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                                                                                     Abstract 

Abstract 

This is the first study to explore the potential applications of using qualitative volatile 

fingerprints (electronic nose) for early detection and diagnosis of diseases such as 

dermatophytosis, ventilator associated pneumonia and upper gastrointestinal cancer. 

The investigations included in vitro analysis of various dermatophyte species and 

strains, antifungal screening, bacterial cultures and associated clinical specimens and 

oesophageal cell lines. Mass spectrometric analyses were attempted to identify possible 

markers. 

 

The studies that involved e-nose comparisons indicated that the conducting polymer 

system was unable to differentiate between any of the treatments over the experimental 

period (120 hours). Metal oxide-based sensor arrays were better suited and 

differentiated between four dermatophyte species within 96 hours of growth using 

principal component analysis and cluster analysis (Euclidean distance and Ward’s 

linkage) based on their volatile profile patterns. Studies on the sensitivity of detection 

showed that for Trichophyton mentagrophytes and T. rubrum it was possible to 

differentiate between log3, log5 and log7 inoculum levels within 96 hours. The 

probabilistic neural network model had a high prediction accuracy of 88 to 96% 

depending on the number of sensors used. 

 

Temporal volatile production patterns studied at a species level for a Microsporum 

species, two Trichophyton species and at a strain level for the two Trichophyton species; 

showed possible discrimination between the species from controls after 120 hours. The 

predictive neural network model misclassified only one sample. Data analysis also 

indicated probable differentiation between the strains of T. rubrum while strains of T. 

mentagrophytes clustered together showing good similarity between them.  

 

Antifungal treatments with itraconazole on T. mentagrophytes and T. rubrum showed 

that the e-nose could differentiate between untreated fungal species from the treated 
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fungal species at both temperatures (25 and 30°C). However, the different antifungal 

concentrations of 50% fungal inhibition and 2 ppm could not be separated from each 

other or the controls based on their volatiles. 

   

Headspace analysis of bacterial cultures in vitro indicated that the e-nose could 

differentiate between the microbial species and controls in 83% of samples (n=98) 

based on a four group model (gram-positive, gram-negative, fungi and no growth). 

Volatile fingerprint analysis of the bronchoalveolar lavage fluid accurately separated 

growth and no growth in 81% of samples (n=52); however only 63% classification 

accuracy was achieved with a four group model. 12/31 samples were classified as 

infected by the e-nose but had no microbiological growth, further analysis suggested 

that the traditional clinical pulmonary infection score (CPIS) system correlated with the 

e-nose prediction of infection in 68% of samples (n=31).  

 

No clear distinction was observed between various human cell lines (oesophageal and 

colorectal) based on volatile fingerprints within one to four hours of incubation, 

although they were clearly separate from the blank media. However, after 24 hours one 

of the cell lines could be clearly differentiated from the others and the controls. The 

different gastrointestinal pathologies (forming the clinical samples) did not show any 

specific pattern and thus could not be distinguished. 

 

Mass spectrometric analysis did not detect distinct markers within the fungal and cell 

line samples, but potential identifiers in the fungal species such as 3-Octanone, 1-Octen-

3-ol and methoxybenzene including high concentration of ammonia, the latter mostly in 

T. mentagrophytes, followed by T. rubrum and Microsporum canis, were found. 

 

These detailed studies suggest that the approach of qualitative volatile fingerprinting 

shows promise for use in clinical settings, enabling rapid detection/diagnoses of 

diseases thus eventually reducing the time to treatment significantly. 
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                                                                                               Literature Review 

1.1 Introduction 

“Prevention is better than cure” is a well known idiom and is something that every 

individual in the present day desires. From the youth to the aged, people have become 

very conscious of the attributes of good health and therefore averse to any illness. 

Preventive medicine, in today’s world, is thus fast becoming an accepted therapeutic 

approach. It not only prevents the onset of a disease but also decreases the time spent by 

GPs on patients and the overall money spent on medical treatment. Patients too are 

beginning to demand rapid and early diagnosis of diseases, be they of microbial or non-

microbial origins. Moreover, early differentiation between different infections is an 

important factor that facilitates rapid treatment as part of a preventative health strategy 

(Turner & Magan, 2004).  

 

A good example that indicates preventive medicine can work wonders is the use of 

vaccines against diseases such as hepatitis, polio or measles. However, over the years a 

number of diseases have emerged and are constantly increasing due to growing 

microbial resistance or genetic or environmental causes. For such diseases, we need to 

have good diagnostic tools that detect them at an early stage with high sensitivity and 

specificity. Recent advances in technology have resulted in a big leap in medical 

diagnostics with devices such as CT scans or magnetic resonance imaging. These 

procedures are nevertheless expensive and require highly trained personnel for their 

operation due to the nature of the equipment.  

 

Therefore, the current research focus is on trying to find/develop diagnostic techniques 

that not only detects the disease in its infancy but is also economical and easy to 

operate. 
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1.2 Dermatophytosis 

There has been a dramatic increase in the incidence of mycotic infections like 

dermatophytoses over the past decade due to heightened susceptibility in the immune 

system of populations. These include patients with AIDS, on immunosuppressive 

therapy, i.e. chemotherapy, and undergoing more invasive diagnostic and surgical 

procedures (prosthetic implants). Due to the fact that any fungus may incite an 

infectious disease in a host with altered immunity, organisms that were once harmless 

now have the potential to be pathogenic (Rinaldi, 2000; Di Salvo, 2005). 

 

Dermatophytes are responsible for one of the most common human fungal infectious 

diseases in the world and are the leading cause of hair, nail and skin infections in 

humans. They are a group of morphologically and physiologically related moulds that 

cause a well-defined infection – dermatophytosis, also known as ringworm or tinea and 

are keratinophilic and keratinolytic in nature. This implies that they possess the ability 

to digest keratin in vitro and utilise it as a substrate and some may invade tissues (such 

as hair, nails and skin) in vivo and provoke tineas (Simpanya, 2000). Infection is usually 

restricted to the nonliving cornified layers and is cutaneous, where the fungus only 

colonises but does not invade the living tissue. However, the metabolic products can 

cause allergic and inflammatory responses in the host (Weitzman & Summerbell, 1995). 

The breakdown of the keratinised cells is due to the enzyme keratinase produced by 

these organisms. In very rare instances these fungi penetrate the deeper tissues or organs 

in immunocompromised hosts and develop into granulomas (Hiruma & Yamaguchi, 

2003).   
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1.2.1 Aetiology, ecology and epidemiology 

These fungi are classified into three genera namely Epidermophyton, Microsporum and 

Trichophyton and vary not only according to the anatomic location of infection but also 

their geographical occurrence – widespread distribution or regional restriction. 

Furthermore, these are also divided into three groups based on their natural habitat: (1) 

Geophilic species – primarily live in soils, associated with breakdown of fallen 

keratinous materials i.e. hair, feathers, hooves and horns and may cause severe reactions 

on interaction with humans or animals e.g. M. gypseum; (2) Zoophilic species – 

generally infects animals but can cause occasional human infections e.g. M. canis and 

finally (3) Anthropophilic species – primarily human pathogens rarely infecting animals 

e.g. E. floccosum. These anthropophilic fungi have the strongest infective ability and are 

known to possess polymorphous morphological variations (Weitzman & Summerbell, 

1995; Hiruma & Yamaguchi, 2003). Table 1.1 shows the prevalence and geographical 

distribution of the human pathogenic species used in this study as adapted from Hiruma 

& Yamaguchi (2003). 

 

Epidemiology plays an important role in controlling infections and identifying the 

source and route of infections. However, due to the widespread nature of certain 

common dermatophyte species it has been difficult to do so. The general routes of 

contracting infection are either by direct contact with infected individuals and/or 

animals or by indirect transmission via infected materials or fomites. The latter can 

account for common usage of items such as combs, towels, footwear, clothing and 

linen; sharing communal facilities like swimming pools, showers, public baths and 

gymnasium; contact sports and damp foot conditions. An interesting feature of these 

fungal species is that their infectious spores persist in the environment for a long time 
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thus enabling the possibility of re-infection (Weitzman & Summerbell, 1995; Hiruma & 

Yamaguchi, 2003). A recent study showed that the socioeconomic status, living in 

dormitories and poor hygiene and sanitary conditions increased the incidence of 

dermatophytoses in children (Metintas et al., 2004).  

 

Table 1.1: Ecology and prevalence of dermatophyte species used in the current study, 

adapted from Hiruma & Yamaguchi (2003). 

 

Species Origin Geographic 

distribution 

Prevalence 

T. mentagrophytes    

  var. mentagrophytes Zoophilic (Rodent) Worldwide Common 

  var. interdigitale Anthropophilic Worldwide Common 

  var. erinacei Zoophilic (Hedgehog) Europe, New Zealand, 

Africa 

Occasional 

  var. quinckeanum Zoophilic (Mouse) Worldwide Rare 

T. rubrum Anthropophilic Worldwide Common 

T. verrucosum Zoophilic (Cow) Worldwide Common 

T. violaceum Anthropophilic Europe, Africa, Asia Common 

M. canis Zoophilic (Cat, Dog) Worldwide Common 

  var. distortum Zoophilic (Cat, Dog) New Zealand, USA Rare 

 

1.2.2 Clinical manifestations 

A wide range of clinical features have been presented by dermatophytoses, which are 

influenced by factors such as the species, size of inoculum and the host’s immune status 

but mainly depends on the site of infection. Instead of a single organism causing one 

sign of the disease, several species can, in fact, result in a single disease manifestation 

(Hiruma & Yamaguchi, 2003). The various clinical features (Figure 1.1) are as follows: 
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a) Tinea Corporis: Ringworm of the body usually involving the trunk, shoulders or 

limbs and can be caused by any dermatophyte. 

b) Tinea Pedis (Athlete’s foot): Ringworm of the feet especially the soles and 

presents as scaling or macerations between toes. It is frequently caused by T. 

rubrum and T. mentagrophytes.   

c) Tinea Crusis (Jock itch): Ringworm of the groin with occasional infection of 

upper thighs and usually seen in men. Frequent etiologic agents are T. rubrum 

and E. floccosum. 

d) Tinea Capitis: Ringworm of the scalp, where spores are formed within the hair 

shaft – endothrix infection or outside it – ectothrix infection and caused by 

Microsporum or Trichophyton species. Common paediatric disease with 

increasing incidence in UK especially within the Afro-Caribbean population 

(Fuller et al., 2003). 

e) Tinea Favosa: Severe, chronic infection of the scalp in humans with crust 

formation around hair shafts. It is caused by T. schoenleinii and is common in 

Eurasia and Africa. 

f) Tinea Barbae:  Infection of the bearded area caused by T. mentagrophytes and T. 

verrucosum. 

g) Tinea Manuum: Infection of the palms, mainly caused by T. rubrum. 

h) Tinea Unguium: Invasion of the nail plate, usually in toenails. Commonly 

caused by T. mentagrophytes and T. rubrum. Also known as onychomycosis. 

i) Tinea Imbricata: Chronic infection on the body characterised by concentric rings 

and caused by T. concentricum. It is geographically restricted to Southeast Asia, 

Mexico and Central and South America (Weitzman & Summerbell, 1995; Hay, 

2003).  
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Figure 1.1: Images depicting tinea corporis, tinea unguium, tinea pedis and tinea capitis 

in clockwise direction from the top left corner (Ellis, 2007).  

 

1.2.3 Methods of identification and differentiation 

Conventional laboratory procedures for the identification of dermatophytes rely on 

microscopic examination – determining morphological structures such as conidia and 

hyphae; in vitro culture which is based on colony pigmentation, texture and growth rate 

and biochemical tests such as the urease test and bromocresol purple-milk solids-

glucose medium (Weitzman & Summerbell, 1995). However, these are time consuming, 

expensive, lack specificity and require specialist skills. Thus, indicating a need for rapid 

and improved diagnostic procedures. 
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Advances in the molecular diagnostics sector have led to the development of numerous 

approaches using nucleic acid amplification and restriction enzyme (RE) techniques for 

the rapid identification of dermatophytes as well as strain typing of the commonly 

occurring species. Studies with different random primers using the arbitrarily primed – 

polymerase chain reaction (AP-PCR) method have differentiated between Microsporum 

or Trichophyton genera as well as some selected species except a few of the latter. The 

DNA fragments produced characteristic band patterns enabling distinction, although the 

two genera were found to be genetically similar (Liu et al., 1996; Liu et al., 1997; Liu et 

al., 2000). Using a combination of primers, however, increased the discrimination 

between species except for T. rubrum and T. gourvillii (Liu et al., 2000).  

 

The dermatophytes were also shown to be clearly distinct from other fungal and yeast 

species such as Scytalidium, Fusarium, Aspergillus and Candida using AP-PCR and 

PCR – restriction fragment length polymorphism (PCR-RFLP) (Liu et al., 2000; 

Machouart-Dubach et al., 2001). Although in the latter the dermatophyte species could 

not be differentiated from each other.  

 

Restriction enzyme analysis in conjunction with PCR has been applied for species 

identification making use of genomic as well as ribosomal DNA sequences (Jackson et 

al., 1999; Shin et al., 2003; Kamiya et al., 2004). These studies made use of different 

species with a few common ones such as T. mentagrophytes, T. rubrum, M. gypseum, 

M. canis and E. floccosum, but in case of the first two studies at least two species within 

the Microsporum and Trichophyton genera respectively were found to be 

indistinguishable based on the enzyme digestion patterns.  
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Turin et al. (2000) reported the use of three primer pairs in a PCR assay that facilitated 

the recognition of pathogenic fungi in clinical samples. Another study employed PCR 

fingerprinting to identify common dermatophyte species where species specific profiles 

were produced. However, it is costlier than the conventional methods (Faggi et al., 

2001). Molecular analyses of the chitin synthase 1 gene along with phylogenetic 

analysis were used to identify a clinical isolate from a black-dot ringworm lesion 

(Okabayashi et al., 1999). 

 

Recently, Hollemeyer et al. (2005) presented a novel application using matrix assisted 

laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry which 

makes use of the mass spectrum of cleaved peptides to distinguish between fungal and 

non-fungal infections. It allowed clear differentiation of T. rubrum infections from those 

with psoriasis and healthy people. Another recent method involves the use of real time 

PCR assays for differentiation of dermatophyte species (Arabatzis et al., 2007). 

 

On the other hand, there have been slightly varying/ambiguous reports pertaining to 

strain identification of the two common Trichophyton species. Some reported either no 

or very little differences between strains of T. rubrum (Liu et al., 1996; Zhong et al., 

1997; Gräser et al., 1999) whilst others demonstrated the presence of molecular 

diversity using clinical isolates (Jackson et al., 1999; Jackson et al., 2000; Kamiya et 

al., 2004; Baeza & Giannini, 2004; Baeza et al., 2006) based on different molecular 

methods. Baeza et al. (2006) also showed that epidemiologically related strains of this 

species possessed a high degree of similarity.  
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Similarly, intraspecific variability was found to be present in T. mentagrophytes strains 

using RAPD and PCR fingerprinting respectively (Kac et al., 1999; Faggi et al., 2001)  

but in contrast Liu et al. (1996) found no differences in the strains of this species  using 

AP-PCR. Moreover, two recent studies have shown to reduce the time for identification 

of dermatophytes especially that of T. rubrum using PCR to either 5 or 48 hours 

respectively (Kardjeva et al., 2006; Brillowska-Dąbrowska et al., 2007).  

 

Most of these PCR methods can be expensive, suffer from either DNA contamination or 

potential enzymatic inhibitors (Binstock, 2007) and thus not feasible for clinical 

analyses. The current study therefore focuses on a novel method based on volatile 

production patterns to identify dermatophytes, especially the Trichophyton species and 

determine any possible inter-strain differences. 

 

1.2.4 Antifungal susceptibility 

Unlike some of the other diseases, dermatophytosis is not life threatening. Nevertheless, 

in order to initiate/facilitate appropriate treatment it is essential to determine the 

causative organism down to the species level. The importance of accurate diagnosis is 

further substantiated by the expenses of drugs, longer therapy especially in case of nail 

and scalp infections and certain associated risks including antibiotic resistance. 

Treatment regimens can either be topical or systemic (oral) depending on the type and 

severity of infection (Gupta & Tu, 2006).  

 

Antifungal susceptibility tests are known to help facilitate screening, in guiding the 

selection of drugs and to isolate the presence of resistant strains. However, no standard 

clinical method exists, therefore many susceptibility studies have been performed to 
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determine the in vitro activity of antifungal agents, common ones being terbinafine, 

itraconazole, fluconazole and griseofulvin, against the dermatophytes in an attempt to 

develop a standard assay. The methods used range from broth microdilution assays to 

disk diffusion methods including the use of commercial systems (Fernandez-Torres et 

al., 2002; Favre et al., 2003; Esteban et al., 2005; Santos et al., 2006).  

 

Over the recent years, there have been many studies on susceptibility involving 

alternative remedies using natural resources such as plant extracts or essentials oils for 

these infections owing to the side effects and increasing ineffectiveness of current 

medications. The use of extracts from various plants have been shown to inhibit growth 

of certain dermatophytic species by almost 80-100% in vitro with minimum inhibitory 

concentration levels comparable to those of currently used antifungals (Ali-Shtayeh & 

Abu Ghdeib, 1999; Gurgel et al., 2005; Koc et al., 2005; Silva et al., 2005). Moreover, 

essential oils were shown to have a synergistic effect when combined with an antifungal 

agent (Shin & Lim, 2004). Another study using aqueous onion extracts also showed 

molecular changes such as formation of resistant forms in T. rubrum apart from its 

inhibitory effects on the two fungal species (Ghahfarokhi et al., 2004). 

