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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Jiayu Tang

We live in the midst of the information era, during which organising and indexing infor-

mation more effectively is a matter of essential importance. With the fast development

of digital imagery, how to search images - a rich form of information - more efficiently

by their content has become one of the biggest challenges.

Content-based image retrieval (CBIR) has been the traditional and dominant technique

for searching images for decades. However, not until recently have researchers started

to realise some vital problems existing in CBIR systems. One of the most important

is perhaps what people call the semantic gap, which refers to the gap between the

information that can be extracted from images and the interpretation of the images for

humans. As an attempt to bridge the semantic gap, automatic image annotation has

been gaining more and more attentions in recent years.

This thesis aims to explore a number of different approaches to automatic image annota-

tion and some related issues. It begins with an introduction into different techniques for

image description, which forms the foundation of the research on image auto-annotation.

The thesis then goes on to give an in-depth examination of some of the quality issues

of the data-set used for evaluating auto-annotation systems. A series of approaches to

auto-annotation are presented in the follow-up chapters. Firstly, we describe an ap-

proach that incorporates the salient based image representation into a statistical model

for better annotation performance. Secondly, we explore the use of non-negative matrix

factorisation (NMF), a matrix decomposition tehcnique, for two tasks; object class de-

tection and automatic annotation of images. The results imply that NMF is a promising

sub-space technique for these purposes. Finally, we propose a model named the image

based feature space (IBFS) model for linking image regions and keywords, and for im-

age auto-annotation. Both image regions and keywords are mapped into the same space

in which their relationships can be measured. The idea of multiple segmentations is

then implemented in the model, and better results are achieved than using a single

segmentation.
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Chapter 1

Introduction

In the last decade, digital imagery has grown at a phenomenal speed in many direc-

tions, resulting in an explosion in the number and size of image archives required to

be organized. In particular, with the widespread use of digital cameras, mobile phones

with built-in cameras, and storage of personal computers reaching to a level of hundreds

of gigabytes, individuals nowadays can easily produce thousands of personal images.

Meanwhile, photo sharing through the Internet is becoming more and more popular.

For example, by June 2005, the Internet photo-sharing website Flickr1 had almost one

million registered users and hosted 19.5 million photos, with a growth of about 30 per-

cent per month (Li and Wang, 2006). By April 2007, Flickr had over 5 million registered

users and over 250 million images (Ames and Naaman, 2007). Although people like the

Filickr users are increasingly attaching tags to their images, the vast majority of the

images on the Internet are barely documented, making it very difficult for people to find

one of interest. In order to handle overload and exploit the massive image information,

we need to develop techniques to document and search images.

Earlier efforts in image search has been mainly focused on content-based image retrieval

(CBIR), which retrieves images by analysing and comparing low-level image information.

CBIR systems usually rely on the feeding of desired image examples from the user as a

starting point, and is known as the query by example paradigm. However, unskilled users

may find it tedious to do so. Query by semantics (e.g. textual words) is more preferred.

For example, if you want to find sunset images, it is more convenient and explicit to

directly use the semantic word “sunset” as the query, than to find a sunset image or draw

a sunset-like figure first. Intuitively, image retrieval would be more straightforward if all

the images in the database were semantically annotated. By using standard text query

techniques, images could be found in a manner that would meet the different needs of

many users. Moreover, by combining these text-based approaches with visual content

search techniques, users could have much more control over the search. In this thesis,

1www.flickr.com

1
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we attempt to investigate the feasibility and issues of automatically annotating images

with textual words through analysis of the image contents. The terms ‘annotations’,

‘captions’ and ‘labels’ in this work all refer to textual keywords that describe the content

of a particular image.

1.1 Aims and objectives

The original aims of this work were to investigate promising approaches to automatic

image annotation, by either utilising and modifying different techniques in the informa-

tion retrieval community, especially content-based image retrieval, or developing new

techniques. The efforts toward achieving this objective consist of two intertwined parts;

the development of a suitable image description, and the development of an advanced

machine learning technique for associating words with images. In this work, we will

explore both areas, though the second is the focus of the research.

In the process of pursuing the objective, the work has also investigated some relevant

issues and tasks regarding automatic image annotation. For example, we have closely

examined some quality issues of the data-sets used for experiments on image auto-

annotation. We have also made a step forward to attempt to relate words with specific

regions of images, which is considered as a task of object detection.

1.2 Contributions

This thesis brings a number of contributions to the field of automatic image annotation.

They are itemised briefly as follows.

• An in depth investigation into some of the quality issues with image data-sets that

are used for research on image auto-annotation.

• The development of an approach to image auto-annotation using salient region

description of images with a statistical model.

• The development of an approach to finding object classes in an unlabelled image

collection, using the non-negative matrix factorisation (NMF) technique.

• The demonstration of the potentials of NMF as an alternative approach to latent

semantic indexing (LSI) for automatic image annotion through semantic propaga-

tion.

• The development of a model named the image based feature space (IBFS) model

for linking image regions or segments with text labels, as well as for automatic

image annotation.
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• The development of an approach to improving annotation performance using mul-

tiple segmentations of images.

The research has led to one refereed journal publication, four refereed conference papers

and one refereed workshop paper. Tang and Lewis (2006) demonstrated some problems

of experimentations on automatic image annotation using the popular Corel set com-

pared with the Yahoo based training set. Tang and Lewis (2007a) gave more extensive

and detailed experiments and discussions on this subject. Tang et al. (2006) proposed

the novel use of the salient region description of images with a statistical model. Tang

and Lewis (2008) explored the use of non-negative matrix factorisation (NMF) for ob-

ject class detection and auto-annotation of images. Tang and Lewis (2007b) invented a

model named image based feature space model for discovering the relations between im-

age regions and text labels. This model is also extended to image auto-annotatin. Tang

and Lewis (2007c) proposed to incorporte multiple levels of segmentation of images for

auto-annotation, in order to improve the results.

1.3 Thesis Structure

This thesis presents the work carried out by the author in attempting to achieve the

goals outlined earlier in Section 1.1. The structure and content of the thesis is described

in the following on a chapter by chapter basis.

• Chapter 2 - Background Introduction the background behind this work. Re-

search on traditional content-based image retrieval is introduced, in the form of

three different retrieval scenarios. It then goes on to review a number of very dif-

ferent automatic image annotation techniques in the literature. Finally it describes

several performance evaluation metrics used in this work.

• Chapter 3 - Image Description Presents a variety of techniques regarding the

description of the information encapsulated in images. It describes the process of

image description as three steps - region choosing, feature extraction and feature

quantisation. The chapter ends with the introduction of two description examples

that are used in the research undertaken by the author.

• Chapter 4 - Quality Issues with Data-Sets Examines some quality issues

of the widely adopted data-set, the Coral set, for evaluation. The analysis is

undertaken by comparing the results of applying three different auto-annotation

techniques on the Coral set and Yahoo set, which is constructed by the author.

• Chapter 5 - Incorporating a Statistical Model with Salient Regions Pro-

poses a novel auto-annotation technique that incorporates the salient region rep-

resentation of images with a statistical model.
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• Chapter 6 - Non-negative Matrix Factorisation Explores the use of the non-

negative matrix factorisation technique for automatic image annotation and object

detection. The first part utilises NMF as a technique for discovering the object

classes from a collection of un-annotated images. The second part demonstrates

the potentials of NMF as an alternative approach to latent semantic indexing for

image auto-annotation.

• Chapter 7 - The Image Based Feature Space Model Describes a model

developed by the author, namely the image based feature space model. This

model is demonstrated to be capable of relating keywords with image regions

within the same feature space. It is then used to annotate images at both the local

and global image level. The second part of this chapter incorporates the idea of

multiple segmentations into the model and shows that better performance can be

achieved.

• Chapter 8 - Conclusions and Future Work Discusses and concludes the

overall results and contributions from the work presented in previous chapters.

The chapter ends with some pointers to the future work regarding chapter 4 to

7, and an overview of the future of automatic image annotation from the author’s

point of view.



Chapter 2

Background

The aim of this chapter is to present an overview of the research that is related to this

thesis, with focus on automatic image annotation techniques. Firstly, we briefly review

the field of content based image retrieval, which serves as the foundation of image auto-

annotation. Secondly, we discuss a number of auto-annotation techniques found in the

literature, which are categorized into three main groups. Finally, several evaluation

metrics for performance comparison on auto-annotation are introduced.

2.1 Content Based Image Retrieval

Image retrieval has been an active research area since the 1970’s (Rui et al., 1999).

Researchers from two different communities, database management and computer vision,

proposed two different directions of retrieval, one being text-based and the other visual

based. Text-based image retrieval in the past usually required the images to be annotated

with words manually before retrieval can be conducted. With the significant advances

of database management and textual information retrieval, text-based image retrieval

in this framework has achieved some success. However, two major difficulties make this

approach unfavorable, especially when a large number of images are involved. The first

one is simply the vast amount of labor needed for manual annotation. The second is due

to the subjectivity of the annotators; individual persons may perceive images in very

different ways, resulting in different labels.

In the early 1990’s, Content-Based Image Retrieval (CBIR) emerged as a new technique

and started to gain more and more attention. CBIR retrieves images based on the visual

content, such as colours and textures, rather than the keywords. Smeulders et al. (2000)

gave a thorough overview of CBIR techniques in the literature by the year 2000. Some

more recent work on CBIR and also automatic image annotation can be found in the

review by Datta et al. (2005). According to the categorization of Cox et al. (2000),

5
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image retrieval tasks fall into three different scenarios: category search, target search

and association search. In the following, we describe each category in details, together

with a discussion of some important relevant work.

2.1.1 Category Search

In category search, the users search for one or more arbitrary image representitives

that belong to a prototypical category, such as “cars”, “pedestrians” or “human faces”.

Since each category is generally an object class, category search can also be considered

as object class recognition.

Early research on object class recognition was mainly focused on face detection (Viola

and Jones, 2001), where detection algorithms try to locate human faces in images if there

are any, i.e. which image patch is a face. Afterwards, the research area has been extended

to generic object detection. For example, Fergus et al. (2003) proposed an “unsupervised

scale-invariant learning” approach to discovering object classes including “motorbikes”,

“faces”, “airplanes” and “spotted cats” from a data-set containing background images.

Objects were modeled as constellations of parts (i.e. salient regions), which were found

by a salient region detection algorithm. For each object class, a probabilistic model was

estimated on the training set to describe the relationships between the scale, location

and appearance of parts. Sivic et al. (2005) and Russell et al. (2006) described the aims

of their experiemnts as: “ Is it possible to learn visual object classes simply from looking

at images? ”. In other words, they took away the labels from the training set and tried

to find object classes purely on the visual information of the images. Unsupervised topic

discovery techniques, probabilistic Latent Semantic Analysis (pLSA) (Hofmann, 1999,

2001) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003), were borrowed from the

text analysis community. Images were treated as text documents and quantised salient

feature descriptors found in images were treated as words. Therefore, discovering object

classes from images is analogous to discovering topics from a corpus of text documents.

2.1.2 Target Search

In target search, the users have a precise copy of the image in mind and intended to

find the exact same or similar ones from the database. Applications where this type

of search is useful include checking if a particular trademark logo has been registered

(Eakins et al., 1998), or finding relevant information (e.g. title, artist, etc.) of a specific

painting (Hare and Lewis, 2005a). Target search usually resorts to a sample image given

by the user, and is known as the “query by example” paradigm. Therefore, rather than

asking the system to “find images with trees” as in the category search scenario, here

the users ask it to “find similar images to this one”. Sample images can be images the

user already possessed or sketches drawn by the user.
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Jacobs et al. (1995) proposed an approach to retrieving images that are similar to a hand-

drawn sketch submitted by the user. The similarity between the sketch and each image

from the database is calculated as the distance of the coefficients generated by wavelet

decomposition of the images. However, in this retrieval mechanism, information about

the desired target image can only be expressed to a very limited extent, considering the

quality of the sketch. A more general choice is using example images, i.e. an image

containing the object or content to be searched for. Numerous researchers have adopted

this mechanism in their experiments (Flickner et al., 1995; Mokhtarian et al., 1996;

Wang et al., 2001; Hare and Lewis, 2004). Unfortunately, because of the phenomenon

which is now commonly referred to as the semantic gap (Smeulders et al., 2000), this

mechanism often fails to capture the similarity that is latent but can be inferred by

humans. Besides, finding a suitable example image is a difficult task in itself (Rodden,

1999).

2.1.3 Association Search

Association search is also known as browsing, where users have no particular target

image in mind at the beginning of the search. Often, the goal of the search may change,

and the users may refine the search through interaction with the system in an iterative

manner. Interaction is usually achieved by relevance feedback (Rui et al., 1997; Hiroike

et al., 1999) from the user.

A common choice of organising data for browsing is hierarchical structures, which is

also known as tree structures. For example, Barnard and Forsyth (2001) proposed a

generative hierarchical model for organising images. Both labels and image segments

were integrated into the construction of the model. Because of the hierarchical char-

acteristic of the model, image browsing is well supported. An alternative structure is

image networks. More flexible navigation is supported in networks, because they need

not be acyclic as trees.

2.1.4 Image Search in the Real World

Google Image Search1 is probably the most famous real world search engine for images.

There are also many similar engines such as Yahoo Image Search2, and MSN Image

Search3, and so on. As many researchers have pointed out, these search engines rely on

textual descriptions found on the Web pages containing the images and the file names

of the images (Li and Wang, 2006). Although the results of search are fairly good in

many cases (e.g. searching for images of a celebrity), one should be aware that the

1http://images.google.com
2http://images.search.yahoo.com
3http://images.live.com
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(a) (b)

Figure 2.1: Google Image Search results of (a) “Washington”; (b) “Washington” with
“face” constraints

textual descriptions are mostly given by people manually. Considering the effort of

manual annotation, the number of images with textual descriptions is probably very

small compared with those with no descriptions. In other words, the results are chosen

from candidates that constitute only a very small portion of the images actually available

on the Internet.

With the advances of research in CBIR, there have been already some realisations of

CBIR techniques in real world applications. For example, Google started to integrate

face detection techniques into their image search engine. Although the new feature has

not been released yet, users can use it by appending “&imgtype=face” to the end of the

URL. Figure 2.1 shows the result of a search for images using keyword “Washington” and

that of applying “face” constraints. As can be seen, results for “Washington” contains

images of maps, places and persons, while that for “Washington” with constraints of

“face” filtered out all non-face images. The technique proposed by Jacobs et al. (1995)

has been efficiently implemented in Retrievr4, a sketch based image search interface for

retrieving images from the online photo sharing website Flickr.

2.2 Automatic Image Annotation

In the past, research on content-based image retrieval tended to focus on the technique

side, ignoring the user side. Despite this, some researchers have examined the design

of retrieval systems and provided some insights (Smeulders et al., 2000; Hollink et al.,

2004). In particular, the problem of what is now called the semantic gap has been

highlighted. Smeulders et al. (2000) described semantic gap as follows.

4http://labs.systemone.at/retrievr/
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“The semantic gap is the lack of coincidence between the information that

one can extract from the visual data and the interpretation that the same

data have for a user in a given situation.”

They also concluded that:

“A critical point in the advancement of content-based retrieval is the se-

mantic gap, where the meaning of an image is rarely self-evident. The aim

of content-based retrieval systems must be to provide maximum support in

bridging the semantic gap between the simplicity of available visual features

and the richness of the user semantics.”

As an attempt to bridge the semantic gap, automatic image annotation techniques have

attracted a lot of interest in recent years. The aim of auto-annotation techniques is

to attach textual labels to un-annotated images, as the descriptions of the content or

objects in the images. In this thesis, we are interested in automatic annotation of public

domain images (see Figure 6.6 for examples), as different from more specific domain

images, such as medical images (Deselaers et al., 2007). In the following, we will first

discuss the advantages of automatic image annotation. Then, we will review a number

of auto-annotation techniques that have been published in the literature. The chosen

techniques have been grouped into three categories: statistical models, vector space

related approaches and classification approaches.

2.2.1 Why Automatic Image Annotation?

The final goal of automatic image annotation is mostly to assist image retrieval by

supplying users with a text based interface for search. If successful, images can be

retrieved in a way that is similar to search of text documents as many people do on

Google. We discuss the reasons for automatic image annotation from two perspectives,

manual annotation and CBIR.

2.2.1.1 Automatic Image Annotation vs. Manual Annotation

One of the most cited arguments supporting the use of automatic image annotation is

probably that manual annotation requires enormous human effort. As we have said,

countless images exist in our lives. It is not possible to annotate them all by hand.

Automatic annotation by computer is a potential and promising solution to this problem.

However, a few issues exist with auto-annotation of images. For example, Enser et al.

(2005) pointed out two limitations of automatic image annotation as compared with
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manual annotation by experts. The first limitation, visibility limitation, is that key-

words predicted by auto-annotation techniques usually have to be related to visible

entities within the image, but users are frequently interested in the significance of ob-

jects or scenes displayed. In other words, conceptual content and contextual information

which do not come with any visually salient features are difficult to capture. The second

limitation, generic object limitation, refers to the generic nature of labels in the vocab-

ularies. As Enser et al. (2005) described, “they have the common property of visual

stimuli which require a minimally-interpretive response from the viewer”. They pointed

out that search requests for images with features uniquely identified by proper name,

such as identification, are very common. Again, visual saliency can not give much help.

We agree with the above arguments on limitations, but we also believe in the value

of image auto-annotation. Although it is not possible (at least for the time being)

to annotate conceptual interpretation of images, being able to automatically annotate

simple objects depicted in images would be of great help, considering the quantity of

images nowadays.

2.2.1.2 Automatic Image Annotation vs. Query-by-Example

Generally, query-by-exmaple CBIR systems answer users’ search requests by calculating

the visual similarities between the example and images in the database. This mechanism

is useful when visual appearances of the images are more important, rather than the

objects or concepts depicted. In particular, if the image contents do not have intuitive

meanings, such as textile images and trademark images (Eakins et al., 1998), query-by-

example seems to be the best choice. However, some limitations make auto-annotation

a better alternative.

• Unfavorable interface. Query-by-example retrieval requires the user to submit a

sample image in order for the system to perform a search. Users may find it

difficult to obtain such examples. Although drawing a sketch is a potential way

to get around this, users may feel it tedious to do so frequently. After all, the

most straightforward way to submit a request is perhaps through a single word or

two, indicating the desired content. This procedure matches well with the goal of

automatic image annotation.

• Computational cost. Query-by-example requires similarity computations between

the query image and a possibly large number of images in the database, which is

time-consuming. Designing a system that supplies real-time responses could be a

challenge. Automatic image annotation, on the other hand, is generally performed

offline. Therefore, it is easier to achieve fast responses at the time of query.
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2.2.2 Statistical Models

Statistical techniques have been popular in the field of information retrieval. Recently,

researchers began to apply them to image auto-annotation, with very promising results.

The basic idea of statistical techniques is to estimate the probabilities of documents

related to the query submitted by the user. Documents are then ranked according to

their probabilities. In the following, we review a number of statistical models which

have been proposed and applied to image annotation in the recent years.

2.2.2.1 Co-occurrence Model

The co-occurrence model proposed by Mori et al. (1999) is perhaps one of the first

attempts at image auto-annotation. They first divide images into rectangluar tiles of

the same size, and calculate a feature descriptor of colour and texture for each tile. All

the descriptors are clustered into a number of groups, each of which is represented by the

centroid. On the other hand, each tile inherits the whole set of labels from the original

image. Then, they estimate the probability of a label w related to a cluster c by the

co-occurrence of the label and the image tiles within the cluster, as follows

p(w|c) =
mc,w

∑

w mc,w

where mc,w is the number of times word w occurs with an image tile from cluster c.

Given an un-annotated image q, they divide it into rectangular tiles and extract feature

descriptors in the same way as before, and then find the closest cluster centroid for each

tile. At this point, the probability of each label related to each of the test tiles can be

measured. The labels having the highest average probabilities over all the tiles of a test

image are chosen as the predictions. Mathematically, it can be denoted as follows

p(w|q) =
1

|q|
∑

t∈q

p(w|ct)

where p(w|q) is the average probability of w given image q, ct is the closest cluster of

tile t from q, and |q| is the number of tiles.

2.2.2.2 Machine Translation Model

Duygulu et al. (2002) proposed a machine translation model for image auto-annotation.

They argued that region based image annotation is more interesting because global

annotation does not give information on which part of the image is related to which

label. In their point of view, the process of attaching labels to image regions is analogous

to the translation of one form of representation (image regions; French) to another form

(labels; English).
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They first use a segmentation algrithm to segment images into object-shaped regions.

Then, feature quantisation is applied to the feature descriptors that are extracted from all

the regions, to build a visual vocabulary called ‘blobs’. A ‘blob’ is in fact a representitive

of a cluster of visually similar image regions. Finally, a machine translation model

which was initially proposed for linguistic translation is adopted to build a ‘lexicon’, a

translation table containing the probability estimations of the translation between image

regions and labels. An unseen image is annoated by choosing the most likely word for

each of its regions.

2.2.2.3 Cross Media Relevance Model

Jeon et al. (2003) improved on the results of Duygulu et al. (2002) by introducing a

generative language model to image annotation, referred to as the cross-media relevance

model (CMRM). The same process as used by Duygulu et al. (2002) was chosen to

calculate the blob representation of images. However, as different from the assumption

by Duygulu et al. that there exists an underlying one-to-one correspondence between

the blobs and words, they only assume that a set of blobs is related to a set of words.

Thus, instead of seeking a probabilistic translation table, CMRM simply approximates

the probability of observing a set of blobs and words in a given image.

It is assumed that for a given un-annotated image I, there exists an underlying proba-

bility distribution (denoted as P (·|I)) of all possible blobs and words that could appear

in image I. If the blob representation of I is I = {b1...bm}, where m is the number of

blobs in I, the probability of observing word w is approximated as

P (w|I) ≈ P (w|b1, ..., bm)

Once the image is chosen, calculating P (w|b1, ..., bm) is equivalent to calculating the joint

probability P (w, b1, ..., bm), which is approximated as the expectation over the entire

training set. Under the assumption that words and blobs are generated independently

given a training image J , P (w, b1, ..., bm) is calculated as follows

P (w, b1, ..., bn) =
∑

J∈T

P (J)P (w|J)

m
∏

i=1

P (bi|J)

where T is the training set. Prior probabilities P (J) are kept uniform over all training

images, while P (w|J) and P (bi|J) are estimated by smoothed maximum likelihood.

2.2.2.4 Continuous Relevance Model

Lavrenko et al. (2003) argued that the process of quantization from continous image

features into discrete blobs, as the approach used by the machine translation model
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and the CMRM model, will cause the loss of useful information in image regions. By

using continuous probability density functions to estimate the probability of observing a

region given an image, they improved on the results obtained by Duygulu et al. (2002);

Jeon et al. (2003).

