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Abstract 
 

Big gains in productivity are found in tandem and dual tandem pipeline welding 

but require highly skilled operators who have to control the position of the torch 

very accurately for long periods. This leads to high demands on the skills and 

stamina of the operators of mechanised pipeline welding systems. There is a 

very strong motivation to fully automate the welding process in order to reduce 

the required skills and to improve consistency. This project focuses on the use 

of through-the-arc sensing for seam following and contact-tip-workpiece-

distance (CTWD) control. A review of literature reveals very little development 

work on arc sensing for Pulsed Gas Metal Arc Welding (GMAW-P) in narrow 

grooves. GMAW-P is often used to achieve optimum properties in weld quality 

and fusion characteristics and also positional welding capability, all of which are 

important factors for pipeline welding.  

 

The use of through-the-arc sensing for narrow groove pipe welding applications 

poses specific challenges due to the steep groove sidewalls and the use of 

short arc lengths, producing very different behaviour compared to V-groove arc 

sensing techniques. Tandem welding is also quite different from single wire 

techniques with both wires working in close proximity producing mutual 

interferences in arc signals.  

 

An investigation was conducted in order to assess GMAW-P arc signals and it 

was found that improved consistency, higher sensitivity and less noise was 

present in voltages in the peak current period (peak voltages) used for torch 

position control. As a result of this investigation, a CTWD and cross-seam 

control system was developed and tested for single and tandem GMAW-P, 

using a 5º narrow groove. The test results have revealed accuracies for both 

controls of better than 0.2 mm. CTWD control was developed by following the 

existent welding procedure voltage average and cross-seam control by peak 

voltage comparison between maximum torch excursions.  
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Experiments were also performed to evaluate the influence of torch oscillation 

frequency on arc voltage behaviour and sensitivity, along with weld bead 

characteristics and fusion profiles. The resultant arc signal sensitivity was 

consistent with the results found in the literature for conventional GMAW. For 

GMAW-P, although no data was available from the literature for comparison, 

the results have shown no increase in sensitivity with the increase of oscillation 

frequency with the welding setup used. 

 

Bead profile analysis performed at different sidewall proximities indicated that 

optimum wire to sidewall proximities can be found between 0 mm and +0.2 mm, 

measured from the outer edge of the wire to the sidewall corner. Accurate 

control is required since +1 mm proximity produced poor sidewall fusion and no 

signal differentiation for control recognition of groove width. This work showed 

that negative proximities or wire proximity beyond the sidewall produce wire 

burn back and hence very long arc lengths, resulting in poor depths of 

penetration and shallower beads, with major undercut defects.  

 

In addition, this work has also shown the importance of torch oscillation width 

control, in order to produce accurate cross-seam control. A method is proposed 

to achieve torch oscillation width control by a continuous peak voltage 

comparison between centre and sidewall torch positions, using the optimum 

values of wire to sidewall proximity found and the resultant peak voltage value. 

This control will also provide a clear indication of actual groove width. Clearly 

this data can also be used to implement a system which adapts welding 

parameters to groove width. 
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1 Introduction 
 

World gas consumption is growing world wide at a record rate and is expected 

to double in size on the next 20 years (Figure 1.1). Investments of $20b/year 

are expected in new gas pipelines (Energy Information Administration – EIA 

[1]).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – World Natural Gas Consumption evolution [1] 

 

Today’s homes are being supplied by natural gas, pumped from places often 

thousands of miles away from them. Whenever possible, gas is transported 

through gas pipelines. With the increase in consumption, more and larger 

diameter pipelines are demanded. The new proposed Alaska gas pipeline for 

instance, covers 5,700 km starting in the Alaska, crossing Canada and ending 

in Chicago, USA. Each pipe has a diameter of 1.32 m (52 inches) and is 12 m 

long with 23 mm wall thickness of High Strength Low Alloy (HSLA) steel. 

 

Girth pipeline welding is usually performed by the Gas Metal Arc Welding 

(GMAW) process in orbital multi-pass welds. Because of its improved 

characteristics and enhanced toughness properties with HSLA steels, Pulsed 

Gas Metal Arc Welding (GMAW-P) is increasingly used. This welding process 
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can also produce improvements in weld quality and fusion characteristics, as 

well as positional capability, lower spatter generation and higher deposition 

rates when used in tandem torch systems. 

 

Pipe welding mechanisation started 50 years ago for pipeline girth welding, 

using a welding head holding and moving the welding torch, attached to a band 

and moving around the pipe. Typical travel speeds were 0.3 m/min using the 

GMAW process. Current systems are still based on the same welding 

head/band principle although a second torch has been introduced with the 

ability for single and tandem wires in both torches. This increases by four times 

the metal deposition using the same travel speed rates. Figure 1.2 shows a 

welding head system with dual tandem torches, capable of travel speeds of up 

to 1.5 m/min and torch oscillation frequencies of up to 10 Hz, using GMAW-P. It 

is almost 5 times faster with 4 times higher metal deposition rates when 

compared with single wire GMAW systems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Dual tandem welding head and pipe band with pendant control 

 

Although remotely controlled by a pendant and possessing elaborate network 

connections, actual systems are still mechanised with no automatic control of 

process conditions. The work is still highly dependant on the monitoring, control 
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and guidance of a skilled welder. British Standard BS EN287 [2] sets the 

requirements for manual welding skills and British Standard BS EN1418 [3] 

applies to users of mechanized welding systems. The user in the BS EN1418 

standard is called an operator and not a welder and has a theoretical test to 

verify his knowledge of the welding station functioning. A skilled operator is then 

someone who has to be well qualified, who sets the appropriate welding 

parameters, who recognizes when the parameters need to be adjusted and 

controls the overall process. “This calls for an experienced manual welder with 

expert knowledge” [4]. Rapid growth of mechanised pipe welding onshore has 

been constrained by the difficulty and expense of finding sufficiently skilled 

pipeline welders [5, 6]. 

 

In order to increase productivity and to reduce the amount of deposited metal, 

bevel angles have been changed from 30° to 15° and lately to 5° for 

mechanised pipe welding, as shown in Figure 1.3. Pipe wall thickness may vary 

from 6 mm to 23 mm. Torch manual guidance for this type of groove is more 

difficult to perform to avoid contact-tip collision with the sidewall in the initial 

welding passes. However, a high contact-tip to sidewall distance creates low 

sidewall fusion leading to a decrease of welding quality and possible welding 

defects. 

 

 

 

 

 

 

 

 

 

Figure 1.3 – Typical 5° bevel narrow groove  
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The application of newly developed high speed welding systems could be 

slowed by the limitation of the human being. The welding operator has to 

perform the tasks of control and guidance of the high speed travel multi-wire 

multi-torch welding head device and in general, to monitor the whole welding 

process condition. The adoption of HSLA steels, 5° narrow grooves and 

GMAW-P process has shown low tolerance for errors and a requirement for 

tight control of the whole welding process. The demand for semiautomatic or 

fully automated systems is high and only possible by developing sensor 

supported intelligent devices to achieve it.  

 

1.1 Project aims and objectives 

 

Lack of consistency, welding defects, inaccuracy, high productivity demands, 

lack of highly skilled and experienced welders are some of the problems in the 

welding industry today [6]. Fully automated adaptive systems for GMAW-P offer 

significant potential to overcome these problems. To achieve this, the whole 

process has to be investigated along with the application of sensors to enable 

control. 

 

The main objective of this project was to study and develop a system where 

less control is needed from the welder and more is given to the machine. The 

system should be arc sensing based and robust but flexible enough to avoid 

recalibrations or reprogramming. As a result it is expected to be capable of 

operating at higher welding speeds, supplying better quality welds and reduced 

welding defects. 

 

Specifically, the aims were defined as: 

• to investigate the use of the arc as a sensor and to determine its 

sensitivity to variations in welding parameters for narrow groove pipe 

welding 
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• to develop algorithms for torch positioning to achieve control of contact-

tip to workpiece distance, cross seam and torch oscillation width in the 5º 

narrow groove pulsed gas metal arc pipe welding 

• to investigate the use of high speed torch oscillation and its effects on 

bead geometry and arc signals 

• to develop off-line analysis software for experimental data acquisition 

with synchronised high speed filming of the welding arc 

• to understand the arc behaviour in narrow groove pipe welding 
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2 Literature review 
 

Welding automation is evolving and new methods and techniques are being 

developed every day to fulfil the demanding requirements of the emerging 

technologies. This chapter presents the state-of-the-art of the Gas Metal Arc 

Welding automation, process modelling, torch self-guidance technologies, 

narrow groove welding and high speed oscillation systems.  

 

2.1 Gas Metal Arc Welding process 

 

Gas Metal Arc Welding (GMAW) is a welding process where a wire is fed into 

an arc that is sustained between the wire tip and a base plate (Figure 2.1). The 

wire passes through a contact-tip that supplies the power to the arc. This is the 

last part where the wire touches any active component before melting in the arc. 

A potential differential is created between the contact-tip and the base metal. 

The initial arc ignition is produced by short-circuit with the wire touching the 

base metal. A constant flow of an inert (Argon based) or active (CO2 based) gas 

allows an ionisation path to be created and shields the weld pool. The process 

is maintained with the continuous supply of power, wire and gas. A balance of 

several process parameters determines its working stability. 

 

 

 

 

 

 

 

 

 

Figure 2.1 – The GMAW and GMAW-P processes 
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2.1.1 Voltage models 

 

Circuit voltage drop models of the GMAW process were found from several 

different authors. Pan [7] and Ushio et al [8, 9] have shown that the output 

voltage of the power supply is equal to the sum of three voltages: the inductive, 

the resistive and the arc voltages as shown in equation (2.1). 

 

(2.1) 
where 

 Up output voltage of power supply (V) 

 L inductance of welding circuit (mH) 

 R resistance of welding circuit (mΩ) 

 i instantaneous welding current (A) 

 Ua arc voltage (V) 

 

The authors also represented arc voltage as the sum of three terms as shown in 

equation (2.2). 

(2.2) 
where 

 Ua arc voltage (V) 

 La arc length (mm) 

 I effective value of arc current (A) 

 Ka, kp, Uc parameters of arc characteristics (V/mm, V/A, mV) 

 

Bingul et al [10-13] represented the voltage at the terminals of the power supply 

by the sum of electrode voltage and arc voltage. The electrode voltage model is 

based on a temperature dependent resistance of the wire (electrode) extension 

beyond the contact tip, as shown in equation (2.3). 

 

 

 

 

 

 

p a
diU L Ri U
dt

= + +  

a a a p cU k L k I U= + +  
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(2.3) 
where 

 VL voltage drop along electrode extension (V) 

 I current (A) 

 RL resistance (Ω) 

 Φ resistivity of wire (Ωmm) 

 T temperature (K) 

 L electrode length (mm) 

 A cross-sectional area of electrode (mm2) 

 

The Bingul et al [10-13] arc voltage model is shown in equation (2.4) and it is 

similar to the previous arc voltage model shown in equation (2.2). 

 

(2.4) 
where 

 Varc arc voltage drop (V) 

 V0 constant in arc voltage drop equation (V) 

 Ra current dependency of arc voltage (V/A) 

 I current (A) 

 Ea length dependency of arc voltage (V/mm) 

 l arc length (mm) 

 

With the increase of the welding current, the relationship between voltage and 

current becomes approximately linear [14]. From the previous equations (2.2) 

and (2.4), it is clear that with a constant welding current, arc voltage variations 

are directly related to arc length variations and thus to the welding voltage 

variations at power supply terminals. 

 

( ),L L L

T
V IR R L

A
Φ

=      =  

0arc a aV V R I E l= + +  
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2.1.2 Melting rate 

 

Another important parameter in GMAW welding process is melting rate. It is 

considered the most important factor for the welding process productivity 

assessment [15]. It is defined as the mass of filler wire melted in a unit of time 

and can be represented as shown in equation (2.5) [15-17]: 

 

(2.5) 
where 

 MR melting rate (mm/s) 

 I current (A) 

 l stick-out (mm) 

 a cross sectional area of the wire (mm2) 

 α , β   constants from wire characteristics (mmA-1s-1, A-2s-1) 

 

GMAW is considered to be in steady-state when melting rate is equal to wire 

feed rate (also known as wire feed speed). The differential between rates is 

reproduced in the arc length as shown in equation (2.6) [7, 16]. 

 

(2.6) 

 
where 

 La arc length (mm) 

 Wf  wire feed rate (mm/s) 

 MR melting rate (mm/s) 

 

2lIMR I
a

βα= +  

a
f

dL W MR
dt

= −  
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2.1.3 Arc length 

 

Considering a constant wire feed speed, changes in arc length produce 

changes in melting rate. The system self-balances its variables to achieve a 

new steady-state. The dynamic state of the process is usually a result of 

changes in contact-tip to workpiece distance or CTWD. Although in mechanised 

systems it is a predetermined value, this value suffers small changes caused by 

variations in preparation, thermal distortion and weld pool behaviour. CTWD is 

the sum of the observed arc length and wire stick-out or wire extension as 

shown in equation (2.7). 

(2.7) 

 
where 

 CTWD  contact tip to workpiece distance (mm) 

 La arc length (mm) 

 Ls stick-out (mm) 

 

It should be noted that stick-out voltage is small compared to arc voltage [16] 

and so, voltage variations are more evident as a result of arc length variations 

than of stick-out variations. Figure 2.2 shows a relationship between current, 

voltage and arc length for Constant Voltage (CV) GMAW power supply [17]. 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Relationship between current, voltage and arc length, with CV 

GMAW [17] 

a sCTWD L L= +  
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There is no fixed ideal value for arc length and each procedure may have its 

own value. In general, arc length should provide a balance between arc 

stability, bead shape and weld metal penetration or depth of fusion, low spatter 

and good weld mechanical properties. A very short arc may result in excessive 

spatter and arc instabilities while a short or normal arc results in a better weld 

pool control and bead shape, higher travel speeds (lower heat input), less fume 

generation, and less susceptibility for porosity and cracking [18]. For pipeline 

welding, arc length is usually short in order to create smaller weld pools thus 

reducing the effects of the gravitational forces when welding in over-head 

positions. A short arc is used for narrow-groove pipeline welding since a long 

arc would create problems with arc deflections to the sidewalls and hence 

undercut defects and low root penetration. 

 

2.1.4 The self-regulation mechanism 

 

The self-regulation mechanism is an important characteristic of the GMAW 

process. It is an automatic mechanism that recovers system balance should any 

instability in the welding process occur caused essentially by variations of 

CTWD, inside certain limits. When process stability is achieved (Wf  = MR), the 

system is known to be in its steady-state or “dynamic equilibrium” with arc 

length and stick-out values steady. 

 

In a CV GMAW process, a reduction of CTWD initially produces a reduction in 

arc length and hence a reduction in voltage. The CV power supply responds to 

this variation and then by increasing the welding current to re-establish the 

voltage levels, increasing therefore melting rate and burning back the wire and 

hence reducing stick-out. Reducing stick-out increases the arc length and a new 

equilibrium point is attained. This natural self-regulation mechanism has created 

a demand for the use of CV GMAW power supplies mainly for manual welding 

situations [17]. For CC GMAW power supplies, the process is more complex.  
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In practice, self-regulation does not occur instantaneously and it is dependent 

on the characteristics of the power supply. Ushio et al [8] has developed a 

system where a torch is oscillated up and down changing cyclically CTWD 

values at frequencies that vary from 0 Hz to 10 Hz. Frequency analysis has 

revealed that from 0 Hz to 0.6 Hz equilibrium was completely achieved, 

decaying rapidly up to 6 Hz and never achieving equilibrium for frequencies 

above 6 Hz. Figure 2.3 shows the results [8] of the frequency response (x-axis) 

against the variation ratio in amplitude between wire extension and welding 

current (y-axis). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Comparison in frequency-domain between the calculated and 

experimental results of the variation ratio in amplitude between wire extension 

and welding current [8] 

 

According to these results, approximately 150 ms were necessary for the 

complete equilibrium, with the welding setup used and induced CTWD 

variations. Pan [19] also developed an empirical model based on 

experimentation where a rotating torch was inclined 45º to the baseplate in 

order to produce controlled variations of CTWD with frequencies from 0 Hz to 

50Hz (Figure 2.4). 
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Where 

Hmax CTWD maximum height 

Hmin CTWD minimum height 

D  torch rotational diameter 

 

 

 

 

 

 

Figure 2.4 – Rotating torch tilted 45º to perform CTWD variations from Pan [19] 

 

The results were very similar to those from Ushio et al [8] where changes in the 

variation ratio are only apparent in the frequency range between 2 Hz and 

10Hz. From the experiments, Pan also concluded that the level of variation is 

different when using different power supply output characteristics (the 

voltage/current drooping characteristics), although maintaining the same pattern 

at the same frequencies. These changes were sensed not in the frequency 

domain but in the amount of variation between wire extension and welding 

current. It is more accentuated for power supplies with a lower voltage/current 

drooping ratio. 

 

2.1.5 Torch oscillation 

 

Mechanical torch oscillation or weaving is a widely used method for spreading 

the arc improving heat distribution and sidewall fusion in GMAW welding [20] in 

mechanical welding. The effect of torch oscillation on V-grooves is similar to the 

45º tilted torch from Pan’s [19] experiments, producing fixed changes of CTWD 

on each torch oscillation cycle. Many authors have reported arc signal 

sensitivity improvements when using high speed oscillation/rotation torches for 
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GMAW welding [19, 21-53]. The self-regulation mechanism produces arc signal 

variations in accordance to CTWD changes. 

 

For CV GMAW, CTWD variations are more detectable in the welding current 

and for CC GMAW are more detectable in the welding voltage. The amount of 

signal variation is related to the amount of CTWD variation. Depending on the 

torch oscillation frequency used, the same CTWD might result in different 

values of arc signal variation. Figure 2.5 illustrates the process. 

 

For low oscillation frequencies equilibrium is achieved with arc length and stick-

out finding a new balance point. For high oscillation frequencies, the equilibrium 

is never achieved and thus, stick-out does not have time to change and CTWD 

difference is equal to the change in arc length. In this way, arc signal sensitivity 

is higher for higher oscillation frequencies: (La3 – La4) > (La1 –La2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – High and low torch oscillation frequency differences in arc length 
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2.1.6 Pulsed Gas Metal Arc Welding 

 

Pulsed Gas Metal Arc Welding (GMAW-P) is a special metal transfer mode of 

GMAW based on maintaining a welding current value in the spray metal transfer 

region long enough to melt, detach and transfer a molten droplet of metal, 

switching then to a relatively low current value to sustain a small arc until the 

process repeats, as shown in Figure 2.6. In this way, controlled drop spray 

transfer can be achieved with the average welding current lower than the 

transition current for spray transfer. Positional welding can thus be performed at 

low currents, but with controlled drop spray transfer instead [54]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 - Droplet transfer in pulsed GMAW [17] 

 

The introduction of transistorised power supplies in the 1970’s enabled the 

development of GMAW-P. However, the process was very demanding due to 

the complexity of adjusting many process variables (peak time, peak current, 

background time, background current, wire feed speed) for a stable process. 

Due to its complexity and cost this technique was not widely used [54, 55]. 
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In late 1970’s GMAW-P was simplified by the development of Synergic GMAW-

P at The Welding Institute – Cambridge – UK, by Amin et al [56]. The complex 

task of setting process variables was substituted by changing a single 

parameter: Wire Feed Speed. All other parameters are then changed 

accordingly. The set of developed relationships are recorded inside the power 

supply and only one control knob is available to the welder. 

 

The mean value of arc current in GMAW-P is expressed as [16, 17]: 

 

(2.8) 

 
where 

 Im GMAW-P mean current (A) 

 Ip peak current (A) 

 tp peak time (s) 

 Ib background current (A) 

 tb background time (s) 

 

Melting rate for GMAW-P can then be calculated as [16]: 

 

(2.9) 

 
where 

 MR melting rate (mm/s) 

 Im GMAW-P mean current (A) 

 ls stick-out (mm) 

 k1, k2 empirical constants for given materials and sizes 

 

A more detailed model is shown in equation (2.10) considering the proportions 

of high and low currents of the pulse and their respective times [57]. 
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(2.10) 

 
where 

 MR melting rate (mm/s) 

 Im GMAW-P mean current (A) 

 ls stick-out (mm) 

 Ip peak current (A) 

 tp peak time (s) 

 Ib background current (A) 

 tb background time (s) 

 f pulse frequency (Hz) 

 k3, k4 burn-off factors 

 

The Joule heating in the second term of equation (2.10) does not use the 

average current as in equation (2.9) but the influence of each current level of 

the pulse in the melting rate process. 

 

2.1.6.1 GMAW-P dynamic process 

GMAW using CV and CC power supplies is a steady-state process in spray 

transfer mode, the dynamic state changes when arc length disturbances occur 

produced mainly by CTWD variations. GMAW-P on the other hand is in a 

constant dynamically changing state produced by the cyclical changes in the 

welding current. The high and low values of the welding current create constant 

rebalance of arc length and stick-out around two different equilibrium points. In 

this way, GMAW-P is considered a non-equilibrium process [12, 58]. Dynamic 

models for GMAW-P are the same for GMAW. 

 

2.1.6.2 Adaptive versus non adaptive pulse control mode 

GMAW-P has two control modes of operation: adaptive and non adaptive. They 

refer to ability of the power supply to respond to external changes and 

disturbances that interfere with the process quality and stability. Each power 

2 2
3 4 ( )m s p p b bMR k I k l I t I t f= + +  
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supply manufacturer has their own proprietary way of implementing this control 

but in general the control is attained by changes in pulse parameters [17]. For 

instance, Fronius International GmbH changes pulse frequency and amplitude 

with changes in CTWD [59]. It should be noted that the power supply adaptive 

mode may conflict with attempts to make voltage measurements for control 

purposes [60].  

 

2.2 Through-the-arc sensing 

 

Through-the-arc sensing is a well established technique ideal for the welding 

environment. It is based on measurements of the welding arc parameters such 

as current and voltage. The widespread application of this technique in welding 

is based on the increased research in areas of arc welding such as process 

quality and automatic torch guidance [8, 26, 61]. The application for pipeline 

welding has also been reported [62-64]. Table 2.1 summarises the advantages 

and disadvantages of arc sensors.  

 

Table 2.1 – Advantages and disadvantages of arc sensors  

 Advantages Disadvantages 

Arc based 
No extra sensors 

No need for registration 

Not susceptible to damage 

Complex data analysis 

Add-on 
sensors 

Simple data analysis 

Cost of extra sensors 

Need registration 

Wire deflections reduce accuracy

Susceptible to damage 

 

The use of arc based sensors for torch control of cross-seam torch position 

(seam tracking or seam following in some literature) or of torch height position 

(CTWD control), is based on the principle of measuring arc signal changes that 

occur as a result of changes in arc length and hence in CTWD values. The 
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following sections review the application of through-the-arc sensing 

technologies for torch guidance applications. 

 

2.2.1  GMAW open groove 

 

Open groove is a wide angle groove formed between two walls, typically 90º for 

fillet welds or two 30º-45º bevel angles for V-groove welds. First reports of 

GMAW welding torch guidance by arc sensing techniques were developed for 

open grooves [65].  

 

2.2.1.1 Cross-seam control principle 

As shown previously, changes in CTWD produce variations in arc signals. This 

variation can be sensed and used for torch cross-seam control. King et al [65] 

(later reviewed by Pan [19]), suggested two ways of implementing a GMAW 

cross-seam control: twin-electrode and oscillatory wire (Figure 2.7). In GMAW 

with twin-electrode scheme, both electrodes are side by side along the path. 

Both arcs have the same length when the torch is in the groove centreline and 

different when the torch deviates from the centreline.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Cross-seam control schemes implemented by King et al [65] – 

twin-electrode (top) and oscillatory single wire (bottom) 
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In the oscillatory single wire scheme, arc length is equal at the maximum 

extremes of oscillation when the torch is aligned with the groove centreline and 

un-equal when it is off-centre. In both twin-wire and oscillatory wire systems, it 

is possible to detect this disparity by the use of arc signals. For CV power 

supplies the change is more pronounced in the welding current and for CC 

power supplies in the welding voltage. Since CV it is the most common process 

used in GMAW because of the natural self-regulation mechanism, most of the 

reviewed literature refers to the use of welding current to detect CTWD 

variations. 

 

In general, for single wire or tandem welding (where one wire is in front of the 

other along the path) methods, arc signal changes are used for torch cross-

seam control if the torch produces a cyclical motion across the seam to allow 

the signal comparison at torch maximum excursions. This motion can be 

oscillatory, pendular or rotational. The measurements of arc signals at different 

positions of each cycle of the torch movement make possible the detection of 

discrepancies in the torch path.  

 

The cyclical torch oscillation in an open groove using CV GMAW produces a 

variation in welding current as shown in the graph of Figure 2.8. The welding 

current is higher at the extreme torch excursion (points A and C) caused by the 

shorter arc length and hence an increase in melting rate whilst a lower welding 

current if found at the centreline (point B) from the opposite reason. Jieyu et al 

[66] stated that the higher current values at extreme torch positions are better 

for cross-seam control since they are more robust and less influenced by noise 

when compared to the lower current values of the centreline used by some 

researchers to achieve control.  
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Figure 2.8 – Arc current variation with torch position in the groove 

 

2.2.1.2 Electronic control 

The control mechanism developed by King et [65] was based in discrete 

electronic components (transistors and/or operational amplifiers) working as 

welding current comparators and driving the torch cross-seam motor when a 

difference was found to reduce the difference to zero. For the oscillatory single 

wire system, it is important to detect when the weaving motion of the torch 

reaches both extremes. This can be implemented by positional sensors such as 

conventional switches to detect when the torch reaches each maximum 

excursion. When a switch is triggered, the welding current is measured and 

compared to the stored value measured at the opposite side. Their difference 

indicates the amount of torch off-centre that needs to be corrected. The same 

principle can be achieved by rotational torch movement. The rotational 

movement is measured by an encoder detecting the contact tip position when 

reaching the maximum excursions of the seam [52].  

 

Patents by Suzuki [67] and Sugitani [68] describe cross-seam control using 

oscillatory torch systems. An electronic circuit was used to calculate the mean 

current values from both torch oscillation extremes, and a short-circuit detection 

scheme was operated to disable the measurements in the occurrence of short-

circuits. When short-circuiting occurs, arc current rises higher than the mean 
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value altering the mean value calculation, thus supplying incorrect information 

to the cross-seam comparator. This system is limited to short arc applications 

with frequent short-circuiting or applications based on dip transfer. 

 

For dip transfer applications, Philpott [20] developed a solution for cross-seam 

control and CTWD estimation for dip metal transfer applications. Basically, an 

electronic circuit with operational amplifiers work as a divider for resistance 

calculation. Dividing voltage by current it is possible to establish the relationship 

between CTWD and resistance, since arc length is zero in the dip period and 

CTWD is approximately equal to stick-out. CTWD measurements had a real-

time accuracy of +/- 2 mm being “certainly better than is normally achieved by a 

manual welder”, according to the author. This author considered that for cross-

seam control the accepted tolerance was within +/- 5mm. It should be noted that 

the actual groove width for root pass of a 5º narrow groove pipeline welding is 

5.6 mm, and a much lower tolerance on torch position is required (Figure 1.3 – 

p. 3). 

 

2.2.1.3 Computational control 

Different computation methods were used by researchers to achieve control 

over torch position, based on arc signals acquisition and processing, such as 

open and closed loop control systems with PID controllers, fuzzy logic 

controllers (FLC) and artificial neural networks (ANN). Some researchers also 

used mixed controllers. PID is a linear controller that generates an output value 

from a single input value based on three predefined parameters: Proportional, 

Integral and Derivative [69]. This controller cannot be applied to non-linear 

situations. Fuzzy controllers are based on a set of predefined rules applied to 

the input(s) to generate the intended output(s) [70]. New situations are not 

managed by these controllers unless new rules are defined. ANN controllers are 

knowledge base networks programmed to work as an interconnected neurons 

to interpret the inputs and to generate the outputs [70]. This controller needs the 

necessary information from training to attain the desired results. For new 

situations the network has to be retrained. 
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Jieyu et al [66] proposed a solution based on a closed loop control system 

where arc signals are acquired, filtered and averaged by computer algorithms. 

Welding current was the main signal used for control by comparing the values 

between torch maximum excursions. The difference is output to a PID controller 

that calculates the right amount of motion needed to centre the torch until a zero 

difference in the comparison is achieved by the closed loop. Figure 2.9 shows a 

functional diagram of the system. 

 

 

 

 

 

 

Figure 2.9 – Functional diagram of a closed-loop seam tracking system by 

Jieyu et al [66] 

 

Murakami et al [71, 72] tested a FLC by developing three experiments based on 

FLC with a fuzzy filter, FLC without the filter and a PI control. The authors 

concluded that the FLC with the fuzzy filter produced better results than the FLC 

without the filter and in turn better that PI controller. From the comparison with 

the PI controller, the authors stated that the PI bead was a little irregular in the 

end part of the work and moved a little in zigzag direction along the path. No 

explanation was given by the authors for this PI controller behaviour. Excessive 

overshoot is usually caused by a low Integral value [69] and may have caused 

the poor performance. 

 

To determine the control variables and rules definition for fuzzy logic controllers 

based on the experience of the welder, a great amount of experimentation is 

required [73]. To overcome this problem, Kim Y.S. et al [73] proposed a PI type 

fuzzy controller using Murakami et al [71, 72] and Kim J.W. et al [74] models but 

considering the noise that was previously filtered using the fuzzy filter. 

According to the author, the previous noise filtering made the system insensitive 
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to errors. Simulation and experimental data was used to tune the PI parameters 

for the fuzzy rules. 

 

An application of a FLC and ANN for seam tracking was proposed by Eguchi et 

al [75]. The groove angle used was 60º with open gap and no backing-plate. A 

trained ANN controller was used to estimate arc length and wire extension 

based on 50 ms readings of current, voltage and wire feeding rate at a sample 

rate of 1 kHz. Every 5 ms, the FLC processes the actual torch position with the 

arc length and wire extension calculated by the ANN controller and generates 

outputs to the wire feeder, power source and torch manipulator for seam 

tracking. The combination of an ANN controller and FLC revealed good results 

on the interaction. 

 

ANN is widely used for pattern matching or recognition. Wang et al [76] used a 

taught ANN controller with experimental results of deviation patterns in the 

welding current. The resulting algorithm could detect the torch displacement by 

similar experimented patterns and correct the torch path applying what was 

learnt by the system in each particular case. Another application of an ANN 

controller was proposed by Ohshima et al [77] using both the welding current 

and voltage signals with CV GMAW process. From the experiments, the authors 

showed that although on a minor scale compared to welding current variations 

(≈50 A variation), voltage variations (<1 V variation) could be sensed and used 

successfully for seam tracking. To achieve the desired performance, much 

training data is required. To avoid this problem, the authors relied on numerical 

simulations from partial differential equations on heat conduction. 

 

Although very reliable, consistent and flexible, FLC and ANN controllers have to 

be trained to perform well. Training is the method of filling in a database of 

hypotheses and respective output behaviours accordingly. The more data is 

used in the training, the more reliable and accurate is the system. This learning 

process is inconvenient when the system needs to be adapted to a new 

situation due to the fact that it is a time and resource consuming retraining 
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process. As a way of simplifying this process, Kim et al [74] developed a self-

organising FLC where basic common sense rules were the initial defined rules. 

The system uses two fuzzy variables obtained from the error between the 

welding current reference and a curve-fitted reference, with the integral of the 

error. A learning algorithm then improves the initial set of rules based on these 

new calculated values. For a consistent angular error of the torch trajectory the 

system has shown good results. For new torch trajectories with changes in the 

angular error, the process needs to restart. In other words, the application of 

this system for pipeline welding would show lower cross-seam control accuracy 

for the initial welding passes with improvements in the preceding ones. 

Unfortunately, it is not possible to perform an experimental weld for system 

training every time the welding head is shifted to a new pipe joint.  

 

2.2.1.4 Process modelling 

Wells [78] proposed two mathematical models for cross-seam and groove width 

control on the wide 90º V-groove: 

1) differential model - equations (2.11) to (2.14) 

2) template matching model - equations (2.15) to (2.17) 

 

The differential model is based on sampling arc current or voltage, depending 

on whether a CC or CV power supply is used, at three positions of the torch 

excursion (left dwell, centre and right dwell). The developed models were based 

on the arc steady-state models from Halmoy [79] and Lesnewich [80]. Left and 

right dwells are used for the cross-seam control mechanism while the centre 

values are for CTWD adjustments. Signal acquisition is only performed when 

the torch passes over the three positions. Torch oscillation width control was 

also performed. 
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(2.11) 

 

(2.12) 

 

(2.13) 

 

(2.14) 

 
where 

 dce torch-to-work distance for consumable electrode process (mm) 

 I steady-state arc current (A) 

 c1, c2 constants from process variables 

 Δx cross-seam off-centre error (mm) 

 Δy CTWD error (mm) 

 Δw oscillation width error (mm) 

 Φ V-Groove angle 

 Ir arc current from right-hand torch position (A) 

 Il arc current from left-hand torch position (A) 

 Ic arc current from centre torch position (A) 

 I0 desired arc current (A) 

 Ir1, Il1, Ir2, Il2 arc current from right-hand and left-hand torch positions at consecutive 

torch oscillations (A) 

 

The template matching model is achieved by continuously sampling the arc 

signals and by comparing them to a mathematical template based on a 

parabolic equation. The template matching model assumes that a parabola 

shape is made by the joint and weld pool (Figure 2.10). A difference curve is 

defined as the difference between the template and the profile, expressed by 

equation (2.17). The parabolic template fits a concave groove shape or previous 

bead. Convex shapes may not work properly with the proposed model. 
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(2.15) 

 

(2.16) 

 

(2.17) 

 
where 

 It template arc current (A) 

 Ip profile arc current (A) 

 x torch actual position 

 x0 actual cross-seam centre of oscillation 

 I0 arc current when torch is at x0 (A) 

 Iv desired arc current when torch is located directly above joint centreline (A) 

 k5 constant determined by the joint geometry 

 

 

 

 

 

 

 

 

 

Figure 2.10 – Template-matching model using a parabola by Wells [78]. 

 

The developed system based on the models averages arc signals using very 

low pass cut-off filters (< 10 Hz). Experimental torch oscillation speeds were 

below 2 Hz. The control approach made by this author has revealed good 

potential and can be summarised as: 

1) cross-seam control by arc signal comparison between torch maximum 

excursions 

2) CTWD control by arc signal comparison with a predefined value when 

torch is at centre of oscillation 

2
5( )t vI x k x I= +  

2 2
5 5 0 5 0 0( ) 2pI x k x k x x k x I= − + +  

2
5 0 0 5 0( ) ( ) 2t p vI x I x k x x I I k x− = + − −  
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3) torch oscillation width control by arc signal consecutive comparisons at 

torch maximum excursions between complete oscillations 

 

2.2.1.5 High-Speed rotational torch 

For high speed rotational torch seam tracking systems, several developments 

have been described [19, 48, 52, 81-83]. These systems work similarly to torch 

weaving methods described previously with the use of an encoder to detect 

when the contact-tip passes at each extreme position across the seam. Due to 

the fixed rotation width, this system is not able to perform the control for 

changes in groove width. FLC was also used similarly for torch guidance control 

[25, 37]. 

 

2.2.1.6 Summary 

As a summary, many systems were developed for CV and CC GMAW open 

groove welding as described, and more can be found in the published literature 

based on the methods presented. The state-of-the-art of torch guidance on 

open groove welding was reviewed showing the strong and weak points as well 

as limitations of each type of technique used for control. 

 

2.2.2 Pulsed GMAW open groove 

 

Through-the-arc sensing with GMAW-P for torch guidance control, in contrast to 

its mature predecessor CV and CC GMAW, is still being studied by researchers. 

Basically, the approach performed so far is based on the same principle of torch 

oscillations across the seam to produce arc length changes and therefore arc 

signal changes. As referred previously, GMAW-P is a CC based process and 

arc voltage is commonly used for control. 

 

Barnett et al [60] developed a solution using a data acquisition system sampling 

the welding signals plus a torch axial displacement transducer at 3 kHz 
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sampling rate. In order to reduce computational time, the data was reduced by a 

factor of 30 to an equivalent 100 Hz sampling rate. The experiments were 

conducted in the 90º V-groove and lap welds. Two methods were then 

employed: 

1) Finding the difference between peak and background values of the 

pulsed voltage at torch maximum excursions 

2) Integration of the welding voltage during the torch travel from centreline 

to maximum excursion 

 

The authors stated that the sampled pulse background voltage (minimum 

background voltage of every pulse) has less noise content and better signal 

regularity than the pulse peak voltage and it is more appropriate as an input for 

a seam-tracking control system. From the published data by the authors, it is 

apparent that the voltage signal from the experiments is high with the absence 

short-circuiting, reflecting the use of a long arc length procedure.  

 

A different approach was proposed by Di Pietro et al [59], using the pulsed 

welding current filtered by a Butterworth low pass filter and analysed by power 

spectral densities (PSD). These authors found a linear relation between the 

resultant waveform and the torch off-centring amount. When aligned with the 

centreline, the resultant peak frequency from the PSD coincides with the torch 

oscillation frequency. Introducing a known torch off-centring amount reduced 

the dominant frequency from the PSD analysis to half of the torch oscillation 

frequency. No specific cross-seam control technique was proposed by the 

authors to implement the above described method. 

 

Based on a sidewall-matching algorithm patented by Cook et al [84], Rashid et 

al [85] used a FLC and a set of rules to implement cross-seam control for 

GMAW-P. The sidewall-matching algorithm is based on averaging the arc 

voltage signal and comparing the averaged values of both torch oscillation 

maximum excursions, as proposed by the author for CV GMAW [84]. The same 

technique is proposed by Rashid et al [85] for GMAW-P. The resultant voltage 
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difference from the comparison is then supplied to the FLC that computes the 

necessary amount of torch path correction to be passed to the motion system. 

The experiments were conducted on fillet welds. 

 

Similar proposals for cross-seam control were found for GMAW and GMAW-P 

for the open groove and fillet welds although only one commercial solution for 

GMAW-P was found to date [86] for pipeline welding, and operational details 

were not disclosed. The wide angle between sidewalls of the open grooves 

produces a clear variation in the arc length and hence in arc signals, optimum to 

achieve good cross-seam control.  

 

2.2.3 Narrow groove welding technique 

 

Narrow groove welding (NGW) is a technique commonly used in arc welding to 

weld thick walled sections of metal with the sidewalls almost parallel [87, 88]. 

The filling process is based on placing one bead on top of the previous one until 

the gap is filled. This technique is preferred to the conventional V-groove since 

the reduction in deposited material makes the welding process faster and 

cheaper. 

 

In Japan during the eighties, NGW was reviewed by the Sub-committee on 

Weld Metal & Welding Procedures of JPVRC as a technique to weld thick plates 

of more than 30 mm thickness [89]. A good review can be found by Modenesi 

[90]. This technique is also being used in smaller plate thicknesses [87, 88, 91, 

92] and especially in the pipeline industry, typically using a 5° bevel angle with 

pipe wall thickness of 19 mm and above. 

 

A major problem in utilising NGW is lack-of-sidewall-fusion defects. This is due 

to low or no angle between sidewalls limiting the side metal penetration. Several 

different methods were developed in an attempt to eliminate this problem. 

These methods include: 
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• Wire methods 

o Twist-arc (Figure 2.11) 

o Babcock-Hitachi K. Type (BHK) (Figure 2.12) 

o Corrugated wire (left of Figure 2.13) 

o “Rotating arc” (right of Figure 2.13) 

o Loop nap (Figure 2.14) 

o Bent contact tip (Figure 2.15) 

• Other methods 

o High Speed Rotating arc (Figure 2.16) 

o Electro-magnetic arc oscillation (Figure 2.17) 

o Mechanical torch oscillation (Figure 2.18) 

 

 

 

 

 

 

 

 

Figure 2.11 – Rotational movement of welding arc produced by Twist-arc [93] 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 – Wire waving mechanism (left) and the waved wires (right) [94] 
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Figure 2.13 – Corrugated wire (left) [95] and “Rotating Arc” (right) [51] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 – Loop Nap method mechanism [96] 
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Figure 2.15 – Bent contact-tip: (a) end view, (b) top view, (c) side view including 

copper bend weld pool support [87] 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 – High Speed Rotating Arc principle [50] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 – Electromagnetic Arc Oscillation [88] 
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Figure 2.18 – Scaled figure of a narrow contact tip in position for the 1st pass in 

the 5° bevel narrow groove for mechanical torch oscillation 

 

Cross-seam control is essential in most cases not only to achieve good welds 

but also because the welding tool is inside the groove with tight margins with 

the sidewalls and low tolerances for errors. The robustness and low cost 

implementation of through-the-arc sensing systems is capable of providing 

major improvements in control of narrow groove welding. 

 

A cross-seam control system proposed for through-the-arc sensing for narrow 

groove welding is the high speed rotating arc [50] with GMAW. The working 

principle is the same as that explained previously for the CV GMAW open 

groove. Due to the torch concept, the wire tip and therefore the arc can be very 

close to the sidewall, enough to produce arc signal variations for control. On the 

open groove, the signal variation is smoother because it follows the groove 

inclination while in the narrow groove it is more abrupt. 

 

A variation of the rotating torch is the rotating/oscillating torch with bent contact-

tip proposed by Eichhorn et al [38]. The bent contact-tip performs semi-

complete rotations around its main axis creating an oscillating effect across the 
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seam. The welding process used was GMAW-P. The angle of rotation of the 

contact-tip is predefined and may vary accordingly with the groove width 

changes detected by the arc sensing system. The system self-adjusts torch 

travel speed in case of groove width changes to compensate for deposition rate. 

An electronic circuit finds peak currents from the pulsed arc current signal and 

feeds them into a computer for further processing. It is not clear from the 

published work how the signal is then processed to perform the cross-seam 

control. This system has good potential for improved penetration in a narrow 

groove due to the rotating bent contact-tip although the experimented values 

used were too slow for pipeline welding applications (contact-tip rotating speed 

below 1 Hz and travel speed was 0.11 m/min).  

 

Baba et al [97] developed a through-the-arc sensing cross-seam control system 

for narrow groove pipe joining based on the Loop Nap technology. The welding 

process used (named Pilot Arc Welding) is a CV GMAW process with a 

switching circuit to produce a peak and a background current synchronised with 

the wire tip oscillation. When the bent wire reaches the sidewall, the current 

rises to its peak value and is lowered to the background value during the travel 

from one sidewall to the other. Oscillation frequency is about 0.66 Hz for flat 

positions and 0.55 Hz for vertical and overhead positions. The arc current was 

used for cross-seam control. The signal was acquired through a shunt resistor 

and filtered with a very low band pass filter (cut-off frequency at 1.5Hz). An ADC 

in a micro-computer was used to take 16 samples of arc current when the arc is 

at peak current (wire tip near the sidewall). This value is stored and compared 

to the previous acquired average when the wire tip was in the opposite sidewall. 

The difference is processed to adjust the torch path accordingly.  

 

Since the system was developed to work in an orbital solution, the weld pool 

suffers influence from gravity forces when in vertical and overhead positions. 

This means that the torch height (CTWD) decreases when going from flat 

horizontal to vertical and overhead position. The authors prepared the algorithm 

with a compensation variable according to the torch inclination around the pipe. 
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Its coefficient value was determined by experimentation and regression 

analysis. Unfortunately this system produces low deposition rates for the actual 

demands of the pipeline industry and the Loop Nap technology is quite complex 

with very sensitive moveable parts. 

 

2.2.4 CTWD control 

 

The importance of a steady CTWD and therefore arc length has been known for 

some time [18, 98, 99]. Better bead shapes with improved quality are attained 

when this control is well performed.  

 

In the development of cross-seam control, some researchers have also 

approached CTWD control, with their systems having both controls working 

together. In some other cases, this control was studied and developed as a 

stand-alone process using similar controllers found for cross-seam control such 

as ANN and FLC. Yamamoto et al [100] developed an ANN for estimation and 

real time measurement of arc length and wire extension, based on arc physics 

and ANN training. A change of wire type or shielding gas demands network 

retraining. 

 

Using short-circuiting resistance measurements on dip transfer in GMAW 

pipeline welding, Di Pietro et al [101] proposed a system for stick-out control to 

compensate pipe ovality. When arc voltage drops below 5 V and arc current 

rises above 50 A, the short-circuit cycle condition is triggered and the resistance 

is then measured and averaged. If the calculated value exceeds a percentage 

deviation from the reference resistance value, the control corrects the torch 

position until the difference is inside the control limits. Also Di Pietro et al [59] 

proposed CTWD control for GMAW-P by analysing the pulse frequency 

variations during welding. A Fast Fourier Transform (FFT) analysis of the pulsed 

arc signal has shown that at different CTWD values, different pulse frequencies 

were attained. This relationship makes it possible to achieve CTWD control. It 
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was found that this behaviour was produced by the power supply adaptive 

mode system to self-control the arc length. The successful implementation of a 

CTWD control based on this principle is dependent on the power supply 

manufacturer and in the way the self-control of arc length is implemented. 

 

2.2.5 High Speed Oscillation 

 

High speed oscillation is a technique that incorporates some of the technologies 

already reviewed like the rotating arc and pendular oscillation. Although there is 

no clear definition of what is considered high speed oscillation, some authors 

consider it to require frequencies above 5 Hz. This technique is claimed to 

produce steady and even sidewall melting [102] with improved characteristics of 

the weld bead [103, 104] and more sensitivity for seam tracking [53], using CC 

and CV GMAW processes. No published information was found in the 

application of high speed oscillation for GMAW-P. For CO2 CV GMAW process, 

torch oscillation frequencies between 5 Hz and 15 Hz were found to produce 

better results in bead shape appearance and lower spatter generation [103].  

 

Arc signal sensitivity in high speed oscillations is the major benefit pointed out 

by many researchers for cross-seam and CTWD control systems. It is based on 

the larger variations of arc signal found with higher torch oscillation frequencies 

caused by the dynamic-state of the arc process in GMAW. The arc does not 

have time to accomplish its self-regulation mechanism to achieve the 

equilibrium point with the stick-out, hence arc voltage and/or arc current 

variations are more accentuated. The High Speed Rotating Arc is the most 

researched method that takes advantage of this natural mechanism of GMAW. 

Mechanical limitations of weaving mechanisms on achieving high speeds was 

presented by Jeong et al [52] when comparing sensitivity between the rotating 

arc system with the conventional weaving system.  
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On the other hand, rotating arc mechanisms usually have fixed oscillation 

widths. To tackle this problem by taking advantage of the higher arc signal 

sensitivity of high speed oscillation, some authors explored different ways of 

performing arc oscillation. Kodama et al [105] developed a torch where the 

contact tube is fixed to a pivot performing a pendular weave by means of two 

solenoid coils and permanent magnets, with oscillation frequencies of up to 40 

Hz. Another system using electromagnetic arc deflection oscillated the arc at a 

frequency of 30 Hz [106]. A patent from 1978 was found [107] with a device that 

converts through a cam a rotary movement from a motor into an oscillating 

motion connected to a GMAW torch. With the use of gears, very high oscillation 

frequencies can be achieved with conventional DC motors. 

 

2.3 Summary 

 

This literature review has attempted to show the state-of-the-art of actual 

through-the-arc sensing methods and techniques to perform welding 

automation. The application of arc sensors have been mostly developed for 

open groove and fillet welds using mainly CV and CC GMAW processes, 

although some reports were also found on the use of GMAW-P for the open 

groove. 

 

The application of the narrow groove technique on thick-walled components has 

shown visible savings in time and costs of production, and it is being widely 

applied. Some methods were reviewed and most literature was found on the 

application of the high speed rotating arc using CV GMAW, with through-the-arc 

sensing seam tracking technology. The high speed rotating arc takes advantage 

of the higher arc signal sensitivity for control found in GMAW due to the torch 

high speed oscillation/rotation. No study was found on arc signal sensitivity for 

GMAW-P though. 
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High speed oscillation is a technique also reported as producing improved 

characteristics of the weld bead for GMAW. For narrow groove GMAW-P 

pipeline applications, the influence of this technique in fusion profile and bead 

shape is still unknown, as well as the optimum value of torch oscillation width 

for a particular groove width. Arc signal signatures in both cases are also 

important. 

 

A clear gap was found in the literature on the application of arc sensing for 

narrow groove GMAW-P, for single and tandem welding procedures, in order to 

achieve torch position control for pipeline welding applications. The aim of this 

research was to develop a greater understanding of the factors influencing 

GMAW-P arc signals when welding inside a pipeline narrow groove, and to 

develop a set of algorithms that could guide a single wire or tandem welding 

oscillating torch along the groove path in order to achieve consistent and defect 

free welding.  
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3  Experimental methods 
 

This project was aimed at evaluating the use of GMAW-P signals to achieve 

torch positioning control in narrow groove pipe welding. The welding trials were 

divided into three different sets, using different equipment for part or all of each 

set. This was mainly due to the specificity of each experiment that was 

performed. The first set of trials served to develop the basic concepts that were 

used subsequently for the rest of this project. The second set of trials was 

performed to methodically test the developed control software described in 

chapter 4. The third set of trials was performed to better evaluate arc signals for 

groove width detection. 

 

These three experimentation sets will be referred to in this thesis as 

Experimentation phase 1, 2 and 3. They all use of a power supply, shielding 

gas, welding torch and a motion system. For signal acquisition a digital 

oscilloscope was used and in some trials the arc was filmed using a high speed 

video camera. For experimentation phase 3 the welds were also examined 

using standard metallographic procedures. 

 

3.1 Experimentation phase 1 – Initial trials 

 

The initial trials were aimed at analysing and evaluating through-the-arc sensing 

for torch position control in narrow groove pipe welding using GMAW-P. The 

results of this experimentation were used to achieve torch height and cross-

seam position control based on the use of arc signals. A set of experiments was 

conducted where combinations of torch oscillation frequency and width were 

varied to produce different arc signal behaviours for subsequent analysis. 
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3.1.1 Equipment, materials and experimental procedure 

 

The equipment used for the conducted trials was based on a commercial 

pipeline welding system, typical of the ones used in the field. It comprised a 

basic pipe welding setup made of a power supply, wire feeder, shielding gas 

supply, and a welding head with a single wire torch. 

 

A Lincoln pulse power supply, Power Wave F355i, was used in constant current 

pulse non-adaptive mode. This power supply is designed for direct digital 

operation in robotic and automated systems, and has no external controls. 

Control signals are provided via Ethernet. Commands, status and pulse wave 

shapes are transmitted from a computer, using Lincoln “Wave Designer Pro” 

software [108]. This enables the user to graphically define all the parameters 

needed for the shape of the pulse wave in the synergic curve appropriate to the 

desired wire feed speed (Figure 3.1). The wire feeder, Lincoln model Power 

Feed 10 Robotic, is connected to and controlled by the power supply.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Pulse wave shape generated by Lincoln Wave Designer Pro 
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The motion solution is from RMS Canada; model RMS MOW II (Figure 3.2). It 

comprises a welding head with an oscillator, a control device and a pendant, all 

connected via a CAN network at 512kbps baud rate. The oscillator creates a 

pendular movement on the torch, however since the pivot is displaced 150 mm 

from the end of the contact tip, and the weave width is less than 10 mm, the 

oscillation can be considered linear.  

 

A series of initial trials were designed to evaluate the sensitivity of the system to 

variations in torch / wire position, and to provide the basis for algorithm 

development for control of cross seam position and CTWD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - RMS MOW II single torch pipeline welding head on pipe 
 

Two lengths of 0.91 m diameter by 19 mm wall thickness API5L:X80 steel pipe 

joined by a root pass were used in the welding trials. The weld preparation used 

for the experimental trials (Figure 3.3) was typical of pipeline tie-in welds, with a 

15° bevel, rather than 5° bevel often used on narrow groove mainline welds. All 

welds were performed to simulate the first fill pass in a pipe joint, and the pipe 

was rotated slightly between welds, so that all welds were in the flat position. 
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Figure 3.3 - Weld preparation profile for experimentation phase 1 
 

The base welding conditions were as follows: 

Welding process GMAW-P 
Peak current 350 A 

Peak time  1.7 ms (including ramp up time) 
Background Current 50 A 

Background time 1.8 ms 
Frequency 181 Hz 

Wire feed speed 7.6 m/min 
Wire Carbofil NiMo1, 1mm diameter 

CTWD 13.5 mm 
Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 
Travel speed 0.38 m/min 

 

Signal acquisition was performed with a Yokogawa Oscilloscope ScopeCorder 

DL750 with 1:10 ratio voltage probes and LEM PR1030 Hall-effect current 

probes. Sample rate was 10,000 samples per second (10 KHz) with 400Hz 

digital filter to avoid signal aliasing. 

 

Using the system described, the following series of trials were conducted to 

examine the effects of torch oscillation rate and oscillation width as described in 

Table 3.1. 
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Table 3.1 – Experimentation phase 1 trials definition 

Trial Oscillation Frequency (Hz) Oscillation Width (mm) 

A1 3.33 5 

A2 3.33 6 

A3 3.33 4 

A4 5.0 5 

A5 1.67 5 

A6 0 0 

 

3.2 Experimentation Phase 2 – Control algorithms test bed 

 

These trials served as a test bed for the developed CTWD and cross seam 

position control software described in section 4.1. Known band misalignments 

with the groove centre were introduced to enforce torch path corrections by the 

welding head through the control algorithms. These positional corrections along 

with arc signals were recorded for subsequent analysis and are reported in 

section 5.2.  

 

Experimentation phase 1 and control algorithms development trials used single 

wire GMAW-P Lincoln Power Wave F355i power supply. The data recorded 

from these trials was for development purposes only. For the purpose of testing 

control algorithms reliability in correction speed and accuracy, and also to test 

robustness and adaptability of the algorithms to a new situation, the welding 

equipment and procedure were changed. For phase 2, tandem welding trials 

were conducted with two GMAW-P synchronised Lincoln Power Wave F455M 

power supplies, using different pulse parameters from phase 1. The changing of 

the pulse parameters was made for two reasons: 

a) to test the robustness of the algorithms on a new situation 

b) to use a newly developed welding procedure for pipeline welding 

Welding head, pipe configuration and material were maintained from previous 

trials. 
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3.2.1 Equipment, materials and experimental procedure 

 

Two lengths of 0.91 m diameter by 19 mm wall thickness API5L:X80 steel pipe 

joined by a root pass were used in the welding trials. The weld preparation used 

for the experimental trials (Figure 3.4) was the 5° bevel often used on narrow 

groove mainline welds. Figure 3.5 shows the welding station setup for the 

experiment. 