 

The studies undertaken so far are time consuming and can be difficult to interpret 

mainly due to the lack of standard protocols. Hence, in this study the approach of 

volatile fingerprinting has been adopted to determine its feasibility for screening the 

dermatophytes against antifungals. 
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1.3 Ventilator associated pneumonia 

Infections of the lower respiratory tract normally tend to be serious, vary in severity and 

are one of the main causes of worldwide mortality pertaining to infectious diseases. One 

such example is pneumonia, classified based on the location of occurrence into either 

community-associated pneumonia (CAP) or health-care-associated pneumonia (HCAP) 

or hospital acquired pneumonia (HAP). The last being a major health concern although 

there have been advances in diagnostic procedures, therapeutic agents and supportive 

care (McEachern & Campbell, 1998; Kollef, 2005) 

 

Nosocomial pneumonia i.e. HAP - an infection of the lungs caused by bacteria, fungi or 

viruses is the second most common hospital acquired infection after urinary tract 

infection. It has increased incidence in critically ill individuals (≈ 27%) and is 

responsible for the greatest number of nosocomial deaths. Annually the US reports 

about 300,000 such cases, accounting for 25% of intensive care unit (ICU) infections 

(McEachern & Campbell, 1998; Kollef, 2005; Flanders et al., 2006). One of the most 

serious nosocomial infections that occur more than 48 hours after endotracheal 

intubation followed by mechanical ventilation (MV) is termed as ventilator associated 

pneumonia (VAP). It has frequent occurrence within the ICU, accurate diagnosis is 

difficult, lengthens hospital stay and is linked to increased mortality and morbidity 

(Chastre & Fagon, 2002; Hunter, 2006).  

 

1.3.1 Aetiology and epidemiology 

The microbial agents responsible for ventilator associated pneumonia vary according to 

the patient population, duration of stay in the hospital or ICU, the diagnostic procedures 

and the time of onset of the disease. Based on the time of onset, VAP is classified as 
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either early-onset VAP – that occurs within the first four days of mechanical ventilation 

or late-onset VAP – that develops five days or more after initiation of mechanical 

ventilation (Craven, 2000; Kollef, 2005). Not only is the former less severe in form with 

better prognosis but also caused by antibiotic sensitive bacteria. The latter however 

occurs more likely due to antibiotic resistant bacteria (Kollef, 2005).   

 

Mostly, the occurrence of VAP in individuals has been known to be polymicrobial, 

especially due to aerobic gram negative bacilli and also increasingly due to gram 

positive bacteria. Those responsible for early-onset VAP are Streptococcus pneumoniae, 

Haemophilus influenzae, methicillin-sensitive Staphylococcus aureus (MSSA) or 

normal endogenous flora whilst those causing late-onset VAP are Pseudomonas 

aeruginosa, Acinetobacter species, Enterobacteriaceae species or methicillin-resistant S. 

aureus (MRSA) (Koeman et al., 2001; Chastre & Fagon, 2002). Other notable features 

that can affect the aetiology of the disease are age, prior usage of antibiotics or broad 

spectrum drugs, mechanical ventilation for at least seven days before the onset of VAP 

and certain underlying diseases (e.g. H. influenzae, S. pneumoniae increases risk for 

chronic lung disease while S. aureus for trauma, neurologic and diabetic patients) 

(Cavalcanti et al., 2005).              

 

The National Nosocomial Infection Surveillance System indicated that in the US 

pneumonia accounts for one third of all nosocomial infections, 83% of which are due to 

mechanical ventilation (Shorr & Kollef, 2005). Thus, based on various European and 

American studies the overall incidence of VAP varies from 8 to 28% (Chastre & Fagon, 

2002; Rello et al., 2002; Cavalcanti et al., 2005; Hunter, 2006). In one study, the 

incremental risk of pneumonia was shown to be 1% per day; contrarily another study 
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showed that although the cumulative risk of acquiring VAP increased over time, the 

daily hazard rate declined after day 5 (Cook et al., 1998; Chastre & Fagon, 2002).  

 

Apart from increased incidence, VAP is also the leading cause of nosocomial mortality 

and morbidity and is associated with excessive costs especially for patients in the 

intensive care units. Its mortality rate can range from 24 to 50%, but can also reach 76% 

in specific settings such as underlying disease, severity of host response or when lung 

infections are caused by high risk pathogens, namely gram negative bacilli (Craven, 

2000; Chastre & Fagon, 2002; Hunter, 2006). Consequently, this results in prolonged 

hospital stay, ultimately causing additional financial burden as the costs can increase by 

approximately $40,000 per patient (Rello et al., 2002). These aspects tend to differ from 

country to country, hospital to hospital, health care systems as well as patient 

populations.      

  

1.3.2 Pathogenesis and associated risk factors 

The development of pneumonia implies the weakening of the host’s immune responses 

due to microbial invasion of the normally sterile lower respiratory tract and lung 

parenchyma. This is caused by either a flaw in the host’s defence mechanisms (such as 

anatomic barriers, cough reflexes, cell-mediated/humoral immunity or the phagocytic 

system), highly virulent micro-organisms or an extremely high inoculum (Cavalcanti et 

al., 2005; Hunter, 2006).  

 

According to Rumbak (2002) organisms can follow only four routes to infect the lower 

respiratory tract: inhalation, aspiration and haematogenous or contiguous spread. 

Aspiration being the primary route, especially microaspiration which is a two-step 
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process where initial bacterial colonisation of the oropharynx is followed by aspiration 

of the contaminated secretions (Kollef, 2005; Rumbak, 2005). Further, endotracheal 

intubation facilitates bacterial entry into the lung by suppressing the cough reflex 

thereby compromising the natural barrier. It also aids entry by pooling and leakage of 

contaminated secretions above or around the endotracheal cuff. These can further 

develop into a biofilm, which can disseminate the infectious material into the lungs by 

means of suctioning (McEachern & Campbell, 1998; Rumbak, 2002; Rumbak, 2005). 

Other potential sources include macroaspirations of gastric material, contaminated 

respiratory equipment, fibre-optic bronchoscopy, haematogenous spread from infected 

catheters or contiguously from the abdomen or paranasal sinuses or dental plaques as 

well as health care personnel (Chastre & Fagon, 2002; Rumbak, 2005). These numerous 

sources of infection can be seen as risk factors associated with disease development, 

which can help in providing both information regarding probability of infection and 

developing preventive measures. Figure 1.2 depicts the routes of infection as adapted 

from Morehead & Pinto (2000). 
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Despite there being several methods for diagnosing VAP, the absence of a ‘gold 

standard’ has fuelled controversy within this area. Moreover, these techniques have 

varying degrees of sensitivity and specificity which adds to speculation as to which 

techniques should be employed for appropriate diagnosis (Baughman, 2005a; Fujitani & 

Yu, 2006). Additionally diseases with similar clinical manifestations render diagnosing 

difficult. The methods available are based on clinical criteria and microbiological 

cultures using invasive or non-invasive procedures. The current diagnostic methods are 

summarised in Table 1.2 (Kirtland et al., 1997; Chastre & Fagon, 2002; Pugin, 2002; 

Baughman, 2005b; Baughman, 2005a; Fagon & Chastre, 2005; Kollef, 2005; Flanders 

et al., 2006; Hunter, 2006; Koenig & Truwit, 2006; Porzecanski & Bowton, 2006). 

1.3.3 Diagnosis of VAP       

 

Figure 1.2: The pathogenic routes that cause ventilator associated pneumonia, adapted 

from Morehead & Pinto (2000). 

 



 

Literature Review
 

 §Use restricted to mechanically 
ventilated patients 

Table 1.2: Summary of the currently available procedures for the diagnosis of ventilator associated pneumonia (VAP).   
Diagnostic technique Signs/Symptoms/Test Specificity Comments 

Clinical Evaluation 

(Starting point for suspected cases) 
 

 Systemic signs of infection & inflammation 

 New/worsening pulmonary infiltrates on chest 
radiographs 
 
 Increased/purulent tracheobronchial secretions 

 Chest x-rays with air bronchograms 

 Cultures/histopathology 

 

 Non-specific 

 Non-specific 

 

 Non-specific 

 Indicative 

 Reports of failed 
findings have been 
observed 
 

 Finally, CPIS score developed based 
on signs 
 
 CPIS ≥ 6  VAP 

 
 Clinical criteria alone not sufficient or 

specific 
 
 Disagreement between pathologists is 

common 

Bronchoscopy  

(Fibre-optic bronchoscopy) 
 
 
 
 
 

 Bronchoalveolar lavage (BAL)  

 Protected specimen brushing (PSB) 

 

 More Sensitive 

 Less sensitive BUT 
high specificity 

 Thresholds 104 & 103 cfu ml-1 

respectively for BAL/PSB 
 

 Threshold for pathogens is 105-106 cfu 
ml-1  
 

 Threshold for contaminants is 104 cfu 
ml-1 

Non-bronchoscopy  Cultures from Endotracheal aspirates (EA) 

 Blind sampling using BAL/PSB§ 

 Blind bronchial sampling (BBS)§ 

 Highly sensitive 
BUT less specific 
 

 Improves specificity 

 Threshold range of 105 - 106 cfu ml-1 

 §Not standardised 

Invasive
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On comparison, bronchoscopic diagnosis helps in selecting antibiotic treatment, reduces 

its excessive use, and might help detect nonpulmonary infection. However, it is 

expensive and false positive or negative results are likely due to colonisation or 

contamination or prior antibiotic usage (Koenig & Truwit, 2006). Non-bronchoscopic 

methods in contrast are cheaper, less invasive and can be offered to patients with small 

endotracheal tubes. Additionally, they are available to nonbronchoscopists, prevent 

contamination of the proximal airway and decreases compromise on gas exchange. 

They are however prone to sampling errors inherent in a blind technique owing to no 

visualisation (Chastre & Fagon, 2002; Koenig & Truwit, 2006). Moreover quantitative 

cultures from these techniques can serve as a monitor to check the progress of antibiotic 

therapy. 

 

1.3.4 Antimicrobial therapy: pros and cons 

The emergence and spread of multi-drug resistant pathogens are a rising threat in 

hospitals and to the welfare of the patient. This is mainly attributed to the inappropriate 

use of, as well as, prolonged exposure to antibiotics (Hunter, 2006; Chastre & Luyt, 

2007). These are also responsible for increasing mortality, hospital stay, costs, antibiotic 

toxicity and drug resistant organisms. Moreover the absence of a specific regimen for 

optimal treatment and duration emphasizes the need for appropriate initial antimicrobial 

therapy and to limit unnecessary antibiotic exposure (Fagon & Chastre, 2005; Kollef, 

2005).  

 

Antimicrobial de-escalation is an effective approach to achieve the above. Therefore, it 

is essential for prompt initiation of appropriate empiric antibiotics, which involves 
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starting with broad spectrum drugs or combination therapy* especially in case of high 

risk patients. Although rapid identification of causative pathogens is important, it should 

not delay prescription of antibiotics. Once the culture results are known the treatment 

can be narrowed (Kollef, 2003; Flanders et al., 2006; Hunter, 2006). In order for this to 

succeed, clinicians need to be aware of their hospital antibiogram as well as the risk of 

other infections caused by the same pathogens (Kollef, 2003; Porzecanski & Bowton, 

2006). On the other hand, to ensure unnecessary drug administration the duration of the 

treatment must be selected so as to prevent failure or relapse of infection. Chastre & 

Luyt (2007) showed that shorter 8 day regimes were not inferior to the 15 day duration 

ones except under certain circumstances. Studies have also shown that stopping 

antibiotics in patients with negative or lower BAL/PSB culture results and a clinical 

pulmonary infection score (CPIS) < 6 had no negative outcome on patients (Fagon & 

Chastre, 2005; Kollef, 2005; Shorr & Kollef, 2005; Solomkin, 2005; Porzecanski & 

Bowton, 2006).   

 

1.4 Oesophageal malignancy  

Upper gastrointestinal (GI) malignancies include the oesophagus, stomach and pancreas 

where oesophageal cancer represents 7% of all GI cancers. It is one of the most lethal 

cancers and is the sixth leading cause of such deaths worldwide (Kumbasar, 2002). 

Over the last three decades there has been a dramatic increase in the incidence of 

oesophageal adenocarcinoma, considered unusual over oesophageal squamous cell 

carcinoma. It occurs more commonly in middle aged or elderly men, escalating in white 

males (Holmes & Vaughan, 2007).  

 

                                                 
*Combination therapy is used to provide adequate coverage for patients with prior drug exposure & 
prolonged MV. 
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Oesophageal cancer has the greatest geographical variation in incidence worldwide than 

any other cancer. High risk areas being Asia and parts of Africa rather than the western 

countries. However, alcohol consumption and smoking are the major risk factors that 

are increasing its occurrence in the western world, especially in UK. An estimated 7000 

new cases were seen in the UK in 1997. In Asia, diet is also considered an important 

factor (Lamb & Griffin, 2003; Holmes & Vaughan, 2007).  

 

1.4.1 The two common carcinomas 

The two most common primary oesophageal malignancies are squamous cell carcinoma 

and adenocarcinoma. The former develops mainly within the upper and mid section of 

the oesophagus while the latter within the distal/lower end and the oesophagogastric 

junction. Adenocarcinomas mainly occur in the Barrett’s oesophagus, an abnormality in 

the normal lining of the lower oesophageal wall-Barrett’s metaplasia. Thus Barrett’s 

oesophagus is known to be a precancerous condition seen in individuals with chronic 

gastric reflux disease (Merck Manual, 1999; Bateman, 2003). Furthermore, the 

differentiation between these two carcinomas can be difficult under certain conditions 

where appearances are similar (Kumbasar, 2002). In addition, it is also difficult to 

distinguish between adenocarcinomas of the oesophagus or that of the stomach invading 

the lower oesophagus (Merck Manual, 1999; Bateman, 2003). Figure 1.3 shows these 

different conditions. 
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A 

 

CB 

 
Figure 1.3: Endoscopic images depicting squamous cell carcinoma (A, upper panel), 

adenocarcinoma (B, left lower panel) and Barrett’s oesophagus (C, right lower panel) 

adapted from the Merck manual (1999). 

 

1.4.2 Current diagnostic tools 

Oesophageal cancers are generally detected in their advanced stages because early 

stages tend to be asymptomatic and thus difficult to diagnose. Therefore, there is high 

risk of mortality and poor prognosis in such patients. Currently, the most favourable 

method adopted for diagnosing these carcinomas is upper GI endoscopy enabling 

collection of samples for tissue biopsy. Barium contrast radiography is also performed; 

yet it needs to be followed by endoscopy for biopsy (Lightdale, 1999).  
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The absence of screening procedures also hinders the possibility of early diagnosis. 

However, patients with Barrett’s oesophagus are recommended routine endoscopic 

surveillance in order to check for adenocarcinoma, although its benefit remains a 

controversial issue. At the same time, Lugol’s staining together with endoscopy has 

been used in order to detect squamous cell carcinoma early (Tachimori & Kato, 1998; 

Lightdale, 1999). These techniques are nevertheless invasive, unpleasant and carry the 

risk of perforation; hence there is need for alternative non-invasive diagnostic 

procedures, for instance breath analysis in patients for presence of specific volatile 

compounds.   

 

The next step after diagnosis is to determine the stage of the tumour and extent of 

metastasis (staging) for which techniques such as computed tomography (CT) scan of 

the abdomen and chest, magnetic resonance imaging (MRI) and endoscopic 

ultrasonography (EUS) are used. The first two evaluate the extent of spread of the 

disease whilst the latter is better for detecting the depth of tumour invasion (Tachimori 

& Kato, 1998).  

 

1.4.3 Markers for early diagnosis 

The development of biomarkers for the detection of diseases is a popular aspect of 

research and increasing in importance in the diagnostic domain. Certain cancers, 

especially of the oesophagus are detected at advanced stages where not much can be 

done to avoid fatality. Therefore, there have been efforts for identifying markers for 

earlier diagnosis using molecular approaches and recently proteomic analyses.  
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Early studies have shown that elevated levels of p53 proteins in precancerous or 

cancerous oesophageal cells could serve as a potential marker (Wang et al., 1993). 

Serological analyses by means of immunoassays in patients with cancer after routine 

diagnosis also suggest the possibility of serum p53 antibody to serve as a marker for 

early detection (Ralhan et al., 2000; Shimada et al., 2000). Other studies have identified 

certain DNA microsatellite markers that can be indicative of early squamous cell 

carcinoma. They also showed the cancer to be associated with genetic instability (Hu et 

al., 2000; Lu et al., 2003). Furthermore, serum microsatellite alterations in certain genes 

were regarded as suitable screening markers for patients with adenocarcinoma, as these 

alterations were absent in normal individuals (Eisenberger et al., 2006).    

 

Recent advances in proteomics especially using 2D differential gel electrophoresis with 

mass spectrometry have enabled identification of cancer specific protein markers. 

