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ABSTRACT 
 
 
 
 

Experimentation is a significant innovation process activity and its design is 
fundamental to the learning and knowledge build-up process. Front-loaded 
experimentation is known as a strategy seeking to improve innovation process 
performance; by exploiting early information to spot and solve problems as upstream as 
possible, costly overruns in subsequent product development are avoided. Although the 
value of search through front-loaded experimentation in complex and novel 
environments is recognized, the phenomenon has not been studied in the highly relevant 
pharmaceutical R&D context, where typically lots of drug candidates get killed very 
late in the innovation process when potential problems are insufficiently anticipated 
upfront. 

 
In pharmaceutical research the initial problem is to discover a “drug-like” 

complex biological or chemical system that has the potential to affect a biological target 
on a disease pathway. My case study evidence found that the discovery process is 
managed through a front-loaded experimentation strategy. The research team gradually 
builds a mental model of the drug’s action in which the solution of critical design 
problems can be initiated at various moments in the innovation process. 

 
The purpose of this research was to evaluate the predictive performance of front-

loaded experimentation strategies in the discovery process. Because predictive 
performance necessitates conditional probability thinking, a Bayesian methodology is 
proposed and a rationale is given to develop research propositions using Monte Carlo 
simulation. An adaptive system paradigm, then, is the basis for designing the simulation 
model used for top-down theory development. 

 
My simulation results indicate that front-loaded strategies in a pharmaceutical 

discovery context outperform other strategies on positive predictive performance. Front-
loaded strategies therefore increase the odds for compounds succeeding subsequent 
development testing, provided they were found positive in discovery. Also, increasing 
the number of parallel concept explorations in discovery influences significantly the 
negative predictive performance of experimentation strategies, reducing the probability 
of missed opportunities in development. These results are shown to be robust for 
varying degrees of predictability of the discovery process.  

 
The counterintuitive business implication of my research findings is that the key 

to further reduce spend and overruns in pharmaceutical development is to be found in 
discovery, where efforts to better understand drug candidates lead to higher success 
rates later in the innovation process. 
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NOTATION 
 
α  Specificity or true negative rate 
ADME-T Absorption, Distribution, Metabolism, Excretion, and Toxicology 
API  Active Product Ingredient; the active therapeutic agent in a drug product 
B  Bio-availability or drug-likeness of an active drug substance 
β  Sensitivity or true positive rate 
χ  Test criteria measuring experimentation strategy quality 
CVS  Cardiovascular safety 

*d   Optimal experimentation strategy 
)(tiδ   Information value received by an adaptive system at time t 

DE  PharmaCo pre-clinical department 
DOE  Design Of Experiments 
DSM  Design Structure Matrix 
E  Environment against which a drug compound must be developed 
FD PharmaCo full (clinical and chemical-pharmaceutical) development 

department  
FDA  Food and Drug Administration 
FDP Fraction of Dose Absorbed; a surrogate marker used in the 

pharmaceutical discovery research process 
FIH  First In Human 

+
ih  Candidate drug compound structure hypothesized to be an innovative  

solution against a biological target 
−
ih  Candidate drug compound structure hypothesized to be inactive against a 

biological target 
η(t) Domain of action of an adaptive system represented as a set of candidate 

chemical structures at time t 
H  Universe of potential compounds 

iH   A chemical class of compounds, a subset of H 
HTS  High Throughput Screening 
HTL  See H2L 
H2L  Hit-to-Lead pharmaceutical discovery phase, also called HTL 
I  Total range of signals receivable by an adaptive system 
IND  Investigational New Drug 
LO  Lead optimization pharmaceutical discovery phase 
µ  Measure of performance against test criteria 
NCE  New Chemical Entity 
NDA  New Drug Application 
NME  New Molecular Entity 
P  Potency or biological activity of an active drug substance 
Π(t)  Performance function of an adaptive system 
π  Prevalence or fraction of really active compounds in the universe of 

potential compounds H 
+π  Positive predictive value 
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−π  Fraction of really active compounds, given they were declared inactive y 
the experimentation strategy. (1- −π ) is defined as the negative predictive 
value 

PharmaCo Research-oriented global top-10 pharmaceutical R&D organization 
serving as an empirical base for this research 

PD Pharmacodynamic properties of a drug product 
PK Pharmacokinetic properties of a drug product 
SAR Structure-Activity Relationship 
τ Adaptive plan modifying a chemical candidate compound structure to 

become an active lead compound 
T Toxicity of an active drug substance 
TI Target identification 
TV Target validation 
U(d) Expected utility of an experimentation strategy 
Ω Set of operators used by an adaptive system to modify a candidate 

compound structure 
ω Operator part of a set Ω 
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1   Exploring experimentation strategies in 
Pharmaceutical R&D: Business rationale and 
roadmap for this research 

 
 

1.1 INTRODUCTION 
 
Experimentation is a significant innovation process activity and its design is 
fundamental to the learning and knowledge build-up process. Front-loaded 
experimentation is known as a strategy seeking to improve innovation process 
performance; by exploiting early information to spot and solve problems as upstream as 
possible, costly overruns in subsequent product development are avoided. Although the 
value of search through front-loaded experimentation in complex and novel 
environments is recognized (Verganti, 1999; Thomke and Fujimoto, 2000; Thomke, 
2001; Thomke, 2003), the phenomenon has not been studied in the highly relevant 
Pharmaceutical R&D context, where typically lots of drug candidates get killed very 
late in the innovation process while potential problems are insufficiently anticipated 
upfront. 

 
Therefore, since upfront problem anticipation in research possibly leads to better 

prediction of subsequent results in product development, the primary aim of this study 
is to investigate how Discovery Research –the fuzzy front-end of pharmaceutical R&D- 
can be managed for optimal predictive performance.  

 
Considering the mandatory three-project structure of this doctoral research I 

started with an exploration of the differences between managing radical and incremental 
innovation projects leading to a proposed model of complexity-handling in innovation 
projects, situating the role of uncertainty and ambiguity in choosing for a specific 
complexity-handling mode. Then, a confirmatory case study was conducted in 
Discovery Research confirming the exploratory results at least for the front-end of the 
proposed model. However, to quantitatively explore predictive performance an 
appropriate problem representation framework needed to be chosen. Taking into 
account the inferential nature (Pearl, 2000) of the business problem of predictive 
reasoning and decision-making under uncertainty, a Bayesian framework (Jensen, 2001; 
Parmigiani, 2002) was constructed relating predictive performance outcome variables to 
explaining pharmaceutical Discovery Research policy variables derived from the 
confirmatory case study. Finally, using the developed Bayesian problem representation 
in a last project a Monte Carlo simulation was conducted to explore predictive 
performance of front-loaded experimentation strategies in pharmaceutical Discovery. 

 
My research findings contribute to innovation management theory by extending 

the front-loading concept in scope and breath. More specifically, the theory-building 
effort of this study supports the view that front-loaded experimentation improves 
innovation process performance also in a pharmaceutical R&D context. The breath of 
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the concept is extended by proposing how front-loaded strategies can contribute to 
improved predictive performance of the innovation process, an outcome variable and 
causal relationship that has not been studied before. Second, I believe to contribute to 
the body of innovation management knowledge by proposing a simulation-based 
Bayesian inference framework to study predictive performance of innovation projects. 
Finally, the business implication of my research findings is that the key to reduced 
spend and overruns in Pharmaceutical Development is not only related to time-to-
market reduction or efficiency enhancements, but is mainly to be found in Discovery, 
where efforts to better understand drug candidates are proposed to lead to higher 
success rates later in the innovation process.  

 
In the remainder of this introductory Chapter I will review and analyse the 

pharmaceutical R&D business problem leading to this research. Then, the research 
context and basic literature domains providing a first handle to the business problem 
will be explored. Finally, after a discussion of my philosophical research positioning, a 
methodology and roadmap for this project-driven research will be given. 
 

1.2 BACKGROUND AND RATIONALE FOR THE RESEARCH 

1.2.1 Situating the business problem in Pharmaceutical R&D 
 
Over the years the pharmaceutical industry has developed a very successful model for 
making new medicines. The world’s leading R&D-based companies have collectively 
validated about 500 targets – the biological mechanisms (usually receptors or enzymes 
in human cells) through which drugs work (Drews, 2000). They have created large 
compound libraries, containing as many as two million molecules apiece. They have 
evolved a phased development process that includes large-scale clinical trials to 
establish the safety and efficacy of their products. During the past two decades, sales of 
new drugs and new formulations of older drugs have consistently outstripped the fall in 
income from products that have come off patent. However, for a variety of reasons the 
current model has recently come under growing pressure. Although recognized as a 
predominantly research-driven industry, one of the main reasons for failure is lack of 
R&D productivity. Indeed, the biggest drug makers need to produce three or more 
billion-dollar blockbuster drugs a year, just to maintain their sales growth. Yet they are 
far from fulfilling this promise (Arlington et al.  2002: 5).  

 
Drug discovery and development is a lengthy and costly process. It takes on 

average 15 years and US$880 million to generate a successful NCE or new chemical 
entity (Tollman, 2001). A raise in productivity can be achieved by continuing efforts to 
speed up development and by eliminating weak projects as soon as possible. While 
resource usage increases considerably at each development phase, postponement of 
termination decisions not only wastes resources on redundant projects, it also denies 
resources to more successful projects.  

 
Global project planning, realistic clinical study protocols, active collaboration 

with regulatory authorities, the use of project and data management and communication 
technologies, and project team cohesion and empowerment are cited by the fastest drug 
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development companies as the five practices that contribute most to reducing drug 
development cycle time1 (Getz and De Bruin, 2000). Implementing heavy-weight 
project teams, ‘disintegrated’ from the traditional functional hierarchy (Case, 1998), 
leading the innovation process drawing upon the functional skills in the lines, is 
considered to be good practice. Also, managing the delicate balance between line and 
process is considered to be a contributor to project performance. Project performance is 
proposed to be higher when functional managers have greater influence over go/no-go 
decisions and project leaders have greater influence over clinical decisions (Basa, 
1996). 

 
However, too often the thrust of recommended change has been on process, 

rather than on science-based risk management of the Drug Development portfolio. 
Lesko et al. (2000) made a distillation of the outcome of two tandem practitioner 
conferences2 discussing Drug Development optimization. They conclude that the 
underlying thesis of both conferences was that, in order to get to better therapeutic 
agents with lower development risks, the pharmaceutical R&D process needs to move 
from an essentially empirical mode to a more mechanistic and predictive one. The 
general goal should be to integrate early knowledge gained during Discovery into the 
Drug Development decision-making process. This approach would allow finding 
failures faster, resulting in more economical and informative development programs. 
Integrating Drug Discovery and Development processes ‘provides a better 
understanding of the mechanism of drug action, suggests improved animal models to 
evaluate drug targets and drug-disease interactions, and helps to design animal 
experiments which provide more clinically useful information’ (Lesko et al., 2000: 
1336).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
f 

 

Figure 1-1: Reasons for failure in early development as cited in Kennedy (1997) 
                                                 
1 Following Getz & de Bruin (2000) development cycle time is defined as the elapsed time from First in 
Human (FIH) studies to NDA submission. 
2 The two tandem practitioner conferences discussed are; “AAPS, ACCP, ASCPT, FDA Symposium on 
clinical pharmacology: Optimizing the science of Drug Development,” held in September, 1998 in 
Arlington, Virginia, USA, and the second entitled “5th EUFEPS Conference on optimizing Drug 
Development: fast tracking into human,” held in December, 1998 in Wiesbaden, Germany. 
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At a recent practitioner conference3 it was acknowledged that innovation project risk in 
Pharmaceutical R&D is fundamentally biological target related risk. Late development 
problems are caused by poor target validation. Hitting the right target with sufficient 
efficacy and specificity is a challenge that can only be met if sufficient knowledge of 
the disease is built up during Discovery (Hopkins,  2003). During early development –
before human testing- the biggest problem is target ‘druggability’, or the ability to find 
‘drug-like’ chemical or biological structures, i.e. structures that are effective against the 
target of interest, but not toxic or non-absorbable by the human body. Industry-wide 
attrition during these early phases is 76%, mainly due –24 to 49% in Figure 1-1 above- 
to poor or inadequate bioavailability or ADME-T4 properties (Kennedy, 1997). Hence, 
the major industry approach towards this involves moving ADME-T evaluations earlier 
on, before early Development, into Drug Discovery. Some even claim that these 
evaluations should be conducted in-silico in the early Discovery stages, during lead 
identification or optimization, in parallel with biological activity investigations 
(Pickering, 2001; Yu and Adedayo, 2003) 

 
 Discovery research practitioners develop a scientific viewpoint on a number of 
experimentation strategies available to run pharmaceutical discovery research to deal 
with these problems. To understand we need to discuss what this process looks like.  
Actually, once a biological target is identified, the Pharmaceutical drug discovery 
process aims to find a therapeutic agent with positive effect on this scientifically and 
commercially interesting target. It proceeds in essentially two stages. First, a lead 
molecule should be found in a diverse compound collection, constituting a chemical 
library. A typical major drug company will have hundreds of thousands to millions of 
compounds in its collection typically valued at 50-140 million dollars, or more (Young 
et al.  1997). Alternatively, combinatorial chemistry has come into recent use to create 
large collections of candidate compounds screened for their effect on the biological 
target (Thomke et al.  1998). Nowadays, robotized High Throughput Screens (HTS) are 
capable of handling about 10.000 chemical substances per day (Reiss and Hinze,  2000). 
The lead compound coming out of this screening process will be modestly potent. 
Therefore, in a second stage the candidate compound will be optimized by synthetically 
adding or removing parts through medicinal chemistry. This results into a candidate 
becoming more and more complex in structure throughout the discovery process. 
Essentially, ‘lead-like’ structures serve as initial starting points to be optimized into 
‘drug-like’ leads (Oprea et al.  2001). 
 

To run this screening & optimization drug discovery process as efficiently and 
effectively as possible, a number of fundamental questions need to be answered in a 
comprehensive experimentation strategy. First, as the number of both biological targets 
and compound libraries increase, there is a need for efficient screening strategies 
(Young et al.  2002). The optimal size of the screening library should be determined by 
                                                 
3 Cambridge Health Institute (CHI) Intelligent Drug Discovery & Development 2003, May 28-29 2003, 
Philadelphia, PA 
4 ADME-T is an industry acronym for Absorption, Distribution, Metabolism, Excretion, and Toxicology. 
These are all ‘bioavailability’ properties of candidate drug-like structures indicating their propensity to be 
absorbed by the human body, and to gain a positive effect on it. A drug candidate can show good efficacy 
against a biological target –then it is said to show good bio-activity- but show poor bio-availability, hence 
having poor drug-like ‘ADME-T’ properties.   
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inventory costs and the cost of gain from synthetic modification. Typically about 10K 
compounds are screened for a minimal level of potency. Detection levels are set low 
enough to provide medicinal chemists with a reasonable choice of compounds to 
synthetically optimize but high enough not to waste efforts. Obviously, the break-even 
point between screening and optimization is sensitive to compound cost. To cite typical 
industry figures; if the cost of synthetic modification is as high as $6000 per compound 
and screening can be kept as low as $11.5 per screen, then it is economically feasible to 
screen over 1.4 million compounds before beginning lead optimization. Using 
combinatorial chemistry as an experimentation strategy can bring the cost of screening 
even more down making it economically justified to screen even more before switching 
to the significantly more expensive optimization  (Young et al. 1997). Also, an 
operational choice needs to be made for a sequential versus complete screening effort. 
Clearly, if a target is valuable, fully validated and the therapeutic area market is large, 
complete screening will often be considered justified. Conversely, when a target is not 
tractable leading to large numbers of compounds for any hope of success, a sequential 
screening strategy is more likely to be chosen, whereby a relatively small set of 
compounds is initially screened and results are updated in an iterative process. 
Sequential screening is economically advantageous if the marginal cost of screening a 
compound is high (Young et al. 2002: 423). Methods for selecting subsets of molecules 
from large compound libraries are known and can be applied to very large chemical 
databases (Higgs et al. 1997). More and more, ‘wet’ screening efforts are complemented 
with ‘in-silico’ searches in large chemical computer databases. However, the reality of 
the complex drug-receptor interaction makes these new technologies having only 
partially delivered their promises and still leads to heavy debates among experts (Oprea 
, 2002). 

 
Second, a discovery experimentation strategy should consider the conversion 

from ‘lead-like’ to ‘drug-like’ candidate compounds. Now, the emphasis is on 
optimization and selection. Less complex molecules coming out of screening are good 
starting points for optimization and eventual discovery of potential drugs (Hann et al.  
2001).  
 
 

 
 

 
 
 
 
 
 
 
 

Figure 1-2 Venn diagram of the medicinal chemistry space related to drug discovery5 

 

                                                 
5 Adapted from figure 8 page 1314 of (Oprea et al. 2001) 
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To optimize a lead-like structure into a potential new molecular entity (NME) to 
be transferred to subsequent Clinical development, potency needs to be increased and 
the structure must show to have good ADME-T properties. Optimization consists of 
generating chemical analogues within the chemical solution space until a drug-like 
structure and ultimately a drug candidate appears6. An experimentation strategy used for 
running this optimization part of the discovery process has to answer the fundamental 
question of the level of knowledge that needs to be built up before transfer into pre-
clinical development is considered; in the Old paradigm, applied in the industry some 
time ago, discovery research was only concerned about biological activity or potency 
and selectivity of a candidate compound. Drug-likeness properties were only taken into 
account from pre-clinical research on7. 

 
 Nowadays, Front-loaded discovery combines in-vitro screening with in-silico 

data (Pickering, 2001; Coty, 2002) on drug-likeness of candidate compounds and selects 
the most promising ones based on the fullest multi-factorial –potency and drug-likeness- 
picture available. Now, drug-likeness problems are identified upfront and can be 
anticipated during the multi-factorial lead optimization process before transferring the 
compound to pre-clinical development. Still, a debate prevails around the question how 
early one can start computer assisted front-loading. Influential experts warn against 
‘…uncritical application of high-throughput [screening] in-silico methods. Structure-
based and computer-aided approaches can only be as good as the medicinal chemistry 
they are based on. The search for new drugs, especially in lead optimization, is an 
evolutionary process that is only likely to be successful if new methods merge with 
classical medicinal chemistry knowledge’ (Kubinyi, 2003: 665). 

 
Another element of the lead optimization strategy is the number of compounds 

one promotes to optimization after having passed initial screening. Knowing the 
chemical cost of getting a developmental compound typically amounts to about 
$4,500,000 (Young et al. 1997: 893) this is a decision not to be taken light-heartedly. 
Nevertheless, practitioners argue for more generous promotion of screened compounds 
for further study and in-vivo optimization. While more expensive, they claim it will lead 
to a better understanding and hence will lead to better drugs being transferred into pre-
clinical development (DeWitte, 2002).    
 
 Summarizing, an extensive practitioner literature exists providing viewpoints on 
experimentation strategies for pharmaceutical Discovery. The business problem 
identified as the starting point for this thesis is the requirement for more predictive 
experimentation strategies in Discovery leading to less wasted efforts in subsequent 
Development. As exemplified above, practitioners have started a debate about the 
benefits of front-loaded experimentation and more extensive lead optimization efforts. 
Both strategies are hypothesized to increase predictive performance of discovery 

                                                 
6 Unfortunately, the complexity of nature sees to it that some drugs are part neither of the drug-like nor of 
the lead-like medicinal chemistry space (see Figure 1-2); ‘compounds derived from natural products, and 
proteins are currently marketed as drugs but are not representative for the types of drugs that are expected 
to come out of medicinal chemistry efforts’ (Oprea et al. 2001: 1314). This explains part of the drug-
space overlapping both lead- and drug-like spaces.  
7 For an idealised ‘Old paradigm’ project flow chart in a typical Pharmaceutical Discovery operation see 
Cavalla (1997) 
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experimentation since they increase the level of knowledge on the candidate compound 
before its transfer into subsequent pre-clinical development, maximizing avoidance of 
unanticipated problems. However, all of these viewpoints are case-based and lack the 
rigour of management and decision sciences research methods to make them more 
conclusive about business risk or predictive performance. Therefore, this should be the 
focus and contribution of my research. 
 
 In the following sections I will review two relevant literature domains needed to 
transform the business problem into a researchable question; experimentation 
behaviour, and the Bayesian-oriented literature on predictive reasoning under conditions 
of high uncertainty. By applying the latter to the stated business problem I will develop 
notation and an argument as to how one can systematically and quantitatively reflect on 
the predictive performance of decision-making following pharmaceutical Discovery 
experimentation efforts. 
 

1.2.2 Exploring experimentation behaviour 
 
Experimental design or experimentation strategy is the general approach to planning 
and conducting experiments (Montgomery, 1997). Experimentation is a significant 
innovation process activity and its design is fundamental to the learning and knowledge 
build-up process. Experimentation, a form of problem-solving, lies at the heart of every 
company’s ability to innovate. Therefore, ‘enlightened’ and profitable experimenters 
organize for rapid experimentation using computer simulation, experiment with many 
diverse ideas and fail often, and they use front-loaded development, exploiting early 
information to spot and solve problems as upstream as possible (Thomke, 2001). Also, 
West and Iansiti (2003) acknowledge the vital role and value of search through 
experimentation in complex and novel environments. Their study of the semiconductor 
industry provides evidence that generation of knowledge through experimentation and 
retention of knowledge through experience are significantly correlated with 
performance, whereas other -previously cited- measures of R&D commitment and 
organization were not.  

 
Experimentation is an iterative process with product developers going through a 

series of design-test cycles, called experiments, homing in to a solution to their 
innovation problem (e.g. Whitney, 1990). A subset of pre-screening experiments 
typically precedes a more formal “design of experiments” (DoE) set to exhaustively test 
all explaining factors and their impact on the objective variables (e.g. Montgomery, 
1997; Yang and El-Haik, 2003). Concurrent engineering is the predominant paradigm 
used to compress the experimentation process. Formal models have been designed to 
optimize concurrency schemes (e.g. Krishnan et al. 1997; Loch and Terwiesch, 1998; 
Roemer et al. 2000; Mihm et al. 2003). A Design Structure Matrix (DSM) describes 
sequential iteration by computing the expected duration of the iterative solution process, 
and suggests an initial ordering of the coupled design tasks to minimize expected 
duration (Smith and Eppinger, 1997a). The work transformation matrix model is an 
extension to DSM, which can be used to predict slow or rapid convergence of iteration 
while experimenting (Smith and Eppinger, 1997b).  
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Experimentation behaviour research focuses mainly on strategies accelerating 
product development lead-time and enhancing efficiency. Examples include survey-
based research showing that experiments can be conducted in different modes and that 
managers can determine optimal switching points between modes to reduce 
development time and costs (Thomke, 1998a). Empirical results in automobile industry 
tests for crashworthiness showed that developers can increase the frequency of problem-
solving cycles while reducing the total R&D budget by speeding up and simultaneously 
reducing cost of design iterations through computer simulation and rapid prototyping 
(Thomke, 1998b). Or, in a study exploring the impact of different learning strategies on 
development performance in pharmaceutical and biotech development, results indicate 
that learning by doing is essential for efficiency in biotech while, in contrast, in 
pharmaceuticals learning before doing is preferred to model future production 
experience (Pisano, 1994; 1996; 1997). Thomke et al. (1998) offer a detailed case study 
of the impact of combinatorial chemistry on the pharmaco-economics of the drug 
discovery process. A recent simulation-based study built a mathematical model of a 
complex product development project requiring intensive communication among its 
many interdependent actors (Mihm et al. 2003). Their model highlights that during 
development design oscillates through numerous design solutions before converging to 
a final solution. As the problem size grows, time to conversion also grows 
exponentially, negatively impacting development lead time. Mitigating experimentation 
strategies countering the oscillation problems are proposed including modularization, 
immediate communication, and exchanging preliminary information. 

 
Front-loading is a key theme in the experimentation literature. Verganti (1999) 

acknowledges the central role of the early phases of product development. Based on in-
depth case studies of 18 Italian and Swedish companies active in helicopter, vehicle, 
and white goods sectors, he sees early analysis and problem solving as a difficult task 
because detailed insights are not available until one gets into detailed design. His data 
show that companies are locked in a dilemma between problem anticipation and 
reaction, the latter being defined as delaying decisions to downstream phases where 
information will come available. He argues that neither anticipation nor reaction should 
be considered as best practices. Rather, they should strongly interact in a mechanism he 
calls ‘planned flexibility’ i.e. the capability to build flexibility into the development 
process due to decisions taken early on. Planned flexibility deals with uncertainty 
through early identification of specific critical areas of a given project and early 
planning for reaction measures. Triggered by Boeing’s and Chrysler’s experience with 
the use of digital mock-ups identifying interference problems that are very costly to 
solve if only identified further downstream the development process, Thomke and 
Fujimoto (2000) conducted a field study at Toyota. Their case evidence showed how 
systematic efforts to front-load the development process have shifted problem 
identification and problem solving to the earlier stages. It led to efficiency and lead time 
improvements, giving field support for front-loading as an important methodology to 
accelerate and improve development performance. Survey-based research of 29 Internet 
software development projects (MacCormack and Verganti, 2003) also provides support 
for the front-loading benefits argument. Here, for projects facing greater uncertainty, 
early technical and market feedback had a stronger association with performance. While 
greater uncertainty was associated with making later changes to the product design, this 
practice was not associated with performance. Finally, in the late nineties also 
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pharmaceutical and biotech companies discovered the benefits of finding potential 
failure modes as early as possible in the development process. In a case study of 
Millenium Pharmaceuticals it is shown how new technologies for experimentation can 
form the basis for fundamentally rethinking the innovation process by shifting failures 
to earlier phases (Thomke, 2003).     

 
Parallelism or the number of alternative approaches explored to solve a problem 

is known to be related to the quality of the solution. Allen (1966) found that 
development groups producing higher rated solutions generated fewer new approaches 
during the course of the project. However, later research (Abernathy and Rosenbloom, 
1968) showed it is common in technological development to explore several approaches 
so that the best approach can be chosen. Since the outcome of any approach is uncertain 
it was found to be difficult to choose the best one early in the process. The authors 
argued that, based upon 14 case studies of development projects, a parallel 
experimentation strategy provides tangible economic benefits including the value of 
providing information on the choice of an approach, its value as a hedge against failure, 
and its value as a means to enhance useful competition. More recently, problem-solving 
efficiency in complex and novel environments is associated with a broad exploration 
and framing of the solution space, reaching across multiple knowledge domains 
(Schrader et al. 1992; McDonough and Barczak, 1992; Iansiti, 1998). Toyota tries not to 
converge too quickly on a “best guess” solution for their new designs. Instead, Toyota 
has a high regard for learning on multiple ideas in parallel. ‘Toyota seems to value 
highly the reassurance that the chosen solution truly is the best and deems it worthwhile 
to spend the resources for that assurance’ (Sobek II et al.  1999: 75). This results in 
engineers talking about sets of ideas and regions of the design space, not about “the” 
idea. In fact, the authors claim to increasingly hear of US companies successfully using 
this ‘set-based’ approach to product development. The process enabled innovation 
teams to avoid rework and meet aggressive time lines. 

 
It is acknowledged that increasing parallelism also increases the need for 

enhanced coordination and preliminary exchange of information between concurrent 
development tasks. In an effort to study the fundamental drivers of parallel and 
sequential testing strategies, Loch et al. (2001) develop optimal experimentation 
policies. Their model analysis shows that the optimal mix of parallel and sequential 
testing depends on the ratio of the financial cost and the cost of testing. More expensive 
tests make sequential testing more economical. Second, imperfect tests decrease the 
attractiveness of parallel testing strategies. Third, they show that modularising product 
architecture can radically reduce testing costs. Based on case studies of five engineering 
problems, recent research concludes that set-based coordination requires the absence of 
ambiguity, and should be emphasized if either starvation costs or the cost of carrying 
multiple design options in parallel are low (Terwiesch et al. 2002). A recent analysis of 
NPD decision-making based on a pharmaceutical product development case, developed 
closed-form solutions for the optimal number of concept tests to be conducted under 
profit uncertainty (Dahan and Mendelson, 2001). Their key finding was that the optimal 
number of concept tests depends not only on the cost of testing and the scale of 
uncertainty, but also on the distribution shape of that uncertainty. Also, these authors 
value the option of retaining flexibility at the concept selection stage. 
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Finally, also simulation is used to study the complexities of experimentation. 
Mena et al. (2001) use a Genetic Algorithm-based model to analyze the validity of the 
evolutionary analogy for product development, and to understand how the concepts of 
evolution and learning can be used to improve the product development process. They 
found that diversity of designs explored and process duration are by far the most 
important parameters in finding a satisfactory solution while other factors were found to 
be negligible.  

 
Concluding, the literature on experimentation behavior complements –a.o. 

simulation-based- formal models with empirical research to advance theory. With the 
exception of Thomke et al. (Thomke et al. 1998; Thomke, 2003) empirical case-based 
research is conducted in mainly discrete manufacturing technology-intensive industries, 
not in pharmaceutical or biotech companies. Hence, to replicate techniques and 
conclusions of present experimentation research to answer the business problems stated 
above, they will need to be tested for their applicability in the pharmaceutical sector. 

 
Second, from the above and confirmed by the results of a recent literature review 

and meta-analysis on relationships between integrated product development (IPD) 
characteristics and project performance (Gerwin and Barrowman, 2002), I conclude that 
present experimentation behavior research emphasizes strongly the study of the impact 
of various experimentation strategies on development lead time and efficiency, 
performance variables that are typical for product development and innovation research. 
No study was found to contribute to the exploration of predictive performance of 
experimentation strategies. Since the latter will be essential to frame the business 
problem and to convert it into a research question, this will be the topic of the next 
section. 

 

1.2.3 Predictive performance of front-loaded experimentation 
strategies: The need for Bayesian thinking 

 
As discussed above, pharmaceutical Discovery can be thought of as a screening and 
optimization experimentation process. To explore the business problem of finding ways 
to increase the predictive performance of this process, a quantitative framework is 
needed modelling the relationship between experimentation results and ensuing 
decisions. In deciding whether a candidate compound is presumed to be active or not, 
scientists reason under high uncertainty and ambiguity. There are several approaches to 
model reasoning under uncertainty. The approach I will adopt in this thesis draws upon 
probability theory as applied to decision sciences; decisions are made “given” the result 
of an intervention -a set of experiments-, which makes it conditional probability 
thinking. ‘Probabilistic relationships, such as marginal and conditional dependencies, 
are helpful in hypothesizing initial causal structures from observation’ (Pearl, 2000: 25), 
which will be the subject of my research.   
 
 To introduce the decision sciences part of my thesis, in the remainder of this 
section I will model a scientist’s decision-making process as a normative system, 
maximizing expected utility, excluding subjectivity. The aim of a normative system is 
to take decisions by exploiting accumulated knowledge and by exploring experiences. 
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Typically, then, ‘actors will be engaged in the following types of actions; using 
observation to interpret a situation, focusing a search for more information, deciding for 
intervening actions, adapting to changing environments, learning from experience’ 
(Jensen, 2001: vi). Now, to analyze the quality of an experimentation strategy to 
discover a really active8 chemical structure in the Drug solution space (the “Drugs” 
Venn diagram in Figure 1-2) I propose to do the following thought experiment. If we 
indicate by π the fraction of really active compounds in this universe of potential 
compounds, the odds9 of finding at random an active chemical structure equal π/(1−π). 
Since the universe of potential active structures –found through a process of screening 
and optimization- approaches infinity, this is a very small number approximating zero. 
Any experimentation strategy replacing the random draw from Nature by a screening & 
optimization effort should do better. To measure how much better, the following 
relationship can be defined where *π  is the fraction of really active compounds, 
delivered by the experimentation strategy; 

        *

*

1
.

1 π
π

π
π

−
=

−
k         (1-1) 

Clearly, k indicates how much the experimentation strategy is better than a random 
draw from the drug solution space. To operationalize this measuring concept we draw 
upon Bayesian inference logic. In Bayesian terms the above equation would read that 
the prior odds of finding an active structure equal the posterior odds times a weight of 
evidence or Bayes factor. This way, equation 1-1 can be converted in Bayes’ celebrated 
inversion formula (see a.o. Pearl, 2000; Parmigiani, 2002); 

   )|( eHp
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which states that belief we accord a hypothesis H upon obtaining evidence e can be 
computed by multiplying our previous belief )(Hp by the likelihood )|( Hep  that e will 
materialize if H is true. Thus, applying this thinking to our situation, it models the 
experimentation strategy as a learning process that modifies one’s initial probabilistic 
belief about the prevalence π prior to observing experimentation outcomes to updated or 
posterior knowledge incorporating both prior knowledge and the data at hand 
(Congdon, 2001). The data at hand or evidence is the decision made after Discovery 
experimentation; a chemical structure can be declared to be active, which I will denote 
as +

iH , or inactive, denoted −
jH . Only after clinical development will it be confirmed 

whether the hypothesized structure is really active, denoted +
iC , or not, denoted −

jC . 
Using this notation, to evaluate predictive performance of a Discovery experimentation 
strategy, the question must be answered: What is the probability that a structure +

iH  
hypothesized to be active, is really active denoted as +

iC ? The positive predictive value, 
then, denoted )|( ++ HCp  or +π  is read as the probability that a compound will pass 

                                                 
8 ‘Really active’ is being defined as passing Discovery and subsequent Clinical development testing 
9 The odds of an event are defined as the ratio of the probability of the event happening to the probability 
of it not happening. Odds can be any positive number. Odds of 1 or ‘even odds’ correspond to a 
probability of 0,5 (see a.o.  Parmigiani, 2002: 11) 
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pre-clinical and clinical tests )( +Cp , given it has been declared active )( +Hp  by the 
Discovery experimentation strategy. Similarly, the probability that a compound will not 
pass pre-clinical and clinical testing )( −Cp , given it has been declared 
inactive )( −Hp by the experimentation strategy, is called the negative predictive value, 
and denoted )|( −− HCp . Knowing that the fraction of really active compounds, given 
they were declared inactive by the experimentation strategy is called −π  or )|( −+ HCp , 
the negative predictive value is denoted as −− π1  (Parmigiani, 2002). 
 

Conversely, an experimentation strategy featuring high positive and negative 
predictive performance, then, has a high value for +π and a low −π . The transition from 
π  to +π and −π  models the learning made by the experimentation strategy about the 
true status of the universe of potential compounds H. Using the Bayesian logic set out 
above, it quantifies how inferences about the universe of potential compounds H are 
updated in the light of new evidence, provided by the experimentation strategy.    

 
 Now, to formally state the problem of an R&D manager acting as a normative 
system having to select between experimentation strategies, the optimal decision *d can 
be modelled as follows (see a.o. Müller, 1999); 
 

     )(maxarg* dUd
Dd∈

=   where  dydyppydudU d θθθθ )|()(),,()( ∫=     (1-3) 

 
U(d) is the expected utility of an experimentation strategy d, an element of the universe 
of possible experimentation strategies D. The utility function ),,( ydu θ is in our case 
specified by solving a decision tree of the outcomes of the various (H,C) combinations. 
Then, in Chapter 3 it will be shown how ordering these combinations in a decision tree, 
and based on cost assumptions for each experimentation strategy a financial outcome 
can be calculated and used for comparison to make an optimal decision *d . To solve 
U(d) a statistical experiment needs to be set up to calculate a model )( θypd , a 
distribution of observables y conditional on prior distribution )(θp . In our case, this 
model is not analytically solvable implying the need for numerical solution strategies 
(Müller, 1999). This is one of the reasons why in Chapter 4 Monte Carlo simulation (see 
a.o. Critchfield and Willard, 1986; Müller, 1999) will be used to explore the research 
questions and build theory on predictive performance of experimentation strategies. The 
other reason why simulation is used as a research methodology is given by the fact that 
in our case parts of the outcomes of the decision tree are not observable in practice, 
preventing the use of empirical methods like surveys. 

 
Simulation for theory-building has been used before as a research strategy to 

study ‘garbage can’ decision making processes (Cohen et al.  1972; Masuch and 
Lapotin, 1989) Applying Bayesian inferential thinking in a context of problem-solving, 
experimentation, and ensuing decision-making is a very recent trend in the literature. 
Pearl (2000) presents and unifies the probabilistic, manipulative, counterfactual, and 
structural approaches, and he devises mathematical tools for studying the relationships 
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between causal connections and statistical associations. In their seminal work on 
causation, prediction, and search, Spirtes et al. (2000) axiomatize the connection 
between causal structure and probabilistic independence and explore several varieties of 
causal indistinguishability. Jensen (2001) suggests Bayesian networks and decision 
graphs to model causal impacts between events. He distinguishes between test decisions 
to look for more evidence to be entered into the model, and intervening and non-
intervening action decisions, which force a change of state for some variables in the 
model, or not. Recent work (Pelikan and Goldberg, 2003) proposes an optimization 
method called the hierarchical Bayesian optimization algorithm incorporating three 
important features for robust and scalable optimization of complex problems; proper 
decomposition, chunking, and preservation of alternative solutions along the problem-
solving and experimentation process. Their computational method, called the hierarchy 
machine, uses several concepts from genetic and evolutionary computation like 
population, selection, exploration via recombination (Goldberg, 1989; 2000; Mitchell, 
2001), combined with Bayesian or ‘belief’ networks. Finally, other recent work (Callan, 
2003) applies causal thinking to automate belief network-based problem solving in the 
context of Artificial Intelligence (AI).  

 
Summarizing, this preliminary literature review gave us the handles to convert 

the business problem of the requirement for more predictive pharmaceutical Discovery 
experimentation strategies, into a researchable question. Advocated experimentation 
strategies like front-loading or parallel concept exploration, as applied in other 
technology-intensive sectors, need to be tested for their predictive performance in 
pharmaceutical Discovery. The literature review showed us this was not done before. 
This section introduced us to a Bayesian simulation-based probabilistic framework 
designed to explore this phenomenon in a quantitative way.    

 

1.2.4 Research question and purpose 
 
To guide my research efforts I transformed the pharmaceutical R&D business problem 
into the following more generally applicable research question: How to increase 
predictive performance of the fuzzy front-end innovation process? With Kim and 
Wilemon I define the fuzzy front-end of the innovation process as ‘the period between 
when an opportunity is first considered and when an idea is judged ready for 
development’ (Kim and Wilemon, 2002). In the fuzzy front-end fuzziness or ambiguity 
about the performance of the idea prevails, preventing it from being transferred to 
development. Resolving this ambiguity by clarifying the product concept and by 
identifying and solving problems upfront is a prerequisite for a cost-efficient 
development phase, where it is costly to rework or kill non-performing product ideas. 
The literature review above shows the relevance of researching experimentation 
behaviour in this front-end innovation process phase. Only, until now the focus has been 
on cost-efficiency and time-to-market performance, not on the systematic study of 
predictive performance.   
 

The purpose of my research, then, is to advance new process theory explaining 
the mechanisms –or the How? and Why?- of fuzzy front-end experimentation behaviour 
leading to increased predictive and business performance. Also, my theory-building 
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effort should fit the purpose of mode 2 management research (Gibbons et al. 1994) to 
design theories which have the potential to change R&D managers’ behaviour. The 
product of this research, then, will be a propositional model and a technological rule, the 
latter being defined as ‘[a] chunk[s] of general knowledge, linking an intervention or 
artefact with a desired outcome or performance in a certain field of application’ (van 
Aken, 2004b: 228). In other words, the main purpose of this research is not to generate 
universal laws but a general prescription for a class of problems being limited to a 
certain field of application. Technological rules resulting from this research should 
stand the test of descriptive and goal relevance, and be operationally valid (van Aken, 
2004b). In effect, external validity, the extent to which the defined rules really matter 
for practice, and the extent to which a practitioner can effectively control the 
independent variables in the model will be the true test of practitioner relevance.  

 
As depicted in Figure 1-3 below, Van de Ven and Poole et al. (Van de Ven and 

Poole, 1995; Poole et al. 2000) provide four archetypal theories explaining processes of 
change like innovation; life cycle, teleology, dialectics, and evolution. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1-3 Archetypal theories explaining innovation processes10 

 
 These four ideal types are composed of distinctive event sequences and 

generative mechanisms the authors call “motors”, that explain how and why changes 
unfold, which makes them an ideal starting point for my research. They introduce two 
analytical dimensions to classify the four ideal types of theories; the unit and mode of 
change. Evolutionary and dialectical theories operate on multiple entities like 
populations. Conversely, since the level of analysis of my research is the innovation 
team carrying out actions like experimentation and decision making, I will focus on a 
single entity as the unit of change studied. The mode of change studied distinguishes 
between change processes unfolding following a prescribed or constructed emerging 
pattern. Evolutionary and life cycle theories operate on prescribed modes of change. 
Dialectic and teleological theories follow a constructive mode of change. 

 
                                                 
10 Adapted from (Poole et al., 2000); Figure 3.1 - ‘Typology of organizational change and development 
theories’, p 66, emphasis added. 
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Since the unit of analysis of my research is the experimentation and decision 
making carried out in the fuzzy front-end part of the innovation process, which tends to 
be constructive in nature, and since I don’t focus on the dialectics in the innovation 
team, the advanced theory will be teleological in nature. A teleological theory assumes 
that the innovation process proceeds towards a goal, is carried out by a purposeful and 
adaptive entity –the innovation team-, ‘by itself or in interaction with others, 
constructing an envisioned end state –through a process of experimentation and decision 
making-, taking action to reach it, and monitoring its progress’ (Poole et al. 2000: 61).  

 

1.3 SUMMARY OF THE RESEARCH PROCESS 

1.3.1 A Critical Realist ontology 
 
Building teleological process theory in my research context entails probing into 
scientists’ experimentation behaviour, making sense of the complexity they are facing 
when trying to solve their innovation problem; the goal of their endeavour. However, 
the sources of complexity I want to address in my research don’t reside in the science or 
technology and its interconnectedness with its constituent components or target 
application environment as described by a.o. Kim and Wilemon (2003). Instead, I want 
to explore complex ways of thinking of the complexity of experimentation behaviour. 
Doing so, I enter the domain of second-order complexity (von Foerster, 1973), or the 
domain of the ‘thinker thinking about complexity’ (Hatch and Tsoukas, 1997). 
Therefore, ontology is needed to accommodate my objective of developing process 
theory while acknowledging the lack of absolute causal certainty when dealing with 
‘complexity-handling’ processes. Hence, my research will need to be built in a theory of 
reality allowing for ‘explanations of cause and effect which: (1) exist in the form of 
“mechanisms” which may not be consciously perceived by research subjects or 
theoretically preconceived by researchers, which therefore may act independently of 
thought and which are only accessible through the creative speculation by the researcher 
of plausible alternatives whose “truth” is ultimately dependent on consensual validation 
by informants; (2) from data which do not necessarily explicitly link the elements of the 
paradigm model; (3) from data which are not based on direct observation of the 
researcher’ (Partington, 2000: 98).  

 
Two reasons make me conclude that the logico-scientific approach of Critical 

Rationalism (Popper, 1959) does not provide an adequate ontology to study this second-
order complexity domain. First, its critical attitude of inventing theory through a 
tentative process of conjecture and refutation in pursuit of the absolute truth does not 
lend itself to the study of the phenomenon since the connection between predictive 
performance and the innovation team’s teleological process is not reducible to absolute 
causal laws. Instead, I take the position you cannot go further than taking the 
Conventionalist stance (Kuhn, 1996) that the advanced theory will not be true or false 
but will ‘only [be] useful in solving puzzles which it defines, using criteria which it 
specifies. Truth becomes a matter of community consensus’ (Blaikie, 1993: 108). Also, 
while no theory exists explaining the impact of experimentation behaviour on predictive 
performance, theory construction as opposed to theory testing is the most adequate way 
forward. The approach followed in this thesis, then, will subscribe to the Realist 
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constructive empiricist perspective that theory construction ‘is about constructing 
hypothetical models of mechanisms and then endeavouring to demonstrate their 
existence’ (Blaikie, 1993: 115). The focus will have to be on the empirical adequacy of 
the developed theory and its capacity to explain the observed. Now, as the theory will 
describe more than what is observable considering the second order complexity nature 
of the phenomenon, I take van Fraassen’s position that what matters is empirical 
adequacy and not ‘discovery of truth concerning the unobservable’(van Fraassen, 1980: 
5). Then it becomes possible ‘to accept a theory as empirically adequate without 
believing it to be true’ (Blaikie, 1993: 115).  

 
Second, in falsifying hypotheses the Critical Rationalist School only considers 

the observable and takes the socially constructed world for granted, meaning they 
ignore the sensemaking mechanisms that lead to the observable reality. However, 
precisely these mechanisms are the subject of my research interest. Therefore, the 
phenomenological emphasis of Interpretativism that reality is socially constructed 
admitting that person and world are inextricably related through persons’ lived 
experience of the world (Sandberg, 2000) seems to be better suited to explore the 
research questions. Within the Interpretative tradition the Realist perspective considers 
science to be concerned with what kind of things there are and how these things behave. 
‘It is concerned with a reality that is claimed to exist and act even if it has not yet been 
observed, and this reality has a life of its own apart from the activities of science’ 
(Bhaskar, 1986: 5). Critical Realist ontology is concerned with a reality that is claimed 
to consist of three overlapping domains: the experiences of the empirical, the events of 
the actual and the mechanisms of the real. Hence, this philosophy of science fits my 
purpose of enquiry since its multi-level ontological perspective acknowledges the 
existence of the real domain or the generative mechanisms that produce observable 
events of the empirical world. Researching mechanisms of experimentation behaviour 
then, is formulating causal relations regarded as powers or tendencies of things that 
interact with other tendencies in the ‘real’ so that an event in the ‘actual’ may or may 
not be produced, and may or may not be observed in the ‘empirical’ domain. This can 
be illustrated by an example in my research; the dimensions of the complexity 
experienced by the scientists in solving their innovation problem may lead to a specific 
way of organizing the innovation process which may lead to observable and non-
observable predictive performance. Conversely, in the Positivist view causal laws are 
regarded to be universal constant conjunctions between events always producing the 
same observable outcome.  

 

1.3.2 An interpretative epistemological positioning 
 
A Critical Realist epistemological positioning entails an Interpretative epistemological 
positioning taking a view of reality as a social construction, embedded in a context. The 
task of my research is to go beyond description into explanation. Therefore, Abduction 
is the appropriate research strategy (Blaikie, 1993: 163); it is the process used to 
construct theory within an Interpretive approach, occurring in a context of ontological, 
conceptual and theoretic assumptions. Since research on experimentation has been 
carried out in related environments I will build on existing theory. Hence, I don’t want 
to start from a blank slate as suggested by pure Inductivists to construct theory. Neither 
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do I want to start from a hypothetical model of actually existing entities and their 
hypothesized relations to be tested as suggested by a pure Reductionist strategy since 
innovation process-predictive performance relationships have not been hypothesized 
before. Then, Retroduction, or initial hypothesis formulation (Blaikie, 1993: 164), will 
not be the first step of my investigation. Instead, as suggested by Bhaskar (1986) my 
research will start in the domain of the ‘actual’, with observed connections between 
phenomena and causal links between computer-simulated variables. Describing actual 
activities and meanings derived from social actors will be my starting point. Then the 
existence of structures and mechanisms of the ‘real’ will be postulated to explain the 
actual phenomenon. The last step of my logic of discovery is to prepare for empirical 
observation of the acclaimed effect of the postulated mechanisms in the ‘experienced’ 
by formulating a prescriptive framework and a propositional model derived from 
computer-based simulation, to be tested by subsequent empirical research.  
 

The experimentation and decision making process conducted by the innovation 
team, my unit of analysis, is the focal point of my theory-building effort. Considered a 
constructor of reality in an ambiguous technology-intensive environment, engaged in 
complexity-handling behaviour, I will model them as a socio-technical system. The 
latter consists of technical and social elements whose interrelation can be analyzed at 
various levels (Molina, 1990; Klaes, 1997). The focus of the socio-technical system in 
my research is the experimentation and decision making process it is carrying out. To 
structure theory-building using an abductive strategy I will use Klaes’ (1997) analytical 
layers, distancing itself from methodological reductionism and providing an elegant 
categorization to structure the complex interplay of technology, process, and human 
behaviour within the socio-technical system. The following analytical layers or 
‘constituency levels’ applied to my research context are distinguished: (1) the physical 
level of the technology matching a biological receptor with a chemical active structure, 
(2) the level of the basic financial, human, material, time, and space resources directly 
contributing to the materialisation of the experimentation and decision making process; 
the innovation team, (3) the intra-institutional level or the specific mix of basic 
resources together with the interplay of individuals organizing the basic resources for 
level 2; the R&D organization of which the innovation team is part, (4) the inter-
institutional level describing the interaction of various institutions and social groups of 
level 3 fostering the development of the innovative solution to the problem, (5) the 
inter-constituency level, at which the socio-technical system under analysis interacts 
with other socio-technical systems carrying out the same task but on a different 
innovation problem, (6) the level of the historical context in which the socio-technical 
system is situated. Taken together, the analytical layers of the socio-technical system 
serve as a descriptive device. Any claims for explanatory powers rely on the addition of 
propositional frameworks relating elements within or across these layers.   

 
To probe into the generative mechanisms connecting the socio-technical 

system’s innovation process to predictive performance a three-phased research strategy 
theorizing from process data was designed featuring process grounding, computer-based 
simulation, and theory development, depicted in Figure 1-4.  

 
In a first process grounding phase, empirical adequacy will be obtained by 

taking recollections of scientists’ experiences involved in experimentation and decision 
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making activities as the starting point of my enquiry. This will be followed by 
reconstruction of their sensemaking behaviour into social scientific language. This 
means scientists will be interviewed to catch their process of interpretation by which 
they make their choices for this or that experimentation approach, or make this or that 
decision. The interview data will be based on recollected accounts of pharmaceutical 
innovation projects, which implies I will act as a detached observer. Also, in order to 
improve my understanding of the process and to capture the full richness of the data I 
will use different participant recollections (Schwenk, 1985) of each innovation project. 
Visual mapping and temporal bracketing (Langley, 1999) will be used as research 
methods to structure the first-order lay accounts. Visual mapping will provide a first 
step between the raw process data and a first attempt to abstract conceptualization of the 
innovation processes of all studied innovation cases. Temporal bracketing will 
summarize the different case visual maps in one structure of more discrete and 
connected blocks that can form the basis for replication and explanation. Grounded 
Theory (Glaser and Strauss, 1967), although with the potential to provide very accurate 
rendering of activities and meanings since firmly grounded in the raw data, was not 
chosen. The aim of this research is to generate formal theory at a higher level of 
generality, involving concepts applicable to a number of substantive areas. Therefore, 
Grounded Theory was not an option since staying very close to the process data can 
make it very difficult to move from a substantive theory generated in the case-specific 
context of my research phenomenon into more general formal theory. Instead, I will 
start interviewing using a minimal theoretical framework, building upon results from 
previous work as suggested by Eisenhardt (1989). Formal theory generated will 
encompass all but layer 1 of the socio-technical system descriptive framework. 

 
 
 

 

 

 

 

 

 

 

 

Figure 1-4 A three-step theory-building process resulting from a Critical Realist 
ontology and epistemological positioning11 

 
In a second phase, computer-based simulation will be used to generate a 

propositional model relating innovation -experimentation and decision making- process 
variables with outcome variables measuring predictive performance. Now, in terms of 
the socio-technical system descriptive framework the focus is narrowed down to layers 
2 and 3. The pharmaceutical Discovery innovation process, carried out by its team 
members, is now modelled as a reduced form of the socio-technical system; a formal 
                                                 
11 Bhaskar’s ontology representation using Venn diagrams adapted from Partington (Partington, 2000)  
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system as described above. This represents a Positivist view of reality, now reduced to a 
fully observable, measurable and objective phenomenon with the innovation team seen 
as ‘a machine moving through the organizational decision process’ (Gilbert and Doran, 
1994: 37). Clearly, simulation trades accuracy and completeness of reality 
representation for simplicity and generality (Langley, 1999). However, the strength of a 
computer-based simulation model emulating a real process is threefold; it allows for 
risk-free experimentation, it may allow for detection of inconsistencies in existing 
theoretical frameworks, and above all it allows going beyond explanation into 
prediction. Knowing that prediction follows from premises, established theory, and 
available data, in the Popperian sense, making a prediction in these terms I must be 
prepared to accept that incorrect predictions mean my premises, theory, or data were 
flawed (Johnson, 2000). However, in Chapter 3 it will be shown further that simulation 
is the only way of explaining and predicting a proposed quantitative impact of possible 
pharmaceutical Discovery experimentation strategy options, taking simplifying 
assumptions as starting premises.   

 
Finally, during theory development both perspectives will be integrated into a 

proposed formal theory, at least partially –for all ‘experienced’ parts- subject to 
empirical testing. The developed teleological process theory will show how the case 
study-based empirical work can be informed and complemented by simulation-based 
formal reasoning. The process grounding phase, probing into the meaning of the 
innovation process for the team, will lead to a prescriptive framework holistically 
explaining the mechanisms used by the socio-technical system to face the complexity of 
its mission to solve the innovation problem. The computer-based simulation phase will 
lead to a propositional model, connected to the prescriptive framework, explaining the 
impact of front-end experimentation strategy options on the predictive performance of 
the outcome of the decision making resulting from the experimentation process. 
Congruent with the requirements of mode 2 research (Gibbons et al. 1994) the 
constructed theory should stand the test of reality by adequately representing the 
tendencies recorded in the lay accounts of reality in such a way that social actors should 
be able to recognize themselves and others in the foreign concepts of the proposed 
formal theory explaining their experimentation behaviour.  
 

1.3.3 A roadmap for this research 
 
This introductory chapter provided the business rationale and the philosophical and 
methodological underpinnings of my research. In the next three Chapters I will focus on 
the results of my empirical and computer-based simulation research, conducted in three 
consecutive projects. To conclude, in the last Chapter I will integrate the findings of 
these research projects into a proposed formal theory explaining experimentation 
behaviour during fuzzy front-end innovation processes. Drawing upon concepts from 
the body of knowledge of the management of innovation, decision and complexity 
theory, theory will be built in a number of discrete steps along the roadmap for this 
research. 
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 Readers who are not interested in the detailed discussion of the methodology 
and results of the three consecutive research projects can skip the following three 
Chapters and turn their attention immediately to the final Chapter integrating the 
findings into a proposed formal theory.  
 
 Chapter 2 starts from the radical versus incremental dichotomy proposed in the 
innovation literature, developing an argument for looking at the research question from 
the perspective of complexity theory. Then, results of the first exploratory research 
project will be discussed. To develop a more fine-grained understanding of how and 
why radical innovation experimentation differs from incremental innovation 
management practice, six exploratory case studies will be conducted in pharmaceutical 
development. This will lead to a proposed prescriptive framework linking the 
dimensions of the complexity experienced by the innovation team to their choice for a 
‘complexity-handling mode’, a specific way of organising the innovation process.  

 
The second research project, described in Chapter 3, will go through a 

confirmatory case study analysis to answer the research question whether the 
pharmaceutical discovery process can be used for literal replication of the prescriptive 
framework that emerged from the exploratory study. Various front-loaded discovery 
experimentation strategies will be mapped and discussed. Then, a rationale and 
Bayesian methodology will be proposed to evaluate predictive performance of these 
front-loaded experimentation strategies using Monte Carlo simulation. Finally, research 
conjectures will be formulated to guide subsequent process simulations, linking 
experimentation policies found in pharmaceutical discovery to predictive and business 
performance. 
 
 The third research project, described in Chapter 4, will discuss the results of top-
down simulation-based theory development on predictive performance of front-loaded 
experimentation strategies. Following a review of theoretical models representing the 
complexity of dynamic experimentation and decision-making processes, it will be 
argued that an annotated adaptive system paradigm is the best choice to emulate fuzzy 
front-end experimentation behaviour as conducted in pharmaceutical discovery.  
 

Finally, in Chapter 5 formal teleological process theory will be developed, 
inductively grounded in the research results described above. The formal process theory 
will integrate the case study-based empirical work with the simulation-based theorizing 
effort. Process grounding conducted in the first and second research projects, probing 
into the meaning of the innovation process for the team, will lead to a prescriptive 
framework, holistically explaining the mechanisms used by the team as a socio-
technical system handling the complexity of its mission to solve the innovation 
problem. Conversely, computer-based simulation, prepared for in the second project and 
conducted in the third research project will lead to a propositional and predictive model, 
explaining the impact of various front-loaded experimentation strategies on predictive 
and business performance.  
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2   Managing complexity in radical innovation projects: 
The need for a paradigm shift? 

 

2.1 INTRODUCTION 
 

The purpose of my research is to build a theory of experimentation strategy required to 
manage radical innovation projects for performance. As a first step, in this Chapter I 
explore radical versus incremental innovation project management practice. I define a 
radical innovation “as a product, process, or service with either unprecedented 
performance features or familiar features that offer potential for significant 
improvements in performance or cost, using non-existing or non-proven technologies 
that did not fully exist at the start of the project with high market uncertainty (Leifer et 
al. 2000; Lynn and Akgun, 2001). It is opposed to an incremental or continuous 
innovation that refers to adaptation within a particular technological paradigm (McKee , 
1992; Baker and Sinkula, 2002) An experimentation strategy is the general approach to 
planning and conducting experiments (Montgomery, 1997).  

 
Recent previous research acknowledges the dichotomy of incremental versus 

radical innovations. A radical innovation project is known to require a flexible trial-and-
error approach to manage the high levels of uncertainty and ambiguity (Chandy and 
Tellis, 1998; Veryzer, 1998), as opposed to the stage-gate driven ‘compression model’ 
project management style for incremental innovation projects (Wheelwright and Clark, 
1992). Finally, all agree that the key difference between radical and incremental projects 
lies in the project management approach being focused in the former on learning and on 
planning in the latter (Cheng and Van de Ven, 1996; Leifer et al. 2000; De Meyer et al.  
2001). 