 

 

 

 

 

 

 

Figure 3.4 – Narrow groove used for trials B1 to B4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 – Welding station for experiments B1 to B4 with two GMAW-P power 

supplies, pipe and RMS MOW II welding head on the pipe band 
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The power supplies used were the Lincoln Power Wave 455M. The tandem 

GMAW pulse shapes are shown in Figure 3.6. The oscillation width values 

presented were obtained and calibrated to a CTWD of 13.5 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Lead and trail pulses for single and tandem wire trials 

 

The base welding conditions for both wires were as follows: 

Welding process GMAW-P 
Peak current 450 A 

Peak time 0.9 ms (including ramp up time) 
Background Current 50 A 

Background time 4.7 ms 
Frequency 178 Hz 

Wire feed speed 7.6 m/min 
Wire Carbofil NiMo1, 1mm diameter 

Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 

Workpiece base metal X100 HSLA Steel 
CTWD 13.5 mm 

Torch oscillation frequency 8.33 Hz 
Travel speed 0.76 m/min 
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Table 3.2 describes the setup of each trial. Horizontal and vertical band to 

groove centre misalignments are described in the table as horizontal and 

vertical deviations. The torch has to move to the right to follow the groove 

centre, following the torch direction. The “Set Voltage” parameter is needed for 

the control algorithms and it is explained in section 4.1. The welding length was 

120 mm. 

 

Table 3.2 – Experimentation phase 2 trials definition – Narrow groove welding 

Trial Horizontal 
deviation (mm) 

Vertical 
deviation (mm) 

Oscillation 
Width (mm) 

Set Voltage 
(V) 

B1 4.8 0.5 2.5 22 

B2 4.8 0.5 2.5 20 

B3 4.8 2.8 2.5 22 

B4 4.8 2.8 6 22 

 

For the analysis of trials B1 to B4, it was necessary to obtain the relationship 

between averaged arc voltage and CTWD. Table 3.3 shows the trials used to 

generate this data in bead on pipe trials. 

 

Table 3.3 – Experimentation phase 2 - Voltage / CTWD – Bead on pipe trials 

Trial CTWD (mm) 

B5 11.5 
B6 12.5 
B7 13.5 
B8 14.5 

 

Signal acquisition was performed with a Yokogawa Oscilloscope ScopeCorder 

DL750 with 1:10 ratio voltage probe and LEM PR1030 hall-effect current probe. 

Sample rate was 10 KHz with 4 KHz digital. Also, torch positional messages 

sent by the control algorithms were logged for subsequent analysis of torch 

position corrections. Section 4.1 describes the messaging system in detail. 
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3.3 Experimentation Phase 3 – Torch oscillation width and 

frequency 

 

Torch positional control using through-the-arc sensing for the narrow groove 

with GMAW-P was at this point accomplished for torch height and cross-seam 

control. Two important factors were still to be analysed: the influence of torch 

oscillation width and torch oscillation frequency on arc signals sensitivity. This 

third experimentation phase was devised to study arc signal behaviour in order 

to understand the factors that contribute to signal variation in time with different 

torch oscillation widths and frequencies. This phase of experimentation was 

needed to generate required information for control of weave width.  

 

3.3.1 Equipment and materials 

 

This experimentation phase required the development of a new welding station 

with a fixed torch and a moving table (Figure 3.7). This experimentation 

required a different approach not possible with a moving welding head. A 

moving table enables more accurate control over the motion system and the 

use of a high speed camera positioned in front of the table. High speed images 

of the arc and the space around allow the evaluation of metal transfer and arc 

behaviour (size, shape and movement) in relation to the distances between the 

arc and sidewalls.  

 

The welding equipment setup was the same as used in experiments A1 to A6 

for gas, wire, power supply and pulse parameters. Signal acquisition was also 

performed by the same digital oscilloscope and voltage/current probes. The 

main difference was in the motion system with the introduction of the moving 

table and the newly developed high speed oscillation torch. In terms of data 

acquisition, the differences from previous experimentation included the use of a 

high speed camera and a Linear Variable Differential Transformer (LVDT) 
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sensor attached to the contact tip extension tube. This sensor returns a voltage 

signal indicating the contact tip physical oscillation position. This signal was 

acquired by the digital oscilloscope synchronised with arc signals. In this way, 

arc signals can be referenced with the torch weaving position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – Welding station for experimentation phase 3 

 

3.3.1.1 Moving table and motion system 

The moving table has a flat base of 530 mm x 300 mm x 20 mm made of steel 

that is mounted on two parallel stainless steel shafts of 1.2 m x Ø 27 mm, by 

means of roller bearings. A third parallel and central shaft (worm) with 800 mm 

x Ø 21 mm has a thread of 5 mm spacing and crosses the flat base underneath 

through a worm bearing hole (right view of Figure 3.8). The rotational movement 

of this shaft moves the flat base forwards and backwards driven by a brushed 

DC motor. The rotation speed of the motor is monitored by an encoder. The 

motor power and encoder signals are controlled by a Trio ® Motion Controller 

device (MC216 with P300 axis expander). This device also controls the torch 
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motors as described in the section 3.2.3. The table speed was calibrated and 

can achieve speeds from 0 to 1.5 m/min for a maximum length of 345 mm. 

 

 

 

 

 

 

 

 

Figure 3.8 – Moving table top view (left) and bottom view (right) 

 

An insulated jig attached to the table holds the plates to be welded (left view of 

Figure 3.8). This jig has three curved support beams made of steel with a 

central slot. The curved support beams have the same radius of curvature as a 

1.32 m (52”) diameter line pipe. The plates used for the experiments were 

extracted from 1.32 m diameter line pipe with 23 mm wall thickness. Four Ø 12 

mm clamping bolts positioned in each corner hold the plates in position. Two 

bevelled plates form a groove. The plates are bevelled similarly to the line pipe 

bevels (5° bevel angle) to perform the same type of groove when fixed to the 

rig. Maximum dimensions for a single plate are 270 mm length, 290 mm width 

and 50 mm thickness. 

 

Attached to the motion controller is a Trio membrane keypad (P503) pendant 

with 37 buttons and 4 x 20 character display screen. The software developed to 

control the motion controller is in BASIC language specific for Trio devices and 

it is listed in Appendix F. The software allows plate travel speed and the number 

of runs per length to be adjusted. This means that one plate length can provide 

several short test welds. The majority of the experiments used 5 runs of 50 mm 

on a 250 mm length plate.  
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3.3.1.2 High speed oscillation torch 

The idea to develop a new torch arose from the limitations on actual torch 

maximum oscillation speed of pipe welding head oscillators. No commercial 

system was found that could achieve the intended frequencies. Electric motors 

are typically limited in constantly reversing their rotational direction to 

frequencies usually lower than 10 Hz. Oscillation widths may also change with 

the increase of oscillation frequency due to the motor inertia on reverting 

direction. 

 

To counteract this problem, engineers often use the cam principle to convert a 

rotational movement into a linear movement. Therefore, any oscillation 

frequency can be achieved just depending on the motor rotation speed limit 

(revolutions per minute) in one direction only. The disadvantage of this principle 

is the fixed oscillation width. The principle of a moving pivot on a lever 

oscillation was used to overcome this limitation. This principle is based on 

having the contact tip attached to a tube pivoted by a self-aligning ball bearing. 

In one side of the bearing resides the contact-tip and in the other, another 

bearing moves up and down the tube. This second bearing is then attached to a 

slider that is attached to the cam. The cam is rotated only in one direction by 

means of a motor. The cam diameter creates a fixed oscillation width and the 

up/down moving bearing changes that width proportionally. Figure 3.9 presents 

a diagram explaining the principle. 

 

A 3,500 rpm motor produces a 58.3 Hz oscillation frequency. Depending on the 

motor torque and the force exerted by the cam system, gearing up the motor 

can produce higher oscillation frequencies. In this work, the motor used 

produced a maximum stable frequency of 25Hz and this defined the maximum 

working oscillation frequency for this torch. 
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Where  

wΔ  oscillation width of the wire tip 

xΔ  oscillation at the moving bearing 

z  length from the wire tip to the centre of the fixed bearing 

y  length from the centre of both bearings 

Figure 3.9 - High speed torch principle 

 

An identical principle applied to a high-speed weaving welding torch was found 

in a patent from S. Oshima in 1978 [107]. A picture of the developed torch for 

this project is shown in Figure 3.10, based on the principles shown in Figure 

3.9. The second motor that moves the upper part of the torch up and down to 

change the oscillation width is not visible in the image. Both motors and 

encoders are controlled by the Trio Motion Controller along with the moving 

table.  
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Figure 3.10 – Developed high speed torch 

 

Another aspect of this torch when compared with conventional GMAW torches 

is how the oscillation movement is produced. For instance, the Cranfield 

tandem GMAW torch weights more than 2Kgs excluding cables. To accurately 

produce an oscillatory movement with a torch this size and weight, the oscillator 

has to exert a massive force making the whole welding head shake when high 

speed oscillations are demanded. In the case of the developed torch, the gas 

nozzle is steady and only the contact tip moves across the seam. This can also 

produce better gas flow if the nozzle is adapted to the circumstance. 

 

3.3.1.3 High-speed video camera 

The major advantage of the moving table setup is the ability to use a high-

speed camera for arc image filming. Due to the fixed torch and moving 

workpiece, the camera can always have the same distance to the arc and is 

always in focus. The camera used for this experimentation was a Vision 
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Research Phantom ® V4.1 capable of acquiring 32,000 frames per second 

(fps). Although for image acquisition the unit is usually expressed in “frames per 

second”, it can also be expressed in frequency units - Hertz (1 fps = 1 Hz). To 

simplify the reading, frequency terminology will be used. 

 

The camera sensor has a maximum resolution of 512 x 512 pixels achieved 

with 1 KHz capture. Frame rate and image size are inversely related due to the 

memory limit of the camera. For a frame rate of 5 KHz, the maximum image 

size is 256 x 128 pixels and for 10 KHz is 128 x 128 pixels. The high speed 

camera and digital oscilloscope were synchronised and used the same 

acquisition rate of 5 KHz. Some trials were made at 10 KHz but due to the 

camera maximum image size, it did not cover all of the intended image width. 

Camera and oscilloscope were triggered by the same switch connected to the 

trigger pins of both devices and no lag was found on the data captured. 

 

A 400 mm focal length lens was used together with a 2 X teleconverter lens. 

The whole equipment was mounted on a rail with micro-adjustable stands, 

facilitating the focus and zooming adjustments (Figure 3.11). High magnification 

and a long focusing distance enable the camera to be used away from the 

welding environment while capturing the whole arc image. A neutral density 

filter was positioned in front of the lens to reduce the amount of arc light. This 

worked in conjunction with the lens diaphragm adjustment. 

 

 

 

 

 

 

 

 

 

Figure 3.11 – High speed video camera, lenses and filter on the rail 
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3.3.2 Experimental procedure 

 

The experiments were divided into three sets. The first set evaluated arc signal 

sensitivity with oscillation frequency on a 45° inclined plate, for CV GMAW and 

GMAW-P comparison. The second set evaluated arc signals and weld metal 

penetration on a single sidewall with a 5° preparation angle to simulate only one 

bevelled side of a pipe. Torch sidewall proximity, torch oscillation frequency and 

CTWD were the varying variables. The third set was identical to the previous 

one but with the inclusion of a second 5° opposite sidewall to form a groove. 

There was no CTWD variation in this trial set. Detailed descriptions of these 

experiments can be found in Appendix H. 

 

3.3.2.1 Arc signal sensitivity comparison between GMAW and GMAW-P 

For this set of experiments, a similar approach to Pan’s [19] experimentation for 

GMAW with the high speed rotating torch was taken. The workpiece was tilted 

at 45º thus creating a ramp where the arc length is forced to vary between short 

to long to short in each oscillation excursion (Figure 3.12). By using different 

oscillation frequencies in the range found in previous studies, the same type of 

dynamic arc behaviour study can be made. This test was performed with CV 

GMAW and GMAW-P in order to compare arc signals behaviour in both cases.  

 

 

 
Where 

wΔ   oscillation width 

 1aL   long arc length 

 2aL   short arc length 

 

Figure 3.12 – Experiment setup with a 45º ramp for CV GMAW and GMAW-P 
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The base welding conditions for GMAW-P process were as follows: 

Peak current 350 A 
Peak time  1.7 ms (including ramp up time) 

Background Current 50 A 
Background time 1.8 ms 

Frequency 181 Hz 
Wire feed speed 7.6 m/min 

Wire Carbofil NiMo1, 1mm diameter 
Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 
Travel speed 0.5 m/min 

Oscillation width 2.5 mm @ 13 mm CTWD 
Workpiece base metal Carbon steel 

Workpiece thickness 6 mm 
 

For CV GMAW, the welding conditions were: 

Set voltage 26.5 V 
Wire feed speed 7.5 m/min 

Wire Carbofil NiMo1, 1mm diameter 
Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 
Travel speed 0.5 m/min 

Oscillation width 3.7 mm @ 13 mm CTWD 
Workpiece base metal Carbon steel 

Workpiece thickness 6 mm 
 

Table 3.4 describes the values of the different trials in terms of oscillation 

frequency as a function of short CTWD (short arc) and long CTWD (long arc). 

Torch weaving on a 45º slope creates a short arc when the maximum excursion 

of the torch oscillation has a smaller CTWD and a long arc in the opposite 

maximum excursion. 
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Table 3.4 – Arc sensitivity trials definition 

Trial Welding 
process 

Oscillation 
Frequency (Hz) 

short CTWD 
(mm) 

Long CTWD 
(mm) 

C1.1 GMAW-P 5 13.2 15.7 

C1.2 GMAW-P 10 13.2 15.7 

C1.3 GMAW-P 15 13.2 15.7 

C1.4 GMAW-P 20 13.2 15.7 

C1.5 GMAW-P 25 13.2 15.7 

C2.1 GMAW-P 5 15.4 17.6 

C2.2 GMAW-P 10 15.4 17.6 

C2.3 GMAW-P 15 15.4 17.6 

C2.4 GMAW-P 20 15.4 17.6 

C2.5 GMAW-P 25 15.4 17.6 

C3.1 GMAW-P 1 13.2 15.7 

C3.2 GMAW-P 3 13.2 15.7 

C3.3 GMAW-P 5 13.2 15.7 

C3.4 GMAW-P 7 13.2 15.7 

C3.5 GMAW-P 9 13.2 15.7 

C4.1 CV GMAW 5 12.4 14.7 

C4.2 CV GMAW 15 12.4 14.7 

C4.3 CV GMAW 25 12.4 14.7 

C5.1 CV GMAW 3 12.9 15.3 

C5.2 CV GMAW 6 12.9 15.3 

C5.3 CV GMAW 9 12.9 15.3 

C5.4 CV GMAW 12 12.9 15.3 

C5.5 CV GMAW 15 12.9 15.3 

 

3.3.2.2 Single sidewall trials with 5° preparation angle 

This set of experiments evaluated arc behaviour for arc signals sensitivity 

analysis and weld metal penetration on a single sidewall with 5° preparation 

angle, using GMAW-P (Figure 3.13). Torch proximity to the sidewall, torch 
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oscillation frequency and CTWD were varied to study their influence on arc 

signals variation and on both bottom and lateral sidewall weld metal 

penetration. Potential welding defects were also analysed by metallographic 

analysis of weld profile. This test establishes the relationship between arc 

signals and torch sidewall proximity, important in achieving torch oscillation 

width control.  

 

To complement this study, trials were also made to determine the influence of 

CTWD with a constant torch oscillation frequency and sidewall proximity.  

 

 
 

 

 

 

 

 

 

 

 

 

 
Where 

pΔ    wire edge distance to the sidewall corner 

Figure 3.13 – Single sidewall proximity experimentation setup and wire 

proximity definition 

 

The blue lines of Figure 3.13 represent the wire edge and the red lines the 

corner formed by the sidewall and the bottom workpiece meaning the zero 

position. The red lines are perpendicular with the bottom workpiece and form 5º 

with the sidewall inclination. Wire proximity from the sidewall (Δp) is the distance 

between the red line and the blue line as shown in Figure 3.13.  
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The base welding conditions were as follows: 

Welding process GMAW-P 
Peak current 350 A 

Peak time  1.7 ms (including ramp up time) 
Background Current 50 A 

Background time 1.8 ms 
Frequency 181 Hz 

Wire feed speed 7.6 m/min 
Wire Carbofil NiMo1, 1mm diameter 

Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 
Travel speed 0.5 m/min 

Oscillation width 2.5 mm @ 13 mm CTWD 
Bottom base metal Carbon steel 

Bottom thickness 12 mm 
Sidewall base metal Carbon steel 

Sidewall thickness 9 mm 
Sidewall height 23 mm 

 

Table 3.5 - Experimentation phase 3 – single sidewall proximity trials definition 

Trial Oscillation 
Frequency (Hz) 

Proximity 
(mm) 

CTWD 
(mm) 

D1.1 5 0 13.5 

D1.2 10 0 13.5 

D1.3 15 0 13.5 

D1.4 20 0 13.5 

D1.5 25 0 13.5 

D2.1 5 1 13.5 

D2.2 10 1 13.5 

D2.3 15 1 13.5 

D2.4 20 1 13.5 

D2.5 25 1 13.5 
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D3.1 5 -1 13.5 

D3.2 10 -1 13.5 

D3.3 15 -1 13.5 

D3.4 20 -1 13.5 

D3.5 25 -1 13.5 

D4.1 5 0 13 

D4.2 5 0 14 

D4.3 5 0 15 

D4.4 5 0 16 

D4.5 5 0 17 

 

3.3.2.3 Double sidewall (groove) trials with 5° preparation angle 

This set of experiments evaluated arc behaviour for arc signals sensitivity 

analysis and weld metal penetration on a double sidewall or groove with 5° 

preparation angle, using GMAW-P. Proximity was measured by the same 

process as shown on Figure 3.13 but for both sidewalls. Torch proximity to the 

sidewall and torch oscillation frequency were varied to study their influence on 

arc signal variation and on both bottom and lateral sidewall weld metal 

penetration. Potential welding defects were also analysed by metallographic 

analysis of weld profile. This test establishes the relationship between arc 

signals and torch sidewall proximity inside the groove for torch oscillation width 

control.  

 

In single sidewall trials, the use of two parts (bottom workpiece and sidewall) as 

displayed in Figure 3.13 did not allow the detection of potential lack-of-sidewall 

fusion defects in the corner formed by the parts. Because of that, the groove for 

this set of trials was formed as shown in Figure 3.14. Similar measurements 

were made in this set of trials as for the single sidewall trials. The effect of 

groove width changes on arc signals was then assessed.  
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Where 

bΔ    groove bottom width 

Figure 3.14 – Double sidewall proximity experimentation 

 

The base welding conditions were as follows: 

Welding process GMAW-P 
Peak current 350 A 

Peak time  1.7 ms (including ramp up time) 
Background Current 50 A 

Background time 1.8 ms 
Frequency 181 Hz 

Wire feed speed 7.6 m/min 
Wire Carbofil NiMo1, 1mm diameter 

Shielding gas BOC Tri-mix (5%He, 12.5%CO2, 82.5% Ar) 
Gas flow rate 20 l/min 
Travel speed 0.5 m/min 

Oscillation width 2.5 mm @ 13 mm CTWD 
Workpiece base metal X100 HSLA Steel 
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Table 3.6 - Experimentation phase 3 –groove proximity trials definition with an 

oscillation width of 2.5 mm @ 13.5 CTWD 

 
 

Trial Oscillation 
Frequency 

(Hz) 

Proximity 
(mm) 

Groove 
bottom 
width 
(mm) 

Comments 

E1.1 5 -0.5 2.5 Off-centre 0.3 mm 

E1.2 10 -0.5 2.5 Off-centre 0.3 mm 

E1.3 15 -0.5 2.5 Off-centre 0.3 mm 

E1.4 20 -0.5 2.5 Off-centre 0.3 mm 

E1.5 25 -0.5 2.5 Off-centre 0.3 mm 

E2.1 5 0 3.5 Off-centre 0.6 mm 

E2.2 10 0 3.5 Off-centre 0.6 mm 

E2.3 15 0 3.5 Off-centre 0.6 mm 

E2.4 20 0 3.5 Off-centre 0.6 mm 

E2.5 25 0 3.5 Off-centre 0.6 mm 

E3.1 5 +0.5 4.5  

E3.2 10 +0.5 4.5  

E3.3 15 +0.5 4.5  

E3.4 20 +0.5 4.5  

E3.5 25 +0.5 4.5  

E4.1 5 -0.5 2.5  

E4.2 10 -0.5 2.5  

E4.3 15 -0.5 2.5  

E4.4 20 -0.5 2.5  

E4.5 25 -0.5 2.5  

E5.1 5 0 3.5  

E5.2 10 0 3.5  

E5.3 15 0 3.5  

E5.4 20 0 3.5  

E5.5 25 0 3.5  
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Trials E6 to E8 were made with an oscillation width of 3.7 mm for a CTWD of 

13.5 mm. The other parameters were kept the same. 

 

Table 3.7 - Experimentation phase 3 –groove proximity trials definition with an 

oscillation width of 3.7 mm @ 13.5 CTWD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial Oscillation 
Frequency 

(Hz) 

Proximity 
(mm) 

Groove 
bottom 
width 
(mm) 

Comments 

E6.1 5 +0.15 5  

E6.2 10 +0.15 5  

E6.3 15 +0.15 5  

E6.4 20 +0.15 5  

E6.5 25 +0.15 5  

E7.1 5 +0.65 6  

E7.2 10 +0.65 6  

E7.3 15 +0.65 6  

E7.4 20 +0.65 6  

E7.5 25 +0.65 6  

E8.1 5 +0.55 5.8 Off-centre 0.5 mm 

E8.2 10 +0.55 5.8 Off-centre 0.5 mm 

E8.3 15 +0.55 5.8 Off-centre 0.5 mm 

E8.4 20 +0.55 5.8 Off-centre 0.5 mm 

E8.5 25 +0.55 5.8 Off-centre 0.5 mm 
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4 Software development for analysis and control 
 

Throughout this project, computer programs had to be developed that could 

fulfil the different requirements of the project. Some of these programs were 

developed to help with the analysis of the data generated by experimentation 

and some to achieve the proposed control. This chapter is divided in two parts: 

the first part is dedicated to the monitoring and control software and respective 

algorithms and the second part to the analysis software. 

 

4.1 Monitor and control software algorithms 

 

The development of algorithms for control described here was based on the 

analysis of the first phase of experimentation. The aim was to achieve control of 

two axes (X and Y) of the welding head as shown in Figure 4.1. The axis W 

control (oscillation width) is discussed on chapter 6 and was not implemented in 

this phase.  

 

 

 

 

 

 

 

 
where 

xΔ   torch cross seam position 

zΔ   torch height position 

wΔ   oscillation width 

 

Figure 4.1 – Schematic representation of axes on a conventional pipe welding 

head 
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The welding head used for the control algorithms development was the same 

used for experiments A1 to A6 – RMS MOW II. This welding head is not 

autonomous and needs the control of an external device, using a pendant. The 

communication between these two devices is by Controller Area Network (CAN) 

from Bosch ®. CAN was created by Bosch ® for the automotive industry. This 

network is known for its simplicity of implementation and reliability being tested 

and used in the automotive industry around the world. 

 

An implementation of CAN was used by the commercial company (RMS) that 

supplied the pipe welding head and controller used in this work. A CAN hub was 

created where all devices communicate via CAN, including the welding head, 

the pendant operated by the welder, the power supply controller and the arc 

signal mean values measurement device. The latter was named the VISENSE 

device by RMS (V for voltage, I for current, SENSE for through-the-arc sensing) 

and this name is used throughout this work. A picture of the VISENSE device is 

shown in Figure 4.2. It is based on a Digital Signal Processor (DSP) from 

Motorola ® (DSP56F803) with the complete circuitry for arc signal acquisition, 

processing and CAN messaging, ideal for control algorithms implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 - RMS ® VISENSE device for arc signals acquisition, processing 

and CAN messaging 
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All the CAN enabled devices in the RMS network implementation receive and 

send CAN messages to the network. The majority of these messages start from 

the pendant as commands and the network devices reply with feedback 

messages of their specific tasks. A standard self broadcast message is each 

device’s ID. Any message in this type of network is listened to by all and 

multiple devices can utilise it. Pendant messages to the welding head are 

moving commands for the head to perform in any of its axes. The same type of 

message can be sent by any device in the network. This feature was exploited 

in order to send torch position corrective messages simulating pendant 

messages, using the VISENSE device. For this, the VISENSE device was 

completely reprogrammed to accomplish the new tasks of torch guidance and 

control by through-the-arc sensing, as detailed in section 4.1.1. RMS supplied 

all the information necessary about their CAN messaging implementation and 

the VISENSE device programmable details. 

 

To understand and control the whole process, two software programs for two 

platforms were developed. The main algorithms were integrated in the software 

developed for the VISENSE device and a second Microsoft Windows ® for PC 

software runs on a laptop and monitors the message flow on the CAN for 

debugging purposes. The VISENSE software was developed with Metrowerks 

CodeWarrior Integrated Development Environment (IDE) version 4.2.6.922 from 

Freescale Semiconductor Company ® [109] for Motorola ® DSP568xx family 

and the PC software was developed with Microsoft ® Visual Basic 6.0 IDE [110] 

for Microsoft Windows PC platforms. 

 

The program for the VISENSE device was uploaded through a special 

developed onboard JTAG connection to the parallel port of the PC where 

debugging was also possible. This program was developed mainly in assembly 

language to increase processing speed with some parts of the code in C 

language [111, 112]. The DSP56803 has a 16 bit engine with dual Harvard 

architecture and processes 40 million instructions per second (MIPS) at 80 MHz 

core frequency. On the PC side a laptop computer (Sony Vaio) was used with 
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an Intel Pentium III at 1GHz with 384MB of RAM and 30GB of hard disk storage 

space. To communicate with the CAN, a Vector CANCardX PCMCIA board 

from Vector Informatik GmbH ® was used [113] and a special connection to the 

RMS CAN had to be developed. The RMS system operates the CAN at 512 

kbps speed [114]. 

 

4.1.1 DSP program functional description 

 

The software developed for the DSP was started from scratch. An event driven 

processing environment was created by the use of different hardware generated 

interrupts like the CAN messaging, the Analog to Digital Converter (ADC) and 

from different Timers. Since no operating system is present, everything had to 

be developed to be controlled, including hardware drivers, events scheduling, 

messaging system, etc. The use of interrupts in this case is very important to 

establish priorities and to manage the events in an orderly fashion. All system 

errors, stalls and crashes result only from the developed software. A very 

powerful and controllable framework essential for automation was created in 

this way. 

 

In order to achieve a consistent weld quality, it is important to sustain a good 

arc length control [115-117]. In GMAW-P, the control of arc length (arc voltage) 

can be achieved by changing arc current pulse parameters or by varying CTWD 

accordingly. Pulse parameter change may create procedure problems and 

inconsistent results. Varying or adjusting CTWD values until the arc voltage is 

restored is the right approach then, due to the steady current characteristic 

provided by the experimented power supply. In most cases, it was a CTWD 

variation that created initially the arc length variation. This is the type of 

correction usually made by the welder when guiding the torch. The strategy 

followed in this work was to replicate the welder’s behaviour by moving the 

torch up and down to correct CTWD, in order to attain the correct voltage value. 
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From the results and discussion of experimentation phase 1, it was concluded 

that peak voltages are more consistent than background or average voltages 

and therefore more appropriate for control. In the case of CTWD control, peak 

voltages in the groove centre should be measured and their value must be 

maintained as constant as possible in order to provide a good weld quality. This 

implies previous knowledge of an optimum peak voltage to be used and that is 

only possible by methodical experimentation. In other words, new welding 

procedures have to be created to include the new “optimum peak voltage” 

value. Since it is not available in the present and the costs of redoing the 

existing welding procedures are very high, it was decided that CTWD control 

should follow the average voltage instead. This value is already defined in 

actual welding procedures. This decision may compromise algorithm control 

efficiency and reduced control accuracy but it does not invalidate the results as 

it is shown in results (section 5.2.1). 

 

To use the welding procedure average voltage, some user input must exist to 

communicate with the VISENSE device. One existing RMS pendant feature is 

the average voltage value definition for CV GMAW power supplies. When this 

value is set, a CAN message is sent to the power supply controller to adjust the 

power supply voltage level. This CAN message is also captured by the 

VISENSE device. For a GMAW-P welding procedure, this message is not used 

by the power supply controller and can be used by the control algorithms inside 

the VISENSE device as the welding procedure average voltage reference. 

 

The welding process starts when the welder presses the Arc Start button on the 

pendant sending a CAN message of ARC START. The VISENSE device 

captures the message and starts the internal process of activating the timers 

that will pace the whole process. The arc voltage is acquired at 10 KHz and 

averaged as a moving average algorithm. Every 0.1 s the averaged voltage is 

compared to the referenced voltage. If the averaged voltage is higher than the 

reference voltage, the CTWD value has to decrease and vice-versa. A 

corrective CAN message is sent for UP/DOWN torch correction with a 
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proportional value resultant from the calculated difference divided by a tuning 

coefficient (PID controller). 

 

As an example of this control system, the welder defines 20 V as the intended 

arc voltage to be sustained and adjusts a certain CTWD. When the arc goes on, 

the system calculates the average arc voltage and if that value is only 17 V, the 

device starts sending the torch UP commands every 0.1 ms of a calculated 

amount from the proportional coefficient value. This coefficient should be tuned 

according to the motion system in use. The torch goes up until the arc average 

voltage and arc reference voltage are even. The same occurs in the opposite 

direction. Figure 4.3 shows the program block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 - Block diagram of the initial VISENSE CTWD program version. 

 

The initial software package was sent to RMS Canada for field tests and used 

successfully by them to control torch height. Seam tracking was then the 

second phase to be developed. For this next step, changes in the RMS welding 

head had to be implemented. It was important to know the torch position while 

oscillating. These changes were made by RMS and new firmware was 
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uploaded into the welding head. The new welding head firmware sends a CAN 

message every time the torch reaches one of the three positions: 

• Maximum Left Excursion 

• Centre of Excursion 

• Maximum Right Excursion 

 

This three positional messages technique is independent of oscillation width 

and can be used in any welding process and procedure. The message is 

intercepted by the VISENSE device and is used to track the torch position 

enabling the second phase of the development. This phase created some 

structural changes to the initial system and the final result can be seen in Figure 

4.4. In summary, the control routine that calculates the correction to be made in 

the CTWD now also calculates the tracking error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Block diagram of the final VISENSE seam-tracking program 

version 
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When the process starts with the ARC START CAN message, the system 

behaves as a CTWD adjustment only. To activate the cross seam position 

control algorithm, at least one positional CAN message should be received. 

Then the program changes internal routines. It stops the timer that sends 

CTWD corrective CAN messages every 0.1 s and follows the new pace defined 

by the torch positional messages. This new virtual timer establishes CTWD 

corrections when the VISENSE device receives “Torch Centre” messages, and 

seam-tracking corrections when it receives “Torch at Left“ and “Torch at Right” 

messages. 

 

When the VISENSE device is powered up, the program starts with the ‘Main’ 

routine that only contains a call to the ‘Init’ routine and a main loop to keep the 

program running indefinitely. The ‘Init’ routine initialises all the global variables 

and hardware, namely: 

• reading and setting the device number by reading the onboard rotary 

switch 

• setting up the timers 

• setting up the CAN subsystem and message filters 

• setting up the ADC controller 

• enabling the Timer0 for the device number LED indicator 

 

The process then enters into an idle stage waiting for CAN messages. When a 

CAN message filter is triggered for a valid incoming message, this one is 

processed and the respective routine is called. The first message waiting to be 

processed is the arc voltage reference message (Figure 4.5). If this message is 

not sent, the guidance processes will never start. Having received this 

message, the system waits then for the ARC START message to start 

processing. On arrival, this message enables Timer1 and Timer2 that defines 

the pace of the whole process until an ARC STOP message is received. 

Although there was no positional message information so far, the system 

calculates the voltage average (Figure 4.6) and detects the voltage peaks 

(Figure 4.9).  
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where 

 avgV    arc average voltage 

 CANV    arc voltage reference 

 sumV    arc voltage accumulation variable 

 α    averaging window or smoothing factor - the number of samples to be used on 

average calculation 

Figure 4.5 – Flow chart of variable initialisation on arc reference voltage CAN 

message arrival 

 

The averaging window is adjusted by testing different system reactions to 

different values. A higher value reduces the sensitivity to short term variations 

slowing the corrections. A lower value makes the system more sensitive but 

also less stable. A value of 210 samples (1024) was used with good results. For 

a 10 KHz sampling rate, this averaging window is around 0.1 s. To increase the 

speed of calculations, normal arithmetic operations should be avoided because 

it takes too many processor cycles to execute. Instead, simple binary shifting 

operations can easily implement a division by 2 if it is a binary right shift or a 

multiplication by 2 is it is a binary left shift. In this case, the averaging window is 

a base 2 value to simplify the calculations. 

CAN interrupt 

message received 

CANV  

Initialise variable 

avg CANV V=  

Initialise variable 

*sum avgV Vα=  
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where 

 avgV    arc average voltage 

 sumV    arc voltage accumulation variable 

 sampledV    sampled arc voltage  

 α   averaging window or the number of samples to be used on average calculation 

 

Figure 4.6 – Flow chart of arc average voltage calculation when the arc is on 

and at a rate of 10 KHz 

 

From the results and discussion of the first phase of experimentation, peak 

voltages (voltage at pulse peak current) were found to be more consistent and 

Timer2 interrupt 
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Ask ADC for voltage and 

current samples 
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sum sum sampledV V V= +  
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reliable than background or averaged voltages, in GMAW-P. This was the 

fundamental principle which the control algorithm development was based 

upon. Peak voltages evolution follows a trend related to the torch position 

across the seam. Two voltage levels can be asserted in a complete oscillation 

cycle: a minimum peak voltage when the torch is in its maximum excursion and 

a maximum peak voltage when the torch is in the centre of oscillation. This fact 

is discussed later in chapter 6. 

 

For cross-seam control development, this fact can be used to detect off-centre 

torch position. By comparing both peak voltages from the maximum torch 

excursions in opposite directions, it is possible to ascertain if the torch is not in 

the groove centre. This voltage difference also shows the direction and the 

respective amount of torch misalignment. 

 

To process this control, two algorithms were developed. A first algorithm detects 

peak voltages from the acquired arc voltage signal and the second algorithm 

processes torch extreme positions CAN messages by comparing the measured 

peak voltages in both positions. The latter also processes the result of the 

comparison and sends a positional correction CAN message to the welding 

head. 

 

The first algorithm processes the continuous stream of data from the ADC by 

detecting the highest value of the stream only for values over a predefined 

threshold value. Being a pulsed signal, the threshold should be defined with a 

value around the average of the signal being acquired. Figure 4.7 shows an 

example of an arc current pulse with different thresholds. From the figure, and 

considering the threshold equal to the pulse average, when the stream of data 

values is higher the threshold (between t1 and t2), a valid pulse was found and 

the maximum value detected above the threshold is the pulse peak (imax). This 

is valid for both arc current and voltage pulses. When the stream of data values 

goes lower the threshold (after t2), a new pulse is in progress and the process is 

reset to a new peak finding. 
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Figure 4.7 – Example of different threshold values from a real arc current pulse  

 

The aim of the peak finding algorithm is to detect peak voltages, not necessarily 

through the voltage data stream. Some spurious peak voltages above threshold 

values may occur, as shown in Figure 4.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Initial 50 ms of trial A1 – voltage in blue and current in red 

 

To avoid this occurrence, peak currents were used instead to trigger the 

detection of peak voltages showing more consistence than peak voltages. 

When a peak current is detected, the voltage value in the same position of the 

extra voltage peak 
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data stream indicates the correspondent peak voltage. A threshold value of 

80% peak current was used in this work with good results. Figure 4.9 shows the 

peak finding algorithm flowchart. 

 
where 

 sampledI  sampled arc current 

 peakI  detected arc peak current 

 thresholdI  calculated arc current threshold  

 sampledV  sampled arc voltage  

 peakV  detected arc peak voltage 

Figure 4.9 – Peak finding algorithm flowchart 
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4.1.2 PC program functional description 

 

The VISENSE device is not provided with a graphical display and debugging is 

only possible through the code development interface. No process monitoring 

tool was available and so a Microsoft Visual Basic PC program was developed 

(Figure 4.10). This software uses the CAN subsystem to send and receive CAN 

messages, emulates the operator pendant and monitors corrective messages 

sent by the VISENSE device. The source code can be found in Appendix III.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 – Microsoft Visual Basic PC program main screen 

 

To best describe program functionality, the main screen was divided in blocks 

and described separately. The first block is the welding head operability called 

“Manual Positioning” in the main screen. When the program is used to simulate 

the operator’s pendant, all welding head motion functions are available (Figure 

4.11 - a). 
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Figure 4.11 – Monitoring software main screen blocks 

 

The user controls the entire torch and welding head positioning (Figure 4.11 - 

a), as well as welding procedure parameter definitions including oscillation 

speed and width (Figure 4.11 - b), welding head travel speed and direction 

(Figure 4.11 - c). No difference in performance was found between the real 

pendant and the developed one. The welding head responded promptly with 

both pendants and both can operate simultaneously. The software was also 

enabled to send sequentially torch positional messages, simulating the welding 

head (Figure 4.11 - d). The three positional messages can be sent isolated by 

(a) 

(b) (c) 

(d) (e) 

(f) 

(g) 
(h) 
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pressing the correspondent screen button or automatically. In this case the user 

can change the speed between messages to simulate different torch oscillation 

frequencies. This feature is very useful to test and debug the VISENSE device 

without the welding head. 

 

Also visible on the main screen and working as an output: 

• “Set Voltage (V)” button to define the reference voltage 

• “Cycle Start” button that starts the motion system (welding head travel 

and torch weaving) 

• “Arc Start” button initiates the arc process through a sub-program that 

communicates with the power supply via Ethernet using the Internet 

Protocol. 

• “Stop” button stops all processes and sub-process started by the user. 

 

As an input, the main screen shows a list of incoming CAN messages (Figure 

4.11 - f) and translates some of them to a logical visualisation such as: 

• the average voltage computed by the VISENSE and sent via CAN 

(Figure 4.11 - e) 

• the three positional messages sent by the welding head represented by 

three red squares (Figure 4.11 - g) that blink to green when the position 

has been reached 

• the CTWD correction messages sent by the VISENSE device and 

displayed as a red vertical bar which increases in length in the direction 

of the torch movement by the amount of correction required (Figure 4.11 

- h) 

• the seam-tracking correction messages sent by the VISENSE device and 

displayed as a red horizontal bar that increases in length in the direction 

of the path correction required (Figure 4.11 - h) 

 

Power supply settings can be adjusted by pressing the appropriate button to 

open the “Power Supply Settings” screen. The sub-program that controls the 

power supplies uses a Dynamic Link Library (DLL) developed by Tom Doyle (J. 
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Ray McDermott – USA) in agreement with Lincoln Electric® to operate with this 

type of networked power supply. The DLL simplifies the communication 

enabling the sending of basic commands to operate the power supplies. 

 

To better visualise the motion correction during the welding process, 2D and 3D 

graphs are updated during welding (Figure 4.12). The 2D graph shows the 

deviations of path and CTWD by red and green lines, respectively. The 3D 

graph simulates the pipes being welded. The green fixed line represents the 

virtual path of the torch if no corrections were applied. The red line is drawn 

during welding with the vertical and horizontal torch path corrections. The 

graphs are National Instruments [118] objects and in the case of the 3D graph, 

the user is able to perform online changes on the perspective and zooming for 

better visualisation of the corrections being made or already made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 – 2D and 3D graphs of the torch corrections during the welding 

process 
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As a message logging solution, two types of message files can be created. One 

type records every single incoming and outgoing message and the other type 

records just the average voltage received messages. An external program was 

developed to help in analysing these files and to identify possible errors or 

anomalies. 

 

4.2 Software for analysis 

 

Arc signals are complex due to their frequent variation in time. The use of 

digitised information enables rapid processing of this complex information to 

extract significant features by use of modern signal processing techniques. 

 

The most basic approach for signal analysis is the use of spreadsheets. Macro 

enabled spreadsheets such as Microsoft Excel are able to produce rapid results 

with low computational effort. Experiments A1-A6 were first analysed using this 

process and the code is shown in Appendix A. The algorithms used are 

explained together with the results in chapter 5.  

 

Unfortunately, this analysis is of limited capacity and for instance is not able to 

cope with simultaneous visualisation of high speed images synchronised with 

arc signals. Correlations between image frames and sampled signals can only 

be achieved by software enabled to work with both types of data. Some 

researchers have developed their own software to perform this type of analysis 

[119] but they are mostly proprietary systems, not easily adaptable to changing 

requirements. To overcome this situation, a computer program was developed 

for the specific requirements of this analysis with capabilities for future 

expansion.  
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4.2.1  WeldData – analysis software main screen 

 

A key part of this project was the detailed analysis of complex voltage and 

current waveforms, torch position data and arc images from the high speed 

camera. The objective of this software was to help in the extraction of key 

features of voltage and current waveforms in specific torch oscillation positions. 

It was also to provide synchronised visualisation of arc images from high speed 

video, at specific points in the waveform traces. Figure 4.13 shows the main 

screen of WeldData program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – WeldData main screen 

 

The software code is detailed in Appendix G. The main screen gathers all the 

important aspects and features of interest to be shown like signal waveform 
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viewing (the whole and the detail), basic file information and basic signal 

analysis (mean values). 

This software was developed following the Common User Access (CUA) 

guidelines [120]. There is a top menu bar with a file menu where the user 

selects the file to be opened and an analysis menu where the user can select 

different analyses to be performed. The main screen is arranged with: 

a) Top graph – Shows the complete sampled 

waveforms. The user selects which 

waveforms are to be seen from the select 

boxes on the right of the graph. Zooming and 

pan features are also available. The cursor 

(red vertical line) defines the position to be 

measured and can be dragged to a different 

position. 

b) Bottom left graph – Shows in detail a small 

window of the voltage and current values 

extracted from the main signal. The time size 

(X-axis) of this graph can be adjusted to 

increase or decrease signals detail. The 

centre of this graph in the X-axis is the cursor 

position of the top graph. 

c) Bottom right graph – Shows the torch 

oscillation signal with time in the Y-axis. In 

this way the waveform follows the natural 

visible movement of the contact tip as seen 

from the high-speed camera point of view. 

d) Video box (middle right side of the screen) – 

Shows the loaded video correspondent to the 

loaded arc signals. When a signal file is open, 

the program searches in the same folder for a 

video file with the same name as the signals 
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file. The time of video defines the time limit of 

arc signals to be shown in the top graph. 

e) Control buttons – “Plays” the video 

synchronised with the signals. It also enables 

the play of frames one-by-one forwards and 

backwards. Random frame positioning and/or 

beginning/end positioning is also available. 

f) File information (bottom left) – It shows the 

header information from the exported 

oscilloscope arc signals data file. 

g) Calculated values – Beneath the top graph 

are the mean voltage and mean current 

values of the whole loaded signal. Left, right 

and left-right difference of torch oscillation 

values are next. In the vertical centre of the 

main screen are located the measured values 

of voltage and current at the cursor position 

position. Beneath is the calculated arc pulse 

frequency (valid for GMAW-P) and torch 

oscillation frequency.  

h) Bottom left and right graph scales – The 

scales of these two graphs can be changed to 

fixed values or auto values. 

i) Vertical and horizontal support lines – The 

user can add up to 9 vertical (blue in the left 

image) and 9 horizontal (green in the left 

image) lines. These lines are support lines to 

help on image feature detection and size 

measurement. They can be dragged to the 

desired position. 
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j) Video out – Plays the video with the same 

abilities of step-by-step, reverse, etc. but in an 

external resizable window. 

k) Adjust scale button – Serves to calibrate the 

image measurement system. When this 

button is pressed, in the existence of a jpeg 

file with the same name as the signals data 

file and in the same folder, the video file box 

shows the jpeg image. The user then has to 

pick two points from the image where a 

previous length is known. This calibration 

length should be written in the box beneath 

the button. 

l) Measure button – After defining previously the 

calibration scale, the user can select from the 

video two points and the length is returned 

visually beneath the button. 

 

Mean values were calculated by averaging the whole sampled signal. Pulse 

frequency was calculated by detecting and averaging the time difference 

between detected pulse peaks in the current. For torch oscillation frequency, a 

similar algorithm was used. The peak detection algorithm was based on the 

peak detection algorithm developed for the seam-tracking system presented in 

the section 4.1.1. 

 

4.2.2  WeldData – average versus peak voltages analysis screen 

 

For the purposes of this project, this analysis demonstrates the comparison 

between voltage average and voltage peaks extracted from voltage pulses. 
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Figure 4.14 shows the analysis screen. On the top, the graph has the extracted 

voltage peaks from each pulse in blue and the averaged voltage in green. The 

average was calculated with a conventional moving average algorithm [121-

123]. The smoothing factor (average window) is initially calculated based on the 

number of samples for a complete arc current pulse. The smoothness of the 

averaged voltage signal quality tends to degenerate if the number of samples 

chosen is not the same length as the pulse period or its multiples. The higher 

the number, the smoother the averaged signal will be. The value used in the 

program is the inverse of the pulse frequency calculated initially when the data 

file is loaded divided by the sample rate of the sampled signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 – Average versus peak voltages analysis screen 

 

The graph from Figure 4.14 also shows the torch oscillation signal in yellow. 

This plot is visible by default but can be turned off. It helps in the analysis of arc 

voltage behaviour in relation with the torch oscillation position. The oscillation 
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vertical position can be adjusted in a way that the user can overlap the signals 

to facilitate the comparison. The Y-axis scale of the graph can be adjusted. 

Zooming and pan functions are also available. Four cursors are available for 

amplitude comparisons. The cursors are of the same colour code of the signals. 

The difference values are located on the bottom left of this screen. Graph major 

gridlines can be used as well. 

 

An important output of this analysis is shown in the graph by small symbols 

represented as yellow squares and red circles overlapped with the waveforms. 

These symbols represent the torch in one of its four detected positions from the 

LVDT signal:  

a) extreme left with a solid red circle 

b) extreme right with an empty red circle 

c) centre of oscillation coming from the left with an empty yellow square 

d) centre of oscillation coming from the right with a solid yellow square 

 

The symbols can be overlapped on voltage peaks or voltage average 

waveforms by user selection. They can also be deactivated. The graph data can 

be automatically exported to Microsoft Excel by pressing the buttons visible on 

the screen. The “Export to Excel” button exports the entire waveforms shown in 

the graph whereas the “Export Osc_Peaks to Excel” only exports the data (time 

and voltage) relative to the four coloured symbols described earlier. 

 

4.2.3  WeldData – peak voltages versus background voltages 
analysis screen 

 

For the purposes of this project, this analysis demonstrates the comparison 

between voltage peaks extracted from voltage peak pulses and background 

voltages extracted in the pulse background period. Figure 4.15 shows the 

analysis screen. The base and features of this screen are similar to the previous 

screen. 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 - Peak voltages versus background voltages analysis screen 

 

Background voltages where detected in a similar way to the peak voltages 

except that instead finding a maximum voltage in each pulse cycle, the 

minimum voltage was found. In case of regular dip transfer as shown in Figure 

4.15, the minimum value found for the background voltage will be the short-

circuit voltage value. 

 

For this analysis, torch oscillation position is represented by three coloured 

symbols indicating respectively: 

e) extreme left with a solid red circle 

f) extreme right with an empty red circle 

g) centre of oscillation with a yellow asterisk 
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4.2.4  WeldData – average current 

 

This analysis was developed to show the evolution of the pulsed current 

waveform average. The moving average algorithms used are similar to previous 

ones already explained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 – WeldData – Average current 

 

Figure 4.16 shows the results of a moving average with an average window of 

one pulse cycle. Relationships between averaged current and torch oscillation 

can be drawn with this analysis. 

 

4.2.5  WeldData – Current versus Voltage Cross-plot 

 

Cross-plots are a type of analysis frequently used by researchers to identify 

patterns and trends in the current/voltage evolution. Figure 4.17 shows a cross-

plot created by plotting simultaneous values of voltage and current. This type of 

plot provides additional information on the behaviour of the welding process. 
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Figure 4.17 – WeldData – Current versus voltage cross-plot 

 

4.3 Other software algorithms developed for data analysis 

 

Experimentation phase 3 was mainly analysed by the use of WeldData software 

described in section 4.2, but phase 1 and 2 were based only on spreadsheet 

analyses. Data handling and automated calculation algorithms were 

programmed in Microsoft Visual Basic ® for applications included in Microsoft 

Excel 2003 ®. It was through this process that software algorithms were 

developed to deal with the raw data files from the digital oscilloscope (phase 1) 

and also from CAN messages (phase 2). The source code of the different 

algorithms can be found in Appendix A for phase 1 and Appendix C and 

Appendix D for phase 2. 

 

4.3.1 Experimentation phase 1 - analysis algorithms 

 

Figure 4.18 shows the main screen of the developed program containing the 

analysis algorithms. ‘Sheet Name’ and ‘Sheet File Name’ are input fields 

automatically filled in by the program when it is executed.  
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Figure 4.18 – Experimentation phase 1 – analysis algorithms main screen 

 

The software is processed in two passes. The first pass opens the raw data file 

and extracts the peak voltages based on the peak current. The ‘Current 

Threshold’ value (300 as in the main screen of Figure 4.18) establishes the 

threshold line beyond which a current pulse is considered valid. This algorithm 

works as described in the flowchart of Figure 4.9. The end result is a column in 

the spreadsheet with all the peak voltages found in the raw data file. The 

second pass uses this filtered data and creates a smoothing average using the 

input parameters found in the main screen. This moving average algorithm is 

similar to the flowchart of Figure 4.6. At the same time, it performs maxima and 

minima findings using the moving average as threshold level. It implements a 

similar peak finding algorithm in two ways; it detects maximum values when the 

data is over the moving average and minimum values when it is below. The 

resultant data is divided in three columns separated by centre, left and right side 

torch positions of oscillation. This is done by rotation, i.e., the new value found 

will belong to one of the three torch positions simulating the torch behaviour: 

left-centre-right-centre. A sample output of the generated graph can be seen in 

the results chapter, Figure 5.3 (p. 98). The blue line in this graph represents the 

output data of first pass and the others from second pass. 
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4.3.2 Experimentation phase 2 - analysis algorithms 

 

Due to the complexity of having two separate data sources (oscilloscope and 

CAN messages) and for better results demonstration, the analysis is presented 

in two parts. The first part deals with CTWD control, involving arc signals and 

CAN messages and the second part with cross seam position only, with CAN 

messages. 

 

4.3.2.1 CTWD control analysis algorithms 

For the analysis of CTWD control, the algorithms are presented in two parts: 

signal analysis and CAN message analysis. The final result was the 

combination of both results as shown by the graphs in the results chapter 

(section 5.2.1). 

 

Signal analysis of the CTWD control was performed by developing computer 

algorithms replicating the VISENSE control algorithms. Hence, arc signals 

acquired during experimentation were used as the input of the computer 

replicated algorithms and the resultant output plotted on graphs. Thus, it is 

possible to analyse the behaviour of the VISENSE control algorithms during 

experimentation.  

 

Figure 4.19 shows the main screen of the program developed containing the 

algorithms. ‘Worksheet Name’ is an input field to define the spreadsheet name 

where the processed data should be put in. The browse button opens the Open 

File Dialog to help on the selection of the raw data file to be used. ‘Smoothing 

factor’ and ‘Initial Voltage’ are two parameters for the moving average 

calculation. Their values should be the same used by the VISENSE device for 

the control.  
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Figure 4.19 – CTWD control analysis main screen using arc signals and 

voltage moving average 

 

VISENSE control algorithm for CTWD control is the moving average algorithm, 

as described in the flowchart of Figure 4.6. The algorithm developed for this 

analysis was a replica of it. The results are two spreadsheet columns the first 

one being the sample time and the second the averaged voltage at that time. 

 

For the CAN messages, the objective was to extract the relevant data from 

torch up and down motion commands. The logged CAN messages have the 

following structure: 

Date<tab>Time<tab>Send (TX) or Received (RX) Message; Timestamp (t) with 

10 μs resolution; Message identification (id); Message length in hexadecimal 

characters(l); Data in hexadecimal format 

 

The following is an example of logged CAN messages: 
10-18-2004 14:32:18 RX_MSG c=0, t=1960966252, id=0251 l=2, 0005 tid=00 

10-18-2004 14:32:18 RX_MSG c=0, t=1960974051, id=03A1 l=2, 0000 tid=00 

10-18-2004 14:32:18 RX_MSG c=0, t=1960974064, id=0261 l=2, FFFD tid=00 

 

As shown in the above example, the Time field is in the same second for the 

three messages. There is not enough resolution in this field to be used for 

correct message timing. On the other hand, the timestamp field t is built from a 

10 μs internal timer in the CAN board. This was essential to understand and 

position each arriving message in each time slot and to synchronise it with arc 

signal filtered data. 
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Figure 4.20 shows the program main screen.  

 

 

 

 

 

 

 

 

Figure 4.20 – CTWD control analysis main screen using CAN messages 

 

‘Worksheet Name’ input field is the spreadsheet name where the filtered data 

should be put in and browse button is to open the File dialog window to choose 

the raw data file of logged CAN messages. The algorithm starts processing 

when ‘Process Log’ button is pressed by opening the raw file and seeking for 

torch up and down messages (id=0261). When a message is found, it converts 

the timestamp to a relative time inside the process and processes the message 

value (Data field) to determine the amount of correction sent in the message. 

This value is added to or subtracted from a summing variable and the record 

added to the spreadsheet. The final result is two columns in the spreadsheet 

containing the relative time of the message and the summing value of the 

correction. Therefore it is possible to observe in the resultant graph the torch up 

and down evolution along the welding run (Figure 5.7 – p. 101). 

 

Both moving average and CAN messages filtered data is organised into a single 

spreadsheet and the graphs plotted. Standard deviation of the voltage averaged 

signal was also calculated. 
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4.3.2.2 Cross seam position control analysis algorithms 

This analysis was performed similarly to the CTWD control CAN messages 

analysis. The main difference is the message identification (id=0251). The 

modus operandi of the algorithm is the same where time and amount of 

correction is extracted from the logged CAN messages file. The resultant two 

columns in the spreadsheet are the time and the summing result of the 

corrections at each time as shown in the graphs of Figure 5.10, Figure 5.11 and 

Figure 5.12 (p. 103 and p. 104). 