Specifically, they replace P (bi|J) of the CMRM model with P (vi|J), where vi is the

continuous feature vector of an image region. P (v|J) is a non-parametric kernel-based

density estimate as follows

P (v|J) =
1

n

n
∑

i=1

1
√

(2π)d|Σ|
e−(v−vi)⊤Σ−1(v−vi)

where n is the number of region feature vectors in image J , and Σ is the convariance

matrix for controling the degree of smoothing. In their work, Σ is simply set to Σ = β ·I,

where I is the identity matrix. β is a value selected empirically on a held-out portion

of the training set. Feng et al. (2004) modified the above model such that the proba-

bility of observing labels given an image (P (w|J)) is modeled as a multiple-Bernoulli

distribution. In addition, they simply divided images into rectangluar tiles instead of

applying automatic segmentation algorithms. Their Multiple Bernoulli Relevance Model

(MBRM) achieved further improvement on performance.

2.2.2.5 Other Probabilistic Approaches

Monay and Gatica-Perez (2003) applied probabilistic latent semantic analysis (PLSA)

(Hofmann, 1999) to image auto-annotation. Both text words and image features were

treated as terms. It was assumed that each term can come from a number of the latent

topics, and each image can contain multiple topics. However, in their experiments, the

result of PLSA was worse than that of latent semantic indexing (LSI) (Deerwester et al.,

1990) based on propagation. Blei and Jordan (2003) described three probabilistic models

which are built upon the assumption that images and words are generated by a mixture

of latent factors, each model corresponding to the way images and words are generated.

The Gaussian-multinomial mixture model assumes that the entire image and captions

are conditional on the same factor, while the Gaussian-multinomial LDA model assumes

the image regions and captions are conditional on two disparate sets of factors. However,

both are claimed to have some limitations. The third model, correspondence LDA, is a

compromise of the former two, assuming that the image regions can be conditional on any

factors, but captions can only be conditional on factors that already exist in the images.

Experiments showed that the third model outperforms the other two. Carbonetto et al.

(2004) proposed a model that takes into account the spatial relationships between objects

or regions in images; their results showed that spatial context improves the accuracy of

object recognition. Yavlinsky et al. (2005) showed that their non-parametric models

achieve comparable results with state-of-the-art methods (Lavrenko et al., 2003; Feng
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et al., 2004), even by using very simple global image features like colour and texture.

Carneiro et al. (2007) proposed to estimate the semantic class distributions through a

“pooling” process that is justified by Multiple Instance Learning (MIL) (Maron and

Lozano-Pérez, 1998), without the need to segment images.

2.2.3 Vector Space Related Approaches

The vector space model framework is another popular technique in information retrieval,

especially text retrieval. Generally, documents are represented as vectors, each of which

contains the occurrences of words within the document in question. The length of the

vectors is equal to the vocabulary size. In this section, several image auto-annotation

approaches that utilize the vector space model are introduced. These approaches treat

images as documents, and build visual terms which are analogous to words, from the

image feature descriptors.

2.2.3.1 The SvdCos Method

Pan et al. (2004) proposed a series of auto-annotation methods which capture the as-

sociation between words and blobs (Duygulu et al., 2002) through their pattern of oc-

currence over the entire training set. According to their reported results, the SvdCos

method achieved the best performance. It works as follows.

Firstly, they constructed a N-by-(W+B) data matrix D = [DW |DB ], where DW (i, j)

is the count of label wj in image Ii, and DB(i, j) is the count of blob bj in image Ii.

After weighting the matrix D according to the uniqueness of every kind of blobs and

words, they applied singular value decomposition (SVD) in order to “clean up noise

and reveal informative structure”. The largest singular values that preserve 90% of the

variance were kept and others were set to zero. The matrix after SVD is denoted as

Dsvd = [DW,svd|DB,svd]. Then, they calculated a translation table T , where Ti,j is the

cosine value of the angle between the ith column vector of DW and jth column vector of

DB , i.e. Ti,j = cos(DW (i),DB(j)). Given a query image with a blob representation as

q = [q1, ..., qB ], the words to be predicted can be chosen from the term-likelihood vector

p = Tq, where p = [p1, ..., pW ]⊤, pi being the likelihood of label wi.

2.2.3.2 Saliency-based Semantic Propagation

Hare and Lewis (2005c) proposed a model of automatic image annotation via propagation

of words. Their work is based on the premise that visually similar images should have

similar semantic content. For a given un-annotated image, they ranked all the training

images and chose the labels directly from the top images.
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The method they proposed is based on the concept of Latent Semantic Indexing (LSI).

Images are projected into a sub-space in order to reveal the underlying semantic structure

of the data-set. Firstly, salient regions were chosen from the peaks in a multi-scale

difference-of-Gaussian (DoG) pyramid (Lowe, 1999) of each image. Each salient region

was then described by a Scale Invariant Feature Transform (SIFT) descriptor (Lowe,

1999). They quantised the whole set of SIFT descriptors from the training set into

3000 classes using k-means clustering algorithm. Each class is considered as a visual

term. As a result, each image can be represented by a histogram of visual terms. They

built a term-by-document matrix A where Aij indicates the number of occurrence of the

ith visual term in the jth image. SVD was utilized to decompose A into a sub-space,

resulting in the product of three matrices U,Σ, V , A = UΣV T . The k largest singular

values of Σ were chosen to generate Ak = UkΣkV
T
k . Ak is an approximation of A and is

expected to noise free. Given a query vector q, it can be also projected to the sub-space

built above as qsub = qT UkΣ
−1
k . The similarity between q and each of the training images

is measured as the cosine value of the angle of qsub and each column of V T . Labels of

the top ranked images (1, 2 and 3 in their experiments) were propagated to q.

Hare and Lewis (2005c) also developed a simple vector space model which directly

compares the visual term histograms of images and applies propagation based on the

similarities of the histograms. They reported that the LSI based method achieved better

results than the vector space method on the same data-set.

2.2.3.3 Cross-Language Latent Semantic Indexing based Approach

Dumais et al. (1997) have demonstrated that Latent Semantic Indexing (LSI) can be used

for cross-language information retrieval. Their system can perform text searching on a

collection of French and English documents where queries could be in either language.

This was realized by applying SVD to the term-by-document matrix in which the term

vectors contain both French and English terms. As a result, the documents are projected

into a low dimensional sub-space where co-occurrences of words from different languages

were captured. Documents that are only in one language can then be mapped into the

space and queried by keywords from the other language.

Hare et al. (2006) extended this approach to image retrieval of un-annotated images

through keyword queries, without actually annotating the images. They consider the

visual terms and text labels of each image as two documents in two forms of terms (or

“languages”), one being the translation of the other. First, they build a training term-

by-document matrix O, each term vector of which consists of both visual terms and text

labels. Matrix factorization is applied to turn O into two seperate matrices as

O = TD
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where T is called the term matrix and D is the document matrix. Then, they build an

partially observed matrix for the test images, with any un-observed terms (text labels in

their case) set to zeros. The document-space of the test matrix is created using the term

matrix (T ) from the training matrix as a basis. As a result, all the un-observed terms

in the test matrix are given pseudo-values, which are used for keyword based retrieval.

In terms of auto-annotation, these values also indicate the likelihood of a label related

to an image.

2.2.4 Classification Approaches

Classification approaches for image auto-annotation view the process of attaching words

to images as that of classifying images to a number of pre-defined groups, each of which

is characterised by a concept or word. Given an unannotated image, the classification

algorithms find its membership and annotate it with the corresponding word. Multiple

annotations can be generated by assuming an image belongs to multiple classes.

2.2.4.1 Non-negative Matrix Factorization Approaches

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a matrix factorization

technique that has become popular recently. Because of its non-negative constraints,

many researchers (Tsuge et al., 2001; Guillamet et al., 2002; Xu et al., 2003; Liu and

Zheng, 2004) from the information retrieval community regard it as more suitable for

part-based representation of data, such as text documents and images, and for further

applications such as classification or retrieval.

Tsuge et al. (2001) used NMF as a sub-space technique to project text documents into

a low dimensional semantic space, where the distances between query documents and

those in the database are measured. Xu et al. (2003) adopted NMF for document

classification. They factor the term-by-document matrix X into a basis matrix U and

coefficient matrix V . The membership of a document is chosen as the one with the

maximum value in the corresponding column of V .

Guillamet et al. (2002, 2003) used NMF for image classification. They build a collection

of image patches which were categorized into 10 classes. Both the training set and test set

are built by randomly choosing 1000 patches respectively. For the training patches from

each of the 10 classes, they apply NMF in order to map them into a sub-space, in which a

classifier is learned afterwards. Given a test image to classify, they project it to all the 10

sub-spaces built from the training set and choose the one which achieves the high value

based on the classifiers. Guillamet and Vitrià (2003) compared several different distance

metrics for the space defined by the bases discovered via NMF. Interestingly they found

that in their experiments on object classification, when occlusions are present NMF with
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the cosine distance measure performs the best in comparison with PCA approaches. Liu

and Zheng (2004) argued that the bases learned by NMF are not directly suitable for

object recognition using nearest neighbour methods. They proposed to orthonormalize

the bases before further analysis, and demonstrated that object recognition accuracy

can be improved in this way.

2.2.4.2 Support Vector Machine Approaches

The Support Vector Machine (SVM) is a popular and powerful learning technique for

data classification. Given a set of data points which belong to one or two classes, a linear

SVM finds a hyperplane that leaves the largest number of points from the same class on

the same side, while maximizing the distances of both classes to the hyperplane. Because

of its high generalization performance, it has been introduced to the image community

in which features are usually of very high dimensionality.

Chapelle et al. (1999) were one of the earliest to apply SVM to image classification.

Basic colour histograms are extracted for image description. Since SVMs are initially

designed for binary classification, in their experiments on multiple class (seven classes of

Coral images) classification, a “one against the others” SVM algorithm is used. Recently,

Gao et al. (2006) proposed a framework for image region classification using multiple

SVM classifiers. Firstly, a multi-resolution grid-based representation of images is gen-

erated, where images are divided into regular tiles at different levels. From each tile, a

90-dimensional multi-modal visual feature descriptor is extracted. The 90-dimensional

heterogenous feature space is partitioned into 9 single-modal homogeneous subsets. Sec-

ondly, a weak SVM classifier is learned for each feature subset given an object class

or concept. The most effective classifiers and the corresponding feature subsets and

tile sizes are selected. Finally, the chosen weak SVM classifiers are combined to form

an optimal classifier or ensemble classifier using the Boosting technique. By merging

neighboring image tiles which are classified into the same class, their approach is able to

annotate images at the object level. Qi and Han (2007) combined two sets of SVMs for

image auto-annotation. One set is fed with regional image features which are found by

the Multiple Instance Learning (MIL) (Maron and Lozano-Pérez, 1998) technique, while

the other uses global image features. The outputs of both sets of SVMs are incorporated

to annotate test images.

2.2.4.3 Multiple Instance Learning Approaches

As termed by Maron and Lozano-Pérez (1998), “Multiple-instance learning (MIL) is a

variation on supervised learning, where the task is to learn a concept given positive and

negative bags of instances”. A typical MIL problem can be described as follows. A “bag”

can be considered as a container which contains a number of “instances”. An “instance”
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is an object or observation which can be categorized into one of the two classes, positive

or negative. However, instead of labeling each individual instance, only the bags are

labeled. If all the instances from a bag are negative, then the bag is labeled as negative;

if one or more instances are positive, then the bag is labeled as positive. The purpose of

MIL is to learn a concept which is able to correctly label individual instances. Maron

and Lozano-Pérez (1998) proposed a framework called Diverse Density (DD) to solve

the MIL problem. The DD value of a point measures “how many different positive bags

have instances near that point, and how far the negative instances are from the point”.

Some researchers consider an image as a bag of instances, each corresponding to a

region within the image. Given a keyword, images annotated with it are positive bags,

while the others are negative ones. A number of approaches that use MIL techniques

for image categorization and auto-annotation have been proposed. Chen and Wang

(2004) proposed their DD-SVM framework for image categorization. DD-SVM is a

MIL method that incorporates the Diverse Density framework with the support vector

machines (SVM) technique. Firstly, they segment images into regions, and extract a 9-

dimensional feature descriptor from each of them as an instance. Secondly, a collection

of instance prototypes are learnt according to a DD function. Each instance prototype

is the representative of a class of instances that are more likely to appear in bags with a

particular label than in the others. All the prototypes are used to build a space in which

each axis corresponds to a prototype. Then, training bags (images) are mapped into the

space. The coordinate of a bag on a particular axis is the distance of the corresponding

prototype to the closest instance from the bag. Finally, A standard SVM is trained

based on the positions of the training bags in the space and the corresponding labels.

Test images can be categorized by SVM based on their positions in the above built

space. Bi et al. (2005) used a similar approach, except that instead of using the DD

framework, sparse SVM is adopted for prototype selection and classifier construction. It

is reported as more efficient. Yang et al. (2005) apply a modified DD approach to finding

a representative image region for each label, and then use the representative regions to

annotate test image under Bayesian framework, at both image level and region level.

2.2.5 Discussion

Statistical models are popular in information retrieval, including automatic image anno-

tation as described previously. Generally, they annotate images by estimating the joint

probability of an image and a set of words, the probability of words given an image, or

the probability of words given a specific image region. Documents or words are ranked

according to their probabilities. From the viewpoint of statistical risk, this ranking

principle is optimal if probabilities are calculated perfectly (Ripley, 1996). One of the

drawbacks of using statistical models is probably the computational cost of parameter
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estimation, i.e. the learning process. Most researchers chose the expectation maximiza-

tion (EM) algorithm for finding the parameters that achieve the maximum likelihood

on the training set (Duygulu et al., 2002; Fergus et al., 2003; Blei and Jordan, 2003; Li

and Wang, 2003). For example, as reported by Fergus et al. (2003), it took about 24-36

hours to learn the parameters in their experiments on a training set of 400 images.

Vector space approaches for image auto-annotation consider each image as a vector of

terms, which can be textual or visual. All the vectors are put together to build a term

by document matrix. By applying sub-space techniques, it is hoped the latent semantic

structure of the data-set will be revealed. Compared with statistical methods, vector

space methods give a more clear vision of how images, image regions and words are

related to each other, according to their positions in the feature space. However, the

choice of the dimensionality of the sub-space is still an open question in many researches.

In addition, when the data-set is very large, building a term by document matrix may

cause some storage problems.

Classification approaches consider the process of annotation as finding the member-

ship(s) of an image given a number of pre-defined categories of images. Empirically,

SVM keeps good classification performance in many cases. For example, in chapter 4,

our SVM based auto-annotation method achieves comparable results with the state of

the art methods. A number of published methods which incorporate SVM also achieve

very promising results on image classification or auto-annotation. Chen et al. (2006) used

SVM in their MIL framework, and reported very high accuracy and fast computation in

terms of image classification and object recognition. Classification methods, however,

neither formally measure the probabilities of words related to images, nor organize the

data in a way that is easier for users to understand.

2.3 Evaluation of Annotation Effectiveness

Once the test images are labeled by auto-annotation systems, annotation qualities need

to be assessed for performance comparisons between different systems. A number of

evaluation metrics have been used by researchers, some of which are introduced in the

following.

2.3.1 Precision and Recall

Precision and recall, which are the most popular metrics for comparing different in-

formation retrieval systems, are also widely adopted for evaluating the effectiveness of

auto-annotation approaches. In the information retrieval community, precision of a

query is defined as the ratio of the number of relevant documents that are returned by

the system to the total number of documents returned, and recall is defined as the ratio
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of the number of relevant documents returned to the total number of relevant documents

in the database. However, in the image auto-annotation community, precision and recall

are defined slightly differently. There are two versions, per-image based and per-word

based.

2.3.1.1 Per-image Precision and Recall

Per-image precision and recall are calculated on the basis of a single test image. For each

test image, precision is defined as the ratio of the number of words that are correctly

predicted to the total number of words predicted, and recall is the ratio of the number

of words that are correctly predicted to the number of words in the ground-truth or

manual annotations. Mathematically, they are calculated as follows

Per Image Recall =
r

n

Per Image Precision =
r

(r + w)

(2.1)

where:
r : the number of correctly predicted words;

n : the number of manual labels in the test image;

w : the number of wrongly predicted words.

Per-image precision and recall values are averaged over the whole set of test images to

generate the mean per-image precision and recall.

2.3.1.2 Per-word Precision and Recall

Duygulu et al. (2002) used mean per-word precision and recall to evaluate their an-

notation effectiveness. It is also adopted by many other researchers (Jeon et al., 2003;

Lavrenko et al., 2003; Feng et al., 2004; Carneiro and Vasconcelos, 2005; Yavlinsky et al.,

2005) for comparison purposes.

Per-word precision and recall are calculated on the basis of each keyword in the vocab-

ulary. Specifically, precision is defined as the number of images correctly predicted with

a given word, divided by the total number of images predicted with this word. Recall

is defined as the number of images correctly predicted with a given word, divided by

the total number of images having this word in its ground-truth or manual annotations.

The values are averaged over the words in the vocabulary to generate the mean per-word

precision and recall. However, this metric is also not faultless, as will be described in

Section 4.4.



Chapter 2 Background 21

2.3.2 Keyword Number with Recall>0

Duygulu et al. (2002) also used the keyword number with recall>0 to show the diversity

of correct words that can be predicted by the auto-annotation method. A keyword has

recall>0 if it is predicted correctly once or more, otherwise not.

2.3.3 Normalized Score

Barnard et al. (2003) proposed to use normalized score, which is computed as the fol-

lowing equation, for auto-annotation evaluation:

ENS =
r

n
− w

N − n
(2.2)

where:
r, n,w : the same definition as that of Equation 2.1;

N : the number of words in the vocabulary.

It equals 1 if the image is annotated exactly correctly, −1 if the exact complement of the

actual word set is predicted, and 0 for predicting everything or nothing. However, this

metric is not without problems. As argued by Hare and Lewis (2005c), according to the

result reported by Monay and Gatica-Perez (2003), the normalized score is maximized

when a very noisy result is generated, which is not desired.

2.4 Summary

In this chapter, we have mainly reviewed the background of this thesis. It began with

a brief introduction to the research on CBIR. Three kinds of retrieval scenarios are

introduced, namely category search, target search and association search. A few limi-

tations of the traditional CBIR systems were addressed, the semantic gap problem in

particular. Then, we went on to discuss automatic image annotation techniques, which

are relatively new to the image community and seem to be a promising alternative to

traiditional CBIR. Three main categories of approaches have been reviewed, statistical

approaches, vector space related approaches and classification approaches. In the end,

we introduced several performance evaluation metrics, among which precision and recall

are the most popular.
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Image Description

Digital images are generally considered as two dimensional matrices. Before being anal-

ysed by automatic annotation or object detection algorithms, they need to be condensed

from pictorial information into feature values, so that the information which is important

to the problem being solved can be retained or maximised while the redundancy can

be removed. Image description is the process of generating descriptions that represent

the visual content of images in a certain manner, normally in the form of one or more

features.

We view the process of description as consisting of three steps, region choosing, feature

extraction and feature quantisation, as shown in Figure 3.1. Region choosing selects one

or more regions from the images in the spatial domain. Feature extraction condenses

pixel values of each region into feature values. Feature quantisation maps feature values

from continuous space into a discrete space. The first two steps exist in most cases,

while the third step may be omitted depending on specific approaches.

Extraction
Feature Quantisation

Feature
Images Applications

(CBIR, Image Auto−
Annotation, etc.)

Results

Image Description

Region
Choosing

Figure 3.1: Three steps of the process of image description.

3.1 Region Choosing

In the early years of research on CBIR, global descriptors were the main choices for image

description. However, different approaches (i.e. local descriptors) have been proposed

later as researchers started to realised the limitations of global descriptors, especially

22
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for applications where a particular object in the image is of interest. Local description

approaches often choose parts from the images firstly, and then calculate descriptors

for each individual part. Region choosing can be grouped into three categories, fixed

partitioning, segmentation and saliency. Each category is described in the following. In

fact, global description can be considered as a special case of region choosing, where the

entire image is chosen as the region for feature extraction.

3.1.1 Fixed Partitioning

Fixed partitioning is the most convenient but naive form of region choosing. It applies

the same division to each image, regardless the visual information that differs from one

image to another. For example, Monay and Gatica-Perez (2003) divide images into three

fixed regions, which are the image center, the upper part and the lower part, as shown

in Figure 3.2(a). Qi and Han (2007) adopted a similar approach. The feasibility of this

form of partition relies on the fact that many images depict the main objects in their

center. However, this may not always hold. Some researchers (Lavrenko et al., 2003;

Feng et al., 2004) simply divide images into tiles (rectangles) that have the same size,

as shown in Figure 3.2(b).

3.1.2 Segmentation

Segmentation aims to partitioning images into object-shaped regions, each pixel of which

belongs to one object in the real world and nothing else. Since manual segmentation by

users costs a lot of effort and time, many automatic segmentation techniques have been

developed over the years, such as the Normalised Cut (Shi and Malik, 2000) and JSeg

(Deng et al., 1999). Figure 3.2(c) and 3.2(d) are two examples of a segmented image

generated by automatic segmentation. Unfortunately, none really solves the problem

of relating the segmented region to the actual object. Russell et al. (2006) use a mul-

tiple segmentations approach to find more accurate object extent based on the topics,

or object classes, of the images found in the first place. This is consistent with the

arguement that the automatic image segmentation problem is “not just a bottom-up

image processing problem, but also a top-down problem that requires knowledge of the

true object” (Hare and Lewis, 2005c). Matthews et al. (2002) described both top-down

and bottom-up approaches to visual feature extraction for lipreading. They implied

that the combination of the two approaches are likely to improve on either of them.

However, tailored segmentation algorithms may achieve fairly good results in selected

narrow domains, in which the object is recorded against a clear background, such as

trademarks.
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3.1.3 Saliency

Salient points in an image are those that have special properties which make them stand

out in comparison to neighbouring points. They are required to survive longest after

different kinds of image transformations, such as scaling, rotation, blurring, addition of

noise, viewpoint changes, illumination changes and so on. In other words, salient points

detected in an image should also be detected after transformations. A compact image

description can be derived based around the local attributes of the salient points. Much

work has shown that saliency performs much better than some global image descriptors

in terms of CBIR (Hare and Lewis, 2004; Sebe et al., 2002) and object recognition (Lowe,

1999). A number of different salient points detection methods have been suggested. In

particular, using peaks in a multi-scale difference-of-Gaussian pyramid (Lowe, 1999,

2004) is a popular approach, as shown in Figure 3.2(e).