 
However, whilst the competitively differentiating role of the radical innovation 

process is recognised (Iansiti and Clark, 1994; Leifer et al. 2000; Baker and Sinkula, 
2002), its actual detailed operation is far less understood (Veryzer, 1998). Therefore, the 
purpose of this Chapter is to develop a more fine-grained understanding of how radical 
innovation experimentation management differs from incremental innovation 
management practice. 

 
This Chapter is organised around two research questions focussing on the 

strategic perspective of experimentation conducted in radical innovation projects: ‘What 
does the radical innovation process look like?’ and ‘How and why is it different from 
incremental innovation project management practice?’ 

 
Previous innovation research has largely focused on diverse discrete 

manufacturing based industries as automobiles, computers, mainframes, domestic 
appliances and telecom. Instead, I will use technology-intensive non-clinical 
pharmaceutical development as the context to explore the research questions. This 
science-based development environment, characterised by high technological 



  22 
 

uncertainty and complexity, is ideally suited to study radical innovation project teams 
struggling to reduce the complexity they are facing.  

 
As a result, my evidence suggests that exogenous project characteristics like 

innovation outcome –‘radical versus incremental’- or technological uncertainty –‘low-
tech’ versus ‘super high-tech’- are bad predictors for explaining the experimentation 
approach chosen to manage radical innovation projects, or for explaining the difference 
between managing incremental innovation projects. Instead, I propose that the 
complexity experienced by the innovation project team endogenously drives the choice 
for a particular experimentation approach. Using distinctive experimentation 
approaches, a mental model of the innovation problem solution depicting variables, 
their interrelationships, and their value ranges is proposed to emerge and applied during 
the innovation process. Experienced complexity, characterized by the level of 
uncertainty and ambiguity facing the innovation team is proposed to drive their choice 
for specific types of experimentation approaches I will further refer to as complexity-
handling modes.  

 

2.2 LITERATURE REVIEW 
 
Recent literature distinguishes between sustaining and disruptive innovations. 
Sustaining innovations have as a target to improve the most valued attributes of the 
most demanding customers of the present companies’ value network (Christensen and 
Rosenbloom, 1995; Christensen, 1997). By targeting these most attractive customers in 
mainstream markets sustaining innovations ‘improve or maintain profit margins by 
exploiting existing processes and cost structures and by making better use of current 
competitive advantages’ (Christensen and Raynor, 2003: 51). Disruptive innovations, in 
contrast, don’t attempt to bring better products to established customers in existing 
markets. Rather, they disrupt and redefine that trajectory by introducing products and 
services that are not as good as currently available products.  
 

But disruptive technologies offer other benefits –typically, they are simpler, 
more convenient, and less expensive products to appeal to new or less-demanding 
customers’(Christensen and Raynor, 2003: 34). Two strategies for creating new 
disruptive growth business are distinguished; ‘Low-End’ disruptions disrupt the 
prevailing business from the low end using a new financial and/or operational approach. 
‘New-Market’ disruptions target non-consumption by improving performance in new 
attributes, typically simplicity and convenience (Christensen et al. 2002; Christensen 
and Raynor, 2003).  

 
While excellent at providing a managerial framework to think about and 

organising for both types of innovations (Christensen and Overdorf, 2000) Christensen 
et al.’s analysis does add to the confusion in definition of types of innovation when 
stating that sustained innovations can have an incremental or breakthrough character. 
Also, the unit of analysis of their research is the innovative end-product and its 
contribution to competitive advantage and far less the process leading to the radical 
innovation, which is the subject of my research. 
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Therefore, since my research perspective looks at innovation as a team-based 
problem solving process, which builds on previous knowledge and explores a solution 
space through experimentation and learning, I will further review recent academic 
literature concerned with disciplined problem solving, coordination and management of 
interdependence between team members, and adaptive learning. 

2.2.1 Disciplined problem solving 
 
Eisenhardt and Tabrizi (1995) contrasted a compression and experiential problem- 
solving strategy as two theoretical models to enable fast adaptation through product 
innovation. Both accelerate development provided the first is applied to stable, mature 
environments and the latter to environments characterized by high market or technical 
uncertainty. A compression strategy assumes the product development process consists 
of a predictable series of steps that can be accelerated by rationalizing and squeezing 
them together. An experiential strategy emphasizes the use of improvisation and ways 
to deal with environments characterized by high levels of complexity and chaos. Key is 
rapid intuition building and creating flexible options to learn as quickly as possible 
about technical and market uncertainty. In some conceptual papers (Barrett, 1998) jazz 
players are used as a metaphor for understanding organizational learning and 
innovation. Seven characteristics that allow jazz bands to improvise coherently are 
identified and mapped to the management environment. Lynn et al. (1996) perform four 
in-depth historical case studies in different sectors to investigate the phenomenon of 
reducing market uncertainty during radical innovation. The pattern they observe is the 
use of a “Probe-and-Learn” process to continuously reduce market and technical 
uncertainty.  

 
More recent studies acknowledge the inherent difficulty of managing the ‘fuzzy 

front end’ and suggest a holistic approach to project management that keeps the balance 
between creativity and discipline (Khurana and Rosenthal, 1997; Khurana and 
Rosenthal, 1998). To steer this balance a ‘product champion’ is needed with the drive to 
advance the project, and with a vision to frame serendipity (Cox, 1989; Lee and Na, 
1994; Veryzer, 1998). In an empirical study of 61 problem-solving attempts in 
environments involving radical technological change Iansiti (1998) concludes that the 
more effective organisations applied a ‘system focused’ approach to integrate novel 
technological concepts into their designs. From a problem-solving perspective this 
approach involves emphasizing as early as possible the systemic impacts of novel 
technological concepts on product functionality and production system performance. 
Based on a detailed survey of the early development phases of 18 projects Verganti 
(1999) operationalizes anticipative and reactive capabilities and discusses the ‘planned 
flexibility’ concept that implies early identification of critical areas and early planning 
of reaction measures. The same line of thinking leads to ‘enlightened experimentation’ 
(Thomke, 2001) meaning organizing for quick inexpensive or ‘massive’ (Iansiti, 1998) 
experimentation allowing to fail early and often to spot and solve problems as upstream 
as possible.  
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2.2.2 Coordination and interdependence 
 
Allen et al. (1979) already found that the manner in which research and development 
projects acquire new technologies varies with the nature of the project. Research 
projects were found to perform best when all project members maintain high levels of 
communication with the outside, where development projects showed higher 
performance when one or a few gatekeepers monopolized external communications.  
 

More recently Adler (1995), based on an inductive analysis of 9 printed circuit 
board development projects in the design/manufacturing interface, concludes that 
increasing technological novelty requires the use of more interactive coordination 
mechanisms like cross-functional teams as opposed to standards, plans and mutual 
adjustments that seem to fit more incremental projects. Grandori (1997) shares this 
conclusion. In her organizational assessment of inter-firm coordination modes she 
concludes that in the case of high cognitional complexity, entailing highly innovative 
joint problem solving, characterized by many serendipities, implying the discovery of 
cause-effect relations, the main bureaucratic coordination mechanisms are expected to 
fail. A recent study of project coordination in 37 technology-intensive multinational 
companies (Gassmann and von Zedtwiz, 2003) proposed that a.o. the type of innovation 
determines the spatial distribution of project teams and their coordination behaviour. 
Radical innovation projects are proposed to be preferably run in centralized venture 
teams since they require a high degree of face-to-face communication and exchange of 
tacit knowledge. Incremental innovation projects can be run in a decentralized self-
coordinated mode of operation since used technologies are known.  

 
Finally, field research conducted by Chesbrough (2003a; 2003b; 2004) suggests 

business models for managing innovation become more and more open and that 
innovating companies should distinguish between bringing innovations to current or 
new markets. Targeting incremental technology to current business is equated to 
playing chess where one can think several moves ahead. In new markets featuring high 
technical and market uncertainty, the guiding metaphor to be used is playing poker 
(Chesbrough, 2004). Where in chess resources are well defined, competitor’s resources 
are well understood, and no new information arrives during the game, in the poker game 
one must adapt and adjust as new information arrives, and resources and competitors 
emerge over time. An Open Innovation business model must cope with both situations 
and rely not only on internal resources but also on more open structures like new 
ventures to manage new technologies collaboratively with external innovation partners. 

 

2.2.3 Adaptive learning 
 
The learning view on innovation distinguishes between two general situations of 
learning, involving the accumulation and use of knowledge, skills, and technological 
capabilities in organisations. ‘Exploration includes activities like search, variation, risk 
taking, experimentation, play, discovery, innovation. Exploitation includes refinement, 
choice, production, efficiency, selection, implementation, execution’(March, 1991). His 
findings suggest that maintaining an appropriate balance between exploration and 
exploitation is a primary factor for system survival. Later, Ekvall acknowledges these 
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findings and recognizes that the problem of innovation is rooted in the nature of creative 
processes and creative persons and that radical, revolutionary innovation, as opposed to 
adaptive and confirmatory innovation is facilitated through different organizational 
conditions, which creates organizational dilemmas. These dilemmas must be managed 
since the company must have the capacity of radical innovation to survive in the long 
run, while at the same time it has to be capable to run effective operations. This requires 
an act of balance (Ekvall, 1997). In essence, both studies focus on the context of the 
adaptive learning process. However, neither of them discusses the actual process of 
learning and how it differs for both situations.  

 
Learning in highly novel and uncertain situations is done through an adaptive 

trial-and-error process since prior knowledge is not or poorly available to guide the 
innovation team. Trial-and-error learning involves people taking a course of action, 
interpreting the outcome response of their action, and is followed by a continuation or 
adaptation of their course of action based on the results of their interpretation. Hence, it 
is path-dependent. Van de Ven and Polley (1992) tested this adaptive ‘goals-actions-
outcomes’ model based on a 5-year real-time longitudinal study of the development of a 
biomedical innovation and observed different patterns of learning in different periods of 
innovation development. Their findings suggest a faulty learning process of action 
persistence despite the occurrence of negative outcomes suggesting a random and 
unpredictable process of learning during the beginning ambiguous period of 
development. Later, during the still uncertain but less ambiguous concluding period, 
strong evidence was found for the adaptive learning model cited above. These findings 
were confirmed in another radical biomedical innovation project where Garud and Van 
de Ven (1992) speculated that trial-and-error learning guides innovation development 
under conditions of uncertainty, but action persistence occurs when the developmental 
process is ambiguous, meaning when it is not clear what specific ends are worth 
pursuing (Cheng and Van de Ven, 1996). 

 
Chaos theoretical analysis of the innovation process indicates that it is neither an 

orderly progression of phases, nor a random sequence of blind events. Instead, based on 
empirical findings from a process research study of the two radical biomedical 
innovation projects cited above, Cheng and Van de Ven (1996) conclude that learning 
in chaotic conditions is an expanding and diverging process of discovery, while learning 
during more stable and periodic conditions is viewed as a converging process of testing.  
The innovation process is proposed to begin in chaos and to end in order. They argue 
that the innovation process consists of a non-linear dynamic system, which is neither 
stable nor stochastic. However, their simulation results have not been successful 
identifying the parameter values where the innovation process shifts from chaotic into 
periodic behaviour. 

 

2.2.4 Conclusions 
  
From the above I conclude that the different views in the literature generally 
acknowledge that radical innovation projects require management practices that are 
different from incremental innovation project management (Eisenhardt and Tabrizi, 
1995; Veryzer, 1998; Iansiti, 1998; Leifer et al. 2000; Lynn and Akgun, 2001). Radical 
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innovation projects require specific tools that the project manager may find appropriate 
to the specific situation the project faces (Leifer et al. 2000). 

 
However, what constitutes a radical innovation project? Abernathy and Clark 

(1985) already agreed upon the binary classification problem and suggested a 
continuum for technological change defined by ‘polar extremes’ but failed to indicate 
what falls in between and where. Abetti (2000) acknowledges that the classification of 
technological innovations in incremental or radical categories does show different 
shades of grey since they are not defined according to clear criteria. Therefore, he 
proposes a five-level scale to classify the radicalness of innovations and cites critical 
success factors for radical technological innovations. However, he fails to give a clear 
indication of the need for specific management approaches for the different levels of 
radicalness identified. Lynn and Akgun (2001) distinguish between radical-, 
evolutionary-, and incremental innovations and associate success with vision clarity, 
support, and stability for each of these project types. Based on a cross-industry case 
study of 16 projects De Meyer et al. (2001) propose a framework to adapt project 
management tools and approaches to the type of uncertainty the project is confronted 
with. 

 

Summarizing, so far incremental or radical innovations are still intuitive, ill-
defined concepts (Durand, 1992). Therefore, to come to a more fine-grained 
understanding of how to manage radical innovation experimentation for performance I 
suggest shifting paradigms and focusing on the collaborative problem-solving behaviour 
of the innovation team. I propose to take an interpretative view, which takes into 
account the endogenous nature of the technical problem framing and solving process 
taking place in the innovation project. Problem framing and solving are central methods 
used by the team members to match the complexity they are facing in innovation 
projects. I will further refer to this type of complexity as ‘experienced’ complexity.  

 

2.3 COMPLEX SYSTEMS THEORY AS A CONCEPTUAL 
FRAMEWORK 

 
‘The concepts related to complex systems may function as unifying cross-disciplinary 
scientific themes that are essential to understanding emerging interdisciplinary 
perspectives in the natural and social sciences’ (Jacobson, 2001). In the following I 
distinguish between a logico-scientific and an Interpretative view of complexity. The 
first view characterizes complex systems by the interactions of their numerous elements 
and possibly shows emergent behavior not exhibited by individual elements. The latter 
view takes the perspective of the problem solver thinking about the complexity she/he is 
facing leading to problem-solving behavior.     
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2.3.1 Logico-scientific view 
 

The concept of complexity is both related to systems and people (Flood, 1987). Defined 
as an exogenous characteristic it says for example that complex technologies are 
systemic, have multiple interactions between their individual components called system 
architecture (Henderson and Clark, 1990), and are non-decomposable, meaning it 
cannot be separated into its components without seriously degrading the performance of 
the whole (Singh, 1997). Within this view, others distinguish between different degrees 
of technological, logistical, organizational, and environmental complexity and try to 
show that understanding the degree and type of complexity through a learning-based 
paradigm can help managers decide how to organize their factories (Khurana, 1999). 
Relating project characteristics like technology novelty and complexity to project 
outcome Tatikonda and Rosenthal (2000) find that technology novelty is strongly 
associated with poor unit-cost and time-to-market results, while project complexity is 
only associated with poor unit-cost outcomes. Their findings suggest that future 
research should investigate detailed project task characteristics. Kim and Wilemon 
(2003) examine several sources of complexity including technological, market, 
development, marketing, organizational, and intra-organizational complexity and study 
the impact of these various dimensions of complexity on reasons why NPD projects are 
late, over budget, or suffer from performance problems. They construct a template 
project managers can use to evaluate complexity in their development projects. In 
effect, the logico-scientific way of studying complexity is based on an analysis of the 
complexity of the task at hand. 
   

The information processing literature provides a common language both for 
analysing task complexity attributes and for translating the implications of these 
attributes into person processes (Campbell, 1988). Within this view, Schroder et al. 
(Schroder et al. 1967) identified three primary properties of a complex task; (1) 
information load or the number of information dimensions, (2) information diversity or 
the number of alternatives associated with each dimension, and (3) the degree of 
uncertainty or change involved. In this rationalistic exogenous view complexity can be 
defined objectively, independently of the person executing the task. Taking this logic 
further, complexity increases as each of these dimensions increases. Conversely, the 
three task attributes ‘can capture the cognitive demands experienced by a task-doer in 
completing a task’(Campbell, 1988). Campbell further distinguishes four basic task 
characteristics that contribute to an increase of complexity: the presence of multiple 
paths, multiple desired outcomes, conflicting interdependence among paths to 
outcomes, uncertain links among paths and outcomes. As another example, using the 
theory of computation Gell-Mann (1995) equates complexity with the size of the 
shortest programme describing the regularities of a given task or phenomenon.  This 
‘objective’ complexity is distinguished from the subjective complexity experienced by 
the task-doer. In terms of experienced complexity Schroder et al. (1967) noted in their 
experiments a point of performance disintegration varying from individual to individual 
leading them to the only conclusion that objective and experienced complexity are not 
identical. 
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Hence, I conclude that both logico-scientific classifications may lead to a better 
understanding of the exogenous characteristics of first-order objective complexity and 
its repercussions on managerial action. However, it does not answer the question how 
the problem-solver makes sense of the experienced complexity of the task at hand.  

 

2.3.2 Interpretative view 
 

The interpretative view of complexity takes the perspective of the ‘thinker thinking 
about complexity’ (Hatch and Tsoukas, 1997), of the –radical or incremental- 
innovation project team as an interpretative adaptive system making sense of 
complexity (Weick, 1995). ‘This shift from focusing on the system itself (first-order 
complexity) to focusing on those who describe the system as complex (second-order 
complexity) exposes the interpretive dimensions of complexity’ (Hatch & Tsoukas, 
1997: 12). In responding to the complexity they are facing they have the capacity to 
adapt or enact the experienced complexity, thus adapting to it or modifying it, rather 
than merely responding to any objectively given complexity in the environment (Boisot 
and Child, 1999).  
 

The joint effects of interpretation and enactment have in the past served to 
distinguish social from natural or biological systems. The recent surge of interest to 
study social systems through the lens of complex systems theory is motivated by the 
argument that we can enhance our understanding of social systems by modeling them 
using the analogon of natural or biological systems (Holland, 1992; Anderson et al.  
1999; Stacey et al. 2000). This view is supported by at least five properties held in 
common by natural, biological, and social systems (Hatch & Tsoukas, 1997: 7) called 
complex systems; (1) non-linearity meaning there is no proportionality between causes 
and effects, (2) scale-dependency, there is no single measurement which will give a true 
answer, (3) recursiveness, tending to repeat a basic structure at several levels, (4) 
sensitivity to initial conditions, small perturbations can lead to chaotic system behavior, 
(5) emergence, the tendency to shift to a new mode of behavior, the description of 
which is not reducible to the previous description of the system’s behavior. 

 
Interpretative research into radical innovation echoes these findings of the 

complex systems school of thought concluding for example that ‘discontinuous [or 
radical] innovation seems to be an inherently messy process [where] coincidence and 
fortuitousness play an important role’ or ‘the lack of formal structure seems to reflect an 
appropriate and necessary “looseness” rather than poor implementation’ (Veryzer, 1998: 
318). In a recent grounded theory study on a radical organizational innovation Carrero 
et al. (2000) find the innovative actions indeterminate, non-linear and non-repetitive, 
showing chaotic patterns. The radical innovation is conducted through a self-managed 
process. Also, chaos-theoretical analysis of the innovation process tells us that it 
‘consists of a non-linear dynamical system, which is neither orderly and predictable nor 
stochastic and random’ (Cheng and Van de Ven, 1996), or that organizational decision 
process level data in the development of a new biomedical device reveal a simple 
underlying chaotic order (Koput, 1992). And finally, Kiel (1991) suggests that while the 
tools of the non-linear paradigm may not afford the complete description of social 



  29 
 

reality they do appear to represent an incremental step toward greater understanding of 
the behaviour of complex social systems  

 
Hence, I conclude that studying the innovation process through the lens of 

complex systems theory can lead to fresh insights and more fine-grained interpretative 
understanding of the project management approaches required to deal with the 
serendipity, ambiguity, uncertainty, and chaos which are typical for the radical 
innovation situation.  

 

2.3.3 Complexity-handling 
 
How then does the innovation project team, acting as a socio-technical system, handle 
the complexity it is experiencing? In a recent article, Allen (2001a; 2001b; 2001c) 
describes complexity handling essentially as a trade of ‘complexity’ of the real world or 
the problem to be solved for the ‘simplicity’ of some reduced representation and cites 
four assumptions through which the complexity reduction is made12. This reduced 
representation abstracts from phenomena those regularities that underpin the form they 
adopt and is created through a modelling process of codification –involving the 
assignment of data to categories- and abstraction –involving a reduction in the number 
of categories to which data needs to be assigned for a phenomenon to be apprehended. 
In modelling complexity two complementary types can be identified; cognitive and 
relational complexity. The first focuses on the content flow among agents, the second 
on the structure of the interactions that such flows allow among agents (Boisot and 
Child, 1999). In this paper I focus on modelling cognitive complexity. The innovation 
project team acts as a complex adaptive system modelling the cognitive complexity it 
faces by separating regularities from randomness.  
 

2.3.4 Uncertainty and ambiguity characterizing experienced 
complexity 

 

To understand how the complex adaptive system models this cognitive complexity I 
distinguish between the interpretative choice over uncertainty and ambiguity the 
complex system has in the sense-making situation it faces. 

 
Within the interpretative research tradition uncertainty and ambiguity are 

dissimilar concepts (March, 1978; Schrader et al. 1992; Weick, 1995) that should be 
studied in the context of sense making in organizations (Weick, 1995). A problem is ‘an 
                                                 
12 The assumptions through which the reduction from complexity to simplicity occurs include: (1) the 
relevant system boundary, excluding the less relevant, (2) the reduction of full heterogeneity to a typology 
of elements, (3) individuals of average type, (4) processes that run at their average rate. If all four 
assumptions can be made then we can model the complex situation at hand using a set of deterministic 
differential equations as used in system dynamics. If only the first three assumptions can be made we 
have stochastic differential equations that can self-organize as the system may jump between different 
basins of attraction. With only the first two assumptions the complex system behaviour can be modelled 
as adaptive evolutionary change in which the system can spontaneously evolve new types of agents, 
behaviours or new problems and in which case it is impossible to predict the creative response of the 
system to any particular action taken (Allen, 2001c). 
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undesirable situation –a gap between the way things are and the way one wants them to 
be- that is significant to and may be solvable by some agent, although probably with 
some difficulty’ (Smith, 1988). The relevance of this definition for my work is in the 
word ‘undesirable’, which implies that the problem is not given by the environment. 
Instead, ‘[it] is a relationship of disharmony between reality and one’s preferences, and 
being a relationship, it has no physical existence. Rather, problems are conceptual 
entities or constructs’ (Smith, 1988: 1491) that are designed or discovered (Weick, 
1995: 89) in a problem-solving process, which elucidates the inseparability of thought 
and action. 

 
Within this process the problem solver can dynamically choose for levels of 

ambiguity and uncertainty to frame the problem acknowledging that both the problem 
and the set of possible solutions are in a constant flux, taking it for granted that 
assumptions and solutions are never final but that always improvements can be made, 
thereby voluntarily reintroducing ambiguity or uncertainty into the innovation process 
(Schrader et al. 1992). 

 
Uncertainty refers to ignorance (Weick, 1995: 95) or lack of information about 

variables known to the problem-solver. In the case of uncertainty, the problem-solving 
process chosen consists of specifying the precise values of the identified problem 
variables, thus reducing experienced complexity. In contrast, ambiguity refers to 
confusion (Weick, 1995: 91) by too many interpretations, to lack of clarity about the 
various variables and their relationships relevant to the problem. ‘The problem in 
ambiguity is not that the real world is imperfectly understood and that more information 
will remedy that. The problem is that information may not resolve misunderstandings’ 
(Weick, 1995: 92). Here, the definition and nature of the problem or problem structure 
is in doubt, the variables and their relationships are not known, goals are vague, 
multiple and often conflicting. In the case of ambiguity, problem solving becomes the 
creative process of specifying the variables and their relationships relevant to solve the 
problem through a process of ‘model building, negotiation, problem framing, evaluating 
and reframing, and model testing’ (Schrader et al., 1992). ‘Ambiguity understood as 
confusion created by multiple meanings calls for social construction and invention’ 
(Weick, 1995: 95).  

 
Mapping this to the work of complexity theorists the argument is developed that 

interpretative systems have two distinct ways of handling complexity (Boisot and Child, 
1999). They can either reduce it or absorb it. Complexity reduction involves getting to 
understand the problem and acting upon it directly by reducing the level of uncertainty. 
Scanning for and filling in the values of the known problem variables reduce 
uncertainty. In contrast, complexity absorption involves the creation of options and risk-
hedging strategies to explore environmental variety reducing the level of ambiguity.  
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2.3.5 Experienced complexity as the lens of complex systems 
theory 

 

I argued above that to study experimentation approaches used in innovation projects one 
needs to focus on the interpretive dimensions of the mental modelling process. I will use 
the lens of complex systems theory focusing on second-order or experienced 
complexity. Experienced complexity is a property of the interaction between problem 
solver and problem. The levels of uncertainty and ambiguity facing the innovation team 
are modelled to characterize experienced complexity. These levels are not exogenously 
given problem variables but two dissimilar components of problem framing whose level 
the innovation project team dynamically chooses. 

 

2.4 RESEARCH METHODS 
 
Exploring experienced complexity requires a research method capable of capturing the 
complexities of the sense-making process within the innovation team. Therefore, I used 
an inductive multiple case comparison methodology to study the phenomenon of joint 
problem solving through experimentation in its natural setting. I chose this method since 
it is particularly suited to explore ‘How’ and ‘Why’ questions concerning a 
contemporary phenomenon in a new topic area (Eisenhardt, 1989). I use the lens of 
complex systems theory as described above as the minimal theoretical framework to 
start conducting the interpretative exploratory analysis. It allows me to build upon the 
existing literature base therefore ruling out the risk of reinventing known relationships, 
while still having a high likelihood to discover novel insights. Multiple case study 
design is generally regarded as more robust as single case study, since the former 
provides for the observation of a phenomenon in different settings (Yin, 1989). 
 

2.4.1 Case sample characterisation 
 
The project case sample was drawn from the Chemical-Pharmaceutical Development 
division (approx. 500 scientists) of a global top-10 pharmaceutical company I will 
further refer to as ‘PharmaCo’. Six cases were selected to represent a continuum from 
incremental to radical innovation projects within their division. For reasons of 
confidentiality Greek alphabet denominators were used for the drug product innovation 
projects involved. To assess projects’ suitability for this research project characteristics 
technological uncertainty representing the departure from the present technology base13 
and technological novelty -the latter with values ‘existing’, ‘new-to-world’, ‘new-to-
company’, ‘new-to-(pharmaceutical) industry’ and ‘new-to-company’-, were taken as 
proxy measures to facilitate project positioning on the ‘incremental-versus-radical’ 
spectrum. Outcomes of all five projects rated ‘new-to-company’, ‘new-to-industry’ or 

                                                 
13 Following Burgelman and Maidique (Burgelman and Maidique, 1988) I define a technology base as 
‘the set of technologies, which are embodied in a firm’s products/services and production/delivery 
system’. 
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‘new-to-world’ fit the definition of a radical innovation14 used in my research and were 
rated under innovation outcome in case summary Table 1. 

 
Unit of analysis of my research is the problem-solving process within the project 

team in the context of the drug delivery system innovation projects described below 
conducted in a chemical-pharmaceutical development setting. 

 
 

Case Studies15 
 

Technological 
Uncertainty16 

Technological novelty Innovation 
Outcome 

Alfa IR Tablet Low-Tech Existing Incremental 
Gamma Controlled 
Release Tablet 

Medium-Tech New to company Radical 

Supercritical 
Fluids 

High-Tech New to industry Radical 

Nanosuspension High-Tech New to world Radical 
Microemulsions Super High-Tech New to world Radical 
DNAZyme Super High-Tech New to world Radical 

Table 2-1: Exploratory case study projects key exogenous characteristics 

 
Alfa Immediate Release (IR) is a classical tablet formulation project that needed 

to be executed under time pressure. It drew upon the existing ‘Oral Solids Delivery 
System’ technology base for execution. The project consisted of designing a 
formulation for a broad dose range and pharmaceutical production process for a 
commercial product with an active ingredient to be released immediately into the body 
with a daily intake of 2 to 3 tablets. This incremental innovation is based on well-known 
existing technology and its related development procedures, and is well documented in 
best practices. Key to project success is fast and efficient execution. 

 
The Gamma Controlled Release (CR) tablet project required the design of a 

tablet formulation to be taken once a day releasing its dose slowly, following a 
controlled release curve during the whole day without dose dumping, and this for a wide 
dose range. To get the same effect using IR technology two tablets need to be taken a 
day. The Gamma project being in the Alzheimer franchise the differentiation potential 
was based on patient compliance. Also, physicians appreciated the absence of side 
effects that go with the typical IR dose overshoot peak at intake. Therefore this was 
classified as a radical innovation at project initiation. At its start the project technology 
used could draw on basic IR knowledge and skills but it did require a significant 
departure from this IR technology base. Other companies had been experimenting with 
                                                 
14 As cited in the introduction to this paper I use the Leifer et al. (2000) definition of a radical innovation 
outcome ‘as a product, process, or service with either unprecedented performance features or familiar 
features that offer potential for significant improvements in performance or cost’. 
15 For reasons of confidentiality Greek alphabet denominators were used for the drug product innovation 
projects involved. 
16 Following Shenhar and Dvir (1996) proposed project typology Low-Tech means implementing familiar 
technologies relying on the existing and well established technology base, Medium-Tech projects involve 
adaptation of familiar technologies and rest mainly on existing technology base, High-Tech implies first 
use of the new but existing –having been developed prior to the project’s initiation- technology, Super 
High-Tech projects are based on new and non-existent technologies at the moment of project initiation. 
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the technology and basic techniques used were known to work at small lab scale level 
so I classified it as ‘new-to-company’ and ‘medium-tech’. The chosen design consisted 
of a multi-particulate system of multiple beads all carrying active substance covered by 
a controlled release membrane and an immediate release coating filling a capsule. The 
cost and manufacturing efficiency advantage of this was that to increase the dose range 
only more of the same complex beads were needed as opposed to a monolithic one-bead 
system complemented with CR beads where for every dose another bead needed to be 
manufactured. Also, this latter case complicated manufacturing logistics. 

 
Supercritical Fluids. Melt extrusion is a well known single continuous 

production process used in pharmaceutical manufacturing to prepare new solid drug 
dosage forms like tablets, granules or pellets. An optimised extrusion process is known 
to be simple, cheap, and solvent free. Also, extruded formulations are considered 
especially useful in enhancing the bioavailability of poorly water-soluble drugs. An 
important drawback of the technique is related to the high temperatures needed to 
achieve the molten state of the polymers used in the extruded blend. As such, this 
formulation approach is limited to thermostable formulations including not only active 
compounds, but also the excipients, including the polymers themselves. The plasticizing 
action of a supercritical fluid (SCF) could reduce the temperature of melt extrusion 
thereby extending its use for thermosensitive polymers and compounds like peptides or 
proteins. Due to their unique solvent properties, SCF applications were first directed in 
the fifties in the food industry towards extraction, such as decaffeination of coffee, spice 
extraction and lipid purification. More recently, SCF have also been used as a medium 
for polymerisation in the pharmaceutical industry, especially because of the regulatory 
limits on solvents. It has possibly wide applicability as a platform technology used for 
micronization, to replace human tissue, as an environment friendly manufacturing 
technique, or even to accelerate the joining of human bones. Therefore, I classified it as 
a radical innovation that is ‘new-to-industry’. The case project is the first to explore the 
application of this technology platform in the pharmaceutical industry with the objective 
to develop the use of CO2 SCF to broaden the applicability of melt extrusion, therefore 
it is classified as ‘high-tech’. 

 
Nanosuspension was a ‘new-to-world’ technology at project initiation in the 

mid-nineties. Nanoparticle-based delivery technology allows decreasing particle sizes to 
the 100 to 200-nanometer region. It consists of a sterile milling process facilitated by 
specially developed beads and additives or excipients. It was a radical innovation at 
project initiation while nanometer range fineness increases drug formulation surface 
area available, positively influencing solubility and dissolution rates of active substance. 
The extremely small particle size prevents blocking of the veins, which is particularly 
interesting for compounds having their action at the level of the brain or the central 
nervous system. Also, it can be used in parenteral applications, like for intra-muscular 
usage, eardrops or nasal administration into the central nervous system. The difficulty at 
this size range is that hydrophobic particles have the tendency to cluster. This has to be 
prevented by coating the particles. Unfortunately, the range of excipients usable for 
coating is rather limited. At the start of the project, nanosuspension was available with 
an outside technology provider who had shown the first proof of concept on lab-scale. 
However, the milling process had to be optimised and made sterile throughout. Also, 
the formulation had to be designed for PharmaCo specific compounds. Heat-resistant 
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excipients had to be found to make the formulation resistant to the heat required during 
the manufacturing process to make it sterile. Since the technology already existed in 
embryonic form at the start of the project I classified it as ‘high-tech’.    

 
Micro-emulsions are distinguished from emulsions by their transparency. More 

fundamentally, it is a technology known to the pharmaceutical industry to be used as 
formulation adjunct for compounds whose bioavailability is solubility or dissolution 
time limited. An example situation is found in the central nervous system where this 
technology could optimise drug uptake or it can be used in general to improve the 
uptake of poorly water-soluble drugs. Since most micro-emulsions contain a toxic 
component and cannot be injected, mainly oral micro-emulsions based products are on 
the market. Only one combination can be used for intravenous use. Unfortunately, it 
features low solubility of the active substance. This project investigates a radical 
innovation, which is the ‘new-to-world’ application of this technology as a platform to 
cover oral, transdermal, and parenteral applications using biodegradable liquid polymers 
systems. Key inputs for the project are synthetic absorbable polymers used in the 
medical device industry -in this case the Johnson & Johnson Corporate Biomaterials 
Centre (J&J CBC)- to construct for example artificial veins. Through macromolecular 
engineering these polymers can be modified from liquids, to pastes, waxes, rubbers or 
solids. Not only these mechanical properties, also the spectrum of absorbability can be 
regulated to a large extent to cover the whole application spectrum. Since this project 
focuses on non-existent technologies at project initiation and even at this very moment, 
I classified it as ‘super high-tech’.  

 
DNAZyme. The advent of high-throughput screening has caused a general trend 

in the pharmaceutical industry for drug candidates to be of higher molecular weight, 
more lipophilic, of poorer water solubility and generally lacking in oral bioavailability.  
For more than twenty years scientists have tried, unsuccessfully, to develop safe and 
efficient delivery systems for these macromolecular therapeutics. Applications include 
gene therapy and intracellular delivery of DNA fragments to inhibit protein-production 
that is highly thought about for cancer. In this project one tries several ‘new-to-world’ 
approaches to get into the cell and show functional activity, which is non-toxic. It 
involves the design of synthetic molecules, called RNA-cleaving DNA enzymes or 
DNAzymes that can select, bind and cleave a therapeutic target thus prohibiting protein 
production. Physical chemistry and metabolism are the major issues to be handled. 
More specifically, DNA fragments are made up of nucleotides that don’t go through 
cellular membranes well and human enzymes very rapidly break down DNA. Hence, 
this project features extreme technological complexity trying out delivery technologies 
that have never been used before. However, if a solution can be found it will open at 
least the very large cancer market. Therefore, I classified it as a ‘super high-tech’ 
project with a radical innovation outcome.   

 

2.4.2 Forming an interpretative community 
 
To probe into the ‘How’ and Why’ of the experimentation approaches used, I formed an 
interpretative community consisting of the six project managers and one team member. 
Interviews lasted between one and two hours, were tape-recorded and transcribed. 
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Interviews were complemented with reviews of innovation project specific archives and 
written departmental procedures. A total of 14 interviews were conducted. For each 
interviewee the first interview session was structured around the process they had been 
using in their cited projects to solve their innovation problem. Visual mapping and 
temporal bracketing (Langley, 1999) was used to make sense of the data. In the 
following sessions interviewees were confronted with their process maps emerging 
from the first interview round. Maps were checked for accuracy and refined. Also, these 
sessions focused on the ‘Why’ of the different phases in their innovation projects and 
the reasons for transitions between phases.  

 
Data coding was organized by arraying empirical indicators –activities and 

choices made by the innovation team- on multiple tracks along the problem-solving 
process and its constituent phases. A retroductive approach (Poole et al. 2000) was used 
by initially taking the theoretical background discussed above to generate categories to 
include (1) experimentation approach, (2) learning approach, and (3) coordination 
approach, followed by a new category I called (4) target setting approach that emerged 
during interviews. Inconsistencies were verified by using additional sources of data or 
through verification by the original informants. To ensure reliability a case study 
database was developed to formally assemble qualitative and quantitative evidence 
material. A detailed summary of this case study database including the number of 
interviews conducted, the respondents, empirical indicators, relevant PharmaCo internal 
document references, and visual maps of all studied cases resulting from the interview 
sessions, can be found in Appendix A.  

 

2.4.3 Shaping a conceptual framework 
 
To increase internal validity first within-case analysis, then cross-case visual map 
pattern matching was executed. I looked for within-group similarities coupled with 
inter-group differences. Using temporal bracketing, groups were chosen along the 
identified project phases cited above, becoming units of analysis for replicating the 
emerging conceptual framework, which was shaped in two steps.  
 

The first step focused on the ‘how’ of the innovation process. Within-case visual 
mapping analysis led to the identification of distinct ‘periods’ or temporal brackets. A 
period typically is terminated by a team decision. Each bracket was given an identifier 
A, B, or C. Then, cross-case bracket pattern matching led to an emerging frame of 
across-project bracket types describing what was done by the various teams to solve the 
innovation problem. Finally, each period consisting of similar bracket types was given a 
name describing how complexity was handled by the innovation team in this specific 
period.  

 
A second step searched evidence for the ‘why’ of the emerging project phases. 

This was done by recording empirical indicators for ‘uncertainty’, ‘ambiguity’ and 
‘phase transitions’, and mapping them to the emerged bracket types now called 
complexity-handling modes cited above.  
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2.5 CASE STUDY RESULTS 
 
Complexity experienced by the project team is driven by its sense making process that 
consists of finding a solution to the innovation problem at hand. In all cases an 
innovative drug delivery system17 had to be designed. Temporal bracketing results 
indicated three distinct ‘periods’ emerging from visual mapping and relevant empirical 
indicators (see Figure 2-1). The three bracket types emerging from the cases focussed 
on (1) generating and selecting solution concepts, (2) fully characterising the chosen 
solution concept, and (3) applying the characterised concept to a specific product to 
bring it to market.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2-1 Exploratory case study temporal bracketing results 

 
Phase A identified in the DNA-Zyme case (Figure 2-2), the Micro-emulsions 

case (Figure 2-3), the Supercritical fluids (SCF) case (Figure 2-4), and Nanosuspension 
(Figure 2-5) constitute a complexity-handling mode I call ‘Concept Selection’. 

 
Phase B identified in the Micro-emulsions case (Figure 2-3) and the SCF case 

(Figure 2-4), together with Nanosuspension case Phase B (Figure 2-5) and Gamma 
Controlled Release (CR) Phases A and B (Figure 2-6) constitute a complexity-handling 
mode I call ‘Concept Characterisation’. 

 
Phase A identified in the Alfa IR case (Figure 2-7) and Nanosuspension (Figure 

2-5) and Gamma Controlled Release Phase C (Figure 2-6) constitute a complexity-
handling mode I call ‘Concept Application’. 
 

2.5.1 Concept Selection 
 
‘Concept Selection’ leads to a mental model characterising the innovative drug delivery 
system’s core, depicting the critical variables and their relationships affecting solution 
proof of concept level performance. Working towards meeting solution critical 
requirements it gradually resolves ambiguity and brings focus by ruling out as soon as 
possible in the process candidate solutions that don’t work, and by organising work 

                                                 
17 As defined here a  drug delivery system can be a technology (DNA-Zyme, Microemulsions, SCF) or a 
final product incorporating a technology (Nanosuspension, Controlled Release tablet, IR tablet) 
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primarily around the key questions to be solved, operationalised in the solution critical 
requirements. The latter are defined at proof of concept level.    

 
Before starting the experimentation process, solution critical requirements are 

specified as a target against which alternative solutions are tested. As testified in the 
DNA-Zyme, SCF and Microemulsions cases; 

 
“What Michel [project manager] tried to do is to set up, even before we started looking at 
these people, what we like to see for the very first criteria; that was functional DNA-Zyme 
activity in the cells”. 
 
“…I think the idea was really; let’s identify these criteria [solution critical requirements]. 
We have the opportunity to look at our range of technologies, but having said that, the very 
first step is to get rid of as many as possible. What would happen, if all of these passed the 
first test, I don’t know. But we knew that the bar was so high, that it wasn’t likely to 
happen.” 
 
“For the meltextrusion application we stated as an objective that the temperature with SCF 
had to be lower as the temperature we would have had without SCF. And this for a pressure 
that would not be so high it would endanger the functioning of the meltextruder”. 
 
“…The objective of these first two phases [refers to Microemulsions project process chart] 
is really to check for entire families of polymers whether it is possible to form micro-
emulsions and to encapsulate an active ingredient, or not”.   

 
In the micro-emulsions project (Figure 2-3) the proof of concept consists of 

showing for the biodegradable liquid polymers that they can be made water-soluble, that 
the active ingredient can be solubilized using the polymers, that the solution is non-
toxic and permeable into human tissue. In the Supercritical fluids project (Figure 2-4) 
both polymers and active substance have to show solubility at certain critical pressure 
and temperature values. Finally, proof of concept needs to show that it is possible to 
bring the supercritical fluid-based system in the extrusion process at a temperature that 
is lower as the one used in classical melt-extrusion. 

 
The experimentation process consists of running several experiments in parallel 

exploring how critical variables affect response of the innovative delivery system to be 
designed. Informed by the academic literature on the subject, in the DNA-Zyme project 
(Figure 2-2) several competing completely different solutions are tried in parallel. 
Ruling out from the beginning the known non-workable delivery systems documented 
in the literature, a number of collaboration agreements were set up with outside 
technology companies and universities testing various embryonic delivery 
technologies18 as an overall solution for delivery of the therapeutic agent into the cell. 
Considering the high costs involved in running intensive reciprocal research 
collaborations in parallel, the chosen experimentation approach is marked by its step-
by-step character. Each time a set of experiments is co-designed to show response that 
fits one of the system critical requirements. Ones confirmed a next step could be funded 
to show positive response on the next requirement and so on. This gradual approach, 
ruling out non-working concepts is advocated by all project managers; 

                                                 
18 For confidentiality reasons the specific names of these embryonic gene therapy related delivery systems 
couldn’t be mentioned here. 
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“…Everybody got the same message what was going to be the first milestone, what we 
wanted to see at that point. For those companies, that were either at the first milestone or 
that we had a good feeling about we broadened the topic to say, the next area will be this, 
and than after that it will be…always raising the hurdle…” (DNAZyme) 
 
“..I don’t know if everybody does, but we took a stepped approach with each of the 
candidate solutions…first they had to show you can get it into the cell, then you have to 
have some in-vivo activity, then…” (DNAZyme). 
 
 “…the process is really to check for each family of polymers if micro-emulsions can be 
formed, then if active substance can be encapsulated. If it doesn’t work, go back, if it does, 
take another family and start all over again…. After this initial phase we will be able to 
fully characterise the formulation for parenteral and oral applications” [refers to 
Microemulsions project process chart] 
 
“…In [Phase A] … we tested both concepts on one polymer. Both single and twin screw 
worked but the latter gave the best blend properties so we chose the last one to show proof 
of concept … “In [Phase A] you check; is it feasible or not?” (SCF) 
 
 
Although the micro-emulsions project is carried out in-house it does rely on 

candidate biodegradable polymers coming from an outside technology provider and also 
uses this gradual experimentation approach, resolving ambiguity and delivering proof of 
concept in a step-by-step mode. Each polymer first has to pass the water solubility test, 
then it is checked whether it could form micro-emulsions, and then it is checked 
whether active substance could be solubilized in the micro-emulsion. Running test loops 
this way, of the initial five proposed classes of polymers only two proved to show self-
emulsifying properties and were further characterised on their physico-chemical 
properties using computer modelling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2: DNA-Zyme case process flow 

 
All projects cited above started with explicit external learning by consulting 

various, not necessarily domain-specific literature. In the SCF project e.g. also food and 
plastics processing literature was consulted. However, predominantly an external tacit 
learning approach was applied in all projects. It consists of working with outside 
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technology providers that can provide part of or the totality of the system solution. Due 
to the highly uncertain nature of the experimentation process each relationship and its 
results are closely monitored and adjusted or finished if no further solution potential can 
be shown to fulfil the critical system requirements. Relationships are reciprocal since 
technology providers also gain from the learning done in the experiments to fine tune 
their novel technologies. Microemulsions and DNA-Zyme project managers 
acknowledge this reciprocal approach; 

 
“So, there are two big pharma-ideas about this; one is that you sit back, and hope for the 
best to wait for somebody to give you something off the shelf or you can try to have some 
impact on their development, by going in early and trying to steer, manipulate the direction 
which is going to be most interesting and beneficial for you” (DNAZyme). 
 
“…This is definitely a reciprocal collaboration contract we have with UCL [university] 
(Microemulsions) “ 

 
 
In the DNA-Zyme case eventually three technology companies and research 

institutions were chosen to carry out the research. In the micro-emulsions project two 
classes of polymers were selected for further research and development. Knowledge 
transfer is an on-going process during the full period of joint research where both 
parties learn from each other and try collaboratively to solve the disruptive innovation 
problem. 

 
However, if a sufficient knowledge base exists in the company, relationships with 

outside technology providers can be structured on a problem-solving basis without any 
further joint commitments; 

 
“…Knowledge transfer happened mainly at the beginning… later [Phase B] we used the 
relationship only for problem solving, and it was not a joint development effort…” 
(Nanosuspension) 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-3: Microemulsion case process flow 
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which the fulfilment of an up-front specified set of system critical requirements must be 
shown. If it cannot be shown, the candidate solution is rejected. 

 
Ideally, this work is planned in advance like in the micro-emulsion project 

where small lab-scale experiments could be conducted in advance to get some insight in 
time lines required showing candidate polymer performance and plan milestones. 

 
“…Based upon some first experiments we estimated the time needed to do synthesis and 
characterisation of the compounds, then, we estimated it would take so many months to 
synthesize so many polymers… a professor from UCL has also made an estimation, then 
we compared and saw we came to about the same results (Microemulsions)  

 
In the DNA-Zyme and supercritical fluids projects this could not be done since no 

solution path was known to exist or, in the latter case no equipment was available to 
conduct these preliminary tests. Then the project team relied on specifying target 
milestones delivering system critical requirements and close monitoring of progress 
towards these milestones, gradually eliminating non-workable candidate solutions, 
resolving ambiguity and bringing focus into the solution.  

 

2.5.2 Concept Characterisation 
 
‘Concept Characterisation’ leads to a mental model characterising the full innovative 
solution’s application domain, depicting all relevant variables and their relationships 
affecting application system performance. Starting from proof of concept the full 
application domain gets characterised through the definition of uncertainty areas in 
which a more structured adaptive learning process gradually resolves ambiguity beyond 
proof of concept level down to all variables and their functional relationships affecting 
solution performance. Also, critical value ranges get defined for all variables to indicate 
the boundaries of the application domain, as compared to other drug delivery 
technologies.  

 
Solution requirements become a moving target starting off from a broad 

‘minimal’ proof of concept level, zooming in to a ‘feasible’ application domain for 
which the technology can be used in further application development. The exact target 
is not known upfront as in the previous complexity-handling mode with the solution 
critical requirements, but emerges during application domain characterisation through 
an adaptive learning process. 

 
“…[refers to project process chart] then we would like to characterise parenteral and oral 
applications [in parallel] exploring how much active substance can be solved, whether a 
capsule can be filled, does the capsule break when it gets into contact with the acids in the 
gut? How about the toxicity and permeability for each of these applications? ” (Micro-
emulsions) 
 
“In the first phase the question to be answered is; is it stable or not? In this phase, the 
experimental plan will be more directed towards exploration of ranges of parameters –is 
this range a good range to function at production scale? (Microemulsions) 
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 “As soon as we find out if and how we can get the active substance into the SCF we will 
have to check how good the active can be solubilized, or which volume you can usefully 
bring into the extruder, what is the stability, bio-availability, of the mixture?”(SCF) 
 
“The target in Phase A and B is evolving in the sense that you’re discovering domain 
limits. While in Phase C you know the limits but now your efforts are directed to 
developing a product” (CR)   
 
The DNA-Zyme and micro-emulsions projects did not get into this mode yet 

although for the latter project two application domains have already been identified with 
a time indication when the respective application domains will be characterised and 
ready to be used for application development.  
 

Since the SCF project team has passed the proof of concept hurdle mid 2000 it 
now concentrated on further characterising the meltextrusion application domain. Using 
active compounds and polymers that were soluble and showed positive interaction with 
supercritical CO2 (SCCO2) during Concept Selection, the meltextrusion process and 
selected polymer interactions were further characterised. Limits of the applicability 
range were determined through experimentation, thus narrowing the targeted application 
domain. 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2-4: Supercritical Fluids case process flow 

 
In the Nanosuspension project an outside technology provider had delivered 

proof of concept but not on sterile technology. So the team had to concentrate on 
investigating how to make the process sterile and finding heat resistant formulations 
required for the sterile production process. 

 
“…finally we had a working formula…this was the end of Concept Selection” 
(Nanosuspension)  

 
As soon as proof of concept was delivered, the targeted application range was 

discovered through experimentation. Hence, during Concept Characterisation (Phase B 
in Figure 2-5) two domains were further characterized; the product formulation using 
nano-technology, and the sterile manufacturing process. Also in the Controlled Release 
project the working principle was known at the start but one didn’t know how to obtain 
the exact kinetic release profile of the CR tablet. Application domain requirements 
emerged gradually by conducting two series of ‘test–decide–redirect’ cycles leading to 
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the choice for a multi-particulate controlled release system using solution-based –
instead of suspension-based- drug coated sugar spheres with an organic rate –instead of 
aqueous rate- controlling membrane.  
 
 
 
 

 

 

 

 

 

 

Figure 2-5: Nanosuspension case process flow 

 
Experimentation in Nanosuspension, SCF, and CR projects is conducted within 

a predefined number of uncertainty areas to be explored. For each uncertainty area 
critical assumptions are defined, and experiments are conducted to test assumptions on 
limits to applicability ranges. 

 
“…We split up the work in two coherent design packages [Formulation design and Sterile 
process design] each exploring and characterizing part of the solution…” (Nanosuspension) 
 
“Then we started characterising the product…every parameter; particle size as a function of 
time, sedimentation as a function of time,… we checked for robustness” (Nanosuspension) 
 
”You split up the concept proven in Phase A into subparts that you will characterise” (SCF) 

 
“…You start with determining under which conditions you can add SCCO2 to the polymer, 
then you look for the lowest possible temperature at which this can happen…you 
characterise parameters like speed of addition, pressure, single versus twin-screw geometry 
of the extrusion screw…” (SCF) 

 
“We selected a multiparticulate concept with an IR and CR piece [Uncertainty area 1]. 
Then, we said we will be working using an aqueous solution and fine-tuned it to get a 
workable profile. That was Phase B or concept characterisation [Uncertainty area 2]” (CR)   

 
More systematic Design of Experiments (DoE) -based experimental guidelines are 

used to plan and carry out the experiments. 
 
“Design of Experiments will also be easier to be used in this phase than in the previous 
because you now have a good idea which parameters are going to influence more or less 
strongly the process” (Microemulsions) 
 
“In this mode the question is much more; is it stable or not? Or, [for this parameter] is this a 
good working range to have the application work at full production scale? DoE will be 
easier in this phase [Phase B] while you have an idea which parameters will influence the 
process more or less. So you know the factors to do a proper DoE”. (SCF) 
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 Experimentation results from different uncertainty areas are integrated into a 
characterised application domain for a limited application range. Unforeseen results 
may lead to the definition of new uncertainty areas to be characterised or even explored 
at proof of concept level. 

 
“…[After parallel characterisation of both areas] then we could bring the characterised 
supercritical fluid with active substance into the characterised extrusion process, bringing 
the two together…if it works we can start modelling the nozzle, if it doesn’t work we’ll 
have to check whether we could use carbon solvents” (SCF) 
 
For the Nanosuspension project the basic technology available from an outside 

technology provider, consisting of a nano-milling process using specified excipients and 
beads, was assumed ready to be made reproducible for clinical studies with company 
specific compounds. In contrast to the Microemulsions project where model compounds 
were used to carry out concept characterization, here application domain 
characterization was immediately carried out on the compound to be taken to market. 

 
In the SCF project, after having characterised active compound solubility in 

SCCO2 and polymer interactions with SCCO2 in the previous mode, now the key 
uncertainty area to be characterised are the design of the melt-extruder using SCCO2. 
Basic process options like single versus twin-screw extrusion need to be tested and 
characterised for process parameters like flow-rate, temperature, pressure, foaming and 
shaping behaviour at the die opening. In parallel, two sets of experiments are conducted. 
Characterisation of this uncertainty area will not only lead to critical value ranges for 
the cited variables. Also, it will be possible to compare application ranges with other 
technologies hence locating it into the spectrum of technologies enhancing solubility. 

 
As cited above, the CR project uncertainty areas were sequentially characterised 

leading to an integrated multiparticulate CR system that was the result of a number of 
fundamental choices sequentially made after explorations of several options. Finally, 
proof of concept delivery of the micro-emulsion project is assumed to lead to the 
application domains cited above.  

 
 
 
 
 
 
 
 

 

 

 

 

Figure 2-6: Gamma Controlled Release case process flow 
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External explicit learning is still used in this mode to start the experimentation 
process or for on-going problem solving. However, although external tacit remains the 
dominant learning mode the difference with the previous mode is that knowledge 
transfer occurs at the start of the relationship with the outside technology provider if 
such relationship is set up. Both Nanosuspension and SCF projects technology 
providers were used as a technology source and for problem solving. 

 
…The characterisation of the supercritical fluid-active substance interaction is done in 
house with problem-solving help of the University of [x], for the extrusion characterisation 
part we do this in collaboration with the University of [y]…. It is not a real collaboration 
contract we have with them, it’s more consultancy, they give advice to us…no milestone 
agreements exist with them” (SCF) 
 
“… The basic technology we bought was the milling process and excipients/beads that gave 
this type of product this stability. We brought the sterile knowledge to the project” 
(Nanosuspension) 
  
 “…Knowledge transfer happened mainly at the beginning,… later we used the relationship 
only for problem solving, and it was not a joint development effort…” (Nanosuspension) 
 

So, unlike the previous mode where partners were selected as quickly as 
possible using kick-out criteria, after which a collaborative research effort started, here 
this is hardly the case. Therefore, I classify the learning approach used as sequential and 
intensive; technology licences are bought at the beginning and the relationship serves 
for problem solving, not for a joint purpose to find a solution for the problem, as 
exemplified in the first mode where a reciprocal intensive coordination mode is 
preferred. 
 

2.5.3 Concept Application 
 
‘Concept Application’ leads to a mental model characterising the full innovative drug 
system’s application to the level of all relevant variables and their relationships, with a 
specification of the parameter values delivering an effective application system. 

 
Starting from product requirements the whole application gets optimised for 

usage by conducting a pre-planned range of experiments. Target product requirements 
are defined up-front –they can only be formally modified at the gates of a stage-gate 
process (Cooper, 1990; 1994)- and fall within a characterised application domain. 

 
“…The product definition is documented in the TCDS [Target Core Data Sheet] and can 
evolve up to a certain point in the stage-gate process after which no more modifications are 
allowed” (IR) 

 
The experimentation process consists of parallel testing performance of different 

candidate standard formulations delivering active substance into the human body. 
Previous complexity-handling modes characterised an application domain or range. 
This mode optimises one application within a domain, meaning the exact values of all 
known application domain variables need to be defined for this particular application. In 
the IR Tablet project three known concept or platform formulations containing the new 
active substance were screened in parallel. Testing against IR Tablet application domain 
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requirements led to the choice of a certain concept, after which finding the exact values 
for the different variables further optimised the formulation at lab scale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-7: Alfa Immediate Release case process flow 
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calciumphosphate, and cellulose. … In parallel we used three standard platform 
formulations and tested each of them for stability…then we picked one out, the best. 
…Then you can start refining the formula” (IR) 
 
“…Development was done using the ‘Direct compression formulation development flow 
chart’ [shows this documented procedure]. We use this procedure to run all our standard 
tablet formulations” (IR) 

 
Further experiments optimised the up-scaled formulation concurrently with the 

design of the production process. Concurrency is needed while process design possibly 
affects formulation design, and development in this late part of the process is always 
under time pressure. All structured design techniques (DoE, QFD, VOC, FMEA, 
CTQ19) are used. Scientists are required to use these tools, which are part of the 
corporate standard Design Excellence (DEx) toolkit to conduct these experiments. 

 
“…[refers to ref (3)]After parallel formula concept screening the process gets developed 
concurrently with formula optimisation because it is possible that you should adapt the 
formula because of the process” ” (IR) 
 
“…For these type of projects [standard solid tablets and oral dosage forms] we use an 
integrated set of development techniques under the banner of ‘Design Excellence’, which 
consists of techniques like pre-designed DoE, FMEA, VOC, QTC etc.”  (IR) 

 
Learning in the IR Tablet project is explicitly following formal documented 

development procedures using to a maximum extent platform technologies. However, 
internal tacit learning was used in the platform choice and formula optimisation. The 
team had all the tacit experience on board to handle the innovation problems at hand. 
                                                 
19 Voice of the Customer (VOC), Quality Function Deployment (QFD), Failure Mode and Effects 
Analysis (FMEA), defining factors Critical to Quality (CTQ), and Design of Experiments (DoE) are part 
of the standard DEx JJPRD toolkit whose use is compulsory in late development phases.  
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“…We use the standard platform formula. Of course, results of formulation work are never 
black or white…experience, skills are still important…if results are on the low side, which 
of the parallel-developed solutions should we pick out?  (IR) 
 
“…Experience built up over the years, by working with different products, and also 
experience in interpreting results are crucial in determining which type of filler we will 
use”  (IR) 

 
Detailed GANTT charts, available as templates up-front depicting all activities 

and their interrelationships coordinate the experimentation process. Follow-up is done 
through a formally documented stage-gate process where deliverables need to be shown 
at specific gates. Evidence needs to be given that experiments have been conducted 
using DEx compliant tools and best practices.  
 