 

For standard deviation calculation, only Microsoft Excel data manipulation was 

used. First a linear regression was calculated and the resultant equation used to 

calculate the absolute difference between the real value and the predicted value 

of each point. This data was then organised into a third spreadsheet column 

and the standard deviation calculated with it. 
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5 Results 
 

The results demonstrated in this chapter come from the three experimentation 

phases described in chapter 3. Through-the-arc sensing for GMAW-P was 

initially assessed in phase 1. CTWD and cross seam position control were 

evaluated in phase 2. The effect of torch oscillation frequency and sidewall 

proximity on arc signal sensitivity and weld metal penetration was assessed and 

evaluated in phase 3, to optimise control of groove width in the 5º narrow 

groove with GMAW-P. The analysis was mainly based on detailed processing of 

the arc voltage and current data using the techniques described in section 4.2. 

For phase 3, weld metal macrosections were also taken for assessment of weld 

quality. 

 

5.1  Experimentation phase 1 – Initial trials 

 

Figure 5.1 shows a 300 ms period of raw voltage and current data from trial A1. 

It is apparent from Figure 5.1 that current waveform pulses do not change with 

time whereas voltage waveform pulses are clearly modulated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Current and voltage data from trial A1. 
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Figure 5.2 shows 2s period of raw pulsed voltage data from trials A1 to A6. 

Although not visible individually, voltage pulses vary in time creating the clear 

modulation in the waveforms of Figure 5.2. The modulation frequency in each 

case is equal to the torch oscillation frequency. 
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Trial A5 – OF 1.67 Hz - OW 5 mm 
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Trial A6 - OF 0 Hz - OW 0 mm 

OF – Torch Oscillation Frequency OW – Torch Oscillation Width 

Figure 5.2- Raw voltage data from trials A1 – A6 

 

Detailed results from each trial can be found in Appendix I. The original data 

was processed in two passes as follows: first a maximum finding algorithm was 

performed to extract the peak voltage values of each pulse. This algorithm is 

similar to the one described in Figure 4.9 (p. 76). Arc current was used to detect 

valid pulses and ignore spurious pulses as indicated in Figure 4.8 (p. 75). A 
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threshold value of 300 A for the current was used to verify when a valid pulse 

occurred. The initial signal data was extracted directly from the raw data files 

and the resultant peak voltages were exported to a spreadsheet. By this means, 

the lower frequency modulations apparent in the voltage signal that represent 

the effects of weaving from one side to the other of the weld preparation could 

be isolated. The results of this operation can be seen in Figure 5.3 as the 

oscillating trace. 

 

The second pass uses maximum and minimum finding algorithms on the data 

generated by the first pass. The results of this pass are represented in the 

graphs of Figure 5.3 and Figure 5.4 as the blue, red and green lines. In Figure 

5.3 the first minimum corresponds to the approach of the arc to the left hand 

(LH) wall of the weld preparation, and the second minimum corresponds to the 

approach of the arc to the right hand (RH) wall. Since the LH voltage is 

significantly lower than the RH voltage, it is apparent that in this trial the torch is 

off centre, and closer to the LH than the RH wall (Blue and Red lines in Figure 

5.3 and Figure 5.4). This pattern is repeated throughout the trace. The first 

voltage maximum (Green line in Figure 5.3 and Figure 5.4) corresponds to the 

centre position of the torch oscillation, and this value, and subsequent maxima 

can be related to arc length and CTWD at the centre position. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Processed data from applying the first and second pass algorithms 

to trial A1 voltage data 
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The effects of the second pass algorithm can be seen more clearly in Figure 5.4 

where the first pass data has been removed.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - Output data at the conclusion of the second pass algorithm from 

trial A1 

 

The raw data from trials A1 to A6 was processed by the algorithms. From each 

trial, LH and RH voltage data were averaged and subtracted from the maximum 

voltage data, to generate the graph shown in Figure 5.5, plotted against 

oscillation width. The relationship between torch oscillation width and peak 

voltage difference between the values at the centre of oscillation and the values 

at maximum torch excursion is clear from the graph. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 - Oscillation width influence on peak voltages (centre – sidewall) 
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5.2  Experimentation phase 2 – Control algorithms test bed 

 

The results presented in this section were obtained from experimentation of the 

CTWD and cross-seam control algorithms implemented in the VISENSE device, 

and described in section 4.1. This experimentation was a test bed for the 

developed algorithms and was detailed in section 3.2. For the purpose of testing 

the control algorithm’s reliability in correction speed and accuracy, and also to 

test robustness and adaptability of the algorithms to a new situation, the welding 

equipment and procedure were replaced for phase 2 work. The data shown in 

this section can be seen detailed in Appendix E. The software algorithms 

developed for this analysis are described in section 4.3.2. 

 

An initial relationship was extracted from trials B5 to B8 and is shown in Figure 

5.6. The results of voltage average against CTWD are plotted in this graph. This 

test was performed with the same welding setup of trials B1-B4 but outside the 

groove (bead on pipe), on runs of 6 s. These results are essential for further 

calculations because they relate voltage average variation with CTWD length. 

The resultant slope value (0.5045) of the calculated regression will be used as a 

multiplication factor in section 5.2.1 to determine the standard deviation of 

voltage average against torch height corrections. 

 

 

 

 

 

 

 

 

Figure 5.6 – Voltage versus CTWD relationship 

 

To better demonstrate the following results, they were divided in two sections: 

CTWD control and cross seam control. It should be noted that no valid data was 
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obtained from trial B2 due to setup problems. This trial only performed 50% of 

the total welding length (120 mm) creating a step of 2.8 mm height between 

pass 1 and pass 3 (trials B1 and B3 respectively). 

 

5.2.1 CTWD control 

 

CTWD control results are shown in the graphs of Figure 5.7 to Figure 5.9 in the 

form of voltage moving average (blue line) and torch height variation or vertical 

corrections (red line), extracted from trials B1, B3 and B4 respectively. Trials B3 

and B4 were made on previous beads that varied in height, in order to evaluate 

the performance of the system in making corrections. Torch height variation 

was obtained by the control messages sent by the VISENSE device via CAN. 

Torch height standard deviation is shown in millimetres in each graph. It was 

calculated by multiplying the standard deviation of voltage data by the slope 

factor calculated previously and shown in Figure 5.6. 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.7 – Trial B1 – Torch height variation and voltage moving average 

 

The graph of Figure 5.7 shows a small fluctuation of voltage average with a 

standard deviation of 0.05 mm, with the torch moving upwards 3 mm, during the 

10 s of the experiment. 
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Figure 5.8 - Trial B3 – Torch height variation and voltage moving average 

 

The graph of Figure 5.8 also shows a small fluctuation of voltage average 

reflected in a standard deviation of 0.14 mm. The torch moved slightly upwards 

0.4 mm until the experiment completed 5.5 s. Then it dropped 2.8 mm in 1 s, 

staying constant for 3 s, rising 1 mm in the last second of the experiment. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 - Trial B4 – Torch height variation and voltage moving average 

 

The graph of Figure 5.9 shows a small fluctuation of voltage average creating a 

standard deviation of 0.1 mm. The torch height had a downward trend with 

strong fluctuations in the initial 7 s of the experiment reaching a minimum of -3.8 

mm, finishing the experiment with -2.3 mm.  
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5.2.2 Cross seam control 

 

Cross seam control is shown in the graphs of Figure 5.10 to Figure 5.12 for 

trials B1, B3 and B4 respectively. The blue line of the graphs illustrates torch 

path horizontal corrections in millimetres, obtained from the CAN messages. A 

positive value means a torch path correction to the right and a negative value a 

torch correction to the left, following the torch direction. This correction value is 

fixed (0.1 mm) allowing the magnitude of the corrections to be determined. The 

red line is a linear regression of the blue line with the expression presented in 

each graph, along with the standard deviation and R2 (correlation coefficient). 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 - Trial B1 – Cross seam control position 

 

Figure 5.10 shows a linear trend, with some variations around the mean 

position, finishing at maximum of 4.8 mm. The trend slope is 0.5027 with a 

correlation coefficient of 0.9772 and a standard deviation of 0.14 mm. Maximum 

deviation from the trend line at any point is 0.68 mm. 
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Figure 5.11 - Trial B3 – Cross seam control position 

 

Figure 5.11 also shows an overall linear trend, finishing at maximum of 4.8 mm. 

Some tracking instabilities seem to have occurred between 3.5 and 4.5 s. The 

trend slope is 0.4808 with a correlation coefficient of 0.9574 and a standard 

deviation of 0.39 mm. Maximum deviation from the trend line is 0.78 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 – Trial B4 – Cross seam control position 
 

Figure 5.12 again shows a linear trend, finishing at maximum 4.8 mm. The trend 

slope is 0.4563 with a correlation coefficient of 0.9692 and a standard deviation 

of 0.18 mm. Maximum deviation from the trend line is 0.72 mm. 
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Figure 5.13 to Figure 5.15 are top view pictures of the weld bead after each 

trial. Figure 5.16 is a side picture showing the down step after trial B4. 

 

 

 

 

 

 

 

Figure 5.13 – Bead profile after trial B1 

 

 

 

 

 

 

Figure 5.14 – Bead profile after trial B3 

 

 

 

 

 

 

 

Figure 5.15 – Bead profile after trial B4 

 

 

 

 

 

 

Figure 5.16 – Side bead shape after trial B4 with visible down step of 2.8 mm 
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5.3  Experimentation phase 3 – Torch oscillation width and 

frequency 

 

Experimentation phase 3 was devised to study the influence of wire proximity to 

sidewall, at different torch oscillation frequencies and CTWD, on arc peak 

voltages at specific torch positions and on weld metal penetration. A rig with a 

high speed oscillation torch was specially developed to perform the 

experiments. Voltage sensitivity with oscillation frequency was also analysed by 

comparing experiments conducted in both GMAW-P and CV GMAW processes.  

 

To achieve groove width control using through-the-arc sensing in the 5º narrow 

groove with GMAW-P, it is important to know what values of wire proximity to 

the sidewall, torch oscillation frequency and CTWD must be used to obtain the 

optimum weld metal penetrations and minimise welding defects. This in turn will 

reveal what arc peak voltages should be followed at different torch positions, to 

achieve optimum control. 

 

The results for this phase are divided in three sections: 

a) Arc signal sensitivity comparison between CV GMAW and GMAW-P with 

a 45° plate angle 

b) Single sidewall trials with 5° preparation angle 

c) Double sidewall (groove) trials with 5° preparation angle 

 

5.3.1 Arc signal sensitivity comparison between CV GMAW and 
GMAW-P with a 45° plate angle 

 

Trials C1 to C5 were performed on a plate at an angle of 45° to the vertical as 

shown in Figure 3.12 (p. 55), to ensure that in each torch oscillation excursion, 

CTWD is changed. CTWD is made of two lengths (arc length and wire 

extension) that are constantly balancing themselves to keep the melting rate 
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equal to the wire feed rate. When they are balanced, this system is known to 

have reached an equilibrium state. The variation of CTWD creates a 

rebalancing of the system equilibrium by instantaneous changes in arc length 

and a gradual adaptation of wire extension, until the new balance is found. Wire 

extension variation to the new balance point takes a certain amount of time 

(typically tenths of millisecond). 

 

Complete system equilibrium recovery may not be successfully achieved if 

CTWD variations are sufficiently fast. In other words, by rapidly oscillating the 

torch up and down, arc length changes are reproduced instantaneously but wire 

extension may not achieve the full balance point. Arc length is directly related to 

arc voltages and so, voltage variation (sensitivity) to new CTWD values is 

affected by torch oscillation frequency. Estimating recovering times and its 

influence in arc voltage sensitivity is important for arc sensing based control 

algorithms development.  

 

In this set of experiments, arc and torch position signals acquired during the 

trials were post-analysed by the WeldData software described in section 4.2. 

Each analysed file corresponds to each experiment made at a different 

oscillation frequency and CTWD as shown in Table 3.4. 

 

The software extracted peak voltage of each pulse at four positions of the torch: 

extreme left, extreme right, centre coming from left and centre coming from right 

positions. In other words, when the torch crosses one of these positions, the 

last peak voltage at that position is used for GMAW-P. For CV GMAW trials, 

voltage was measured in each of the four torch positions. Each trial generates a 

number of voltage values equal to the total number of torch oscillations acquired 

multiplied by the four torch positions. These voltage values were exported to a 

spreadsheet and averaged to obtain a representative voltage value for each 

torch position in each trial. This technique has revealed a different consistent 

voltage value characteristic of the arc length recovery process. After processing 

all files from the trials, the spreadsheet contains four columns with an average 
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value of the voltages found on the left, on the right, centre from left and centre 

from right, torch positions.  

 

The final step was the calculation of voltage difference between the torch 

extreme and centre positions resulting in Left-Right Voltage for extreme values 

and CRight-CLeft Voltage for centre values. The order of the subtractions was 

the order of the higher value minus the lower value in the majority of the cases. 

Figure 5.17 to Figure 5.19 shows the graphs with the results of each voltage 

difference plotted against the respective oscillation frequency. Voltage 

difference at torch extremes (Left-Right) is represented by the pink dots and at 

torch centre (CRight-CLeft) is represented by the blue dots. The respective 

coloured lines are polynomial regressions of the plotted values. 

 

 

 

 

 

 

 

Figure 5.17 - Pulse peak voltage variation versus torch oscillation frequency for 

a CTWD between 13.2 mm and 15.7 mm with GMAW-P, trials C1 and C3 

 

 

 

 

 

 

 

Figure 5.18 - Pulse peak voltage variation versus torch oscillation frequency for 

a CTWD between 15.4 mm and 17.6 mm with GMAW-P, trials C2 
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Figure 5.19 - Voltage variation versus torch oscillation frequency for a CTWD 

between 13.2 mm and 15.7 mm with CV GMAW, trials C4 and C5 

 

From the graphs of Figure 5.17 and Figure 5.18 (GMAW-P) it is apparent that 

Left-Right voltages have different behaviours. With a CTWD varying between 

13.2 mm and 15.7 mm, the graph of Figure 5.17 shows a small variation of Left-

Right peak voltages found between 4 V and 5 V. On the other hand, with a 

CTWD varying between 15.4 mm and 17.6 mm, the graph of Figure 5.18 shows 

a voltage increase with oscillation frequency and voltage values between 3 V 

and 4 V. CRight-CLeft voltages were around 0 V. 

 

For CV GMAW, the graph of Figure 5.19 shows a 80% increase of Left-Right 

voltages with oscillation frequency, mainly over 10 Hz. CRight-CLeft voltages 

also show a slight increase with oscillation frequency with its value always 

around 1 V. 

 

It is clear from the graphs that there are significant differences in Left-Right 

voltage difference between GMAW-P and CV GMAW (between 3 V and 5 V for 

GMAW-P and lower than 2 V for CV GMAW). CRight-CLeft voltage also shows 

an apparent difference for both welding processes (GMAW-P always below 

0.38 V with some negative values and CV GMAW always above 0.75 V). An 

important remark from the graphs of GMAW-P is the oscillation frequency 

influence in Left-Right voltage. It is more apparent for higher CTWD values, 

although with lower Left-Right voltages. 
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5.3.2 Single sidewall trials with 5° preparation angle 

 

Trials D1 to D4 were performed with a single 5° sidewall on the right side 

(Figure 3.13 – p. 58) to evaluate arc behaviour for arc signals sensitivity 

analysis and weld metal penetration, using GMAW-P. The trials were conducted 

with variations in torch proximity to the sidewall, torch oscillation frequency and 

CTWD. The objective was to understand the variation in arc signals sensitivity 

and in both bottom and lateral weld metal penetrations. Arc signal analysis, high 

speed image visualisation and metallographic images from the welded 

specimens were the methods used to extract the information demonstrated in 

these results.  

 

This analysis was performed in a similar way of the previous study in section 

5.3.1. Peak voltages from the three torch positions were extracted by WeldData 

and averaged per torch position from each trial file. The result was exported to a 

spreadsheet forming four columns of averaged peak voltages for each trial from 

each torch position: torch at extreme left, torch at extreme right, torch at centre 

coming from the left, torch at centre coming from the right. A secondary 

spreadsheet was created with the weld metal penetrations of each trial. Three 

different analyses were then performed with the same data, to study the 

influence of the following factors on peak voltage sensitivity and weld metal 

penetration: Oscillation frequency, sidewall proximity and CTWD.  

 

A different type of analysis was also performed with trial D4 to extract relevant 

information on arc behaviour with different values of CTWD. This study 

generated key information for GMAW-P dynamic state analysis for arc signal 

sensitivity. 

5.3.2.1 Oscillation frequency influence for single sidewall trials 

The data from both spreadsheets was grouped by trials with the same torch 

oscillation frequency and torch position. Both torch centre positions (CRight and 

CLeft) were merged by averaging and voltage from torch at left (opposite to the 
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sidewall) was discarded. The data was then combined and the graphs of Figure 

5.20 were plotted at different torch proximities. The graph shows the final values 

represented by coloured symbols and lines. The dark blue colour represents the 

resultant voltage with the torch at the sidewall or extreme right (Side) and the 

pink colour represents the resultant voltage with the torch at centre of oscillation 

(Centre). The green colour represents the resultant bottom weld metal 

penetration (Bottom P) and the light blue colour represents the sidewall weld 

metal penetration (Side P). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 – Effect of oscillation frequency on peak voltage signals and weld 

metal penetrations in single sidewall trials, at different torch to sidewall 

proximities 

 

Figure 5.20 show the graphs of torch oscillation frequency influence on peak 

voltages and weld metal penetration for different proximities to the sidewall. It is 

apparent from the graph that oscillation frequency increase produces a peak 

voltage increase in both Side and Centre positions at +1 mm proximity (28 V to 

30 V), whereas a slight peak voltage decrease was found on Centre position at 

-1 mm proximity. At 0 mm proximity Side peak voltage increases by 3 V overall, 
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although not a linear trend, with Centre voltages staying around 29 V. It is also 

apparent from the graph that proximity has a strong influence on peak voltage 

difference between Side and Centre torch positions, with a very small difference 

at +1 mm, and 6 V at -1 mm. 

 

The graphs also show that weld metal penetration is influenced by oscillation 

frequency, depending on torch proximity to the sidewall. At +1 mm, it is 

apparent that oscillation frequency produces a reduction in the bottom 

penetration with no visible influence in sidewall penetration. At 0 mm, both 

bottom and sidewall fusions revealed opposite trends with oscillation frequency 

increase, by slightly increasing bottom penetration and slightly decreasing 

sidewall penetration. At -1 mm proximity, there is no clear trend in sidewall and 

bottom penetration. However, proximity to the sidewall shows a stronger 

influence in weld metal penetration than oscillation frequency, with an increase 

in sidewall penetration with closer proximity, and a strong decrease in bottom 

penetration at -1 mm proximity. 

 

5.3.2.2 Sidewall proximity influence for single sidewall trials 

From both spreadsheets described earlier, the data was grouped by trials with 

the same torch to sidewall proximity and torch position. It is important to note 

that it is the wire proximity to sidewall that was measured in the experiment and 

not the torch. The proximity was considered to be the distance formed by the 

corner of the workpiece bottom with the sidewall and by the outer edge of the 

wire (sidewall side) (Figure 3.13 – p. 58). Both torch centre positions (CRight 

and CLeft) were merged by averaging and voltage from torch at left (opposite to 

the sidewall) was discarded. The data was then combined and the graph of 

Figure 5.21 was plotted. The colour scheme and representation of this graph is 

similar to the previous graph. 
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Figure 5.21 - Proximity influence in peak voltages and weld metal penetrations 

in single sidewall trials, at different torch oscillation frequencies 

 

Figure 5.21 show the graphs of torch to sidewall proximity influence on peak 

voltages and weld metal penetrations, at different torch oscillation frequencies. 

It is apparent from the graphs that all show similar behaviour, revealing a clear 

relationship between peak voltages and fusion values depending on the 

sidewall proximity. Higher peak voltage difference is obtained between Centre 

and Side voltages with negative proximities almost no difference 1 mm away 

from the sidewall. However, at 0 mm proximity this difference is also influenced 

by oscillation frequency with a slight increase from 5 Hz to 10 Hz followed by a 

decrease after 15 Hz. 
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Bottom weld metal penetration visibly decreases with sidewall proximity and the 

opposite occurs with sidewall weld metal penetration. 

 

5.3.2.3 CTWD influence for single sidewall trials 

This analysis used only trial D4 data from both spreadsheets and the result was 

plotted on the graph shown in Figure 5.22. The colour scheme and 

representation for this graph is similar to the previous graph. Linear regressions 

were used for voltages and polynomial regressions for weld metal penetrations. 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 - CTWD influence in the arc peak voltage signals and in the bottom 

and sidewall weld metal penetrations in single sidewall trials (5 Hz oscillation 

frequency, 0 mm proximity) 

 

The graph of Figure 5.22 shows a similar increasing trend of Centre and Side 

voltages. Voltage sensitivity in the difference between Centre and Side voltages 

is not visibly influenced by CTWD changes. Weld metal penetrations on the 

other hand are visibly affected by CTWD values showing optimum values for 

sidewall weld metal penetration at 15 mm CTWD and bottom weld metal 

penetration at 14 mm CTWD. 
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5.3.2.4 Arc behaviour analysis for CTWD variations, single sidewall trials 

It was apparent from the trials conducted that there is a difference in the Centre 

voltage depending on whether the torch approaches the centre position from 

the left or from the right. An analysis was performed to study this voltage 

difference when varying CTWD. The data was extracted using WeldData and 

compiled in a spreadsheet. For each different CTWD trial, six measurements 

were taken from the arc high speed images, in positions close to centre point. 

Each measurement consists of extracting the difference in arc lengths and 

voltages from two points of the half torch oscillation cycle. Figure 5.23 shows 

the points in one torch weaving cycle where the measurements were taken, 

between Point A and Point B. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 – Torch oscillation positions for measuring wire tip relative position 

 

Points A and B have no specific distance from the sidewall and the criteria was 

to have the arc completely established vertically to the bottom workpiece. Time 

between the two sampled points was also measured and arc length difference 

was obtained by from WeldData using horizontal support lines distance 

difference as shown in Figure 5.24. 
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Figure 5.24 – WeldData horizontal support lines positioned at the wire tip - 

Point A (left) and Point B (right) 

 

The extracted information was used to perform the following calculations: the 

measured time and extracted voltage of each measurement was divided by the 

respective arc length difference to obtain the time and voltage values per 

millimetre. The resultant values were then averaged for each CTWD and shown 

in the graph of Figure 5.25. This graph shows the average time the arc takes to 

change its length and respective voltage, for different CTWD values and per 

unit of length. 

 

 

 

 

 

 

 

 

 

 

Figure 5.25 – Arc recovery time per millimetre and voltage per millimetre for 

CTWD values of trial D4 (5 Hz torch oscillation frequency) 

 

The graph of Figure 5.25 shows a clear trend relationship between time and 

voltage changes with CTWD. Slope values from the linear regressions will be 

used in the discussion chapter, section 6.4.2.6. 
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5.3.2.5 Arc signal sensitivity analysis for single sidewall trials 

From the conducted trials, peak voltages at four torch positions were extracted. 

The torch positions were extreme left, extreme right, centre coming from left 

and centre coming from right positions. In other words, when the torch position 

signal from the LVDT crosses one of the four positions, the last peak voltage at 

that position is measured. The measured voltages were exported to a 

spreadsheet and averaged to obtain a representative voltage value for each 

torch position in each trial. The graphs of Figure 5.26 were then plotted. This 

analysis is similar to the performed in section 5.3.1. 

 

 

 

 

 

 

 

 

Figure 5.26 – Peak voltage difference (Left-Right and CRight-CLeft) as a 

function of oscillation frequency and for different sidewall proximities 

 

Clearly from the graphs of Figure 5.26, Left-Right peak voltage difference is 

more visible with changing sidewall proximity than with oscillation frequency 

changes. It is apparent though that for +1 mm and 0 mm this voltage difference 

shows a small decreasing trend whereas at -1 mm it shows a visible increase 

with oscillation frequency increase. There is no apparent effect of either 

oscillation frequency or sidewall proximity on CRight-CLeft voltage. 
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Figure 5.27 – Left-Right voltages versus sidewall proximity for different 

oscillation frequencies 

 

The graph of Figure 5.27 was obtained with the values used in the previous 

graph of Figure 5.26 but plotted against sidewall proximity. It shows the clear 

descending trend of Left-Right voltages as the torch moves away from the 

sidewall. At 0 mm proximity, Left-Right voltage values show more influence of 

oscillation frequency than for -1 mm and +1 mm proximities. 

 

For CTWD variation trials, the same analysis for the four torch positions was 

performed. Figure 5.28 shows the results. It is apparent from the graph an 

increasing trend of Left-Right voltages with an increase of CTWD. On the other 

hand CRight-CLeft shows little change with CTWD variations. 

 

 

 

 

 

 

 

 

Figure 5.28 - Peak voltage variation versus CTWD for trial D4, 5 Hz oscillation 

frequency 
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5.3.3 Double sidewall (groove) trials with 5° preparation angle 

 

Trials E1 to E8 were performed with a double 5° sidewall forming a groove 

(Figure 3.14 – p. 61) to evaluate arc behaviour for arc signal sensitivity analysis 

and weld metal penetration, using GMAW-P. Trials were conducted with 

variations in torch proximity to the sidewall and in torch oscillation frequency. 

Arc signal analysis, high speed image visualisation and metallographic images 

were used to extract the information demonstrated in this section. The objective 

of this study is to determine what influence torch oscillation frequency and 

proximity to the sidewall have on weld metal penetration and how this is 

reflected in peak voltages. Due to their asymmetrical values, the off-centre trials 

E1, E2 and E8 were not considered for this analysis. Only trials E3 to E7 were 

used. 

 

The analysis performed for groove trials was similar to single sidewall trials and 

used the same automated procedure from the WeldData program. First, peak 

voltages were extracted at the four torch positions: left extreme, right extreme, 

centre coming from right and centre coming from left. This data along with 

fusion measurements were put into a spreadsheet and graphs were plotted. 

Due to the symmetrical sidewall configuration of the groove, left and right 

voltages were average as well as both centre voltages. Left and right weld 

metal penetrations were also averaged. Data in the spreadsheet was then 

arranged in two ways to examine the values as a function of oscillation 

frequency and as a function of sidewall proximity. 
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5.3.3.1 Oscillation frequency influence for groove trials 

Figure 5.29 and Figure 5.30 show the influence of oscillation frequency on peak 

voltages and weld metal penetration. The graph shows the final values 

represented by coloured symbols and lines. The dark blue colour represents 

voltage with the torch at sidewall (Side) and the pink colour represents voltage 

with the torch at centre of oscillation (Centre). The green colour represents 

bottom weld metal penetration (Bottom P) and the light blue colour represents 

sidewall weld metal penetration (Side P).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 - Oscillation frequency influence on peak voltages and weld metal 

penetration for groove trials with 2.5 mm oscillation width, at different torch to 

sidewall proximities 
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Figure 5.30 - Oscillation frequency influence on peak voltages and weld metal 

penetration for groove trials with 3.7 mm oscillation width, at different torch to 

sidewall proximities 

 

From the graphs of Figure 5.29 and Figure 5.30 it is clear that the influence of 

oscillation frequency on peak voltages is small. The same cannot be said 

though in fusion values where bottom penetration is clearly influenced by 

oscillation frequency increase at close proximity to the sidewall. Peak voltage 

difference between Centre and Side torch positions along with sidewall 

penetration also show no influence with oscillation frequency change. According 

to the graphs, proximity rather oscillation frequency seems to be the major 

influencing factor for the four variables analysed. Oscillation width variation from 

2.5 mm to 3.7 mm has also produced no significant variation in peak voltages 

and fusion values. 

 

5.3.3.2 Sidewall proximity influence for groove trials 

Figure 5.31 shows the proximity influence on arc peak voltage signal and weld 

metal penetration in groove trials. The colour scheme and representation of this 

graph is similar as the previous graphs. 
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Figure 5.31 - Proximity influence on peak voltages and weld metal penetration 

for groove trials with 2.5 mm oscillation width, at different oscillation frequencies 

 

The graphs of Figure 5.31 show the influence of wire to sidewall proximity on 

peak voltages and fusion values, for an oscillation width of 2.5 mm. It is 

apparent from the graphs that negative proximities affect all the four analysed 

variables. Voltage difference between Centre and Side positions are more 

evident with proximity to the sidewall, but reduce to almost zero as the torch 

moves away from the sidewall. Bottom penetration has a visible decrease for a 

negative proximity and tends to stabilise to a constant value for positive 

proximities. However, it is influenced by oscillation frequency of 20 Hz and over, 

more visible at 0 mm proximity. Sidewall penetration slightly increases with 

sidewall proximity moving from positive to negative values. 
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Figure 5.32 - Proximity influence on peak voltages and weld metal penetration 

for groove trials with 3.7 mm oscillation width, at different oscillation frequencies 

 

The graphs of Figure 5.32 show the influence of torch to sidewall proximity on 

peak voltages and fusion values, for an oscillation width of 3.7 mm. As with 2.5 

mm oscillation width, voltage difference between Centre and Side positions 

show an increase with sidewall proximity. Bottom penetration increases for 

positive values of proximity in most cases whereas sidewall penetration appears 

to be constant in the range tested, irrespective of proximity and frequency.  

 

5.3.4 High speed video and metallographic analysis 

 

High speed video images from the experiments were obtained (section 3.3.2) in 

order to analyse arc behaviour. In addition, macrosections were taken to relate 

the variation in experimental parameters to fusion zone geometry. This section 

reports the result of observations made with both arc images and 

macrosections. 
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5.3.4.1 Arc signal sensitivity comparison between CV GMAW and GMAW-P 

This set of experiments (section 3.3.2.1) examined the comparison between CV 

GMAW and GMAW-P for the single side 45° preparation. The following figures 

show extracted images from the trials. The figures are divided into four arc 

images taken at specific torch positions as described.  

 

Figure 5.33 shows arc images of trial C2.1. For this experiment, the arc is 

vertical at the longest arc length and deflects towards the plate at the shortest 

arc length. It should also be noted that the droplets are travelling from right to 

left, i.e., they are being deflected out of the arc. 

Left Centre 
Coming from left 

Centre 
Coming from right 

Right 

Figure 5.33 - Arc images from trial C2.1 (CTWD 15.4 – 17.6 mm @ 5 Hz; 

GMAW-P) 

 

Figure 5.34 shows shorter arc lengths when compared to the arcs of Figure 

5.33. CTWD in this trial was shorter than the trial of Figure 5.33. It is also 

possible to see that the left arc is not as vertical as the left arc of Figure 5.33. 

Left Centre 
Coming from left 

Centre 
Coming from right 

Right 

Figure 5.34 - Arc images from trial C3.5 (CTWD 13.2 – 15.7 mm @ 9 Hz; 

GMAW-P) 
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Left Centre 
Coming from left 

Centre 
Coming from right 

Right 

Figure 5.35 - Arc images from trial C4.1 (CTWD 12.4 – 14.7 mm @ 5 Hz; CV 

GMAW) 

 

CV GMAW arc lengths are longer and show a different behaviour when 

compared with GMAW-P arcs. For GMAW-P, arc images were extracted from 

the high-speed film during the peak current period whereas for CV GMAW, at 

random intervals. Instability in arc position is also more visible in CV GMAW 

and the angle formed by the arc and the workpiece varies more than in GMAW-

P. Droplets are also deflected out of the arc and are of similar size as in 

GMAW-P trials, i.e. approximately equal to the wire diameter. From the arc 

images of Figure 5.35, it is apparent that the arc at centre coming from left is 

shorter that at centre coming from right. The same can be seen in Figure 5.36 in 

another CV GMAW trial. 

 

Left Centre 
Coming from left 

Centre 
Coming from right 

Right 

Figure 5.36 - Arc images from trial C5.3 (CTWD 12.9 – 15.3 mm @ 9 Hz; CV 

GMAW) 
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Figure 5.37 shows two image sequences of droplet detachment of the same 

trial. The top sequence is with the torch at extreme left and the bottom 

sequence is with the torch at extreme right. 

 

 

 

 

 

 

 

 

Figure 5.37 – Two droplet detachment sequences from trial C4.1 (CTWD 12.4 

– 14.7 mm @ 5 Hz; CV GMAW) 

 

It appears in the top sequence that with the longer arc length, the droplet of 

diameter approximately equal to the wire diameter is deflected out of the arc 

with almost no movement of the wire. On the other hand, the shorter arc length 

shows the droplet travelling within the arc column. This behaviour was observed 

in both CV GMAW and GMAW-P trials. 

 

In conclusion, from the single side 45° preparation trials, the main observations 

were: 

a) Vertical arc at left hand side for long arcs 

b) Arc deflected to the plate for short arcs 

c) Droplets deflected out of the arc for long arcs 

d) Droplets travelled within the arc column for short arcs 

e) Different arc length at Centre with arc coming from the left or from the 

right in CV GMAW  
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5.3.4.2 Single sidewall trials with 5° preparation angle 

Figure 5.38 to Figure 5.41 show arc images taken at peak current from trials D1 

to D4. Figure 5.43 to Figure 5.46 show macrosections from the same trials. Arc 

images were also sketched to better visualise arc behaviour near the sidewall. 

Each arc image was extracted with the torch position described in the top of the 

image. The columns in each figure were arranged in order to follow the natural 

torch weaving path. 

 

Figure 5.38 shows arc images of trial D1.2 with 0 mm wire proximity to the 

sidewall. At the right position, the arc is fully established on the sidewall. At the 

centre, in both cases, vertical arc establishment is visible but with spreading on 

the sidewall. With the wire proximity of 1 mm (Figure 5.39), the arc spreading in 

the wall direction is only slightly visible with the torch at the right position. The 

opposite occurs in Figure 5.40 (wire proximity of -1 mm) with the arc almost 

constantly established on the sidewall. 

 

It is clear in Figure 5.39 (1 mm proximity) that arc length is shorter than in 

Figure 5.38 (0 mm proximity) and in turn shorter than in Figure 5.40 (-1 mm 

proximity). This shows a clear relationship between wire proximity to the 

sidewall and arc length. In Figure 5.40 with the torch at the right, the wire 

touches the sidewall and the arc is almost extinguished.  
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Right Centre 
Coming from right 

Left Centre 
Coming from left 

    

    

Figure 5.38 - Arc images from trial D1.2 (Osc. freq. 10 Hz – Proximity 0 mm) 

 

 

Right Centre 
Coming from right 

Left Centre 
Coming from left 

    

    

Figure 5.39 - Arc images from trial D2.2 (Osc. freq. 10 Hz – Proximity 1 mm) 
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Right Centre 
Coming from right 

Left Centre 
Coming from left 

    

    

Figure 5.40 - Arc images from trial D3.2 (Osc. freq. 10 Hz – Proximity -1 mm) 

 

Figure 5.41 shows arc images from trials D4.1 to D4.5 (CTWD variation trials). 

The images were extracted with the torch at maximum extreme in the left (away 

from the sidewall). It is apparent from arc images that arc length increases with 

the increase of CTWD. The sidewall proximity for trial D4 was 0 mm.  

 

Trial D4 
 

Proximity: 0 mm 

Osc. Freq. 5 Hz 

Trial D4.x : CTWD  
 

Trial D4.1 : 13 mm 
 

Trial D4.2 : 14 mm 

 
Trial D4.3 : 15 mm 

 
Trial D4.4 : 16 mm 

 
Trial D4.5 : 17 mm 

Figure 5.41 - Arc images from trial D4 with the torch at maximum left extreme 

(Proximity 0 mm – Oscillation frequency 5 Hz) 
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Figure 5.43 to Figure 5.46 show bead profiles (macrosections) of trials D1 to 

D4. It should be noted that the torch centre of oscillation was vertical 

(perpendicular to bottom plate) and the right sidewall performs a 5° angle with 

the vertical. The angle of the beads was measured to relate to torch proximity to 

the sidewall and to oscillation frequency. The bead angle was measured as 

shown Figure 5.42. Bead angles show a gradually decrease with increase in 

oscillation frequency from 30° for trial D1.1 to 25° for trial D1.5. Also, undercut 

defects become more visible with oscillation frequency increase. 

 

 

 

 

 

 

 

 

Figure 5.42 – Bead shape angle for macrosections of trial D1 to D4 

 

 

 

Trial D1 
 

Proximity: 0 mm 

Trial D1.1 : 5 Hz Trial D1.2 : 10 Hz 

 
Trial D1.3 : 15 Hz Trial D1.4 : 20 Hz Trial D1.5 : 25 Hz 

Figure 5.43 - Bead profile shape from trial D1 at each torch oscillation 

frequency 
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Figure 5.44 shows images of trial D2 bead profiles. Again, bead angles 

decrease with oscillation frequency increase between 28° for trial D2.1 and 20° 

for trial D2.5. Undercut defects are also more visible with higher oscillation 

frequencies. Trial D2.5 shows a visibly shallow bottom workpiece weld metal 

penetration. 

 

 
Trial D2 

 

Proximity: +1 mm 

Trial D2.1 : 5 Hz Trial D2.2 : 10 Hz 

 
Trial D2.3 : 15 Hz Trial D2.4 : 20 Hz Trial D2.5 : 25 Hz 

Figure 5.44 - Bead profile shape from trial D2 of at each torch oscillation 

frequency 

 

Figure 5.45 shows images of trial D3 bead profiles. Bead angles decrease with 

oscillation frequency between 44° (trial D3.1) to 33° (trial D3.5). Undercut 

defects are visible in all trials but become stronger with the increase of 

oscillation frequency. There is a possible lack-of-sidewall fusion in the corner 

between sidewall and bottom workpiece in some specimens, although it is not 

possible to confirm because of the gap formed by the sidewall plate and the 

bottom plate. Trials D3.1 and D3.5 show shallow bottom workpiece weld metal 

penetration. 

 

 

 

 



132 

 
Trial D3 

 

Proximity:  -1 mm 

Trial D3.1 : 5 Hz Trial D3.2 : 10 Hz 

 
Trial D3.3 : 15 Hz Trial D3.4 : 20 Hz Trial D3.5 : 25 Hz 

Figure 5.45 - Bead profile shape from trial D3 at each torch oscillation 

frequency 

 

Figure 5.46 shows images of trial D4 bead profiles where CTWD was varied 

with a fixed oscillation frequency and sidewall proximity. Bead angles increased 

with CTWD from 33° at 13 mm (trial D4.1) to 40° at 17 mm (trial D4.5). A small 

undercut defect is visible only in trial D4.3. Bottom and sidewall penetration 

becomes shallower with increase of CTWD. 

 
Trial D4 

 

Proximity:  0 mm 

Trial D4.1 : 13 mm Trial D4.2 : 14 mm 

 
Trial D4.3 : 15 mm Trial D4.4 : 16 mm Trial D4.5 : 17 mm 

Figure 5.46 - Bead profile shape from trial D4 at each CTWD 
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In conclusion, from the single 5° sidewall trials, the main observations were: 

a) Arc length increases with distance from the sidewall and with 

increase of CTWD 

b) Bead angles are higher with closer sidewall proximity, and undercut 

defects also increase with closer sidewall proximity 

c) Increased oscillation frequency results in increased undercut defects 

and shallower bottom penetration 

d) Closer sidewall proximity increases sidewall penetration 

 

5.3.4.3 Double sidewall (groove) trials with 5° preparation angle 

Observation of arc images extracted from the high speed video and bead 

profiles of groove trials were also performed. This section describes important 

features found in the observations. Figure 5.47 shows arc images and bead 

profile of off-centred trial E1 and Figure 5.49 to Figure 5.51 show arc images of 

trials E2 to E8. Metallographic images are shown in Figure 5.53 to Figure 5.59, 

grouped and analysed by proximity for trials E1 to E8. 

 

Figure 5.47 shows two arc images taken at centre and right side of torch 

oscillation and bead profile of trial E1.4. They are representative of the whole 

trial E1. The top arc image shows an arc established on both sidewalls not 

reaching the root plate. Although the arc is vertical, it is visible from the image 

that arc length is not equal to the distance from the wire tip to the bottom of the 

groove. The droplets travelled to the bottom of the groove. Also, the bottom arc 

image from the figure shows the arc established directly on the sidewall, with 

the torch in the extreme right position. At the same height from the groove 

bottom, the bead profile on the right image shows an undercut defect. 
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Figure 5.47 - Trial E1.4 arc images and bead profile – proximity -0.5 mm – 20 

Hz oscillation frequency - 0.3 mm off-centre to the left 

 

Figure 5.48 shows arc images from trials E2.1 and E2.4. Due to the torch off-

centre path, it is not possible to show the left torch position arc image. The wire 

collided with the sidewall creating a short circuit (dip transfer) and no visible arc 

was formed, resulting in a black image. With the increase in oscillation 

frequency, arc length increased in the right side of oscillation as shown in the 

example of Figure 5.48 at 20 Hz. 
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Trial E2.1 

 
5 Hz 

  
 Centre Right 
 

Trial E2.4 
 

20 Hz 

 

 
 Centre Right 

Figure 5.48 - Trials E2.1 and E2.4 arc images at each indicated torch 

positions– proximity 0 mm – 0.6 mm off-centre to the left 

 

A common observation was found in all trials with closer proximity to the 

sidewall during torch weaving, although more visible with longer arcs. The arc 

establishes on the sidewall and then performs a descendant path to the bottom 

workpiece, during the rise and fall of a current pulse, as shown in the image 

sequence of Figure 5.49. The sequence is composed of 16 consecutive images 

(3.2 ms) of trial E6.1, during the period of a current pulse with the torch at 

maximum right extreme. It shows the arc behaviour starting on the sidewall and 

going down to the bottom workpiece. The droplet was released from the wire in 

the beginning of the background period, i.e. in the end of the image sequence. 
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Figure 5.49 - Arc image sequence of one current pulse of trial E2.1 - proximity 

0 mm, oscillation frequency 5 Hz, groove width 3.5 mm (0.2 ms between 

images) 

 

Figure 5.50 shows arc images of trials E3.1, E4.1 and E5.1 (2.5 mm oscillation 

width trials) at each indicated torch position. It is visible from the images that the 

arc behaves differently for each sidewall proximity. In trial E3.1 (+0.5 mm 

sidewall proximity), the arc at maximum torch excursion establishes on the 

sidewall/bottom corner whilst in trials E4.1 and E5.1, the arc is established on 

the sidewall. At torch centre position, it is visible from the arc images that arc 

length is different on each trial. The arc length is longer with a closer proximity 

and shorter with longer proximity. The arc images shown in Figure 5.50 reflect 

the trend found in each torch oscillation frequency trial for the same sidewall 

proximity, and hence arc images from other trials are not presented here. In 
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summary, side contact creates wire burn-back and consequently longer arc 

lengths. 

 

 Left Centre Right 

 
Trial E3.1 

5 Hz 
Proximity 
+0.5 mm 

   

 
Trial E4.1 

5 Hz 
Proximity 
-0.5 mm 

   

 
Trial E5.1 

5 Hz 
Proximity 

0 mm 
   

Figure 5.50 - Arc images of trials E3.1, E4.1 and E5.1, oscillation width 2.5 mm, 

at each indicated torch position 

 

Figure 5.51 shows arc images from trials E6.1, E7.1, E7.4 and E8.1 (3.7 mm 

oscillation width trials), at each indicated torch position. As in the previous arc 

images for 2.5 mm oscillation width trials, different sidewall proximities create 

different arc behaviours in similar ways. Trial E7 (+0.65 mm proximity) also 

shows a visible arc length influence at maximum torch excursions with torch 

oscillation frequency (E7.1 and E7.4 of Figure 5.51), although with similar arc 

length at centre of oscillation.  
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Table 5.1 – Arc images from trials E6.1, E7.1, E7.4 and E8.1, oscillation width 

3.7 mm, at each indicated torch position 

 
Trial E6.1 

5 Hz 
Proximity 
+0.15 mm 

    

 
Trial E7.1 

5 Hz 
Proximity 
+0.65 mm 

    
 

Trial E7.4 
20 Hz 

Proximity 
+0.65 mm 

    

 
Trial E8.1 

5 Hz 
Proximity 
+0.55 mm 

   
Figure 5.51 - Arc images from trials E6.1, E7.1, E7.4 and E8.1 (0.5 mm off-

centre to the right), oscillation width 3.7 mm, at each indicated torch position 

 

From Figure 5.50 and Figure 5.51, it is clear that the arc establishes to the 

sidewall for sidewall proximities equal and below 0.15 mm, and establishes to 

the sidewall/bottom corner for proximities over 0.15mm. 
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In conclusion from arc image observations of groove trials, it can be said: 

a) Oscillation width variation from 2.5 mm to 3.7 mm does not show any 

visible influence on arc behaviour 

b) Negative sidewall proximity creates wire burn-back and hence increasing 

arc length 

c) When the arc establishes on the sidewall, it moves down during rise and 

fall period of the current pulse 

d) For sidewall proximities below +0.15 mm the arc establishes on the 

sidewall and over +0.15 mm the arc establishes on the sidewall/bottom 

corner 

e) For positive sidewall proximities, arc length shows more influence with 

oscillation frequency increase by an increase in arc length 

 

The following analyses were performed on bead profiles of trials E1 to E8. 

Figure 5.52 shows a graph of bead Width/Depth ratio of the on-centre trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.52 – Width/Depth ratio from bead profiles of E1 to E8 trials 

 

It is clear from the graph of Figure 5.52 that beads become shallow with groove 

width increase. For each millimetre groove width increase, the ratio increases 
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by 0.16, for the lowest oscillation frequency. An exception was found though 

between 4.5 mm and 5 mm groove widths. In this case, the variation was 0.5. 

Also, the graph shows some oscillation frequency influence on longer sidewall 

distances, such as in trials E3 and E7.  

 

Figure 5.53 to Figure 5.59 contains the bead profiles of each set of trials 

conducted at different sidewall proximities. Each figure contains the bead profile 

of each trial with the oscillation frequency indicated under each image. The 

figures are grouped by sidewall proximity. Figure 5.53 to Figure 5.57 are from 

2.5 mm oscillation width trials and Figure 5.58 to Figure 5.59 from 3.7 mm 

oscillation width trials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.53 - Bead profiles from trials E1 – sidewall proximity -0.5 mm – torch 

oscillation width 2.5 mm (0.3 mm off-centre to the left) 

 

 

Trial E1 

 

Proximity 

-0.5 mm 

E1.1 : 5 Hz E1.2 : 10 Hz 

  
E1.3 : 15 Hz E1.4 : 20 Hz E1.5 : 25 Hz 
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Figure 5.54 - Bead profiles from trials E4 – sidewall proximity -0.5 mm – torch 

oscillation width 2.5 mm 

 

It is clear from Figure 5.53 and Figure 5.54 bead profiles that sidewall and 

bottom weld metal penetrations are shallow or non-existent. In fact, trial E1.5 

shows no sidewall fusion from top to bottom, and the majority show sidewall 

penetration in the bead top with lack-of-fusion in both bottom corners. No 

bottom fusion is visible in all trials. Sidewall undercut defects are visible in all 

profile images, more evident in the right sidewall.  

 

Central cracking was found in most specimens on trials E1 to E8, starting from 

the bottom of the bead and going up. In some cases the specimen broke in two 

while being cut in the saw. Both parts were joined and polished together and the 

 

Trial E4 

 

Proximity 

-0.5 mm 

E4.1 : 5 Hz E4.2 : 10 Hz 

  
E4.3 : 15 Hz E4.4 : 20 Hz E4.5 : 25 Hz 
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profile image acquired. This did not affect the measurements taken for the 

purposes of the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.55 - Bead profiles from trials E2 – sidewall proximity 0 mm – torch 

oscillation width 2.5 mm (0.6 mm off-centre to the left) 
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Proximity 
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E2.1 : 5 Hz E2.2 : 10 Hz 

 

 

E2.3 : 15 Hz E2.4 : 20 Hz  
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Figure 5.56 - Bead profiles from trials E5 – sidewall proximity 0 mm – torch 

oscillation width 2.5 mm 

 

The bead profiles of Figure 5.55 and Figure 5.56 show a more even and round 

shape with fewer defects (0 mm proximity) than the previous beads of Figure 

5.53 and Figure 5.54 (-0.5 mm proximity). It is apparent in Figure 5.55 that, as a 

result of a torch off-centre to the left of 0.6 mm, the bead top is higher on the 

left. Some lack-of-sidewall fusion in the corners are found in some cases. 
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Proximity 

0 mm 

E5.1 : 5 Hz E5.2 : 10 Hz 

  
E5.3 : 15 Hz E5.4 : 20 Hz E5.5 : 25 Hz 
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Figure 5.57 - Bead profiles from trials E3 – sidewall proximity 0.5 mm – torch 

oscillation width 2.5 mm 

 

Figure 5.57 bead profiles (+0.5 mm proximity) show fewer defects than previous 

beads. The bead shape has a round effect and fusion was successfully 

achieved in both groove corners. A small inclusion was found in the left corner 

of trial E3.4. 

 

As a summary of bead profile analysis of groove trials with 2.5 mm oscillation 

width, it can be said that: 

A) Moving from positive to negative proximities increase the number 

of corner lack-of-sidewall fusion and undercut defects 

B) Negative proximities reflected no root fusion and in some cases 

also no sidewall fusion 

 

Trial E3 

 

Proximity 

0.5 mm 

E3.1 : 5 Hz E3.2 : 10 Hz 

  
E3.3 : 15 Hz E3.4 : 20 Hz E3.5 : 25 Hz 
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C) Increasing sidewall distance creates rounded bead shapes 

D) 0.6 mm off-centre on a 3.5 mm groove width produces a visible 

top bead inclination 

 

The following figures are from 3.7 mm oscillation width trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.58 - Bead profiles from trials E6 – sidewall proximity 0.15 mm – torch 

oscillation width 3.7 mm 

 

From the bead profiles of Figure 5.58, it is apparent that there is lack-of-sidewall 

fusion in the groove corners and undercut defects, visible in the trials. All beads 

show irregular shapes.  

 

 

 

 

Trial E6 

 

Proximity 

0.15 mm 

E6.1 : 5 Hz E6.2 : 10 Hz 

 

 

E6.3 : 15 Hz E6.4 : 20 Hz  
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Figure 5.59 - Bead profiles from trials E8 – sidewall proximity 0.55 mm – torch 

oscillation width 3.7 mm (0.5 mm off-centre to the right) 

 

Although with a round shape and no major defects, bead profiles of Figure 5.59 

are slightly higher on the right sidewall, more visible in E8.1 and 8.5 trials. They 

are a result of 0.5 mm off-centre to the right. 

 

 

 

 

 

 

 

 

Trial E8 

 

Proximity 

0.55 mm 

E8.1 : 5 Hz E8.2 : 10 Hz 

  
E8.3 : 15 Hz E8.4 : 20 Hz E8.5 : 25 Hz 
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Figure 5.60 - Bead profiles from trials E7 – sidewall proximity 0.65 mm – torch 

oscillation width 3.7 mm 

 

A rounder bead shape is apparent in the bead profiles of Figure 5.60. Small 

undercuts are visible in some specimens and a small inclusion is visible in the 

right corner of trial E7.1. In general, the number of defects is substantially lower 

than 0.15 mm proximity trials. With the increase of groove width, bead shapes 

are visibly shallower. 

 

 

 

 

Trial E7 

 

Proximity 

0.65 mm 

E7.1 : 5 Hz E7.2 : 10 Hz 

  
E7.3 : 15 Hz E7.4 : 20 Hz E7.5 : 25 Hz 
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In conclusion, bead profile analysis of groove trials E1 to E8 has found the 

following general results: 

a) Moving from a positive to a negative sidewall proximity increases 

the number of corner lack-of-sidewall fusion and undercut defects 

b) Little root fusion is apparent for small groove widths, and in some 

cases also no sidewall fusion 

c) Increasing sidewall distance creates rounded bead shapes with 

good weld metal penetrations and fewer defects 

d) High sidewall distances reduces sidewall penetration 

e) Torch off-centre produce inclined beads 
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6 Discussion 
 

Through-the-arc sensing was evaluated for torch position control in GMAW-P 

narrow groove pipe welding. Experiments were performed to assess the arc as 

a sensor, based on arc voltage and current signals, to evaluate feasibility of 

achieving control of CTWD, cross seam position and groove width. Experiments 

were also conducted to assess the influence of oscillation frequency on arc 

signals and fusion characteristics. A set of initial trials (experimentation phase 

1) was devised and the results provided key information for CTWD and cross 

seam control algorithms development. A test bed for the control algorithms was 

conducted to assess the performance and accuracy of the developed system 

(experimentation phase 2). Torch oscillation width and frequency was analysed 

(experimentation phase 3) in order to provide fundamental information for 

groove width control development. 

 

The three phases of experimentation are here discussed in this chapter. The 

methodology followed for each experimentation phase can be found in chapter 

3, software algorithms used for analysis of experiments and developed torch 

position control are in chapter 4; and experimentation analysis and results are in 

chapter 5. 

 

6.1 Through-the-arc sensing for CTWD variations 

 

Through-the-arc sensing is a method where the welding arc is used as a sensor 

to supply information of the welding process. The use of arc signals for control 

has been used by many researchers and by the welding industry for process 

quality control, process instability detection and torch path guidance. In the 

latter, through-the-arc sensing is being applied with success for GMAW and 

GMAW-P in wide grooves. No literature was found for CTWD control using 

GMAW-P narrow groove welding with a 5° bevel. 
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Researchers have explored arc signal variations to identify torch relative 

position to the seam, for various types of welding preparations. The method is 

to follow a signal pattern in current or voltage produced as a result of torch 

motion and the type of welding preparation in use. The key parameter that 

establishes a direct relationship between arc signal and welding preparation is 

the CTWD.  

 

Welding parameters are controlled and monitored by the welding power supply. 

CTWD is a parameter controlled mechanically by torch positioning. Variation in 

its value changes circuit resistance and hence, welding current and voltage (arc 

signals). Depending on the type of welding power supply in use, one arc signal 

is more sensitive (has a higher variation) than the other to CTWD changes: For 

CV is the current which is most sensitive and for CC power supplies voltage is 

most sensitive. GMAW-P is most commonly used as a CC process and hence 

CTWD variations are more apparent in the voltage signal.  