3.2 Feature Extraction

In the second step, features are extracted out of the image regions which are choosen

from the first step. As mentioned previously, features can be global or local. When

the region is choosen to be the whole image, features are global, describing the whole

image. When the region is choosen to be a partition, segment or salient region, features

are local, describing individual parts of the image. Features can also be categorised

as being general or domain-specific. General features include commonly used features

such as color, shape and texture. However, for special applications such as fingerprint

recognition and lipreading (Matthews et al., 2002), general features are not applicable, so

domain-specific features have to be developed. There are a great number of features used

by researchers. MPEG-7 (Martinez, 2004) standardised a number of visual descriptors

which are selected from many descriptors of a similar kind, through a strict evaluation

procedure, and so are recommanded as of high performance. Theoretically, the combi-

nation of different kinds of features will produce a more robust image description. In

the following, some different image features used for CBIR and image auto-annotation

are discussed, along with the details of those used in this thesis.

3.2.1 Colour

Colour is perhaps the most popular choice of visual features. It can be expressed in

many different kinds of colour-spaces, such as the most widely used RGB space. RGB

representation is in wide-spread use mostly because it describes an image in its literal

colour properties.

The colour histogram, which can be calculated both globally and locally, is one of the

most widely used colour descriptors. It is calculated by discretising the colour space
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(a) Fixed partitioning: center, upper part and
lower part

(b) Fixed partitioning: tiles of same size

(c) Automatic segmentation: Jseg with merging
threshold of 0.9

(d) Automatic segmentation: Normalised Cut
with 5 segments per image

(e) Salient regions found from peaks of DoG pyramid

Figure 3.2: Different forms of region choosing for image description.
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first and then counting the number of occurrence of each discretised colour in the image.

Because histograms are accumulated over the whole image or region, with no information

about locations, they are obviously invariant to translation and rotation of objects. The

first use of colour histogram for image retrieval was proposed by Swain and Ballard

(1991). They also argue that colour histograms are robust to change of viewpoint, scale

and occlusion.

3.2.1.1 Colour Invariants

Although RGB colour has been found to be useful for a wide range of computer vision

problems, cautions need to be taken when using it. In many applications, colour is as-

sumed to be capable of capturing the intrinsic property of the imaged objects. However,

this assumption is not totally valid, because the recorded colours of an image do not

depend only on the objects but also on many other imaging conditions, such as illumi-

nation. RGBs are not stable across a change of illumination, and as a result applications

based on raw RGBs could deliver poor performance. In order to solve this problem, a

number of colour invariant approaches have been published in the literature. Colour

invariants try to capture the features from colour that do not change with a change

of illumination. Finlayson and Schaefer (2001) compared a number of colour invariant

methods for image indexing. They showed that the colour invariant techniques were

built for removing illumination dependency, but ignored the dependency on the captur-

ing device, which is equally important. Different capturing devices have different sensors

that may generate very different RGB responses. Finlayson et al. (2005) proposed a very

simple but effective colour invariant image representation that is both illumiation inde-

pendent and also device independent. They applied histogram equalisation to each of

the RGB channels of an image independently. This approach relies on the rank ordering

of sensor responses that are preserved in practice for a wide range change of illumination

and capturing devices.

3.2.1.2 The MPEG-7 Colour Structure Descriptor

The MPEG-7 [Martinez (2004)] Colour Structure Descriptor (CSD) is a colour descriptor

that encodes information not only about the frequency of occurrence of colours, but also

about their spatical layout in the image. It has been used in the experiments described

in chapter 4.

An 8x8 structuring element is used to visit all locations in the image in order to compute

the CSD. Suppose the colour space is quantized into M colours, a colour structure

histogram is constructed such that the value of the i-th (i = 0, 1, ...,M−1) bin represents

the number of locations where the i-th colour exists in the structuring element. Although

the number of samples is fixed to be 64, the spatial extent of the structuring element
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changes with the the image size, and is determined by the following rule [Manjunath

et al. (2001)]:

p = max{0, round(0.5 ∗ log2(height ∗ width) − 8)}
K = 2p, E = 8 ∗ K

(3.1)

where:
height, width: image height and width;

E × E: spatial extent of the structuring element;

K: sub-sampling factor.

a. 320 x 240 b. 640 x 480

Structuring Element

Figure 3.3: Structuring elements for images with different size (only a part of the
image is shown)

As shown in Figure 3.3, for image size 320x240, no sub-sampling is used. However, for

640x480 (p = 1,K = 2 and E = 16). the extent of the structuring element is 16x16 and

every alternate sample (denoted by ‘×’) along the rows and columns of the structuring

element is used to calculate the histogram.

The CSD uses the HMMD colour space [Lee et al. (1998)], which contains 4 components

- Hue, Max, Min and Diff . The transformation from RGB colour space to HMMD is

conducted by Equation 3.2
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Number of quantization levels for
Component Subspace different numbers of histogram bins

256 128 64 32

0 1 1 1 1
1 4 4

Hue 2 16 8 4 2

3

4 16 8 8 4

0 32 16 8 8
1 8

Sum 2 4 4 4 4

3 2

4 4 4 1 1

Table 3.1: HMMD Colour Space Quantization for CSD

Max = max(R,G,B)

Min = min(R,G,B)

Diff = Max − Min

Hue =























G−B
Max−Min ∗ 60 if(R = Max ∧ (G − B) > 0)

G−B
Max−Min ∗ 60 + 360 if(R = Max ∧ (G − B) < 0)

(2.0 + B−R
Max−Min) ∗ 60 if(G = Max)

(4.0 + R−G
Max−Min ∗ 60) if(B = Max)

(3.2)

Before calculating the CSD, the HMMD colour space is quantized into a number of bins.

Four levels of quantization are defined, quantizing the colour space into 32, 64, 128 and

256 bins respectively. Taking the generation of 256 bins as an example, the quantization

works as follows. First, the whole HMMD colour space is divided nonuniformly into

5 sub-spaces (0, 1, 2, 3 and 4). The division is performed on the value of Diff by

the following intervals: [0, 5], [6, 19], [20, 59], [60, 109] and [110, 255]. Second, for

each sub-space, uniform division is performed on the Hue and Sum, where Sum =

(Max + Min)/2. The number of quantization levels for each sub-space is shown in

Table 3.1. Finally, the bin values are divided by the total number of locations the

structuring element reached and then normalized to 8 bits/bin, valued from 0 to 255.

3.2.2 Shape

Shape features descibe the silhouettes of objects, so it requires the objects to be seg-

mented out firstly. As we have mentioned, automatic segmentation techniques are still

immature nowadays, the effectiveness of using shape descriptors in general CBIR or im-

age auto-annotation applications is limited. However, shape plays an important role in

some narrow domains such as trademark retrieval (Eakins et al., 1998) and recognition
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of fish based on the shape (Mokhtarian et al., 1996), as a considerable amount of in-

formation was contained in the boundaries of objects. Two shape descriptors that have

been used in the work of the thesis are described below.

3.2.2.1 Moment of Inertia

The Moment of Inertia has been used in the experiments in Section 7.2. It is defined as

the rotational inertia with respect to the axis, which is perpendicular to the plane of the

region and goes through the center of mass. Here is the equation (3.3) for each region:

Moment of Inertia =
1

N

N
∑

i=1

(

(

Xi − Xcenter

l

)2

+

(

Yi − Ycenter

w

)2
)

(3.3)

where N is the number of pixels on the boundary, (Xi, Yi) are the coordinates of the ith

pixel, (Xcenter, Ycenter) are the coordinates of center of mass, (l, w) are the length and

width of the region bounding box.

We normalized the distance from boundary pixels to the center of mass by dividing it

by the size of bounding box, in the hope of decreasing the noise brought by the huge

variance in region size. Moreover, the average moment is used for the same purpose.

3.2.2.2 The MPEG-7 Contour Shape Descriptor

The Contour Shape Descriptor is an MPEG-7 shape descriptor, based on the Curvature

Scale-Space (CSS) representation of the contour. It is known as invariant to scaling,

translation and rotation, which are very important characteristics of a good shape de-

scriptor.

The CSS is a multi-resolution representation of the convex and concave sections of the

contour at different scales. It captures inflection points (i.e. points at which curvature

is zero) at each stage of the process of smoothing the contour progressively. The process

of creating the CSS descriptor of a contour is as follows [Bober (2001)] :

1. Select N equi-distant points, starting from an arbitrary one, out of the contour so

as to represent it.

2. Group the x, y coordinates of the N points into two series X and Y respectively.

3. Smooth the contour. In other words, apply a low-pass filter with kernel (0.25 0.5

0.25) to X and Y respectively.

4. Find inflection points, and then mark them on the so-called CSS image [Figure

3.4], where horizontal coordinates correspond to the indices of the contour points

and vertical coordinates correspond to the counts of application of the filter.
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Field Number of bits Meaning
Num of Peaks 6 Number of peaks in the CSS image

GlobalCurvature 2*6 Circularity and eccentricity
of the contour

PrototypeCurvature 2*6 Circularity and eccentricity of the
smoothed (convex) contour

HighestPeakY 7 Absolute height of the
highest peak (quantized)

peakX[] 6 X-position on the contour of
a peak (quantized, relative to

the highest, clockwise)
peakY[] 3 Height of the peak (relative to the

previous peak’s height and quantized)

Table 3.2: Components of Curvature Scale-Space Descriptor [Manjunath et al. (2002)]

5. Go back to step 3 if inflection points still exist, otherwise stop.

Figure 3.4 depicts the CSS image (right column) of a contour, and its shape after 20

and 80 iterations (left column).

Figure 3.4: Example of contour evolution and corresponding CSS [Bober (2001)]

The Contour Shape Descriptor consists of several components [Mokhtarian and Bober

(2003)].

D = {Ec, Cc, Ep, Cp, yp0, {(xpi, ypi)}; i = 1, ..., k} (3.4)

where Ec, Ep and Cc, Cp are the eccentricities and circularities of the original and filtered

(convex) contour respectively , yp0 is the height of the highest peak (if contour is concave)

and {(xpi, ypi); i = 1, ..., k} is a set of remaining peaks (possibly empty). See Table 3.2

for Details.
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The definition of similarity measure of this descriptor is included in the MPEG-7 Stan-

dard, which is informative only. Users are free to choose different ways of measuring

the distance between descriptors, in order to fit it to the characteristics of their class of

shapes. Experimentation on the clustering of the Contour Shape Descriptor using Self-

Organizing Map (SOM), which uses Euclidean distance as the similarity measurement,

is presented in Section 3.3.1.2.

3.2.3 Texture

The definition of texture is vague, as Tuceryan and Jain (1993) said ”we recognize

texture when we see it but it is very difficult to define”. They listed some example

definitions attempted by different researchers. We understand texture as homogeneous

visual patterns in images that manifest some kind of coherence or periodicity, such as

wallpaper and bricks.

3.2.3.1 Mean Oriented Energy

The Mean Oriented Energy is a texture feature descriptor. It is computed by applying

oriented filters to the image. Gabor filters are widely used oriented filters. “Properly

tuned Gabor filters, can remove noise, preserve the true ridge and valley structures,

and provide information contained in a particular orientation in the image.” [Jain et al.

(1999)]. In our experiment in Section 7.2, we chose the even symmetric Gabor filter,

which is presented by Jain et al. (1999). 12 different oriented Gabor filters with 15

degree increments of θ, which is the orientation of the filter, are used. These filters are

tested on the Camera-Man image. As shown in Figure 3.5, edges that share the same

direction with the oriented filter are highlighted, otherwise removed.

Figure 3.5: The original Camera-Man image and the result of being convoluted by
12 different oriented filter
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Each image region is filtered by the oriented filters. The feature value of that filtered

region is represented by the average absolute deviation from the mean, defined as

Vθ =
1

N

N
∑

i=1

|Fiθ − Pθ| (3.5)

where θ ∈ {0◦, 15◦, . . . , 165◦}, N is the number of pixels in the region, Pθ is the mean of

pixel values Fiθ. Thus, each region gets a 12 dimensional feature vector that describes

the texture.

3.2.4 SIFT - a local descriptor for saliency

For image description, approaches using salient points usually calculate a local descriptor

for each salient point based on the pixel information of its neighbouring area, known as

salient region. A great number of different local feature descriptors have been proposed

for describing the content of a salient region. Mikolajczyk and Schmid (2005) compared

several local descriptors and showed that SIFT (Scale Invariant Feature Transform)

based descriptors (Lowe, 1999, 2004; Ke and Sukthankar, 2004) perform best.

The SIFT descriptor (Lowe, 2004) is designed to be invariant to image scaling, trans-

lation, and rotation, and partially invariant to change in illumination and 3D camera

viewpoint. It encapsulates the information on gradient magnitude and orientation at

each salient region. Lowe suggests that gradient location be quantised into a 4 × 4

location grid, and orientation be quantised into 8 orientation bins. This generates a 128

dimensional descriptor.

Ke and Sukthankar (2004) proposed to apply the Principal Component Analysis (PCA)

technique to the descriptor representation and showed that their so-called PCA-SIFT

descriptor is more distinctive and robust, and compact than the standard SIFT descrip-

tor.

3.3 Feature Quantisation

Feature descriptors generated from the first two steps of image description, i.e. region

choosing and feature extraction, can be processed directly by some applications for the

problem to be solved. A very simple example is CBIR using global image features such

as colour histograms which are represented as vectors. The similarity of two images is

measured by the similarity of the corresponding vectors, which can be further calculated

in a number of ways such as consine distance and Euclidean distance. Given a query

image, all the images in the database are ranked according to their distances to the

query.
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However, for some other applications, the third step - feature quantisation, needs to be

applied. One example is applications where saliency is used for image description. The

number of salient points found in images can be very large. For example, the number

of salient points found from the Washington set images (University of Washington,

2004), which have an average resolution of 640 × 480, is in general several thousand

per image, using the “difference-of-Gaussian pyramid” approach. It is not convenient

for image retrieval or auto-annotation algorithms to process so many salient points

per image directly, especially when each point is represented by a high dimensional

feature descriptor. Feature quantisation is a process of grouping similar image feature

descriptors into the same class and different ones into different classes. As a result,

images can be described by the membership, a single number, of descriptors instead

of the actual high dimensional values. Feature quantisation can also be regarded as a

classification problem in which the membership of each feature is to be determined. In

the following, two clustering techniques are discussed, namely k-Means Clustering and

the Self-Organizing Map (SOM).

3.3.1 The Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is a neural network-based data visualization tool in-

vented by Professor Teuvo Kohonen. “It converts complex, nonlinear statistical rela-

tionships between high-dimensional data items into simple geometric relationships on a

low-dimensional display. The SOM usually consists of a two-dimensional regular grid of

nodes.” [Kohonen]. Similar data items should be organized closer than more dissimilar

ones. Reducing dimensions and displaying similarities are the two valuable characteris-

tics of this technique.

3.3.1.1 The SOM Toolbox

The SOM toolbox1 is a function package developed for Matlab to implement the Self-

Organizing Map algorithm. A SOM consists of neurons organized on a regular low-

dimensional grid [Vesanto et al. (2000)]. Each neuron represents a weight vector which

has the same dimensions as the data set to be visualized (i.e. the input data set). The

final SOM for visualizing the high dimensional data set is obtained by training iteratively

(maybe several hundred times). The idea is that in each training step, not only the Best-

Matching Unit (BMU, the neuron whose weight vector is closest to the input sample,

which is picked from the input data set) but also its neighbors are updated: the region

around the BMU is stretched towards the training sample, Figure 3.6 [Vesanto et al.

(2000)]. In the end, neurons on the map become ordered: neighboring ones have similar

weight vector.

1Available at: http://www.cis.hut.fi/projects/somtoolbox/



Chapter 3 Image Description 34

Figure 3.6: Updating the best matching unit (BMU) and its neighbors towards the
input sample marked with x. The solid and dashed lines correspond to situation before

and after updating, respectively [Vesanto et al. (2000)]

3.3.1.2 Shape Clustering Using CSS and SOM

The Curvature Scale-Space (CSS) (3.2.2.2) descriptors of 1100 marine creature shape

images2, which are used in the SQUID system3, are extracted. These 1100 descriptors

are then clustered by SOM into 155 (11x15) clusters. Figure 3.7 are three random cells

(clusters) from the SOM, each of which is represented by 6 sample shapes from it. It

shows that the shapes are well clustered. Besides, one shape from each cell of the SOM

is taken to construct the SOM, in order to give a visual overview of the whole SOM, as

shown in Figure 3.8. Thanks to the clustering characteristics of SOM, as described in

section 3.3.1, shapes which are similar but not similar enough to be clustered within the

same cell are placed as neighbours.

Figure 3.7: Three random cells from the SOM of 1100 marine creature shapes

2Available at ftp://ftp.ee.surrey.ac.uk/pub/vision/misc/fish contours.tar.Z
3http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
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Figure 3.8: The SOM of 1100 marine creature shapes
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3.3.2 k-Means Clustering

The k-Means is an algorithm to cluster objects, or data points, into k partitions, or

clusters. The clusters are discoverd through an refinement process that updates the

position of clusters iteratively. During each iteration, all the training points are assigned

to the closest cluster based on the distance to the cluster centroid. Then, the centroid of

each cluster is updated by the new cluster centroid which is calculated as the centroid of

all the points that belong to it. The process is repeated until the points no longer switch

clusters, or after a pre-defined number of iterations. Decisions on the value of k and

the starting cluster centroids are essential to the performance of k-Means. A common

choice of the initial centroids is to choose k sample points at random and use them as

the centroids.

The k-Means is one of the most popular techniques for multi-dimensional vector quan-

tisation in image description. For example, Duygulu et al. (2002); Jeon et al. (2003)

use it to quantise the global feature descriptors of image segments and then represent

each segment with the membership of the descriptor. Hare and Lewis (2004) use it to

quantise SIFT descriptors of salient regions found in images and then represent each

image as a histogram of the membership of descriptors.

3.4 Image Description Examples

In this section, we describe two concrete examples of image description which have been

adopted in the experiments of the thesis. The first form is the “blob” representation used

in the work of Duygulu et al. (2002), and the second form is visual term representation

used in the work of Hare and Lewis (2004).

3.4.1 The “blob” representation

The first form of description uses segmentation for region choosing. Images are described

as consisting of several “blobs”. The process is conducted as follows.

1. Images are segmented into object-shaped regions using automatic image segmenta-

tion algorithms. Ideally, each image segment or region contains an object or object

part. Very small regions with an area that is below a certain pre-defined thresh-

old are discarded, because such regions are considered as too small to contain the

objects we are interested in and may bring noise to the system.

2. A descriptor is calculated for each image segment, typically using colour, shape

and texture features.
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3. the whole set of descriptors are quantised into classes in order to group segments

of the same object into the same class. Each class is called a “blob” by Duygulu

et al. (2002).

4. Finally, each image can be represented as a collection of blobs.

Each step has a major influence on the final description effectiveness. Intuitively, faulty

segmentation makes it unlikely for auto-annotation algorithms to learn the true chrac-

teristics of objects. An advanced segmentation method that is able to find the accurate

object boundaries is important to the whole annotation process. A suitable image de-

scription makes segments with different object more distinguishable from each other. A

robust clustering method is more likely to discover the true membership of segments.

Figure 3.9 depicts the process of generating “blobs”. Ideally, segments with the same

object are assigned to the same “blob”. As can be seen, “bear” belongs to “blob” 1 and

“pyramid” belongs to “blob” 2, and so on.

Figure 3.9: The process of generating “blobs” for image description.

3.4.2 Saliency based visual term representation

The visual term representation has been adopted widely for image description (Hare and

Lewis, 2004; Sivic et al., 2005). The process is generally conducted as follows. Figure

3.10 gives a diagram of the approach.

1. Salient regions are discovered by saliency detection techniques on each of the im-

ages from a data-set.

2. For each salient region, a local feature descriptor is calculated, for example the

SIFT descriptor in the example shown in Figure 3.10.
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3. Salient descriptors of all the images are quantised into clusters, each of which is

regarded as corresponding to a visual term or visual word. Generally, the centroid

of each cluster is choosen as the visual term. The whole set of visual terms con-

stitute the so-called visual vocabulary. A salient region or salient point is then

represented by a visual term indicating its membership of a cluster.

4. Finally, each image can be described as a histogram of visual terms, indicating the

number of occurrence of each term in the image.

This form of description is analogous to the way in which a set of text words constitute

a text document. Here, each quantised salient descriptor is considered as a word, and

each image is a document.

Another slightly different form is to treat an image segment as a document (Russell et al.,

2006), as opposed to the entire image. An automatic image segmentation algorithm

is used to divide images into object-shaped segments. As a result, salient points are

divided into groups according to their locations in the image. Each image segment is

then represented by a histogram of visual terms, in the same manner as that for the

entire images described above.

The performance of saliency based visual term description of images is also influenced

by serveral factors, including the performance of the saliency detection algorithms, the

effectiveness of the local descriptor for the salient regions, the quality of quantisation of

descriptors and so on.

3.5 Summary

We have described three main aspects of image description, namely region choosing,

feature extraction and feature quantisation. Since global image descriptions lack local

information about images, region choosing is conducted to divide images into parts

so that features can be extracted locally. Three forms of region choosing are fixed

partitioning, segmentation and salient region. Once the regions are chosen, feature

extraction is applied. There are a great number of different feature descriptors, from

basic colour, shape, texture descriptors to more advanced local descriptors such as SIFT.

In some cases, the third step is adopted to group feature descriptors into classes, so that

CBIR or image auto-annotation systems can avoid dealing with a massive number of

feature descriptors which are possibly of high dimension.



Chapter 3 Image Description 39

Figure 3.10: Image representation using quantised salient region descriptors (Hare,
2006).



Chapter 4

Quality Issues with Data-Sets

So far, researchers have been focusing primarily on developing various auto-annotation

algorithms (Duygulu et al., 2002; Barnard et al., 2003; Jeon et al., 2003; Feng et al.,

2004; Pan et al., 2004), but very few have examined the effect of the data-set itself

on the annotation result. Although good annotation algorithms certainly really need

to be advanced, the choice of appropriate data-sets for experiments is also important.

An inappropriately designed data-set could give a biased measure of how well certain

methods work. Westerveld and de Vries (2003) used the Corel images for evaluating

their image retrieval technique and claimed that the Corel data-set is relatively easy.

This issue was also confirmed by Viitaniemi and Laaksonen (2007), who investigated

three benchmark image data-sets.

This chapter gives extensive and detailed experiments and discussions on quality issues

of image data-sets in the context of automatic image annotation. We have developed and

applied three auto-annotation methods to two image collections, one of which is built

by capturing images from the web. Through the experiments and by comparisons of

the results, we have examined several issues about image data-sets, including problems

when training sets and test sets contain many very similar images and data-sets with

redundant information.

This chapter is based the publications by the author in (Tang and Lewis, 2006) and

(Tang and Lewis, 2007a). It begins with a description of two experimental image data-

sets, followed by the details of the three annotation approaches used for comparison.

Afterwards, it shows the results and discusses the quality issues related to data-sets for

image auto-annotation.