“…At each gate of the stage-gate process we have to be able to show which Design 
Excellence techniques have been used with what results …GANTT charts [shows project 
chart] are used to track progress…” (IR) 
 
 

2.5.4 Complexity-handling modes descriptors 
 
Summarizing, Table 2-2 below describes the three identified complexity-handling 
modes along the dimensions target setting, experimentation, learning, and coordination 
approaches followed by the innovation team. 
 
 An overview of the process transforming complexity-handling mode empirical 
indicators into summarizing sets of descriptors is provided in Appendix B.  
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 Complexity-handling modes 
 Concept Selection Concept Characterisation Concept Development 
Target setting 
approach 

• Target defined up-front 
as minimal system 
critical requirements to 
pass  

• Target moving toward 
feasible application 
domain requirements to 
pass 

• Target defined up-front 
as product/process 
requirements to pass. 
Only modifiable at 
formal stage-gates 

Experimentation 
approach 

• Run parallel 
experiments to 
characterise critical 
variables affecting 
response for different 
candidate system 
solutions 

• System solution 
selection 

• Show Proof of Concept 
by spelling out 
assumptions about the 
set of relevant variables 
and their functional 
relationships  

• Run parallel/concurrent 
experiments to 
characterise all variables 
affecting response for 
different uncertainty areas 
within proof of concept 
delivered solution 

• Integrate uncertainty areas 
into limited / characterised 
application domain 

• Run parallel/concurrent 
experiments to optimise 
variables values within 
a solution 

• Followed by concurrent 
engineering driven by 
QFD derived product 
definition 

• FMEA based process 
design 

Learning 
approach 

• External explicit: 
Mainly at project start 
learning from published 
science. Later ad-hoc for 
problem solving. 

• External tacit:  
On-going knowledge 
transfer by interaction 
between teams and 
external technology 
suppliers.  

• External explicit: Mainly 
at project start learning 
from published science. 
Later ad-hoc for problem 
solving. 

• External tacit: Knowledge-
transfer mainly at project 
start between external 
technology supplier and 
team. Later for problem 
solving. 

• Internal tacit: 
Use of pockets of previous 
knowledge 

• Internal explicit: 
Learning based on 
formal procedure-based 
inquiry  

• Internal tacit: Learning 
by doing, based on 
previous internal 
experience 

Coordination 
approach 

• Define milestone targets 
that are reached if results 
can be shown  

• Estimate work package 
effort/ timeline based on 
first experiments or 
expert knowledge 

• Focus on experiments 
capable of selecting as 
quickly as possible 
solutions that meet all 
system critical 
requirements  

• Through close 
monitoring of progress: 
Eliminate as quickly as 
possible candidate 
system solutions not 
meeting one of the 
system critical 
requirements 

• Define uncertainty areas 
and assumptions to be 
tested per area 

• Define milestone targets 
for uncertainty areas that 
are reached if results can 
be shown.  

• Use DoE experimental 
guides to systematize the 
testing process  

• Guide progress through 
real-time coordination of 
concurrent results of 
different uncertainty areas 

• Bring focus through 
adaptive learning i.e.; 
assumptions testing, 
learning, continue/redirect 
efforts to characterise the 
feasible application 
domain 

• Possible go back to 
previous mode if 
application domain cannot 
be delivered or if new 
application domain 
emerges 

• Define product/process 
requirements to be met 

• Use pre-designed DoE 
experimental guides to 
systematize the 
experimentation process  

• Use GANTT type plans 
& schedules for cross-
activity programming 
and tracking task 
completion 

• Monitor plan variation 
and act accordingly by 
executing contingency 
plans 

• Use of standard 
approaches and 
documented best 
practices to problem-
solving 

Table 2-2: Complexity-handling mode descriptors 
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2.6 DISCUSSION 
 

2.6.1 Experienced complexity driving the choice for a complexity-
handling mode 

 
The three complexity-handling modes emerging from my study provide support for the 
‘learning-versus-planning’ thesis (Cheng and Van de Ven, 1996; Leifer et al. 2000) put 
forward in the literature. The Alfa IR Tablet ‘incremental’ project is managed using a 
complexity-handling mode drawing heavily on planning and control. As hypothesized 
by the literature this contrasts with all other case projects, tagged ‘radical’ and using a 
trial-and-error adaptive learning-based approach. 

 
However, this study provides evidence for a more fine-grained description of the 

latter learning-based approach since all five projects tagged ‘radical’ fall into two 
emergent groups, each group being managed using a different set of complexity-
handling modes drawing upon the same but differently applied adaptive learning 
approach. Important while central to my thesis, it can be verified on Figure 2-1 
providing a chronological overview of complexity-handling modes used per project in 
this case study, that project exogenous characteristics cited in Table 2-1 provide poor 
explanation for the occurrence of different observed complexity-handling modes. 

 
Clearly, while both DNA-Zyme and Nanosuspension are both classified as 

‘new-to-world’ and ‘radical’ technologies, they are managed using different 
complexity-handling modes at various moments in time. Also, Gamma Controlled 
Release, Supercritical fluids, and Nanosuspension projects have different exogenous 
characteristics but share the same complexity-handling approach. Therefore, I conclude 
that my case study evidence suggests project exogenous characteristics to be bad 
predictors of complexity-handling modes chosen by the innovation team to manage 
their projects. 

 
Instead, based on my exploratory case study results I propose experienced 

complexity to explain the complexity-handling mode chosen dynamically through the 
course of the innovation project.  

  
Proposition 1-1: The experienced complexity type facing the innovation 
team determines the choice for a complexity-handling mode 
 
The innovation team handles experienced complexity by constructing a mental 

model of the problem-solving situation. Mental models specify the variables, their 
relationships and their value ranges that are relevant for understanding and describing 
the problem and provide the solution space within which the problem will be solved. 
Key to understanding the subjective nature of experienced complexity reduction through 
mental models is the acknowledgement that ambiguity and uncertainty are not 
exogenously given characteristics of the problem to be solved. Instead, mental models 
are constructed through a creative problem framing and solving process in which levels 
of ambiguity and uncertainty are dynamically chosen and reduced by the innovation 
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team (Schrader et al. 1992). My case evidence below (see also Appendix A) provides 
support for this view.  

 
In the following I characterize experienced complexity using levels of ambiguity 

and uncertainty facing the innovation team. Table 2-3 below provides the definitions for 
the different constructs emerging from the cases. 

 
 

Experienced 
Complexity Type 

PoC Ambiguity-based Ambiguity-based Uncertainty-based 

Ambiguity 
level 

Proof of Concept (PoC) 
critical variables and 
their functional 
relationships unknown 
to the team 

Only PoC critical 
variables and their 
functional relationships 
known to the team 

All application domain 
specific variables and 
their functional 
relationships known to 
the team 

Uncertainty 
level 

Value ranges of critical 
variables unknown to 
the team 

Not all value ranges of 
critical variables known 
to the team 

Value ranges for all 
application domain 
specific variables 
known to the team 

Table 2-3: Experienced complexity typology 

 
Empirical indicators of uncertainty and ambiguity during ‘Concept Selection’ 

evidence that the complexity experienced by the team is Proof of Concept (PoC) 
ambiguity-based. Ambiguity level is PoC-based since the mental model containing 
relevant variables to solve the problem at PoC level is not yet formed within the team. 
The innovation team goes through a creative search process among potential candidate 
solutions, composed of variable sets, to discover the set of variables that might generate 
a system that has the required solution critical functionality. Since during this process 
the winning mental model and its related variable sets is not yet known, by definition 
neither could the variable value ranges be known. Hence, although uncertainty level is 
also high this is not relevant for the choice made by the innovation team. First, the 
winning mental model must be found, showing PoC-level performance on the solution 
critical requirements. Therefore, I call this experienced complexity type Proof of 
Concept ambiguity-based.  

 
In the DNA-Zyme, SCF, Micro-emulsions, and Nanosuspension projects this 

mode was chosen while no evidence existed to the team that proof of concept had been 
delivered and documented before for these new-to-world technologies. Nanosuspension 
was brought to this level before, but not for the sterile technology-based application 
domain required for the specific PharmaCo product.  

 
“We knew from the answers the delivery for that sort of fragments was going to be a 
problem; we knew that simple techniques won’t work. So we already knew that the barrier 
was pretty high”… The approach that was started together with a group in discovery…was 
to canvas real novel approaches for transfaction, given the fact that most things had already 
been tried in that area. (DNAZyme) 
 
“We also went to the scientific literature and made a special point to specific scientific 
media. In the beginning there was a relatively long list, we looked at anything that might be 
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useful; so at one point we must have had 10 or 12 different approaches…You knew that 
you had to look at some pretty avant-garde therapies for approaches” (DNAZyme) 
 
“…There was so much published on so many failures, that we knew we could not do with 
the traditional approaches so we started already at the beginning with things that were 
pretty off the wall  ... We knew, that when we had any success, it would be from novel 
approaches and not from things that have been tried fifty times before”. (DNAZyme) 
 
“…Mid 2000 Proof of Concept was delivered in the Supercritical fluids project when 
polymers in interaction with SCCO2 showed that they can decrease the meltextrusion 
temperature and that active substance can be made soluble in SCCO2 under certain critical 
conditions” (SCF) 
 
“[At the start of the project] it was New to world technology” (Microemulsions) 

 
“… The basic technology we bought was the milling process and excipients/beads that gave 
this type of product this stability. We brought the [internal tacit] sterile knowledge to the 
project…finally we had a working formula…this was the end of Concept Selection” 
(Nanosuspension)  
 
 
The Controlled Release (CR) Tablet project team did not choose this complexity-

handling mode while the technology had been characterised before to proof of concept 
level by an outside technology provider. The concept of delivering a specific kinetic 
profile was known. Only, it had to be developed for this specific product application 
domain following this specific curve. This leads me to formulate the following 
proposition; 
 

Proposition 1-1a: A ‘Concept Selection’ complexity-handling mode will be 
chosen if the innovation team experiences Proof of Concept ambiguity-
based complexity. 

 
Second, case evidence suggests that the choice to manage the innovation project 

following the ‘Concept Characterization’ complexity-handling mode is made by the 
team whenever it is facing an ambiguity type sense-making opportunity. Ambiguity is 
experienced since only a mental model containing relevant variables to solve the 
problem at proof of concept level has been formed within the team. Since neither 
problem relevant variables nor their functional relationships are known beyond proof of 
concept, by definition neither could the variable value ranges be known beyond this 
level. Although uncertainty level is still high this is not relevant for the choice made by 
the innovation team. Therefore, I call this experienced complexity type ambiguity-based 
and propose the following;  

 
Proposition 1-1b: A ‘Concept Characterization’ complexity-handling mode 
will be chosen if the innovation team experiences ambiguity-based 
complexity.  
 
Concept application domain characterisation will gradually resolve ambiguity and 

reduce uncertainty to a level where the innovation team’s mental model of the system to 
be designed contains all variables with their value ranges relevant to start application 
development. The CR project faced an initially ambiguous situation but variables and 
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their functional relationships relevant for proof of concept performance were accessible 
to the team, which led them to the choice of ‘Concept Characterisation’ as complexity-
handling mode. The right choices in a number of uncertainty areas were still to be made 
to get to an optimal kinetic profile and to make the technology ready for implementation 
in an application to be delivered to the market. 
 

“The challenge was to develop a CR profile that would rise very quickly, stay up the whole 
day, and fall down in the evening so patients can sleep, all this without peaks to prevent 
side-effects”…The overall proof of concept for this was known. However, what was not 
known was how to get this significant quick rise [the application domain of interest] at the 
beginning” (CR) 
 
“…We knew theoretically how it should work, techniques were described in the literature 
how to do it at lab scale. However nobody had ever done clinical studies with it…so we 
tried a number of solutions in parallel without being able to fall back to standard 
technology platforms” (CR) 
 
For the Nanosuspension project the innovative technology needed to be made 

sterile and ready to accept company specific compounds.  
 
“During Phase A you select a concept, in the second step you optimize your concept” 
(Nanosuspension) 

“…finally we had a working formula…this was the end of Concept Selection…Then we 
started characterising the product…every parameter; particle size as a function of time, 
sedimentation as a function of time, etc. we checked for robustness” (Nanosuspension) 

 
After delivery of the initial proof of concept that certain polymers in interaction 

with SCCO2 can lower the required meltextrusion temperature hence extending its 
application range to thermolabile active ingredients, the SCF project team chose this 
complexity-handling mode to further develop the technology to a level were it can be 
used for application development. 

 
“…As soon as we have a bit of a view of the process [Phase A] we will use Design of 
Experiments to characterise and optimise the process” (SCF) 
 
“As soon as we find out if and how we can get the active substance into the SCF we will 
have to check how good the active can be solubilized, or which volume you can usefully 
bring into the extruder, what is the stability, bio-availability, of the mixture?”(SCF) 
 
Finally, I propose that the choice to manage the innovation project following the 

‘Concept Application’ complexity-handling mode is made by the team whenever it is 
facing an uncertainty type sense-making opportunity with a very low level of residual 
ambiguity. Only uncertainty, no or few residual ambiguity is experienced since for a 
specific application domain a mental model containing all relevant variables with their 
respective value ranges has been formed within the team. Since the level of experienced 
ambiguity is negligible it is not relevant for the choice made by the innovation team. 
Therefore, I call this experienced complexity type uncertainty-based. This leads me to 
formulate the following proposition which is in line with the proposition formulated by 
Schrader et al. (1992) that problems will be framed involving little ambiguity if the 
problem-solver has successfully solved apparently isomorphic or related problems 
previously: 
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Proposition 1-1c: A ‘Concept Application’ complexity-handling mode will 
be chosen if the innovation team experiences uncertainty-based complexity.  

  
The Alfa IR Tablet project started with a full mental model of the problem-

solving situation available. Residual ambiguity was negligible since both projects could 
be developed using platform technologies like concept formulations and documented 
best practices. As soon as the steep kinetic profile CR concept was characterised, in its 
last phase it could be handled using standard development approaches.  

 
“The target in Phase A and B is evolving in the sense that you’re discovering domain 
limits. While in Phase C you know the limits but now your efforts are directed to 
developing a product…The endpoint of Phase B is a working concept that still needs to be 
developed. In Phase C you know it works” (CR) 

 
The innovation teams chose this mode while they had successfully solved 

apparently isomorphic problems before leading them to rule out ambiguity and to 
choose for a complexity-handling mode that is strong in delivering results at pre-
planned stage-gates, using rigorous experimentation techniques. 

 

2.6.2 Experienced complexity dynamics 
 
The incapacity of project exogenous characteristics to explain complexity-handling 
mode transitions is evidenced by a number of my cases. The Microemulsions project 
will soon change from ‘Concept Selection’ mode to ‘Concept Characterisation’ mode, 
although it will still be a ‘Super-High-Tech’ technology while still based on non-
existent technologies at project initiation. The same holds for the SCF project that has 
changed complexity-handling mode but is still a ‘High-Tech’ project. Also, it remains 
to have a ‘project uncertainty profile’ (Loch et al, 2000) characterised by ambiguity, 
variation and risk. 
 

Instead, by taking an interpretative approach my case data lead to a better 
understanding why experimentation approaches vary dynamically over the course of the 
project. By taking the perspective of the mental model of the problem-solving situation, 
one can see that the team gradually builds up understanding of the innovative system to 
be designed. The decision to transit to a new complexity-handling mode is driven by the 
perceived completeness of the team’s mental model. As long as ambiguity has not been 
sufficiently resolved or uncertainty sufficiently reduced, the team will stay in a certain 
complexity-handling mode. This leads me to formulate the following propositions; 

 
Proposition 1-2: The decision to change complexity-handling mode is 
determined by the innovation team’ perceived completeness of their 
mental model of the problem-solving situation at hand, operationalised in 
the proven delivery of minimum system requirements.   

 
The decision to transit from ‘Concept Selection’ to ‘Concept Characterisation’ 

mode is made by the team as soon as solution critical requirements are met. High initial 
ambiguity must be resolved to the level that the emerged mental model contains all 
critical variables and their relationships necessary to deliver Proof of Concept. 
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Proposition 1-2a: The decision to transit from ‘Concept Selection’ to 
‘Concept Characterisation’ complexity-handling mode is made by the 
innovation team as soon as a mental model has emerged that contains all 
critical problem-solving mechanisms, solution variables and their 
relationships necessary to deliver Proof of Concept. 

 
Nor the DNA-Zyme, nor the micro-emulsions project have reached this 

transition since no delivery solution has been reached in the former nor has a definitive 
set of self-emulsifying polymers been found yet in the latter. The team does not know 
the definitive set of critical variables nor their relationships delivering proof of concept 
yet. 

 
“The transition to the next phase [from A to B] is really dependent upon the results you get. 
And if you don’t get a result you have to stop unless the literature provides you with further 
clues” (Microemulsions) 

 
Mid 2000 proof of concept was delivered in the Supercritical fluids project when 

polymers in interaction with SCCO2 showed that they can decrease the meltextrusion 
temperature and that active substance can be made soluble in SCCO2 under certain 
critical conditions. This led to the project team’s decision to make the transition to the 
‘Concept Characterisation’ mode where the design of the melt-extruder using SCCO2 is 
further characterised. 

 
“…First, we looked whether products of our pipeline could be brought into the extruder 
using supercritical fluids, then [in Phase B] we do a full physico-chemical characterisation 
of the whole extrusion system, later [Full Development] it will be scaled-up to full 
production level (SCF) 

 
Second, the decision to transit from ‘Concept Characterisation’ to ‘Concept 

Application’ mode can be made by the team as soon as the application domain for the 
concept is characterised and solution critical requirements are met. Ambiguity must be 
resolved to the level that the emerged mental model contains now all variables, their 
relationships and value ranges necessary to deliver an application within the 
characterised concept domain.  

 
Proposition 1-2b: The decision to transit from ‘Concept Characterisation’ 
to ‘Concept Application’ complexity-handling mode can be made by the 
innovation team as soon as a mental model has emerged that contains all 
problem-solving mechanisms, solution variables, their relationships and 
value ranges necessary to deliver an application. 

 
In the Controlled Release project the transition decision to go for application 

development was made after the concept showed performance following a kinetic 
release profile that was hypothesized by the team. Then the team could switch to a 
project management approach tailored to manage ‘incremental’ projects (see process 
flow in Figure 2-6). The same situation held for the Nanosuspension project, which was 
characterised immediately on the commercial product and scaled up to full production 
(see process flow in Figure 2-5). 
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 No other case projects made this transition yet since the mental model depicting 

the innovative delivery system has not crystallised to a level that it can be used to 
develop an application – as applicable to DNAZyme, Microemulsions, and Supercritical 
fluids cases.  

 
“I think the transition into Full Development is made as soon as there’s a compound in need 
for this technology in its relevant application domain…Now the technology is already 
sufficiently characterized for one type of polymer to allow us to test its solubility in micro-
emulsions for one specific compound falling within this application domain” 
(Microemulsions) 
 
“You develop an application on model compounds, not for a final R-number [specific drug 
project] We will only transfer into Full Development when we will be sure it will be bio-
available, enhances solubility and is non-toxic. This needs to be shown first on model 
compounds (Microemulsions) 

 
Finally, during Concept Characterisation and Concept Application modes a 

decision can be made by the team to go back to one of the previous modes if a 
fundamental problem arises or a new situation emerges preventing moving forward.  

 
Proposition 1-2c: The decision to move back from ‘Concept 
Characterisation’ or ‘Concept Application’ complexity-handling modes 
can be made by the innovation team as soon as a situation arises where 
the present complexity-handling mode does not lead to further absorption 
and/or reduction of experienced complexity. 

 
 An example of a problem where the innovation team decided to go back from 
Concept Application to Concept Characterisation is provided by the Gamma CR project 
where a drug candidate was in Development featuring a specific kinetic profile. 
However, the latter showed to be insufficient to meet the needs of the patient 
population. Therefore, the team was forced to revisit the problem and characterize a CR 
solution that was known to work at proof of concept level but that had not been applied 
before in the project-specific context. The SCF case is an example of a technology that 
had shown proof of concept and was characterized for the meltextrusion application 
domain. However, after this characterisation the team could have decided to go for a 
human bone-joining application, in which case it would have to go back to Concept 
Selection to find ways to get to proof of concept for this new application domain.  
 

2.7 CONCLUSIONS 
 

2.7.1 Implications for managerial practice 
 
There seems to be a desire on the part of management to understand how to manage 
effectively the development of radically new products if, of course, it can be managed 
(O' Connor, 1998; Veryzer, 1998). Previous studies focussing on the difference of the 
radical versus incremental innovation process conclude that the development of 
disruptively innovative products does not seem to follow conventional stage-gate 
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processes and find a degree of informality with respect to how this development process 
is managed (Veryzer, 1998). 
 

However, by focusing on the complexity experienced by the innovation team 
and the resulting mental modelling process my results indicate that there is not more 
informality but more ambiguity involved in managing for ‘radical’ as opposed to 
‘incremental’ innovation. Experienced complexity, characterized into types by 
specifying levels of ambiguity and uncertainty facing the innovation team, is proposed 
to drive their choice for a specific experimentation and project management approach, I 
called complexity-handling mode.  

 
‘Concept Selection’ is a complexity-handling mode leading to a mental model 

characterising the innovative solution’s core, depicting the critical variables and their 
relationships affecting solution proof of concept level performance. During the process 
ambiguity is gradually resolved by selecting one or more candidate solutions that fit 
solution Proof-of-Concept-level critical requirements.  

 
‘Concept Characterisation’ is a complexity-handling mode leading to a mental 

model characterising the innovative solution’s application domain and its boundaries, 
depicting relevant variables and their relationships affecting solution performance. 
Using an adaptive learning process the wanted application domain gets characterised, 
resolving ambiguity beyond Proof of Concept level down to all variables and their 
functional relationships affecting solution performance. Also, critical value ranges are 
defined for all variables to indicate the feasible boundaries of the application domain. 

 
‘Concept Application’ is a complexity-handling mode leading to a mental model 

characterising an innovative solution’s application to the level of all relevant variables 
and their relationships, with a specification of the values delivering a working 
application system. 

 
The conceptual framework presented above offers project managers in practice a 

diagnostic tool they can use to dynamically choose over the course of the project for a 
specific complexity-handling mode, contingent upon the type of complexity they’re 
experiencing. Present diagnostic tools fall short against this framework while they are 
not dynamic, only considering the situation at the outset of the project, and take into 
account project exogenous characteristics as opposed to characteristics related to the 
complexity experienced by the innovation team (Shenhar and Dvir, 1996; De Meyer et 
al. 2001). Or, they don’t consider the role of ambiguity and only focus on uncertainty 
types to guide the choice for a specific project management approach (De Meyer et al. 
2001). 
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2.7.2 Toward a more fine-grained understanding of managing 
radical innovation 

 
The purpose of this exploratory research project was to develop a more fine-grained 
understanding of radical innovation experimentation practice. A change in paradigm 
was needed to develop this more detailed understanding. This led to a number of new 
insights that can help me further develop a theory of experimentation strategy needed to 
manage radical innovation projects for performance. 

 
My empirical results confirm the widely claimed distinction between managing 

incremental and radical innovation projects. However, by taking a complex systems 
perspective I find that, contingent upon the type of complexity experienced by the team, 
innovation projects can be managed using three different approaches. This result is 
highly relevant to practicing innovation teams who are offered a framework to 
dynamically decide upon the experimentation approach to be followed. Also, the 
framework deals with the oversimplifying binary distinction between radical and 
incremental innovation projects and develops a more fine-grained understanding of the 
process. 

 
However, whether or not the conceptual framework identified in this research 

context is also applicable to other contexts is an empirical question. Further empirical 
studies in other contexts are needed to test internal and external validity of the 
framework set out above, which will further enrich my understanding of the radical 
innovation process. Second, to build a theory of experimentation practice for radical 
innovation I need to investigate and explain possible relationships between complexity-
handling approaches chosen and process or outcome performance.  

 
My future research will explore these questions in a pharmaceutical Discovery 

context. In the next project I will literally replicate the propositional model developed in 
this exploratory case study and try to document experimentation strategies used in the 
different modes. The latter will provide the basis for theory building around their 
performance in the innovation process.  
 



  57 
 

3   Exploring Experimentation Strategies for Radical 
Innovation in Pharmaceutical Discovery: A Bayesian 
Perspective 

 
 

3.1 INTRODUCTION 
 
Whilst the competitively differentiating role of radical innovation20 projects is 
recognised, its actual detailed operation is far less understood. Therefore, the purpose of 
my research is to build a theory of radical innovation experimentation practice. Previous 
literature suggests that radical innovation projects are managed using an experiential 
learning approach as opposed to incremental innovation projects being managed using a 
stage-gate driven planning approach. However, it fails to indicate if and how the 
experimentation approach evolves over the course of the radical innovation process. I 
argue that this shortcoming has its roots in the overemphasis of the extant literature on 
exogenous overall innovation project characteristics like innovation outcome, 
technological uncertainty or complexity level and their relationship to project and firm 
performance. 

 
In contrast, in the exploratory research project described in the previous Chapter 

I proposed to shift paradigms by taking an interpretative stance modelling uncertainty 
and ambiguity as two dissimilar components of complexity experienced by the 
innovation project team. My empirical evidence suggested the fresh insight that 
experienced complexity type endogenously drives the experimentation approach or 
‘complexity-handling mode’ chosen by the innovation team to run innovation projects. 
A mental model of the product definition depicting variables, their interrelationships, 
and their value ranges was proposed to emerge during the radical innovation process, 
and used during a subsequent incremental innovation project. 

  
However, no claims were made as to the performance implications of the 

innovation teams following a specific complexity-handling mode. Therefore, in the 
remainder of my research I explore this process-outcome question in two phases; In a 
confirmatory case study project described in this Chapter I will literally replicate (Yin, 
1989) the complexity-handling mode findings of my exploratory case study and 
describe experimentation strategies used during ‘Concept Selection’ mode. My case 
evidence suggests that the findings pertaining to this latter mode of the proposed model 
and its transition to the subsequent ‘Concept Characterisation’ complexity-handling 
mode can be replicated to the context of pharmaceutical Discovery. However, the 
evidence provided by this case cannot be used to corroborate the ‘Concept 
Characterisation’ and ‘Concept Application’ parts of the model. In addition, this case 
study documented alternative experimentation strategies used in pharmaceutical 
                                                 
20 In my research I define a radical innovation “as a product, process, or service with either unprecedented 
performance features or familiar features that offer potential for significant improvements in performance 
or cost, using non-existing or non-proven technologies that did not fully exist at the start of the project 
with high market uncertainty (Leifer et al. 2000; Lynn and Akgun, 2001). 
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Discovery, all specific applications of the ‘Concept Selection’ complexity-handling 
mode. Variance in experimentation strategies used is proposed to be explained by the 
extent ‘front-loading’ is used by Discovery management. Research propositions are 
formulated, linking alternative experimentation strategies to performance.    

 
Furthermore, a Bayesian methodology is proposed to evaluate the qualitative 

and predictive performance of these front-loaded experimentation strategies during 
‘Concept Selection’ mode. Finally, a rationale is developed to test the research 
propositions using simulation. In the next and final project of this research, this will 
provide the basis for a formal representation of these strategies as adaptive systems, 
which is needed to build a computer simulation model of the alternative pharmaceutical 
discovery experimental designs and to use the latter as an instrument for theory 
development. 

 
The remainder of this paper is focused around the following research questions 

in this specific context: (1) ‘Can the Pharmaceutical discovery process at PharmaCo be 
used to literally replicate the proposed model on complexity-handling? (2) ‘Which 
experimental designs are used?’ and, (3) ’How to describe performance of an 
experimental design?’  
 

3.2 RESEARCH METHODS  
 
I studied experimentation approaches used –my unit of analysis- in the European 
Discovery Unit of PharmaCo, the same global top-10 pharmaceutical company I was 
involved with in my previous research project. Only now, I chose pharmaceutical 
Discovery as a research context since its ‘fuzzy front end’ nature gives the best chance 
of finding experimentation approaches handling high levels of ambiguity as described in 
my ‘Concept Selection’ complexity-handling mode cited above. In contrast to the 
exploratory research conducted in Project 1 where I studied technology and product 
innovation projects, here I focus solely on radical product –called chemical compound 
or NME21 - innovation projects. 
 

3.2.1 Literal case study replication logic 
 
Desk research was conducted of Discovery Research project specific archives, written 
departmental procedures, and the formally documented NME discovery process of the 
European part of PharmaCo22. I used visual mapping and temporal bracketing (Langley, 
1999) to make sense of the process data. The resultant high-level process map (Figure 
3-4) was used to conduct 15 interviews with Discovery Research functional and project 

                                                 
21 New Molecular Entity 
22 A process flowchart of the European operation of PharmaCo’s Discovery Research process is available 
with the author and referenced in Appendix C under number (10). It was not included into this document 
for reasons of confidentiality. 
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managers around the ‘How’ and ‘Why’ of the ‘Portfolio’ part23 of the discovery process 
they had been using in their projects to solve their radical innovation problem. Finally, I 
used the theoretical framework developed in Project 1 as a vehicle for generalizing to 
the discovery process case studied in Project 2.  
 

3.2.2 Data collection and coding 
 
To probe into the ‘How’ and Why’ of the experimentation approaches used in 
Discovery Research a total of 15 interviews were conducted with representatives from 
medicinal chemistry, ADME and Toxicity Research and a senior scientist of the bio- 
and cheminformatics group. Interviews lasted between one and two hours, were tape-
recorded and transcribed. For each interviewee the first interview session focussed on 
the fit of the proposed Project 1 framework with the experimentation approach they had 
been using in their cited ‘Portfolio’ projects to solve their innovation problem. Thus 
probing into the How? and Why? of the experimentation approaches used for their 
innovation projects. Subsequent interviews with selected Discovery scientists focussed 
on deepening specific topics like the functioning of surrogate marker chains, front-
loaded experimentation strategies, and details of the multi-factorial compound 
optimization process used in Discovery Research. Also, interviews were used to 
validate the functioning of the simulation model. 
  

Data coding consisted of mapping empirical indicators of the phases that 
emerged from visual mapping and temporal bracketing described above, to the 
descriptors of the various approaches used as described in the proposed Project 1 model.   

 

3.2.3 Reliability and validity considerations 
 
Whenever confirmatory case study findings did not fit the proposed Project 1 
framework, the latter was modified to fit the new empirical data (Yin, 1989) hence 
improving its external validity. Internal consistency was verified by using additional 
sources of data or through verification by the original informants.  

 
To ensure reliability a case study database was developed to formally assemble 

qualitative and quantitative evidence material. Empirical indicators linked to this 
material providing evidence for replicating the proposed Project 1 model can be found 
in Appendix C. 
 
 
 
 
 

                                                 
23 The ‘Portfolio’ part of the Discovery process is PharmaCo specific terminology used to indicate the 
part of the Discovery starting when a biological target has been validated and the compound search and 
optimization process can start. 
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3.3 CASE STUDY RESULTS 

3.3.1 PharmaCo’s Drug Discovery Research context 
 
As in every global top-10 pharmaceutical R&D operation, PharmaCo’s Drug Discovery 
research (DD) is the front-end part of the overall product innovation process for 
chemical compounds typically lasting between 9 and 12 years (Figure 3-1). 

 
Starting from biological targets defined in Disease Area’s like Gastrointestinal 

(GI) or Central Nervous System (CNS), Drug Discovery’s mission is to generate 6 to 8 
new molecular entities a year with the desired biological action on specified clinical 
targets. It focuses on (1) target identification and target validation, which comes down 
to finding the biological areas for which an active compound needs to be developed. (2) 
A compound screening, profiling and optimisation process leads to a candidate 
compound being promoted to NME status. 

 
 

Figure 3-1: PharmaCo’s R&D organisation and process 

 
The aim of Drug Evaluation (DE) is to move candidate compounds as quickly as 

possible into human trials in Full Development. The DE process is designed to move 
quickly through pre-clinical evaluations of toxicology, human metabolism, and 
chemical-pharmaceutical formulation potential into early clinical trials in humans. 

 
Full Development (FD) is responsible for further clinical and non-clinical 

development of the candidate compounds. Clinical trials are driven by a clinical 
development plan that tries to answer key questions on the compound’s therapeutic and 
pharmacological effects in patients. In addition, safety margins and pharmacoeconomic 
parameters of the drug treatment are determined. The key clinical development process 
stages are increasingly complex and costly. Therefore, they are divided into three 
stages; Phase I studies are normally conducted in healthy volunteers and provide 
information on acute tolerability, safety and basic pharmacodynamic and 
pharmacokinetic properties (PK/PD). Phase II examines pharmacological and 
therapeutic effects in patients, defines dose response relationships, therapeutic ranges 
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and safety margins. Phase III studies conduct large-scale confirmatory trials to 
demonstrate efficacy, safety, and pharmacoeconomic parameters of the drug treatment. 

 
In parallel to this process, the NME or active drug substance, and drug product, 

its drug delivery vehicle, are further developed from Phase IIb through Phase III and up-
scaled to commercial manufacturing scales in the non-clinical ‘Chem-Pharm’ division 
of Full Development. All product and technology development projects case studies 
used in my exploratory research Project 1 originate from this latter part of the 
organisation. 

3.3.2 Complexity-handling throughout the R&D process 
 

The R&D of a drug candidate is a milestone-driven and highly regulated problem-
solving process, increasingly engaging more resources to resolve the complexities of 
therapeutic and pharmacological effect. Figure 3-2 provides an overview of the 
parameters involved in the design of a drug at PharmaCo. Key milestones include 
‘Compound Transfer’ (CT), the handover between DD and DE. ‘First in Human’ (FIH) 
indicates the completeness of the drug candidate characterisation up to a level that an 
Investigational New Drug (IND) application can be submitted to the regulatory 
authorities. Handover of drug product and drug substance between DE and FD is done 
during an ‘At Risk’ (AR) meeting around the clinical Phase IIa milestone. Finally, the 
product’s therapeutic effect and safety profile is fully characterised when a New Drug 
Application (NDA) is filed and approved by the regulatory authorities.      

 
Figure 3-2: Parameter overview involved in designing a drug 
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As can be verified in Figure 3-2 ambiguity gets resolved in the course of the 

process by gradually adding more parameters into the drug design. During discovery 
and pre-clinical research, the focus is on selecting those candidate compounds showing 
maximal biological activity with minimal pharmacokinetic problems in a reduced and 
highly controlled environment of human tissue assays and animal models. From clinical 
Phase I through III, uncertainty on biological activity and pharmacokinetic parameters is 
reduced by characterizing dosing ranges for specific target patient groups. In parallel, 
starting from the characterized NME in Discovery, ambiguity gets resolved by 
gradually adding more drug substance and drug product properties into the development 
equation, until an up-scaled optimal chemical synthesis route and a commercial drug 
delivery formulation is fully characterised by Phase IIb. 

 

3.3.3 Complexity-handling throughout the discovery research 
process 

 
PharmaCo’s discovery and pre-clinical research process24 is organised in two major  
phases; an Exploratory and a Portfolio-managed phase (Figure 3-3). During exploratory 
research the focus of the Disease Area teams is on finding biological targets, 
understanding mechanisms of action of candidate compounds, and finding first 
confirmed hits.  

 
Figure 3-3: PharmaCo’s discovery and pre-clinical research process 

                                                 
24 See footnote 22 above 
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During the Portfolio phase a Project Team is created that optimizes the hits further 

and tries to turn them into a NME, to be transferred at ‘Compound Transfer’ to DE for 
further pre-clinical characterization and testing. 

 
Target Identification & Validation (TI/TV) can be based on known compounds 

from the Disease Areas for which a biological target or mechanism of action needs to be 
found, or it can involve looking at gene expression patterns in response to drugs in 
animal models of disease, or it can be de novo target finding. Of the 20 targets going to 
High Throughput Screening (HTS), 2 to 3 are genuinely novel. Once the target is 
validated, a receptor binding or enzyme assay is developed and transferred to HTS. 
PharmaCo strongly believes in having a validated target before starting the chemistry 
process. As the VP of Medicinal Chemistry testifies;  

 
“Very often you take the high- risk approach for a new target, and then you have only about 
30% chance of getting some efficacy meaning your compound has no effect on the disease. 
A lot of companies who have gone through this genome-based drug discovery have 
experienced this and therefore we stress target validation so much”. 
 

 HTS is run in three screens. The first could screen up to 150 to 200 thousand 
compounds. Positives are selected and confirmed in a second screen. Identified hits and 
non-actives are compared with the virtual hits of an in-silico model that also takes into 
account extra compounds in the library not screened in the first assay. The comparison 
of theoretical predictions with experimental in-vitro results in a list of false positives, or 
compounds that were positive in HTS but shouldn’t be, and false negatives, or 
compounds that should have been positive in HTS. The third screen runs these lists and 
can already include a dose-response study. Finally, HTS results in a report identifying 
numbers of confirmed hits, active compound classes, and applied statistics25. Since 
PharmaCo believes in the benefits of a ‘Frontloaded Discovery’ experimental design 
(see later) both functional biological activity and drug-likeness have now been studied 
in-vitro and in-silico. Thousands of candidate compounds have been screened in a cell-
based model for their binding affinity with clinically relevant receptors, and their 
selectivity relative to other systems. Mechanisms of Action and predictive drug-likeness 
indicators have been studied in-silico. About three to five compound classes of the 
twelve to twenty coming out of HTS -a compound class contains a series of chemical 
compounds featuring a similar chemical structure- are passed to Hit-to-Lead for further 
research. This is a key milestone for which Discovery management approval is required, 
since it marks the transition between ‘Exploratory’ and ‘Portfolio’ research. To qualify 
for transition, management checks amongst others the availability and quality of 
multiple promising compound classes, the drug likeliness of the hits, ease of chemistry, 
chemical and biological action plans, attractiveness of the target, patent situation for the 
hits, and the competitive situation26. 
  

Chemistry resources are allocated at Hit-to-Lead (H2L). The process is designed 
to search for problems to be expected with the 3 to 5 compound classes and, based on 

                                                 
25 See footnote 22 above 
26 See internal policy document: ‘Assessment for transition from HTS to H2L’ is available with the author 
and referenced in Appendix C under number (11). It was not included into this document for reasons of 
confidentiality. 
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this knowledge, to reprioritize the compound classes for final selection and optimization 
in Lead Optimization (LO). Or, as described by the VP Medicinal Chemistry: 
 

“In H2L I’m looking at series as an entity and ask questions about these series. One of the 
questions is whether I can make molar modifications to this class of compounds to improve 
my primary activity? What I would not do is take one position in the molecule and make 
many changes there. Obviously, doing one or two already shows me how I can improve so 
scientists could have the tendency to do it and find the best one. However, this is not my 
purpose. I want to know whether there is a trend so I can improve from that model the 
parameters of interest. Chemistry-wise that means I will make some analogs on all of the 
positions of the molecule, which I can modify easily. Ease of chemistry is another one I 
would consider at that moment in time. It is really exploring the potential of the series. In 
LO you have explored the potential of a series, now I think I can find within that series the 
molecule I’m looking for”. 
 
Ambiguity gets further resolved by including an extra set of properties probing in-

vitro for human metabolic stability (ADME), solubility, permeability, toxicity, and 
cardiovascular safety (CVS). Ideally, 2 to 3 lead classes with maximal effect and 
minimal ADME-Tox-CVS problems are selected for further optimisation in in-vivo 
animal models during LO. Essentially, following a flowchart of tests, new compound 
analogs are synthesized to get a feel for the optimization potential of the chemical 
classes. However, the unit of analysis at this stage is still at the level of the chemical 
class and not at compound level yet. The objective of H2L is to get a preliminary 
Structure-Activity relationship (SAR) and a feel for the type of problems one might 
encounter. As testified by the Head of ADME Research; 
 

“At the end of H2L you’ve identified what your compound’s problem is because all 
compounds have problems. You have brought up your preliminary SAR whether in 
potency, permeability or whatever, and you’ve shown that you can get around that problem. 
Then you go into Lead Optimization and the more laborious in-vivo work coupled with the 
functional in-vivo work.” 

 
As such, the new compound class can be seen as one of the prototypes that get selected 
in H2L. The two to three best ones go through to LO where, hopefully, a compound 
comes out of the selected classes. Analog compounds are synthesized following 
classical or HTS methods. H2L typically takes 3-6 months. 
  

Lead Optimization takes the H2L selected compound classes through in-vivo 
animal models. Pharmacokinetic, toxicity, bioavailability, and tissue distribution 
properties are characterized in rats and dogs using a battery of flowcharted tests. The 
synthesis plan for the prototype compounds is adapted based on the problems identified 
during H2L. Flowcharts of tests are used throughout the Portfolio process as quoted by 
the VP Medicinal Chemistry; 
 

“A flowchart splits testing into different components, at the beginning you have high-
throughput and predictive methods, then you have in-vitro methods, and then you obviously 
want to get to the more mechanistic studies where the throughput is lower but the 
predictability is higher. Criteria get harder as you move along, but also the methods become 
more resourceful, more difficult to perform. In H2L it is more a generic type of flowchart 
while in LO it’s an adjusted one related to the issues you have seen. The flowchart in LO is 
built upon the perception of the series in H2L and you get specific biology questions, which 
are disease related” [and further]... “In H2L we make about 50 analogs within each series. 
Ideally you don’t do any chemistry in H2L because you have enough information in the 
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compounds you already have. But this is unrealistic. So, I just want to do a minimum of 
effort to answer the question; Is this a good series? The goal is not do chemistry. In LO we 
go with 2 or 3 series and make about 2000 analogs of a specific molecule to find the best 
one within that series”. 
 
A multi-factorial optimisation cycle is conducted until the targeted SAR is 

reached. After ‘First Glance’, it is decided whether further lead optimisation is 
necessary, if not, at ‘Compound Transfer’, the compound is transferred as an NME into 
DE. 

  

3.3.4 Building a compound’s mental model through surrogate 
marker chains 

 
During the Discovery process outlined above a mental model is built of the innovative 
solution to the problem; the biological target that needs to be interacted with as shown 
in a positive SAR. In the following, I will focus on the interpretive dimensions of the 
mental modelling process in the specific context of the Discovery case, and on its 
implications for performance management.  

 
Three critical areas can be distinguished in the mental model of the solution 

taking shape in the collective mind of the Discovery Team; biological activity (P), bio-
availability (B), and toxicity (T) of the chemical compound to be designed. The first 
area is about characterizing pharmacophores, particular structures within the molecules, 
delivering potency and selectivity of the candidate compound against the target. Bio-
availability is a set of complex in vivo disposition processes27, generally called ADME 
or drug-likeness properties, needed for a drug to act systemically, which is solubility, 
permeability, and survival past the liver. Toxicity deals with characterizing the drug’s 
genotoxicity, its cardiovascular safety, and drug-drug interactions. 

 
The characterization process is all about getting to understand and moulding the 

biological effect the chemical scaffold has on the biological target. As testified by the 
VP Medicinal Chemistry; 
 

“I want to understand which parts of the molecular structure are relevant for specific 
parameters. Suppose you have 3 positions in your chemical scaffold you can modify. If I 
change this position I loose all of my activity, so I don’t touch it in future optimization 
cycles. In a second position, you know, depending on what I put there, I can fine-tune my 
activity, which is another parameter. The third aspect of your molecule says whatever I put 
there it doesn’t make a difference in activity but it means this is the position I can use to 
optimize all the other parameters”. 

 
The experimentation strategy used to characterize the three critical areas has 

evolved over the years. Before, the focus of Discovery Research was on characterizing 
potency and selectivity, leaving the two other areas for later during pre-clinical research. 
As mentioned by the Head of ADME Research; 
 

                                                 
27 See PharmaCo internal document: ’Bioavailability=Complex in vivo disposition processes: Can they be 
reduced to discrete mechanisms that can be modelled?” referenced in Appendix C under number (12) 
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“In the older days discovery scientists were looking for increased potency in animals, and 
in a way they were also looking for good ADME properties but somehow they didn’t 
realize it. They were not separating these factors out though. Whereas now, we isolate them 
[drug-likeness indicators] out to be able to understand each individual process. Then we put 
them back together again at the end. And that’s where you look for overall developability 
of candidate compounds”. 

 
Nowadays, discovery scientists try to separate out the factors of all three critical 

areas that have an effect on biological activity and drug-likeness as early as possible in 
the process. It’s taking a macro-parameter and splitting it up into its constituent 
components as testified by the Head of ADME Research;  
 

“It has to do with our understanding of science. Before we looked at a macro parameter; 
what happens if you shoot it into an animal? Since we didn’t know what to optimize we 
made something similar and we picked the best without really understanding the different 
components of that macro-parameter. Now, we want to understand these different 
components so activity in an animal means it needs to get into a cell, secondly it needs to 
get to the right place in the body and stay there long enough, this means drug permeability. 
We now get to a level where we play with single parameters to use in our design. It’s taking 
a macro-parameter and splitting it up into its constituent components. This is the difference 
between old and new paradigms”. 
 
However, this leads to schools of thought on how to build the mental model of the 

solution. Unravelling macro-parameters by looking at their constituent components at 
very early stages of the discovery process implies that measurement errors are made and 
questions can be asked about the prediction capacity of these early tests carried out on 
surrogate markers emulating the true test. As an example, how does Lipinski’s Rule of 
Five (Ro5), a classification method used in silico to assess the drug’s absorption 
potential, correlate with the real test in a human where the Fraction of Dose absorbed in 
the Portal vein (FDP) or between the stomach and the liver, is measured? Summarizing 
the schools of thought, the VP Medicinal Chemistry states;   
 

“Some people say that you should forget all this ADME stuff [early in the discovery 
process] since the animal model tells you more than enough that the compound is active in 
this animal, and then the next step is to get it into human, because all the ADME testing 
you do is not predictive anyway. This is one way of looking at it. The other way is saying 
we want to understand this compound better so that we can extrapolate the individual data 
on this enzyme. We say you should be able to modify all these parameters and see what 
comes out then”. 
 
Front-loading, then, is an experimentation strategy opting for a multi-factorial 

optimization process where the three critical areas (P, B, T) get characterized from the 
beginning at HTS. By looking at surrogate markers emulating the true test in humans, a 
picture is painted of the effect the chemical scaffold has on performance variables in the 
three areas. Whether a picture is predictive for the picture later on in the process 
depends on the surrogate marker chain tightness, essentially the correlation between the 
different markers of the chain. To make predictions, scientists need to find out what the 
chains are, which indicators are surrogates of which ones? The higher the correlation 
between surrogate markers used at subsequent phases the tighter the chain. 

 
As an example, the surrogate marker chain for bio-availability starts in HTS 

where Lipinski’s Rule of 5 is used to get a first idea about this critical compound’s 
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property. Then, in the next phase, H2L, another indicator called PAMPA is used, and 
further down the process, during LO, FDP in animals is used. Since all tests have 
measurement errors, a correlation between the test results can be calculated. Also, 
measurement methods become more accurate as one proceeds in the discovery process. 
More aligned test results lead to higher, tighter correlations between results captured in 
HTS, H2L, LO, and ultimately in humans. The higher the correlation between the 
results in the various phases leading to human testing the better will be the predictions 
in humans.  

 
The tightest chain realizable for the moment is the one describing bio-availability 

B. The problem with the P and T chains, the two other ones, is that they are still in their 
infancy, and PharmaCo’s scientists are still trying to understand the science behind 
them.  

 
Summarizing, pharmaceutical discovery is a noisy search process where proxies 

or surrogates of the ‘real’ parameter of interest are used at various moments to make 
predictions about the potential of the candidate compound in the real world of human 
testing. A final fundamental question remaining for this research then is; what is the 
minimum tightness required for front-loading to be meaningful as an experimentation 
strategy? 

 

3.3.5 Discussion 
 
To discuss the results of this confirmatory case study I will follow a literal replication 
logic (Yin, 1989) predicting the same results as in the previous exploratory study. 
PharmaCo’s discovery process is documented as a process flow chart28 that the 
Discovery Teams follow. Visual mapping (Langley, 1999) of this discovery and pre-
clinical research process discussed led me to identify two distinct phases A and B of 
complexity-handling behaviour (Figure 3-4). 
 

Figure 3-4: Visual mapping of the discovery and pre-clinical research process 

 
 

Before Phase A the clinical target is searched for and validated. The search for 
the candidate chemical structure solution has not started yet. Confirmatory case data 
about the process followed by the innovation teams in this early ‘Exploratory’ phase of 
                                                 
28 See footnote 22 above 
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research are insufficient to formulate conclusions about the experimental design used, 
and whether they fit my proposed prescriptive framework. 

  
Mapping the descriptors of the three complexity-handling modes of my 

proposed model to the two identified phases A and B (see Appendix C), indicates the 
best match of empirical indicators for Phase A with the ‘Concept Selection’ complexity-
handling mode descriptors. Also, the data fit with the proposed reason why this mode is 
followed by the team. During phase A, innovation teams experience high ambiguity-
based complexity as previously defined in Project 129. Solution properties are unknown 
to deliver proof of concept, and several options need to be characterized, selected, and 
optimized until target criteria are met. Once target criteria are met, a candidate 
compound is promoted to the status of NME, and transferred to Phase B for further 
optimization. Essentially, a concept screening approach is followed until the winning 
concept is selected against an objective, defined up-front. It is a structured solution 
search process in a multi-factorial fitness landscape.  

 
During Phase B, in pre-clinical research, innovation teams face ambiguity-based 

complexity as previously defined30. Mapping the Discovery case data to the ‘Concept 
Characterisation’ Coordination Approach mode descriptors (see Appendix C) 
acknowledges that the selected NME’s that have shown proof of concept in ‘Concept 
Selection’ are now characterised to a level where it is possible to focus their further 
characterisation and development. Based on ‘First Glance’ and ‘Compound Transfer’ 
results DE takes the decision to accept the candidate NME for further development. 
However, these case data provide no further evidence to corroborate the Target Setting, 
Experimentation Approach, or Learning Approach descriptors for this mode since no 
interviews were conducted within this part of PharmaCo’s research organisation. 

 

3.3.6 Conclusions 
 
From the previous, I conclude first that the experimentation approach used by the 
innovation team in Phase A has the best fit with the ‘Concept Selection’ complexity-
handling mode defined in my exploratory research (See Figure 3-5 below). Phase B 
could fit the ‘Concept Characterisation’ mode. However, since no extensive interviews 
were conducted in this part of the organisation known as ‘DE’, I cannot validate the set 
of descriptors mentioned for this complexity-handling mode. Nor can I do this for the 
‘Concept Application’ complexity-handling mode in my proposed Project 1 model. 
 

In addition, this case study confirms my previous propositions that the ‘Concept 
Selection’ mode will be chosen by the innovation team when experiencing high 
ambiguity-based complexity, and that ‘Concept Characterisation’ will be chosen when 
facing ambiguity-based complexity. However, case study data do not allow confirming 
propositions made about the ‘Concept Application’ complexity-handling mode, since no 
empirical evidence was found for this mode in the Portfolio part of the Discovery 
process. 

                                                 
29 See Table 2-3: Experienced complexity typology 
30 See footnote 22 above 
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Figure 3-5 Pharmaceutical Discovery process mapped to proposed complexity-handling model 

 
As described in Table 3-1 below, based on these confirmatory case data, a 

number of additions (indicated in italics) could be made to the ‘Concept Selection’ 
descriptor sets documenting the different approaches. 

 
Also, the Discovery case data support my exploratory case study results that 

experimentation approaches vary dynamically over the course of the project, even if 
judged on outcome it could be classified uniquely as a radical innovation project. By 
taking the perspective of the mental model of the problem-solving situation, the team 
gradually builds up understanding of the innovative system, the prototype compound, to 
be designed. The decision to transit to a new complexity-handling mode is driven by the 
perceived completeness of the team’s mental model. As long as ambiguity has not been 
sufficiently resolved, the team stays in ‘Concept Selection’ mode. The decision to 
transit from ‘Concept Selection’ to ‘Concept Characterisation’ mode is made by the 
team as soon as solution critical requirements are met; in this case the acceptance of the 
NME by DE at ‘Compound Transfer’. The latter milestone indicates that high ambiguity 
is resolved to the level of an emerged mental model of the innovative solution 
containing all critical variables and their relationships necessary to deliver Proof of 
Concept. 

 
Therefore, I conclude that these case data support my previous proposition that 

the decision to transit from ‘Concept Selection’ to ‘Concept Characterisation’ 
complexity-handling mode is made by the innovation team as soon as a mental model 
has emerged that contains all critical variables and their relationships necessary to 
deliver Proof of Concept. However, these confirmatory case data do not allow being 
conclusive about the transition from ‘Concept Characterisation’ to ‘Concept 
Application’ mode. 
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 Concept Selection mode descriptors 
Target Setting Approach • Target defined up-front as minimal system critical 

requirements to pass 
Experimentation 
Approach 

• Define uncertainty areas to characterise critical variables 
and to anticipate problems to be solved (added) 

• Run parallel experiments to characterise critical variables 
affecting response for different candidate system solutions 

• System solution selection 
• Show Proof of Concept by spelling out assumptions about 

the set of relevant variables and their functional 
relationships 

Learning Approach • External explicit: 
Mainly at project start learning from published science. 
Later ad-hoc for problem solving. 

• External tacit:  
On-going knowledge transfer by interaction between teams 
and external technology suppliers. 

• Internal tacit: 
   Use of pockets of previous knowledge (added) 

Coordination Approach • Define milestone targets that are reached if results can be 
shown  

• Estimate work package effort/ timeline based on first 
experiments or expert knowledge 

• Focus on experiments capable of selecting as quickly as 
possible solutions that meet all system critical requirements  

• Through close monitoring of progress: Eliminate as quickly 
as possible candidate system solutions not meeting one of 
the system critical requirements 

Table 3-1: Revised ‘Concept Selection’ descriptors 

 
Finally and most importantly, this case study allows for exploring further the 

dynamics involved in the build-up of the mental model. More specifically, internal 
PharmaCo presentations31 reveal a debate around the set of critical variables and their 
relationships needed to deliver Proof of Concept of a NME. Thus, an internal PharmaCo 
study32 revealed that in the 1995-2000 period about 50 compounds failed in pre-clinical 
and clinical development programs due to poor ‘drug-likeness’ of NME’s, meaning they 
showed too low performance on PK/PD, toxicology, or could not be suitably packed in 
a drug delivery vehicle. The same study reveals that, in retrospect, the present discovery 
process, taking into consideration both biological activity and pharmacokinetic property 
classes, would have ‘caught’ about 20 compounds being unrightfully promoted to NME 
status. Acknowledging that in discovery both biological activity and pharmacokinetic 
property classes should be used in a multi-factorial optimization, the experimental 
design question remains when each property class should be taken into consideration to 
be as effective and efficient as possible. 

 
 

                                                 
31 Hoflack, J. (2002)’ The drug discovery challenge: Better targets, better compounds, better processes’, 
internal PharmaCo publication as referenced in Appendix C under number (13). 
32 Mackie, C. (2002) ‘Pre-clinical expertise in drug discovery: Changing the paradigm’, internal 
PharmaCo publication as referenced in Appendix C under number (14). 
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Figure 3-6: Cumulative Residual Ambiguity Level as a function of Research Phase 

 
In terms of my conceptual framework, this debate turns (1) around the question 

of the desired level of residual ambiguity required to transit from ‘Concept Selection’ to 
‘Concept Characterisation’, and (2) around the speed with which ambiguity gets 
resolved. The experimental design choices made by PharmaCo are conceptually 
depicted in Figure 3-6. 

 
If we define residual ambiguity as the number of solution properties that remain 

to be characterized in the R&D process, then, at the start of HTS 100% still needs to be 
done while only the biological target is known. As specified above, of the property 
classes relevant for the design of a drug (see Figure 3-2), PharmaCo considers both 
biological activity and bio-availability –also called drug-likeness- to promote a 
candidate compound to NME status. Residual ambiguity at the end of Discovery 
research is composed of all properties pertaining to drug product and drug substance 
design, and all biological activity and drug-likeness properties which cannot be tested in 
animal models but, instead, need human models to be characterized. As to the residual 
ambiguity reduction speed, it can be verified on Figure 3-6 that PharmaCo chooses to 
focus already in HTS on biological activity and drug-likeness, which positions it as a 
discovery organisation that believes in a ‘Front-loaded’ experimentation policy. From 
HTS on pharmacokinetic or drug-likeness properties are used in a multi-factorial 
optimization cycle of the prototype compound. H2L further characterizes potency and 
drug-likeness of the compound classes and identifies potential problems that will need 
to be dealt with during LO, where the final NME gets selected and optimized for 
passing minimal proof of concept requirements on potency, selectivity, drug-likeness, 
and toxicity. Drug product and drug substance property classes are only characterised 
from pre-clinical on. The latter is common industry practice, but the question whether 
pharmacokinetic or drug-likeness properties should already be taken into account during 
the in-silico part of HTS –as PharmaCo does- remains open for discussion.  
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3.4 EXPLORING ‘CONCEPT SELECTION’ EXPERIMENTAL 
DESIGN  

 
Both internal policy documents33 and practitioner literature (Oprea, 2002; DeWitte, 
2002) develop a scientific viewpoint on a number of experimental designs available to 
run pharmaceutical Discovery research. They can be summarized (Figure 3-7) to the 
extent parallelism and the level of front-loading is used in the Discovery process, the 
latter indicating the shape of the Discovery funnel. 
 

The level of parallelism will be measured by the number of chemical classes 
taken into account for each drug target during the various stages of the Discovery 
process, indicating the shape of the Discovery funnel. Typically in PharmaCo one to 
five classes showing activity against a target are selected in HTS screening, and one to 
three classes are further analysed in H2L and carried through to LO. A narrow funnel, 
then would be characterized by the couple (HTS, H2L/LO) = (1, 1). Conversely, a broad 
funnel would be characterized by the couple (HTS, H2L/LO) = (5, 3). The main cost 
driver is the number of classes carried through to LO34.   
 

