solving the constitutive equation for creep and recovery involves finding the strain 

rate e(t) when a specimen is subjected to a constant stress ao which ceases suddenly 

at time tl. The solution of equation (3.1) reads [51]: 

s(t) 
'r° +Ot+f° 

(1- 
e-R211172 for t5t, (3.2) 

Ri 771 R2 

and: 

£(tý 
0o tl + 60 (e R211/112 - 1ý-R2t1/17: ' for t> tj (3.3) 
171 R2 

Figure 3.3 (b) shows the creep and recovery behaviour of a viscoelastic material as 

predicted by the Burger's model. The theoretical prediction is in close agreement with 
the behaviour of rubber as observed experimentally [51]. The strain reaches the initial 

value instantaneously (instantaneous elasticity) and increases under the combined 

effect of viscous flow (second right hand side term of equation (3.2)) and delayed 

elasticity (third right hand side term of equation (3.2)). When the application of stress 
ceases, the Burger's model shows instantaneous recovery, which is followed by a 
delayed recovery which converges to the remaining permanent set. 

The Burgers model can serve as a fairly accurate representation of a rubber element. 
Nevertheless, the constitutive equation may prove over-complicated for use in a tyre 
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model. Instead, it is common practice [108] to use a Kelvin-Voigt model for the 

representation of tyre rubber elements. The Kelvin model consists of a spring and a 
damper connected in parallel, as shown in figure 3.4 (a). The constitutive equation of 

the Kelvin model reads [51]: 

R a- 
77 17 

Where: 

6 is the stress 

s is the strain 

77 is the damping coefficient 

R is the stiffness coefficient 

Solving equation (3.4) for creep and recovery yields: 

(3.4) 

s(t) =R 
(1- 

e-R`ýý 
), for t _< t1 (3.5) 

and 

£(t) =R e-ýr/n 
(e1 tm -1), for t> tj (3.6) 
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Figure 3.4 Creep and recovery of the Kelvin model (after 1511) 
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It is evident from equations (3.5) and (3.6) and figure 3.4 (b) that the Kelvin model is 

not capable of reproducing the effects of instantaneous elasticity, viscous flow and 

instantaneous recovery. 

When choosing a viscoelastic model, its frequency response to a periodic strain is 

often more important than that due to creep and relaxation behaviour. The generic 

form of periodic strain may be written as follows: 

s(t) = coe'o` (3.7) 

Where: co is the amplitude of the strain and w is the frequency of the excitation. 

In this case, the stress response of a linear viscoelastic model obtains the form: 

a(t) - a'oe'(wi+q, ) (3.8) 
- 

Where: o is the amplitude of the stress and qp is the phase angle of the strain 

response. 

The complex relaxation modulus is defined as: 

E' = 
6° 

e'' = Ec + iEL (3.9) 
Co 

Obviously: 

Ec =! 
L' 

cos p and EL = 
6° 

sin c (3.10) 
so so 

Ec is designated the storage modulus and is in phase with the strain, whilst EL is the 

loss modulus and represents the imaginary part of the complex relaxation modulus. 
Finally, the tangent modulus (often referred to as the loss tangent) is defined as: 
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tan Sp = 
EL (3.11) 

The tangent modulus, or alternatively the phase angle, is a measure of the relative 

effect of internal damping on the stress build-up by the viscoelastic material and 

depends on the exciting frequency w and the material properties. An example of the 

frequency dependence of EL, E, and tan go is given in figure 3.5. At low frequencies, 

the behaviour is governed by the storage modulus and there is no significant viscous 

flow (Rubbery behaviour). At intermediate frequencies the loss modulus and 

consequently the loss tangent rise, as a result of the effect of internal viscous damping 

(Viscoelastic behaviour). At this stage the storage modulus rises as well. Finally, at 

higher frequencies the material demonstrates a glassy behaviour. The loss and tangent 

moduli drop again and the response is governed by the significantly increased storage 

modulus. 
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Figure 3.5 The frequency dependence of the loss modulus, storage modulus and loss tangent for 
a typical polymer (after [501) 

By applying a periodic strain on any linear viscoelastic model, it is possible to obtain 
the complex modulus and tangent modulus as functions of frequency and damping and 
stiffness coefficients of the elements of the model. 

75 



Chapter 3: Steady-State Tyre Analysis 

By applying this methodology it is shown that the Burger's model yields a rather good 

representation of viscoelastic behaviour throughout the frequency range. The 

behaviour of the Kelvin model is governed by the spring constant for very low 

frequencies, while a rapid increase in the complex modulus and the phase angle is 

predicted as the frequency increases. Still, for a frequency range between zero and a 

couple of hundreds of cycles per second (depending of course on the properties of the 

material as well), the behaviour predicted by the Kelvin model is in satisfactory 

agreement with that of viscoelastic materials such as rubber. It is noted in [107] that 

for most viscoelastic materials operating above the glass transition temperature [77], 

the response is relatively flat from about five to several hundred Hz. As an example, 

rubber compounds used in the tread exhibit a tangent modulus ranging from 0.1 to 0.2 

for low amplitude vibrations in room temperature [107]. 

The behaviour of a viscoelastic material subjected to a periodic strain has been 

discussed in terms of the stress response, with the complex relaxation modulus 

E' representing the connecting parameter (eq. (3.9)). Due to the effect of internal 

damping, each strain cycle involves a certain amount of energy loss. If one plots the 

stress as a function of the strain - say between two strain values - it becomes obvious 

that the area under the curve is a measure of the work lost. It is shown that for a 

sinusoidal strain, an ellipse is formed in the strain-stress plane. As expected, the area 

of the ellipse is a measure of the energy lost per strain cycle. Because the ellipse 

corresponds to a full strain cycle, it is often referred to as a hysteresis loop. A typical 

hysteresis loop for a rubber-like material is shown in figure 3.6., where the relation 

between the dimensions of the elliptical loop and E, EL and (p is also provided. 

Energy dissipation depends only on the internal damping and therefore the area of the 

ellipse is a function of the loss modulus EL and the maximum strain co. The total 

energy dissipated per cycle shows the same dependency on frequency as EL 
, while it 

is apparent from figure 3.6 that the overall shape of the ellipse is also frequency 

dependent. At high excitation frequencies where Ec dominates and EL vanishes (see 

figure 3.5), the hysteresis loop is reduced to a straight line, i. e. there is no energy 
dissipation. It should be noted that this behaviour is valid for linear viscoelastic 

materials [107]. It is known that the response of tread rubber to periodic strains is also 

amplitude dependent [107] and this gives rise to non linear behaviour. 
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EL E 

Figure 3.6 A typical hysteresis loop corresponding to a sinusoidal strain excitation (after 11071) 

3.2.3.2 Rubber Friction 

The principles of linear viscoelasticity as presented briefly in the previous section not 

only aid the modelling of rubber hysteresis, but also prove extremely useful in the 

investigation of rubber friction. 

As discussed thoroughly in chapter 2, friction between a large number of hard 

materials can be described satisfactorily by the classical laws of friction (due to 

Amontons and Coulomb), which are summarised below: 

- Friction force is proportional to normal load 

- Friction coefficient is independent of the contact area 

- Friction coefficient is independent of sliding velocity 

Experience shows that the validity of the classical laws deteriorates, when viscoelastic 
materials such as rubber are involved in the contact. The somewhat awkward 
frictional behaviour of rubber is discussed to some extent in the section dedicated to 
friction, in chapter 2. It is widely accepted (see section 2.4.2) that rubber friction may 
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be explained by the recognition of the two different mechanisms of shear resistance 

generation. In general, the shear resistance is the result of adhesion and hysteresis 

phenomena within the contact. 

If a vertically loaded elastomer, resting on a hard rough surface is pulled tangentially, 

the frictional force developed consists of two components, namely adhesion and 

hysteresis or deformation friction, as indicated by the following relation: 

Ffriction = Fadhesion + Fhysterests 

V-- 

ADHESION 

Figure 3.7 The mechanism of viscoelastic friction (after 1291) 

(3.12) 

These two terms are discussed in the work of Grosh [79] and Persson [81], while 

Browne, Ludema and Clark [82] suggest the existence of two more terms, namely tear 

and viscous friction (see section 2.4.2). The present analysis is restricted to the 

explanation and quantification of the two terms in equation (3.12). 

The origin of the two friction components may be realised by referring to figure 3.7. 

Under the application of a vertical load W, a draping of the elastomer about the 

surface asperities of the rigid base is observed, resulting in an interlocking of the 

surfaces. Adhesion friction is the term that is not affected by this kind of interlocking. 

It is equivalent to the friction mechanism observed between hard materials and occurs 
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within the sliding interface as a result of molecular-kinetics, micro stick-slip thermally 

activated mechanism. The flexible molecular chains of an elastomer attempt to link 

with the molecules of the adjacent hard surface and form weak local bonds. Under the 

action of sliding, the bonds stretch, break and the flexible molecular chains recover 
before a new bond with the hard molecules is achieved. Thus, a stick-slip action is 

observed in microscopic level. Since the mechanism involves an alternate loading and 

recovery of flexible elastomer molecules, it is expected that the viscoelastic nature of 

rubber affect the mechanism of adhesion as will be shown later. 

The hysteresis (deformation) component of friction is generated macroscopically, as a 

result of the non-symmetrical pressure distribution in the local contacts between the 

hard surface asperities and the elastomer during sliding. As shown in figure 3.7, the 

contact pressure is shifted in an opposite sense to the direction of sliding. A portion of 

the generated pressure distribution is due to internal damping and, therefore, should 

depend on the sliding velocity. This portion is never regained and represents the 

hysteresis losses, which are sensed as the hysteresis component of friction. 

The coefficient of friction for the contact between a hard and a viscoelastic material 

may be obtained by dividing equation (3.12) by the normal load W: 

P= Padhesion + Physteresis (3.13) 

According to the previous analysis, it is expected that both the terms would be related 

to the viscoelastic nature of rubber. Using the quantities defined in section 3.2.3.1, the 

corresponding adhesion and hysteresis terms are given by the following relations [29]: 

Padhesion = K1s 
p7 

tan q' r<1 (3.14) 

n 

p Physteres, s = K2 tan qp n? 1 (3.15) 
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Where p is the normal pressure, s is the effective shear strength of the sliding 

interface, r is an exponent approximately equal to 0.2, n is an index greater or equal 

to unity and K, , K2 are constants. 

Substituting the expressions for the coefficients of friction (equations (3.14) and 

(3.15)) into equation (3.13) yields: 

U=K, SE; +KZ tan (P 
P K, E, 

T 

Fric. 
Coeff. 

(u) 1 

dhesion 
}lhysteresis 

Log (V, w) 

Figure 3.8 Velocity and temperature dependency of rubber friction (after [291) 

(3.16) 

As discussed in section 3.2.3.1, both E, and tan qp vary with excitation frequency o), 

which, in the case of friction, is directly related to the sliding velocity. In addition, 

rubber properties and consequently E,, and tanqp also vary with temperature. Figure 

3.8 shows a qualitative picture of the coefficient of friction and its components as 

given by equations (3.16), (3.15) and (3.14) plotted against frequency or, alternatively, 

sliding velocity. The equivalence between sliding velocity V and frequency co can be 

easily understood if one considers a rubber specimen sliding with velocity V on a hard 

surface with large-scale asperities of wave-length 4. In this case the periodic 

excitation of the tread rubber has a frequency w= 27r(V/ý). Figure 3.8 shows that the 

total coefficient of friction exhibits an adhesion peak at low velocities, followed by a 
hysteresis peak at higher velocities. 
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login o.. V 

Figure 3.9 Coefficient of friction between acrylonitrile-butadiene rubber sliding on glass (broken 
line) and silicon carbide paper (solid line) at a temperature of 20°C. V is given in m/s (after (791) 

Figure 3.9 shows experimental measurements (see [79]) of the coefficient of friction 

between rubber and two hard surfaces. The coefficient of friction is plotted as a 

function of the sliding velocity V in logarithmic scale, where aT represents a 

horizontal shift parameter, which is discussed in the following paragraph. The dashed 

line shows the coefficient of friction between rubber and a polished glass surface. The 

peak coefficient of friction is observed at relatively low sliding velocities (below 

lm/s). Since glass doesn't show any large-scale asperities, the dashed line corresponds 

to the adhesion component of friction as calculated by equation (3.14) and shown in 

figure 3.8. On the other hand, the solid line represents the friction coefficient between 

rubber and a rough silicon carbide paper with a mean particle size of approximately 
0.01 cm. The peak friction is observed at high sliding velocities and corresponds to the 
hysteresis peak on the right-hand side of figure 3.8. 

It has been found experimentally [79] that the friction coefficient of rubber shows the 
same dependency on temperature, as rubber's viscoelastic properties. Starting from 

the latter, figure 3.5 shows the main viscoelastic parameters (Er , EL, tan(p) of a 

typical viscoelastic material, as functions of the excitation frequency w at a specific 
test temperature. If the frequency response test is carried out at a different 

temperature, the same curves are obtained, only this time they are shifted horizontally 
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along the frequency axis. In particular, if the temperature increases, all curves will be 

shifted to the right hand side, i. e. towards higher frequencies, whereas if the test 

temperature is reduced, the curves will be shifted to the left, towards lower 

frequencies. The amount of the required horizontal displacement is given by the WLF 

(Williams-Landel-Ferry) [50], [77] transformation, as indicated by equation (3.17). 

This equation states that if, for example, the peak tangent modulus at a reference 

temperature To occurs at a frequency o), then at temperature T, the peak will occur at 

a frequency equal to a,. to, or in logarithmic scale, the curve will be shifted 

horizontally for a distance equal to log ar . As stated earlier, rubber friction 

demonstrates the same temperature dependency, as the friction is governed mainly by 

rubber's viscoelastic properties. Since, for the case of sliding, the frequency a is 

directly related to the sliding velocity through the wavelength of the asperities, the 

shift factor can be applied for moving the friction curves along the velocity axis. This 

principle is shown qualitatively in figure 3.8, where the coefficient of friction as a 

function of the sliding speed has been shifted to the right for a higher temperature. In 

figure 3.9, a large number of measurements of the coefficient of friction at various 

temperatures and for low sliding velocities were combined using the WLF 

transformation to generate a couple of "master" curves covering a wide velocity range 

at a temperature of 20° C. 

-8.86(T-T0) log a, =101.5+T-To (3.17) 

Where: a,. is the horizontal shift, T is the operating temperature and To is a reference 

temperature. 

The analysis carried out thus far explains the dependence of the coefficient of friction 

on sliding velocity and operating temperature. Furthermore, equations (3.14) and 

(3.15) can be used to explain why the friction force is not proportional to the normal 

load. By increasing the load, the apparent contact pressure increases proportionally, 

yet this pressure appears in the expressions for both the adhesive and hysteresis 

components of friction in a non-linear manner. In the case of pneumatic tyres the 

excitation frequency (calculated as the sliding velocity divided by the mean 
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wavelength of the macro texture of the road surface) rarely reaches the levels, where 

the hysteresis peak can be observed. Therefore, for tyres operating on dry roads, the 

adhesion component given by equation (3.14) dominates friction and causes a 

reduction in the overall coefficient of friction with the increase of normal load. 

Finally, by increasing the contact area while maintaining a constant load, contact 

pressure reduces and equation (3.14) predicts an increase in the adhesion term of the 

coefficient of friction. 

It has now become apparent that rubber friction depends in a rather complex and not 

yet fully understood way on a number of different factors such as temperature, sliding 

velocity, contact area, normal load and surface asperities. Additionally, some general 

ideas are presented on how the influence of these factors may be quantified. 

3.3 Steady-State Tyre Modelling 

Thus far, a general background is given, including a brief description of the 

construction of the tyre. The principal structures were outlined and connected to the 

most frequently used modelling representations. Special attention was paid to the 

viscoelastic behaviour of rubber and the mechanism by which it affects rubber 
friction. In the following sections a mathematical modelling of tyre force generation is 

presented. Since tyre forces are directly related to the motion and position of the tyre 

with respect to the road, it is essential that any modelling approach should commence 

with the definition of the kinematic quantities that serve as primary inputs to the tyre 

system. 

3.3.1 Tyre Kinematics 

The frame of reference proposed by SAE is widely used for the description of the 

position and motion of a tyre. Referring to figure 3.10, the origin of the SAE system is 
defined as the intersection of two lines. The first line results from the intersection of 
the wheel plane and the road plane, while the second line is the projection of the 

wheel spin axis on the road plane. The x-axis coincides with the intersection of the 

wheel plane and road plane and points forward, while the z- axis is perpendicular to 

83 



Chapter 3: Steady-State Tyre Analysis 

the road plane and points downwards. The y- axis is directed to the right so as to 

achieve a right-handed Cartesian co-ordinate set, in which the cross product of unit 

vectors i and y yields the unit vector i. In the same figure camber (inclination) 

angle y is defined as the angle between the wheel plane and the plane, which contains 

the x- axis and is perpendicular to the road plane. According to the definition given by 

SAE, camber angle is positive when the wheel leans outward from the vehicle 

centreline, but the sign of camber angle might also be considered positive when it 

results as a right hand rotation around the x- axis. Finally, the slip angle a is defined 

as the angle between the x- axis and the projection of the velocity of the wheel centre 

on the road plane. 
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Figure 3.10 The SAE frame of reference used in tyre kinematics and dynamics (after [51) 

The motion of the tyre can be determined, using the moving SAE axis system in 

conjunction with a global frame of reference attached to the ground. In figure 3.11, 

XYZ is the global frame of reference, while the SAE frame is denoted as xyz. The 

position vector of the origin B of the moving frame of reference with respect to the 

global frame of reference is given by the vectorial sum: 

RB= Ro + ROB (3.18) 
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Assuming that points 0 and B do not move relative to each other in the local frame of 

reference, velocity of point B with respect to the global frame reads as: 

VB 
dRt 

+wx ROB (3.19) 

Where w is the vector of rotational velocity of the wheel as composed by the three 

rotations indicated below: 

w =Va+ yz+OUsp (3.20) 

Where: yr is the yaw rate of the wheel, y is the camber rate and 0= S2 is the 

rotational velocity of the wheel about its axis. 
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asp 

Y 

Z 

Figure 3.11 The general motion of the tyre (after [105]) 

For a free rolling tyre with y=0 and yr = 0,5 becomes: 

w=QuSP 

and velocity of point B then becomes: 

V 

(3.21) 

VB =t+ S2 üsP x ROB (3.22) 
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The effective rolling radius is then defined as the radius Re that yields zero velocity 

for point B in the global frame of reference. For free rolling with yr = 0: 

VB =Ö= 
dd° 

+ S2Üsp x Ren (3.23) 

Where n is the unit vector in the direction of ROB. 

For a free rolling un-cambered wheel, the linear speed of rolling is defined as: 

Vý (w 
" Us, )e 

= T2Re (3.24) 

Note that according to equation (3.24), V, is positive for a wheel rolling forward, as it 

is expressed as a product of Re and a positive dot-product. 

In the case of a wheel rolling at a constant camber angle y, V, becomes: 

V. = yr Cosl 
2-yI +n Re (3.25) 

or 

V. = (ir sin(y)+ c )Re (3.26) 

where in the above relations camber angle is considered positive when it results from 

a right hand rotation about i. 

For a free rolling tyre with yr = 0, equation (3.23) yields for the absolute velocity of 

the wheel centre 0: 

V0= 
ddn 

=_ Üsp X Rei (3.27) 
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Apparently, VO is parallel to i, representing the longitudinal velocity of the wheel 

centre: 

VX = S2Re (3.28) 

In the event of braking or driving, the longitudinal velocity of the centre of the wheel 

is no longer equal to the product SORB . The slip speed is then defined as: 

V= Vx - )R, (3.29) 

The generic longitudinal slip ratio is then defined as: 

k--V 
VX -SýR_ Vx -S2Re (3.30) 

V, V, (yr sin(y)+ S2)Re 

In the absence of camber angle or yaw rate, this relation reduces to: 

k=_Vx 
OR, (3.31) 

C'Re 

Finally, in the existence of a lateral component VSG, in the velocity of the wheel centre 

Vo, the generic slip angle a is defined: 

VS 
tan a='' V, 

(3.32) 

The generic definitions of slip ratio and slip angle given by relations (3.30) and (3.32) 

can be used as inputs to various tyre models in a wide range of analyses. However, in 

full vehicle handling studies it is common to use simplified practical definitions of the 

aforementioned slip quantities. Longitudinal slip can then be defined with respect to 
forward velocity as follows: 
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k=- Vx - S2Re (3.33) 
Vx 

Similarly, the lateral slip reads: 

tan a=y (3.34) 
X 

The slip ratio and slip angle (or alternatively the tangent of the slip angle) defined by 

relations (3.33) and (3.34) shall be used throughout the thesis when plotting tyre 

forces and moments, unless otherwise noted. 

Finally, the spin slip c is defined as the ratio between the component of w in the 

direction of z axis of the SAE frame (see figure 3.11) and the forward velocity of the 

wheel, as indicated in equation (3.35): 

(D _z (3.35) 
x 

In the case of a cambered rolling wheel, the spin slip is written as: 

yr-Vsiny (3.36) 
x 

The right-hand side of equation (3.36) can be split into two components, namely the 

turn-slip (DT and camber slip cc, given in relations (3.37) and (3.38) respectively. 

(DT =V (3.37) 
V. 

(Dc =-Qyn7 (3.38) 
K, 
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The turn slip corresponds to the instantaneous path curvature of a steered wheel 

travelling with a forward velocity V, , while the camber slip corresponds to the 

equivalent path curvature induced by the rotation of a cambered wheel about its axis. 

This is demonstrated by relations (3.39) and (3.40): 

cpT .w. 
1 (3.39) 

VX Rc 

(Dc __Q 
sin y 

=- 
1 

sin y (3.40) 
Vx Re 

where Rc denotes the instantaneous radius of the path of the wheel and Re is the 

wheel effective radius. 

Both turn slip and camber slip are kinematic inputs, which, like the slip angle and 

longitudinal slip generate tyre forces and moments. The influence of turn slip is 

insignificant compared to the influence of the slip angle and therefore it may be 

overlooked in most applications [6]. However the influence of the camber angle is 

more important and is usually accounted for, as will be discussed in the following 

sections. 

3.3.2 Tyre Forces and Moments 

The position and motion of the tyre relative to the ground lead to the generation of a 
force-moment system, which essentially governs the motion of the vehicle. This 

system is the result of the combined effect of vertical deflection of the tyre under the 

application of normal load and shear deformation due to frictional forces generated 

within the contact patch. In addition, the hysteresis phenomenon contributes to the 
force-moment system, if one considers the rate of the aforementioned deflections. As 

expected, tyre forces are distributed throughout the contact area, yet one might also 

adopt the concept of force generation along the circumference of the tyre, as a result 

of the global deformation of the carcass. Still, it is convenient to consider the net 
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result of such a force distribution. The major tyre forces and moments with respect to 

the SAE frame of reference are depicted in figures 3.10,3.12 and listed in table 3.1. 

Camber angle 

Wheel 
drive 

Motion torque 
x (7) Spin axis 

oiling 
Slip angle (a) resistance 

Longitudinal my 
force 

y 
ral force 

Self-aligning 
torque Overturning 

ormal oment 
orce 

z 

Figure 3.12 Principal tyre forces and moments (after 151) 

3.3.2.1 Forces and Moments Involved in Handling Dynamics 

The lateral and longitudinal forces together with the self aligning moment are of great 
importance in the analysis of the handling behaviour of a vehicle. For steady-state 

conditions and a given coefficient of friction between the tread and the road surface, 
these forces depend on the normal load and a set of kinematic conditions, as 

summarised by the following relations: 

FX (k, a, 7, F. ) (3.41) 

Fy =_ fr(k, a, y, F. ) (3.42) 

M. ° mZ (k, a, y, Ft) (3.43) 

where, k, a and y are the longitudinal ratio, slip angle and camber angle, as defined 
in section 3.3.1. 
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Figure 3.13 shows a top view of a tyre travelling at a slip angle a. Lateral slip results 
in the lateral deformation of the tyre and the consequent generation of a lateral force 

Fy. The lateral force distribution is such that the resultant force does not fall exactly 

on the y- axis. The offset t is the so-called pneumatic trail and gives rise to the self- 

aligning moment Mt . If the lateral force and the self- aligning moment are measured 

at the same instant of time, the pneumatic trail can be defined as: 

t=MZ 
Fy 

v 

Figure 3.13 The generation of slip angle and the pneumatic trail (after [441) 

(3.44) 

Similarly, a longitudinal force is generated in the presence of longitudinal slip k, in 

other words, when the longitudinal velocity of the wheel centre is not equal to the 

product of the rotational velocity of the wheel and the effective tyre radius (see 

equations (3.30) and (3.31)). This condition causes the tread to deform longitudinally 

in the neighbourhood of the contact patch and gives rise to a braking (k negative) or 
traction (k positive) force. 
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Camber force 

Figure 3.14 Lateral force as a result of camber angle (after [51) 

Figure 3.14 demonstrates the generation of lateral force in the presence of camber 

angle y. When the tyre is loaded at an inclination angle other than zero the local 

asymmetrical deformation in the neighbourhood of the contact patch results in a 

lateral force pointing in the direction of inclination. 

All shear forces and the resulting moments are inter-related, mainly through the 

limited frictional potential of the contact area. Given the surface characteristics of the 

road and tread, the frictional potential of the contact area is dictated by the normal 
force distribution, or, to simplify the situation, by the net normal load. Hence, it is 

expected that the combined effect of slip angle a, longitudinal slip ratio k and 

camber angle determines the value of each of the forces and moments, as implied by 

the relations (3.41)-(3.43). 

The generic force and moment functions, as given by relations (3.41-3.43) are highly 

non-linear. Although a dependency on the net normal load FZ is assumed, in reality 

the actual normal force distribution throughout the contact patch plays an important 

role, especially in the calculation of the self-aligning torque. Also, in section 3.2.3.2 

the dependency of the friction coefficient of rubber on normal load and sliding 

velocity was pointed out. Immediately, it becomes obvious that, depending on the 

complexity of the approach, relations (3.41)-(3.43) might contain the sliding velocity 

as an extra variable or parameter, while the variation of the coefficient of friction with 

normal load may also be considered. 
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Table 3.1 

Tyre Forces and Moments 

Force/Moment 
Mechanism of force generation 

Normal Force, F. Integration of normal pressure throughout 

the area of contact. Depends on the 

vertical deflection of the tyre (Az) and 

rolling velocity (n). 

Longitudinal Force, Fs Integration of the longitudinal shear 

pressure distribution throughout the area 

of contact. Depends on normal force 

(F. ), longitudinal slip ratio (k), slip 

angle (a) and camber angle (y). 

Lateral Force, FY Integration of the lateral shear pressure 
distribution throughout the area of 

contact. Depends on normal force (Fe ), 

longitudinal slip ratio (k), slip angle (a) 

and camber angle (y). 

Self Aligning Torque, Mz Moment generated about Z axis as a 

result of the offset of the point of 
application of FY on x-axis. Depends on 

normal force (Fr ), longitudinal slip ratio 
(k), slip angle (a) and camber angle 
(y). 

Overturning Couple, M,, Moment generated about an axis parallel 
to x-axis passing from the centre of the 

wheel 0, as a result of lateral force Fy. 

Depends on normal force (Fr ), 

longitudinal slip ratio (k), slip angle (a) 

and camber angle (y). 

Rolling Resistance moment, My Moment resisting the rotation of the 
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wheel, as a result of the forward offset on 

x-axis of the reaction to the net normal 
force Fz . Depends on the vertical 

deflection of the tyre (Az) and rolling 

velocity (fl). 

Rolling Resistance Force, F, Longitudinal force applied on the contact 

patch. The resulting moment about the 

wheel spin axis cancels the rolling 

resistance moment. 

3.3.2.2 Rolling Resistance Force and Moment 

Rolling resistance represents a less important shear force, developed within the 

contact patch. The rolling resistance opposes the motion of a rolling body, such that 

energy needs to be transferred to the system in order to maintain rolling. In general, 

the influence of rolling resistance in the overall capability of a tyre to generate lateral 

and longitudinal forces is limited. Nevertheless, at high travelling velocities, rolling 

resistance is one of the main contributors to the total power loss, thus increasing fuel 

consumption and limiting the maximum speed of the vehicle. 

Tr 

Figure 3.15 Rolling resistance generation 
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Clark [109] distinguishes five separate mechanisms which have been proposed in 

order to explain the need for energy supply to a wheel, in order to maintain steady 

rolling. These mechanisms are summarised below: 

a. The increase in the potential energy level when a wheel surmounts an asperity 

of a flat surface 
b. Energy loss due to slip between a wheel and a surface 

c. Aerodynamic losses due to the wheel moving through the atmosphere 

d. Material hysteresis of the wheel material 

e. Material hysteresis of the surface upon which the wheel rolls 

The first mechanism is of limited applicability, as it is shown that rolling even over 

the smoothest of surfaces might generate significant amounts of rolling resistance. 

Slip between the rolling wheel and the surface occurs under various operation 

conditions, but this mechanism of resistance generation seems to be weak compared to 

the remaining three [109]. Aerodynamic losses represent an important factor, 

nevertheless, the required tyre standards for enhanced safety and control of a vehicle 

do not allow much experimentation with tyre size and surface geometry. It appears 

that the mechanisms related to material hysteresis are the primary rolling resistance 

contributors [109]. In the area of tyre mechanics, rolling resistance is mostly related to 

the hysteresis of the tyre rubber, as in most cases the road may be considered as a 

perfectly hard surface. On the other hand, the hysteresis of the road material plays an 

important role when studying the mechanics of a wheel rolling on soft soil. 

Figure 3.15 depicts a tyre, rolling freely under the action of a vertical load. As the 

wheel rolls on the assumedly flat road, the part of the tread within the first half of the 

contact patch undergoes compression. Due to the viscoelastic nature of rubber and the 

relative displacement of the carcass plies, part of the compression work is dissipated 

in the form of heat. As the tread moves towards the rear half of the contact patch, only 

a portion of the elastic energy stored in the carcass-tread returns to the tyre, as a result 

of the delayed recovery of rubber (known in contact mechanics terms as relaxation 

time). This effect causes a horizontal shift t, of the net reaction (- FZ) towards the 

front of the contact patch. The longitudinally displaced point of action of the reaction 

to the normal load generates the rolling resistance moment about the spin axis, which 
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tends to decelerate the wheel's rotational motion. Under steady-state rolling 

conditions, a rolling resistance force F, is generated in the contact patch, opposing the 

forward motion of the wheel. F, gives rise to a moment about the spin axis, which 

balances the rolling resistance moment. Apparently, for the maintenance of steady- 

state rolling, a force with a magnitude equal to IF, I is needed to be applied on the 

wheel centre, in the direction of motion. Then, both the sum of moments about the 

spin axis and the sum of longitudinal forces are equal to zero. 

The rolling resistance has been explained in terms of force and moment balance, based 

on figure 3.15. In this simple approach, the horizontal shift of the point of application 

of the net vertical reaction is a measure of the rolling resistance, given the radius and 

the normal load. Alternatively, the problem can be treated in terms of the energy 
dissipated while rolling, as demonstrated in [110]. Referring to figure 3.16, as the 

wheel rolls towards the right, the front part of the contact undergoes compression. The 

resulting moment due to forward compression is: 

Mf =fp, "b"x"dx (3.45) 

ure 

Figure 3.16 Relation between rolling resistance and normal pressure distribution (after 11101) 
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If the wheel rolls a distance S corresponding to an angle 9, , the compression work 

will be equal to: 

Wf=Mf"9r (3.46) 

As the wheel continues to roll, most of this work is recovered at the rear part of the 

contact, but a small amount, say WL , is lost due to internal damping which gives rise 

to hysteresis phenomena. Since the procedure involves the periodic loading and 

unloading of the tread, the amount of energy lost can be directly related to the area of 

a hysteresis loop similar to the one shown in figure 3.6. The moment generated at the 

rear part of the contact opposes the moment generated at the front and is given by the 

following equation: 

Mr _ 
fepv"b"X"dx 

(3.47) 

The work returned back to the wheel during the recovery of the rear half of the contact 

as the rolling wheel covers an angle equal to 9, is calculated as follows: 

Wr =m ,"9, (3.48) 

The work lost due to hysteresis is then given by the following equation: 

WL =Wf+W, (3.49) 

Note that in equation (3.49) W, is negative, as dictated by the integral in eq. (3.47) for 

positive pv and b. 