40



Chapter 4 Quality Issues with Data-Sets 41

4.1 Two Image Collections

4.1.1 The Corel Set

The first image set we consider is the widely used Corel Image set provided by (Duygulu

et al., 2002) which is already separated into a training set with 4500 images and a test

set with 500 images. Most of the images have 4 word annotations, while a few have

1, 2, 3 or 5. The vocabulary size of the whole set is 374 and that of the test set is

263. We note that in fact, the crucial vocabulary size is that of the training set since

no other words are accessible for the auto annotation process. The vocabulary size of

the Corel training set is 371. It will be shown in Section 4.4 that the simple colour

structure descriptor (CSD)-based propagation method (Tang and Lewis, 2006) achieves

good results, compared with some state-of-the-art methods, for this image set. We argue

that this is indeed because the Corel images are relatively easy to annotate and that

this in turn is a result of the presence of groups containing many closely related images

in the collection. This can actually be seen clearly from the following analysis. In the

Corel training set there are 2705 images with 4 word annotations and these comprise

a vocabulary of 342 different words. Among the 2705 images with 4 word annotations

there are only 1833 different combinations of words. Assuming only random selections,

the probability of getting such a low number of different combinations in a sample of

2705 is almost 0 (∼ 10−4796). Of course, some of the departure from randomness is due

to the way in which some objects or image features appear frequently together in nature,

for example trees and grass.

The fact that some of the images are close to each other in terms of both low-level features

(such as color) and also the semantics and thus have the same combination of keywords

for their annotations, is shown in Figure 4.1. A query image can be annotated correctly

by a simple propagation method if there exists a training image that is very similar

(both at the low-level and semantically) and if this is the one chosen for propagation.

4.1.2 The Yahoo Set

In order to create a new image set avoiding, if possible, groups of similar images, a new

image collection was created by querying the Yahoo Image Search engine1 using each of

the 263 keywords from the Corel test set (Duygulu et al., 2002), such as ‘water’, ‘sky’

and ‘people’. For each keyword, the first 20 images returned by Yahoo are selected and

annotated with the single query keyword used to retrieve it, resulting in a collection of

5260 images. All images are JPG color images, with a resolution of 120x80 on average.

In some cases these annotations were not particularly appropriate because of the text

based nature of the Yahoo image search. For example, image 4.2(a) is retrieved by using

1http://images.yahoo.com
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(a) Birds, Sea, Sun, Waves (1038) (b) Birds, Sea, Sun, Waves (1039)

(c) Kauai, People (46093) (d) Kauai, People (46098)

Figure 4.1: Examples of similar Corel images, the number in the parenthesis being
the file name of the image.

the word “water”, probably because there was an article about drinking water around

the image and the word “water” appeared so many times that the Yahoo image search

assumed it was a “water” image. In addition, the images are sparsely annotated because

most images have more than one object. For example, images 4.2(c) and 4.2(d) contain

multiple objects, but are only annotated with a single word. It is a more challenging

set because, unlike the Corel set, the collection is less likely to contain groups of images

with very similar content. The implication is that effective training with the Yahoo set2

will be more difficult than with Corel.

In order to illustrate the self-similarity problem of the Corel set, we computed on each

data set (Corel and Yahoo) the Euclidean distance between each image and its nearest

neighbour (NN) in the CSD feature space. As shown in Fig. 4.3, the X axis represents

the value of distance, while the Y axis represents the number of images that have a NN

at this distance. The average distance for the Corel set and Yahoo set are 210 and 241

respectively. Statistically, 23.5% of the Yahoo images have a NN with a distance less

than the average value of the Corel images. In contrast, up to 73.4% of the Corel images

have a NN with a distance less than the average value of the Yahoo image.

2Available at: http://www.ecs.soton.ac.uk/∼phl/YahooSet.tar.gz
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(a) Water (b) Mountain

(c) Sky (d) Grass

Figure 4.2: Examples of Yahoo images. The top images are inappropriately anno-
tated, and for the bottom images only one object is annotated.
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Image Index Captions

1 a b c

2 b d e

3 a b d

Table 4.1: Illustration of propagation for the CSD-Prop method

4.2 Three Auto-annotation Methods

We have implemented and used three very different approaches to image auto-annotation

for the main comparison of methods. These methods are designated as CSD-Prop, Svd-

Cos and CSD-SVM. CSD-Prop (Tang and Lewis, 2006) is a propagation method based

on a global feature vector, the MPEG-7 Colour Structure Descriptor (CSD) (Martinez,

2004). SvdCos is a more complex region based method using correlation statistics, based

on the work of Pan et al. (2004). Finally CSD-SVM is a multi-class and multi-label image

classification method.

4.2.1 The CSD-Prop Method

Propagation methods (Monay and Gatica-Perez, 2003; Hare and Lewis, 2005c) work by

propagating annotations from the most similar images in the training set. In this work,

the MPEG-7 Colour Structure Descriptor (CSD) (Martinez, 2004) is used as the feature

descriptor to rank the training images. The similarity between images are measured

by the CSD distance (squared euclidean). For each test image, propagation starts from

the top training image and goes on until a desired number of different annotations are

found. Because the number of predicted words for a test image is fixed, sometimes only

a portion of the annotations of a training image can be used. When it is the case, the

choice is made randomly. For example, if the top 3 training images in the ranked list for

a test image have the captions as showed in Table 4.1 and 4 words need to be predicted,

they are either ‘a’, ‘b’, ‘c’, ‘d’, or ‘a’, ‘b’, ‘c’, ‘e’.

4.2.2 The SvdCos Method

The region based SvdCos Method is proposed by Pan et al. (Pan et al., 2004) and uses

the blob representation proposed by (Duygulu et al., 2002). Following (Pan et al., 2004)’s

derivation, the SvdCos method works as follows. Suppose there are NW words in the

vocabulary and NB blobs in the visual vocabulary, the whole training set I = {I1, ..., INI
}

can be represented by a matrix D[NI−by−(NW +NB)], where D = [DW |DB ]. The (i, j)-

element of DW is the count of word wj in image Ii, and the (i, j)-element of DB is the

count of blob bj in image Ii. This method captures the association between words and

blobs through their pattern of occurrence over the whole image set, which is represented
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by each column of DW and DB . A translation table T[NW −by−NB] is created. Tij is

the cosine value of the ith column vector of DW and jth column vector of DB . Each

column of T is normalized to add up to 1. Thus, Tij can be treated as the probability

of translation between word wi and blob bj .

Singular Value Decomposition (SVD) decomposes a matrix X[n−by−m] into a product

of three matrices U , Λ and V T , where U and V are orthonormal, and Λ is diagonal.

Previous works (Furnas et al., 1988) show that by eliminating small diagonal values of

Λ, “SVD could be used to clean up noise and reveal informative structure” ((Pan et al.,

2004)) in X. Therefore, SVD is applied to D before constructing the translation table.

Given a test image, which is represented by q = {q1, ..., qNB
} (where qi is the count of

blob bi), it can be annotated by choosing the words that have the highest values in p,

where p = Tq.

Details of this method can be found in (Pan et al., 2004).

4.2.3 The CSD-SVM Method

Image auto-annotation can be handled as a multi-class and multi-label classification

problem. Multi-class means there are more than two classes, each of which is represented

by a keyword, while multi-label means each image belongs to multiple classes. For

example, images of 4.1(a) belong to the classes “Birds”, “Sea”, “Sun” and “Waves”.

Multi-label classification is more difficult than single-label classification. In the following,

we propose to turn the multi-label problem into a single-label problem, using the CSD-

SVM method, and describe how optimal parameters can be found.

CSD-SVM is a method based on Support Vector Machines (SVM), which is a very

popular technique for classification. Two common ways of multi-class classification by

SVM are “one-vs-all” and “one-vs-one”. As for multi-class classification, we choose the

“one-vs-one” method, which uses a voting scheme. A binary classifier is trained for

each possible combination of two classes. The class with the highest votes for the test

document wins. In order to predict multiple annotations for each test image, rather than

using only the class with the highest vote, we use the top n classes that have the highest

votes, n being the number of annotations to be predicted. Another issue is that each

training image has multiple labels, which makes it a multi-label training problem. We

turn it into a general single-label training problem by duplicating each training image

based on the number of words it has, and assign one and only one of the words to each

copy of the image. Therefore, when applying the “one-vs-one” method, there are cases

in which some training documents belong to both classes.

We used LIBSVM (Chang and Lin, 2001) to classify images that are represented by the

Colour Structure Descriptor (CSD) as used for the CSD-Prop method. The radial basis

function (RBF) (Hsu et al.), is used as the kernel function. Two parameters need to
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be optimized in LIBSVM, namely the penalty parameter C and the kernel parameter

γ (Chang and Lin, 2001). As recommended in (Hsu et al.), a grid-search method is

applied on C and γ to find the optimal values, using v-fold cross-validation. The pair

(C, γ) achieving the highest cross-validation accuracy is finally used to classify the test

documents. However, calculating the cross-validation accuracy is not as straightforward

as that on general single-label training problems. Instead, for each training image being

used for testing, we have to compare the predicted label with all the words attached

to this image before the image is duplicated. If the predicted label is one of them, the

image is regarded as being correctly classified.

4.3 Evaluation Metrics

The Mean Per-word Precision and Recall and Keyword Number with Recall>0, as used

by previous researchers Duygulu et al. (2002); Jeon et al. (2003); Feng et al. (2004);

Carneiro and Vasconcelos (2005), are adopted for evaluating annotation effectiveness.

Per-word precision is defined as the number of images correctly annotated with a given

word, divided by the total number of images annotated with this word. Per-word recall

is defined as the number of images correctly annotated with a given word, divided by the

total number of images having this word in its ground-truth or manual annotations. Per-

word precision and recall values are averaged over the set of test words to generate the

mean per-word precision and recall. A keyword has recall>0 if it is predicted correctly

once or more, otherwise not.

We also introduce Mean Per-image Precision and Recall and Cumulative Correct Anno-

tations for evaluation. Per-image precision is the number of correctly predicted words

for a given image divided by the total number of words predicted for that image, and

per-image recall is the number of correctly predicted words divided by the number of

manual annotations for that image. Per-image precision and recall are then averaged

over all the test images to get the mean per-image precision and recall. Cumulative

Correct Annotations is the total number of correct annotations.

4.4 Results and Discussion

4.4.1 Comparison with state-of-the-art methods

We applied the previously described annotation algorithms to the Corel set and predict

5 words for each test image. Table 4.2 compares the CSD-Prop, SvdCos and CSD-SVM

methods with the results of some state-of-the-art methods taken from the literature

when the Corel training set is trained to annotate the Corel test set. These methods are

the Translation model (Duygulu et al., 2002), the CRM model (Jeon et al., 2003), the
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MBRM model (Feng et al., 2004), and the Mix-Hier model (Carneiro and Vasconcelos,

2005).

It is interesting to note in Table 4.2 that our simple CSD-Prop method achieves results

almost as good as the best results from the more advanced methods. We argue that this

is due to the training set and test set containing very similar images as illustrated in

Figure 4.1. For example, in our experiment, the CSD-Prop method successfully predicts

the word “Kauai”, which is even unlikely for a human being to learn, for the test image

4.1(c). It results from the training set containing the image 4.1(d) which is the closest

in terms of Euclidean distance in the CSD feature space.

The best performance for the CSD-SVM algorithm is found to be at (C = 25, γ =

2−1) using grid-search and cross-validation. From the results, our CSD-SVM method

performs reasonably well in the experiments when compared with the other methods

considered. Although it gets a slightly lower number of words with recall>0 than the

CSD-Prop method, overall the CSD-SVM achieves better results than CSD-Prop in view

of the higher precision and recall measures. Again we argue that the reason why CSD-

Prop method achieves a higher number of words with recall>0 is because it benefits from

the fact that the Corel training set and test set have many globally very similar images

in common. Difficult words, such as the place name “Kauai”, are easily learned by just

comparing image similarity. The CSD-SVM method is also comparable in performance

with the Mix-Hier method, which achieves the best results from the state of the art

literature based methods in terms of mean per-word precision and recall.

4.4.2 An Examination of word combinations

In this section, annotation effectiveness is analysed further in terms of word combina-

tions. We consider the combination of four words that are correctly predicted, since most

of the Corel images have 4 ground-truth labels, and for a single test image the auto-

annotation methods predicted a maximum of four correct words. The SvdCos method

is excluded from the analysis as it only managed to get 4 words correct 5 times, which

is much less than that of CSD-Prop (45 times) and CSD-SVM (53 times).

The analysis was conducted as follows on the predicted annotations both for CSD-Prop

and CSD-SVM. Firstly, we find all different kinds of 4 word combinations from the

predicted annotations on the test set, under the condition that each word is correct.

Then, for each combination found, we search the training set to see if such a combi-

nation of annotations exists and if it does, how many times it occurs. Considering the

propagation nature of CSD-Prop, it is not surprising that for CSD-Prop, all predicted

4 word combinations are found in the training set. For CSD-SVM, 51 out of 53 are

found. The fact that almost all of the correct 4 word predictions exist in the training

set, implies that this CSD based method may only be learning the relations between
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the whole image and the corresponding word sets or object sets from the training set

which is certainly the situation for the CSD-Prop method. For correctly predicted four

word combinations, Figure 4.4(a) shows their number of occurrences in the training set

and in the predicted annotations by CSD-Prop and CSD-SVM. Those with number of

occurrences greater than 5 in the training set are shown in Figure 4.4(b). Note that

for the last two combinations (Figure 4.4(a)), the number of occurrence in the training

set equals zero. This means that CSD-SVM managed to predict two combinations that

do not exist in the training set, as shown in Figure 4.5. In the training set, the word

combinations “clouds, sun, water, tree” and “buildings, clothes, shops, street” do not

exist, but CSD-SVM managed to predict them correctly. Moreover, it can be seen that

the other words predicted by CSD-SVM predict, “palm” and “people” for images 1061

and 119088 respectively, are actually reasonable annotations though not in the ground

truth. The words predicted by CSD-Prop are included for comparison. All in all, if

image auto-annotation is recognised as a problem of object recognition, the relations

between objects and words, rather than the whole image and words, are really what

need to be discovered. A good annotation method should be able to predict object com-

binations in the test images, no matter how these objects occur in the training set, either

together in single images or separately in different ones. The use of global descriptors

in annotation algorithms severely limits the possibility of achieving this.

4.4.3 Comparison between the three methods when different training

sets are used.

For each of the three methods, we used the Corel training set and the Yahoo set for

training respectively, to annotate the Corel test set, each image being predicted by 5

words. However, for fair comparison, only one random word out of the complete set of

captions (normally 4) is used for each Corel training image, since each Yahoo image has

only one caption. For example, for Fig. 4.1(a), we randomly choose one of the words

“Birds”, “Sea”, “Sun” and “Waves” as the only annotation for this image and discard

the others. Note that the whole set of labels of the test images are kept for evaluation.

Table 4.3 compares the three methods using the two different image sets for training.

It can be seen that the CSD-Prop method performs better than the SvdCos method

when it is trained on the Corel training set, but worse than the SvdCos method when

trained on the Yahoo set. In other words, the CSD-Prop method degrades more rapidly

when it moves from an easy training set (Corel) to a more difficult set (Yahoo). The

CSD-SVM method maintains relatively good performance in both cases.

It can be seen that, even though only about 25% of the annotations of the Corel training

set are used, the results of these methods did not decrease as much when compared with

those referred to in Table 4.2, where 100% of the annotations are used. The results of

the CSD-SVM method are even comparable with that of the CRM (Jeon et al., 2003)
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method, which uses 3 times more annotations. This implies redundant information

exists in the Corel training set. For example, both image 4.1(a) and 4.1(b) belong to

the training set. Since they are so similar to each other in both low-level features and

semantics, there is little need for an annotation method to learn on both, especially

for computationally expensive methods or when the training set is extremely large.

Potentially, reduction techniques (Wilson and Martinez, 2000) can be used to condense

the training set, reducing the size while retaining important training information.

We conclude that it is relatively easy to annotate the Corel test set using the Corel

training set, and that the CSD-Prop method does not transfer as well as the SvdCos

and CSD-SVM methods to the more challenging Yahoo dataset. In addition, it can

be argued that using a challenging data set, good auto-annotation approaches should

perform substantially better than, propagation-based approaches. Finally we conclude

that simple sets like the Corel set should be used with caution for effective evaluation

of annotation methods.

4.5 Summary

This chapter has demonstrated some of the disadvantages of data-sets like the Corel

set for effective auto-annotation evaluation. The three image auto-annotation methods,

CSD-Prop, SvdCos and CSD-SVM, have been used to annotate the Corel test set, by

training on two different training sets, the Corel training set and the Yahoo training

set. The Yahoo training set was constructed by obtaining images from the Yahoo Image

Search Engine for 263 query words.

Through the experiments described above, we have demonstrated and discussed some

issues about the data-sets for image annotation. Firstly, we show how the simple propa-

gation method CSD-Prop achieves fairly good results on the Corel set. It is argued that

the Corel test set is a relatively easy set to be annotated when training on the Corel

training set, because the Corel training and test sets contain many very globally similar

images. Secondly, we have shown that the Corel test images can still be annotated well

even when only 25% of the training information is used and it is argued that the training

set contains redundant information.
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Figure 4.4: (a) Four word combinations that are correctly predicted by CSD-Prop
and CSD-SVM, being ordered by the number of occurrences of each combination in
the Corel training set. (b) Four word combinations that are correctly predicted by
CSD-Prop and CSD-SVM, and with the number of occurrences greater than 5 in the

Coral training set.
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Models Translation CRM MBRM Mix-Hier CSD-Prop SvdCos CSD-SVM

words with recall>0 49 107 122 137 130 102 127

Results on 49 best words

Mean Per-word Recall 0.34 0.70 0.78 − 0.80 0.59 0.84

Mean Per-word Precision 0.20 0.59 0.74 − 0.58 0.51 0.74

Results on all 263 words

Mean Per-word Recall 0.04 0.19 0.25 0.29 0.27 0.15 0.28

Mean Per-word Precision 0.06 0.16 0.24 0.23 0.20 0.15 0.25

Table 4.2: Comparison between CSD-Prop, SvdCos, CSD-SVD and some other state-of-the-art methods using the Corel images

Training Set Corel(4500) Yahoo(5260)

Test Set Corel(500)

Models CSD-Prop SvdCos CSD-SVM CSD-Prop SvdCos CSD-SVM

Words with recall>0 107 100 94 46 58 59

Results on all 263 words

Mean Per-word Recall 0.19 0.15 0.187 0.053 0.057 0.067

Mean Per-word Precision 0.14 0.11 0.153 0.038 0.040 0.053

Results on all 500 test images

Cumulative Correct Annotations 577 349 767 102 123 118

Mean Per-image Recall 0.327 0.196 0.434 0.058 0.069 0.066

Mean Per-image Precision 0.231 0.140 0.306 0.040 0.049 0.047

Table 4.3: Comparison between the three methods on different training sets
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1061

119088

Ground-truth clouds, sun, water, tree buildings, clothes, shops, street

CSD-Prop fountain, palace, light, reflection, palm costume, street, village, buildings, people

CSD-SVM sun, water, palm, tree, clouds street, people, shops, clothes, buildings

Figure 4.5: Two combinations predicted by CSD-SVM that do not exist in the training
set, words in bold being correct.



Chapter 5

Incorporating a Statistical Model

with Salient Regions

Image auto-annotation, which automatically labels images with keywords, has been

gaining more and more attentions in recent years. The advance of this technique could

turn the traditional way of content based image retrieval (CBIR) which uses low-level

image features (colour, shape, texture, etc.) as the query, into an approach that is more

favorable to people, namely using descriptive words (semantics).

Previously, researchers have tended to use region-based image descriptors for image auto-

annotation; Object-shaped regions generated by segmentation algorithms or uniform,

usually rectangular, regions have been popular choices. Rectangular regions are a poor

choice for image description because they are not robust to a variety of common image

transformations, such as rotation. Current segmentation algorithms are not able to

perfectly associate segmented regions to the actual objects that are being described.

Undoubtedly, segmentation that is conducted by a fallible algorithm will have an adverse

effect on the effectiveness of the auto-annotation algorithm.

This chapter is based on the publication by the author in (Tang et al., 2006), which

presents an approach to image auto-annotation using a statistical model. However,

unlike previous approaches this is achieved not by segmenting images but by using

salient regions. It firstly introduces statistical models for image auto-annotation, in

particular, the Cross-Media Relevance Model (CMRM) in details. Secondly, it proposes

a way in which the salient region representation of images can be incorporated into the

CMRM model. Finally, the experiment results are presented.

53
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5.1 Statistical Models for Image Annotation

Statistical models try to reveal the association between visual features and keywords by

estimating the joint probability distribution of regional image features and keywords,

over a set of labelled training images. Given an unlabelled test image, the joint prob-

ability of its visual features and each keyword from the vocabulary can be calculated

based on the association previously learnt. Some models attempt to annotate image

regions (Duygulu et al., 2002; Barnard et al., 2003), whilst others annotate the whole

image (Jeon et al., 2003; Lavrenko et al., 2003; Feng et al., 2004). The Cross-Media

Relevance Model (CMRM) (Jeon et al., 2003), described briefly below, is in the latter

class of models.

5.1.1 The Cross-Media Relevance Model (CMRM)

Following the derivation of Jeon et al. (Jeon et al., 2003), the CMRM model can be

described as follows. Suppose there exists a training collection T , of labelled images,

and a test collection Q, of unlabelled images.

Firstly, each training image is partitioned into shaped or uniform regions. Secondly,

visual features, such as colour, shape or texture, are computed for each region. All of

these regional features are clustered according to the similarity between them. These

clusters, called ‘blobs’ (Barnard et al., 2003), can be viewed as visual words. Each image

in the training set can thus be represented as a set of blobs, B = {b1, ..., bn}, together

with a set of annotation keywords, W = {w1, ..., wm}. A joint probability distribution,

P (W,B), can then be constructed over the training set. In order to perform auto-

annotation, the test images are also partitioned into regions, each of which is assigned

to the blob that is closest to it. Thus, each test image can also be represented as a

set of blobs B = {b1, ..., bn}. The annotation process for an image is then a matter of

finding the words that maximise the conditional probability P (W |B) = P (W,B)/P (B).