I will measure the level of front-loading by the number of variables –P and/or B- 
considered at differing stages during Discovery; the most front-loaded strategy uses P 
and B from HTS on, the least front-loaded strategy only uses P during the entire 
process, disregarding B.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3-7 Alternative Discovery experimentation strategies considered 

 
The three front-loaded experimental strategies for discovery research considered 

for comparative analysis are summarized in Figure 3-8 below. The arrows indicate 

                                                 
33 See footnotes 31 and 32. 
34 See reference (15) in Appendix C. 
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which property classes are used in the prototype compound optimisation cycles to 
converge to a NME. A vertical arrow indicates that only biological activity (P) or 
potency and selectivity is optimized, an arrow along the diagonal indicates that both 
biological activity and drug-likeness or bioavailability properties (B) are used in multi-
factorial optimization cycles. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8: Alternative Front-loaded strategies for ‘Concept Selection’ in a pharmaceutical context 

 
In the Old paradigm, applied in the industry some time ago, discovery research 

was only concerned about biological activity or potency and selectivity of a candidate 
compound. Drug-likeness properties were only taken into account from pre-clinical 
research on. As testified by the Head of ADME Research: 

 
“It was just unfortunate and the way of thinking at that time; everything was first done on 
pharmacology, then we used to do the check-box approach looking for solubility, 
permeability, absorption, toxicity, can we formulate this, what’s the half-life? And then we 
would hand it on to the next phase and just pray. Now we look at these other characteristics 
at the same time as the pharmacology so that we can get a better drug. It’s not just the 
pharmacology driving it”. 

 
 Figure 3-9(a) graphically depicts this optimization process. The jagged line 

represents the sequence and number of adaptations or re-synthesis steps to the prototype 
compound to, first, reach good biological activity and, second, obtain satisfactory drug-
likeness properties. This two-step optimisation process is a rather complex undertaking 
that is likely to require changes in those molecular determinants that are responsible for 
binding affinity and specificity and can lead to significant drops in potency, which is a 
time and effort consuming process (Oprea, 2002: 54). This strategy was not entirely 
successful since within the industry only one in ten candidate drugs succeeded through 
clinical trials to reach the market (Drews, 1998). Thus, in terms of my conceptual 
framework, the main reason for this can be found in the too high level of residual 
ambiguity at the end of discovery research, leaving pharmacokinetic properties 
uncharacterized. Also, while this experimental design only takes into consideration 
those compounds with the highest potency for further pharmacokinetic characterisation, 
compounds with potentially good overall performance profiles are likely to be discarded 
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due to modest performance on potency or selectivity measures (Oprea, 2002; DeWitte, 
2002). This represents a significant opportunity cost. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9: Old (a) versus New (b) paradigm experimental design 

 
In the Front-loaded paradigm, Figure 3-9(b) shows that both biological activity 

and pharmacokinetic properties are optimised simultaneously from the Hit-to-Lead 
(H2L) stage on. Here, confirmed hits series from HTS are prioritized and analyzed for 
problems. Progressive increments in binding affinity and pharmacokinetics are obtained 
by addressing the appropriate molecular determinants that define the desired compound 
characteristics. A second component of this experimental strategy deals with exclusion 
and promotion criteria used along the discovery research process. It is argued (DeWitte, 
2002) that prior to entry into H2L, stringent pharmacokinetic exclusion criteria should 
be applied to all candidate compounds, with no exception. This would prevent insoluble 
compounds being synthesized and eliminated after months of useless work. Second, one 
should be more generous in promoting selected candidate compounds through the H2L 
and LO process. This argues against introducing too heavy attrition screens along the 
way to a NME and means more candidates will reach LO status. Although this is an 
expensive recommendation, it does prevent candidate eliminations due to tests that 
mimic reality with statistical inaccuracy, the latter compounded to the number of tests 
conducted. The idea, then, is to build up knowledge through to in-vivo of a series of 
candidates instead of going for a fast attrition based on in-silico or in-vitro tests with 
low prediction power, and running LO with a small subset of  ‘winning’ candidate 
series of compounds. Overall, it is argued that this experimental design is a first step 
into front-loading that selects the best overall candidate and that it could be a less time-
consuming and resource-demanding strategy than the old paradigm. 

 
Finally, Early Front-loading takes the Front-loaded paradigm even further 

including pharmacokinetic properties during High Throughput Screening (HTS). This 
step now combines in-vitro with in-silico data on drug likeness of compound classes 
and selects the most promising classes based on the fullest multi-factorial picture 
available. Like in the Front-loaded paradigm, H2L identifies problems upfront with the 
series that need to be taken care of. The real multi-factorial compound optimization 
cycle only starts from LO.  

P

BExclusion
CriteriaB

(a) (b)

P P

BExclusion
CriteriaB

(a) (b)

P



  75 
 

3.5 MEASURING THE QUALITY OF ‘CONCEPT SELECTION’ 
EXPERIMENTATION STRATEGIES 

 
The three experimentation strategies considered could be compared on efficiency or 
effectiveness. Discovery management is most interested in improving the predictive 
quality of the decision-making process enabled by an experimentation strategy, as 
testified by PharmaCo’s VP Medicinal Chemistry; 
 

“Actually, if you would take this question higher up, people will tell you cycle time is 
important. Where we know seriously it is not, it is the quality of the compound and the real 
thing is to get compounds which make it through development. If a scientist could give me 
high quality compound but it would take him two more years, I would be extremely 
happy.” 

 
Also, in terms of my model I’m interested in determining the level of residual 

ambiguity at the end of ‘Concept Selection’ that maximizes the quality of subsequent 
decision-making. Even when considering the speed with which ambiguity gets reduced, 
I am not interested in the efficiency improvement potential of the experimentation 
process. Instead, I want to focus on the contribution ambiguity reduction speed makes to 
the quality of the resulting mental model of the solution at the end of ‘Concept 
Selection’. In the remainder of this and the following paragraph I apply recent Bayesian 
thinking for modelling clinical diagnosis and decision-making (Parmigiani, 2002) to 
develop a framework to quantitatively evaluate the predictive performance of 
experimentation strategies used in ‘Concept Selection’.  

 
Effectiveness is intuitively defined as the quality of the promotion process of 

compounds to NME status. In other words; if a discovery experimentation strategy 
promotes candidates to this status and this gets confirmed by subsequent pre-clinical 
and clinical development, the strategy is said to be of high quality. In terms of my 
proposed model I probe into the quality of the decision to change from ‘Concept 
Selection’ to ‘Concept Characterisation’.  

 
 
 
 
 
 
 
 
 
 
 

Table 3-2: Two-way table of probabilities of experimentation strategy results according to the 
outcome of ‘Concept Selection’ and actual subsequent testing results 

 
Using more formal notation, I distinguish between +H and −H  being numbers of 

compounds declared respectively as active or inactive by the experimentation strategy 
during ‘Concept Selection’. The experimentation strategy delivers an output, being a set 
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of candidate chemical structures +
iH  that tested positive throughout the optimization 

process. During this process, a –virtually infinite- number of candidate structures −
jH  

were eliminated from further optimization. Then, active compounds +
iH  declared 

NME’s by the discovery experimentation strategy, will subsequently be confirmed to be 
positive or negative in pre-clinical and clinical testing. I distinguish between +C and −C  
as the number of compounds or NME’s respectively passing these latter tests or not. 
Combining these two into one view (Table 3-2), leads to cross-classification of 
candidate compounds as they are classified by the experimentation strategy and by 
subsequent testing. Cells indicate probabilities of occurrence.   

 
To test for experimentation strategy effectiveness, I analyse the quality or the 

accuracy of the NME decision made by the experimentation strategy. I distinguish 
between the sensitivity and specificity of an experimentation approach and its 
subsequent NME decision-making. Quantitatively, sensitivity is defined as the true 
positive rate β, or the probability of finding an effective compound as being active 
against a biological target. Defined in the context of Table 3-2 above it is the joint 
probability ),( ++ CHp divided by the marginal probability )( +Cp , the latter being the 
sum of true positives and false positives in ‘Concept Characterisation’ and beyond. 
Specificity is the true negative rate α, or the probability of rightfully classifying a non-
active compound as non-active. Alternatively defined it is the joint 
probability ),( −− CHp  divided by the marginal probability )( −Cp , the latter being the 
sum of true negatives and false positives in testing beyond ‘Concept Selection’. 
Incidentally, the expressions above are examples of a general relationship between 
conditional, joint, and marginal probabilities. Therefore, I propose to measure the 
quality of an experimentation strategy using two criteria χ; 

 

)(
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++ ==
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A high-quality experimentation strategy is highly sensitive and selective, hence, 

has a high value for both β and α. 
 

3.5.1  Measuring predictive performance of ‘Concept Selection’ 
experimentation strategies 

 
Both α and β describe accuracy; the two types of correct classifications made by the 
experimentation strategy. However, to evaluate the predictive performance of an 
experimentation strategy, a related though different question must be answered: ‘What 
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is the probability that a structure +
iH is really active, denoted as +

jC ? To answer this 
question, we must start from the universe of potential compounds H and examine how 
the experimentation strategy improves the odds of finding an active compound. If we 
indicate by π the fraction of really active compounds )( +Cp  in the universe of potential 
compounds H, called the prevalence, we can rewrite the cells of Table 3-2 to become 
Table 3-3 below. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Table 3-3: Two-way table of probabilities of experimentation strategy results according to the 
outcome of ‘Concept Selection’ and actual subsequent testing results using compound prevalence 

 
Now, using Table 3-3 we can define positive and negative predictive values of 

experimentation strategies in terms of their sensitivity, specificity and prevalence of 
active compounds in the universe H. This representation of uncertainty about 
parameters using probabilities is called Bayesian inference. It models the 
experimentation strategy as a learning process that modifies one’s initial probability 
statement about the prevalence prior to observing the data during experimentation to 
updated or posterior knowledge incorporating both prior knowledge and the data at 
hand (Congdon, 2001: 3). The positive predictive value, then, denoted )|( ++ HCp  or 

+π  is read as the probability that a compound will pass pre-clinical and clinical 
tests )( +Cp , given it has been declared active )( +Hp  by the experimentation strategy. 
Similarly, the probability that a compound will not pass pre-clinical and clinical 
testing )( −Cp , given it has been declared inactive )( −Hp by the experimentation 
strategy, is called the negative predictive value, and denoted )|( −− HCp . Knowing that 
the fraction of really active compounds, given they were declared inactive by the 
experimentation strategy is called −π  or )|( −+ HCp , the negative predictive value is 
denoted as −− π1  (Parmigiani, 2002). Hence, I propose to measure the predictive 
performance of an experimentation strategy using two criteria χ; 
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An experimentation strategy featuring high positive and negative predictive 
performance, then, has a high value for +π and a low −π . The transition from π  to 

+π and −π  models the learning about the true status of the universe of potential 
compounds H. Using the Bayesian logic set out above, it quantifies how inferences 
about the universe of potential compounds H are updated in the light of new evidence, 
provided by the experimentation strategy.    
 

3.5.2 Measuring business performance of ‘Concept Selection’  
 experimentation strategies 
 
To formally state the problem of an R&D manager acting as a normative system35 
having to select between experimentation strategies, the optimal business decision for a 
strategy *d can be modelled as follows (see a.o. Müller, 1999; Parmigiani, 2002) 
 

     )(maxarg* dUd
Dd∈

=   where  dydyppydudU d θθθθ )|()(),,()( ∫=     (3-5) 

U(d) is the expected utility of an experimentation strategy d, an element of the universe 
of possible experimentation strategies D. The utility function ),,( ydu θ is in our case 
specified by solving a decision tree of the outcomes of the various (H, C) combinations. 
Ordering these combinations in a decision tree, and based on cost assumptions for each 
experimentation strategy a financial outcome can be calculated and used for comparison 
to make an optimal decision *d .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

           (a)      (b) 

Figure 3-10 Experimentation strategy outcomes Bayesian tree reversal 

 
As a starting point for this calculation, Figure 3-10 (a) gives the decision tree 

representation of Table 3-2 using conditional probabilities. In this representation, circles 

                                                 
35 See Chapter 1 for a definition of a normative system 
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indicate uncertainty or chance, triangles represent an outcome. Summarizing the 
outcomes for both states of H using tree reversal following Bayes’ theorem36, the 
resulting conditional probabilities are now expressed in Figure 3-10 (b) as forms of the 
predictive performance indicators +π and −π . The latter decision tree representation is 
the basis for calculating the utility or business value of each of the experimentation 
strategies considered in this study; Old paradigm, Front-loading, and Early Front-
loading. 
 
 Figure 3-11 gives a decision tree representation of the optimal choice *d  
(depicted as a rectangle) to be made between the three experimentation strategies. A 
number of assumptions have been made to calculate the financial value of each branch 
in the decision tree. Overall, the depicted tree, identical for each experimentation 
strategy, represents the two-step decision to take a compound to market. The first –
Discovery- step leads to a hypothesized activity H of the candidate compound against 
the biological target, to be confirmed in subsequent clinical testing as being really 
active, in which case it will be taken to market, or not. To avoid complexity in 
calculations not being the subject of this thesis, it was assumed that compounds only get 
promoted to the following status at the end of a phase meaning all costs related to that 
phase are always incurred. In other words, no compounds get eliminated from the 
process during a phase. Then, the branch ++ CH ,  leads to outcome A, which is 
revenue R after deducting the costs of taking the compound through Discovery research 
( DC ) and Clinical development ( ClinC ). In the utility calculation, the latter cost and the 
revenue R will be held constant while not the object of this study. To respect 
confidentiality, actual numbers for R and ClinC  will be fictitious numbers provided by 
PharmaCo37 with the objective to represent reality as good as possible. The Discovery 
research cost is contingent upon the experimentation strategy followed; PharmaCo case 
study numbers will be used to calculate EFLFLOldDC ,, . The branch  −+ CH ,  does not lead 
to revenue R although the candidate compound has been promoted to development 
status after Discovery, so outcome B represents only costs incurred by Discovery and 
Development. The branch  +− CH ,  is not observable in practice since, in reality and in 
principle, a candidate compound declined in Discovery will not be pursued further in 
Clinical Development. However, to calculate experimentation strategies’ utility based 
upon both positive and negative components of their predictive performances, the 
outcome C of this branch was modelled as follows; Discovery research costs are 
incurred since the candidate will only be declared to be inactive against the biological 
target at the end of Discovery research. Then, Clinical development cost is actually 
saved, represented by ClinC+ , since the compound would have been eliminated from the 
development process. However, this would have resulted in a missed opportunity valued 
-R. Likewise, the branch −− CH ,  would not be observable in practice for the same 
reason as above. Only now no revenue will be the result and only Discovery research 
costs would have been incurred. 
 
                                                 
36 )()()()( CHpCpHpHCp =  
37 See reference (15) in Appendix C. 
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Figure 3-11 Utility calculation and optimal choice decision tree model 

  
To solve this decision tree for each experimentation strategy the payoff values at 

the outcome nodes need to be propagated backwards from the end-states. Two basic 
rules are followed to go from the end nodes to the decision point at the beginning; (1) at 
a chance node the expected value (EV) is obtained by multiplying each value at the end 
of a branch leading from that node by the probability on that branch and then summing 
all these products; (2) Finally, at the decision node the EV is just the maximum value of 
the payoffs found at the ends of the arcs leading from the node concerned. The optimal 
choice at the decision node is the experimentation strategy option corresponding to the 
branch that leads to the maximum value (see a.o. Jensen, 2001). Applying this logic to 
Figure 3-11 leads to the following utility or business value U(d) for an experimentation 
strategy d: 
 

[ ]))(1())(()()( ClinDClinD CCCCRHpdU +−−+−= +++ ππ       

     [ ]DClinD CCCRHp )1()()( −−− −−+−−+ ππ       (3-6) 

 
or, rearranging for a revenue-enhancing and a cost component, the last performance 
criterion for an experimentation strategy is given by 

 

        [ ])()()()(()(:5
−−++ −+−+−= HpCCRHpCCRdU ClinDClinD ππχ   

       [ ])()1()())(1( −−++ −++−− HpCHpCC DClinD ππ         (3-7) 
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To calculate U(d) a statistical experiment needs to be set up to calculate a model 
)( θypd , a distribution of observables y conditional on prior distribution )(θp . In our 

case, this model is not analytically solvable implying the need for numerical solution 
strategies (Müller, 1999). This is one of the reasons why in Chapter 4 Monte Carlo 
simulation (see a.o. Critchfield and Willard, 1986; Müller, 1999) will be used to explore 
the research questions and build theory on predictive performance of experimentation 
strategies.  
 

3.6 RESEARCH CONJECTURES 

3.6.1 Performance of front-loaded experimentation strategies 
 
In my previous exploratory research project I proposed that during ‘Concept Selection’ 
the high ambiguity facing the innovation team gets gradually resolved to a level where 
the team’s mental model of the system solution to be designed contains all variables and 
their functional relationships relevant to show Proof of Concept. The decision to transit 
to ‘Concept Characterisation’ is driven by the perceived completeness of the team’s 
mental model or as soon as solution critical requirements are met. High ambiguity must 
be resolved to the level that the emerged mental model contains all critical variables and 
their relationships necessary to deliver Proof of Concept. In this project I called this the 
residual ambiguity level and I want to explore the performance impact of the dynamics 
of this concept on subsequent experimentation and decision-making during ‘Concept 
Characterisation’ and beyond. 

 
Level of front-loading. The following research conjectures related to the 

transition question between ‘Concept Selection’ and subsequent ‘Concept 
Characterisation’ and ‘Concept Application’ modes will be explored: 

 
Conjecture 2-1: There is an inverse relationship between the level of 
residual ambiguity at the end of ‘Concept Selection’ and the positive 
predictive value of the experimentation strategy followed within this 
complexity-handling mode.    

 
In other words, the more you know about a concept before stepping into 

exhaustive characterisation and application development, the higher the chance for the 
concept to survive ‘Concept Characterisation’ and ‘Concept Application’. This is in line 
with my case study findings and with the recent literature on problem-solving conducted 
in new product development projects in other sectors. An exploratory study conducted by 
Verganti (1999) in Swedish and Italian companies, operating in the vehicle, helicopter, 
and white-goods sectors, provides an example. He identified four possible approaches to 
manage the early phases where problem anticipation and reaction have different balances 
and are not mutually exclusive nor contradictory, but strongly interact with each other 
through a mechanism called 'planned flexibility'. This is the capability to build flexibility 
into the new product development process due to decisions taken early in the project. 
Planned flexibility implies early identification of specific critical areas of a given project 
and early planning for reaction measures, enabling more efficient dealing with uncertainty 
during subsequent development. Thomke and Fujimoto (2000) define front-loaded 
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problem-solving as ‘a strategy that seeks to improve development performance by 
shifting the identification and solving of design problems to earlier phases of a product 
development process’, and report on findings in the automotive sector, where the 
methodology currently is being applied to the reengineering and shortening of product 
development.  

 
Secondly, it is proposed that the earlier ambiguity gets resolved during ‘Concept 

Selection’ the higher will be the qualitative and predictive performance of this 
complexity-handling mode:  

 
Conjecture 2-2: The earlier ambiguity gets resolved during ‘Concept 
Selection’ the higher the positive and negative predictive value of the 
experimentation strategy followed within this complexity-handling mode.    

 
Although this is in line with the thinking developed in Discovery Research at 

PharmaCo and corroborated by the practitioner literature (Pickering, 2001; Coty, 2002; 
DeWitte, 2002), no empirical evidence exists in this or other industries. A theoretical 
rationale could be provided by Information Theory claiming that ‘the best searches [in 
problem-solving] are sensitive enough to return all or most of the desired data’, …[and] 
‘the AND operator provides the greatest selectivity’(Bergeron, 2003: 164). Since the 
multi-factorial optimization used in a front-loaded experimentation strategy takes into 
consideration lead compound drug potency, and drug likeness, and toxicity, it should 
improve its selectivity α and consequently improve the odds of succeeding pre-clinical 
testing given a positive outcome in Discovery. Since the posterior odds are equal to the 
prior odds multiplied by the weight of evidence or Bayes factor (Parmigiani, 2002: 11), 
the latter will increase if α increases as can be shown if we give Bayes’ rule in its 
multiplicative form: 

     
α

β
π

π
π

π
−−

=
−

= +

+
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111)(
)|(
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      (3-8) 

 
Also, using a similar argument it will reduce the odds of finding positive 

compounds in pre-clinical and clinical testing given a negative outcome in Discovery 
since the related Bayes factor will decrease with an increasing α; 
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      (3-9) 

 
Therefore, I conjecture a front-loaded experimentation strategy to be more 

selective than an old paradigm strategy, which only took into consideration drug 
potency as a factor for optimization during Discovery. Applying multi-factorial 
optimization earlier possibly will compound the weight of evidence and, in principle, 
increase the selectivity. Thus, I tentatively conclude that an Early Front-loaded 
experimentation strategy is even more selective than a strategy following the Front-
loaded paradigm provided the theoretical evidence for both conjectures stated above.  
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Level of parallelism. Previous studies in technology-intensive industries 
suggest the benefits of broadening the concept testing funnel (Sobek II et al. 1999) or at 
least propose to optimize the shape of the concept funnel (Dahan and Mendelson, 2001). 
However, the impact of concept funnel shaping strategies on predictive performance has 
not been studied before. Also, considering the recent implementation of the front-
loading concept at PharmaCo, comparative historic success data are lacking so my case 
data do not allow me to formulate conjectures potentially guiding the simulation-based 
research described in the next Chapter.  

 

3.6.2 Performance robustness of front-loaded experimentation 
strategies 

 
A front-loaded experimentation strategy only makes sense if, at differing moments 
during the solution discovery process, a multi-factorial picture can be painted of the 
solution and its effect on performance parameters. The surrogate markers emulating the 
real tests in humans after the Discovery phase, used to do this need to be predictive in 
nature. A non-predictive chain would lead to an erroneous picture of the solution that 
does not get improved along the discovery process. This leads me to formulate the 
following proposition;   
 

Conjecture 2-3: Front-loaded experimentation strategies used during 
‘Concept Selection’ will feature higher positive and negative predictive 
value than old paradigm strategies provided a minimum tightness level of 
the predictive surrogate marker chain is realized.    

 
Summarizing, front-loaded experimentation strategies are conjectured to 

outperform classical ‘Old Paradigm’ and ‘Front-loaded paradigm’ strategies but their 
improved performance will only be robust for minimal levels of the tightness of the 
used surrogate marker chain.  
 

3.7 SIMULATION MODELING RATIONALE AND FRAMEWORK 

3.7.1 Simulation modelling rationale 
 
I argue that the conjectures stated in the previous section can only be transformed into 
propositions using computer simulation. The reason for this is given by the fact that a 
number of variables like −

iH  or α  or their derived probabilities like )|( +− CHp  or 
)|( −+ HCp amongst others cannot be observed in practice; hence it is impossible to 

empirically test for them. Also, testing for performance robustness of front-loaded 
experimentation strategies requires a methodology allowing for sensitivity analysis of 
the different explaining variables. Finally, a simulation-based research methodology 
allows me to address in an integrated way the following tasks (Parmigiani, 2002): (1) 
making inferences about the parameters of complex models, (2) generating artificial 
cohorts of candidate compounds to run through experimentation approaches, computing 
summaries of interest, such as expected utilities or cost-effectiveness ratios, (3) 



  84 
 

performing sensitivity analysis of results with respect to input parameters and 
assumptions, (4) facilitating the search for optimal experimentation approaches in high-
dimensional spaces.  

 
As before, in the remainder of this paragraph I will use a Bayesian perspective 

as developed by Parmigiani (2002) in the context of clinical diagnosis and apply it to 
build a methodological framework for a Monte Carlo simulation-based computational 
study. 

    

3.7.2 A Bayesian framework for a simulation study 
 
To test the research conjectures, I need to represent prior knowledge or uncertainty 
about the parameters describing the universe of potential compound and model how this 
gets improved by the alternative front-loaded experimentation strategies. From a 
probabilistic inference point of view, given π, the latter translate uncertainty about 
α and β into uncertainty about predictions +π and −π of pre-clinical and clinical testing 
outcomes. 

 
Defining a population parameter, take for example β, requires thinking of all 

possible really active compounds in the universe, and asking what fraction would be 
found to be active by an experimentation strategy. However, the universe of really 
active compounds is extremely large and contains compounds that are not even 
synthesized yet, which means that β is not observable in practice. A sample of 
compounds taken from the universe could help to determine possible values of β. The 
connection between a sample and the population can then be determined through 
probabilistic inference.  

 
Thus, if we draw at random from the universe a really active compound 

conditioning on a hypothetical value of β for the population, then the probability that 
compound ix  will be found active ( 1=ix ) or inactive ( 0=ix ) is given by;  

 
ii xx

ixp −−= 1)1()|( βββ             1,0=ix     (3-10) 

 
In other words, the probability that a randomly drawn compound will be found active by 
the experimentation strategy equals β.  Assuming conditional independence38 between 
compounds we can build a probability distribution for the whole sample, starting from 
the individual observations; 
 

  )()...()|...( 11 βββ nn xpxpxxp =  
 

                                                 
38 Mathematically, statistical independence between two variables requires that their joint probability 
distribution is the product of their marginals. Conditional independence is the same requirement, but 
applied to distributions that are conditional on some third variable, in our case β (Parmigiani, 2002: 32) 
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   )...(... 121 )1( nn xxnxxx +−+++ +−= ββ                     (3-11) 

 
This summarizes the information provided by the sample about β. Relating this back to 
Table 3-2 or Table 3-3 the powers in the second formula would equal the number of 
compound entries used for probability calculations in the cells ),( −+ HC  and ),( ++ HC  
respectively, allowing us to calculate the value of this likelihood function indicating 
probabilities of empirical evidence given the unknown of interest β. 

 
However, having observed the sample, all values of β are still plausible, but 

some will be more plausible than others. To represent our uncertainty about α and β a 
probability distribution is needed. To speak of a probability distribution we need to 
imagine a metapopulation, or a universe of possible populations, each with a different 
α or β. The next step then is to specify the posterior based on the accumulated 
knowledge and derive –for the case of β- ),...,,|( 21 ixxxp β  to represent what is known 
about which values of β are plausible and which are not in the light of the sample. Now, 
there is still only one universe of compounds and the probability distributions describe 
variance in the imaginary metapopulation, which represents an important philosophical 
debate while it is not as conceptually straightforward as it was in a real population to 
define parameters of interest. One problem is to define the prior probability )(βp , or the 
probability distribution of the possible values of β irrespective of sampling results. 
Since I know nothing about the prior probability distribution of potentially active 
compounds in the universe of compounds, and I’m interested in making conclusions 
that depend exclusively on the outcome of experimentation strategies, I treat all 
imaginary populations on equal footing and assume a uniform prior. Using Bayes’ 
inference rule Parmigiani (2002: 36) now derives the posterior probability density of the 
parameter β, given the data provided by the samples;   

 

      
βββ

ββ
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∫
=                   (3-12) 

 
This probability density function updates our knowledge of the experimentation strategy 
parameter of interest β. The same can be derived for α. I will use these functions as the 
basis for the simulation. Together with the prior knowledge of the prevalence in the 
universe of compounds they can be used to determine the comparative predictive value 
of experimentation strategies. 
 

3.7.3 Monte Carlo simulation study methodology 
 
To run a simulation study a virtual cohort of compounds needs to be generated and used 
as input to the probability density functions cited above. This is because the analytic 
calculation of the latter functions will prove to be very difficult considering the 
composite non-linear character of the virtual compounds I need to generate. More 
specifically, I chose to model a virtual compound having three fundamental virtual 
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properties P, B, and T; Potency, Bioavailability, and Toxicity. Scientist interviews 
confirm that all three are non-linear functions in reality, and for a compound to be 
declared active, a multi-factorial evaluation function would need to be designed. 
Therefore, I will replace these calculations of posterior quantities of interest with 
summaries of simulated values. 
  

The simulation study will generate M virtual cohorts of compounds, each 
representing one sample { }mX  of the universe of compounds. As indicated in Figure 
3-12 below, the selector ‘Pre-clinical and clinical testing’ serves as an emulator for all 
tests conducted after ‘Concept Selection’. It will serve as the ‘Golden Standard’ for data 
comparison.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-12: Simulation study concept 

 
This way, a fraction π of the n virtual compounds of sample m, the prevalence, 

is declared to be active by the selector function and counted as an entry in the 
subset{ }+C  which consists of (a+b) elements. The (1-π) fraction of the sample counts as 
entries in the subset{ }−C  consisting of n-(a+b)=(c+d) elements.  

 
Meanwhile, the same sample serves as input to the three experimentation 

strategies. Each strategy will make a distinct set of decisions during each of the 
Discovery phases described above based on specific information about the virtual 
compounds and will eventually promote compounds to NME status, which classifies 
them in the subset { }+H , or it will eliminate them from the selection and optimization 
Discovery process, which classifies them in the subset { }−H . It will be clear from 
Figure 3-12 that #{ }+H = (a+c) and #{ }−H = (b+d), both adding up to n, the sample size. 
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For each of the M samples the performance criteria 4,...,1χ  cited above must be 
calculated using the summary cross-classified data above. Each distribution of sample 
values −+

mmmmm ππβαπ ,,,,  with Mm ,....,1= . If mθ  represents a general form of the 
before mentioned distributions of sample values, they can be summarized using the 
Monte Carlo average, which is an approximation of the real posterior distributions 

),...,( 1 nmxxp θ we’re interested in;   

∑
=

∝
M

m
mnm h

M
xxp

1
1 )(1),...,( θθ      (3-13) 

Finally, I will use the set of functions )(θh to study the propositions set out in 
the previous paragraph. Although the Monte Carlo-based simulation method allows me 
to test for the effectiveness and predictive performance of the experimentation 
strategies, an important limitation does exist; while the simulation concept compares the 
outcome of each strategy with a gold standard, this does imply that the search space that 
can be used by the experimentation strategies, although made large in the simulation to 
emulate reality, is confined to a finite number n. However, as known by every medicinal 
chemist in reality ∞→n  since it is only limited by the creativity of the scientist 
synthesizing compounds. Therefore, n will have to be sufficiently large to reasonably 
emulate reality.  

 

3.8 CONCLUSION 
 
This confirmatory case study successfully replicated part of the findings pertaining to 
my proposed Project 1 model relating experienced complexity to choices for a specific 
complexity-handling mode. More specifically, the ‘Concept Selection’ mode and its 
transition to the subsequent ‘Concept Characterisation’ complexity-handling mode 
could be replicated to the context of Pharmaceutical Discovery. However, the evidence 
provided by this case provides no evidence to corroborate the ‘Concept 
Characterisation’ and ‘Concept Application’ parts of the model. 

 
In addition, this case study documented alternative experimentation strategies 

used in Pharmaceutical Discovery, all specific applications of the ‘Concept Selection’ 
complexity-handling mode. Various forms of ‘front-loaded’ experimentation strategies 
were proposed to be used by Discovery management. All manage the build-up of a 
mental model of the solution to a level of residual ambiguity the innovation team feels 
comfortable with to start ‘Concept Characterization’. Also, a debate was highlighted 
pertaining to the tightness of the surrogate marker chain used to conduct 
experimentation. A minimum tightness level was proposed for front-loaded 
experimentation strategies to robustly outperform ‘Old Paradigm’ strategies. 

 
Research conjectures were formulated, linking alternative experimentation 

strategies to performance. A Bayesian methodology was proposed to evaluate predictive 
performance of these front-loaded experimentation strategies and their robustness for 
varying degrees of tightness of the surrogate marker chain. 
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Finally, a rationale and methodology was developed to test the research 
propositions using simulation. In Project 3, this will provide the basis for a formal 
representation of these strategies as adaptive systems, which is needed to build a 
computer simulation model of various front-loaded pharmaceutical discovery 
experimentation strategies and to use the latter as an instrument for theory development. 
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4   Predictive Performance of Front-Loaded 
Experimentation Strategies in Pharmaceutical 
Discovery: Theory Building Using a Monte Carlo 
Simulation Model 

 
 

4.1 INTRODUCTION 
 
In the previous confirmatory case study analysis the pharmaceutical Discovery process 
at PharmaCo was mapped to the complexity-handling model proposed in the first 
exploratory case study analysis. As discussed then, a match could be found between the 
descriptors of the ‘Concept Selection’ complexity-handling mode and a number of 
“Exploratory” and “Portfolio” steps of the discovery research process. 
 

Also, the confirmatory case study allowed me to document various 
experimentation strategies used during ‘Concept Selection’ in a pharmaceutical 
Discovery context. It was argued that they all lead to levels of residual ambiguity, 
aimed for by the innovation team, before the transition to ‘Concept Characterisation’ is 
made. Case evidence indicated that variance in experimentation strategies can be 
explained by the extent front-loading is used. Then, research propositions were 
formulated, linking residual ambiguity dynamics to predictive performance.     

 
Furthermore, a Bayesian methodology was proposed to evaluate predictive 

performance of these front-loaded experimentation strategies. And finally, a rationale 
was developed to test the research propositions using computer simulation. 

 
In this Chapter I will argue that an adaptive system paradigm (Holland, 1992) is 

amongst others the best choice to emulate the ‘Concept Selection’ experimentation 
process. However, to make the paradigm fit (1) my research objective of theory 
development on predictive performance of experimentation strategies, and (2) the 
specifics of the pharmaceutical Discovery process context I will use for the simulation, 
a number of annotations to the paradigm will be proposed. 

 
The annotated adaptive system paradigm, then, will be the basis for designing 

the simulation model in Visual Basic Excel (VBA), which will be used for “top-down” 
theory development (Gilbert & Doran, 1994: 39), exploring predictive performance of 
front-loaded experimentation strategies without and with resource and scientific 
constraints on the tightness of the predictive marker chain39. Therefore, research 
questions driving this simulation-based theory development study include: ‘Does a 
                                                 
39 As explained in my Project 2 paper front-loading is an experimentation strategy opting for a multi-
factorial optimization process where three critical areas (Potency, Bio-availability, Toxicity) get 
characterized from the beginning at HTS. By looking at surrogate markers emulating the true test in 
humans, a picture is painted of the effect the chemical scaffold has on performance variables in the three 
areas. Whether a picture is predictive for the picture later on in the process depends on the surrogate 
marker chain tightness, essentially the correlation between the different markers of the chain. 
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front-loaded experimentation strategy increase the odds of getting a positive result at 
‘Concept Characterization’, given a positive ‘Concept Selection’ outcome?’, and, ‘How 
robust is this result for scientific and resource constraints used during ‘Concept 
Selection’?   

 
My simulation results indicate that Front-loaded strategies in a pharmaceutical 

Discovery context outperform other strategies on positive predictive performance, 
irrespective of the tightness of the surrogate marker chain. The number of classes used 
influences significantly the negative predictive performance of experimentation 
strategies. This practically means that conducting parallel explorations of concepts 
during ‘Concept Selection’ in a pharmaceutical discovery context significantly reduces 
the probability of missed opportunities in ‘Concept Characterisation’. These results will 
be shown to be robust for varying levels of tightness of the surrogate marker chain. 

 

4.2 THEORETICAL BACKGROUND 

4.2.1 Simulating complex innovation processes 
 
In the previous project I gave a rationale for choosing a simulation methodology to 
answer the performance question of alternative experimentation strategies used during 
‘Concept Selection’. It was argued that simulation is the preferred methodology to test 
the research propositions since (1) the dynamics of problem-solving behaviour are not 
analytically tractable while they have to be represented using discontinuous nonlinear 
systems, which are generally hard to describe in closed form (Devaney, 1989; Mihm et 
al. 2003), (2) some of the variables are unobservable in real life hence resisting real-life 
experiments and empirical research (Masuch and Lapotin, 1989), and finally (3) a 
simulation-based research methodology allows me to vary underlying assumptions and 
to virtually search for optimal experimentation approaches in high-dimensional spaces 
(Parmigiani, 2002). 

 
Using a simulation methodology, a formal model of the discovery research 

process needs to be designed and a paradigm has to be chosen. To select a simulation 
paradigm I use a number of criteria. First, case study evidence from my previous project 
conducted in the pharmaceutical Discovery context suggests that ‘Concept Selection’ 
experimentation strategies can be described as a selection & optimization process. The 
chosen paradigm must cater for this. Second, the scientific objective of my computer 
simulation-based study is to use the model for “top-down” theory development, i.e. ‘for 
elaboration of theoretical hypotheses which may then be [partially] tested by empirical 
observation’(Gilbert and Doran, 1994: 39). Finally, since ‘managing size and 
complexity of an NPD project has not received widespread attention in the empirical 
literature’ (Mihm et al. 2003) and this is one of the first attempts to model complexity-
handling behaviour used in innovation projects, I take a positivist epistemological 
stance with its core ontological assumptions viewing reality as a fully observable, 
measurable and objective phenomenon. By limiting the representation of the socio-
cognitive problem solving behaviour of the innovation team to an organizational 
process of selection and optimization, excluding the intricacies of the social 
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constructivist element of finding a solution to the innovation problem, I hope to limit 
the complexity of my simulation model. 

 

4.2.2 The garbage can model of organizational decision-making 
 
The garbage can model (Cohen et al. 1972) is a top-down developed theoretical model 
of organizational decision-making, arguing that organizational choice is ambiguous. ‘To 
understand processes within organizations, one can view a choice opportunity as a 
garbage can into which various kinds of problems and solutions are dumped by 
participants as they are generated. The mix of garbage in a single can depends on the 
mix of cans available, on the labels attached to the alternative cans, on what garbage is 
currently being produced, and on the speed with which garbage is collected and 
removed from the scene’ (Cohen et al., 1972: 2). Hence, the garbage can model could 
represent the ‘selection’ part of my simulation model since its ontological view of the 
problem-solving process is one of problems meeting solutions in choice opportunities. 
If a problem meets its solution at the right choice opportunity, a rational outcome is 
made. Their simulation showed that only specialized access of problems to choice 
opportunities, combined with unsegmented access of choice opportunities to solutions 
yields high rates of resolution (Cohen et al. 1972; Masuch and Lapotin, 1989). 
 

Applied to the innovation process context the garbage can model views the 
innovation team as a machine moving through the research process in an exogenous 
flow, subject to random simultaneity with the decision to be made at the end of the 
phases (HTS, H2L, LO) and the solution; whether to pursue or not with the candidate 
compound. Optimal decisions will be made if specialized scientists make decisions, and 
if they are allowed to be flexible in their decision-making. The team responds at the 
choice opportunity by demonstrating rational problem-solving behaviour, being 
unaware of organizational goals or guided by individual preferences, thus ruling out the 
interpretive view of the team as being a socio-consciousness, a constructor of social 
reality and manipulator. 
  

Although the garbage can model of decision-making –of selection- would be 
ideally suited for “top-down” positivist theory development, for building a Monte Carlo 
simulation model and for elaborating theoretical propositions (Gilbert and Doran, 1994: 
39), it does miss a critical element of the representation of the complexity experienced 
by the innovation team; the optimization part of their problem-solving behaviour. 

    

4.2.3 Physical symbol systems versus connectionist models 
 
Optimization implies the search for a solution to the innovation problem. There are two 
approaches to modelling the complexity involved (Cilliers, 1998). Physical symbol 
systems constitute the classical approach to the modelling of complexity. On the other 
hand, neural networks, parallel distributed processing systems or connectionist models 
are inspired by the working of the human brain, capable of performing complex tasks 
like pattern recognition followed by intelligent action. Both approaches to modelling 
complexity receive strong support. In the remainder of this section I will investigate the 
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applicability of both paradigms to modelling the complexity experienced by the 
innovation teams involved in a selection & optimization process. 

 
Physical symbol systems model complexity on an abstract semantic level. ‘A 

physical symbol system consists of a set of entities, called symbols, which are physical 
patterns that can occur as components of another type of entity called an expression (or 
symbol structure). Thus, a symbol structure is composed of a number of instances (or 
tokens) of symbols related in some physical way (such as one token being next to 
another). At any instant of time the system will contain a collection of these symbol 
structures. Besides these structures, the system also contains a collection of processes 
that operate on expressions to produce other expressions: processes of creation, 
modification, reproduction and destruction. A physical symbol system is a machine that 
produces through time an evolving collection of symbol structures. Such a system exists 
in a world of objects wider than just these symbolic expressions themselves’ (Newell 
and Simon, 1976: 116). Applied to problem solving behaviour; ‘to state a problem is to 
designate (1) a test for a class of symbol structures (solutions for the problem), and (2) a 
generator of symbol structures (potential solutions). To solve a problem is to generate a 
structure, using (2), that satisfies the test of (1)’ (Newell and Simon, 1976: 121). Thus, 
physical symbol systems express intelligence by being involved in a heuristic search by 
generating and modifying structures until a solution structure is identified. Physical 
symbol systems simulation is a “bottom-up” methodology requiring empirical data to be 
captured from experts to feed the rule-based system underlying the selection & 
optimization processes. Since rule-based representations of reality may encompass 
aspects of both interpretive –social constructivist- and positivist ontology, ‘they have 
the necessary and sufficient means for general intelligent action’ (Newell and Simon, 
1976: 116), and can be used for both ‘[teleological and causal] explanation of relations 
between social values, beliefs and actions, and the prediction of the effects of values and 
beliefs upon social actions’ (Gilbert and Doran, 1994: 38).  

 
Masuch and Lapotin (1989) successfully used the physical symbol system 

approach to challenge and extend the initial garbage can findings of Cohen et al. (1972) 
to make it fit better with empirical reality. Also, it could be used to represent the 
selection part of the pharmaceutical discovery process. However, once again the 
challenge to use this model as an emulator of reality would be in the optimization part 
for which it would be hard to formulate rule sets. 

   
In general, many scientists believe that it would be very difficult to elicit all the 

rules underlying this intelligent behaviour. Instead, they believe that the best route to 
artificial intelligence is through connectionism, a ‘paradigm in which humans write only 
simple rules, and complex behaviour such as intelligence emerge from the massively 
parallel application and interaction of these simple rules’ (Mitchell, 2001: 4). Neural 
networks are one type of connectionist models, mathematically represented as 
interconnected networks of neurons, capable of pattern recognition, information 
processing, regulation, prediction and replication by being given simple neural 
thresholds and maps of strengthening or weakening of connections and capable of 
learning from indications of success. More specifically, (1) regularity discovery, in 
which the team learns to respond to interesting input patterns, (2) pattern association, in 
which the goal is to find a set of connections so that whenever a particular pattern 
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reappears at the input an associated pattern will appear on the output, and (3) auto-
association used for pattern completion (Rumelhart et al. 1986), could be used to model 
distinctive elements of the innovation team’s searching behaviour for an optimal 
solution. Connectionist models, like physical symbol systems are capable of intelligent 
behaviour. During training, patterns can be simultaneously presented at the input and 
the output, weights in the input-output connectivity matrix are modified, which 
emulates the learning of the model. Then, patterns are presented at the input and the 
output pattern is measured. This means that knowledge is in the connections, which is 
the most profound difference with the physical symbol system, where knowledge is 
stored in the rule-base underlying the model. In connectionist models knowledge is not 
directly accessible to interpretation by some separate processor, but it is built into the 
processor itself and directly determines the course of processing. It is acquired through 
tuning of connections as these are used in processing, rather than formulated and stored 
as declarative facts in the rule-base of a physical symbol system (Rumelhart et al. 1986). 

 
Although connectionist models are capable of sophisticated pattern recognition 

and learning, again they do fall short representing a decisive element of the experienced 
complexity of the innovation team’s problem-solving behaviour; the teleological aspect 
of moulding the candidate solution to fit the design objective. 

 

4.2.4 Evolutionary computation 
 
Evolutionary computation is another example of a massively parallel paradigm with 
minimal rules, capable of intelligent behaviour. These rules are ‘typically “natural 
selection” with variation due to crossover and /or mutation; the hoped-for emergent 
behaviour is the design of high-quality solutions in the face of a changing environment’ 
(Mitchell, 2001). Inspired by biological evolution, a massively parallel adaptive search 
for genetic sequences delivering a highly fit organism can also be used as a method for 
designing innovative solutions to complex problems. A typical example of an adaptive 
system, emulating biological evolution while lending itself to computer implementation, 
is a Genetic Algorithm (GA). GA’s ‘are search algorithms based on the mechanics of 
natural selection and natural genetics. They combine survival of the fittest among string 
structures with a structured yet randomized information exchange to form a search 
algorithm with some of the innovative flair of human search. In every generation, a new 
set of artificial creatures (strings) is created using bits and pieces of the fittest of the old; 
an occasional new part is tried for good measure. ‘While randomized, genetic 
algorithms are no simple random walk, they efficiently exploit historical information to 
speculate on new search points with expected improved performance’ (Goldberg, 1989: 
1). I argue that an adaptive system is the best artificial reconstruction of the mental 
modelling process during ‘Concept Selection’ research since it mimics best the blind 
“selection & optimization” search of discovery scientists for a NME in a vast, 
discontinuous multi-factorial solution space. 

 
Blind search as a problem-solving strategy in radical innovation contexts is not a 

pejorative term but should be seen in contrast to enumerative search. The latter consists 
in enumerating different solutions to a problem, evaluating the benefit of each solution, 
and selecting the best performing one for execution. Of course, considering the intricate 
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hard to unravel nature of chemical structures and their supposed effect on a biological 
target, this method becomes worthless because it would take too long to find a solution. 
Even with computer help, this would be a formidable task. Mitchell provides an 
example: ‘Suppose you want to search for a protein –a sequence of amino acids- that 
folds up to a particular three-dimensional shape so it can be used to fight a specific 
virus. The search space is the collection of all possible protein sequences –an infinite set 
of possibilities. To constrain it, let us restrict the search to all possible sequences of 
length 100 or less –still a huge search space, since there are 20 possible amino acids at 
each position in the sequence. Instead, the more efficient blind searching in these kinds 
of large solution spaces where information on solutions is not readily stored for 
evaluation, involves candidate solutions being created as the search process proceeds. 
This adaptive search method ‘…(1) initially generates a set of candidate solutions, (2) 
evaluates the candidate solutions according to some fitness criteria, (3) decides on the 
basis of this evaluation which candidates will be kept and which will be discarded, and 
(4) produces further variants by using some kind of operators on the surviving 
candidates (Mitchell, 2001: 7). 

 
This is why I will use adaptive systems as a formal model for the artificial 

reconstruction of the experimentation process during the ‘Concept Selection’ 
complexity-handling mode, and operationalise it later using a simulation model, tailored 
to the specific environment of pharmaceutical Discovery research. However, to be 
compliant with my research objective investigating predictive performance of 
experimentation strategies used during this complexity-handling mode, a number of 
modifications will have to be made to the generic adaptive systems model. These will 
be dealt with in the next paragraph building a formal framework for the computer 
simulation-based study. 
 

4.3 BUILDING AN ADAPTIVE SYSTEM SIMULATION 
FRAMEWORK 

   
To build a formal framework for the discussion above I follow Holland’s (1992) 
notation specifying adaptive systems by the set of objects (η, Ω, Ι, τ). I distinguish for 
my research case between: 
 

E; the environment, or biological target, against which, a drug must be 
developed. ε∈E , the total set of biological targets, 

+
ijh ; a hypothesized solution to the biological target; which is a 

candidate compound structure with chemical properties. 
iij Hh ∈+ , the latter being defined as a chemical class, and 

)(tH i η⊂ , the total set of chemical structures attainable at 
moment t in time. The initial set ηη =)0( , represents the 
universe of attainable compounds, 

τ; the adaptive plan determining successive structural modifications to 
the hypothesized solution +

ijh  in response to the target, T∈τ , 
the set of feasible plans, 
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I; the total range of signals receivable by the adaptive system on the +
ijh  

properties, measured across the discovery research process. The 
information I(t) received by the system at time t will be 
constrained to the subset II t ⊂)(η , where 

{ })(),...(),( 21)( tttI it δδδη =  is the set of values δ received at t, 
Ω; the set of operators used by the adaptive system to modify the 

candidate compound structure through the discovery research 
process. { }Ms ωω ,=Ω ; Selection and maximization are the 
operators used, 

µ; a measure of performance of the different hypothesized solutions in 
the environment. 

 
However, to make the formal model fit my research context and objective I need 

to specify four annotations. The theoretical model underlying the simulation software 
system will then be the annotated adaptive system model. 

 

4.3.1 The domain of action 
 
As a starting point for the formalism, I consider the domain of action for the adaptive 
plan τ, the universe of potential candidate compound structures η. Each structure ijh  
exhibits a set of properties, given by nature; its biological activity or potency and 
selectivity (P), its bio-availability (B), and its toxicity (T). Each property will be 
represented by a number between 1 and 9. For (P) and (B), a high number indicates high 
performance. For (T) a low number indicates high performance. Clearly, the latter is a 
virtual representation of compound properties. The connection to reality is in the 
exponential distribution of the P, B, T values in the domain of action η . 
 
 
 
 
 
  

 
 
 
 

 

 

Figure 4-1: Example of a domain of action 

 
Figure 4-1 above gives an example of this representation where the domain of action of 
the adaptive plan at t=2 is represented by twelve chemical classes iH , each consisting of 
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20 candidate compounds ijh , each featuring three properties P, B, and T. Properties can 
be summarized at chemical class level. 
  

This leads me to the first annotation to the formal adaptive system specification I 
need to formulate to make it fit with my particular application. Holland (1992: 21) notes 
that ‘the set η will usually be potential rather than actual. That is, elements [in my 
case ijh ] become available to the plan only by successive modification (e.g., by 
rearrangements of components or construction of primitive elements), rather than by 
selection from an extant set’. My scientific objective is to develop theory on predictive 
performance of experimentation strategies –represented as adaptive systems- using 
Bayesian inference. Therefore, as discussed in my previous project paper, I need a 
reference or Golden Standard, to compare the outcome of the experimentation strategies 
with “correct classifications” made by nature, or subsequently during ‘Concept 
Characterisation’. The Golden Standard is provided by starting from an extant set and by 
classifying all candidate compounds in it as “really active” +c or “really inactive” −c . By 
cross-classifying with the candidate compounds declared positive +h or negative −h  by 
the experimentation strategy, a table can be constructed as shown in the previous project 
and Bayesian conditional probabilities can be calculated. If I would allow the adaptive 
strategy to generate new candidate compounds –obviously not known at the outset- during 
the process, it would not be possible to cross-classify them, which would make further 
calculations impossible. 

 

4.3.2 The adaptive plan 
 
The adaptive plan τ produces a trajectory of candidate structures ijh  through η by making 
successive selections and optimizations using a set of operators Ω. The adaptive system is 
limited by what properties ItI ⊂)( get measured at a specific moment in time. As an 
example discussed in the previous project, in the Old paradigm bio-availability properties 
are not used at all for optimization during ‘Concept Selection’ in Pharmaceutical 
Discovery. Hence, given I(t) and η(t) the adaptive plan transforms the structures η(t) into  
η(t+1) by using operators from the set Ω, meaning that the detailed operation of the 
adaptive plan is described by 
 

Ω→×ητ I:         (4-1) 

and       

Ω∈= )())(),(( tttI ωητ       (4-2) 

 
I will limit the set Ω to two operators sω  and Mω  (the latter to be discussed later) 
applied to candidate structures and chemical classes over the course of the discovery 
process. I will not use the mutation operator mω  or crossover operator cω  of an 
adaptive system paradigm as operationalised in a Genetic Algorithm. 
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The latter represents the second annotation I want to make to the adaptive 
system paradigm. To make the paradigm fit with my scientific objective of measuring 
effectiveness of experimentation strategies I need to exclude the use of mutation and 
crossover operators. In optimizing the set of candidate structures η(t) into a new set 
η(t+1), a Genetic Algorithm would reproduce, cross-over and mutate the most 
performing building blocks of candidate structures, forming a new set of candidate 
structures showing overall better performance against the objective function (Goldberg, 
1989). However, as mentioned above I need to limit the search space to an extant set, 
randomly generated at the beginning of the search process to test for effectiveness of the 
different experimentation strategies. Hence, I cannot allow for the random generation of 
new upfront unknown compounds during the optimization process. By limiting the 
adaptive search engine to selection operators applied to candidate chemical classes and 
chemical structures, I also limit the possibilities of the paradigm I’m using. More 
specifically, it will not allow me to test for the efficiency of a search strategy to get to 
the design objective since the number of steps to get to an optimised fit will be fixed by 
the simulation process and will not be determined by the number of creative leaps made 
by the crossover operators. However, since the objective of my study is to probe into 
effectiveness of experimentation strategies, this is not considered to be a problem but a 
limitation of the simulation method. 
  

Second, to fit the adaptive system paradigm to the specific context of the 
Pharmaceutical Discovery process, a remark should be made about the level of 
aggregation of information I(t) about η(t) one considers at different steps in the 
optimization process. From the Discovery case study analysis conducted in Project 2 it 
became clear that the scientists’ unit of analysis during HTS and H2L is the chemical 
class iH  as opposed to the final chemical compound structure ijh , which is only 
considered during LO. Then, the information to be used by the selection operators to 
transit from HTS to H2L and from H2L to LO are the averages TBP ,,  defined at the 
level of the chemical class, aggregating property information of its constituent chemical 
structures. 
  

Summarizing, to steer progress in the annotated adaptive system I will only use 
the selection operator sω  from the set Ω, applied at the level of the chemical class in 
HTS and H2L, and applied at the level of the individual chemical structure at LO, 
hence;  
 

tbp
iHiHiHLHHTS TBPs ≤≥≥ δδδω ,,:

2,
        (4-3) 

                  tbp
ijhijhhijLO TBPs ≤≥≥ δδδω ,,:        (4-4) 

 
The cut-off levels p, b, and t depend on the discovery phase (HTS, H2L,LO) and the 
experimentation strategy (Old, Front-loaded, Early Front-loaded) used in the simulation.  

 
In the next section I will expand more formally on the uncertainty involved in 

data capture steering the selection and optimization process of the annotated adaptive 
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system. This additional notation is needed to emulate the dynamics of the surrogate 
marker chains discovered in the Pharmaceutical Discovery case study. 

 

4.3.3 Emulating surrogate marker chains 
 
As mentioned before, the optimization process τ takes I(t) as an input to steer selection 
and optimization progress. The relevant detector values 

ijhijhhij TBP δδδ ,, measuring 

performance of the candidate compound chemical structures, and summarizing values 

iHiHiH TBP
δδδ ,, measuring performance of the chemical classes are used to steer progress 

through the process. In the adaptive system framework, performance on all three 
dimensions is formally modelled as 
 

    Reals:,, →ηµ TPBE         (4-5) 

 
mapping performance as a real value used in the selection process described above. 
However, considering the error involved in measuring values, it is more correct to state 
that the detected value will be drawn from a probability distribution, I will call U. So 
that 
 

     UTPBE →ηµ :,,         (4-6) 

 
This way, following each discovery phase the candidate structures from η(t-1) get a 
stochastic score drawing from U on properties B, P and T, and is used by the selection 
operator to generate the new set η(t). U is a complex function consisting of an 
exponential –the natural distribution of B, P, and T- and a normal –stochastic- 
component. 
  

Now, to fit the model with the specificity of the pharmaceutical discovery 
research process, a third annotation needs to be formulated. In reality, the three 
properties are all measured in the different discovery phases. However, the scientific 
methods used differ for each phase. I chose to emulate this measurement process as 
depicted in Figure 4-2 below for the case of bio-availability.  
 

The real value b for bio-availability –used in the simulation model as a 
compound property - is measured in the different phases using a surrogate marker 
method each having a specific measurement error. As described in Chapter 3, during 
HTS Lipinski’s Rule of Five is used, in H2L it’s PAMPA, and in LO it’s FDP in 
animals. 
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Figure 4-2: Emulating the Bio-availability surrogate marker chain 

 
All these methods are surrogate measures for what the scientist is really 

interested in; bio-availability in humans. Methods become more accurate as one 
proceeds in the phases, which explains the funnel shape above. Their predictive power 
is given by the tightness between the successive measurement methods of the surrogate 
marker chain. I emulate this tightness by varying the measurement errors on (P), (B), 
and (T) properties in the different phases in such a way that a wanted correlation level 
between methods used in each phase is achieved40. The higher this correlation, the 
tighter the chain, and the better its predictive power will be.  
 

4.3.4 The objective function 
 
The adaptive system searches for an optimum in a multi-factorial fitness space; it 
optimizes the candidate structures for good pharmacological activity, bio-availability 
and selects for low toxicity. This implies that the simulation model needs to cope with 
multi-objective optimisation. Formally, an adaptive plan T∈τ searches for optimum 
performance; 

 

  ∏→×ητ I:         (4-7) 

 
The adaptive plan receives only information on payoff, hence; 
 

   ))(()(
,,

ttI
TBPE ηµ=         (4-8) 

 

                                                 
40 I used the following definition of the correlation coefficient ρ; 
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To optimize the set η(t) based upon this performance information, to become the set 
η(t+1) an additional operator Mω of the set Ω needs to be defined. 

 
This leads me to formulate the fourth annotation to the adaptive system model. 

As mentioned before, progress steering in the adaptive systems model is done through a 
process of selection and optimization. A Genetic Algorithm implementation of an 
adaptive system uses the crossover operator to optimize the candidate structures. For the 
reasons set out above I cannot use this operator. Therefore, I chose to emulate the 
optimization process using a maximization operator Mω  that searches for the maximum 
within the search space available to the adaptive system at t. The performance function 
Π(t) and operator )(tMω  used by the adaptive system to steer progress depends on the 
experimentation strategy and the Discovery research phase. 