Finally, by combining equations (3.45)-(3.48) equation (3.49) can be written as 
follows: 

WL =(f p, "b"x"dx+ 
faPv 

"b"x-dx/I. 3. (3.50) 
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Equation (3.50) shows that hysteresis losses during rolling can be expressed directly 

as a function of the normal pressure p, along the contact. In the event of a completely 

symmetrical pressure distribution with respect to the centre of the wheel, the work 

done against losses (WL) is equal to zero. In general, rolling resistance generation is 

associated with a non-symmetrical pressure distribution showing higher pressure in 

the front part of the contact and lower in the rear. In terms of rolling resistance force, 

the following relations apply: 

Fr"S=WL qFr =WL e> Fr = 
WL 

e* Fr =Mf 
+Mr 

e* Fr =-F. 'tr (3.51) 
S Re " Sr Re Re 

Relations (3.50) and (3.51) summarise the connections between rolling resistance 
force, hysteresis losses and normal pressure distribution along the contact. 

Rolling resistance depends largely on the normal load, the rolling velocity of the 

wheel and factors that influence the overall damping of the tyre structure. The most 

prominent among these factors is the inflation pressure. Variations in inflation 

pressure alter the size of the contact patch and the manner of deformation of the 

carcass during rolling, directly affecting the overall damping of the tyre. In particular, 
lower inflation pressures promote hysteresis phenomena and lead to a significant rise 
in rolling resistance. The dependency of rolling resistance on the rolling speed can be 

directly related to the dependence of the area of a typical hysteresis loop on the 

frequency of excitation, as described in section 3.2.3.1. 

Figure 3.17 shows the pressure distribution along the contact patch of a passenger 

tyre, while figure 3.18 shows the rolling resistance expressed as units of rolling 

resistance per 1000 units of normal load, as a function of rolling speed for various 

operating temperatures. A general definition of the coefficient of rolling resistance is 

given in equation (3.52). 
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Figure 3.17 A typical normal pressure distribution along the contact patch of a passenger tyre 
(after [1111) 

c= 
F' 

"F 
(3.52) 

In figure 3.17 the normal pressure distribution is non-symmetrical, with higher 
pressure intensity towards the front part of the contact. This shape gives rise to a 
rolling resistance moment about the wheel spin axis. 
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Figure 3.18 Variation of the coefficient of rolling resistance with speed and temperature (after 
[111]) 
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In figure 3.18, the rolling resistance shows variation both with rolling speed and 

operating temperature. The graph of the left shows the same tyre operating at different 

temperatures. The inflation pressure is kept constant, so the variations due to 

temperature are not related to the expansion of the air inside the tyre. Instead, the 

increased rolling resistance observed at lower temperatures may be related to the 

dependency of the frequency response of a viscoelastic material on temperature (see 

sections 3.2.3.1 and 3.2.3.2). At low temperatures, the frequency at which maximum 

hysteresis is observed is shifted closer to the frequency of the periodic loading of the 

tyre tread, while at higher temperatures the reverse effect reduces the rolling 

resistance. It should be noted that both the increase in inflation pressure and the 

reduction in rubber hysteresis tend to reduce the rolling resistance as the tyre heats up 

during operation. This fortunate effect is shown in the second graph of figure 3.18 

where the rolling resistance of a tyre at service temperature is plotted together with the 

rolling resistance of the same tyre at a constant temperature. 

While rolling resistance is not of great importance in handling studies, its calculation 

appears as a common sub-product of the calculation of the normal force distribution 

along the contact patch, which, in turn, influences the generation of shear forces and 

the self-aligning moment. 

3.3.3 The Magic Formula Tyre Model 

3.3.3.1 Introduction 

The physical mechanism of steady-state tyre force and moment generation is 

discussed later in this chapter, with the step-by-step presentation of two newly 
developed physical models. In this section, the shape and basic qualities of the force 

and moment characteristic curves are discussed with the aid of the Magic Formula 

tyre model. This model is chosen as a substitute for experimental measurements for its 

high accuracy and its ability to depict the variations observed experimentally, when a 
tyre operates in a wide range of different conditions. 
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3.3.3.2 Description of the Model 

As already discussed in chapter 2, section 2.2.2.3, the Magic Formula tyre model 

describes the steady-state behaviour of tyres under pure side-slip, longitudinal slip and 

combined slip operating conditions. It is able to accurately regenerate characteristic 

curves, measured experimentally such as those presented in figures 2.1-2.3 and 2.5. 

The model consists of a set of continuous mathematical functions falling in the 

general category of relations (3.41)-(3.43), with the slip angle and longitudinal slip 

ratio, being the primary input variables. In terms of result representation, the lateral 

force and the self-aligning moment are usually plotted against slip angle, while the 

braking/traction force is plotted against longitudinal slip ratio. 

3.3.3.2.1 Pure Slip Operating Conditions 

The model is described initially for the case of pure side-slip or pure longitudinal slip 

conditions. For a given vertical load and camber angle, the general form of the Magic 

Formula reads: 

y=D sin[C arctan{Bx - E(Bx - arctan Bx)}] (3.53) 

Y(x) = y(x) + Sv (3.54) 

x=X+Sy (3.55) 

Where X represents the primary input variable (in the form of tan a or k) and Y 

represents the primary output variable (in the form of F, FY or M., ) 

Equations (3.53)-(3.55) are used for the calculation of both forces (lateral and 

longitudinal) and the self-aligning moment. The distinction between these three cases 
is based on the values of several factors involved. These factors are related to the 

shape of the characteristic curves in a straightforward manner and their influence is, to 

some extent, revealed by their names, as indicated in table 3.2. 
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Table 3.2 

Magic Formula Parameters 

Factor Name 

B Stiffness Factor 

C Shape Factor 

D Peak Value 

E Curvature Factor 

SH Horizontal Shift 

S. Vertical Shift 

Side force 

Longitudinal 
Force 

Self-aligning 
torque 

Figure 3.19 Typical appearance of steady-state tyre characteristics (after 1581) 

Figure 3.19 shows the typical appearance of the steady-state side (lateral) force, self- 

aligning torque and brake force characteristics, while figure 3.20 provides a 

geometrical interpretation of some of the important factors. The implications in 

relations (3.53)-(3.55) are analysed, considering the case of a tyre operating under 

pure lateral slip. It is observed, experimentally, that as the slip angle a increases in a 

sequence of steady-state values, the lateral force FY also increases, initially in an 

approximately linear manner. With a further increase in slip angle, the lateral force 

gradually converges to a maximum value, or alternatively, the force exhibits a peak, 

after which it drops slightly and converges to a value lower than the peak value of the 
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curve. For an un-cambered tyre, the lateral force characteristics pass through the 

origin (0,0) of the co-ordinate system. The sinusoidal function in equation (3.53) 

ensures a smooth, continuous increase of the force, until it reaches its maximum, 
dictated by the peak value, D. For a further increase in slip angle, the arctangent 
function within the sinusoidal function ensures that the force calculated by the relation 
(3.53) converges to: 

Ya =D sin ±C' (3.56) 

Yt ºY 

Fya 

svT /I 
arctan(BCD) 

fl: Nnß 

Cic%2 

ýI 
Xý6... 

Carctan(Bx ... ) 

Figure 3.20 Geometrical interpretation of the magic formula coefficients (after [6]) 

If the peak value D and the height of the horizontal asymptote ya are measured 

experimentally, the value of the shape factor C can be calculated by solving equation 
(3.56). 

C=± . aresin 
Y. (D) 

(3.57) 

While it is obvious that the peak value (D) determines the maximum force, the shape 
factor (C) is used to control the shape of the curve and makes it look more like a 
cornering force, brake force or the self aligning moment characteristic. 

It is observed through experimentation that the lateral force does not usually exhibit a 
pronounced peak. Initially, the force increases in a relatively steep manner, but the 
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slope of the curve reduces gradually as the slip angle increases. Apparently, for a 

value of the shape factor C <1, the force does not even reach the peak value D, 

whereas for C=1, the force asymptotically tends to the maximum value D= yQ . Not 

very often, the lateral force exhibits a peak after which it drops slightly to a value 

y,, < D, leading to a shape factor C slightly greater than unity. On the contrary, the 

brake force characteristics exhibit a well-defined peak in the great majority of the 

cases. Thus, the value of the shape factor C is always greater than unity. Finally, the 

self-aligning torque usually exhibits a change in sign at high values of slip angle 

(ye < 0). Equation (3.56) then requires a shape factor C>2 for the successful 

representation of the self-aligning moment characteristics. 

By differentiating relation (3.53), the slope of the characteristic curve at the origin is 

calculated as: 

ay 
_BCD ax 

(3.58) 

Therefore, the stiffness factor B is left to control the slope of the characteristic 

curves. 

For the cases where C>1, the characteristic curve shows a maximum at slip value x. 

as shown in figure 3.20. Based on the position of the peak, the value of the curvature 
factor E can be calculated as: 

E= 
Bx. - tan{7i/(2C)} 
Bxm - arctan(Bxm 

) (3.59) 
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I- 

Figure 3.21 The effect of camber angle on cornering stiffness (after 16]) 

The existence of a conicity in the lateral tyre profile, ply steer, camber angle and 

rolling resistance lead to a horizontal (SH) and vertical (Sr) shifts of the 

characteristic curves with respect to the origin (0,0). In particular, camber angle might 

result in a significant horizontal offset of the side force. This observation is 

accompanied by two repercussions, namely the deterioration of the symmetric shape 

of the curve with respect to the origin and a drop in the cornering stiffness 
aFy 

as Iyl 
ea 

increases. This behaviour is shown graphically in figure 3.21. 

The effect of camber angle in the asymmetry of the curve is handled by modifying the 

value of the curvature factor E as follows: 

E= Eo + DE " sign(x) (3.60) 

According to this relationship, a small quantity AE is added to the curvature factor 

Eo for positive slip values, resulting in a more pronounced peak as shown in figure 

3.21. For negative slip, the same quantity AE is subtracted from the curvature factor, 
leading to the deterioration of the existing peak. In addition, by using the relation 
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(3.60) the asymmetries observed between driving and braking curves can be dealt 

with. 

The drop in the cornering stiffness can be taken into account by expressing the 

aF 
product BCDy = as as a function of camber angle y, as demonstrated below: 

BCD,, = p, sin[2arctan(Fz/p2)]"(1-P372) (3.61) 

Where, p1, represents the peak cornering stiffness, which occurs at F= = P2, and p3 

is a parameter. 

Although relation (3.53) can be used successfully for the calculation of the self- 

aligning moment, an alternative approach makes use of the lateral force Fy, the 

pneumatic trail t and the relatively small residual torque M., , as follows: 

MZ =-t"Fy+Mz, (3.62) 

The pneumatic trail t decreases as the slip angle increases. This behaviour can be 

described by the cosine version of the Magic Formula, as shown below: 

t(a1) = Dl cos[C1 arctan{B, a, - E, (B, a! - arctan(B, a, ))}] (3.63) 

Where 

a, = tana + SH, (3.64) 

SHf , being the horizontal shift of the pneumatic trail t with respect to the origin (0,0). 
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Figure 3.22 Geometrical explanation of the cosine version of the magic formula (after [61) 

Equation (3.63) generates a hill shaped curve as shown in figure 3.22. Factor D, 

represents the peak value, C, is a shape factor governing the height of the horizontal 

asymptote ye , Bl determines the sharpness of the hill and E, governs the point of 

intersection xo between the curve and the horizontal axis. 

The residual torque M., can also be described by the cosine version of the Magic 

Formula: 

M. 
-r 

(ar) 
= Dr cos[arctaf(Brar 

), (3.65) 

Where 

a. = tan a+ SHJ (3.66) 

SHI , 
being the horizontal shift of the residual torque with respect to the origin (0,0). 
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Figure 3.23 Self-aligning torque as a result of the lateral force and the pneumatic trail (after 161) 

Figure 3.23 demonstrates, graphically, the construction of the self aligning torque 

characteristics. M_, resulting from the addition of the residual torque M_,. to the 

product of the lateral force F, and the pneumatic trail i. The second and third graphs 

show the hill shape of the cosine version of the Magic Formula, as predicted by 

relations (3.65) and (3.63) respectively. 

3.3.3.2.2 Combined Slip Operating Conditions 

It is expected that the simultaneous existence of a slip angle a, and longitudinal slip 

k reduces the forces predicted by equation (3.53) for pure slip conditions. The 

situation can be handled by taking into account some basic principles, describing the 

relative magnitude of the contact forces for an anisotropic tyre, operating under 

combined lateral and longitudinal sliding. This somewhat complex approach is 

undertaken in [58], [411 and [62] and involves the definition of additional slip values 

and the non-dimensionalisation of the characteristic curves for pure longitudinal and 

pure lateral slip. The details of this procedure can be found in literature ([58], [41]. 

[62] and [6]). Here. the purely empirical approach adopted in 163] is briefly described. 
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The effect of k on FY and a on Fx is taken into account by multiplying the 

corresponding pure slip forces by appropriate weighting functions. The weighting 

functions exhibit a hill shape and are based on the cosine version of the Magic 

Formula shown below: 

G=D cos[C arctan(Bx)] (3.67) 

In relation (3.67) G represents the weighting function, D is the peak value, C 

determines the horizontal asymptote of the hill's base, B determines the sharpness of 

the hill and x represents the primary input variable in the form of k or a for the 

weighting functions of the lateral or the longitudinal force respectively. 

For example, in the event that a brake slip k is introduced to a cornering tyre, 

operating at a slip angle a, the side-force Fß, 0, predicted by equation (3.53) for pure 

side-slip is multiplied by the weighting factor, G expressed as a function of the slip 

ratio k. It is observed, experimentally, that for low values of longitudinal slip, the 

lateral force shows a slight increase in magnitude compared to pure side-slip operating 

conditions. This phenomenon can be taken into account, using a peak value D>1, in 

conjunction with an additional horizontal shift of the weighting function. In this 

manner the weighting function can be made equal to unity for zero longitudinal slip, 

increase above unity for low values of k, and drop again as k further increases. 

3.3.3.3 Full Set of Equations 

A revised set of equations, including improvements and extensions of the model 
together with the definition of a large number of additional parameters and scaling 
factors may be found in [6]. In this section, the equations proposed in [41] for pure 

slip conditions are considered. This second version of the Magic Formula model 

serves as a good compromise between simplicity, accuracy and physical substance of 
the parameters used. 

3.3.3.3.1 Lateral Force 
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Fy(a)= y(x)+Sv (3.68) 

y(x) =D sin [c arctan{Bx - E(Bx - arctan Bx)}] (3.69) 

x=a+ SH (3.70) 

Factors: 

C= ao (3.71) 

D= fuymF'Z (3.72) 

Pym = aiFZ +a2 (3.73) 

Where: 

pym is the lateral coefficient of friction 

al is the load dependency of lateral friction 

a2 is the lateral friction level 

BCD = a3 sin(2 arctan(FZ /a4 )) " 
(1- a5 Iyl) (3.74) 

Where: 

a3 is the maximum cornering stiffness at y=0 

a4 is the load at maximum cornering stiffness 

as is the camber sensitivity of cornering stiffness 

E= a6FZ +a, (3.75) 

B= BCD/CD (3.76) 
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(3.77) SH= a8Y + agF, + alo 

Sv =a�Fzy+a12FZ+a, s (3.78) 

3.3.3.3.2 Longitudinal Force 

Fx (k) = y(x) + Sv (3.79) 

y(x) =D sin[C arctan {Bx 
- E(Bx - arctan Bx)}] (3.80) 

x=k+ SH (3.81) 

Factors: 

C= bo (3.82) 

D= /cxm FZ (3.83) 

fýXm = b, F, + b2 (3.84) 

Where: 

acxn is the longitudinal coefficient of friction 

bl is the load dependency of longitudinal friction 

b2 is the longitudinal friction level 

BCD=(b3Fz2+b4FZ)"exp(-b5FZ) (3.85) 

E= b6 FZZ + b7 Fz + b8 (3.86) 
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B= BCD/CD (3.87) 

SH = b9Fi +b, o (3.88) 

SV =0 (3.89) 

3.3.3.3.3 Self-Aligning Torque 

Ms, (a) = y(x) + S, (3.90) 

y(x) =D sin [C arctan{Bx - E(Bx - arctan Bx)}] (3.91) 

x=a+ SH (3.92) 

Factors: 

C= co (3.93) 

D=c, F. 2 + c2Fz (3.94) 

BCD = 
(c3 FZ2 + c, FZ )" (1- 

c6l yl) " exp(- c5 Fz) (3.95) 

Where: 

c6 is the camber sensitivity of aligning stiffness 

E= (c7Fi2 + c8Fz + c9 
)" (1- cio I yj) (3.96) 

B= BCD/CD (3.97) 

S. =c, 1y+c12FZ +c, 3 (3.98) 
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sv = 
(cl4F2 +c15Fzý +c16F= +C17 (3.99) 

3.3.4 Development of a Simple Physical Tyre Model 

Some fundamental trends for the steady-state behaviour of tyres have been described 

with the aid of the Magic Formula tyre model. In this section the actual mechanism of 

tyre force and moment generation is discussed with the description of two new 

physical models. The first relatively simple model forms the basis for the analysis and 

serves as a platform for the development of the second, more elaborate model. 

3.3.4.1 Description of the Model 

The first step in all such investigations is to determine the contact conditions, in 

conformance with established theories of contact mechanics, and with the necessary 

assumptions that make the modelling of the problem tractable. For the case of tyre- 

road interactions the road surface may be considered as flat in the first instance and 

with surface height irregularities (roughness) much smaller than the local deformation 

of the tyre. The surface waviness of the road is assumed to possess wavelengths in 

excess of the contact dimensions [72]. 

The behaviour of the tyre can be ascertained by discretisation of the continuous 

contact domain, as is the case for all contact mechanical treatments. The modelling of 

the generation of shear forces is based on the brush concept. The tyre tread is 

modelled as a one-dimensional series of bristles, distributed around the tyre periphery. 

The bristles incorporate anisotropic stiffness and damping in the lateral and 
longitudinal directions, forming viscoelastic Kelvin elements. In this case, the 

combined effects of the carcass, the belt and the tread are integrated into the bristles. 

The distributed tread mass on the tyre periphery is also taken into account by attaching 

a small (infinitesimal) mass to the free end of each bristle. Initially, for the sake of 

simplicity, the length of the contact patch is assumed to be constant for a given normal 
load and the vertical pressure distribution is regarded as parabolic. The assumption of 

a parabolic distribution is held valid for an elastic solid of revolution against a semi- 
infinite surface (such as the road) as a first approximation. Since the contacting profile 
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of the tyre has a finite width, one would need to accept the uniformity of the lateral 

distribution of pressure for the one-dimensional model. This assumption is generally 

accepted as the starting point for the evaluation of contact mechanic behaviour of tyre- 

road interaction [6], [46], [52]. 

Infinitesimal 
Ci 

Týý Side View 

mass (dm) 

S2 

Anisotropic 
Parabolic Bristles with 
Pressure stiffness and 
Distribuiýon damping 

properties 
0 

;41ý; 

jZx 

Figure 3.24 A side view of the simple tyre model including the contact pressure distribution 
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m Tnn Viow 

Figure 3.24 shows a side view of the tyre model including the normal pressure 

distribution, while figure 3.25 shows a top view of the model, depicting an arbitrary 

position of the mass, dm, which corresponds to a segment of length dx of the tyre 

tread. A bristle connecting the mass to the wheel periphery, is deformed laterally as 

well as longitudinally and, the mass may or may not be sliding on the ground, 

depending on the forces applied by the bristle (viscoelastic element), the vertical force 

at the specific position and the local coefficient of friction. 

In agreement with section 3.3.1, the SAE moving frame of reference (o, x, y, z) and 

the global frame of reference (O, X, Y, Z), attached to the ground, are used for the 

determination of the motion of the tyre and its components. Both frames are shown in 

figures 3.24 and 3.25. 

For the purpose of the analysis, the motion of the infinitesimal mass is traced 

throughout the length of the contact patch. The analysis, therefore, considers the 

physics of motion of a single infinitesimal mass (segment) through the contact to be 

representative of all such discrete elements. Thus, the proposed model represents 

steady-state contact conditions. 
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As already mentioned, the length l=2"a of the contact patch is kept constant. Point 

b, where the bristle is connected to the tyre periphery (i. e. the bristle base, see figure 

3.25) enters the contact patch at coordinates (x, y, z) = (a, 0,0) in the moving frame of 

reference and travels throughout the contact patch with velocity 

- IV, I= -I(y' sin(g) + S2)Re 1. The longitudinal component of the velocity of the bristle 

base relative to the ground (i. e. the global frame of reference) is V, the lateral 

component being VG, . When the vertical force, at the point under consideration results 

in the generation of a high enough frictional force, the mass dm tends to stick to the 

ground. In any other case, the mass moves with respect to the ground with sliding 

velocity, u= dr(x, y)/dt, consisting of uX and uy in the longitudinal and lateral 

directions respectively. 

In general, the origin of the global frame of reference can be positioned anywhere in 

space, as shown in figure 3.25. Nevertheless, the derivation of the equations is 

simplified if the origin of the global frame of reference is made to coincide with point 
(a, 0,0) of the SAE frame where the representative tyre segment enters the contact 

patch. In this way, the position vector r(x, y) of the small mass in the global frame of 

reference is equal to zero until sliding begins. 

Since the distribution of bristles is one-dimensional and the lateral distribution of the 

normal tyre force is assumed uniform, all the forces, including the vertical tyre forces, 

are stated per unit length of the tread. Consequently, elastic and damping properties 

are also given per unit length of the tread. 

The mass distribution along the tyre tread is C= dm / dx, the stiffness coefficients per 
[fJ-iJ/cix 

unit tread length are Kx = 
(J/czx 

, Ky = for the longitudinal and lateral 

deformations of the bristles respectively, and the coefficients of damping are 

y-d VdF u 
dx. Dx 

drVdF u 
dz, D 

\ sz xl l y) 
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The equation of the parabola, yielding the vertical force distribution per tyre tread 

length can be easily derived, given the length of the contact patch 1= 2"a and taking 

into account the fact that the integral of the force along the contact patch balances the 

normal load applied on the wheel hub by the suspension. In accordance with these 

simple considerations, the vertical force distribution per tread length becomes: 

3. FZ (XL 2 
Fvencca! =4a' 1- (3.100) 

where F. denotes the total vertical force applied on the wheel hub and XL is the 

position of the segment along the contact patch. 

3.3.4.2 A Note on the Length of the Contact Patch 

The length of the contact patch 1= 2"a has been assumed to remain constant. 

Certainly, the simple formulation of the contact-mechanical aspect of the tyre model 

does not allow a dynamic update of the size of the contact patch, based on the rolling 

velocity. Furthermore, the middle of the contact is always assumed to coincide with 

the projection of the wheel centre on the road. Nonetheless, it is necessary to relate the 

total length of the contact, given the width of the tyre, to the net vertical load applied 

on the wheel hub. This can be done in a simple analytical way, as demonstrated by 

Gim and Nikravesh [52]. According to this approach, it is assumed that under the 

application of a vertical load, the tyre penetrates the road and the total length of the 

contact is equal to the chord of the resulting arc, as demonstrated in figure 3.26. 

Simple geometry yields: 

a= RZ-(R-S)2 (3.101) 

and because 8«R, the above relation reduces to: 

a 2RS (3.102) 
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Fha 

Figure 3.26 The principle for the calculation of the length of the contact patch 

Given the radius R of the tyre, length 1= 2a can be calculated by relation (3.102) if 

penetration or alternatively vertical deflection 8 is known. Assuming a linear 

relationship between normal load and the resulting vertical displacement, 8 is given 

by the following equation: 

S=FZ 
CZ 

(3.103) 

where, CZ denotes the static vertical stiffness of the tyre in [N/ml. Note that this 

relation assumes an infinite line contact condition (into the depth of the tyre contact 

with the ground, i. e. laterally) for which a deflection exponent of unity can be 

assumed, as an approximation to the actual value of 1.1 [72]. 

This simple static approach is adopted in order to vary the length of the contact patch 
depending on the normal load. 

3.3.4.3 Modelling of Friction 

Although rubber exhibits a rather complex frictional behaviour, it is possible to 

simplify the situation by considering the fact that the hysteresis peak is rarely 

observed under normal tyre operation. As stated in section 3.2.3.2, excitation 
frequencies within the contact patch rarely reach the levels, where the hysteresis term 

of friction becomes dominant. Under these circumstances, the adhesion peak can be 
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substituted by a simple stick-slip friction law, appropriate for hard materials that are in 

accord with Coulomb's classical laws of friction. In general, for dry contacts between 

hard materials, stick-slip friction can be modelled as a transition between two different 

states. This type of behaviour is described by considering a hard elastic body sliding 

on a hard surface. When the velocity of the specimen reduces to zero, friction force 

may attain any value between zero and maximum static friction, Fmax. At this stage, 

the friction force balances all the external forces. In the event that the sum of external 

forces exceeds Fmax, sliding between the specimen and the surface occurs. Then, it is 

assumed that the friction force drops instantaneously from Fm to a lower value, Fkin, 

known as kinetic friction. From this point onwards friction might show a dependency 

on sliding velocity, usually expressed as a slight decrease in the coefficient of kinetic 

friction, as velocity increases further. This behaviour can be summarised in the 

following relations: 

f= -F ferna1 for u=0 AND I Fexterna, I< Fmax = p8 " 
r'venrcal (3.104) 

J= Pk ' Fvencca! for 
Jul 

>0 OR I 
external 

I> 
ps " Fveri, 

cal 
(3.105) 

where f denotes the friction force opposing the motion of the specimen, u is the 

sliding velocity, F 
gc ai 

is the resultant external force applied on the specimen, P, is 

the coefficient of static friction, FYen, 
ca, 

is the vertical force applied on the specimen 

and Pk is the coefficient of kinetic friction with , uk < Ps . 

In the case of rubber, acs corresponds to the adhesion peak, observed at low sliding 

velocities, while , uk represents an average value for the coefficient of friction, 

succeeding the adhesion peak. The significance of coefficients pS and Pk is better 

understood by referring to figures 3.8 and 3.9. The value of Pk would need to take 

into account sliding velocities of a maximum of up to 50-100 m/s, a range more than 

enough for the simulation of tyre friction. Finally, it should be noted that 

contamination films reduce the effect of adhesion [82] and the peak adhesion 
coefficient of friction should is expected to be lower than the value shown in figure 
3.9. 
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Karnopp [112] proposes a simple algorithm for the implementation of relations 

(3.104) and (3.105) in a computer simulation environment. The numerical feasibility 

of the stick-slip friction law requires that the velocity conditions, appearing in 

relations (3.88) and (3.89) are replaced by the following relations: 

Jul <_ threshold (3.106) 

ul > threshold (3.107) 

where, threshold is a relatively small velocity value in the range between 0.005 and 

0.05 m/s. 

3.3.4.4 Equations of Motion for the Infinitesimal Mass 

The motion of an infinitesimally small segment of length dx is considered. According 

to the aforementioned definitions, the mass, stiffness and damping properties of this 

specific part of the tread can be written as follows: 

dm =C" dx (3.108) 

dKX = K,, " dx (3.109) 

dKY = Ky " dx (3.110) 

dD, 
r = Ds " dx (3.111) 

dDy = Dy " dx (3.112) 

Before entering the contact patch, the infinitesimal mass is assumed to be in an 

equilibrium condition and no forces are applied by the corresponding bristle. The 
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motion of the mass is followed from the moment it enters the contact patch, until it 

reaches the trailing edge of the contact. 

In accordance ' ith figure 3.25 the differential equations describing the motion of the 

mass in the longitudinal and lateral directions become: 

ü "C. dx=(x, -x)"K= "dx+(V. -ux)"D= "dx- f: "dx (3.113) 

r -C-dc=(y, -y). K'y "dx+(V, -u,, 
)"D,, 

"dx- fy "dx (3.114) 

z, = V. so that x, = 
I- V. di (3.115) 

,, =V, so that y, = 
J"" V dt (3.116) 

x= ut so that x=I -W u,, dt (3.117) 

,= uy so that y= I'-' uydt (3.118) 

where, f, fý, denote the friction forces per unit length in the longitudinal and lateral 

directions respectively and =2" a/V, is the duration of travel of the bristle base 

throughout the contact patch. 

Irrespective of whether the tyre is sliding or not, the velocity of travel of point b along 

the length of the contact patch is - V, Obviously, this is also the velocity throughout 

the normal force distribution. Thus, the vertical force on point b varies according to 

the following relations: 

"1 .Ix, 
)') 

F. 
ýnýr =3 4a 

(3.119) 
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zý _ -V, so that XL =a+ 
ý" ý`` - V, dt (3.120) 

The value of friction 1= fx + fy is determined by relations (3.104) and (3.105). If the 

sticking condition is satisfied, the magnitude of the friction force equals the magnitude 

of the forces applied by the bristle. When the mass is sliding on the road surface the 

magnitude of the friction force becomes: 

=, uL)') (3.121) 

The components of f in the longitudinal and lateral directions become: 

i3 

. 
fs = 

ux 
z #Uk '4 

aZ 
1 

aL 
(3.122) 

ux+uy 

and 

2 
u3. FZ 

" 1- x' (3.123) fy = 
ux2 +u y2 

fýk 4-a L La 

3.3.4.5 Some Improvements in the Friction Law 

Equations (3.104), (3.105), (3.122) and (3.123) assume isotropic friction in the lateral 

and longitudinal directions. Experimental evidence shows that this is rarely the case 

(see for example the Ist quadrant of the friction ellipse in figure 2.4). On the contrary, 

the maximum friction force, calculated as the vectorial addition of the lateral and 

longitudinal components, usually defines an ellipse, as demonstrated graphically in 

figure 3.27. 
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In order to take into account the anisotropy of friction in the lateral and longitudinal 

directions it is essential to modify the generic stick-slip friction law defined by 

relations 3.104 and 3.105. The force threshold now is expressed as: 

2Z 
Fx 

+ 
FY 

<F eni�7r (3.124) 
fpm psy 

where, F, 
r and Fy denote the decoupled longitudinal and lateral components of the 

bristle force acting on the infinitesimal mass, and p,,,, , uss, are unequal coefficients of 

static friction in the longitudinal and lateral directions respectively. 

Equation (3.124) defines an ellipse with its semi-minor and semi-major widths being 

I2p FYert, 
ca, 

I and I2 psy, FVert, 
caj respectively. When both equations (3.106) and (3.124) 

are satisfied, the infinitesimal mass sticks to the ground and the friction force opposes 
the net force applied by the bristle. In any other case, the sliding condition is satisfied, 

and the friction forces are calculated by the following relationships, which take into 

consideration the anisotropic nature of kinetic friction: 
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u 
. 
%x =2x' Fven�ar (3.125) 

ýux /ß, x) + uv /iUrý 

uy 
- 

F'verticai (3.126) 
V(ux // 

kxý2 + uv /Pkv 

where p, 1uk, denote the coefficients of kinetic friction in the longitudinal and 

lateral directions respectively. 

In an attempt to further improve upon the accuracy of the calculations, coefficients 

p and , uk, can be made velocity dependent. In order to avoid the estimation of the 

parameters involved in relation (3.16), the part of the friction coefficient curve, 

succeeding the adhesion peak (see figure 3.8) can be approximated by an exponential 
function as demonstrated below: 

pkx = psx + pxred e exlu=I -1 (3.127) 

Pky - Psy + /Jyred (e-eyluAA 
_I 

) (3.128) 

where, Pxred, Pyred, qx, qy are coefficients. 

Relations (3.127) and (3.128) indicate that the coefficients of kinetic friction reduce in 

an exponential manner, starting from the peak values of static friction (adhesion peak). 
It is surmised that the total reduction is dictated by the value of parameters uxred and 

Pyred 9 while the coefficients qx and qy regulate the rate of reduction in the 

corresponding directions. Although all parameters can be estimated by using graphs 

similar to the one shown in figure 3.9, it is often more convenient to use 

experimentally measured tyre data or even curves generated by the Magic Formula 

model. This approach will be shown later in section 3.3.6. 
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3.3.4.6 The Inclusion of Spin-Slip 

So far, the lateral and longitudinal deformations of a representative bristle within the 

contact patch have been explained using the lateral and longitudinal sliding velocities 

V. and V,, as kinematic inputs to the bristle base. As the bristle travels along the 

contact patch with velocity - V,, , the kinematic inputs Vi,, and V. remain constant, 

provided that the tyre operates under steady-state conditions. 