Examples being periplakin, a protein possible for early detection (Nishimori et al., 

2006) or tumour rejection antigen (gp96) found only in cancerous cells (Zhou et al., 

2002). Another recent study also demonstrated the potential of telomerase activity as a 

marker for oesophageal carcinoma in high risk populations using oesophageal balloon 

cytology as a relatively less invasive procedure (McGruder et al., 2006). Most of the 

studies however, are invasive and expensive owing to endoscopy and have not yet 

found their way to clinics.  Thus it is imperative to find non-invasive, clinically feasible 

procedures. 
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1.5 Volatile fingerprinting I: Chromatographic and mass spectrometric 

techniques  

Microbial species have been shown to produce a wide range of volatile organic 

compounds (VOCs) such as alcohols, ketones, aliphatic acids, terpenes and sulphur and 

nitrogen compounds, some of which possess characteristic odours. Studies using 

analytical techniques like gas chromatography (GC), GC linked to mass spectrometry 

(GC-MS) and lately headspace solid phase micro-extraction (HS-SPME) have been 

carried out to analyse the volatiles generated by micro-organisms (Turner & Magan, 

2004). Factors influencing the amounts and patterns of volatile production include the 

type of microbial species, media for cultivation and the age of the culture (Schöller et 

al., 1997; Turner & Magan, 2004). 

 

However, GC-MS suffers from certain disadvantages such as need of adsorption traps 

for preconcentration of sample implying it is not an actual real-time monitoring device. 

It also requires knowledge of fragmentation patterns of each gas component, calibration 

for each trace gas for quantification and is impractical for detection of low molecular 

weight compounds, e.g. formaldehyde and ammonia. Due to these factors a new 

analytical technique has been developed for the real-time quantification of trace gases in 

air and breath, known as selected ion flow tube mass spectrometry (SIFT-MS) (Smith & 

Španěl, 2005).  

 

1.5.1 Brief working of SIFT-MS 

It is based on the chemical ionisation of certain mass selected precursor ions with the 

sample gas molecules. The precursor ions† formed upstream - H3O+, NO+, O2
+ - are 

                                                 
† These specific ions are selected as they are capable of reacting with all organic compounds, many 
inorganic molecules and do not react with major air components. 
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introduced into an inert carrier gas, helium, at a known velocity. The sample gas is then 

introduced into this carrier gas/ion swarm at a known flow rate via a desired method. 

Reactions between the precursor ions and trace gases in the sample occur for a definite 

time period to generate characteristic product ions; these (including precursor ions) are 

then detected and counted downstream using a mass spectrometer, enabling 

quantification, as illustrated in Figure 1.4. Thus absolute concentrations of trace gases in 

a single exhaled breath can be quantified on-line and in real-time simultaneously at ppb 

levels. It can operate in two modes viz. full scan mode where it screens the entire 

spectrum and the multiple ion monitoring mode where specific product ions are targeted 

(Španěl & Smith, 1999; Smith & Španěl, 2005).  

 

needle via septum 
disposable 
mouthpiece 

to air 

Headspace sample Bag sample Breath sample 

heated calibrated 
capillary 

heated calibrated 
capillary 

Figure 1.4: Schematic representation of the SIFT-MS instrument, showing an example 

reaction with H3O+ precursor ion, as adapted from Smith & Španěl (2005) and Turner et 

al. (2006). 
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1.5.2 Applications 

These mass spectrometric techniques have been used in a variety of applications such as 

environmental, agricultural, medical, pharmaceutical and food sectors. GC-MS is also 

being extensively used in the fields of forensic science and law (Lee et al., 2007). 

    

Jelén & Grabarkiewicz-Szczesna (2005) found that the volatile profiles of Aspergillus 

ochraceus species using HS-SPME were similar regardless of their toxin producing 

ability. Although the conditions for maximal volatile production were different from 

those providing high amounts of ochratoxin, the volatile patterns could not differentiate 

toxigenic from non-toxigenic strains. However, in another study the different headspace 

profiles generated by Penicillium roqueforti fungal strains enabled differentiation 

between its toxin and non-toxin producing strains (Demyttenaere et al., 2003); whilst 

Nilsson et al. (1996) reported for the first time the presence of several mono and 

sesquiterpenes and alcohols in various Penicillium species.  

 

Headspace analysis by using SPME with GC-MS has also been performed to determine 

microbial VOCs emitted from mould infested building materials. It was shown that 

similar compounds are produced although in different quantities enabling fungal species 

identification (Wady et al., 2003). Kushalappa et al. (2002) managed to detect and 

discriminate six disease groups of potato tubers; while in another study it was possible 

to differentiate between pure and adulterated (with apple) strawberry samples based on 

the adulterant’s aromatic compounds viz. hexanoic acid, 2-hexanal and α-farnesene 

(Reid et al., 2004) using this technique.  
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Deng et al. (2004) determined volatile markers in human blood pertaining to lung 

cancer and showed that those markers (hexanal, heptanal) previously found in the breath 

of such patients actually originated in blood. Studies have also been carried out for 

analysis of metabolic disorders in children using urine samples, human skin emanations, 

human sweat, human breath as well as biological fluids for recognition of various 

diseases (Zlatkis et al., 1981; Halket et al., 1999; Di Francesco et al., 2005; Zhang et 

al., 2005; Dixon et al., 2007). 

 

Scotter et al. (2005) showed that VOCs from medically important fungi grown on 

media could be detected in real-time at levels of 100 ppb or lower using SIFT-MS and 

that volatile production was influenced by the growth medium. Studies have also been 

carried out on bacterial cultures in vitro using SIFT-MS. One study from cystic fibrosis 

patients, indicated that HCN especially from Pseudomonas aeruginosa could serve as a 

potential marker (Carroll et al., 2005) whilst another identified compounds such as 3-

methyl-butyl acetate, 4-methyl-1-pentadiene, 2-methyl-1-butanol and dimethyl 

polysulphides also to be associated with various bacterial species (Wang et al., 2004). 

Antibiotic susceptibility in bacteria has also been demonstrated by inhibition of their 

volatiles (Allardyce et al., 2006). 

 

A number of studies have also been undertaken to determine potential cancer 

biomarkers with the help of SIFT-MS. Volatiles emitted from urine of patients suffering 

from bladder and prostate cancer showed elevated levels of formaldehyde as compared 

to normal patients (Španěl et al., 1999). In vitro analyses of various tumour cell lysates 

detected the presence of formaldehyde (Kato et al., 2000; Kato et al., 2001). Smith et al. 

(2003) also detected the presence of acetaldehyde in lung cancer cell lines.  
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SIFT-MS has also been used for analysing breath in both healthy and unhealthy 

individuals (Diskin et al., 2003; Turner et al., 2006), monitoring food products and 

flavours (Španěl & Smith, 1999), sampling exhaust gases and in situ measurements of 

soil emissions (Smith & Španěl, 2005). However, these techniques are not portable and 

because of the economic cost and expertise needed are predominantly centralised 

research tools only. Thus it is essential to use such devices to identify target volatile 

biomarkers which can help interpret qualitative volatile fingerprints in simpler sensor-

based diagnostic tools such as e-noses.  

 

1.6 Volatile fingerprinting II: Olfactory technology and electronic noses 

For all living organisms, simple or complex, their response to chemicals in the 

surrounding environment forms an important basis for their daily survival. In humans, 

flavour is perceived by three distinct chemical senses: olfaction (sense of smell), 

gustation (sense of taste) and chemesthesis (response to irritants); with olfaction being 

the dominant of the three. 

 

The presence of airborne VOCs is thus detected by humans via their olfactory and 

chemesthetic senses. It is essential to know what constitutes a smell or an odour, as the 

main human sensory system to detect flavour is olfaction. Odorant molecules are 

characterised by being polar, hydrophilic and light due to small molecular masses (up to 

300 Da.). They can either be simple, comprising of a single molecule such as an alcohol 

or complex, consisting of a mixture of chemical constituents - for example perfumes or 

beverages. Nasal pungency, on the other hand is the unpleasant sensation like stinging, 

piquancy, irritation, burning or pricking that is felt by the chemoreceptor activation on 

the trigeminal nerve. Chemicals causing the latter are at far higher concentrations than 
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those eliciting odour sensations (Gardner & Bartlett, 1994; Craven et al., 1996; Gardner 

& Bartlett, 1999; Cometto-Muñiz, 2002). 

 

1.6.1 Analogy between human and machine olfaction 

The human olfactory system is stimulated by odorant particles emitted from an object 

generating a sense of smell, which is drawn up into the nasal cavity, across the olfactory 

epithelium finally leading to the brain which processes the information and classifies 

the odour (Figure 1.5). Thus, it can be said to basically comprise of three vital elements: 

an array of olfactory receptor cells in the roof of the nasal cavity, the olfactory bulb 

located above the nasal cavity and the brain.  

 

There has been strong dependence on human olfaction as a means of an analytical tool, 

although subjective, in industry for odour quality control and assurance of foods, 

flavours and fragrances. However, it tends to be costly as the human sensory panels are 

limited due to their inability to cope with assessing large number of samples per day and 

a constant need for highly trained personnel to distinguish the subtle nuances in 

complex mixtures. Besides, the human tendency to tire coupled with physical and 

mental states also put a restraint to such analysis. Moreover, there was need for 

continuous, regular monitoring and calibration of actual concentrations of substances 

for which gas chromatography-mass spectrometry were employed. These techniques are 

time consuming and at times inadequate, thus an enormous need exists for a system 

mimicking the human one (Gardner & Bartlett, 1994; Craven et al., 1996; Pearce et al., 

2002).  
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Figure 1.5: The process of human olfaction, adapted from Nagle et al. (1998). 

 
The initial concept of a chemical sensor array in an artificial nose (electronic nose) for 

discrimination between odours was demonstrated by Persaud and Dodd (1982). 

Following which Gardner & Bartlett (1994) defined the electronic nose “as an 

instrument which comprises an array of electronic chemical sensors with partial 

specificity and an appropriate pattern-recognition system, capable of recognising simple 

or complex odours”. 

 

An electronic nose thus consists of three functional components mimicking the essential 

human elements, namely, a sensor array, a data pre-processor and pattern recognition 

(PARC) engine. The mechanism of the instrument is as follows: exposure of sensors to 

the volatiles from an odorant generating a transient response as the VOCs interact with 

the active material on the sensor surface, followed by signals being recorded and 

delivered to the processing unit during which time the sensors reach a steady state and 

are flushed with a washing gas. Prior to and subsequent to sample introduction, a 
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reference gas (air) is applied to the array preparing it for the measurement cycle. The 

response phase is the period when the odorant is applied while the recovery phase is 

when the system is flushed. Figure 1.6 shows the analogy between the human and 

artificial nose. 

 

 

Figure 1.6: Analogy between artificial (electronic) and biological olfaction, adapted 

from Hines et al. (2002). 

 

The processing and identification stages can be considered to comprise of sub-stages 

until a final decision is reached. Pre-processing involves normalising sensor responses, 

manipulating baselines to ensure reduction in sample variations, minimising sensor drift 

and compressing transient array responses. The next stage is feature extraction where 

the dimensionality of the measurement space is reduced and relevant information 

extracted for pattern recognition which employs multivariate analysis. Similarly, in the 

human system noise reduction by means of signal compression and output amplification 

‘COFFEE’ 

Artificial olfaction 

Biological olfaction 

Sensor Array Pre-processor Pattern recognition 
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enhances the sensitivity and selectivity of olfaction. Finally, a classifier determining the 

category to which the sample belongs is implemented. Classifications can be performed 

using techniques such as Bayesian classifiers, K nearest neighbours (KNNs) or artificial 

neural networks (ANNs) (Nagle et al., 1998).  

 

1.6.2 Sensor technologies 

A fundamental aspect of a sensor array is sensitivity to various chemical compounds, 

i.e. it is non-specific, along with high stability, high reproducibility, short reaction and 

recovery time. It is essential that the sensors on the array have varying sensitivities to 

the same substance so that different odours have a distinct response pattern across the 

sensors enabling an unknown odour to be identified. Each sensor thus has a unique 

response profile to the spectrum of odorous molecules resulting in alteration of its 

physical properties such as mass, electrical conductivity or capacitance that can be 

measured directly or indirectly (Nagle et al., 1998; Nanto & Stetter, 2002). Sensors are 

classified based on their operating principle, each of which has a different sensitivity 

and selectivity. The various sensor technologies are described below.  

 

a) Conducting Polymer (CP): They exhibit change in conductivity (resistance) on 

exposure to volatile gases that bond to the polymer backbone (polypyrrole, 

polythiophene or polyaniline). They possess reversible physicochemical properties, 

are extremely sensitive (0.1–100 ppm), respond to a broad range of organic vapours 

and operate at ambient temperatures. However, they are susceptible to humidity and 

poisoning, can drift over time and show undesirable batch variations due to 

difficulty in their fabrication. 
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b) Metal Oxide Semiconductor (MOS): These rely on change in resistance when 

exposed to gaseous molecules and are made of oxides of tin, zinc, tungsten 

operating at high temperatures, 200°C-500°C. Normally, oxygen is adsorbed to the 

surface which forms a potential barrier restricting electron flow; on exposure to 

volatile gases oxidation occurs, allowing electron flow thus decreasing resistance. 

Their sensitivity and selectivity can be modified by doping with catalysts such as 

platinum or palladium or changing the operating temperature. They are very 

sensitive (5-500 ppm), resistant to humidity but are prone to drift over time and to 

poisoning by sulphur containing compounds and weak acids due to irreversible 

binding. 

 
c) Metal Oxide Semiconductor Field Effect Transistor (MOSFET): When VOCs come 

in contact with a catalytic metal it produces a reaction, the products of which diffuse 

through the gate changing its surface potential. The voltage shift depends on the gas 

concentration. The sensitivity and selectivity can be enhanced by varying the 

thickness/type of metal catalyst and changing the operating temperature, usually 

100°C-200°C. They too are susceptible to drift similar to conductivity sensors.  

 
d) Quartz Crystal Microbalance (QCM): Also known as a bulk acoustic wave device is 

made of a polymer-coated resonating quartz disc, vibrating at a characteristic 

frequency (10-30 MHz). Adsorption of volatile molecules to the polymer surface 

increases mass of the disc, thus reducing the resonance frequency. The decrease is 

inversely proportional to mass of odorant adsorbed. The sensor selectivity is 

dictated by the thickness of the coatings, while sensor sensitivity can be affected by 

changes in temperature, humidity and flow conditions these can however be made 

negligible. 
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e) Surface Acoustic Wave (SAW): These too measure changes in mass but require 

waves to travel over the surface of the device. They operate at higher frequencies 

(100-1000MHz) and thus generate a larger change in frequency. They do suffer 

from reduced long term stability and are highly sensitive to humidity.  

 
f) Optical fibres:  These employ glass fibres coated with thin chemically active 

materials on their sides or ends that contain immobilised fluorescent dyes in an 

organic polymer matrix. Interaction of volatiles with a light source alters the dye 

polarity causing a shift in the emission spectrum (colour change). Wide sensitivities 

are obtainable owing to availability of different dyes however they have a limited 

lifetime because of photobleaching (Nagle et al., 1998; Gardner & Bartlett, 1999; 

Jurs et al., 2000; Nanto & Stetter, 2002).  

 

Apart from those mentioned above, many more technologies are emerging making use 

of ligand binding properties, aromatic compounds and improving optical sensors. 

Another optical phenomenon made use of is surface plasmon resonance (SPR) where a 

change in the refractive index of a sample’s surface is measured (Nanto & Stetter, 

2002). Discotic liquid crystals (DLC) consisting of an aromatic core surrounded by 

hydrocarbon side chains are very sensitive to the presence of volatile molecules, 

especially non-polar species, and insensitive to humidity (Turner & Magan, 2004). 

Recently, colorimetric arrays have been developed making use of metalloporphyrins 

that induce colour changes on the binding of metal ions present in volatile compounds. 

Furthermore, these compounds are resistant to humidity and have high sensitivity 

(Suslick & Rakow, 2001). Table 1.3 highlights the main attributes of these sensors.  
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Table 1.3: Summary of the sensor technologies for electronic nose, adapted from Nagle 

et al. (1998) and Nanto & Stetter (2002). 

Sensor Type Operation 
Principle 

Fabrication 
Method 

Sensitivity Advantages Disadvantages

Metal oxide 
(MOS) 
 

Conductivity 
(Conductance) 

Microfabricated 5-500 ppm Inexpensive, 
microfab. 

Operates at 
high temp. 

Conducting 
polymer (CP) 
 

Conductivity 
(Conductance) 

Microfabricated, 
electroplating, 
screen printing 
 

0.1-100 
ppm 

Operates at 
room temp., 
microfab. 

Very sensitive 
to humidity 

MOSFET Capacitive charge 
coupling 

Microfabricated ppm Integrated 
with 
electronic 
interface 
circuits 
 

Odorant 
reaction 
product must 
penetrate gate 

Quartz crystal 
microbalance 
(QCM/QMB) 

Piezoelectricity Screen printing, 
wire bonding, 
MEMS‡

1 ng mass 
change 

Well 
understood 
technology 

MEMS fab., 
interface 
electronics 
 

Surface 
acoustic wave 
(SAW) 

Piezoelectricity Screen printing, 
microfab. 