 

In GMAW, arc signal variations are sensed by analysing the signals in time. A 

CTWD variation causes an instantaneous change in the signal value and 

measurements can be performed at any instant of the waveform. In GMAW-P 

arc signals are pulsed and their values strongly vary in time. Measurements 

should be consistently taken in the same part of the waveform such as pulse 

peak or background period in order to achieve greatest sensitivity to CTWD 

changes. Averaging the pulsed signal may also be used as described in section 

6.2.1.2. To simplify the terminology in this work, signal variations in GMAW-P 

are related to signal difference in the same part of the waveform. Also, the term 

“peak voltage” is used to mean “voltage at peak current” and “background 

voltage” means “voltage at background current”. 
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6.2 Initial trials 

 

Initial trials were performed aimed at understanding the variation of arc signals 

in the narrow groove with GMAW-P. This project was manly focused on the 

Lincoln Power Wave F355i GMAW-P power supply although trials were also 

conducted in experimentation phase 2 using Lincoln Power Wave 455M. The 

F355i was designed for constant current GMAW-P with the monitored pulse 

waveform accurately following the programmed waveform from the Lincoln 

Wave Designer software.  

 

Good control is maintained over current as shown in the graph of Figure 5.1. 

This graph also shows a voltage signal with a periodic modulation created by 

the torch weaving effect producing cyclical variations in CTWD values. The 

effect is more clearly visible for longer periods in the waveforms of Figure 5.2. In 

these waveforms the relationship between torch oscillation frequency and wave 

shape is clear. For instance with no torch oscillation, no modulation is visible in 

the waveform. This arc signal behaviour indicates that, with the welding setup in 

use (power supply, wire, gas and parameters), the voltage signal clearly reflects 

torch behaviour and hence CTWD variations. It was then important to 

understand how this voltage signal could be related to torch positioning in order 

to develop a proper control. 

 

6.2.1 Voltage signal signatures 

 

In order to understand the relationship between torch positioning inside the 

groove and voltage values of a pulsating signal, off-line signal processing was 

performed. The voltage data signal captured in trials A1 to A6 was used and 

three voltage signatures were analysed for the control development: 

a) Peak voltages (voltage at peak current) 

b) Background voltages (voltage at background current) 

c) Average voltage (moving average from the total voltage signal) 
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Peak voltages are considered here as the voltage obtained at the maximum 

current value at each pulse. This forms a new signal based in the peak to peak 

variations of the stream of pulsed voltage data. Background voltages are based 

in the same principle as peak voltages but considering the voltages at minimum 

current of each pulse.  

 

6.2.1.1 Peak versus background voltages 

The current and voltage waveforms of Figure 6.1 were extracted from trial A1. 

Peak and background values (green and light blue in the graph) are voltage 

measurements taken at maximum and minimum current values of each pulse. It 

is apparent from the voltage waveform that it is in the background period of the 

pulse where most irregularities are found, produced by short-circuiting events 

and droplet detachments. Short-circuits can occur by the droplet touching the 

weld pool while still attached to the wire, and transferring due to surface tension 

forces. According to the observations performed in all trials, short-circuiting 

events tend to occur in the down slope of the current pulse, not coinciding with 

the minimum current value of each pulse. This means that background voltages 

measured at the minimum current values are valid, even with short-circuiting in 

the same background period. However, the values might still be affected by the 

voltage drop produced by the short-circuit.  

 

Spurious voltages in the background period were also observed as shown in the 

waveform of Figure 4.8 (p. 75). In general, background voltages were found to 

be less sensitive than peak voltages. In other words, for the same CTWD 

variation produced by torch oscillation, a smaller signal variation is observed 

using background voltages rather peak voltages. From Figure 6.1, the peak 

voltage variation during 80 ms of trial A1 was more than the double the 

background voltage variation (3.97 V against 1.72 V). For longer periods, it is 

clear that the same pattern is found as shown in the voltage waveform of Figure 

6.2, in this case for trial A2. A higher voltage difference signifies greater 

sensitivity of the torch positioning control system. 
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Figure 6.1 – 80 ms period of voltage data signal extracted from the raw data file 

of trial A1, 680 ms after the trial start – Oscillation frequency 3.33 Hz, Oscillation 

width 5 mm 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 – Trial A2 voltage signal – Oscillation frequency 3.33 Hz, Oscillation 

width 6 mm 

 

Reduced susceptibility to irregularities or spurious signals and increased signal 

sensitivity were the key factors in this comparison and hence peak voltages 

were found to be more suitable to be used for torch position control. 
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6.2.1.2 Peak versus moving average voltages 

Moving average of arc voltages is a signal processing technique that smoothes 

the original signal according to an average window value. The main advantage 

of this technique is the continuous availability of a voltage value at any instant. 

Peak voltages are only available after the end of each peak pulse and may not 

coincide with the precise moment when the value is measured by the control 

system. In this case, the last available peak voltage shall be used instead. On 

the other hand, the measured value of a moving average does not reflect the 

exact instant of the original signal, due to the lag or time shifting created by the 

number of samples needed for averaging (average window). Figure 6.3 shows 

the raw voltage data of trial A1 plotted with four moving averages at different 

average windows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 – Trial A1 raw voltage data and respective moving averages at 

different average windows 
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Several features were directly observed from the graph of Figure 6.3: 

1) Signal displacement or time shifting from the events of the original signal, 

produced by the choice of the average window 

2) Small average window (1 ms) produced an oscillatory and irregular 

signal or aliasing effect (pink line in the graph) 

3) An average window of 10 ms still contains a large amount of noise but 

reflecting the original signal undulation 

4) Short-circuiting visibly influences the moving average by lowering its 

value 

5) An average window of 1 s produces a flat average effectively filtering any 

torch variation in short periods of time 

6) An average window of 100 ms shows a smooth line, influenced by short-

circuiting but still sensing torch variations in short periods of time 

7) In all cases moving averages showed a smaller voltage sensitivity 

compared to peak voltages 

 

Moving averages in the graph of Figure 6.3 were produced by average window 

values attributed with no relation with the original voltage signal. However, if the 

pulse frequency is known, the average window can be selected at a more 

appropriate value avoiding the aliasing effect created by the 1 ms average 

window of Figure 6.3. The graph of Figure 6.4 shows the raw voltage data from 

trial A1 and two moving averages with average windows of one and ten pulses 

respectively.  

 

The result of using average windows related to the pulse length is a smoother 

average signal with a smaller time shifting. Also, voltage sensitivity has 

increased but is still lower than sensitivity using peak voltages. The values are 

approximately as follows, extracted around the B1 position (Figure 6.4) of the 

original waveform and the B2 position for the moving averages: 

Δ Peak voltages = 3.55 V 

Δ Moving averages (100 ms average window) = 1.09 V 

Δ Moving averages (10 pulses average window) = 1.98 V 
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Figure 6.4 – Trial A1 raw voltage data and respective moving averages at 

different average windows 

 

The application of the second method of moving average calculation, based on 

the pulse length, requires the knowledge of pulse period or frequency. Usually 

this value is not known in GMAW-P because it is internal to the power supply, 

and thus, it is necessary to implement pulse frequency measurements based on 

detection on arc signals. Since pulse frequency is not always constant with 

some power supplies, when an adaptive mode option is enabled, some care 

should be taken.  

 

Another important issue on the use of moving averages in general is the 

influence of short-circuiting on the continuous average values. For instance, at 

positions A1 and B1 on the graph of Figure 6.4, peak voltages are similar in 

value. On the other hand, at positions A2 and B2 of the moving average the 

values are different. It is clear that the moving average at position A2 is more 

influenced by short-circuiting and thus it reflects a lower voltage value. Short-

circuits are frequent when welding with the narrow groove technique. Usually 
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short arc lengths are used to avoid arc deflections to the sidewalls as a result of 

the very narrow groove (4.5 mm in the root pass). If the arc is constantly 

deflected to the sidewalls, there is little base metal fusion.  

 

It was concluded that peak voltages are more consistent, more sensitive, less 

susceptible to noise or short-circuiting influence and therefore more adequate 

for torch online positioning control, with the welding setup used (power supply, 

wire, gas and parameters). This result is also consistent with Jieyu et al [66] 

who stated that higher currents are more robust and less influence by noise 

than lower currents. Moving averages can also be used for torch positioning, 

although with less sensitivity than peak voltages and demanding for a well 

chosen average window. Also, two types of voltage average windows can be 

used: by fixed time or by pulse length, the latter being more sensitive and with 

less time-shifting. Short-circuiting affects both types of voltage averages. 

 

6.2.1.3 Comparison with previous research 

A similar study between the use of peak and background voltages to attain 

torch cross-seam control in GMAW-P was performed by Barnett et al [60]. 

These authors found peak voltages to be more noisy and irregular than 

background voltages. Unfortunately, the original waveforms of voltage and 

current from their experimentation were not provided by the authors in the 

published paper. The two filtered waveforms of peak and background voltages 

(Figure 6.5) indeed show peak voltages more irregular and noisy than 

background voltages. In contrast, it is clear from the waveforms that higher 

signal sensitivity is found with peak voltages rather than background voltages. 
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Figure 6.5 – Peak and background voltage comparison from Barnett et al [60] 

 

Different GMAW-P power supplies have different characteristics with different 

pulse shapes and signal waveforms. An analysis of the current values of the 

original signal could supply the answer to the noisy peak voltages. 

 

From the same university and with the same co-authors as in the previous 

research work, Rashid et al [85] developed a cross-seam control for V-groove 

with GMAW-P based on voltage averages. The author used a patented [84] 

GMAW cross-seam control algorithm where the frequency of short-circuits, 

created mostly at lower CTWD values when the torch achives the oscillation 

extreme, is analysed to define the torch oscillation dwelling at maximum 

excursions. The dwelling period is then the signal averaging period. In general, 

the author of the patent recognizes that a fixed sampling period of 100-200 ms 

is sufficient for most welding scenarios, although this value is not quoted by 

Rashid et al [85]. The voltage signal average as a function of torch oscillation 

position presented by Rashid et al [85] is shown in Figure 6.6. This waveform 

shows a continuum voltage average and not an average obtained only on torch 

maximum excursions. Also, voltage sensitivity is approximately 2 V, similar to 

the 1.98 V obtained by the 10 pulse average window discussed previously in 

section 6.2.1.2. It is important to realise that with different welding parameters, 

similar results were obtained. 
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Figure 6.6 – Variations of voltage average in relation to torch oscillation position 

by Rashid et al [85] 

 

6.2.1.4 Off-line signal analysis for torch position control 

In order to establish the relationship between peak voltage values and torch 

position, initial algorithms were developed to analyse the acquired data from the 

initial trials A1 to A6. The algorithms isolated the torch positions and established 

the respective peak voltages (Figure 5.3 – p. 98 and Figure 5.4 – p. 99). It is 

apparent that in trial A1 the torch was off-centre, by the 2 V difference between 

the blue and red lines of Figure 5.4 (p. 99). This data is very consistent in the 2 

seconds of data analysed. Peak voltages at centre of oscillation in trial A1 

(green line of Figure 5.3 – p. 98) show a cyclical irregularity. As it can be seen 

in the waveform of trial A4 (Figure 6.7) these values also represented by the 

green line are more stable and the irregularities are not cyclical.  
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Figure 6.7 - Output data at the conclusion of the first and second pass 

algorithms from trial A4 (5 Hz torch oscillation frequency) 

 

The difference between both trials is the off-centre value of trial A1. It is 

apparent from Figure 5.3 (p. 98) that the highest voltage values on the green 

line always occur after the lowest voltage values represented by the blue line. In 

other words, voltages were higher at the centre of oscillation when the torch 

was coming from the sidewall closer to the torch centre of oscillation.  

 

It is important to note that the algorithms applied to the initial trials were only 

voltage based and searched for maximum and minimum voltages from the peak 

voltages signal. These values may not perfectly coincide with the three torch 

positions (left maximum excursion, centre and right maximum excursion). If this 

information was known, the obtained voltage values at each torch position might 

have shown lower variations in time. This has shown how important is to know 

the torch position during oscillations to achieve control. The control system has 

then to relate arc signals (voltage in GMAW-P) with torch oscillation positions to 

detect torch displacement inside the groove. 
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Three important conclusions were also reached from this off-line signal 

analysis. The first is related to the importance of torch oscillation for torch 

displacement detection. As shown in Figure 6.8 of trial A6 (0 Hz torch oscillation 

frequency), the result of first and second pass algorithms could not detect 

proper torch positions in the 2 s of sampled data. The LH, RH and Centre data 

is overlapped. With no torch oscillation, any displacement of the torch in relation 

to the groove cannot be related to left or right off-centre errors and thus it is not 

possible to correct the torch to the right path. For instance, if the torch is 

heading towards one of the sidewalls, voltage signal starts to decrease but the 

control system is not able to distinguish which movement direction must be 

used to correct the path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 – Output data at the conclusion of the first and second pass 

algorithms from trial A6 (0 Hz torch oscillation frequency) 

 

A second conclusion from the analysis was drawn about the use of peak 

voltages for control and the importance of pulse frequency versus torch 

oscillation frequency. From the earlier discussion, it was stated that a peak 

voltage may not coincide with the control system measurements for the 

20

22

24

26

28

30

32

34

0 250 500 750 1000 1250 1500 1750 2000

Time (ms)

Vo
lta

ge
 (V

) Peak voltages
Centre
LH
RH



162 

particular torch oscillation positions. For instance, when the torch reaches one 

extreme excursion, voltage measurements at that particular point may not 

coincide with a peak voltage or voltage at peak current. In this case, the last 

acquired peak voltage value should be used and that voltage may have 

happened some milliseconds before. For low torch oscillation frequencies that 

may not be a problem but for high torch oscillation frequencies, some 

milliseconds may correspond to a voltage value taken far from the torch 

extreme excursion. 

 

For instance, trials A1 to A6 pulse frequency was 181 Hz and torch frequencies 

varied from 0 Hz to 5 Hz. In the worst case (5 Hz), there are 36.2 pulses for a 

complete oscillation, or 18.1 pulses for each excursion. If Rashid et al [85] pulse 

parameters were used instead (100 Hz pulse frequency) with torch frequencies 

increased to 25 Hz, only two arc pulses (two peak voltages) would be available 

for one torch excursion. These two pulses could also coincide with any part of 

the torch position and their voltage difference would have no valid information 

on the torch position in relation to the groove. 

 

As a third conclusion, a relationship between oscillation width and groove width 

was also found in peak voltage signal. The graph of Figure 5.5 (p. 99) clearly 

shows a relationship between voltages (peak voltage values difference between 

torch at centre of oscillation and torch at maximum excursion) and torch 

oscillation width, for the same groove width. A wider oscillation produces a 

higher voltage difference. This was an indication of torch oscillation width 

control feasibility using peak voltages. This control is important to detect groove 

width variations produced by pipe bevelling or metal distortions created by the 

heat in each welding pass. To accurately develop this control, more 

experimentation was needed and it was included in experimentation phase 3. 
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In conclusion, from the off-line signal analysis it can be said that: 

1) Peak voltage values and variation has clearly shown a relation to the 

three torch positions 

2) Torch off-centring can be found by voltage difference at maximum torch 

excursions 

3) Torch off-centring can only be detected by arc signals (voltage in 

GMAW-P) if the torch oscillates across the seam 

4) The information of torch position at any instant is important for an 

accurate relation with arc signals 

5) Peak voltages for torch position control have a limited use dependent in 

the ratio between pulse frequency and torch oscillation frequency 

6) Peak voltage difference between torch at centre of oscillation and torch 

at maximum excursion can be used to detect groove width variations 

 

6.2.2 Cross-seam and CTWD control 

 

Torch position control using through-the-arc sensing has evolved with 

technology. Initial devices were made of discrete electronic components with 

limited capabilities for updates and changes. Recently, the application of Digital 

Signal Processors (DSP) has brought huge capabilities to welding automation in 

general and through-the-arc sensing applications in particular. 

 

For this project, this was not an exception. The availability of a programmable 

device able to perform arc sensing and torch positioning facilitated the whole 

project. Machine code programs were then needed to create an intelligent link 

between arc sensing and torch positioning, based on well defined algorithms to 

implement the automated control for torch cross-seam guidance and CTWD 

stability control. 

 

From the previous conclusion of the initial trials and off-line algorithms, two 

separate control algorithms were devised for online cross seam position and 
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CTWD control. The following sections are the discussion of the two sets of 

algorithms. 

 

6.2.2.1 CTWD control algorithms 

From the initial trials, it was concluded that peak voltages produce a better 

signal to be used in torch position control. However, to develop a control system 

ready to be applied in the field, it would be necessary to create or revise 

welding procedures in order to determine the value of optimum peak voltage for 

each welding pass. 

 

The welding procedure is a quality control tool based on a set of norms and 

parameters created in order to facilitate the welder’s work in adjusting the right 

welding conditions for the job in hand. The welder has the freedom to perform 

the necessary adjustments in order to sustain a good and consistent weld 

quality. Voltage values in actual pipeline GMAW-P welding procedures are the 

resultant average voltage obtained at the end of each welding pass when the 

procedure was first produced, based on a predefined CTWD.  

 

Before the welding starts, one of the last parameters adjusted by the welder is 

the CTWD, to certify that the same value is used as is described in the welding 

procedure. Changes in groove height produce changes in CTWD and in turn 

changes in the voltage signal (peak and averages). If a defined CTWD value in 

the welding procedure has generated a certain average voltage, using the same 

welding conditions, the opposite is also true. This means that by following the 

same voltage average, the original defined CTWD in the welding procedure 

should be achieved.  

 

Using this premise, and in the absence of a peak voltage definition in the 

welding procedure, CTWD control was developed following the average voltage 

value defined in the welding procedure. As it was discussed earlier, the average 

voltage is much better used for long periods of time. CTWD changes in the 
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groove passes are not abrupt and thus CTWD control can be implemented by 

using existent welding procedures. 

 

The two types of moving averages (fixed time or pulse length) discussed in 

section 6.2.1.2 were then assessed. The fixed time type with an average 

window of 100 ms was chosen since it is less demanding in terms of algorithm 

processing, with apparent good results in long periods and low variations in 

time. 

 

6.2.2.2 Cross-seam control algorithms 

As with CTWD, torch off-centring variations in pipeline welding are not abrupt 

but with the use of narrow groove techniques, a small torch off-centre variation 

may produce lack-of-sidewall fusion or undercut defects. To achieve a proper 

cross-seam control, signal analysis and processing should be attained in every 

torch oscillation cycle. Cross-seam control algorithms hence need a fast 

response from the controller to process arc signals and torch positions, and to 

feedback torch position correction commands. With new high travel speed dual 

tandem systems (up to 2 m/min), torch oscillation frequencies also need to 

increase in order to perform correct and consistent sidewall fusion. Projected 

oscillation frequencies are around 10 Hz, several times higher than the ones 

used by Rashid et al [85] (2 Hz) and Barnett et al [60] (1.2 Hz) systems. In this 

case, peak voltages are the key signal for the implementation of a fast cross-

seam control, due to the availability of sensitive signals that reflect 

instantaneous torch positions. 
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6.3 Control algorithms test bed 

 

The trials conducted in experimentation phase 2 served to assess the feasibility 

and evaluate the robustness of the developed arc sensing and processing 

algorithms for torch cross-seam and CTWD control, using GMAW-P in the 5° 

narrow groove. The algorithms were divided in two parts: 

1) CTWD control by using voltage moving average with a fixed average 

window of 100 ms 

2) Cross-seam control by differentiating peak voltages at torch maximum 

excursions 

 

Both algorithms worked simultaneously implemented in assembly language and 

C code on a Motorola DSP. Arc signals and exchanged messages between the 

DSP and the welding head were monitored and analysed and the results 

presented in section 5.2. 

 

6.3.1 Tandem welding with enabled adaptive mode 

 

Trials were performed with a different welding setup from the one used for trials 

A1 to A6 and algorithm development. The previous setup used a single wire 

with a GMAW-P Lincoln Power Wave F355i power supply, with disabled 

adaptive mode. The new setup used two synchronised GMAW-P Lincoln Power 

Wave 455M power supplies in tandem welding with enabled adaptive mode. 

Pulse parameters and welding procedure were also different. Tandem welding 

has different characteristics to single wire welding due to the interaction of both 

arcs. Also, the GMAW-P power supply adaptive mode enables self-regulation of 

the arc length by changing the pulse parameters. This process counter-acts the 

corrections made by the automation system. Both tandem welding and adaptive 

mode were used as part of the system’s robustness test. 
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6.3.2 Expected trials accuracy 

 

According to Bould et al [124], in a clear and steady environment and with the 

help of a digital calliper the human eye accuracy is 0.26 mm reproducible to 

±0.1 mm. It is reasonable to say that in a pipeline welding environment with a 

moving welding head and an oscillating torch, the accuracy of manual torch 

position adjustments performed by the welder is much lower than 0.26 mm. In 

most cases, the initial setup of adjusting torch oscillation width is performed by 

calliper comparisons and hence, according to Bould et al [124], it might produce 

an oscillation width error of 0.26 mm. Runtime adjustments of oscillation width, 

torch alignment with groove centre and CTWD are also performed by the welder 

following his expertise and intuition. In this way, welding consistency is difficult 

to be achieved at a high level of accuracy. 

 

Eichhorn et al [38] found that a tracking accuracy better than ±0.5 mm produced 

perfect welded seams with no fusion problems or pores, for 0° narrow gap 

GMAW with 40 mm workpiece thickness and 12 mm groove width. This 

accuracy value was then defined as the maximum acceptable tolerance to be 

achieved by the developed system for both CTWD and cross-seam control. 

 

6.3.3 CTWD control 

 

Trials B1, B3 and B4 have shown that CTWD control algorithms performed well 

within the intended maximum tolerance of 0.5 mm, with standard deviations of 

0.05 mm, 0.14 mm and 0.1 mm respectively. Standard deviation in millimetres 

was calculated based on the voltage standard deviation and its relationship to 

CTWD obtained from the graph of Figure 5.6 (p. 100).  

 

CTWD control was obtained using a feedback loop controller where measured 

voltage averages are compared with a voltage reference and the difference 

results in proportional (PID controller) torch height correction sent to the welding 
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head. The aim of the controller is to produce a constant voltage average, as 

discussed earlier in section 6.2.2.1. 

 

Small fluctuations of voltage average can be seen in the graphs of Figure 5.7 

(p. 101) to Figure 5.9 (p. 102), but essentially voltage remained steady for large 

induced variations such as trial B3 and B4 down step, thus revealing good 

CTWD control. In normal operation, pipeline welding groove height changes are 

progressive and not abrupt as performed in trials B3 and B4. The fast torch 

height recovery achieved by the developed system has shown a high level of 

sensitivity and response, not necessary for the pipeline welding application. An 

average window of 1 s may have a more progressive response and can be 

used instead.  

 

6.3.4 Cross seam control 

 

Trials B1, B3 and B4 have shown good cross-seam control consistency inside 

an intended tolerance of 0.5 mm, with standard deviations of 0.14 mm, 0.39 mm 

and 0.18 mm respectively. The tracking was consistent in all trials as shown in 

the graphs of Figure 5.13 (p. 105) to Figure 5.15 (p. 105). 

 

Cross-seam control was obtained by a feedback loop controller where peak 

voltage values at maximum torch oscillation excursions were successively 

compared and the difference generated a 0.1 mm horizontal torch movement 

towards the correct side (section 6.2.2.2).  

 

Trial B3 showed the worst standard deviation value of the three trials (0.39 

mm), visible in the blue trace variation on Figure 5.11 (p. 104). For this trial, 

torch oscillation width was kept at 2.5 mm as used for trial B1, when ideally it 

should have been 4.5 mm. In comparison, torch oscillation width in trial B4 was 

set to a more appropriate value for the groove width and the resultant standard 

deviation is half of trial B3 (0.18 mm).  
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6.3.5 Control summary 

 

The two control algorithms performed well inside the required tolerance. Their 

implementation was separated as discussed previously and although both used 

feedback loop methods, each controller was implemented differently. With 

CTWD control, a PID controller was used because the risk of strong variations 

of voltage average is low and thus three extreme situations might happen in 

case of abnormalities, strong signal instabilities or wrong setup: 

1) Torch is constantly sent up due to constant low voltage indication with 

arc extinction on a too high CTWD, stopping the whole process 

2) Torch is constantly sent down due to an abnormal high voltage 

measurement as a result of a momentarily process instability. The 

system recovers after the instability due to the low voltage value. For a 

prolongued instability, the arc voltage will drop at some stage and hence 

the system elevates the torch to the right position 

3) If the external voltage reference is set too low, the torch is moved down 

to obtain the intended voltage average value, hence the contact tip might 

collide with the root material 

 

For horizontal corrections with the cross-seam control, the risk of sidewall 

collision is high should any disturbance in arc signals occur. The contact-tip 

distance from the sidewall during oscillation cycles in the 5° narrow groove is 

sometimes tenths of a millimetre. Signal instabilities due to droplet detachment, 

welding pipe position, short-circuiting, groove width changes or inappropriate 

torch oscillation width may interfere with a correct control action and move the 

torch in the wrong direction. For this reason, it was decided that in each torch 

half oscillation cycle, peak voltage measured at maximum torch excursion is 

compared to the peak voltage from the opposite maximum excursion and the 

torch is moved 0.1 mm towards the correct position. In case of signal 

disturbance, if the difference value moves the torch in the wrong direction, the 

system can recover in the next oscillation cycle. Sometimes the error can be 
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recurrent as is visible for instance in the 2nd and 7th seconds of trial B4 (Figure 

5.12 – p. 104). 

 

In conclusion of experimentation phase 3, the feasibility of through-the-arc 

sensing for torch position control using GMAW-P in the 5° narrow groove was 

verified. The use of voltage moving average for CTWD control and peak 

voltages differential on torch maximum excursions for cross-seam control was 

assessed and evaluated showing good vertical and horizontal tracking results, 

better than the intended 0.5 mm accuracy. The algorithms have shown 

robustness to welding setup changes such as tandem welding with 

synchronised GMAW-P power supplies and enabled adaptive mode. From the 

conducted trials, the use of an appropriate torch oscillation width with groove 

width was found to be fundamental, otherwise tracking inaccuracy and fusion 

defects may occur. This reinforces the importance of developing an automated 

torch oscillation width control working in conjunction with the developed control 

system. For the overall system and algorithms evaluation, this was considered 

an excellent result as the system performed better than expected. 

 

A production demonstration trial for the sponsors of this research was also 

conducted under normal operating conditions from top to bottom of the pipe. 

This hot pass trial was performed on the 0.9 m diameter (36 inches) X80 line 

pipe, with 5º bevel narrow groove using single wire GMAW-P. The welding head 

band was deliberately misaligned with the groove centre by 25 mm at half way 

from the pipe top and an initial part of the run was performed over a previous 

hot pass bead to demonstrate the system’s ability to control torch height. The 

trial was performed successfully demonstrating good performance and accuracy 

of the cross-seam and CTWD control algorithms. 
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6.4 Torch oscillation width and frequency 

 

As discussed in the previous section, torch oscillation width control is important 

to achieve good tracking control and to attain optimum fusion profiles to avoid 

defects. Also, according to many authors, torch oscillation frequency in GMAW 

produces different arc signal sensitivities as a function of the working oscillation 

frequency. 

 

From the initial trials, a basic degree of torch oscillation width detection in 

GMAW-P by peak voltages was performed. The experimentation was not 

conclusive about what is the optimum torch oscillation width for a particular 

groove width due to lack of essential data such as torch oscillation position. 

Experimentation phase 3 was devised to acquire key data in order to find 

optimum torch oscillation width values and also to assess the influence of torch 

oscillation frequency on sensitivity to peak voltages. As discussed earlier, torch 

oscillation width control can be achieved by peak voltage comparison between 

torch at centre of oscillation and torch at maximum excursion. Thus, the 

analysis performed in experimentation phase 3 for the proper development of 

this control is based on the premise of finding the right peak voltage reference 

value.  

 

To simplify terminology, torch at centre of oscillation was abbreviated to T@C 

and torch at maximum excursion or at sidewall to T@S.  

 

The discussion of this experimentation phase is divided in three sections: 

d) Arc signal sensitivity comparison between CV GMAW and GMAW-P 

e) Single sidewall proximity trials 

f) Double sidewall (groove) proximity trials 
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6.4.1 Arc signal sensitivity comparison between CV GMAW and 
GMAW-P 

 

Arc signal sensitivity for welding automation using through-the-arc sensing 

technology is important because it determines the degree of response of the 

automation system. A higher sensitivity usually reflects an increase of system’s 

accuracy. However, the magnitude of the signal may change with the welding 

process parameters creating variations on signal sensitivity. This is important 

when signal reference values are used for control. Arc signal sensitivity is 

known to be higher with the increase of torch oscillation frequency, on CV or CC 

GMAW. This means that for each oscillation frequency, a different reference 

value must be applied to attain proper control. It is therefore important to 

understand the effects of using different torch oscillation frequencies on arc 

signal sensitivity using GMAW-P.  

 

6.4.1.1 GMAW trials 

According to many authors, in CC GMAW voltage sensitivity is affected by torch 

oscillation frequency. Higher oscillation frequencies produce higher voltage 

sensitivity. In CV GMAW it is the current sensitivity that is most affected. For 

GMAW-P this influence is unknown. Trials C1 to C5 were devised to generate 

the needed data in order to understand and quantify this oscillation frequency 

influence on arc signal. The experiments were conducted with both CV GMAW 

and GMAW-P processes, using a welding setup similar to the used by Pan [7] 

(section 3.3.2.1).  

 

From the trials performed with the CV GMAW process, the results obtained as 

shown in Figure 6.10 were similar to Pan’s results in the graph of Figure 6.9. 
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Figure 6.9 – Pan’s magnitude-frequency (signal sensitivity as a function of torch 

rotation frequency) for different power supply characteristics in GMAW [7]  

 

There is no published information available about the drooping characteristic of 

the CV GMAW power supply used for these trials to do a direct comparison 

between graphs. However it is clear from both graphs that similar trends are 

followed at approximately the same frequencies. This information is important to 

validate the welding setup used on trials C1 to C5 in order to compare CV 

GMAW and GMAW-P process results. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 – Voltage and current absolute difference between left and right 

torch excursions, at different torch oscillation frequencies, in CV GMAW trials 

C4 and C5 
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6.4.1.2 GMAW-P trials 

From the graphs of Figure 5.17 (p. 108) and Figure 5.18 (p. 108) for GMAW-P 

trials, there is no significant change of voltage sensitivity with oscillation 

frequency. There is a slightly indication mainly on Figure 5.18 (p. 108) that it 

might have some change but the data is not conclusive. Compared with CV 

GMAW where voltage variation has a factor of 2:1 (Figure 5.19 – p. 109 and 

Figure 6.10), GMAW-P voltage variation with oscillation frequency is close to 

zero and shows no significant advantage to be considered for torch position 

control.  

 

It was then concluded that torch oscillation frequency produces no apparent 

influence on peak voltage sensitivity in GMAW-P, with the 45° plate inclination 

with the vertical welding setup. Similar sensitivity analysis was performed for 

both single sidewall and groove trials as discussed further. 

 

6.4.2 Single sidewall trials with 5° preparation angle 

 

Trials D1 to D4 were conducted using GMAW-P with a single 5° sidewall, in 

order to understand and evaluate peak voltage variations and weld metal 

penetration for changes in: 

1) Torch oscillation frequency  

2) Torch to sidewall proximity 

3) CTWD 

Arc signal sensitivity analysis was also performed for this set of trials. 

 

6.4.2.1 Torch oscillation frequency influence 

The results of this analysis are shown in the graphs of Figure 5.20 (p. 111). It is 

clear from the graphs that sidewall proximity produces different influences of 

torch oscillation frequency on peak voltages and weld metal penetrations. At +1 

mm from the sidewall, the graph shows a clear reduction of bottom penetration 

with the increase of oscillation frequency although no explanation was found for 
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this situation. At 0 mm and -1 mm proximities, metal penetration variation with 

oscillation frequency is not conclusive showing some scattered information. 

 

Peak voltage variation also shows different behaviours as a function of sidewall 

proximity. Some of the lines on the graphs show slightly upward trend slopes 

but in general there is no consistent variation that may lead to a conclusive 

result. For the purpose of torch oscillation width control development, no 

conclusion can be taken from the analysed data. 

 

6.4.2.2 Torch to sidewall proximity influence 

The results of this analysis are shown in the graphs of Figure 5.21 (p. 113). 

Torch to sidewall proximity has clearly shown an increase in side penetration 

moving from positive to negative values of sidewall proximity but strongly 

reducing bottom penetration. This behaviour is caused by the longer arcs 

created near negative proximities due to the wire burn back. This matter is 

discussed later. Longer arc lengths produce shallower penetrations. 

 

The analysis also shows that proximity to the sidewall increases peak voltage 

difference between T@C and T@S. From the graphs, it is possible to see that 

T@C peak voltage is similar in the three proximities and for different torch 

oscillation frequencies. On the other hand the T@S peak voltage decreases 

with sidewall proximity. This is caused by arc deflections to the sidewall 

shortening CTWD values, as discussed later. Shorter CTWD values produce 

short arcs and hence lower voltage values. 

 

It is also important to note that 1 mm difference in sidewall proximity creates 

large differences in voltage signals and essentially in weld metal penetration, 

supporting the necessity of torch position control with low tolerances as has 

been achieved by the developed algorithms. The trials also demonstrated that 

at +1 mm distance the sidewall has minimal effect in the arc signal, and thus it 

cannot be used for control. In this case the cross-seam control moves the torch 
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erratically inside the groove seeking for sidewalls, as was seen for trial B3 in 

experimentation phase 2. 

 

For the purpose of torch oscillation width control development, it was concluded 

that the best compromise between good fusion values and peak voltage 

difference is at 0 mm proximity, for single sidewall trials. This value is further 

confirmed in groove trials.  

 

6.4.2.3 CTWD change influence 

The results of this analysis are shown in the graphs of Figure 5.22 (p. 114). The 

data from the graph for both side and bottom weld metal penetrations show a 

clear reduction in fusion with the increase of CTWD. It is known from GMAW 

welding in general that long arc lengths produce shallow penetrations. Also 

these results are consistent with those reported by Nagesh et al [125] who 

states that “too long” or “too short” arc lengths may result in poor weld metal 

penetrations. Recent work from Liratzis [126] has also found that different arc 

lengths in orbital welding produces different weld metal penetrations. Liratzis’s 

experiments were conducted at different angles around the pipe. For each 

angle several experiments were performed using different arc lengths obtained 

by changing the trim value of the power supply and thus changing the pulse 

parameters to create different arc lengths. The angle change shows a clear 

pattern on the bead shape varying from slightly concave on the flat position, 

strongly concave in the vertical down position and almost flat for overhead 

welding. Arc length variation produced different levels of depth of weld metal 

penetration inside each pattern of the tested angles. Longer arc lengths 

produced shallower penetrations. 

 

A clear conclusion from the graph is that the value of 13.5 mm CTWD often 

used for pipeline welding is a good value. From the graphs, CTWD values 

between 14 mm and 15 mm produced better fusion values but it should be 

noted that experiments were taken in flat position. As discussed earlier, short 

arcs are more important for pipeline orbital welding application. 
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Peak voltages on the other hand show a consistent increasing trend and 

difference between T@C and T@S with the increase of CTWD, as expected. 

This consistency shows that the developed CTWD control algorithms are valid 

for a broad range of reference voltages in respect with CTWD values. Since the 

trials were performed with the same sidewall proximity, it can also be concluded 

that the consistency in voltage difference between T@C and T@S can increase 

the reliability of torch oscillation width control for various CTWD values. 

 

6.4.2.4 Arc signal sensitivity analysis for single sidewall trials 

The previous two analyses have shown the overall evolution of peak voltages 

between T@C and T@S for torch oscillation width control. The objective of this 

analysis is to understand how these peak voltages evolve for different 

proximities to the sidewall and at different torch oscillation frequencies. The 

analysis is based on the graphs of Figure 5.26 (p. 117) to Figure 5.28 (p. 118) 

and compares peak voltages from extreme torch oscillation excursions instead 

from T@C and T@S as previously.  

 

Sidewall proximity has been shown to influence peak voltage evolution with 

oscillation frequency (Figure 5.26 – p. 117). This pattern was already found in 

the previous analysis of section 6.4.2.1. The higher peak voltage variations with 

torch at maximum excursions are found for the lower sidewall proximities 

although there is no consistent pattern on voltage evolution with oscillation 

frequency between different proximities. This analysis reinforces the previous 

conclusion that since oscillation frequency does not significantly affect arc 

voltage sensitivity, it is not necessary to consider different frequencies in torch 

oscillation width control development. 

 

Sidewall proximity for Left-Right analysis follows a similar trend as for T@C and 

T@S analysis. The graph of Figure 5.27 (p. 118) shows a clear evidence of 

peak voltage difference between torch maximum excursions on single sidewall 

trials, when using closer sidewall proximities. The difference becomes more 

accentuated for negative proximities. The wire at this distance from the sidewall 
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produces very short arcs and constant short-circuits, visibly lowering peak 

voltage values at the sidewall side and hence increasing the voltage difference 

between torch maximum excursions. 

 

6.4.2.5 Summary 

As a conclusion of single 5° sidewall trials, it can be stated that: 

1) Increasing of torch oscillation frequency produces shallower beads and 

does not show significant and evident influence on peak voltage 

sensitivity 

2) Torch proximity to the sidewall revealed that 1 mm change in proximity 

produces large differences in peak voltages and metal fusion 

3) The best compromise between arc signal differentiation with torch 

position and metal fusion was found at 0 mm sidewall proximity and thus 

this value is followed for torch oscillation width control 

4) The 13.5 mm CTWD value produces good weld beads and metal fusion 

although for the flat position the values of 14 mm to 15 mm would also be 

appropriate. 

 

6.4.2.6 Arc recovery analysis for single sidewall trials 

“According to the minimum voltage theory, the arc current flows into the weld 

pool along the shortest path” [127]. In other words, the arc current always 

follows the shortest ionisation path or resistance path between two potential 

poles, considering that the arc was already ignited. In GMAW or GMAW-P after 

ignition, an arc is formed between the wire tip and the nearest point on the base 

metal through the lowest resistance in the ionisation path. With an oscillating 

torch, arc changes contact location both at the target (workpiece) and at the 

wire (Figure 5.49 – p. 136). In most trials, the arc at T@C was established 

vertically with the bottom workpiece and at T@S with the sidewall. In Figure 

6.11, it can be seen that at T@S, the shortest path to create an arc is lw 

because this value is smaller than lt,. The opposite occurs for T@C.  
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Where: 

 lt is wire tip to bottom 

workpiece length 

la is arc length 

 ls is wire extension or stick-out 

 lw is the wire tip distance to  

the sidewall 

 CTWD is contact-tip- 

-workpiece-distance 

 

Figure 6.11 – Single sidewall length definitions 

 

Generically, CTWD is assumed as the value starting at the end of the contact-

tip and following a straight line to the workpiece, as adjusted by the welder (first 

definition). Also CTWD is known as the sum of two lengths: wire extension and 

arc length (second definition). The first and second definitions are coincident if 

the arc performs a straight line with the wire but they are not coincident when 

the arc is deflected to a nearby sidewall. Two CTWD values can be defined to 

simplify the calculations, with an oscillating torch in a single sidewall: one 

CTWD for T@C defined by the welder and one CTWD for T@S. 

 

The new CTWD becomes: 

 0 t wCTWD CTWD l l= − +  (6.1) 

or 

 s wCTWD l l= +  (6.2) 

where CTWD0 is the value defined for T@C. 

 

To better explain the process, it is important to consider the single sidewall 

example of Figure 6.11 with the torch coming from left and that at T@C when 

the system is balanced or in equilibrium state between arc length and wire 
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extension (la = lt). In other words, melting rate is in equilibrium with wire feed 

rate. The torch continues the oscillation towards the sidewall and at a certain 

point lw becomes smaller than lt. and the arc starts deflecting to the sidewall. 

This changes the CTWD and hence the equilibrium state by altering the balance 

conditions and forcing a melting rate change. More wire has to be melted to re-

establish the process balance with the new CTWD and the wire extension ls 

starts to decrease (burn back) also increasing lt. When the torch moves away 

from the sidewall, lt continues to increase until lw becomes smaller than lt and 

the arc establishes vertically with the bottom workpiece. When this happens, a 

new CTWD if found changing again melting rate. The system initiates a re-

equilibrium process increasing ls and decreasing lt that is now equal to the arc 

length (la). This process continues until the sidewall is again reached and the 

process repeats itself. 

 

Figure 6.12 shows this behaviour using arc images extracted at different torch 

positions during one complete oscillation cycle. The figure shows the arc 

images on the top. From the arc images, an edge finding algorithm extracted 

the arc shape leaving the wire tip shape visible for each arc image, as shown in 

the middle of the figure. The bottom images in the figure show the wire position 

in relation to the sidewall where the image was extracted. The red line joins the 

wire tip positions and the green line is the average point of the red line. It is 

clear from the figure that the red line comes from below and goes above the 

green line showing different lt distances for different wire oscillation positions. 
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Top – real arc images 

Middle – edge finding of Top arc images 

Bottom – wire position of the oscillation where the arc image was extracted 

Red line – wire tip position variation 

Green line – average point of red line 

 

Figure 6.12 – Image sequence or arc length variation at each torch position for a complete oscillation cycle of trial D4.3 (osc. 

freq. 5 Hz; prox. 0 mm; CTWD 15 mm) 
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Figure 6.13 shows a schematic explanation of this process. The number inside 

the circle on each picture is the relative torch weaving position within a 

complete oscillation. Number 1 is maximum excursion at the left side and 

number 5 is maximum excursion at the right side or at wall side. 

 

 

 

 

 

 

 

 

Figure 6.13 – Arc length and wire extension behaviour in single sidewall 

process 

 

The graph of Figure 6.14 shows lt behaviour extracted from a complete 

oscillation cycle of trial D4.3. The green arrows in the graph show the torch 

oscillation direction. 

 

 

  

 

 

 

 

 

 

 

Figure 6.14 - lt variation at each torch position for a complete oscillation cycle of 

trial D4.3 (osc. freq. 15 Hz; prox. 0 mm; CTWD 15 mm) 
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From the graph of Figure 6.14, two slopes can be noted following the torch 

oscillation direction: 

1) Down slope from position 2 to position 4 

2) Up slope from position 4 to position 2 

 

From the graph of Figure 5.25 – p. 116, it was found that arc length varies at 

different rates according to CTWD. This was assumed to be a function of power 

supply behaviour and characteristics. The values were measured with the arc 

always established vertically with the bottom workpiece and thus, arc length 

variations can be directly related to lt variations. Considering then time and 

voltage ratios from linear regressions of the graph, it can be said that: 

 

  (6.3) 

and 

  (6.4) 

 

where rV  is V/mm and rt  is ms/mm. Using the above expressions, for the down 

slope recovery with a CTWD of 13.5 mm, the rates are: 

 

  (6.5) 

 

with a recovery peak voltage of: 

 

  (6.6) 

 

This means that if the arc needs to perform a length recovery at a CTWD of 

13.5 mm, the process is performed at a rate of 62.86 ms/mm. It is clear that the 

complete recovery might happen if the torch oscillation is not sufficiently fast. In 

other words, if torch oscillation frequency is high, the system may not recover its 

balance and works always outside the ideal equilibrium values for each CTWD 

along the torch trajectory. This also means that voltage recovery may not be the 

same for each torch oscillation frequency. 

(0.1968 ) 1.5289rV CTWD= ∗ −  

(16.141 ) 155.04rt CTWD= ∗ −  

(16.141*13.5) 155.04 62.86rt = − =  ms/mm 

(0.1968*13.5) 1.5289 1.12rV = − =  V/mm 
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To express lt variation (Δlt) as a function of torch oscillation frequency, one of 

the slopes can be considered and it represents half of a complete oscillation 

cycle. To ease calculations, both recovery slopes are considered symmetrical. 

Dividing the half time of a complete oscillation cycle (to) by the recovery speed 

for a particular CTWD (tr), the result is the amount of lt variation or Δlt that may 

occur in that half cycle. 

 

(6.7) 

 

 

Since frequency (f) is the inverse of time (1/to), and to express the results in 

millimetres (103), expression (6.8) represents Δlt as a function of torch oscillation 

frequency. 

 

(6.8) 

 

As an example, for a torch oscillation frequency of 5 Hz and a CTWD of 13.5 

mm, lt may recover: 

 

  (6.9) 

 

and with a peak voltage recovery of: 

 

  (6.10) 

 

In the measured data of the graph of Figure 6.14, the parameters were: 15 mm 

CTWD and 5 Hz oscillation frequency. The calculated Δlt is 1.14 mm and the 

measured data from the graph is 1.24 mm showing a good model accuracy of 

0.1 mm. 

 

For the same range of oscillation frequencies as used in the trials, peak voltage 

recovery values were plotted in the graph of Figure 6.15. 

3
31 1010 1.59

2 2 5*62.86t
r

l
ft

Δ = ∗ = =
∗

 mm 

* 1.59*1.12 1.78t rV l VΔ = Δ = =  V 

31 10
2t

r

l
ft

Δ = ∗  

1
2

2

o
o

t
r r

t
tl

t t

⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = =  



185 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 – Recovery voltage as a function of oscillation frequency for single 

sidewall welding 

 

The data from the graph of Figure 6.15 is consistent with the results from 

experimentation. For instance, for trials C2 with the 45° sidewall angle and a 

CTWD of 17.6 mm (Figure 5.18 – p. 108), the model shows a voltage recovery 

difference between 5 Hz and 25 Hz of 1.19 V. From the results of trial C2 it was 

1.15 V. The graph of Figure 6.15 also confirms that in fact the influence of torch 

oscillation frequency in voltage sensitivity is small.  

 

It is now known that CTWD varies with different wire positions while weaving 

caused by the arc deflections with the sidewall. The initial CTWD adjustment is 

performed with the premise that the arc is always vertical but it is now evident 

that it is not. It is also known that different CTWD values have different recovery 

speeds with different voltage values. This complete mechanism produces a 

constant melting rate rebalance in every cycle of torch oscillation with the arc 

and stick-out not necessarily reaching a dynamic equilibrium in every point. 

Torch oscillation frequency in fact produces differences in this rebalance 

behaviour but not as big as expected initially. 
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6.4.3 Double sidewall (groove) trials with 5° preparation angle 

 

This set of trials was developed to understand the influence of torch oscillation 

frequency and wire proximity to the sidewalls when welding with GMAW-P 

inside a 5º narrow groove, for groove width control development. The results 

obtained from this set of trials revealed similarities with single sidewall trials. 

This section is divided in two parts: 

a) Torch oscillation frequency influence 

b) Proximity to the sidewall influence 

 

6.4.3.1 Torch oscillation frequency influence 

The influence of torch oscillation frequency in peak voltage variation and weld 

metal penetration is shown in the graph of Figure 5.29 (p. 120). It is clear that 

voltage variation is even lower and more consistent than with single sidewall 

trials. It reinforces the conclusion that torch oscillation frequency does not 

produce significant influence in the peak voltage signal. 

 

Using the same analysis performed earlier, arc images and wire tip evolution (lt) 

in groove welding were analysed as shown in Figure 6.16. Two distinct cycles 

are now observed when compared with the single cycle in single sidewall trials. 
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Top – real arc images 

Middle – edge finding of Top arc images 

Bottom – wire position of the oscillation where the arc image was extracted 

Red line – wire tip position variation 

Green line – average point of red line 

 

Figure 6.16 - Image sequence or arc length variation at each torch position for a complete oscillation cycle of trial E6.1 (osc. 

freq. 5 Hz; prox. +0.15 mm) 
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The value of lt was measured from a complete torch oscillation cycle of trial 

E6.1 and shown in the graph of Figure 6.17. The pattern is duplicated compared 

to single sidewall trials with the wire tip (lt) varying in just half torch oscillation 

and producing half of the total amount of variation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 - lt variation at each torch position for a complete oscillation cycle of 

trial E6.1 (osc. freq. 5 Hz; prox. 0.15 mm; 13.5 mm CTWD) 

 

In order to show a more visible lt variation, the Y-scale of the graph is different 

from the graph of Figure 6.14. From this new graph and following the previous 

discussion for single sidewall, four different CTWD values can be found 

associated with two up slopes and two down slopes of lt. From expression (6.8), 

half of a complete oscillation cycle was considered because only two slopes 

were found. In the case of four slopes, the resultant expression is: 

 

(6.11) 

 

From the acquired data of trial E6.1 (Figure 6.17), torch oscillation frequency of 

5 Hz and CTWD of 13.5 mm, the amount of lt recovery in each slope is: 

 

  (6.12) 
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and with a peak voltage recovery of 

 
  (6.13) 

 

The measured Δlt from the graph of Figure 6.17 was 0.54 mm showing a 

difference of 0.25 mm with the calculated value. More factors might be 

influencing the model accuracy but in general it seems fairly accurate. A similar 

peak voltage recovery graph as a function of oscillation frequency is shown in 

Figure 6.18. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18 - Recovery voltage as a function of oscillation frequency for groove 

welding 

 

The graph of Figure 6.18 demonstrates a lower torch oscillation frequency 

influence in arc peak voltages in groove welding when compared to single 

sidewall welding. The model is consistent with the data from experimentation. 

For instance with trial E5 (Figure 5.29 – p. 120) (13.5 mm CTWD), voltage 

difference between 5 Hz and 25 Hz is 0.36 V whereas the calculated value is 

0.79 V. It was then concluded that torch oscillation frequency is not significant 

for torch position control in GMAW-P due to the relatively small influence in arc 

signal.  
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As in single sidewall welds, weld metal penetration decays with the increase of 

oscillation frequency by the same reasons in both cases: lower localised energy 

intensity with increase of oscillation frequency due to arc deflections to the 

sidewall. The lower localised energy intensity is created by less arc time 

established vertically with the groove bottom. The arc deflects to the sidewall 

even at considerable distances from it, thus reducing the number of arc pulses 

established vertically. For instance in trial E5.1 (proximity 0 mm, oscillation 

frequency 5 Hz, groove width 3.5 mm), although one torch seam traverse has 

18 arc pulses, only two are established vertically with the groove bottom (Figure 

6.19). With the increase of oscillation frequency, the amount of vertical 

established arcs is highly reduced. In trial E5.5 (proximity 0 mm, oscillation 

frequency 25 Hz, groove width 3.5 mm), a vertical arc is sometimes established 

with the groove bottom only after two complete oscillations. Sidewall proximity 

makes the arc to slightly deflect to the sidewall as it is seen in the left and right 

images from the sequence of Figure 6.19, thus reducing the heat to the groove 

bottom in the centre of the groove. 

 

 

 

 

 

Figure 6.19 – Four consecutive arc pulse images in a sequence for one torch 

seam traverse of trial E5.1 (proximity 0 mm, oscillation frequency 5 Hz, groove 

width 3.5 mm) 

 

Sometimes, the arc is established with the sidewall when the wire is still further 

away reducing even more the number of vertical arcs (Figure 6.20). The reason 

is the failure of droplet detachment in one arc pulse. Droplet detachment in 

GMAW-P is theoretically one droplet per pulse. However, there are occasions 

where the forces in the process do not result in the detachment of the droplet. 

The wire tip becomes larger with the droplet wobbling around the wire tip as is 

visible in Figure 6.20 reducing the distance to the sidewall. The arc in next 
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current pulse establishes with the sidewall that burns back the wire increasing 

the droplet size and forming a big globule. This globule starts then to move 

down changing the arc’s path during a single current pulse. The gravitational 

force and base metal surface tension becomes the prevalent forces and the 

globule finally detaches from the wire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 – Arc image sequence for trial E6.1 (proximity 0.15 mm, oscillation 

frequency 5 Hz, groove width 5 mm) 

 

It is also important to note that sidewall weld metal penetration inside the 

groove varied around the same values as with single sidewall, whereas bottom 

penetration is visibly lower inside the groove (Figure 5.29 – p. 120 and Figure 

5.20 – p. 111 respectively). This is a result of the higher arc lengths found in 

groove trials compared with single sidewall trials. The presence of the second 

sidewall produces more burn back and hence the wire does not have time to 
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recover sufficiently between torch excursions, as discussed earlier. Longer arc 

lengths produce greater radiative heat losses being less efficient in the amount 

of heat transferred to the base metal [128, 129]. 

 

6.4.3.2 Sidewall proximity influence 

This analysis has shown a similar and consistent variation as with single 

sidewall trials. In fact, it confirms that a closer proximity with the sidewall (within 

positive values) benefits all aspects such as: 

a) Increase of bottom weld metal penetration 

b) Increase of side weld metal penetration 

c) Increase of arc peak voltage difference between sidewall and groove 

centre improving control sensitivity 

d) Less corner lack-of-sidewall fusion defects 

e) Less undercut defects 

 

Peak voltages at 0 mm proximity have similar values for both groove and single 

sidewall trials. For torch oscillation width control development, the reference 

value found was 2.8 V ±0.2 V of voltage difference between peak voltage at 

T@C and T@S. In fact, this value is similar to the value obtained in the initial 

trials as shown in the graph of Figure 5.5 (p. 99) at 5 mm oscillation width. 

 

For weld metal penetration at 0 mm proximity, the similarity with single sidewall 

trials is only in sidewall penetration. For bottom weld metal penetration the 

difference is approximately 30% less penetration for groove trials. It is the same 

order of penetration difference found with oscillation frequency influence 

analysis. The reasons are the same presented earlier: the number of vertical 

arc pulses established to the bottom workpiece is less for groove than for single 

sidewall welds because the arc is more deflected to the sidewalls. 

 

An important observation was found at low sidewall proximities as shown in 

Figure 6.21 from trial E6.1. With the arc establishing with the sidewall, the wire 

tends to melt just in the side of the sidewall creating a pointy shape as is visible 
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in the images. In this case, when the torch moves away from the sidewall the 

arc rapidly establishes with the groove bottom due to the lower distance with it, 

not performing the normal cycle of lt as described before. 

 

 

 

 

 

 

 

 

Figure 6.21 – Wire tip melting process when near the sidewall from trial E6.1 

(proximity +0.15 mm, oscillation frequency 5 Hz, groove width 5 mm) 

 

It was concluded from groove trials that torch oscillation frequency produced no 

significant influence in peak voltage sensitivity as confirmed by the developed 

model. It was also concluded that 0 mm proximity should be used to perform 

good depth of weld metal penetration and to avoid lack-of-sidewall fusion and 

undercut defects. At this sidewall proximity, the voltage difference for torch 

oscillation width control between peak voltages at T@C and T@S has a value 

of 2.8 V ±0.2 V. 