If one considers a cambered rolling wheel with an additional yaw rate, for example 
due to a steering action, the resulting yaw-rate parallel to the z axis of the SAE frame 

of reference can be easily calculated, based on the analysis in section 3.3.1.: 

w"z=yr-n-siny (3.129) 

In the simple case of a single-plane tyre model with a contact patch extending from -a 
to a, the resulting yaw rate calculated in equation (3.129) generates an additional 
lateral velocity which is a function of the position along the contact patch. Throughout 

the contact, the lateral velocity at the base-points of the bristles is given as: 

Vs3v (XL)=(yr-0-siny)-(XL) With XL E(- a, a) (3.130) 

The resulting lateral displacement along the contact can be found by integrating the 

velocity with respect to time. To achieve this, the position XL along the contact needs 

to be written as a function of time: 

XL =a-V, "t (3.131) 

For steady-state operating conditions V, remains constant and the time required to 

reach a position XL along the contact, i. e. to move from a to XL , is equal to 
(a - XL)/V, . Hence, by combining equations (3.130) and (3.131), the lateral 

displacement of the bristle-base points can be found by the following integral: 
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Ysc (XL) _f 
a-x` )l v" (a - V, . t). (yr - S2 " sin y)dt (3.132) 

Simple calculations yield: 

)- (Vr-S2"siny) a2 
-z Ysc (XL 

Vr 22 
(3.133) 

If no longitudinal sliding exists, then V, = V, and equation (3.133) can be written as 

follows: 

(X 
(yr-n"siny) a2 xL a2 x` 

y (3.134) 
s° L vx 2222 

The above equation reveals the significance of spin-slip (D as a kinematic input for 

the calculation of the deformation along the contact patch. If one assumes that the slip 

angle is equal to zero and that there is no sliding throughout the contact, i. e. the 

friction force is enough to keep the free ends of the bristles stuck to the ground, then, 

the lateral displacement of the bristle-base points yJXL) due to spin-slip is equal to 

the deformation of the bristles along the contact. Under these conditions a parabolic 
lateral deformation occurs, which is symmetrical with respect to the centre of the 

contact patch. The result obtained here is identical to the result obtained in [6] for the 

calculation of the lateral deformation along the contact in the case of a simple brush 

model with a known contact length equal to 2a, for which the non-sliding condition 

applies. 

It should be noted that due to the symmetry of the lateral deformation, the spin-slip 
does not generate a self-aligning moment when a single plane tyre model is 

considered. However, if one takes into account the width of the tyre, it becomes 

obvious that the resulting yaw rate w"i introduces anti-symmetrical longitudinal 

velocities along the width of the contact. Following exactly the same procedure, the 
longitudinal deformations along the width can be calculated and the resulting self- 
aligning moment is then easily obtained. 
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Based on the previous analysis, the inclusion of the effect of spin-slip (camber and 

turn-slip) in the modelling approach is achieved by substituting VG, in equations 

(3.113)-(3.118) with the resulting Vy, due to the addition of spin-slip. Equations 

(3.113)-(3.118) are modified as follows: 

üx"C. dx=(xs-x)"Kx"dx+(V, -ux)"DX"dx-fx"dx (3.135) 

icy "C. dx=(y. -y)"Ky "dx+(Vsy, -uy)"Dy "dx- fy "dx (3.136) 

is =V so that xs = 
I" w V. dt (3.137) 

Ys = Vsyr so that ys Vy, dt (3.138) 

ux so that x=f`l uxdt (3.139) 

y=uy so that y= 
fm`, 

u ydt 
(3.140) 

with: 

V, 
- 

Vsy + (yr -0- sin y) " xL (3.141) 

and 

zL = -V, so that XL =a+ 
ý"°"`- V, dt (3.142) 

In analytical tyre models based on the brush concept, the consideration of sliding 

regions within the contact patch and the general case of the co-existence of spin-slip 

and lateral slip, introduce certain complications in the calculation of the deformations 

and the resulting forces and moments [6]. The methodology presented above uses only 

the additional velocities at the bristle-base points, resulting from spin-slip. Thus, a 

separate treatment of combined side-slip and spin-slip is not required, nor is the 
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method restricted by any assumptions regarding the adhesion and sliding regions 

within the contact. 

3.3.4.7 Numerical Solution of the Differential Equations 

Equations (3.135)-(3.142) are solved numerically, using a 4th order, fixed time-step 

size Runge Kutta method [113], [114]. At every time-step, the conditions (3.106) and 

(3.124) are checked and the friction is determined accordingly, by considering 

equations (3.125) and (3.126). The forces transferred to the wheel are the reactions 

applied by the bristles on their respective base points. The analysis is carried out 

initially for steady state conditions (i. e. velocity V, is kept constant). Therefore, if the 

duration of the time-step is h, the distance travelled along the contact patch during 

each integration step is essentially Dx = V. " h. The assumption for uniform nature of 

motion is justified due to the infinitesimal time step size. Following the positions of 

the infinitesimal mass dm from the moment it enters the contact patch, until it reaches 

the trailing edge, (e. g. after n integration steps) is analogous to assuming n number of 

infinitesimal masses in a row, at the same instant of time. Multiplying the force 

generated by each mass (analogously at each time-step) with the distance Dx and 

adding all the products, the total forces applied on the wheel can be calculated. The 

self-aligning moment can be derived easily by multiplying the individual forces with 

the distance from axis oz at each time step, prior to the summation process. 

3.3.5 Extension of the Simple Tyre Model 

The assumption of a parabolic pressure distribution is certainly not valid for all 

possible operating conditions [46]. This simplification neglects the effects of rolling 

velocity on the shape of the normal pressure distribution along the contact patch. 
Rolling at high velocities promotes hysteresis losses and causes a shift of the pressure 
distribution towards the leading edge. In section 3.3.2.2 the direct link between the 
hysteresis losses and the shift in the normal pressure distribution is discussed 

thoroughly. As a result, rolling resistance increases and the frictional potential 
becomes unevenly distributed. Then the leading part of the contact area would exhibit 
higher frictional capabilities as compared to its trailing part. Still, the most important 

deviations from the parabolic shape are attributed to the effect of air pressure acting 
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on the inside surface of the tyre carcass. The effect is prominent, especially under high 

vertical loads, when the pressure distribution becomes more trapezoidal than 

parabolic. These phenomena are completely overlooked by the simple tyre model. A 

modified model is required with provision for on-line calculation of the normal 

pressure distribution, based on the overall normal force applied on the wheel hub and 

the rolling velocity of the tyre. 

3.3.5.1 Physical-Mathematical Description of the Improved Tyre Model 

A mechanism needs to be incorporated in order to simulate the build-up of the normal 

component of pressure along the tyre contact patch. For this purpose, a number of 

modifications are made to the simple tyre model. Firstly, radial and tangential Kelvin 

elements are introduced. Secondly, a vertical Kelvin element is used for the 

connection between the infinitesimal mass and the ground. The vertical Kelvin 

element mainly represents the properties of the tread in the vertical direction, while 

the combined effect of tangential and radial compliance replaces the longitudinal 

stiffness and damping of the bristles. The modified tyre model is shown in figure 3.28. 

It is noted that x,, x, and z denote the deformations of the radial, tangential and 

vertical Kelvin elements respectively, with respect to their un-deformed state, i. e. 

prior entering the contact patch. All three deformations are considered positive when 

the corresponding elements are compressed and negative when the elements are 

stretched. 
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Figure 3.28 The advanced tyre model with radial, tangential and vertical degrees of freedom 

The motion of one representative discrete segment of mass dm is followed 

throughout the contact patch. It is assumed that prior to entering the contact patch, no 

radial, tangential or vertical compression exists. As the infinitesimal mass travels 

along the contact, the overall vertical compression of the tyre is undertaken by the 

radial, tangential and normal Kelvin elements. If one considers a segment of the tread, 

lying well within the contact patch, and a normal force large enough to generate a 

significant radial deflection, it becomes apparent that the contact pressure generated at 

the specific point between the tread and the road should be balanced by the air 

pressure inside the tyre. If, moreover, the air pressure is considered constant and 
independent of the normal deflection of the tyre, any increase in normal force should 
be undertaken by a subsequent increase in the overall contact area. As a consequence, 

the pressure generated within the inner part of the contact area remains approximately 

constant, resulting in a smoothened trapezoidal shape of the pressure distribution 

along the contact patch. This behaviour is handled by implementing a radial elastic 
force, which saturates as the radial deflection of the tyre increases. 

Referring to figure 3.28, equations (3.135)-(3.140) can be re-written as follows, taking 
into consideration the convention that x,, xt and z are positive when they denote 

compression of the corresponding Kelvin elements and that the positive directions are 
as indicated by the SAE frame of reference (see fig. 3.10): 
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itx "C"dx=radforce(x, 
)"sin9"dx-Kr - x, "cos9"dx (3.143) 

+Dr - i,. "sin9"dx-D, "x, "cos9"dx- fx 

y "C"dx =(Ys -Y). Ky'dx +(Vyr -uj. Dy "dx- fy (3.144) 

ü "C"dx=C"g"dx+radforce(xr)"cos9"dx+K1 "x! "sin9"dx (3.145) 
+Dr ". zr "cos9"dx+D, ". z, "sin9"dx-KZ "z"dx-DZ "u1 "dx 

ux so that x= 
I' l uxdt (3.146) 

,=uy so that y= 
1-1 

u ydt 
(3.147) 

z= uz so that z= 
I&-l 

uzdt (3.148) 

ys, = Vsy,, so that ys = 
f'l Vyyrdt (3.149) 

where: 

Function f (x, ) = radforce(x, ) is responsible for the saturation of the radial force as 

the contact deflection increases and is defined as follows: 

radforce(xr) = pb(l - e-' ), w= 2(K, / pb) (3.150) 

where, p denotes the pressure in IN/m2 ], b is the width of the tyre in [m], K. is the 

radial stiffness per unit length of the Kelvin element in IN/m2 ] 
and A is an adjustable 

parameter given in lm-1], responsible for the rate of saturation of the radial force. By 

differentiating the force function radforce with respect to Xr, the radial stiffness 

function is obtained in {N/m2 I. Apparently, AKr is the radial stiffness per unit length 

at zero radial compression of the carcass. 
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Note that in equations (3.146)-(3.149), the duration of travel along the contact is 

not known apriori as is the case in the simple model. Instead, travel needs to be 

calculated on-line. Thus, starting from t=0, is the moment when the force 

generated by the normal Kelvin element reduces to zero, i. e. when contact between the 

tyre segment and the road surface is lost. 

If the state variables of the dynamic system are chosen as x, y, z, ux, uY , uZ, ys, x,, x1 , 
it 

becomes clear that the set of differential equations is insufficient to arrive at an 

analytic solution. Furthermore, the absence of variable x3 adversely affects the 

definition of longitudinal slip. 

Figure 3.29 Geometrical constraints for the advanced model 

This problem is resolved by introducing a set of kinematic constraints. Referring to 
figure 3.29, the radius of the tyre prior to entering the contact patch of the vertically 
loaded rolling tyre is assumed to be R, which is considered to remain constant in the 

area outside the contact patch and equal to the radius of the unloaded tyre. The angle 
between R and the vertical line, connecting the tyre centre to the ground is 9,. Given 

R, the height of the tyre centre above the ground is 1h =R" cos 90 . This height is 

assumed to be equal to the radius of the vertically loaded tyre under pure rolling 
conditions, R.. Centrifugal effects are neglected, thus when the mass enters the 
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contact patch, no deflections of the tangential, radial and Kelvin elements are deemed 

to exist. At an arbitrary position of the mass inside the contact patch, the total 

deflection AR is given by the following scalar constraint function: 

OR=R-R cos 9 
" (3.151) 

cos 9 

The vertical projection of the total deflection AR is: 

ARvertica! =AR "cos9=R-(cos 9-cos9a) (3.152) 

At any instant of time, AR,,,, 
ca, 

is equal to the vertical deflection of the Kelvin 

element (i. e. the "local" deflection) added to the vertical components of the 

deflections of the radial and tangential elements (i. e. the "global" deformation of the 

continuum), as described in the following equation (see figures 3.28,3.29): 

x, "cos9+x1 "sin9+x2 =R"(cos9-cos9a) (3.153) 

Analogously, the horizontal components of the deflections of the radial and tangential 

elements are equal to xs - x, which represent the distances between the base and the 

tip of the bristles, as defined previously for the simple tyre model. Consequently, the 
following constraint function also holds true: 

xr "sin9-xr "cos9=x, -x (3.154) 

Equations (3.153), (3.154), provide a way of expressing x,, x, with respect to x, xs 

and 0, while their derivatives provide two more relations, which include velocities 

. z,, z,, 9 = Q, as follows: 

i, "cos9-xr "S2"sin9+. z, -sin "S2"cos9+uz =-R"S2"sin9 (3.155) 

"sin9+x, "S2"cosS-. z, "cosa+x1 "Q. sin9 =V,, -ux (3.156) 
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Relations (3.153)-(3.156) result in the omission of variables Xr, Xr , X,, XI and enable 

the formulation of the system of differential equations in a way that xJ is retained as a 

state variable, thus providing a means for the definition of longitudinal slip. 

The rate of change of angle 9 can be obtained by solving the equation of motion of 

the wheel for the rotational degree of freedom, while height 1h 9 or alternatively angle 

90 (for a given radius R) can be obtained by solving the equation of motion of the 

wheel for the vertical degree of freedom. For an unsuspended quarter-car model as 

shown in figure 3.30, the equations of motion can be summarised as follows: 

x 

ýr 

Figure 3.30 Integration of wheel-tyre dynamics 

üx "C"dx=radforce(x, 
)"sin9"dx-K, 

- x, "cos9"dx (3.157) 
+D, - i,, "sin9"dx-DD "x "cos9"dx- fx 

zy "C"dx=( s -Y)"Ky dx+(VY,. -uy)"Dy "dx- fy (3.158) 

üz "C. dx=C. g. dx+radforce(x, ). cos9"dx+K, "x, "sin9"dr (3.159) 
+D, "z, "cos9"dx+D1 - it "sin9"dx-KZ "z"dx - DZ - u., "dx 

.z=u., so that x= 
0-1 

uxdt (3.160) 
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y= uy so that y= IT l uydt (3.161) 

2= uz so that z= 
1-1 

uzdt (3.162) 

zs =V so that xs = 
ý"°ý`Vdt (3.163) 

's = Vsy, so that ys Vv�dt (3.164) 

VSY, =v +(yr-c "siny)"xL (3.165) 

zt = -V, so that XL =a+ 
f""`1 

- V, dt (3.166) 

x, "cos9+xr "sin9+xz =R"(cos 9-cos9o) (3.167) 

x, "sin9-x, "cos9=x, -x (3.168) 

z, "sin9+x, "c . cos9-. i, "cos9+xt "n-sing =V,, -u., (3.169) 

. z, "cos9-x, "S2"sin 9+it "sin9+x: "S2"cos9+uz =-R"S2"sin9 (3.170) 

I. O=Tdb-F%. tr-FX. lh (3.171) 

9= SZ (3.172) 

M. 
ddý2_M. 

g_FZ (3.173) 

M" Vvx = Fx (3.174) 
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V= Vvs - S2 " Re (3.175) 

where, I denotes the polar moment of inertia of the wheel, M the quarter car mass, 

g the acceleration of free fall, V,, the forward velocity of the vehicle, Fx the 

longitudinal force generated by the tyre, Td b the driving or braking torque, F. the 

resultant normal force and t, the length of the lever between the normal force and the 

tyre centre. 

The block diagram in figure 3.31 shows the interactions between contact mechanics of 

tyre-road pair and the inertial rigid body dynamics of the vehicle-wheel sub-system. 

Vehicle Dynamics 
Tyre Contact 
Mechanics - Tyre 
Dynamics 

Wheel Dynamics 

Figure 3.31 A block diagram showing the vehicle-wheel-tyre interaction 

Very often, in vehicle handling analyses the vertical degree of freedom of the wheel is 

not included in the description of the vehicle-wheel-tyre system. Alternatively, the 
force applied by the suspension to the wheel hub is used as an estimation of the 

normal load undertaken by the tyre. Hence, it is assumed that at any instant of time the 

contact pressure along the contact patch balances the vertical component of the 

suspension force. For a given tyre, the normal pressure distribution predicted by the 

modified version of the tyre model depends on the contact angle 9o and the linear 

velocity of rolling V1. . In the event that the tyre model is required to operate with the 

normal load as an input, a surface plot is needed, providing angle 9o as a function of 
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the normal load F_ and velocity V,. For this purpose, the tyre model can run for a 

combination of velocities and contact angles. For each combination, the generated 

normal force is recorded, and finally the results are plotted in a way that contact angle 

9o appears as a function of the normal load F_ and velocity V, as shown in figure 

3.32. This pre-processing procedure is carried out only once for each individual tyre. 

The results are stored and the data is used for estimating contact angle 9o through 

linear, 2-dimensional interpolation. 

20 

15 
0) 

a, 
0110 

U 
l6 

O7 
0 

0 
10000 

150 

Normal load (N) 00 
Linear speed of rolling (m/s) 

Figure 3.32 Surface plot of the contact angle vs load and velocity 

3.3.6 Simulation Results 

Both the simple and modified models are solved numerically following the procedure 
described in section 3.3.4.7. In addition, both models use the modified friction law 

incorporating anisotropy in the lateral and longitudinal directions, as well as velocity 
dependent coefficients of kinetic friction (see relations (3.124)-(3.128)). 
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Table 3.3 

Magic formula coefficients (after [1051) 

Lateral force Brake force 
Self aligning 

moment 

ao 1.6929 bo 1.65 co 2.2264 

a, -55.2084 b, -7.6118 c1 -3.0428 

a, 1271.28 b, 1122.6 c, -9.2284 

a3 1601.8 b3 -0.00736 c3 0.5 

a4 6.4946 b4 144.82 c4 -5.56696 

a5 0.0047966 b5 -0.076614 c5 -0.25964 

a6 -0.3875 b6 -0.00386 c6 -0.001297 

a7 I b7 0.085055 c7 -0.358348 

a8 -0.045399 b8 0.075719 cg 3.74476 

a9 0.0042832 b9 0.023655 c9 -15.1566 

a,, 0.086536 b, 0 0.024 CIO 0.0021156 

a� -7.973 cl 0.00346 

a12 7.668 c,, 0.00913952 

a13 45.8764 c13 -0.244556 

C 14 
0.100695 

c15 -1.398 

C 16 
0.44441 

C17 -0.998344 

Table 3.4 

Parameters for the simple tyre model 
Parameter 

Description 
Symbol Value Units 

Tyre Radius R 0.29 ImI 

Contact patch width b 0.185 Iml 
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Longitudinal damping D_, 8e2 Ns/m2 

Lateral damping Dti. 8e2 [Ns/m2 j 

Longitudinal stiffness KX 1.2e7 T N/m2 

Lateral stiffness K 
y. 

1.17e7 [N/m 2j 

Mass per unit length C 2 [Kg/m] 

Long. coeff. of static fr. PAX 1.3 - 

Lat. coeff. of static fr. 1.3 - 

Friction reduction Pxred L 0.65 
- 

factor (longitudinal) 

Friction reduction 
Pi red 

0.65 
- 

factor (lateral) 

Friction reduction rate 
qx 0.07 [S/M1 

factor (longitudinal) 

Friction reduction rate 
4Y 0.07 [s/M1 

factor (longitudinal) 

Friction velocity 
threshold 0.012 [m/sl 

threshold 

Normal stiffness Cz 2.89e5 [N/m] 

Table 3.5 

Parameters for the advanced tyre model 
Parameter Description Symbol Value Units 

Tyre Radius R 0.29 {mI 

Contact patch width b 0.185 [m] 

Tangential damping D, 8e2 Ns/mz 

Lateral damping D, 8e2 [Ns/m2 J 

Radial damping D, 1.6e3 Ns/m' 

Vertical damping D. 1e4 Ns/m' 

Tangential stiffness K, 1.2e7 N/m 2 

Lateral stiffness K,. 1.17e7 IN/m2 J 
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Radial stiffness Kr 4.8e6 [N/M, 

Vertical stiffness KZ 4e7 N/m2 

Mass per unit length C 2 [Kg/m] 

Long. coeff, of static fr. P 1.3 - 

Lat. coeff. of static fr. /., y 
1.3 - 

Friction reduction Pxred 0.65 - 
factor (longitudinal) 

Friction reduction Pyred 0.65 - 
factor (lateral) 

Friction reduction rate 4x 0.07 [s/ml 
factor (longitudinal) 

Friction reduction rate qy 0.07 [s/ml 
factor (longitudinal) 

Friction velocity 
threshold 0.012 [m/s] 

threshold 

Air pressure P 2.3e5 N/m2 

Rate of pressure 2 4 Im-' 1 
L 

saturation 

Simulation results are compared with results obtained using the version of the Magic 

Formula model described in section 3.3.3.3. The Magic Formula coefficients are taken 

from reference [105], and are included in table 3.3. The parameters of the models are 
identified, using the lateral force characteristics under pure cornering conditions and 

the brake force characteristics under pure braking conditions, as generated by the 

Magic Formula model for a reference normal load of 4 KN. Based on these graphs, 

the optimum values of the coefficients involved in the calculation of friction and the 

stiffness of the tyre in the lateral and longitudinal directions can be easily estimated. 
The parameter identification procedure is performed separately for the cornering and 
braking forces, using the MATLAB functionfmins [115]. The parameter vector P is 

given below for the cases of cornering and braking, both for the simple and advanced 

models: 

a. Cornering 
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- Simple model: 

P= [iy 
pys Pyred 4y 

T (3.176) 

- Advanced model: 

P= [iy 
lays Pyred 4y] (3.177) 

b. Braking 

- Simple model: 

P= [ix pss Pxred 9'x IT (3.178) 

- Advanced model: 

- 
ýýJ 

luxs luxred qx 
JT 

(3.179) 

It can be seen that while both models use the same parameters for cornering, in the 

case of braking, parameter Kx of the simple model is replaced by K1 of the advanced 

model. 

It follows from the analysis in section 3.3.3, that the magic formula generates velocity 
independent results. Since the friction law in both models is velocity dependent and 

predicts different friction for the same slip angle at various operating velocities, the 

objective function for the case of cornering uses values from two runs, one at 30 m/s 

and one at 60 m/s. The run at 30 m/s is used for determining mainly the value of KY 

and considers low side-slip angles, say from 0 up to 2.5 deg. The run at 60 m/s affects 

mainly the remaining optimisation parameters of vector P and uses high side-slip 

angles, say from 8 to 15 deg. The objective function for the cornering case is shown 
below, using 3 force values from the low-slip range and 3 force values from the high- 

slip range, at 30 and 60 m/s respectively: 
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Objective function for the case of cornering: 

)2 
®bc (P) 

=3 
(Fy(Mag, 

c) \a, 
) 

- Fy(Mafel) (a, )y 

=1 
(30m/s) 

(3.180) 
3 

+Z 
(Fy(Magic) (a! )- 

FY(Mde1) 
(aJ)y 

J=1 (60m/s) 

where a, E (0°, 2.5°) and ajE 
(8°, 15° 

In the case of braking, a single run at 30 m/s is used for the identification of the 

parameters in vector P. Since braking characteristics extend almost until wheel lock, 

a higher forward velocity, for example 60 m/s, would generate extremely high sliding 

velocities which initially are thought to be unreasonable for the estimation of the 

friction parameters. Of course, if experimental results exist for such high velocities 

then they can be used for the estimation of the parameters. The objective function for 

the case of braking reads: 

Objective function in the case of braking: 

10 
Obb (p) _ 

(F'x(Mag«) (k; ) 
- FX(MO(, 

c, ) 
(k, )) (3.181) 

i=1 (30m I s) 

where k; E (0,0.9) 

It should be pointed out that details on the values of the structural parameters of the 

tyre for which the Magic Formula coefficients were obtained were not available 

separately. Therefore, the comparison procedure and the subsequent analysis of the 

results are limited to some general observations. For example, while it has been 

possible to accurately estimate the lateral stiffness of the tyre by demanding the 

condition of coincidence of the linear parts of the cornering curves, it is impossible to 

estimate the parameters, such as the radial stiffness and damping factors, using the 

Magic Formula results. Similarly, there is no way of incorporating the effect of 

changes in air-pressure into the Magic Formula model; hence no comparisons can be 
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made with the predictions by the advanced model, which does offer these 

opportunities. The parameters for the simple and advanced models are given in tables 

3.4 and 3.5 respectively. A wide range of test conditions were simulated and the 

results are critically assessed. The behaviours of the tyre models are explained based 

on their inherent characteristics and the resulting modelling limitations. 

To aid the interpretation of the simulation results, a key to the colours used in the 

graphs is given in table 3.6. 

Table 3.6 

Key to colours and line-types used in the graphs 

1. Force and torque characteristic curves 

Line type Colour 

Magic formula Solid Blue 

Simple model Solid Green 

Advanced model Solid Red 

2. Distributions along the contact 

Line type Colour 

Longitudinal force Solid Green 

Lateral force Solid Red 

Total shear force Solid Blue 

Normal force Solid Black 

Longitudinal velocity Dash-dotted Magenta 

Lateral velocity Solid Magenta 

Note: In cases where only lateral or longitudinal shear forces occur, the solid blue line 

of the total shear force obscures the relevant red or green lines. 

3.3.6.1 Pure Cornering Manoeuvres 

Simulations are carried out initially for the case of pure cornering under steady-state 

conditions. The curves generated by the two models are compared with the Magic 

Formula results for a combination of vertical loads and rolling velocities. Figure 3.33 

shows the lateral force as predicted by the Magic Formula and the two physical 

models for a reference load of 4 KN, and a relatively low velocity of 5 m/s. The first 
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observation is a significant reduction in cornering force predicted by the Magic 

Formula for large values of side-slip. This is the result of an exceptionally large shape 

factor (see table 3.3 and equation (3.71)), which is rarely the case in cornering force 

characteristic curves. The behaviour of the two physical models is determined by the 

sideways sliding velocity, which is kept low in order to maintain equivalent slip 

angles, taking into account the low value of forward velocity. This means that 

equation (3.128) does not predict a significant reduction in the coefficient of kinetic 

friction and, therefore, the side force cannot exhibit a similar reduction as the one 

predicted by the Magic Formula. Any attempt to further increase Py, ed or qy in order 

to improve agreement between the curves would result in bad quality curves for 

higher running velocities. In particular, higher values of qy might lead to abrupt 

changes in the slope of the cornering curve, especially at higher velocities. 

The self-aligning torque characteristics, generated by the three models, are plotted in 

figure 3.34. It is important to emphasise the fact that none of the parameters of the 

physical models are manipulated in order to improve coincidence of the moment 

curves, as the parameter identification procedure relies only on the cornering 

characteristics. Besides a generally acceptable agreement of the results, it is 

noteworthy that both physical models predict a self-aligning moment converging to 

zero for large values of side-slip. Taking into consideration the completely 

symmetrical parabolic pressure distribution used in the simple physical model, this 

prediction is completely justified. On the other hand, low rolling velocity reduces 

hysteresis phenomena and results in an almost symmetrical trapezoidal pressure 

distribution, as predicted by the advanced model. Consequently, when sliding occurs 

throughout the length of the contact patch, the more or less symmetrical distribution of 

the lateral force leads to a diminished self- aligning moment. 

Figures 3.35 and 3.36 illustrate the force distributions along the contact patch, as 

predicted by the advanced physical model. It is shown that for such a low rolling 

velocity, the normal pressure distribution is approximately symmetrical with respect 
to the projection of the centre of the wheel onto the road surface. Figure 3.35 

corresponds to a small slip angle, showing the linear build-up of the lateral force as a 

result of lateral deformation, starting from the leading edge of the contact patch, on 
the right-hand side of the graph. When the adhesion limit is reached, the deformation 
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of the tyre segment (or the infinitesimal mass) is governed mainly by the interaction 

between elastic forces and kinetic friction. The contribution of damping remains 
insignificant, considering the low rolling velocity of the tyre. Figure 3.36 depicts tyre 

sliding throughout the length of the contact patch. The previous triangular, non- 

symmetrical lateral force has now turned into a symmetrical smoothened trapezoidal 

shape. Again, because of a relatively low sliding velocity, the coefficient of kinetic 

friction attains a value near the coefficient of static friction, the latter being greater 

than unity. Thus, the trapezoidal lateral force contains the normal force distribution 

throughout the contact patch. 

Figures 3.37 and 3.38 show the cornering force and the self-aligning moment 

characteristics for a practically more interesting forward velocity of 30 m/s. By 

observing figure 3.37, it becomes evident that the exponentially decreasing coefficient 

of friction has now come into play. Still, the physical models do not seem to be 

capable of producing such a prominent peak as the one predicted by the Magic 

Formula. In figure 3.38, the simple model has generated a self-aligning moment 

characteristic similar to the one shown in figure 3.34. Obviously, the increase in 

rolling velocity does not alter the symmetry of the normal pressure distribution, which 
in turn affects the self-aligning moment. On the contrary, the absolute value of the 

peak moment, generated by the advanced model, shows a significant reduction, whilst 

at large values of side-slip the moment changes sign, showing much better agreement 

with the moment predicted by the Magic Formula. 

The force distribution along the contact patch of the advanced tyre model is shown in 

figure 3.39 for a low value of side-slip. The increase in rolling velocity promotes 
hysteresis and has led to the generation of a peak in the normal pressure distribution 

towards the leading edge of the contact patch. At low slip angles the triangular shape 

of the lateral force distribution is maintained and results in the generation of a 

negative self-aligning torque. At this point an interesting observation can be made. 
Referring to figure 3.32, a slight increase in the contact angle S. is predicted for a 

given vertical load, as the linear velocity of rolling increases. In addition, a 
comparison between figures 3.35 and 3.39 shows a slight reduction in the total length 

of the contact patch with an increase in the rolling velocity. Essentially, combination 
of the two leads to a shift of the contact patch towards the front of the tyre. The 
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triangular lateral force distribution corresponds to relatively small slip angles. This is 

responsible for the disposition of the peak self-aligning torque towards the leading 

edge of the contact, and thus its torque generating potential is reduced. The normal 

pressure distribution as predicted by the advanced model directly influences the 

generation of self-aligning torque, and explains the physical mechanism behind the 

reduction of the peak aligning torque observed in figure 3.38. A further comparison 

between figures 3.35 and 3.39 reveals the influence of the radial and tangential 

damping elements. In figure 3.35 the longitudinal force intensity at the very beginning 

of the contact is practically equal to zero, while figure 3.39 and some subsequent 

figures demonstrate a non-zero longitudinal force. This is attributed to the non-zero 

rates of deflection in the radial and tangential direction as soon as a representative 

tread element enters the contact. The effect is intensified as the rolling velocity 

increases, hence the difference between figure 3.35 and 3.39. Figure 3.40 depicts the 

force distribution along the contact patch for a tyre running at a large slip angle. The 

shape of the lateral force distribution agrees with the shape of the normal pressure 

distribution. Because of sliding at a higher velocity, the coefficient of kinetic friction 

has reduced enough so that the lateral force distribution is contained within the normal 

force. Figures 3.41 and 3.42 show the equivalent force distributions, predicted by the 

simple physical model for low and high slip angles. The parabola representing the 

normal force distribution remains completely symmetrical throughout the velocity 

range, resulting in an almost velocity independent self-aligning torque. 

Figures 3.43 and 3.44 show results obtained at an even higher rolling velocity of 60 

m/s. In figure 3.43, the tendency of the lateral force to reduce even further at larger 

slip angles determines the downward slope of the cornering curves at the saturated 

region of tyre operation. Similarly, in figure 3.44, the absolute value of the maximum 

self-aligning moment, predicted by the advanced model, shows a further decrease, 

while at large slip angles the self-aligning moment obtains a slightly higher value than 

that predicted by the Magic Formula. 

In figures 3.45 and 3.46 the trapezoidal shape of the normal pressure distribution has 
deteriorated completely due to intensive hysteresis phenomena. The length of the 

contact patch has reduced further, and moved towards the front of the tyre. This, in 

combination with the pronounced peak of the normal force near the leading edge, 

147 



Chapter 3: Steady-State Tyre Analysis 

explains the aforementioned alterations observed in the self-aligning torque 

characteristics predicted by the advanced model. 