1 pg mass 
change 

Differential 
devices 
quite 
sensitive 
 

Interface 
electronics 

Fluorescence, 
chemolumin-
escence 
 

Optical –
intensity/spectrum  
(fibre optic) 

Dip coating, 
MEMS, 
precision 
machining 
 

Low ppb High 
electrical 
noise 
immunity 

Restricted 
availability of 
light sources 

Optical – 
refractive index 

Screen printing, 
microfab., dip 
coating 
 

Low ppb High 
electrical 
noise 
immunity 
 

Expensive SPR§

Gas 
chromatograp-
hy 

Molecular 
spectrum 

MEMS, 
precision 
machining 

Low ppb Potential 
analyte 
accuracy 

Sample 
concentration 
required 
 

Mass 
spectrometry 

Atomic mass 
spectrum 

MEMS, 
precision 
machining 

Low ppb Potential 
analyte 
accuracy 

Sample 
concentration 
required 
 

Light 
spectrum 

Transmitted light 
spectrum 

MEMS, 
precision 
machining 

Low ppb Sample not 
consumed 

Requires 
tuneable 
quantum well 
devices 
 

 
                                                 
‡ MEMS → microelectromechanical system 
§ SPR → Surface Plasmon Resonance 
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1.6.3 Odour sampling mechanisms 

Turner and Magan (2004) outlined the crucial elements for the efficacy of an electronic 

nose. The first being consistency and reproducibility in sampling, which would involve 

standardising parameters such as humidity, temperature and sample size to ensure 

reliability of data sets which can then be analysed with statistical confidence. Secondly, 

the ability of pattern recognition techniques to analyse large data sets effectively. 

Individual sensors generate significant amounts of data by extracting information from 

the various parameters in a typical sensor response, which can be effectively managed 

by using complex multivariate analysis. This is discussed in the following section whilst 

the sampling methods are briefly discussed below. 

 

Sampling methods: Numerous methods can be employed for the sampling process 

comprising sample uptake, its conditioning and transfer to the analytical equipment. 

However, care needs to be taken to avoid altering the headspace composition by utmost 

efficiency whilst sampling (Web-resource, 2007). The two main odour sampling 

methods used in electronic nose systems are: 

a) Static Headspace Analysis (SHA): The desired sample is placed in a vial which is 

set aside for a specific time period to allow the headspace to be saturated with the 

odours, i.e. until it reaches equilibrium. The headspace is then transferred directly to 

the sensor array chamber using an injector either manually or by means of an 

autosampler. This form of delivery helps in reducing the variations in sample 

temperature, injection rate and concentration of the headspace.     

b) Flow Injection Analysis (FIA): It is typically a computer automated method where a 

background gas (usually clean air) is constantly being pumped into the sensor 

chamber. Before the odorous gas (i.e. the sample headspace) reaches the sensors, it 
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is injected into the background gas. The ratio of the mixture of background gas to 

odour gas can be precisely controlled (Craven et al., 1996; Gardner & Bartlett, 

1999).  

SHA is however the more popular and low cost method. There are other variations of 

such a closed system such as diffusion, permeation and bubbling gas (e.g. air) to 

generate vapour (Nakamota, 2002). However, for measuring a sample with very low 

concentrations of volatile compounds preconcentration of the sample prior to its 

investigation might be necessary. This can help improve sensitivity of the sensing 

process, take advantage of large sample volumes and reach lower threshold limits. 

Various methods for preconcentration are described in the literature such as 

thermodesorption, solvent extraction and solid phase extraction (Web-resource, 2007).  

 

1.6.4 Pattern recognition and conventional multivariate statistics  

The crucial elements in implementing, developing and commercialising electronic noses 

are pattern recognition (PARC) algorithms and efficient data processing techniques 

(Hines et al., 2002). Prior to proceeding to such analyses, pre-processing signals from 

raw data can be beneficial in reducing factors such as sensor drift and noise and 

removing redundant features such as unsuitable sensors. It can be done by scaling or 

normalising sensor responses in order to eliminate or reduce the effect of concentration 

related fluctuations (Craven et al., 1996; Dickinson et al., 1998; Otto, 1999). 

 

Subsequent  multivariate analyses that are employed by pattern recognition algorithms 

aim at the grouping and classification of objects or samples as well as modelling 

relationships between different data (Otto, 1999). These can be divided into two 

approaches; one based on obtaining an overview of the data, i.e. conventional statistics 
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and the other based on human cognition - thus biologically motivated.  These can be 

further subdivided into supervised and unsupervised methods (Gardner & Bartlett, 

1999). Unsupervised PARC techniques are best for qualitative applications such as 

exploring relationships in data by searching for similarities. They make no prior 

assumptions about the data i.e. they are non-parametric. These include principal 

component analysis (PCA), cluster analysis (CA) and Kohonen networks or self-

organising maps (SOM) (Pearce, 1997; Otto, 1999; Brereton, 2003). 

 

Supervised PARC methods on the other hand, are mostly aimed at classification. It 

requires a priori knowledge of known groups in the form of a training set and then 

attempts to classify an unknown sample within the known groups. It is, of course, 

always essential to initially establish whether the measurements are acceptable to fit the 

predetermined groups (Pearce, 1997; Brereton, 2003). These include discriminant 

function analysis (DFA), K-nearest neighbours (KNN), soft independent modelling of 

class analogies (SIMCA) and artificial neural networks (ANNs) (Pearce, 1997; Otto, 

1999). 

 

a) Principal component analysis (PCA): It is an effective unsupervised pattern 

recognition technique which helps identify general relationships within the data. 

This is done by determining the variation in a dataset (seeks a direction in space 

which captures maximal variance) in the form of a set of new uncorrelated variables 

i.e. principal components, which are linear combinations of the original variables. 

These principal components (PCs) are obtained in decreasing order of importance, 

where the first PC has the maximum variance followed by the second PC having the 

maximum of the remaining variance and so on. Thus, it reduces the dimensionality 
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of the data by preserving maximum information with minimum number of variables 

(Gardner & Bartlett, 1999; Everitt & Dunn, 2001; Brereton, 2003). Mathematically 

it can be represented as: 

                                                         EPTX +⋅=                                  … (Eqn 1.1) 

where X is the original data matrix, T is the scores matrix having same number of 

rows as X, P is the loadings matrix with the same number of columns as X and E is 

the error matrix.  

 

b) Cluster Analysis (CA): This is another unsupervised pattern recognition technique 

that enables one to establish or determine the relationships between samples and 

sample groups by finding the natural groupings within the dataset. One form is 

agglomerative hierarchical clustering, which is a two step process. First the 

similarities between the samples are determined by measuring the distances between 

them, using various distance measures such as the Euclidean distance given below: 

                                                       ∑
=

−=
N

k
jkikij xxd

1

2)(                        … (Eqn 1.2) 

Secondly, the samples are then individually linked together to form clusters using a 

variety of linkage algorithms, for example Ward’s or complete linkage. The result of 

which is represented by means of a dendrogram i.e. tree-diagram (Gardner & 

Bartlett, 1999; Brereton, 2003). 

 

c) Discriminant Function Analysis (DFA): It is a parametric and supervised pattern 

recognition method that addresses the issue of discriminating classes of samples and 

then allocating new samples to respective classes based on the previously trained 

information.  
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d) Partial Least Squares (PLS): It is a supervised regression technique that incorporates 

some PCA properties and is used for prediction purposes. Unlike PCA, it models 

both the independent (sensor responses) and dependent (e.g. concentrations) 

variables where it determines the correlation between the two variables (Gardner & 

Bartlett, 1999).        

 

1.6.5 Artificial Intelligence 

Artificial intelligence (AI) is an area of computer science committed to the production 

of sophisticated software capable of intelligent computations similar to those that the 

human brain routinely performs. One component, being dedicated to computer 

programs that simulate the manner in which the human brain processes information 

primarily aimed at problem solving, called artificial neural networks (ANN; 

Agatonovic-Kustrin & Beresford, 2000). Thus, a neural network can be defined as a 

model of reasoning based on the human brain due to which it is used widely for pattern 

recognition. It is known to possess remarkable information processing characteristics 

for instance nonlinearity, high parallelism, robustness, fault and failure tolerance, 

learning, ability to handle imprecise and fuzzy information and a capability to 

generalise (Basheer & Hajmeer, 2000). Therefore, they have the capability to solve 

complex real life problems for example pattern classification, clustering, function 

approximation, optimisation, forecasting and prediction, association, nonlinear system 

modelling, memory and control (Basheer & Hajmeer, 2000; Sun et al., 2003).  

 

Just as the human brain – an excellent pattern recognition tool - consists of a densely (≈ 

10 billion) interconnected set of nerve cells or neurons; an ANN too comprises of a 

number of very simple processors, also called neurons, analogous to those in the brain 
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(Negnevitsky, 2002). Figure 1.7 shows the analogy between the biological and artificial 

networks. 

 
 

 

 

 

 

 

 

 

 
Biological neural network Artificial neural network 

Figure 1.7: Analogy between artificial and biological neural networks, adapted from 

Negnevitsky (2002). 

 
Most ANNs have a multi-layered architecture where the first layer - Input layer - has no 

computing ability and is used for input of independent variables. Each neuron/node in 

this layer comprises of a single inserted variable. The last layer - Output layer - 

processes the outcome of the dependent variables and can have one or many neurons 

depending on the desired output. The second layer - Hidden (Middle) layer - provides 

interconnections between the input and output layers. There can be more than one 

hidden layer each with many neurons, but the number depends on the complexity of the 

problem. The neurons process information based on the weighted inputs using their 

transfer (activation) functions and sends out outputs. The weights are critical to the 

network and are involved in the learning process. The net input to the next layer’s 

neuron is the sum of the weighted outputs of the previous layer (or the sum of the initial 

weighted inputs for the first hidden layer). It is given by the following equation:  
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                                                                                             … (Eqn 1.3) ∑
=

+=
n

i
ii bxwX

1

where X is the net weighted input, wi is the weight of input i, xi 
is the value of input i, n 

is the number of neurons and b is the bias (threshold value). The net input is then passed 

to a transfer function which determines the output value. The most commonly used 

transfer function is the sigmoid function (especially in back propagation networks). The 

actual output Y (using the sigmoid function) is represented as:  

                                                              xi e
Y −+
=

1
1                                      … (Eqn 1.4) 

The transfer function helps introduce non-linearity to the network. Furthermore, 

artificial neurons receive excitatory and inhibitory inputs just like real neurons. 

Excitatory inputs cause the summing mechanism of the next neuron to add while the 

inhibitory inputs cause it to subtract. A neuron can also inhibit other neurons in the 

same layer, termed as ‘lateral inhibition’ (Agatonovic-Kustrin & Beresford, 2000). 

ANNs are thus characterised by their neural connections (network architecture), the 

transfer function used by the neurons and the learning algorithm that specifies the 

procedure for adjusting weights (Zupančič Božič et al., 1997; Negnevitsky, 2002).  

 

Learning is the most fundamental aspect involving adaptive mechanisms allowing 

ANNs to learn from experience, by example or analogy; which can be improved over 

time (Negnevitsky, 2002). ANNs can learn either by supervised methods (e.g. 

backpropagation) or unsupervised methods (e.g. self organising maps). 
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1.6.6 Applications 

Electronic noses have targeted applications, present and potential, ranging from food 

and drugs to medical diagnostics, environmental monitoring, safety and security and for 

military use (Göpel, 2000). 

 

a. Food industry: In the food industry, the technology has been mainly used for 

testing freshness of foodstuff, quality control, process operations, minimising batch 

variations, screening the raw materials used or contamination.  

 

Many of the early investigations were done extensively on cereal grains, especially for 

the early detection of spoilage fungi and quality changes by means of odorous off-taints 

(Magan & Evans, 2000). Keshri et al. (1998) could discriminate between Penicillium 

and Eurotium species in agro-based substrates prior to visible growth based on their in 

vitro volatile production patterns. Successful attempts have been carried out to 

differentiate between toxic and non-toxic strains of Fusarium in cereal grains (Keshri & 

Magan, 2000; Falasconi et al., 2005a). The latter could classify the strains based on 

their toxin producing capability. 

 

Microbial spoilage caused by bacteria, yeast and filamentous fungi as well as enzymatic 

spoilage of bakery products could be detected earlier based on their volatile profiles and 

were found to be better than traditional enzymatic assays (Keshri & Magan, 2000; 

Needham et al., 2005). Similarly, studies have been carried out in dairy products such 

as determining the shelf life of milk (Labreche et al., 2005), detecting spoilage micro-

organisms (bacteria and yeast species) in milk (Magan et al., 2001) and monitoring the 

ripening and quality control of Danish blue cheese (Trihaas & Nielsen, 2005) using 

 
 - 43 -



                                                                                               Literature Review 

sensor arrays in conjunction with artificial neural networks. Marsili (1999) studied off-

flavours in milk caused by bacteria as well as physical methods such as spiking with 

copper and irradiation, by developing a new electronic nose system comprising solid 

phase micro-extraction, mass spectrometry and multivariate analysis. 

 

However, this technology has also been applied on other foodstuff such as fruits, meat, 

fish, wines – both red and white, coffee, extra virgin olive oils and white truffles 

(Deisingh et al., 2004; Falasconi et al., 2005b; Falasconi et al., 2005c; Lozano et al., 

2005; Cimato et al., 2006; Garcia et al., 2006; Rajamäki et al., 2006).  

 

b. Environmental monitoring: Over the years, pollution has increased at an alarming 

rate, thus resulting in an urgent need to constantly monitor the amount of pollution in 

order to prevent detrimental effects. Applications are therefore designed that mainly 

involve processes for quality control, monitoring pollution of air and water sources, 

detection of excess volatiles in housing or work complexes and monitoring effluent 

release from plants.  

 

Studies for monitoring indoor air quality control (especially for NO2 and CO gases) as 

well as detection of fungal contamination on various building materials have been 

successfully carried out using metal oxide sensors and fuzzy logic algorithms (Zampolli 

et al., 2004; Kuske et al., 2005). 

 

Non-specific sensor arrays have been used for on-line monitoring of industrial 

discharges in domestic wastewater samples (Bourgeois & Stuetz, 2002) as well as 

detecting a range of odour concentrations from sewage works (Stuetz et al., 1999). Nake 
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et al. (2005) investigated two different electronic nose systems for the in situ 

monitoring of outdoor air from wastewater treatment plants while Baby et al. (2000) 

examined the contamination of water sources by insecticides and products from the 

leather industry based on their odours. Detection of microbial and chemical 

contamination of potable water has also been studied (Canhoto & Magan, 2003; 

Canhoto & Magan, 2005). 

 

Sensor arrays have also been used in the automotive industry for quality control 

monitoring (such as materials for seat manufacture and air quality) (Morvan et al., 

2000); in libraries for detecting fungal contamination in papers (Canhoto et al., 2004); 

identifying the different blends of gasoline (Brudzewski et al., 2006) and identifying 

wood samples and relationships between plant species (Wilson et al., 2005). 

 

c. Medical Applications: Although odours have been used for centuries for 

diagnosing diseases, it has been restricted to certain characteristic scents recognised by 

humans. Advances in artificial olfaction have only recently led to the identification and 

early detection of bacterial infections as well as non-infectious diseases by monitoring 

odours from body fluids and breath (Saini et al., 2001). 

 

Lately, there has been an increasing need for early identification and detection of 

microbial infections in hospitals. Ventilator associated pneumonia, a lethal infection 

that occurs in intensive care units is caused by a variety of micro-organisms, especially 

bacteria. A recent study has identified these organisms on the basis of their gaseous 

products using electronic nose and reduced the analysis time by 50 percent (Serneels et 

al., 2004). In another case, Dutta et al. (2005) identified Staphylococcus species such as 

 
 - 45 -



                                                                                               Literature Review 

methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA) and 

coagulase negative staphylococci (C-NS) from swab samples of infected patients using 

a sensor array with a radial basis function network with 99.69% accuracy.    

 

Successful attempts have also been made in early diagnosis of tuberculosis in animals 

such as badgers and cattle using serum (Fend et al., 2005). Similarly, Pavlou et al. 

(2004) detected Mycobacterium tuberculosis in cultured human sputum samples directly 

or subsequent to enzymatic treatment for enhancing bacterial growth. Sensor technology 

has also been applied for identifying bacteria causing urinary tract infections (Pavlou et 

al., 2002a) and gastrointestinal diseases (Pavlou et al., 2000); detecting bacterial 

contamination in biomedical samples, for example, blood and urine (Yates et al., 2005) 

and as a screening test for bacterial vaginosis (Chandiok et al., 1997). 

 

Gas sensors have proved to be a useful non-invasive technique for detecting non- 

infectious diseases. Di Natale et al. (2003) made use of  non-selective sensors coated 

with metalloporphyrins for immediate breath analysis to identify lung cancer. In a 

similar manner, lung cancer could be diagnosed on the basis of the eleven validated 

volatile markers from their simultaneous pathological study (mostly aromatic and 

alkane derivatives), qualitatively and quantitatively (Chen et al., 2005). In vitro 

distinction between different tumour cell lines as well as normal fibroblast and smooth 

muscle cell lines has also been shown (Gendron et al., 2007).  

 

A study has been carried out to distinguish blood and urine odour types dependent on 

the major histocompatibility complex (MHC) expression in different mouse strains 

including detection of individual odour types of human sera (Montag et al., 2001). 
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Recently, Balseiro & Correja (2006) proposed that VOCs produced by tumour cells are 

products of MHC genes based on supporting evidences. Thus, suggesting that soluble 

human leukocyte antigen (HLA) molecules in body fluids (blood, urine and sweat) can 

produce volatiles that can function as a diagnostic marker for cancer using electronic 

noses.   

 

Moreover, sensor array systems serve to be a suitable tool for online monitoring of renal 

dialysis, since pre and post dialysis blood could be easily discriminated (Fend et al., 

2004); differentiating between cerebrospinal fluid (CSF) and serum, useful in certain 

clinical circumstances (Aronzon et al., 2005) and testing acetone concentration in 

expired breath to detect diabetes (Wang et al., 1997). In the latter, it was suggested that 

analysis of breath after a meal might be more significant as in diabetics the 

concentration of acetone would remain elevated whilst in normal individuals it would 

return to normal levels. 