 
 

 HTS H2L LO 
Old 

paradigm iHPOld δ=Π )1(  

:
1Mω Top m classes 

jHPOld δ=Π )2(  

:
2Mω Top n classes 

jkhPOld δ=Π )3(  

:
3Mω Top p compounds 

            in top n classes 
Front-
loaded 

paradigm 
iHPFL δ=Π )1(  

:
1Mω Top m classes 

),min()2(
iHiH BPEFL δδ=Π  

:
2Mω Top n classes 

),min()3(
jkhjkh BPFL δδ=Π

:
3Mω Top p compounds 

            in top n classes 
Early 
Front 

Loading 

),min()1(
iHiH BPEFL δδ=Π

:
1Mω Top m classes 

),min()2(
iHiH BPEFL δδ=Π

 
:

2Mω Top n classes 

,min()3(
jkhjkh BPEFL δδ=Π

:
3Mω Top p compounds 

            in top n classes 

Table 4-1: Performance functions and maximization operator used by experimentation strategy 
and Discovery research phase 

 
As can be verified in Table 4-1 above the optimization process starts at the level 

of the chemical classes to end at candidate compound level. The top performing classes 
and compounds are selected using payoff information on one or two properties. 
Depending on the experimentation strategy used, only biological activity information is 
used to find the best performer, or a multi-objective function combining payoff 
information on both biological activity and bio-availability dimensions is used to find 
the best performing compounds in the search space. All experimentation strategies are 
modelled to only deal with chemical class related performance in HTS and H2L, and 
with chemical compound related performance in LO. Both Front-loaded paradigm and 
Front-loaded strategies use multi-objective optimisation but start doing so at different 
moments in the process. The chosen multi-objective function conservatively takes the 
minimum of both (P) and (B) detector values as the calculated performance value for 
the chemical class or candidate compound, depending on the Discovery research phase.  
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4.3.5 Annotated memory less adaptive systems model summary 
 
The annotated adaptive systems model serves as the theoretical model underlying the 
simulation study, in which each experimentation strategy to conduct ‘Concept 
Selection’ in a Pharmaceutical Discovery context is modelled to execute an adaptive 
plan. This adaptive plan τ starts from the universe of potential compounds representing 
the extant search space and initial uncertainty about the environment41. Only an 
extremely small fraction of this universe, I will further call the prevalence π, is 
composed of candidate compounds with therapeutic effect. Through the execution of 
successive selection and optimization loops the plan improves the fit of the solution 
with the target. The details of these η(t), I(t), Ω(t) adaptation loops can be found in the 
table cells of Figure 4-3 below detailing the conceptual specification of the annotated 
adaptive system emulating the various experimentation strategies used in 
Pharmaceutical discovery to execute the ‘Concept selection’ complexity-handling 
mode.     
 

Summarizing, the conceptual specification of the annotated adaptive systems 
model above together with the Bayesian predictive performance criteria specified in my 
previous research project form a complete specification of a problem in adaptation 
(Holland, 1992: 28), since adaptive plan objects (η,Ω,I,τ) and evaluation criteria χ have 
been specified within the context ε of a chemical structure being adapted to optimally fit 
a biological target. 
 

Finally, it should be noted that the annotated adaptive plan τ is modelled as a 
memory less system. As specified above the total information received by τ or input 
history up to time t is given by the sequence )1(),...,2(),1( −tIII  where no 
information is retained in the system. However, following Holland (1992: 23) one could 
think of η(t) being composed of )(1 tη , the set of structures tested against the 
environment at time t and the memory Μ(t) representing the retained parts of the input 
history. Then, more generally, since we know from above that the plan adapts the set of 
structures η(t) to become η(t+1) through the two-argument function ηητ →×I:  we 
could say that t through )()(: MMI ×→×× ηητ  also updates the memory from M(t) to 
M(t+1), where 

 

)1())(),(),(( += tMtMttIM ητ       (4-9) 

 
is that part of the plan τ which updates the plan’s memory. Thus, the conceptual 
framework is general enough to investigate mechanisms of memory update in greater 
detail. However, to limit the complexity of my theory building effort, I chose to model 
the annotated adaptive system as being memory less, only using information about the 
environment at hand at time t. 
 

                                                 
41 A nontrivial problem of adaptation exists only when the adaptive plan is faced with an initial 
uncertainty about its environment (Holland, 1992: 25)  
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Figure 4-3: Conceptual specification of the annotated adaptive systems model 
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The conceptual model formed the basis to build a computer simulation program 
in Excel Visual Basic Applications (VBA). Theory building results using simulation-
based experiments with the memory less annotated adaptive plans formally described 
above emulating experimentation strategies during Concept Selection in a 
Pharmaceutical Discovery context will be discussed in the following paragraphs. 
 

4.4 THE SIMULATION EXPERIMENT 

4.4.1 Model parameters 
 
Parameters used in the simulation model describe the shape of the extant search space, 
and the experimentation strategies used by the innovation team to conduct ‘Concept 
Selection’. Table 4-2 below provides a summary of the value ranges of various 
parameters used in the simulation experiments.  
 
 

Simulation Model Parameter Values 
Parameters Base simulation values  
 Low Medium High Additional Values 

Explored 
Shape of Extant Search Space: 
    Compound (P), (B), (T)  
    value  
    Exponential steepness a, b 
    Total # of virtual  
    compounds 
      # of classes 
      # of ref. compounds/class 
      # of compounds/ref. comp. 
    SD of ref. comp. in class 
    SD comp. around ref. comp 
    Marginal probability )( +Hp   
 
Experimentation Strategy 
    # of classes in (HTS,H2L); 
       m, n 
    # of compounds selected in 
       (LO); p 
    Surrogate Marker Chain* 
        Tightness (HTS,H2L) 
        Tightness (H2L,LO) 
    Detector Value ranges** 
    ),,( maxminmin tbp  

 
 

1 
 

4 
 
 
 
 

0,1 
0,1 

0,05 
 
 

(1,1) 
 
 

5 
 

48% 
48% 

 

 
 

4,5 
 

5 
24K 
80 
15 
20 
1 
1 

0,1 
 
 

(5,1) 
 
 

10 
 

70% 
70% 

 
(5,5,5) 

 
 

9 
 

6 
 
 
 
 

4 
4 
 
 
 

(5,3) 
 
 

15 
 

80% 
80% 

 

 
 
Continuous across (1-9) 
range 
 
 
 
 
 
0,2   2 
0,2   2 
 
 
 
(5,2) 
 
 
1, 3, 10000 
 
50%  90% 
 

*  specified correlation percentages have been translated into measurements errors on properties 
    in the various discovery research phases  
** values applied across all experimentation strategies 

 Table 4-2: Simulation Model Parameter Values 
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A virtual compound is described by a real value for its three properties (P), (B), 
(T) ranging from 1 to 9. This was done through random sampling of a negative 
exponential compound properties distribution for (P) and (B), given by; 

 

[ ]1)1(ln.5,9 /9 +−−= a
compound eyaP      (4-10) 

[ ]1)1(ln.5,9 /9 +−−= b
compound eybB      (4-11) 

 
and of the exponential distribution for (T); 
 

compoundcompound PyT )75,025,0(10 +−=     (4-12) 

 
where y was chosen from a uniform [0,1] distribution, and a and b were used to 
parameterize distribution steepness. An interview with a toxicology specialist in 
PharmaCo indicated that highly potent compounds are less toxic than their less potent 
counterparts since toxicity is loosely connected to dosage needed; the higher the dosage 
needed to have an effect on the biological target, the higher the risk the drug will be 
toxic42. Therefore, in my virtual model the (T) distribution was modeled as the inverse 
of the (P) distribution adjusted with a light random effect. This led to a virtual 
compound population described by their (P,B,T) serving as input to the experimentation 
strategies. 

 
 
 
 
 
 
 
 
 
 
 
 
    

 

 

 

 

Figure 4-4 Virtual search space composition 
 
The extant search space is described by the total number of virtual compounds it 

contains. It is generated in several steps. First, classes get assigned a value for (P), (B) 
and (T) through random sampling of the exponential distributions of these properties. 
                                                 
42 See reference (16) in Appendix C. 

Class H(3)

Class H(2)

Class H(1)

Class H(3)

Class H(2)

Class H(1)
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Distribution steepness parameters a end b are used to modulate the prevalence of the 
population given a set of detector values ),,( maxminmin tbp  for compound properties. Then, 
around these class values reference compounds are randomly generated following a 
normal distribution with a certain standard deviation (SD) chosen from the ranges 
described in Table 4-2 above. This is done while, in reality, classes are investigated by 
scientists in HTS and H2L by using a set of reference compounds describing the classes. 
Finally, virtual compounds are randomly generated around reference compounds using 
a normal distribution with a certain standard deviation.  

 
Figure 4-4 gives an example of a virtual solution landscape composed of three 

classes H(1), H(2), and H(3). Each class consists of reference compounds (highlighted) 
and virtual compounds. Number of chemical classes, number of reference compounds 
used per class, and number of compounds per reference compounds, can be specified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               (a)      (b) 

Figure 4-5 Examples of concentrated (a) and rugged (b) virtual extant search spaces 
 
Both numbers of objects and standard deviations can be used to vary the solution 

landscape shape from highly concentrated to highly rugged. Figure 4-5 above provides 
an example of a reference compound type representation of a concentrated and a rugged 
solution landscape, featuring a standard deviation for all descriptors (P,B,T) of 
respectively 0,2 for (a) and 1 for (b). Toxicity is represented here using a colour scale. It 
can be verified that red indicates low toxicity. In contrast, blue indicates high toxicity. 

 
 This top-down generation of classes emulates their relatedness on properties (P) 

and (B) of the virtual compounds they contain. On the other hand, toxicity for these 
virtual compounds is generated bottom-up since this is considered to be not class-
related; virtual compound values are randomly generated through random sampling of a 
(T) distribution, which is loosely connected to the inverse of the (P) distribution. Then 
these compound values are averaged to get to the toxicity of a reference compound, 
which in turn is used to generate the average toxicity of a class.  
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 The simulation experiment compares three experimentation strategies –Old 
paradigm, Front-loaded (FL) paradigm, Early Front-loading (EFL)- for predictive 
performance. Parameters activated for this study include the number of classes used in 
HTS and H2L –the latter determining the LO search space-, determining the resource 
effort spent in the different phases. The surrogate marker chain tightness can be varied 
at the level of discovery phase HTS-H2L and H2L-LO transitions. As explained before, 
surrogate marker chain tightness or correlation is expressed as a percentage in Table 
4-2. This is translated in the simulation model by sets of measurement errors on the 
properties (P), (B), and (T) in the various phases. Detector values used for selection can 
be set for all discovery phases and experimentation strategies used. 

 
Figure 4-6 below depicts the simulation framework described in my previous 

research project and connects it to the adaptive plan representation of experimentation 
strategies in the Pharmaceutical Discovery context. During Concept Selection, adaptive 
plans select and optimize candidate compounds and make predictions whether they are 
fit to be transferred to Concept Characterization ( +h ), or not ( −h ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6: Predictive performance measurement concept 

 
Positive and negative predictive value. As discussed before, Bayesian 

inference criteria +π  and −π  were used to evaluate predictive performance of various 
experimentation strategies. The positive predictive performance +π , denoted 

)|( ++ HCp  is read as the probability )( +Cp  that a compound will pass Concept 
Characterization and Concept Application testing, given it has been declared 
active )( +Hp  by the experimentation strategy used during Concept Selection. The 
fraction of really active compounds after Concept Characterization and Concept 
Application, although declared inactive by the experimentation strategy, is called −π  
and denoted )|( −+ HCp . An experimentation strategy featuring high positive and 
negative predictive performance has a high value for +π and a low −π , indicating 
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respectively a high number of confirmations of positive decisions made and a reduced 
number of lost opportunities. The latter category is not observable in pharmaceutical 
practice since, in reality, declined compounds are not transferred to later stages.  
  

Overall quality selection power. Since this simulation study is an exploratory 
experiment I wanted to measure experimentation strategy effectiveness in a different 
way than through its predictive performance. Then, triangulation of ‘Overall quality 
selection power’ with predictive performance results would increase confidence in 
comparative strategy effectiveness’ findings. To test for the overall quality selection 
power of the experimentation strategies, all virtual compounds of the generated extant 
search space were given a rank. The latter was calculated using ),min(

hh BP δδ  as an 
overall quality indicator. The higher this number, the higher the overall quality –since 
considering both P and B as opposed to only P- of the generated compound. Then, the 
search space was ordered in the sense that the compound featuring the highest 

),min(
hh BP δδ  was given rank R=1. Now, for each experimentation strategy the average 

rank of all selected compounds +h was calculated. Then, the experimentation strategy 
featuring the lowest R  has the best overall quality selection power. Overall quality 
selection power is not observable in empirical practice. 
 
 Business performance. The business value distribution U(d) of an 
experimentation strategy was formally derived from the positive and negative predictive 
values +π and −π  following the formula derived in section 3.5.2. To calculate this 
business performance indicator for each experimentation strategy d, PharmaCo data 
needed to be provided for product Revenue R, project Clinical Development cost ClinC , 
project Discovery Research cost DC , and marginal probability p(H). Considering 
confidentiality fictitious numbers were used, which do reflect industrial reality. 
 

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Years after product launch

Do
lla

r V
al

ue
 (M

ill
io

n 
$)

 
 

Figure 4-7 Blockbuster Revenue profile (typical) 

 
 As depicted in Figure 4-7 product revenue R was assumed to build up 

linearly to one billion dollar a year, a typical industry average of a blockbuster product 
(Duyck, 2003). DC  and ClinC  amount to $20 and $400 million dollar respectively. 
These numbers represent typical project costs excluding the contribution for attrition 
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which is usually taken into account when specifying development costs (see e.g. 
(Kennedy, 1997; Duyck , 2003)).  
  

Marginal probability p(H) was characterized by taking the pharmaceutical R&D 
industry average for the discovery success rate; 1.0)( =+Hp  (Kennedy, 1997). Also a 
significantly lower value was tested43. 
    

4.4.2 The simulation 
 
The simulation experiment was conducted in two steps, exploring the research questions 
and checking for robustness of the results under various resources, scientific, and 
solution landscape induced constraints; a screening experiment and a confirmatory 
experiment was executed.  
 

# Runs Landscape Shape Funnel Shape Surrogate Marker Chain 
Tigthness 

Compare 
 Frontloaded 

Strategies 
 

1 - 9 
 

Tight landscape 
 

SD ref comp in 
class=0.1 

SD comp around ref 
comp=0.1 

 

Fixed at 
(HTS, H2L) 

= (5, 2) 

Varying between 
80%, 70%, 48% 

 
10 – 18 

 

Wide landscape 
 

SD ref comp in 
class=1 

SD comp around ref 
comp=1 

Fixed at 
(HTS, H2L) 

= (5, 2) 

Varying between 
80%, 70%, 48% 

Compare 
Parallelism 

 
19 – 30 

 

Tight landscape Varying between 
(1,1), (5,1), (5,2), (5,3) 

Varying between 
80%, 70%, 48% 

 
31 – 42 

 

Wide landscape Varying between 
(1,1), (5,1), (5,2), (5,3) 

Varying between 
80%, 70%, 48% 

Table 4-3 Screening simulation experiment block design 

 
As depicted in Table 4-3 above the screening experiment was composed of 42 

simulations of 100 runs each, comparing in a first block (runs 1-18) the three Concept 
Selection experimentation strategies –Old paradigm, Front-loading, Early Front-
loading- on their predictive performance and overall quality selection power. Three 
surrogate marker chains were used throughout this process. The funnel shape was held 
constant. The second block of simulations (runs 19-42) compared the impact of several 
parallel concept exploration types in an Early Front-loaded experimentation strategy on 

                                                 
43 See Table 4-2 
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their predictive performance and overall quality selection power. More specifically, the 
impact of using more or less classes in HTS and H2L was explored. Again, three 
surrogate marker chains were used throughout the process. 

 
The confirmatory experiment repeated specific simulation runs from the 

screening experiment (highlighted blocks in Table 4-3) using a wide solution landscape 
but now at 200 runs per simulation to get statistically significant results. Predictive 
performance and overall quality selection power distributions were calculated for each 
experimentation strategy. In addition to this, business performance distributions were 
derived from the simulation runs.     

 

4.4.3 Data analysis 
 
All experiments were executed within a Monte Carlo design. Random sampling of P, B, 
and T distributions led to a virtual compound population described by their potency, 
bio-availability and toxicity serving as input to the experimentation strategies. To 
generate statistically significant data, each simulation run was repeated 100 or 200 times 
–depending on whether it was a screening or confirmatory experiment- to obtain 
distributions of performance variables. Two-way and One-way ANOVA was used on 
these performance data series to test for significance of differences in predictive, 
business performance and overall quality selection power of experimentation strategies. 
 

4.5 SIMULATION MODEL BEHAVIOUR 
 
Two-way and One-way ANOVA results of the Monte Carlo simulation experiments 
indicate that the level of front-loading and the number of parallel solution concept 
explorations used, significantly influence predictive performance and overall quality 
selection power of the Concept Selection complexity-handling mode. These results are 
robust for varying levels of tightness of the surrogate marker chain. 
 

Furthermore, screening experiments showed that the simulation method used 
only provides meaningful results within an operating window determined by (1) the 
ruggedness of the solution landscape, and (2) the number of compounds selected in LO 
(p). Maximum ruggedness possible was the ‘Wide landscape’ described above. When 
standard deviations were allowed to move beyond the SD=1 range44, results became 
meaningless while remaining stable for all variations of input parameters. Also, when p 
was allowed to move below a certain threshold, results again became meaningless while 
remaining stable for all variations of input parameters. Therefore, confirmatory 
experiments were conducted at p=15 which does not reflect reality (where typically p=1 
to 3) but was the lowest value possible to get meaningful results. 

 
 

                                                 
44 SD=2, 3 as documented in Table 4-2 under ‘Additional Values Explored’ of ‘Shape of Extant Search 
Space’  
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In the following, simulation model behaviour during confirmatory experiments 
is examined in greater detail. Then, research propositions will be formulated based upon 
the results of this simulation study. This will be the basis for subsequent top-down 
theory generation. 

 

4.5.1 Influence of the level of front-loading on predictive, business 
performance and overall quality selection power   

 
Overall quality selection power. A two-way between-groups analysis of variance was 
conducted to explore the impact of the level of frontloading and varying degrees of 
tightness of the surrogate marker chain on the overall quality selection power of the 
experimentation strategy used during Concept Selection. SPSS results are depicted in 
Figure 4-8 and analysed after.  
 

2. STRAT

Dependent Variable: QUAL

157,253 5,572 142,868 171,638

128,239 5,624 113,720 142,757

123,461 5,582 109,050 137,871

STRAT
Old

FL

EFL

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

3. tightness

Dependent Variable: QUAL

124,560 5,503 110,352 138,768

131,209 5,630 116,673 145,744

153,184 5,643 138,615 167,752

tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 
 

Figure 4-8 Experimentation Strategy Quality two-way ANOVA results 
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Descriptive Statistics

Dependent Variable: QUAL

151,434523 95,6522092 97

152,559201 93,3541455 92

167,764105 148,3527104 96

157,298068 115,3397995 285

108,267404 46,4415822 97

126,235461 61,5801238 94

150,212852 124,3227385 89

127,632198 84,7048330 280

113,977257 50,8200279 98

114,830853 70,7344476 93

141,573571 106,0995471 93

123,293600 79,5909649 284

124,523486 70,4109750 292

131,114154 77,6277360 279

153,383597 127,7452894 278

136,139396 95,7060045 849

tightness
80%

70%

48%

Total

80%

70%

48%

Total

80%

70%

48%

Total

80%

70%

48%

Total

STRAT
Old

FL

EFL

Total

Mean Std. Deviation N

 
 
 
 
 
 
 
 

Tests of Between-Subjects Effects

Dependent Variable: QUAL

338817,226b 8 42352,153 4,789 ,000 ,044 38,312 ,990

15762879,8 1 15762879,84 1782,421 ,000 ,680 1782,421 1,000

190009,518 2 95004,759 10,743 ,000 ,025 21,486 ,957

126617,078 2 63308,539 7,159 ,001 ,017 14,317 ,813

18877,744 4 4719,436 ,534 ,711 ,003 2,135 ,061

7428556,902 840 8843,520

23502685,0 849

7767374,128 848

Source
Corrected Model

Intercept

STRAT

TIGHTNES

STRAT * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,044 (Adjusted R Squared = ,035)b. 

 
 

 

Figure 4-8 Experimentation Strategy Quality two-way ANOVA results (cont.) 
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Multiple Comparisons

Dependent Variable: QUAL

29,665870* 7,9128943 ,001 6,548915 52,782825

34,004467* 7,8847353 ,000 10,969777 57,039157

-29,665870* 7,9128943 ,001 -52,782825 -6,548915

4,338597 7,9197952 ,848 -18,798518 27,475712

-34,004467* 7,8847353 ,000 -57,039157 -10,969777

-4,338597 7,9197952 ,848 -27,475712 18,798518

29,665870* 7,9128943 ,001 5,585411 53,746329

34,004467* 7,8847353 ,000 10,009701 57,999233

-29,665870* 7,9128943 ,001 -53,746329 -5,585411

4,338597 7,9197952 ,861 -19,762863 28,440057

-34,004467* 7,8847353 ,000 -57,999233 -10,009701

-4,338597 7,9197952 ,861 -28,440057 19,762863

(J) strategy
Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

(I) strategy
Old

FL

EFL

Old

FL

EFL

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

Based on observed means.
The mean difference is significant at the ,01 level.*. 

 
 

Multiple Comparisons

Dependent Variable: Quality

-6,590668 7,8729431 ,680 -29,590908 16,409572

-28,860111* 7,8801809 ,001 -51,881496 -5,838725

6,590668 7,8729431 ,680 -16,409572 29,590908

-22,269443 7,9692175 ,015 -45,550942 1,012057

28,860111* 7,8801809 ,001 5,838725 51,881496

22,269443 7,9692175 ,015 -1,012057 45,550942

-6,590668 7,8729431 ,705 -30,549548 17,368212

-28,860111* 7,8801809 ,001 -52,841017 -4,879204

6,590668 7,8729431 ,705 -17,368212 30,549548

-22,269443 7,9692175 ,021 -46,521304 1,982419

28,860111* 7,8801809 ,001 4,879204 52,841017

22,269443 7,9692175 ,021 -1,982419 46,521304

(J) Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

(I) Tightness
80%

70%

48%

80%

70%

48%

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

Based on observed means.
The mean difference is significant at the ,01 level.*. 

 
Figure 4-8 Experimentation Strategy Quality two-way ANOVA results (cont.) 
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Figure 4-8 Experimentation Strategy Quality two-way ANOVA results (cont.) 

 
For each strategy (Old, FL, EFL) three degrees of tightness were considered; 

80%, 70%, and 48%. Referring to Figure 4-8 there was a statistically significant main 
effect for both levels of front-loading [F(2; 10.74), p= .000] and degrees of tightness 
[F(2; 7.16), p= .001]. However, the effect size was small (partial eta squared=.025 and 
.017 respectively). To increase confidence in simulation results both post-hoc 
comparisons using Tukey HSD and Scheffe’s were performed. Both tests indicated that 
Old Paradigm strategy (M=157.3; SE=5.57) performs significantly worse than Front-
loaded paradigm (M=128.2; SE=5.62) or Early Frontloaded (M=123.5; SE=5.58) 
experimentation strategies. However, Front-loaded and Early Front-loaded strategies do 
not differ significantly.  

 
Surrogate marker chain tightness negatively influences overall quality selection 

power from a certain minimum level of tightness of the chain. Both Tukey HSD and 
Scheffe’s tests indicate that 80% (M=124.6; SE=5.5) and 70% (M=131.2; SE=5.6) 
levels of chain tightness do not differ significantly. However, at 48% (M=153.2; 
SE=5.6) a statistically significant deterioration of performance is observed. 

 
The interaction effect [F(4; 0.53), p= .71] did not reach statistical significance. 

 
 Summarizing, these simulation results indicate that front-loaded strategies select 
overall better candidate compounds. This is true for differing levels of surrogate marker 
chain tightness.  
 
 



 114  
 

Predictive performance. A two-way between-groups analysis of variance was 
conducted to explore the impact of the level of frontloading and varying degrees of 
tightness of the surrogate marker chain on the positive and negative predictive 
performance of the experimentation strategy used during Concept Selection. SPSS 
results are depicted in Figure 4-9 and analysed after.  

 
 

1. strategy

Dependent Variable: pi+

,994 ,002 ,990 ,998

,995 ,002 ,991 ,999

,993 ,002 ,989 ,997

strategy
Old

FL

EFL

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
2. tightness

Dependent Variable: pi+

,996 ,001 ,992 1,000

,995 ,002 ,991 ,999

,991 ,002 ,987 ,995

tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

3. strategy * tightness

Dependent Variable: pi+

,994 ,003 ,987 1,001

,996 ,003 ,989 1,003

,992 ,003 ,985 ,998

,995 ,003 ,989 1,002

,997 ,003 ,990 1,003

,994 ,003 ,987 1,001

,998 ,003 ,991 1,005

,993 ,003 ,986 1,000

,988 ,003 ,981 ,994

tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

strategy
Old

FL

EFL

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

Figure 4-9 Predictive performance two-way ANOVA results (n=100) 
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Tests of Between-Subjects Effects

Dependent Variable: pi+

,007b 8 ,001 1,379 ,202 ,013 11,028 ,394

837,961 1 837,961 1283919,786 ,000 ,999 1283919,786 1,000

,001 2 ,000 ,690 ,502 ,002 1,380 ,055

,004 2 ,002 2,851 ,058 ,007 5,702 ,322

,003 4 ,001 ,987 ,414 ,005 3,948 ,135

,548 840 ,001

839,280 849

,555 848

Source
Corrected Model

Intercept

STRAT

TIGHTNES

STRAT * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,013 (Adjusted R Squared = ,004)b. 

 
 

1. strategy

Dependent Variable: pi-

,057 ,001 ,054 ,060

,055 ,001 ,052 ,058

,054 ,001 ,051 ,056

strategy
Old

FL

EFL

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
2. tightness

Dependent Variable: pi-

,055 ,001 ,052 ,058

,057 ,001 ,054 ,060

,054 ,001 ,051 ,057

tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
3. strategy * tightness

Dependent Variable: pi-

,058 ,002 ,053 ,062

,058 ,002 ,053 ,063

,055 ,002 ,050 ,060

,053 ,002 ,048 ,058

,058 ,002 ,053 ,062

,055 ,002 ,050 ,059

,054 ,002 ,049 ,059

,055 ,002 ,050 ,060

,053 ,002 ,048 ,057

tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

strategy
Old

FL

EFL

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

Figure 4-9 Predictive performance two-way ANOVA results (n=100) (cont.) 
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Tests of Between-Subjects Effects

Dependent Variable: pi-

,003b 8 ,000 1,181 ,307 ,010 9,451 ,316

2,743 1 2,743 7891,973 ,000 ,899 7891,973 1,000

,001 2 ,001 2,048 ,130 ,005 4,096 ,209

,001 2 ,001 1,737 ,177 ,004 3,473 ,168

,001 4 ,000 ,470 ,757 ,002 1,882 ,053

,310 891 ,000

3,056 900

,313 899

Source
Corrected Model

Intercept

STRAT

TIGHTNES

STRAT * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,010 (Adjusted R Squared = ,002)b. 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
Figure 4-9 Predictive performance two-way ANOVA results (n=100) (cont.) 
 
For each strategy (Old, FL, EFL) three degrees of tightness were considered; 

80%, 70%, and 48%. Referring to Figure 4-9 during the screening experiment at n=100, 
neither of both main effects for both levels of front-loading nor degrees of tightness 
reached statistical significance; strategy type [F(2; 0.69), p= .5], tightness level [F(2; 
2.85), p= .06], and interaction effect [F(4; 0.99), p= .41] for positive predictive 
performance, nor strategy type [F(2; 2.05), p= .13], tightness level [F(2; 1.74), p= .18] 
or interaction effect [F(2; 0.47), p= .76] for negative predictive performance.  

 
Visual inspection of the estimated marginal means plots in Figure 4-9 above 

does indicate a slightly raising trend for positive predictive performance for front-
loaded strategies, deteriorated by lowering levels of surrogate marker chain tightness. 
Also, a downward trend is observed for negative predictive value towards front-loaded 
strategies, impacted by the surrogate marker chain tightness. Also, from the descriptive 
statistics table in Figure 4-9 above, it becomes clear that for the positive predictive 
value the 95% confidence intervals for 80% (M=0.996; interval 0.993-0.999) and 70% 
(M=0.995; interval 0.992-0.998) are overlapping where the interval for 48% (M=0.991; 
interval 0.988-0.994) is below, indicating a deteriorating effect of surrogate marker 
chain tightness on positive predictive performance starting from a certain level.  
Conversely, the negative predictive value does not seem to be negatively impacted by 
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lowering levels of surrogate marker chain tightness since descriptors for 80% 
(M=0,055; interval 0.053-0.057), 70% (M=0.057; interval 0.055-0.059), and 48% 
(M=0.054; interval 0.052-0.056) all share about the same confidence interval. 

 
Summarizing, the screening experiment indicates that positive predictive 

performance is negatively impacted by falling levels of surrogate marker chain 
tightness. Negative predictive performance does not seem to be impacted by the latter. 
However, due to the very small differences between Old Paradigm, Front-loaded 
paradigm and Early Front-loading simulation run descriptors, none of these effects 
indicate conclusive statistical significance. Therefore, since being conclusive about 
predictive performance of experimentation strategies is crucial for developing theory in 
my work, in the following one-way ANOVA confirmatory experiment the number of 
runs was elevated to n=200. Now, the solution landscape was fixed at wide and the 
surrogate marker chain tightness set to 70%. The latter tightness was preferred by the 
PharmaCo team since it represents best the capabilities of the present bio-chemical 
scientific reality. The choice for the wide landscape (SD reference compound in class; 
SD of compound around reference compound45) = (1; 1) was given by the limitations of 
the simulation method used. To the latter, the screening experiment had shown that very 
tight landscapes (0.1; 0.1) or very wide landscapes (4; 2) led to non-discriminating 
results between different experimentation strategies’ performance variables. 

  
So, finally a one-way between-groups analysis of variance was conducted in a 

confirmatory simulation experiment to probe for the impact of the level of frontloading 
on the business, positive and negative predictive performance of the experimentation 
strategy used during Concept Selection.  

 
Descriptives

200 ,974752 ,0504591 ,0035680 ,967716 ,981788 ,6711 1,0000

199 ,992351 ,0266486 ,0018891 ,988626 ,996077 ,7522 1,0000

200 ,992737 ,0364334 ,0025762 ,987657 ,997817 ,5156 1,0000

599 ,986604 ,0399337 ,0016316 ,983400 ,989809 ,5156 1,0000

,0391058 ,0015978 ,983466 ,989742

,0059344 ,961071 1,012138 ,0000980

200 ,081718 ,0355738 ,0025154 ,076758 ,086679 ,0131 ,2201

200 ,080827 ,0302083 ,0021360 ,076615 ,085039 ,0113 ,1904

200 ,080278 ,0281459 ,0019902 ,076353 ,084202 ,0193 ,1605

600 ,080941 ,0314185 ,0012827 ,078422 ,083460 ,0113 ,2201

,0314654 ,0012846 ,078418 ,083464

,0012846a ,075414a ,086468a -,0000044

Old

FL

EFL

Total

Fixed Effects

Random Effects

Model

Old

FL

EFL

Total

Fixed Effects

Random Effects

Model

PIPLUS

PIMINUS

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Between-
Component

Variance

Warning: Between-component variance is negative. It was replaced by 0.0 in computing this random effects measure.a. 

 
Test of Homogeneity of Variances

23,189 2 596 ,000

3,542 2 597 ,030

PIPLUS

PIMINUS

Levene Statistic df1 df2 Sig.

 
 

Figure 4-10 Predictive performance of Experimentation Strategies one-way ANOVA results 
(n=200) 

                                                 
45 see Table 4-2 
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ANOVA

,042 2 ,021 13,794 ,000

,032 1 ,032 21,151 ,000

,032 1 ,032 21,151 ,000

,010 1 ,010 6,437 ,011

,911 596 ,002

,954 598

,000 2 ,000 ,107 ,899

,000 1 ,000 ,004 ,950

,000 1 ,000 ,210 ,647

,591 597 ,001

,591 599

(Combined)

Unweighted

Weighted

Deviation

Contrast

Linear
Term

Between
Groups

Within Groups

Total

(Combined)

Unweighted

Weighted

Deviation

Contrast

Linear
Term

Between
Groups

Within Groups

Total

PIPLUS

PIMINUS

Sum of Squares df Mean Square F Sig.

 
Multiple Comparisons

-,017599* ,0039155 ,000 -,029051 -,006148

-,017985* ,0039106 ,000 -,029422 -,006548

,017599* ,0039155 ,000 ,006148 ,029051

-,000386 ,0039155 ,995 -,011837 ,011066

,017985* ,0039106 ,000 ,006548 ,029422

,000386 ,0039155 ,995 -,011066 ,011837

-,017599* ,0039155 ,000 -,029528 -,005670

-,017985* ,0039106 ,000 -,029899 -,006071

,017599* ,0039155 ,000 ,005670 ,029528

-,000386 ,0039155 ,995 -,012315 ,011543

,017985* ,0039106 ,000 ,006071 ,029899

,000386 ,0039155 ,995 -,011543 ,012315

,000892 ,0031465 ,957 -,008311 ,010094

,001441 ,0031465 ,891 -,007762 ,010643

-,000892 ,0031465 ,957 -,010094 ,008311

,000549 ,0031465 ,983 -,008654 ,009752

-,001441 ,0031465 ,891 -,010643 ,007762

-,000549 ,0031465 ,983 -,009752 ,008654

,000892 ,0031465 ,961 -,008695 ,010478

,001441 ,0031465 ,901 -,008146 ,011027

-,000892 ,0031465 ,961 -,010478 ,008695

,000549 ,0031465 ,985 -,009037 ,010135

-,001441 ,0031465 ,901 -,011027 ,008146

-,000549 ,0031465 ,985 -,010135 ,009037

(J) STRATEGY
Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

(I) STRATEGY
Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Old

FL

EFL

Tukey HSD

Scheffe

Tukey HSD

Scheffe

Dependent Variable
PIPLUS

PIMINUS

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

The mean difference is significant at the .01 level.*. 

 
Figure 4-10 Predictive performance of Experimentation Strategies one-way ANOVA results 

(n=200) (cont.) 
 



 119  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10 Predictive performance of Experimentation Strategies one-way ANOVA results 
(n=200) (cont.) 

 
Referring to Figure 4-10, now there was a statistically significant difference at 

the p<.01 level for positive predictive performance of experimentation strategies. 
Although a downward trend towards front-loaded strategies was observed congruent 
with the screening experiment, negative predictive performance did not differ 
significantly [F(2, 597)=0.107; p=0.899] across the three strategies considered.  

 
On positive predictive performance Old Paradigm, Front-loading and Early 

Front-loading differed significantly [F(2, 596)=13,79; p<.01] although the actual 
differences in mean scores are quite small. Also, this result needs to be moderated by 
the fact that the effect size, calculated using eta squared, was 0.044 indicating a small to 
medium impact of the independent variables on the outcome variable. Levene’s test 
showed non-homogeneity of variance across the three groups –which I consider to be 
normal considering the different experimentation strategy types- implying the need for 
studying differences between groups at the p<.01 level of significance. Both Tukey’s 
HSD and Scheffe’s post-hoc comparisons indicated that Old Paradigm (M=0.974; 
SD=0.05) is significantly outperformed by Front-loaded paradigm (M=0.992; 
SD=0.026), and Early Front-loading (M=0.993; SD=0.036) at the p<.01 level of 
significance for positive predictive performance. Front-loaded paradigm and Early 
Front-loading did not differ significantly.  

 
Business performance. A one-way between-group analysis of variance was 

conducted in a confirmatory simulation experiment to probe for the impact of the level 
of frontloading on the business performance of the experimentation strategy used during 
Concept Selection (see Figure 4-11 for results). There was a statistically significant 
difference at the p<.01 level for the different experimentation strategies. Financial 
assumptions used to perform ANOVA are discussed above. 

 
Referring to Figure 4-11 Old Paradigm, Front-loaded paradigm and Early Front-

loading differed significantly [F(2, 596)=12.9; p<.01] on business performance. This 
result needs to be moderated by the fact that the effect size, calculated using eta 
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squared, was 0.041 indicating a small to medium impact of the independent variables on 
the outcome variable. Levene’s test showed non-homogeneity of variance across the 
three groups –which I consider to be normal considering the different experimentation 
strategy types- implying the need for studying differences between groups at the p<.01 
level of significance. 

 
Both Tukey’s HSD and Scheffe’s post-hoc comparisons indicated that Old 

Paradigm (M=2241.9; SD=137.8) is significantly outperformed by Front-loaded 
paradigm (M=2287.3; SD=78.2), and Early Front-loading (M=2290; SD=94) at the 
p<.01 level of significance for business performance. Front-loading and Early Front-
loading did not differ significantly although the difference does amount to $2.7M in 
favour of Early Front-loading using the abovementioned assumptions.  
 

Descriptives

Business Value ($)

200 2241,963057 137,7652767 9,7414761 2222,753289 2261,172825 1452,3120 2406,0230

199 2287,393901 78,2267145 5,5453448 2276,458385 2298,329418 1733,9900 2440,0472

200 2290,065872 94,0278671 6,6487742 2276,954778 2303,176966 1190,2434 2424,8277

599 2273,117149 108,5019251 4,4332685 2264,410480 2281,823817 1190,2434 2440,0472

106,4050028 4,3475906 2264,578689 2281,655609

15,6156595 2205,928389 2340,305909 674,8380740

Old Paradigm

FL

EFL

Total

Fixed Effects

Random Effects

Model

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Between-
Component

Variance

 
 
 

Test of Homogeneity of Variances

Business Value ($)

18,609 2 596 ,000
Levene Statistic df1 df2 Sig.

 
 
 

ANOVA

Business Value ($)

292128,636 2 146064,318 12,901 ,000

231388,079 1 231388,079 20,437 ,000

231388,079 1 231388,079 20,437 ,000

60740,557 1 60740,557 5,365 ,021

6747926,675 596 11322,025

7040055,310 598

(Combined)

Unweighted

Weighted

Deviation

Linear
Term

Between
Groups

Within Groups

Total

Sum of Squares df Mean Square F Sig.

 
 
Figure 4-11 Business Performance of  Experimentation Strategies one-way ANOVA results (n=200) 
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Multiple Comparisons

Dependent Variable: Business Value ($)

-45,430844* 10,6538594 ,000 -76,590051 -14,271637

-48,102815* 10,6405003 ,000 -79,222951 -16,982679

45,430844* 10,6538594 ,000 14,271637 76,590051

-2,671970 10,6538594 ,966 -33,831177 28,487236

48,102815* 10,6405003 ,000 16,982679 79,222951

2,671970 10,6538594 ,966 -28,487236 33,831177

-45,430844* 10,6538594 ,000 -77,889073 -12,972616

-48,102815* 10,6405003 ,000 -80,520343 -15,685286

45,430844* 10,6538594 ,000 12,972616 77,889073

-2,671970 10,6538594 ,969 -35,130199 29,786258

48,102815* 10,6405003 ,000 15,685286 80,520343

2,671970 10,6538594 ,969 -29,786258 35,130199

(J) STRATEGY
Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

(I) STRATEGY
Old Paradigm

FL

EFL

Old Paradigm

FL

EFL

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

The mean difference is significant at the .01 level.*. 
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Figure 4-11 Business Performance of  Experimentation Strategies one-way ANOVA results (n=200) 

(cont.) 
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4.5.2 Influence of concept exploration funnel shape on predictive, 
business performance and overall quality selection power 
 

Overall quality selection power.  A two-way between-groups analysis of variance was 
conducted to explore the impact of the funnel shape or level of parallelism within an 
early frontloaded (EFL) experimentation strategy and varying degrees of tightness of 
the surrogate marker chain on the overall quality selection power of the experimentation 
strategy used during Concept Selection. SPSS results are depicted in Figure 4-12.  

 
1. CLASSES

Dependent Variable: QUAL

152,755 5,505 138,551 166,960

134,296 5,450 120,232 148,360

132,251 5,426 118,251 146,252

122,966 5,437 108,938 136,995

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 

2. Tightness

Dependent Variable: QUAL

123,649 4,657 111,632 135,667

133,668 4,657 121,652 145,684

149,384 4,855 136,858 161,911

Tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 

3. CLASSES * Tightness

Dependent Variable: QUAL

137,642 9,362 113,484 161,799

143,684 9,264 119,779 167,588

176,940 9,963 151,232 202,649

117,166 9,169 93,507 140,825

144,030 9,412 119,743 168,317

141,692 9,732 116,582 166,802

117,109 9,412 92,823 141,396

127,460 9,264 103,555 151,364

152,185 9,515 127,633 176,737

122,680 9,313 98,650 146,710

119,499 9,313 95,469 143,528

126,720 9,622 101,893 151,546

Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 

Figure 4-12 Experimentation Strategy Quality Parallel Paths two-way ANOVA results (n=100)  
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Tests of Between-Subjects Effects

Dependent Variable: QUAL

301987,482b 11 27453,407 3,332 ,000 ,032 36,653 ,975

20357517,6 1 20357517,58 2470,844 ,000 ,692 2470,844 1,000

128092,145 3 42697,382 5,182 ,001 ,014 15,547 ,800

121907,318 2 60953,659 7,398 ,001 ,013 14,796 ,829

60853,500 6 10142,250 1,231 ,288 ,007 7,386 ,261

9046526,054 1098 8239,095

29587305,9 1110

9348513,536 1109

Source
Corrected Model

Intercept

CLASSES

TIGHTNES

CLASSES * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,032 (Adjusted R Squared = ,023)b. 

 
 

 

Multiple Comparisons

Dependent Variable: QUAL

-10,027712 6,5851087 ,281 -29,253338 9,197914

-25,376119* 6,7247378 ,000 -45,009401 -5,742837

10,027712 6,5851087 ,281 -9,197914 29,253338

-15,348407 6,7247378 ,059 -34,981689 4,284875

25,376119* 6,7247378 ,000 5,742837 45,009401

15,348407 6,7247378 ,059 -4,284875 34,981689

-10,027712 6,5851087 ,314 -30,054540 9,999116

-25,376119* 6,7247378 ,001 -45,827592 -4,924647

10,027712 6,5851087 ,314 -9,999116 30,054540

-15,348407 6,7247378 ,074 -35,799880 5,103065

25,376119* 6,7247378 ,001 4,924647 45,827592

15,348407 6,7247378 ,074 -5,103065 35,799880

(J) Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

(I) Tightness
80%

70%

48%

80%

70%

48%

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

Based on observed means.
The mean difference is significant at the ,01 level.*. 

 
 

Figure 4-12 Experimentation Strategy Quality Parallel Paths two-way ANOVA results (n=100) 
(cont.) 
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Multiple Comparisons

Dependent Variable: QUAL

17,885943 7,7341364 ,096 -6,247854 42,019739

19,656652 7,7204386 ,054 -4,434401 43,747706

28,828857* 7,7272660 ,001 4,716499 52,941216

-17,885943 7,7341364 ,096 -42,019739 6,247854

1,770710 7,6852046 ,996 -22,210399 25,751818

10,942915 7,6920633 ,485 -13,059596 34,945425

-19,656652 7,7204386 ,054 -43,747706 4,434401

-1,770710 7,6852046 ,996 -25,751818 22,210399

9,172205 7,6782904 ,630 -14,787328 33,131739

-28,828857* 7,7272660 ,001 -52,941216 -4,716499

-10,942915 7,6920633 ,485 -34,945425 13,059596

-9,172205 7,6782904 ,630 -33,131739 14,787328

17,885943 7,7341364 ,149 -8,225752 43,997637

19,656652 7,7204386 ,091 -6,408796 45,722101

28,828857* 7,7272660 ,003 2,740358 54,917357

-17,885943 7,7341364 ,149 -43,997637 8,225752

1,770710 7,6852046 ,997 -24,175783 27,717203

10,942915 7,6920633 ,568 -15,026734 36,912564

-19,656652 7,7204386 ,091 -45,722101 6,408796

-1,770710 7,6852046 ,997 -27,717203 24,175783

9,172205 7,6782904 ,699 -16,750945 35,095355

-28,828857* 7,7272660 ,003 -54,917357 -2,740358

-10,942915 7,6920633 ,568 -36,912564 15,026734

-9,172205 7,6782904 ,699 -35,095355 16,750945

(J) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(I) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

Based on observed means.
The mean difference is significant at the ,01 level.*. 

 
Figure 4-12 Experimentation Strategy Quality Parallel Paths two-way ANOVA results (n=100) 

(cont.) 
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Figure 4-12 Experimentation Strategy Quality Parallel Paths two-way ANOVA results (n=100) 

(cont.) 
 
Referring to Figure 4-12, for each funnel shaping strategy, modelled by the level 

of parallelism used as expressed by the number of classes evaluated during HTS and 
H2L-LO, three degrees of tightness were considered; 80%, 70%, and 48%. There was a 
statistically significant main effect for both levels of parallelism [F(3; 5.18), p= .001] 
and degrees of tightness [F(2; 7.39), p= .001]. However, the effect size was small 
(partial eta squared=.014 and .013 respectively). Post-hoc comparisons using Tukey 
HSD and Scheffe’s tests both indicated that a (HTS; H2L-LO)=(1; 1) funnelling 
strategy for Early Front-loading (M=152.7; SE=5.5) performs significantly worse than a 
(5; 3) strategy (M=122.9; SE=5.4). There is no significant difference between a (5; 1), a 
(5; 2), and a (5; 3) funnelling strategy, meaning a minimum difference in the number of 
chemical classes assessed is necessary to increase significantly overall quality selection 
results of an experimentation strategy.  

 
Surrogate marker chain tightness negatively influences overall quality selection 

power from a certain minimum level of tightness of the chain. Both Tukey HSD and 
Scheffe’s tests indicate that 80% (M=123.6; SE=4.6) and 70% (M=133.7; SE=4.6) 
levels of chain tightness do not differ significantly. However, at 48% (M=149.4; 
SE=4.8) a statistically significant deterioration of performance is observed. 

 
The interaction effect [F(6; 1.23), p= .29] did not reach statistical significance. 

 
 Summarizing, these simulation results indicate that increasing the number of 
classes assessed in HTS and H2L-LO in front-loaded strategies selects overall better 
candidate compounds. This is true for differing levels of surrogate marker chain 
tightness. Performance deteriorates significantly starting from a minimal level of 
surrogate marker chain tightness. 
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Predictive performance.  A two-way between-groups analysis of variance was 
conducted to explore the impact of the funnel shape or level of parallelism within a 
frontloaded experimentation strategy and varying degrees of tightness of the surrogate 
marker chain on the predictive performance power of the experimentation strategy used 
during Concept Selection (see Figure 4-13).  

 
1. CLASSES

Dependent Variable: pi+

,991 ,001 ,988 ,995

,991 ,001 ,988 ,994

,994 ,001 ,991 ,998

,995 ,001 ,992 ,999

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
2. Tightness

Dependent Variable: pi+

,996 ,001 ,993 ,999

,993 ,001 ,990 ,996

,990 ,001 ,987 ,993

Tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

3. CLASSES * Tightness

Dependent Variable: pi+

,994 ,002 ,989 1,000

,993 ,002 ,987 ,999

,987 ,002 ,980 ,993

,995 ,002 ,989 1,000

,990 ,002 ,984 ,996

,989 ,002 ,982 ,995

,997 ,002 ,992 1,003

,994 ,002 ,988 1,000

,992 ,002 ,986 ,998

,997 ,002 ,991 1,002

,995 ,002 ,989 1,001

,994 ,002 ,988 1,000

Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 

Figure 4-13 Predictive performance Parallel Paths Strategies two-way ANOVA results (n=100)  
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Tests of Between-Subjects Effects

Dependent Variable: pi+

,010b 11 ,001 1,957 ,029 ,019 21,526 ,755

1092,023 1 1092,023 2246711,766 ,000 1,000 2246711,766 1,000

,004 3 ,001 2,479 ,060 ,007 7,436 ,377

,006 2 ,003 6,124 ,002 ,011 12,247 ,730

,001 6 ,000 ,413 ,870 ,002 2,481 ,057

,534 1098 ,000

1095,078 1110

,544 1109

Source
Corrected Model

Intercept

CLASSES

TIGHTNES

CLASSES * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,019 (Adjusted R Squared = ,009)b. 

 
 

 

 

 

Multiple Comparisons

Dependent Variable: pi+

,002947 ,0015994 ,156 -,001722 ,007617

,005618* ,0016333 ,002 ,000849 ,010387

-,002947 ,0015994 ,156 -,007617 ,001722

,002671 ,0016333 ,231 -,002098 ,007439

-,005618* ,0016333 ,002 -,010387 -,000849

-,002671 ,0016333 ,231 -,007439 ,002098

,002947 ,0015994 ,184 -,001917 ,007812

,005618* ,0016333 ,003 ,000651 ,010585

-,002947 ,0015994 ,184 -,007812 ,001917

,002671 ,0016333 ,263 -,002297 ,007638

-,005618* ,0016333 ,003 -,010585 -,000651

-,002671 ,0016333 ,263 -,007638 ,002297

(J) Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

(I) Tightness
80%

70%

48%

80%

70%

48%

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

Based on observed means.
The mean difference is significant at the ,01 level.*. 

 
Figure 4-13 Predictive performance Parallel Paths Strategies two-way ANOVA results (n=100) 

(cont.) 
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1. CLASSES

Dependent Variable: pi-

,056 ,001 ,053 ,058

,055 ,001 ,053 ,058

,054 ,001 ,052 ,057

,055 ,001 ,052 ,058

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

2. Tightness

Dependent Variable: pi-

,056 ,001 ,054 ,059

,055 ,001 ,053 ,058

,054 ,001 ,051 ,056

Tightness
80%

70%

48%

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

3. CLASSES * Tightness

Dependent Variable: pi-

,054 ,002 ,050 ,059

,057 ,002 ,052 ,062

,055 ,002 ,051 ,060

,060 ,002 ,055 ,065

,054 ,002 ,049 ,058

,053 ,002 ,048 ,058

,055 ,002 ,050 ,059

,055 ,002 ,050 ,060

,053 ,002 ,049 ,058

,057 ,002 ,052 ,062

,056 ,002 ,051 ,061

,053 ,002 ,048 ,058

Tightness
80%

70%

48%

80%

70%

48%

80%

70%

48%

80%

70%

48%

CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

Mean Std. Error Lower Bound Upper Bound

99% Confidence Interval

 
 

Figure 4-13 Predictive performance Parallel Paths Strategies two-way ANOVA results (n=100) 
(cont.) 
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Tests of Between-Subjects Effects

Dependent Variable: pi-

,004b 11 ,000 1,185 ,292 ,011 13,035 ,421

3,648 1 3,648 10718,964 ,000 ,900 10718,964 1,000

,000 3 ,000 ,296 ,828 ,001 ,888 ,030

,002 2 ,001 2,215 ,110 ,004 4,430 ,232

,003 6 ,000 1,286 ,261 ,006 7,717 ,278

,404 1188 ,000

4,057 1200

,409 1199

Source
Corrected Model

Intercept

CLASSES

TIGHTNES

CLASSES * TIGHTNES

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter Observed Power a

Computed using alpha = ,01a. 

R Squared = ,011 (Adjusted R Squared = ,002)b. 

 
 

 

 

 

 

 

 

 

 

 
 
 

Figure 4-13 Predictive performance Parallel Paths Strategies two-way ANOVA results (n=100) 
(cont.) 

 
Referring to Figure 4-13 above, for each funnel shaping strategy three degrees of 

tightness were considered; 80%, 70%, and 48%. During the screening experiment at 
n=100, only the tightness level [F(2; 6.12), p= .002] for positive predictive performance 
reached statistical significance. Number of classes [F(3; 2.48), p= 0.06], nor interaction 
effects [F(6; 0.413), p= 0.87] were significant for positive predictive performance. 
Number of classes [F(3; 0.29), p= .83], nor tightness level [F(2; 2.2), p= 0.11] or 
interaction effect [F(6; 1.29), p= 0.26] were significant for negative predictive 
performance.  

 
Post-hoc comparisons using Tukey HSD and Scheffe’s tests indicated tightness 

levels of 80% (M=0.996, SE=0.001) and 48% (M=0.99, SE=0.001) were significantly 
different impacting positive predictive performance across all front-loaded funnel 
shaping strategies.  

 
Summarizing, the screening experiment indicates that positive predictive 

performance across all funnel shaping strategies is negatively impacted by falling levels 
of surrogate marker chain tightness. Negative predictive performance does not seem to 
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be impacted by the latter. However, due to the very small differences between the 
various simulation run descriptors, none of these effects indicates conclusive statistical 
significance. Therefore, since being conclusive about predictive performance of 
experimentation strategies is crucial for developing theory in my work, in the following 
one-way ANOVA confirmatory experiment the number of runs was elevated to n=200. 
Now, the solution landscape was fixed at wide and the surrogate marker chain tightness 
set to 70%. The latter tightness was preferred by the PharmaCo team since it represents 
best the capabilities of the present bio-chemical scientific reality. The choice for the 
wide landscape (SD reference compound in class; SD of compound around reference 
compound46) = (1; 1) was given by the limitations of the simulation method used. To 
the latter, the screening experiment had shown that very tight landscapes (0.1; 0.1) or 
very wide landscapes (4; 2) led to non-discriminating results between different 
experimentation strategies’ performance variables. 

 
So, finally a one-way between-groups analysis of variance was conducted in a 

confirmatory simulation experiment to probe for the impact of various frontloaded 
funnel shaping strategies on the business, positive and negative predictive performance 
of the experimentation strategy used during Concept Selection. SPSS results are 
depicted in Figure 4-14. 

 
 

Descriptives

pi+

173 ,968315 ,0402066 ,0030569 ,962281 ,974348 ,8255 1,0000

200 ,974378 ,0249307 ,0017629 ,970901 ,977854 ,9243 1,0000

200 ,954662 ,0367375 ,0025977 ,949539 ,959785 ,8469 1,0000

200 ,949688 ,0295143 ,0020870 ,945573 ,953803 ,8650 ,9805

773 ,961532 ,0345609 ,0012431 ,959091 ,963972 ,8255 1,0000

,0331224 ,0011913 ,959193 ,963870

,0058301 ,942978 ,980086 ,0001298

(1,1)

(5,1)

(5,2)

(5,3)

Total

Fixed Effects

Random Effects

Model

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Between-
Component

Variance

 
 
 

Test of Homogeneity of Variances

pi+

8,260 3 769 ,000
Levene Statistic df1 df2 Sig.

 
 

Figure 4-14 Predictive performance of Front-loaded Funnel shaping strategies one-way ANOVA 
results (n=200) 

 

                                                 
46 see Table 4-2 
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ANOVA

pi+

,078 3 ,026 23,837 ,000

,053 1 ,053 48,671 ,000

,057 1 ,057 51,617 ,000

,022 2 ,011 9,947 ,000

,844 769 ,001

,922 772

(Combined)

Unweighted

Weighted

Deviation

Linear
Term

Between
Groups

Within Groups

Total

Sum of Squares df Mean Square F Sig.

 
Multiple Comparisons

Dependent Variable: pi+

-,006063 ,0034390 ,292 -,016805 ,004679

,013653* ,0034390 ,000 ,002911 ,024394

,018627* ,0034390 ,000 ,007885 ,029368

,006063 ,0034390 ,292 -,004679 ,016805

,019716* ,0033122 ,000 ,009370 ,030061

,024689* ,0033122 ,000 ,014344 ,035035

-,013653* ,0034390 ,000 -,024394 -,002911

-,019716* ,0033122 ,000 -,030061 -,009370

,004974 ,0033122 ,437 -,005372 ,015320

-,018627* ,0034390 ,000 -,029368 -,007885

-,024689* ,0033122 ,000 -,035035 -,014344

-,004974 ,0033122 ,437 -,015320 ,005372

-,006063 ,0034390 ,376 -,017685 ,005560

,013653* ,0034390 ,001 ,002030 ,025275

,018627* ,0034390 ,000 ,007004 ,030249

,006063 ,0034390 ,376 -,005560 ,017685

,019716* ,0033122 ,000 ,008522 ,030909

,024689* ,0033122 ,000 ,013496 ,035883

-,013653* ,0034390 ,001 -,025275 -,002030

-,019716* ,0033122 ,000 -,030909 -,008522

,004974 ,0033122 ,522 -,006220 ,016168

-,018627* ,0034390 ,000 -,030249 -,007004

-,024689* ,0033122 ,000 -,035883 -,013496

-,004974 ,0033122 ,522 -,016168 ,006220

(J) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(I) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

The mean difference is significant at the .01 level.*. 

 
Figure 4-14 Predictive performance of Front-loaded Funnel shaping strategies one-way ANOVA 

results (n=200) (cont.) 
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Descriptives

pi-

200 ,126785 ,0180144 ,0012738 ,124273 ,129297 ,0932 ,1642

200 ,125469 ,0252276 ,0017839 ,121951 ,128986 ,0911 ,2140

200 ,118608 ,0176580 ,0012486 ,116146 ,121071 ,0836 ,1581

200 ,111824 ,0215595 ,0015245 ,108818 ,114830 ,0635 ,1599

800 ,120671 ,0216457 ,0007653 ,119169 ,122174 ,0635 ,2140

,0208421 ,0007369 ,119225 ,122118

,0034511 ,109688 ,131654 ,0000455

(1,1)

(5,1)

(5,2)

(5,3)

Total

Fixed Effects

Random Effects

Model

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Between-
Component

Variance

 
Test of Homogeneity of Variances

pi-

5,602 3 796 ,001
Levene Statistic df1 df2 Sig.