Pure cornering tests continue with an investigation of the effect of different normal 

loads at a reference forward velocity of 30 m/s. Figures 3.47 and 3.48 show the force 

and moment results for a vertical load of 2KN. The peak lateral force predicted by 

both physical models has reduced significantly compared to the peak generated by the 

Magic Formula. This behaviour can be explained by taking into consideration the fact 

that the peak coefficient of friction is not load dependent for the two physical models. 

On the contrary, as indicated by the relation (3.73), the peak coefficient of friction 

used in the Magic Formula reduces as normal load increases. A simple solution would 

be to use the relation (3.73) for the calculation of the peak coefficient of friction for 

the physical models. Alternatively, the parameters involved in the relation (3.16) 

could be obtained by appropriate experiments. 

The force distribution along the contact patch, as predicted by the advanced model for 

a normal load of 2 KN, is given in figures 3.49 and 3.50 for low and high values of 

side-slip respectively. It is shown that under the application of a reduced normal load, 

the radial deformation near the centre of the contact is not sufficient in order to 

generate a trapezoidal pressure distribution. For this specific combination of normal 

load and rolling velocity, a trapezoidal distribution is just about to form, yet the shape 

of the distribution still resembles more to a slightly shifted parabola. 

The lack of a load-dependent coefficient of friction is also evident in figure 3.51, 

showing the lateral force characteristics for an increased normal load of 6 KN. The 

forces generated by the physical models seem to have increased almost proportionally 

to the normal load, exceeding significantly the forces predicted by the Magic Formula. 

In figure 3.52, it is shown that under heavily loaded conditions, the parabolic pressure 

distribution leads to large deviations in the calculation of self-aligning torque, 

especially with large slip angles, where the Magic Formula and advanced physical 

model predict a rise of the torque well above zero, as opposed to the zero torque 

calculated by the simple model. Figures 3.53 and 3.54 deal with the force distribution 

under the application of a high vertical load, and show clearly the effect of the non- 
linear radial stiffness in the predictions of the advanced physical model. 
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Figure 3.33 Cornering force for 4KN load and 5 m/s forward velocity 
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Figure 3.34 Self-aligning moment for 4KN load and 5 m/s forward velocity 
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Force and velocity distributions along the contact patch (Advanced model) 
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Figure 3.35 Force distribution along the contact patch at 0.46° slip angle 
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Figure 3.36 Force distribution along the contact patch at 17.75° slip angle (saturated area of 
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Force and velocity distributions along the contact patch (Advanced model) 
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Figure 3.39 Force distribution along the contact patch at 0.46° slip angle 
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operation) (see the same results in appendix B, where different scaling is used) 
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Figure 3.41 Simple model: Force distribution along the contact patch at 0.46° slip angle 
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Figure 3.42 Simple model: Force distribution along the contact patch at 17.75° slip angle (see the 

same results in appendix B, where different scaling is used) 
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Figure 3.43 Cornering force for 4KN load and 60 m/s forward velocity 
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Figure 3.44 Self-aligning moment for 4KN load and 60 m/s forward velocity 
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Figure 3.46 Force distribution along the contact patch at 17.75° slip angle (saturated area of 

operation) (see the same results in appendix B, where different scaling is used) 
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Figure 3.47 Cornering force for 2KN load and 30 m/s forward velocity 
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Figure 3.48 Self-aligning moment for 2KN load and 30 m/s forward velocity 
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Figure 3.49 Force distribution along the contact patch at 0.46° slip angle 
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Figure 3.50 Force distribution along the contact patch at 17.75° slip angle (saturated area of 

operation) (see the same results in appendix B, where different scaling is used) 
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Figure 3.51 Cornering force for 6KN load and 30 m/s forward velocity 
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Figure 3.52 Self-aligning moment for 6KN load and 30 m/s forward velocity 
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Figure 3.53 Force distribution along the contact patch at 0.46° slip angle 
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Figure 3.54 Force distribution along the contact patch at 17.75° slip angle (saturated area of 

operation) (see the same results in appendix B, where different scaling is used) 
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3.3.6.2 Cornering Manoeuvres with Additional Camber 

Figure 3.55 shows the shift in the lateral force characteristic, caused by the existence 

of a camber angle. Both the advanced and simple models use the concept presented in 

section 3.3.4.6 for the simulation of the camber effect. At zero side-slip, the camber 

angle results in a non-zero lateral deformation of the tread elements, thus generating a 

significant lateral force. At higher slip angles the maximum lateral force is mainly 

governed by the frictional potential of the contact and the camber effect deteriorates. 

The shift in the lateral force predicted by the physical models shows good agreement 

with that predicted by the magic formula. Nevertheless, none of the physical models 
includes provision for the reduction in the cornering stiffness, as camber angle 

increases (see figure 3.21). Figure 3.56 shows the parabolic shape of the lateral force 

distribution as predicted by the advanced physical model for a cambered tyre running 

at zero side-slip. 

Lateral force characteristic curves 

4000 

3500 

2 , 3000 

CD U 

0 2500 
U) 
J 2000 

1500 

1000 

Forward velocity: 30 m/s 
Vertical force: 4 KN 
Camber angle: 3 deg 

- Magic formula 
- Simple model 
- Advanced model 

0.05 0.1 0.15 0.2 0.25 0.3 
Lateral slip (VlatNforward) 

Figure 3.55 The effect of camber angle in lateral force calculation 
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Figure 3.56 The almost parabolic lateral force distribution at zero slip-angle caused by a3 deg 
camber angle 

3.3.6.3 Rolling Resistance Calculation 

The rolling resistance is calculated by the advanced physical model as a sub-product 

of the calculation of the normal force distribution along the contact patch. At each 

time-step, the normal force is multiplied by the corresponding distance, on x-axis, 
from the bristle base to the origin of the SAE frame of reference. The Rolling 

resistance moment is thus calculated and the rolling resistance force is found by 

dividing the rolling resistance moment by R cos 9(, (see figure 3.29). Figure 3.57 

shows the coefficient of rolling resistance (given as the ratio between rolling 

resistance force and vertical load) plotted against rolling speed for three cases of 
increasing vertical load. The values of the coefficient show good agreement with the 

experimental results shown in figure 3.18. This indicates that the tangential and radial 
Kelvin elements are capable of simulating the hysteresis losses and the resulting shift 

of the normal pressure distribution towards the front of the contact patch. 
Nevertheless, all three curves shown in figure 3.57 are approximately linear, whereas 

experimental results as seen in figure 3.18 indicate that the rolling resistance as a 
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function of speed might be better represented by a low-order polynomial. This non- 

linearity is not currently supported by the simple Kelvin element with linear damping 

used for the representation of the radial and tangential compliance of the tyre. 
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Figure 3.57 The coefficient of rolling resistance as calculated by the advanced physical model 

3.3.6.4 Pure Braking Manoeuvres 

The braking response of the models is shown in figures 3.58 through 3.60 for 

gradually increasing vertical loads of 2,4 and 6 KN. In all cases the forward velocity 

maintains the value of 30 m/s, while the rotational velocity reduces so as to generate a 

resulting longitudinal slip gradually increasing from zero up to a maximum of 0.9 

(absolute value). All three graphs show good agreement between the two physical 

models and the Magic Formula. The brake force characteristics serve as a benchmark 

for the assumption of an exponentially decreasing coefficient of kinetic friction. 

Unlike the cornering curves, the braking curves extend to higher sliding velocities, 

which, in this case reach the value of 27 m/s at 0.9 longitudinal slip. The smoothness 

of the curves throughout the slip range and the good coincidence with the forces 

predicted by the Magic Formula indicate that the velocity dependent coefficient of 

0.01 
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kinetic friction as described by equations 3.127 and 3.128 can be employed 

successfully in the tyre force generation mechanism. 
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Figure 3.58 Brake force for 2KN load and 30 m/s forward velocity 
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Figure 3.59 Brake force for 4KN load and 30 m/s forward velocity 
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Figure 3.60 Brake force for 6KN load and 30 m/s forward velocity 

164 



Chapter 3: Steady-State Tyre Anal\ sis 

Force and velocity distributions along the contact patch (Advanced model) 
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Figure 3.61 Force distribution along the contact patch at 3% longitudinal slip 

Figures 3.61 and 3.62 show the distribution of forces along the contact patch of the 

advanced physical model for low and high values of longitudinal slip, respectively. In 

figure 3.61, the longitudinal deformation of the bristles builds up gradually, until the 

frictional limit is reached. At this point, the bristle tip starts sliding and the 

longitudinal velocity builds up from zero (magenta dash-dotted line). The lateral force 

distribution (solid red line) remains equal to zero throughout the contact, as there is no 

lateral slip. In general, the graphs are similar to those showing the force distribution in 

the case of cornering. Probably the main difference lies on the fact that during 

braking, for a constant forward velocity, the rolling velocity of the tyre reduces 

significantly. As a result, at high slip ratios, the normal pressure distribution becomes 

more or less symmetrical, as demonstrated in figure 3.62. Apparently, due to the 

mechanism of brake force generation, the change in the shape of the normal pressure 
distribution should not affect the values of braking force, as it affects for example the 

levels of self-aligning torque. The equivalent force distributions for the simple tyre 

model are given in figures 3.63 and 3.64, for low and high slip ratios respectively. 
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Figure 3.62 Force distribution along the contact patch at 90% longitudinal slip (saturated area of 

operation) 
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Figure 3.63 Force distribution along the contact patch at 3% longitudinal slip 
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Chapter 3: Steady-State Tyre Analysis 

3.3.6.5 Combined Slip Operating Conditions 

The effect of moderate braking on the cornering properties of tyres is depicted in 

figures 3.68 and 3.66. Both physical models are run for gradually increasing side-slip 

values in combination with 6.7% longitudinal slip. The side-force and self aligning 

moment characteristics are plotted against the curves predicted by the magic formula 

for pure cornering. Clearly, compared to the case of pure cornering shown in figure 

3.37, the lateral force shows a reduction in its maximum as well as its asymptotic 

values. Also, the shape of the side-force curves has changed significantly, with an 

overall reduction in their initial slope (cornering coefficient) and a less pronounced 

peak. In figure 3.66 the self aligning moment predicted by the physical models has 

reduced significantly, this being the result of two mechanisms, namely the apparent 

reduction of the lateral force and the displacement of the centre line of the tyre due to 

cornering, which leads to an offset application of the longitudinal friction forces. 

The shapes of the force distributions along the contact patch for the advanced and 

simple models under combined cornering-braking are given in figures 3.67 - 3.70. As 

expected, both models predict that under low lateral slip, the longitudinal force 

distribution dominates the contact patch. In figure 3.67 both the lateral force and the 

longitudinal force build up independently in the adhesion region of the contact, based 

on the lateral and longitudinal slip values. In the adhesion region the build-up of the 

longitudinal force does not affect the build-up of the lateral force and vice-versa. 

Sliding starts when the combination of lateral and longitudinal force exceeds the 

friction limit. This point always occurs earlier along the contact, compared to pure 

side-slip or longitudinal-slip conditions for the same slip values. In this case, sliding 

starts approximately at the middle of the contact patch. The bristle tip slides with a 

velocity resulting from the vectorial addition of the longitudinal and lateral sliding 

velocities. In the sliding region, the bristle forces do not depend on the slip values 

alone, but on the relative magnitude of the two sliding velocities (lateral and 

longitudinal). Figure 3.68 depicts the force distribution at high lateral slip. Although 

the longitudinal slip value remains the same, the longitudinal force (green line) is 

much lower than that shown in figure 3.67. Now, the force distribution is mainly 

governed by the resultant sliding velocity. Because the lateral velocity contributes 

much more than the longitudinal, the longitudinal force corresponds to a small portion 
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of the total friction force. Similar comments apply on the force distributions generated 
by the simple models in figures 3.69 and 3.70. As a conclusion, it is observed that the 

co-existence of lateral and longitudinal slip does not affect the force generating 

mechanism in the adhesion region of the contact. When sliding occurs, the effect 

depends entirely on the relative magnitudes of the sliding velocities in the lateral and 

longitudinal directions. 
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Figure 3.65 Lateral force for combined cornering and 6.7% longitudinal slip (braking) 
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Self aligning moment characteristic curves for combined cornering-braking 
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Figure 3.66 Self-aligning moment for combined cornering and 6.7% longitudinal slip (braking) 
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Figure 3.67 Force distribution along the contact patch for combined lateral - longitudinal slip 

(0.46° slip angle) 
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Force and velocity distributions along the contact patch (Advanced model) 
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Figure 3.68 Force distribution along the contact patch for combined lateral - longitudinal slip 

(17.75° slip angle) 
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Figure 3.69 Force distribution along the contact patch for combined lateral - longitudinal slip 
(0.46° slip angle) 
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Figure 3.70 Force distribution along the contact patch for combined lateral - longitudinal slip 

(17.75° slip angle) 

The effect of hard braking on the cornering behaviour of a tyre is depicted in figures 

3.71 and 3.72. At 16.7% longitudinal slip, the frictional potential of the contact patch 
is exploited mainly by the braking force with the lateral component playing a more 

significant role only towards the right end of the diagrams, at higher values of side- 

slip. 

The effect of moderate cornering on the steady-state braking behaviour of tyres is 

illustrated in figure 3.73. Immediately, a slight drop of the peak value of the braking 

force is noticeable, compared to the pure braking graph given in figure 3.59. Under 

low lateral slip, this effect is limited to the left-hand side of the graph, which 

corresponds to low brake-slip values. As the longitudinal sliding velocity increases, 

equations (3.125) and (3.126) predict the deterioration of the influence of side-slip on 
the asymptotic value of the brake force. 
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A more substantial reduction in the brake-force is shown in figure 3.74, where the slip 

angle has increased to 5.7 deg. Both physical models predict a significant change in 

the shape of the brake-force characteristics, with reductions observed in the peak 

values as well as the slope of the curves. Still, at high longitudinal slip, the influence 

of cornering deteriorates again, as dictated by equations (3.125) and (3.126). As a 

general rule, one may observe that due to the fact that the braking characteristics 

extend practically to large slip values (near wheel lock), the longitudinal sliding 

velocity is, in the majority of cases, significantly higher than the lateral sliding 

velocity. Consequently, the frictional potential of the contact patch is mainly used by 

the longitudinal tyre forces. 

The force distributions as calculated by the advanced physical model for the case of 

combined braking-cornering are given in figures 3.75 and 3.76 for low and high 

longitudinal slip, respectively. The situation is similar to that depicted in figures 3.67 

and 3.68, with the corresponding comments being applicable here as well. 
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Figure 3.71 Lateral force for combined cornering and 16.7% longitudinal slip 

(braking) 
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Figure 3.73 Longitudinal force for combined braking and 1.9 deg lateral slip 
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Figure 3.75 Force distribution along the contact patch for combined longitudinal - lateral slip 

(3% longitudinal-slip) 
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3.3.6.6 A Note on the Influence of Tread Inertia 

In figure 3.76, a wider viewing angle is deliberately used, so as to include the 

variation of the lateral and longitudinal sliding velocities (magenta lines, see table 

3.6). It is observed that the tyre segment oscillates longitudinally about the steady- 

state value of longitudinal sliding velocity (dash-dotted magenta line) and laterally 

about the steady-state value of lateral sliding velocity (solid magenta line). At first it 

should be noted that this kind of oscillation is an inherent characteristic of both 

physical models. The bristle is modelled as a Kelvin element with a mass attached to 

its free end. A kinematic excitation in the form of a sliding velocity is applied to its 

base. The mass initially demonstrates an oscillatory behaviour which decays under the 

effect of viscous damping from the damper and frictional damping due to contact with 

the ground. In figure 3.68 the longitudinal slip ratio is 0.9 and the forward velocity is 

30 m/s. Thus, a sliding velocity V. =27 m/s is applied on the bristle base in the 

longitudinal direction. It is clear from figure 3.68 that the longitudinal velocity of the 

mass at the free end of the bristle oscillates about the steady-state value of the sliding 

velocity V.. The frequency of the oscillation is mainly governed by the stiffness of 

the spring and the mass attached to the free end of the bristle, with a small influence 

from the damping. If, for the sake of simplicity, the effect of damping is neglected, the 

natural frequency of the oscillation is equal to (1/2; t Kx /m 
. By changing the value 

of the inertia, the frequency is altered, yet the mass oscillates about the same value of 

sliding velocity V=27 m/s, until the oscillation is dampened out completely, in 

which case the mass slides again with velocity V=27 m/s. It can be seen that the 

incorporation of a mass at the free end of the bristle leads to an explicitly calculated 
transition velocity, that is the velocity from the point where sliding starts, until the 

point where the steady-state sliding velocity is reached. However, it should be noted 
that the oscillatory behaviour of the bristle is an artefact. In a real tyre, the tread is 

continuous, i. e. the bristles are connected to each-other and the oscillation of one 
individual bristle is not permitted. If any oscillation exists in the tread of a real tyre, it 

should be related to a specific mode of vibration of the whole tread structure and not 
to the oscillation of a single bristle. 
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If the mass at the end of the bristle reduces to zero, a sole Kelvin element remains to 

describe the contact. By considering equation (3.4) in section 3.2.3.1., it becomes 

apparent that a Kelvin element is adequate to generate a rate of deformation. For 

example, in figure 3.4 the solution of equation (3.4) is given in the form of strain 

versus time for the application of a constant stress (creep test). The slope of the strain 

curve in figure 3.4 yields the rate of deformation. Assuming that the constant stress is 

equivalent to a constant friction force, the slope of the strain curve represents the rate 

of deformation of a sliding bristle. The transition velocity at the free end of the bristle 

would then be equal to the velocity of the bristle base (excitation), added to the rate of 

deformation (slope of strain). Clearly, for a constant friction, the rate of deformation 

quickly reaches zero (see figure 3.4) and the sliding velocity of the bristle tip at this 

point is equal to the velocity of the bristle base. Also, it follows from the analysis in 

section 3.2.3.1. that mass-less viscoelastic elements such as the Kelvin element 

describe the response of rubber to step and periodic excitations relatively well. The 

argument is now clear: probably the best way of simulating the situation along the 

contact is a mass-less Kelvin element. In this case, a first order differential equation 

needs to be solved along the contact patch (as opposed to the second order differential 

equation in the case of an element with inertia). The transition velocity can still be 

calculated explicitly and it is expected to be close to the actual behaviour of rubber. 

Nevertheless, there is a fundamental drawback in this approach: A Kelvin element is 

not capable of generating stick-slip friction. As soon as the tip reaches its steady-state 

sliding velocity, it cannot decelerate in order to re-enter the stick phase. This hardly 

affects a steady-state model but, as will be discussed thoroughly in the next chapter, it 

might be important for the generation of transient friction. The steady-state models 

presented in this chapter were developed almost in parallel with the transient models 

presented in chapter 4 and the inertia of the tread was retained. In reality, the exact 

value of the inertia is not very important, as the bristle tip will oscillate in all cases 

until it reaches the steady-state sliding velocity. At this point a comment should be 

made regarding the numerical steady-state models presented by Sakai [48] and Sharp 

and El-Nashar [56]. These models neglect both the effects of damping and inertia and 
the bristle deflection is calculated taking into account the bristle's stiffness and the 
friction force. As already discussed in section 2.2.2.2. the transition velocity cannot be 

determined explicitly and some approximate techniques are implemented for its 

estimation. In both cases, it turns out that the steady-state sliding velocity is reached 

178 



Chapter 3: Steady-State Tyre Analysis 

quickly in a way that resembles more or less the behaviour of a mass-less Kelvin 

element. Therefore, it may be concluded that the transition velocity predicted by these 

models is not far from reality. Also, the fact that the tread inertia is neglected is 

justified if one considers that even at high excitation frequencies where inertia would 

typically play an important role, a simple mass-less viscoelastic element is capable of 

generating the response of rubber. 

3.4 General Conclusions 

The steady state behaviour of the pneumatic tyre under a variety of operating 

conditions has been discussed thoroughly. The important aspects of rubber 

viscoelasticity and friction have been incorporated in the study to some extent. The 

main contribution of the chapter has been the development of two physical tyre 

models which require numerical solution. Based on these models, the tyre force 

generating mechanism has been discussed and the influence of certain parameters is 

assessed. 

The first, simple physical model assumes a parabolic pressure distribution along the 

contact patch. It was found that while this simplification hardly affects the generation 

of tyre forces, it largely influences the generation of the self-aligning torque. The 

completely symmetrical normal pressure distribution dictates an equally symmetrical 

shape for the lateral force distribution along the contact patch at large slip-angles i. e. 

when the lateral force is governed only by the sliding friction which in turn depends 

on the normal pressure. Under these conditions, the torque about the z axis of the SAE 

frame of reference is equal to zero. As a result, the self-aligning moment predicted by 

the simple tyre model always converges to zero at high slip angles. This does not 
constitute an experimental fact, as demonstrated for example in [41]. It was shown 
that the advanced version of the physical model predicted a more realistic self- 

aligning moment by employing a new method for the on-line calculation of the normal 

pressure distribution along the contact. The method is based on a combination of 

radial, tangential and vertical viscoelastic Kelvin elements for the estimation of the 
deformation and rate of deformation of the tyre along the contact. The stiffness of the 

radial Kelvin element was made non-linear, so as to saturate under large deflections 

and thus simulate the effect of air-pressure inside the tyre. It was demonstrated that 
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this modelling approach is capable of generating the approximately trapezoidal normal 

pressure distribution observed experimentally. In addition, the normal pressure was 

shown to shift towards the front part of the contact with increasing rolling velocity. 

The direct relation between the amount of energy dissipated during rolling and the 

shift in the normal pressure distribution was established and related to the generation 

of rolling resistance force and moment. The advanced physical model was used for the 

estimation of the rolling resistance as a function of rolling velocity and the results 

were in good agreement with experimental measurements in terms of the values of the 

rolling resistance force and the general trend of the curves. Nevertheless, the shape of 

the experimental curves indicates that the use of a non-linear damper in the radial 
Kelvin element would yield more realistic results. While the rolling resistance itself is 

not a primary output from the advanced model, its successful estimation indicates that 

the shape of the normal pressure distribution and its influence on the self aligning 

moment are both predicted successfully. 

The velocity dependent anisotropic friction law implemented in both physical models 

seems to yield reasonable results. The anisotropy in both the static and kinetic friction 

and the anisotropic stiffness of the bristles in the lateral and longitudinal directions 

form a solid foundation for the simulation of combined slip situations, without the 

need for use of weighing functions and normalisation, as is the case with some other 

models [6], [41], [58]. Also, camber and turn-slip are accounted for in a simple yet 
fundamental manner and the simulation results show good agreement with the results 
by the Magic Formula. However, there is no provision in the models for the prediction 

of the drop in the cornering stiffness, caused by the existence of a camber angle. Also, 

the fact that both models lack the effect of tyre width results in a zero self-aligning 

moment when camber and/or turn-slip are present. 

Finally, following the extensive discussion in section 3.3.6.6, it appears that the inertia 

of the tread is not a crucial characteristic of the tyre models. The behaviour of a 

viscoelastic bristle with and without inertia was discussed and the influence of the two 

alternatives in the transition velocity was determined. Based on this analysis it may be 

concluded that any reasonable transition velocity may be used and that, in general, the 

omission of the damping and inertia terms is justified in steady-state models. 
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Chapter 4: Transient Tyre Analysis 

4.1 Introduction 

Steady-state handling manoeuvres can only provide a limited perception of the overall 

handling qualities of a vehicle. When a vehicle is subjected to rapidly changing 

driving commands, the interactions of vehicle inertia with the stiffness and damping 

properties of the suspension cause phase delays in the handling responses. These 

delays are of similar, if not of more importance to the steady-state handling responses 

of the vehicle, influencing driver confidence about the levels of active safety provided 

by the vehicle. For example, when a vehicle is cornering under steady state conditions, 

not many things can be said about its behaviour. The driver may only sense the total 

lateral acceleration and to a certain extent assess whether the vehicle is operating near 

the limit of the force generating capabilities of the tyres. Still, it is not known how 

smoothly the vehicle would respond to an abrupt steering manoeuvre or an emergency 

braking. The pneumatic tyre plays a major role in these situations. From the outset one 

would be correct to surmise that its dynamic properties such as stiffness, damping and 

inertia would influence the transient response of the tyre, and in turn alter the dynamic 

response of the vehicle as a whole. What is not immediately evident is the effect of 

rolling velocity on tyre transient dynamics. What distinguishes the pneumatic tyre 

from a large number of dynamic structures is the existence of a periodically rotating 

viscoelastic contact of significant inertia. This fact fundamentally alters the 

formulation of the differential equations that describe the deformation of the tyre in 

space and time and introduces unique - to tyre mechanics - concepts, such as the 

relaxation length. Following from the analysis and discussion in the previous chapter, 

steady-state models prove inadequate for the description of such situations. A more 

generic approach is required, which would take into account the findings from the 

steady-state analysis, and additionally employ new concepts and methods for the 

successful representation of transient tyre behaviour. 

181 



Chapter 4: Transient Tyre Analysis 

4.2 General Considerations 

4.2.1 The Relaxation Length Concept 

An introduction to the transient behaviour of tyres is attempted by presenting the well- 

known relaxation length concept. The relaxation length serves as a first order, 

kinematic approach for the calculation of the delayed response of the tyre subjected to 

relatively low-frequency excitations. Initially this concept was employed for the 

prediction of side-force response to a transient increase in the slip angle. Later it was 

realized that the same principle may be used for the description of brake force 

response to transient longitudinal slip. Although simple, the relaxation length 

approach gives invaluable insight into the transient behaviour of tyres. More 

importantly, it is connected to some basic physical properties of the tyre, providing a 

simple measure of the quality of its transient response. Complex tyre models, suitable 

for use in a higher frequency range, may benefit from these connections, employing 

similar or more elaborate definitions of the relaxation length, as a measure of tyre 

transient characteristics. 

4.2.1.1 Lateral Relaxation Length 

Figure 4.1 depicts the neighbourhood of the contact patch of a free-rolling tyre under 

the application of a lateral force. A hypothetical point, Po, is assumed to lie on the 

longitudinal centre of the contact patch. The position of point Po with respect to the 

centre-plane of the wheel is laterally displaced as a result of lateral slip. Another point, 

P, lies on the wheel centre-plane at a longitudinal distance, ay, in front of point Po. 

The position of the hypothetical point P is assumed to remain unaltered in the SAE 

frame of reference. Furthermore, it is assumed that point Po satisfies the non-sliding 

condition, thus remains connected firmly to the ground. Because point P is attached to 

the SAE moving frame of reference, its velocity with respect to Po is u and v in the 

longitudinal and lateral directions respectively. Referring to figure 4.1, the lateral 

displacement of point Po leads to the following geometrical relation: 
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(4.1) tan a'= 
17 

6y 

Differentiation of relation (4.1) with respect to time yields: 

d 
tan a'= 

v6' -uri (4.2) 7t 
Y 

Rearranging equation (4.2) yields: 

d 
tan 

dt a'+U tan a'=v (4.3) 
Yr 

In order for equation (4.3) to be applicable both for positive and negative values of u, 

the following formulation may be used: 

d 
tan a'+ 

IuI 

-tan a'= 
V 

dt ay cry 

V 
Figure 4.1 The lateral relaxation length concept 

(4.4) 

Length o, represents the relaxation length of the tyre and a' is the transient slip 

angle. Equation (4.4) calculates the slip angle a' as a function of time, based on the 
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value of the relaxation length cy and the lateral and longitudinal velocities u(t), v(t). 

As expected, the steady-state solution of equation (4.4) reduces to: 

v tan a'= I 
(4.5) 

u 

The lateral tyre stiffness can be defined as: 

CyFY 
l 

(4.6) 1'iI 

Similarly, the cornering stiffness can be defined for small slip angles as: 

Cp = 
FYI 

(4.7) 
a 

In addition, for small slip angles and as long as point Po satisfies the non-sliding 

condition, the following relation applies: 

tan a'; tý a'= 
17 (4.8) 

cry 

Combination of relations (4.6)-(4.8) yields: 

or = 
C. 

(4.9) 
r 

The significance of relation (4.4) and the influence of the relaxation length on the 

transient behaviour of tyres can be realised by a simple example. Assuming constant 
forward velocity u and a step change in the lateral velocity v, equation (4.4) yields 
the slip angle as: 
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tan a= 
V 

l 
1-e 

u 
(4.10) 

The transient slip angle generated by relation (4.10) can be used as an input to any 

physical or empirical steady-state tyre model for the calculation of the lateral force 

generated under the aforementioned step change in the wheel's lateral velocity. 

Equation (4.10) enables a definition for the relaxation length with physical 

significance. At time t=a after the application of the step input, the slip angle will 
u 

have achieved approximately 63% of its steady-state value. Thus, the relaxation length 

can be defined as the length covered by a hypothetical point on the tyre 

circumference, in order to achieve 63% of the maximum lateral displacement under 

the application of a step rise in the lateral velocity of the wheel. For a given 

longitudinal velocity, a large relaxation length leads to a slower response, while a 

reduced relaxation length results in a faster response in terms of lateral force build-up. 

With the aid of relation (4.9), the transient response of the tyre can be related to some 

fundamental structural properties. Clearly, increasing lateral stiffness C3, causes a 

reduction in the relaxation length, thus improving the transient response of the tyre. 

Nevertheless, cornering stiffness Ca found in the numerator also depends on the 

lateral stiffness of the tyre. In particular, any increase in the lateral stiffness of the tyre 

leads to a subsequent increase in cornering stiffness. This kind of dependence does not 

allow direct predictions, based on relation (4.9), to be made. 

4.2.1.2 Longitudinal Relaxation Length 

The concept of longitudinal relaxation length is presented, based on the approach 
followed by Clover et al [40]. Referring to figure 4.2, point, Qo, is assumed to lie on 

the longitudinal centre of the contact patch. At distance a, in front of point Qo, lies a 

hypothetical point Q attached to the SAE moving frame of reference. Point Qo is 

assumed to satisfy the non-sliding criterion and is considered firmly attached to the 

ground. Consequently, point Q travels with respect to point Qo with a longitudinal 

velocity u. Assuming a braking situation, where u>M, point Qo represents a 
longitudinally displaced point of the tyre circumference. The corresponding point on 
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the undeformed contact patch lies at a longitudinal distance ý behind point Q and 

travels with velocity RS2 with respect to Q. To aid visualization of the situation, point 

Qo can be seen as the tip of a longitudinally deformed bristle, while the bristle's base 

is at distance ý behind Q. The transient longitudinal slip is defined as: 

k'_ 
6s lý 

(4.11) 
6x 

Differentiation of relation (4.11) with respect to time yields: 

d 
k, - 

(u - RS2)x - (6x - ý)u 
(4.12) 

dt ax 

Rearranging equation (4.12) gives: 

7t k'+ a k'= ua (4.13) 
xs 

The steady-state solution of (4.13) reduces to: 

k, =U_ 
RS2 

(4.14) 
u 
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Figure 4.2 The longitudinal relaxation length concept 

In a similar manner to the case of lateral slip, the longitudinal stiffness of the tyre can 
be defined as follows: 

Cx 
I6x 

_I 
(4.15) 

Furthermore, for low values of longitudinal slip the braking stiffness of the tyre can be 
defined as: 

IF,, I 
Ck (4.16) Ik'l 

The combination of (4.11), (4.15) and (4.16) yields: 

_ 

Ck 
ýx - C, 

x 
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Finally, in order for the formulation to handle both positive and negative values of u, 
the differential equation (4.13) is modified as follows: 

d 
k'+ 

Iul 
P= 

Jul - RQ sgn(u) 
-- - dt ax ax 

(4.18) 

4.3 A Tyre Model for the Investigation of Transient Friction Force 

Generation 

In the previous section the transient response of the pneumatic tyre was approached, 

using the relaxation length concept. Relaxation length serves as a simple measure of 

the rate of transient tyre force transfer from the contact patch to the wheel rim. 

Another phenomenon, which is often neglected, is the mechanism of friction 

generation within the contact patch under transient handling manoeuvres. Friction 

force generation, especially when viscoelastic materials are involved in the contact, is 

a highly dynamic situation. An in-depth approach to the problem of transient tyre 

dynamics requires some attention to be paid to the aspect of transient friction 

generation. This type of analysis should then be combined with a tyre model, capable 

of depicting the transient processes involved in the transfer of contact patch forces to 

the wheel rim. In the present section a tyre model is developed, based on the simple 

steady-state physical model described in chapter 3. Some necessary modifications 
have been carried out in order to facilitate operation of the model in transient mode. In 

this procedure the realistic simulation of friction force generation is of major 
importance. 