 

Electronic noses have also found their way in the pharmaceutical industry where they 

can be used for screening raw materials, testing people in critical occupations for drug 

use or abuse and testing breath and urine for targeted illegal compounds or by-products 

(Nagle et al., 1998). Zhu et al. (2004) have demonstrated that the instrument can be 

used to identify flavours in pharmaceutical products; to test the identity of flavoured 

raw materials and flavoured solution formulations (i.e. discerning fresh and old samples 

as well as those from different batches) and for qualitative analysis of flavours in oral 

solution formulations. 
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1.7 Aims and Objectives 

The main aim of this study is to implement volatile fingerprinting, primarily using e-

nose technology in specific medical settings and determine its potential for early 

identification and diagnoses of diseases or infections. 

 

The objectives set out to carry these aims were as follows: 

A.  Dermatophytes: 

 Evaluate the potential of two electronic nose systems based on conducting 

polymer and metal oxide sensor arrays for detecting volatile production patterns 

produced by the dermatophytes - Trichophyton species. 

 Determine the optimum time at which effective discrimination between four 

different Trichophyton species could be achieved using the best sensor array 

system. 

 Determining the sensitivity threshold for detection of two individual species, T. 

mentagrophytes and T. rubrum.  

 Discriminate between species causing human (T. mentagrophytes and T. 

rubrum) and animal infections (M. canis). 

 Identify any similarity or differences between strains of the two most common 

species - T. mentagrophytes and T. rubrum. 

 Develop a computational model to classify samples based on the respective 

fungal species. 

 Identify compounds responsible for the discrimination of the fungal species 

using mass spectrometric methods (i.e. biomarker detection). 

 Temporal effects of the antifungal against the two common dermatophytes, T. 

mentagrophytes and T. rubrum.  

 
 - 48 -



                                                                                               Literature Review 

 Test the potential of the e-nose for antifungal screening against the two 

dermatophytes.   

 

B. Ventilator associated pneumonia: 

 Evaluate the potential of electronic nose to differentiate between samples 

obtained from healthy and unhealthy patient groups. 

 Determine the different organisms causing the disease in clinical samples based 

on the volatile profiles. 

 Correlate the hospital’s microbiology results to the e-nose profiles. 

 Differentiate between the different bacteria causing the disease in vitro based on 

lab cultures. 

 

C. Oesophageal cancer: 

 Determine the diagnostic potential of e-nose with clinical sample groups and 

correlate these with the routine endoscopy findings from the hospital. 

 Discriminate between cancerous and normal oesophageal cell lines in vitro. 

 Identify possible biomarkers from the oesophageal cell lines using mass 

spectrometric methods. 

 

The overview of the thesis is schematically represented in Figure 1.8. Chapters 2 to 5 

deal with the three medical aspects described above: fungal, bacterial and oesophageal 

cancer respectively; each of which are presented independently. An integrated 

discussion is presented in Chapter 6 which attempts to draw out some common features 

from all the phases of this work which is followed by a final set of conclusions. 
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Figure 1.8: Schematic representation of the phases presented in the thesis. 
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2.1 Introduction 

Fungal volatiles have been substantially researched over the past few years. Their main 

focus however lay within the food and feed industry, because massive economic losses 

could be brought about due to fungal spoilage resulting in deteriorating food quality. 

Studies then demonstrated the presence of key organic compounds such as 1-octen-3-ol, 

3-methyl-1-butanol and sesquiterpenes which were detected primarily by gas 

chromatography and mass spectrometry (Magan & Evans, 2000).  

 

Subsequently, researchers began using simpler detection methods of microbial species 

such as electronic noses (Keshri et al., 2002; Needham et al., 2005), which were then 

combined with artificial neural networks for classification and prediction. Evans et al. 

(2000) used an electronic nose with a radial basis function network for predicting wheat 

quality using artificially contaminated and commercial samples and achieved a high rate 

of success. In another study, tea quality was predicted with almost precise accuracy 

using e-nose sensor data and radial basis function or probabilistic neural networks 

(Dutta et al., 2003).  

 

These e-nose techniques have only recently been used in medical diagnosis but mainly 

for certain bacterial infections (Pavlou et al., 2002a; Pavlou et al., 2004) or breath 

analyses for lung cancer (Di Natale et al., 2003; Chen et al., 2005). The inclusion of 

probabilistic neural networks has led to good prediction capabilities of e-noses with 

high accuracy (Dutta et al., 2002; Dutta et al., 2005). However, not much attention has 

been given to filamentous fungal infections, especially those pertaining to medically 

relevant filamentous species.  
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Dermatophytosis is a non-life threatening infection that occurs in the keratinised tissues 

of humans and animals caused by a group of filamentous fungi. The traditional so-

called gold standard identification procedures involve cultures, biochemical tests and 

microscopy. These are however, time-consuming, tedious and require skilled 

microbiologists. Advances in molecular diagnostic methods have resulted in improved 

detection of these fungi (Binstock, 2007), but are not feasible for routine use in clinics 

and are uneconomical due to the costs of certain associated equipment and materials. No 

studies to date have been undertaken using volatile profiles of these fungi with 

electronic noses to try and discriminate between species. Clinically, early detection of 

the species would result in appropriate antifungal administration.   

 

This study assessed the potential of volatile profile patterns of the dermatophytes 

generated by electronic noses in differentiating these fungal species and determining 

any similarities or differences amongst strains of the two main species. It also attempted 

to identify the volatiles present in these pathogenic fungi.   

    

2.2 Materials and Methods 

2.2.1 Fungal species, strains & growth media 

Studies were carried out using type cultures from two of the dermatophyte genera viz. 

Trichophyton and Microsporum. Four important anthropophilic Trichophyton species 

namely T. mentagrophytes (NCPF-224), T. rubrum (NCPF-115 and strain D12), T. 

verrucosum (NCPF-685) and T. violaceum (NCPF-677) and an important zoophilic 

species M. canis (MC-177) were selected. In addition, four strains of T. mentagrophytes 

(M-61, M-62, M-63 and M-64) and three strains of T. rubrum (R-55, R-57 and R-59) 

were also used. Further details of these fungal strains can be found in Appendix A, A.1.  
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For in vitro studies the cultures were grown on two types of agar-based media and in a 

liquid broth. 

a) Agar based media 

 Sabouraud Brain Heart Infusion (SABHI) Agar was prepared by mixing 

Brain Heart Infusion (BHI) agar (Oxoid) and supplementing it with the 

required amount of Glucose (Acros Chemicals) with the addition of a small 

amount of the antibiotic, Chloramphenicol (Sigma) [47 g l-1 BHI + 38 g l-1 

Glucose] (Kern & Blevins, 1997). 

 Sabouraud Dextrose Agar (SDA) was prepared in house by mixing 10 g l-1 

Mycological peptone (Amersham), 40 g l-1 Glucose (Acros Chemicals) and 

15 g l-1 Agar technical no. 3 (Oxoid). A small amount of the antibiotic, 

Chloramphenicol (Sigma) was also added. 

 

b)  Liquid broth 

Sabouraud Dextrose (SD) broth was also prepared in house in the similar manner as 

SDA, described above, without the addition of agar. 

 

2.2.2 Fungal growth curves 

Individual spore suspensions of all the fungal species and strains were prepared and 

these were then used to centrally point inoculate agar (SDA) plates. Three replicates per 

fungal species and strains were incubated at 25°C. Growth rate measurements were 

determined by measuring the diameter of the colony in two directions, perpendicular to 

each other for about four weeks. 
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2.2.3 Species and strain discrimination 

Three to four week old actively growing cultures of each of the four Trichophyton 

species and the Microsporum species were harvested using a sterile loop to prepare 

spore suspensions in sterile 10 ml Tween 80 (Acros Chemicals) and RO water. 20 to 25 

replicate agar plates were inoculated with 250 µl of the inoculum – in the range of 105-6 

spores ml-1 for the Trichophyton experiments and 106-7 spores ml-1 for the second set 

involving the animal pathogen, measured using a haemocytometer, and spread plated on 

the agar surface as a spore lawn. The plates were incubated at 25°C in the dark for 24-

120 hours and every 24 hours five replicates of each species were destructively 

sampled. Blank agar plates were used as controls. 

 

Four 2 cm diameter agar discs were placed in 25 ml vials and/or Universal bottles and 

left to equilibrate for one hour at 25°C; thereafter the headspace generated was analysed 

using two sensor array systems. Studies were carried out using both agar media and 

were repeated at least twice. 

 

For initial liquid culture studies only the two faster growing Trichophyton species of the 

four i.e. T. mentagrophytes and T. rubrum, were used (two-three week old cultures). 50 

ml of Sabouraud Dextrose broth was placed in 250 ml Erlenmeyer conical flasks (five 

replicates of each) and inoculated with a fungal spore suspension (approximately 106 

spores ml-1). They were then plugged with cotton wool, loosely covered with aluminium 

foil and left to incubate at 25°C on a rotary shaker at 150 rpm for 24-96 hours. Every 24 

hours 5 ml of a representative sample was transferred into vials and left to equilibrate 

for an hour before analysing the headspace. Sterile liquid medium was used as a control. 
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Similar agar based experiments were carried out using numerous strains of T. 

mentagrophytes and T. rubrum which were grown for about three weeks prior to 

making spore suspensions. Replicate SDA agar plates (25-30) were inoculated (roughly 

106-7 spores ml-1), incubated, sampled and analysed as stated previously. Controls were 

in the form of blank agar plates. Headspace measurement was however carried out using 

only one of the e-nose systems (AS Nordic). 

 

2.2.4 Sensitivity thresholds for detection 

Spore suspensions from two-three week old growing cultures of T. mentagrophytes and 

T. rubrum were made and the initial concentrations were determined using a 

haemocytometer. Serial dilutions, generally 10 or 100-fold, were then prepared from the 

stock solutions in order to obtain treatments of 101, 103, 105 and 107 CFUs (spores) ml-1.  

 

For agar based studies, 250 µl from each treatment were spread plated on at least 25 

replicate agar plates. These were inoculated and analysed as described previously.  

 

For liquid broth cultures, initially 130 ml of the Sabouraud broth medium was placed in 

250 ml Erlenmeyer conical flasks and inoculated with the stock solution to obtain a 

concentration of 107 spores ml-1. Subsequently, 100-fold serial dilutions were carried 

out to obtain treatments of 105, 103, and 101 spores ml-1. These were inoculated and 

analysed as before. Alternatively, 5 ml of suspension from each of the treatment flasks 

was pipetted into Universal bottles and incubated at 25°C on a shaker at 150 rpm. The 

replicates/treatments were sampled as described previously. 
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2.2.5 Mass spectrometric systems  

Two different mass spectrometric techniques, gas chromatography-mass spectrometry 

(GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS), were used to 

analyse the headspace of the main fungal species. Agar samples for T. rubrum, T. 

mentagrophytes and M. canis were prepared as illustrated earlier with three replicates 

each and uninoculated agar plates were used as controls. The sampling methodology for 

both the techniques is described below. 

 

a) SIFT-MS procedure 

For headspace sampling Nalophan bags were used that were constructed by using 

Nalophan tubing (Kalle UK Ltd.), with a filled diameter of 135mm. These may be 

sealed at one end by folding over and securing with a plastic tie after addition of the 

sample. The other end was attached around an inert plastic tube with a ¼ inch Swagelok 

fitting for connection to the SIFT-MS instrument inlet or a pump.  These empty bags 

were then sterilised by UV irradiation for 24-72 hours. One agar plate (without its lid) 

was placed in each bag. The bag ends were sealed and filled with BOC zero grade 

(hydrocarbon free) air. A bag with only zero grade air was used as an additional control. 

These were incubated at 25°C for 96 hours for headspace generation. The bags were 

then heated to about 37-40°C for 5-10 minutes to allow for volatile compounds in the 

headspace to be increased in concentration through desorption from the Nalophan as 

well as reducing the volatiles’ solubility in the media (Henry’s Law). The bag fitting 

was then connected through the wall of the incubator, to the inlet capillary of the SIFT-

MS instrument for analysis.  The reaction of each SIFT-MS precursor ion (H3O+, NO+ 

and O2
+) with the sample was monitored for 90 seconds to generate mass spectra at 

mass/charge (m/z) values between 10 and 160 using the full scan mode. 
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b) GC-MS procedure 

Automated thermal desorption (ATD) tubes were then connected to the bags (via an 

automated flow-controlled pump), filled with a headspace volume of 500 ml per tube 

and used for subsequent analysis by GC-MS. This method helps to preconcentrate the 

headspace. Standard stainless-steel ATDsorbent cartridges, containing dual packing 

comprising 50% Tenax TA and 50% Carbotrap (Markes International Limited, 

Llantrisant, UK) were used following conditioning**. Conditioned cartridges were 

sealed with locking caps and stored at 4ºC until required for use. 

 

Captured volatiles were analysed using an AutoSystem XL gas chromatograph 

equipped with an ATD 400 thermal desorption system and TurboMass mass 

spectrometer (Perkin Elmer, Wellesley, MA). CP grade helium (BOC gases, Guildford, 

UK) was used as the carrier gas throughout. Cartridges were desorbed by purging for 2 

min at ambient temperature then for 5 min at 300ºC. Volatiles purged from the cartridge 

were captured on a cold trap which was initially maintained at 30ºC. Once desorption of 

the cartridge was complete, the trap was heated to 320ºC using the fastest available 

heating rate and maintained at that temperature for 5 min whilst the effluent was 

transferred to the gas chromatograph via a heated (180ºC) transfer line coupled directly 

to the chromatographic column. 

 

A Zebron ZB624 chromatographic column was used (Phenomenex, Torrance, CA). This 

is a wall-coated open tubular column (dimensions 30m×0.4mm×0.25mm ID), the liquid 

phase comprising a 0.25 μm layer of 6% cyanopropylphenyl and 94% 

methylpolysiloxane. The gas chromatograph oven was maintained at 50ºC for 4 min 

                                                 
** Conditioning was done by purging with He carrier gas for 2 min at 25°C followed by 30 min at 335°C.  
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following injection and was then raised at 10ºC min-1 to 220ºC for 9 min. Separated 

products were transferred by a heated line to the mass spectrometer and ionised by 

electron bombardment. The spectrometer was set to carry out a full scan from m/z ratios 

33 to 350 using a scan time of 0.3s with a 0.1s scan delay. The resulting mass spectra 

were combined to form a total ion chromatogram (TIC) by the GC-MS integral software 

(TurboMass 4.1). 

 

2.2.6 Electronic nose systems 

Two electronic nose systems were used for analysis; one comprising of an array of 14 

conducting polymer (CP) sensors (BH114, Bloodhound Sensors, UK) and the other 

consisting of an array of 10 MOSFET sensors, 12 MOS sensors, together with an IR-

based CO2 sensor and a capacitance based Humidity sensor (NST 3320, Applied Sensor, 

Sweden), (Plate 2.1). 

 

Plate 2.1: Left – BH114, Bloodhound; Right – NST Senstool, Nordic Technologies. 

 
a) The Bloodhound (BH114) 

Individual petri-plate cultures were placed in sampling bags (500 ml capacity, BDH), 

with the lid carefully removed, inflated with a fixed volume of filter-sterilized air and 

sealed. The bags were incubated for one hour at 25°C to allow equilibration for 
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headspace generation. Subsequently, the headspace from each bag was sampled through 

an air-filter system, which consisted of a needle attached to a bio-filter (0.45 μm, PTFE 

Whatman, HepaVent) and an activated carbon filter (Whatman), to ensure clean airflow. 

Samples were analysed in a random order, including the controls which consisted of 

blank agar plates (Keshri et al., 1998; Keshri et al., 2002; Needham et al., 2005). 

 
Alternatively, Universal bottles containing agar plugs were sealed with parafilm, 

covered with a cap and left to equilibrate as before. Headspace analysis was also carried 

out similarly.  

 
The baseline for the system was set by passage of air through the activated carbon filter. 

In order to prevent carry over effects between samples, the array was flushed with 

filtered air again and allowed to return to its baseline, recovery stage (Figure 2.1). 

 

Figure 2.1: Measurement cycle 

 
b) The NST 3320 

Sample vials were placed in the NST 3320 Lab Emission Analyser carousel (AS 

Nordic, Sweden) and randomly analysed. It employs an automated robotic needle set-up 

(described in Appendix B, B.1) to draw sample headspace from a sealed container 
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sampling vial, which is then exposed to the sensor array. Carry over effects were 

prevented in a similar manner as described earlier. The effect of drift on the sensors was 

tested over time by using certain controls (e.g. acetone, propan-1-ol, propan-2-ol, 

ethanol; figures in Appendix B, B.2). 

 
2.2.7 Data analysis 

The data collected was analysed by built-in software packages†† in both electronic nose 

systems, Statistica 7 (Statsoft Inc.) and Matlab 7.2 (Mathworks Inc.). For the 

Bloodhound, normalised data for divergence, a sensor parameter indicating maximum 

step response, was analysed using XLStat (a Microsoft® Excel add-in). For the Nordic, 

the response parameter (mean-centred data) was chosen, which also indicated the 

maximum peak response for the various sensors. 

 
Multivariate statistics involving Principal Component Analysis (PCA) and hierarchical 

Cluster Analysis (CA) were applied to the obtained sensor responses to check for 

discrimination between treatments. Loadings plots were also examined for the selection 

of suitable or relevant sensors. The results were displayed in the form of PCA scores 

plots and dendrograms in order to identify any possible relationships between the 

samples of the fungal species or the strains of the species. Additionally, a computational 

predictive model was built using the Matlab Neural Network Toolbox (v5) based on 

probabilistic neural networks (PNN), a type of radial basis network that would enable 

classification of the fungal samples into their respective classes i.e. species (details of 

which can be found in Appendix C). 