 
 

ANOVA

pi-

,029 3 ,010 21,935 ,000

,027 1 ,027 61,635 ,000

,002 2 ,001 2,084 ,125

,346 796 ,000

,374 799

(Combined)

Contrast

Deviation

Linear
Term

Between
Groups

Within Groups

Total

Sum of Squares df Mean Square F Sig.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-14 Predictive performance of Front-loaded Funnel shaping strategies one-way ANOVA 
results (n=200) (cont.) 
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Multiple Comparisons

Dependent Variable: pi-

,001316 ,0020842 ,922 -,005193 ,007826

,008176* ,0020842 ,001 ,001667 ,014686

,014961* ,0020842 ,000 ,008452 ,021470

-,001316 ,0020842 ,922 -,007826 ,005193

,006860* ,0020842 ,006 ,000351 ,013369

,013645* ,0020842 ,000 ,007135 ,020154

-,008176* ,0020842 ,001 -,014686 -,001667

-,006860* ,0020842 ,006 -,013369 -,000351

,006785* ,0020842 ,006 ,000275 ,013294

-,014961* ,0020842 ,000 -,021470 -,008452

-,013645* ,0020842 ,000 -,020154 -,007135

-,006785* ,0020842 ,006 -,013294 -,000275

,001316 ,0020842 ,940 -,005727 ,008359

,008176* ,0020842 ,002 ,001134 ,015219

,014961* ,0020842 ,000 ,007918 ,022004

-,001316 ,0020842 ,940 -,008359 ,005727

,006860 ,0020842 ,013 -,000183 ,013903

,013645* ,0020842 ,000 ,006602 ,020688

-,008176* ,0020842 ,002 -,015219 -,001134

-,006860 ,0020842 ,013 -,013903 ,000183

,006785 ,0020842 ,015 -,000258 ,013828

-,014961* ,0020842 ,000 -,022004 -,007918

-,013645* ,0020842 ,000 -,020688 -,006602

-,006785 ,0020842 ,015 -,013828 ,000258

(J) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(I) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval

The mean difference is significant at the .01 level.*. 

 
Figure 4-14 Predictive performance of Front-loaded Funnel shaping strategies one-way ANOVA 

results (n=200) (cont.) 
 

Referring to Figure 4-14, now positive [F(3, 769)=23,84; p<.01] and negative 
[F(3, 796)=21.93; p<.01] predictive performance for the various front-loaded funnel 
shaping strategies differed significantly although the actual differences in mean scores 
are quite small. Effect size, calculated using eta squared, was 0.084 and 0.077 for 
positive and negative predictive performance respectively indicating a medium impact 
of the independent variables on the outcome variables. Levene’s test showed non-
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homogeneity of variance across the three groups –which I consider to be normal 
considering the different experimentation strategy types- implying the need for studying 
differences between groups at the p<.01 level of significance. 

 
Both Tukey’s HSD and Scheffe’s post-hoc comparisons for positive predictive 

performance indicated that a (1; 1) and a (5; 1) funnel shaping strategy both differ 
significantly from a (5; 2) and (5; 3) strategy at the p<.01 level of significance. A (5; 2) 
and a (5; 3) strategy do not differ significantly from each other.  

 
Both Tukey’s HSD and Scheffe’s post-hoc comparisons for negative predictive 

performance indicated that a (1; 1) and a (5; 1) funnel shaping strategy both differ 
significantly from a (5; 2) strategy and (5; 3) strategy at the p<.01 level of significance. 
Also, (5; 2) and (5; 3) strategies differ significantly from each other at the p<.01 level of 
significance.   

 
Business performance. A one-way between-group analysis of variance was 

conducted in a confirmatory simulation experiment to probe for the impact of various 
frontloaded funnel shaping strategies on the business performance of the 
experimentation strategy used during Concept Selection (see for results). There was a 
statistically significant difference at the p<.01 level for the different funnel shaping 
strategies. Financial assumptions used to perform ANOVA are discussed above.  

 
Descriptives

Business Value ($)

173 2134,807781 99,1509775 7,5383092 2119,928273 2149,687289 1803,6454 2259,3901

200 2157,477173 75,6095024 5,3463992 2146,934306 2168,020040 1978,6831 2264,1233

200 2120,860256 91,4701157 6,4679139 2108,105811 2133,614701 1824,7294 2263,8506

200 2121,273133 79,2522790 5,6039824 2110,222324 2132,323943 1881,0194 2238,9648

773 2133,562560 87,5736503 3,1498053 2127,379361 2139,745758 1803,6454 2264,1233

86,4218164 3,1083767 2127,460649 2139,664470

8,7582073 2105,690035 2161,435084 267,1987929

(1,1)

(5,1)

(5,2)

(5,3)

Total

Fixed Effects

Random Effects

Model

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

Between-
Component

Variance

 

Test of Homogeneity of Variances

Business Value ($)

2,030 3 769 ,108
Levene Statistic df1 df2 Sig.

 

Figure 4-15 Business Performance of Front-loaded Funnel shaping strategies one-way ANOVA 
results (n=200) 
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ANOVA

Business Value ($)

177125,699 3 59041,900 7,905 ,000

55717,506 1 55717,506 7,460 ,006

62802,819 1 62802,819 8,409 ,004

114322,880 2 57161,440 7,653 ,001

5743453,639 769 7468,730

5920579,338 772

(Combined)

Unweighted

Weighted

Deviation

Linear
Term

Between
Groups

Within Groups

Total

Sum of Squares df Mean Square F Sig.

 

Multiple Comparisons

Dependent Variable: Business Value ($)

-22,669391 8,9730432 ,057 -50,696721 5,357938

13,947526 8,9730432 ,406 -14,079804 41,974855

13,534648 8,9730432 ,433 -14,492681 41,561977

22,669391 8,9730432 ,057 -5,357938 50,696721

36,616917* 8,6421816 ,000 9,623035 63,610799

36,204039* 8,6421816 ,000 9,210157 63,197922

-13,947526 8,9730432 ,406 -41,974855 14,079804

-36,616917* 8,6421816 ,000 -63,610799 -9,623035

-,412878 8,6421816 1,000 -27,406760 26,581005

-13,534648 8,9730432 ,433 -41,561977 14,492681

-36,204039* 8,6421816 ,000 -63,197922 -9,210157

,412878 8,6421816 1,000 -26,581005 27,406760

-22,669391 8,9730432 ,095 -52,994422 7,655639

13,947526 8,9730432 ,491 -16,377505 44,272556

13,534648 8,9730432 ,518 -16,790383 43,859679

22,669391 8,9730432 ,095 -7,655639 52,994422

36,616917* 8,6421816 ,000 7,410056 65,823778

36,204039* 8,6421816 ,001 6,997178 65,410901

-13,947526 8,9730432 ,491 -44,272556 16,377505

-36,616917* 8,6421816 ,000 -65,823778 -7,410056

-,412878 8,6421816 1,000 -29,619739 28,793983

-13,534648 8,9730432 ,518 -43,859679 16,790383

-36,204039* 8,6421816 ,001 -65,410901 -6,997178

,412878 8,6421816 1,000 -28,793983 29,619739

(J) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

(I) CLASSES
(1,1)

(5,1)

(5,2)

(5,3)

(1,1)

(5,1)

(5,2)

(5,3)

Tukey HSD

Scheffe

Mean
Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

99% Confidence Interval
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Figure 4-15 Business Performance of Front-loaded Funnel shaping strategies one-way ANOVA 

results (n=200) (cont.) 
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Figure 4-15 Business Performance of Front-loaded Funnel shaping strategies one-way ANOVA 

results (n=200) (cont.) 

  

Referring to Figure 4-15 business performance [F(3, 769)=7.9; p<.01] for the 
various front-loaded funnel shaping strategies differed significantly. This result needs to 
be moderated by the fact that the effect size, calculated using eta squared, was 0.031 
indicating a small to medium impact of the independent variables on the outcome 
variable. Levene’s test showed homogeneity of variance across the three groups. Still, 
differences between groups were studied at the p<.01 level of significance. 

 
Both Tukey HSD and Scheffe’s post-hoc comparisons for business performance 

indicated that a (5; 1) funnel shaping strategy (M=2157.5, SD=75.6) outperforms a  
(1; 1) strategy (M=2134.8, SD=99.1) by $22M and both a (5; 2) strategy (M=2120.9, 
SD=91.5) and (5; 3) strategy (M=2121.3, SD=79.3) by $36M, at the p<.01 level of 
significance. A (1; 1) strategy does not differ significantly from the others and a (5; 2) 
and (5; 3) strategy do not differ significantly from each other.  
 

4.6 DISCUSSION 

4.6.1 Key Monte Carlo simulation study findings 
 

Impact of front-loaded experimentation strategies. Both Front-loaded 
strategies –Front-loaded paradigm and Early Front-loading- significantly outperform the 
Old Paradigm experimentation strategy on positive predictive performance. However, 
the difference between both Front-loaded strategies is insignificant, meaning in the 
context of pharmaceutical Discovery that in-silico characterization of ADME-T does 
not significantly increase positive predictive value as compared to ADME-T 
characterization starting in H2L, as done in Front-loaded paradigm. Second, negative 
predictive performance differences are insignificant across experimentation strategies. 
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These results lead me to formulate the following propositions relating Concept 
Selection experimentation strategy to its predictive performance, supporting conjecture 
C2-1 formulated in the previous Chapter under section 3.6.1:   
 

Proposition 4-1: There is an inverse relationship between the chosen level 
of residual ambiguity at the end of Concept Selection and its positive 
predictive value.  

 
Proposition 4-1 proposes that the more proof of concept critical variables are 

characterized during Concept Selection, the higher will be its positive predictive value. 
Or, in terms of conditional probabilities; given they were found positive during Concept 
Selection, the probability that solution concepts will be successfully introduced into the 
market will be higher if more proof of concept variables are characterized during 
Concept Selection.  

 
Conversely, since simulation results show no significant difference between 

Front-loaded paradigm and Front-loaded experimentation strategies, conjecture C2-2 
formulated in the previous Chapter proposing that the sooner proof of concept critical 
variables are characterized during Concept Selection, the higher will be its negative 
predictive value, is not supported.  

 
In contrast to some practitioner views, my simulation results show non-

significant differences in negative predictive performance for the various strategies. 
This indicates that front-loaded strategies do not decrease the probability of missed 
opportunities as compared to an Old Paradigm strategy. They only increase its positive 
predictive value, increasing the chances of surviving Concept Characterization and 
Concept Application testing once declared active at the end of Concept Selection. 
 
 Furthermore, simulation results indicate that front-loaded experimentation 
strategies significantly select overall better quality compounds than an Old Paradigm 
strategy. In other words, taking into consideration all solution variables necessary for 
delivering Proof of Concept, leads to better solutions selected during Concept Selection. 
This leads me to formulate the following proposition: 
 

Proposition 4-2: Front-loaded experimentation strategies select overall 
better quality concepts than non-front-loaded strategies during Concept 
Selection. 
 

 Also, simulation results indicate that front-loaded strategies applied during 
Concept Selection lead to higher business value than Old Paradigm strategies. Although 
not statistically significant, applying front-loading earlier did lead to more business 
value. Hence, the following proposition: 
 

 Proposition 4-3: Front-loaded experimentation strategies lead to higher 
business value than non-front-loaded strategies. 

 
 Finally, my simulation results provide no support for conjecture C2-3 
formulated in the previous Chapter proposing that a minimum tightness level is required 
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for front-loading to outperform Old Paradigm strategies. Instead, front-loaded strategies 
consistently outperformed Old Paradigm strategies on quality selection power and 
predictive performance, regardless of the tightness level of the surrogate marker chain. 
However, a minimum tightness level was found to exist below which positive predictive 
performance significantly deteriorated. Negative predictive performance was not 
influenced by the chain’s tightness level.  
 

Proposition 4-4: Front-loaded experimentation strategies used during 
Concept Selection will feature better overall quality selection power, and 
higher positive and negative predictive value than old paradigm strategies 
regardless of the tightness level of the predictive surrogate marker chain.  
 
Impact of parallelism. Simulation results indicate significant positive effects of 

broadening the solution concept funnel on quality selection power, predictive and 
business performance of Concept Selection experimentation strategies.  
 

Proposition 4-5: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection increases its negative predictive power, 
significantly decreasing the chances of missed opportunities in subsequent 
development. A minimum number of parallel concept explorations are 
required to gain effect. 

 
Proposition 4-6: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection selects better overall quality concepts. A 
minimum number of parallel concept explorations are required to gain 
effect. 
 
Proposition 4-7: Broadening the funnel to an optimum point in a Front-
loaded experimentation strategy during Concept Selection leads to optimal 
business performance. 

 
 However, simulation results did show that broadening the concept exploration 
funnel has a significantly deteriorating effect on positive predictive performance during 
Concept Selection. 
 

Proposition 4-8: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection decreases its positive predictive power, 
significantly decreasing the chances of surviving Concept Characterization 
and Concept Application testing once declared active at the end of 
Concept Selection. 
 

 Finally, simulation results indicate that no minimum tightness level is required 
for broader funnel shaping strategies to outperform leaner strategies. However, a 
minimum tightness level was found to exist below which positive predictive 
performance significantly deteriorated. Negative predictive performance was not 
influenced by the chain’s tightness level.  
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Proposition 4-9: Broader funnel shaping strategies used during Concept 
Selection will feature better overall quality selection power, and higher 
positive and negative predictive value than old paradigm strategies 
regardless of the tightness level of the predictive surrogate marker chain.  
 

4.6.2 Validity considerations and study limitations 
 
Computer simulation outperforms other research methods with respect to reliability. 
However, the key caveat in simulation-based research is validity. Validation is assessing 
whether a specific simulation model is an acceptable representation of the 
corresponding real system, given the goal of the simulation model (Kleijnen et al.  
2001). Models for simulation purposes cannot be shown to be true or valid in any 
absolute sense. What can be said is that the model can be valid under certain 
assumptions. In this study key assumptions were formulated to reduce the complexity of 
representing the innovation process without endangering the fulfilment of the research 
goal of theory development. In summary, three simplifying assumptions were made 
concerning the representation of the solution landscape, and for optimization and 
selection conducted during the innovation process. 
 

First, the solution landscape was represented using three compound properties 
aggregated into reference compounds and chemical classes. This oversimplification of 
reality was necessary to make the implementation of the conceptual model possible in a 
VBA environment. Second, the innovation environment was represented as a 
mechanistic process of optimization stages concluded by a number of decision gates 
where candidate solution concepts were promoted to the next stage or terminated if they 
did not fulfil the selection criteria. Respecting the garbage can philosophy, the complex 
scientist optimization behaviour was conservatively reduced to a simple multi-factorial 
function taking the minimum of the (P) and (B) values as an input to a search for 
maximum performance in an extant search space. White box validation (Pidd, 1992) of 
this process with PharmaCo scientists, showing that the model behaves in a reasonable 
fashion, depicting a familiar universe of organizing the discovery research process 
confirmed the face validity of this complexity reduction of reality, provided it served the 
purpose of theory development.  

 
However, considering the complexities of the probabilistic modelling of the 

innovation process and the hard-to-unravel nature of the model’s inner working, face 
validation was insufficient to claim internal validity of the simulation model. Therefore, 
validation ex negatio (Masuch and Lapotin, 1989) of key assumptions was done, 
showing that these assumptions do little harm to the model’s predictive power. This is 
why comparative performance conclusions about experimentation strategies were 
checked for robustness by varying the most basic parameters in the model. Thus, 
simulation results showed to be robust for changes in solution landscape ruggedness up 
to a certain level, down to a certain level for varying numbers of the set of compounds 
declared active in LO, and for changes in the marginal probability p(H).  

 
Finally, external validity must be gained through empirical observation of the 

model’s predictions. ‘The behaviour of the “real” system is observed under specified 
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conditions and the model is then run under conditions which are as close as possible to 
these. If the model is valid in a black box sense, then the observations of the model 
should be indistinguishable from those of the “real” system’ (Pidd, 1992: 106). Recent 
experience at PharmaCo47 suggests external validity of the findings that Front-loading 
outperforms other experimentation strategies on positive predictive performance. 
Further longitudinal research data on compounds declared active by Discovery and 
succeeding Clinical Development at PharmaCo and other pharmaceutical companies, 
would be required to gain sufficient empirical support for the model’s predictions. It 
should be noted at this place that the model’s predictions on negative predictive 
performance are not verifiable in practice since the key conditional probability involved 
is not observable in practice.   
 

4.7 CONCLUSION 
 
The memory less annotated adaptive systems model of PharmaCo’s discovery research 
process produced reliable, internally valid results that could be used for theory 
generation. A theoretical contribution was made quantifying predictive performance of 
alternative experimentation strategies for Concept selection in the specific context of 
Pharmaceutical Discovery. 

 
More specifically, simulation results indicated that Front-loaded strategies in 

this context outperform other strategies on positive predictive performance, irrespective 
of the tightness of the surrogate marker chain. The number of classes used influences 
significantly the positive and negative predictive performance of experimentation 
strategies. This practically means that conducting parallel explorations of concepts 
during Concept Selection in a pharmaceutical context significantly reduces the 
probability of missed opportunities in Concept Characterisation. These results were 
shown to be robust for varying levels of tightness of the surrogate marker chain. 

 
Finally, as computer simulation was used as a technique of theorizing, further 

empirical validation of results is necessary to gain sufficient support for the model’s 
predictions. Most probably, falsification attempts in other pharmaceutical or research-
intensive contexts will lead to modifications of the model’s present version which only 
underlines the purpose of the model as a suitable adaptive theory generator.  

                                                 
47 As mentioned in the previous project confirmatory case study an internal PharmaCo study revealed that 
in the 1995-2000 period about 50 compounds failed in pre-clinical and clinical development programs 
due to poor ‘drug-likeness’ of NME’s, meaning they showed too low performance on PK/PD, toxicology, 
or could not be suitably packed in a drug delivery vehicle. The same study reveals that, in retrospect, the 
present discovery process, taking into consideration both biological activity and pharmacokinetic property 
classes, would have ‘caught’ about 20 compounds being unrightfully promoted to NME status. 
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5   Towards a theory explaining experimentation 
behaviour in the fuzzy front-end innovation process  

 

5.1 INTRODUCTION 
 
This journey exploring ways to increase predictive performance of the fuzzy front-end 
innovation process was conducted in three research projects. The previous chapters 
discussed their results. Starting from the radical versus incremental dichotomy proposed 
in the innovation literature, and grounded in exploratory case studies in pharmaceutical 
Development, the purpose of the first research project was to develop a more fine-
grained understanding of how and why radical innovation experimentation differs from 
incremental innovation management practice. The second project, conducted in a 
pharmaceutical Discovery radical innovation context, literally replicated the findings of 
the first project. Furthermore, it developed the Bayesian perspective and empirical 
process grounding required for the last, Monte Carlo computer simulation-based 
project. The latter resulted in a propositional model explaining the experimentation 
process-predictive performance link.     
 

The first research project, described in Chapter 2, concluded that incremental or 
radical innovations are still intuitive, ill-defined concepts, making them unsuitable as 
constructs to develop this required deeper understanding of managing experimentation 
for performance in the context of innovation projects. Therefore, I suggested shifting 
paradigms and focusing on the collaborative problem solving behaviour conducted by 
the innovation team. An Interpretative view of Complexity Theory was used as the 
theoretical paradigm to focus on the problem solving done by the innovation team, the 
latter making sense of the experienced complexity they are facing in their –be it radical 
or incremental- innovation projects. Now, by focusing on the complexity experienced 
by the innovation team and its ensuing mental modelling process of the solution to the 
innovation problem, my case study results made me propose a prescriptive framework 
proposing experienced complexity, characterized into types by specifying levels of 
ambiguity and uncertainty facing the innovation team, to drive their choice for a specific 
experimentation and project management approach, I called complexity-handling mode. 
Then, regardless of the type of innovation -radical or incremental- they are working on, 
but contingent upon the type of experienced complexity, they were proposed to choose 
between three modes of complexity-handling experimentation behaviour; Concept 
Selection, Concept Characterisation, and Concept Application.  

 
The second research project, described in Chapter 3, was focused around the 

research questions whether the pharmaceutical Discovery process could be used for 
literal replication of the proposed model on complexity-handling, and on how it could 
provide the process grounding for the subsequent simulation-based study. This 
confirmatory case study analysis successfully replicated part of the findings pertaining 
to my proposed model relating experienced complexity to choices for a specific 
complexity-handling mode. More specifically, the Concept Selection mode and its 
transition to the subsequent Concept Characterisation complexity-handling mode could 



142 

be replicated to the pharmaceutical Discovery context. However, the pharmaceutical 
Discovery case provided no evidence to corroborate the Concept Characterisation and 
Concept Application parts of the model. In addition, this case study documented 
alternative experimentation strategies used in pharmaceutical Discovery, all specific 
applications of the Concept Selection complexity-handling mode. Various forms of 
front-loaded experimentation strategies were found to be used by Discovery 
management. All manage the build-up of a mental model of the innovative solution to a 
level of residual ambiguity the innovation team feels comfortable with to start Concept 
Characterization. Then, a rationale and Bayesian methodology was proposed to evaluate 
predictive performance of front-loaded experimentation strategies using Monte Carlo 
simulation. Finally, research conjectures were formulated to guide subsequent process 
simulations, linking these Concept Selection experimentation strategies to predictive 
and business performance. 

 
The third research project, described in Chapter 4, discussed the results of top-

down simulation-based theory development on predictive performance of front-loaded 
experimentation strategies. Following a review of theoretical models representing the 
complexity of dynamic experimentation and decision-making processes, it was argued 
that an annotated adaptive system paradigm is the best choice to emulate Concept 
Selection experimentation behaviour. Simulation results indicated that front-loaded 
strategies in a pharmaceutical Discovery context slightly but significantly outperform 
other strategies on positive predictive performance. The degree of parallelism used to 
explore the solution space influences significantly the negative predictive performance 
of experimentation strategies. The latter means that conducting parallel explorations of 
solution concepts during Concept Selection, in a pharmaceutical Discovery context, 
significantly reduces the probability of missed opportunities in subsequent Concept 
Characterisation or Concept Application. Finally, although taking into account a set of 
simplifying assumptions, from a business value standpoint, simulation results indicate 
that front-loaded experimentation strategies outperform other strategies.  
 

In this final Chapter formal teleological process theory will be developed, 
inductively grounded in the research results described above. The formal process theory 
will integrate the case study-based empirical work with the simulation-based theorizing 
effort. Process grounding conducted in the first and second research projects, probing 
into the meaning of the innovation process for the team, will lead to a prescriptive 
framework using the three complexity-handling modes described above, holistically 
explaining the mechanisms used by the team as a socio-technical system handling the 
complexity of its mission to solve the innovation problem. Conversely, computer-based 
simulation, prepared for in the second project and conducted in the third research 
project will lead to a propositional model, explaining the impact of front-loaded 
experimentation strategies on the predictive performance of Concept Selection, being 
the complexity-handling mode best describing the work in the fuzzy-front end 
innovation process as carried out in pharmaceutical Discovery. 

 
Congruent with the requirements of mode 2 research (Gibbons et al. 1994) the 

constructed formal theory should stand the test of reality by adequately describing 
innovation team’s complexity-handling behaviour and by explaining its relationship to 
predictive performance, both in such a way that practitioners active in pharmaceutical or 
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other technology-intensive R&D sectors should be able to recognize themselves and 
others in the foreign concepts of the proposed formal theory explaining their 
experimentation behaviour.  

 
In the remainder of this Chapter I will first construct formal process theory 

relating experimentation behaviour to predictive performance. This will be followed by 
a discussion of the contribution of the developed theory to the innovation and 
experimentation management body of knowledge, and of its implications for R&D 
management practice. Finally, study limitations and areas for further research of this 
theory development effort will be indicated. 

 

5.2 DEVELOPING FORMAL PROCESS THEORY 
 
This thesis resulted in a formal teleological process theory relating experimentation 
behavior conducted in the fuzzy front-end innovation process to predictive performance, 
an outcome parameter neglected in previous innovation process research conducted in 
pharmaceutical or other R&D contexts. By formal theory I mean theory developed for 
the conceptual area of experimentation behavior, as opposed to substantive being 
developed for a specific empirical area of inquiry, such as experimentation conducted in 
pharmaceutical Discovery. The formal theory must be general enough to be applicable 
to a number of substantive areas. Also, it should complement and guide empirical work 
to understand experimentation behaviour in radical innovation settings.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1  High level teleological process theory representation 

 
The end result is a bottom-up top-down developed formal process theory, 

consisting of two parts. As depicted in the high level representation of the teleological 
process theory in Figure 5-1 above, experienced complexity type is proposed to lead to 
a preferred complexity-handling mode whose experimentation strategy is proposed to 
lead to predictive and business performance. The proposed relationship between the two 
first concepts is the bottom-up grounded part of the theory. It is an inductively derived 
prescriptive framework explaining complexity-handling contingent upon the type of 
complexity experienced by the innovation team. The proposed relationship between the 
two last concepts is the top-down simulation-derived part of the theory. The scope of 
the latter is confined to the experimentation strategy carried out during Concept 
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Selection –only one of the complexity-handling modes- and its proposed simulation-
derived relationship to predictive and business performance.  
 
 In the following I will fill in the prescriptive framework and propositional model 
that constitute the developed theory before discussing its contribution to knowledge and 
practice, and its limitations and potential areas for further research. 
 

5.2.1 Prescriptive framework explaining complexity-handling 
behaviour 

 
As discussed in Chapter 2 and 3, the results of my first two research project lead me to 
propose that experienced complexity type explains the complexity-handling mode 
dynamically chosen by the innovation team through the course of their project. First, I 
will define and describe the complexity-handling modes emerging from the case studies 
conducted in pharmaceutical Discovery and Development. Then, I will propose a 
prescriptive framework in which experienced complexity dynamically explains the 
complexity-handling modes followed by the innovation team. 
 

Complexity-handling mode definitions and descriptions. A visual mapping 
and temporal bracketing analysis (Langley, 1999) of the experimentation process 
conducted in the seven case studies of my first two research projects led me to define 
three complexity-handling modes emerging as three brackets from the case data; 
Concept Selection, Concept Characterisation, and Concept Application. The 
chronological overviews of project phases depicted in Figure 5-2 are further detailed in 
the empirical results sections of Chapters 2 and 3. In all cases innovation problem 
definition preceded these identified problem solving phases.    
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2  Temporal brackets identified across all PharmaCo innovation project cases 

 
Concept Selection is defined as a complexity-handling mode leading to a mental 

model characterising the innovative system’s core, depicting the critical variables and 
their relationships affecting solution proof of concept level performance. It starts with 
generating candidate solutions for the innovation problem at hand. Then, working 
towards meeting solution critical requirements it gradually resolves ambiguity and 
brings focus by ruling out as soon as possible in the process candidate solutions that 
don’t work, and by organising work primarily around the key questions to be solved, 
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operationalised in the solution critical requirements. The latter are defined at proof of 
concept level. Hence, following Boisot and Child’s (Boisot and Child, 1999) typology, 
experienced complexity is predominantly absorbed by generating and selecting solution 
options. 

 
Typical Concept Selection experimentation process examples include, amongst 

others, Phase A of the DNA-Zyme (Figure 2-2), Micro-emulsion (Figure 2-3), and the 
Discovery process (Figure 3-4) cases. In all these cases solution critical requirements 
were specified as a target against which alternative solutions were tested. Then, several 
competing solutions were tried in parallel to match the target, managed through a stage-
gate process introducing continuously raising hurdles for the competing candidate 
solutions; delivery systems for macromolecular therapeutics for DNA-Zyme, various 
candidate polymers to be used as micro-emulsions enhancing bioavailability of 
therapeutic agents, and different chemical classes coming out of High Throughput 
Screening, serving as chemical scaffolds, to be further screened and optimized during 
the pharmaceutical Discovery process.        
 

Concept Characterisation is defined as a complexity-handling mode leading to a 
mental model characterising the full innovative solution’s application domain, depicting 
all relevant variables and their relationships affecting application system performance. 
Starting from proof of concept the full application domain gets characterised through 
the definition of uncertainty areas in which a more structured adaptive learning process 
gradually resolves ambiguity beyond proof of concept level down to all variables and 
their functional relationships affecting solution performance. Also, critical value ranges 
get defined for all variables to indicate the boundaries of the application domain, as 
compared to other drug delivery technologies. Several application domains can be 
characterized sequentially or in parallel as evidenced by the case examples below. 
Hence, following Boisot and Child’s (1999) typology, experienced complexity is both 
absorbed and reduced. Experienced complexity is absorbed by the creation of 
application domains and uncertainty areas. Experienced complexity is reduced by the 
definition of critical value ranges. 

 
Concept Characterisation experimentation process examples include, amongst 

others, Phase B of the Micro-emulsion (Figure 2-3), Supercritical Fluids (Figure 2-4), 
Nanosuspension (Figure 2-5), and the Discovery process (Figure 3-4) cases. In the first 
case, after a selection of polymers with good micro-emulsifying properties was made, 
parenteral and oral/transdermal formulations domains were characterised for further 
usage of the advanced technology. Once the proof of concept of the use of Supercritical 
Fluids was delivered to extend the meltextrusion manufacturing process to include 
thermosensitive elements like peptides or proteins, two problem domains were 
characterized, preparing the renewed meltextrusion process for its introduction into 
manufacturing. Also, as a whole this was only the first application domain for the 
technology delivered at proof of concept level, since afterwards it has been 
characterized as a platform technology for applications as diverse as micronization, 
human tissue replacement, or even as a technology accelerating the joining of human 
bones. Another example is provided by the Nanosuspension project where the initial 
proof of concept had been delivered before. However, now it had to be used to deliver a 
new clinical candidate to market. Therefore, first proof of Concept needed to be 
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delivered for this specific clinical candidate using a Concept Selection complexity-
handling mode where a range of candidate formulations was tested and one was 
ultimately chosen (during Phase A in Figure 2-5). Then, two uncertainty domains 
needed to be characterized (during Phase B in Figure 2-5); the reproduction of the nano-
milling process to deliver company-specific compounds, and the sterilization of the 
manufacturing process using nano-technology. Finally, Phase B of the pharmaceutical 
Discovery process case is the pre-clinical testing phase where the new chemical 
candidate is further characterised through in-vivo tests in animals and humans.   
 

Concept Application is defined as a complexity-handling mode leading to a 
mental model characterising the full innovative drug delivery system’s application to 
the level of all relevant variables and their relationships, with a specification of the 
values delivering an effective application system. Hence, following Boisot and Child’s 
(1999) typology, experienced complexity is predominantly reduced by specifying all 
value ranges and problem-solving mechanisms for one application domain. 

 
Gamma Controlled Release (Figure 2-6) Phase C and Alfa Immediate Release 

tablet (Figure 2-7) Phase A are two typical examples of a Concept Application type 
experimentation behaviour. In both examples the characterised application domain is 
fully optimized for commercial usage using highly formalized development procedures 
and efficiency-enhancing stage-gate driven decision-making. 

 
Table 5-1 below describes the three identified complexity-handling modes along 

the dimensions target setting, experimentation, learning, and coordination approaches 
followed by the innovation team. It combines the descriptors as found in the exploratory 
project in pharmaceutical Development (see Table 2-2) adapted by the findings from the 
confirmatory Discovery case documented in Table 3-1 to form the definitive empirical 
descriptor set for the complexity-handling modes emerging from my seven case studies.  
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 Complexity-handling modes 
 Concept Selection Concept Characterisation Concept Development 
Predominant 
complexity-
handling 

• Complexity absorption • Complexity absorption 
(application domains and 
uncertainty areas) 

• Complexity reduction 
(definition of value ranges) 

• Complexity reduction 

Target setting 
approach 

• Target defined up-front as 
minimal system critical 
requirements to pass  

• Target moving toward feasible 
application domain 
requirements to pass 

• Target defined up-front as 
product/process 
requirements to pass. Only 
modifiable at formal stage-
gates 

Experimentation 
approach 

• Define uncertainty areas to 
characterise critical 
variables and to anticipate 
problems to be solved 

• Run parallel experiments to 
characterise critical 
variables affecting response 
for different candidate 
system solutions 

• System solution selection 
• Show Proof of Concept by 

spelling out assumptions 
about the set of relevant 
variables and their 
functional relationships  

• Run parallel/concurrent 
experiments to characterise all 
variables affecting response 
for different uncertainty areas 
within proof of concept 
delivered solution 

• Integrate uncertainty areas into 
limited / characterised 
application domain 

• Run parallel/concurrent 
experiments to optimise 
variables values within a 
solution 

• Followed by concurrent 
engineering driven by QFD 
derived product definition 

• FMEA based process 
design 

Learning 
approach 

• External explicit: 
Mainly at project start 
learning from published 
science. Later ad-hoc for 
problem solving. 

• External tacit:  
On-going knowledge 
transfer by interaction 
between teams and external 
technology suppliers.  

• Internal tacit: 
Use of pockets of previous 
knowledge 

• External explicit: Mainly at 
project start learning from 
published science. Later ad-
hoc for problem solving. 

• External tacit: Knowledge-
transfer mainly at project start 
between external technology 
supplier and team. Later for 
problem solving. 

• Internal tacit: 
Use of pockets of previous 
knowledge 

• Internal explicit: Learning 
based on formal procedure-
based inquiry  

• Internal tacit: Learning by 
doing, based on previous 
internal experience 

Coordination 
approach 

• Define milestone targets 
that are reached if results 
can be shown  

• Estimate work package 
effort/ timeline based on 
first experiments or expert 
knowledge 

• Focus on experiments 
capable of selecting as 
quickly as possible 
solutions that meet all 
system critical requirements  

• Through close monitoring 
of progress: Eliminate as 
quickly as possible 
candidate system solutions 
not meeting one of the 
system critical requirements 

• Define uncertainty areas and 
assumptions to be tested per 
area 

• Define milestone targets for 
uncertainty areas that are 
reached if results can be 
shown.  

• Use DoE experimental guides 
to systematize the testing 
process  

• Guide progress through real-
time coordination of 
concurrent results of different 
uncertainty areas 

• Bring focus through adaptive 
learning i.e.; assumptions 
testing, learning, 
continue/redirect efforts to 
characterise the feasible 
application domain 

• Possible go back to previous 
mode if application domain 
cannot be delivered or if new 
application domain emerges 

• Define product/process 
requirements to be met 

• Use pre-designed DoE 
experimental guides to 
systematize the 
experimentation process  

• Use GANTT type plans & 
schedules for cross-activity 
programming and tracking 
task completion 

• Monitor plan variation and 
act accordingly by 
executing contingency 
plans 

• Use of standard approaches 
and documented best 
practices to problem-
solving 

Table 5-1 Empirical complexity-handling modes descriptor set 
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Experienced complexity typology. Complexity-handling modes describe the 
way the innovation team handles the complexity it is experiencing. For the sake of the 
following argumentation I define experienced complexity as a property of the interaction 
between problem solver and problem. Various experienced complexity types exist where 
each type is characterized by differing levels of uncertainty and ambiguity chosen by 
the innovation team. Hence, in my Interpretative view of complexity the levels of 
uncertainty and ambiguity facing the innovation team are not exogenously given 
problem variables as proposed by the logico-scientific view of complexity (see Section 
2.3 for more details), determined by the properties of the complex system to be 
designed. Instead, in my theorizing effort I follow Schrader et al. (1992) that it are two 
dissimilar components of problem framing whose level the innovation team 
dynamically chooses. Therefore, I propose experienced complexity to explain the 
complexity-handling mode chosen dynamically through the course of the innovation 
project, regardless of the latter being radical or incremental. 

  
Proposition 1: The experienced complexity type facing the innovation 
team determines the choice for a complexity-handling mode 
 
The innovation team handles experienced complexity by constructing a mental 

model of the problem-solving situation. Mental models specify the problem-solving 
mechanisms, the solution variables, their relationships and their value ranges that are 
relevant for understanding and describing the problem and provide the solution space 
within which the problem will be solved. Key to understanding the subjective nature of 
experienced complexity-handling through mental models is the acknowledgement that 
ambiguity and uncertainty are not exogenously given characteristics of the problem to 
be solved. Instead, mental models are constructed through a creative problem framing 
and solving process in which levels of ambiguity and uncertainty are dynamically 
chosen and reduced by the innovation team as the mental modelling process progresses 
(Schrader et al. 1992). Case evidence documented in Appendix B provides empirical 
indicators for this endogenous view of complexity.  

 
 

Experienced 
Complexity Type 

Proof of Concept 
Ambiguity-based 

Ambiguity-based Uncertainty-based 

Ambiguity 
level 

Proof of Concept (PoC) 
critical variables and their 
functional relationships, 
and/or problem solving 
mechanisms unknown to the 
team 

Only PoC critical variables 
and their functional 
relationships, and relevant 
problem solving mechanisms 
known to the team 

All application domain 
specific variables and their 
functional relationships, and 
problem solving 
mechanisms known to the 
team 

Uncertainty 
level 

Value ranges of critical 
variables unknown to the 
team 

Not all value ranges of 
critical variables known to 
the team 

Value ranges for all 
application domain specific 
variables known to the team 

Case phases 
where 
experienced 
complexity type 
dominated 

DNA-Zyme Phase A 
Microemulsions Phase A 
SCF Phase A 
Nanosuspension Phase A 
Discovery Phase A 

Microemulsions Phase B 
SCF Phase B 
Nanosuspension Phase B 
Gamma CR Phases A and B 
Discovery Phase B 

Nanosuspension Phase C 
Gamma CR Phase C 
Alfa IR tablet Phase A 

Table 5-2: Experienced complexity typology with relevant case examples 
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In the following I characterize experienced complexity using levels of ambiguity 
and uncertainty facing the innovation team. Table 5-2 provides the definitions for the 
different constructs emerging from the cases. It is a summary of Table 2-3 and the 
Discovery case process data and classifies all relevant cases of Chapters 2 and 3.  
 

Empirical indicators of uncertainty and ambiguity during Concept Selection 
evidence that the complexity experienced by the team is Proof of Concept (PoC) 
ambiguity-based. Ambiguity level is PoC-based since the mental model containing 
relevant variables to solve the problem and/or the problem solving mechanisms needed 
to get the solution at PoC level is not yet formed within the team. The innovation team 
goes through a creative search process among potential candidate solutions, composed 
of variable sets, to discover the set of variables that might generate a system that has the 
required solution critical functionality. Since during this process the winning mental 
model and its related variable sets is not yet known, by definition neither could the 
variable value ranges be known. Hence, although uncertainty level is also high this is 
not relevant for the choice made by the innovation team. First, the winning mental 
model must be found, showing PoC-level performance on the solution critical 
requirements. Therefore, I call this experienced complexity type Proof of Concept 
ambiguity-based.  

 
In the DNA-Zyme, SCF, Micro-emulsions and PharmaCo’s Discovery process 

cases this mode was chosen while no evidence existed to the team that proof of concept 
had been delivered and documented before for these new-to-world technologies. In the 
Nanosuspension case this mode was chosen while proof concept had not been delivered 
yet for PharmaCo’s own compounds. This leads me to formulate the following 
proposition; 
 

Proposition 1a: A ‘Concept Selection’ complexity-handling mode will be 
chosen if the innovation team experiences Proof of Concept ambiguity-
based complexity. 

 
Secondly, case evidence reported in Appendix A suggests that the choice to 

manage the innovation project following the Concept Characterization complexity-
handling mode is made by the team whenever it is facing an ambiguity type sense-
making opportunity. Ambiguity is experienced since only a mental model containing 
relevant variables and problem-solving mechanisms to solve the problem at proof of 
concept level has been formed within the team. Since neither problem-solving 
mechanisms, nor problem relevant variables nor their functional relationships are 
known beyond proof of concept, by definition neither could the variable value ranges be 
known beyond this level. Although uncertainty level is still high this is not relevant for 
the choice made by the innovation team. Therefore, I call this experienced complexity 
type ambiguity-based.  

 

Proposition 1b: A ‘Concept Characterization’ complexity-handling mode 
will be chosen if the innovation team experiences ambiguity-based 
complexity.  
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Concept application domain characterisation will gradually resolve ambiguity and 
reduce uncertainty to a level where the innovation team’s mental model of the system to 
be designed contains all variables with their value ranges relevant to start application 
development. The Gamma CR project faced an initially ambiguous situation but 
variables and their functional relationships relevant for proof of concept performance 
were accessible to the team, which led them to the choice of Concept Characterisation 
as complexity-handling mode. Once PoC delivered for PharmaCo’s own compounds, 
for the Nanosuspension project the innovative technology needed to be made sterile and 
ready to accept company specific compounds. In the Gamma CR project the right 
choices in a number of uncertainty areas were still needed to get to an optimal kinetic 
profile and to make the technology ready for implementation in an application to be 
delivered to the market. After delivery of the initial proof of concept that certain 
polymers in interaction with SCCO2 can lower the required meltextrusion temperature 
hence extending its application range to thermolabile active ingredients, the SCF project 
team chose this complexity-handling mode to further develop the technology to a level 
were it can be used for application development. In PharmaCo’s Discovery process 
case, Phase B (see Figure 3-4) is the pre-clinical characterisation of a compound 
transferred from Discovery. Here, Concept Characterisation was only chosen as 
complexity-handling mode from the moment proof of concept was delivered. 

 
Finally, I propose that the choice to manage the innovation project following the 

Concept Application complexity-handling mode is made by the team whenever it is 
facing an uncertainty type sense-making opportunity without any residual ambiguity. 
Only uncertainty, no or few residual ambiguity is experienced since for a specific 
application domain a mental model containing all relevant problem-solving mechanisms 
and solution variables with their respective value ranges has been formed within the 
team’s collective mind. Since the level of experienced ambiguity is negligible it is not 
relevant for the choice made by the innovation team. Therefore, I call this experienced 
complexity type uncertainty-based. This leads me to formulate the following 
proposition which is in line with the proposition formulated by Schrader et al. (1992) 
that problems will be framed involving little ambiguity if the problem-solver has 
successfully solved apparently isomorphic or related problems previously: 

 
Proposition 1c: A ‘Concept Application’ complexity-handling mode will be 
chosen if the innovation team experiences uncertainty-based complexity.  

  
The Alfa IR Tablet project started with a full mental model of the problem-

solving situation available. Residual ambiguity was negligible since the project could be 
developed using platform technologies like concept formulations and documented best 
practices. The innovation team chose this mode while they had successfully solved 
apparently isomorphic problems before leading them to rule out ambiguity and to 
choose for a complexity-handling mode that is strong in delivering results at pre-
planned stage-gates, using rigorous experimentation techniques. Likewise, in the 
Gamma CR case (see Figure 2-6) the innovation team chose this complexity-handling 
mode as soon as the combined IR/CR beads solution was characterized. 
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Experienced complexity dynamics. The incapacity of project exogenous 
characteristics cited in the literature –like radical, fuzzy front-end or incremental 
innovation project- to explain complexity-handling mode transitions is evidenced by a 
number of my cases. The Micro-emulsions project will soon change from Concept 
Selection mode to Concept Characterisation mode, although it will still be a ‘Super-
High-Tech’ technology while still based on non-existent technologies at project 
initiation. The same holds for the SCF project that has changed complexity-handling 
mode but is still a ‘High-Tech’ project. Also, it remains to have a ‘project uncertainty 
profile’ (Loch et al. 2000; De Meyer et al. 2002) characterised by ambiguity, variation 
and risk. 
 

Instead, by taking an interpretative approach my case data lead to a better 
understanding how and why experimentation approaches vary dynamically over the 
course of the project. By taking the perspective of the mental model of the problem-
solving situation, one can see that the team gradually builds up understanding of the 
innovative system to be designed, continuously reducing levels of residual ambiguity, 
the latter being defined as the problem-solving mechanisms and solution variables 
remaining to be characterized48. The decision to transit to a new complexity-handling 
mode, then, is driven by the perceived completeness of the team’s mental model. As 
long as ambiguity has not been sufficiently resolved or uncertainty sufficiently reduced, 
the team will stay in a certain complexity-handling mode.  

 
Proposition 2: The decision to change complexity-handling mode is 
determined by the innovation team’ perceived completeness of their 
mental model of the problem-solving situation at hand, operationalised in 
the proven delivery of minimum solution requirements.   

 
The decision to transit from Concept Selection to Concept Characterisation 

mode is made by the team as soon as solution critical requirements are met. High initial 
ambiguity must be resolved to the level that the emerged mental model contains all 
problem-solving mechanisms, solution critical variables and their relationships 
necessary to deliver Proof of Concept. 

 
Proposition 2a: The decision to transit from ‘Concept Selection’ to 
‘Concept Characterisation’ complexity-handling mode is made by the 
innovation team as soon as a mental model has emerged that contains all 
critical problem-solving mechanisms, solution variables and their 
relationships necessary to deliver Proof of Concept. 

 
Nor the DNA-Zyme, nor the micro-emulsions project have reached this 

transition since no delivery solution has been reached in the former nor has a definitive 
set of self-emulsifying polymers been found yet in the latter. The team does not know 
the definitive set of critical variables nor their relationships delivering proof of concept 
yet. Mid 2000 proof of concept was delivered in the Supercritical fluids project when 
polymers in interaction with SCCO2 showed that they can decrease the meltextrusion 

                                                 
48 The concept of residual ambiguity was introduced in section 3.3.6 as a construct emerging from the 
Discovery case data and used to formalize front-loaded experimentation strategy types. 



152 

temperature and that active substance can be made soluble in SCCO2 under certain 
critical conditions. This led to the project team’s decision to make the transition to the 
Concept Characterisation mode where the design of the melt-extruder using SCCO2 is 
further characterised. In PharmaCo’s Discovery process case, the transition from the 
first to the second mode is formally made as soon a chemical candidate fulfils the 
solution critical requirements of a NME, to be further characterised and applied to a 
specific project in pharmaceutical Development.  

 
Secondly, the decision to transit from Concept Characterisation to Concept 

Application mode can be made by the team as soon as the application domain for the 
concept is characterised and solution critical requirements are met. Ambiguity must be 
resolved to the level that the emerged mental model contains now all problem-solving 
mechanisms, solution variables, their relationships and value ranges necessary to deliver 
an application within the characterised application domain.  

 
Proposition 2b: The decision to transit from ‘Concept Characterisation’ to 
‘Concept Application’ complexity-handling mode can be made by the 
innovation team as soon as a mental model has emerged that contains all 
problem-solving mechanisms, solution variables, their relationships and 
value ranges necessary to deliver an application. 

 
In the Controlled Release project the transition decision to go for application 

development was made after the concept showed performance following a kinetic 
release profile that was hypothesized by the team. Then the team could switch to a 
project management approach tailored to manage ‘incremental’ projects. No other case 
projects made this transition yet since the mental model depicting the innovative 
delivery system has not crystallised to a level that it can be used to develop an 
application. In the Nanosuspension case the transition from Phase B to C (see Figure 
2-5) was planned and ready to be made. Only, the clinical candidate on which the new 
technology could be applied got halted in the Development process, therefore 
preventing the advanced technology project to reach Concept Application status.  
 

Finally, during Concept Characterisation and Concept Application modes a 
decision can be made by the team to go back to one of the previous modes if a 
fundamental problem arises or a new situation emerges preventing moving forward.  

 
Proposition 2c: The decision to move back from ‘Concept 
Characterisation’ or ‘Concept Application’ complexity-handling modes 
can be made by the innovation team as soon as a situation arises where 
the present complexity-handling mode does not lead to further absorption 
and/or reduction of experienced complexity. 

 
 An example of a problem where the innovation team decided to go back from 
Concept Application to Concept Characterisation is provided by the Gamma CR project 
where a drug candidate was in Development featuring a specific kinetic profile. 
However, the latter showed to be insufficient to meet the needs of the patient 
population. Therefore, the team was forced to revisit the problem and characterize a CR 
solution that was known to work at proof of concept level but that had not been applied 
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before in the project-specific context. The SCF case is an example of a technology that 
had shown proof of concept and was characterized for the meltextrusion application 
domain. However, after this characterisation the team could have decided to go for a 
human bone-joining application, in which case it would have to go back to Concept 
Selection to find ways to get to proof of concept for this new application domain.  
 
 A prescriptive framework explaining experimentation behaviour. In the 
previous, following Doty and Glick (1994) I derived inductively a set of complexity-
handling modes and types of experienced complexity and proposed a description using 
the same set of dimensions. Then, I proposed a relationship between experienced 
complexity types, the explaining construct, and complexity-handling modes, the 
explained construct, chosen by the team to manage their project. Finally, I asserted that 
the delivery of minimal solution requirements, a specific event within the mental model 
emergence process, could be used to explain complexity-handling mode transitions. 
Figure 5-3 below provides a prescriptive framework of the propositions discussed so 
far. 
 

Experienced complexity type is proposed to drive the choice for a specific 
complexity-handling mode (P1a, P1b, P1c). The delivery of minimum system 
requirements is proposed to drive the emergent mental model (P2a, P2b, P2c). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3 Prescriptive framework explaining complexity-handling behaviour 

 
The formulated framework focuses on complexity-handling as a result of complexity 
experienced in finding a solution to a defined innovation problem. The PharmaCo 
Discovery case has shown that significant efforts are spent defining the innovation 
problem –finding a relevant biological target-, before one gets to chemical problem-
solving. It should be made clear to the reader that this model assumes product or at least 
innovation problem definition has been carried out before and is not part of the 
ambiguity component of the complexity experienced by the team.   
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5.2.2 Propositional model relating experimentation strategies to 
predictive performance  

 
The top-down developed part of the formal teleological process theory explains the 
relationship between Concept Selection, one of the complexity-handling modes chosen 
by the innovation team, and performance. A Bayesian framework to quantitatively 
evaluate predictive performance was developed in Chapter 3 and used in Chapter 4 to 
compare experimentation strategies used during Concept Selection. The PharmaCo 
Discovery process case study conducted in Chapter 3 allowed me to document various 
experimentation strategies used in one of the technology-intensive front-end innovation 
environments where this complexity-handling mode is typically used. Simulation model 
design, behavior and discussion of the results were further documented in Chapter 4.      
 
 Two key dimensions of experimentation strategies for Concept Selection were 
used for theorizing using a top-down computer simulation-based model; (1) the shape of 
the solution concept funnel, and (2) the number of solution variables and problem-
solving mechanisms characterized at various points during the Concept Selection 
process. As depicted in Figure 5-4, the first is indicated with a vertical arrow, the 
second by the level of shading used for each activity. The more variables characterized, 
the more intense the shading. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-4 A summary of Concept Selection experimentation strategies 

 
The effect of front-loading. As previously discussed, the effect of front-loading 

on predictive performance has not been studied before. To do so, the concept of residual 
ambiguity needs to be revisited and put in a dynamic perspective as depicted in Figure 
5-5(a). As soon as the problem is defined, problem solving can start. Initially, the 
residual ambiguity component of the complexity experienced by the innovation team is 
high. It will gradually be lowered as the team builds its mental model of the solution, 
leaving less and less solution variables and problem-solving mechanisms to be modeled. 

 
 My simulation results indicate that two elements of this residual ambiguity 

reduction dynamic could play a role in explaining predictive and business performance 
of front-loaded strategies used in Concept Selection.  
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(a)      (b) 

Figure 5-5 A dynamic perspective of residual ambiguity 

  
Figure 5-5 (b) depicts these two elements; (1) the steepness of the path leading 

from initial ambiguity to the residual ambiguity after Concept Selection (CS), and (2) 
the level of residual ambiguity after CS. In words, this picture graphically portrays that 
the earlier and the more ambiguity get resolved during Concept Selection, the higher 
will be its predictive performance (indicated by the full arrow and emphasized bar).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 

Figure 5-6 Positive and negative predictive performance of Concept Selection 
experimentation strategies  

 
Figure 5-6 summarizes my simulation results for predictive performance of 

Concept Selection experimentation strategies showing a slightly better positive and 
negative predictive performance for front-loaded strategies. A detailed discussion of 
two-way and one-way ANOVA simulation results is provided in Chapter 4. Both Front-
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loaded strategies (Early Frontloading and Frontloading) significantly outperform the 
Old Paradigm experimentation strategy on positive predictive performance. However, 
the difference between both Front-loaded strategies is insignificant, meaning in the 
context of pharmaceutical Discovery that in-silico characterization of ADME-T does 
not significantly increase positive predictive value as compared to ADME-T 
characterization starting in H2L, as done in Front-loaded paradigm. Second, although 
Figure 5-6 (b) shows a downward trend in negative predictive value towards the Front-
loaded paradigm, the differences are insignificant. 

 
These results lead me to formulate the following propositions relating Concept 

Selection experimentation strategy to its predictive performance:   
 

Proposition 3: There is an inverse relationship between the chosen level of 
residual ambiguity at the end of Concept Selection and its positive 
predictive value.  

 
In contrast to some practitioner views, my simulation results show non-

significant differences in negative predictive performance for the various strategies. 
This indicates that front-loaded strategies do not decrease the probability of missed 
opportunities as compared to an Old Paradigm strategy. They only increase its positive 
predictive value, increasing the chances of surviving Concept Characterization and 
Concept Application testing once declared active at the end of Concept Selection. 
 

Furthermore, simulation results indicated that front-loaded experimentation 
strategies significantly select overall better quality compounds than an Old Paradigm 
strategy. In other words, taking into consideration all solution variables necessary for 
delivering Proof of Concept, leaving less variables uncharacterized, leads to better 
solutions selected during Concept Selection. This leads me to formulate the following 
proposition: 
 

Proposition 4: Front-loaded experimentation strategies select overall 
better quality concepts than non-front-loaded strategies during Concept 
Selection. 

 
Finally, in my simulation front-loaded strategies consistently outperformed Old 

Paradigm strategies on overall quality selection power and predictive performance, 
regardless of the tightness level of the surrogate marker chain. However, a minimum 
tightness level was found to exist below which positive predictive performance 
significantly deteriorated. Negative predictive performance was not influenced by the 
chain’s tightness level. Surrogate marker chain tightness was a proxy used in the 
specific pharmaceutical Discovery context to measure the predictive power of the 
problem-solving mechanisms used during experimentation. Therefore, translating these 
substantive results to a more general applicable level leads me to formulate the 
following proposition, derived from P 4-4 under previous section 4.5.1: 
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Proposition 5: Front-loaded experimentation strategies used during 
Concept Selection will feature better overall quality selection power, and 
higher positive and negative predictive performance than non front-loaded 
strategies regardless of the predictive power of the problem-solving 
mechanisms used during experimentation. Lower levels of predictive 
power deteriorate performance of overall quality selection power and 
positive predictive performance variables. 
  
 
The effect of parallelism. Previous studies in technology-intensive industries 

indicate the benefits of broadening the concept testing funnel (Sobek II et al. 1999) or at 
least propose to optimize the shape of the concept funnel (Dahan and Mendelson, 2001). 
However, the impact of concept funnel shaping strategies on predictive performance has 
not been studied before. 

 
Figure 5-7 below illustrates my simulation results conducted in a context 

emulating the pharmaceutical Discovery experimentation and decision-making process. 
Broadening the solution concept funnel was found to have significant positive effects on 
quality selection power and predictive performance of experimentation strategies during 
Concept Selection. In words, this picture graphically portrays that opening up the funnel 
improves performance (indicated by the full emphasized lines).   
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-7 Broadening of solution concept funnel during Concept Selection 

 
 This leads me to formulate the following propositions relating funnel shaping 
strategies to quality selection power and predictive performance: 

 
Proposition 6: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection increases its negative predictive power, 
significantly decreasing the chances of missed opportunities in subsequent 
development. A minimum number of parallel concept explorations are 
required to gain effect. 
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Proposition 7: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection selects better overall quality concepts. A 
minimum number of parallel concept explorations are required to gain 
effect. 

 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

(a)      (b) 

Figure 5-8 Positive and negative predictive performance impact 
 of solution concept broadening strategies 

 
 However, simulation results did show that broadening the concept exploration 
funnel has a significantly deteriorating effect on positive predictive performance during 
Concept Selection as evidenced in Figure 5-8. 
 

Proposition 8: Broadening the funnel in a Front-loaded experimentation 
strategy during Concept Selection decreases its positive predictive power, 
significantly decreasing the chances for a candidate solution concept of 
surviving Concept Characterization and Concept Application testing once 
promoted at the end of Concept Selection. 
 
 Finally, simulation results indicate that no minimum tightness level is required 

for broader funnel shaping strategies to outperform leaner strategies. However, a 
minimum tightness level was found to exist below which positive predictive 
performance significantly deteriorated. Negative predictive performance was not 
influenced by the chain’s tightness level. Surrogate marker chain tightness was a proxy 
used in the specific pharmaceutical Discovery context to measure the predictive power 
of the problem-solving mechanisms used during experimentation. Therefore, translating 
these substantive results to a more general applicable level leads me to formulate the 
following proposition, derived from P 4-9 under previous section 4.5.1: 
 

Proposition 9: Broader funnel shaping strategies used during Concept 
Selection will feature better overall quality selection power, and higher 
positive predictive performance than leaner strategies regardless of the 
predictive power of the problem-solving mechanisms used during 
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experimentation. Lower levels of predictive power deteriorate performance 
of these outcome variables. 
 

5.2.3 Propositional model relating experimentation strategies to 
business performance  
 
This study’s simulation results indicate that front-loaded strategies applied during 
Concept Selection lead to higher business value than Old Paradigm strategies. Although 
not statistically significant, applying front-loading earlier did lead to more business 
value. Also, broadening the concept funnel to a certain optimum point had a positive 
impact on business performance. Hence, the following propositions, visualized in 
Figure 5-9: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-9 Business performance of front-loaded experimentation strategies 

  
 
Proposition 10: Front-loaded experimentation strategies lead to higher 
business value than non-front-loaded strategies. 
 
Proposition 11: Broadening the funnel to an optimum point in a Front-
loaded experimentation strategy during Concept Selection leads to optimal 
business performance. 

 
 

Figure 5-10 below summarizes all abovementioned propositions derived from the 
simulation-based study into a propositional model linking experimentation strategy 
related decisions, made to carry out Concept Selection, to predictive and ultimately to 
business performance. The signs on the edges indicate how the ending nodes are 
proposed to change given a change in the starting node. A plus sign (+) indicates a 
move in the same direction. A negative sign (-) indicates a move in the opposite 
direction. Proposition numbers are also indicated along the edges. 
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Figure 5-10 Propositional model built from simulation-based case study 

 
 As an example of how to read the propositional model set out above; the level of 
Residual Ambiguity wanted at end of Concept Selection is clearly determined by the 
choice for one of the front-loaded experimentation strategies. Front-loaded strategies 
increase positive predictive performance by opting for lower levels of Residual 
Ambiguity at the end of Concept Selection than an Old Paradigm strategy. Taking the 
example further this consequently leads to increased business performance given the (+) 
relationship between positive predictive performance and business performance. 
Conversely, broadness of the concept funnel during Concept selection has opposite 
impact on respectively positive (-) and negative (+) predictive performance, at their turn 
both positively influencing business performance. Therefore, from this signed directed 
graphs propositional model, the impact of broadening the concept funnel on business 
performance cannot be determined.  
 