4.3.1 Physical Description of the Transient Friction Model 

The transient friction model is developed primarily for the investigation of friction 

force generation. It has limited application as a generic transient tyre model and is 

used mainly for the determination of the effect of rapidly changing conditions on the 

mechanism of friction force generation. The reader may refer to section 3.3.4.1 for a 
detailed description of the simple steady-state model, which serves as a platform for 
the development of the transient model. The governing differential equations (3.113- 
3.118) are shown here for ease of reference: 
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üx "C"dx=(x, -x). Kx "dx+(V, -ux)"Dx "dx- fx "dx (4.19) 

iy "C"dx=(Ys -. v)"Ky "dx+(V, -uy)"Dy "dx- fy "dx (4.20) 

so that x3 V dt (4.21) zs =V 

ys =V, y so that y, = 
p'ro"'l Vsydt (4.22) 

x= ux so that x= 1OWW usdt (4.23) 

,y=uy so that y=f ýl u ydt 
(4.24) 

In the steady state model, the motion of the infinitesimal mass is followed throughout 

the contact patch and is representative of the motion of all such elements in contact 

with the ground. Furthermore, the steady state model is run for pure braking, traction, 

cornering or combinations of the above, as shown in the general case represented in 

figure 3.25. The transient model is run for pure cornering conditions, so that V 

vanishes, and equations (4.19), (4.21) and (4.23) yield zero displacements and 

velocities in the longitudinal direction. 

Whilst Vy, is constant in the steady state model, it changes at each time step in the 

transient model. Consequently, the state of all infinitesimal masses in contact with the 

ground can no longer be obtained by following one representative mass throughout the 

contact patch. Instead, the state of a mass dm at t+ dt results from the state of the 

same mass at t. 

In order to solve the problem, the vectors of the state variables, positions and 

velocities of all infinitesimal masses (segments), which form the contact patch need to 

be defined. If the length of the contact patch is 2"a=n" dx, n number of 
infinitesimal masses are involved in the problem. At a random operating point, for 
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example at time t, each mass is characterised by its velocity and position in the oxy 

plane. At time t+ dt, every mass has moved one place backward in the contact patch, 

travelling a distance of dx = V, " dt. This sequential switching is also reflected in the 

state vectors, so that the state of the i+1 th mass at time t+ dt can be calculated by 

using the state of the i th mass at time t. In order for each mass to take exactly the 

place of the one adjacent to it, the time-step has to be constant and the number of 

masses has to be set according to the following relationship: 

2"a 
n=- V, "dt' 

with V, being fixed. 

(4.25) 

Thus, the total number of small masses (corresponding to small lengths dx) depends 

on the time-step size and the linear velocity of rolling, V,. Considering the issues 

related to numerical stability, the time step-size should be the dominating factor and 

needs to be set apriori. Nevertheless, for a given length 2. a and velocity V, ,a 

numerically effective time step can result in the generation of a small number of 

masses in contact with the ground. For example, if V, = 40 m/ sec, 2"a=0.16 m and 

dt = 0.0001 sec, then equation (4.25) yields n= 40, which means that the contact 

patch has been divided into 40 discrete parts with mass dm and length dx. Obviously, 

200 or 300 segments would give a smoother and more accurate force generation 

mechanism. The dependence of the number of elements on the rolling velocity and the 

fact that the latter needs to remain constant are the main disadvantages of the proposed 

formulation and currently limit the potential use of the model. 

The 4t` order fixed integration step size Runge-Kutta [113], [114] method is used for 

advancing the state of each infinitesimal mass from t to t+ dt. The graphical 

representation in figure 4.3 shows the integration procedure according to the previous 

analysis. 

n number of small masses on the left are linked to their states at time t. One step of 
the integration algorithm is applied to every single vector entry, using as initial 
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conditions the positions and velocities included in the state vector at time t. In this 

manner, a single step of integration is applied for n different initial conditions, as 

opposed to the steady state model, where, starting from one set of initial conditions, 

the integration is applied for n sequential steps, following a single mass dm 
, 
from the 

beginning to the end of the contact area. Meanwhile, every discretised mass element 

dm moves for a distance of dx = V, " dt 
, so that the i 01 entry replaces the i +I th entry 

and so forth. Thus, the updated states obtained by the integrator are moved one place 

towards the end of the state vector, in such a way that an empty space is created in the 

beginning of the vector, whereas at the same time the n th entry is "pushed" out of the 

vector. The empty space created in the beginning is then occupied by a new mass with 

the initial conditions 0, V,, , where Vy, is the new value of the lateral sliding velocity, 

according to an increase in the slip angle in a transient manner. Because this 

procedure is continuous, the i th entry appears on both sides of the integrator: On the 

right it appears as a result of the integration of the i -1 th state, while on the left it 

appears as an initial state for the i th entry. 
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Figure 4.3 State update scheme for the transient friction model 

n 

An unrealistic simplification adopted in most brush models (see for example 16], [42], 

[52]. [55]) is the complete separation of the bristles, representing the tyre tread- 

carcass. In a steady-state study this representation would not cause any problems. The 

properties of one representative segment can be set, so that the overall behaviour of 

the tyre agrees with the experimental steady-state results. On the contrary, under 

transient operating conditions, where the tread undergoes rapid changes and all tyre 

segments should be considered simultaneously, it is likely that the physical continuity 

of the tread could play a more important role. In order to investigate this effect, the 

bristles of the basic transient model are connected laterally to each other, using 

viscoelastic Kelvin elements. Equation (4.20) now becomes: 

1=ý1, -1-). K, -dy+(v,, -u, 
). D 

(4.26) 
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where K. 
�<<... and denote the stiffness and damping properties of the 

interconnections. 

192 



Chapter 4: Transient Tyre Analysis 

The integration procedure is similar to that described previously, only that in this 

occasion equation 4.26 uses the displacements and velocities of the adjacent bristles at 

time t, to calculate the state of the i t' bristle at time t+ dt. This is shown graphically 

in figure 4.4. At initial state (i. e. state 0), the bristles are characterised by zero initial 

conditions. V, is applied, so the first application of the Runge Kutta algorithm on 

every bristle results in state 1, as shown in the diagram. During this first application of 

the integrator, the differences (y 
- y, 1) and (u 

Y-uy, tl) 
in equation (4.26) are all zero. 

On the contrary, state 1 shows differences in the lateral displacements and velocities 

of the adjacent bristles, as a result of different frictional conditions during the first 

integration step. These differences are taken into account by equation (4.26), when the 

integrator advances from state 1 to state 2 and so on. 
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Figure 4.4 Schematic representation of the motion of interconnected bristles 

4.3.2 The Transient Friction Law 

A detailed reference to the frictional behaviour of viscoelastic materials was given in 

section 3.2.3.2. The continuous coefficient of friction variation with slip velocity, 

shown in figure 3.8, was later approximated by a stick-slip friction law, in 

combination with an exponentially decreasing coefficient of friction. In addition, 

anisotropy in the lateral and longitudinal directions of sliding was taken into account. 
In the steady state case, it is fundamental that the friction law depicts the changes in 

coefficient of friction with sliding velocity. The transition between stick and slip is 
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also important as it determines the initiation of the velocity-dependent coefficient of 
friction, based on the vertical load at a specific point, the coefficient of static friction 

and of course the forces applied on the segment under consideration. In this 

procedure, the exact details of the transition between stick and slip are not significant. 

In the transient case, it is important to depict the frictional behaviour of the surfaces in 

contact near the transition point between stick and slip. The adoption of a simple 

stick-slip law alone, such as that described by relations (3.104) and (3.105) does not 

yield representative results in the case of rubber friction. Such stick-slip laws are 
developed primarily for hard materials as demonstrated by Karnopp [112]. 

Nevertheless, if the analysis is restricted - in terms of velocity - to the neighbourhood 

of the transition point, a stick-slip law appropriate for hard materials might work well, 

when combined with a viscoelastic Kelvin element. This fact is demonstrated by 

developing a simple model of a rubber block in contact with a hard surface. 

Simulation results of the friction forces developed within the contact show good 

coincidence with results obtained experimentally in [26], by measuring the actual 
friction force between a block consisting of tyre rubber and a rough surface. The 

elementary rubber block used in the model is identical to a tyre segment as described 

in chapter 3. Furthermore, for the purpose of the analysis the simple friction law 

summarised in relations (3.104) and (3.105) is used. It is shown that, while the 

transition law is identical to the one used for the steady-state analysis, in transient 

analysis, factors such as the threshold velocity and the time-step size, play a very 
important role in the accurate prediction of the frictional behaviour of rubber. 

4.3.2.1 Experimental Results 

The experiment carried out by Braghin et al [26] is briefly described. The apparatus 
used can be considered as a flat belt-tyre testing machine in small scale. A small 
block, consisting of tread rubber is pressed against a rolling belt made of abrasive 

paper of appropriate surface roughness. The rubber block is kept steady against the 

moving belt, while the velocity of the belt is monitored accurately. Controllable 

parameters include vertical load, sliding velocity and bulk temperature of the 
specimen. The vertical load is so chosen in order to generate contact pressures in the 
range of 1-2.6 bar, the velocity varies from 0.01 to 1 m/s and the temperature can be 

set from ambient to 120°. Apart from the measurement of the friction force generated 
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in the contact patch between the paper and the specimen, the rig is capable of 

measuring the deformation of the rubber block near the contact with the paper, using 

laser transducers. This unique feature allows the monitoring of stick-slip motion in the 

neighbourhood of the contact. Figure 4.5 shows a typical stick-slip response. The 

graph corresponds to the deformation of the rubber block as measured by the laser 

transducer. Initially the block sticks to the moving belt. At this point no macroscopic 

sliding occurs, and the rubber is dragged along by the belt, increasing its deflection. 

This stage of deflection is represented by the red line in the figure. When the resisting 

elastic forces exceed a breakthrough value, corresponding to the maximum static 

friction, sliding between the specimen and the belt occurs. The deflection of the 

specimen reduces rapidly as shown by the blue line. As expected, a small residual 

deflection remains before the specimen sticks again to the belt and a new deformation 

cycle begins. It should be noted that similar stick-slip responses have been measured 

experimentally by other researchers [27], [28]. Figure 4.6 shows the dependency of 

stick-slip on vertical load and sliding velocity. It is observed that higher loads promote 

the generation of stick-slip motion, while stick-slip behaviour vanishes at higher 

sliding velocities. Figure 4.7 depicts the effect of normal load on the amplitude of the 

deformation of the rubber block during stick-slip and finally the graph in figure 4.8 

predicts an increase in stick-slip frequency with increasing sliding velocity. Also, the 

same graph indicates that lower vertical loads promote higher frequency stick-slip 

motion. In general, the frequencies of stick-slip observed, lie within the range of 30-90 

Hz. 
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Figure 4.5 Stick-Slip motion observed on a single rubber specimen (after 1261) 
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4.3.2.2 Numerical Simulation of Transient Friction 

The rubber block used for the measurements described previously is modelled as a 

viscoelastic Kelvin element attached to a lumped mass. This arrangement is shown 

graphically in figure 4.9. Unlike the experiment, the virtual rubber block is pulled at a 

constant velocity against a stationary surface. Depending on the applied forces, the 

mass may be sticking or sliding on the surface. To achieve results comparable with the 

deflection graph shown in figure 4.5, the displacement of the mass is subtracted from 
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the displacement applied on the opposite edge of the Kelvin element. Referring to 

figure 4.9 and being consistent with the formulation followed in the tyre models, the 

differential equation of motion of the rubber block becomes: 

u. C"dx=(x, -x)"K"dx+(VS -u)"D"dx- f "dx (4.27) 

z=u so that x= 
Imo`` 

udt (4.28) 

S so that xs VS dt (4.29) zs =V 

where C denotes the inertia per unit length, K and D are the stiffness and damping 

coefficients of the Kelvin element per unit length, and f is the friction force. 

Figure 4.9 A simple model of the rubber block incorporating viscoelasticity and inertia 

The properties of the rubber element are so chosen that, if the same segment were to 

be used in a tyre model, realistic results would be generated in terms of the cornering 

force. Furthermore, a set of static and kinetic friction coefficients of friction are 

assumed for implementation in equations (3.104) and (3.105). Rubber properties and 

friction coefficients are provided in table 4.1. The apparent contact pressure between 

the rubber segment and the rough surface is 0.201 MPa, so as to generate identical 

conditions to those corresponding to the 31 N vertical load case tested in [26], based 
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on the dimensions of the specimen used (please refer to [26]). In the case of the 

numerical model, the apparent contact pressure is multiplied by the width of a 

hypothetical tyre (b =0.18 m), in order to obtain the normal force per unit length. This 

is done since all other properties are given per unit length and incorporate the effect of 

the width. At the end, the virtual experiment is equivalent to pulling a stripe of rubber 

1 metre long and 0.18 metres wide, with a normal pressure equal to 0.201MPa, 

parallel to its width. Given the properties of the rubber, simulation results are 

obtained for various sliding velocities. In this procedure the effects of time-step size 

and the velocity threshold are addressed. 

Table 4.1 

Simulation Parameters for the virtual friction test 

Normal 
pressure 

K D C Pk , us 

[N/m ] [N/m ] [Ns/m ] [Kg/m] - - 
2.014e5 9e6 8e2 2 0.9 1.17 

Figure 4.10 demonstrates the stick-slip behaviour of the virtual rubber block, sliding at 

0.3 m/s. The blue line denotes the displacement of the specimen, while the green line 

represents the relative velocity of the specimen with respect to the rough surface. In 

this specific case the time-step is set to 0.1 ms and the velocity threshold for the 

transition between stick and slip is 12 mm/s. Clearly, the graph shows good qualitative 

agreement with the corresponding experimental findings shown in figure 4.5. Figures 

4.11-4.13 show the dependence of the existence of stick-slip on the time-step size for 

three progressively increasing transition thresholds. The time-steps considered are 

dt=le-4,3.3e-5 and le-5. It is observed that the smallest time-step promotes the 

generation of stick-slip motion almost throughout the full range of sliding velocities. 

Of course, this result depends largely on the properties of the rubber and the 

difference between static and kinetic coefficients of friction. Larger time-steps 

prohibit the existence of stick-slip at sliding velocities approximately higher than 0.4 

m/s. At lower sliding velocities some stick-slip is generated, which may vanish and 

reappear arbitrarily. It is noted in [26] that in a number of experimental tests, stick-slip 

appeared suddenly after a period of smooth sliding between the surfaces. In general, 

the involvement of a large number of parameters poses difficulties in the numerical, as 
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well as the experimental investigation of the stick-slip phenomenon. For the purpose 

of tyre friction simulation, the largest time-step is chosen (1 e-4 s), in conj unction with 

a threshold equal to 1.2e-2 m/s. Referring to figure 4.12, this combination yields some 

stick-slip at velocities up to 0.35 m/s, for a normal pressure of 2.014e5 N/m2. Having 

selected the time-step and the velocity threshold, the effect of normal pressure is 

assessed with the aid of figures 4.14-4.16. Figure 4.14 shows the velocity and 

displacement of a specimen for a sliding velocity of 0.8 m/s and the usual normal 

pressure of 2.014e5 N/m2. It is seen that only one full stick-slip cycle is achieved (the 

velocity of the lumped mass reduces to zero only once after the initiation of sliding). 

No further stick-slip is observed and both velocity and displacement converge quickly 

to the steady-state values. As the normal pressure increases per 20% and 40% in 

figures 4.15 and 4.16 respectively, the number of full stick-slip cycles increases. This 

result is in agreement with experimental observations (see figure 4.6) which indicate 

that higher loads promote stick-slip. 

10 .3 Stick-slip motion of rubber specimen 
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Figure 4.10 Stick-slip behaviour of the rubber block sliding at 0.3 m/s, subject to 2.014e5 N/m^2 
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Figure 4.14 A single stick-slip cycle, as observed at a relatively high sliding velocity 
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Figure 4.16 The tendency towards stick-slip increases, as the normal pressure increases up to 
40% compared to figure 4.14 (normal pressure=2.82e5 N/m^2, all other parameters remain the 

same) 

203 



Chapter 4: Transient Tyre Analysis 

4.3.3. Full-tyre Transient Friction Simulations 

The implications of the stick-slip friction law in tyre transient behaviour are 

investigated by simulating the response of a tyre to an abrupt cornering manoeuvre. 

The wheel is assumed to be moving forward with a constant velocity of lOm/sec, 

whilst an increasing lateral velocity is imposed on the wheel rim. The result is a 

transient increase in lateral slip at a constant rate of 30.96°/s. Practically this 

manoeuvre is approximately equivalent to the transient increase in slip angle of the 

rear tyres of a front wheel driven car, as a result of over-steering behaviour, when the 

driver ceases upon acceleration mid-way through a tight corner. In this case there is a 

weight transfer from the rear to the front of the vehicle due to engine braking. Because 

of the weight transfer, the force generated by the rear tyres is reduced and the yaw rate 

increases resulting in a rapidly increasing slip angle at the rear tyres. The specific test 

case could be seen as a virtual transient test using a typical drum or flat-belt machine 

and is preferred because it enforces tyre operation well beyond the limits of adhesion. 

The full set of simulation parameters is given in table 4.2. 

Table 4.2 

Simulation Parameters for the transient friction tyre model 

a C R b FZ Ky Kmt 
er 

Dy Dint 
er , uk Jul 

[m] [kg/m] [m] [m] [N] L1`1/m ] [N/m ] [Ns/m ] [Ns/m ] - - 
0.065 2 0.29 0.18 4150 9e6 3.6e6 8e2 3.2e2 0.9 1.17 

Time-step= lE-4 sec, Velocity Transition Threshold=0.012 m/sec 

In figure 4.17, the black line corresponds to the results obtained by the steady-state 

version of the model with non-interconnected bristles, whilst the red line represents 

the behaviour of the transient version of the same model. Both models yield similar 

results in the low, linear range of the force-slip diagram. As the slip-angle increases 

and the graphs enter the non-linear region of operation, microscopic stick-slip action 
between the tread elements and the road leads to minor fluctuations, captured by the 

transient model. With a further increase in the slip ratio, higher amplitudes of 

oscillation are predicted by the transient model. These oscillations can reach up to 
10% of the total lateral force developed by the tyre. As the slip ratio increases further, 
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the period and amplitude of oscillations decrease continually, and finally the response 

smoothens completely at the saturated area of operation. 

The transient force in figure 4.17 is explained considering the characteristics of the 

tyre model in use. In particular, the observed behaviour may be related to the stick-slip 

response of the Kelvin element presented in the previous section and the parabolic 

pressure distribution along the contact. At low slip angles, the bristle tips stick on the 

ground, as they operate in areas where bristle deflection generates small forces 

compared to the maximum static friction. Towards the rear end of the contact, the 

bristle forces become significant and sliding of the bristles initiates. Once sliding has 

started, the bristles move continuously towards areas of decreasing normal pressure, 
due to the assumption of a parabolic pressure distribution. As discussed in section 

4.3.2, lower pressures reduce the tendency to stick slip. Even if stick-slip occurs, the 

overall effect would be limited, as the total force would be determined mainly by the 

adhesion area in the font of the contact. It is observed in figure 4.17 that significant 
fluctuations in the lateral force occur at values of tan a larger than 0.8. At this point, 

the bristles deform quickly and the maximum static friction is reached somewhere in 

the front half of the contact patch. Sliding initiates but this time the bristles move 

towards areas of much higher normal pressure. Due to the parabolic shape of the 

pressure distribution, the peak pressure is significantly higher than the equivalent 

uniform distribution that yields an equal normal force. Therefore, the sliding bristles 

enter areas of higher pressure where stick-slip is promoted. As the lateral slip 
increases further, a lateral sliding velocity is reached where stick-slip cannot be 

generated even at the peak pressure of the parabolic distribution. All bristles slide 

simultaneously and the resulting lateral force is determined by the coefficient of 

sliding friction. 

It is suspected that the three sequential drops in lateral force, predicted by the transient 

model in figure 4.17, could significantly alter the response of a vehicle. Experience 

indicates that just before reaching saturation, tyres tend to exhibit macroscopic stick- 
slip behaviour, sensed indirectly by the driver as a discontinuity in the build-up of 
yaw-rate, which can be attributed to the aforementioned drops in the lateral force. 
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Figure 4.18 shows the effect of the interconnections between bristles. Figure 4.19 

depicts a window from the lateral force variations shown in figure 4.18. 

Interconnections clearly reduce the tendency of the bristles to oscillate, especially in 

the initial part of the time history. Nevertheless, they do not seem to affect the severity 

of the major fluctuations in the lateral force or the self-aligning moment. 

Another interesting observation refers to the fact that the model with interconnected 

bristles generates a slightly lower lateral force in the region of saturated operation. 
The overall tyre force is calculated as the force applied by the bristles on the wheel 

rim and not as a friction force applied by the road to the bristles. This approach was 

preferred, taking into account the effect of internal damping, which should alter the 

energy balance between the forces generated along the contact patch and the forces 

transmitted to the rim. The higher the lateral velocity (saturated region of operation), 

the more intense is the effect of tyre tread's inertia. Because the bristles are not 
interconnected, there is no wave propagation and energy dissipation along the tyre 

tread, and the increased forces generated by the bristles are transferred directly to the 

rim. On the contrary, interconnections between the bristles enable extra energy 
dissipation and reduce the overall deflection of the bristles. For the sake of 

computational cost, the number of interconnected bristles is confined to those just 

covering the contact patch length. In a full model with bristles distributed all around 

the tyre's periphery, wave propagation and energy dissipation would continue outside 

the contact patch and the tendency for generation of an increasing force with 
increasing lateral velocity would be completely eliminated. Nevertheless, the results 

show that even though a reduced number of bristles is used, the interconnections 

between the bristles yield sensible results in a reasonable period of time. 
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The transient friction model differs from the steady state model described in chapter 3 

mainly in the integration procedure, which takes into account the states of all bristles 

simultaneously. This alteration, in combination with carefully chosen simulation 

parameters predicts significant fluctuations in the lateral force, as a result of the stick- 

slip motion of the tyre tread. Nevertheless, the model demonstrates a major drawback 

that limits its capabilities as a generic transient tyre model. The analysis is restrained 

within the contact patch of the tyre. Therefore, the global deformation of the tyre 

carcass, which is surmised to extend outside the contact patch, is neglected. This 

global deformation and the rate at which it builds up under a transient manoeuvre 

determines the phase lag between the various excitations and the response of the tyre 

in terms of force generation. In the discussion concerning the relaxation length 

concept, it was assumed that point P (see figure 4.1) lies in front of the contact patch 

so that the relaxation length can obtain values well in excess of the length of the 

contact patch itself. It is clear that the transient friction model does not include 

provisions for such deformations. Instead, the maximum possible value of the 

relaxation length is equal to half the length of the contact patch. 
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Figure 4.17 Lateral steady-state and transient response to ramp increase in slip angle at 30.96 
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4.4 The Development of a Generic Transient Tyre Model 

The analysis carried out thus far has dealt with the simple kinematic modelling of 

phase lags, using the relaxation length concept, as well as the modelling of friction 

force generation within the contact patch, using the transient version of the simple 

steady-state model. Additionally, in chapter 3, a significant amount of modelling work 

is presented, concerning the generation of steady-state forces together with the 

determination of a number of equally important features, such as the normal pressure 

distribution along the contact patch. In this procedure, the most important qualities of 

a tyre model have been highlighted, followed by subsequent modelling difficulties, 

limitations, or even shortcomings. 

At this stage, an attempt is made to combine features from all the aforementioned 

models into a single enhanced transient tyre model, as a natural progression of the 

research undertaken. This model not only merges the various characteristics from the 

previous models, it is based on an entirely new representation of the tyre structure, 

incorporating a flexible belt, carcass and tread. The model is described in detail in the 

following paragraphs and some simulation results are provided at the end of the 

chapter. 

4.4.1 Physical Construction of the Model 

The principal structure of the model is a flexible belt, consisting of a number of 
discrete elements, evenly distributed along the tyre periphery, as shown in figure 4.20. 

The belt elements are connected to the wheel rim via the carcass, represented by 

viscoelastic bristles with circumferential (longitudinal) and lateral degrees of freedom. 

The well-known Kelvin element is used for the representation of bristle 

viscoelasticity. Similar Kelvin elements are used for the connection of adjacent belt 

elements, so as to allow transmission of force between elements in the lateral and 

circumferential directions. Along an arc of finite length, extending a few centimetres 
fore and aft the contact patch, the belt is connected to a discretised tread, as 
demonstrated graphically in figure 4.20. The tread exhibits a structure similar to that 

of the belt, consisting of elements connected laterally and longitudinally to each other. 
The tread is used mainly for the simulation of friction within the contact patch. Its 

209 



Chapter 4: Transient Tyre Analysis 

length is kept small in order to reduce the computational effort, especially if one 

recognises that the successful representation of the contact might require a fine 

discretisation of the tread, compared to that of the belt. The properties of all 

viscoelastic connections within the tyre structure are anisotropic in the lateral and 

circumferential directions. 

4.4.2. Kinematic and Dynamic Analysis 

The kinematic inputs for the belt elements are determined with the aid of figure 4.21. 

The global frame of reference OXYZ is attached to the ground, while the SAE 

moving frame of reference is denoted by oxyz, and has its origin at the centre of the 

contact patch. The belt elements are numbered in a counter-clockwise sense, and their 

separation angle is: 9s = 2; r/n, where n represents the total number of belt elements. 

For the purpose of the analysis, an instant of time is considered, when the first belt 

element (j =1) is at angle 9 with respect to line oG. The full set of equations for the 

kinematic excitation, applied on each individual belt element, reads: 

Belt interconnections 

carcass 
bristles 

X 

NSt ,ý 

z 
Z 

0 

Y 

X 

read interconnections 

Figure 4.20 Modelling representation of the physical structure of the tyre 

Urxi=,..,, _ () + S2st " sin y)R, (4.30) 
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ury, =; +, = Vy + (Ost +c sin y)Rb sin(O +i" 9s) +y" Rb cos(9 +i" 9s) (4.31) 

with i=0,1,..., n -1 

Xrimj = UPX 
j, 

j=1.. n (4.32) 

Yr, 
mj 

= UUy 
j, j =1.. n (4.33) 

9= SZ (4.3 4) 

where Urxj and Uryj denote the circumferential and lateral velocities, imposed on 

the jth element by the motion of the rim, x�mj and yr,, 
nj are the corresponding 

displacements, S2 is the rotational velocity of the wheel, S)st is the rotational velocity 

of steering, y is the camber angle, Rb is the radius of the belt and Vy is the lateral 

component of the velocity of the centre of the wheel. 
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Figure 4.21 Kinematics of the tyre model 

The formulation involves setting up of the equations of motion for the lateral degrees 

of freedom for the belt and the tread elements respectively. In the general case, the jth 

belt element is connected to the rim (rigid foundation), two adjacent elements and the 

corresponding ith tread element, as shown graphically in figure 4.22. The equation of 

motion for the lateral degree of freedom of an element of unit length becomes: 

Üyjc+Klat(. yj -y�m, 
)+Dlat(Uyj 

-UryJ)+Ktrlat(y, -ytr, 
) 

+Dtrlat(UY, -UYtr, 
)+Ky` 

, -yj-, 
)+Ky(yj 

-yj+, 
) (4.35) 

+ Dy(Uyj - Uyj-, ) + DY(Uyj - Uyj+, ) =0 

where Uy, denotes the velocity of the element, c is the mass of the belt, Mat is the 

lateral stiffness of the carcass, Mat is the lateral damping of the carcass, Ktrlat and 
Dtrlat are the stiffness and damping coefficients of the lateral connections between 

the belt and the tread and Ky, Dy denote the stiffness and damping of the lateral 
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interconnections between adjacent belt elements. All properties are given per unit 

length (i. e. mass: [Kgl m], stiffness: 
IN / m21, damping: [N 

" s/m2 
]). 

Similarly, the equation of motion for the ith tread element reads: 

ilytr, c� + Ktrlat (ytr, 
- y, 

)+ Dtrl at 
(Uytr, 

- Uy J 
)+ Ktry(ytr, - ytr, _, 

) 
(4.36) 

+Ktry(ytr, -ytr, +, 
)+Dtry(Uytr, 

-Uytr, _, 
)+Dtry(Uytr, 

-Uytr, +, 
)+ f,, =0 

where Uytr, denotes the velocity of the element, ct, is the mass of the tread, Ktry, 

Dtry denote the stiffness and damping of the lateral interconnections of the tread 

elements and f; is the friction force between the element and the road, provided that 

the element under consideration lies within the contact patch. 

Equation (4.35) is written in matrix form for n number of belt elements involved, as: 

Ay "I by +By "Iby = fbry +Klat "Yr, m +Dlat " Urim 

With: 

A,, (2nx22r)=I 

c0... ... 0 Mat -Dy 0 ... - Dy 
0c... ... ... -Dy Dllat -Dy ... 
... ... ... ... ... 0 

... ... ... ... 
... ... ... ... ... ... ... ... ... - Dy 

... ... ... ........... c- Dy ........... 0- Dy Mat 
10... ... 0 
01... ... ... 

0 
... ... ... ... 

... ... ... ... ... 

... ... ... ........... 1 

0 

B, (2nx2n)= 
-1 0 ... ... 0 
0 

... 
-1 
... 

... 

... 
... 
... ... 

... 
0 

... 

... 
... 
... 

... 
........... 

... 
-1 

KIlat -Ky 0 ... -Ky 
- Ky Kllat - Ky ... ... 

0- Ky ... ... ... 
... ... ... ... - Ky 

- Ky ... ... - Ky Kllat 

0 

(4.37) 

(4.3 8) 

(4.39) 
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Uyl 
Uy2 

Iby(2nx1)= 
UY. 

YI 

Y2 

Y,, 
. 

Yn, A2 

Y.. (2nx1)= y0 

0 

Ury, 
Uryj 

U_(2nxl)= 
U" 

O 

0 

Where: Dllat = Dlat + 2Dy and Kllat = Mat + My. 

(4.40) 

(4.41) 

(4.42) 
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Figure 4.22 Interaction between belt and tread elements 

Vector fb, represents the forces generated between the belt and the tread, with its 

entries depending on the instantaneous position and velocity of the belt relative to the 

tread. The entries: fb,, corresponding to the part of the belt connected to the tread have 

the form: - 
[Ktrlat(y, - ytr, )+ Dtrlat(Uy, - Uytr, )j, while all the remaining entries are 

equal to zero. Because the discretisation of the belt does not necessarily coincide with 
that of the tread, it is not expected that the jth belt element will always coincide with 

an ih tread element. Thus, tread velocities and displacements found in fb, represent 

interpolation values, as shown graphically in figure 4.23. Finally, the entries of 

vectors Y�m and U,,, 
� are defined explicitly by equations (4.31)-(4.33). 
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X 

I 

Z 

J 

Figure 4.23 Schematic representation of the connection - through interpolation - of the states of 

the belt to the states of the tread 

Following the same procedure, equation (4.36) is written for n« number of tread 

elements in matrix form as: 

Atry " It y+ 
Btry " I,, y = Fy + Ktrlat " Ybeht + Dtrlat " Ube,: 

With: 

Atrr(2n�x2n)=I 

c, 0 
... ... 0 Dltr/at -Dtry 0 

... 0 
0 ca ... ... ... - Dtry Dltr/at - Dtry ... ... 
... ... ... ... ... 0 

... ... ... ... 
... ... ... ... ... ... ... ... ... - Dtry 

... ... ... ........... C', 0 
........... 

0- Dtry Dltrlat 
10... 

... 0 
01... 

... ... 
0 

... ... ... ... ... 

... ... ... ........... 1 

(4.43) 

(4.44) 
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KItrlat - Ktry 0 ... 
0 

- Ktry KItrlat - Ktry 

00 -Ktry ... ... ... 
(4.45) 

... ... ... ... - Ktry 

Btry(2n, x 2n )= 0 ... """ - Ktry KItrlat 

0 -1 ... ... ... 

... ... ... ... ... 
0 

0 ... ... ........... -1 

Uytr, 
Uytr2 

(2n, x 1) _ 
Uyrr� 

ytr2 

L. '" ýJ 

Y, 

Y2 

1'bß,, (2nax1)= 
00 

0 

UY1 
UYz 

Ua. u(2n,. x1)= ö. 