 

6.4.4 Torch oscillation width and frequency summary  

 

In conclusion, experimentation phase 3 supplied key data for the development 

of torch oscillation width control. The initial hypothesis was based on the 

premise of peak voltages differential between T@C and T@S indicating groove 

width changes. The analysis has shown that this voltage difference is 2.8 V with 

good weld metal penetrations with no visible defects. This voltage reflects a 0 

mm wire proximity to the sidewall. The analysis also revealed that torch 

oscillation frequency variation in the range of 5 Hz to 25 Hz in GMAW-P has 
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produced little influence in peak voltage difference between T@C and T@S. 

Also, the value of 14 mm CTWD (peak voltage of 28.96 V) was revealed by the 

analysis as showing the best fusion results from the tested range of 13 mm to 

17 mm. This voltage value should be used improving the developed CTWD 

control. 

 

6.5 Summary 

 

Through-the-arc sensing in the 5º narrow groove pipe welding using GMAW-P 

was the main objective of this work. Arc behaviour inside the narrow groove 

was studied by high speed imaging observations of the arc synchronised with 

arc signals. Specific analysis software was developed for this purpose. 

 

The GMAW-P power supplies used for this work are true constant current and 

thus arc length changes are only reflected in voltage values. The use of 

through-the-arc sensing for pipe welding applications poses specific challenges 

due to the steep groove sidewalls and the use of short arc lengths, producing 

very different behaviour compared to V-groove arc sensing techniques. Tandem 

welding is also quite different from single wire techniques with both wires 

concurrently share a close arc producing mutual interferences in arc signals. 

 

The use of GMAW-P in pipe welding applications is performed with short arc 

lengths to achieve good weld profiles in all positions around the pipe. This 

technique creates frequent short-circuiting and thus influencing the arc voltage 

signal. An in depth analysis of this signal revealed that short-circuiting produces 

more interference during the background period of the pulse and hence to 

voltage average calculation. Different approaches were evaluated to determine 

ideal values for the average window size. From this analysis it was possible to 

conclude that voltages at peak current (peak voltage) were found to have higher 

sensitivity and produce larger variations, less noise and more consistent values 

for torch position control. 
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According to the wire proximity to the sidewall analysis performed in this work, 

optimum proximities were found between 0 mm and +0.2 mm measured from 

the outer edge of the wire to the sidewall corner. Accurate control is required 

since +1 mm proximity produced poor sidewall fusion and no signal 

differentiation for control recognition of groove width. This work showed that 

negative proximities or wire proximity beyond the sidewall produce wire burn 

back and hence very long arc lengths, resulting in poor depths of penetration 

and shallower beads, with major undercut defects.  

 

As a result of this investigation, a CTWD and cross-seam control system was 

developed and tested for single and tandem GMAW-P, inside the 5º narrow 

groove. The test results were better than expected revealing accuracies for both 

controls below 0.2 mm. CTWD control was developed by following the existent 

welding procedure voltage average and cross-seam control by peak voltage 

comparison between maximum torch excursions. It is however necessary in the 

development of future welding procedures to incorporate the peak voltage 

values obtained at the torch centre of oscillation and at the sidewall, for further 

improvements in the system accuracy. 

 

In addition, this work has also shown the importance of torch oscillation width 

control, in order to produce accurate cross-seam control. A method was 

proposed to achieve torch oscillation width control by a continuous peak voltage 

comparison between centre and sidewall torch positions. This control will also 

provide a clear indication of actual groove width. Clearly this data can also be 

used to implement a system which adapts welding parameters to groove width. 

 

Torch oscillation frequency was also analysed in order to understand its 

influence in peak voltage sensitivity. Some researchers referred to have 

observed clear voltage sensitivity increase with the increase of oscillation 

frequency. Similar experimentation in GMAW was conducted and similar results 

were obtained. However, in GMAW-P no increase in sensitivity was found with 

the increase of oscillation frequency with the welding setup used. Different 
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recovery speeds and recovery voltages were found at different CTWD values 

produced by the GMAW-P power supply. It seems possible that the constant 

rebalance of arc equilibrium produced by variations on CTWD with the constant 

arc deflections to the sidewall during torch oscillation may be the cause of a 

small variation in sensitivity. 
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7 Conclusion and recommendations for further work 
 

7.1 Conclusions 

 

The following conclusions were drawn from this research work. 

1. The voltages at peak current were identified as the optimum strategy 

for through-the-arc control of torch position inside the 5º bevel narrow 

groove using GMAW-P. 

2. Algorithms were developed for CTWD control based on voltage 

average and cross-seam position control by comparison of voltage at 

peak current at torch maximum excusions. 

3. Tests on the developed system determined that both cross-seam 

position and CTWD control were achieved with an accuracy better 

than 0.2 mm. 

4. Mechanisms for arc deflections and heat distribution were presented 

based on a detailed study of arc behaviour in the 5º bevel narrow 

groove with GMAW-P using a high speed oscillating torch at different 

oscillation frequencies. 

5. Torch weave width must be closely controlled, both to achieve good 

fusion and to generate sufficiently strong signals for through-the-arc 

control. 

6. Optimum oscillation width in relation to groove width was found with 

the wire tip distancing the sidewall by 0 mm to 0.2 mm at maximum 

torch excursions. The wire tip should be measured from the closest 

side of the sidewall and touching the groove bottom at the intended 

CTWD. 

7. A torch oscillation width control strategy has been proposed based on 

sustaining a reference voltage value difference between torch at 

centre of oscillation and torch at maximum excursion. 
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8. Dynamic behaviour of GMAW-P was analysed and it was found that 

torch oscillation frequency does not produce the same magnitude of 

influence for the pulsed voltage signal sensitivity as produced for 

GMAW. 

9. Mathematical models were devised showing the voltage signal 

sensitivity evolution for the experimental oscillation frequencies. 

10. The final system was demonstrated in a circumferential pipe weld, 

and some of the methods developed have already been adopted by a 

pipeline contractor. 

 



199 

7.2 Recommendations for further work 

 

The recommendations for further work are: 

1. Development and implementation of the torch oscillation width control 

• Development of the control algorithms and integration with the 

existing VISENSE system, using the proposed control mechanism 

2. Through-the-arc sensing of bead shape 

• Bead shape varies at different angles of the pipe. The idea is to 

sense and correct the welding parameters and torch positioning in 

order to attain a consistent bead shape along the pipe circumference 

3. Adaptive filling 

• The torch positioning control system developed and proposed in this 

work already permits the system to perform adaptive filling but the 

whole process needs to be adapted to achieve it 

4. Watchdog measures in existing control algorithms 

a. Development of watchdog measures to react to welding 

instabilities, mechanical failures and program input errors based 

on a predefined knowledge database, threshold values or any 

other available mechanisms 

5. Inclusion of defect detection algorithms 

a. Some authors already performed through-the-arc sensing for 

welding errors and defect detection. These algorithms can be 

incorporated to build a more robust and complete automation 

system 

6. Contact-tip wear control 

a. Through-the-arc sensing of changes in contact-tip performance 

and development of respective control algorithms 
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Appendix A. Algorithms of the 1st phase of experimentation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.1 – Excel macro form and source code of the 1st phase of 
experimentation 
 
Public SheetFilename, OutputFilename As String 
Public RecNo As Long 
 
Private Sub CommandButton1_Click() 
     
    StartLine = Chr(10) + Chr(10) 
    StartFlag = False 
    ArrayIndex = 0 
    ArraySum = 0 
    MovAverage = 0 
    MinValue = 100 
    MaxValue = 0 
    UpDown = 0 
    ZeroVoltage = False 
    HighCurrent = False 
    MaxCellCount = 1 
    MinCellCount = 1 
    OldCurrent = 0 
    OldVoltage = 0 
    RecNo = 0 
    TimeCounter = 0 
    TimerFlag = False 
     
    Open ActiveWorkbook.Path & "\" & SheetFilename For Input As #1 
    'Open ActiveWorkbook.Path & "\" & OutputFilename For Output As #2 
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    While Not EOF(1) And ZeroVoltage = False 
        Input #1, LineRead 
        If Left(LineRead, 2) = StartLine Then 
            StartFlag = True 
            LineRead = Mid(LineRead, 2) 
        End If 
        If StartFlag Then 
            If Left(LineRead, 1) = vbLf Then 
                NewVoltage = Val(Mid(LineRead, 2)) 
                If NewVoltage < 1# And HighCurrent = True Then 
                    ZeroVoltage = True 
                End If 
            Else 
                NewCurrent = Val(LineRead) 
                If NewCurrent > Val(TextBox6.Text) Then 
                    HighCurrent = True 
                    If OldCurrent <> 0 Then 
                        Idif = OldCurrent - NewCurrent 
                        If Idif < 0 And UpDown = 0 Then 
                            UpDown = 1 
                        End If 
                        If UpDown = 1 Then 
                            ValArray(ArrayIndex) = NewVoltage 
                            ArrayIndex = ArrayIndex + 1 
                        End If 
                        If Idif > 0 And UpDown = 1 Then 
                            MaxValue = ValArray(0) 
                            For i = 1 To ArrayIndex - 1 
                                If ValArray(i) > MaxValue Then 
                                    MaxValue = ValArray(i) 
                                End If 
                            Next i 
                            CellLabel = "A" + Trim(Str(MaxCellCount)) 
                            Range(CellLabel).Value = MaxValue 
                            CellLabel = "H" + Trim(Str(MaxCellCount)) 
                            Range(CellLabel).Value = TimeCounter 
                            MaxCellCount = MaxCellCount + 1 
                            UpDown = 0 
                            ArrayIndex = 0 
                            TimerFlag = True 
                        End If 
                    End If 
                End If 
                OldCurrent = NewCurrent 
                If TimerFlag Then 
                    TimeCounter = TimeCounter + 0.1 
                End If 
            End If 
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            OldVoltage = NewVoltage 
            DoEvents 
            Label9.Caption = Str(RecNo) & " / " & MaxCellCount 
            RecNo = RecNo + 1 
        End If 
    Wend 
    Close #1 
    MsgBox ("Ended") 
End Sub 
 
 
Private Sub CommandButton2_Click() 
     
    ArrayIndex = 0 
    ArraySum = 0 
    MovAverage = 0 
    MinValue = 100 
    MaxValue = 0 
    MinPos = 0 
    MaxPos = 0 
    UpDown = 0 
    MaxCellCount = 1 
    MinCellCount = 1 
    CellCount = 1 
    toggle = True 
       
    For i = 1 To Val(TextBox7.Text) 
        CellLabel = "A" + Trim(Str(i)) 
        CellValue = Range(CellLabel).Value 
        MovAvgSum = MovAvgSum + CellValue 
    Next i 
    MovAverage = MovAvgSum / Val(TextBox7.Text) 
       
    Do 
        'CellLabel = "B" + Trim(Str(CellCount)) 
        'Range(CellLabel).Value = 0 
        'CellLabel = "C" + Trim(Str(CellCount)) 
        'Range(CellLabel).Value = 0 
        CellLabel = "A" + Trim(Str(CellCount)) 
        CellValue = Val(Range(CellLabel).Value) 
        If CellValue <> 0 Then 
            ValArray(ArrayIndex) = CellValue 
            ArrayIndex = ArrayIndex + 1 
            If ArrayIndex = Val(TextBox5.Text) Then 
                ArrayIndex = 0 
            End If 
            ArraySum = 0 
            If CellCount >= Val(TextBox5.Text) Then 
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                For i = 0 To Val(TextBox5.Text) - 1 
                    ArraySum = ArraySum + ValArray(i) 
                Next i 
                CellAvgValue = ArraySum / Val(TextBox5.Text) 
            Else 
                CellAvgValue = CellValue 
            End If 
            MovAvgSum = MovAvgSum + CellValue - MovAverage 
            MovAverage = MovAvgSum / Val(TextBox7.Text) 
             
            If CellAvgValue > MovAverage And UpDown = 0 Then 
                UpDown = 1 
            End If 
            If CellAvgValue < MovAverage And UpDown = 0 Then 
                UpDown = 2 
            End If 
             
            If CellAvgValue > MovAverage And CellAvgValue > MaxValue Then 
                MaxValue = CellAvgValue 
                MaxOrigValue = CellValue 
                MaxPos = CellCount 
            End If 
             
            If CellAvgValue < MovAverage And CellAvgValue < MinValue Then 
                MinValue = CellAvgValue 
                MinOrigValue = CellValue 
                MinPos = CellCount 
            End If 
             
            If CellAvgValue > MovAverage And UpDown = 2 Then 
                If toggle = True Then 
                    CellLabelOut = "F" + Trim(Str(MinPos)) ' MinLeft Line and Point 
                    Range(CellLabelOut).Value = MinOrigValue 
                    CellLabelOut = "C" + Trim(Str(MinPos)) 
                    Range(CellLabelOut).Value = MinOrigValue 
                    If MinPos > 1 Then 
                        BackCount = MinPos 
                        Do 
                        BackCount = BackCount - 1 
                        If BackCount > 0 Then 
                            CellLabelOut = "C" + Trim(Str(BackCount)) 
                            CellNewValue = Range(CellLabelOut).Value 
                        End If 
                        Loop While (BackCount > 0) And (CellNewValue = 0) 
                        If BackCount > 0 Then 
                            CellInc = (MinOrigValue - Val(CellNewValue)) / (MinPos - 
BackCount) 
                            For i = BackCount + 1 To MinPos - 1 
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                                CellNewValue = CellNewValue + CellInc 
                                CellLabelOut = "C" + Trim(Str(i)) 
                                Range(CellLabelOut).Value = CellNewValue 
                            Next i 
                        End If 
                    End If 
                    toggle = False 
                Else 
                    CellLabelOut = "G" + Trim(Str(MinPos)) ' MinRight Line and Point 
                    Range(CellLabelOut).Value = MinOrigValue 
                    CellLabelOut = "D" + Trim(Str(MinPos)) 
                    Range(CellLabelOut).Value = MinOrigValue 
                    If MinPos > 1 Then 
                        BackCount = MinPos 
                        Do 
                        BackCount = BackCount - 1 
                        If BackCount > 0 Then 
                            CellLabelOut = "D" + Trim(Str(BackCount)) 
                            CellNewValue = Range(CellLabelOut).Value 
                        End If 
                        Loop While (BackCount > 0) And (CellNewValue = 0) 
                        If BackCount > 0 Then 
                            CellInc = (MinOrigValue - Val(CellNewValue)) / (MinPos - 
BackCount) 
                            For i = BackCount + 1 To MinPos - 1 
                                CellNewValue = CellNewValue + CellInc 
                                CellLabelOut = "D" + Trim(Str(i)) 
                                Range(CellLabelOut).Value = CellNewValue 
                            Next i 
                        End If 
                    End If 
                    toggle = True 
                End If 
             
                'CellLabelOut = "E" + Trim(Str(MinCellCount)) 
                'Range(CellLabelOut).Value = MinOrigValue 
                 
                MinCellCount = MinCellCount + 1 
                MinValue = 100 
                UpDown = 1 
            End If 
             
            If CellAvgValue < MovAverage And UpDown = 1 Then 
                CellLabelOut = "E" + Trim(Str(MaxPos)) ' MaxLine and Point 
                Range(CellLabelOut).Value = MaxOrigValue 
                CellLabelOut = "B" + Trim(Str(MaxPos)) 
                Range(CellLabelOut).Value = MaxOrigValue 
                If MaxPos > 1 Then 



214 

                    BackCount = MaxPos 
                    Do 
                    BackCount = BackCount - 1 
                    If BackCount > 0 Then 
                        CellLabelOut = "B" + Trim(Str(BackCount)) 
                        CellNewValue = Range(CellLabelOut).Value 
                    End If 
                    Loop While (BackCount > 0) And (CellNewValue = 0) 
                    If BackCount > 0 Then 
                        CellInc = (MaxOrigValue - Val(CellNewValue)) / (MaxPos - 
BackCount) 
                        For i = BackCount + 1 To MaxPos - 1 
                            CellNewValue = CellNewValue + CellInc 
                            CellLabelOut = "B" + Trim(Str(i)) 
                            Range(CellLabelOut).Value = CellNewValue 
                        Next i 
                    End If 
                End If 
                'CellLabelOut = "D" + Trim(Str(MaxCellCount)) 
                'Range(CellLabelOut).Value = MaxOrigValue 
                 
                MaxCellCount = MaxCellCount + 1 
                MaxValue = 0 
                UpDown = 2 
            End If 
            'CellLabelOut = "F" + Trim(Str(CellCount)) 
            'Range(CellLabelOut).Value = CellAvgValue 
            'CellLabelOut = "G" + Trim(Str(CellCount)) 
            'Range(CellLabelOut).Value = MovAverage 
            CellCount = CellCount + 1 
        End If 
    Loop While CellValue <> 0 
    MsgBox ("Ended") 
End Sub 
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Appendix B. Results of 1st phase of experimentation 

 
Table B.1 - Trial table description 

Trial Oscillation Frequency (Hz) Oscillation Width (mm) 

A1 3.33 5 

A2 3.33 6 

A3 3.33 4 

A4 5.0 5 

A5 1.67 5 

A6 0 0 

 

Table B.2 - Welding Setup 
Power Supply Lincoln Power Wave F355i 
Wire Feeder Lincoln Power Feed 10 Robotic 
Gas BOC Trimix (5% He, 12.5% CO2, Argon) 
Welding Head RMS MOW II 
Signal Acquisition Yokogawa Oscilloscope  ScopeCorder DL750 
Current Probe LEM PR1030 Hall-effect 
Wire Carbofil NIMO 1 (1mm) 

 

 

 

 

 

 

 

 

 

 

Figure B.1 – Trials A1 to A6 groove preparation 
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Table B.3 - Pulse parameters exported from WaveDesigner 
Wave Designer 2000 - TextExport -  

Wed Apr 07 11:54:51 BST 2004  WireFeed inch / min 300 

wfscf                    0.394  fpv                      32 

Peak_Amps                350  fpt                      1.7 

Peak_Duration            1.7  ffr                      394 

Background_Amps          50  fft                      0.8 

Background_Duration      3.8  psf                      0.2 

Adapt                    0  ptsf                     0 

Reference_Voltage        32  pk                       350 

Ramp_up_rate             394  pkt                      1.7 

Ramp_overshoot           4  expsf                    0.1 

Peak_Current             350  expa                     50 

Peak_Time                1.7  expt                     2 

Tailout_time             2  expspd                   0.2 

Tailout_Speed            0.2  backsf                   0.1 

Step_off_Current         50  persf                    -0.3 

Background_Current       50  back                     50 

Background_Time          1.8  per                      5.5 

Frequency                181.8  wfsa                     300 

Adaptive                 0  wfs                      762 

Amp_Sec                  1.21  x1                       100 

Open_Circuit_Voltage     48  y1                       175 

Strike_Current           450  z1                       500 

Minimum_Strike_Time      2.5  x                        1 

Starting_Voltage         23  y                        1 

Starting_Current         180  z                        0 

Starting_Time            0  k1                       0 

Short_Detect_Volt        5  k2                       0 

Pinch_Current_Rise_Rate  55  kl                       3073 

Arc_Reestablish_Volt     15  ks                       5461 

Shorting_mode            0  hs1                      0 

Adaptive_Loop            0  hs2                      0 

Peak_Voltage             32  hs3                      0 

Peak_Amps_SF             20  n1                       5 

Peak_Time_SF             0  n2                       5 

Background_Amp_SF        10  pktim                    0.9 

Frequency_SF             30    

Type_of_Adaptive_Control 1  Weld Process GMAW 

Set_Voltage              32  Wire Type Steel 

End_Amp                  550  Wire Size 1.0mm 

End_Time                 2.5  Process Name 1mm 

Vreg_start               23  Procedure Pulse 

Vreg_weld                32  Gas ArCO2 

stv                      23    
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Figure B.2 - Pulse waveform shape used for trials A1 to A6 - Lincoln 

WaveDesigner 
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Figure B.3 - Voltage and Current waveforms from trial A1 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.4 - Voltage result after applying the algorithms on trial A1 
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Figure B.5 - Voltage and Current waveforms from trial A2 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.6 - Voltage result after applying the algorithms on trial A2 
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Figure B.7 - Voltage and Current waveforms from trial A3 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.8 - Voltage result after applying the algorithms on trial A3 
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Figure B.9 - Voltage and Current waveforms from trial A4 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.10 - Voltage result after applying the algorithms on trial A4 
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Figure B.11 - Voltage and Current waveforms from trial A5 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.12 - Voltage result after applying the algorithms on trial A5 
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Figure B.13 - Voltage and Current waveforms from trial A6 

 

 
Red and Blue lines are left and right side of contact tip oscillation (lower voltages) 

Green is the contact tip oscillation when at centre (higher voltages) 

Figure B.14 - Voltage result after applying the algorithms on trial A6 
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Appendix C. Digital Signal Processor developed control 
source code 

/************************************************************************ 

/ 

/ Company: Cranfield University. 

/ 

/ Copyright 2003 by Cranfield University. 

/   All rights reserved. 

/ 

/ Author: Gil Lopes 

/ 

/ Description:  This program uses the RMS Welding Systems VISENSE box for 

/ sensing voltages and currents and therefore to send CAN messages through the CAN 

/ network to correct torch parameters on-line. Parts of the code are an adaption 

/ from RMS code. 

/ 

/ Version: 1.00 

/ 

/ Released: Oct 2, 2003 

/ 

/ File: vimain.c  (this is the main() file) 

/ 

/***********************************************************************/ 

 

// Global Code Definitions 

 

// Include Files 

#include "vimain.h" 

 

// Version Number 

#define MAJOR_REV 1x00 

#define MINOR_REV 0x00 

 

 

/***********************************************************************/ 

// 

// Function: Timer 0 Interrupt service routine 

//  

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Handles LED events 

//  quarter of second interrupt period that makes the LED 

//  flashing accordingly to the bDevNum (Device Number) 

//     

/***********************************************************************/ 
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#pragma interrupt saveall 

 

void Timer0 (void) 

{  

 asm (bfclr #SCR_TCF,X:TMRA0_SCR);  // Clears Time Compare Flag for the 

       // counter to start from the 

beginning 

  

 if (S_Process == S_Arc) 

 { 

   ToggleLED; 

 } 

 else 

 { 

  if (scCounter0 == (bDevNum +1) * 2) // compares the counter with the 

       // double of the device number plus 

       // 1 (to avoid the zero Dev Number =  

       // no LED blinking) 

  {     // because each interrupt only 

       // toggles the LED  

   scCounter0 = -4;  // initializes the counter to a 

       // negative value for the pause time 

  }     // more negative the value, bigger 

       // the pause (LED off) 

  else 

  { 

   if (scCounter0>=0) ToggleLED; // when the counter arrives 

       // to zero the LED starts 

       // blinking 

   scCounter0++;   // increments the counter 

  } 

 } 

   

#ifdef DEBUG_AVERAGE_SEND 

 ADCAverageSend(); 

#endif 

 

#ifdef DEBUG_VOLTAGE_SEND 

 ADCVoltageSend(); 

#endif 

 

 return; 

} 

/***********************************************************************/ 

// 

// Function: Timer 1 Interrupt service routine 

//  

// Arguments: none 
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// 

// Return Value: none 

// 

// Description:  Processes CAN messages for vertical tracking when 

//     working whithout torch oscillation 

//     

/***********************************************************************/ 

 

#pragma interrupt saveall 

 

void Timer1 (void) 

{  

#ifdef DEBUG_PROFILE 

 SetGPIO(A, 6);    // profiling pin 

#endif 

 asm (bfclr #SCR_TCF,X:TMRA1_SCR); // Clears Time Compare Flag for the counter 

      // to start from the beginning 

 

 if (S_Process == S_Arc)  // If Process Status is in Arc state the 

      // algorithm is processed 

 { 

      // Scale ADC Value to a Voltage reading 

 

  ADC_V_Average = (word) ((((dword) ADC_V_Average_RAW) * ((dword) 

ADC_Mult)) >> LgADC_Div); 

      // Scale Ave Voltage Read from ADC value to 

      // Voltage*100 

      // (accuracy to .01V) -- casts to make sure 

      // 32bit math is used 

  ADC_V_Average += ADC_Offset; // Straight linear scalling y = mx + b 

      // Calculate Vertical Adjustment 

 

  if ((ADC_V_Average > CAN_V_Average - Abnormal_Tol) && (ADC_V_Average < 

CAN_V_Average + Abnormal_Tol))   

      // defining a possible average window of 

      // +/- Abnormal_Tol 

  { 

   if (ADC_V_Average > CAN_V_Average) 

      // if average calculated is 

      // bigger than the average 

      // received from the CAN 

   { 

    CAN_Vertical = (int) ((ADC_V_Average - CAN_V_Average) >> 

LgPID_Divisor) - 1;     // calculate the new value to lower the 

      // torch 

   asm { 

    move CAN_Vertical,Y0 

      // after the calculation, the result 

      // is the amount of movement on the 
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      // torch but 

    not Y0  // it needs to be negated before 

      // sending to the bug to apply the 

      // proper movement DOWN 

    move Y0,CAN_Vertical // put the new value again into the 

       // variable 

    } 

   } 

    

   if (ADC_V_Average < CAN_V_Average) 

       // if instead the average 

       // calculated is lower 

   { 

    CAN_Vertical = (int) ((CAN_V_Average - ADC_V_Average) >> 

LgPID_Divisor);     // calculate the new amount to be 

       // send to the bug, but since is to 

       // put the torch UP, doesn't meed to 

       // negate 

   } 

  } 

 

       // Send Vertical Adjust CAN messages 

  if (CAN_Vertical != 0)   // if there is a value to be sent 

       // different from zero, lets send it 

  { 

   asm { 

    move CAN_Vertical,Y0  // move the amount to the Y0 

        // register 

    move #$4c,X:CAN_TB0_IDR0 // Buffer 0 / Torch up/down 

     move bCAN_id1,X0 

     move X0,X:CAN_TB0_IDR1  // ID 0x260 + bDevNum (0-3) 

    move #$02,X:CAN_TB0_DLR // length 2 

    move #$00,X:CAN_TB0_TBPR // maximum priority 

    move Y0,X:CAN_TB0_DSR1  // LSB loaded to its 

        // position 

    move #$0008,X0  // define X0 with the value for 

       // right shifting (8 bits) (2nd  

       // shift to send 2nd byte) 

    lsrr Y0,X0,Y0  // shifts Y0 8 bits right 

    move Y0,X:CAN_TB0_DSR0  // MSB and Sign loaded to 

        // its position 

 

    move #CANTFLG_TXE0,X:CANTFLG //release message 

    } 

   

    CAN_Vertical = 0; // reset the amount message again to 

       // be prepared for the next read and  

       // calculation 

   }   
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 } 

 

#ifdef DEBUG_PROFILE 

 ClrGPIO(A, 6);     // profiling pin 

#endif 

 return; 

} 

 

/***********************************************************************/ 

// 

// Function: Timer 2 Interrupt service routine 

//  

// Arguments: none 

// 

// Return Value: none 

// 

// Description:  Handles ADC events. Defines sampling pace 

// 

/***********************************************************************/ 

 

#pragma interrupt saveall 

 

void Timer2 (void) 

{  

 asm (bfclr #SCR_TCF,X:TMRA2_SCR); // Clears Time Compare Flag for the  

      // counter to start from the beginning 

  

 asm (move #(ADCR1_STARTADC | ADCR1_EOSIE),X:ADCA_ADCR1); 

// start ADC with once sequence, single ended and interrupt enabled 

// (User's Manual –  p269) 

 return; 

} 

 

#pragma mark ---------------- 

 

 

/***********************************************************************/ 

// 

// Function: CAN_Receive Interrupt service routine 

//  

// Arguments: none 

// 

// Return Value: none 

// 

// Description:  Handles CAN received messages 

// 

/***********************************************************************/ 

 

#pragma interrupt saveall 
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void CAN_Receive (void) 

{  

 static int ConversionCoeffsReceived = 0; 

 static unsigned short coeff[CO_EFF_SIZE]; 

 

asm { 

 

 move #$ffff,X:CANRFLG  // acknowledge interrupt by reseting receive flag 

     // putting the proper receiving bit on 

 

 move X:CANIDAC,X0   // move the hit value to X0 register 

 bfclr #$fff0,X0   // clear unimportant bits  

 

 //*************** First FILTER HIT comparator ******************* 

 cmp #$0000,X0    // compare if it's hit 0 (filter 0) 

      // (SetVoltage Filter) 

 jne canr_filter1   // jump if not to filter 1 

  

 move X:CAN_RB_DSR0,Y0  // move first byte (DSR0) of message to Y0 

 move #$08,X0   // define value 8 for shifting 

 lsll Y0,X0,Y0   // shift Y0 to left 8 times 

 add X:CAN_RB_DSR1,Y0  // add the second byte (DSR1) of message to Y0 

 move Y0,CAN_V_Average  // the CAN_V_Average now has the value from the 

     // pendant which is the set voltage*100 

 jmp canr_label_end  // finish the routine 

 

canr_filter1:      

// *************** Next FILTER HIT comparator ******************* 

 cmp #$0001,X0   // compare if it's hit 1 (filter 1) (OS_P_STATUS  

     // Filter) (Arc Start/Stop) 

 jne canr_filter2  // jump if not to filter 2 

 move X:CAN_RB_DSR0,X0  // move the first and only byte from the message to 

     // X0 register 

 cmp #$0002,X0   // compare if is 0x02 (ARC START) 

 jne canr_label2  // if not jump to next check 

 move CAN_V_Average,Y0  // if is arc ON check if CAN_V_Average is still 

     // Zero or if it has received already a value 

 cmp #Zero,Y0   // compare it is Zero 

 jeq canr_label_end  // if it is, exit routine 

 move #SCR_TCFIE,X:TMRA2_SCR // if not, then it means that Arc is ON and it's 

     // time to enable timer2 compare interrupt for  

     // starting the ADC 

 move #SCR_TCFIE,X:TMRA1_SCR // if not, then it means that Arc is ON and it's 

     // time to enable timer1 compare interrupt for 

     // starting the ADC 

 move #Zero, ADC_Timer  // Reset ADC Timer 

 move #Zero, ADC_V_In  // Reset Voltage In 

 move #Zero, ADC_V_Out  // Reset Voltage Out 
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} 

 

 ADC_V_Sum = (word) (((dword) CAN_V_Average << LgADC_Div) / (word) ADC_Mult);

     // Convert set voltage from CAN 

 ADC_V_Sum -= ADC_Offset; // to voltage from ADC 

 ADC_V_Average_RAW = ADC_V_Sum;// and set initial RAW average value 

 ADC_V_Sum <<= LgBufferSize; // and respective SUM variable 

 

asm { 

 jmp canr_label_end  // jump to the end 

canr_label2: 

 cmp #$0003,X0   // check if value is 3 (ARC STOP) 

 jne canr_label_end  // if not, jump to the end of the routine 

 

 move #Zero,X:TMRA2_SCR  // if it is, disable timer2 compare interrupt to 

     // stop everything 

 move #Zero,X:TMRA1_SCR  // if it is, disable timer1 compare interrupt to 

     // stop everything 

 move #$0002,bTPos  // Defaults torch positioning to 2 (N/A) 

 move #S_Stop, S_Process // Sets Process to its stop 

 move #Zero,ADC_Last_Avg // clear Last Average for the next run 

 bfclr #LED,X:GPIO_E_DR  // Turn OFF LED 

 jmp canr_label_end  // jump to the end 

 

canr_filter2:      

// *************** Next FILTER HIT comparator ******************* 

 cmp #$0002,X0   // compare if it's hit 2 (filter 2) (CF_ThruArcTrac 

     // Filter) (Configure calibration values) 

 jne canr_filter3  // jump if not to filter 3 

  

 move X:CAN_RB_DLR,X0  // compare the length of the message 

 cmp #$0003,X0   // if its three, continue 

 jne canr_label3  // otherwise only set the flag so that the current 

     // co-effs are returned 

 move X:CAN_RB_DSR0,X0  // move the first byte from the message to X0 

     // register 

 move X0, ADC_Mult  // move X0 ADC_Mult 

 move X:CAN_RB_DSR1,X0  // move the second byte from the message to X0  

     // register 

 move X0, ADC_Div  // move X0 ADC_Div 

 move X:CAN_RB_DSR2,X0  // move the third byte from the message to X0  

     // register 

 move X0, ADC_Offset  // move X0 ADC_Offset 

 jmp canr_label_end  // jump to the end 

canr_label3: 

 move #$0001,X0   // set flag to say that the co-effs have been 

     // received 

 move X0, ConversionCoeffsReceived // move X0 ADC_Mult 

 jmp canr_label_end 
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canr_filter3:      

// *************** Next FILTER HIT comparator ******************* 

 cmp #$0003,X0   // compare if it's hit 3 (filter 3)  

     // (ID0_CAN_Tch_Pos Filter) (torch position) 

 jne canr_label_end  // jump if not to end of routine (no more filters) 

 move X:CAN_RB_DSR1,X0  // move second byte from message to X0 register 

 move X0,bTPos   // define torch position 

 move #Zero,X:TMRA1_SCR  // Disable Timer1 - H/V tracking will be done by  

     // TorchPos() routine 

 move S_Process, Y0  // Check if Process is in Arc state 

 cmp #S_Arc, Y0   // compare if it’s Arc state 

 jne canr_label_end  // If not jump end 

} 

 TorchPos();   // else call routine 

canr_label_end: 

// *************** Finish Filter Hits comparators ******************* 

 

 // If new Conversion Coeffs have been received, save them to flash. 

 if (ConversionCoeffsReceived != 0) 

  { 

    coeff[0] = ADC_Mult; 

  coeff[1] = ADC_Div; 

  coeff[2] = ADC_Offset; 

  coeff[3] = STORAGE_FLAG; 

    EraseFlash(coeff_add, CO_EFF_SIZE); 

    WriteFlash(coeff, coeff_add, CO_EFF_SIZE); 

  LgADC_Div = log2(ADC_Div); 

  ConversionCoeffsReceived = 0;  

  ADCCoeffSend(); 

   } 

 

 return; 

} 

 

/***********************************************************************/ 

// 

// Function: CAN_Transmit Interrupt service routine 

//  

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Handles CAN transmited messages 

// 

/***********************************************************************/ 

 

#pragma interrupt saveall 
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void CAN_Transmit (void) 

{  

 asm (move #Zero,X:CANTCR);  // reset interrupt state 

 return; 

} 

 

 

#pragma mark ---------------- 

 

/***********************************************************************/ 

// 

// Function: ADC_Complete Interrupt service routine 

//  

// Arguments: none 

// 

// Return Value: none 

// 

// Description:  Handles all the calculations needed after sampling is completed 

// 

/***********************************************************************/ 

 

#pragma interrupt saveall 

 

void ADC_Complete (void) 

{  

 

#ifdef DEBUG_PROFILE 

 SetGPIO(A, 7);    // profiling pin 

#endif 

  

 asm (move #$0800,X:ADCA_ADSTAT); // reset interrupt state 

      // (User's Manual - p277) 

 

asm { 

 move X:ADCA_ADRSLT2,Y0   // load Y0 register with value from AN1 

 bfclr #$8000,Y0   // clear sign bit - assuming always 

      // positive voltages 

 move #$0003,X0    // define X0 with the value for right 

      // shifting (3 bits) (1st shift to put  

      // voltage in place) 

 lsrr Y0,X0,Y0    // shifts Y0 3 bits right 

 move Y0,ADC_V_Read   // move result to ADC_V_Read 

      // (ADC voltage read) 

 move X:ADCA_ADRSLT5,Y0   // load Y0 register with value from AN5 

 bfclr #$8000,Y0   // clear sign bit - assuming always 

      // positive voltages 

 move #$0003,X0    // define X0 with the value for right 

      // shifting (3 bits) (1st shift to put  

      // current in place) 
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 lsrr Y0,X0,Y0    // shifts Y0 3 bits right 

 move Y0,ADC_I_Read   // move result to ADC_I_Read 

      // (ADC current read) 

 } 

 

 

 if ((ADC_I_Read > Initial_Trigger) && (S_Process != S_Arc)) 

 {  

  S_Process = S_Arc; 

  ADC_I_Trigger = Initial_Trigger; 

  ADC_V_Peak = 0; 

 } 

  

 if (S_Process == S_Arc) 

 { 

  if (ADC_Timer > Timer_Trigger) 

  { 

   if (ADC_I_Read > ADC_I_Trigger) 

   { 

    if (ADC_I_Read > ADC_I_Max) 

    { 

     ADC_I_Max = ADC_I_Read; 

     ADC_V_Peak = ADC_V_Read; 

     ADC_I_Trigger = (ADC_I_Max >> 1) + (ADC_I_Max >> 

2); 

    } 

   } 

   else 

   { 

    ADC_I_Max = ADC_I_Trigger; 

   } 

   ADC_V_Sum += (dword) ADC_V_Read; 

   // To the sum variable the new read value is added 

   ADC_V_Sum -= (dword) ADC_V_Average_RAW; 

// and subtracted by the old raw average 

   ADC_V_Average_RAW = (word) ((dword) ADC_V_Sum >> LgBufferSize);

   // then shifted to obtain the new raw average value 

  } 

  else 

  { 

   ADC_Timer++; 

  } 

 }          

   

 

  

#ifdef DEBUG_PROFILE 

 ClrGPIO(A, 7);     // profiling pin 

#endif 
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 return; 

} 

 

/***************************************************************************/ 

// 

// Function: ADCAverageSend function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Sends average voltage calculated through CAN 

//     

/***************************************************************************/ 

 

#pragma interrupt called 

 

void ADCAverageSend (void) 

{ 

asm { 

 move #$14,X:CAN_TB0_IDR0  // Buffer 0 / Average Voltage 

 move #$80,X:CAN_TB0_IDR1  // ID 0xa4 

 move #$03,X:CAN_TB0_DLR  // length 3 

 move #$00,X:CAN_TB0_TBPR  // maximum priority 

 move ADC_V_Average,Y0   // load Y0 register with value from AN1 

 move Y0,X:CAN_TB0_DSR2   // LSB loaded to its position 

 move #$0008,X0    // define X0 with the value for right 

      // shifting (8 bits) (2nd shift to send 2nd  

      // byte) 

 lsrr Y0,X0,Y0    // shifts Y0 8 bits right 

 move Y0,X:CAN_TB0_DSR1   // MSB and Sign loaded to its position 

 move #$a0,X:CAN_TB0_DSR0  // load the channel reference AV1 = 0xa1 

 move #CANTFLG_TXE0,X:CANTFLG  // release message 

 } 

  

 return; 

} 

 

 

/***************************************************************************/ 

// 

// Function: ADCVoltageSend function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Sends values from AN1, AN2 and AN3 through CAN 

//   buffers 0, 1 and 2 respectively. 1st byte on message 
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//   identifies channel name (a1, a2 and a3). 

//     

/***************************************************************************/ 

 

#pragma interrupt called 

 

void ADCVoltageSend (void) 

{ 

 

asm { 

 move #$14,X:CAN_TB0_IDR0  // Buffer 0 / Value from AN1 

 move #$20,X:CAN_TB0_IDR1  // ID 0xa1 

 move #$03,X:CAN_TB0_DLR  // length 3 

 move #$00,X:CAN_TB0_TBPR  // maximum priority 

 move X:ADCA_ADRSLT0,Y0   // load Y0 register with value from AN0 for 

      // current 

 move #$0003,X0    // define X0 with the value for right 

shifting 

      // (3 bits) (1st shift to put voltage in 

place) 

 lsrr Y0,X0,Y0    // shifts Y0 3 bits right 

 move Y0,X:CAN_TB0_DSR2   // LSB loaded to its position 

 move #$0008,X0    // define X0 with the value for right 

shifting 

      // (8 bits) (2nd shift to send 2nd byte) 

 lsrr Y0,X0,Y0    // shifts Y0 8 bits right 

 move Y0,X:CAN_TB0_DSR1   // MSB and Sign loaded to its position 

 move #$a1,X:CAN_TB0_DSR0  // load the channel reference AN1 = 0xa1 

 move #$14,X:CAN_TB1_IDR0  // Buffer 1 / Value from AN2 

 move #$40,X:CAN_TB1_IDR1  // ID 0xa2 

 move #$03,X:CAN_TB1_DLR  // length 3 

 move #$00,X:CAN_TB1_TBPR  // maximum priority 

 move X:ADCA_ADRSLT4,Y0   // load Y0 register with value from AN4 for  

      // current 

 move #$0003,X0    // define X0 with the value for right 

shifting 

      // (3 bits) (1st shift to put voltage in 

place) 

 lsrr Y0,X0,Y0    // shifts Y0 3 bits right 

 move Y0,X:CAN_TB1_DSR2   // LSB loaded to its position 

 move #$0008,X0    // define X0 with the value for right 

shifting 

      // (8 bits) (2nd shift to send 2nd byte) 

 lsrr Y0,X0,Y0    // shifts Y0 8 bits right 

 move Y0,X:CAN_TB1_DSR1   // MSB and Sign loaded to its position 

 move #$a2,X:CAN_TB1_DSR0  // load the channel reference AN1 = 0xa2 

 move #$14,X:CAN_TB2_IDR0  // Buffer 2 / Value from AN3 

 move #$60,X:CAN_TB2_IDR1  // ID 0xa3 

 move #$03,X:CAN_TB2_DLR  // length 3 



236 

 move #$00,X:CAN_TB2_TBPR  // maximum priority 

 move X:ADCA_ADRSLT5,Y0   // load Y0 register with value from AN5 for  

      // current 

 move #$0003,X0    // define X0 with the value for right 

shifting 

      // (3 bits) (1st shift to put voltage in 

place) 

 lsrr Y0,X0,Y0    // shifts Y0 3 bits right 

 move Y0,X:CAN_TB2_DSR2   // LSB loaded to its position 

 move #$0008,X0    // define X0 with the value for right 

shifting 

      // (8 bits) (2nd shift to send 2nd byte) 

 lsrr Y0,X0,Y0    // shifts Y0 8 bits right 

 move Y0,X:CAN_TB2_DSR1   // MSB and Sign loaded to its position 

 move #$a3,X:CAN_TB2_DSR0  // load the channel reference AN1 = 0xa3 

 

 move #(CANTFLG_TXE0 | CANTFLG_TXE1 | CANTFLG_TXE2), X:CANTFLG  

      //release all three messages 

 } 

  

 return; 

} 

 

 

//***************************************************************************/ 

// 

// Function: ADCCoeffSend function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Sends values of the ADC conversion coefficients out through CAN 

//     

/***************************************************************************/ 

 

#pragma interrupt called 

 

void ADCCoeffSend (void) 

{ 

asm { 

 move #$D0,X:CAN_TB0_IDR0  // Use buffer 0 

 move bCAN_id1,X0   // Device Number, ID1 = id based on devnum 

 move X0,X:CAN_TB0_IDR1   // Send on ID 0x680 + device ID 

 move #$03,X:CAN_TB0_DLR  // length 3 

 move #$00,X:CAN_TB0_TBPR  // maximum priority 

 move ADC_Mult,Y0   // load Y0 register with value from 

ADC_Multi 

 move Y0,X:CAN_TB0_DSR0   // load into byte 0 
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 move ADC_Div,Y0   // load Y0 register with value from ADC_Div 

 move Y0,X:CAN_TB0_DSR1   // load into byte 1 

 move ADC_Offset,Y0   // load Y0 register with value from 

ADC_Offset 

 move Y0,X:CAN_TB0_DSR2   // load into byte 2 

 move #CANTFLG_TXE0,X:CANTFLG  // release message 

 } 

 return; 

} 

 

//***************************************************************************/ 

// 

// Function: TorchPos function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Calculates and sends CAN messages to correct vertical  

//   and horizontal tracking when torch oscillation is present 

//     

/***************************************************************************/ 

 

#pragma interrupt called 

 

void TorchPos (void) 

{ 

#ifdef DEBUG_PROFILE 

 SetGPIO(A, 6);    // profiling pin 

#endif 

 

 

 if (ADC_V_Peak != 0) 

 { 

      // Scale ADC Value to a Voltage reading

  

  ADC_V_Average = (word) ((((dword) ADC_V_Average_RAW) * ((dword) 

ADC_Mult)) >> LgADC_Div);   // Scale Ave Voltage Read from ADC value to 

      // Voltage*100 

      // (accuracy to .01V) -- casts to make sure 

32bit 

      // math is used 

  ADC_V_Average += ADC_Offset; 

      // Straight linear scalling y = mx + b 

 

  if (ADC_Last_Avg == 0) ADC_Last_Avg = ADC_V_Average;  

      // Sets for the first time the previous  

      // average variable 

  if (bTPos == T_Mid)  // If the sent position is middle then the  
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      // vertical tracking is done 

  { 

      // Calculate Vertical Adjustment 

   if ((ADC_V_Average > (CAN_V_Average - Abnormal_Tol)) && 

(ADC_V_Average < (CAN_V_Average + Abnormal_Tol)))  

      // defining a possible average window of 

+/-  

      // Abnormal_Tol 

   { 

    if (ADC_V_Average > CAN_V_Average)  

      // if average calculated is bigger than the  

      // average received from the CAN 

    { 

     CAN_Vertical = (int) ((ADC_V_Average - 

CAN_V_Average) >> LgPID_Divisor) - 1; // calculate the new value to lower the torch 

     asm { 

      move CAN_Vertical,Y0    

     // after the calculation, the result is the  

     // amount of movement on the torch but 

      not Y0 

     // it needs to be negated before sending to  

     // the bug to apply the proper movement DOWN 

      move Y0,CAN_Vertical    

     // put the new value again into the variable 

     } 

    } 

     

    if (ADC_V_Average < CAN_V_Average)  

     // if instead the average calculated is lower 

    { 

     CAN_Vertical = (int) ((CAN_V_Average - 

ADC_V_Average) >> LgPID_Divisor); // calculate the new amount to be send to the  

     // bug,but since is to put the torch UP,  

     // doesn't meed to negate 

    } 

   } 

 

     // Send Vertical Adjust CAN messages 

   if (CAN_Vertical != 0)      

     // if there is a value to be sent different  

     // from zero, lets send it 

   { 

    asm { 

     move CAN_Vertical,Y0 

     // move the amount to the Y0 

     // register 

     move #$4c,X:CAN_TB0_IDR0 

     // Buffer 0 / Torch up/down 
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   move bCAN_id1,X0  // move address 

   move X0,X:CAN_TB0_IDR1 // ID 0x260 + bDevNum (0-3) 

   move #$02,X:CAN_TB0_DLR // length 2 

   move #$00,X:CAN_TB0_TBPR // maximum priority 

   move Y0,X:CAN_TB0_DSR1  // LSB loaded to its position 

   move #$0008,X0   // define X0 with the value for  

       // right shifting (8 bits) 

       // (2nd shift to send 2nd byte) 

   lsrr Y0,X0,Y0   // shifts Y0 8 bits right  

   move Y0,X:CAN_TB0_DSR0  // MSB and Sign loaded to its  

       // position 

 #ifdef DEBUG_OSCAVG_SEND 

   move #$14,X:CAN_TB1_IDR0 // Buffer 1 / Average Voltage 

   move #$80,X:CAN_TB1_IDR1 // ID 0xa4 

   move #$03,X:CAN_TB1_DLR // length 3 

   move #$00,X:CAN_TB1_TBPR // maximum priority 

   move ADC_V_Average,Y0  // load Y0 register with value from 

       // Avg 

   move Y0,X:CAN_TB1_DSR2  // LSB loaded to its position 

   move #$0008,X0   // define X0 with the value for 

       // right shifting (8 bits) 

       // (2nd shift to send 2nd byte) 

   lsrr Y0,X0,Y0   // shifts Y0 8 bits right 

   move Y0,X:CAN_TB1_DSR1  // MSB and Sign loaded to its  

       // position 

   move #$a0,X:CAN_TB1_DSR0 // load the channel reference 

       // AV1 = 0xa1 

 

   move #(CANTFLG_TXE0 | CANTFLG_TXE1),X:CANTFLG 

       //release message 

 #else 

   move #CANTFLG_TXE0,X:CANTFLG //release message 

 #endif 

 

 } 

  

  CAN_Vertical = 0; 

// reset the amount message again to be prepared for the next read and calculation 

 }   

 else 

 { 

#ifdef DEBUG_OSCAVG_SEND 

  asm{ 

   move #$14,X:CAN_TB0_IDR0 // Buffer 1 / Average Voltage 

   move #$80,X:CAN_TB0_IDR1 // ID 0xa4 

   move #$03,X:CAN_TB0_DLR // length 3 

   move #$00,X:CAN_TB0_TBPR // maximum priority 

   move ADC_V_Average,Y0  // load Y0 register with value 

       // from Avg 
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   move Y0,X:CAN_TB0_DSR2  // LSB loaded to its position 

   move #$0008,X0   // define X0 with the value for 

       // right shifting (8 bits) 

       // (2nd shift to send 2nd byte) 

   lsrr Y0,X0,Y0   // shifts Y0 8 bits right 

   move Y0,X:CAN_TB0_DSR1  // MSB and Sign loaded to its  

       // position 

   move #$a0,X:CAN_TB0_DSR0 // load the channel reference  

       // AV1 = 0xa1 

   move #CANTFLG_TXE0,X:CANTFLG //release message 

  } 

 #endif 

    

 } 

 

  } 

  else 

  { 

   // Calculate Horizontal Adjustment 

   if (bTPos == T_Out) 

   { 

    ADC_V_Out = ADC_V_Peak; 

   } 

   else 

   { 

    ADC_V_In = ADC_V_Peak; 

   } 

    

   if ((ADC_V_In != 0) && (ADC_V_Out != 0)) 

   { 

    if (ADC_V_Out < ADC_V_In) 

    { 

     CAN_Horizontal = CAN_H_Step_Out;  

    } 

    else 

    { 

     CAN_Horizontal = CAN_H_Step_In;  

    } 

 

   } 

   asm { 

    move CAN_Horizontal,Y0 // after the calculation, the  

       // result is the amount of  

       // movement on the torch but 

    not Y0   // it needs to be negated  

       // before sending to the bug to  

       // apply the proper movement  

       // Out 

    move Y0,CAN_Horizontal // put the new value again into  
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       // the variable 

   move #ID0_SP_HorzAd,X:CAN_TB0_IDR0 // Buffer 0 / Torch In/Out 

    move bCAN_id1,X0  // load X0 with device ID 

   move X0,X:CAN_TB0_IDR1  // and put it in position 

   move #$02,X:CAN_TB0_DLR // length 2 

   move #$00,X:CAN_TB0_TBPR // maximum priority 

   move CAN_Horizontal,Y0  // load Y0 register with value  

       // from AN1 

   move Y0,X:CAN_TB0_DSR1  // LSB loaded to its position 

   move #$0008,X0   // define X0 with the value for  

       //right shifting (8 bits) 

       // (2nd shift to send 2nd byte) 

   lsrr Y0,X0,Y0   // shifts Y0 8 bits right 

   move Y0,X:CAN_TB0_DSR0  // MSB and Sign loaded to its  

       // position 

   move #CANTFLG_TXE0,X:CANTFLG //release message 

    } 

  } 

 } 

  

#ifdef DEBUG_PROFILE 

 ClrGPIO(A, 6);     // profiling pin 

#endif 

 return; 

  

} 

 

 

#pragma mark ---------------- 

 

/***************************************************************************/ 

// 

// Function: Main function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Initialize hardware and executes main loop 

// 

/***************************************************************************/ 

void main(void) 

{ 

// Variables definition 

 

// Variables Initialization 

 scCounter0 = 0; 

 bDevNum = 0; 

 bCANSpeed = 0; 
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 CAN_V_Average = 0; 

 bTPos = 2;    // default torch position (N/A) 

 S_Process = S_Stop; 

  

// Other Initialization 

 init(); 

 

#ifdef DEBUG_PROFILE 

// Initialize GPIO pins 6 and 7 for profiling 

 SetupGPOutput('A', 6);  // portA 6 used for debug 

 SetupGPOutput('A', 7);  // portA 7 used for debug 

#endif 

  

/// Main Loop 

 while (1) 

 { 

  

 

 }     // Main Loop 

  

}      // Main 

 

#pragma mark ---------------- 

 

 

 

 

 

/***************************************************************************/ 

// 

// Function: Init function 

// 

// Arguments: none 

// 

// Return Value: none 

// 

// Description: Initialize whole hardware 

//    [ Interrupts Setup ] 

//    [ Timers Setup  ] 

//    [ GPIO Setup  ] 

//    [ CAN Setup   ] 

//    [ ADC Setup   ] 

//     

/***************************************************************************/ 

void init(void) 

{ 

 static unsigned short coeff[CO_EFF_SIZE]; 

 

asm { 
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// Interrupts Setup =============================================================== 

 bfset #$0100,sr   // prepare Status Register 

 bfclr #$0200,sr   // for enabling interrupts 

 bfset #$fe12,X:IPR   // enable both IRQ A & B, and all other 

      // interrupts (User's Manual - p138) 

 bfset #$0100,X:GPR10   // Timer A Ch 0 interrupt priority – 1 

      // (User's Manual - p144) 

 bfset #$4000,X:GPR10   // Timer A Ch 1 interrupt priority – 4 

      // (User's Manual - p144) 

 bfset #$0007,X:GPR11   // Timer A Ch 2 interrupt priority – 7 

      // (User's Manual - p144) 

 bfset #$7700,X:GPR3   // CAN Receive and Transmit interrupt  

      // priorities - 7 (User's Manual - p144) 

 bfset #$7000,X:GPR13   // ADC Complete interrupt priority – 7 

      // (User's Manual - p144) 

// End of Interrupt Setup ========================================================= 

 

// Timers Setup =============================================================== 

// IPBus / 128 and CountDown=0x7a12 is equivalent to 1/10 of a second 

// Timer A Ch 0 - Priority 1 (MIN) - responsible for the LED events 

 move #Zero,X:TMRA0_CTRL  // stop timer 0 (User's Manual - p428) 

 move #CountDown0,X:TMRA0_CMP1  // timer 0 CMP1 loaded with CountDown value 

      // (User's Manual - p425) 

 move #Zero,X:TMRA0_CMP2  // timer 0 CMP2 loaded with Zero (#$0000)  

      // (User's Manual - p426) 

 move #CountDown0,X:TMRA0_LOAD // timer 0 LOAD loaded with CountDown0 value  

      // (User's Manual - p427) 

 move #CountDown0,X:TMRA0_CNTR  // timer 0 CNTR loaded with CountDown0 

value  

      // (User's Manual - p428) 

 move #$3e30,X:TMRA0_CTRL // timer0 primary source on IPBus / 128, Len  

      // 1,  Dir down (User's Manual - p419)  

#ifdef TIMER0_ON 

 move #SCR_TCFIE,X:TMRA0_SCR  // enable timer0 compare interrupt 

      //(User's Manual - p422) 

#endif 

  

// Timer A Ch 1 - Priority 4  - responsible for CAN events 

 move #Zero,X:TMRA1_CTRL  // stop timer 1 (User's Manual - p428) 

 move #CountDown1,X:TMRA1_CMP1  // timer 1 CMP1 loaded with CountDown value  

      // (User's Manual - p425) 

 move #Zero,X:TMRA1_CMP2  // timer 1 CMP2 loaded with Zero (#$0000)  

      // (User's Manual - p426) 

 move #CountDown1,X:TMRA1_LOAD // timer 1 LOAD loaded with CountDown1 value  

      // (User's Manual - p427) 

 move #CountDown1,X:TMRA1_CNTR // timer 1 CNTR loaded with CountDown1 value  

      // (User's Manual - p428) 

 move #$3e30,X:TMRA1_CTRL // timer1 primary source on IPBus / 128, Len  

      // 1,  Dir down (User's Manual - p419)  
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#ifdef TIMER1_ON 

 move #SCR_TCFIE,X:TMRA1_SCR  // enable timer1 compare interrupt 

      // (User's Manual - p422) 

#endif 

 

// Timer A Ch 2 - Priority 7 (MAX) - responsible for the ADC events 

 move #Zero,X:TMRA2_CTRL // stop timer 0 (User's Manual - p428) 

 move #CountDown2,X:TMRA2_CMP1 // timer 2 CMP1 loaded with CountDown value 

     // (User's Manual - p425) 

 move #Zero,X:TMRA2_CMP2 // timer 2 CMP2 loaded with Zero (#$0000)  

     // (User's Manual - p426) 

 move #CountDown2,X:TMRA2_LOAD // timer 2 LOAD loaded with CountDown2 value  

     // (User's Manual - p427) 

 move #CountDown2,X:TMRA2_CNTR // timer 2 CNTR loaded with CountDown2 value  

     // (User's Manual - p428) 

 move #$3e30,X:TMRA2_CTRL // timer2 primary source on IPBus / 128, Len  

     // 1,  Dir down (User's Manual - p419)  

#ifdef TIMER2_ON 

 move #SCR_TCFIE,X:TMRA2_SCR // enable timer2 compare interrupt 

     // (User's Manual - p422) 

#endif 

 

// End of Timers Setup =============================================================== 

 

// GPIO Setup =============================================================== 

// GPIO (LED) Port E ; Pin 6 (User's Manual - from p197) 

 bfset #LED,X:GPIO_E_PUR // ensure pull up is enabled 

     // (User's Manual - p197) 

 bfset #LED,X:GPIO_E_DDR // set pin as output (User's Manual - p197) 

 bfclr #LED,X:GPIO_E_PER // clear peripheral enable so GPIO pin can be  

     // used as IO (User's Manual - p198) 

 bfclr #LED,X:GPIO_E_IENR // disable interupts (User's Manual - p199) 

 bfclr #LED,X:GPIO_E_DR  // turn off LED (User's Manual - p197) 

 

// GPIO (Rotary Switch and Debug) Port A ; Pins 1,2,3,4 Inputs - Pins 7,8 Outputs 

 bfset #GPIO_A_Pins_Mask,X:GPIO_A_PUR // ensure pull ups are enabled 

     //(User's Manual - p197) 

 move  #GPIO_A_Pins,X:GPIO_A_DDR// define which are inputs and outputs 

     //(User's Manual - p197) 

 bfclr #GPIO_A_Pins_Mask,X:GPIO_A_PER // clear peripheral enable so GPIO pins can 

be 

     // used as IOs (User's Manual - p198) 

 bfclr #GPIO_A_Pins_Mask,X:GPIO_A_IENR // disable interupts (User's Manual - p199) 

 move X:GPIO_A_DR,X0  // read the input value to the X0 reg 

     // (User's Manual - p197) 

 not X0    // invert X0 bits because input is inverted 

 move X0,Y0   // copy X0 reg to Y0 reg 

 bfclr #$fff5,Y0  // clear all bits in Y0 reg except the bits  

     //that are in position (2nd and 4th) 
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 bftstl #$0004,X0  // test 3rd bit in X0 reg 

 bcs label1   // if it's zero jmp label1 

 bfset #$0001,Y0  // if it's not zero, set the 1st bit in Y0 

label1: 

 bftstl #$0001,X0  // test 1st bit in X0 reg 

 bcs label2   // if it's zero jmp label2 

 bfset #$0004,Y0  // if it's not zero set the same 3rd bit in Y0  

label2: 

 dec Y0    // decrement Y0 by one to adapt the  

     // values (0-3 instead 1-4) 

 move Y0,X0   // copy Y0 to X0 for using Y0 with the bDevNum  

     // and X0 to bCANSpeed 

 bfclr #$fffc,Y0  // clear all bits except 1st and 2nd (those  

     // who defines the Device Number from 0-3) 

 move Y0,bDevNum  // copy the resultant value to bDevNum 

 bfclr #$fff3,X0  // clear now all bits except 3rd and 4th ones  

     // (those who defines the CAN Speed) 

 lsr X0    // shifts the result to the right just for  

     // having a CAN speed defined from 0-3 

 lsr X0    // the second needed shift 

 move X0,bCANSpeed  // move the resultant value to the proper  

     // variable (bCANSpeed) 

 

// End of GPIO Setup =============================================================== 

 } 

  

 bCAN_id1 = bDevNum << 5; // setup a byte two for the can id registers 

     // in the DSP based on the devnum to make life  

     // easier 

 

 

 asm { 

// CAN Setup  =============================================================== 

// CAN Parameters: jump width 2, 3 samples, time seg1 6 TQ, time segment2 12 TQ,  

// prescaler 4, 

 bfset #CANCTL0_SFTRES,X:CANCTL0 // set the soft reset mode bit  

      // (User's Manual - p225) 

 move #(CANCTL1_CANE | CANCTL1_CLKSRC),X:CANCTL1// enable CAN module and define  

      // IPBus as source clock 

      // (User's Manual - p227) 

 move #$001f,Y0    // prepare Y0 register to the BRP  

      // calculation 

 move bCANSpeed,X0   // move to X0 the CAN Speed from the  

      // rotary switch 

 inc X0     // increment X0 by 1 because Speed=3  

      // is the lowest BRP 

 bfclr #$000c,X0   // incrementing X0; in case of speed  

      // 3, bit 2 will have a 1 so its  

      // cleared 
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 lsll Y0,X0,Y0    // make a left shift to Y0, X0 times  

      // to have the proper value in the  

      // most significant nibble 

 move #$0004,X0    // now lets define new value for  

      // right shifting 

 lsrr Y0,X0,Y0    // do the right shifting X0 times.  