The joint probability P (W,B) is computed as the joint expectation over the space of

distributions P (·|J) defined by the training images J ∈ T . Specifically, given a test image

I ∈ Q, whose blob representation is BI = {bI1 , ..., bIn
}, the following joint probability is

computed for each word w from the vocabulary:

P (w, bI1 , ..., bIn
) =

∑

J∈T

P (J)P (w, bI1 , ..., bIn
|J) . (5.1)

The CMRM assumes that the events of observing wi and bI1 , ..., bIn
are mutually inde-

pendent once a training image J is chosen. Therefore, equation (5.1) becomes:

P (w, bI1 , ..., bIn
) =

∑

J∈T

P (J)P (w|J)

n
∏

i=1

P (bIi
|J) . (5.2)
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5.2 Hybridising CMRM with a Saliency-based Image Rep-

resentation

Most current statistical models annotate images by calculating the probability of key-

words given the regional feature-vectors. This requires the images to be segmented,

into object-shaped regions (Duygulu et al., 2002; Barnard et al., 2003; Jeon et al., 2003;

Lavrenko et al., 2003) or uniform regions (Feng et al., 2004). However, segmentation

algorithms are known to work imperfectly, and uniform regions are intuitively poor

choices. That is to say, fallible segmentation potentially compromises the performance

of auto-annotation. If the aim is to attach words to the entire image, instead of image

regions, it is possibly beneficial to circumvent the segmentation stage.

Saliency-based image auto-annotation models (Hare and Lewis, 2005c) have shown some

promise. They proposed a very simple method; annotations of the top M (1, 2 or 3)

training images that best match the test image, in terms of visual similarity, are directly

used as the annotations of the test image in question. The problem of this method is

that it can not tell which of the annotations is the one most likely to be correct. In

other words, it does not rank the keywords as statistical models do.

An alternative approach to auto-annotation, explored here, is to use statistical models

with saliency, instead of segmentation. The use of a statistical model for annotation

allows the keywords to be ranked by their probabilities. We have adopted the CMRM

(Jeon et al., 2003) as the statistical model for our experiment and assume that a set of

keywords is related to a set of visual terms created from salient regions. Specifically,

instead of calculating the joint probability of keywords and image regions (blobs) (Jeon

et al., 2003), we calculate the joint probability of keywords and a set of visual terms. As

described in section 3.4.2, each training image, J , is represented by its saliency-based

visual terms S = {s1, ..., sn} along with its annotations W = {w1, ..., wn}. For each test

image, I, the joint probability of each word from the vocabulary and its visual terms,

SI = {sI1, ..., sIn
}, is approximated as the expectation over the whole training set, as

follows:

P (w,SI) =
∑

J∈T

P (J)P (w|J)

n
∏

i=1

P (sIi
|J) , (5.3)

where, it is assumed that the events of observing w and sI1, ..., sIn
are mutually indepen-

dent once a training image J is selected. P (J) is treated uniformly as 1/NT , where NT

is the total number of training images. P (w|J) and P (s|J) are estimated by smoothed

maximum likelihood, which is derived from (Jeon et al., 2003), as follows:

P (w|J) = (1 − α)
#(w, J)

|J | + α
#(w,T )

|T | , (5.4)

P (s|J) = (1 − β)
#(s, J)

|J | + β
#(s, T )

|T | , (5.5)
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where, #(w, J) denotes the number of times word w occurs in the caption of J , and

#(w, T ) denotes the number of times word w occurs in all the captions of images in

T . #(s, J) is the number of times saliency s occurs in J , and #(s, T ) is that of the

whole training set. |J | is the aggregate count of all keywords and visual terms in J , and

|T | is that of the whole training set. α and β are smoothing parameters obtained by

optimising system performance on a held-out portion of the training set.

In the end of the process, all of the words are ranked in the order of probability of

being the correct annotation for the test image in question. The x top-ranking words

are chosen as the annotations.

5.3 Results and Discussion

Direct comparisons between the saliency-based CMRM approach with the state-of-the-

art methods (Duygulu et al., 2002; Barnard et al., 2003; Jeon et al., 2003; Lavrenko et al.,

2003; Feng et al., 2004) on the Corel image set (Duygulu et al., 2002) are not available,

because the Corel images at hand are all thumbnail sized. The small image size means

most of the images have only between 10 and 20 salient regions which leads to a poor

representation of the image content. However, we compare the saliency-based CMRM

with the region-based CMRM, as detailed in (Jeon et al., 2003), on the University of

Washington Ground Truth Image Database (University of Washington, 2004).

The Washington data-set contains 697 public-domain images, each of which has between

1 and 13 keywords indicating the image content. On average there are 4.8 keywords per

image. The vocabulary size is 170. Detailed descriptions of the data-set can be found

in Section 6.2.3.1.

As in the previous work, precision and recall, and the normalised score are used to

measure the performance of our salient-based statistical auto-annotation method:

Recall = r/n , (5.6)

Precision = r/(r + w) , (5.7)

E
(model)
NS =

r

n
− w

N − n
, (5.8)

where, r is the number of correctly predicted words, n is the actual number of words in

the test image, w is the number of wrongly predicted words, and N is the number of

words in the vocabulary. See Section 2.3 and 6.2.3.2 for details.
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5.3.1 Experimental Results of Auto-annotation by Saliency-based CMRM

We divided the data-set randomly into 3 parts, with 45% as the training set, 5% as

the evaluation set and 50% as the test set. The evaluation set is used to estimate the

smoothing parameters, α and β (Equation 5.4 and 5.5), for the CMRM model. Once

the parameters are fixed, the training set and the evaluation set are merged to make a

new training set, thus resulting in a training set (50%) and test set (50%) of the same

size as that used in the work of Hare and Lewis (2005c). For the saliency-based CMRM,

the number of visual terms was set to 3000 as used by Hare and Lewis (2005b). For the

region-based CMRM, the optimum was found when the number of blobs was 300.

We compare our saliency-based CMRM method with the methods reported in (Hare

and Lewis, 2005c), namely the LSI (Latent Semantic Indexing) model, the Vector Space

model, random annotation and empirical frequency based annotation, and the region-

based CMRM technique presented in (Jeon et al., 2003). The LSI model and the Vector

Space Model have been introduced in Section 2.2.3.2. The frequency based approach

chooses the keywords that occur most frequently in the entire training set as the anno-

tations for any query image. Figure 5.1(a) shows the comparisons in terms of precision-

recall curves. Error bars shown in the figure indicate the range of precision over 100

repeated runs, each of which used a random separation of the Washington set into train-

ing, test and evaluation sets. Figure 5.1(b) gives a zoomed in view of Figure 5.1(b). The

curves for the saliency- and blob-based CMRM were generated by increasing the number

of predicted words from 1 to 10. The curves for the LSI and the Vector Space Model

were generated by increasing the number of images used for propagation (M), which are

1, 2 and 3. The Box-and-Whisker plot of the results are presented in Figure 5.2. The

results are also summarised in Table 5.1, which gives an overall comparison. In order

to give a more detailed comparison, for the Saliency-based CMRM and Region-based

CMRM methods, we use the first 5 predicted labels of each test image to calculate the

per-word precision and recall, as shown in Figure 5.3. Figure 5.4 shows some example

images together with their true and predicted annotations.

The results show that auto-annotation using the hybrid CMRM with saliency works

much better than by choosing words based on the frequency distribution. Saliency-

based CMRM is also capable of predicting the probability of each word being the correct

annotation for a test image. Words with higher probabilities are more likely to be correct.

In the case that only one word for each test image is predicted, up to 80% of predictions

are correct. Strictly speaking, this method performs slightly better than the LSI and

Vector-Space models when approximately 5 words (M = 1) are predicted, but worse for

7 (M = 2) and 10 (M = 3) predicted keywords. However, considering the error bars,

these three methods have very similar performances for 5, 7 and 10 words. This implies

that the simple annotation propagation methods work almost as well as the statistical
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Figure 5.1: (a) Precision-Recall curves for several different auto-annotation methods.
Error bars show range of precision over 100 repeated runs, each of which used a random
separation of the Washington set into training, test and evaluation sets. (b) A zoomed

in version of (a).

method. One possible reason, as argued by Monay and Gatica-Perez (Monay and Gatica-

Perez, 2003), could be that propagating annotations can lead to good results when the

data-set contains very similar images, which have almost the same set of annotations.

This is the case for the Washington Dataset (University of Washington, 2004); If the

right image is found, the exact annotations are also found. We can also see that on this



Chapter 5 Incorporating a Statistical Model with Salient Regions 59

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8
P

re
ci

si
on

Term Index

Figure 5.2: The Box-and-Whisker plot of the precisions of the saliency based CMRM
approach (blue) and blob based CMRM approach (green). Results from 100 repeated
runs are used. The horizontal axis represents the index of the predicted word, while

the vertical axis represents the precisions.

data-set the saliency-based CMRM performs better than the region-based CMRM.

5.4 Summary

The chapter has proposed a new approach to image auto-annotation by using a sta-

tistical model coupled with an image description using salient regions. This approach

avoids the image segmentation step taken by many previous auto-annotation techniques.

The technique improves on the simple propagation-based annotation methods (LSI and

Vector-Space) (Hare and Lewis, 2005c) in the sense that it is able to select individual

words. It also improves on the CMRM model (Jeon et al., 2003) which uses general

image regions/segments.
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Method Number of Words Precision Recall ENS

1 0.800 0.170 0.169
2 0.657 0.281 0.277
3 0.584 0.371 0.363
4 0.530 0.440 0.429

Saliency-based 5 0.489 0.500 0.484
CMRM 6 0.448 0.542 0.522

7 0.412 0.576 0.551
8 0.379 0.602 0.572
9 0.351 0.628 0.593
10 0.326 0.650 0.610

1 0.753 0.159 0.158
2 0.611 0.254 0.249
3 0.541 0.336 0.328
4 0.491 0.404 0.392

Region-based 5 0.448 0.458 0.441
CMRM 6 0.412 0.503 0.481

7 0.383 0.541 0.515
8 0.356 0.575 0.544
9 0.333 0.604 0.567
10 0.312 0.628 0.586

∼ 4.8 0.476 0.465 0.450
Vector-Space ∼ 7.42 0.402 0.581 0.554

∼ 9.70 0.350 0.641 0.602

∼ 4.8 0.490 0.480 0.466
LSI(K=40) ∼ 7.42 0.414 0.588 0.561

∼ 9.70 0.356 0.648 0.609

Table 5.1: Summary of Results
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       Images

  Methods

True Annotations Tree, Bush, Sidewalk Temple, Sky Flower, Bush, Tree,

Sidewalk, Building

Empirical

Annotations

Tree, Building, People,

Bush, Grass

Tree, Building, People,

Bush, Grass

Tree, Building, People,

Bush, Grass

Vector-Space

Annotations

Tree, Bush Tree, Building, Grass,

Sidewalk, Pole, People,

Clear Sky

Flower, Bush, Tree,

Building, Partially Cloudy

Sky

LSI Annotations Tree, Bush, Grass,

Sidewalk

Steps, Wall Flower, Bush, Tree,

Ground

Region-based

CMRM

Annotations

Tree, Flower, Building,

Bush, Overcast sky

Tree, Building, People,

Clear sky, Cloudy sky

Tree, Building, Bush,

Flower, People

Saliency-based

CMRM

Annotations

Tree, Cloudy sky, Bush,

Overcast sky, Post

Clear sky, Rock, Snow,

Tree, Building

Tree, Bush, Flower,

Ground, Building

Figure 5.4: Example Annotations



Chapter 6

Non-negative Matrix

Factorisation

In information retrieval, sub-space techniques are usually used to reveal the latent seman-

tic structure of a data-set by projecting it to a low dimensional space. Non-negative ma-

trix factorisation (NMF), which generates a non-negative representation of data through

matrix decomposition, is one such technique. It is different from other similar tech-

niques, such as singular vector decomposition (SVD), in its non-negativity constraints

which lead to its parts-based representation characteristic. In this chapter, we present

the novel use of NMF in two tasks; object class detection and automatic annotation of

images. The contents of this chapter is based on the publication by the author in (Tang

and Lewis, 2008).

6.1 Using Non-negative Matrix Factorization (NMF) to

Discover Object Classes and Their Extent

The Vector Space Model (VSM), which represents a collection of documents by a term-

document matrix, has been a major and popular model in information retrieval. A

document can be text, image, or even video, while the observations made about it’s

content are referred to as terms. The term-document matrix is built in which each

column represents a document, each row identifies a term and element values are the

number of occurrences of a term in a document. For example, for a collection of images,

each column of the matrix corresponds to an image and each item of the column indicates

the number of times a certain visual term appears in the image. Visual terms have been

chosen in many forms, for example ‘blobs’ (Pan et al., 2004), quantised salient regions

(Hare and Lewis, 2005c), global RGB histogram (Hare et al., 2006), and even single

pixels (Lee and Seung, 1999).

63
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Usually the term-document matrices are high-dimensional and noisy, which makes it

difficult to capture the underlaying semantic structure. Dimensionality reduction tech-

niques, e.g. principal component analysis (PCA), have been developed to reduce the

dimensionality, filter noise, and discover the latent semantic structure. Recently, Lee

and Seung (1999) poposed a new matrix decomposition technique called non-negative

matrix factorisation (NMF). It is distinguished from PCA by its non-negativity con-

straints, which lead to its unique feature - parts-based representations of documents.

They have shown that NMF is able to learn basis images that, for example for face im-

ages, correpond to face parts, such as mouth, nose and eyes. By contrast, PCA generates

basis image, or eigenfaces (Turk and Pentland, 1991), which do not have an obvious vi-

sual interpretation, as shown in Figure 6.1. NMF has been applied for text document

retrieval (Tsuge et al., 2001; Xu et al., 2003), image patch classification (Guillamet et al.,

2002, 2003), and object recognition (Liu and Zheng, 2004).

In this section, we apply NMF to a collection of nature scene images, in order to discover

the visually similar object or scene classes, without utilizing the captions attached with

the images. Moreover, multiple segmentations are introduced to explore whether NMF

is able to find more accurate segmentations, or more accurate extents of objects within

images. The rest of the section is organised as follows. Firstly, we introduce the NMF

technique, in comparison with PCA. Secondly, we present our approach to discovering

the object classes from a set of images. Finally, we show the experimental results.

6.1.1 NMF vs. PCA

As we have mentioned, the Vector Space Model (VSM), or term-document matrix model,

is a popular technique for information retrieval. Considering the quantity of information

nowadays, it is usually the case that the matrix to be processed is very large. Similarity

or distance measures on such high dimensional matrices are computationally expensive.

On the other hand, it is difficult to find the real data structures, which are of most

interest to researchers, in such massive data which are also contaminated by noise. As

mentioned above, subspace techniques which project multi-dimensional data to a lower

dimensional space have been developed. PCA and NMF are such techniques.

6.1.1.1 Principal Component Analysis (PCA)

PCA is a widely adopted technique from applied linear algebra for analyzing high di-

mensional data. The goal of PCA is to compute the most meaningful basis to re-express

a data-set. It is hoped that the new basis will filter out the noise and reveal the underly-

ing structure. Mathematically, it is an orthogonal linear transformation that transforms

the data to a new coordinate system in which the variance of data is maximised on the

first coordinate, the second greatest variance on the second coordinate, and so on. The



Chapter 6 Non-negative Matrix Factorisation 65

Figure 6.1: Parts-based representation of faces learnt by NMF and holistic represen-
tation learnt by PCA (Lee and Seung, 1999).



Chapter 6 Non-negative Matrix Factorisation 66

first coordinate is called the first principal component and the second is call the second

principal component, and so on. Since the lower-order principal components capture

the characteristics of data that contribute most to its variance, PCA can be used for di-

mensionality reduction by keeping the lower-order principal components and discarding

the higher-order ones.

PCA can be solved by linear algebra techniques. Given a data-set of m samples/vectors,

each of which is n-dimensional, it can be formed as a n×m matrix V . The data is pre-

processed so that all the vectors have zero means, which can be done by substracting

the mean of all vectors. It can be proved (Jolliffe, 2002) that principal components can

be found by eigenvector decomposition of the covariance matrix V V T as follows

V V T = EDET

where E is a matrix of eigenvectors of V V T arranged as columns and D is a diagonal

matrix. The principal components of V are the eigenvectors of V V T , or the columns of

E. In order to reduce dimensionality, V is projected onto a subspace spanned by the

most important (lower-order) principal components, calculated as

V ′ = ET
k V

where ET
k contains the k eigenvectors corresponding to the k largest eigenvalues. As a

result, similarity and distance measures can be conducted in this new space which is of

lower dimensionality.

6.1.1.2 Non-negative Matrix Factorisation (NMF)

NMF is a technique to find a representation of non-negative data using non-negativity

constraints. Under such constraints only additive, not subtractive, combinations are

allowed, which leads to a parts-based representation of the original data. Given an

n × m term-document matrix V (the same terminology as used for PCA) with Vij ≥ 0

and a pre-defined positive integer r, NMF finds two non-negative matrices W ∈ Rn×r

and H ∈ Rr×m so that

V ≈ WH

The rank r is generally choosen as smaller than n and m, for example (n + m)r < nm.

NMF approximates each column of V by a linear combination of r column vectors in W .

In other words, each column of W is regarded as a “basis” vector, while each column of

H contains the weights needed for approximation. In order to estimate the factorisation

matrices, an objective function needs to be defined. Lee and Seung (1999) defined one

as

F =

n
∑

i=1

m
∑

µ=1

[Viµlog(WH)iµ − (WH)iµ]
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They also gave the following multiplicative update rules to minimize the difference be-

tween V and WH. Convergence is ensured (Lee and Seung, 2001).

Wia = Wia
∑

µ

Viµ

(WH)iµ
Haµ,

Wia =
Wia

∑

j Wja
,

Haµ = Haµ
∑

i Wia
Viµ

(WH)iµ

However, the exact form of the objective function “is not as crucial as the non-negativity

constraints for the successs of the NMF algorithm in learning parts” (Lee and Seung,

1999). The objective function could be for example simply the Euclidean distance be-

tween V and WH as follows (Lee and Seung, 2001; Lin, 2005)

F = ||V − WH|| =
∑

ij

(Vij − (WH)ij)
2

6.1.1.3 Relation of NMF and PCA

Although both NMF and PCA are subspace techniques for dimensionality reduction, the

bases they generate are different. PCA finds the directions of largest variance in data

and constrains the principal components to be orthogonal to each other. It allows the

values in the basis to be of arbitrary sign. Thus, when Lee and Seung (1999) apply PCA

to a collection of human faces, the basis vectors, or eigenfaces (Turk and Pentland, 1991),

generated by PCA do not have intuitive meaning. By contrast, for NMF, because there

are no negative elements in W and H, only additive combinations are allowed. This is

compatible with the intuitive notion of combining parts to form a whole. The “basis”

vectors generated by NMF appear to be face parts such as mouths, noses, as shown

in Figure 6.1. Each face image is approximated by a combination of the parts, using

different weights.

6.1.2 NMF for Object Class Detection

Inspired by the work of Lee and Seung (1999) in which NMF was used to find the parts

that form the whole faces, we explore its application to more general images, for example

natural outdoor images. The idea is straightforward - we consider nature scene images

as analogous to face images at the whole image level, then the objects (e.g. sky, water,

tree, etc.) that constitute the nature scene images are analogous to the face parts (i.e.

mouth, eye, nose, etc.) at the objects level. As the basis generated by NMF on the face

images correspond to face parts, it is likely that the basis generated on outdoor images

will correspond to natural objects or object parts.
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The problem to be explored here can be formalised as follows. Given a collection of un-

annotated images, is it possible to learn the object classes simply from their appearances?

An object class is a group of objects which may slightly differ from each other visually

but correspond to the same semantic concept, e.g. the object class of ‘buildings’. We

propose to answer the question in two main steps. Firstly, use NMF to find the bases

which may correspond to objects. Secondly, we will try to use segmentation to segment

out object regions and rank all the image segments by the distances to each basis object

to see if the basis actually represent different object classes or object part classes.

Lee and Seung (1999) used the grey level pixel values of the face image to construct the

term-document matrix. Each column is a face image and each element in the column

corresponds to a pixel. Since the images used are 19×19, it does not cause a problem

when all the pixels are used. However, it can result in a very large matrix with general-

purpose images which are often of high resolution. Resizing the images will lose a

lot of information, and make them hardly recognisable at a resolution level as low as

19×19. Therefore, another method of image representation is preferred. We choose again

the quantised SIFT descriptors of salient regions, as used in many of our experiments

(e.g. chapter 5 and 7.1). Let us briefly review the process here. Firstly, we select

salient regions by using the method proposed by Lowe (2004). Secondly, Lowe’s SIFT

descriptor is calculated for each salient region. Lastly, the k-means clustering algorithm

is applied to the whole set of SIFT descriptors in order to quantise them into visual

terms. As a result, each image can be represented by a vector which contains the

number of occurrences of each visual term in the image. All the vectors are arranged as

columns to form a matrix. Suppose the image collection is Ii (i = 1, 2, ...,m, where m

is the total number of images), mathematically we now have a n × m term-document

matrix V , where Vij is the occurrence of the ith visual term in image Ij, and n is the

size of the visual vocabuary. Details of the process can be found in section 3.4.2.

Since all the elements in the term-document matrix are non-negative, we can now apply

NMF to it. We adopted the projected gradient method for NMF that is developed by

Lin (2005), because it converges faster than the popular multiplicative update approach

(Lee and Seung, 1999). NMF decomposes the term-document matrix V into W and H

where V ≈ WH. If W is represented by its column vectors as W = [W1,W2, ...,Wr] (r

is the number of basis vectors, or the dimensionality of the subspace), Wi is considered

as a basis vector, or a conceptual part/object of the image collection. Each element

of a basis vector indicates how many times a particular visual term appears in this

conceptual object. In order to demonstrate if the basis vectors (i.e. Wi) actually cor-

respond to object classes, the following approach is choosen. We use Normalized Cuts

(Shi and Malik, 2000), which is an automatic image segmentation algorithm, to divide

each image into regions. The visual terms within a specific region are used to form a

vector representing the region. As a result, all the segments from the data-set can be

represented by vectors It (t = 1, 2, ...,M , where M is the total number of segments in
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the data-set). For each basis vector, we rank all the image segments according to the

distance, which is calculated as the cosine value of the angle between the two vectors,

cos(Wi, I
t)1. The top ranked segments are examined to see if they represent an object

class, which corresponds to the basis vector. So far, we have been ignoring the parameter

r, the dimensionality of the subspace after NMF.

6.1.3 Experimental Results and Discussion

For comparison purposes, we choose the same data-set as used by Russell et al. (2006)

for our experiments. The data-set is a subset of a large image database named LabelMe

(Russell et al., 2005). The subset used in this work has 1554 images which are returned by

the query words “cars”, “trees” and “buildings” from the LabelMe set. The images also

contain many other additional objects. Most of the images have a resolution of 640×480.

The size of the visual vacaburary is set to 2000, which results in a term-document of

2000×1554. Finding the optimal value of r is a difficult problem in itself. In this work,

we only set the value empirically to 35. In terms of segmentation, we followed the setting

of the work by Russell et al. (2006). Specifically, to produce multiple segmentations,

we varied two parameters of Normalised Cuts: the number of segments K and the

size of the input image. K is set to 3, 5, 7, 9, 11, 13 and the segmentation algorithm is

applied at 2 image scales: 50- and 100-pixels across. This results in 12 different levels

of segmentation per image. For each basis vector, segments from all segmetation levels

are ranked according to their distances to the basis vector. Figure 6.2 shows montages

of segments for the object classes found by NMF, each corresponding to a basis vector

of W . Each of the depicted segments comes from a different image to avoid showing

multiple segments of the same object. Making a qualitative assessment; it can be seen,

NMF manages to find some object classes (e.g. “trees”, “sky”, “buildings”, etc.) fairly

well. However, it was not successful on “cars” in our experiments.