0 

where Dltrlat = Dtrlat + 2Dtry and Kltrlat = Ktrlat + 2Ktry. 

(4.46) 

(4.47) 

(4.48) 

Vector F., contains the lateral friction forces sensed by the tread, depending on the 

normal force at the specific point, the coefficient of friction and the direction of 

motion of the tread elements. The length of the contact patch is calculated on-line and 

covers only a small part of the tread, where friction forces are generated. The 
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remaining entries are all equal to zero. Again, because of differences in tread and belt 

discretisation, vectors Ybe,, and Ube,, contain interpolation values of the states of the 

belt elements in connection with the tread at the instant under consideration. 

An identical procedure is followed for the circumferential degrees of freedom, 

resulting in two further equations for the belt and the tread. The equations of motion 

of the belt element in the circumferential direction are given below in the matrix form 

as: 

AX "Ibx +Bx "Ibz =fb� +Klong"X,,. +Dlong"Vnm 

With: 

A (2nx2n)= 

c0... ... 0 Dllong -Dx 0 ... -Dx 
0c... ... ... - Dx Dllong - Dx ... ... 
... ... ... ... ... 0 ... ... ... ... 
... ... ... ... ... ... ... ... ... - Dx 

... ... ... ........... c -Dx ........... 0 -Dx Dllong 
1 0 ... ... 0 
0 1 ... ... 

0 ... ... ... ... ... 

... ... ... ........... 1 

0 

B, (2nx2n)= 
_t o0 

0 ... ... ........... -1 

Kllong -Kx 0 ... -Kx 
- Kx Kllong -Kx ... ... 

0 - Kx ... ... ... 
... ... ... ... - Kx 

-Kx ... ... -Kx Kllong 

0 

(4.49) 

(4.50) 

(4.51) 
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Ux, 

Ux2 

I, (2nx1)= Ux� 

X, 

xz 

x� 

x,,., 

x�-= 

X.,,, (2nx1) x0 

0 

Urx, 

Urx2 

V,,. (2nx1)= Urxp 

0 

0 

where Dllong = Dlong + 2Dx and KIlong = Klong + 2Kx. 

(4.52) 

(4.53) 

(4.54) 

Similarly, the equations of motion in matrix form for the longitudinal degree of 

freedom of the tread elements are: 

Atrx "Its +Btrx "It, x =Fx +Ktrlong"Xbelt +Dtrlong"Vbe/t (4.55) 

With: 
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c, 0 ... ... 
0 DItrlong -Dtrx 0 ... 

0 

0 c, ... ... ... -Dtrx Dltrlong -Dtrx ... ... 

..... 0 ... ... ... ... (4.56) 
... ... ... ... ... ... ... ... ... -Dtrx 

At4(2n, x? ntrý= _ c� 0 ........ - 0 -Dtrx DItrlx 
10... ... 0 
01... ... ... 

0 ... ... ... ... ... 

... ... ... ........ - 
1 

Kltr/ong -Ktrx 0 ... 0 

-Ktrx Kltrlong -Ktrx ... ... 
00 -Ktrx ... ... ... 

... ... ... ... -Ktrx 

Bt4(2n, x2n, )= 0 
... ... -Ktrx Kltrlon 

0 -1 ... ... ... 

... ... ... ... ... 0 

0 ... ... ........ - -1 

Uxtr, 
Uxtr2 

I,. (2ntr x 1) _ 
Uxtr� 

xtr, 
xtr2 

xtr, 

x, 
x2 

X eia 
(2n. x 1)= 

x0' 

0 

Ux, 
Uxz 

V�(2n�x1)= 
Uff' 

0 

(4.57) 

(4.58) 

(4.59) 

(4.60) 
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where Dltrlong = Dtrlong + 2Dtrx and Kltrlong = Ktrlong + 2Ktrx. 

4.4.3 Mechanics of Contact 

The accurate calculation of the size of the contact patch and normal pressure 

distribution requires a fine discretisation of the belt and the inclusion of at least a 

radial degree of freedom per belt element. Alternatively, a separate quasi-static 

algorithm is used for the calculation of the normal pressure distribution along the 

contact area. The algorithm is a simplified version of the method employed in the 

advanced steady-state model presented in chapter 3. 

iial 

Figure 4.24 A simple model for the calculation of the normal pressure distribution along the 

contact 

According to this approach, shown graphically in figure 4.24, a single belt element is 

connected radially to the rim by a Kelvin element, incorporating a non-linear stiffness, 

in order to account for the effect of air-pressure inside the tyre. The belt element is 

connected to the ground via a separate vertical Kelvin element. The element enters the 

leading edge of the contact patch at an angle 00, dictated by the height of the centre of 

the wheel from the ground (1,, ) and the radius of the inflated tyre outside the contact 

patch (R). The element moves along the contact patch in discrete time-steps dt, 

covering a distance of S21tidt per time-step. The equation of motion of the belt 

element in the vertical direction is: 

zc+D: z+KZz-radforce(x, )cos(O)-Di cos(O)=0 (4.61) 
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where z denotes the displacement (compression) of the vertical Kelvin element, KZ 

and Dz are the vertical stiffness and damping coefficients, x, is the displacement of 

the radial element and D, denotes the radial damping. As previously, all coefficients 

are stated per unit length of the contact patch. 

Function f (x, ) = radforce(x, ) represents the elastic force in the radial direction as 

defined by the relation 3.121. This relation is given below for ease of reference. 

radforce(x, ) = pb(l - e-'", 
), 

w= 2(K, / pb) (4.62) 

where p denotes the pressure in [N/r2 ], b is the width of the tyre in [m], K, is the 

linear component of the radial stiffness of the Kelvin element in [N/m2 ] 
and % is an 

adjustable parameter given in [m''], 
responsible for the rate of saturation of the radial 

force. 

The necessary kinematic constraints for the solution of equation (4.61) are: 

x. cos(B)+ z= R(cos(9) - cos(00 )) (4.63) 

! Cr cos(O) - S2 sin(9)x, = -RQ sin(O) -i- 
ih (4.64) 

Equations (4.61), (4.63) and (4.64) are solved at each time-step, until the normal force 

generated by the vertical Kelvin element diminishes. While the philosophy of the 

approach is identical to that of the advanced steady-state model, the situation is 

simplified by eliminating the circumferential degree of freedom of the belt element. 

Since the tyre model already incorporates a circumferential degree of freedom, the 

computational effort for the solution of an additional differential equation, together 

with two more kinematic constraint equations is avoided. In the event that the tyre 

operates in stand-still i. e. Q=0, equations (4.61), (4.63) and (4.64) reduce to a non- 

linear algebraic system with respect to x, and z. The normal pressure distribution is 

then obtained by solving the system at a number of pre-specified positions in the range 

9e (- 00,00) Finally, a similar two-dimensional interpolation procedure as the one 
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described in section 3.3.5 is followed for the immediate calculation of the initial angle 

00 , based on the net normal load and the rolling velocity. 

4.4.4 Modelling of Friction 

The force and velocity thresholds for the transition between sticking and slipping for a 

tread segment of the tyre model are: 

F-"' 
2+ F-''` 

2 

>_ F; (4.65) 
flu 

) 

Py 

) 

Uxtr + U+ Uytr 2; >_ threshold (4.66) 

where p., uy denote the coefficients of static friction in longitudinal and lateral 

directions, Fx, , FY, are the forces applied on the tread element by the viscoelastic 

connections and F. , is the normal force on the tread element. 

Like in the previous analyses, the non-sliding condition occurs, when none of relations 
(4.65), (4.66) are satisfied, in which case friction forces equate to the forces applied on 
the tread element by the viscoelastic connections. The friction forces in the lateral and 
longitudinal directions can be calculated, when either one of the relations (4.65) and 
(4.66) hold true. Thus: 

Uxtr, 
(4.67) 

)2 (Uxtr, /Pkx + Uytr, // tky 

Uytr, ýy; _"F, (4.68) 
(Uxtr, /P,, )2 + 

(Uytr, 
/Ay 

where fx,, 
y, 

denotes the friction force in the respective directions and u, , uky are the 

corresponding coefficients of kinetic friction. 
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Of course, it is possible to assume velocity-dependent coefficients of kinetic friction, 

as demonstrated in section 3.3.4.5. The coefficient of kinetic friction for each segment 

then becomes: 

Ax - Psx +Pxred (e-9xWxr; j 
-1) (4.69) 

/ky - Psy + Pyred 
(e-9yryirl 

_ 
i) (4.70) 

where Pxred' Pyred 9 qx, qy are coefficients. 

It should be noted that, initially, it is beneficial to assume constant coefficients of 

kinetic friction. This approach allows the assessment of the contribution of the 

dynamics of the tread, belt and carcass at various sliding and rolling velocities. By 

keeping friction forces independent of sliding velocity, one can be certain that any 

variations in tyre forces are not due to different friction levels, but instead can be 

attributed to the dynamic force transfer from the contact patch to the wheel rim. Later, 

in a refined version of the tyre model, velocity dependent coefficients of friction 

would increase the accuracy of the model for a wide range of operating conditions. 

4.4.5 Numerical Procedure 

Euler and Runge Kutta [113], [114] methods have been employed successfully in the 

integration scheme for the solution of the equations of motion of the model. The 

integration algorithms are combined with appropriate numerical schemes for the 

update of the states of the tread in a way that the rolling motion of the tyre is taken 

into account. During the integration, the continuous change of the position of the belt 

relative to the tread is also taken into consideration. 

Tyre forces and moments are calculated, taking into account the forces applied on the 

rim by the carcass elements. Depending on the purpose of the simulation, the inertial 

forces occurring during the acceleration and deceleration of the belt may also be 

included, or subtracted from the total force transferred to the wheel rim. Very often, in 
full vehicle simulations, the inertia of the wheels and tyres is included in the inertia of 
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the body of the vehicle. If the tyre model is to be used in such an environment, the 

forces, resulting from the acceleration of the belt should not be included in the output 

of the model. Similarly, if a transient manoeuvre is conducted, by altering the slip 

angle of a tyre, rolling over a rotating drum, the tyre model would assume the 

corresponding lateral velocity applied on the wheel rim. Clearly, inertial effects due to 

the global acceleration of the tyre belt should be excluded from the results. This 

should not be misinterpreted as having disregarded the inertia of the belt, as the mass 

of the belt elements still affects the periodic deformation of the belt, while the wheel is 

rolling under the application of friction forces. 

Figure 4.25 presents graphically the tasks performed parallel to the integration of the 

equations of motion of the tread and belt. The vector containing the states of the belt 

plays the role of the reference vector. As the tyre rolls forward, the vector of the states 

of the tread slides downwards, interacting with different parts of the belt vector. In the 

event that the tread vector reaches the end of the belt vector, the former is divided into 

two separate parts. The first part interacts with the bottom part of the belt vector while 

the second part returns to the top of the belt vector, so as to simulate the continuous 

rolling motion of the tyre. At the same time, the entries of the tread vector move 

upwards at a rate dictated by the rolling velocity of the wheel. Finally, the normal 

pressure distribution is attached to the tread vector, playing a role in the determination 

of the friction forces applied on the tread elements. 
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4.4.6 Simulation Results 

Virtual tests are run for a range of cornering and braking manoeuvres. The most 

important parameters of the tyre model are provided in table 4.3. Due to lack of 

experimental measurements, a consistent parameter identification procedure was not 
developed. Instead, the parameters of the model were manually adjusted so as to 

achieve good qualitative and to some extent quantitative agreement with published 

experimental results, such as those found in [117] and [18]. Below, a possible 

parameter identification sequence is given, as a rough guideline. 

1. Choice of the number of tread and belt elements based on the accuracy 

required 
2. Calculation of Klong and Mat from the circumferential and lateral 

deflections under static loads. 

3. Calculation of Kx and Ky from low amplitude transient tests such as the 

response to step inputs 

4. Calculation of belt inertia based on the response to high frequency - low 

amplitude sinusoidal inputs 

5. Calculation of contact parameters (K,, A, D, ) based on measurements of the 

contact patch size and the rolling resistance at pre-specified velocities 
6. Calculation of tread stiffness and friction parameters based on steady-state 

tests 

7. Adjustment of various parameters such as tread damping, velocity threshold 

and tread inertia, in order to achieve acceptable stick-slip friction behaviour 

(based on the analysis in section 4.3.2) 

An iterative procedure between steps 3 and 7 might be required in order to 
improve agreement between experimental and numerical results. 

The sequence stated above is not unique and steps 2-4 can be replaced by a 
number of modal tests which would facilitate the estimation of both the stiffness 
and inertia properties of the tyre. For such procedures, a post-processing mode of 
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operation is required from the model, with the ability to generate the modal 
behaviour. 

Table 4.3 

Important tyre parameters 

Klong Klat Dlong Diat Kx Ky Dx Dy 

[N/m ] [R/-M--71- N/m ] [Ns/m ] [Ns/m ] [N/m ] [N/m ] [N S/M'] 

3e5 7e5 8e2 8e2 1.8e8 1.8e8 6.4e3 6.4e3 0.9 1.17 

Ktrlong Ktriat Dlong Dtrlat Ktrx KhY Dtrx Dtry P b 

[N/m ] [N/m ] [NS/M2] [Ns/m ] [N/m ] M] [NS/M21 [NS/M21 [R/-m-"]- N/m ] [m] 

2e7 0.9e7 1.5e3 8e3 9e7 9e7 3.2e3 3.2e3 2.2e5 0.205 

C Ct, n nt, K, D, K, D, A 

Kgl. Kg/m [N/m ] [Ns/m ] [N/m ] [Ns/m ] [m ] 

4 3 250 30 1 7e677 1.6e3 3.2e7 5e4 6.8 

The normal pressure distributions as calculated by the simplified quasi-static 

algorithm are shown in figures 4.26 and 4.27 for low and high rolling velocities, 

respectively. The deviation from the parabolic shape and the expected shift of the peak 
[I 11 ] towards the leading edge are both captured. It should be noted that all tests were 

carried out using a normal load of 5000 N, unless otherwise noted. 
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Chapter 4: Transient Tyre Analysis 

At first, the transient model is subjected to a series of cornering tests. Figure 4.28 

captures the lateral deformation of the tyre belt, while figure 4.29 shows the 

corresponding deformation of the tyre tread. A graphical illustration of the overall 

deformation of the tyre is given in figure 4.30. 

The force response of the tyre to a step change in lateral slip is depicted in figure 4.31 

for two different rolling velocities. It is shown clearly that the model predicts the 

approximately exponential response which is observed experimentally [117] and can 
be calculated analytically using the relaxation length concept. In addition, the model 
depicts the effect of rolling velocity in the transient behaviour of tyres, showing a 

much faster response for the tyre with the higher rolling velocity. The corresponding 

self-aligning moment is given in figure 4.32. It is observed that as rolling velocity 

increases, the self-aligning moment response becomes faster. It is interesting to note 

that at the specific slip angle the steady-state value of the self aligning moment 

converges to a relatively low level of approximately -5 [Nm]. Still, the transient model 

predicts a significant overshoot in the self aligning moment which lasts longer at 
lower rolling velocities. The same trend in the build-up of the self aligning torque is 

found by Higuchi and Pacejka [117]. This type of torque response is related to the 

transient response of the pneumatic trail. The discretised model presented here is 

capable of generating the conditions along the contact patch at each time-step, based 

on the external kinematic excitations and the interaction between the dynamics of the 

belt and the frictional characteristics of the tread. Therefore, the effect of the 

pneumatic trail is already incorporated in the model. In this simple case of a step side- 

slip input, one may argue that as the lateral force increases, it passes from the stage 

where maximum self aligning moment is generated. As the side-force increases 

further, the pneumatic trail reduces and the self-aligning torque converges to its 

steady-state value. 

Figures 4.33 and 4.34 show the force and moment responses to a ramp side-slip input. 
Again the effect of rolling velocity is depicted, with the curves corresponding to 
higher velocities being in closer qualitative agreement with steady state 
characteristics. 
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Figure 4.28 Lateral belt deformation under moderate cornering 
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Figure 4.29 Lateral deformation of the tread under moderate cornering 
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Figure 4.34 Self-aligning moment response to a linearly increasing slip angle 

As is the case in the study of a wide range of dynamic systems, a frequently used 

measure for the characterisation of the transient behaviour of a tyre is its response to a 

sinusoidal input. Figures 4.35 - 4.41 illustrate the side-force response of a tyre to a low 

amplitude harmonic slip angle variation of gradually increasing frequency. The 

amplitude of the excitation given in the graphs corresponds to the amplitude of the 

lateral velocity of the wheel. Figures 4.42 and 4.43 summarise the findings from all 

sinusoidal tests, illustrating the reduction in amplitude and the increase in phase lag, 

as a result of the increase in the excitation frequency. Similarly, figures 4.44 and 4.45 

show the amplitude and phase variations for a higher rolling velocity. It is evident that 

rolling at low velocities promotes the reduction in amplitude and increases the delay 

of the response. In general, it can be concluded that a tyre acts a low-pass filter with a 

cut-off frequency that increases with rolling velocity [6], [18]. 

The ability of the model to perform in the saturated area of tyre operation is illustrated 

in figure 4.46. Here, the amplitude of the slip angle excitation is 14 deg and the force 

response resembles a chopped signal with its maximum limited by the frictional 
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potential of the contact. which, in turn, is determined by the coefficient of friction and 

the normal load. 

1 

0.8 

0.6 

0.4 

0.2 
Q) 

0 
0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

Lateral force response to sinusoidal side-slip excitation 

Forward velocity: 20 Km/h 

-1 Hz excitation 
- response 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time (s) 

Figure 4.35 Lateral force response to sinusoidal side-slip excitation (1 Hz) 

235 



1 

0.8 

0.6 

0.4 

0.2 

CD f- 0 
0 
cu Fn -0.2 

-0.4 

-0.6 

-0.8 

-1 

Lateral force response to sinusoidal side-slip excitation 

Forward velocity: 20 Km/h 

-2 Hz excitation 
- response 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Time (s) 
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The longitudinal response of the tyre to a step change in slip ratio is depicted in figure 

4.47. The analogy between transient braking and cornering is confirmed by the 

exponential shape of the brake force characteristics, with the rolling velocity dictating 

the rate of the response. Figure 4.48 shows the response to a ramp increase in slip ratio 

up to the point of saturated operation. The effect of rolling velocity is evident in this 

type of manoeuvre as well. 

The brake-force response of the tyre to a harmonic slip-ratio variation is illustrated in 

figures 4.49 and 4.50 for a low and high excitation frequency, respectively. The 

forward velocity is kept constant at 20 Km/h, while the linear velocity of rolling 

reduces periodically so as to produce a maximum longitudinal slip of 2%. The 

amplitude of the resulting brake force with respect to the excitation frequency is 

shown in figure 4.51. while the increase of the phase lag with frequency is 

demonstrated in figure 4.52. Figures 4.53 and 4.54 illustrate the corresponding results 
for a higher forward velocity of 60 Km/h. 
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4.5 General Conclusions 

The response of the tyre under transient handling manoeuvres has been the main 

concern of this chapter. This response was investigated from two different points of 

view. Firstly, attention was focused on the friction force generation along the contact 

patch. Secondly, the development of a generic transient tyre model was attempted, 

capable of handling a wide range of operating conditions. 

The investigation of friction force generation was carried out using a modified version 

of the simple steady-state model presented in chapter 3. It was found that a Kelvin 

element with a lumped mass connected to its free end can generate stick-slip friction 

when combined with a simple friction law that switches between static and kinetic 

friction, depending on the sliding velocity. It was discussed in chapter 3 that the 

incorporation of inertia does not really contribute to the steady-state models. In the 

present chapter it was shown that the dynamic response of a Kelvin element with 
inertia is essential for the generation of stick-slip behaviour. In addition, it was found 

that, in terms of simulation, the existence of stick-slip behaviour is highly sensitive to 

the combination of the integration time-step and the velocity threshold used in the 

friction law. In terms of lateral force generation, the results show that significant 
fluctuations might be generated for a short period of time, as the lateral force along the 

contact reaches saturation. The existence of such fluctuations would depend strongly 

on the sliding velocity and the properties of the contact patch. In any case, further 

investigations are required, ideally supported by experimental measurements. The 

modified tyre model used for the simulation of friction is less generic than its steady- 

state equivalent and cannot serve as a tyre model for handling simulations. 

The approach followed for the simulation of transient friction was modified and 
integrated with a generic transient tyre model. This model incorporates a flexible belt 

and carcass with inertia and a separate tread consisting of Kelvin elements with 
inertia, in agreement with the philosophy of the transient friction model. While the 
formulation of the equations of motion for the belt and tread elements is rather 
straight-forward, the numerical modelling was set-up so as to restrain the tread in the 

area of the contact. This choice allows for a finer discretisation of the tread without 
increasing enormously the computational effort. The generic transient tyre model uses 
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the velocity dependent friction law from the steady-state models, while the normal 

pressure distribution is calculated based on a procedure similar to that used by the 

advanced steady-state model in chapter 3. The model takes into account the possible 
kinematic excitations due to steering, side-slip, braking and camber inclination in a 

generic manner and the forces and moments depend at any instant of time on the 

relative position and velocity of the belt with respect to the tread. It was found that the 

model behaves rather well under a variety of operating conditions including step and 

sinusoidal side-slip and longitudinal slip excitations. For example, it was shown that 

the model predicts the overshoot in the self-aligning torque, as a result of a step 
increase in the slip angle. This can be thought of as a test that requires a consistent 

representation of the conditions along the contact patch and it is a case that cannot be 

treated successfully under all possible conditions with the use of the relaxation length 

concept [14]. 
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Chapter 5: Tyre Models in Handling Analysis 

5.1 Introduction 

This chapter focuses on the implementation of various tyre models in vehicle handling 

simulations. For this purpose, a generic full-vehicle model is developed through a 
detailed procedure which involves the derivation of the differential equations of 

motion together with the determination of all external forces and moments. Selected 

stand-alone tyre models presented in chapters 3 and 4 are modified and interfaced 

with the vehicle model. It should be pointed out that the main purpose of the present 

chapter is to demonstrate the feasibility of the implementation of such tyre models in 

vehicle dynamic analyses and to provide a robust, integrated vehicle-tyre modelling 

environment for use in further investigations of handling dynamics. Hence, due to 

time and space limitations, the handling simulations presented here are limited to a 
few representative cases. 

5.2 Physical Description of the Vehicle Model 

The vehicle is considered as a rigid body, incorporating 6 degrees of freedom, which 
include three translations and three rotations in space. According to the SAE J670e 

[98], these motions are observed relative to the vehicle-fixed local frame of reference, 

as shown in figure 5.1. Figure 5.2 shows an aerial view of the vehicle model with 

some of its most important dimensions. 

For the purpose of the analysis, no simplifications are made concerning the vehicle's 

rigid body motions. This implies that the vehicle need not be symmetrical with respect 
to the planes defined by the local frame of reference, while the origin of the frame 

does not necessarily coincide with the centre of mass of the vehicle. 

The vehicle incorporates four wheels, connected to the body by springs and dampers, 

as well as front and rear anti-roll bars, which resist vehicle roll during cornering. 
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The forces and moments that govern the vehicle's motion include: 

1) Driving forces developed on the contact patch between the tyres and the road 

2) Braking forces developed on the contact patch between the tyres and the road 

3) Lateral forces on the tyres, as a result of the development of tyre slip angles 

4) Gravitational forces 

5) Spring and damper forces 

6) Anti-Roll bar moments 

7) All moments that result from the aforementioned forces 

In order to simulate the handling behaviour of a vehicle, a 6-degree of freedom rigid 
body model, as the one described above, is fundamental in the sense that it allows the 

study of all possible combinations of the vehicle's body motion and yields fairly 

realistic results when used in combination with an accurate tyre model. 
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5.3 Equations of Motion of the Vehicle's Body 

The Newton-Euler formulation approach is used to derive the equations of motion of 

the vehicle body. Firstly, the kinematic equations of a particle with respect to a 

moving frame of reference are presented. By using the Newton-Euler approach for 

translational and rotational motion, the effects of the external forces and the masses of 

all elementary particles that form the rigid body are taken into account, resulting in the 

differential equations of motion. 

5.3.1 General Motion of a Particle 

5.3.1.1 Time Derivative of a Vector c with Respect to Inertial Frames R, 

and RR 

Kinematic equations for a particle are presented, considering two frames of reference, 

as shown in figure 5.3. R. = O; x; y; z; represents the global/fixed frame of reference, 

while Rj = Ojxjy, zj is the local frame of reference. The local frame of reference may 

be moving with respect to the global frame through translational and/or rotational 

motions. It is obvious that this point of view is not unique: One could consider that the 

global frame of reference is counter-moving with respect to the local frame. 

Therefore, it is necessary to declare that during the analysis, the global frame will be 

considered as stationary. 

Assuming that c represents a vector as measured in the moving/local frame of 

reference, the time derivative (rate of change of the vector with respect to time) as 

sensed in the local frame of reference can be expressed as (dc/dt)R, . 

The time derivative of the same vector c, as sensed in the global/fixed frame of 

reference R;, is given by the following relation [11]: 

(dc/dt)R, = (dc/dt)Rj + () Xc (5.1) 
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where ao xc is the cross product of the rotational velocity co of the local frame of 

reference and the vector c. Equation (5.1) is generic and applies to any kind of time 

varying vector. 

In order to distinguish the rate of change of a vector with respect to the global and 
local frames of reference, the following representations are used: 

D()/Dt = dt) R 
denotes the time derivative of a vector as sensed in the global frame 

R. 

while 

d()/dt = 
do denotes the time derivative of a vector as sensed in the local frame R. 
dt R; 

XI 

Figure 5.3 Time derivative of a vector with respect to moving frames of reference 

By applying equation (5.1) it is easy to prove that the rotational velocity o remains 

the same for both frames of reference as: 

(dw/dt)R, = Dcw/Dt = (dw/dt)RJ = dw/dt (5.2) 
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because: 

(y)xw=0 (5.3) 

Equation (5.1) is used to describe the general motion of a particle with respect to the 

global/fixed frame of reference R; . 

The calculation of the speed of a particle P with respect to the inertial frames R; and Rj 

is based on the definition of the following vectors, shown in figure 5.4: 

e vector (O, Oj) (position vector of the origin Oj with respect to the global frame R; ) 

Si vector (O; P) (position vector of the particle P with respect to the global frame R; ) 

ss vector (OAP) (position vector of the particle P with respect to the local frame Rj) 

XI 

Figure 5.4 Motion of a point as sensed in the global frame of reference 

The velocity of the particle P as sensed in the global frame R; results from the 
differentiation of the position vector s; with respect to time. Referring again to figure 

4, the following relations apply: 
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s; = e+sj 

Ds; /Dt = De/Dt + Ds, /Dt 

Ds; /Dt = De/Dt + ds, /dt + co x sj 

Where: 

V; (Oj) = De/Dt 

V; (P) = (ds, /dt)R, = Ds; /Dt 

VJ (P) = (ds J/dt) R, = ds, /dt 

V; (P) = V1(O) +VV(P)+wxsj 

(5.4) 

(5.5) 

The same procedure is followed for the calculation of acceleration, given that 

acceleration is the rate of change of the velocity vector with respect to time [I I]. 

Hence, equation (5.1) is applied to the velocity vector V; (P) = (ds; /dt)R; = Ds; /Dt, 

assuming that V; (O) = 0: 

D2s; /Dt2 = d[ds; /dt]/dt = 
d[ds, /dt+wxs, ]/dt+wx[ds, /dt+wxsj]= 

dzsj /dt2 +d(cwxsj)/dt+wx(dsj /dt)+wxwxs, 

Des; /Dt2 =d2sj/dtZ+(dco/dt)xs, +wxcoxs, +2"a)x(dsj/dt) 

Where: 

des /dt2 is the linear acceleration j 
(dcw/dt)x sj is the tangential acceleration 

co xox Si is the centripetal acceleration 

2" co x (ds, /dt) is the coriolis acceleration 

(5.6) 

The fundamental theory of the general motion of a particle is most useful for 
describing the motion of rigid bodies, such as the vehicle model. 

is the velocity of Oj at R; 

is the velocity of P at R; 

is the velocity of P at RR 
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Firstly, a local frame of reference RR is assumed to be attached to the rigid body. 

Hence, the local frame follows the rigid body's motion. The particles that form the 

rigid body are considered as elementary particles, each of them defined by its position 

vector in the local frame of reference Rj. The velocity and acceleration of any point of 

the rigid body can be easily calculated, following the procedure previously described 

and keeping in mind that the position vector of every elementary particle remains 

constant in the local frame of reference. This results from the fact that the local frame 

is firmly attached to the moving body and the relative distance of any pair of particles 
forming a rigid body does not change. In this procedure, the rotational velocity of the 

rigid body is also the rotational velocity of the moving frame of reference. 

When studying rigid body kinematics, it is often necessary to project velocities on 

moving frames of reference. For this purpose, in addition to the theory already 

presented, it is essential to apply relative transforms, as a convenient way to switch 
between frames of reference. 

5.3.2 Relative Transforms in Rigid-Body Kinematics 

Rahnejat [11] and Ellis [7] describe the general theory of translational and rotational 

transformations that are used for expressing vector components in different frames of 

reference that are moving with respect to each other. For the purpose of the present 

analysis, the "1-2-3" transformation is used (Referred to as roll pitch and yaw). 

Let: 

(x; y; z; ) be the coordinates of a point P at R; O; x; y; z; 
(xx yj zj) be the coordinates of a point P at Rj=O xy zj 

It is possible to move from Rj frame of reference to R; frame of reference, by three 

sequential rotations and a linear translation of Rj, until Rj coincides with R;. It should 
be noted that in this specific case, each rotation takes place with respect to the 

previous frame of reference, not the initial frame of reference. The transformation is, 

therefore, called "relative". The characterisation of the transformation by the sequence 
of numbers "1-2-3" implies that the first rotation is about x axis, the second about y 
axis and the third about z axis. It is possible to arrive to the same result by changing 
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the sequence of rotations, providing that no sequential rotations take place about the 

same axis. For example, a "3-1-3" rotation could be used, but a "3-3-1" sequence 

obviously cannot produce a generic transformation between two frames of reference. 
Summarising, the frame transformation consists of the following steps: 

1) Linear translation (-e) resulting coincidence of Oj with O; 

2) 1sß rotation (A) about axis Ojxj, resulting to the frame: O; xj'yj'zj' 

3) 2 °d rotation ((p) about axis Oiyj', resulting to the frame: Oixj"yj"zj" 

4) 3rd rotation yr) about axis Oizj", resulting coincidence with the frame: R; O; x; y; z; 

Each rotation results in a new set of axes, which are related to the previous set of axes 
by a transformation matrix L in a way that: 

[Rnewl-[L] [Rold] (5.7) 

Because three different rotations take place, the initial set of axes is multiplied 

successively by three different transformation matrices, shown below: 

100 

L(0) =0 cos0 - sin0 
0 sin0 cosO 

(5.8) 

coscp 0 since 
L(9) =010 (5.9) 

- since 0 coscp 

cosyr - sinw 0 

L(yr) = sinyr cosyr 0 (5.10) 
001 

(Xi'yj 'Zi ')T = L(9). (X; y; Z; )T 1st intermediate frame of reference 

(xiifYjitz; to)T = L((p)L(O) - (xy; zj)T 2nd intermediate frame of reference 

257 



Chapter 5: Tyre Models in Handling Analysis 

(x; y; z; )T = L(W)L(9)L(O). (x; y; z; )T 3 ̀d (final) frame of reference 

The resulting transformation matrix shown below is obtained by multiplying the three 

transformation matrices in the following order: L(6, cp, NJ) = L(NJ)L(cp)L(O) 

Thus: 

cosy " cosy cosy " since " sine - sing " cosO sinyr " sinO + cosy " since " cosO 
L(O, cp, yr) = sin yr " cosy cosy - cosh + sinyr " since - sine sinyr " since " cosO - cosy " sing (5.11) 

- since cosy " sine cosy " cost 

If angles 0, p, ' are relatively small, the above matrix can be simplified to the one 

shown below, since cos(A, cp, yi) 1 and sin(O, cp, yr) 0,9, yr : 

1 -yr 9 
L(O, 9, yr)= yr 1 -6 

- (p 01 

(5.12) 

5.3.3 Application of the Kinematic Equations on the Study of Vehicle 

Dynamics 

For the study of a vehicle's motion, two different sets of axes are used: R; represents 

the global/ground fixed frame of reference, while Rj represents the local frame of 

reference attached to the vehicle. Obviously, Rj is a moving frame of reference. Thus, 

its position and orientation change constantly with respect to the global frame. 