      // BRP is now defined in Y0  

      // register. 

 bfset #CANBTR0_SJW1,Y0   // its only need to add the SJW1  

      // value; it means jump width 2 and  

      // prescaler equals to Y0 

 move Y0,X:CANBTR0   // and move it to the proper CAN  

      // register (User's Manual - p229) 

 bfset #(CANBTR1_SAMP | CANBTR1_TSEG22 | CANBTR1_TSEG20 | CANBTR1_TSEG13 | 

CANBTR1_TSEG12),X:CANBTR1 

      // Sampling bit + bit 0 and 2 from  

      // TSEG2 + bit 2 and 3 from TSEG1  

      // (User's Manual - p230) 

  

 // CAN filters 

 

 move #CANIDAC_IDAM0,X:CANIDAC  // Four 16-bit Acceptance Filters  

      // (User's Manual - p238) 

 

 move #ID0_SetVoltageMsg,X:CANIDAR0 // SetVoltage Filter 

 move #$00,X:CANIDMR0   // Message ID0 = ID0_SetVoltageMsg 

 move bCAN_id1,X0   // Torch Number ID1 = id based on  

      // devnum 

 move X0,X:CANIDAR1   // Torch Number ID1 = id based on  

      // devnum 

 move #$07,X:CANIDMR1   // Torch Number ID1 = id based on  

      // devnum 

 move #ID0_OS_P_STATUS,X:CANIDAR2 // OS_PxStatus index Filter 

 move #$00,X:CANIDMR2   // Message ID0 = ID0_OS_P_STATUS 

 move bCAN_id1,X0   // Torch Number ID1 = id based on  

      // devnum 

 move X0,X:CANIDAR3   // Torch Number ID1 = id based on  

      // devnum 

 move #$f7,X:CANIDMR3   // Torch Number ID1 = id based on  

      // devnum 

 // filter for config  

 move #ID0_CF_ThruArcTrac,X:CANIDAR4 // CF_ThruArcTrac index Filter 

 move #$00,X:CANIDMR5   // Message ID0 = ID0_CF_ThruArcTrac 

 move bCAN_id1,X0   // Torch Number ID1 = id based on  

      // devnum 

 move X0,X:CANIDAR5   // Torch Number ID1 = id based on  

      // devnum 

 move #$f7,X:CANIDMR5   // Torch Number ID1 = id based on  

      // devnum 
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 // filter for torch position  

 move #ID0_CAN_Tch_Pos,X:CANIDAR6 // 0x03Ax from the BUG indicating  

      // toch posistion 

 move #$00,X:CANIDMR6   // Message ID0 = ID0_CAN_Tch_Pos 

 move bCAN_id1,X0   // Torch Number ID1 = id based on  

      // devnum 

 move X0,X:CANIDAR7   // Torch Number ID1 = id based on  

      // devnum 

 move #$f7,X:CANIDMR7   // Torch Number ID1 = id based on  

      // devnum 

 // End of CAN filters definition  

 

 bfclr #(CANCTL0_SFTRES | CANCTL0_SLPRQ),X:CANCTL0 // clears the soft reset 

mode  

      // bit and sleep mode bit  

      // (User's Manual - p225) 

 move #$ffff,X:CANRFLG   // clears CAN Receiver Flag  

      // Register (User's Manual - p232) 

 move #Zero,X:CANTFLG   // clears CAN Transmitter Flag  

      // Register (User's Manual - p236) 

 bfset #CANRIER_RXFIE,X:CANRIER // sets the Receiver Full Interrupt  

      // Enable (User's Manual - p235) 

 bfset #Zero,X:CANTCR   // sets the Transmitter Empty  

      // Interrupt Enable for buffer 0  

      // (not used for now) 

      // (User's Manual - p237) 

// End of CAN Setup =============================================================== 

 

// ADC (Analog-to-Digital Converter) Setup ======================================== 

 move #ADCR1_STOPADC,X:ADCA_ADCR1 // stop ADC to setup registers  

      // (User's Manual - p269) 

 move #$0009,X:ADCA_ADCR2  // clock divisor selection 

      // (User's Manual - p273) 

 move #Zero,X:ADCA_ADZCC  // disables zero crossing control  

      // (User's Manual - p273) 

 move #$3210,X:ADCA_ADLST1  // order in which channels are  

      // sampled (User's Manual - p274) 

 move #$0054,X:ADCA_ADLST2  // continuation of channel order  

      // (User's Manual - p274) 

 move #$00c0,X:ADCA_ADSDIS  // which channels are off (6th and 

      // 7th) (User's Manual - p276) 

 move #Zero,X:ADCA_ADCR1  // clear whole control 1 register,  

      // inclusive the stop bit 

 // Adjusting the Offset 

  move #Zero,X:ADCA_ADOFS0 

  move #Zero,X:ADCA_ADOFS1 

  move #Zero,X:ADCA_ADOFS2 

  move #Zero,X:ADCA_ADOFS3 

  move #Zero,X:ADCA_ADOFS4 
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  move #Zero,X:ADCA_ADOFS5 

  move #Zero,X:ADCA_ADOFS6 

 // End of Offset adjustement  

  

// uncomment next line for debugging purposes (ADC start) 

// asm (move #(ADCR1_STARTADC | ADCR1_EOSIE),X:ADCA_ADCR1);// start ADC with once 

sequence, single ended and interrupt enabled (User's Manual - p269) 

 

// End of ADC Setup =============================================================== 

 } 

  

 // Set ADC Conversion co-efficients from flash 

 ReadFlash(coeff, coeff_add, CO_EFF_SIZE); 

 if (coeff[3] != 0x000F)   // if no coeffvicients yet 

  {     // load the default values 

  coeff[0] = (unsigned short) Def_ADC_Mult; 

  coeff[1] = (unsigned short) Def_ADC_Div; 

  coeff[2] = (unsigned short) Def_ADC_Offset; 

  coeff[3] = STORAGE_FLAG; 

    EraseFlash(coeff_add, CO_EFF_SIZE); 

    WriteFlash(coeff, coeff_add, CO_EFF_SIZE); 

   } 

 ADC_Mult = (byte) coeff[0]; 

 ADC_Div = (byte) coeff[1]; 

 LgADC_Div = (byte) log2(ADC_Div); 

 ADC_Offset = (byte) coeff[2]; 

 ADCCoeffSend(); 

 

 return; 

  

} // Init 

 

 

//************************************************************************ 

// 

// Company: Cranfield University. 

// 

// Copyright 2003 by Cranfield University. 

//   All rights reserved. 

// 

// Author: Gil Lopes 

// 

// Description: header file for vimain.c 

// 

// File: vimain.h 

// 

//***********************************************************************/ 

 

// Global Code Definitions 
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#ifndef _VIMAIN_H 

#define _VIMAIN_H 

 

#define DEBUG_VOLTAGE_SEND  // Activates sending voltages through the CAN 

#undef DEBUG_VOLTAGE_SEND 

 

#define DEBUG_AVERAGE_SEND  // Activates sending average voltages through the  

     // CAN 

#undef DEBUG_AVERAGE_SEND 

 

#define DEBUG_OSCAVG_SEND  // Activates sending average voltages through the 

     // CAN when oscillating 

#undef DEBUG_OSCAVG_SEND 

 

#define DEBUG_PROFILE  // Activates toggle on GPIO pin 6 to profile the  

     // CAN interupts 

#undef DEBUG_PROFILE   // and pin 7 to profile the ADC interupts 

 

#define TIMER0_ON   // Activate or deactivates TIMER0 events (ID LED) 

//#undef TIMER0_ON 

 

#define TIMER1_ON   // Activate or deactivates TIMER1 events (CAN) 

#undef TIMER1_ON   // must always be set to OFF (undefined), only ON  

     // when Arc starts or for debugging purposes 

 

#define TIMER2_ON   // Activate or deactivates TIMER2 events (ADC) 

#undef TIMER2_ON   // must always be set to OFF (undefined), only ON  

     // when Arc starts or for debugging purposes 

 

// Include Files 

#include "56803.h" 

#include "ext_reg.h" 

#include "gpio.h"   // include routines to easily manipulate GPIO 

#include "flashlib.h"  // include flash routines 

#include <math.h>   // math routines (mainly for log2) 

 

//***********************************************************************/ 

// Program Defines 

/***********************************************************************/ 

 

// LED definitions 

#define LED  0x0020  // Port E - Pin 6 (Pins from 1 to 8) 

#define TurnOnLED asm (bfset #LED,X:GPIO_E_DR) 

#define TurnOffLED asm (bfclr #LED,X:GPIO_E_DR) 

#define ToggleLED asm (bfchg #LED,X:GPIO_E_DR) 

 

// GPIO Port A definitions 

#define GPIO_A_Pins   0x00f0 // Define Pins 1-4 Inputs (Rotary Switch)  
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      // and 5-8 Outputs (7,8 Debug) 

#define GPIO_A_Pins_Mask 0x00cf  // Which pins to change (1-4,6,7) 

 

// Counter definitions (31250 (0x7a12) count ticks = 1/10 sec with IPBus/128 defined) 

#define CountDown0 0xf424   // 62500 count ticks = 1/5 sec with  

      // IPBus/128 defined 

#define CountDown1 0x7a12   // (0x7a12) 31250 count ticks = 1/10 sec  

      // with IPBus/128 defined 

#define CountDown2 0x001f   // 10080.6 samples/sec (closest number to  

      // 10Ksamples/sec) 

#define Zero  0x0000   // sometimes very useful 

 

// ADC definitions 

#define BufferSize  1024  // For average calculation 

#define LgBufferSize  10  // Log to base 2 of BufferSize 

#define Def_ADC_Mult 24   // defines the default Multiplier to  

      // scale ADC values to voltage 

#define Def_ADC_Div  16  // defines the default Divisor to scale  

      // ADC values to voltage 

#define Def_LgADC_Div 4  // Log to base 2 of default Divisor 

#define Def_ADC_Offset -30  // defines the default Offset to scale  

      // ADC values to voltage 

#define coeff_add   0x0100  // where in flash the Voltage conversion  

      // co-effs are stored 

#define CO_EFF_SIZE  4   // number of conversion co-effs (Mult,  

      // Div, Offset, and Storage Flag) 

#define STORAGE_FLAG  0x000F   // storage flag to mark that co-effs have  

      // been placed in flash 

#define Initial_Trigger 0x00FF  // when current goes over this value an  

      // arc was triggered 

#define Timer_Trigger 0x4E20  // 2 seconds of samplings for triggering 

 

 

// Control Algorithm definitions 

#define PID_Divisor  32  // divisor for height calculations (lower 

      // the values higher the torch movements) 

#define LgPID_Divisor 3  // Log to base 2 of PID_Divisor 

#define LgPID_H_Divisor 4  // Log to base 2 of PID Horizontal  

      // Divisor 

#define Abnormal_Tol 1000   // Window tolerance for abnormal arc  

      // behaviour (+10V, -10V from defined  

      // average) 

 

//G Status of process 

#define S_Stop   0x00 // Process is stopped 

#define S_Start   0x01 // Process received a start from pendant 

#define S_Ignition  0x02  // Process detected voltage for ignition  

      // (above average value) 

#define S_Arc   0x03  // Process detected arc voltage (below  



251 

      // average after ignition) 

#define Err_Window  0x400  // For 10KHz sampling and pulse freq of  

      // 50Hz=2 pulse width in error (hi or lo) 

 

// CAN definitions 

#define ID0_SetVoltageMsg 0x6c  // from the pendant, defines the average  

      // voltage in the message body 

#define ID0_OS_P_STATUS  0x68 // from the pendant, defines start/stop  

      // of arc 

#define ID0_CF_ThruArcTrac  0x50  // from an adminstrator, define new  

      // conversion co-effs. 

#define ID0_CAN_Tch_Pos  0x74 // from the BUG msg=0x03Ax indicating one  

      // of the three torch positions 

#define ID0_SP_HorzAd  0x4a // Torch In/Out message (SP_HorzAd  

      // ID=0x25x) 

#define CAN_Msg_Ready_ON 0x01  // use this define for debugging purposes  

      // (1 sends a message, 0 doesn't send the  

      // message) 

#define CAN_H_Step_In  0x0005 

#define CAN_H_Step_Out  0xFFFA 

 

// Torch definitions 

#define T_Out    0x01 // Torch is in outter position 

#define T_In    0xff // Torch is in inner position 

#define T_Mid    0x00  // Torch is in the middle  

 

// Global definitions 

#define byte unsigned char   // although the processor only work with  

      // 16bit minimum variables, 

#define word unsigned int   // the byte definition could be useful  

      // to better understand the program  

#define dword unsigned long 

//***********************************************************************/ 

// Constants 

 

// Global Variable Declarations 

static int i,j;    // universal temporary counters 

 

static signed char scCounter0;  // for being used in Timer0 counter (LED) 

static byte bDevNum;    // device number (0-3) 

static byte bCAN_id1;   // 2nd byte value for the CAN id  

      // registers in DSP -- its the devnum  

      // left shifted 5 

static byte bCANSpeed;   // CAN speed (0=500k, 1=250k, 2=125k,  

      // 3=1M)  

static byte bTPos;    // torch position from bug  

      // (out=1;in=255;mid=0;default=2) 

static word ADC_V_Read;   // ADC instant voltage read 

static word ADC_I_Read;   // ADC instant current read 
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static word ADC_Timer;   // Waits defined time to avoid initial  

      // pulse disturbance 

static word ADC_V_Average;   // ADC resultant calculated average 

      // (After scaling) 

static word ADC_V_Average_RAW;  // ADC resultant calculated average  

      // before scaling 

static word ADC_Last_Avg;   // previous position average 

 

static word ADC_V_Peak; 

static word ADC_V_In; 

static word ADC_V_Out; 

static word ADC_I_Max; 

static word ADC_I_Trigger; 

 

static dword ADC_V_Sum;   // Sum variable for average calculation 

 

static word CAN_V_Average;   // Average voltage defined from Pendant  

      // through a CAN message 

static word CAN_Vertical;   // carries the new height value to send  

      // to the bug 

static word CAN_Horizontal;   // Horizontal value to be sent to torch  

      // horizontal adjustment 

 

static word S_Process;   // Process Status 

static word Err_Hi;    // Error of constantly high voltage read 

static word Err_Lo;    // Error of constantly low voltage read 

 

// ADC Conversion Constants 

static byte ADC_Mult;   // Multiplier to scale ADC values to  

      // voltage 

static byte ADC_Div;    // Divisor to scale ADC values to voltage 

static byte LgADC_Div;   // Log to base 2 of Divisor 

static byte ADC_Offset;   // Offset to scale ADC values to voltage 

// Function Prototypes 

void Timer0(void);    // LED events 

void Timer1(void);    // CAN events 

void Timer2(void);    // ADC events 

void CAN_Receive (void);   // CAN message receive events 

void CAN_Transmit (void);   // CAN message transmit events 

void ADC_Complete (void);   // ADC completed sampling events 

void ADCAverageSend (void);   // ADC_CAN send averages through CAN 

void ADCVoltageSend (void);   // ADC_CAN send voltages through CAN 

void ADCCoeffSend (void);   // ADC_CAN send voltages through CAN 

void TorchPos (void);   // Torch positioning routine 

void init(void);    // Init routine to initializes whole  

      // hardware 

 

#endif 
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Appendix D. Controller Area Network monitoring 
program source code 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1 – CAN Monitoring program - Main window 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D.2 - Power Supply control window (left)  

and torch offset error graphs (right) 
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Figure D.3 - Different perspectives of the torch offset error 3D graph window 
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Figure D.4 – CAN monitoring program Visual Basic source code 

 
Module RMS.BAS Code 

 

Public Const Torus_Points = 40 

Public Const Weld_Points = 500 

Public Const Pi = 3.1415926535 

Public Const Height_Comp = 1000 

Public Const In_Out_Comp = 1000 

Public Const Torus_Size = 30 

Public Const Seam_Size = 35 

 

Public tmessage_array(8) As String 

Public tmessage_ID As String 

Public tmessage_DLC As Integer 

Public tmessage_extend As Boolean 

 

Public message_array(8) As Integer 

Public message_size As Integer 

 

Public torch_pos, torch_dir As Integer 

 

Public LogAvgs As Boolean 

Public LogMsgs As Boolean 

 

Public cycle_start As Boolean 

 

Public Seam_x1(Weld_Points) 

Public Seam_y1(Weld_Points) 

Public Seam_z1(Weld_Points) 

Public Seam_t1(Weld_Points) 

 

Public Weld_Position As Integer 

Public Torch_Height_Sum As Integer 

Public Torch_In_Out_Sum As Integer 

 

Public Torch_Height(Weld_Points) As Integer 

Public Torch_In_Out(Weld_Points) As Integer 

 

Public Sub Parse_Message(evstr As String) 

Dim i As Integer 

Dim strTemp1 As String * 20 

         

    message_size = Val(Mid(evstr, InStr(evstr, "l=") + 2, 1)) 

    strTemp1 = Mid(evstr, InStr(evstr, "l=") + 5, message_size * 2) 

     

    For i = 0 To message_size - 1 

       message_array(i) = Val("&H" + Mid(strTemp1, (i * 2) + 1, 2)) 
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    Next i 

 

End Sub 

 

Public Sub Process_Panel(evstr As String) ' Process all incoming messages to use just 

the needed ones 

Dim i, l As Integer 

Dim j, k As Double 

Dim strTemp1 As String 

Dim evstr_log As String * 100 

 

    If LogMsgs Then 

        Open App.Path + "\MsgsLog.txt" For Append As #1 

            evstr_log = Trim(evstr) 

            Print #1, Date$ + vbTab + Time$ + vbTab + evstr_log 

        Close #1 

    End If 

 

   If InStr(evstr, "id=00A4") <> 0 Then ' Voltage Average 

        Parse_Message (evstr) 

        j = Val(Trim(Str(message_array(1) * 256 + message_array(2)))) / 100 

        FrontEnd.Text1.Text = Str(j) 

        If LogAvgs Then 

            Open App.Path + "\AvgsLog.txt" For Append As #1 

                Print #1, Date$ + vbTab + Time$ + vbTab + Str(j) 

            Close #1 

        End If 

   End If 

    

   If InStr(evstr, "id=0261") <> 0 Then ' Torch Vertical Adjustment from the VI-Sense 

        Parse_Message (evstr) 

        j = Val(Trim(Str(message_array(1)))) 

        j = j * 256 

        j = (j + message_array(2)) 

        If (j And &H8000) Then 

            j = j - 65536 

        End If 

         

        Torch_Height_Sum = Torch_Height_Sum + (j / 100) 

         

        If j > 0 Then 

            FrontEnd.Shape1.Top = 1200 - (j / 25) 

            FrontEnd.Shape1.Height = 100 + (j / 25) 

        Else 

            FrontEnd.Shape1.Top = 1200 ' + (j / 25) 

            FrontEnd.Shape1.Height = 100 - (j / 25) 

        End If 

        FrontEnd.Text3.Text = Str(j) 

   End If 
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   If InStr(evstr, "id=0251") <> 0 Then ' Torch Horizontal Adjustment from the VI-Sense 

        Parse_Message (evstr) 

        j = Val(Trim(Str(message_array(1)))) 

        j = j * 256 

        j = (j + message_array(2)) 

        If (j And &H8000) Then 

            j = j - 65536 

        End If 

         

        Torch_In_Out_Sum = Torch_In_Out_Sum + (-j / 1000) 

         

        If j > 0 Then 

            FrontEnd.Shape6.Left = 1200 '- (j / 25) 

            FrontEnd.Shape6.Width = 100 + (j / 25) 

        Else 

            FrontEnd.Shape6.Left = 1200 + (j / 25) 

            FrontEnd.Shape6.Width = 100 - (j / 25) 

        End If 

        FrontEnd.Text4.Text = Str(j) 

   End If 

    

   If InStr(evstr, "id=03A1") <> 0 Then ' Torch position from the BUG 

        Parse_Message (evstr) 

        j = Val(Trim(Str(message_array(1)))) 

        FrontEnd.Shape3.FillColor = &HFF& 

        FrontEnd.Shape4.FillColor = &HFF& 

        FrontEnd.Shape5.FillColor = &HFF& 

        Select Case (j) 

        Case 1: FrontEnd.Shape3.FillColor = &HFF00& 

        Case 0: FrontEnd.Shape4.FillColor = &HFF00& 

        Case 255: FrontEnd.Shape5.FillColor = &HFF00& 

        Case Else 

        End Select 

   End If 

 

    

    

End Sub 

 

 

Public Sub Transmit_Message() 

Dim TmpMsg As vbMsg 

Dim j As Integer 

Dim subStr As String 

Dim strLen As Integer 

Dim transmitID As String 

 

transmitID = Hex$(Val("&h" & tmessage_ID) And &H7FFFFFFF) 



258 

If (Main.extended.Value) Then 

  transmitID = Hex$(Val("&h" & tmessage_ID) Or &H80000000) 

End If 

 

ev.tag = v_TRANSMIT_MSG 

 

j = 0 

strLen = Len(transmitID) 

For ii = strLen - 1 To 1 Step -2 

  subStr = "&h" & Mid$(transmitID, ii, 2) 

  TmpMsg.idBytes(j) = Val(subStr) 

  j = j + 1 

Next ii 

 

If (strLen Mod 2) <> 0 Then 

  subStr = "&h" & Mid$(transmitID, 1, 1) 

  TmpMsg.idBytes(j) = Val(subStr) 

End If 

 

For aa = 0 To tmessage_DLC 

  TmpMsg.data(aa) = Val("&h" & tmessage_array(aa)) 

Next 

TmpMsg.dlc = tmessage_DLC 'Val("&h" & Main.dlc.Text) 

If TmpMsg.dlc > 8 Then 

  TmpMsg.dlc = 8 

End If 

TmpMsg.flags = 0 

 

ev = Build_vbEvent_tagData_vbMsg(ev, TmpMsg) 

 

FrontEnd.Label3.Caption = "Transmit a message" 

 

vErr = vbTransmit(gPortHandle, chanMask, ev) 

If vErr Then Fehler 

 

' for checking if a message was transmited 

transmited = True 

transmitCounter = 10 ' wait 100ms for answer 

End Sub 
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Module PS.BAS code 
 

Public Declare Function PS_Functions Lib "PS.dll" Alias "PS_Funcs" _ 

    (ByVal func_name As Integer, ByVal fParam0 As Integer, ByVal fParam1 As Integer) As 

Integer 

 

Public stat As Integer 

Public GasPurge(1) As Boolean 

Public WireJog(1) As Boolean 

Public PS_Active(1) As Boolean 

Public PS1_enabled As Boolean 

Public PS_used As Integer 

Public Status_LED As Boolean 

Public Arc_Start As Boolean 

Public PS_Power_State As Boolean 

 

' PS_Functions Description 

' Function Number/Name              fParam0            fParam1              Return 

' 

======================================================================================== 

' 1 / Test DLL                     -------              ------ 

' 2 / Startup Power Supply         -------              ------ 

' 3 / PS Status Update          Power Supply number     ------ 

' 4 / Shutdown Power Supply     Power Supply number     ------ 

' 5 / Set Weld Mode             Power Supply number     Mode Number 

' 6 / Arc Start/Stop            Power Supply number   1=Start;0=Stop 

' 7 / Gas Purge                 Power Supply number   1=Gas  ;0=No Gas 

' 8 / Wire Jog                  Power Supply number   1=Jog  ;0=No Jog 

' 9 / Set Work Point            Power Supply number   Work Point Value 

'10 / Trim Point                Power Supply number   Trim Point Value 

'11 / Read Actual WorkPoint     Power Supply number     ------              long 

' 

======================================================================================== 

' Power Supply number starts in 0 (zero) 

 

Public Sub init_PS() 

For i = 0 To 1 

    PS_Active(i) = False 

    GasPurge(i) = False 

    WireJog(i) = False 

Next i 

PS1_enabled = False 

PS_used = 1 

PS_Power_State = False 

 

stat = PS_Functions(2, 0, 0) 'Startup PS 

If stat <= 0 Then 

    PS_Active(0) = False 

Else 
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    PS_Active(0) = True 

    PS.PS0_StatusLED.FillColor = &HFF00& 

End If 

 

stat = PS_Functions(9, 0, 300) 

stat = PS_Functions(10, 0, 50) 

 

End Sub 

 

Public Sub Timers(state As Boolean) 

    PS.Timer2.Enabled = state 

    FrontEnd.Timer1.Enabled = state 

    FrontEnd.Timer2.Enabled = state 

    Main.Timer1.Enabled = state 

End Sub 
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Form FRONTEND.FRM code 
 

Private Sub Command1_Click() ' Set Voltage Request 

If Text2.Text <> "" Then 

    tmessage_ID = "361" 

    tmessage_DLC = 2 

    tmessage_extend = False 

    tmessage_array(0) = Trim(Hex$(Int((Val(Text2.Text) * 100) / 256))) 

    tmessage_array(1) = Trim(Hex$(Int((Val(Text2.Text) * 100) Mod 256))) 

    Call Transmit_Message 

End If 

End Sub 

 

Private Sub Command10_Click() ' Torch Right (IN) 

tmessage_ID = "251" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "0A" 

Call Transmit_Message 

End Sub 

 

Private Sub Command11_Click() ' Oscillation 

Call oscillation 

End Sub 

 

Private Sub Command12_Click() ' Simulates Torch arriving Outter region 

tmessage_ID = "3a1" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "0" 

tmessage_array(1) = "1" 

Call Transmit_Message 

End Sub 

 

Private Sub Command13_Click() ' Simulates Torch arriving Middle region 

tmessage_ID = "3a1" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "0" 

tmessage_array(1) = "0" 

Call Transmit_Message 

End Sub 

 

Private Sub Command14_Click() ' Simulates Torch arriving Inner region 

tmessage_ID = "3a1" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "0" 
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tmessage_array(1) = "FF" 

Call Transmit_Message 

End Sub 

 

Private Sub Command15_Click() 

torch_pos = 0 

torch_dir = 1 

FrontEnd.Timer2.Enabled = True 

End Sub 

 

Private Sub Command16_Click() 

FrontEnd.Timer2.Enabled = False 

End Sub 

 

Private Sub Command17_Click() 

If Not LogAvgs Then 

    LogAvgs = True 

    FrontEnd.Command17.Caption = "Stop Log" 

Else 

    LogAvgs = False 

    FrontEnd.Command17.Caption = "Log Avgs" 

End If 

End Sub 

 

Private Sub Command18_Click() 

If Not LogMsgs Then 

    LogMsgs = True 

    FrontEnd.Command18.Caption = "Stop Log" 

Else 

    LogMsgs = False 

    FrontEnd.Command18.Caption = "Log Msgs" 

End If 

End Sub 

 

Private Sub Command19_Click() ' Torch UP for CT (Contact Tip) changing 

tmessage_ID = "261" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "01" 

tmessage_array(1) = "EA" 

Call Transmit_Message 

End Sub 

 

Private Sub Command20_Click() ' Torch DOWN for CT (Contact Tip) changing 

tmessage_ID = "261" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "FE" 

tmessage_array(1) = "15" 
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Call Transmit_Message 

End Sub 

 

Private Sub Command21_Click() 

tmessage_ID = "251" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "32" 

Call Transmit_Message 

End Sub 

 

Private Sub Command22_Click() 

tmessage_ID = "251" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "FF" 

tmessage_array(1) = "CD" 

Call Transmit_Message 

End Sub 

 

Private Sub Command23_Click() 

stat = PS_Functions(1, 0) 'Test PS DLL 

PS.Show 

End Sub 

 

Private Sub Command24_Click() 

Nav3D.Show 

End Sub 

 

Private Sub Command9_Click() ' Torch Left (OUT) 

tmessage_ID = "251" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "FF" 

tmessage_array(1) = "F5" 

Call Transmit_Message 

End Sub 

 

Private Sub Command7_Click() ' Torch UP 

tmessage_ID = "261" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "0A" 

Call Transmit_Message 

End Sub 
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Private Sub Command8_Click() ' Torch DOWN 

tmessage_ID = "261" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "FF" 

tmessage_array(1) = "F5" 

Call Transmit_Message 

End Sub 

 

Private Sub Command2_Click() ' Arc Start 

Weld_Position = 0 

Torch_Height_Sum = 0 

Torch_In_Out_Sum = 0 

Nav3D.Output2D.ClearData 

 

tmessage_ID = "341" 

tmessage_DLC = 1 

tmessage_extend = False 

tmessage_array(0) = "2" 

Call Transmit_Message 

 

If PS_Value.Value = 1 Then 

    Arc_Start = True 

    'Call Timers(False) 

    If PS_Active(0) Then 

        stat = PS_Functions(6, 0, 1) 

    End If 

    If PS_used = 2 And PS_Active(1) Then 

        stat = PS_Functions(6, 1, 1) 

    End If 

    PS.OutList.AddItem "PS_Status(contactor ON)= " & stat 

    PS_Value.Enabled = False 

    Call Timers(True) 

    'Timer2.Enabled = False 

End If 

Nav3D.Timer1.Enabled = True 

End Sub 

 

Private Sub Command5_Click() ' BUG UP 

tmessage_ID = "201" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "00" 

Call Transmit_Message 

tmessage_ID = "201" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "01" 
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tmessage_array(1) = "F8" 

Call Transmit_Message 

End Sub 

 

Private Sub Command6_Click() ' BUG DOWN 

tmessage_ID = "201" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "00" 

Call Transmit_Message 

tmessage_ID = "201" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "FE" 

tmessage_array(1) = "07" 

Call Transmit_Message 

End Sub 

 

Private Sub Command3_Click() ' Cycle Start 

Dim i As Integer 

 

cycle_start = True 

 

tmessage_ID = "201" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "00" 

Call Transmit_Message 

 

If (FrontEnd.Option1) Then 

    tmessage_ID = "201" 

    tmessage_DLC = 2 

    tmessage_extend = False 

    tmessage_array(0) = Trim(Hex$(Int(HScroll1.Value / 256)))  '00 

    tmessage_array(1) = Trim(Hex$(Int(HScroll1.Value Mod 256))) 'FA 

    Call Transmit_Message 

Else 

    i = Not (HScroll1.Value) 

    tmessage_ID = "201" 

    tmessage_DLC = 2 

    tmessage_extend = False 

    tmessage_array(0) = Trim(Right(Hex$(Int(i / 256)), 2)) 'FF 

    tmessage_array(1) = Trim(Right(Hex$(Int(i Mod 256)), 2)) '05 

    Call Transmit_Message 

End If 

    Label7.Caption = "Speed " & HScroll1.Value 

End Sub 
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Private Sub Command4_Click() 

' Process and send STOP message (Arc, motion, etc) 

 

cycle_start = False 

 

If Arc_Start Then 

    'Call Timers(False) 

    If PS_Value.Value = 1 Then 

        If PS_Active(0) Then 

            stat = PS_Functions(6, 0, 0) 

        End If 

        If PS_used = 2 And PS_Active(1) Then 

            stat = PS_Functions(6, 1, 0) 

        End If 

    End If 

    PS.OutList.AddItem "PS_Status(contactor OFF)= " & stat 

    PS_Value.Enabled = True 

    Arc_Start = False 

    'Call Timers(True) 

    Timer3.Enabled = True 

     

    tmessage_ID = "341" 'Arc Stop 

    tmessage_DLC = 1 

    tmessage_extend = False 

    tmessage_array(0) = "3" 

    Call Transmit_Message 

     

Else 

    tmessage_ID = "341" 'Arc Stop 

    tmessage_DLC = 1 

    tmessage_extend = False 

    tmessage_array(0) = "3" 

    Call Transmit_Message 

     

    tmessage_ID = "201" 'Stop BUG 

    tmessage_DLC = 2 

    tmessage_extend = False 

    tmessage_array(0) = "00" 

    tmessage_array(1) = "00" 

    Call Transmit_Message 

     

    tmessage_ID = "231" ' Stop oscillation 

    tmessage_DLC = 6 

    tmessage_extend = False 

    tmessage_array(0) = "0" 

    tmessage_array(1) = "0" 

    tmessage_array(2) = "0" 

    tmessage_array(3) = "0" 

    tmessage_array(4) = "0" 
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    tmessage_array(5) = "0" 

    Call Transmit_Message 

 

End If 

 

Nav3D.Timer1.Enabled = False 

 

End Sub 

 

Private Sub Debug_Click() 

     

    Main.OnOffline.Caption = "Open&Driver" 

    Main.OnOffline_Click 

    Main.Show 

 

End Sub 

 

Private Sub Exit_Click() 

vErr = vbClosePort(gPortHandle) 

gPortHandle = INVALID_PORTHANDLE 

vErr = vbCloseDriver 

If Main.moreInfo.Value Then 

  Main.Output.AddItem ">>> Close Port" 

  Main.Output.AddItem ">>> Close Driver" 

End If 

 

Call Timers(False) 

 

Unload Main 

Unload FrontEnd 

Unload PS 

 

stat = PS_Functions(4, 1, 0) 'Shutdown PS1 and PS2 

 

End Sub 

 

Private Sub Form_Activate() 

FE_Activated = True 

MN_Activated = False 

Main.Timer1.Enabled = False 

FrontEnd.Timer1.Enabled = True 

End Sub 

 

Private Sub Form_Load() 

 

Declarations 

 

h = CreateEvent(vbNullString, False, False, vbNullString) 
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vErr = InitDriver 

If vErr Then Fehler 

 

Call init_PS 

 

End Sub 

 

Private Sub HScroll1_Change() 

Dim i As Integer 

 

If cycle_start Then 

    If (FrontEnd.Option1) Then 

        tmessage_ID = "201" 

        tmessage_DLC = 2 

        tmessage_extend = False 

        tmessage_array(0) = Trim(Hex$(Int(HScroll1.Value / 256)))  '00 

        tmessage_array(1) = Trim(Hex$(Int(HScroll1.Value Mod 256))) 'FA 

        Call Transmit_Message 

    Else 

        i = Not (HScroll1.Value) 

        tmessage_ID = "201" 

        tmessage_DLC = 2 

        tmessage_extend = False 

        tmessage_array(0) = Trim(Right(Hex$(Int(i / 256)), 2)) 'FF 

        tmessage_array(1) = Trim(Right(Hex$(Int(i Mod 256)), 2)) '05 

        Call Transmit_Message 

    End If 

End If 

Label7.Caption = "Speed " & HScroll1.Value * 2.54 & "mm/min" 

End Sub 

 

Private Sub HScroll2_Change() ' Speed Change 

Call oscillation 

End Sub 

 

Private Sub HScroll3_Change() ' Width Change 

Call oscillation 

End Sub 

 

Private Sub HScroll4_Change() ' Dwell Change 

Call oscillation 

End Sub 

 

Private Sub HScroll5_Change() 

FrontEnd.Label9.Caption = FrontEnd.HScroll5.Value 

FrontEnd.Timer2.Interval = FrontEnd.HScroll5.Value 

End Sub 
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Private Sub Pause_Click() 

    If FE_Activated = False Then 

        FE_Activated = True 

        Pause.Caption = "Pause" 

    Else 

        FE_Activated = False 

        Pause.Caption = "Continue..." 

    End If 

End Sub 

 

Private Sub Text5_Change() 

If Text5.Text <> "" Then 

    HScroll2.Value = Text5.Text 

End If 

End Sub 

 

Private Sub Text6_Change() 

If Text6.Text <> "" Then 

    HScroll3.Value = Text6.Text 

End If 

End Sub 

 

Private Sub Text7_Change() 

If Text7.Text <> "" Then 

    HScroll4.Value = Text7.Text 

End If 

End Sub 

 

Private Sub Timer1_Timer() 

 

If Not FE_Activated Then 

   Exit Sub 

End If 

 

Dim evstr As String * 255 

Dim Tmp As Long 

Dim timestamp As Double 

 

vErr = vbReceive1(gPortHandle, pEvent) 

 

' check if a message was transmited 

If (transmited) Then 

  transmitCounter = transmitCounter - 1 

  If transmitCounter = 0 Then 

    FrontEnd.Label3.Caption = "Couldn't transmit the message! " 

    transmited = False 

  End If 

End If 
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If vErr = VSUCCESS Then 

   vErr = vbGetEventString(pEvent, evstr) 

   FrontEnd.Output.AddItem evstr    

    

    Call Process_Panel(evstr) 'Refresh FrontPanel values with new received ones 

    

   ' check if a message was transmited 

   If (transmited) Then 

     If (pEvent.tagData(4) And MSGFLAG_TX) Then 

       FrontEnd.Label3.Caption = "The message was transmited " 

       transmited = False 

     End If 

   End If 

    

   messageCount = messageCount + 1 

   If pEvent.timestamp Then 

      timestamp = pEvent.timestamp 

      If (timestamp < 0) Then 

        timestamp = timestamp + 4294967296#    'fix signed reperesentation of VB as 

unsigned 

      End If 

      If lastTime > timestamp Then 

        FrontEnd.Output.AddItem "!!! Time decreasing !!!  DeltaT = -" & lastTime - 

timestamp 

      End If 

      lastTime = timestamp 

   End If 

   If Get_vbEvent_tagData_vbMsg(pEvent).flags And MSGFLAG_OVERRUN Then 

      overrunCount = overrunCount + 1 

   End If 

ElseIf vErr <> VERR_QUEUE_IS_EMPTY Then 

   Fehler 

Else 

   Exit Sub 

End If 

 

lc = FrontEnd.Output.ListCount 

FrontEnd.Output.ListIndex = lc - 1 

If lc > 30000 Then FrontEnd.Output.Clear 

 

End Sub 

 

Sub oscillation() 

tmessage_ID = "231" 

tmessage_DLC = 6 

tmessage_extend = False 

tmessage_array(0) = Trim(Hex$(Int(HScroll2.Value / 256))) 

tmessage_array(1) = Trim(Hex$(Int(HScroll2.Value Mod 256))) 

tmessage_array(2) = Trim(Hex$(Int(HScroll3.Value / 256))) 
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tmessage_array(3) = Trim(Hex$(Int(HScroll3.Value Mod 256))) 

tmessage_array(4) = Trim(Hex$(Int(HScroll4.Value / 256))) 

tmessage_array(5) = Trim(Hex$(Int(HScroll4.Value Mod 256))) 

Text5.Text = HScroll2.Value 

Text6.Text = HScroll3.Value 

Text7.Text = HScroll4.Value 

Call Transmit_Message 

End Sub 

 

Private Sub Timer2_Timer() 

 

If torch_pos = 0 Then 

    torch_pos = torch_pos + torch_dir 

    tmessage_array(1) = "0" 

 

ElseIf torch_pos = 1 Then 

    torch_dir = -1 

    torch_pos = torch_pos + torch_dir 

    tmessage_array(1) = "1" 

 

ElseIf torch_pos = -1 Then 

    torch_dir = 1 

    torch_pos = torch_pos + torch_dir 

    tmessage_array(1) = "FF" 

End If 

     

tmessage_ID = "3a1" 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "0" 

Call Transmit_Message 

 

End Sub 

 

Private Sub Timer3_Timer() 

tmessage_ID = "341" 'Arc Stop 

tmessage_DLC = 1 

tmessage_extend = False 

tmessage_array(0) = "3" 

Call Transmit_Message 

 

tmessage_ID = "201" 'Stop BUG 

tmessage_DLC = 2 

tmessage_extend = False 

tmessage_array(0) = "00" 

tmessage_array(1) = "00" 

Call Transmit_Message 

 

tmessage_ID = "231" ' Stop oscillation 
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tmessage_DLC = 6 

tmessage_extend = False 

tmessage_array(0) = "0" 

tmessage_array(1) = "0" 

tmessage_array(2) = "0" 

tmessage_array(3) = "0" 

tmessage_array(4) = "0" 

tmessage_array(5) = "0" 

Call Transmit_Message 

Timer3.Enabled = False 

End Sub 
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Form NAV3D.FRM 
 

Private Sub Command1_Click() 

Nav3D.Hide 

End Sub 

 

Private Sub Form_Load() 

Dim tx(Torus_Points, Torus_Points) 

Dim Ty(Torus_Points, Torus_Points) 

Dim Tz(Torus_Points, Torus_Points) 

Dim Tt(Torus_Points) 

 

Dim Ix(Weld_Points) 

Dim Iy(Weld_Points) 

Dim Iz(Weld_Points) 

 

    For i = 0 To Torus_Points 

        Tt(i) = (i - (Torus_Points / 2)) / (Torus_Points / 2) * Pi 

    Next i 

        

    For i = 0 To Torus_Points 

        For j = 0 To Torus_Points 

            tx(i, j) = Sin(Tt(j)) 

            Ty(i, j) = (Cos(Tt(j)) + Torus_Size) * Cos(Tt(i)) 

            Tz(i, j) = (Cos(Tt(j)) + Torus_Size) * Sin(Tt(i)) 

        Next j 

    Next i 

     

    ' Plot torus data 

    Output3D.Plots(1).Plot3DParametricSurface tx, Ty, Tz 

     

    For i = 0 To Weld_Points 

        Seam_t1(i) = (Pi / 2) - (i / (Weld_Points / Pi)) 

    Next i 

     

    For i = 0 To Weld_Points 

        Ix(i) = 0 

        Iy(i) = (Cos(Seam_t1(i)) + Seam_Size) * Cos(Seam_t1(i)) 

        Iz(i) = (Cos(Seam_t1(i)) + Seam_Size) * Sin(Seam_t1(i)) 

    Next i 

    Output3D.Plots(2).Plot3DCurve Ix, Iy, Iz 

     

    Nav3D.Height_Label.Caption = "Height Factor (" & Height_Comp & ")" 

    Nav3D.In_Out_Label.Caption = "In Out Factor (" & In_Out_Comp & ")" 

     

    Nav3D.Height_Scroll.Value = Height_Comp 

    Nav3D.In_Out_Scroll.Value = In_Out_Comp 

     

    Nav3D.Output2D.Plots(1).XAxis.Minimum = 0 
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    Nav3D.Output2D.Plots(1).XAxis.Maximum = Weld_Points 

     

End Sub 

 

 

Private Sub Height_Scroll_Change() 

    Call Factor_Change 

End Sub 

 

Private Sub In_Out_Scroll_Change() 

    Call Factor_Change 

End Sub 

 

Sub Factor_Change() 

Dim new_index As Integer 

 

    Nav3D.Height_Label.Caption = "Height Factor (" & Nav3D.Height_Scroll.Value & ")" 

    Nav3D.In_Out_Label.Caption = "In Out Factor (" & Nav3D.In_Out_Scroll.Value & ")" 

 

    For i = 0 To Weld_Points 

        If i < Weld_Position Then 

            Seam_x1(i) = Torch_In_Out(i) / Nav3D.In_Out_Scroll.Value 

            Seam_y1(i) = (Cos(Seam_t1(i)) + Seam_Size + (Torch_Height(i) / 

Nav3D.Height_Scroll.Value)) * Cos(Seam_t1(i)) 

            Seam_z1(i) = (Cos(Seam_t1(i)) + Seam_Size + (Torch_Height(i) / 

Nav3D.Height_Scroll.Value)) * Sin(Seam_t1(i)) 

            new_index = i 

        Else 

            Seam_x1(i) = Seam_x1(new_index) 

            Seam_y1(i) = Seam_y1(new_index) 

            Seam_z1(i) = Seam_z1(new_index) 

        End If 

    Next i 

    Output3D.Plots(3).Plot3DCurve Seam_x1, Seam_y1, Seam_z1 

     

End Sub 

 

Private Sub Timer1_Timer() 

 

    If Weld_Position <= Weld_Points Then 

        Torch_Height(Weld_Position) = Torch_Height_Sum 

        Torch_In_Out(Weld_Position) = Torch_In_Out_Sum 

         

        Seam_x1(Weld_Position) = Torch_In_Out_Sum / Nav3D.In_Out_Scroll.Value 

        Seam_y1(Weld_Position) = (Cos(Seam_t1(Weld_Position)) + Seam_Size + 

(Torch_Height_Sum / Nav3D.Height_Scroll.Value)) * Cos(Seam_t1(Weld_Position)) 

        Seam_z1(Weld_Position) = (Cos(Seam_t1(Weld_Position)) + Seam_Size + 

(Torch_Height_Sum / Nav3D.Height_Scroll.Value)) * Sin(Seam_t1(Weld_Position)) 
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        For i = Weld_Position + 1 To Weld_Points 

            Seam_x1(i) = Seam_x1(Weld_Position) 

            Seam_y1(i) = Seam_y1(Weld_Position) 

            Seam_z1(i) = Seam_z1(Weld_Position) 

        Next i 

         

        Output3D.Plots(3).Plot3DCurve Seam_x1, Seam_y1, Seam_z1 

        Weld_Position = Weld_Position + 1 

    End If 

    Nav3D.Output2D.Plots(1).ChartY Torch_Height_Sum 

    Nav3D.Output2D.Plots(2).ChartY Torch_In_Out_Sum 

     

End Sub 
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Form PS.FRM code 
 

Private Sub Command1_Click() 

    PS.Hide 

End Sub 

 

Private Sub PS_Power_Click() 

If PS_Power_State = False Then 

    PS_Power_State = True 

    PS_Power.Caption = "Power ON PS" 

    stat = PS_Functions(4, 1, 0) 

Else 

    PS_Power_State = False 

    PS_Power.Caption = "Shutdown PS" 

    stat = PS_Functions(2, 0, 0) 

End If 

End Sub 

 

Private Sub PS0_Trim_Click() 

i = CDbl(PS0_Trim_Val.Text) 

stat = PS_Functions(10, 0, i) 'Trim 

End Sub 

 

Private Sub PS0_Workpoint_Click() 

i = CDbl(PS0_Workpoint_Val.Text) 

stat = PS_Functions(9, 0, i) 'WorkPoint 

End Sub 

 

Private Sub PS1_button_Click() 

If PS1_enabled = False Then 

    Frame2.Enabled = True 

    PS1_button.Caption = "Disable PS 1" 

    PS1_enabled = True 

    PS_used = 2 

Else 

    PS1_enabled = False 

    Frame2.Enabled = False 

    PS1_button.Caption = "Enable PS 1" 

    PS_used = 1 

End If 

End Sub 

 

Private Sub PS0_GasPurge_Click() 

    If GasPurge(0) = False Then 

        stat = PS_Functions(7, 0, 1) 

        GasPurge(0) = True 

        PS0_GasPurgeLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(7, 0, 0) 
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        GasPurge(0) = False 

        PS0_GasPurgeLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS0_WireJog_IN_Click() 

    If WireJog(0) = False Then 

        stat = PS_Functions(8, 0, -1) 

        WireJog(0) = True 

        PS0_WireJogLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(8, 0, 0) 

        WireJog(0) = False 

        PS0_WireJogLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS0_WireJog_OUT_Click() 

    If WireJog(0) = False Then 

        stat = PS_Functions(8, 0, 1) 

        WireJog(0) = True 

        PS0_WireJogLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(8, 0, 0) 

        WireJog(0) = False 

        PS0_WireJogLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS1_Trim_Click() 

stat = PS_Functions(10, 1, Val(PS0_Trim_Val.Text))  'Trim 

End Sub 

 

Private Sub PS1_WireJog_IN_Click() 

    If WireJog(1) = False Then 

        stat = PS_Functions(8, 1, -1) 

        WireJog(1) = True 

        PS1_WireJogLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(8, 1, 0) 

        WireJog(1) = False 

        PS1_WireJogLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS1_WireJog_OUT_Click() 

    If WireJog(1) = False Then 

        stat = PS_Functions(8, 1, 1) 

        WireJog(1) = True 
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        PS1_WireJogLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(8, 1, 0) 

        WireJog(1) = False 

        PS1_WireJogLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS1_GasPurge_Click() 

    If GasPurge(1) = False Then 

        stat = PS_Functions(7, 1, 1) 

        GasPurge(1) = True 

        PS1_GasPurgeLED.FillColor = &HFF00& 

    Else 

        stat = PS_Functions(7, 1, 0) 

        GasPurge(1) = False 

        PS1_GasPurgeLED.FillColor = &HFF& 

    End If 

End Sub 

 

Private Sub PS1_Workpoint_Click() 

stat = PS_Functions(9, 1, Val(PS0_Workpoint_Val.Text)) 'WorkPoint 

End Sub 

 