We also conducted an evaluation on the effect of using multiple segmentations. Segmen-

tation accuracy, which was used by Russell et al. (2006), is calculated on the top ranked

LabelMe segments for each object class. The top twenty returned images for four object

classes are tested: “buildings”, “cars”, “roads” and “sky”. They are compared with the

ground truth object segmentation that was generated manually. Suppose R and GT

denote the set of pixels in the retrieved object segment and the ground truth segmen-

tations of the object. The accuracy score, ρ, measures how correct the area segmented

by the retrieved object segment is. It is calculated as the ratio of the intersection of GT

and R to the union of GT and R, as follows

ρ =
GT ∩ R

GT ∪ R

1For vectors V1 and V2, cos(V1, V2) =
V1 · V2

|V1||V2|
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Top segments for 6 (out of 35) object classes discoverd in the LabelMe
data-set. Note how the segments, learned from a collection of unlabeled images, corre-
spond to trees (a), sky (b), buildings (c), leafless trees (d), roads (e). However, for the
last group of segments (f), it is not obvious which class of objects it corresponds to.

We consider it as the class of cars in our evaluations.
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Methods buildings cars roads sky

Our Methods

Multi Seg NMF 0.69 0.11 0.39 0.83
Sing Seg NMF 0.50 0.09 0.47 0.67

Russell et al.’s Methods

Multi Seg LDA 0.53 0.21 0.41 0.77
Multi Seg pLSA 0.59 0.09 0.16 0.77
Sing Seg LDA 0.55 0.29 0.32 0.65

Table 6.1: Segmentation accuracy (ρ) of the top 20 segments returned by NMF on
four object classes from the LabelMe dataset. It is compared with the results from

Russell et al. (2006) on the same data-set.

If more than one ground truth segment intersects with R, we choose the one achieving the

highest score. The accuracy score is averaged over the top 20 returned object segments

for the four classes. The results are shown in Table 6.1. The table also includes the

results of using single segmentation, for comparison with multiple segmentations. As

can be seen, NMF performs as well as, if not better than, the methods proposed by

Russell et al. (2006). In particular, NMF with multiple segmentations outperforms LDA

(Latent Dirichlet Allocation) with multiple segmentations by 0.16 on “buildings” and

0.06 on “sky”, although it is worse by 0.02 and 0.10 on “roads” and “cars” respectively.

It is interesting to note the difference between our approach and that of Russell et al.

(2006). Although both methods use quantised descriptors of salient regions as visual

terms, we treat each entire image as a document, while Russell et al. treat each image

segment as a document. We build a term-document matrix and then rely on NMF to

find the basis vectors, or underlying “topics” as called by Russell et al. They apply

statistical models to the whole set of image segments to find the “topics”. Therefore,

the data which needs to be processed is significantly less in our approach.

6.2 Auto-annotation via Semantic Propagation in Sub-space

Latent semantic indexing (LSI) was proposed by Deerwester et al. (1990) to perform

document clustering. They demonstrated that it is possible to reveal the implicit higher-

order structure in the association of terms with documents, by projecting the term by

document matrix into a sub-space through the singular value decomposition (SVD).

Hare and Lewis (2005c) used this technique (SVD for LSI) for image annotation using

sementic propagation. The premise of their approach is based on the intuition that

visually similar images often have similar meaning or semantics. NMF as another matrix

factorisation technique can be used as an alternative to SVD in order to project high

dimensional data to a low dimensional sub-space, in which the semantics of data is

expected to be more explicit. In this section, we will examine the use of NMF for image

auto-annotation via sementic propagation.
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6.2.1 NMF as an alternative to SVD

6.2.1.1 SVD

SVD is a popular technique used in the information retrieval community. It decomposes

a m × n matrix A into the product of a m × r matrix T , a r × r matrix S, and a r × n

matrix D:

A = TSDT (6.1)

such that TT T = DDT = DT D = I, where I is the identity matrix. Figure 6.3 depicts a

graphical representation of SVD. S is a diagonal matrix in which diagonal elements are

called singular values of matrix A, in monotonically decreasing order. It is claimed that

the k largest singular values together with the corresponding left and right eigenvectors

encode the most important information of A (Deerwester et al., 1990). Therefore, matrix

A is usually approximated by A∗ (i.e. A ≈ A∗), which is thought to contain less noise

or be noise-free:

A∗ = TkSkD
T
k (6.2)

Suppose A is a term document matrix, each column of which corresponds to a document,

we further define matrix T ∗ and D∗ to be

T ∗ = Tk

D∗ = SkD
T
k

(6.3)

where T ∗ is regarded as the term matrix and D∗ is the document matrix (note that

we could have equally chosen T ∗ = TkS
1/2
k and D∗ = S

1/2
k DT

k ). The decomposition

A ≈ T ∗D∗ can be interpreted as follows. Each column of T ∗ captures a basis of the

latent sementics of the document corpus, while each element of a column in D∗ indicates

the index of the corresponding document on each basis. However, because of the negative

values in some of the dimensions generated by SVD, the above interpretation becomes

less meaningful.

TA k
S

k

k

TD

xm  r r  rx r  nxm  nx

=

k

k

Figure 6.3: Graphical representation of SVD.
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6.2.1.2 NMF for Sub-space Projection

Given a document corpus, or a collection of images, we assume that it consists of k

topics. Note that we use the same terminology ”k” as used in SVD where it refers to the

k largest singular values. Each document in the corpus either completely belongs to a

particular topic, or is partially related to serveral topics. Ideally, if the documents can be

projected into a k dimensional semantic space in which each axis corresponds to one of

the k topics, the semantic structure of the data-set will be more explicit. In other words,

each document can be represented by a linear combination of the k topics. Because it is

more natural to consider each document as an additive instead of subtractive mixture

of different topics, the coefficients of the linear combination should be all non-negative.

Moreover, it is usually the case that topics of a corpus are not completely independent

of each other. Overlaps may exist among the topics. Therefore, the axes of the semantic

space that capture the topics are not necessarily orthgonal, which is the case for the

sub-space generated by SVD.

NMF is theoretically superior to SVD for the following reasons (see Figure 6.4). First,

overlaps exist among topics. The orthogonal restriction by SVD makes the derived

latent semantic directions less likely to correspond to each topic, while NMF can still

find them. Second, NMF decomposes the matrix in such a way that each document can

be considered as a additive combination of topics, which makes more sense in the image

domain. Third, for a particular document, the coefficients of the linear combination in

NMF give direct indications of to what extent this document is belonging to each of the

topics. In contrast, SVD can not give this benefit because those negative values do not

have intuitive interpretations.

Figure 6.4: Illustration of the difference between NMF and SVD (Xu et al., 2003).

Based on the above theory, we propose to utilize NMF to find the latent semantic

structure for a collection of images, and then use the semantic propagation method

to annotate images automatically. Before the details of the approach are presented, a
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modified versions of NMF that is used in our experiments will be discussed, namely the

NMF with sparseness constraints.

NMF with sparseness constraints Hoyer (2004) noticed one of the most useful

properties of NMF is that it generates a sparse representation of data. Much of the

data is encoded in such a representation using only a few ‘active’ components. This

notion is in line with the initial interpretation of NMF that parts are combined to build

a whole. It is argued that in some applications, NMF does not result in parts-based

representations because the decomposited matrices are not ‘sparse’ enough. Therefore,

sparseness constraints are applied to the objective function, in order to achieve a pre-

defined level of sparseness of the decomposition. They proved that in their experiment

the parts-based representation of data can be enhanced through this approach.

“The concept of ‘sparse coding’ refers to a representational scheme where only a few

units (out of a large population) are effectively used to represent typical data vectors”

(Hoyer, 2004). In other words, most units take values that are close to zero and only

a few take large non-zero values. Hoyer defines the sparseness of a vector x as follows,

which is based on the relationship between L1 norm and L2 norm:

sparseness(x) =

√
n − (

∑ |xi|)/
√

∑

x2
i√

n − 1
(6.4)

where n is the dimensionality of x. This function evaluates the sparseness of a vector to

a value within the range of [0,1]. The sparseness equals 1 if and only if x contains only

one single non-zero component; it equals 0 if and only if all components of x are equal.

Figure 6.5 illustrates some examples of this sparseness measure.

Figure 6.5: Illustrations of 4 different degrees of sparseness, 0.1, 0.4, 0.7. 0.9. The
height of each bar denotes the value of one element of the the vector (Hoyer, 2004).

NMF with sparseness constraints is then defined as follows. Given a non-negative matrix

V , find the non-negative matrices W and H such that

E(W,H) = ||V − WH||2 (6.5)
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is minimized, under optional constraints

sparseness(wi) = Sw,∀i,

sparseness(hi) = Sh,∀i,
(6.6)

where wi is the ith column of W and hi is the ith row of H. Sw and Sh are the desired

sparsenesses of W and H respectively, and are set by the user.

6.2.2 Using NMF and Semantic Propagation for Auto-annotation

Semantic propagation is perhaps the simplest automatic image annotation method. The

basic idea is intuitive; images that have similar visual appearance should have similar

semantics. For a given new un-annotated image, a CBIR-like process is carried out

first in order to rank the training images which are already annotated. Then, labels

are chosen from the top (most similar) training images to annotate the new image.

Therefore, most of the traditional CBIR techniques can be directly transfered to image

auto-annotation applications in the manner described above. For example, Hare and

Lewis (2005c) search for visually similar images in the semantic space that is generated

by applying SVD to the term by document matrix of an image collection, and then

propagate the labels from the top ranked images (1, 2 and 3 respectively) to a new

query image.

We choose the same approach as that of Hare and Lewis (2005c), except that NMF is

used to find the latent semantic topics. The whole process is conducted as follows.

1. The saliency based visual term representation (see Section 3.4.2) of the training

images are generated. The same image representation is calculated on the query

images, except that the cluster centroids of salient descriptors found on the training

set are used.

2. All the training images which are represented by vectors of visual terms are put

together to form a term by document matrix V . Each column of V corresponds

to an image, while each element of a column indicates the number of occurrences

of a particular visual term.

3. NMF is applied on V to generate W and H such that V ≈ WH. Each column of

W is considered as a topic, while each column of H contains the coefficients of the

linear combination of the corresponding topics.

4. Each query image q is projected into the semantic space spanned by W . Because

we assume that the query image shares the same latent semantic structure as the

training set, equation q = Whq stands, where hq is the new coordinates of q. hq

can be calculated as hq = W−1q.
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5. Training images are ranked accoarding to their distances to the query image in

the space of W . In other words, we compare each column of H with hq. Cosine

distance of vectors is used in this work.

6. Labels of the top M training images are propagated to the new image as its

predicted labels.

6.2.3 Experimental results

6.2.3.1 The Washington Image Data-set

For comparison, the same data-set as used by Hare and Lewis (2005c) is chosen for

experiments, namely the University of Washington Ground Truth Data-set (University

of Washington, 2004). The Washington data-set contains 697 public-domain images,

each of which has been semantically annotated between 1 and 13 keywords. For example,

an image may have several labels describing its content, such as “trees”, “buildings”,

“sky”, etc. On average there are 4.8 keywords per image. After the original keyword

labels were processed by correcting mistakes and merging plurals into singular forms

(Hare and Lewis, 2005c), e.g. “trees” became “tree”, the vocabulary consisted of 170

keywords. The frequency distribution of keywords across the data-set is shown in Figure

6.7. Figure 6.6 shows some sample images and the corresponding annotations from the

data-set.

6.2.3.2 Performance Evaluation

For each test image, precision and recall, as well as the normalised score proposed by

Barnard et al (Barnard et al., 2003), are calculated for performance evaluation. Each

kind of metric is averaged over the entire test set to get a mean value. The definitions

of these metrics are as follows.

Recall = r/n , (6.7)

Precision = r/(r + w) , (6.8)

E
(model)
NS =

r

n
− w

N − n
, (6.9)

where, r is the number of correctly predicted words, n is the actual number of words in

the test image, w is the number of wrongly predicted words, and N is the number of

words in the vocabulary. Details of the above metrics can be found in Section 2.3.

6.2.3.3 Experiment Settings

We compare the results of experimentations with three different settings of experiment on

sub-space techniques for semantic propagation based image auto-annotation, i.e. classic
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T r e e , B u s h , G r a s s , S i d e w a l k T r e e , B e a c h , O c e a n , S k y , C l i f f s C l e a r S k y , B u i l d i n g , G r o u n d ,P e o p l e , R e d S q u a r e
O v e r c a s t S k y , H o u s e , C a r ,P e o p l e , S t r u c t , F l o w e r s T r e e , G r a s s , S i d e w a l k , P e o p l e ,C l e a r S k y C l o u d y S k y , B r i d g e , W a t e r ,T r e e

S t a d i u m , S t a n d , P e o p l e ,F o o t b a l l F i e l d , N u m b e r , P e o p l e ,T r e e , T r a c k , L i n e V o l c a n o , S k y , C l o u d C l a y H o u s e s , S k y , M i n a r e t

T r e e T r u n k , L o g , G r e e n e r y ,G r o u n d , E l k P a r t i a l l y C l o u d y S k y , T r e e ,B e a c h , S a i l b o a t , M a s t , W a t e r ,S h a d o w s S w a n B o a t , L a k e , T r e e
Figure 6.6: Sample images and their annotations from the Washington Ground Truth

Image Database.
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Figure 6.7: Plot of empirical keyword distribution in the Washington data-set

NMF (denoted as CNMF), NMF with sparseness constraints (denoted as NMFsc) and

SVD. The results of the SVD based approach were taken directly from the work of Hare

and Lewis (2005c) for comparison purposes. The projected gradients based method1

developed by Lin (2005) was used for the classic NMF. As for NMF with sparseness

constraints, the algorithm2 developed by Hoyer (2004) was adopted.

Additional parameters need to be set when using the sparseness constrained version of

NMF, namely the degree of sparseness of W and H. The constraints can be placed

on W , or H, or both, depending on the particular problem to be solved. Hoyer (2004)

described an example in which a doctor tries to analyze disease patterns. It was assumed

that most diseases are rare (hence sparse), and present in a small number of patients.

However, each disease can cause many symptoms. Therefore, given a matrix in which

each column denotes an individual patient and each row denotes a sympton, it might

be better to place sparseness constraints on the “coefficients” (rows in H) but not the

“basis vectors” (columns in W ). Based on empirical analysis of the Washington images

set, we chose to constrain W but not H for two reasons. Firstly, as the number of

visual terms was set to 3000 but on average each image generated only several thousand

salient regions, it is unlikely that an object or object part from an image contains a

variety of different visual terms. In other words, the ”basis vectors” in W tend to be

sparse. Secondly, many objects/keywords exist in a large number of images in the data-

set. For example, 484 of the images contain “tree”, and 218 and 199 of them have

“building” and “people”. These keywords affect a big portion of the data-set. It is

more appropriate to unconstrain H. Our experiments also confirmed this hypotheses;

the results of experiments using constrained W and unconstrained H were much better

than using unconstrained W and constrained H, or when both were constrained. When

both W and H are unconstrained, it becomes the classic NMF, the results of which are

presented in the following.

1Code available at: http://www.csie.ntu.edu.tw/∼cjlin/nmf/index.html
2Code available at: http://www.cs.helsinki.fi/u/phoyer/software.html
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6.2.3.4 Results

We repeated the experiments of CNMF and NMFsc for image auto-annotation 100 times

on different training and test sets. For each run, a randomly selected 50:50 mix of images

from the Washington data-set were used to build a set of training images and a set of

test images. Precision, recall and normalised score (Ens) were calculated at different

values of M(1, 2, 3), which represents the number of top images chosen for propagation.

The average results from the 100 runs are used in the following. The number of visual

terms was set to 3000 and the term by document matrix was not weighted.

The dimensionality of the sub-space generated by NMF, or the value of r in V ≈
Wn×rHr×m, is a number pre-defined by users. Theoretically, it should relate to the

class number of object or object parts in the data-set. However, at this time, finding

the optimal value of r is still a difficult and unsolved problem. In our experiments, we

varied its value from 2 to 200 with a fixed step of 2. Besides, for NMFsc, the results

were calculated at different sparseness degrees of W , i.e. 0.5, 0.6, 0.7, 0.8 and 0.9.

In order to choose the optimal sub-space dimensionality and degree of sparseness for

NMFsc, we use normalised score as a single value indicator. Figure 6.8 depicts the

values of Ens at different settings of dimenionality (r) for different degrees of sparseness

of W . For each test image, the closest training image was chosen for propagation, i.e.

M = 1. The horizontal axis represents the value of r, and the vertical axis represents

the value of normalised score Ens. Each degree of sparseness generated one curve in

the chart, denoted by different colours. Figure 6.9 and 6.10 show the results of using

2 and 3 top images for propagation respectively, i.e. M = 2, 3. As can be seen from

the figures, Ens achieves the highest value when the sparseness is 0.8 (the green curve)

and r is around 100. We have also calculated the results for CNMF and depicted this

in Figure 6.11. The best performance is found at r = 40, as shown in the chart. The

above mentioned values of parameters are chosen for comparisons with SVD.

The results in terms of precision, recall and normalised score are summarised in Table

6.2, along with the results of the methods proposed by Hare and Lewis (2005c), namely

the vector space and LSI (based on SVD) model. The results of each method are also

plotted into a precision-by-recall chart, Figure 6.12, for a better view of the comparison.

As can been seen, the annotation results of NMF with sparseness constraints are better

than that of the classic NMF. Besides, NMFsc achieved similar results as SVD when

M = 1, and slightly better when M = 2 and 3. Some samples of annotation results are

shown in Figure 6.13.



Chapter 6 Non-negative Matrix Factorisation 80

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 20 38 56 74 92 110 128 146 164 182 200

0.5 0.6 0.7
0.8 0.9

r

Ens

Figure 6.8: The normalised score (Ens) of applying NMFsc for image auto-annotation.
The closest training image (M = 1) is used for propagation. The degree of sparseness

is varied from 0.5 to 0.9.
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Figure 6.9: The normalised score (Ens) of applying NMFsc for image auto-annotation.
The top 2 closest training images (M = 2) is used for propagation. The degree of

sparseness is varied from 0.5 to 0.9.
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Figure 6.10: The normalised score (Ens) of applying NMFsc for image auto-
annotation. The top 3 closest training images (M = 3) is used for propagation. The

degree of sparseness is varied from 0.5 to 0.9.
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Figure 6.11: The normalised score (Ens) of applying CNMF for image auto-
annotation. The curve “CNMF 1” represents the results when M = 1. “CNMF 2”

and “CNMF 3” represent the case when M = 2 and M = 3.

6.3 Summary

This chapter has investigated the use of the non-negative matrix factorisation (NMF)

technique for object detection and image auto-annotation. In the first part, we have

demonstrated an approach that utilizes the parts-based representation feature of NMF

for object class or topic detection among a set of images without any labels. NMF is

applied to the term-document matrix of an image data-set. The basis vectors in the

decomposed matrix are considered as conceptual objects, each of which corresponds to

an object class, or topic. It has also been shown that NMF manages to find more accurate
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Figure 6.13: Some sample results of image auto-annotation using the classic NMF
(CNMF) and NMF with sparseness constraints (NMFsc).
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Method Number of Words Precision Recall ENS

∼ 4.8 0.476 0.465 0.450
Vector-Space ∼ 7.42 0.402 0.581 0.554

∼ 9.70 0.350 0.641 0.602

∼ 4.8 0.490 0.480 0.466
LSI(K=40) ∼ 7.42 0.414 0.588 0.561

∼ 9.70 0.356 0.648 0.609

∼ 4.8 0.478 0.465 0.450
CNMF ∼ 7.42 0.403 0.585 0.557

∼ 9.70 0.352 0.651 0.612

∼ 4.8 0.492 0.475 0.461
NMFsc ∼ 7.42 0.413 0.593 0.566

∼ 9.70 0.360 0.658 0.619

Table 6.2: Summary of results of image auto-annotation using several different se-
mantic propagation-based methods.

segments when multiple segmentations are generated. We have obtained results that are

comparable with those reported by Russell et al. (2006), who used more complicated

statistical models.

The second part explored the use of NMF as an alternative sub-space approach to

latent semantic indexing. Test images are mapped into the semantic space spanned by

the basis vectors (columns of W ) that are generated by NMF on the term-by-document

matrix of the training set. For each test image, the closest training images in the

space are used for semantic propagation. We have experimented with two versions

of NMF, the classic NMF and NMF with sparseness constraints. In paticular, NMF

with sparseness constraints performed slightly better than SVD in terms of image auto-

annotation through semantic propagation.

Therefore, we argue that NMF is a promising sub-space technique for discovering the

latent structure of image data-sets, with the ability of encoding the latent topics that

correspond to object classes in the basis vectors generated.



Chapter 7

The Image Based Feature Space

Model

So far, a majority of the published image auto-annotation techniques only generate

labels at the whole image level (globally) (Jeon et al., 2003; Feng et al., 2004; Tang

et al., 2006), rather than at the object or region level (locally) (Duygulu et al., 2002;

Yang et al., 2005). For example, as shown in Figure 7.1, captions that are assigned

to image 7.1(a) and 7.1(b) are global, which carries only the information that certain

objects exist in this image. In contrast, captions of images in Figure 7.2 are attatched

to specific regions, which provides the information about object location and extent. In

other words, global image auto-annotation does not indicate which part of the image

gives rise to which word, so it is not explicitly object recognition.

In most of the existing annotated image databases that are used for auto-annotation

experiments, labels are associated with the whole images rather than individual regions,

which makes region based image annotation a challenge. Detection of the location and

extent of objects on such image data-sets, as well as its application to image auto-

annotation is the problem to be explored in this chapter. The contents of this chapter

have been published in (Tang and Lewis, 2007b) and (Tang and Lewis, 2007c).

Firstly, an image based feature space (IBFS) model and mapping of image regions and

labels are defined. The embedding of both image regions and textual labels into the

same space makes object recognition more straightforward. The links between image

regions and words are measured by their separation in the feature space, which is further

used to annotate images, both locally and globally.

Secondly, the idea of using multiple segmentations for image auto-annotation is pro-

posed. For each image, multiple layers of segmentation are generated and then incopo-

rated into the IBFS model for automatic image annotation.

84
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(a) Captions: Tree, Building, Grass, Sidewalk,
Pole, People, Clear Sky

(b) Captions: Stadium, Stand, People, Foot-
ball Field, Band, Track, Banner, Flag, Lake,
Tree, Partially Cloudy Sky

Figure 7.1: Examples of globally annotated images from the Washington data-set
(University of Washington, 2004).