The velocity and acceleration of a point P on the vehicle can be found easily by 

applying the kinematic equations in a matrix form. Of course, all velocities and 

accelerations are calculated with respect to the global/ground frame of reference R;, as 

velocities and accelerations with respect to the moving set of axes Rj are all equal to 

zero. 

Nevertheless, it is much more convenient to use the projection of these velocities to 

the moving frame of reference Rj. In this way, one gains a better perception of the 

situation, as it is very important to know the velocity vectors in certain directions, 
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specified by the frame of reference attached to the vehicle. For example, when a driver 

reads 100 miles/hour on the tachometer, he actually reads the forward speed of the 

vehicle, not the speed with respect to some ground frame of reference. This velocity is 

the result of the projection of the vehicle's speed, as measured at the ground frame of 

reference, to the vehicle's longitudinal axis. Figure 5.1 shows the frame of reference 

attached to the vehicle. The orientation and position of this frame is proposed by SAE 

and is used in most studies. 

Let: 

s; _ (x; y; z; )T be the vector of coordinates of a point P of the vehicle with 

respect to R; 

sj_ 
(x 

jyj z'ýr be the vector of coordinates of point P of the vehicle with 

respect to Rj 

Equation (5.1) can be rewritten in a matrix form for the study of vehicle motion. In 

this case c represents the space vector of a point P of the vehicle with respect to the 

moving (vehicle attached) frame, i. e. c- sj, while w represents the space vector of the 

rotational velocity of the moving frame of reference. Attention should be paid to the 

fact that while the velocity obtained in equation (5.1) is sensed by an observer, using 

the ground frame of reference, the actual components are still written for the moving 
frame of reference R. Consequently, equation (5.5) is half written for the ground 

frame of reference (term V; (Os)) and half written for the moving frame of reference 

(term VI(P)+wxsj). 

Equation (5.5) includes the translational motion of the origin of the moving frame of 

reference and shall be used for the analysis. In order to write this equation for the 

ground frame of reference, it is essential to multiply the second term by the 
transformation matrix L, so that the components of the rotational velocities are 
projected to the ground frame of reference: 

Vi (P) = Vi (0) +L(Vj(P)+52j "sj) (5.13) 
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The term fl j"sj represents the cross product co xsj in a matrix form. Carrying out 

the cross product of the vectors, yields the matrix L so that n, "sj= co x s, : 

U -° CoY 
ci = (AZ 0- co 

0 
- Coy (i). 

(5.14) 

Where w, , wy, o are the components of the moving frame's rotational velocity, 

according to the relationship: 

(0 = (d0/dt)R, = 
(co. 

wy (OZ)Tx; (5.15) 

Equation (5.13) represents the velocity of a point P on the vehicle, with respect to the 

global/ground frame of reference. This velocity should now be projected onto the 

moving frame of reference. This is achieved by pre-multiplying the velocity by the 

inverted transformation matrix 1: ': 

V; (P)=L' "Vi(P)=L-'[V; (O) +L(Vj(P)+f2; 'Si)]=> 

VI(P) = L-'V1(Oj)+L-'L(VV(P)+52j "si)=: > 

V; (P) =L-'Vi(0) +(Vj(P)+n; -S; 
) (5.16) 

Equation (5.16) is written in a condensed matrix form. It is easy to obtain the velocity 

components in all three directions in the moving frame of reference, as follows: 

Let [U VW ]T be the projections of the translational velocity to the moving frame of 

reference, so that [U VW ]T =L'V; (O j) . 

Let [pgr]T =[wxwywJT =w. (5.17) 

Then, the components of the velocity in the directions of the moving axes can be 

written as: 
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uU dx/dt z"q-y"r 

v=V+ dy/dt + x"r-z"p 
wW dz/dt y"p-x"q 

(5.18) 

Because point P belongs to the vehicle, which is considered as a rigid body, the 

middle term of the right hand-side of the above equation diminishes. Thus, the 

velocity of a point P becomes: 

uU z"q-y"r 
v=V+ x"r-z"p 
wW y"p-x"q 

(5.19) 

In order to calculate the acceleration of point P one can start from equation (5.16): 

ap = dVj (P)/dt = dL''V; (O j)/dt +d (VV (P) +) "s j)/dt or 

ap = dVj (P)/dt = dL-'V; (Oj)/dt+d(dsj/dt+S2j "sj)/dt 

ap = dVj (P)/dt = dIr'V; (Oj)/dt+d2sj/dt2 +(d)2j/dt)"sj 

+2"S2j "(ds, /dt)+Oj "c "s, 

ap = dVj (P)/dt = dl-'V; (Oj )/dt + SZj " L-' V; (O) 

+d2sj/dt2 +(dccj/dt)"s, +2"i "(dsj/dt)+c "c "s, (5.20) 

The above equation, after carrying out the matrix calculations, can be written in 

matrix form: 

AX dU/dt -V"r+W"q -x"(q2+r2)+y"(p"q-dr/dt)+z"(p"r+dq/dt) 
Ay = dV/dt + -W"p+U"r + -y"(r2+p2)+z"(q"r-dp/dt)+x"(p"q+dr/dt) (5.21) 

A= dW/dt -U"q+V"p -z"(p2+q2)+x"(p"r-dq/dt)+y"(q"r+dp/dt) 

or as separate equations as follows: 

A. =Du/Dt=dU/dt-V"r+W"q-x"(qZ+r2)+y-(p"q-dr/dt)+z"(p"r+dq/dt) (5.22) 
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Ay =Dv/Dt=dV/dt-W"p+U"r-y"(r2 +p2)+z"(q"r-dp/dt)+x"(p"q+dr/dt) (5.23) 

AZ =Dw/Dt=dW/dt-U"q+V"p-z"(p2 +q2)+x"(p"r-dq/dt)+y"(q"r+dp/dt) (5.24) 

5.3.4 Dynamic Equations of Motion 

Thus far the kinematic equations for the vehicle have been derived. The dynamic 

equations of motion are obtained by applying the Newton - Euler method. 

Newton's law for a single point P of the vehicle is expressed as: 

SFX = D(Sm " u)/Dt (5.25) 

SFy = D(Sm " v)/Dt (5.26) 

6FZ = D(Sm " w)/Dt (5.27) 

Assuming that the vehicle's mass remains constant, the equations can be rewritten as: 

bFX = Ain - (Du/Dt) (5.28) 

bFy = Sin - (Dv/Dt) (5.29) 

bFZ = Sm - (Dw/Dt) (5.30) 

The effect of the sum of particles, which form the vehicle, is realised through 
integration: 

JbFF =f Am " (Du/Dt) (5.31) 

jbFy 
=f Am " (Dv/Dt) (5.32) 

fbFZ=f 8m " (Dw/Dt) (5.33) 

The following relations also apply: 

föm=m (5.34) 
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föm"x=m"xG (5.35) 

J 
. y=m"Yo (5.36) 

f&n"z=m"zG (5.37) 

where (XG, yG, ZG) is the vector of coordinates of the position of the centre of mass of 

the vehicle with respect to the moving frame of reference and m is the total mass of 
the vehicle. 

X, Y and Z denote the sum of all forces along the axes x, y, z respectively, so that: 

X= IF. = JSFX is the sum of forces in the direction of axis 0,, of frame Rj 

Y= EFy = 
JSFy is the sum of forces in the direction of axis Oy of frame Rj 

Z= EFZ =f 5FZ is the sum of forces in the direction of axis OZ of frame Rj 

Consequently, the combination of equations (5.22-5.37) yields: 

F. F. =m"(dU/dt-V"r+Wq)-m"[x0 . 
(q2 +r2)-yG "(p"q-dr/dý-z0 "(p"r+dq/d)] (5.38) 

EFY =m"(dV/dt"Wp+U"r)-m"[y0 . 
(r2 

+p2)-zG "(q"r-dp/d)-x0 "(p"q+dr/d)] (5.39) 

EFZ =m (dW/dt-U q+V"p)-m"[zG "(p2 +q2)-xG "(p"r-dq/d)-y0 "(q"r+dp/d)] (5.40) 

Euler momenta equations for a single point P of the vehicle are expressed as: 

öMX =y"[D"(8m"w)/Dt]-z"[D"(&in"v)/Dt] (5.41) 

6My =z"[D"(Sm. u)/Dt]-x"[D"(8in"w)/Dt] (5.42) 

6MX =x"[D"(öm"v)/Dt]-y"[D. (An-u)/Dt] (5.43) 

By assuming again that the vehicle's mass is constant, the above equations can be 

written as follows: 
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6M 
X= 

gm [y 
" 
(Dw/Dt) 

-z" 
(Dv/Dt)] 

6M 
y= 

&rn " 
[z 

" 
(Du/Dt) 

-x" 
(Dw/Dt)] 

bMZ =äm"[x"(Dv/Dt)-y"(Du/Dt)] 

(5.44) 

(5.45) 

(5.46) 

Again, the effect of the sum of particles, which form the vehicle, is realised through 

integration: 

IÖM f" [y " (Dw/Dt) -z" 
(Dv/Dt)] (5.47) 

f ömy =fm" [z " (Du/Dt) -x" 
(Dw/Dt)] (5.48) 

f ffl =J &1 m- [x " (Dv/Dt) -y" 
(Du/Dt)] (5.49) 

Where L, M and N denote the sum of all moments in the direction of axes x, y, z 

respectively, so that: 

L= IM. = 
JSMX is the sum of moments in the direction of axis O,, of frame RR 

M= EMY =f 8m, is the sum of moments in the direction of axis Oy of frame Rj 

N= EMZ = JSMZ is the sum of moments in the direction of axis OZ of frame Rj 

EIV =f SM. y. 
[dW/dt-U"q+V"p-z"(p2 +q2)+x , 

(p 
:r -dq/dt)+y 

. 

(q(p. r+dp/dt)] (5.50) 
-z-[dV/dt-W"p+U"r-y"(r2+p2)+z 

(q r dp/dt)+x q+dr/dt) 

ENý = 
JSm" "[dU/dt-V"r+W"q-x"(qZ+rZ)+y"(p-q-dr/do+z-(p"r+dq/doj (5.51) 

-x"[dW/dt-U"q+V"p-z"(p2 +q2)+x (p r dq/do+y"(q"r+dp/do 

E1V = fSm" x"[dV/dt-W"p+U"r-y-(r 2+pZ)+z"(q-r-dp/dý+x-ý -q+dr/dt] (5.52) 
-y"[dU/dt- V"r+W"q-x"(q2 +r2)+y. . q-dr/dt)+z"(p"r+dq/dý 

Furthermore, the following relations apply for the mass and product moments of 
inertia: 
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I. = 
j(y2 + z') - (5.53) 

Iy, = 
J(x2 +z2). &n (5.54) 

Imo= f(x2+y2). Am (5.55) 

In =f y"z"&n (5.56) 

I,,, = fz"x"6in (5.57) 

I, 
Y =fx"y. do (5.58) 

Introducing the definitions of mass and product moments of inertia into the Euler 

equations yields: 

EMX =I. "(dp/dt)-(Iri -Iu)"q"r+Iyz "(r2 -q2)-I. "(p"q+dr/dt) (5.59) 
+IXY "(p"r-dq/dt)+m"yG "(dW/dt-U"q+V"p)-m"zG "(dV/dt-W"p+U"r) 

EMy = Iyy "(dq/dt)-(I2 -I,, 
)"p"r+I., "(p2 -r2)-Ixy "(q"r+dp/dt) (5.60) 

+Iy, "(q"p-dr/dt)+m"z,, "(dU/dt-V"r+W"q)-m"xG "(dW/dt-U"q+V"p) 

EMZ =Iu "(dr/dt)-(Ix -Iý, ý, 
)"p"q+I, 

ý, . 
(q2 

-p2)-Iyz "(r"p+dq/dt) (5.61) 
+I,,, "(r"q-dp/dt)+m"xG "(dV/dt-W"p+U"r)-m"yG "(dU/dt-V"r+W"q) 

Below, the six generic differential equations of motion obtained by the application of 
Newton-Euler method are grouped together: 

EFX =m"(dU/dt. V"r+Wq)-m"[xG . 
(q2 +r2)-yG "(p"q-dr/d)-zG "(p"r+dq/d)] (5.62) 

EFy =m"(dV/dt. Wp+U"r)-m"[yG . 
(r2 +p2)-zG "(q"r-dp/d)-xG "(p"q+dr/d)] (5.63) 

IFZ =m"(dW/dtU"q+V"p)-m"[zG "ý2 +q2)-xG 4r-dq/dj-y0 
"(q"r+dp/d9] (5.64) 
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EMX =I. "(dp/dt)-(Iy, -I,: 7)"q"r+In"(r2 -q2)-I2x "(p"q+dr/dt) (5.65) 
+IXy "(p"r-dq/dt)+m"yG "(dW/dt-U"q+V"p)-m"zG "(dV/dt-W"p+U"r) 

EMy =I», "(dq/dt)-(I2 -I. 
)"p. r+I., "ý2 -r2)-IXy . (q. r+dp/dt) 

(5.66) 
+I, "(q"p-dr/dt)+m"z0 "(dU/dt-V"r+W"q)-m"xG "(dW/dt-U"q+V"p) 

EMZ =Iu "(dr/dt)-(I,,, -Iri)"p"q+I,, y "(q2 -p2)-In "(r"p+dq/dt) (5.67) 
+Iý "(r"q-dp/dt)+m"xG "(dV/dt-W"p+U"r)-m"yG "(dU/dt-V"r+W"q) 

By assuming that the centre of mass of the vehicle coincides with the origin Oj of the 
frame of reference and also that the vehicle is symmetrical about the plane defined by 

axes OOx and OOz, the above equations can be further simplified. 

In this case the following relations apply: 

XG-YG-ZG-O (5.68) 

and 

IXr Izr o (5.69) 

Introducing these relations into the generic equations yields: 

EFx =m" (dU/dt 
-V"r+W" q) (5.70) 

EFy =m"(dV/dt-W"p+U"r) (5.71) 

EFZ =m"(dW/dt-U"q+V"p) (5.72) 

EMX =I. "(dp/dt)-(Iyy -Iu)"q"r-I,, . (p. q+dr/dt) (5.73) 

EMy =I y "(dq/dt)-(Iu -I, 
j. p"r+I, 2 "(p2 -r2) (5.74) 

EMZ =Iý "(dr/dt)-(I. -Iyy)"p"q+Ix . (r"q-dp/dt) (5.75) 

Many researchers simplify the above equations even further, by reducing the degrees 

of freedom according to the specific requirements of their studies. For instance, the 
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equations for the frequently used bicycle model can be obtained by neglecting all 
degrees of freedom apart from the lateral translation (direction of y axis) and the 

rotation about the vertical axis (z). The forward speed (U) is also considered to be 

constant: 

Thus, the equations for the bicycle model become: 

EFy =m" (dV/dt +U" r) (5.76) 

EMZ = Iu " (dr/dt) (5.77) 

5.4 Introduction of External Forces and Moments 

5.4.1 Gravitational Forces and Moments 

The gravitational force applies to the centre of mass of the vehicle. It is easy to 
introduce the effects of a sloped road, by multiplying the gravity vector by the 

transformation matrix L(®, (D, ̀P), where angle lY is equal to zero. 

Gx (sin'P " sin0 - cos`P " sine " cos0) "m"g0 
G= Gy = (cos`P 

" sin0 + sin'I' " sin(D" cos0) "m"g= L(O, (D, 'P) "0 (5.78) 
GZ cosO"cos®. m"g m. g 

The resulting vector G produces three moments as follows: 

Mxc = G: ' Yc (5.79) 

MyG = G% " xG (5.80) 

MzG = Gy " xc - Gx ' YG (5.81) 

5.4.2 Suspension Forces and Moments 

It is assumed that suspension forces act in the vertical direction. In the general case, 
spring forces are considered as functions of the deflection in the following manner: 
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F= KfF[deflection] (5.82) 

where subscript f denotes front springs, while r denotes rear springs 

Such functions may be linear or non-linear, including the effect of bump-stops or non- 
linear springs. 

Considering the general motion of the vehicle and referring to figure 5.2, spring forces 

can be written as: 

Fk, =-Kf[(z-id . 0-jai'(p)] (5.83) 

F, 2 =-Kf[(z+lcl"O-Jai-(p)] (5.84) 

Fk3 =-Kr[(z-Idl-0+lbI'cp)] (5.85) 

Fk4 = -Kr 
[(z + ldj .0+ lbj «p)] (5.86) 

The total vertical force generated by the springs is: 

FF = EFL; (5.87) 

Furthermore, the spring forces result in the development of moments about the axes 
Ox and Oy: 

M,, k =Icl"(-Fk, +Fk2)+Idl"(-Fk3 +Fk4) 

Myk =-laI'(Fkl +Fkz)+Ibj. 
(Fk3 

+Fk4) 

(5.88) 

(5.89) 

Following the same procedure, the equivalent relations for the dampers are obtained, 

using a non-linear function for the damping force with respect to velocity. 

Fdl = -Df 
[(W 

- 
Icl .p- lal . q)] (5.90) 

Fd2 =-Df[(W+IcI. p-jal'q)] (5.91) 

Fd3 = -Dr 
[(W 

- Idl .p+ IbI . q)] (5.92) 
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Fd4 =-Dr[(W+Idi'p+JbI-q)] (5.93) 

The total vertical force developed by dampers is: 

F,, d = EFd; (5.94) 

Moments developed by dampers are given as: 

M,, d = IcI " (- Fdl + Faz )+ Idl " (- F+ Fd4) (5.95) 

M 
Yk = -lal . 

(Fd, + Fes) + Ibl . (F + Fd4) (5.96) 

In case the vehicle incorporates anti-roll bars, it is essential to take into account the 

moments developed about the longitudinal axis of the vehicle, as a result of roll 

motion during cornering, as: 

Mxfroll 
--Kfroll *e 

MX 
«ou = -Kroll "0 

(5.97) 

Total forces and moments produced by springs, dampers and anti-roll bars are, thus: 

Fwd =F + FZd (5.98) 

M, 
011 = Mxk +MXd +Mxfrou +MX«ou (5.99) 

Mykd = Myk + MYd (5.100) 

5.4.3 Tyre Forces and Moments 

Tyre forces and moments are calculated based on the velocity vector at the centre of 
each of the four wheels, the corresponding linear velocity of rolling and, last but not 
least, the vertical load at the four corners of the vehicle. The physical tyre models 
presented in chapters 3 and 4 use directly the aforementioned kinematic quantities and 
the total vertical load for the calculation of tyre forces and moments. On the contrary, 
the Magic Formula and other empirical and analytical models make use of the actual 
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slip values in the form of slip angle and longitudinal slip ratio. In order to maintain 

compatibility with such models, the interface between the vehicle model and any tyre 

model is set up in order to provide the following inputs from the vehicle to the tyres: 

1. Slip angle 
2. Slip ratio 
3. Vertical load 

4. Camber angle 

5. Forward velocity of the centre of the wheel 

Tyre models can selectively use the first 4 input quantities (Magic Formula and other 

semi-empirical and analytical physical models), or all 5 input quantities (Physical 

numerical models). In particular, the forward velocity is used in conjunction with the 

slip angle and slip ratio in order to extract the linear velocity of rolling and the lateral 

velocity of the centre of the wheel which are required by the numerical physical 

models. This procedure takes place within the tyre model calling functions. 

Referring to figure 5.5, the tyre slip angles for the general case of the four-wheel 

steering are calculated by the following relations: 

a, = S, - Arctan[(V + Jai " r)/(U + Icl " r)] (5.101) 

a2 = S2 - Arctan[(V + tat " r)/(U - Icl " r)] (5.102) 

a3 = S3 - Arctan[(V - IbI " r)/(U + Idl " r)] (5.103) 

a4 = S4 - Arctan[(V - IbI - r)/(U - Idl . r)] (5.104) 

where a; denotes the slip angle of the ih wheel and 8f, 8, denote the front and rear 

steering angles respectively. 
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Figure 5.5 Relation between the slip angle and the kinematic conditions at the wheel centre 

The longitudinal slip ratio can be calculated if the rotational dynamics of the wheels 

are solved simultaneously to the equations of motion of the vehicle, taking also into 

consideration the tyre force equations, as demonstrated in detail in section 3.3.5.1. 

Alternatively, a slip ratio value can be imposed as an external stand-alone excitation. 

Although the rotational motion of the wheel has already been described in equations 

(3.171)-(3.172), the idea of the inclusion of the wheel dynamics in the vehicle model 

was abandoned as a source of further complications, such as the need for the 

definition of wheel braking and/or driving torque functions, not to mention the 

significant increase in computational time, even under purely cornering manoeuvres. 

The vertical forces applied on the wheel hubs can be easily calculated by adding the 

elastic and damping forces generated by the suspensions at the corresponding points 

(equations (5.83)-(5.86) and (5.90)-(5.93)). Furthermore, the reactions of the anti-roll 
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bars are undertaken by the suspension linkages and are finally transferred to the 

ground through the tyres. The additional vertical forces due to the ant-roll bars are 

expressed as follows: 

F 
Kam� '0 

Z, rou -- 2IcI 
(5) . 105 

FK fro, 0 
ýýo� = 2IcI . 106 (5) 

Knou 0 
Faro� 

21dl 
5.107) ( 

Fz4ron = 
Kff 

ou '0 

21dj 
(5.108) 

The resulting total vertical force on the it' wheel becomes: 

Fa = Fro� - Fk; - Fdj (5.109) 

Finally, all tyre forces are written with respect to the tyre local (SAE) frame of 

reference. Hence, it is essential to project the tyre forces to the vehicle frame of 

reference (Rj): 

FXý 
e= 

(F� )" cosS; - 
(FY ), 

" sine; 

Fri =(F. ), sinSi +(FY) "cos8i 

(s. ii 0) 
(5.111) 

The forces determined by relations (5.110) and (5.111) generate moments about the 

axes of the local frame of reference. The calculation of pitch and yaw moments 

requires the knowledge of the distance of the origin of the local frame of reference 
from the ground. Referring to figure 5.6, if the initial vertical displacement of the 

vehicle body (z0) is known, then the height of the frame of reference from the ground 
is equal to h+zo-z. Therefore, the tyre moments about the local frame of reference are 
written as follows: 
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M. 
t, « - F, . 

(h + zo - z) (5.112) 
1-1 

4 
M,, tyTe "(h+za -z) (5.113) 

MZt, 
fe = Fý a-F, b+ (F, 

- F,,, )' c+ (Fx; 
- FXa )' d (5.114) 

Origin of the Initial position of the 
local frame of vehicle body 
reference 

--i 

Intermediate position of 
the vehicle body 

- -- --L---ý-ý_ 

"`ýý 

. 
-'1t\ --r. 

h 

Position of the vehicle body when its 

weight is undertaken by the suspension 

Figure 5.6 The height of the local frame of reference from the ground 

5.5 Enhancement of the Vehicle Model for Combined Ride-Handling 

Simulations 

The present research is focused mainly on the contribution of the pneumatic tyre to the 

handling characteristics of vehicles. Nevertheless, during the modelling procedure, 

effort was put into developing a vehicle model as generic as possible, within the pre- 

specified time schedule. As a result, an additional set of equations was derived, for the 

inclusion of vertical wheel dynamics. This section describes briefly this approach. 
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The ride characteristics of a vehicle depend strongly on the unsuspended mass and the 

vertical stiffness of the tyres. The effects of these factors are overlooked by the 6- 

degree of freedom model previously described. Therefore, the number of degrees of 

freedom is increased by adding a vertical motion for each wheel. Prior to the inclusion 

of the additional 4 degrees of freedom in the original model, the methodology for 

studying the ride characteristics is demonstrated by presenting the quarter car model. 

5.5.1 The Quarter-Car Model 

The quarter car model consists of a wheel, which is connected to approximately a 

quarter of the vehicle's mass by a spring and a damper, as shown in figure 5.7. As the 

model moves forward, the road profile provides a kinematic excitation which is 

transferred to the wheel through the stiffness and damping properties of the tyre. The 

quarter car vehicle model possesses two degrees of freedom which include the vertical 

motions of the vehicle mass and the wheel. The equations of motion for the quarter car 

model are derived easily by applying Newton's second law of motion. When the 

quarter car model runs over a road anomaly such as a bump, it is possible to observe a 

total loss of contact between the tyre and the road until, under the influence of gravity 

and the force generated by the suspension spring, the tyre manages to regain contact 

with the road profile. One way of simulating the loss and regain of contact between 

the tyre and the road is switching between two sets of equations, one that applies when 
the tyre is in the air and one that applies when the tyre is in contact with the ground. 
This switching affects only the equation of motion of the wheel so that in the first case 
(when the wheel is in the air) the only forces applied on the wheel are those generated 
by the suspension, as a result of the displacement and velocity of the wheel relative to 

the vehicle body. When contact between the tyre and the ground surface is 

established, the wheel is thought to be connected to a second set of spring and damper, 

which serves as a simple representation of the vertical compliance of the tyre. 
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II 

Referring to figure 6, the equations of motion are written first for the case of retaining 

the contact between the tyre and the ground. 

The equation of motion of the wheel is given below, taking into account the elastic 

and damping forces both from the suspension and the tyre: 

- 
ktyre 

('wheel -Xd 
)-Cryre 

* 
((wheel 

- Xroad 
)+ 

mwheel g- mwheel *'Xwheel 
(5.115) 

+ ksucp 
(xbody 

- Xwheel 
)+ 

Csusp * 
(body 

-'wheel 
)=0 

Similarly, the equation of motion of the vehicle quarter-body can be easily derived, 

taking into account the suspension forces. The following equation applies always, 
irrespective of whether the wheel retains contact or not: 

-k usp . 
(xbody 

- Xwhee! 
)- 

Csusp " 
(±body 

- Xwheel 
)+ 

mquarfer 'g - mquarter *'xbody =0 (5.116) 

The condition that ensures contact between the tyre and the road surface is: 

ktyre * 
(X 

wheel -X road 
)+ 

Ctyre *( wheel - -X road) 
>o (5.117) 
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When the contact between the tyre and the road surface is lost, i. e. when equation 
(5.117) becomes : 50, the following set of equations applies for the wheel and the 

quarter-body, respectively: 

m"ö-m*X 
wheel 

+ ksasp 
" 

(X 

body -X wheel 

)+ 
Csusp * 

(body 
-X wheel 

)=0 
(5.118) 

- 
ksusp 

. 
(Xbaiy 

- Xwhee! 
)- 

Csusp * 
(Xbociy 

- Xwheel 
)+M"9-M* 

body =0 (5.119) 

5.5.2 Implementation in the Six Degree of Freedom Model 

In order to include the vertical motion of the wheels in the six degree of freedom 

model, it is essential to add the four equations of motion of the wheels and 

additionally modify the expressions of the spring, damper and anti-roll bar forces and 

moments, already written for the vehicle body. The modified equations of motion of 

the vehicle body remain the same throughout the simulation, while the equations of 

motion of the wheels switch between two different states according to the loss of 

contact concept. 

The spring and damping forces acting on the vehicle body are modified as follows: 

Fk, = -Kf 
[(z 

- Icl "O- lal " cp - xwheelt)] (5.120) 

F =-Kf[(z+Icl"0-lal*9-Xwheel2)] (5.121) 

F =-Kr[(z-Idl"0+IbI"(P-Xwhec13)l (5.122) 

Fk4 =-Kr[(z+ldl"0+Ibl"cp-Xwheel4)l (5.123) 

Fdl =-Df[(W-Icl"p-lal-q-Xwheel IA (5.124) 

Fd2 _-Df[(W+lcl-p-lal"q-xwhee12A (5.125) 

F =-Dr[(W-Idl"p+lbl"q-Xwheel3)] (5.126) 

Fd4 =-Dt[(W+Idl"p+lbl"q-*wheel4)] (5.127) 

When the vehicle possesses 6 degrees of freedom, roll angle 0 is the only variable 
needed to calculate the moment generated by the anti-roll bars. On the contrary, when 
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the wheel motions are included, anti-roll bar moments can also be generated by the 

uneven vertical displacement of the wheels on the opposite sides of the vehicle. For 

instance, when the front right wheel runs over a road bump the front left wheel 

remaining levelled, a torsional deflection of the front anti-roll bar is observed. This in 

turn generates a moment round the longitudinal axis of the vehicle. The effect of the 

wheel motion on the calculation of the anti-roll moments, can be easily realised by 

including an additional angle Oh,,,, as a result of the uneven displacement of the 

wheels. Angles 0K, 
heelj , 

ewheeli for the front and rear anti-roll bars respectively, are 

written as follows: 

X 
wheell -X wheel2 = tan o 

21c1 wheelf 

Xwheell - Xwheel2 
p ewheelj = atan 

2ICI 
(5.128) 

Xwheel3 - Xwheel4 

21d1 
= tan ewheelr = 

ewheelr =- atan 
Xwheel3 - Xwheel4 

(5.129) 
2IdI 

Consequently, the moments generated by the anti-roll bars are obtained by adding 
°wheel to the body roll angle 0, as shown below: 

Mx 
f roll = -Kf roll * 

(o 
+ Owheelf ) 

Mxr 
roll = -K r roll ' 

(e 
+ ewheelr ) (5.130) 

It should be noted that the angles 0wheelf , 
ewheelr may be negative or positive, depending 

on the relation between right and left-side vertical displacements of the wheels. 

The equations of motion of the wheels are given below: 

I" Wheel: 

277 



Chapter 5: Tyre Models in Handling Analysis 

Contact condition: 
kure 

' ('wheel I-X road 1+ Ctyre * 
(iwheel 

1- 
"road 

I) 
ý0 (5.131) 

Equation of motion while the tyre retains contact: 

- 
ktyrel 

" 
(X 

wheel1 - 
Xroad l)- Ctyrei * 

(X 
wheel1 - 

'road 
l)+ mwheell 'ö- mwheell 'X wheell 

+Kf "[(Z-Icl. o_Ial "cp-Xwheell)]+Df "[(w-ICI" p-lal "C1'-. xwheell)] (5.132) 

- 

Kfro// * 
(e 

+ Owheelf) 

_ 

Equation of motion for loss of contact condition: 

mwheell *g- mwheell * Xwheell +Kf" 
[(Z 

-ICI "8 -I al .e-X wheel1 AJ 

Kjroll "(9±9wheefý (5.133) 
+Df "[(w-lei"p-Iai-q-Xwheell)J 

_C 
=0 

2 

2 °d Wheel: 

Contact condition: kyre ' 
(X 

wheel 2- Xroad 2 
)+ 

Ctyre *( wheel 2- 'xroad 2) >0 (5.134) 

Equation of motion while the tyre retains contact: 

- 
ktyre2 

" 
(X 

wheel2 -X road 2)- Ctyre2 * 
(X 

wheel2 -X road 2)+ mwheel2 *g-m wheel2 "X whee12 

+Kf "[(Z+lcI. 
8-lal'(P 

-Xwheel2)]+Df "[(w+jcj"p-ICYI"C1'-'wheel 2)J 
(5.135) 

+K 
fro1, " 

(o 
+ Owhee 

f) 
_0 

2"C 

Equation of motion for loss of contact condition: 

mwheel2 *g- mwheel2 *X wheel2 
+Kf" 

[(z 
+ ICI 

"e- 
lal 

" (- Xwheel2 
)} 

+D1 " 
[(W 

'f- 
ICI 

"p-I LII " Ci - -Cwhee12 
A 

(5.136) 

+ 
Kfro1! . 