Private Sub Timer2_Timer() 

If Status_LED Then 

    StatusLED.FillColor = &HFF00& 

    Status_LED = False 

Else 

    StatusLED.FillColor = &H0& 

    Status_LED = True 

End If 

 

psi = PS.OutList.ListCount 

PS.OutList.ListIndex = psi - 1 

If psi > 30000 Then PS.OutList.Clear 

 

stat = PS_Functions(3, 0, 0) 

OutList.AddItem "PS_Status(Status reading PS0)= " & stat 

If stat = 1 Then 

    PS0_StatusLED.FillColor = &HFF00& 

    PS_Active(0) = True 

End If 

If stat = 0 Then 

    PS0_StatusLED.FillColor = &HFF& 

    PS_Active(0) = False 

End If 

If PS_used = 2 Then 

    stat = PS_Functions(3, 1, 0) 
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    OutList.AddItem "PS_Status(Status reading PS1)= " & stat 

    If stat = 1 Then 

        PS1_StatusLED.FillColor = &HFF00& 

        PS_Active(1) = True 

    End If 

    If stat = 0 Then 

        PS1_StatusLED.FillColor = &HFF& 

        PS_Active(1) = False 

    End If 

End If 

End Sub
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Appendix E. Results of 2nd phase of experimentation 
Table E.1 – Trials B1 to B4 setup and bead measurements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1 – Peak voltages from trial B1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.2 – Peak voltages from trial B3 
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Run Travel Speed Osc freq Osc Width Initial CTWD Voltage Set Number of Bead H. Dif A Bead L. A Bead H. Dif B Bead L. B
Number (m/min) (Hz) (mm) (mm) (V) Wires (mm) (mm) (mm) (mm)

1 0.76 8.33 2.5 13.5 21 2 15.2 190 0 0
2 0.76 8.33 2.5 13.5 19 2 11.2 120 0 0
3 0.76 8.33 2.5 13.5 21 2 8.4 120 11.2 70
4 0.76 8.33 6 13.5 21 2 5.4 120 8.2 70

2.8 120 5.8 70
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Figure E.3 – Peak voltages from trial B4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.4 – Voltage measurements at different CTWD values for 2nd phase of experimentation 
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Appendix F. TRIO BASIC motion controller source code 

 

Figure F.1 - TRIO BASIC motion controller source code for 3rd phase of 
experimentation 
 
'============================================================ 
'Name:      Startup.bas 
'Function:  Startup sequence for axes setup 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
SETCOM(9600, 8, 1, 0, 1) 
WDOG=ON 
 
' set axis units 
BASE(0) ' TRAVEL axis 
UNITS=402.4 ' UNITS IN mm; speed = mm/sec 
P_GAIN=1 
I_GAIN=0 
D_GAIN=50 
OV_GAIN=0 
VFF_GAIN=0 
SPEED=5 ' mm/sec 
ACCEL=10000 
DECEL=10000 
FE_LIMIT=200000 
DEFPOS(0) 
SERVO=ON 
 
BASE(1) ' Oscillator axis 
UNITS=2000 '1 FULL REV (MOVE(1) WILL BE ONE COMPLETE TURN) 
P_GAIN=1 
I_GAIN=0 
D_GAIN=50 
SPEED=5 
ACCEL=100 
DECEL=100 
FE_LIMIT=1000 
DEFPOS(0) 
SERVO=ON 
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BASE(3) ' Width axis 
UNITS=100000 '1 FULL REV (MOVE(1) WILL BE ONE COMPLETE TURN) 
P_GAIN=1 
I_GAIN=0 
D_GAIN=50 
SPEED=5 
ACCEL=100 
DECEL=100 
FE_LIMIT=100 
DEFPOS(0) 
SERVO=ON 
 
 
RUN "MAIN" 
 
STOP 
'============================================================ 
' End of file 
'============================================================ 
 
'============================================================ 
'Name:      Main.bas 
'Function:  Main program 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
init: 
 
' MAIN vars for global initialisations 
width_min = 5.4 'Calibrated minimum Width in mm 
width_max = 9.8 'Calibrated maximum Width in mm 
step_min = 0 'Minimum step for platform down position 
step_max = -17 'Maximum step for platform up position 
enc_count_step = 100000 'Encoder counts per step 
units_step = ((enc_count_step*step_max)-(enc_count_step*step_min)) 
units_mm = (width_min-width_max) 
units_calc = units_step/units_mm 
units_default = 100000 'Encoder counts per revolution 
 
speed_min = 0 'Minimum achieved acceptable speed 
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speed_max = 25 'Maximum achieved acceptable speed 
speed_start = 5 'Speed at boot 
 
travel_speed = 0.3 'Travel Speed in m/min 
travel_speed_max = 1.5 ' Maximum Travel Speed 
travel_speed_min = 0.1 ' Minimum Travel Speed 
 
'VR initialization 
VR(1)=0 'Display options 
VR(2)=speed_start 'Displayed Speed value 
VR(3)=width_max 'Displayed Width value 
VR(4)=0 'Keyboard strokes 
VR(5)=0 'Process events and status 
VR(6)=0 'KEYBOARD status 
VR(7)=0 'PROCS status 
VR(8)=0 'DISPLAY status 
VR(9)=0 'INI running 
 
VR(10)=width_min 
VR(11)=width_max 
VR(12)=units_calc 'UNITS for BASE(3) 
VR(13)=units_default 
VR(14)=speed_min 
VR(15)=speed_max 
 
VR(16)=0 ' Table length 
VR(17)=0 ' Number of welds positions per plate 
VR(18)=0 ' Actual weld position 
VR(19)=travel_speed ' Travel Speed in m/min 
VR(20)=travel_speed_max 
VR(21)=travel_speed_min 
 
' Main start 
PRINT #4, "   CRANFIELD UNI.  " 
PRINT #4, "         *         " 
PRINT #4, "    WELDING ENG.   " 
PRINT #4, "  RESEARCH CENTRE  " 
WA(4000) 
 
RUN "CLRSCR" 
WA(1000) 
RUN "INI" 
WAIT UNTIL VR(9)=1 
RUN "DISPLAY" 
 
'Main Loop 
begin: 
key_in=0 
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GET #4, key_in 
IF key_in<>0 THEN VR(4)=key_in 
IF key_in=69 THEN GOTO init 
IF VR(6)=0 THEN 
    VR(6)=1 
    RUN "KEYBOARD" 
ENDIF 
IF VR(7)=0 THEN 
    VR(7)=1 
    RUN "PROCS" 
ENDIF 
IF VR(8)=0 THEN 
    VR(8)=1 
    RUN "DISPLAY" 
ENDIF 
WA(1000) 
GOTO begin 
 
'============================================================ 
'Name:      clrscr.bas 
'Function:  Cleans up the screen 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
 
FOR i=1 TO 4 
    PRINT#10, "                   " 
NEXT i 
 
STOP 
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'============================================================ 
'Name:      Ini.bas 
'Function:  handles the initialisation routine 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
PRINT #4, " Move platform  >  " 
PRINT #4, " down to base   >  " 
PRINT #4, " with the keys  >  " 
PRINT #4, " and press Enter>  " 
 
BASE(3) 
SPEED=1 
UNITS=VR(13) 
SERVO=ON 
 
begin: 
key_in=0 
GET #4, key_in 
 
IF key_in=73 THEN 
    SPEED=5 
    UNITS=VR(12) 
    DEFPOS(VR(11)) 
    WAIT UNTIL OFFPOS=0 
    GOTO step1 
ENDIF 
 
IF key_in=81 THEN MOVE(-2) 
IF key_in=82 THEN MOVE(-.5) 
IF key_in=83 THEN MOVE(.5) 
IF key_in=84 THEN MOVE(2) 
 
GOTO begin 
 
step1: 
PRINT #4, " Move table to  >  " 
PRINT #4, " start position >  " 
PRINT #4, "                >  " 
PRINT #4, " and press Enter>  " 
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BASE(0) 
SPEED=10 
SERVO=ON 
 
travelstart: 
key_in=0 
GET #4, key_in 
 
IF key_in=73 THEN 
    DEFPOS(0) 
    GOTO step2 
ENDIF 
 
IF key_in=81 THEN MOVE(-10) 
IF key_in=82 THEN MOVE(-1) 
IF key_in=83 THEN MOVE(1) 
IF key_in=84 THEN MOVE(10) 
 
GOTO travelstart 
 
step2: 
PRINT #4, " Move table to  >  " 
PRINT #4, " end position   >  " 
PRINT #4, "                >  " 
PRINT #4, " and press Enter>  " 
 
BASE(0) 
SPEED=10 
SERVO=ON 
 
travelend: 
key_in=0 
GET #4, key_in 
 
IF key_in=73 THEN 
    VR(16)=DPOS 
    SPEED=100 
    MOVEABS(0) 
    VR(18)=1 ' Actual weld position 
    GOTO step3 
ENDIF 
 
IF key_in=81 THEN MOVE(-10) 
IF key_in=82 THEN MOVE(-1) 
IF key_in=83 THEN MOVE(1) 
IF key_in=84 THEN MOVE(10) 
 
GOTO travelend 
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step3: 
PRINT #4, " Number of welds>  " 
PRINT #4, " per plate      >  " 
PRINT #4, "       5        >  " 
PRINT #4, " and press Enter>  " 
 
nwelds=5 
 
numberofwelds: 
key_in=0 
GET #4, key_in 
 
IF key_in=73 THEN 
    VR(17)=nwelds 
    VR(9)=1 ' INI ends 
    STOP 
ENDIF 
 
IF key_in=82 THEN nwelds=nwelds+1 
IF key_in=83 THEN nwelds=nwelds-1 
 
IF nwelds<1 THEN nwelds=1 
IF nwelds>9 THEN nwelds=9 
 
IF key_in=82 OR key_in=83 THEN 
    PRINT #4, " Number of welds>  " 
    PRINT #4, " per plate      >  " 
    IF nwelds=1 THEN PRINT #4, "       1        >  " 
    IF nwelds=2 THEN PRINT #4, "       2        >  " 
    IF nwelds=3 THEN PRINT #4, "       3        >  " 
    IF nwelds=4 THEN PRINT #4, "       4        >  " 
    IF nwelds=5 THEN PRINT #4, "       5        >  " 
    IF nwelds=6 THEN PRINT #4, "       6        >  " 
    IF nwelds=7 THEN PRINT #4, "       7        >  " 
    IF nwelds=8 THEN PRINT #4, "       8        >  " 
    IF nwelds=9 THEN PRINT #4, "       9        >  " 
    PRINT #4, " and press Enter>  " 
ENDIF 
 
GOTO numberofwelds 
 
'============================================================ 
'Name:      Display.bas 
'Function:  Handles display output 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 



289 

'--------------------------------------------------------------------------- 
'Notes:     VR(1) = Display options 
'           VR(2) = Speed value 
'           VR(3) = Width value 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
IF VR(1)=0 THEN 
    PRINT #4, "Speed(Hz) Width(mm)" 
    PRINT #4, " ";VR(2), VR(3) 
    IF VR(18)=1 THEN PRINT #4, "P1";" TS(m/min)=";VR(19) 
    IF VR(18)=2 THEN PRINT #4, "P2";" TS(m/min)=";VR(19) 
    IF VR(18)=3 THEN PRINT #4, "P3";" TS(m/min)=";VR(19) 
    IF VR(18)=4 THEN PRINT #4, "P4";" TS(m/min)=";VR(19) 
    IF VR(18)=5 THEN PRINT #4, "P5";" TS(m/min)=";VR(19) 
    IF VR(18)=6 THEN PRINT #4, "P6";" TS(m/min)=";VR(19) 
    IF VR(18)=7 THEN PRINT #4, "P7";" TS(m/min)=";VR(19) 
    IF VR(18)=8 THEN PRINT #4, "P8";" TS(m/min)=";VR(19) 
    IF VR(18)=9 THEN PRINT #4, "P9";" TS(m/min)=";VR(19) 
    PRINT #4, "        IDLE       " 
ENDIF 
 
IF VR(1)=1 THEN 
    PRINT #4, "Speed(Hz) Width(mm)" 
    PRINT #4, " ";VR(2), VR(3) 
    IF VR(18)=1 THEN PRINT #4, "P1";" TS(m/min)=";VR(19) 
    IF VR(18)=2 THEN PRINT #4, "P2";" TS(m/min)=";VR(19) 
    IF VR(18)=3 THEN PRINT #4, "P3";" TS(m/min)=";VR(19) 
    IF VR(18)=4 THEN PRINT #4, "P4";" TS(m/min)=";VR(19) 
    IF VR(18)=5 THEN PRINT #4, "P5";" TS(m/min)=";VR(19) 
    IF VR(18)=6 THEN PRINT #4, "P6";" TS(m/min)=";VR(19) 
    IF VR(18)=7 THEN PRINT #4, "P7";" TS(m/min)=";VR(19) 
    IF VR(18)=8 THEN PRINT #4, "P8";" TS(m/min)=";VR(19) 
    IF VR(18)=9 THEN PRINT #4, "P9";" TS(m/min)=";VR(19) 
    PRINT #4, "      RUNNING      " 
ENDIF 
 
IF VR(1)=2 THEN 
    PRINT #4, "Speed(Hz) Width(mm)" 
    PRINT #4, VR(2), VR(3) 
    PRINT #4, "                   " 
    PRINT #4, "        IDLE       " 
ENDIF 
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VR(8)=0 
 
STOP 
 
'============================================================ 
'Name:      Procs.bas 
'Function:  Handles Process Events and Status 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
IF VR(5)=3 THEN 
    BASE(0) 
    SPEED=10 
    MOVEABS((VR(16)/VR(17)) * (VR(18)-1)) 
    WAIT IDLE 
    VR(5)=0 
ENDIF 
 
IF VR(5)=2 THEN 
    BASE(3) 
    MOVEABS(VR(3)) 
    'WAIT UNTIL OFFPOS=0 
ENDIF 
 
 
BASE(1) 
SPEED=VR(2) 
 
IF VR(5)=1 THEN 
    IF MSPEED=0 THEN MOVE(10000) 
    BASE(0) 
    SPEED=(VR(19)*1000)/60 
    MOVEABS((VR(16)/VR(17))*VR(18)) 
    VR(1)=1 
ENDIF 
 
IF VR(5)=0 THEN 
    SPEED=0 
    RAPIDSTOP 
    RAPIDSTOP 
    RAPIDSTOP 
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ENDIF 
 
VR(7)=0 
 
STOP 
 
'============================================================ 
'Name:      keyboard.bas 
'Function:  Handles Keystroke Processes 
'--------------------------------------------------------------------------- 
'Date:      08/04 
'Author:    Gil Lopes 
'--------------------------------------------------------------------------- 
'           Copyright (c) 2004 Cranfield University 
'           Welding Engineering Research Centre, Cranfield University 
'           Cranfield, Bedford, MK43 0AL 
'           Tel: +44-1234-750111 Fax: +44-1234-754109 
'============================================================ 
 
IF VR(4)<>0 THEN 
    IF VR(4)=80 THEN VR(2)=VR(2)+10 'Increment Speed by 10 
    IF VR(4)=79 THEN VR(2)=VR(2)+1 'Increment Speed by 1 
    IF VR(4)=78 THEN VR(2)=VR(2)-1 'Decrement Speed by 1 
    IF VR(4)=77 THEN VR(2)=VR(2)-10 'Decrement Speed by 10 
    IF VR(4)=81 THEN 
        VR(3)=VR(3)+1 'Increment Width by 1 
        VR(5)=2 
    ENDIF 
    IF VR(4)=82 THEN 
        VR(3)=VR(3)+0.1 'Increment Width by 0.1 
        VR(5)=2 
    ENDIF 
    IF VR(4)=83 THEN 
        VR(3)=VR(3)-0.1 'Decrement Width by 0.1 
        VR(5)=2 
    ENDIF 
    IF VR(4)=84 THEN 
        VR(3)=VR(3)-1 'Decrement Width by 1 
        VR(5)=2 
    ENDIF 
 
    IF (VR(4)=34) AND (VR(18)>1) THEN VR(18)=VR(18)-1 
    IF (VR(4)=36) AND (VR(18)<VR(17)) THEN VR(18)=VR(18)+1 
    IF VR(4)=35 THEN VR(5)=3 
    IF (VR(4)=33) AND (VR(19)<VR(20)) THEN VR(19)=VR(19)+0.05 
    IF (VR(4)=37) AND (VR(19)>VR(21)) THEN VR(19)=VR(19)-0.05 
 
    IF VR(4)=46 THEN VR(5)=1 'Start the process 
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    IF VR(4)=49 THEN VR(5)=1 'Start the process 
    IF VR(4)=44 THEN VR(5)=0 'Stop the process 
    IF VR(4)=51 THEN VR(5)=0 'Stop the process 
    VR(1)=VR(5) 
 
    IF VR(2)>VR(15) THEN VR(2)=VR(15) 'Speed_Max 
    IF VR(2)<VR(14) THEN VR(2)=VR(14) 'Speed_Min 
    IF VR(3)>VR(11) THEN VR(3)=VR(11) 'Width_Max 
    IF VR(3)<VR(10) THEN VR(3)=VR(10) 'Width_Min 
ENDIF 
 
VR(4)=0 
VR(6)=0 
 
STOP 
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Appendix G. WeldData analysis software 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.1 – WeldData main screen and source code 
 
“MainWindow.frm” 
Dim VideoAdjustScale As Integer 
Dim VideoMeasure As Integer 
Dim VideoOutWindow As Integer 
Dim VideoMeasureRatio As Single 
 
Private Sub AdjustScaleBtn_Click() 
Dim AdjustScalePicture, TestFile As String 
 
If VideoAdjustScale = 1 Or VideoAdjustScale = 2 Then 
    VideoAdjustScale = 0 
    VideoScaleStatus.Caption = "" 
Else 
    TestFile = "" 
    AdjustScalePicture = Left(DataFileName, Len(DataFileName) - 3) + "jpg" 
    TestFile = Dir(AdjustScalePicture) 
    If TestFile <> "" Then 
        VideoOut.Picture = LoadPicture(AdjustScalePicture) 



294 

        VideoScaleStatus.Caption = "Point 1" 
        VideoAdjustScale = 1 
    Else 
        MsgBox ("No Scaling Picture File ...") 
    End If 
End If 
 
End Sub 
 
Private Sub CCheck_Click() 
With VIO 
If CCheck Then 
    .Axes("CAxis").Visible = True 
    .Plots.Item("C").Visible = True 
Else 
    .Axes("CAxis").Visible = False 
    .Plots.Item("C").Visible = False 
End If 
End With 
End Sub 
 
 
 
Private Sub Command1_Click() 
'Call OptionsUpdate 
VIO.TrackMode = cwGTrackDragAnnotation 
Call Fill_Graphs 
End Sub 
 
Private Sub Command2_Click() 
Adjust_Scales.Show 
End Sub 
 
Private Sub MeasureBtn_Click() 
If VideoMeasure = 1 Or VideoMeasure = 2 Then 
    VideoMeasure = 0 
    VideoScaleStatus.Caption = "" 
Else 
    VideoMeasure = 1 
    VideoScaleStatus.Caption = "Point 1" 
End If 
End Sub 
 
Private Sub MenuAvgCur_Click() 
    Avg_Cur.Show 
End Sub 
 
Private Sub MenuCrossPlots_Click() 
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Analysis.Show 
End Sub 
 
Private Sub VidBaseSuppLines_H_ValueChanged(Value As Variant, 
PreviousValue As Variant, ByVal OutOfRange As Boolean) 
If VidBaseSuppLines_H.Value < 0 Then 
    VidBaseSuppLines_H.Value = 0 
    Exit Sub 
End If 
If VidBaseSuppLines_H.Value > 9 Then 
    VidBaseSuppLines_H.Value = 9 
    Exit Sub 
End If 
If Value < PreviousValue Then 
    If Value >= 0 Then Unload VidBaseSuppLine_H(VidBaseSuppLines_H_Idx) 
    VidBaseSuppLines_H_Idx = VidBaseSuppLines_H_Idx - 1 
End If 
If Value > PreviousValue Then 
    VidBaseSuppLines_H_Idx = VidBaseSuppLines_H_Idx + 1 
    If Value > 0 Then 
        Load VidBaseSuppLine_H(VidBaseSuppLines_H_Idx) 
        VidBaseSuppLines_H_Pos(VidBaseSuppLines_H_Idx) = 
VidBaseSuppLine_H(VidBaseSuppLines_H_Idx).Y1 
        VidBaseSuppLine_H(VidBaseSuppLines_H_Idx).Visible = True 
    End If 
End If 
End Sub 
 
Private Sub VidBaseSuppLines_V_ValueChanged(Value As Variant, 
PreviousValue As Variant, ByVal OutOfRange As Boolean) 
If VidBaseSuppLines_V.Value < 0 Then 
    VidBaseSuppLines_V.Value = 0 
    Exit Sub 
End If 
If VidBaseSuppLines_V.Value > 9 Then 
    VidBaseSuppLines_V.Value = 9 
    Exit Sub 
End If 
If Value < PreviousValue Then 
    If Value >= 0 Then Unload VidBaseSuppLine_V(VidBaseSuppLines_V_Idx) 
    VidBaseSuppLines_V_Idx = VidBaseSuppLines_V_Idx - 1 
End If 
If Value > PreviousValue Then 
    VidBaseSuppLines_V_Idx = VidBaseSuppLines_V_Idx + 1 
    If Value > 0 Then 
        Load VidBaseSuppLine_V(VidBaseSuppLines_V_Idx) 
        VidBaseSuppLines_V_Pos(VidBaseSuppLines_V_Idx) = 
VidBaseSuppLine_V(VidBaseSuppLines_V_Idx).X1 
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        VidBaseSuppLine_V(VidBaseSuppLines_V_Idx).Visible = True 
    End If 
End If 
End Sub 
 
Private Sub VideoOut_MouseDown(Button As Integer, Shift As Integer, X As 
Single, Y As Single) 
VidBaseSuppLines_H_Selected = 0 
VidBaseSuppLines_H_Selected = 0 
If VideoAdjustScale = 0 And VideoMeasure = 0 Then 
    For i = 1 To VidBaseSuppLines_H_Idx 
        If VidBaseSuppLines_H_Pos(i) = Y Then 
            VidBaseSuppLines_H_Selected = i 
            Exit Sub 
        End If 
    Next i 
    For i = 1 To VidBaseSuppLines_V_Idx 
        If VidBaseSuppLines_V_Pos(i) = X Then 
            VidBaseSuppLines_V_Selected = i 
            Exit Sub 
        End If 
    Next i 
End If 
End Sub 
 
Private Sub VideoOut_MouseMove(Button As Integer, Shift As Integer, X As 
Single, Y As Single) 
If VidBaseSuppLines_H_Selected > 0 Then 
    VidBaseSuppLine_H(VidBaseSuppLines_H_Selected).Y1 = Y 
    VidBaseSuppLine_H(VidBaseSuppLines_H_Selected).Y2 = Y 
End If 
If VidBaseSuppLines_V_Selected > 0 Then 
    VidBaseSuppLine_V(VidBaseSuppLines_V_Selected).X1 = X 
    VidBaseSuppLine_V(VidBaseSuppLines_V_Selected).X2 = X 
End If 
End Sub 
 
Private Sub VideoOut_MouseUp(Button As Integer, Shift As Integer, X As 
Single, Y As Single) 
If VideoAdjustScale = 1 Then 
    VideoAdjustScalePoints(1, 1) = X 
    VideoAdjustScalePoints(1, 2) = Y 
    VideoScaleStatus.Caption = "Point 2" 
    VideoAdjustScale = 2 
Else 
    If VideoAdjustScale = 2 Then 
        VideoAdjustScalePoints(2, 1) = X 
        VideoAdjustScalePoints(2, 2) = Y 
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        VideoAdjustScaleRatio = Sqr(Abs(VideoAdjustScalePoints(2, 1) - 
VideoAdjustScalePoints(1, 1)) ^ 2 + Abs(VideoAdjustScalePoints(2, 2) - 
VideoAdjustScalePoints(1, 2)) ^ 2) 
        VideoScaleStatus.Caption = "" 
        VideoAdjustScale = 0 
    End If 
End If 
If VideoMeasure = 1 Then 
    VideoMeasurePoints(1, 1) = X 
    VideoMeasurePoints(1, 2) = Y 
    VideoScaleStatus.Caption = "Point 2" 
    VideoMeasure = 2 
Else 
    If VideoMeasure = 2 Then 
        VideoMeasurePoints(2, 1) = X 
        VideoMeasurePoints(2, 2) = Y 
        VideoMeasureRatio = Sqr(Abs(VideoMeasurePoints(2, 1) - 
VideoMeasurePoints(1, 1)) ^ 2 + Abs(VideoMeasurePoints(2, 2) - 
VideoMeasurePoints(1, 2)) ^ 2) 
        VideoMeasureRatio = VideoMeasureRatio * (Int(VideoScaleValue.Text) / 
VideoAdjustScaleRatio) 
        VideoScaleStatus.Caption = Round(VideoMeasureRatio, 2) & " mm" 
        VideoMeasure = 0 
    End If 
End If 
If VidBaseSuppLines_H_Selected > 0 Then 
    VidBaseSuppLines_H_Pos(VidBaseSuppLines_H_Selected) = Y 
    VidBaseSuppLine_H(VidBaseSuppLines_H_Selected).Y1 = Y 
    VidBaseSuppLine_H(VidBaseSuppLines_H_Selected).Y2 = Y 
    VidBaseSuppLines_H_Selected = 0 
End If 
If VidBaseSuppLines_V_Selected > 0 Then 
    VidBaseSuppLines_V_Pos(VidBaseSuppLines_V_Selected) = X 
    VidBaseSuppLine_V(VidBaseSuppLines_V_Selected).X1 = X 
    VidBaseSuppLine_V(VidBaseSuppLines_V_Selected).X2 = X 
    VidBaseSuppLines_V_Selected = 0 
End If 
 
End Sub 
 
Private Sub VideoOutBtn_Click() 
If VideoOutWindow = 1 Then 
    With MMControl1 
        .Notify = False 
        .Wait = True 
        .Shareable = False 
        .hWndDisplay = VideoOut.hWnd 
        .EjectVisible = False 
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    End With 
    VideoOutWindow = 0 
Else 
    With MMControl1 
        .Notify = False 
        .Wait = True 
        .Shareable = False 
        .hWndDisplay = 0 
        .EjectVisible = False 
    End With 
    VideoOutWindow = 1 
End If 
 
End Sub 
 
Private Sub Form_Load() 
Dim TestFile As String 
 
DataPath = GetSetting(AppName:=AppName, section:="Startup", 
Key:="DataPath") 
DataFileName = GetSetting(AppName:=AppName, section:="Startup", 
Key:="DataFileName") 
VideoFileName = GetSetting(AppName:=AppName, section:="Startup", 
Key:="VideoFileName") 
 
' Place some settings in the registry. 
'SaveSetting "MyApp", "Startup", "Top", 75 
'Debug.Print GetSetting(AppName:="MyApp", section:="Startup", Key:="Left", 
Default:="25") 
'DeleteSetting "MyApp", "Startup" 
VideoOutWindow = 0 
VideoAdjustScale = 0 
VideoMeasure = 0 
 
With MMControl1 
    .Notify = False 
    .Wait = True 
    .Shareable = False 
    .hWndDisplay = VideoOut.hWnd 
    .EjectVisible = False 
End With 
 
VCheck.Value = 1 
CCheck.Value = 0 
OCheck.Value = 0 
 
TestFile = "" 
If VideoFileName <> "" Then TestFile = Dir(VideoFileName) 



299 

If TestFile = "" Then VideoFileName = App.Path & "\NoVideoLong.avi" 
Call Load_Video 
 
TestFile = "" 
If DataFileName <> "" Then TestFile = Dir(DataFileName) 
If TestFile <> "" Then Call Load_Data 
 
VI.ChartLength = Samples_P_Graph 
OSC.ChartLength = Samples_P_Graph 
 
'Option1.Value = True 'Voltage Selected 
 
End Sub 
 
Private Sub Form_Terminate() 
End 
End Sub 
 
Private Sub Form_Unload(Cancel As Integer) 
 
MMControl1.Command = "Close" 
 
SaveSetting AppName, "Startup", "DataPath", DataPath 
SaveSetting AppName, "Startup", "DataFileName", DataFileName 
SaveSetting AppName, "Startup", "VideoFileName", VideoFileName 
 
End Sub 
 
Private Sub FrameJump_Change() 
MMControl1.Frames = Int(FrameJump.Text) 
End Sub 
 
Private Sub MenuAvgPk_Click() 
    Avg_vs_Pk.Show 
End Sub 
 
Private Sub MenuFileClose_Click(Index As Integer) 
MMControl1.Command = "Close" 
DataFileName = "" 
VideoFileName = "" 
MainWindow.Caption = AppName 
List1.Clear 
End Sub 
 
Private Sub MenuFileExit_Click(Index As Integer) 
Unload Me 
End 
End Sub 
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Private Sub MenuFileOpen_Click(Index As Integer) 
 
MMControl1.Command = "Close" 
 
With CommonDialog1 
    .DefaultExt = ".csv" 
    .Filter = "Oscilloscope converted data (*.csv)|*.csv" 
    .ShowOpen 
    DataFileName = .FileName 
    DataPath = CurDir 
End With 
 
If DataFileName <> "" Then 
    VideoFileName = Left(DataFileName, Len(DataFileName) - 3) + "avi" 
    If VideoFileName <> "" Then Call Load_Video 
    Call Load_Data 
End If 
 
End Sub 
 
Private Sub MenuPkBk_Click() 
    Pk_vs_Bk.Show 
End Sub 
 
Private Sub MMControl1_Done(NotifyCode As Integer) 
'MsgBox "Done " & NotifyCode 
End Sub 
 
Private Sub MMControl1_StatusUpdate() 
FrameNr.Caption = MMControl1.Position 
DataPtr = MMControl1.Position 
If DataPtr <> PrevDataPtr Then Call Update_Graphs 
PrevDataPtr = DataPtr 
End Sub 
 
Private Sub Load_Video() 
Dim StrLine As String 
Dim sReturn As String * 512 
Dim lPos As Long 
Dim lStart As Long 
Dim lWidth, lHeight As Integer 
 
StrLine = "Open " & Chr(34) & VideoFileName & Chr(34) & " type avivideo Alias 
video1" 
i = mciSendString(StrLine, 0&, 0, 0) 
i = mciSendString("Where video1 destination", ByVal sReturn, Len(sReturn) - 1, 
0) 
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i = mciSendString("VideoSize video1 200%", ByVal sReturn, Len(sReturn) - 1, 
0) 
 
i = mciSendString("Play video1", 0&, 0, 0) 
 
 
lStart = InStr(1, sReturn, " ") 
lPos = InStr(lStart + 1, sReturn, " ") 
lStart = InStr(lPos + 1, sReturn, " ") 
If lStart <> 0 Then 
    lWidth = Int(Mid(sReturn, lPos, lStart - lPos)) 
    lHeight = Int(Mid(sReturn, lStart + 1)) 
Else 
    lWidth = 256 
    lHeight = 128 
End If 
i = mciSendString("Close video1", 0&, 0, 0) 
 
 
VideoOut.Left = Picture1.Left + ((Picture1.Width - lWidth) / 2) 
VideoOut.Top = Picture1.Top + ((Picture1.Height - lHeight) / 2) 
VideoOut.Width = lWidth 
VideoOut.Height = lHeight 
 
 
With MMControl1 
    .FileName = VideoFileName 
    .Command = "Open" 
    VideoFrames = .Length 
End With 
 
DataPtr = MMControl1.Position 
PrevDataPtr = DataPtr 
 
End Sub 
 
Private Sub Load_Data() 
MainWindow.Caption = AppName & " - " & DataFileName 
     
Call Check_DataFile 
 
If DataFrames > VideoFrames Then 
    TotalFrames.Caption = VideoFrames 
    MaxFrames = VideoFrames 
Else 
    TotalFrames.Caption = DataFrames 
    MaxFrames = DataFrames 
End If 
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Call Show_Header 
Call Fill_Graphs 
 
End Sub 
 
Private Sub Check_DataFile() 
Dim flag As Boolean 
Dim strInput, strOut As String 
Dim buf_len, cycles, reminder As Integer 
Dim lfChar As Integer 
 
buf_len = 1000 
strOut = "" 
 
'Verify file compliance with CR+LF - if not change it 
Open DataFileName For Input As #1 
strInput = Input(buf_len, #1) 
lfChar = InStr(strInput, Chr(10)) 
If lfChar <> 0 Then 
    If Mid(strInput, lfChar - 1, 1) <> Chr(13) Then 
        cycles = Int(LOF(1) / buf_len) 
        reminder = LOF(1) Mod buf_len 
        Close #1 
        Open DataFileName For Input As #1 
        Open DataFileName & ".tmp" For Output As #2 
        For i = 1 To cycles 
            strInput = strOut + Input(buf_len, #1) 
            lfChar = 1 
            While lfChar > 0 
                lfChar = InStr(strInput, Chr(10)) 
                If lfChar <> 0 Then 
                    strOut = Mid(strInput, 1, lfChar - 1) 
                    Print #2, strOut 
                    strInput = Mid(strInput, lfChar + 1) 
                End If 
            Wend 
            strOut = strInput 
        Next i 
        strInput = strOut + Input(reminder, #1) 
        lfChar = 1 
        While lfChar > 0 
            lfChar = InStr(strInput, Chr(10)) 
            If lfChar <> 0 Then 
                strOut = Mid(strInput, 1, lfChar - 1) 
                Print #2, strOut 
                strInput = Mid(strInput, lfChar + 1) 
            End If 
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            strOut = strInput 
        Wend 
        Print #2, strOut 
        Close #1, #2 
        Kill DataFileName 
        Name DataFileName & ".tmp" As DataFileName 
    End If 
End If 
Close #1 
'Verify nr of frames 
DataFrames = 0 
DataSampleRate = 0 
Open DataFileName For Input As #1 
    While Not EOF(1) 
        Line Input #1, strInput 
        If DataSampleRate = 0 Then 
            i = InStr(strInput, "HResolution") 
            If i <> 0 Then 
                i = InStr(strInput, ",") 
                DataSampleRate = CDbl(Mid(strInput, i + 1)) 
            End If 
        End If 
        DataFrames = DataFrames + 1 
    Wend 
Close #1 
DataFrames = DataFrames - Header 
 
End Sub 
 
Private Sub Show_Header() 
Dim ReadLine As String 
 
With List1 
    .Clear 
    .AddItem "Opening CSV file: " 
    .AddItem DataFileName 
    .AddItem "Sample Rate: " & Int(1 / DataSampleRate) & " Hz" 
    .AddItem "Data Samples Found: " & DataFrames 
     
    Open DataFileName For Input As #1 
    For i = 1 To 11 
        Line Input #1, ReadLine 
        .AddItem ReadLine 
    Next i 
    Close #1 
End With 
 
End Sub 
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Private Sub Fill_Graphs() 
Dim ReadLine As String 
Dim V1, V2, V3 As String 
 
DataPtr = 0 
For i = 1 To MaxDataSampled 
    V(i) = 0 
    C(i) = 0 
    O(i) = 0 
Next i 
For i = 1 To MaxGraphData 
    Osc_Pks(i) = 0 
    Osc_PksNeg(i) = 0 
    Osc_PksCentre(i) = 0 
Next i 
Osc_PksIdx = 0 
Osc_PksIdx = 0 
Osc_PksNegIdx = 0 
Osc_PksCentreIdx = 0 
Osc_Frequency = 0 
Pulse_Frequency = 0 
 
Open DataFileName For Input As #1 
 
For i = 1 To 11 
    Line Input #1, ReadLine 
Next i 
 
i = 0 
While Not EOF(1) 
    Line Input #1, ReadLine 
    If i < MaxDataSampled And ReadLine <> "" Then 
        j = InStr(ReadLine, ",") 
        V1 = Mid$(ReadLine, 1, j - 1) 
        ReadLine = Mid$(ReadLine, j + 1) 
        j = InStr(ReadLine, ",") 
        V2 = Mid$(ReadLine, 1, j - 1) 
        V3 = Mid$(ReadLine, j + 1) 
        j = InStr(V3, ",") 
        If j <> 0 Then V3 = Mid(V3, 1, j - 1) 
        V(i) = CDbl(V1) 
        C(i) = CDbl(V3) 
        O(i) = CDbl(V2) 
        i = i + 1 
    End If 
Wend 
Close #1 
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'Call OptionsUpdate 
Call Update_Scales 
Call Osc_Freq_Detect 
Call Pulse_Freq_Detect 
Call AVG_Calculation 
Call Update_Graphs 
 
End Sub 
 
Private Sub Pulse_Freq_Detect() 
Dim PulseAvg As Single 
Dim PulsePk As Single 
Dim PulsePkIdx, PulsePrevIdx, PulseCycles As Integer 
Dim PulseLower As Boolean 
 
PulsePk = 0 
PulsePkIdx = 0 
PulsePrevIdx = 0 
PulseCycles = 0 
PulseLower = True 
 
For i = 0 To DataFrames 
    PulseAvg = PulseAvg + C(i) 
Next i 
PulseAvg = PulseAvg / DataFrames 
 
For i = 0 To DataFrames 
    If C(i) > PulseAvg Then 
        PulseLower = False 
        If PulsePk < C(i) Then 
            PulsePk = C(i) 
            PulsePkIdx = i 
        End If 
    Else 
        If PulseLower = False Then 
            If PulsePrevIdx <> 0 Then 
                If PulseCycles = 0 Then 
                    'Pulse_Frequency = 1 / ((PulsePkIdx - PulsePrevIdx) * 
DataSampleRate) 
                    Pulse_Frequency = PulsePkIdx - PulsePrevIdx 
                Else 
                    'Pulse_Frequency = (Pulse_Frequency + (1 / ((PulsePkIdx - 
PulsePrevIdx) * DataSampleRate))) / 2 
                    Pulse_Frequency = Pulse_Frequency + (PulsePkIdx - 
PulsePrevIdx) 
                End If 
            End If 
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            PulsePrevIdx = PulsePkIdx 
            PulsePk = 0 
            PulseCycles = PulseCycles + 1 
            PulseLower = True 
        End If 
    End If 
Next i 
Pulse_Frequency = 1 / ((Pulse_Frequency / PulseCycles) * DataSampleRate) 
 
End Sub 
 
Private Sub Osc_Freq_Detect() 
Dim OscAvg As Single 
Dim OscPk, OscPkNeg, OscCentre As Single 
Dim OscPkIdx, OscPkNegIdx, OscCentreIdx, OscPrevIdx As Integer 
Dim OscCycles As Integer 
Dim OscLower As Boolean 
Dim OscMid As Boolean 
 
OscAvg = 0 
OscMin = 1000000 
OscMax = -1000000 
OscPk = -1000000 
OscPkNeg = 1000000 
OscCentre = 1000000 
OscPkIdx = 0 
OscPkNegIdx = 0 
OscPrevIdx = 0 
Osc_PksIdx = 0 
Osc_PksNegIdx = 0 
Osc_PksCentreIdx = 0 
OscCycles = -1 
Osc_Frequency = 0 
OscLower = True 
OscMid = False 
 
For i = 0 To DataFrames 
    OscAvg = OscAvg + O(i) 
Next i 
OscAvg = OscAvg / DataFrames 
 
If O(0) > OscAvg Then 
    OscMid = True 
Else 
    OscMid = False 
End If 
 
For i = 0 To DataFrames 
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    If O(i) > OscAvg And OscMid = False Then 
        Osc_PksCentre(Osc_PksCentreIdx) = i 
        Osc_PksCentreIdx = Osc_PksCentreIdx + 1 
        OscMid = True 
    Else 
        If O(i) < OscAvg And OscMid = True Then 
        Osc_PksCentre(Osc_PksCentreIdx) = i 
        Osc_PksCentreIdx = Osc_PksCentreIdx + 1 
        OscMid = False 
        End If 
    End If 
 
    If O(i) > OscAvg Then 
        If OscLower = True And OscPkNegIdx <> 0 Then 
            Osc_PksNeg(Osc_PksNegIdx) = OscPkNegIdx 
            Osc_PksNegIdx = Osc_PksNegIdx + 1 
            OscPkNeg = 1000000 
        End If 
        OscLower = False 
        If OscPk < O(i) Then 
            OscPk = O(i) 
            OscPkIdx = i 
        End If 
    Else 
        If OscLower = False Then 
            Osc_Pks(Osc_PksIdx) = OscPkIdx 
            Osc_PksIdx = Osc_PksIdx + 1 
            If OscPrevIdx <> 0 Then 
                If OscCycles > 0 Then 
                    Osc_Frequency = (Osc_Frequency + 1 / ((OscPkIdx - OscPrevIdx) 
* DataSampleRate)) / 2 
                Else 
                    Osc_Frequency = 1 / ((OscPkIdx - OscPrevIdx) * DataSampleRate) 
                End If 
            End If 
            OscPrevIdx = OscPkIdx 
            OscPk = -1000000 
            OscCycles = OscCyles + 1 
            OscLower = True 
        End If 
        If OscPkNeg > O(i) Then 
            OscPkNeg = O(i) 
            OscPkNegIdx = i 
        End If 
    End If 
    If O(i) > OscMax Then OscMax = O(i) 
    If O(i) < OscMin Then OscMin = O(i) 
Next i 
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End Sub 
 
Public Sub Update_Graphs() 
Dim HalfMaxGraphData As Integer 
Dim T1, T2 As Single 
 
HalfMaxGraphData = Int(Samples_P_Graph / 2) - 1 
Nominal_V.Caption = V(DataPtr) & " V" 
Nominal_I.Caption = C(DataPtr) & " A" 
Oscillation_Position = O(DataPtr) & " V" 
OscFrequency.Caption = Round(Osc_Frequency, 3) & " Hz" 
PulseFrequency.Caption = Pulse_Frequency 
Oscillation_Min.Text = OscMin & " V" 
Oscillation_Max.Text = OscMax & " V" 
Oscillation_Mid.Text = ((Abs(OscMin) + Abs(OscMax)) / 2) + OscMin & " V" 
 
With VIO 
    .Cursors(1).XPosition = DataSampleRate * DataPtr 
End With 
 
k = DataSampleRate * (DataPtr - HalfMaxGraphData) 
For i = 0 To Samples_P_Graph - 1 
    j = (DataPtr - HalfMaxGraphData) + i 
    If j < 0 Or j > MaxFrames Then 
        VIGraphData(i, 0) = 0 
        VIGraphData(i, 1) = 0 
        OSCGraphData(i, 0) = 0 
    Else 
        VIGraphData(i, 0) = V(j) 
        VIGraphData(i, 1) = C(j) 
        OSCGraphData(i, 0) = O(j) 
    End If 
    OSCGraphData(i, 1) = k 
    k = k + DataSampleRate 
Next i 
 
T1 = OSCGraphData(i - 1, 0) 
T2 = OSCGraphData(i - 1, 1) 
For i = Samples_P_Graph To MaxGraphData 
    OSCGraphData(i, 0) = T1 
    OSCGraphData(i, 1) = T2 
Next i 
 
'VIO.TrackMode = cwGTrackZoomRectXY 
'VIO.TrackMode = cwGTrackPanPlotAreaY 
 
With VIO 
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    .Cursors(1).XPosition = DataSampleRate * DataPtr 
    .Axes(1).Minimum = 0 
    .Axes(1).Maximum = DataSampleRate * (MaxFrames - 1) 
    .Axes(2).Caption = "Voltage (V)" 
    .Axes(3).Caption = "Current (A)" 
    .Axes(4).Caption = "Oscillation (V)" 
    .Plots.Item(1).PlotY V, 0, DataSampleRate 
    .Plots.Item(2).PlotY C, 0, DataSampleRate 
    .Plots.Item(3).PlotY O, 0, DataSampleRate 
    If VCheck Then 
        .Axes("VAxis").Visible = True 
        .Plots.Item("V").Visible = True 
    End If 
    If CCheck Then 
        .Axes("CAxis").Visible = True 
        .Plots.Item("C").Visible = True 
    End If 
    If OCheck Then 
        .Axes("OAxis").Visible = True 
        .Plots.Item("O").Visible = True 
    End If 
     
End With 
 
With VI 
    .ClearData 
    .Axes(1).Minimum = ((DataPtr - HalfMaxGraphData) * DataSampleRate) 
    .Axes(1).Maximum = ((DataPtr + HalfMaxGraphData) * DataSampleRate) 
    .Cursors(1).PointIndex = HalfMaxGraphData 
    .Cursors(2).PointIndex = HalfMaxGraphData 
    .Cursors(3).XPosition = (DataSampleRate * DataPtr) 
    .PlotY VIGraphData, ((DataPtr - HalfMaxGraphData) * DataSampleRate), 
DataSampleRate, bPlotPerRow = True 
End With 
 
With OSC 
    .ClearData 
    .Axes(2).Minimum = ((DataPtr - HalfMaxGraphData) * DataSampleRate) 
    .Axes(2).Maximum = ((DataPtr + HalfMaxGraphData) * DataSampleRate) 
    .Cursors(1).PointIndex = HalfMaxGraphData 
    .PlotXY OSCGraphData, bPlotPerRow = True 
End With 
 
End Sub 
 
Private Sub OCheck_Click() 
With VIO 
If OCheck Then 
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    .Axes("OAxis").Visible = True 
    .Plots.Item("O").Visible = True 
Else 
    .Axes("OAxis").Visible = False 
    .Plots.Item("O").Visible = False 
End If 
End With 
End Sub 
 
Private Sub Option4_Click() 
If Option4.Value = True Then VIO.TrackMode = cwGTrackDragCursor 
End Sub 
 
Private Sub Option5_Click() 
If Option5.Value = True Then VIO.TrackMode = cwGTrackZoomRectXY 
End Sub 
 
Private Sub Option6_Click() 
If Option6.Value = True Then VIO.TrackMode = cwGTrackPanPlotAreaXY 
End Sub 
 
Private Sub VCheck_Click() 
With VIO 
If VCheck Then 
    .Axes("VAxis").Visible = True 
    .Plots.Item("V").Visible = True 
Else 
    .Axes("VAxis").Visible = False 
    .Plots.Item("V").Visible = False 
End If 
End With 
End Sub 
 
Private Sub VidSuppLinesChk_Click() 
If VidSuppLinesChk Then 
    VidBaseSuppLines_H.Enabled = True 
    VidBaseSuppLines_V.Enabled = True 
    For i = 1 To VidBaseSuppLines_H_Idx 
        VidBaseSuppLine_H(i).Visible = True 
    Next i 
    For i = 1 To VidBaseSuppLines_V_Idx 
        VidBaseSuppLine_V(i).Visible = True 
    Next i 
Else 
    VidBaseSuppLines_H.Enabled = False 
    VidBaseSuppLines_V.Enabled = False 
    For i = 1 To VidBaseSuppLines_H_Idx 
        VidBaseSuppLine_H(i).Visible = False 
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    Next i 
    For i = 1 To VidBaseSuppLines_V_Idx 
        VidBaseSuppLine_V(i).Visible = False 
    Next i 
End If 
End Sub 
 
Private Sub VidSuppRefreshLines_Click() 
    For i = 1 To VidBaseSuppLines_H_Idx 
        VidBaseSuppLine_H(i).Visible = False 
        VidBaseSuppLine_H(i).Visible = True 
    Next i 
    For i = 1 To VidBaseSuppLines_V_Idx 
        VidBaseSuppLine_V(i).Visible = False 
        VidBaseSuppLine_V(i).Visible = True 
    Next i 
End Sub 
 
Private Sub VIO_CursorChange(CursorIndex As Long, XPos As Variant, YPos 
As Variant, bTracking As Boolean) 
VIOCursorX = XPos 
End Sub 
 
Private Sub VIO_MouseUp(Button As Integer, Shift As Integer, X As Single, Y 
As Single) 
If (VIOCursorX / DataSampleRate) - DataPtr >= 0 Then 
    MMControl1.Frames = Int((VIOCursorX / DataSampleRate) - DataPtr) 
    MMControl1.Command = "Step" 
Else 
    MMControl1.Frames = Int(DataPtr - (VIOCursorX / DataSampleRate)) 
    MMControl1.Command = "Back" 
End If 
MMControl1.Frames = FrameJump.Text 
DataPtr = VIOCursorX 
End Sub 
 
Public Sub Update_Scales() 
VI.Plots(1).YAxis.Minimum = Scale_V_Min 
VI.Plots(1).YAxis.Maximum = Scale_V_Max 
VI.Plots(1).YAxis.AutoScale = Scale_V_Auto 
VI.Plots(2).YAxis.Minimum = Scale_C_Min 
VI.Plots(2).YAxis.Maximum = Scale_C_Max 
VI.Plots(2).YAxis.AutoScale = Scale_C_Auto 
OSC.Plots(1).XAxis.Minimum = Scale_O_Min 
OSC.Plots(1).XAxis.Maximum = Scale_O_Max 
OSC.Plots(1).XAxis.AutoScale = Scale_O_Auto 
Call Update_Graphs 
End Sub 
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Sub AVG_Calculation() 
Dim V_Total, C_Total As Double 
 
V_Total = 0# 
C_Total = 0# 
 
For i = 0 To DataFrames 
    V_Total = V_Total + CDbl(V(i)) 
    C_Total = C_Total + CDbl(C(i)) 
Next i 
 
AVG_Voltage = Str(Round(V_Total / DataFrames, 2)) & "  V" 
AVG_Current = Str(Round(C_Total / DataFrames, 2)) & "  A" 
  
End Sub 
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Figure G.2 – Average versus Peal Voltages screen and source code 
 
“Avg_vs_Pk.frm” 
Dim Avg(MaxDataSampled) As Single 
Dim Pk(MaxDataSampled) As Single 
Dim OscVal(MaxDataSampled) As Single 
 
Private Sub AvgPk_Click() 
If Option5.Value = True Then Call Cursors_Update 
If Option4.Value = True Then 
    Call Cursors_MinMax 
    Call Scales_Update 
End If 
End Sub 
 
Private Sub AvgWindow_ValueChanged(Value As Variant, PreviousValue As 
Variant, ByVal OutOfRange As Boolean) 
    Call Avg_Update 
End Sub 
 
Private Sub Command1_Click() 
    Me.Hide 
End Sub 
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Private Sub Command2_Click() 
AvgPk.ClearData 
AvgPk.TrackMode = cwGTrackDragAnnotation 
Call Form_Activate 
End Sub 
 
 
 
Private Sub CursorsSt_Click() 
If CursorsSt.Value = 1 Then 
    AvgPk.Cursors(1).Visible = True 
    AvgPk.Cursors(2).Visible = True 
    AvgPk.Cursors(3).Visible = True 
    AvgPk.Cursors(4).Visible = True 
Else 
    AvgPk.Cursors(1).Visible = False 
    AvgPk.Cursors(2).Visible = False 
    AvgPk.Cursors(3).Visible = False 
    AvgPk.Cursors(4).Visible = False 
End If 
End Sub 
 
Private Sub Factor_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
    Call Pk_Update 
End Sub 
 
Private Sub Export_Excel_Click() 
Dim Excel_Time As Single 
 
Screen.MousePointer = vbHourglass 
 
Set ExlObj = CreateObject("excel.application")      ' Initialize the excel object 
ExlObj.Workbooks.Add                                ' Add an excel workbook 
 
With ExlObj.ActiveSheet 
    .cells(1, 1).Value = "Time" 
    .cells(1, 2).Value = "Average" 
    .cells(1, 3).Value = "Peaks" 
    .cells(1, 4).Value = "Oscillation" 
    Excel_Time = AvgPk.Axes(1).Minimum 
    For i = 1 To (AvgPk.Axes(1).Maximum - AvgPk.Axes(1).Minimum) / 
DataSampleRate 
        .cells(i + 1, 1).Value = Excel_Time 
        .cells(i + 1, 2).Value = Avg((AvgPk.Axes(1).Minimum / DataSampleRate) + 
i) 
        .cells(i + 1, 3).Value = Pk((AvgPk.Axes(1).Minimum / DataSampleRate) + i) 
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        .cells(i + 1, 4).Value = OscVal((AvgPk.Axes(1).Minimum / 
DataSampleRate) + i) 
        Excel_Time = Excel_Time + DataSampleRate 
    Next i 
End With 
Screen.MousePointer = vbDefault 
ExlObj.Visible = True 
 
 
End Sub 
 
Private Sub Export_OP_Excel_Click() 
Dim Osc_PkArray(MaxGraphData, 1) As Single 
Dim Osc_PkNegArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreLArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreRArray(MaxGraphData, 1) As Single 
Dim j_idx, k_idx As Integer 
 
 
Screen.MousePointer = vbHourglass 
 
Set ExlObj = CreateObject("excel.application")      ' Initialize the excel object 
ExlObj.Workbooks.Add                                ' Add an excel workbook 
 
With ExlObj.ActiveSheet 
    .cells(1, 1).Value = "Time" 
    .cells(1, 2).Value = "Osc_Pk_Left" 
    .cells(1, 3).Value = "Time" 
    .cells(1, 4).Value = "Osc_Pk_Right" 
    .cells(1, 5).Value = "Time" 
    .cells(1, 6).Value = "Osc_Mid_Left" 
    .cells(1, 7).Value = "Time" 
    .cells(1, 8).Value = "Osc_Mid_Right" 
 
    For i = 0 To Osc_PksIdx 
        .cells(i + 2, 1) = Osc_Pks(i) * DataSampleRate 
        .cells(i + 2, 3) = Osc_PksNeg(i) * DataSampleRate 
         
        If Osc_Pk_Op1 = True Then 
            .cells(i + 2, 2) = Avg(Osc_Pks(i)) 
            .cells(i + 2, 4) = Avg(Osc_PksNeg(i)) 
        Else 
            .cells(i + 2, 2) = Pk(Osc_Pks(i)) 
            .cells(i + 2, 4) = Pk(Osc_PksNeg(i)) 
        End If 
    Next i 
    j_idx = 2 
    k_idx = 2 
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    For i = 0 To Osc_PksCentreIdx 
        If Osc_Pk_Op1 = True Then 
            If O(Osc_PksCentre(i)) > O(Osc_PksCentre(i) + 2) Then 
                .cells(j_idx, 6) = Avg(Osc_PksCentre(i)) 
                .cells(j_idx, 5) = Osc_PksCentre(i) * DataSampleRate 
                j_idx = j_idx + 1 
            Else 
                .cells(k_idx, 8) = Avg(Osc_PksCentre(i)) 
                .cells(k_idx, 7) = Osc_PksCentre(i) * DataSampleRate 
                k_idx = k_idx + 1 
            End If 
        Else 
            If O(Osc_PksCentre(i)) > O(Osc_PksCentre(i) + 2) Then 
                .cells(j_idx, 6) = Pk(Osc_PksCentre(i)) 
                .cells(j_idx, 5) = Osc_PksCentre(i) * DataSampleRate 
                j_idx = j_idx + 1 
            Else 
                .cells(k_idx, 8) = Pk(Osc_PksCentre(i)) 
                .cells(k_idx, 7) = Osc_PksCentre(i) * DataSampleRate 
                k_idx = k_idx + 1 
            End If 
        End If 
    Next i 
End With 
Screen.MousePointer = vbDefault 
ExlObj.Visible = True 
End Sub 
 