(a) (b)

Figure 7.2: Examples of locally annotated images from the LabelMe data-set (Russell
et al., 2006).

7.1 An Image Based Feature Space and Mapping

In this section, we try to discover the correspondence between image regions and textual

labels. Specifically, given a collection of images that are only annotated globally, we want

to find out which region of an image represents which word that annotates the image. An

image based feature space and mappings of both image regions and textual labels into

that space are defined. The links between image regions and words can be discovered

from their separation in the feature space. It is then applied to image auto-annotation,

both globally and locally. This section begins with an introduction of two techniques

that are able to attach words to specific image regions. Then, the details of the algorithm

will be described, followed by experimental results and some discussions.

7.1.1 Related Work

Duygulu et al. (2002) view the process of image auto-annotation as machine translation.

They first used a segmentation algorithm to segment images into object-shaped regions,
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followed by the construction of a visual vocabulary, which is represented by ‘blobs’.

Then, a machine translation model is utilized to translate between ‘blobs’ comprising

an image and words annotating that image. Thus, it is capable of annotating objects in

images.

Yang et al. (2005) use Multiple-Instance Learning (MIL) (Maron and Lozano-Pérez,

1998) to learn the correspondence between image regions and keywords. “Multiple-

instance learning is a variation on supervised learning, where the task is to learn a

concept given positive and negative bags of instances.” (Maron and Lozano-Pérez, 1998).

Labels are attached to bags (globally) instead of instances (locally). In their work, images

are considered as bags and objects are instances. However, for each keyword only one

representative region was learnt and used as the basis for determining new un-labeled

regions. Intuitively, this approach is more or less restricted, because one concept could

have very different sample regions, such as “flowers”, which can be of any colour and

shape.

Although there are many other image auto-annotation techniques, to the best of our

knowledge the above two are the only models that annotate regions. For example, Jeon

et al. (2003) proposed a cross-media relevance model that learns the joint probabilities of

a set of regions (blobs) and a set of words, instead of the one-against-one correspondence.

In order to annotate a new image, they used all the regions within the image as a whole

and chose the words with the highest joint probabilities. We argue that, at some level,

models like this benefit from the fact that the data-set contains many globally similar

images. As illustrated in (Tang and Lewis, 2006), a simple global feature descriptor

based propagation method achieves even better results on the same data-set. Therefore,

in this paper, we compare our approach with only the two region based annotation

models mentioned above.

7.1.2 The Algorithm

7.1.2.1 Approach Overview

We propose an image based feature space and a mapping of image regions and words

into the space for object recognition. Firstly, each image is segmented automatically

into several regions. For each region, a feature descriptor is calculated. We then build

a feature space, each dimension of which corresponds to an image from the database.

Finally, we define the mapping of image regions and labels into the space. The corre-

spondence between regions and words is learned based on their relative positions in the

feature space. In terms of regional image annotation, a test region is annotated with the

closest word in the space. Furthermore, regional labels that are most likely to be correct

are used as the annotations for the whole image, for comparison with other approaches.
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In the following, we first describe how image segments can be represented by visual terms

which are based on salient regions. Secondly, we propose how to embed image regions

and words into an image based feature space, in order to find the relationships between

words and image regions. Then, its application to region-based image annotation will

be described. Finally, a simple example is presented as an illustration of the algorithm.

7.1.2.2 Representing image regions by salient regions

There are very many different automatic image segmentation algorithms. In this work

the Normalized Cuts framework (Shi and Malik, 2000) is used because it handles seg-

mentation in a global way which has more chance than some approaches to segment out

whole objects.

Once images are segmented, a descriptor is calculated for each image segment. The

approach of Tang et al. (2006)’s work is followed to represent images by salient regions.

Specifically, we first select salient regions by using the method proposed by Lowe (2004),

in which scale-space peaks are detected in a multi-scale difference-of-Gaussian pyramid.

Lowe’s SIFT (Scale Invariant Feature Transform) descriptor is used as the feature de-

scriptor for the salient regions. The SIFT descriptor is a three dimensional histogram

of gradient location and orientation. The descriptor is constructed in such a way as to

make it relatively invariant to small translations of the sampling regions, as might hap-

pen in the presence of imaging noise. Quantisation is applied to the feature vectors to

map them from continuous space into discrete space. Specifically, the k -means cluster-

ing algorithm is adopted to cluster the whole set of SIFT descriptors. Each cluster then

represents a visual word from the visual vocabulary. As a result, each image segment can

be represented by a k-dimensional frequency vector or histogram, for the visual words

contained within the segment.

7.1.2.3 Image-Based Feature Mapping

We define an image-based feature mapping m, which maps each label and image segment

into a feature space F. The feature space F is an N dimensional space, where N is the

total number of images in the training set and where each dimension corresponds to a

training set image.

Mapping of image segments: We denote images as Ii (i = 1, 2, ...N), and the jth

segment in image Ii as Iij . For the sake of convenience, we line up all the segments

in the whole set of images together and re-index them as It ( t = 1, 2, ..., n, n being

the total number of segments). The coordinates of a segment in F are defined by the

mapping m:

m(It) = [d(It, I1), d(It, I2), ..., d(It, IN )] (7.1)
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where d(It, Ii) represents the coordinate of segment It on the ith dimension, which is

either 1 or 0 according to the distance of It to image Ii. The distance of a segment to an

image is defined as the distance to the closest segment within the image. The distance

between two vectors/histograms V1 and V2, which represent two segments, is measured

by the normalised scalar product (cosine of angle), cos(V1, V2) = V1•V2

|V1||V2|
. A threshold t

is set to decide if the coordinate is 1 or 0, as follows

d(It, Ii) =

{

1 if maxj=1,...,ni
cos(It, Iij) > t

0 otherwise
(7.2)

The mapping of segments can be comprehended as a mapping in which, if the object

that a segment contains also appears in a particular training image, the coordinate of

the segment on the dimension represented by that image is 1, otherwise 0. Intuitively,

segments relating to the same objects or concepts should be close to each other in the

feature space.

Mapping of textual words: We can also map labels used to annotate the images into

the space. Suppose the vocabulary of the data-set is Wl (l = 1, 2, ...,M , M being the

vocabulary size). The coordinate of a label on a particular dimension is decided by the

image this dimension represents. If the image is annotated by that label, the coordinate

is 1, otherwise it is 0. Therefore, the mapping of words is defined as:

m(Wl) = [d(Wl, I1), d(Wl, I2), ..., d(Wl, IN )] (7.3)

where

e(Wl, Ii) =

{

1 if Ii is annotated by Wl

0 otherwise
(7.4)

Ideally, a label should be close to the image segments associated with the objects the

label represents. The normalised scalar product is used to measure the distance between

a segment and label, calculated as cos(m(It),m(Wl)).

The mapping of segments and words in this way is similar to the work of Bi et al. (2005),

in which a region-based feature mapping is used. However, they defined a feature space

in which each dimension is an image segment, and then map each image into the space.

In other words, the two mappings are essentially the inverse of each other. However, one

of the advantages of our mapping is that it is also able to map image labels to the feature

space. For the mapping of Bi et al. (2005), there is no way to identify the coordinate

of a label on each dimension of the feature space because labels are only attached on

an image basis, rather than a region basis. In addition, instead of using global features

(colour, shape, texture), we use a histogram of visual words, which are quantised from

salient regions within each image segment.
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7.1.2.4 Application to Region-Based Image Annotation

Similarly, the segments of test images can also be mapped into the training image based

feature space as described above. Region based image annotation becomes relatively

straightforward once the mapping is done. The probability of a segment being correctly

annotated by a particular label, is approximated by their cosine distance in the space.

For each test segment, the word with the highest probability is chosen. In terms of global

image annotation, the set of words that are generated from all the segments within the

image are lined up and those with the highest probabilities are chosen.

7.1.2.5 A Simple Example

In this section a simple example is presented to illustrate the major steps of the method.

Consider two annotated images; I1 is labelled as “RED, GREEN” and half of the image

is red and the other half is green; I2 is labelled as “GREEN, BLUE” and half is green

and the other half is blue, as shown in Figure 7.3. Assume the segmentation algorithm

manages to separate the two colours in each image and segments them into halves.

We will have four segments in all, denoted as I1, I2, I3 and I4. Using the RGB values

as the feature descriptors, the segments can be represented as I1 = (255, 0, 0), I2 =

(0, 255, 0), I3 = (0, 255, 0), I4 = (0, 0, 255). Then we need to map the segments into the

feature space, which is a two dimensional space in this case as there are two images. By

applying Equation 7.1, the coordinates of the segments are as follows:

I1 : [1, 0];

I2 : [1, 1];

I3 : [1, 1];

I4 : [0, 1];

(7.5)

The step of applying the quantisation equation 7.2 is omitted here, since the coordinates

calculated are already 0 and 1s. Alternatively, a threshold t ∈ (0, 1) can be set for the

same results. In addition, the labels can also be mapped into the feature space to give:

RED : [1, 0];

GREEN : [1, 1];

BLUE : [0, 1];

(7.6)

It can now be seen that in the feature space, the closest labels for the segments are:

I1 : RED;

I2 : GREEN ;

I3 : GREEN ;

I4 : BLUE;

(7.7)
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Refer to Figure 7.3 for a diagram of this example.

RED

GREEN BLUE

GREEN

I 1 I 2

[1,1][1,0]

BLUERED GREEN
[0,1]

I2

1I I3

I4

(255,0,0) (0,255,0)

(0,0,255)(0,255,0)

Feature Extraction
Segmentation and

1I I3

I2 I4

[1,0] [1,1]

[1,1] [0,1]

Coordinates Calculation
Through Mapping m

Coordinates Calculation
Through Mapping m

BLUE

GREEN

I 1

I 2
1

1

0

RED

Figure 7.3: Diagram of a simple example of using the image based feature space for
relating image regions and words
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7.1.3 Experimental Results and Discussion

7.1.3.1 Correspondence of segments and words

The experiments in this section aim to demonstrate the effectiveness of this approach

in finding the correspondence between image segments and words. The method has

been applied to the Washington image set1 which contains 697 semantically annotated

images. After the original keyword labels were processed by correcting mistakes and

merging plurals into singular forms (Hare and Lewis, 2005c), the vocabulary consisted

of 170 keywords. The whole set of SIFT descriptors are quantized into 3000 visual

words. The number of segments is set to 5 per image when using Normalized Cuts

(Shi and Malik, 2000). This results in 3241 segments after removing those having no

salient regions within them. We build a training image based feature space, into which

all the image segments and words are mapped afterwards. For each keyword, we find

in the feature space the 25 closest segments. The number of correct segments for each

keyword is counted manually and those for the 25 keywords (Figure 7.4) with the highest

occurrences in the data-set are reported in Table 7.1. Because the original labels are

only attached to the whole image, the decision of whether a segment is correct or not

is made by human judgement. We consider a segment as correct if the corresponding

object occupies more than 50 percent of the area of the segment, otherwise not. Figure

7.8 shows some good examples, and Figure 7.9 shows some bad ones.
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Figure 7.4: Top 25 Words that appear most frequently in the Washington set

As shown in Table 7.1, the results for some keywords (e.g. Water, Stadium, Building,

Bush, Tree, etc.) are reasonably good, however, for the others they are less so. There

are several possible explanations.

1Available at: http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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1. First of all, some objects are too small in the image to be segmented out reliably by

a 5 region N-cut. For example, “Sidewalk”, “Car” and “Boat” usually occupy small

areas of the image in the Washington set and rarely achieve good segmentations, as

shown in Figure 7.5. Therefore, the algorithm returns the objects that have a high

co-occurrence with these words. For “Sidewalk”, image segments with “Trees” are

found; For “Car” and “Boat”, segments with “Building” and “Water” are found

respectively, as shown in Figure 7.9.

2. Secondly, some words occur together almost every time they occur and rarely

occur separately. This is analogous to an extreme example where a child who has

never learnt what a knife and fork look like, is given many images in which both

knife and fork appear together, even if he/she is told that all the images contains

a knife and fork, there is no way for the child to learn which is which. In the

Washington set, “Football Field”, “Track” and “Stand” co-occur almost totally.

As shown in Figure 7.6, for each cell, the number on the dashed line indicates the

number of times two words appear together (in the same image), and the other two

numbers indicate their occurrence alone without the other. For example, “Track”

and “Football Field” occur 36 times together, but only 1 and 7 times respectively

on their own. Because of high co-occurrence, the algorithm failed to distinguish

them from each other. Almost the same results are returned for them, mostly

“Football Field” as shown in Figure 7.8(c), which is probably because the feature

descriptors for “Football Field” are more stable.

3. Lastly, insufficient feature descriptors. Since the SIFT descriptor is using only grey

level information, objects that are mainly distinguished by colour will be hard to

identify. For example, in this work, the segments returned for “Flower” contain

a lot of “Tree” labels (Figure 7.9(d)), probably because in the data-set, the SIFT

feature descriptors for both “Flower” and “Tree” are similar and also often co-

occur as well. For example, as shown in Figure 7.7, it is easy to tell “Flower” from

the top colour images, but hard to distinguish from the corresponding gray images

at the bottom.

7.1.3.2 Results on Region Based Image Annotation

In this section, we compare the effectiveness of the image based feature space (IBFS)

approach in region based image annotation with other approaches. For fair comparison,

we used the same data-set2 as that used in the experiments of Duygulu et al. (2002);

Yang et al. (2005) on region based image annotation. The dataset contains 5000 images

from 50 Corel Stock Photo CDs, and has been divided into a training set of 4500 images

and a test of 500 images. Each image had been annotated manually with 1-5 keywords.

2Available at: http://kobus.ca/research/data/eccv 2002/index.html
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(a) Segmentation samples of images containing “Sidewalk”

(b) Segmentation samples of images containing “Boat”

(c) Segmentation samples of images containing “Car”

Figure 7.5: Segmentation samples of images from the Washington data-set (University
of Washington, 2004).
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Figure 7.6: The number of times words “Track”, “Stand” and “Football Field” occur

together and separately.

   
   

   
 
Figure 7.7: Samples of colour images containing “Flower” and the conterpart gray
ones from the Washington data-set (University of Washington, 2004). The top ones are

RGB colour images, and the bottom ones are the corresponding gray images.

Images are segmented by Normalised Cut (Shi and Malik, 2000), which generated 5-10

regions per image. Each region is then represented by a 30 dimensional feature vector,

including region average colour, size, location, average orientation energy and so on,

as described in (Duygulu et al., 2002). Feature vectors are normalised to Z-Scores for

distance measure in the image based space. Specifically, suppose the whole set of training

feature vectors are V1, V2, ..., Vn, n being the total number of training image segments,

and Vi = {Vi1, Vi2, ..., Vi30}, we calculate the Z-Score for the jth dimension of the ith

vector as follows

Zij =
Vij − mean(V1j , V2j , ..., Vnj)

standard deviation(V1j , V2j , ..., Vnj)
(7.8)

Feature vectors of the test set are also normalised, using the mean and standard deviation

of the training vectors.

In order to find the optimal value for threshold t in Equation (7.2), 500 random images

are taken out of the training set for evaluation, by training on the remaining 4000 images.

Based on the average per-word precision and recall that are calculated on the evaluation
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(a) Water (b) Bush

(c) Football Field (d) Building

(e) Clear Sky (f) Leafless Tree

Figure 7.8: Some good results of representive regions found by the image based feature
space approach for the corresponding words.



Chapter 7 The Image Based Feature Space Model 96

Keywords Our Method Random

Tree 21 3
Building 22 0
People 21 1
Bush 25 3
Grass 6 1

Clear Sky 19 0
Water 25 2
Sky 19 3

Cloudy Sky 21 3
Flower 8 2

Sidewalk 2 0
Rock 6 2

Ground 6 3
Overcast Sky 0 3

Partially Cloudy Sky 20 4
Hill 0 2

Mountain 5 1
Stadium 22 0

Football Field 20 1
Car 7 1

Track 2 0
Pole 1 0

Stand 0 1
Leafless Tree 24 1

Boat 0 0

Table 7.1: The number of correct segments out of the top 25 for our method and
random choice.

set, the best performance is found at t = 0.88 (with step of 0.01). Thereafter, the 4500

training images are used to build the feature space, into which the test image segments

are mapped. For each test image segment, the word with the highest probability is

chosen as the region label. Figure 7.10 shows some good examples, while Figure 7.11

shows some bad examples. Note that for some regions, the coordinates on all dimensions

of the space are zeros (i.e. m(It) = [0, 0, ..., 0]) after applying quantisation equation 7.2.

It implies that the IBFS technique regards such regions as not similar to any of the

training image regions available. In such cases, we assign the word “null” to these

regions, indicating that the approach can not decide which word to attach.

In order to compare with other image annotation techniques, we predict image based

labels by choosing words from the region labels. For each test image, the top 5 region

labels with the highest values of probability are chosen. We compare our approach with

two region based image annotation approaches mentioned in section 7.1.1, namely the

Machine Translation Model (Duygulu et al., 2002) and the Point-wise Diverse Density

Model (Yang et al., 2005). For a direct comparison, average per-word precision and

recall are calculated, as described in section 4.3, for the whole set of words and the best
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(a) Car (b) Boat

(c) Sidewalk (d) Flower

Figure 7.9: Some bad results of representive regions found by the image based feature
space approach for the corresponding words.

 

 

 

   

 

 

 

 
Figure 7.10: Some good examples of image region annotation through the image

based feature space approach.
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Figure 7.11: Some bad examples of image region annotation through the image based

feature space approach.

All Words Best 49 Words
Approaches Avg. pr. Avg. re. Avg. pr. Avg. re.

MT 0.04 0.06 0.20 0.34

PWDD 0.07 0.09 0.31 0.46

IBFS 0.10 0.11 0.39 0.51

Table 7.2: Performance comparison of Machine Translation Model (MT), Point-wise
Diverse Density Model (PWDD) and Image Based Feature Space Model (IBFS).

49 words (for comparison with the work by Duygulu et al. (2002); Yang et al. (2005)).

As shown in Table 7.2, the image basd feature space (IBFS) method achieves better

results on the same data-set.

7.1.4 Summary

A novel training image based feature space has been proposed together with a procedure

for mapping in both image segments and textual labels for region based image annota-

tion. Some segments associated with the same objects should be clustered together, and

also close to the label that represents the object in question. As a result, the relation-

ships between image regions and words can be discovered by comparing their distances

in the feature space. Annotating new image segments and images is also straightforward.

Regional labels for test images are predicted by choosing the words that are closest in

the space. Furthermore, region labels that are most likely to be correct are adopted as

the global labels for the whole image.

7.2 Multiple Segmentations for Image Auto-Annotation

Automatic image annotation techniques that try to identify the objects in images usu-

ally need the images to be segmented first, especially when specifically annotating image

regions. The purpose of segmentation is to separate different objects in images from each

other, so that objects can be processed as integral individuals. Considering the massive
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work load of manual segmentation, most researchers rely on automatic segmentation

techniques (Deng et al., 1999; Shi and Malik, 2000). Therefore, annotation performance

is highly influenced by the effectiveness of segmentation. Unfortunately, automatic seg-

mentation is a difficult problem, and most of the current segmentation techniques do

not guarantee good results. A multiple segmentations algorithm is proposed by Russell

et al. (2006) to discover objects and their extent in images. In this section, we explore

the novel use of multiple segmentations in the context of image auto-annotation. It is

incorporated into the region based image annotation technique proposed in the previous

section.

7.2.1 The Algorithm

7.2.1.1 Approach Overview

Russell et al. (2006) propose to use multiple segmentations to discover objects and

their extent in images. They vary the parameters of a segmentation algorithm in order

to generate multiple segmentations for each image. They do not expect any of the

segmentations to be totally correct, but “the hope is that some segments in some of

the segmentations will be correct”. Then, topic discovery models from statistical text

analysis are introduced to analyze the segments, in order to find the good ones. Their

approach managed to find the correct image segments more successfully than using a

single segmentation.

Inspired by Russell et al. (2006)’s work, we propose to incorporate the idea of multiple

segmentations into automatic image annotation. Within a large image data-set, the good

segments of the same object will share similar visual features, but the bad ones will have

random features of their own. As Russell et al. (2006) said “all good segments are alike,

each bad segment is bad in its own way”. We hope that by using multiple segmentations,

more good segments can be generated (although from different segmentations), and then

captured by auto-annotation models in one way or another.

We chose to embed multiple segmentations into the image based feature space model.

There are a few reasons to make this choice of model. Firstly, it is a region based

annotation method, which is different from those that only annotate the whole images.

Secondly, it is easy to implement, and achieves relatively good results. Lastly, transfer

from single segmentation to multiple segmentations is more straightforward in this model

- what needs to be done is just mapping more segments (i.e. segments from different

segmentation levels) into the space, without changing the structure or dimensionality.
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7.2.1.2 Generating Multiple Segmentations

There are very many different automatic image segmentation algorithms. In this work

the Normalized Cuts framework (Shi and Malik, 2000) is used, following the choice

of Russell et al. (2006), because it handles segmentation in a global way which has

more chance than some approaches to segment out whole objects. In order to produce

multiple segmentations, we varied one parameter of the algorithm, namely the number

of segments K. Figure 7.12 shows some examples of segmented images at different

levels of segmentation (K = 4, 6 and 8). Evidently, some objects (polar bear, pyramid)

get better segmentation at a low level (i.e. a small number of segments), while others

(zebra, flower) do so at a high level. However, almost all the objects get reasonably good

segmentation at one of the levels, although not at the same one.

4 Seg 

 

   

 

6 Seg 

 

   

 

8 Seg 

 

   

 

 
Figure 7.12: Examples of segmented images at different levels of segmentation

7.2.1.3 Incorporating Image Based Feature Space and Mapping with Mul-

tiple Segmentation

In section 7.1, we have shown the effectiveness of a training image based feature map-

ping in finding representative regions for labels, as well as in region based image auto-

annotation. However, in both cases a single level of segmentation is used. In this work,

we incorporate the image-based feature mapping approach with the idea of multiple

segmentations, in order to take into consideration the fact that different objects have

their best segmentation at different levels. The details of mapping for textual words

is not given here, because it is the same as that for single segmentation which can be

found in section 7.1.2.3. However, mapping for segments from multiple levels is different

as detailed in the following.
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We denote training images as Ii (i = 1, 2, ...N, N being the total number of images),

and the jth segment in image Ii at the kth segmentation level as Iikj. For the sake of

convenience, we line up all the segments from all the segmentation levels of the whole

set of training images together and re-index them as It ( t = 1, 2, ..., n, n being the total

number of segments).