5.2.4 Predictive model linking experimentation strategy to 
business performance 

 
In my theory-building effort I would like to go further than a propositional model and 
propose a framework predicting business performance given a set of choices made 
along the lines of the above mentioned propositions. Therefore, in the following I will 
argue that to build such a predictive model of business performance of experimentation 
strategies, the decision tree-based model developed in section 3.5.2 including 
conditional probabilities needs to be augmented (Bielza et al.  1999) with the decisions 
related to the propositions set out above. 

 
The decision tree depicted in Figure 3-11 of section 3.5.2 above was developed 

to evaluate and compare the business performance of experimentation strategies. The 
R&D process was modeled as a sequence of experimentation phases concluded by a 
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decision to carry forward or to terminate the solution concept. Two pharmaceutical 
R&D key decisions were taken into consideration in the tree; the decision to transfer a 
compound from Discovery into Development, and the decision to take a compound to 
market, after declaring it really active. 
 
 To construct a predictive model starting from the propositions set out above, 
linking business performance to experimentation strategies carried out for Concept 
selection, I chose to convert the decision tree relating business value to predictive 
performance (see Figure 3-10b) in a Sequential Decision Diagram (Covaliu and Oliver, 
1995) also called Bayesian belief network (Pelikan and Goldberg, 2003). The latter is a 
directed acyclic graph with nodes corresponding to the variables of interest and edges 
between the nodes representing dependencies between the variables. The advantage of 
using this representation instead of the decision tree representation used in Chapter 3 is 
that it allows me to easily represent conditional probabilities tied to decisions made in 
the context of an experimentation policy. Augmenting the decision tree with the various 
decisions ensuing from the propositions set out above would make the tree very large 
and complicated to handle (Smith, 1989; Shenoy, 1992; Covaliu and Oliver, 1995), 
which obviously I want to avoid. A transformation of the augmented decision tree 
would lead to the sequential decision diagram or Bayesian belief network depicted in 
Figure 5-11 below.  
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5-11 Bayesian belief network representation of the pharmaceutical R&D process 

 
 
Since the decision tree is symmetrical –meaning scenarios always result in the 

same sequence of value realizations (Jensen, 2001)- it can be transformed in the 
sequential decision diagram above (see for details Covaliu and Oliver, 1995; Bielza et 
al. 1999; Jensen, 2001). As a drawing convention, the directed edges relate two 
variables so that the terminal or ending node depends on the initial or starting node. The 
character of the dependencies is then specified by a table of conditional probabilities, 
including a probability of each value of the variable conditioned on each possible 
configuration of its parents. The structure and the probability tables fully determine a 
probability distribution, which can be written as a chain rule: 
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where ),...,,( 21 nXXXX = is a vector of random variables, iΠ  is the set of parents of 

iX  (Pelikan and Goldberg, 2003). The basic decision tree is now augmented with the 
two decisions studied and one uncertainty; (1) the level of residual ambiguity wanted at 
the end of Concept Selection, (2) the wanted broadness of the concept funnel shape, and 
(3) the uncertainty about the predictive power of problem-solving mechanisms used. 
The level of residual ambiguity allowed for by the experimentation strategy influences 
the uncertainty distribution )( RAdp ε caused by the level of variables left uncharacterized 
(ε ) for reaching Proof of Concept. Applied to the pharmaceutical Discovery case the 
decision to implement a front-loaded experimentation strategy will leave less variables 
uncharacterized than an Old Paradigm strategy, which will positively impact positive 
and negative performance, hence business performance. Predictive power of problem-
solving mechanisms has been proposed to have a moderating effect on positive 
predictive performance hence on business performance. 
 
 The Bayesian belief network set out above is the second prescriptive framework 
of my proposed teleological theory of experimentation behavior in the fuzzy front-end 
innovation process. By using the chain rule (5-1) set out above the utility U(d) or 
business value of a particular configuration of decisions made in an experimentation 
strategy can be calculated and a choice for optimal performance can be made. Or, 
formally; 
  

),),(,,()( −++= ππHpdufdU i  

                        ),,),,,(,( −++= ππε psmechfunnelRA pddHpuf       (5-2) 

 
Hence, based on this belief network an optimal experimentation strategy can be 

determined. Applied to the pharmaceutical Discovery case it can be verified in Figure 
5-9 above that, given the utilities u –revenues and costs documented in section 4.4.1 
above describing the simulation model parameters used, and given a predictive 
surrogate marker chain of 70%, the choice for a front-loaded experimentation strategy 
complemented with the decision to apply a (5,1) funnel shaping strategy could lead to 
maximum business performance. As to the latter funnel shaping strategy, this example 
shows that a predictive model can go a step further than the propositional model above 
that was incapable of showing what the funnel broadness was optimizing business 
performance.  
 
 Concluding, the previous sections formulated a teleological process theory 
linking the experimentation and decision-making process during Concept Selection to 
business performance. The proposed theory consists of a bottom-up developed 
prescriptive framework explaining the choice for a complexity-handling mode given a 
type of complexity experienced by the innovation team. Second, a top-down developed 
propositional and a predictive model was proposed linking the execution of one of these 
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complexity-handling modes –Concept Selection- to its predictive and business 
performance.  
 
 In the following sections the proposed innovation process theory will be situated 
in the various literature domains to which it claims to make a theoretical and practical 
contribution. 

 

5.3 DISCUSSION 
 
The primary aim of this thesis was to advance new theory explaining the mechanisms of 
experimentation behaviour that increase predictive and business performance of the 
fuzzy front-end innovation process. Empirical evidence of this study complemented 
with simulation results allowed me to build teleological process theory proposing a 
causal link between levels of front-loading and parallelism used during fuzzy front-end 
experimentation and predictive and business performance of the innovation process.  
 

Overall, findings support the viewpoint developed in other industries that front-
loaded and parallelized experimentation strategies enhance innovation process 
performance. However, my study is the first to extend current thinking on the benefits 
of these experimentation strategies to include their contribution to increasing predictive 
performance as an outcome variable of the innovation process. Also, it raises questions 
about the way project management for various types of innovations is proposed by the 
literature. 

 
First, I will position the proposed theory in its relevant literature domains. Then, 

I will elaborate on both theoretical and practical contributions of my research leading to 
the proposed teleological process theory advanced above. 

 

5.3.1 Positioning the contribution of the proposed process theory 
in the literature 
 
The teleological process theory developed above is positioned at the cross-roads of three 
bodies of knowledge (see Figure 5-12); (1) innovation as the dynamic capability of 
building and embedding routines to manage internal innovation processes like 
experimentation and project management approaches (Tidd et al. 2001; De Meyer et al. 
2002; Thomke, 2003), (2) innovation as a complex responsive process drawing upon 
both the Interpretive e.g. (Stacey, 1995; Stacey et al. 2000; Stacey, 2001; Fonseca, 
2002) and Complex Adaptive System e.g. (Holland, 1992; 1998; Goldberg, 2000) sides 
of the Complexity Sciences to make sense of experimentation behaviour in situations of 
high ambiguity and uncertainty, and (3) Decision Theory as a branch of a behavioural 
theory of the firm (Cyert and March, 1992) and its application to causal thinking and 
decision analysis under conditions of high uncertainty and ambiguity (Howard, 1988; 
Spirtes et al. 2000; Pearl, 2000).  
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 The bottom-up developed prescriptive framework used the Interpretive view of 
the Complexity Sciences to provide empirical evidence and develop emerging theory in 
the area of routines used to manage innovation projects (Schrader et al. 1992; Pich et al.  
2002). Also, it raises questions about existing empirical classification schemes used to 
suggest project management approaches to innovation project managers contingent 
upon the degree of technical uncertainty and complexity they are facing at the outset of 
their project (Pich et al. 2002). My case evidence suggests that the technological 
uncertainty evaluation made at the outset of the project is not a guarantee for a unique 
project management approach followed along the project. Instead, a dynamic view is 
required. 
 
 The top-down developed propositional model and Bayesian belief network used 
the Complex Adaptive Systems view of the Complexity Sciences augmented with 
causal thinking from Decision Theory to propose new process theory explaining 
predictive and business performance of front-loaded e.g. (Thomke, 2003) and set-based 
or parallelized experimentation e.g. (Sobek II et al. 1999) in fuzzy front-end innovation 
processes.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 5-12 Situating my research in the literature domains 

 
In the next section I will discuss the contributions made by both bottom-up and 

top-down approaches to theory development and their implications for managerial 
practice. 
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5.3.2 Theoretical contributions 
 
Prescriptive framework. In Chapter 2, a review of the innovation routine literature 
focussing on the differences between managing radical and incremental innovations led 
me to conclude that exogenous project characteristics are poor predictors for explaining 
the type of experimentation approach used by the innovation team. My empirical case 
evidence provided in Chapters 2 and 3 showed that evaluating at the outset whether an 
innovation project is radical or incremental (Leifer et al. 2000), low-, medium- or high-
tech (Shenhar and Dvir, 1996) is not sufficient to explain the project management 
approach and experimentation strategy dynamically chosen during the course of the 
project. Instead, I argued that to get to a more fine-grained understanding of 
experimentation behaviour a change in paradigm is required; attention needs to be 
turned to the dynamic –changing over time- nature of the endogenous problem framing 
and problem solving going on in the innovation project, and to the nature of the 
complexity experienced by the innovation team when trying to solve the innovation 
problem at hand.  
 
 Hence, my prescriptive framework, making the complexity-handling mode 
dynamically chosen by the innovation team contingent upon the type of complexity they 
are experiencing, supports the view proposed by Schrader et al. that levels of 
uncertainty and ambiguity are not exogenously given but are rather determined in the 
problem-framing process. This choice is proposed by the authors to be contingent upon 
context characteristics (Schrader et al. 1992) that I would specify as the type of 
complexity experienced by the innovation team. Also, it supports the fundamental view 
held by De Meyer et al. that an evolving innovation project uncertainty profile can be 
the starting point for a dynamic choice between instructionist and learning-selectionist 
approaches (Pich et al. 2002; De Meyer et al. 2002).  
 

However, although in my prescriptive framework I used Schrader et al.’s 
definition of uncertainty, my research purpose leads me to use a different categorization 
of the ambiguity construct. More specifically, Schrader et al. distinguish between a 
situation where the variables are known but ambiguity exists in the relationships and 
problem-solving mechanisms, versus the worse situation where also the relevant 
variable set to solve the problem is in need of determination. The problem with this 
categorization is that it doesn’t solve the need for a contingency framework explaining 
which project management approach to dynamically follow depending on the nature of 
the complexity experienced. Since in both Concept Selection and Concept 
Characterization modes discovered in my exploratory and confirmatory cases both types 
of ambiguity were prevalent and clearly a different project management approach was 
used, this indicated to me that a different categorization of ambiguity was required to 
use as an entry point to the prescriptive complexity-handling framework. Distinguishing 
between ‘proof of concept ambiguity’ and ‘ambiguity’, using proof of concept as a 
minimum threshold of the solution mental model completeness, allowed me to come to 
a definition of ambiguity fit for the purpose of a contingency framework, prescribing 
the type of project management approach to be followed, and which also stood the test 
of an adequate representation of reality by pharmaceutical Discovery scientists.      
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 Second, my case evidence in pharmaceutical Discovery and Development 
provides empirical support for the explained side of the theoretical framework proposed 
by Pich et al. (2002), explaining project management behaviour under various 
conditions of uncertainty, ambiguity, and complexity. More specifically, my exploratory 
case study results found their ‘Instructionism’ to be the strategy used during my 
proposed ‘Concept Application’ complexity-handling mode. Also, I found their 
‘Selection’ and ‘Learning and Selection’ strategy to be used during my ‘Concept 
Selection’ cases, and their proposed ‘Learning’ strategy during ‘Concept 
Characterization’. However, my prescriptive framework develops their thinking further 
by (1) providing clarity of concept on the explaining side of the explanatory framework, 
and (2) by proposing a more explicit dynamic component to the explanatory model. 
 

As to the first point, it is acknowledged by the authors that precise rules of when 
to use which approach are currently unknown, and that ‘more research is needed to 
refine the suggested management approaches and determine when to use which 
approach’ (Pich et al., 2002: 1021). Meanwhile, project urgency, amount of learning 
that can be achieved, costs, complexity and ambiguity are cited as inputs to choose for 
the right mix of instructionism, learning, and selectionism. Also, in a more practitioner-
oriented paper a project uncertainty profile is proposed as a possible entry point to 
choose amongst the various abovementioned strategies (De Meyer et al. 2002). In my 
opinion, the latter ads to the confusion by not distinguishing between ambiguity and 
uncertainty, and introducing new concepts like variation and chaos. Conversely, 
drawing upon the work of Interpretative complexity theorists (Boisot, 1995; Boisot and 
Child, 1999) distinguishing between absorbed and reduced complexity, following the 
ambiguity- or uncertainty-related nature of the complexity experienced by the 
innovation team, and grounded in my case evidence, my prescriptive framework 
provides a clear input to the project manager facing the choice for a specific 
complexity-handling mode. Instead of exogenously defining complexity as ‘an inability 
to define the effects of actions because too many variables interact’ (Pich et al., 2002: 
1009) I modelled experienced complexity as a construct consisting of two components –
uncertainty and ambiguity as related to innovation problem solution variables- as a 
unique entry point to my framework.  
 
 As to the second point, in my prescriptive framework I strived for conceptual 
clarity of the complexity-handling dynamics describing mode transitions by introducing 
the concept of residual ambiguity. As discussed above, Schrader et al. (1992) 
distinguish between various levels of ambiguity depending on the knowledge of 
relevant variable sets, their causal relationships, and problem-solving mechanisms used. 
Pich et al. (2002) refer to information inadequacy arising from both project ambiguity, 
an endogenously defined problem-framing variable, and project complexity, the latter 
defined as an exogenous variable describing the complexity of the rugged solution 
fitness landscape (Kaufmann, 1993: 40-67). In contrast, to increase clarity in my 
prescriptive framework I summarized all non-characterized solution variables, their 
causal relationships, and/or related problem-solving mechanisms, at a specific moment 
in time during the innovation project, in a concept I called residual ambiguity. The latter 
is supposed to decrease during the course of the innovation project. This endogenously 
defined Interpretative complex systems concept, characterizing the actual state of the 
mental modelling process, is used to identify when the transition between Concept 
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Selection, Concept Characterization, and Concept Application can be made in the minds 
of the innovation team and R&D decision-makers; as an example, only if the solution 
concept mental model is sufficiently complete to show proof of concept, a transition 
between Concept Selection and Concept Characterisation can be made. The required 
level of residual ambiguity to accept solution proof of concept is, congruent with 
Schrader et al. (1992), a choice made by R&D management.     
 

Summarizing, my qualitative prescriptive framework explaining complexity-
handling behaviour contingent upon the type of experienced complexity, contributes to 
an emerging research agenda formulating prescriptive models dynamically explaining 
innovation project management and experimentation approaches contingent upon 
endogenously defined drivers of complexity, uncertainty, and ambiguity.    
 
 Propositional model and Bayesian belief network. The propositional model 
(Figure 5-10) and Bayesian belief network (Figure 5-11) developed above are first of a 
kind attempts to conceptually and quantitatively relate policy variables used to manage 
the fuzzy front-end innovation process to predictive and business performance. 
 

Previous studies related frontloaded and parallelized R&D strategies to time-to-
market, quality and cost efficiency performance variables. To study fuzzy front-end 
decision-making policy, Verganti (1999) used ‘integrated product development 
performance’, defined as a relative measure indicating the strategic priority researched 
companies gave to time-to-market and product quality and the level of which they 
outperformed their competitors on these performances. A later study (MacCormack and 
Verganti, 2003) corroborating these results measured product quality performance using 
a panel of experts participating in a Delphi evaluation process. Thomke and Fujimoto 
(2000) used development cost, project lead time, and number of prototypes built, to 
measure the proposed positive effect of shifting problem identification and problem-
solving to the early phases. Terwiesch et al. (2002) build upon Set Based Concurrent 
Engineering (SBCE) practices documented at Toyota (Sobek II et al. 1999) and use 
development cost as a criterion to evaluate which R&D policy to follow. Finally, recent 
studies on parallelization (Dahan and Mendelson, 2001; Loch et al. 2001) also use cost 
as a criterion to optimize the level of parallelism envisaged in an experimentation 
policy. So clearly, my research adds predictability as a performance dimension to 
evaluate the fuzzy front-end policy-performance link. 
 
 In the previous I argued that to study predictive performance of fuzzy front-end 
discovery processes conditional probability thinking had to be applied to an adaptive 
search process. Complex adaptive system’s efficiency had been studied before for 
genetic algorithm-based search processes (Goldberg, 1989; 2000; Holland, 1992; 
Mitchell, 2001) On the other hand, Bayesian algorithm-based methods to dynamically 
assess effectiveness of pharmaceutical clinical development (Parmigiani, 2002) and 
product launch strategies (Lee et al.  2003) were known. However, this study is the first 
of a kind providing a quantitative method to assess the relative effectiveness of various 
adaptive experimentation search processes based on Bayesian conditional probability 
thinking. Doing so, this thesis makes a modest contribution to a growing research 
agenda designing optimized experimentation strategies in highly ambiguous and 
uncertain solution spaces (Pelikan and Goldberg, 2003; Callan, 2003). 
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5.3.3 Practical contributions and implications 
 
Conducted in the spirit of Mode 2 research (Gibbons et al. 1994; Romme, 2003; Van de 
Ven and Johnson, 2004; van Aken, 2004a; 2004b) this thesis was not conceived to only 
advance new theory. Instead, my study findings also have practical implications for 
innovation managers of technology-intensive companies, responsible for defining fuzzy 
front-end experimentation policies. Not only will pharmaceutical R&D managers 
benefit from the specific simulation study-based challenges this study raises to the 
recommendations made by the practitioner-based literature on discovery 
experimentation policy. Also, more generally this thesis contributes to good innovation 
practice by providing a prescriptive framework to dynamically organize the 
experimentation process in the face of the complexity type experienced by the 
innovation team. Finally, the proposed Bayesian belief network is a first step towards a 
decision support system supporting the design and optimization of fuzzy front-end 
experimentation policies in R&D organisation-specific situations.   
 

First, my simulation results corroborate practitioner findings on experimental 
design in drug discovery claiming that a too high level of residual ambiguity at transfer 
into clinical development, leaving ADME-T characteristics uncharacterized, results in 
poor predictive performance (Oprea, 2002; DeWitte, 2002). Furthermore, my simulation 
data support the idea of being more generous in promoting compounds for further study 
in discovery (DeWitte, 2002). It increases significantly the experimentation strategy’s 
negative predictive performance, which decreases the chances of missed opportunities 
in subsequent clinical development at a negligible cost. Also, my results confirm the 
deteriorating impact of the “noisiness” of the experiments conducted in discovery 
acclaimed by DeWitte (2002). Lower levels of tests’ predictive power were shown to 
negatively impact positive predictive performance of experimentation strategies. 
Conversely, my simulation data do not support the idea that in-silico ADME-T 
significantly outperforms experimentation strategies where ADME-T only starts from 
H2L with in-vitro models (Pickering, 2001; Coty, 2002; Yu and Adedayo, 2003). 
Although both performing better than an Old paradigm experimentation strategy, my 
results show insignificant differences in predictive performance between Front-loaded 
and Early Front-loaded strategies.  

 
Second, there seems to be a desire on the part of management to understand how 

to manage effectively the development of radically new products if, of course, it can be 
managed (O' Connor, 1998; Veryzer, 1998). Previous studies focussing on the 
difference of the radical versus incremental innovation process conclude that the 
development of disruptively innovative products does not seem to follow conventional 
stage-gate processes and find a degree of informality with respect to how this 
development process is managed (Veryzer, 1998). Now, the prescriptive framework 
presented above offers project managers in practice a diagnostic tool they can use to 
dynamically choose over the course of the project for a specific complexity-handling 
mode, contingent upon the type of complexity they’re experiencing. Present diagnostic 
tools fall short against this framework while they are not dynamic, only considering the 
situation at the outset of the project, and take into account project exogenous 
characteristics as opposed to characteristics related to the complexity experienced by the 
innovation team (Shenhar and Dvir, 1996; De Meyer et al. 2001). Or, they don’t 
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consider the role of ambiguity and only focus on uncertainty types to guide the choice 
for a specific project management approach (De Meyer et al. 2001). 

 
Finally, the Bayesian belief network developed above fits the definition of a 

technological rule, defined by van Aken as ‘[a] chunk[s] of general knowledge, linking 
an intervention or artefact with a desired outcome or performance in a certain field of 
application’(van Aken, 2004b: 228). When used in the context of a specific 
pharmaceutical discovery organisation the network is able to calculate the relative 
predictive and business impact of various experimentation policies. Thus, it serves its 
intended purpose as a quantitative design tool supporting organizational and innovation 
process redesign. 
 

5.4 LIMITATIONS AND AREAS FOR FURTHER RESEARCH 
 
The developed teleological process theory is firmly grounded in several case studies 
conducted on an extended spectrum of one major pharmaceutical company’s R&D 
operation. However, this means that in order to have the proposed models evolve into 
more generally applicable formal theory, a research agenda needs to be set up gradually 
increasing their explanatory power beyond the present scope of experimentation 
behaviour conducted in pharmaceutical R&D. Also, in a second effort the proposed 
theory should be expanded to include the investigation of the role of problem definition, 
prior knowledge and cross-project learning (see Figure 5-13). Finally, the Bayesian 
belief network developed for the ‘Concept Selection’ part of the prescriptive framework 
is only a first step towards an integrated simulation-based methodology to study the 
effect of R&D policy variables on predictive and business performance during the 
various complexity-handling modes. 
 
 Therefore, in the following I will argue for a future research agenda building 
upon this work consisting of a confirmatory path deepening and widening the 
application reach of the developed theory in respectively pharmaceutical and other 
technology-intensive sectors, an exploratory path extending the reach to innovation 
problem definition in pharmaceutical discovery, and a quantitative operations research 
path further exploring the role of predictability on R&D and business performance.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-13 Areas of further research 
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First, although firmly grounded in the seven cases of this study, the present 

prescriptive framework needs to be replicated to other technology-intensive contexts to 
increase its external and internal validity. Since my exploratory results could only be 
partially replicated in the confirmatory case of pharmaceutical discovery, a case study-
based confirmatory research path would enhance internal and construct validity by 
replicating the exploratory findings of the ‘Concept Characterisation’ and ‘Concept 
Application’ parts of the framework to other pharmaceutical and biotech R&D 
companies. After this, the prescriptive framework will be replicated to other research-
intensive sectors like electronics, aerospace, or software development enhancing its 
external validity and possibly refining its propositions and constructs. 

 
Secondly, a case study-based exploratory research path could extend the 

prescriptive framework to explore the role of experienced complexity on complexity-
handling in the problem definition domain prior to problem-solving. This path is not 
only theoretically relevant. It is even essential for the future of managerial practice in 
pharmaceutical R&D since here problem definition can only be enhanced by a better 
understanding of disease pathways leading to more ‘druggable’ hence more potentially 
business relevant biological targets. As mentioned by an influential discovery 
practitioner; ‘The attempt to replace the quality of scientific arguments by the sheer 
quantity of data as expressed in HTS or ultra-HTS49 in the past has failed. An approach 
that is based on a much broader understanding of biochemical and genetic mechanisms 
of diseases appears to represent the necessary correction’ (Drews, 2003: 416). How and 
why to come to this better understanding? These should be the research questions 
guiding an exploratory research agenda into pharmaceutical fuzzy front-end 
experimentation behaviour for target identification and validation.  

 
 Also, it is generally (Leonard-Barton, 1992; 1995; Verganti, 1997) and 

specifically (Henderson and Cockburn, 1994; Henderson, 1994a; 1994b; Horrobin, 
2003; Duyck, 2003) acknowledged that increased disease understanding and economies 
of scope (Henderson and Cockburn , 1996) can only be realised by sustained capability 
building, which implies the need for leveraging prior knowledge and cross-project 
learning mechanisms. This implies that further case study-based research should 
investigate the role of corporate memory mechanisms underlying experimentation 
behaviour. However, as mentioned before in the previous Chapter, in this study I 
modelled a memory-less system to limit the complexity of the simulation model to 
emulate the adaptive search & optimization process. Hence, future simulation models 
supporting the exploratory research agenda should clearly have the capability to emulate 
the role of memory on experimentation behaviour and decision-making. A first step to 
explore this field was taken (Smart et al. 2004). 
 

Finally, a quantitative operations research path should focus on the pivotal role 
predictability will play in managing pharmaceutical research and development. Since a 
ten percent improvement in predicting failures before clinical trials could save $100 
                                                 
49 What is meant here is that increasing candidate compound libraries to be tested in High Throughput 
Screens against multiple poorly understood biological targets is not going to help to quickly and 
efficiently identify and validate targets. This view is supported by various influential publications (see 
a.o. (Horrobin, 2003; Duyck, 2003)  
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million in development costs per drug (Food and Drug Administration, 2004) it will be 
clear that managing predictive performance of R&D strategies will be high on any life 
sciences’ company agenda. Also, from an academic perspective, further research in this 
area will lead to increased understanding of the impact of various R&D policy variables 
on predictive and business performance.  

 
This thesis produced an internally valid simulation model emulating in a 

simplified mechanistic way the noisy search and optimization process followed by 
pharmaceutical discovery scientists to select a candidate chemical structure for 
subsequent clinical development. Further case-based process research could focus on 
studying external validity of the propositions resulting from the theory-generating 
simulation study. Although it should be noted that the model’s predictions on negative 
performance are not empirically verifiable since the conditional probability involved 
cannot be observed in practice, at least partial empirical validation of the model’s 
predictions can be performed in longitudinal studies of pharmaceutical company’s 
product portfolio management. 

  
However, considering the complexities of the discovery process I tend to apply 

the reasoning developed by Masuch and Lapotin (1989) that moving in one sweep from 
an internally valid but extremely simplified model of reality to the empirical reality of 
the real world is just too complex and bound to be problematic. Therefore, I follow their 
suggestion to first build more specific versions of the model to test the robustness of the 
operational assumptions made. Simulation results of these specific models may then 
lead to modifications or additions to the initial one developed in this thesis, which then 
in its refined form can be used for empirical validation. 

 
Applying this thinking to the realities of the business needs in a life sciences 

R&D context I would propose to investigate the design of two specific models 
focussing on the transition between ‘Concept Selection’ and ‘Concept Characterisation’. 
This being driven by the acknowledgement that ‘we are falling woefully short of 
defining clear chains of causality that would effectively “link genetics to physiology” in 
a manner that could form the basis for robust, reliable models of complex biological 
processes’ (Duyck, 2003: 604). In a first model I would extend the Bayesian belief 
network defined above to include policy variables used in ‘Concept Characterisation’ 
and study their effect on the tightness of the causal chain and its predictive and business 
performance. A second specific model could start anew and use a different process 
emulation engine. One possibility is to leave the present idea of emulating the discovery 
process as a noisy hierarchical search at successive levels of disaggregation, and build 
instead a “hierarchy machine” combining a genetic algorithm search process with 
Bayesian conditional logic as recently suggested by Pelikan and Goldberg (2003). If 
both newly built models of the discovery process provide results corroborating the 
initial model’s results, then literal replication can be claimed, which further improves 
the model’s internal validity and increases the robustness of its operational assumptions, 
making it now ready for empirical validation. 

 
A final avenue of further operations research is given by the need acclaimed by 

the US Food and Drug Administration for applied research in the “industrialization” 
process to increase predictability of its results (Food and Drug Administration, 2004). 
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The latter process translates a characterized concept into a manufacturable product 
ready for mass customization. Here, the model would have to include policy variables in 
‘Concept Application’ that potentially influence the predictability of the design process 
hence reducing the risk of failure in pharmaceutical production.   

   

5.5 A FINAL CONCLUSION 
 
David Horrobin (2003) uses an intriguing metaphor to provide a strategic perspective on 
the future of discovery and development in the life sciences industry. In his review 
paper he compares modern biomedical and pharmaceutical research with the Castalian 
‘glass bead game’ as described in Herman Hesse’s (1943) book of an isolated fantasy 
world called Castalia that recruits the brightest young people, educates them 
outstandingly, and persuades them that the ultimate achievement of the human mind is 
to play the complex, fully refined and internally consistent glass bead game. The only 
problem is that the Castalian game makes no contribution to the issues of the real world. 
In effect, the Castalians avoid ‘wasting’ their brains on real issues. 
 
 The fundamental issue of modern pharmaceutical discovery research is its lack 
of congruence with the real world of medical illness. ‘The charge that we may be 
building a vast and internally consistent medical research game that has lost touch with 
patients is a serious one, and deserves serious attention’…’What needs to be done to 
reduce the risk of isolated self-consistency?’ (Horrobin, 2003: 153). Duyck responds; 
‘in summary, an emerging challenge for life science research is to unify the fields of 
genetics and physiology, resulting in a more comprehensive and predictable picture of 
biology while enhancing the translational research process. The current lack of 
predictability not only represents a deficit in our knowledge base, but results in 
substantial opportunity cost, increased financial cost for therapeutic development, and 
limits on the potential impact of our basic research enterprise on public health’ (Duyck, 
2003: 605).  
 
 Therefore, the main contribution of my thesis to this debate is situated in its 
endogenous focus on the process of emerging innovative solution understanding and on 
the role of the latter on predictability; a performance variable shown to be not only 
relevant to the scientific debate but that also should be taken into consideration when 
studying business performance of research and development operations.     
 

More specifically, it was argued that studying project management of innovation 
projects necessitates an endogenous look focusing on complexity-handling. A shift is 
needed from the exogenous view of various prescriptive project management models 
starting from the nature of the innovative product to an endogenous view of the 
innovation process. A prescriptive framework resulted from this initial work, 
dynamically connecting experienced complexity to complexity-handling modes. The 
latter build an emergent mental model of the innovative solution and continuously 
reduce its residual ambiguity before transferring it into the market. 
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Furthermore, a propositional model was derived using top-down simulation, 
relating fuzzy front-end policy variables to predictive and business performance thereby 
extending the concept of front-loading in scope and breadth. Not only did the discovery 
case show the relevance of front-loading as a concept underlying pharmaceutical fuzzy 
front-end policy enhancing solution understanding. Simulation results also quantified its 
positive influence on predictive performance.  

 
 
The innovation literature has neglected so far predictive performance as a 

performance indicator for experimentation policies or innovation strategies. To my 
knowledge, this thesis was the first to provide a method to quantitatively compare fuzzy 
front-end experimentation policies on their predictive and resulting business 
performance. 

 
 As a contribution to practice, this thesis not only developed the prescriptive 
framework set out above guiding innovation managers to dynamically choose an 
approach for their projects. It also developed a solution-oriented research product under 
the form of a Bayesian belief network defined as a technological rule to evaluate 
business performance of company-specific configurations of policy variables defining 
fuzzy front-end experimentation. 
 
 Concluding, and looping back to the Castalian metaphor above one could say 
that this thesis was about researching ways to avoid playing internally consistent 
discovery games with no relation to practice. Instead, to improve the translation of the 
solution concept to practice, tools and concepts were developed to study the predictive 
performance of the connection to reality. Future research, then, should predominantly 
turn its attention from the solution side to the innovation problem definition side, 
focussing on the business relevance of better understanding human disease, connecting 
management science to the natural sciences.    
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APPENDIX A: Exploratory case studies visual mapping 
and temporal bracketing results 
 
Case statistics 
 

Case study # empirical 
indicators 

Respondents # interviews 

DNA-Zyme 31 Marcus Brewster 2 
Micro-emulsions 91 Tina Arien 3 
Supercritical Fluids 38 Tina Arien 

Christina 
2 
1 

Nanosuspension 23 Marc François 2 
Gamma Controlled 
release 

45 Marc Deweer 2 

Alfa Immediate 
release 

24 Marc Deweer 2 

Totals  5 14 
 
 
Case written sources 
 
Sources used to document PharmaCo research context and case visual maps: 
 

(1) Brewster, Peeters, Noppe, Arien (1997) ‘The Drug Delivery Research Group: 
A component of pharmaceutical development, Group implementation, 
integration and research planning’, internal confidential PharmaCo 
publication. 

(2) PharmaCo (2001) ‘Pharmaceutical Development facts & figures’, internal 
publication. 

(3) PharmaCo (2001) ‘Global best practice: Direct compression formulation 
development flow chart’, internal confidential publication. 

(4) PharmaCo (2001) ‘Project [Gamma] formulation development rationale’, 
internal confidential publication. 

(5) PharmaCo (1998) ‘Use of supercritical fluid technology to broaden 
applicability of melt extrusion: Proposal for a research grant for funding from 
the Excellence in Science Award Program sponsored by the Corporate Office 
of Science and Technology’, internal publication. 

(6) PharmaCo (2002) ‘SCF technology in combination with meltextrusion: 
Timeline of SCF activities’, internal confidential presentation. 

(7) PharmaCo (1998), ‘Use of novel microemulsions for the formulation of 
hydrophobic drugs: Proposal for a research grant for funding from the 
Excellence in Science Award Program sponsored by the Corporate Office of 
Science and Technology’, internal publication. 

(8) PharmaCo (2000) ‘Project Omega: DNAzymes – How do they work?’, 
internal confidential publication. 
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(9) PharmaCo Molecular Oncology Group (2000) ‘Penetration-mediated delivery 
of anti c-myc DNAzyme molecules in cell-based assays, proof of principle 
study proposal, internal confidential publication. 

 
 
In the following tables empirical indicators will be indicated with a case name and 
number (Case name, x) at the end referring to the interview notes in the exploratory case 
studies database. 
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Case DNAzyme basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A 
 
 
 
 
 
 
 
 

A 
 

 
 
 

A 

“I don’t know if everybody does, but we took a stepped approach, 
because first you have to show it interacts with the target, than 
you have to show you can get it into the cells, then you have to 
show you have a non-toxic material , then you have to show you 
get one way or another some activity in an in-vivo system , then 
you have to have a number of curtails because this area is fought 
with problems, coming from that very first experiment, where you 
show some functional activity. (DNAZyme, 7) 
 
“What Michel [project manager] tried to do is to set up, even 
before we started looking at these people, what we like to see for 
the very first criteria; that was functional DNA-Zyme activity in 
the cells” (DNAZyme, 22) 
 
“…I think the idea was really; let’s identify these criteria [solution 
critical requirements] We have the opportunity to look at our 
range of technologies, but having said that, the very first step is to 
get rid of as many as possible. What would happen, if all of these 
passed the first test, I don’t know. But we knew that the bar was 
so high, that it wasn’t likely to happen.” (DNAZyme, 31) 

Experimentation A 
 
 
 
 
 

A 
 
 

A 
 
 
 
 
 

“We also went to the scientific literature and made a special point 
to specific scientific media. In the beginning there was a relatively 
long list, we looked at anything that might be useful; so at one 
point we must have had 10 or 12 different approaches” 
(DNAZyme, 4) 
 
 “You knew that you had to look at some pretty avant-garde 
therapies for approaches” (DNAZyme, 19) 
 
“…It is so high risk you could never put all your eggs in the same 
basket. You never approach it by just assuming one unproven 
technology is going to be the best. You have to spread in as many 
reasons as possible…so Michel went to a number of companies in 
the area with the idea establishing a number of parallel feasibility 
contracts…we also tried to diversify risk by looking at all known 
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A 
 
 
 

A 
 
 
 
 
 
 
 

A 

possibilities of delivery” (DNAZyme, 21, 3, 5) 
 
“The trouble was that, since we felt that it was a difficult project,  
it had to be very highly parallelized in terms of how to move 
forward, […]you also have to have good criteria (DNAZyme, 23) 
 
“The more complicated the design space is, the more you tend to 
tailor your approach to answer a specific question, rather than 
learn as much as you can about that area that probably is not the 
case in a university, where off-course the goal of a university is 
something different of the goal of a pharmaceutical company in 
terms of generating space. It’s just a realism that a pharmaceutical 
company is moving as quickly as possible to a space you can 
provide a product for” (DNAZyme, 25) 
 
That were the three, we thought were the best, that we could move 
foreword with and that we are currently interacting with 
(DNAZyme, 12) 
 

Learning  A 
 
 
 
 
 
 
 

A 
 
 
 

A 

“…It is always stepwise, but the difference was the extent to 
which we thought we could have some sort of input into the 
different processes.….[x] had more development time and there 
was also more technology we could help them with, [y] was brand 
new, they had a polymer, very little was known, and because of 
that we thought we had a more open playfield….we interacted 
most with them (DNAZyme, 9, 11, 10) 
 
“…There was so much published on so many failures, that we 
knew we could not do with the traditional approaches so we 
started already at the beginning with things that were pretty off 
the wall...” (DNAZyme, 17) 
 
“ …We knew, that when we had any success, it would be from 
novel approaches and not from things that have been tried fifty 
times before”. (DNAZyme, 18) 
 

Coordination A 
 
 
 
 

A 
 
 
 
 
 

A 
 
 
 
 
 

A 
 
 
 
 

“…Since we felt that it was a difficult project it had to be very 
highly paralleled in terms of how to move forward…and you have 
to have good criteria to focus as quickly as possible on those 
companies and institutions that were able to demonstrate that…” 
(DNAZyme, 23, 24) 
 
“So, there are two big pharma-ideas about this; one is that you sit 
back, and hope for the best to wait for somebody to give you 
something off the shelf or you can try to have some impact on 
their development, by going in early and trying to steer, 
manipulate the direction which is going to be most interesting and 
beneficial for you” (DNAZyme, 6). 
 
“…Everybody got the same message what was going to be the 
first milestone, what we wanted to see at that point. For those 
companies, that were either at the first milestone or that we had a 
good feeling about we broadened the topic to say, the next area 
will be this, and than after that it will be…always raising the 
hurdle…” (DNAZyme, 26) 
 
“..I don’t know if everybody does, but we took a stepped approach 
with each of the candidate solutions…first they had to show you 
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A 
 
 
 
 

A 

can get it into the cell, then you have to have some in-vivo 
activity, then…” (DNAZyme, 7) “ We went through basically 
screening with all of these” (DNAZyme, 13). 
 
“…From the very beginning we always had in mind the stepped-
approach, that if the first sets of experiments were positive,  we 
would make commitment during the next step, if it would not 
have been positive we would have dropped it “ (DNAZyme, 8).  
 
“…Here is something the project leader was convinced we had to 
do in a relatively systematic way…either we moved forward, 
either we stopped…in the end …that were the three we thought 
were the best, that we could move forward with and currently 
interacting with…” (DNAZyme, 12, 14) … “either we moved 
forward, or we stopped…  but the data that came back as the most 
positive, were these three” (DNAZyme, 15, 16). 

 
 
 
Case Micro-emulsions basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A 
 
 
 
 

A 

“…The objective of these first two phases [refers to project 
process chart] is really to check for entire families of polymers 
whether it is possible to form micro-emulsions and to 
encapsulate an active ingredient, or not”.  (Micro, 45) 
 
“First you check the functioning of the system as a whole or 
not, only then you take the next step. This is why we split up the 
project in different steps (Micro, 35)  
 

Experimentation A 
 
 
 
 
 

“…[refers to project process chart] the process is really to check 
for each family of polymers if micro-emulsions can be formed, 
then if active substance can be encapsulated. If it doesn’t work, 
go back, if it does, take another family and start all over 
again…. After this initial phase we will be able to fully 
characterise the formulation for parenteral and oral 
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B 
 
 
 
 
 
 

B 
 
 

B 
 
 
 
 

A,B 
 
 

B 
 
 
 

B 

applications” [refers to project process chart] (Micro, 12) 
 
“…[refers to project process chart] then we would like to 
characterise parenteral and oral applications [in parallel] 
exploring how much active substance can be solved, whether a 
capsule can be filled, does the capsule break when it gets into 
contact with the acids in the gut? How about the toxicity and 
permeability for each of these applications…”(Micro, 11, 12) 
 
“…this project is actually a platform that can be used for 
different applications,…parenteral, oral, and transdermal” 
(Micro, 23, 25) 
 
“In the first phase the question to be answered is; is it stable or 
not? In this phase, the experimental plan will be more directed 
towards exploration of ranges of parameters –is this range a 
good range to function at production scale?- (Micro, 54) 
 
“In Phase A you select, in Phase B you model and optimize the 
polymer structure…” (Micro, 72) 
 
“Design of Experiments will also be easier to be used in this 
phase than in the previous because you now have a good idea 
which parameters are going to influence more or less strongly 
the process (Micro, 55) 
 
“The end point of this Phase B is really to have a technology 
available, sufficiently characterised to have a compound project 
use it” (Micro, 79) 
 

Learning  A “[Before starting]You check the literature from different 
perspectives and try to combine approaches without doing many 
experiments (Micro, 57) 
 

Coordination A,B 
 
 

A 
 
 
 
 
 

A,B 
 
 
 

B 
 
 
 
 
 

B 
 
 
 

B 

“…This is definitely a reciprocal collaboration contract we have 
with UCL [university] (Micro, 37) 
 
“…Based upon some first experiments we estimated the time 
needed to do synthesis and characterisation of the compounds, 
then, we estimated it would take so many months to synthesize 
so many polymers….” (Micro, 26) … a professor from UCL has 
also made an estimation, then we compared and saw we came to 
about the same results (Micro, 27)  
 
“The transition to the next phase [from A to B] is really 
dependent upon the results you get. And if you don’t get a result 
you have to stop unless the literature provides you with further 
clues” (Micro, 50) 
 
“You develop an application on model compounds, not for a 
final R-number [specific drug project] We will only transfer 
into Full Development when we will be sure it will be bio-
available, enhances solubility and is non-toxic. This needs to be 
shown first on model compounds (Micro, 61) 
 
“I think the transition into Full Development is made as soon as 
there’s a compound in need for this technology in its relevant 
application domain (Micro, 63) 
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A,B 

 
“Now the technology is already sufficiently characterized for 
one type of polymer to allow us to test its solubility in micro-
emulsions for one specific compound falling within this 
application domain” (Micro, 64) 
 
“Depending on the results it is possible to go back from Phase B 
to Phase A because we get results that do not allow us to go 
through” (Micro, 71) 
 

 
 
 
Case Supercritical fluids basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A 
 
 
 

B 
 
 
 
 

A 
 
 
 
 
 

A 

“We checked solubility of polymers in SCF and decided whether we 
could proceed or not. If it would not have been possible to solubilize 
polymers we could not have proceeded”. (SCF, 24) 
 
“As soon as we find out if and how we can get the active substance 
into the SCF we will have to check how good the active can be 
solubilized, or which volume you can usefully bring into the 
extruder, what is the stability, bio-availability, of the 
mixture?”(SCF, 26) 
 
Comparing SCF to microemulsions’ first screening phase: “For SCF 
there will also be a screening of classes of active substances and 
polymers for which SCF can be a solution. Which ones are feasible? 
Then a certain system will be selected and the most useful extruder 
parameters will be characterised”. (SCF, 30) 
 
“For the meltextrusion application we stated as an objective that the 
temperature with SCF had to be lower as the temperature we would 
have had without SCF. And this for a pressure that would not be so 
high it would endanger the functioning of the meltextruder. (SCF, 
38) 
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Experimentation A 

 
 
 
 
 

A 
 
 
 
 

A 
 
 
 
 

A 
 
 

B 
 
 
 
 
 

A 
 
 

B 
 
 
 
 
 

A,B 
 
 
 
 

B 

“…At first instance Christina [project manager] checked the 
solubility of the active substance in the supercritical fluid, in parallel 
she checked whether the polymer could be extruded using 
supercritical fluids…at the first experiments she saw it was not 
really possible to bring liquid CO2 into the extruder, so it had to be a 
gas form” (SCF, 7) 
 
“…Mid 2000 Proof of Concept was delivered in the Supercritical 
fluids project when polymers in interaction with SCCO2 showed that 
they can decrease the meltextrusion temperature and that active 
substance can be made soluble in SCCO2 under certain critical 
conditions” (SCF, 4) 
 
“…In [Phase A] … we tested both concepts on one polymer. Both 
single and twin screw worked but the latter gave the best blend 
properties so we chose the last one to show proof of concept (SCF, 
32)… “In [Phase A] you check; is it feasible or not?” (SCF, 37) 
 
“…As soon as we have a bit of a view of the process [Phase A] we 
will use Design of Experiments to characterise and optimise the 
process (SCF, 9). 
 
“In this mode the question is much more; is it stable or not? Or, [for 
this parameter] is this a good working range to have the application 
work at full production scale? DoE will be easier in this phase 
[Phase B] while you have an idea which parameters will influence 
the process more or less. So you know the factors to do a proper 
DoE”. (SCF, 27, 28) 
 
“At the beginning [in Phase A] it will be very difficult to select the 
right variables to do a DoE” (SCF, 29)  
 
 “…[After parallel characterisation of both areas] then we could 
bring the characterised supercritical fluid with active substance into 
the characterised extrusion process, bringing the two together…if it 
works we can start modelling the nozzle, if it doesn’t work we’ll 
have to check whether we could use carbon solvents” (SCF, 14) 
 
“…First, we looked whether products of our pipeline could be 
brought into the extruder using supercritical fluids, then [in Phase B] 
we do a full physico-chemical characterisation of the whole 
extrusion system, later [Full Development] it will be scaled-up to 
full production level (SCF, 6) 
 
“…You start with determining under which conditions you can add 
SCCO2 to the polymer, then you look for the lowest possible 
temperature at which this can happen…you characterise parameters 
like speed of addition, pressure, single versus twin-screw geometry 
of the extrusion screw…” (SCF, 8) 
 

Learning  A 
 
 
 

A,B 

“…The first year an intensive literature study was needed 
complemented with a lot of contacts outside JJPRD to get a grasp of 
the technology” (SCF, 22) 
 
“…The characterisation of the supercritical fluid-active substance 
interaction is done in house with problem-solving help of the 
University of [x], for the extrusion characterisation part we do this 
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in collaboration with the University of [y]…. It is not a real 
collaboration contract we have with them, it’s more consultancy, 
they give advise to us…no milestone agreements exist with them” 
(SCF, 17, 18, 19) 
 

Coordination B 
 
 

B 

”You split up the concept proven in [Phase A] into subparts that you 
will characterise” (SCF, 35) 
 
“  In [Full Development] you check for a specific compound 
application or dosage form like a capsule, whether stability in the 
log run, in-vivo bio-availability, the whole gamut of parameters are 
ok (SCF, 36). 

 
 
 
Case Nanosuspension basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A 
 
 
 
 

A 

“…At project start the basic Nanosuspension process technology 
was known. Our task was to see whether we could reproduce this 
process with our compounds at the level of clinical studies, and 
whether we could make it sterile…” (Nano, 1) 
 
“We tried to have a working product as quickly as possible” 
(Nano, 12)…then we had to change several excipients… then we 
solved the suspension problems…finally we had a working 
formula…this was the end of Concept Selection (Nano, 13) 
 

Experimentation B 
 
 
 

A 
 
 

B 
 
 

“…We split up the work in two coherent design packages 
[Formulation design and Sterile process design] each exploring 
and characterizing part of the solution…” (Nano, 2) 
 
“…finally we had a working formula…this was the end of 
Concept Selection” (Nano, 13).  
 
“Then we started characterising the product…every parameter; 
particle size as a function of time, sedimentation as a function of 
time, etc. we checked for robustness” (Nano, 14) 
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B 

 
“Characterisation was done immediately on the project compound 
[not on model compound first] (Nano, 15) 
 

Learning  A 
 

B 
 
 

A,B 
 
 
 
 

“…Knowledge transfer happened mainly at the beginning, (Nano, 
16) 
 
“… later we used the relationship only for problem solving, and it 
was not a joint development effort…” (Nano, 16) 
 
“… The basic technology we bought was the milling process and 
excipients/beads that gave this type of product this stability. We 
brought the sterile knowledge to the project” (Nano, 7)  
 
 

Coordination A,B 
 
 

A,B 

“Formulation and process were very much interwoven in this 
project” (Nano, 5) 
 
“During Phase A you select a concept, in the second step you 
optimize your concept” (Nano, 19, 20) 

 
 
 
Case Gamma Controlled Release basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A 
 
 
 
 
 

A 
 
 

A 
 

“The challenge was to develop a CR profile that would rise very 
quickly, stay up the whole day, and fall down in the evening so 
patients can sleep, all this without peaks to prevent side-
effects”…(CR, 7) “The overall proof of concept for this was 
known. However, what was not known was how to get this 
significant quick rise at the beginning” (CR, 8) 
 
“After Phase A we had to have a working concept. It was actually 
a combination of selecting and characterizing a concept” (CR, 36) 
 
“At the end of Phase A you know you will have a working concept 
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B 
 
 
 

A,B 
 
 
 

A,B,C 
 
 
 

B,C 

with a good kinetic profile that will also be manufacturable” (CR, 
37) We selected a multiparticulate concept with an IR and CR 
piece (CR, 39) Then we said, we will be working using an 
aqueous solution and fine-tuned it to get a workable profile. That 
was Phase B or concept characterisation” (CR, 40)   
 
“In Phase B you are discovering ranges. The driving factor is 
kinetics. You know after Phase A which kinetic profile you need. 
How you will get it you discover in Phase B” (CR, 38) 
 
“Target setting in concept characterisation [Phase A and B] is 
done in a domain you don’t know. You don’t know what the value 
ranges of the variables are” (CR, 42) 
 
“The target in Phase A and B is evolving in the sense that you’re 
discovering domain limits. While in Phase C you know the limits 
but now your efforts are directed to developing a product” (CR, 
43)   
 
“The endpoint of Phase B is a working concept that still needs to 
be developed. In Phase C you know it works” (CR, 44) 
 

Experimentation A 
 
 
 

B 
 
 
 
 

B 
 
 

C 
 
 
 
 
 
 
 

B,C 
 
 
 
 
 
 
 

B,C 

“We chose a multiparticulate system instead of a monolytic 
system. So we chose in fact for a capsule containing a population 
of coated beads” (CR, 3) 
 
“Technically there are two possible ways you can coat a filler 
sphere; using a suspension, or using a solution. Both were tested in 
parallel and the best was chosen taking into consideration 
technical parameters and cost” (CR, 9, 12) 
 
“So this is concept characterisation [Phase B]; identifying the 
uncertainty, what are the parameters, and then screening them…” 
(CR, 29)  
 
“This is why I call concept application [Phase C] process-related. 
If you know this parameter is critical, what should I do with the 
production process to always fall within the parameter ranges (CR, 
29)…During Phase B you may have determined particle size to be 
of critical importance, and you may have determined its critical 
ranges to be applied. Now, during Phase C you will have to 
determine, using DoE which knobs to turn on the machine in order 
to stay within these ranges” (CR, 32) 
 
“Another example; during Phase B you check which thickness of 
the coating layer gives which level of kinetics. PK people will tell 
you it goes too slow or too fast. So, during Phase B you develop a 
profile. Now, during Phase C you will determine how you have to 
design your production process to get these specific levels of 
thickness. Then we will have chosen and optimized for the most 
cost-effective process (CR, 33, 34)   
 
“You can apply DoE in Phase B to design your blend for example. 
But you will most certainly apply it in Phase C” (CR, 35) 
 

Learning  A,B 
 
 

“…There was no standard formula for CR or technical solution, so 
we started with a literature review and based upon some 
experience around IR coating complemented with some initial 



198 

 
 

A,B 

experiments we designed a formula” (CR, 11, 12) 
 
“…We knew theoretically how it should work, techniques were 
described in the literature how to do it at lab scale. However 
nobody had ever done clinical studies with it…so we tried a 
number of solutions in parallel without being able to fall back to 
standard technology platforms” (CR, 15, 16) 
 

Coordination B 
 
 
 
 
 

C 

“…Finally we were able to fill CR pallets in capsules but noticed 
the release profile was too slow at the beginning so we had to add 
an IR component, but how to do this? We brainstormed a number 
of options and checked for cost, compliance and logistic issues, 
finally we chose for… (CR, 22) 
   
“Formula screening and process optimisation is then done using a 
standard six sigma procedure. Eventually, you have to have a 
working commercially available product” (CR, 25) 
 

 
 
 
 
Case Alfa Immediate Release basic data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approach 
dimensions 

Applies 
to Phase 

Relevant empirical indicators 

Target setting A “…The product definition is documented in the TCDS [Target 
Core Data Sheet] and can evolve up to a certain point in the stage-
gate process after which no more modifications are allowed” (IR, 
23) 
 

Experimentation A 
 
 

A 
 
 
 

“A standard platform formulation is like a rough formula. We took 
three platforms; lactose, calciumphosphate, and cellulose. …” (IR, 
6)  
 
“…In parallel we used three standard platform formulations and 
tested each of them for stability…then we picked one out, the best. 
…Then you can start refining the formula” (IR, 7,8) 
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A 
 
 
 
 

A 
 
 
 

A 
 
 
 

A 

 
“…For these type of projects [standard solid tablets and oral 
dosage forms] we use an integrated set of development techniques 
under the banner of ‘Design Excellence’, which consists of 
techniques like pre-designed DoE, FMEA, VOC, QTC etc.”  (IR, 
22) 
 
“…At each gate of the stage-gate process we have to be able to 
show which Design Excellence techniques have been used with 
what results (IR, 24) 
 
“…Development was done using the ‘Direct compression 
formulation development flow chart’ [shows this documented 
procedure (see ref (3))]. We use this procedure to run all our 
standard tablet formulations” (IR, 19) 
 
“…[refers to ref (3)]After parallel formula concept screening the 
process gets developed concurrently with formula optimisation 
because it is possible that you should adapt the formula because of 
the process” ” (IR, 19) 
 

Learning  A 
 
 
 

A 
 
 
 
 
 

A 

“…The difficulty in this project was time, normally it takes 12 
months to develop the formulation, now we had to do it in 8 
months. The only solution was to work with standard platform 
formulations” (IR, 1) 
 
“…We use the standard platform formula. Of course, results of 
formulation work are never black or white…experience, skills are 
still important…if results are on the low side, which of the 
parallel-developed solutions should we pick out?  (IR, 8) 
 
 
“…Experience built up over the years, by working with different 
products, and also experience in interpreting results are crucial in 
determining which type of filler we will use”  (IR, 9) 
 

Coordination A 
 
 
 

A 
 
 

“…Development was done using the ‘Direct compression 
formulation development flow chart’ [shows this documented 
procedure (see ref (3))]. We use this procedure to run all our 
standard tablet formulations” (IR, 19) 
 
“…GANTT charts [shows project chart] are used to track 
progress…” (IR, 22) 
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APPENDIX B: Complexity-handling modes empirical 
indicators leading to descriptor sets  
 
 

Concept Selection 
Dimension Empirical indicators Descriptor set 
Target setting 
approach 

[1] 
 “What Michel [project manager] tried to do 
is to set up, even before we started looking at 
these people, what we like to see for the very 
first criteria; that was functional DNA-Zyme 
activity in the cells” (DNAZyme, 22) 
 
“…I think the idea was really; let’s identify 
these criteria [solution critical requirements] 
We have the opportunity to look at our range 
of technologies, but having said that, the very 
first step is to get rid of as many as possible. 
What would happen, if all of these passed the 
first test, I don’t know. But we knew that the 
bar was so high, that it wasn’t likely to 
happen.” (DNAZyme, 31) 
 
“…The objective of these first two phases 
[refers to project process chart] is really to 
check for entire families of polymers whether 
it is possible to form micro-emulsions and to 
encapsulate an active ingredient, or not”.  
(Micro, 45) 
 
“For the meltextrusion application we stated 
as an objective that the temperature with SCF 
had to be lower as the temperature we would 
have had without SCF. And this for a 
pressure that would not be so high it would 
endanger the functioning of the meltextruder. 
(SCF, 38) 
 
“We checked solubility of polymers in SCF 
and decided whether we could proceed or 
not. If it would not have been possible to 
solubilize polymers we could not have 
proceeded”. (SCF, 24) 
 
“…At project start the basic Nanosuspension 
process technology was known. Our task was 
to see whether we could reproduce this 
process with our compounds at the level of 
clinical studies, and whether we could make 
it sterile…” (Nano, 1) 
 

[1] Target defined up-front 
as minimal system 
critical requirements to 
pass  

Experimentation 
approach 

[2] 
“…It is so high risk you could never put all 
your eggs in the same basket. You never 
approach it by just assuming one unproven 

[2] Run parallel 
experiments to 
characterise critical 
variables affecting 
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technology is going to be the best. You have 
to spread in as many reasons as possible…so 
Michel went to a number of companies in the 
area with the idea establishing a number of 
parallel feasibility contracts…we also tried to 
diversify risk by looking at all known 
possibilities of delivery” (DNAZyme, 21, 3, 
5) 
 
“The trouble was that, since we felt that it 
was a difficult project,  it had to be very 
highly parallelized in terms of how to move 
forward, […]you also have to have good 
criteria (DNAZyme, 23) 
 
“…[refers to project process chart] the 
process is really to check for each family of 
polymers if micro-emulsions can be formed, 
then if active substance can be encapsulated. 
If it doesn’t work, go back, if it does, take 
another family and start all over again…. 
After this initial phase we will be able to 
fully characterise the formulation for 
parenteral and oral applications” [refers to 
project process chart] (Micro, 12) 
 
“…At first instance Christina [project 
manager] checked the solubility of the active 
substance in the supercritical fluid, in parallel 
she checked whether the polymer could be 
extruded using supercritical fluids…at the 
first experiments she saw it was not really 
possible to bring liquid CO2 into the 
extruder, so it had to be a gas form” (SCF, 7) 
 
“We tried to have a working product as 
quickly as possible” (Nano, 12)…then we 
had to change several excipients… then we 
solved the suspension problems…finally we 
had a working formula…this was the end of 
Concept Selection (Nano, 13) 
 
[3] 
That were the three, we thought were the 
best, that we could move foreword with and 
that we are currently interacting with 
(DNAZyme, 12). 
 