Private Sub Form_Activate() 
    Label_DataFileName.Caption = DataFileName 
    AvgWindow.Value = Int(1 / (DataSampleRate * Pulse_Frequency)) 
    'Call Avg_Update 
    Call Pk_Update 
    Call Osc_Update 
    Call Cursors_Update 
    Call Cursors_MinMax 
    Call Scales_Update 
    Call Osc_Peaks_Update 
End Sub 
 
Private Sub Avg_Update() 
Dim AvgSum, AvgIni As Single 
 
AvgIni = 0 
For i = 1 To AvgWindow.Value 
    AvgSum = AvgSum + V(i) 
Next i 
AvgIni = AvgSum / AvgWindow.Value 



317 

 
For i = 0 To DataFrames 
    If i <= AvgWindow.Value Then 
        Avg(i) = AvgIni 
    Else 
        AvgSum = AvgSum + V(i) 
        AvgSum = AvgSum - V(i - AvgWindow.Value) 
        Avg(i) = AvgSum / AvgWindow.Value 
    End If 
Next i 
 
With AvgPk 
    .Plots(1).XAxis.Minimum = 0 
    .Plots(1).XAxis.Maximum = DataFrames * DataSampleRate 
    .Plots(1).PlotY Avg, 0, DataSampleRate 
    .Cursors(1).XPosition = 0 
    .Cursors(2).XPosition = 0 
End With 
 
 
End Sub 
 
Private Sub Pk_Update() 
Dim AvgCur, PkV As Single 
Dim PkIdx As Integer 
Dim PkDetect As Boolean 
Dim i, j As Integer 
 
AvgCur = 0 
PkIdx = 0 
PkV = 0 
PkDetect = False 
 
For i = 0 To DataFrames 
    AvgCur = AvgCur + C(i) 
Next i 
 
AvgCur = AvgCur / DataFrames 
 
For i = 0 To DataFrames 
    If C(i) > AvgCur * 1.8 Then 
        PkDetect = True 
        If PkV < V(i) Then 
            PkV = V(i) 
            PkIdx = i 
        End If 
        If i > 0 Then Pk(i) = Pk(i - 1) 
    Else 
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        If PkDetect = True Then 
            PkDetect = False 
            For j = PkIdx To i 
                Pk(j) = PkV 
            Next j 
        End If 
        If i > 0 Then Pk(i) = Pk(i - 1) 
        PkV = 0 
    End If 
     
Next i 
 
With AvgPk 
    .Plots(2).PlotY Pk, 0, DataSampleRate 
    .Cursors(3).XPosition = 0 
    .Cursors(4).XPosition = 0 
End With 
 
End Sub 
 
Private Sub Osc_Update() 
 
For i = 0 To DataFrames 
    OscVal(i) = O(i) + OscLevel.Value 
Next i 
 
AvgPk.Plots(3).PlotY OscVal, 0, DataSampleRate 
 
End Sub 
 
Private Sub Osc_Peaks_Update() 
Dim Osc_PkArray(MaxGraphData, 1) As Single 
Dim Osc_PkNegArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreLArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreRArray(MaxGraphData, 1) As Single 
Dim j_idx, k_idx As Integer 
 
If OscPksChk = 1 Then 
    For i = 0 To Osc_PksIdx 
        Osc_PkArray(i, 0) = Osc_Pks(i) * DataSampleRate 
        Osc_PkNegArray(i, 0) = Osc_PksNeg(i) * DataSampleRate 
         
        If Osc_Pk_Op1 = True Then 
            Osc_PkArray(i, 1) = Avg(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Avg(Osc_PksNeg(i)) 
        Else 
            Osc_PkArray(i, 1) = Pk(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Pk(Osc_PksNeg(i)) 
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        End If 
    Next i 
    j_idx = 0 
    k_idx = 0 
    For i = 0 To Osc_PksCentreIdx 
        If Osc_Pk_Op1 = True Then 
            If O(Osc_PksCentre(i)) > O(Osc_PksCentre(i) + 2) Then 
                Osc_PkCentreLArray(j_idx, 1) = Avg(Osc_PksCentre(i)) 
                Osc_PkCentreLArray(j_idx, 0) = Osc_PksCentre(i) * DataSampleRate 
                j_idx = j_idx + 1 
            Else 
                Osc_PkCentreRArray(k_idx, 1) = Avg(Osc_PksCentre(i)) 
                Osc_PkCentreRArray(k_idx, 0) = Osc_PksCentre(i) * 
DataSampleRate 
                k_idx = k_idx + 1 
            End If 
        Else 
            If O(Osc_PksCentre(i)) > O(Osc_PksCentre(i) + 2) Then 
                Osc_PkCentreLArray(j_idx, 1) = Pk(Osc_PksCentre(i)) 
                Osc_PkCentreLArray(j_idx, 0) = Osc_PksCentre(i) * DataSampleRate 
                j_idx = j_idx + 1 
            Else 
                Osc_PkCentreRArray(k_idx, 1) = Pk(Osc_PksCentre(i)) 
                Osc_PkCentreRArray(k_idx, 0) = Osc_PksCentre(i) * 
DataSampleRate 
                k_idx = k_idx + 1 
            End If 
        End If 
    Next i 
End If 
 
AvgPk.Plots(4).PlotXY Osc_PkArray, bPlotPerRow = True 
AvgPk.Plots(5).PlotXY Osc_PkNegArray, bPlotPerRow = True 
AvgPk.Plots(6).PlotXY Osc_PkCentreLArray, bPlotPerRow = True 
AvgPk.Plots(7).PlotXY Osc_PkCentreRArray, bPlotPerRow = True 
 
End Sub 
 
Private Sub GridLinesSt_Click() 
If GridLinesSt.Value = 1 Then 
    AvgPk.Plots(1).XAxis.Ticks.MajorGrid = True 
    AvgPk.Plots(1).XAxis.Ticks.MinorGrid = True 
    AvgPk.Plots(1).YAxis.Ticks.MajorGrid = True 
    AvgPk.Plots(1).YAxis.Ticks.MinorGrid = True 
Else 
    AvgPk.Plots(1).XAxis.Ticks.MajorGrid = False 
    AvgPk.Plots(1).XAxis.Ticks.MinorGrid = False 
    AvgPk.Plots(1).YAxis.Ticks.MajorGrid = False 
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    AvgPk.Plots(1).YAxis.Ticks.MinorGrid = False 
End If 
End Sub 
 
Private Sub Option4_Click() 
If Option4.Value = True Then AvgPk.TrackMode = cwGTrackDragCursor 
End Sub 
 
Private Sub Option5_Click() 
If Option5.Value = True Then AvgPk.TrackMode = cwGTrackZoomRectXY 
End Sub 
 
Private Sub Option6_Click() 
If Option6.Value = True Then AvgPk.TrackMode = cwGTrackPanPlotAreaXY 
End Sub 
 
Private Sub Osc_Pk_Op1_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub Osc_Pk_Op2_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub OscLevel_ValueChanged(Value As Variant, PreviousValue As 
Variant, ByVal OutOfRange As Boolean) 
Call Osc_Update 
End Sub 
 
Private Sub Cursors_Update() 
Dim Cursor_Pos As Single 
 
    Cursor_Pos = (AvgPk.Axes(1).Maximum - AvgPk.Axes(1).Minimum) 
    If AvgPk.Cursors(1).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(1).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(1).XPosition = (Cursor_Pos / 1.8) + 
AvgPk.Axes(1).Minimum 
    End If 
    If AvgPk.Cursors(2).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(2).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(2).XPosition = (Cursor_Pos / 1.9) + 
AvgPk.Axes(1).Minimum 
    End If 
    If AvgPk.Cursors(3).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(3).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(3).XPosition = (Cursor_Pos / 2) + AvgPk.Axes(1).Minimum 
    End If 



321 

    If AvgPk.Cursors(4).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(4).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(4).XPosition = (Cursor_Pos / 2.1) + 
AvgPk.Axes(1).Minimum 
    End If 
End Sub 
 
Private Sub OscPksChk_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub OscSt_Click() 
If OscSt.Value = 1 Then 
    AvgPk.Plots(3).Visible = True 
Else 
    AvgPk.Plots(3).Visible = False 
End If 
End Sub 
 
Private Sub Cursors_MinMax() 
AvgMax.Caption = Round(AvgPk.Cursors(1).YPosition, 3) 
AvgMin.Caption = Round(AvgPk.Cursors(2).YPosition, 3) 
AvgDif.Caption = Round((AvgPk.Cursors(1).YPosition - 
AvgPk.Cursors(2).YPosition), 3) 
PkMax.Caption = Round(AvgPk.Cursors(3).YPosition, 3) 
PkMin.Caption = Round(AvgPk.Cursors(4).YPosition, 3) 
PkDif.Caption = Round((AvgPk.Cursors(3).YPosition - 
AvgPk.Cursors(4).YPosition), 3) 
End Sub 
 
Private Sub Scales_Update() 
AvgPk.Axes(2).AutoScale = True 
AvgPk.Axes(2).AutoScaleNow 
YMax.Value = AvgPk.Axes(2).Maximum 
YMin.Value = AvgPk.Axes(2).Minimum 
End Sub 
 
Private Sub YMax_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
AvgPk.Axes(2).Maximum = Value 
End Sub 
 
Private Sub YMin_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
AvgPk.Axes(2).Minimum = Value 
End Sub 
 



322 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.3 – Average Current screen and source code 
 
“Avg_Cur.frm” 
Dim Avg(MaxDataSampled) As Single 
Dim Pk(MaxDataSampled) As Single 
Dim OscVal(MaxDataSampled) As Single 
 
Private Sub AvgPk_Click() 
If Option5.Value = True Then Call Cursors_Update 
If Option4.Value = True Then 
    Call Cursors_MinMax 
    Call Scales_Update 
End If 
End Sub 
 
Private Sub AvgWindow_ValueChanged(Value As Variant, PreviousValue As 
Variant, ByVal OutOfRange As Boolean) 
    Call Avg_Update 
End Sub 
 
Private Sub Command1_Click() 
    Me.Hide 
End Sub 
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Private Sub Command2_Click() 
AvgPk.ClearData 
AvgPk.TrackMode = cwGTrackDragAnnotation 
Call Form_Activate 
End Sub 
 
Private Sub CursorsSt_Click() 
If CursorsSt.Value = 1 Then 
    AvgPk.Cursors(1).Visible = True 
    AvgPk.Cursors(2).Visible = True 
    AvgPk.Cursors(3).Visible = True 
    AvgPk.Cursors(4).Visible = True 
Else 
    AvgPk.Cursors(1).Visible = False 
    AvgPk.Cursors(2).Visible = False 
    AvgPk.Cursors(3).Visible = False 
    AvgPk.Cursors(4).Visible = False 
End If 
End Sub 
 
Private Sub Export_OP_Excel_Click() 
 
Dim Osc_PkArray(MaxGraphData, 1) As Single 
Dim Osc_PkNegArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreLArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreRArray(MaxGraphData, 1) As Single 
Dim j_idx, k_idx As Integer 
 
 
Screen.MousePointer = vbHourglass 
 
Set ExlObj = CreateObject("excel.application")      ' Initialize the excel object 
ExlObj.Workbooks.Add                                ' Add an excel workbook 
 
With ExlObj.ActiveSheet 
    .cells(1, 1).Value = "Time" 
    .cells(1, 2).Value = "Osc_Pk_Left" 
    .cells(1, 3).Value = "Time" 
    .cells(1, 4).Value = "Osc_Pk_Right" 
    .cells(1, 5).Value = "Time" 
    .cells(1, 6).Value = "Osc_Mid_Left" 
    .cells(1, 7).Value = "Time" 
    .cells(1, 8).Value = "Osc_Mid_Right" 
 
    For i = 0 To Osc_PksIdx 
        .cells(i + 2, 1) = Osc_Pks(i) * DataSampleRate 
        .cells(i + 2, 3) = Osc_PksNeg(i) * DataSampleRate 
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        .cells(i + 2, 2) = Avg(Osc_Pks(i)) 
        .cells(i + 2, 4) = Avg(Osc_PksNeg(i)) 
     
    Next i 
    j_idx = 2 
    k_idx = 2 
    For i = 0 To Osc_PksCentreIdx 
        If O(Osc_PksCentre(i)) > O(Osc_PksCentre(i) + 2) Then 
            .cells(j_idx, 6) = Avg(Osc_PksCentre(i)) 
            .cells(j_idx, 5) = Osc_PksCentre(i) * DataSampleRate 
            j_idx = j_idx + 1 
        Else 
            .cells(k_idx, 8) = Avg(Osc_PksCentre(i)) 
            .cells(k_idx, 7) = Osc_PksCentre(i) * DataSampleRate 
            k_idx = k_idx + 1 
        End If 
    Next i 
End With 
Screen.MousePointer = vbDefault 
ExlObj.Visible = True 
 
End Sub 
 
Private Sub Form_Activate() 
    AvgWindow.Value = Int(1 / (DataSampleRate * Pulse_Frequency)) 
    Call Osc_Update 
    Call Cursors_Update 
    Call Cursors_MinMax 
    Call Scales_Update 
    Call Osc_Peaks_Update 
End Sub 
 
Private Sub Avg_Update() 
Dim AvgSum, AvgIni As Single 
 
AvgIni = 0 
For i = 1 To AvgWindow.Value 
    AvgSum = AvgSum + C(i) 
Next i 
AvgIni = AvgSum / AvgWindow.Value 
 
For i = 0 To DataFrames 
    If i <= AvgWindow.Value Then 
        Avg(i) = AvgIni 
    Else 
        AvgSum = AvgSum + C(i) 
        AvgSum = AvgSum - C(i - AvgWindow.Value) 
        Avg(i) = AvgSum / AvgWindow.Value 
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    End If 
Next i 
 
With AvgPk 
    .Plots(1).XAxis.Minimum = 0 
    .Plots(1).XAxis.Maximum = DataFrames * DataSampleRate 
    .Plots(1).PlotY Avg, 0, DataSampleRate 
    .Cursors(1).XPosition = 0 
    .Cursors(2).XPosition = 0 
End With 
 
 
End Sub 
 
Private Sub Osc_Update() 
 
For i = 0 To DataFrames 
    OscVal(i) = O(i) + OscLevel.Value 
Next i 
 
AvgPk.Plots(3).PlotY OscVal, 0, DataSampleRate 
 
End Sub 
 
Private Sub Osc_Peaks_Update() 
Dim Osc_PkArray(MaxGraphData, 1) As Single 
Dim Osc_PkNegArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreArray(MaxGraphData, 1) As Single 
 
If OscPksChk = 1 Then 
    For i = 0 To Osc_PksIdx 
        Osc_PkArray(i, 0) = Osc_Pks(i) * DataSampleRate 
        Osc_PkNegArray(i, 0) = Osc_PksNeg(i) * DataSampleRate 
         
        If Osc_Pk_Op1 = True Then 
            Osc_PkArray(i, 1) = Avg(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Avg(Osc_PksNeg(i)) 
        Else 
            Osc_PkArray(i, 1) = Pk(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Pk(Osc_PksNeg(i)) 
        End If 
    Next i 
    For i = 0 To Osc_PksCentreIdx 
        Osc_PkCentreArray(i, 0) = Osc_PksCentre(i) * DataSampleRate 
        If Osc_Pk_Op1 = True Then 
            Osc_PkCentreArray(i, 1) = Avg(Osc_PksCentre(i)) 
        Else 
            Osc_PkCentreArray(i, 1) = Pk(Osc_PksCentre(i)) 
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        End If 
    Next i 
End If 
AvgPk.Plots(4).PlotXY Osc_PkArray, bPlotPerRow = True 
AvgPk.Plots(5).PlotXY Osc_PkNegArray, bPlotPerRow = True 
AvgPk.Plots(6).PlotXY Osc_PkCentreArray, bPlotPerRow = True 
 
End Sub 
 
Private Sub GridLinesSt_Click() 
If GridLinesSt.Value = 1 Then 
    AvgPk.Plots(1).XAxis.Ticks.MajorGrid = True 
    AvgPk.Plots(1).XAxis.Ticks.MinorGrid = True 
    AvgPk.Plots(1).YAxis.Ticks.MajorGrid = True 
    AvgPk.Plots(1).YAxis.Ticks.MinorGrid = True 
Else 
    AvgPk.Plots(1).XAxis.Ticks.MajorGrid = False 
    AvgPk.Plots(1).XAxis.Ticks.MinorGrid = False 
    AvgPk.Plots(1).YAxis.Ticks.MajorGrid = False 
    AvgPk.Plots(1).YAxis.Ticks.MinorGrid = False 
End If 
End Sub 
 
Private Sub Option4_Click() 
If Option4.Value = True Then AvgPk.TrackMode = cwGTrackDragCursor 
End Sub 
 
Private Sub Option5_Click() 
If Option5.Value = True Then AvgPk.TrackMode = cwGTrackZoomRectXY 
End Sub 
 
Private Sub Option6_Click() 
If Option6.Value = True Then AvgPk.TrackMode = cwGTrackPanPlotAreaXY 
End Sub 
 
Private Sub Osc_Pk_Op1_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub Osc_Pk_Op2_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub OscLevel_ValueChanged(Value As Variant, PreviousValue As 
Variant, ByVal OutOfRange As Boolean) 
Call Osc_Update 
End Sub 
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Private Sub Cursors_Update() 
Dim Cursor_Pos As Single 
 
    Cursor_Pos = (AvgPk.Axes(1).Maximum - AvgPk.Axes(1).Minimum) 
    If AvgPk.Cursors(1).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(1).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(1).XPosition = (Cursor_Pos / 1.8) + 
AvgPk.Axes(1).Minimum 
    End If 
    If AvgPk.Cursors(2).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(2).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(2).XPosition = (Cursor_Pos / 1.9) + 
AvgPk.Axes(1).Minimum 
    End If 
    If AvgPk.Cursors(3).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(3).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(3).XPosition = (Cursor_Pos / 2) + AvgPk.Axes(1).Minimum 
    End If 
    If AvgPk.Cursors(4).XPosition <= AvgPk.Axes(1).Minimum Or 
AvgPk.Cursors(4).XPosition >= AvgPk.Axes(1).Maximum Then 
        AvgPk.Cursors(4).XPosition = (Cursor_Pos / 2.1) + 
AvgPk.Axes(1).Minimum 
    End If 
End Sub 
 
Private Sub OscPksChk_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub OscSt_Click() 
If OscSt.Value = 1 Then 
    AvgPk.Plots(3).Visible = True 
Else 
    AvgPk.Plots(3).Visible = False 
End If 
End Sub 
 
Private Sub Cursors_MinMax() 
AvgMax.Caption = Round(AvgPk.Cursors(1).YPosition, 3) 
AvgMin.Caption = Round(AvgPk.Cursors(2).YPosition, 3) 
AvgDif.Caption = Round((AvgPk.Cursors(1).YPosition - 
AvgPk.Cursors(2).YPosition), 3) 
PkMax.Caption = Round(AvgPk.Cursors(3).YPosition, 3) 
PkMin.Caption = Round(AvgPk.Cursors(4).YPosition, 3) 
PkDif.Caption = Round((AvgPk.Cursors(3).YPosition - 
AvgPk.Cursors(4).YPosition), 3) 
End Sub 
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Private Sub Scales_Update() 
AvgPk.Axes(2).AutoScale = True 
AvgPk.Axes(2).AutoScaleNow 
YMax.Value = AvgPk.Axes(2).Maximum 
YMin.Value = AvgPk.Axes(2).Minimum 
End Sub 
 
Private Sub YMax_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
AvgPk.Axes(2).Maximum = Value 
End Sub 
 
Private Sub YMin_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
AvgPk.Axes(2).Minimum = Value 
End Sub 
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Figure G.4 – Peak Voltages versus Background Voltages screen and source 
code 
 
“Pk_vs_Bk.frm” 
Dim Bk(MaxDataSampled) As Single 
Dim Pk(MaxDataSampled) As Single 
Dim OscVal(MaxDataSampled) As Single 
 
Private Sub Command1_Click() 
    Me.Hide 
End Sub 
 
Private Sub Command2_Click() 
PkBk.ClearData 
PkBk.TrackMode = cwGTrackDragAnnotation 
Call Form_Activate 
End Sub 
 
Private Sub CursorsSt_Click() 
If CursorsSt.Value = 1 Then 
    PkBk.Cursors(1).Visible = True 
    PkBk.Cursors(2).Visible = True 
    PkBk.Cursors(3).Visible = True 
    PkBk.Cursors(4).Visible = True 
Else 
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    PkBk.Cursors(1).Visible = False 
    PkBk.Cursors(2).Visible = False 
    PkBk.Cursors(3).Visible = False 
    PkBk.Cursors(4).Visible = False 
End If 
End Sub 
 
Private Sub Factor_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
    Call Pk_Update 
End Sub 
 
Private Sub Form_Activate() 
    PkBk.Plots(1).XAxis.Minimum = 0 
    PkBk.Plots(1).XAxis.Maximum = DataFrames * DataSampleRate 
     
    Call Bk_Update 
    Call Pk_Update 
    Call Osc_Update 
    Call Cursors_Update 
    Call Cursors_MinMax 
    Call Scales_Update 
    Call Osc_Peaks_Update 
End Sub 
 
Private Sub Pk_Update() 
Dim AvgCur, PkV As Single 
Dim PkIdx As Integer 
Dim PkDetect As Boolean 
Dim i, j As Integer 
 
AvgCur = 0 
PkIdx = 0 
PkV = 0 
PkDetect = False 
 
For i = 0 To DataFrames 
    AvgCur = AvgCur + C(i) 
Next i 
 
AvgCur = AvgCur / DataFrames 
 
For i = 0 To DataFrames 
    If C(i) > AvgCur * 1.8 Then 
        PkDetect = True 
        If PkV < V(i) Then 
            PkV = V(i) 
            PkIdx = i 
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        End If 
        If i > 0 Then Pk(i) = Pk(i - 1) 
    Else 
        If PkDetect = True Then 
            PkDetect = False 
            For j = PkIdx To i 
                Pk(j) = PkV 
            Next j 
        End If 
        If i > 0 Then Pk(i) = Pk(i - 1) 
        PkV = 0 
    End If 
     
Next i 
 
With PkBk 
    .Plots(2).PlotY Pk, 0, DataSampleRate 
    .Cursors(3).XPosition = 0 
    .Cursors(4).XPosition = 0 
End With 
 
End Sub 
 
Private Sub Bk_Update() 
Dim AvgCur, BkV As Single 
Dim BkIdx As Integer 
Dim BkDetect As Boolean 
Dim i, j As Integer 
 
AvgCur = 0 
BkIdx = 0 
BkV = 50 
BkDetect = False 
 
For i = 0 To DataFrames 
    AvgCur = AvgCur + C(i) 
Next i 
 
AvgCur = AvgCur / DataFrames 
 
For i = 0 To DataFrames 
    If C(i) < AvgCur Then 
        BkDetect = True 
        If BkV > V(i) Then 
            BkV = V(i) 
            BkIdx = i 
        End If 
        If i > 0 Then Bk(i) = Bk(i - 1) 
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    Else 
        If BkDetect = True Then 
            BkDetect = False 
            For j = BkIdx To i 
                Bk(j) = BkV 
            Next j 
        End If 
        If i > 0 Then Bk(i) = Bk(i - 1) 
        BkV = 50 
    End If 
     
Next i 
 
With PkBk 
    .Plots(1).PlotY Bk, 0, DataSampleRate 
    .Cursors(1).XPosition = 0 
    .Cursors(2).XPosition = 0 
End With 
 
End Sub 
Private Sub Osc_Update() 
 
For i = 0 To DataFrames 
    OscVal(i) = O(i) + OscLevel.Value 
Next i 
 
PkBk.Plots(3).PlotY OscVal, 0, DataSampleRate 
 
End Sub 
 
Private Sub Osc_Peaks_Update() 
Dim Osc_PkArray(MaxGraphData, 1) As Single 
Dim Osc_PkNegArray(MaxGraphData, 1) As Single 
Dim Osc_PkCentreArray(MaxGraphData, 1) As Single 
 
If OscPksChk = 1 Then 
    For i = 0 To Osc_PksIdx 
        Osc_PkArray(i, 0) = Osc_Pks(i) * DataSampleRate 
        Osc_PkNegArray(i, 0) = Osc_PksNeg(i) * DataSampleRate 
         
        If Osc_Pk_Op1 = True Then 
            Osc_PkArray(i, 1) = Bk(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Bk(Osc_PksNeg(i)) 
        Else 
            Osc_PkArray(i, 1) = Pk(Osc_Pks(i)) 
            Osc_PkNegArray(i, 1) = Pk(Osc_PksNeg(i)) 
        End If 
    Next i 
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    For i = 0 To Osc_PksCentreIdx 
        Osc_PkCentreArray(i, 0) = Osc_PksCentre(i) * DataSampleRate 
        If Osc_Pk_Op1 = True Then 
            Osc_PkCentreArray(i, 1) = Bk(Osc_PksCentre(i)) 
        Else 
            Osc_PkCentreArray(i, 1) = Pk(Osc_PksCentre(i)) 
        End If 
    Next i 
End If 
PkBk.Plots(4).PlotXY Osc_PkArray, bPlotPerRow = True 
PkBk.Plots(5).PlotXY Osc_PkNegArray, bPlotPerRow = True 
PkBk.Plots(6).PlotXY Osc_PkCentreArray, bPlotPerRow = True 
 
End Sub 
 
Private Sub GridLinesSt_Click() 
If GridLinesSt.Value = 1 Then 
    PkBk.Plots(1).XAxis.Ticks.MajorGrid = True 
    PkBk.Plots(1).XAxis.Ticks.MinorGrid = True 
    PkBk.Plots(1).YAxis.Ticks.MajorGrid = True 
    PkBk.Plots(1).YAxis.Ticks.MinorGrid = True 
Else 
    PkBk.Plots(1).XAxis.Ticks.MajorGrid = False 
    PkBk.Plots(1).XAxis.Ticks.MinorGrid = False 
    PkBk.Plots(1).YAxis.Ticks.MajorGrid = False 
    PkBk.Plots(1).YAxis.Ticks.MinorGrid = False 
End If 
End Sub 
 
Private Sub Option4_Click() 
If Option4.Value = True Then PkBk.TrackMode = cwGTrackDragCursor 
End Sub 
 
Private Sub Option5_Click() 
If Option5.Value = True Then PkBk.TrackMode = cwGTrackZoomRectXY 
End Sub 
 
Private Sub Option6_Click() 
If Option6.Value = True Then PkBk.TrackMode = cwGTrackPanPlotAreaXY 
End Sub 
 
Private Sub Osc_Pk_Op1_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub Osc_Pk_Op2_Click() 
Call Osc_Peaks_Update 
End Sub 
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Private Sub OscLevel_ValueChanged(Value As Variant, PreviousValue As 
Variant, ByVal OutOfRange As Boolean) 
Call Osc_Update 
End Sub 
 
Private Sub Cursors_Update() 
Dim Cursor_Pos As Single 
 
    Cursor_Pos = (PkBk.Axes(1).Maximum - PkBk.Axes(1).Minimum) 
    If PkBk.Cursors(1).XPosition <= PkBk.Axes(1).Minimum Or 
PkBk.Cursors(1).XPosition >= PkBk.Axes(1).Maximum Then 
        PkBk.Cursors(1).XPosition = (Cursor_Pos / 1.8) + PkBk.Axes(1).Minimum 
    End If 
    If PkBk.Cursors(2).XPosition <= PkBk.Axes(1).Minimum Or 
PkBk.Cursors(2).XPosition >= PkBk.Axes(1).Maximum Then 
        PkBk.Cursors(2).XPosition = (Cursor_Pos / 1.9) + PkBk.Axes(1).Minimum 
    End If 
    If PkBk.Cursors(3).XPosition <= PkBk.Axes(1).Minimum Or 
PkBk.Cursors(3).XPosition >= PkBk.Axes(1).Maximum Then 
        PkBk.Cursors(3).XPosition = (Cursor_Pos / 2) + PkBk.Axes(1).Minimum 
    End If 
    If PkBk.Cursors(4).XPosition <= PkBk.Axes(1).Minimum Or 
PkBk.Cursors(4).XPosition >= PkBk.Axes(1).Maximum Then 
        PkBk.Cursors(4).XPosition = (Cursor_Pos / 2.1) + PkBk.Axes(1).Minimum 
    End If 
End Sub 
 
Private Sub OscPksChk_Click() 
Call Osc_Peaks_Update 
End Sub 
 
Private Sub OscSt_Click() 
If OscSt.Value = 1 Then 
    PkBk.Plots(3).Visible = True 
Else 
    PkBk.Plots(3).Visible = False 
End If 
End Sub 
 
Private Sub Cursors_MinMax() 
PkMax.Caption = Round(PkBk.Cursors(3).YPosition, 3) 
PkMin.Caption = Round(PkBk.Cursors(4).YPosition, 3) 
PkDif.Caption = Round((PkBk.Cursors(3).YPosition - 
PkBk.Cursors(4).YPosition), 3) 
End Sub 
 
Private Sub Scales_Update() 
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PkBk.Axes(2).AutoScale = True 
PkBk.Axes(2).AutoScaleNow 
YMax.Value = PkBk.Axes(2).Maximum 
YMin.Value = PkBk.Axes(2).Minimum 
End Sub 
 
Private Sub YMax_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
PkBk.Axes(2).Maximum = Value 
End Sub 
 
Private Sub YMin_ValueChanged(Value As Variant, PreviousValue As Variant, 
ByVal OutOfRange As Boolean) 
PkBk.Axes(2).Minimum = Value 
End Sub 
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Figure G.5 – Current versus Voltage Crossplot 
 
“Analysis.frm” 
Private Sub CloseAnalysis_Click() 
Unload Me 
End Sub 
 
Private Sub Form_Load() 
     
    For i = 0 To MaxFrames 
        CrossPlot2D(i, 0) = V(i) 
        CrossPlot2D(i, 1) = C(i) 
    Next i 
         
    For i = 1 To Samples_P_Graph 
        Plot1D_1(i) = V(DataPtr + i) 
        Plot1D_2(i) = C(DataPtr + i) 
    Next i 
     
    CrossGraph2D.PlotXY CrossPlot2D, bPlotPerRow = True 
 
End Sub 
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Figure G.6 – Adjust Scales screen and source code 
 
“Adjust_Scales.frm” 
Private Sub Command1_Click() 
Scale_V_Min = Voltage_Min 
Scale_V_Max = Voltage_Max 
Scale_V_Auto = Voltage_Auto.Value 
Scale_C_Min = Current_Min 
Scale_C_Max = Current_Max 
Scale_C_Auto = Current_Auto.Value 
Scale_O_Min = Oscillation_Min 
Scale_O_Max = Oscillation_Max 
Scale_O_Auto = Oscillation_Auto.Value 
Samples_P_Graph = SamplesPerGraph 
 
Call MainWindow.Update_Scales 
Adjust_Scales.Hide 
 
End Sub 
 
Private Sub Command2_Click() 
Adjust_Scales.Hide 
End Sub 
 
Private Sub Form_Paint() 
Voltage_Min = Scale_V_Min 
Voltage_Max = Scale_V_Max 
Current_Min = Scale_C_Min 
Current_Max = Scale_C_Max 
Oscillation_Min = Scale_O_Min 
Oscillation_Max = Scale_O_Max 
 
If Scale_V_Auto = True Then 
    Voltage_Auto.Value = 1 
    Voltage_Min.Enabled = False 
    Voltage_Max.Enabled = False 
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Else 
    Voltage_Auto.Value = 0 
    Voltage_Min.Enabled = True 
    Voltage_Max.Enabled = True 
End If 
 
If Scale_C_Auto = True Then 
    Current_Auto.Value = 1 
    Current_Min.Enabled = False 
    Current_Max.Enabled = False 
Else 
    Current_Auto.Value = 0 
    Current_Min.Enabled = True 
    Current_Max.Enabled = True 
End If 
 
If Scale_O_Auto = True Then 
    Oscillation_Auto.Value = 1 
    Oscillation_Min.Enabled = False 
    Oscillation_Max.Enabled = False 
Else 
    Oscillation_Auto.Value = 0 
    Oscillation_Min.Enabled = True 
    Oscillation_Max.Enabled = True 
End If 
 
SamplesPerGraph = Samples_P_Graph 
 
End Sub 
 
 
Private Sub Voltage_Auto_Click() 
If Voltage_Auto.Value = 1 Then 
    Voltage_Min.Enabled = False 
    Voltage_Max.Enabled = False 
Else 
    Voltage_Min.Enabled = True 
    Voltage_Max.Enabled = True 
End If 
End Sub 
 
Private Sub Current_Auto_Click() 
If Current_Auto.Value = 1 Then 
    Current_Min.Enabled = False 
    Current_Max.Enabled = False 
Else 
    Current_Min.Enabled = True 
    Current_Max.Enabled = True 
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End If 
 
End Sub 
 
Private Sub Oscillation_Auto_Click() 
If Oscillation_Auto.Value = 1 Then 
    Oscillation_Min.Enabled = False 
    Oscillation_Max.Enabled = False 
Else 
    Oscillation_Min.Enabled = True 
    Oscillation_Max.Enabled = True 
End If 
 
End Sub 
 
 
“General.bas” 
Declare Function mciSendString Lib "winmm.dll" Alias _ 
    "mciSendStringA" (ByVal lpstrCommand As String, ByVal _ 
    lpstrReturnString As Any, ByVal uReturnLength As Long, ByVal _ 
    hwndCallback As Long) As Long 
 
 
Public Const AppName = "WeldData" 
Public Const MaxDataSampled = 40000 
Public Const MaxGraphData = 1000 'Even numbers 
Public Const Header = 11 
 
Public DataPath As String 
Public DataFileName As String 
Public VideoFileName As String 
Public DataFrames As Integer 
Public VideoFrames As Integer 
Public MaxFrames As Integer 
Public DataSampleRate As Single 
 
Public i, j As Integer 
Public k As Single 
 
Public DataPtr, PrevDataPtr As Integer 
 
Public V(MaxDataSampled) As Single 
Public C(MaxDataSampled) As Single 
Public O(MaxDataSampled) As Single 
 
Public VIGraphData(MaxGraphData, 1) As Single 
Public OSCGraphData(MaxGraphData, 1) As Single 
Public VIOCursorX As Variant 
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Public CrossPlot2D(MaxDataSampled, 1) As Single 
Public CrossPlot3D(MaxDataSampled, 2) As Single 
Public Plot1D_1(MaxGraphData) As Single 
Public Plot1D_2(MaxGraphData) As Single 
 
Public Osc_Pks(MaxDataSampled) As Integer 
Public Osc_PksNeg(MaxDataSampled) As Integer 
Public Osc_PksCentre(MaxDataSampled) As Integer 
Public Osc_PksIdx As Integer 
Public Osc_PksNegIdx As Integer 
Public Osc_PksCentreIdx As Integer 
Public Osc_Frequency As Single 
Public OscMin As Single 
Public OscMax As Single 
 
Public Pulse_Frequency As Single 
 
Public Scale_V_Min As Integer 
Public Scale_V_Max As Integer 
Public Scale_V_Auto As Boolean 
Public Scale_C_Min As Integer 
Public Scale_C_Max As Integer 
Public Scale_C_Auto As Boolean 
Public Scale_O_Min As Integer 
Public Scale_O_Max As Integer 
Public Scale_O_Auto As Boolean 
Public Samples_P_Graph As Integer 
 
Public VideoAdjustScalePoints(2, 2) As Integer 
Public VideoMeasurePoints(2, 2) As Integer 
Public VideoAdjustScaleRatio As Single 
Public VidBaseSuppLines_H_Idx As Integer 
Public VidBaseSuppLines_V_Idx As Integer 
Public VidBaseSuppLines_H_Pos(10) As Integer 
Public VidBaseSuppLines_V_Pos(10) As Integer 
Public VidBaseSuppLines_H_Selected As Integer 
Public VidBaseSuppLines_V_Selected As Integer 
 
Sub main() 
Scale_V_Min = 0 
Scale_V_Max = 45 
Scale_V_Auto = False 
Scale_C_Min = 0 
Scale_C_Max = 400 
Scale_C_Auto = False 
Scale_O_Min = -10 
Scale_O_Max = 10 
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Scale_O_Auto = False 
Samples_P_Graph = 100 
 
VidBaseSuppLines_H_Idx = 0 
VidBaseSuppLines_H_Idx = 0 
VidBaseSuppLines_H_Selected = 0 
VidBaseSuppLines_V_Selected = 0 
 
MainWindow.Show 
 
End Sub 
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Appendix H. Results of the 3rd phase of 
experimentation 

 
Trial 5 mm scale 10 mm scale 

C1 

 

C2 

C3 

C4 

C5 

Figure H.1 - 5 mm and 10 mm calibration scales for WeldData arc image 
measurements
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Table H.1 - GMAW-P peak voltage average values of trials C1 to C3 

Trial 

Osc 
Freq 
(Hz) 

Osc_Pk
_ 

Left 
(V) 

Osc_Pk_
Right 

(V) 

Osc_Mid
_ 

Left 
(V) 

Osc_Mid
_ 

Right 
(V) 

CRight- 
CLeft 

(V) 

Left- 
Right 

(V) 
C1.1 5 31.95 26.98 29.30 29.93 0.63 4.97 
C1.2 10 31.17 26.47 29.28 29.14 -0.14 4.70 
C1.3 15 31.39 26.98 29.90 29.45 -0.45 4.41 
C1.4 20 31.99 27.19 29.73 29.53 -0.21 4.80 
C1.5 25 33.00 28.22 30.81 30.67 -0.14 4.78 
C2.1 5 36.39 33.46 34.95 35.32 0.38 2.93 
C2.2 10 34.56 30.94 33.12 33.14 0.02 3.62 
C2.3 15 35.64 32.01 34.12 34.25 0.13 3.63 
C2.4 20 35.72 31.78 33.53 33.62 0.09 3.95 
C2.5 25 35.40 31.32 33.47 33.52 0.05 4.07 
C3.1 1 30.40 28.37 29.79 29.91 0.11 2.04 
C3.2 3 31.64 27.30 29.54 29.69 0.15 4.35 
C3.3 5 32.78 28.17 30.52 30.58 0.06 4.61 
C3.4 7 31.94 27.44 30.05 29.74 -0.31 4.51 
C3.5 9 32.84 28.63 30.95 30.99 0.04 4.20 
 
 
 
 
Table H.2 – GMAW voltage average values of trials C4 and C5 

Trial 

Osc 
Freq 
(Hz) 

Osc_Pk
_ 

Left 
(V) 

Osc_Pk_
Right 

(V) 

Osc_Mid
_ 

Left 
(V) 

Osc_Mid
_ 

Right 
(V) 

CRight- 
CLeft 

(V) 

Left- 
Right 

(V) 
C4.1 5 27.15 26.11 26.04 26.94 0.90 1.04 
C4.2 15 27.43 25.77 26.12 27.07 0.95 1.66 
C4.3 25 27.30 25.65 25.86 27.12 1.25 1.64 
C5.1 3 27.20 26.24 25.94 26.69 0.75 0.96 
C5.2 6 26.87 25.87 26.04 26.83 0.78 1.00 
C5.3 9 27.00 25.85 25.86 26.74 0.87 1.15 
C5.4 12 27.31 25.52 26.02 26.91 0.89 1.80 
C5.5 15 27.20 25.42 25.83 26.70 0.87 1.77 
Table H.3 - GMAW current average values of trials C4 and C5 
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Trial 

Osc 
Freq 
(Hz) 

Osc_P
k_ 

Left 
(A) 

Osc_Pk
_ 

Right 
(A) 

Osc_Mid
_ 

Left 
(A) 

Osc_Mid
_ 

Right 
(A) 

CRight- 
CLeft 

(A) 

Left- 
Right 

(A) 
C4.1 5.00 149.96 170.69 166.75 148.65 -18.10 20.73 
C4.2 15.00 147.76 175.01 155.09 166.78 11.69 27.25 
C4.3 25.00 148.69 175.22 162.12 165.69 3.57 26.53 
C5.1 3.00 150.45 171.47 172.77 160.15 -12.62 21.02 
C5.2 6.00 152.43 173.17 163.68 162.72 -0.96 20.74 
C5.3 9.00 152.69 175.75 163.49 165.87 2.38 23.07 
C5.4 12.00 149.65 179.86 159.49 168.10 8.61 30.20 
C5.5 15.00 151.91 180.71 159.21 167.94 8.74 28.80 
 

Trial D1 
Proximity 0 mm 
CTWD 13.5 mm 

Calibration scale 5 mm 

 

 
Maximum left excursion 

 
Maximum right excursion 

Figure H.2 - Calibration scale (top) and sidewall distances (bottom) of trial D1 
 

Trial D2 
Proximity +1 mm 
CTWD 13.5 mm 

Calibration scale 5 mm 

 

 
Maximum left excursion 

 
Maximum right excursion 

Figure H.3 - Calibration scale (top) and sidewall distances (bottom) of trial D2 
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Figure H.4 - Calibration scale (top) and sidewall distances (wire tip middle and 
contact-tip bottom) of trial D3 
 

Figure H.5 - Calibration scale (left) and sidewall distance (right) of trial D4 
 

Trial D3 
Proximity -1 mm 
CTWD 13.5 mm 

Calibration scale 5 mm 

 

 
Maximum left excursion 

 
Maximum right excursion 

 
Contact-tip at maximum left 

 
Contact-tip at maximum right 

Trial D4 ; Proximity 0 mm ; CTWD 13 mm to 17 mm ; Calibration scale 5 mm 
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Table H.4 - GMAW-P peak voltage average values of trials D1 to D3 

Tria
l 

Osc 
Freq 
(Hz) 

Osc_Pk_Le
ft (V) 

Osc_Pk_Rig
ht (V) 

Osc_Mid_Le
ft (V) 

Osc_Mid_Rig
ht (V) 

D1.
1 5.00 28.25 26.14 29.46 29.66 

D1.
2 10.00 29.39 24.85 28.85 29.47 

D1.
3 15.00 29.31 25.39 28.56 28.57 

D1.
4 20.00 30.27 26.97 29.49 29.36 

D1.
5 25.00 30.10 28.75 29.84 29.64 

D2.
1 5.00 29.26 27.90 28.79 28.95 

D2.
2 10.00 29.11 28.48 28.90 29.16 

D2.
3 15.00 29.07 28.69 29.02 29.11 

D2.
4 20.00 29.49 29.62 29.44 29.72 

D2.
5 25.00 30.13 30.27 29.96 30.21 

D3.
1 5.00 30.71 21.81 27.45 27.41 

D3.
2 10.00 30.76 22.15 28.81 28.75 

D3.
3 15.00 30.35 21.08 28.28 28.46 

D3.
4 20.00 31.62 21.10 28.23 28.87 

D3.
5 25.00 31.16 20.50 27.61 27.48 

 
 
Table H.5 - GMAW-P peak voltage average values of trial D4 

Trial 
CTWD 
(mm) 

Osc_Pk_Left 
(V) 

Osc_Pk_Right 
(V) 

Osc_Mid_Left 
(V) 

Osc_Mid_Right 
(V) 

D4.1 13 29.83 21.84 27.96 28.34 
D4.2 14 30.12 24.30 28.58 29.36 
D4.3 15 32.61 25.11 30.81 30.52 
D4.4 16 33.86 24.26 30.50 31.66 
D4.5 17 34.92 25.65 32.36 32.06 
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Figure H.6 – Weld metal penetrations for trials D1 to D3 

Trial 
Oscillation 

(Hz) 
Bottom penetration 

(mm) 
Sidewall penetration 

(mm) 
D1.1 5 1.65 0.74 
D1.2 10 1.72 0.65 
D1.3 15 1.84 0.37 
D1.4 20 1.68 0.28 
D1.5 25 2 0.56 
D2.1 5 2.07 0.23 
D2.2 10 1.98 0.14 
D2.3 15 1.75 0.25 
D2.4 20 1.75 0.21 
D2.5 25 0.93 0.16 
D3.1 5 0.42 0.74 
D3.2 10 1.02 0.67 
D3.3 15 1 0.79 
D3.4 20 0.93 0.72 
D3.5 25 0.63 0.67 

 
 
Figure H.7 – Weld metal penetrations for trial D4 

Trial 
CTWD 
(mm) 

Bottom penetration 
(mm) 

Sidewall penetration 
(mm) 

D4.1 13 1.41 1.28 
D4.2 14 1.89 1.37 
D4.3 15 1.63 1.72 
D4.4 16 0.88 0.98 
D4.5 17 1 0.65 
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Figure H.8 – Explanation for weld metal penetration measurements of trials E1 

to E8 

Top 

Bottom 

Left 

Groove bottom 

Right 

Top Width 

Height = Top + Bottom 

Sidewall lines 



349 

 
Trial E1 ; Proximity -0.5 mm ; Groove width 2.5 mm ; Oscillation width 2.5 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.9 - Calibration scale (top) and sidewall distances of trial E1 
 
Table H.6 – Weld metal penetration and bead dimensions of trial E1 

 

Figure H.10 – Bead profiles from trials E1.1 to E1.5 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 0.948 

E1.1 5 0 0.21 0.59 4.1 4.55 4.1 1.0179 
E1.2 10 0 0.42 0.59 4.2 4.47 4.2 0.9911 
E1.3 15 0 0.55 0.63 4.1 4.47 4.1 1.03 
E1.4 20 0 0.16 0.46 4.36 4.26 4.36 0.953 
E1.5 25 0 0.03 0.08 4.89 3.59 4.89 0.7479 
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Trial E2 ; Proximity 0 mm ; Groove width 3.5 mm ; Oscillation width 2.5 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.11 - Calibration scale (top) and sidewall distances of trial E2 
 
Table H.7 – Weld metal penetration and bead dimensions of trial E2 

 

Figure H.12 – Bead profiles from trials E2.1 to E2.4 
 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.4325 

E2.1 5 1.56 0.55 0.55 2.58 5.74 4.14 1.3865 
E2.2 10 1.1 0.55 0.25 2.83 5.59 3.93 1.4224 
E2.3 15 1.06 0.59 0.17 2.76 5.65 3.82 1.4791 
E2.4 20 0.56 0.29 0.08 3.33 5.61 3.89 1.4422 
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Trial E3 ; Proximity +0.5 mm ; Groove width 4.5 mm ; Oscillation width 2.5 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.13 - Calibration scale (top) and sidewall distances of trial E3 
 
Table H.8 – Weld metal penetration and bead dimensions of trial E3 

 

Figure H.14 – Bead profiles from trials E3.1 to E3.5 
 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.5626 

E3.1 5 1.32 0.26 0.42 2.56 5.65 3.88 1.4562 
E3.2 10 1.43 0.29 0.29 2.23 5.65 3.66 1.5437 
E3.3 15 1.44 0.38 0.33 2.2 5.7 3.64 1.5659 
E3.4 20 1.32 0.46 0.29 2.38 5.99 3.7 1.6189 
E3.5 25 1.07 0.51 0.25 2.48 5.78 3.55 1.6282 
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Trial E4 ; Proximity -0.5 mm ; Groove width 2.5 mm ; Oscillation width 2.5 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.15 - Calibration scale (top) and sidewall distances of trial E4 
 
 
Table H.9 – Weld metal penetration and bead dimensions of trial E4 

 

Figure H.16 – Bead profiles from trials E4.1 to E4.5 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.0858 

E4.1 5 0.67 0.38 0.63 3.51 4.55 4.18 1.0885
E4.2 10 0.46 0.5 0.51 3.72 4.51 4.18 1.0789
E4.3 15 0.46 0.55 0.46 3.68 4.55 4.14 1.099
E4.4 20 0.15 0.55 0.51 3.87 4.47 4.02 1.1119
E4.5 25 0 0.6 0.51 4.33 4.55 4.33 1.0508
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Trial E5 ; Proximity 0 mm ; Groove width 3.5 mm ; Oscillation width 2.5 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.17 - Calibration scale (top) and sidewall distances of trial E5 
 
 
Table H.10 – Weld metal penetration and bead dimensions of trial E5 

 

Figure H.18 – Bead profiles from trials E5.1 to E5.5 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.3517 

E5.1 5 1.44 0.59 0.38 2.75 5.44 4.19 1.2983
E5.2 10 1.44 0.5 0.46 2.58 5.4 4.02 1.3433
E5.3 15 1.4 0.63 0.59 2.88 5.69 4.28 1.3294
E5.4 20 1.1 0.51 0.38 2.8 5.4 3.9 1.3846
E5.5 25 0.78 0.47 0.51 3.07 5.4 3.85 1.4026
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Trial E6 ; Proximity +0.15 mm ; Groove width 5 mm ; Oscillation width 3.7 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.19 - Calibration scale (top) and sidewall distances of trial E6 
 
 
Table H.11 – Weld metal penetration and bead dimensions of trial E6 

 

Figure H.20 – Bead profiles from trials E6.1 to E6.4 
 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.8599 

E6.1 5 0.85 0.29 0.46 2.17 6.07 3.02 2.0099
E6.2 10 1.36 0.38 0.38 2.1 6.1 3.46 1.763
E6.3 15 0.94 0.38 0.47 2.43 6.2 3.37 1.8398
E6.4 20 0.55 0.42 0.29 2.8 6.12 3.35 1.8269
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Trial E7 ; Proximity +0.65 mm ; Groove width 6 mm ; Oscillation width 3.7 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.21 - Calibration scale (top) and sidewall distances of trial E7 
 
 
Table H.12 – Weld metal penetration and bead dimensions of trial E7 

 

Figure H.22 – Bead profiles from trials E7.1 to E7.5 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 2.0383 

E7.1 5 1.31 0.46 0.29 2.11 6.83 3.42 1.9971
E7.2 10 1.14 0.42 0.08 2.1 6.54 3.24 2.0185
E7.3 15 1.31 0.38 0.34 1.86 6.62 3.17 2.0883
E7.4 20 1.36 0.38 0.51 2.04 6.96 3.4 2.0471
E7.5 25 1.11 0.3 0.51 2.1 6.55 3.21 2.0405
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Trial E8 ; Proximity +0.55 mm ; Groove width 5.8 mm ; Oscillation width 3.7 mm 

 
Calibration scale 5 mm 

 
Calibration scale 10 mm 

  

  
Figure H.23 - Calibration scale (top) and sidewall distances of trial E8 
 
 
Table H.13 – Weld metal penetration and bead dimensions of trial E8 

 

Figure H.24 – Bead profiles from trials E8.1 to E8.5 

  Penetration (mm)  Bead dimensions (mm) 

Trial 
Osc Freq. 

(Hz) Bottom Left Right Top 
Top 

width Height 
Width/Depth
Avg. 1.9252 

E8.1 5 1.06 0.5 0.46 2.54 6.76 3.6 1.8778
E8.2 10 1.09 0.21 0.5 2.11 6.41 3.2 2.0031
E8.3 15 1.35 0.34 0.55 2.07 6.58 3.42 1.924
E8.4 20 1.19 0.26 0.42 2.25 6.5 3.44 1.8895
E8.5 25 0.85 0.25 0.47 2.52 6.51 3.37 1.9318
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Table H.14 – Peak voltage average values from trials E1 to E8 

Trial 

Osc 
Freq 
(Hz) 

Osc_Pk_Left 
(V) 

Osc_Pk_Right 
(V) 

Osc_Mid_Left 
(V) 

Osc_Mid_Right 
(V) 

E1.1 5.00 20.94 23.85 27.38 25.78 
E1.2 10.00 21.08 24.19 27.27 25.33 
E1.3 15.00 20.39 23.21 26.67 25.36 
E1.4 20.00 19.59 23.88 27.62 26.43 
E1.5 25.00 21.16 25.13 27.74 27.42 
E2.1 5.00 22.81 26.72 28.32 27.63 
E2.2 10.00 21.43 28.28 27.90 26.46 
E2.3 15.00 21.21 27.75 27.96 26.74 
E2.4 20.00 19.83 30.15 28.71 27.16 
E2.5 25.00 26.48 26.59 25.66 26.59 
E3.1 5.00 26.71 26.51 27.19 27.51 
E3.2 10.00 26.48 26.84 28.26 28.13 
E3.3 15.00 26.09 26.42 27.73 27.76 
E3.4 20.00 26.11 27.04 28.02 27.73 
E3.5 25.00 25.97 26.66 27.64 28.01 
E4.1 5.00 22.67 21.95 26.69 26.04 
E4.2 10.00 22.26 23.38 26.86 26.51 
E4.3 15.00 22.43 22.29 26.57 26.54 
E4.4 20.00 22.14 22.57 27.01 26.90 
E4.5 25.00 21.95 20.48 26.19 26.38 
E5.1 5.00 24.41 27.47 28.87 28.80 
E5.2 10.00 24.29 26.50 28.38 28.20 
E5.3 15.00 25.51 26.63 29.22 29.26 
E5.4 20.00 25.08 26.22 28.14 28.14 
E5.5 25.00 25.17 26.54 28.23 28.71 
E6.1 5.00 25.35 25.27 28.80 28.44 
E6.2 10.00 24.05 24.83 28.77 28.63 
E6.3 15.00 23.43 24.89 29.09 29.16 
E6.4 20.00 20.83 25.79 30.12 29.58 
E6.5 25.00 26.11 27.33 27.48 27.33 
E7.1 5.00 25.88 26.40 28.59 28.31 
E7.2 10.00 25.82 26.81 28.29 28.31 
E7.3 15.00 26.01 26.40 28.23 28.27 
E7.4 20.00 27.29 26.28 29.36 29.44 
E7.5 25.00 27.28 25.83 28.48 28.82 
E8.1 5.00 27.61 25.78 29.13 29.46 
E8.2 10.00 27.23 24.76 27.91 28.13 
E8.3 15.00 27.11 24.76 28.08 28.41 
E8.4 20.00 28.92 24.17 28.93 28.75 
E8.5 25.00 29.63 25.38 29.01 29.05 
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