The coordinates of a segment It in F are defined as:

m(It) = [d(It, I1), d(It, I2), ..., d(It, IN )] (7.9)

where d(It, Ii) represents the coordinate of segment It on the ith dimension, which is

either 1 or 0 according to the distance of It to image Ii. The distance of a segment to an

image is defined as the distance to the closest segment within all the segmentation levels

of the image. By comparing segments from all levels, we hope that good segments from

different segmentations can be matched, which is less likely when single segmentation

is used. The distance between two vectors/histograms V1 and V2, which represent the

feature descriptors of two segments, is measured by the normalised scalar product (cosine

of angle), cos(V1, V2) = V1•V2

|V1||V2|
. A threshold t is set to decide if two segments are close

enough or not, which then generates either 1 or 0 as the coordinate on one dimension of

the space. Mathematically it is defined as follows

d(It, Ii) =

{

1 if maxk=1,...,m(maxj=1,...,nik
(cos(It, Iikj))) > t

0 otherwise
(7.10)

where m is the number of segmentation levels, nik is the number of segments of image

Ii at level k. The mapping of segments can be comprehended as a mapping in which

if the object that a segment contains also appears in a particular training image, the

coordinate of the segment on the dimension represented by that image is 1, otherwise 0.

To annotate test images, all the test segments from all levels are mapped into the training

image based feature space. The test set is denoted as Ti′ (i′ = 1, 2, ...N ′, N ′ being the

total number of test images), and the j′th segment from the k′th level of image Ti′ is

denoted as Ti′k′j′ . All the test segments are lined up and denoted as T t′ . By applying

the mapping m to a test segment T t′ , we can calculate its coordinates in the training

image based space as follows

m(T t′) = [d(T t′ , I1), d(T t′ , I2), ..., d(T t′ , IN )] (7.11)

Region based image annotation becomes relatively straightforward once the mapping is

done. The probability of a segment being correctly annotated by a particular label, is

approximated by their distance in the space. Furthermore, the probability of a test image

being correctly annotated by a label, P (Wl, Ti′), is estimated by the highest probability
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Feature of Region Dimension

Area 1
Position 2

Boundary/Area 1
Convexity 1

Moment of Inertia 1
Average RGB 3
RGB Stdev 3

Average L*a*b 3
L*a*b Stdev 3

Mean Oriented Energy 12

Table 7.3: Region features

of this label being correct with any of the segments in that image, as follows

P (Wl, Ti′) = maxk′=1,...,m′(maxj′=1,...,n
i′k′

(cos(m(Wl),m(Ti′k′j′)))) (7.12)

where m′ is the number segmentation levels, while ni′k′ is the number of segments of

test image Ti′ at level k′. Finally, words with highest value of P (Wl, Ti′) are chosen as

the predicted captions of the image.

7.2.2 Experiment and Results

Section 7.1 has already demonstrated that the training image based feature space tech-

nique outperforms two other state of the art region based image auto-annotation tech-

niques (Duygulu et al., 2002; Yang et al., 2005). Other image auto-annotation techniques

were not considered because to the best of our knowledge, none of them is able to an-

notate image regions.

In this work, we compare the effectiveness of using multiple segmentations for image

auto-annotation with that of single segmentation. The same image collection (Duygulu

et al., 2002; Yang et al., 2005; Tang and Lewis, 2007b), as used in section 7.1 is adopted

for the experiment. We used Normalised Cut (Shi and Malik, 2000) and varied the

parameter of segment number to generate multiple segmentations for each image. In

this work, three levels of segmentation are set, 4, 6 and 8. Therefore, the approaches we

are comparing are one multiple segmentation approach (denoted as Multi-Seg), which

includes three levels 4, 6 and 8, and three single segmentation ones (denoted as 4-Seg,

6-Seg and 8-Seg).

We follow Duygulu et al. (2002)’s representation of regions, which is a 30 dimensional

feature vector, including region average colour, size, location, average orientation energy

and so on, as detailed in Table 7.3. Feature vectors are normalised to Z-Scores using

equation 7.8 for distance measure in the image based space. Note that for multiple

segmentations, mean and standard deviation are calculated over the feature vectors
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Approaches Avg. pr. Avg. re.

4-Seg 0.103 0.129

6-Seg 0.106 0.128

8-Seg 0.100 0.127

Multi-Seg 0.107 0.139

Table 7.4: Performance comparison of using multiple segmentations for image auto-
annotation with single segmentation

from all segmentation levels, while for single segmentation, they are calculated within

each segmentation level. Feature vectors of the test set are also normalised, using the

mean and standard deviation of the training vectors.

In order to find the optimal value for threshold t in Equation (7.2) for each approach,

500 random images are taken out of the training set for evaluation, by training on the

remaining 4000 images. Thresholds with the best performances are chosen for the actual

auto-annotation experiment. For each test image, the top 5 labels with the highest values

of probability are chosen, according to Equation (7.12).

The Mean Per-word Precision and Recall, as used by previous researchers (Duygulu

et al., 2002; Jeon et al., 2003; Feng et al., 2004; Carneiro and Vasconcelos, 2005; Yang

et al., 2005), are adopted for evaluation. As shown in Table 7.4, Multi-Seg achieves the

best results. In addition, for each approach, we varied the threshold t from 0.99 to 0.80

with step of 0.01 to make further comparisons. Keyword Number with Recall>0 and

total correct number of words are evaluated. A keyword has recall>0 if it is predicted

correctly once or more, otherwise not. As shown in Figure 7.13, Multi-Seg managed to

predict the most number of keyword with recall>0 (t = 0.97) among all the approaches.

Moreover, as shown in Figure 7.14, Multi-Seg managed to predict more correct words

than all the single segmentation approaches. In Figure 7.15, we present some annotation

results of the multiple segmentations based approach.

7.2.3 Summary

We have proposed a way of coupling multiple segmentations with image auto-annotation.

The parameter of segmentation algorithm is varied to generate several levels of segmen-

tation. On the other hand, a region based image annotation approach, namely the

image based feature space, is utilized to incorporate with multiple segmentations. We

have shown that annotation performance can be improved on a 5000 image collection

when multiple segmentations are used.
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Figure 7.13: The number of keywords with recall>0 for each approach at different
values of threshold
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Figure 7.14: The total number of correctly predicted words for each approach at
different values of threshold

7.3 Summary

In this chapter, we have explored two main techniques regarding object detection of im-

ages. The first method builds an image based feature space and then plots both image

segments and labels into the space. The correspondences between image segments and

labels are approximated by their separation in the space. Local and global image anno-

tation can be realised in a straightforward way in this framework. This technique is later

combined with a multiple segmentations approach. It has been demonstrated that the

use of multiple segmentations achieves better results than that of single segmentation.
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Figure 7.15: Some annotation examples by multiple segmentation based approach



Chapter 8

Conclusions and Future Work

This thesis has introduced a number of approaches and techniques for automatic image

annotation, which is a subject that is receiving rapidly increasing attentions in recent

years. One of the most important aims of automatic image annotation is to bridge the

semantic gap, which is considered as a vital problem existing in the traditional content-

based image retrieval systems. In this final chapter, we will draw together and summarise

the main conclusions of the research undertaken by the author, and give some pointers

to future research following the work presented in the earlier chapters.

8.1 Summary and Conclusions

Although automatic image annotation is a relatively new field of research, a lot of

efforts have already been devoted by researchers to advance the technology. Chapter 3

to 7 have described a number of potential approaches to automatic image annotation,

encompassing a variety of techniques regarding computer vision, machine learning and

information retrieval.

Computer vision techniques that build up low-level image descriptors for describing and

comparing image content are the foundation of research in automatic image annotation.

The choice of an appropriate description mechanism has a large influence on the per-

formance of an auto-annotation system. In chapter 3, we have introduced a number of

such techniques. Image description is analysed as a 3-step process; region choosing, fea-

ture extraction and feature quantisation. Region choosing can be achieved by different

means, from simple fixed partitioning to more advanced automatic segmentation and

saliency detection approaches. Compared with fixed partitioning, automatic segmenta-

tion is expected to produce partitioning that is more consistent with the interpretation

of images by humans, i.e. object-shaped regions. However, as automatic segmenta-

tion is “not just a bottom-up image processing problem, but also a top-down problem

106
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that requires knowledge of the true object” Hare and Lewis (2005c), the performance

of current auto-segmentation algorithms are very limited. Saliency detection methods

are gaining more and more popularity in recent years, because they have been proved

by many researchers to be capable of finding image regions that produce robust image

descriptions.

The follow-up step is feature extraction, which actually calculate values from the images

or image regions. Colour, shape and texture are three traditional features, each of which

can be calculated in various ways. The SIFT local descriptor is robust and popular for

describing salient regions. Feature quantisation is the final and optional step. It is

usually adopted when the number of descriptors extracted from an image is too large

to be handled by auto-annotation systems. Clustering algorithms are widely used for

grouping the similar descriptors into classes,so that image can be represented by the

memberships of the descriptors. The last section of chapter 3 described two practical

examples of image description which are used in this work. The first one is the “blobs”

representation using auto-segmentation algorithms and quantised traditional features,

while the second is the “visual terms” representation using saliency and quantised salient

regions descriptors.

The purpose of Chapter 4 is to examine some quality issues of the Coral data-set for

evaluation on auto-annotation. By using the vocabulary of the Coral training set, we

constructed a new data-set from Yahoo Image Search, named the Yahoo training set.

Three very different auto-annotation methods were then applied to both data-sets. The

results showed that the performance of a simple propagation based method (CSD-Prop)

was fairly good on the Coral training set, but decreased dramatically on the Yahoo

training set. In contrast, a support vector machine based method (CSD-SVD) performed

more consistently on both sets. A closer look at the results regarding word combinations

found that, CSD-SVD managed to predict combinations of words that do not exist in

the training set but CSD-Prop can not. It is argued that the Coral set is relatively easy

to annotate and contains too many very similar images, which may lead to biased results

for some approaches, such as propagation-based methods.

Chapter 5 proposed a novel approach that incorporates the salient region based “visual

terms” image representation into a statistical model, namely the Cross-Media Relevance

Model (CMRM). A great number of statistical approaches to image auto-annotation

use feature descriptors calculated from image segments, in the form of “blobs”. Our

approach is different in that “visual terms” calculated from salient regions are used.

One of the advantages of this approach is that the fallible step of segmentation can be

avoided. The experimental results also showed that it achieved better performance than

that of using “blobs”.
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Chapter 6 was built upon the technique called non-negative matrix factorisation (NMF),

which approximates a matrix with the product of two matrices containing all non-

negative values. The first section is concerned with object class or topic discovery

among a set of unannotated images. The “visual terms” image representation was used

to build a term-by-document matrix. Thanks to NMF’s parts-based representation char-

acteristic, the basis vectors obtained from the matrix decomposition process correspond

to object classes in the data-set as shown in our experiments. NMF managed to capture

object classes that occur frequently in the data-set by just looking at their visual appear-

ances. We evaluated how well NMF can find the true extent of objects, and obtained

results that are competitive with those reported by Russell et al. (2006), who used more

complicated statistical models.

In the second section of chapter 6, we proposed and demonstrated the use of NMF as an

alternative approach to latent semantic indexing. NMF is compared with singular value

decomposition (SVD) in the experiments on image auto-annotation through semantic

propagation. Again, NMF is applied to the term-by-document matrix built from the

“visual terms ” representation. Each of the basis vectors (columns of W , see Equation

6.1.1.2) is considered as an axis in the sub-space. The similarities of Images are then

measured by their relative positions in this space. In our experiments on the same data-

set, it has been shown that NMF managed to generate auto-annotation results that

are slightly better than SVD. Therefore, we argue that NMF is a sub-space technique

that not only performs as well as SVD, but also supplies the advantage of parts-based

representation.

Finally, in chapter 7, we took a step forward to annotate image regions, rather than the

whole images. we proposed a novel model, the image based feature space model, for

linking keywords to specific image regions. Training images are used to build the space,

each image corresponding to an axis. Both image segments and labels are mapped into

this space, in which their relationships can be measured. Visual terms are extracted

from the images for building descriptors for image regions, the boundaries of which are

decided by an auto-segmentation algorithm. By using the cosine distance between a

keyword and image segment within the space as an approximation of the probability of

the keyword given that segment, this model can be applied for image annotation at both

local and global levels.

Later in this chapter, a multiple segmentation approach to automatic image annotation is

presented. Under the assumption that multiple levels of segmentation have more chances

to generate accurate segments, we argued that annotation results can also be improved

by using multiple segmentations. We varied the parameters of the auto-segmentation al-

gorithm to obtain multiple segmentations, and combined it with the image based feature

space model developed earlier in the chapter. Incorporating multiple segmentations into

this model is as straightforward as just mapping more image segments into the space.
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Experimental results confirmed that annotation performance is enhanced. It also im-

plies that the accuracy of segmentation is very important to an auto-annotation system.

Improving the process of segmentation can lead to improvement in system performance.

8.1.1 Novel work of the thesis

This thesis has made a number of contributions to the community of automatic image

annotation as well as object detection. A list of the contributions have been outlined

in the introduction. In the following, we reaffirm the novelties associated with these

contributions.

• Examination of the Coral data-set for evaluation through comparisons with an-

other data-set constructed from an online image search engine.

• Incorporation of salient region descriptors into a statistical model for better auto-

annotation performance.

• Application of NMF to general purpose images for object class detection.

• Demonstration of NMF as a promising alternative sub-space technique for image

auto-annotation.

• Development of a model for linking image regions and labels through their positions

in the same feature space.

• Development of a multiple segmentation approach to automatic image annotation.

8.2 Future Work

The thesis has presented a number of new ideas and techniques, which is just a snapshot

of the on-going research undertaken by the author. In this section some directions for

future research will be discussed on a chapter by chapter basis.

8.2.1 Image Description

Although image description is not the focus of this thesis, advancing the technology in

this area will be fruitful for the performance of an auto-annotation system. There are

a number of possible ways to improve the “blobs” image representation. Since it uses

an automatic segmentation algorithm for region choosing, effectiveness of the segmen-

tation method plays a very important role in the quality of the final representation.

Using a more strong segmentation algorithm is likely to bring improvement. On the
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other hand, because very simple image features have been extracted for describing each

image segments, there is a lot of scope for improvement. The author is particularlly

interested in replacing them with the standardized MPEG-7 descriptors, as they are

selected from many similar kinds of descriptors through a strict evaluation procedure,

and are recommended as of high performance (Martinez, 2004). Similar possibilities for

improvement exist in the “visual terms” representation. So far, a great number of salient

region detection algorithms have been developed. An effective salient region detector

will obviously contribute to the whole system. It has also been argued that for optimal

performance of salient regions, the outputs of multiple salient region detectors should

be combined (Mikolajczyk and Schmid, 2005). It would be interesting to investigate if

the combination of different detectors will lead to a more robust image description and

eventually better auto-annotation results. The choices of local descriptors for salient

regions are multiple too, giving another direction for future work. For example, Hare

(2006) described a simple colour descriptor for salient regions.

In addition, the k-means clustering method used in the quantisation step of both the

“blobs” and “visual terms” representations comes with some disadvantages. Firstly, the

clustering of the existing database of feature descriptors might not be sufficient to ac-

commodate newcomers, if the data-set is to be extended. In such cases, the quantisation

step, which is a very computationally expensive operation, may need to be repeated.

Approaches to getting around this problem need to be developed. A possible candi-

date approach is through splitting and merging existing clusters which are organized in

a hierarchical manner. Another problem with k-means is the choice of k, which have

been chosen empirically in this work. It is interesting to develop and use an automatic

method to find the optimal value, such as the G-means approach proposed by Hamerly

and Elkan (2003).

8.2.2 Quality Issues with Data-Sets

For each keyword query, we have used the same number of images returned by Yahoo

Image Search to build the Yahoo set, which resulted in an equalised distribution of

keywords in the vocabulary. This is different from the Coral set in which some keywords

occur more frequently than others. It is interesting to investigate how the difference

in distribution of the vocabulary affects an auto-annotation technique as well as its

evaluation. Having examined some of the disadvantages of using image data-sets like

the Coral set for effective auto-annotation evaluation, we could move on to build a new

benchmark set that minimises such issues. We can either reorganise the current data-

set, or obtain images from other sources to build a new one. To modify the Coral set,

one could try to eliminate those training images that have both extremely similar visual

information and similar semantics to the test images, so that simple auto-annotation

approaches such as those based on propagation do not just “luckily” pick the right ones.



Chapter 8 Conclusions and Future Work 111

Alternatively, one could download images from online image sharing websites such as

Flickr, which hosts a variety of images that are more diverse from each other.

We have shown that the Corel test images can still be annotated well even when only

25% of the training information is used and it is argued that the training set contains

redundant information. Choosing the best sub-set for training is worth exploring if only

for computational efficiency. Training set reduction techniques (Wilson and Martinez,

2000) are of potential use for reducing the size of training sets and simultaneously filter-

ing out the noise. We are planning to explore its application in image auto-annotation.

8.2.3 Incorporating a Statistical Model with Salient Regions

Researchers have proposed many other statistical models for image auto-annotation

(section 2.2.2). The transferability of the salient region based image representation

to other models are still to be investigated. For example, the CRM model (Lavrenko

et al., 2003) uses the raw image feature descriptors rather than quantised ones. Directly

incorporating salient region descriptors into this model may cause major computational

problems, considering that the SIFT salient descriptors are of 128 dimensions and the

number of salient regions in each image can reach to several thousand. On the other

hand, modifying the model for automatic image region annotation is of great interest.

Image regions can be chosen in a uniform way or by auto-segmentation methods, and

then represented by the visual terms that fall in the region. Approximation of the

probability of a word given a set of visual terms from a region is the core of the problem.

8.2.4 Non-negative Matrix Factorisation for Image Auto-annotation

In chapter 6, we have applied two versions of NMF to our experiments, the classic

NMF and NMF with sparseness constraints. So far, researchers have developed many

variations of the classic NMF in order to achieve better performance (Guillamet et al.,

2003; Liu and Zheng, 2004; Hoyer, 2004). What kinds of enhancements to NMF are

most suitable for different image tasks are still to be investigated. For example, Liu and

Zheng (2004) showed that by orthonormalizing the basis vectors generated by NMF, they

achieved better results in their object recognition experiments. This is probably because

orthonormal bases have more discrimination power, although it might be in conflict with

the non-negative purpose of NMF in the first place. Therefore, it is possible that through

this approach, we can achieve better results in the experiments on semantic propagation

based image auto-annotation, but probably not on object class detection, which relies

on the parts-based characteristic of NMF, as orthonormalization will destroy this.

As we have mentioned, finding the optimal dimensionality of the sub-space generated by

NMF is still an open and unsolved problem. Currently, we need to run experiments on
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an evaluation data-set with different settings of the dimensionality to find the best one.

This could be computationally very expensive. Ways to circumvent it are interesting as

the same problem exists in almost all the sub-space techniques. Another shortcoming of

NMF is that it does not supply a way of measuring the importance of basis vectors as

SVD, in which the largest singular values correspond to the most important basis vectors.

This leads to the problem that in order to calculate the basis vectors of a specific sub-

space dimensionality, the decomposition process in NMF needs to be repeated entirely.

On the contrary in SVD, users just need to choose the most important ones.

In the task of object class detection, we applied NMF to images that are not annotated,

to find objects of the same category. A complete object recognition system should be able

to relate each category to a keyword or concept. Given the ground truth annotations of

the images used in our experiments, a way to relate object classes to keywords could be

developed. The simplest way to find each object class a keyword is perhaps to choose the

one that appears most frequently in the images that generate the segments of a particular

class. In the second task, we used a very simple semantic propagation based approach

for auto-annotation. The way words are propagated from training images could also be

handled differently. For example, the number of training images used for propagation

can be flexible, depending on how close the distances to the query image are. Besides,

we plan to explore more advanced approaches that build upon the sub-space generated

by NMF, for example, the linear-algebraic technique proposed by Hare et al. (2006).

8.2.5 The Image Based Feature Space Model

The development of the image based feature space (IBFS) model is at a very preliminary

stage. Much work could be done to improve the model. Currently, we simply use all

the training images to build the feature space. In other words, the dimensionality of the

feature space equals the number of training images. Obviously, this can cause serious

computational problems when it comes to a very large data-set. Techniques to reduce

the dimensionality are likely to improve the performance of the model. A very simple

approach would be to keep only one of the images that have extremely similar visual

appearances and also have the same annotations. In this case, a mechanism to measure

the visual similarity of images need to be developed, which can be either at the image

level or at the region level. More advanced techniques also have potentials for this

problem. For example, principal component analysis (PCA) can be utilised to find

the most important training images for building the space, and remove redundant ones.

The way in which Chen and Wang (2004) choose instance prototypes may also give some

inspirations to this problem. They repeatedly choose an instance with the maximum

diverse density (DD) value from the candidates and remove the ones that are either too

similar or have small values of DD, until there are no candidates left. Therefore, the
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most important instances are kept, while the repetitions and less important ones are

eliminated.

Another issue regarding the IBFS model is how image segements are mapped into the

space, or how the coordinates of image segments are calculated. In the work described

in chapter 7, the coordinates of an image segment on a particular axis is measured

by its distance to the closest segment within the training image that is represented

by the axis. The cosine distance measurement is probably not the best choice. A

Gaussian distribution based distance measure, which was adopted by Lavrenko et al.

(2003) in their density function that is responsible for generating regional feature vectors,

is perhaps more appropriate. Besides, in the experiments of section 7.2, we found that

results were better when the coordinates of a segment were quantised than when the

initial cosine values were used. Research into the reasons for this is needed.

8.3 The Future of Automatic Image Annotation

Since the emerging of the technique of automatic image annotation almost a decade ago,

researchers from both computer vision and machine learning societies have devoted a

lot of efforts to advancing it. Although very promising results have been achieved so far,

research in this field still has a long way to go before this technique can be utilised in

our daily life. Undoubtedly, the developments in both image description and machine

learning techniques are essential to the advancement in automatic image annotation.

The author regards this direction as just one side of the coin; it is a bottom-up process

where images are processed and analysed based on their low-level information in order to

predict the high-level objects. In the author’s opinion, a top-down view of the problem

also offers unique help.

For example, Enser et al. (2005) point out that one problem with the annotations gener-

ated automatically by auto-annotation techniques is the lack of richness when compared

with manual annotations. They suggest employing sharable ontologies to “make ex-

plict the relationships between the labels and concepts with which they are associated”.

Ontologies can contribute to the task of image auto-annotation with useful informa-

tion regarding the characteristics of concepts and the relations between them. The

developments of geographic techniques bring another top-down layer of help to image

auto-annotation. Today’s digital cameras are featured with GPS device, and even com-

pass. They produce photos that are associated with metadata including time stamp,

location stamp and direction stamp (Naaman et al., 2003). With the help of geographic

databases, the metadata can supply very valuable information about the contents of the

image that was taken by the camera.
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Indeed, automatic image annotation is a very challenging problem that needs the col-

laboration of different techniques from a variety of disciplines in order for it to achieve

success.
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