 
The data generated by the GC-MS was analysed using the AMDIS (Automated Mass 

Spectral Deconvolution and Identification System) software. The chromatograms were 
                                                 
†† There was no difference between the results obtained when compared with all software. 
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used to search the library contained in the NIST05 (National Institute of Standards and 

Technology) mass spectral database to identify compounds present in the fungal 

samples. 

 
2.3 Results 

2.3.1 Comparison of electronic nose systems 

The experiments performed initially had two objectives: one to determine the 

performance of the CP and hybrid sensor array systems and the other to differentiate 

three fungal species (T. mentagrophytes, T. rubrum and T. verrucosum) from each other 

based on their volatile production patterns.  

 
Measurements using both electronic nose systems showed that after 24 hours incubation 

it was not possible to differentiate between any of the fungal species from the controls 

(uninoculated agar), when test species were grown on SABHI agar. There was 

practically no discrimination between the three fungal species and the blanks even after 

72 hours using the CP system (Figure 2.2). On the other hand, with the Nordic system 

(metal oxide-metal ion sensor array) some differentiation after 48 hours and better 

discrimination between two species was obtained after about 72 hours incubation 

(Figure 2.3). The control agar treatment could not be distinguished from the third 

species examined (T. verrucosum).  

 
The experiment was repeated with both the sensor array systems, but using an 

alternative sampling system for the Bloodhound where Universal bottles were used 

instead of sample bags to mimic the Nordic. Yet again, it did not appear to distinguish 

between the three fungi or controls even after 72 hours (Figure 2.4). This indicated that 

the hybrid sensor array based electronic nose produced better results.  
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Figure 2.2: PCA plot after 72 hours at 25°C using the Bloodhound, showing no 

differentiation between the fungal species. 

(Key: B – blank agar; TM – T. mentagrophytes; TR – T. rubrum; TV – T. verrucosum) 
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Figure 2.3: PCA map differentiating between T. mentagrophytes and T. rubrum after 72 

hours at 25°C using the Nordic, self encircled.   

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum) 
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Data on axis 1 and axis 2 (76% )
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Figure 2.4: PCA plot after 72 hours at 25°C using an alternative sampling method with 

the Bloodhound depicting no distinction between samples. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum) 

 

2.3.2 Intra-species (Trichophyton) discrimination 

a) Solid media based studies 

The reproducibility of the sensors for the five replicates of an individual treatment and 

the controls using the Nordic electronic nose with hybrid sensors is illustrated in the 

form of two line graphs (Figures 2.5 and 2.6).  

 

Since the PCA loadings plot indicated not all the sensor responses contributed to the 

potential for discrimination between species, only the relevant sensors were used for 

further analysis. Normally those variables away from the origin are more discriminating 

while those closer to the origin contribute to noise or have little or no information. An 

example is shown in Figure 2.7. By selecting only those variables that prove to be more 

discriminatory, the quality of differentiation can be improved (Figure 2.8).   
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Figure 2.5: Signal parameters of one set of sensors from the Nordic for control (B) and 

T. mentagrophytes (M) after 72 hours showing sensor reproducibility. 
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Figure 2.6: Reproducibility of MOS sensors in the Nordic for control (B) and T. 

mentagrophytes (M) after 72 hours.   

 
 - 65 -



                                                                                                Dermatophytosis 

Resp
Humidity

Resp
FE103A

Resp
FE101B

Resp
FE104B

Resp
MO102

Resp
MO111

Resp
MO114

Resp
MO117

Resp
FE101A

Resp
FE104A

Resp
FE102B

Resp
FE105B

Resp
MO104

Resp
MO112

Resp
MO115

Resp
MO118

Resp
FE102A

Resp
FE105A

Resp
FE103B

Resp
MO101

Resp
MO110

Resp
MO113

Resp
MO116

Resp
CO2

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Loadings for PC #1 (92.7%)

Less Discriminating 
Variables 

More Discriminating 
Variables 

 

Figure 2.7: PCA loadings plot after 72 hours growth on SABHI at 25°C agar using the Nordic (data from figure 2.3) 
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Figure 2.8: PCA scores plot after selecting sensors indicated in the previous figure. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum) 

Figure 2.7: PCA loadings plot after 72 hours growth on SABHI agar at 25°C using 

the Nordic (data from figure 2.3) 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum) 

Figure 2.8: PCA scores plot after selecting sensors indicated in the previous figure. 
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On comparing Figures 2.3 and 2.8, it can be seen that the variance captured in the latter 

is greater, approximately 99.9% of the data, which implies that by selecting the most 

important sensors more information can be retained with little loss. When the same data 

was analysed using hierarchical cluster analysis (with Euclidean distance to measure 

distances between samples forming clusters and Ward’s linkage method to establish the 

distance amid the clusters), it could be seen that T. mentagrophytes and T. rubrum 

formed two distinct clusters; whereas the controls and the third species (T. verrucosum) 

appeared to be grouped together (Figure 2.9). 
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Figure 2.9: Cluster analysis of the Trichophyton species after 72 hours at 25°C. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum) 
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Similar experiments were also performed on another medium, SDA, commonly used in 

isolating dermatophytes from clinical samples. The results were comparable to the 

earlier experiment; where after 96 hours growth two of the dermatophyte species could 

be distinguished whilst T. verrucosum and the controls could not (data not shown). 

Figure 2.10 illustrates the mean CO2 response over time for the different treatments. 

This shows clearly that the growth of the species varies with T. mentagrophytes and T. 

rubrum growing much faster than the T. verrucosum.  
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Figure 2.10: Average CO2 production over time after growth on SDA at 25°C for the 

fungal species. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; V – T. verrucosum; I – 

standard error bars) 

 

Subsequent experiments comprised all four dermatophyte species which included a new 

strain of T. rubrum where analysis after 72 hours separated T. mentagrophytes; but PCA 

analysis after 96 hours showed five distinct clusters segregating the four fungal species 
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and the controls. One sample of T. verrucosum and T. violaceum however fell into 

different groups (highlighted) as shown in Figure 2.11. Considering that these might be 

outliers, they were removed and based on the loadings plot five sensors were selected. 

This improved the variance captured from 89.7% to about 93.4% (Figure 2.12). The 

formation of five distinct clusters was further corroborated by cluster analysis by means 

of Ward’s linkage and Euclidean distance, whereby each species was grouped tightly 

into its respective cluster (Figure 2.13).  
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Figure 2.11: PCA scores plot showing five distinct clusters (self highlighted) after 96 

hours growth on SDA at 25°C with grey circles indicating probable outliers. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; E – T. verrucosum; I – T. 

violaceum) 
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Figure 2.12: PCA scores plot illustrating clear discrimination and increased variance 

between the four fungal species and the blank agar within 96 hours at 25°C on SDA 

after outlier removal and suitable sensor selection.   

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; E – T. verrucosum; I – T. 

violaceum) 
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Figure 2.13: Tree diagram showing distinct clusters of the four fungal organisms after 

96 hours growth on SDA at 25°C. 

(Key: B – blank agar; M – T. mentagrophytes; R – T. rubrum; E – T. verrucosum; I – T. 

violaceum) 

 
b) Computational model for class prediction  

Probabilistic neural networks were created using several variations of the sensors 

involved using the e-nose data from the 96 hour growth of the four fungal species. The 

use of all sensors resulted in higher rates of misclassified samples as seen in the 

resulting confusion matrix in Table 2.1 ranging from 28 to 32%. However, by excluding 

certain sensors (e.g. humidity, FE104A, FE105A, FE102B, FE104B, FE105B) based on 

the PCA loadings, the classification rate improved and increased to almost 88 or 96% 

(Table 2.2). On comparison with Figure 2.11, one sample from T. violaceum and T. 

verrucosum each are misclassified using eighteen sensors, however a T. rubrum sample 

is also misclassified. Furthermore, the use of only five sensors results in only one 

misclassified sample but it could imply overfitting. 
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Table 2.1: Confusion matrix indicating the classification accuracy for each of the 

samples using all sensors, 28% of samples misclassified. 

(Key: B – blanks; E – T. verrucosum; I – T. violaceum; M- T. mentagrophytes; R- T. 

rubrum) 

 Predicted Class 
 B E I M R 

B 5 0 0 0 0 
E 1 3 0 1 0 

A
ct

ua
l C

la
ss

 

I 0 0 4 0 1 
M 0 0 0 5 0 
R 2 2 0 0 1 

 
 
Table 2.2: Confusion matrices based on the input of data from either 18 sensors (A) or 

five sensors (B) with prediction accuracy of 88% and 96% respectively. 

(Key: B – blanks; E – T. verrucosum; I – T. violaceum; M- T. mentagrophytes; R- T. 

rubrum) 
 

(A) Predicted Class  (B) Predicted Class 

 B E I M R  B E I M R 
B 5 0 0 0 0 B 5 0 0 0 0 
E 1 4 0 0 0 E 1 4 0 0 0 
I 0 0 4 0 1 I 0 0 5 0 0 

M 0 0 0 5 0 A
ct

ua
l C

la
ss

 

M 0 0 0 5 0 
R 1 0 0 0 4 R 0 0 0 0 5 

 
 
The effect of the varying ‘spread constant’ values was not only seen to affect the 

accuracy of the network to predict the samples into their respective classes but also 

varied with the number of sensors used. In case of fewer sensors, spread values below 

0.5 had a tendency for better classification (Figure 2.14). The performance of the 

network was then evaluated by means of regression analysis shown in Figure 2.15. This 

indicated a good fit as the points were in close proximity to the line of perfect fit 

(dashed line) including a relatively high correlation coefficient. 
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Figure 2.14: Networks classification ability based on different spread constant values 

using data from 18 sensors. 

 

 

Figure 2.15: Comparison between the actual and predicted outputs based on spread of 

0.5. 

 
 - 73 -



                                                                                                Dermatophytosis 

c) Liquid culture studies 

Experiments were also conducted in liquid broth in order to discriminate between the 

two faster growing species, i.e. T. mentagrophytes and T. rubrum, from un-inoculated 

broth controls. Sampling and analysis every 24 hours was performed for 120 hours. In 

the PCA after 48 and 72 hours respectively, only T. mentagrophytes could be 

distinguished. Although the control and T. rubrum appeared to be separated, cluster 

analysis showed otherwise (Figure 2.16). Further studies are required to optimise the 

use of liquid medium. 
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Figure 2.16: Liquid broth studies showing only one organism to be separated by means 

of a dendrogram after 72 hours at 25°C. 

(Key: B – blank; M – T. mentagrophytes; R – T. rubrum) 
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2.3.3 Sensitivity thresholds for detection 

The main purpose of these experiments was to try to identify the threshold 

concentrations at which the fungal spores of T. mentagrophytes and T. rubrum could be 

detected by means of volatile fingerprinting. The treatments used were in the range of 

log1, log3, log5 and log7 (i.e. from 101 to 107) CFUs ml-1. On SABHI agar, within 72 

hours log5 and log7 could be differentiated (data not shown). However, after 96 hours it 

was possible to discriminate between three treatments: log3, log5 and log7 as illustrated 

in Figure 2.17. This accounted for roughly over 99% of the data with just the first two 

principal components. This was confirmed by cluster analysis where three distinct 

clusters were observed as seen in Figure 2.18. The increasing trend of sensitivity 

detection over time could also be observed in the mean CO2 production shown in Figure 

2.19. 

 

Studies on SDA also enabled separation between three treatments after 96 hours, with 

initial concentrations of log3, log5 and log7 CFUs ml-1. Although the PCA scores plot 

showed clusters accounting for approximately 89% of the data, the dendrogram 

constructed did not produce tight clusters of log7 and log5 as before (Figure 2.20). 

Regardless of medium used, the control appeared to separate out only after 120 hours. 
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Figure 2.17: PCA scores plot showing three distinct groups within 96 hours at 25°C on 

SABHI agar for T. mentagrophytes.  

(Key: B – blank; 101 – log1; 103 – log3; 105 – log5; 107 – log7) 
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Figure 2.18: T. mentagrophytes showing three tight clusters after 96 hours at 25°C on 

SABHI agar. 

(Key: B – blank; 1 – log1; 3 – log3; 5 – log5; 7 – log7) 
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Figure 2.19: Mean temporal production of CO2 for the different sensitivities of T. 

mentagrophytes grown on SABHI agar at 25°C. 

(Key: 101 – log1; 103 – log3; 105 – log5; 107 – log7; I – standard error bars) 
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Figure 2.20: Dendrogram of the varying sensitivities of T. mentagrophytes after 96 

hours growth on SDA at 25°C. 

(Key: B – blank; 1 – log1; 3 – log3; 5 – log5; 7 – log7) 
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Experiments to detect the sensitivities in the range of log1, log3, log5 and log7 spores 

ml-1 for T. mentagrophytes were also conducted in SD broth. In this study the initial 

concentrations of log3, log5 and log7 appeared to be distinguishable in about 72 hours 

as shown in Figure 2.21 after selecting suitable sensors, while the control and log1 

treatments did not seem to separate until much later i.e. around 120 hours. Cluster 

analysis however indicated that the log3 replicates clustered together amidst a mixed 

grouping of blanks and log1 treatments (data not shown). 
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Figure 2.21: PCA scores plot differentiating three sensitivities of T. mentagrophytes in 

liquid broth at 25°C in about 72 hours. 

(Key: B – blank; 101 – log1; 103 – log3; 105 – log5; 107 – log7) 

 

Similar experiments were also performed with T. rubrum (original type strain) to detect 

the sensitivities in the range of log1, log3, log5 and log6 spores ml-1 in SD broth. Within 

96 hours it was possible to observe some discrimination between log6 and log5, with 

 
 - 78 -



                                                                                                Dermatophytosis 

the log6 replicates being quite spread out (Figure 2.22). On the other hand, more 

segregation was observed by omitting log6 treatments (log1, log3 and log5). 

Nevertheless, cluster analysis showed only log5 to be clustered whilst the other 

treatments had a mixed grouping (Figure 2.23). The respiratory growth pattern is shown 

in Figure 2.24 based on mean CO2 production. There was consistency in this parameter 

during the experiment. 
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Figure 2.22: PCA plot of 96 hours of T. rubrum in liquid broth at 25°C showing 

different sensitivities. 

 (Key: B – blank; 101 – log1; 103 – log3; 105 – log5; 106 – log6) 
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Figure 2.23: Dendrogram illustration with omitted log6 data for T. rubrum in broth at 

25°C. 

(Key: B – blank; 1 – log1; 3 – log3; 5 – log5) 
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Figure 2.24: Average temporal CO2 production for T. rubrum cultured in liquid broth at 

25°C. 

(Key: B – blank; 101 – log1; 103 – log3; 105 – log5; 106 – log6; I – standard error bars) 
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2.3.4 Intra-strain similarity/differences for Trichophyton species 

Five strains of T. mentagrophytes and four strains of T. rubrum were examined to study 

the consistency of volatile profiles produced to detect similarities or differences 

amongst the strains. Results for T. mentagrophytes suggest that the controls can be 

separated from the strains/treatments after about 48 hours, but this was more clearly 

evident over 72 hours. However, even after 96-120 hours these strains could not be 

differentiated from each other (Figure 2.25).  
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Figure 2.25: PCA scores plot after 96 hours on SDA at 25°C showing discrimination 

between controls (B) and T. mentagrophytes strains (M, M61, M62, M63, M64). 

 

In contrast, experiments with T. rubrum indicated that within 120 hours it was possible 

to differentiate between controls and three of the strains of this fungal species – R, R55 
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and R57. The PCA scores plot in Figure 2.26 depicts the separation between the 

samples after 120 hours incubation. The data accounted for approximately 86% of the 

variance in the first two principal components. Subsequent cluster analysis on the data 

also showed that strains R, R55 and R57 could be clustered while the controls and R59 

could not be effectively discriminated (Figure 2.27). However, a sample from R55 was 

shown to be clustered with R. The dendrogram was constructed as described previously.  

 

These findings were substantiated when growth rates of these strains were observed, 

which indicated that strains of T. mentagrophytes grew at approx. the same rate whilst 

those of T. rubrum were variable – some growing slower than others (Figure 2.28) 
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Figure 2.26: PCA scores plot depicting discrimination between 3 strains of T. rubrum 

(R, R55, R57) after 120 hours at 25°C on SDA from controls (B). 
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Figure 2.27: Dendrogram based on the first 2 PCs of fungal strains after 120 hours at 

25°C on SDA.  

(Key: B – Controls and R, R55, R57, R59 – T. rubrum) 
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Figure 2.28: Growth rates of the strains of T. mentagrophytes and T. rubrum at 25°C on 

SDA. Bars indicate standard error of mean. 

 
 - 83 -



                                                                                                Dermatophytosis 

2.3.5 Inter-species discrimination 

To investigate the potential of discriminating between dermatophytes causing human 

and animal infections T. mentagrophytes, T. rubrum and M. canis were studied for 

differences in their volatile fingerprint production patterns. Experiments indicated 

possible differentiation between the fungal species. Figure 2.29 shows a PCA scores 

plot of the separation between the samples after 120 hours with the first two principal 

components accounting for approximately 94% of the variance in the data. Cluster 

analysis performed on the same data set using just the first two principal components 

also showed a similar result (Figure 2.30). The dendrogram was constructed as 

described previously. Although, four distinct groups can be visualised, one sample from 

C was clustered as belonging to R possibly an outlier. 
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Figure 2.29: 120 hours PCA scores map indicating separation between the two human 

(M, R) and the animal (C) pathogens from the controls at 25°C on SDA. 