“In Phase A you select, in Phase B you 
model and optimize the polymer structure…” 
(Micro, 72) 
 
“…In [Phase A] … we tested both concepts 
on one polymer. Both single and twin screw 
worked but the latter gave the best blend 
properties so we chose the last one to show 
proof of concept (SCF, 32)… “In [Phase A] 
you check; is it feasible or not?” (SCF, 37) 

response for different 
candidate system 
solutions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[3] System solution 

selection 
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Comparing SCF to microemulsions’ first 
screening phase: “For SCF there will also be 
a screening of classes of active substances 
and polymers for which SCF can be a 
solution. Which ones are feasible? Then a 
certain system will be selected and the most 
useful extruder parameters will be 
characterised”. (SCF, 30) 
 
“…finally we had a working formula…this 
was the end of Concept Selection” (Nano, 
13).  
 
“During Phase A you select a concept, in the 
second step you optimize your concept” 
(Nano, 19, 20) 
 
[4] 
“…The objective of these first two phases 
[refers to project process chart] is really to 
check for entire families of polymers whether 
it is possible to form micro-emulsions and to 
encapsulate an active ingredient, or not”.  
(Micro, 45) 
 
“First you check the functioning of the 
system as a whole or not, only then you take 
the next step. This is why we split up the 
project in different steps (Micro, 35)  
“…Mid 2000 Proof of Concept was delivered 
in the Supercritical fluids project when 
polymers in interaction with SCCO2 showed 
that they can decrease the meltextrusion 
temperature and that active substance can be 
made soluble in SCCO2 under certain critical 
conditions” (SCF, 4) 
 
“…In [Phase A] … we tested both concepts 
on one polymer. Both single and twin screw 
worked but the latter gave the best blend 
properties so we chose the last one to show 
proof of concept (SCF, 32)… “In [Phase A] 
you check; is it feasible or not?” (SCF, 37) 
 
“We tried to have a working product as 
quickly as possible” (Nano, 12)…then we 
had to change several excipients… then we 
solved the suspension problems…finally we 
had a working formula…this was the end of 
Concept Selection (Nano, 13) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
[4] Show Proof of Concept 

by spelling out 
assumptions about the 
set of relevant variables 
and their functional 
relationships  

Learning approach [5] 
“…There was so much published on so many 
failures, that we knew we could not do with 
the traditional approaches so we started 
already at the beginning with things that 
were pretty off the wall...” (DNAZyme, 17) 

[5] External explicit: 
Mainly at project start 
learning from published 
science. Later ad-hoc 
for problem solving. 
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“ …We knew, that when we had any success, 
it would be from novel approaches and not 
from things that have been tried fifty times 
before”. (DNAZyme, 18) 
 
“[Before starting]You check the literature 
from different perspectives and try to 
combine approaches without doing many 
experiments (Micro, 57) 
 
“…The first year an intensive literature study 
was needed complemented with a lot of 
contacts outside JJPRD to get a grasp of the 
technology” (SCF, 22) 
 
“…Knowledge transfer happened mainly at 
the beginning, (Nano, 16) 
 
“… later we used the relationship only for 
problem solving, and it was not a joint 
development effort…” (Nano, 16) 
 
[6] 
“…It is always stepwise, but the difference 
was the extent to which we thought we could 
have some sort of input into the different 
processes.….[x] had more development time 
and there was also more technology we could 
help them with, [y] was brand new, they had 
a polymer, very little was known, and 
because of that we thought we had a more 
open playfield….we interacted most with 
them (DNAZyme, 9, 11, 10) 
 
“…This is definitely a reciprocal 
collaboration contract we have with UCL 
[university] (Micro, 37) 
 
“…The characterisation of the supercritical 
fluid-active substance interaction is done in 
house with problem-solving help of the 
University of [x], for the extrusion 
characterisation part we do this in 
collaboration with the University of [y]…. It 
is not a real collaboration contract we have 
with them, it’s more consultancy, they give 
advise to us…no milestone agreements exist 
with them” (SCF, 17, 18, 19) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[6] External tacit:  

On-going knowledge 
transfer by interaction 
between teams and 
external technology 
suppliers.  

Coordination 
approach 

[7] 
“…Everybody got the same message what 
was going to be the first milestone, what we 
wanted to see at that point. For those 
companies, that were either at the first 
milestone or that we had a good feeling about 
we broadened the topic to say, the next area 
will be this, and than after that it will 

[7] Define milestone 
targets that are reached 
if results can be shown  
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be…always raising the hurdle…” 
(DNAZyme, 26) 
 
“..I don’t know if everybody does, but we 
took a stepped approach with each of the 
candidate solutions…first they had to show 
you can get it into the cell, then you have to 
have some in-vivo activity, then…” 
(DNAZyme, 7) “ We went through basically 
screening with all of these” (DNAZyme, 13). 
 
“…First, we looked whether products of our 
pipeline could be brought into the extruder 
using supercritical fluids, then [in Phase B] 
we do a full physico-chemical 
characterisation of the whole extrusion 
system, later [Full Development] it will be 
scaled-up to full production level (SCF, 6) 
 
 
[8] 
“…Based upon some first experiments we 
estimated the time needed to do synthesis 
and characterisation of the compounds, then, 
we estimated it would take so many months 
to synthesize so many polymers….” (Micro, 
26) … a professor from UCL has also made 
an estimation, then we compared and saw we 
came to about the same results (Micro, 27)  
 
[9] 
“…Since we felt that it was a difficult project 
it had to be very highly paralleled in terms of 
how to move forward…and you have to have 
good criteria to focus as quickly as possible 
on those companies and institutions that were 
able to demonstrate that…” (DNAZyme, 23, 
24) 
 
“The more complicated the design space is, 
the more you tend to tailor your approach to 
answer a specific question, rather than learn 
as much as you can about that area that 
probably is not the case in a university, 
where off-course the goal of a university is 
something different of the goal of a 
pharmaceutical company in terms of 
generating space. It’s just a realism that a 
pharmaceutical company is moving as 
quickly as possible to a space you can 
provide a product for” (DNAZyme, 25) 
 
“…Everybody got the same message what 
was going to be the first milestone, what we 
wanted to see at that point. For those 
companies, that were either at the first 
milestone or that we had a good feeling about 
we broadened the topic to say, the next area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[8] Estimate work package

effort/ timeline based 
on first experiments or 
expert knowledge 

 
 
 
 
 
 
[9] Focus on experiments 

capable of selecting as 
quickly as possible 
solutions that meet all 
system critical 
requirements  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[10] Through close 

monitoring of progress: 
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will be this, and than after that it will 
be…always raising the hurdle…” 
(DNAZyme, 26) 
 
 
[10] 
“…From the very beginning we always had 
in mind the stepped-approach, that if the first 
sets of experiments were positive, we would 
make commitment during the next step, if it 
would not have been positive we would have 
dropped it “ (DNAZyme, 8).  
 
“…At first instance Christina [project 
manager] checked the solubility of the active 
substance in the supercritical fluid, in parallel 
she checked whether the polymer could be 
extruded using supercritical fluids…at the 
first experiments she saw it was not really 
possible to bring liquid CO2 into the 
extruder, so it had to be a gas form” (SCF, 7) 
 

Eliminate as quickly as 
possible candidate 
system solutions not 
meeting one of the 
system critical 
requirements 
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Concept 
Characterisation 
Dimension Empirical indicators Descriptor set 
Target setting 
approach 

[1] 
“In the first phase the question to be answered 
is; is it stable or not? In this phase, the 
experimental plan will be more directed towards 
exploration of ranges of parameters –is this 
range a good range to function at production 
scale?- (Micro, 54) 
 
“You develop an application on model 
compounds, not for a final R-number [specific 
drug project] We will only transfer into Full 
Development when we will be sure it will be 
bio-available, enhances solubility and is non-
toxic. This needs to be shown first on model 
compounds (Micro, 61) 
 
“Now the technology is already sufficiently 
characterized for one type of polymer to allow 
us to test its solubility in micro-emulsions for 
one specific compound falling within this 
application domain” (Micro, 64) 
 
“As soon as we find out if and how we can get 
the active substance into the SCF we will have 
to check how good the active can be solubilized, 
or which volume you can usefully bring into the 
extruder, what is the stability, bio-availability, of 
the mixture?”(SCF, 26) 
 
“Target setting in concept characterisation 
[Phase A and B] is done in a domain you don’t 
know. You don’t know what the value ranges of 
the variables are” (CR, 42) 
 
“The challenge was to develop a CR profile that 
would rise very quickly, stay up the whole day, 
and fall down in the evening so patients can 
sleep, all this without peaks to prevent side-
effects”…(CR, 7) “The overall proof of concept 
for this was known. However, what was not 
known was how to get this significant quick rise 
at the beginning” (CR, 8) 
 
“The target in Phase A and B is evolving in the 
sense that you’re discovering domain limits. 
While in Phase C you know the limits but now 
your efforts are directed to developing a 
product” (CR, 43)   
 

[1]Target moving 
toward feasible 
application domain 
requirements to pass 

Experimentation 
approach 

[2] 
“…[refers to project process chart] then we 
would like to characterise parenteral and oral 

[2]Run 
parallel/concurrent 
experiments to 
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applications [in parallel] exploring how much 
active substance can be solved, whether a 
capsule can be filled, does the capsule break 
when it gets into contact with the acids in the 
gut? How about the toxicity and permeability for 
each of these applications…”(Micro, 11, 12) 
 
“In Phase A you select, in Phase B you model 
and optimize the polymer structure…” (Micro, 
72) 
 
“…[refers to project process chart] then we 
would like to characterise parenteral and oral 
applications [in parallel] exploring how much 
active substance can be solved, whether a 
capsule can be filled, does the capsule break 
when it gets into contact with the acids in the 
gut? How about the toxicity and permeability for 
each of these applications…”(Micro, 11, 12) 
 
“…this project is actually a platform that can be 
used for different applications,…parenteral, oral, 
and transdermal” (Micro, 23, 25) 
 
“In the first phase the question to be answered 
is; is it stable or not? In this phase, the 
experimental plan will be more directed towards 
exploration of ranges of parameters –is this 
range a good range to function at production 
scale?- (Micro, 54) 
 
“…You start with determining under which 
conditions you can add SCCO2 to the polymer, 
then you look for the lowest possible 
temperature at which this can happen…you 
characterise parameters like speed of addition, 
pressure, single versus twin-screw geometry of 
the extrusion screw…” (SCF, 8) 
 
”You split up the concept proven in [Phase A] 
into subparts that you will characterise” (SCF, 
35) 
 
“Then we started characterising the 
product…every parameter; particle size as a 
function of time, sedimentation as a function of 
time, etc. we checked for robustness” (Nano, 14) 
 
“Technically there are two possible ways you 
can coat a filler sphere; using a suspension, or 
using a solution. Both were tested in parallel and 
the best was chosen taking into consideration 
technical parameters and cost” (CR, 9, 12) 
 
“So this is concept characterisation [Phase B]; 
identifying the uncertainty, what are the 
parameters, and then screening them…” (CR, 
29)  

characterise all 
variables affecting 
response for different 
uncertainty areas 
within proof of 
concept delivered 
solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[3] Integrate uncertainty 

areas into limited / 
characterised 
application domain 
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[3] 
“The end point of this Phase B is really to have a 
technology available, sufficiently characterised 
to have a compound project use it” (Micro, 79) 
 
“Now the technology is already sufficiently 
characterized for one type of polymer to allow 
us to test its solubility in micro-emulsions for 
one specific compound falling within this 
application domain” (Micro, 64) 
 
“…[After parallel characterisation of both areas] 
then we could bring the characterised 
supercritical fluid with active substance into the 
characterised extrusion process, bringing the two 
together…if it works we can start modelling the 
nozzle, if it doesn’t work we’ll have to check 
whether we could use carbon solvents” (SCF, 
14) 
 
“At the end of Phase A you know you will have 
a working concept with a good kinetic profile 
that will also be manufacturable” (CR, 37) We 
selected a multiparticulate concept with an IR 
and CR piece (CR, 39) Then we said, we will be 
working using an aqueous solution and fine-
tuned it to get a workable profile. That was 
Phase B or concept characterisation” (CR, 40)   
 

Learning 
approach 

[4] [5] 
“…The characterisation of the supercritical 
fluid-active substance interaction is done in 
house with problem-solving help of the 
University of [x], for the extrusion 
characterisation part we do this in collaboration 
with the University of [y]…. It is not a real 
collaboration contract we have with them, it’s 
more consultancy, they give advise to us…no 
milestone agreements exist with them” (SCF, 
17, 18, 19) 
 
“…Knowledge transfer happened mainly at the 
beginning, (Nano, 16)“… later we used the 
relationship only for problem solving, and it was 
not a joint development effort…” (Nano, 16) 
 
“…We knew theoretically how it should work, 
techniques were described in the literature how 
to do it at lab scale. However nobody had ever 
done clinical studies with it…so we tried a 
number of solutions in parallel without being 
able to fall back to standard technology 
platforms” (CR, 15, 16) 
 
[6] 
“…There was no standard formula for CR or 
technical solution, so we started with a literature 

[4]External explicit: 
Mainly at project 
start learning from 
published science. 
Later ad-hoc for 
problem solving. 

 
[5] External tacit: 

Knowledge-transfer 
mainly at project 
start between 
external technology 
supplier and team. 
Later for problem 
solving. 

 
 
 
 
 
 
 
 
 
 
[6] Internal tacit: 

Use of pockets of 
previous knowledge 
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review and based upon some experience around 
IR coating complemented with some initial 
experiments we designed a formula” (CR, 11, 
12) 
 
“… The basic technology we bought was the 
milling process and excipients/beads that gave 
this type of product this stability. We brought 
the sterile knowledge to the project” (Nano, 7)  
 

Coordination 
approach 

[7] 
“…We split up the work in two coherent design 
packages [Formulation design and Sterile 
process design] each exploring and 
characterizing part of the solution…” (Nano, 2) 
 
“  In [Full Development] you check for a 
specific compound application or dosage form 
like a capsule, whether stability in the log run, 
in-vivo bio-availability, the whole gamut of 
parameters are ok (SCF, 36). 
 
“…You start with determining under which 
conditions you can add SCCO2 to the polymer, 
then you look for the lowest possible 
temperature at which this can happen…you 
characterise parameters like speed of addition, 
pressure, single versus twin-screw geometry of 
the extrusion screw…” (SCF, 8) 
 
 
[8] 
“The end point of this Phase B is really to have a 
technology available, sufficiently characterised 
to have a compound project use it” (Micro, 79) 
 
“You develop an application on model 
compounds, not for a final R-number [specific 
drug project] We will only transfer into Full 
Development when we will be sure it will be 
bio-available, enhances solubility and is non-
toxic. This needs to be shown first on model 
compounds (Micro, 61) 
  
“Technically there are two possible ways you 
can coat a filler sphere; using a suspension, or 
using a solution. Both were tested in parallel and 
the best was chosen taking into consideration 
technical parameters and cost” (CR, 9, 12) 
 
“In Phase B you are discovering ranges. The 
driving factor is kinetics. You know after Phase 
A which kinetic profile you need. How you will 
get it you discover in Phase B” (CR, 38) 
 
[9] 
“Design of Experiments will also be easier to be 
used in this phase than in the previous because 

[7] Define uncertainty 
areas and 
assumptions to be 
tested per area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[8] Define milestone 

targets for 
uncertainty areas that 
are reached if results 
can be shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[9] Use DoE 

experimental guides 
to systematize the 
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you now have a good idea which parameters are 
going to influence more or less strongly the 
process (Micro, 55) 
 
“In this mode the question is much more; is it 
stable or not? Or, [for this parameter] is this a 
good working range to have the application 
work at full production scale? DoE will be easier 
in this phase [Phase B] while you have an idea 
which parameters will influence the process 
more or less. So you know the factors to do a 
proper DoE”. (SCF, 27, 28) 
 
“…As soon as we have a bit of a view of the 
process [Phase A] we will use Design of 
Experiments to characterise and optimise the 
process (SCF, 9). 
 
“You can apply DoE in Phase B to design your 
blend for example. But you will most certainly 
apply it in Phase C” (CR, 35) 
 
[10] [11] 
“I think the transition into Full Development is 
made as soon as there’s a compound in need for 
this technology in its relevant application 
domain (Micro, 63) 
 
“…[After parallel characterisation of both areas] 
then we could bring the characterised 
supercritical fluid with active substance into the 
characterised extrusion process, bringing the two 
together…if it works we can start modelling the 
nozzle, if it doesn’t work we’ll have to check 
whether we could use carbon solvents” (SCF, 
14) 
 
“…You start with determining under which 
conditions you can add SCCO2 to the polymer, 
then you look for the lowest possible 
temperature at which this can happen…you 
characterise parameters like speed of addition, 
pressure, single versus twin-screw geometry of 
the extrusion screw…” (SCF, 8) 
 
 
“…First, we looked whether products of our 
pipeline could be brought into the extruder using 
supercritical fluids, then [in Phase B] we do a 
full physico-chemical characterisation of the 
whole extrusion system, later [Full 
Development] it will be scaled-up to full 
production level (SCF, 6) 
 
“Another example; during Phase B you check 
which thickness of the coating layer gives which 
level of kinetics. PK people will tell you it goes 
too slow or too fast. So, during Phase B you 

testing process  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[10] Guide progress 

through real-time 
coordination of 
concurrent results 
of different 
uncertainty areas 

 
[11] Bring focus through 

adaptive learning 
i.e.; assumptions 
testing, learning, 
continue/redirect 
efforts to 
characterise the 
feasible application 
domain 
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develop a profile. Now, during Phase C you will 
determine how you have to design your 
production process to get these specific levels of 
thickness. Then we will have chosen and 
optimized for the most cost-effective process 
(CR, 33, 34)   
 
“The challenge was to develop a CR profile that 
would rise very quickly, stay up the whole day, 
and fall down in the evening so patients can 
sleep, all this without peaks to prevent side-
effects”…(CR, 7) “The overall proof of concept 
for this was known. However, what was not 
known was how to get this significant quick rise 
at the beginning” (CR, 8) 
 
“After Phase A we had to have a working 
concept. It was actually a combination of 
selecting and characterizing a concept” (CR, 36) 
 
“At the end of Phase A you know you will have 
a working concept with a good kinetic profile 
that will also be manufacturable” (CR, 37) We 
selected a multiparticulate concept with an IR 
and CR piece (CR, 39) Then we said, we will be 
working using an aqueous solution and fine-
tuned it to get a workable profile. That was 
Phase B or concept characterisation” (CR, 40)   
 
[12] 
“Depending on the results it is possible to go 
back from Phase B to Phase A because we get 
results that do not allow us to go through” 
(Micro, 71) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[12] Possible go back to 

previous mode if 
application domain 
cannot be 
delivered or if new 
application domain 
emerges 
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Concept 
Application 
Dimensions Empirical indicators Concept Development 
Target setting 
approach 

[1] 
“…The product definition is documented in the 
TCDS [Target Core Data Sheet] and can evolve 
up to a certain point in the stage-gate process 
after which no more modifications are allowed” 
(IR, 23) 
 

[1] Target defined up-
front as 
product/process 
requirements to pass. 
Only modifiable at 
formal stage-gates 

Experimentation 
approach 

[2] 
“This is why I call concept application [Phase C] 
process-related. If you know this parameter is 
critical, what should I do with the production 
process to always fall within the parameter 
ranges (CR, 29)…During Phase B you may have 
determined particle size to be of critical 
importance, and you may have determined its 
critical ranges to be applied. Now, during Phase 
C you will have to determine, using DoE which 
knobs to turn on the machine in order to stay 
within these ranges” (CR, 32) 
 
“Another example; during Phase B you check 
which thickness of the coating layer gives which 
level of kinetics. PK people will tell you it goes 
too slow or too fast. So, during Phase B you 
develop a profile. Now, during Phase C you will 
determine how you have to design your 
production process to get these specific levels of 
thickness. Then we will have chosen and 
optimized for the most cost-effective process 
(CR, 33, 34)   
 
“A standard platform formulation is like a rough 
formula. We took three platforms; lactose, 
calciumphosphate, and cellulose. …” (IR, 6)  
 
“…In parallel we used three standard platform 
formulations and tested each of them for 
stability…then we picked one out, the best. 
…Then you can start refining the formula” (IR, 
7,8) 
 
“…For these type of projects [standard solid 
tablets and oral dosage forms] we use an 
integrated set of development techniques under 
the banner of ‘Design Excellence’, which 
consists of techniques like pre-designed DoE, 
FMEA, VOC, QTC etc.”  (IR, 22) 
 
 

[2] Run 
parallel/concurrent 
experiments to 
optimise variables 
values within a 
solution 

 
[3] Followed by 

concurrent 
engineering driven by 
QFD derived product 
definition 

 
[4] FMEA based process 

design 

Learning approach [5] 
“…The difficulty in this project was time, 
normally it takes 12 months to develop the 

[5] Internal explicit: 
Learning based on 
formal procedure-
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formulation, now we had to do it in 8 months. 
The only solution was to work with standard 
platform formulations” (IR, 1) 
 
[6] 
“…We use the standard platform formula. Of 
course, results of formulation work are never 
black or white…experience, skills are still 
important…if results are on the low side, which 
of the parallel-developed solutions should we 
pick out?  (IR, 8) 
 
 
“…Experience built up over the years, by 
working with different products, and also 
experience in interpreting results are crucial in 
determining which type of filler we will use”  
(IR, 9) 
 

based inquiry  
 
 
[6] Internal tacit: 

Learning by doing, 
based on previous 
internal experience 

Coordination 
approach 

[7] [8] [9] [10] [11] 
“You can apply DoE in Phase B to design your 
blend for example. But you will most certainly 
apply it in Phase C” (CR, 35) 
 
“Formula screening and process optimisation is 
then done using a standard six sigma procedure. 
Eventually, you have to have a working 
commercially available product” (CR, 25) 
 
“…At each gate of the stage-gate process we 
have to be able to show which Design 
Excellence techniques have been used with what 
results (IR, 24) 
 
“…Development was done using the ‘Direct 
compression formulation development flow 
chart’ [shows this documented procedure (see 
ref (3))]. We use this procedure to run all our 
standard tablet formulations” (IR, 19) 
 
“…[refers to ref (3)]After parallel formula 
concept screening the process gets developed 
concurrently with formula optimisation because 
it is possible that you should adapt the formula 
because of the process” ” (IR, 19) 
 
“…GANTT charts [shows project chart] are 
used to track progress…” (IR, 22) 
 

[7]Define 
product/process 
requirements to be 
met 

 
[8] Use pre-designed 

DoE experimental 
guides to systematize 
the experimentation 
process  

 
[9] Use GANTT type 

plans & schedules for 
cross-activity 
programming and 
tracking task 
completion 

 
[10] Monitor plan 

variation and act 
accordingly by 
executing 
contingency plans 

 
[11] Use of standard 

approaches and 
documented best 
practices to problem-
solving 
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APPENDIX C: Confirmatory case study replication 
results 
 
Case statistics 
 

Case study # empirical 
indicators 

Respondents # interviews 

PharmaCo EMEA 
Discovery 
organisation 

   

 23 Jan Hoflack & 
Claire Macky 

1 

 8 Claire Macky 4 
 7 Michael Engels 2 
 4 Claire Macky & 

Michael Engels 
2 

Simulation model 
verification 
meetings 

 Claire Macky & 
Michael Engels 

6 

Totals 42 3 15 
 
 
Case written sources 
 
Sources used to document PharmaCo research context and case visual maps: 
 

(10) PharmaCo ‘EMEA Discovery Research process flowchart’, Internal 
confidential publication. 

(11) PharmaCo ‘Assessment for transition from HTS to H2L’, Internal 
confidential publication. 

(12) PharmaCo ‘Bioavailability = complex in-vivo disposition processes: Can 
they be reduced to discrete mechanisms to be modelled?’, Internal 
confidential publication. 

(13) Hoflack, J. (2002) ‘The drug discovery challenge: Better targets, better 
compounds, better processes’, internal publication for presentation. 

(14) Mackie, C. (2002) ‘Pre-clinical expertise in drug discovery: Changing the 
paradigm’, internal publication for presentation. 

(15) Maes, V. (2004) ‘Discovery operational cost, timelines and resource 
breakdown’, internal confidential spreadsheet. 

(16) Toxicology reference assay data, internal PharmaCo confidential publication   
 
 
In the following tables empirical indicators will be indicated with a number [x] at the 
end referring to the interview notes in the confirmatory case database. 
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Empirical descriptors for complexity-handling modes used in 
Discovery Research confirmatory case study 
 
Complexity-
handling modes 

Target setting approach 

 Description Phase A empirical 
indicators 

Phase B empirical 
indicators 

Concept 
Selection 

• Target defined up-front as 
minimal system critical 
requirements to pass  

• “Very often you take the high- 
risk approach for a new target, 
and then you have only about 
30% chance of getting some 
efficacy meaning your 
compound has no effect on the 
disease. Many companies who 
have gone through this 
genome-based DD have 
experienced this and therefore 
we stress target validation so 
much [before starting problem-
solving]”[16]. 

• It is really exploring the 
potential of the series. In LO 
you say I have explored the 
potential of a series, now I 
think I can find within that 
series the molecule I’m looking 
for .The focus now is on 
finding within a series a 
compound that fits my criteria. 
[22]. 

• No supporting indicators 

Concept 
Characterisation 

• Target moving toward 
feasible application domain 
requirements to pass 

• No supporting indiscators • No supporting indicators 

Concept 
Development 

• Target defined up-front as 
product/process requirements 
to pass. Only modifiable at 
formal stage-gates 

• No supporting indicators • No supporting indicators 
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Complexity-
handling modes 

Experimentation approach 

 Description Phase A empirical 
indicators 

Phase B empirical 
indicators 

Concept 
Selection 

• Define uncertainty to 
characterise critical variables 
and to anticipate problems to 
be solved (added due to [10] 

• Run parallel experiments to 
characterise critical variables 
affecting response for 
different candidate system 
solutions 

• System solution selection 
• Show Proof of Concept by 

spelling out assumptions 
about the set of relevant 
variables and their functional 
relationships  

• So, for me at the beginning, 
these are just a set of choices, 
options, whatever they are, they 
need to be optimized in a 
certain direction, and 
selected.[2] 

• At the back of the HTS they do 
things like prior art, which is 
about patentability, ease of 
chemistry, preliminary in silico 
models to anticipate problems 
as hypotheses to be tested in-
vitro.[10] 

• We take a sample of each 
family and they are very big so 
we don’t want to optimize each 
and every compound within that 
family. Now in H2L we want to 
get a picture across the family 
of compounds to see where the 
strengths/weaknesses lie.[12] 

• So, in H2L we take a snapshot 
picture of the chemical 
families/clusters and 
see/prioritize which of them is 
worth further pursuing in LO. 
So, in essence the task of H2L 
is to check which of the clusters 
are worth prioritizing and taking 
them further to LO.[13] 

• Therefore, we run in parallel 
with pharmacology our screens 
[of different families], so that at 
the end you could for example 
say; I blocked my potency in-
vitro, but I increased my 
solubility and permeability, 
which could mean a better 
overall in-vivo compound.[14] 

• No supporting indicators 

Concept 
Characterisation 

• Run parallel/concurrent 
experiments to characterise 
all variables affecting 
response for different 
uncertainty areas within proof 
of concept delivered solution 

• Integrate uncertainty areas 
into limited / characterised 
application domain 

• No supporting indicators 
(while never on THE PoC 
delivered solution). 

• No supporting indicators 

Concept 
Development 

• Run parallel/concurrent 
experiments to optimise 
variables values within a 
solution 

• Followed by concurrent 
engineering driven by QFD 
derived product definition 

• FMEA based process design 

• No supporting indicators • No supporting indicators 
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Complexity-
handling modes 

Learning approach 

 Description Phase A empirical 
indicators 

Phase B empirical 
indicators 

Concept Selection • External explicit: 
Mainly at project start 
learning from published 
science. Later ad-hoc for 
problem solving. 

• External tacit:  
On-going knowledge transfer 
by interaction between teams 
and external technology 
suppliers. 

• Internal tacit: use of pockets 
of previous knowledge 
(added due to [17]  

• “Dr Paul would say; don’t 
work on something you have 
no experience with, do that 10 
years from now. We would 
probably say; everything which 
is intra-cellular forget about it 
and focus on extra-cellular. We 
would probably say; the 
compound collection is attuned 
to this, we know the chemistry 
involved, this is a choice we as 
discovery management need to 
make” [17] 

• No supporting indicators 

Concept 
Characterisation 

• External explicit: Mainly at 
project start learning from 
published science. Later ad-
hoc for problem solving. 

• External tacit: Knowledge-
transfer mainly at project 
start between external 
technology supplier and 
team. Later for problem 
solving. 

• Internal tacit: 
Use of pockets of previous 
knowledge 

• No supporting indicators • No supporting indicators 

Concept 
Development 

• Internal explicit: Learning 
based on formal procedure-
based inquiry  

• Internal tacit: Learning by 
doing, based on previous 
internal experience 

• No supporting indicators • No supporting indicators 
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Complexity-
handling modes 

Coordination approach 

 Description Phase A empirical 
indicators 

Phase B empirical 
indicators 

Concept Selection • Define milestone targets that 
are reached if results can be 
shown  

• Estimate work package 
effort/ timeline based on first 
experiments or expert 
knowledge 

• Focus on experiments 
capable of selecting as 
quickly as possible solutions 
that meet all system critical 
requirements  

• Through close monitoring of 
progress: Eliminate as 
quickly as possible candidate 
system solutions not meeting 
one of the system critical 
requirements 

• In summary, in H2L you 
score chemical classes from 
HTS for overall developability, 
and the one that gets the highest 
score overall, gets developed 
first. For each chemical class 
you say; if we have to take this 
class forward, what do we have 
to optimize in and out? 
Knowing then what lies ahead 
of you can prioritize, because 
you know that fe your task will 
be larger if you do this 
class.[15] 
• A flowchart is splitting it up 
into different components,… 
Criteria get harder as you move 
along, but also the methods 
become more resourceful, more 
difficult to perform. In H2L it is 
more a generic type of 
flowchart. The one in LO is 
built upon the perception of the 
series in H2L and you get 
specific biology questions, 
which are disease related.[20] 
• We look for an overall trade-
of between properties. You look 
at your criteria and say; can I 
make this into a drug? If so, 
then you go on tox study, if it’s 
clean you go DE.[26]  
• However, if you don’t have 
any room or scope for 
manoeuvre it shouldn’t go, 
because then you’re optimising 
rubbish before you’ve even 
started.[29] 
•  Normally, I wouldn’t like to 
take a complete series through 
into LO if I cannot be 
convinced that I can get oral 
exposure, because most of the 
medication we’re looking for is 
oral medicine. If it’s not orally 
absorbed I cannot do any tox, 
kinetics, PK/PD, anything.[30] 

• No supporting 
indicators 

Concept 
Characterisation 

• Define uncertainty areas and 
assumptions to be tested per 
area 

• Define milestone targets for 
uncertainty areas that are 
reached if results can be 
shown.  

• Use DoE experimental 
guides to systematize the 
testing process  

• Guide progress through real-
time coordination of 
concurrent results of 
different uncertainty areas 

• Bring focus through adaptive 
learning i.e.; assumptions 
testing, learning, 
continue/redirect efforts to 

• No supporting indicators • First glance is then the 
first time you introduce 
the project to DE, these 
are the basics of the 
compound and this is 
what we aim to do in 
the next phase. But 
First Glance is not 
necessarily the 
compound you’ll be 
handing over to the next 
phase. Then at the end 
of this phase (handover 
to DE) you have what I 
just indicated but now 
on the proper 
compound 
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characterise the feasible 
application domain 

• Possible go back to previous 
mode if application domain 
cannot be delivered or if new 
application domain emerges 

Concept 
Development 

• Define product/process 
requirements to be met 

• Use pre-designed DoE 
experimental guides to 
systematize the 
experimentation process  

• Use GANTT type plans & 
schedules for cross-activity 
programming and tracking 
task completion 

• Monitor plan variation and 
act accordingly by executing 
contingency plans 

• Use of standard approaches 
and documented best 
practices to problem-solving 

• No supporting indicators • No supporting 
indicators 
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APPENDIX E: Simulation system Visual Basic program 
code 
 
 
This procedure starts the simulation (# of runs entered in the “result” sheet) 
 
Sub CommandButton1_Click() 
Start_at_Line = 4 
Number_of_runs = Worksheets("Results").Cells(1, 4).Value 
Worksheets("Results").Range("A" & Start_at_Line + 1 & ":AW65536").ClearContents 
Start_time = Time 
For i = 1 To Number_of_runs 
Application.ScreenUpdating = False 
Worksheets("Model").Range("D7:AW65000").ClearContents 
On Error GoTo Start_here 
Start_here: 
Model.Start 
Application.Calculation = xlCalculationAutomatic 
Worksheets("Results").Cells(i + Start_at_Line, 1).Value = i 
Worksheets("Results").Cells(i + Start_at_Line, 2).Value = Worksheets("Model").Cells(2, 49).Value 
Worksheets("Results").Cells(i + Start_at_Line, 3).Value = Worksheets("Model").Cells(3, 49).Value 
Worksheets("Results").Cells(i + Start_at_Line, 4).Value = Worksheets("Model").Cells(4, 47).Value 
Worksheets("Results").Cells(i + Start_at_Line, 5).Value = Worksheets("Model").Cells(4, 48).Value 
 
Worksheets("Results").Cells(i + Start_at_Line, 6).Value = Worksheets("Model").Cells(2, 47).Value 
Worksheets("Results").Cells(i + Start_at_Line, 7).Value = Worksheets("Model").Cells(2, 48).Value 
Worksheets("Results").Cells(i + Start_at_Line, 8).Value = Worksheets("Model").Cells(3, 47).Value 
Worksheets("Results").Cells(i + Start_at_Line, 9).Value = Worksheets("Model").Cells(3, 48).Value 
Worksheets("Results").Cells(1, 9).Value = Time - Start_time 
Worksheets("Results").Cells(2, 4).Value = i 
Worksheets("Results").Cells(i + Start_at_Line, 12).Value = Worksheets("Model").Cells(2, 51).Value 
Application.ScreenUpdating = True 
Next i 
For j = Start_at_Line + 1 To Start_at_Line + Number_of_runs 
Worksheets("Results").Cells(j, 13).Value = "=IF(D" & j & "<>0,F" & j & "/D" & j & ",""---"")" 
Worksheets("Results").Cells(j, 14).Value = "=IF(E" & j & "<>0,I" & j & "/E" & j & ",""---"")" 
Worksheets("Results").Cells(j, 15).Value = "=IF(B" & j & "<>0,F" & j & "/B" & j & ",""---"")" 
Worksheets("Results").Cells(j, 16).Value = "=IF(C" & j & "<>0,H" & j & "/C" & j & ",""---"")" 
Worksheets("Results").Cells(j, 17).Value = "=D" & j & "/Model!C6" 
Next j 
Worksheets("Results").Cells(1, 9).Value = Time - Start_time 
End Sub 
 
 
 
The code below constitutes the main part of the simulation tool. After the generation 
and classification of compounds in classes, the model applies the selected discovery 
scenario (Old paradigm, Front-loaded paradigm or Front Loading). Most parameters are 
inputted directly in the worksheets to allow an easier control by the user. Each step of 
the discovery process (HTS, H2L, LO) are modelled by a procedure. 
The first module (“Start”) is the central procedure from where other procedures are 
called from. 
 
 
Const Start_at_Line = 6 
Sub Start() 
    Real 
    Application.Calculation = xlCalculationAutomatic 
    HTS 
    Application.Calculation = xlCalculationAutomatic 
    H2L 
    Application.Calculation = xlCalculationAutomatic 
    LO 
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    Application.Calculation = xlCalculationAutomatic 
End Sub 
Private Sub CommandButton1_Click() 
Application.Calculation = xlCalculationManual 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Worksheets("Model").Range("A7:BB65000").ClearContents 
Worksheets("Model").Range("1:65000").Ungroup 
Worksheets("Model").Range("1:65000").Ungroup 
Line = Start_at_Line 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        Worksheets("Model").Cells(Line + 1, 1) = "Class H(" & i & ")" 
    For j = 1 To Number_of_Ref 
            Line = Line + 2 
            Worksheets("Model").Cells(Line + 1, 2) = "Ref Compound H(" & i & "," & j & ")" 
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
                Worksheets("Model").Cells(Line, 3) = "Compound H(" & i & "," & j & "," & h & ")" 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        Worksheets("Model").Range(Line + 1 & ":" & Line + (Number_of_Comp + 3) * Number_of_Ref).Group 
    For j = 1 To Number_of_Ref 
            Line = Line + 3 
                Worksheets("Model").Range(Line & ":" & Line + Number_of_Comp - 1).Group 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
Application.Calculation = xlCalculationAutomatic 
End Sub 
 
Private Sub Real() 
Application.Calculation = xlCalculationManual 
a = Worksheets("Distributions").Cells(48, 7).Value 
c = Worksheets("Distributions").Cells(6, 7).Value 
b = Worksheets("Distributions").Cells(27, 7).Value 
Sigma_pot_ref = Worksheets("Model").Cells(2, 4).Value 
Sigma_pot_comp = Worksheets("Model").Cells(3, 4).Value 
Sigma_bio_ref = Worksheets("Model").Cells(2, 5).Value 
Sigma_bio_comp = Worksheets("Model").Cells(3, 5).Value 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Line = Start_at_Line 
 
' ------ Genration of potency values -------- 
 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        Randomize 
        Potency = 9.5 - c * (Log(Rnd() * (Exp(9 / c) - 1) + 1)) 
        Select Case Potency 
            Case Is > 9.5 
                Worksheets("Model").Cells(Line, 4).Value = 9.5 
            Case Is < 0.5 
                Worksheets("Model").Cells(Line, 4).Value = 0.5 
            Case Else 
                Worksheets("Model").Cells(Line, 4).Value = Potency 
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        End Select 
    For j = 1 To Number_of_Ref 
            Randomize 
            Line = Line + 2 
            Potency_Ref = Application.WorksheetFunction.NormInv(Rnd(), Potency, Sigma_pot_ref) 
            Select Case Potency_Ref 
                Case Is > 9.5 
                    Worksheets("Model").Cells(Line, 4).Value = 9.5 
                Case Is < 0.5 
                    Worksheets("Model").Cells(Line, 4).Value = 0.5 
                Case Else 
                    Worksheets("Model").Cells(Line, 4).Value = Potency_Ref 
            End Select 
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Randomize 
                Line = Line + 1 
                Potency_comp = Application.WorksheetFunction.NormInv(Rnd(), Potency_Ref, Sigma_pot_comp) 
                Select Case Potency_comp 
                    Case Is > 9.5 
                        Worksheets("Model").Cells(Line, 4).Value = 9.5 
                    Case Is < 0.5 
                        Worksheets("Model").Cells(Line, 4).Value = 0.5 
                    Case Else 
                        Worksheets("Model").Cells(Line, 4).Value = Potency_comp 
            End Select 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
' ------ Genration of bio-availability values -------- 
 
Line = Start_at_Line 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        Randomize 
        Bioavailability = 9.5 - b * (Log(Rnd() * (Exp(9 / b) - 1) + 1)) 
        Select Case Bioavailability 
            Case Is > 9.5 
                Worksheets("Model").Cells(Line, 5).Value = 9.5 
            Case Is < 0.5 
                Worksheets("Model").Cells(Line, 5).Value = 0.5 
            Case Else 
                Worksheets("Model").Cells(Line, 5).Value = Bioavailability 
        End Select 
    For j = 1 To Number_of_Ref 
            Randomize 
            Line = Line + 2 
            Bioavailability_Ref = Application.WorksheetFunction.NormInv(Rnd(), Bioavailability, Sigma_bio_ref) 
            Select Case Bioavailability_Ref 
                Case Is > 9.5 
                    Worksheets("Model").Cells(Line, 5).Value = 9.5 
                Case Is < 0.5 
                    Worksheets("Model").Cells(Line, 5).Value = 0.5 
                Case Else 
                    Worksheets("Model").Cells(Line, 5).Value = Bioavailability_Ref 
            End Select 
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Randomize 
                Line = Line + 1 
                Bioavailability_comp = Application.WorksheetFunction.NormInv(Rnd(), Bioavailability_Ref, Sigma_bio_comp) 
                Select Case Bioavailability_comp 
                    Case Is > 9.5 
                        Worksheets("Model").Cells(Line, 5).Value = 9.5 
                    Case Is < 0.5 
                        Worksheets("Model").Cells(Line, 5).Value = 0.5 
                    Case Else 
                        Worksheets("Model").Cells(Line, 5).Value = Bioavailability_comp 
            End Select 
        Next h 
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        h = 1 
    Next j 
    j = 1 
Next i 
 
' ------ Genration of Toxicity values -------- 
Line = Start_at_Line 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
    For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
                Randomize 
                Line = Line + 1 
                '----- Old tox = a * Log(Rnd() * (Exp(9 / a) - 1) + 1) + 0.5 
                Toxicity_comp = 10 - (0.25 * Rnd() + 0.75) * Worksheets("Model").Cells(Line, 4).Value 
                Select Case Toxicity_comp 
                    Case Is > 9.5 
                        Worksheets("Model").Cells(Line, 6).Value = 9.5 
                    Case Is < 0.5 
                        Worksheets("Model").Cells(Line, 6).Value = 0.5 
                    Case Else 
                        Worksheets("Model").Cells(Line, 6).Value = Toxicity_comp 
            End Select 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
    Line = Line + 1 
 
'------ Averages ------ 
     
    Average_Col_D = "=Average(D" & Line + 2 
    Average_Col_E = "=Average(E" & Line + 2 
    Average_Col_F = "=Average(F" & Line + 2 
    For x = 2 To Number_of_Ref 
        Average_Col_D = Average_Col_D & ",D" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_E = Average_Col_E & ",E" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_F = Average_Col_F & ",F" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
    Next x 
        Average_Col_D = Average_Col_D & ")" 
        Average_Col_E = Average_Col_E & ")" 
        Average_Col_F = Average_Col_F & ")" 
 
    Worksheets("Model").Cells(Line, 4).Value = Average_Col_D 
    Worksheets("Model").Cells(Line, 5).Value = Average_Col_E 
    Worksheets("Model").Cells(Line, 6).Value = Average_Col_F 
     
'-------------------------------- 
 
    For j = 1 To Number_of_Ref 
            Line = Line + 2 
            Worksheets("Model").Cells(Line, 4).Value = "=Average(D" & Line + 1 & ":D" & Line + Number_of_Comp & ")" 
            Worksheets("Model").Cells(Line, 5).Value = "=Average(E" & Line + 1 & ":E" & Line + Number_of_Comp & ")" 
            Worksheets("Model").Cells(Line, 6).Value = "=Average(F" & Line + 1 & ":F" & Line + Number_of_Comp & ")" 
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
'--------- Selection on Real Values  ------------------ 
Line = Start_at_Line 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
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    For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
            Line = Line + 1 
                Worksheets("Model").Cells(Line, 44).Value = 
"=IF(AND(RC4>=R2C37,AND(RC5>=R3C37,RC6<=R4C37)),""Pre-selected"","""")" 
                Worksheets("Model").Cells(Line, 45).Value = "=If(RC42 = ""X"",""Pre-selected"","""") & "" - "" & RC44" 
                If Worksheets("Model").Cells(Line, 4).Value < Worksheets("Model").Cells(Line, 5).Value Then 
                    Worksheets("Model").Cells(Line, 46).Value = Worksheets("Model").Cells(Line, 4).Value 
                Else 
                    Worksheets("Model").Cells(Line, 46).Value = Worksheets("Model").Cells(Line, 5).Value 
                End If 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
'-------------------------------------------------------- 
Application.Calculation = xlCalculationAutomatic 
End Sub 
 
Private Sub HTS() 
Sigma_pot_HTS = Worksheets("Model").Cells(2, 9).Value 
Sigma_bio_HTS = Worksheets("Model").Cells(2, 10).Value 
Sigma_tox_HTS = Worksheets("Model").Cells(2, 11).Value 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Application.Calculation = xlCalculationManual 
Worksheets("Model").Range("I7:R65000").ClearContents 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
 
'------ Averages ------ 
     
    Average_Col_I = "=Average(I" & Line + 2 
    Average_Col_J = "=Average(J" & Line + 2 
    Average_Col_K = "=Average(K" & Line + 2 
    For x = 2 To Number_of_Ref 
        Average_Col_I = Average_Col_I & ",I" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_J = Average_Col_J & ",J" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_K = Average_Col_K & ",K" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
    Next x 
        Average_Col_I = Average_Col_I & ")" 
        Average_Col_J = Average_Col_J & ")" 
        Average_Col_K = Average_Col_K & ")" 
 
    Worksheets("Model").Cells(Line, 9).Value = Average_Col_I 
    Worksheets("Model").Cells(Line, 10).Value = Average_Col_J 
    Worksheets("Model").Cells(Line, 11).Value = Average_Col_K 
     
'-------------------------------- 
             
                         
            Worksheets("Model").Cells(Line, 17).Value = "=if(Iserror(RANK(O" & Line & ",$O$8:$O$65536)) = 
False,RANK(O" & Line & ",$O$8:$O$65536),"""")" 
             
            Worksheets("Model").Cells(Line, 18).Value = "=If(Q" & Line & "< $R$3,""X"","""")" 
     
    For j = 1 To Number_of_Ref 
                    Line = Line + 2 
                    Worksheets("Model").Cells(Line, 9).Value = "=Average(I" & Line + 1 & ":I" & Line + Number_of_Comp & ")" 
                    Worksheets("Model").Cells(Line, 10).Value = "=Average(J" & Line + 1 & ":J" & Line + Number_of_Comp & 
")" 
                    Worksheets("Model").Cells(Line, 11).Value = "=Average(K" & Line + 1 & ":K" & Line + Number_of_Comp & 
")" 
                    Randomize 
                    Potency_HTS = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 4).Value, 
Sigma_pot_HTS) 
                    Select Case Potency_HTS 
                                Case Is > 9.5 
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                                    Worksheets("Model").Cells(Line, 9).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 9).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 9).Value = Potency_HTS 
                    End Select 
                    Randomize 
                    Bioavailability_HTS = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 
5).Value, Sigma_bio_HTS) 
                    Select Case Bioavailability_HTS 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 10).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 10).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 10).Value = Bioavailability_HTS 
                    End Select 
                    Randomize 
                    Toxicity_HTS = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 6).Value, 
Sigma_tox_HTS) 
                    Select Case Toxicity_HTS 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 11).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 11).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 11).Value = Toxicity_HTS 
                    End Select 
             
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
Application.Calculation = xlCalculationAutomatic 
Application.Calculation = xlCalculationManual 
 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        Worksheets("Model").Cells(Line, 13).Value = "=IF(AND(I" & Line & ">=$M$2,AND(J" & Line & ">=$M$3,K" & Line 
& "<=$M$4)),""Pre-selected"","""")" 
             
            Select Case Worksheets("Model").Cells(2, 15).Value 
                Case Is = "Potency" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = Worksheets("Model").Cells(Line, 9).Value 
                    End If 
                Case Is = "Bio-availability" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = Worksheets("Model").Cells(Line, 10).Value 
                    End If 
                Case Is = "Min" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = "=Min(I" & Line & ":J" & Line & ")" 
                    End If 
                Case Is = "Weighted Average" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = "=($P$3*I" & Line & "+$P$4*J" & Line & ")/($P$3+$P$4)" 
                    End If 
            End Select 
 
    For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
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    Next j 
    j = 1 
Next i 
 
 
Application.Calculation = xlCalculationAutomatic 
End Sub 
 
 
Private Sub CommandButton2_Click() 
Start 
End Sub 
 
Private Sub CommandButton4_Click() 
Application.Calculation = xlCalculationManual 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
            Select Case Worksheets("Model").Cells(2, 15).Value 
                Case Is = "Potency" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = Worksheets("Model").Cells(Line, 9).Value 
                    End If 
                Case Is = "Bio-availability" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = Worksheets("Model").Cells(Line, 10).Value 
                    End If 
                Case Is = "Min" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = "=Min(I" & Line & ":J" & Line & ")" 
                    End If 
                Case Is = "Weighted Average" 
                    If Worksheets("Model").Cells(Line, 13).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 15).Value = "=($P$3*I" & Line & "+$P$4*J" & Line & ")/($P$3+$P$4)" 
                    End If 
            End Select 
 
    For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
 
Application.Calculation = xlCalculationAutomatic 
End Sub 
 
Private Sub H2L() 
Sigma_pot_H2L = Worksheets("Model").Cells(2, 21).Value 
Sigma_bio_H2L = Worksheets("Model").Cells(2, 22).Value 
Sigma_tox_H2L = Worksheets("Model").Cells(2, 23).Value 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Application.Calculation = xlCalculationManual 
Worksheets("Model").Range("U7:AD65000").ClearContents 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
            Checked_HTS = Worksheets("Model").Cells(Line, 18).Value 
            If Checked_HTS = "X" Then 
             
'------ Averages ------ 
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    Average_Col_U = "=Average(U" & Line + 2 
    Average_Col_V = "=Average(V" & Line + 2 
    Average_Col_W = "=Average(W" & Line + 2 
    For x = 2 To Number_of_Ref 
        Average_Col_U = Average_Col_U & ",U" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_V = Average_Col_V & ",V" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
        Average_Col_W = Average_Col_W & ",W" & Line + (x - 1) * (Number_of_Comp + 3) + 2 
    Next x 
        Average_Col_U = Average_Col_U & ")" 
        Average_Col_V = Average_Col_V & ")" 
        Average_Col_W = Average_Col_W & ")" 
 
    Worksheets("Model").Cells(Line, 21).Value = Average_Col_U 
    Worksheets("Model").Cells(Line, 22).Value = Average_Col_V 
    Worksheets("Model").Cells(Line, 23).Value = Average_Col_W 
     
'-------------------------------- 
                         
            Worksheets("Model").Cells(Line, 29).Value = "=if(Iserror(RANK(AA" & Line & ",$AA$8:$AA$65536)) = 
False,RANK(AA" & Line & ",$AA$8:$AA$65536),"""")" 
             
            Worksheets("Model").Cells(Line, 30).Value = "=If(AC" & Line & "< $AD$3,""X"","""")" 
            End If 
    For j = 1 To Number_of_Ref 
                    Line = Line + 2 
                    If Checked_HTS = "X" Then 
                    Worksheets("Model").Cells(Line, 21).Value = "=Average(U" & Line + 1 & ":U" & Line + Number_of_Comp & 
")" 
                    Worksheets("Model").Cells(Line, 22).Value = "=Average(V" & Line + 1 & ":V" & Line + Number_of_Comp & 
")" 
                    Worksheets("Model").Cells(Line, 23).Value = "=Average(W" & Line + 1 & ":W" & Line + Number_of_Comp 
& ")" 
                    Randomize 
                    Potency_H2L = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 4).Value, 
Sigma_pot_H2L) 
                    Select Case Potency_H2L 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 21).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 21).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 21).Value = Potency_H2L 
                    End Select 
                    Randomize 
                    Bioavailability_H2L = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 
5).Value, Sigma_bio_H2L) 
                    Select Case Bioavailability_H2L 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 22).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 22).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 22).Value = Bioavailability_H2L 
                    End Select 
                    Randomize 
                    Toxicity_H2L = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 6).Value, 
Sigma_tox_H2L) 
                    Select Case Toxicity_H2L 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 23).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 23).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 23).Value = Toxicity_H2L 
                    End Select 
                    End If 
            Line = Line + 1 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
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Next i 
 
Application.Calculation = xlCalculationAutomatic 
Application.Calculation = xlCalculationManual 
 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
            Checked_HTS = Worksheets("Model").Cells(Line, 18).Value 
            If Checked_HTS = "X" Then 
            Worksheets("Model").Cells(Line, 25).Value = "=IF(AND(U" & Line & ">=$Y$2,AND(V" & Line & ">=$Y$3,W" & 
Line & "<=$Y$4)),""Pre-selected"","""")" 
             
            Select Case Worksheets("Model").Cells(2, 27).Value 
                Case Is = "Potency" 
                    If Worksheets("Model").Cells(Line, 25).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 27).Value = Worksheets("Model").Cells(Line, 21).Value 
                    End If 
                Case Is = "Bio-availability" 
                    If Worksheets("Model").Cells(Line, 25).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 27).Value = Worksheets("Model").Cells(Line, 22).Value 
                    End If 
                Case Is = "Min" 
                    If Worksheets("Model").Cells(Line, 25).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 27).Value = "=Min(U" & Line & ":V" & Line & ")" 
                    End If 
                Case Is = "Weighted Average" 
                    If Worksheets("Model").Cells(Line, 25).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 27).Value = "=($AB$3*U" & Line & "+$AB$4*V" & Line & 
")/($AB$3+$AB$4)" 
                    End If 
            End Select 
            End If 
    For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
 
Application.Calculation = xlCalculationAutomatic 
 
End Sub 
 
Private Sub LO() 
Sigma_pot_LO = Worksheets("Model").Cells(2, 21).Value 
Sigma_bio_LO = Worksheets("Model").Cells(2, 22).Value 
Sigma_tox_LO = Worksheets("Model").Cells(2, 23).Value 
Number_of_Classes = Worksheets("Model").Cells(4, 2).Value 
Number_of_Ref = Worksheets("Model").Cells(5, 2).Value 
Number_of_Comp = Worksheets("Model").Cells(6, 2).Value 
Application.Calculation = xlCalculationManual 
Worksheets("Model").Range("AG7:AP65000").ClearContents 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
            Checked_H2L = Worksheets("Model").Cells(Line, 30).Value 
            For j = 1 To Number_of_Ref 
                    Line = Line + 2 
                                Line = Line + 1 
            For h = 1 To Number_of_Comp 
                If Checked_H2L = "X" Then 
                    Randomize 
                    Potency_LO = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 4).Value, 
Sigma_pot_LO) 
                    Select Case Potency_LO 
                                Case Is > 9.5 
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                                    Worksheets("Model").Cells(Line, 33).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 33).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 33).Value = Potency_LO 
                    End Select 
                    Randomize 
                    Bioavailability_LO = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 
5).Value, Sigma_bio_LO) 
                    Select Case Bioavailability_LO 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 34).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 34).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 34).Value = Bioavailability_LO 
                    End Select 
                    Randomize 
                    Toxicity_LO = Application.WorksheetFunction.NormInv(Rnd(), Worksheets("Model").Cells(Line, 6).Value, 
Sigma_tox_LO) 
                    Select Case Toxicity_LO 
                                Case Is > 9.5 
                                    Worksheets("Model").Cells(Line, 35).Value = 9.5 
                                Case Is < 0.5 
                                    Worksheets("Model").Cells(Line, 35).Value = 0.5 
                                Case Else 
                                    Worksheets("Model").Cells(Line, 35).Value = Toxicity_LO 
                    End Select 
                     
                Worksheets("Model").Cells(Line, 41).Value = "=if(Iserror(RANK(AM" & Line & ",$AM$8:$AM$65536)) = 
False,RANK(AM" & Line & ",$AM$8:$AM$65536),"""")" 
                Worksheets("Model").Cells(Line, 42).Value = "=If(AO" & Line & "< $AP$3,""X"","""")" 
                End If 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
Application.Calculation = xlCalculationAutomatic 
Application.Calculation = xlCalculationManual 
 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
            Checked_H2L = Worksheets("Model").Cells(Line, 30).Value 
        For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
                If Checked_H2L = "X" Then 
            Worksheets("Model").Cells(Line, 37).Value = "=IF(AND(AG" & Line & ">=$AK$2,AND(AH" & Line & 
">=$AK$3,AI" & Line & "<=$AK$4)),""Pre-selected"","""")" 
             
            Select Case Worksheets("Model").Cells(2, 39).Value 
                Case Is = "Potency" 
                    If Worksheets("Model").Cells(Line, 37).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 39).Value = Worksheets("Model").Cells(Line, 33).Value 
                    End If 
                Case Is = "Bio-availability" 
                    If Worksheets("Model").Cells(Line, 37).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 39).Value = Worksheets("Model").Cells(Line, 34).Value 
                    End If 
                Case Is = "Min" 
                    If Worksheets("Model").Cells(Line, 37).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 39).Value = "=Min(AG" & Line & ":AH" & Line & ")" 
                    End If 
                Case Is = "Weighted Average" 
                    If Worksheets("Model").Cells(Line, 37).Value = "Pre-selected" Then 
                        Worksheets("Model").Cells(Line, 39).Value = "=($AN$3*AG" & Line & "+$AN$4*AH" & Line & 
")/($AN$3+$AN$4)" 
                    End If 
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            End Select 
            End If 
                Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
     
Application.Calculation = xlCalculationAutomatic 
Application.Calculation = xlCalculationManual 
Line = Start_at_Line 
Line = Line + 1 
For i = 1 To Number_of_Classes 
        Line = Line + 1 
        For j = 1 To Number_of_Ref 
            Line = Line + 3 
        For h = 1 To Number_of_Comp 
            If Worksheets("Model").Cells(Line, 42).Value = "X" Then 
                Worksheets("Model").Cells(Line, 47).Value = "=if(Iserror(RANK(AT" & Line & ",$AT$8:$AT$65536)) = 
False,RANK(AT" & Line & ",$AT$8:$AT$65536),"""")" 
            End If 
            Line = Line + 1 
        Next h 
        h = 1 
    Next j 
    j = 1 
Next i 
 
Application.Calculation = xlCalculationAutomatic 
End Sub 
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