(o 
+ Owheelf) 

_0 
2"C 

3 ̀d Wheel: 
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Contact condition: knrc 
" 

(xwheel3 
- Xroad 3) + Ctyre * (wheel 3-X road 3) >05.137) 

Equation of motion while the tyre retains contact: 

- 
kryre3 

* (Xwheel3 - Xroad3 
)-Cryre3 

* 
(Xwheel3 

- Xroad3 
)+ 

mwheel3 "g- mwheel3 , Xwhee13 

+Kr "[(Z-Idl "9+Ibl "! P-Xwheel3)]+Dr "[(w-ldl " p+lbl "q-'whee13)] (5.138) 

-n 
rrn! l " `o + Owheelr) 

=0 

2"d 

Equation of motion for loss of contact condition: 

mwheel3 "ö- mwhee/3 ' Xwheel3 + Kr " 
[(Z 

-Idl"e+l 
bl 

.V- Xwheel3 
)1 

+D, "[(w-Id)"p+Ibl"q-zwhee, 3)}-K�, 
" (0 +dOwheelr) 

_0 
(5.139) 

4th Wheel: 

Contact condition: kyre 
* (X wheel 4-X road 4)+ Cryre * 

(±wheel 
4- xmad 4) >0 (5.140) 

Equation of motion while the tyre retains contact: 

- 
kryre4 

' 
(Xwheel4 

-X road4 
)- 

Cryre4 ' 
(*wheel4 

- xroad4 
)+ 

mwheel4 'g- mwheel4 ' xwheel4 

+K, "[(z+ldl "9+Ibl "(p-Xwheel4)]+1)r'[(w+ldl " p+lbl "q-xwheel4)J (5.141) 

+ 
Krro! 

l ' 
(e 

+ Owheelr) 

=O 
2"d 

Equation of motion for loss of contact condition: 

mwheel4 "g- mwheel4 " Xwheel4 + Kr " 
[(Z 

+ Id! 
"8+I bl 

" (p - Xwheeº4 
)J 

+D, "[(w+ldl" p+lbl "q-Xwheel4)] (5.142) 

+ 
Krrolº 

. 
(o 

+ ewheelr) 

_0 2"d 
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5.6 Steering Geometry 

The steer-angles of the front wheels are calculated based on the Ackerman steering 

geometry [44]. Referring to figure 5.2, the relation between front left (5k) and front 

right (82) steer-angle is given below: 

cotan(S, )-cotan(82)= +l 

all 

5.7 Numerical Procedure 

(5.143) 

The equations of motion of the vehicle are solved numerically using the 4`h order 

fixed-step Runge Kutta method, or alternatively the Euler-explicit method. It is found 

that due to the low frequencies involved in vehicle handling dynamics, the simple, 

single-step Euler method yields identical results to the generally much more accurate 

Runge Kutta method, for time-steps shorter than 0.01 [s]. 

The vehicle model operates in combination with a selection of three steady-state tyre 

models, namely the Magic Formula and the two physical models developed in chapter 

3. In transient mode, it interacts with the enhanced generic transient model presented 
in chapter 4. 

When the vehicle model runs in conjunction with a steady-state tyre model, the tyre- 

force calculating sub-routine is called 4 times (once for each tyre) within each time- 

step and the corresponding lateral and longitudinal tyre forces are passed to the 

equations of motion of the vehicle, as external excitations. In the event that the 

transient tyre model is used in the simulation, this procedure is slightly modified. The 

discretised tyre model requires a much smaller time-step, lying in the range between 

0.0001 and 0.00005 [s]. In order to control the computational effort, the vehicle 
integrator retains its large time-step (0.01-0.002 [s]), while the tyre model integrator 

runs internally, performing n time-steps within each external time-step, where n 
denotes the ratio between vehicle and tyre time-step size. The normal pressure 
distribution is calculated by the tyre model only once in the beginning of the internal 

integration procedure, based on the inputs from the vehicle model. At the end of this 
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procedure the tyre forces corresponding to the nt' internal time-step are passed to the 

vehicle model which, in turn, advances its states and passes them again to the tyre 

model for a new internal integration session. Obviously, by setting the vehicle time- 

step size equal to the time-step size used by the tyre integrator, n becomes equal to 1 

and the advancing rate of the tyre states coincides with the advancing rate of the 

vehicle states, with an overall increase in the computational effort required. 

5.8 Simulation Results 

A number of simulations are carried out with the vehicle running over a flat road 

surface. The rotational and vertical degrees of freedom of the wheels are disregarded, 

thus the model is assumed to posses only 6 degrees of freedom. The vehicle 

parameters correspond to a family saloon car and are shown in table 5.1. The 

parameters were kindly supplied by the vehicle dynamics laboratory in the 

Aeronautical and Automotive Engineering department of Loughborough University. 

The suspension spring, damper and anti-roll bar coefficients included in table 5.1 are 

assumed to remain constant; hence all suspension components are considered to 

demonstrate linear behaviour. In addition, it is assumed that the camber angle remains 

equal to zero for all four wheels during the simulations. 

Table 5.1 

Vehicle Parameters 

Parameter Description Symbol Value Units 

Total mass of the vehicle m 1492 [Kg 

Wheelbase 1 2.745 [m 

Distance between front axle and origin of the 

l. f. r. * 
a 1.098 [mI 

Distance between rear axle and origin of the 

l. f. r. 

b -1.647 [mI 

Half front track width C 0.76 [mI 

Half rear track width d 0.7635 [mI 

Height of the origin of the l. fr. from the 

ground 

h 0.117 [m 
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Total roll inertia I. 513 Kg " m2 

Total yaw inertia IZý 2769 [Kg 
" m2 

j 

Total pitch inertia I0 2599 [Kg 
- m2 

Product of inertia I-, 1.269 j [Kg 
" m2 

Product of inertia Iy, 0.07266 Kg " m2 

Product of inertia Izx -3.593 Kg " m2 

Distance of c. g. from the origin of the l. f. r on 

x-axis 

XG 0 m 

Distance of c. g. from the origin of the l. fr on 

y-axis 
YG 0 m 

Distance of c. g. from the origin of the l. fr on 

z-axis 

ZG -0.54545 F m 

Stiffness coefficient of front suspension Kf 28880 [N/m] 

Damping coefficient of front suspension Df 3500 [N " s/m] 

Stiffness coefficient of the rear suspension K, 27320 [N/m] 

Damping coefficient of the rear suspension D, 3500 [N " s/m] 

Front anti-roll bar stiffness coefficient K fro� 1800 [N " mlrad ] 

Rear anti-roll bar stiffness coefficient Kr, 
0r, 

1800 [N - ml rad 

* local frame of reference 

5.8.1. Cornering Manoeuvre Using Steady-State Tyre Models 

The first simulation involves a step-steer input. The vehicle is considered travelling 

with an initial forward velocity of 90 km/h (25 m/s) with no traction or braking forces 

being applied on the wheels (zero longitudinal slip). Figure 5.8 shows the steer angle 

of the front left wheel, while the angle of the front right wheel is calculated using 

equation (5.143). Figures 5.9 through 5.22 illustrate various responses, as obtained 

using the three steady-state tyre models described in chapter 3, namely the Magic 

Formula, the simple physical model and the advanced physical tyre model. Clearly, 

the use of different tyre models has yielded large deviations in the handling response 

of the vehicle. In general, both physical tyre models exhibit a higher force-generating 
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potential. This is evident directly by comparing graphs 5.17,5.18 and 5.19, showing 

the lateral forces generated by each wheel, and indirectly by observing the roll 

velocity and roll angle, shown in figures 5.11 and 5.14. Also, if one considers the fact 

that the centre of gravity of the vehicle lies significantly closer to the front axle, it is 

sensible to expect under-steer behaviour during cornering. The lower lateral forces 

generated by the Magic Formula tyre model intensify this effect, as observed in figure 

5.16, illustrating the path of the vehicle. Two root causes can be identified as 

responsible for the aforementioned differences in the behaviour of the vehicle. Firstly, 

the asymptotic values of the tyre forces are velocity dependent for both physical tyre 

models. Considering the magnitude of the initial velocity (25 m/s) and the additional 

deceleration due to the projections of the lateral forces on the longitudinal axis, it is 

easy to realise why the physical tyre models operate under conditions that lie between 

those shown in figures 3.33 and 3.37, as far as the sliding velocity is concerned. Due 

to the severity of the manoeuvre, the vehicle operates at high slip angles, where the 

differences between the forces are larger. The second, more important reason behind 

the observed differences is related to the load-dependency of tyre friction. The 

mechanism of the reduction of the coefficient of friction as the vertical load increases 

is partially explained in section 3.2.3.2. The Magic Formula tyre model accounts for 

this phenomenon by connecting, through an experimentally identified relation, the 

coefficient of friction to the actual normal load applied on the tyre (see equations 

(3.69) and (3.72)). On the contrary, none of the physical models employs a load- 

dependent coefficient of friction, and results in large deviations observed in the lateral 

force, as illustrated in figure 3.51. Therefore, as the roll angle increases during the 

course of the manoeuvre (see figure 5.14), the lateral weight transfer has a negative 

effect on the grip of the Magic Formula model, leaving the two physical models 

unaffected. 
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Figure 5.8 The step-steer input 
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Figure 5.9 Forward velocity response to a step-steer excitation 
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Figure 5.16 The path of the vehicle under a step-steer manoeuvre 
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Figure 5.17Lateral forces on all tyres as generated by the Magic Formula model 
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Figure 5.18 Lateral forces on all tyres as generated by the simple physical tyre model 
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Figure 5.19 Lateral forces on all tyres as generated by the advanced physical tyre model 
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Figure 5.22 Normal forces generated by the suspension - Advanced physical model 

5.8.2. Cornering Manoeuvre Using the Transient Tyre Model 

An identical step-steer manoeuvre as the one carried out in the previous section is 

simulated, this time using the transient tyre model developed in chapter 4. It is 

immediately evident from figures 5.24 and 5.27 that the behaviour of the vehicle has 

shifted towards excessive over-steer. In addition, the delayed response of the transient 

model has smoothened out the oscillations observed in the lateral velocity and yaw 

responses, obtained using the steady-state tyre models (see figures 5.10 and 5.13). The 

lateral tyre forces transferred to the wheel hubs at the four corners of the vehicle are 

shown in figure 5.30. While in figures 5.17-5.19 (force response of steady-state tyre 

models) the front wheels are characterised by the immediate generation of lateral 

forces based on the initial slip angles as dictated by the steer angle, the transient tyre 

model demonstrates a significantly different behaviour, as illustrated in figure 5.30. 

Initially, the forces on both front wheels increase in an almost identical oscillatory 

manner, demonstrating significant overshoot. As the effect of vehicle body-roll alters 
the lateral weight distribution in favour of the outer (left) wheels, the lateral force on 

-- Tyre normal forces - Advanced model 
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- Rear left 

- Rear right 

the left wheel increases in a step-oscillatory manner. Similarly, the lateral force 
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generated by the inner front tyre under-goes step reductions characterised by 

oscillations. On the other hand, the rear tyres operate under an approximately linearly 

increasing slip angle, as a result of the gradual build-up of yaw rate and lateral 

velocity, during the course of the manoeuvre. 

5.8.2.1 The Concept of the Non-Dimensional Yaw Impulse 

The intensified over-steer may be attributed to the non steady-state tyre force 

generation mechanism, as simulated using the transient tyre model. To support the 

analysis, a new measure is defined, designated the non-dimensional yaw impulse. 

Under steady-state cornering conditions the yaw rate of the vehicle body remains 

constant when the vehicle negotiates a corner of known radius, at a constant forward 

velocity. At this stage, the yaw moment generated by the front tyres should balance 

the yaw moment generated by the rear tyres, while the resulting force from all tyres 

balances the centrifugal inertial force applied on the centre of gravity of the vehicle. 

This situation holds true irrespective of the inherent handling characteristics of the 

vehicle i. e. whether the vehicle shows a tendency to under-steer or over-steer. At this 

stage, the character of the vehicle is revealed, for example, by attempting to increase 

the forward velocity, while maintaining a path of equal radius of curvature. As 

indicated in equation 2.4, the steer-angle 5f will have to increase for a vehicle with 

under-steering behaviour, or decrease for a vehicle which demonstrates over-steer. 
Under transient conditions, the definition of under-steer and over-steer appears to be 

somewhat more ambiguous. Both under-steering and over-steering vehicles tend to 
increase their yaw rate when subjected to an increase in the steering angle. The yaw 

moment generated by the front tyres exceeds the yaw moment generated by the rear 

tyres and this results in a subsequent increase in yaw velocity, until the new 

equilibrium condition is reached, that is, if equilibrium is achieved at all. In an effort 

to compare the contribution of non-similar tyre models, such as the steady-state tyre 

models and the transient model, the non-dimensional yaw impulse is defined as 
follows: 

r_I 
FY, (t)" cos(S1 (t))+ Fy2 (t)" cos(S2 (t)Jlal 

- 
IFy3 (t)+ Fya (týlbl 

IFt" (5.144) 
y, 

() cos((5, (t)) + FyZ (t) " cos(SZ (t)ýJal + Ii y3 
()+ F t ya 

(týlb 
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The above non-dimensional quantity indicates the ratio of the resultant yaw moment 

generated by all tyres (magnitude of the vectorial addition of front and rear moments), 
divided by the sum of the front and rear yaw moments (scalar addition). In the event 

that front and rear moments balance each-other, the numerator becomes equal to zero. 
In the extreme case that the rear tyres fail to generate any force at all, I' becomes 

equal to 1, and, finally, if the front tyres generate zero force, r equals -1. The term 

impulse is justified if both the numerator and denominator are multiplied by dt, in 

which case equation (5.144) indicates the ratio of rotational impulses. In order to 

assess the contribution of the tyre forces in yaw moment generation over a period of 
time At equation (5.144) may be written as follows: 

(t) + Fy2 (týdt 
rý = 

lal f +A'IF3,, (t) " cos(S, (t)) + FF2 (t) " cos(82 (t)ýdt 
-Ibl 

f +ý I FY, 
(5.145) 

Ial f +ý I FY, (t) " cos(8, (t)) + Fy2 (t) " cos(82 (t)ýdt +I bl $I Fy, (t) + Fy2 (týdt 

The values of r or I's, are strongly related to the yaw response of a vehicle and 

provide a comparative measure of the cornering characteristics of a vehicle under 

transient manoeuvres. It should be noted that these values depend on the interaction 

between the vehicle and the tyre. For example, when using the Magic Formula tyre 

model, the load dependency of the tyre characteristics in relation to the various weight 

transfers may result in different values of IF and I', for a specific vehicle performing 

a pre-defined manoeuvre on different tyres. 

5.8.2.2 Comments on the Non-Dimensional Yaw Impulse 

Other measures are often used in order to assess the cornering response of vehicles. In 

this section, the basic properties of the non-dimensional (normalised) yaw impulse 

will be discussed briefly, in relation to some of these frequently used measures. 
Firstly, one may assume that observing the yaw rate alone provides the same insight 

into the behaviour of the vehicle. The advantages will be shown by considering 

equation 5.77 which describes the yaw response in the simple case of the bicycle 

model. For the sake of simplicity a snapshot is considered where the front and rear 

slip angles are equal to af and ar respectively. It is assumed that the steer-angle is 

sufficiently small so that the lateral forces are approximately perpendicular to the x- 
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axis of the vehicle. Furthermore, linear tyres are used in the model. Under these 

circumstances, equation 5.77 can be re-written as follows, if only the tyre forces are 

considered: 

C,, f - af "lal - Ca, " a, "IbI=Iu "(dr/dt) (5.146) 

It becomes obvious from equation (5.146) that for a different moment of inertia Iz, 

different yaw rates would be predicted over a short period of time At for which the 

slip angles are considered to remain constant. Similarly, if the cornering stiffness of 

'both the front and rear tyres is doubled, a twice as high yaw rate is predicted. The 

increased yaw rate cannot be attributed to an increased contribution from the front 

tyres or a smaller contribution from the rear tyres. Unlike the yaw rate, the normalised 

yaw impulse appears to concentrate on the relative contribution of the front and rear 

tyres. Thus, equation (5.145) results in the same value of IF,,, in both the cases 

examined above. By looking simultaneously at the yaw rate and the normalised yaw 
impulse, one may arrive to a conclusion as to whether the yaw rate builds up faster 

due to an alteration in the balance of the vehicle, or due to stiffer - more responsive 

tyres, both in the front and rear ends. Of course, if the balance is altered by changing 

the properties of one pair of tyres, front or rear, the normalised yaw impulse would 

capture the effect. 

A similar measure, employed by Milliken and Rice in the Moment Method [ 116] is 

the yawing moment coefficient, defined as the total moment about the z-axis divided 

by the product of the vehicle weight and the wheelbase. It is observed that this 

measure, although normalised, is not insensitive to changes such as the alteration - by 

the same factor - of both the front and rear cornering stiffness. In a way, the measure 

provides an indication of the total yaw moment generated by the tyres, but is unable to 

reveal whether this yaw moment is due to a substantial contribution by both ends or 
due to an unequal contribution between the front and rear sets of tyres. 

Finally, considering equation (5.144) and assuming a vehicle with provision for rear- 
wheel steering, it becomes obvious that the normalised yaw impulse equals -1 at the 
onset of rear-wheel steering. As a conclusion, the normalised yaw impulse may serve 
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as a clear and simple measure of the transient cornering response of a vehicle. By 

definition, the measure is sensitive only to the balance between front and rear lateral 

forces. Off course, this balance is sensitive to a number of other parameters such as 

the lateral and longitudinal weight transfers which in turn depend on the suspension 

properties and the position of the centre of mass of the vehicle. All these parameters 

may vary during the course of a single transient manoeuvre and the normalised yaw 
impulse is expected to vary as well in a complex, non-linear manner. Nevertheless, if 

any alterations result in the reduction of I A, as calculated over a pre-specified period 

of time, one may be certain that the vehicle has become less over-steering in terms of 

transient behaviour. A full sensitivity analysis of the normalised yaw impulse to 

various vehicle and tyre parameters is yet to be undertaken and is expected to reveal 

the strengths and weaknesses of the proposed measure. 

5.8.2.3 Application of the Non-Dimensional Yaw Impulse 

In the present work, r and F are employed as a rough measure, in order to aid the 

quantification of the delayed response of the rear tyres in the case of the transient tyre 

model. While the front tyres also exhibit a delayed response compared to the steady- 

state tests, it is evident from figure 5.30 that the rate of force generation by the front 

left tyre is much higher than the corresponding force by the rear left tyre. This effect is 

quantified in figure 5.32, which shows the non-dimensional yaw impulse with respect 

to time. I A, is calculated over a period of 0.6 s from the initiation of the manoeuvre 

and is found to be equal to 0.2321. The corresponding values of r for the vehicle 

running on the advanced physical tyre model are shown in figure 5.33. As expected, 

the value of IFA, over the same period of time is significantly lower (r =0.1529). It is 

worth noting that in both figures 5.32 and 5.33, r starts from a value of 1, which 

indicates the sole contribution of the front tyres to the generation of yaw moment. 

In general, the aforementioned analysis implies that, when the transient response of 
the tyres is coupled to the dynamic response of the vehicle a whole, minor delays and 

phase lags might result in major alterations in its handling behaviour. 
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Figure 5.23 Forward velocity response to a step-steer excitation - Transient tyre model 
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Figure 5.24 Lateral velocity response to a step-steer excitation - Transient tyre model 
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Figure 5.25 Roll velocity response to a step-steer excitation - Transient tyre model 
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Figure 5.26 Pitch velocity response to a step-steer excitation - Transient tyre model 
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Figure 5.27 Yaw velocity response to a step-steer excitation - Transient tyre model 
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Figure 5.28 Roll angle response to a step-steer excitation - Transient tyre model 
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Figure 5.29 Pitch angle response to a step-steer excitation - Transient tyre model 
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Figure 5.31 Normal forces generated by the suspension - Transient tyre model 
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Figure 5.32 Non-dimensional yaw impulse as generated by the transient tyre model 
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Figure 5.33 Non-dimensional yaw impulse as generated by the advanced physical tyre model 

5.9 General Conclusions 

In the present chapter the two physical steady-state tyre models presented in chapter 3 

and the generic transient tyre model developed in chapter 4 were employed in full- 

vehicle handling simulations. For this purpose a relatively complex vehicle model was 

developed from scratch and its integration with the aforementioned tyre models and 

the Magic Formula was discussed thoroughly. 

The handling behaviour of the vehicle in relation with each one of the four tyre 

models (simple physical, advanced physical, Magic Formula and transient model) was 

assessed using a rather abrupt step-steer input. Firstly, the ability of the physical 

steady-state models to operate in a full vehicle simulation environment was 
demonstrated. The results were directly compared with those obtained using the 

Magic Formula. It was found that both physical models yielded very similar results. 
This was expected since the main difference between the two models lies in the 

calculation of the self-aligning moment at large slip angles. However, large 

differences were observed when comparing the results from the physical models to the 
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results obtained by the Magic Formula. In particular, both physical models predicted a 

significantly higher yaw rate than the Magic Formula and the resulting trajectory 

showed a much higher curvature. This difference was attributed mainly to the 

increased lateral force predicted by the physical models at high slip angles and the 

lack of provision for the reduction of the coefficient of friction with increasing normal 
load. Consequently, the overall force generating potential of the physical models was 

not affected by the lateral weight transfer. 

The generic transient tyre model resulted in a completely unstable over-steering 
behaviour when subjected to the same step-steer input as the steady-state models. 
Since the model is capable of generating the delayed response of the lateral forces, it 

was suspected that the different rates of increase in the lateral forces between the front 

and rear parts of the vehicle were responsible for the aforementioned behaviour. To 

quantify the influence of the rate of lateral force generation, a new measure was 
derived, designated the normalised yaw impulse. The effectiveness of this measure 

was discussed briefly and its relation with the yaw rate was analysed to some extent. 
Finally, the normalised yaw impulse was used in order to compare the response of the 

advanced physical model with that of the transient model. In the case of the transient 

model, the normalised yaw impulse confirmed the increased force contribution from 

the front tyres, while in the case of the steady-state model it was shown that the 

contribution was better distributed between the front and rear tyres. 
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Chapter 6: Conclusion and Suggestions for 

future work 

6.1 Overall Conclusion 

The present research provides an integrated, detailed picture of the influence of tyre 

modelling in vehicle handling studies. The main volume of the work is devoted to the 

mathematical modelling of the pneumatic tyre. In particular, a purely numerical 

approach is followed, mainly as a result of the computational power available 

nowadays. 

In the field of steady-state tyre analysis, it is found that physical tyre models, 

possessing a moderate number of parameters with direct physical meaning, can 

describe the handling behaviour of tyres relatively well. The modelling of the tyre is 

closely related to the contact mechanics behaviour of rubber in stick-slip, and 

attention is paid to the velocity dependent friction characteristics. In addition, the 

successful representation of the longitudinal pressure distribution has been a major 

concern. It is shown that velocity dependent deviations in pressure distribution largely 

affect the generation of self-aligning moment, whilst the tyre forces remain 

unaffected. Numerical analysis has been successfully employed in order to predict, in 

a physical manner, the effect of viscoelastic friction and hysteresis in the tyre force 

and moment generation procedure. This approach enables the operation of a tyre 

model in a wide range of conditions with some confidence that the corresponding 

condition-dependent properties will change in a way that reflects the undergoing 

physical phenomena. Despite its generally accepted advantages, the Magic Formula 

tyre model currently lacks the ability to account for phenomena such as the influence 

of a velocity dependent normal pressure distribution. 

In the area of transient tyre analysis, the significance of accurate prediction of friction 

is addressed. It is pointed out that the stick-slip behaviour of rubber may be 

represented by a conventional stick-slip friction law, in combination with the use of a 
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viscoelastic Kelvin element. In this procedure, the correct choice of simulation 

parameters such as the time-step and the velocity threshold seems to play an important 

role. Simulations indicate that abrupt manoeuvres might cause some fluctuations in 

lateral force characteristics. Still, these preliminary findings need to be refined and 

compared with carefully designed experiments. Towards the end of the tyre modelling 

section, findings and approaches from all previous tyre models are combined in order 

to create a fairly complex discretised generic transient tyre model, which possesses a 

useful quality, namely a separate fully dynamic representation of the tread with 
inertial and damping properties. The model seems capable of representing the 

transience involved in both lateral and longitudinal manoeuvres. 

Finally, the ability of the models to operate in a full-vehicle handling simulation 

environment is demonstrated in chapter 5. By comparing the steady-state tyre models 

with the magic formula model, it is shown that differences in the characteristics of the 

tyre model may alter the response of a vehicle significantly. The undoubtedly steep 

steering input used for the simulations results in the tyres operating at high slip angles 

and under high vertical loads. Under such conditions, the physical tyre models predict 
large deviations from the Magic Formula. These deviations lead to a less under- 

steering behaviour of the vehicle, when running on the physical tyre models. Last, but 

not least, the use of the generic transient model for the same manoeuvre reveals the 

significance of the transience in the tyres' responses; in the handling behaviour of the 

vehicle. It is shown that the tyre forces in the front (steered) wheels increase in a step- 

oscillatory manner, while the combination of the response lags between front and rear 
tyres alters the balance between front and rear yaw moment and leads to a completely 

unstable behaviour of an inherently under-steering vehicle. 

6.2 Achievement of Aims 

The main objectives of the present research are clearly identified in the first chapter of 
the thesis. In this section, the level of fulfilment of the 3-year research mission is 

assessed, with emphasis on the major findings and the novelty of the approaches 
undertaken. 
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The research into the steady-state behaviour of the pneumatic tyre has been carried out 
in conformance with the viscoelastic properties of rubber. The two physical models 
developed are characterised by a purely dynamic representation of the contact patch, 

using bristles with inertial and damping properties. Thus, the situation within the 

contact is described by a couple of second order differential equations for the 

corresponding degrees of freedom of the bristle, as opposed to the commonly used 
deformation equations. This quality enables the calculation of the actual sliding 

velocity of the bristles during the transition between the stick phase and the phase 

where the bristle has reached the steady-state sliding velocity. The overall behaviour 

of a Kelvin element with inertia was discussed in relation with the calculation of the 

transition velocity and the influence of inertia and damping was assessed. It was found 

that, while inertia is essential for the maintenance of stick-slip, a mass-less Kelvin 

element is probably a more realistic choice, which still enables the explicit calculation 

of the transition velocity. In addition, it was pointed out that when both damping and 
inertia are neglected, i. e. when the bristles are modelled as simple springs (see for 

example [48] and [56]), the assumption of any sensible transition velocity is justified. 

In terms of modelling, a new approach is followed for the calculation of the normal 

pressure distribution. Not only is the vertical deflection calculated dynamically, but 

also the necessary algebraic constraint equations are formulated and solved 

simultaneously with the differential equations of motion. This procedure is 

successfully combined with a non-linear radial stiffness, which accounts for the effect 

of air-pressure inside the tyre. The effectiveness of the normal pressure calculation 

procedure was assessed indirectly by calculating the rolling resistance coefficient as a 
function of rolling velocity. The results showed generally good agreement with 

experiments; nevertheless the shape of the curves obtained indicates the necessity of 
incorporating non-linear damping in the calculation of the normal pressure 
distribution. Finally, the anisotropic, velocity dependent friction together with the 

anisotropic properties of the bristles in the lateral and longitudinal directions, provide 

a well defined formulation with direct physical significance for the simulation of 
combined-slip operating conditions. 

The simple physical steady-state model is successfully extended, in order to enable the 

simulation of transient operating conditions. The integration procedure is modified as 

required for this purpose and the bristles are also interconnected in an attempt to 
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achieve a more realistic representation of the tyre tread behaviour. This unique 

modelling approach is used for the assessment of the role of friction force generation. 
Subsequently, the requirement for a dynamic tread is integrated in the final generic 

transient tyre model. Hitherto, this is probably the only numerical model developed, 

which incorporates a fully dynamic tread with the capability of simulating stick-slip 
friction. Parallel to the formulation of the equations of motion for the belt and the 

tread, subtle numerical techniques are employed in order to restrain the tread in the 

neighbourhood of the contact area and at the same time successfully simulate the 

rolling motion of the tyre. 

A fairly elaborate vehicle model is developed with detailed description of all the 

intermediate steps, as described in chapter 5. The model is used in handling studies as 

described in the previous section. Apart from the assessment of the contribution of the 

tyre models in the overall handling performance of the vehicle, a new measure is 

devised for the characterisation of the transient response of the vehicle. The 

normalised yaw impulse directly relates the cornering behaviour of the vehicle to the 

contribution from the tyres. The non-dimensionalisation of this measure to some 

extent permits a quantitative measure of comparison between the responses of a 

vehicle using different tyre models, with emphasis on the balance between front and 

rear tyre forces under transient operating conditions. 

6.3 Limitations and Suggestions for Future Work 

As is the case in all research activities, the thorough study of a physical phenomenon 

reveals additional problems to the ones initially perceived. Moreover, one finds that it 

is impossible to provide full and definitive solutions to a complex problem. 
Accordingly, the present research has attempted to illuminate certain aspects of tyre 

handling behaviour using approaches that are characterised by certain limitations. 

Firstly, the assumption of a uniform pressure distribution in the lateral direction of the 

contact patch is clearly not valid due to the geometry of the contacting solids. Large 
deviations are expected in the presence of camber angle. These deviations might relate 
to the subsequent drop observed in the cornering stiffness. This phenomenon is 

accounted for in an empirical manner in the Magic Formula. However, a physical 
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modelling approach would enhance understanding and increase the level of 

confidence for use in a wide range of conditions. 

Apart from the fact that the presence of camber inclination can alter the normal 

pressure distribution in the lateral direction and subsequently influence the force 

generation mechanism, the current formulation of the camber effect neglects the 
influence of tyre width in the generation of the self-aligning moment. 

Additionally, the friction law used in the physical models is independent of the 

vertical load and this fact leads to inaccurate results under high loads. While it would 
be simple to adopt an empirical law for the load dependency of friction (such as the 

one used in the Magic Formula), it is preferable to employ a method, which relates to 

the viscoelastic nature of rubber friction. 

Besides the aforementioned directly identifiable limitations, the potential of the 

models developed can be increased through a series of improvements. At the same 

time, an extended range of simulations should be undertaken in combination with 

carefully conceived experiments. 

In terms of modelling, a major improvement would involve the extension of the tyre 

models from single plane to double or triple-plane models. In this way, the alterations 
in the shape of the contact and the normal pressure distribution may be simulated 

adequately for use in vehicle handling studies. The accuracy of the steady-state 

models would benefit from such an improvement, mainly through the introduction of 
the effect of tyre width in the self-aligning moment generation due to camber and 
turn-slip. Nevertheless, these models would be unable to perform at rest. On the 

contrary, the formulation of the generic transient model permits its use in parking 

manoeuvres. Under such conditions, the adoption of a multiple-plane model would 
improve the accuracy in the calculation of the self-aligning moment, by taking into 

consideration the moment generated by the longitudinal anti-symmetrical deformation 

of the tyre. 

In the experimental field, steady-state tests should be carried out for the accurate 
determination of the parameters of the physical steady-state models. In addition, 
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measurements of the size and shape of the normal pressure distribution are required 
for the identification of the parameters of the advanced steady-state tyre model, 

affecting the vertical and radial degrees of freedom. Since a direct connection between 

rolling resistance and normal pressure distribution has been demonstrated, it is 

possible that measurements of the rolling resistance at different velocities would aid 

the identification of the parameters involved in the calculation of the normal pressure 
distribution, avoiding the measurement of the distribution itself. In this procedure, a 

model incorporating non-linear damping for the simulation of the normal pressure 
distribution would probably yield better agreement between the experimental and 

numerical results. In addition, tyre-model oriented transient friction tests are essential 

for an in-depth investigation of transient friction force generation, ideally in 

comparison with results obtained by a transient friction tyre model. Finally, 

appropriate modal tests are required for the estimation of the parameters of the generic 

transient tyre model. 

Based on the aforementioned experimental work, refined versions of all tyre models 

may be used in extensive handling studies, including combined cornering and 

braking/traction manoeuvres. The use of the generic transient tyre model may prove 

valuable in assessing the effectiveness of stability-enhancing control systems in a full- 

vehicle handling simulation environment. In this context, the concept of normalised 

yaw impulse can be used for the assessment of the transient handling responses of the 

vehicle. To gain confidence in the use of this measure, a sensitivity analysis is 

required, using a variety of steady-state and transient models with different properties. 
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Appendix B: Additional figures 

Force and velocity distributions along the contact patch (Advanced model) 
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Figure B 3.40 Identical results to those shown in figure 3.40, pp. 152, with a scaling that shows the 
lateral velocity 
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Figure B 3.42 Identical results to those shown in figure 3.42, pp. 153, with a scaling that shows the 
lateral velocity 
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Figure B 3.46 Identical results to those shown in figure 3.46, pp. 155, with a scaling that shows the 
lateral velocity 
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Force and velocity distributions along the contact patch (Advanced model) 
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Figure B 3.50 Identical results to those shown in figure 3.50, pp. 157, with a scaling that shows the 
lateral velocity 

Force and velocity distributions along the contact patch (Advanced model) 
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Figure B 3.54 Identical results to those shown in figure 3.54, pp. 159, with a scaling that shows the 
lateral velocity 
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