(Key: M – T. mentagrophytes; R – T. rubrum; C – M. canis; B – controls) 
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Figure 2.30: Tree diagram based on the first two PCs after 120 hours growth on SDA at 

25°C showing four distinct clusters. 

(Key: M – T. mentagrophytes; R – T. rubrum; C – M. canis; B – controls) 

 

Additionally, just as described earlier, probabilistic neural networks were created in 

order to predict the classes of the fungal samples. The use of fewer sensors resulted in 

better classification accuracy, with spread values lower than 0.3. This can be seen in the 

confusion matrix in Table 2.3; which misclassifies one M. canis sample. 

 
Table 2.3: Confusion matrix indicating 95% accuracy in predicting classes based on 

data using 18 sensors. 

(Key: B – Controls; C – M. canis; M – T. mentagrophytes; R – T. rubrum) 

 
 Predicted Class 

 B C M R 
B 5 

A
ct

ua
l C

la
ss

 

0 0 0 
C 0 4 0 1 
M 0 0 5 0 
R 0 0 0 5 
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2.3.6 Mass spectrometric analysis 

Analysis of the fungal samples (T. mentagrophytes, T. rubrum and M. canis) by GC-MS 

revealed the presence of numerous compounds in all the species including the agar 

controls. They comprised common volatiles such as alcohols (ethanol, butanol, 2-ethyl-

1-hexanol), benzene derivatives (styrene, xylene, toluene) and 2-methyl-1,3-dioxolane 

to name a few including acetonitrile and propan-2-ol. However, it was observed that 

cyclohexane and 2-butanone were present in relatively higher amounts in the three fungi 

than in the controls; while acetone and methoxybenzene were much higher in T. 

mentagrophytes (although the latter was absent in agar and minutely present in the other 

fungi). On the other hand, 3-octanone and 1-octen-3-ol were found to be present in high 

concentrations in T. rubrum but only in trace amounts in the other two dermatophyte 

species (the former being possibly absent in M. canis) and absent in the controls. 

Examples of the chromatograms of each sample are shown in Figure 2.31 while their 

smaller peaks are magnified and illustrated in Figure 2.32.  

 

Based on SIFT-MS analysis of the H3O+ precursor ion, one of the most striking 

observation was the production of huge amounts of ammonia, especially in T. 

mentagrophytes (≈ 6.3 ppm), followed by T. rubrum (≈ 1.15 ppm) and M. canis (≈ 0.6 

ppm), although present in low levels (≈ 0.36 ppm) in agar. Volatiles such as 

dimethylamine and formaldehyde were detected in all fungal species at low ppb levels 

and possibly the presence of hydrogen cyanide in T. rubrum. As seen in GC-MS, certain 

common volatiles such as alcohols (methanol, propanol – low ppm levels and ethanol – 

low ppb levels) and traces of benzene derivatives were found in all samples. Acetone 

detected in T. mentagrophytes (≈ 3 ppm) was twice as much as the others, just as 2-

butanone (based on NO+ precursor ion) was found to be slightly higher in fungi (≈ 100 
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ppb) than in the agar (up to 45 ppb). Small amount of toluene was present in agar, but 

the fungi also had traces of toluene with more of propanoic acid present due to m/z 93 

and 111. Certain unidentified compounds were present at m/z values of 70, 86, 90, 92, 

98, 102, 114 and 126; although m/z 76 and 96 could be amines.    
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2-Butanone 
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Figure 2.31: GC-MS chromatograms for T. mentagrophytes (A), T. rubrum (B), M. 

canis (C) and the agar control (D) after 96 hours incubation at 25°C.  
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Figure 2.32: GC-MS chromatograms indicating the magnified smaller peaks from the 

Figure 2.31 for T. mentagrophytes (A), T. rubrum (B), M. canis (C) and agar (D). 
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2.4 Discussion 

This is the first study to examine volatile fingerprint profiles using electronic nose 

technology for discriminating between these medically important pathogenic fungi. It 

was observed that the hybrid sensor system outperformed the CP system in discerning 

the Trichophyton species, requiring about 72 hours to clearly distinguish two of the four 

species. However, in spite of using two different sampling procedures the CP system 

failed to segregate the pathogens from controls within 96 hours of incubation. This 

system may have performed better with a longer time period for volatile accumulation 

in the headspace, but, because the hybrid sensor system produced results earlier it was 

concluded that it would be more preferable for further studies. Moreover in clinical 

practice shorter time is ideal to decrease the total sampling time required thereby 

increasing efficiency.  

 

Conducting polymers operate at ambient temperatures which make it conducive for a 

variety of applications, but are simultaneously very sensitive to humidity. This could 

have been a possible factor in this system’s poor performance in the current study, but it 

is more likely that the headspace was not sufficiently concentrated. Nevertheless, 

previous studies were successful using this system (Gibson et al., 1997; Pavlou et al., 

2002b; Canhoto & Magan, 2005).  

 

Some studies carried out using the two types of sensors have also shown that there can 

either be no or minimal difference using these technologies or one proved to be better 

than the other. Nake et al. (2005) conducted experiments for outdoor air monitoring (in 

situ) of sewage odours by testing the two sensor technologies and found that the MOS 

sensors provided improved discrimination amid the various odours. On the other hand, 
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work done on monitoring the ripening of Danish blue cheese at an early stage using 

both MOS and CP sensors gave similar results (Trihaas & Nielsen, 2005; Trihaas et al., 

2005).  

 

Successful intra- and inter-species discrimination, based on qualitative volatile profiles 

using agar media, between pathogenic dermatophyte species (T. mentagrophytes, T. 

rubrum, T. verrucosum, T. violaceum and M. canis) was shown to occur within 96-120 

hours. Distinction of T. mentagrophytes and T. rubrum in broth was also possible after 

72-96 hours using their volatile fingerprints.  

  

Similar research, however, has been done on spoilage fungi in the food industry for 

early identification. Keshri et al. (1998) could differentiate grain spoilage moulds, i.e. 

Eurotium, Penicillium and Wallemia species within 48 hours by detecting their volatile 

odour patterns, however, reported that the two closely related Eurotium species could 

not be discriminated. Bread analogues spiked with various microbial species or 

lipoxygenase were subjected to electronic nose analysis where microbial spoilage could 

be distinguished from enzymatic spoilage after 48 hours (Needham et al., 2005). These 

studies differentiated between the fungal species much earlier than traditional enzyme 

assays or plate count techniques (Keshri & Magan, 2000; Keshri et al., 2002).  

 

A recent study showed that volatiles from bacterial agar cultures were more effectively 

discriminated than broth cultures using an e-nose (Casalinuovo et al., 2006). Magan et 

al. (2001), on the other hand, reported the detection and differentiation of bacteria and 

yeasts in milk-based media in about five hours. They could separate the various 

bacterial species and yeasts contaminating milk from each other as well as unspoiled 
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milk. Bacterial species distinction appears to take 24 hours or less as shown by Canhoto 

& Magan (2003) when detecting microbial populations and low concentrations of heavy 

metals in potable water. 

 

Several studies discriminating the dermatophyte genera (Epidermophyton, 

Microsporum, and Trichophyton) have been previously carried out but at a genetic level 

using variations of PCR, PCR-RFLP and restriction enzyme techniques. Selection of 

random primers in the AP-PCR technique differentiated between the genera 

Microsporum and Trichophyton including selected species within these, except a few 

Trichophyton species. Although the authors found the two genera to be genetically 

similar, the DNA fragments produced were of different sizes facilitating distinction (Liu 

et al., 1996; Liu et al., 1997; Liu et al., 2000). However, Liu et al. (2000) found that 

using a combination of primers increased the possibility of species identification except 

for T. rubrum and T. gourvillii. Differentiation of species has also been carried out using 

restriction enzymes by means of RFLP. Interestingly if the number of species studied 

were increased, certain discrepancies would probably arise especially if the restriction 

enzyme HinfI is considered (Shin et al., 2003; Kamiya et al., 2004). The former found 

that four Trichophyton species in two pairs could not be discerned from each other, 

while the latter distinguished between the three species used.   

 

In another study, clinical samples were directly used for PCR-RFLP analysis without in 

vitro culturing where they were classified as either dermatophyte or Scytalidium species 

using primers specific for a restriction enzyme site in each species. The different 

dermatophyte species were not identified (Machouart-Dubach et al., 2001). These 

studies suggested that very short time periods of 1-4 days for discrimination were 
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needed. Although a couple of recent studies have also directly used clinical samples 

using a shorter PCR method and reduced diagnostic time to either 48 or 5 hours 

(Kardjeva et al., 2006; Brillowska-Dąbrowska et al., 2007), these focus only on nail 

infections with a primary interest on T. rubrum. Also, most molecular techniques are 

carried out after culturing for a few days to 4 weeks. Moreover with the exception of 

diagnoses of a few common dermatophyte species, the other authors made use of 

various other species. The choice of primers also seemed to differ in each case which 

might not be feasible or cost effective on a wider clinical scale.  

 

Additionally, the use of probabilistic neural networks in conjunction with volatile 

analysis resulted in good classification of the fungal species. Thus, it shows promise as 

a predictor of unknowns, although it might require further training due to the small 

sample size used in the current study. Larger sample numbers would enable better 

assessment of the network’s generalisation capability. Studies have shown that RBF 

networks perform better and train faster than normal MLP networks. Panagou et al. 

(2007) predicted the growth rate of a spoilage fungus using an RBF network which 

showed that temperature was the most important factor. Other studies have also made 

use of such networks for taxonomic classification of a number of microalgae and 

phytoplankton especially using flow cytometric microbial features (Wilkins et al., 1999; 

Al-Haddad et al., 2000).    

 

If species identification is important for administration of appropriate drugs, then strain 

differentiation can serve to be essential for monitoring drug resistance, especially in the 

event of treatment failure, in the strains of these species. Volatile profile patterns of the 

fungal strains of the two Trichophyton species indicate interesting outcomes. The 
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slower growth rate of some T. rubrum strains could explain the inability to discriminate 

it from the controls, suggesting that there is greater variability present in these species. 

This could also imply that the volatile patterns of the strains pertaining to these species 

might be slightly different from each other. In contrast, no distinction between the 

strains of T. mentagrophytes could be due to a great deal of similarity between the 

strains indicating that their volatile fingerprints hardly differ. These would however, 

need to be substantiated by MS techniques. 

 

PCR techniques for dermatophyte strain typing in some instances have shown an 

inability to differentiate between T. rubrum strains (Liu et al., 1996; Gräser et al., 1999) 

or minor differences in a small number of strains (Zhong et al., 1997). In contrast, other 

authors using primers from the nontranscribed spacer region of rDNA enabled strain 

differentiation of this species (Jackson et al., 2000; Baeza et al., 2006). However, 

Jackson et al. (2000) differ in opinion about the reproducibility of the technique used in 

the former study. Similar issues were reported in the case of T. mentagrophytes (Liu et 

al., 1996; Kim et al., 2000; Faggi et al., 2001). A possibility for the varying reports 

could be the use of different primers in these studies.        

 

Studies on fungal strain discrimination, especially those detrimental to the food industry 

due to toxin production, have been previously reported using different kinds of e-noses. 

Falasconi et al. (2005a) demonstrated that a MOS e-nose could classify the strains of 

Fusarium verticillioides based on their toxigenic behaviour on agar as well as on grain. 

Studies also showed that whilst black Aspergilli strains could be segregated, toxigenic 

A. flavus strains were not easy to differentiate based on volatile profiles (Cabañes et al., 

2006; Sahgal et al., 2007). Furthermore, Needham and Magan (2003) used CP sensors 
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to examine Penicillium verrucosum strains for production of ochratoxin as opposed to 

those that did not produce the toxin.     

 

Furthermore, detecting the threshold level of a fungal species can serve as an important 

indicator for early and rapid detection of pathogens. The minimum detectable limit for 

identifying either T. mentagrophytes or T. rubrum was found to be 103 CFUs ml-1 in 

broth as well as both solid culture media within 96 hours. Lower detection limits of 101 

CFUs ml-1 can probably also be achieved at 120 hours, but there is a possibility that the 

sensors were saturated with the concentrated headspace from the higher inocula. This 

could also explain the increasing spread of these replicates after 96 hours. 

Preconcentration of the treatments might enhance the detection of lower thresholds. 

 

Turin et al. (2000) developed a PCR assay for identifying pathogenic fungi which could 

detect minute amounts of fungal DNA from dermatological specimens, 10pg, 

corresponding to roughly 25 CFUs. However, the specimens included several species of 

yeasts and moulds apart from a mixture of species from the genera Trichophyton and 

Microsporum. Although sensitivity is high, species discrimination required integration 

of results from three different primer sets by superimposition/correlation. In comparison 

to the current study which deals with volatile compound measurements, it is very good. 

However, by improving and optimising current procedures by means of agitation or 

possibly spiking with enzymes or an alternative substance, low sample concentrations 

could be induced to produce more volatiles.  

 

The minimum detection limit in various food matrices including milk as a medium was 

shown to be 103-104 cells ml-1 based on volatile organic compounds formed by micro-
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organisms (Magan et al., 2001; Magan & Sahgal, 2007). In contrast, microbial 

populations of bacteria and fungi of the order of 102 CFUs were identified in potable 

water using qualitative volatile fingerprints (Canhoto & Magan, 2003; Canhoto & 

Magan, 2005). In these studies, it was shown that chemical contamination in 

conjunction with bacterial contamination changed the volatile profile using HS-

SPME/GC analysis. 

 

Volatiles detected by the MS techniques indicated the presence of specific compounds 

(e.g. methoxybenzene, 3-octanone, 1-octen-3-ol, ammonia) that could serve as potential 

identifiers of the fungi or perhaps the specific Trichophyton species; but none were 

detected that were solely present in a single dermatophyte. Moreover, the inability to 

detect low molecular weight compounds such as ammonia, formaldehyde and/or 

dimethylamine by GC-MS, was probably due to its poor sensitivity for substances 

within this range.  In order to firmly establish the presence of biomarkers further work 

is needed, using a larger number of samples with the inclusion of strains if possible. 

Previously, Verscheure et al. (2002) used SPME-GC-MS for dermatophyte 

identification. However, these authors reported that only M. gypseum strains produced 

volatiles such as sesquiterpenes, butyrolactone, sulphur compounds and 1-octen-3-ol 

and/or 3-octanone (the final ones being identified in the present study mainly in T. 

rubrum); whilst others produced either butyrolactone only (some Trichophyton species) 

or no volatiles (M. canis and M. cookei).This is in contrast to the present study, where 

M. canis and the two Trichophyton species were shown to produce certain volatiles; 

however no sesquiterpenes were identified. Another study, attempted in using SIFT-MS 

for identifying certain medically relevant fungi, but also did not identify any specific 

markers, all the metabolites detected were common (Scotter et al., 2005). 
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Recent research has shown that use of MS-electronic nose enabled detection of three 

fungal species in Spanish bakery products based on an ergosterol biomarker (Marín et 

al., 2007). Karlshøj et al. (2007) differentiated between closely related mycotoxigenic 

fungi, especially Penicillium, and found that some species had similar volatile profiles 

using GC-MS mainly identifying ethanol, acetone, 2-methyl-1-propanol, 3-methyl-1-

butanol and 2-pentanone.  

 

This study has described a novel method using volatile fingerprinting for the rapid 

identification of dermatophytes. It shows potential for working with actual clinical 

samples from patients suffering from dermatophytosis especially at low fungal 

concentrations. The use of artificial neural networks would facilitate identification of 

unknown samples against the previously trained model. The successful application of 

this technique in clinical practice would dramatically reduce the otherwise time 

consuming conventional identification techniques and allow rapid administration of 

suitable drugs for treatment. Furthermore, the organic compounds produced by these 

species would definitely assist in developing a specific and portable e-nose that could be 

utilised with ease in a clinical setting. 
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ANTIFUNGAL SUSCEPTIBILITY 
USING VOLATILE FINGERPRINTS 
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3.1 Introduction 

The most common skin diseases, that constitute public health concern worldwide, are 

caused by dermatophytes. They are mainly responsible for superficial and to some 

extent deep-seated infections of the keratinised tissue. Administration of appropriate 

antifungal therapy i.e. topical or systemic treatments is of critical importance and 

depends particularly on the species involved including the site and severity of infection. 

Besides these, the other contributing factors are the cost of drugs (oral therapy being 

more expensive), duration of treatment (longer for nails) and risks of increasing 

resistance in species (Hiruma & Yamaguchi, 2003; Gupta & Tu, 2006). 

 

The existing methods adopted for detecting antifungal susceptibility against the 

dermatophytes are based on modifications of the reference methods for filamentous 

fungi or yeasts as specified by the NCCLS. This is due to the lack of a standardised 

protocol and has led to numerous investigations into developing suitable reproducible 

assays. Studies using broth microdilution tests have identified terbinafine to be the most 

potent commercial antifungal drug. However, these methods vary in terms of incubation 

periods and temperatures; but resulted in effectively similar minimum inhibitory 

concentrations (Fernandez-Torres et al., 2002; Favre et al., 2003; Santos et al., 2006). 

Santos et al. (2006) also reported that inoculum preparation affected the antifungal 

susceptibility. Recently, Esteban et al. (2005) utilised and demonstrated the potential of 

a commercial system based on agar diffusion for antifungal susceptibility. 

 

However, the risks associated with current commercial therapeutics - such as drug-drug 

interactions, unpleasant side-effects and escalating fungal resistance – have led certain 

researchers to focus on naturally occurring sources e.g. various plant products for 
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antifungal activity, although the techniques used were similar to those mentioned 

previously (Gurgel et al., 2005; Koc et al., 2005). Studies have also shown essential oils 

to have inhibitory effects on dermatophyte growth including significantly boosting the 

effects of an antifungal when used in combination (exhibiting synergism) (Shin & Lim, 

2004; Pyun & Shin, 2006).   

 

These procedures tend to be tedious because of the difficulty in determining the end 

point for the inhibitory concentrations. Therefore, the present study determined the 

potential of a sensor array system to screen antifungal agents at different conditions 

(such as concentrations and temperatures) based on their generated volatile fingerprints.                  

        

3.2 Materials and methods 

3.2.1 Strains and antifungal agent 

The fungal strains selected for this study were type cultures of two important 

Trichophyton species viz, T. mentagrophytes (NCPF-224) and T. rubrum (strain D12). 

Itraconazole (ITZ), the antifungal agent selected for the screening study was kindly 

provided by Janssen Pharmaceutica, Belgium. 

 

The cultures were grown and maintained on Sabouraud Dextrose Agar (SDA) prepared 

in house by mixing 10 g l-1 Mycological peptone (Amersham), 40 g l-1 Glucose (Acros 

Chemicals) and 15 g l-1 Agar technical no. 3 (Oxoid). 0.05 g l-1 of the antibiotic, 

Chloramphenicol (Sigma) was also added. The antifungal stock solution was prepared 

in dimethyl sulfoxide (DMSO) (Sigma). 
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3.2.2 Temporal growth study 

The efficacy of the antifungal was tested by measurements of the effect on temporal 

growth. The antifungal was screened at 0.25, 0.5, 1 and 2 ppm on SDA at 25 and 30°C. 

The treatments were prepared from 100 ppm stock solution in DMSO by adding to 

molten media to obtain the final concentrations. Controls were fungi inoculated on plain 

SDA media and uninoculated SDA media. The plates were centrally inoculated with a 

4mm agar plug from three week old cultures of both T. mentagrophytes and T. rubrum. 

Three replicates per treatment were incubated at 25 and 30°C. Colony diameter was 

measured in two directions at right angles to each other for up to two weeks. 

 

3.2.3 E-nose volatile fingerprint analysis  

Spore suspensions of three to four week old actively growing cultures were prepared in 

sterile 10 ml Tween 80 (Acros Chemicals) and RO water. The initial inoculum 

concentrations measured using a haemocytometer microscopically were in the range of 

107 spores ml-1 for T. mentagrophytes and T. rubrum respectively. Two sets of 

experiments were performed. In the first set, five replicate agar plates for each treatment 

(LD50
‡‡ and controls) per species were inoculated with 250 µl of the inoculum. They 

were incubated at 25 and 30°C for 96 hours following which the five replicates were 

destructively sampled. Blank agar plates including some containing the antifungal were 

used as negative controls, to ensure that it had no effect on the volatile profiles that 

would be responsible for any kind of discrimination. For the second experiment, the 

treatments used were the LD50 90values, 2 ppm (approx. 90% inhibition i.e. LD ) and 

controls per species, incubated only at 25°C and analysed as described earlier except 

that they were sampled after 96 and 120 hours.  

                                                 
‡‡ LD50 – the effective concentration of the antifungal at which the fungal growth is 50% inhibited. 
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Four 2 cm diameter agar plugs were placed in 25 ml vials and set aside to equilibrate for 

an hour at 25 and 30°C for headspace generation. The sample vials were placed in the 

hybrid e-nose (NST 3320, Applied Sensor, Sweden) carousel system and analysed in a 

random order. The headspace of the samples was measured by exposure to the sensor 

array after uptake by a robotic needle (details in Appendix B, B.1). The baseline for the 

system was set by passing air through the activated carbon filter. After sample uptake 

the system was flushed with air again to prevent carry over effects. These studies were 

repeated at least twice. 

 

3.2.4 Data analysis  

Fungal growth rate measurements against the antifungal were used to determine the 

lethal dose at which the fungi were 50% inhibited (LD50 value) using Microsoft® Excel. 

The subsequent e-nose sensor data (mean-centred) were analysed with the 

accompanying software NSTSenstool and Statistica 7 (Statsoft Inc.) using multivariate 

statistics such as principal component analysis (PCA) and cluster analysis (CA) 

respectively. In addition, PCA loadings plots were also examined for selection of 

suitable sensors. The patterns in the data, if any, are depicted in the form of scores plots 

and tree diagrams i.e. dendrograms. 

 

3.3 Results 

3.3.1 Temporal effects of antifungal screening  

Temperature and concentration of the antifungal agent affected the growth rates of the 

two fungal species. The fungal controls appeared to grow slightly faster at 30 than at 

25°C. At 25°C the growth of T. mentagrophytes and T. rubrum was almost completely 

inhibited by the antifungal concentration of 2 ppm, i.e. LD90 (Figure 3.1). At the higher 
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temperature however, the trend for inhibiting the growth of the fungi at the intermediate 

concentrations was different (Figure 3.2). The effective concentrations at which 50% of 

fungal growth was inhibited was determined from these data and shown in Table 3.1.  
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Figure 3.1: In vitro effect of the varying antifungal (itraconazole) concentrations at 

25°C on the growth rate of the two dermatophyte species (I – standard error bars).  
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Figure 3.2: Radial extension rates of the two fungi, T. mentagrophytes and T. rubrum 

based on the effect of different antifungal concentrations at 30°C.  

 

Table 3.1: Antifungal concentrations at which 50% (mycelial) growth is inhibited at 

different temperatures relative to the untreated controls. 

  

 ITZ LD50 concentration (ppm) 
Temperature   

T. mentagrophytes T. rubrum 
   

0.16 0.18 25 °C 
   

0.22 0.14 30 °C 

 
 

3.3.2 Antifungal volatile profiles 

Based on the initial screen at 25°C, an antifungal concentration of 0.16 ppm and 0.18 

ppm was used for the e-nose study of the two dermatophytic fungi respectively. Figure 

3.3 illustrates the PCA scores plot where the two species without antifungal can be 
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differentiated from each other and the controls; but the antifungal treatments are 

grouped together after 96 hours analysis. The first two PCs accounted for approximately 

98.8% variance in the data. However, cluster analysis (using Euclidean distance and 

Ward’s linkage) on the data showed two main clusters segregating antifungal treatments 

from non-antifungal treatments. In case of the latter, only the T. mentagrophytes 

samples formed a distinct cluster that differentiated them from the controls, but samples 

belonging to the controls and T. rubrum were not (Figure 3.4). 
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Figure 3.3: PCA plot depicting the effect of the presence of antifungal (itraconazole, 

ITZ) on sensor responses of the two fungal species after 96 hours incubation at 25°C.  

(Key: C – Controls; C-ITZ – Controls + antifungal; M – T. mentagrophytes; M-ITZ – T. 

mentagrophytes + antifungal; R – T. rubrum; R-ITZ – T. rubrum + antifungal) 
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Figure 3.4: Dendrogram depicting two distinct clusters separating antifungal treatments 

from those without antifungals including only T. mentagrophytes (without antifungal) 

being clearly differentiated (at 25°C). 

(Key: C – Controls; C-ITZ – Controls + antifungal; M – T. mentagrophytes; M-ITZ – T. 

mentagrophytes + antifungal; R – T. rubrum; R-ITZ – T. rubrum + antifungal) 

 

The antifungal concentrations used for similar experiments at 30°C for the two fungal 

species were 0.22 ppm and 0.14 ppm respectively. Analysis of the sensor responses 

after 96 hours growth based on PC1 and PC2 indicated that the fungi, especially T. 

rubrum, in the absence of the antifungal could be differentiated from each other and the 

controls. The other treatments with ITZ were dispersed among the controls and one 

fungal species (Figure 3.5A). On the other hand, when observing the first and fourth 

PCs except for the T. mentagrophytes samples treated with the antifungal that were 

scattered, the remaining treatments appeared to be differentiated from each other 

(Figure 3.5B). In either case, over 90% of the variance in the data was accounted for.    
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(B) 

Figure 3.5: PCA analysis of fungal samples treated with and without an antifungal at 

30°C after 96 hours observing PC1 vs. PC2 (A) but PC1 vs. PC4 (B) indicate better 

differentiation between treatments.  

(Key: C – Controls; C-ITZ – Controls + antifungal; M – T. mentagrophytes; M-ITZ – T. 

mentagrophytes + antifungal; R – T. rubrum; R-ITZ – T. rubrum + antifungal)  
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Subsequent analysis of sensor responses on data from two itraconazole treatments - 

LD50 and 2 ppm, i.e. LD90 and controls after 96 hours fungal growth at 25°C showed 

that the fungal treatments exclusive of itraconazole could be discriminated from the 

remaining treatments (Figure 3.6). After 120 hours T. rubrum and T. mentagrophytes 

without the antifungal agent could be differentiated from each other much clearly and 

the remaining treatments. Nevertheless, the controls and treatments with both the 

concentrations of the antifungal agent could not be segregated even when three PCs 

were considered (Figure 3.7). The three PCs accounted for approximately 97% of the 

variance in the dataset. Cluster analysis on the data is shown in Figure 3.8 which 

substantiated the above.  
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Figure 3.6: PCA plot showing discrimination between fungal treatments without the 

presence of itraconazole from those with, including the controls after 96 hours at 25°C. 

(Key: C – Controls; CITZ – Controls with 2ppm antifungal; M – T. mentagrophytes; R 

– T. rubrum; M/R-LD – Fungi with LD50 concentration; M/R-2ppm – Fungi with 2 

ppm, i.e. LD90, antifungal concentration) 
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[PC1 (92.9%)] 

[PC2 (4.9%)] 

[PC4 (0.6%)] 

Figure 3.7: 3D PCA plot illustrating discrimination between the two fungal species, 

after 120 hours at 25°C, in the absence of itraconazole from each other and the 

remaining treatments including controls. 

(Key: C – Controls; CITZ – Controls with 2ppm antifungal; M – T. mentagrophytes; R 

– T. rubrum; M/R-LD – Fungi with LD50 concentration; M/R-2ppm – Fungi with 2 

ppm, i.e. LD90, antifungal concentration) 
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Figure 3.8: Dendrogram, after 120 hours fungal growth at 25°C, showing clear 

discrimination between the two dermatophytes in the absence of itraconazole from the 

other treatments with the antifungal agent. 

(Key: C – Controls; CITZ – Controls with 2ppm antifungal; M – T. mentagrophytes; R 

– T. rubrum; M/R-LD – Fungi with LD50 concentration; M/R-2ppm – Fungi with 2 

ppm, i.e. LD90, antifungal concentration) 

 

3.4 Discussion 

The efficacy of the antifungal agent, itraconazole was determined in vitro on the two 

main dermatophyte species at two different temperatures. At the higher temperature, the 

fungi appeared to grow relatively faster, however for achieving 90% inhibition of 

growth T. mentagrophytes required > 2 ppm of the chemical at 25°C.  For T. rubrum the 

same level of inhibition was achieved at both temperatures with 2 ppm of the treatment. 

Furthermore, there was not much change in the rate of growth of both fungi at 25°C 

between 0.25 and 0.5 ppm of the antifungal. In contrast, previous studies have reported 
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a stimulation effect of antioxidants and essential oils at intermediate concentrations on 

growth and toxin production of certain fungi in vitro and on grain (Hope et al., 2002). 

This effect was observed at 15 and 25°C. As these studies were on cereal grain, the 

effects at higher temperatures were not relevant. In addition, the effect of an antifungal 

treatment which gave 50% inhibition of growth was different for the dermatophytes at 

the two temperatures i.e. T. mentagrophytes required a higher concentration of 

itraconazole at 30 (0.22 ppm) than at 25°C (0.16 ppm) and vice versa in the case of T. 

rubrum.    

 

The initial screening process was based on temporal studies, thereafter the susceptibility 

of the fungi to itraconazole was determined by their in vitro volatile profile patterns 

with and without the antifungal agent. E-nose analyses after 96 hours growth at either 

temperature differentiated between treatments with the antifungal and those without the 

agent. However, at 25°C the discrimination was more prominent than at 30°C because 

at the higher temperature there was a greater spread in some of the treatments (for e.g. 

T. mentagrophytes plus antifungal). Furthermore, there appeared to be contrasting 

observations for the fungal control samples at the two temperatures. T. mentagrophytes 

formed a distinct cluster at the lower temperature whilst in case of the higher 

temperature it was T. rubrum.  

 

A difference in the clustering pattern of the fungal treatments with itraconazole was also 

noticed, with there being no distinction between them at 25°C; but present at 30°C for 

the set of T. rubrum samples especially when other PCs were considered. This showed 

the importance of analysing the effects of other PCs on the samples that could be due to 

the subtle differences in loadings (variables). Those belonging to other fungal species 
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were however still scattered. There also appeared to be some effect on the sensors in the 

presence of itraconazole, as segregation to some extent could be seen between the 

negative controls i.e. uninoculated media with and without the addition of the 

antifungal.  

 

The fact that there was no discrimination between the controls and treatments 

containing two antifungal concentrations could be explained by virtually no growth or 

inhibition of the fungi at 2 ppm of the antifungal (after 96-120 hours), thus being very 

similar to the uninoculated controls. The inability to distinguish the second antifungal 

concentration (responsible for 50% inhibition) which was still similar to the controls as 

in the other experiments probably implies that longer incubation times are required. 

Previous studies by Fernandez-Torres et al. (2002) have indicated an optimum 

incubation period of seven days before visual inspection when traditionally screening 

antifungals against dermatophytes. However, at 120 hours, both the fungal controls 

were clearly distinguished from the negative controls and treatments with antifungals.      

 

Needham (2004) used an e-nose to screen the efficacy of antioxidants and preservatives 

such as butylated hydroxyanisole and propyl paraben in vitro for their use in the food 

industry. Her study indicated the ability of the e-nose to discriminate between 

treatments containing antioxidants, responsible for at least 50-70% inhibition in growth, 

from those without when individually inoculated with different micro-organisms. 

Antifungal screening for dermatophytes, to date has been performed using variations of 

the broth microdilution technique as specified by the NCCLS. However, these studies 

made use of different dermatophyte strains and modified the methodology including a 

varying range of temperatures (28 to 30°C) and incubation periods (3 to 7 days) 
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(Fernandez-Torres et al., 2002; Favre et al., 2003; Santos et al., 2006). Santos et al. 

(2006) reported that filtering the inoculum suspension before use resulted in 

homogeneous fungal growth and lowered the minimum inhibitory concentration of the 

current antifungal drugs. Thus, suggesting that fungal hyphae are not as susceptible as 

microconidia to the antifungal treatments.    

 

Similar adaptations were carried out for screening plant extracts and essential oils as 

antifungals against dermatophytes using the traditional tests. These fungi have been 

reported to display varying susceptibility to plant extracts; especially T. violaceum (Ali-

Shtayeh & Abu Ghdeib, 1999) and T. rubrum (Silva et al., 2005), although most of the 

fungal species and medium used differed in the two studies. Reports have also indicated 

different plant extracts to have a lower or similar efficacy when compared with 

commercial antifungals such as griseofulvin (Ali-Shtayeh & Abu Ghdeib, 1999; Gurgel 

et al., 2005). However, Silva et al. (2005) showed eugenol extract from Ocimum 

gratissimum (wild basil) to have a higher antifungal activity than itraconazole at the 

same concentration because the former inhibited the growth of other dermatophytic 

isolates.  

 

This is the first study that has assessed the potential of volatile fingerprints to screen for 

antifungal susceptibility with an e-nose. The e-nose had the ability to distinguish 

between fungal controls without itraconazole from those containing the compound. 

Nevertheless, in order to use it as a method for screening antifungals, it needs to be 

further explored so that at least a certain level of growth inhibition can be discriminated. 

Furthermore it could also serve as a useful tool for checking resistance build up against 

the antifungal amongst the different species and/or strains of the dermatophytes.
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Chapter 4  

EARLY DIAGNOSIS OF VENTILATOR 
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4.1 Introduction 

Identifying infections or diseases based on the ‘smell’ generated is fast gaining 

popularity as a non-invasive clinical diagnostic procedure. It is well known that certain 

diseases produce metabolic products that have characteristic odours, ranging from 

acetone breath in diabetics or fishy smell for liver disease to bacterial infections with 

distinctive odours. However, not all of such odours are perceptible by the human nose 

especially at the initial stages, resulting in traditional microbiological diagnosis – which 

is laborious, time-consuming and requires a high degree of skill. Therefore, over the 

recent years research has exploited devices such as electronic noses as an alternative for 

rapid identification of bacterial infections. 

 

Recent studies on tuberculosis have successfully demonstrated the use of an e-nose for 

discriminating between various Mycobacterial isolates in humans (Pavlou et al., 2004) 

and in animals (Fend et al., 2005). Dutta et al. (2005) showed that three groups of 

staphylococci responsible for ear-nose-throat (ENT) infections could be identified using 

an e-nose in combination with neural networks. Similar in vitro studies have also been 

carried out on bacteria causing eye infections (Boilot et al., 2002; Dutta et al., 2002).   

 

One of the most common and severe hospital acquired infections is ventilator associated 

pneumonia (VAP). It has a high rate of mortality and has increased incidence in 

critically ill individuals. Due to the absence of a gold standard technique, VAP is 

difficult to accurately diagnose. The present diagnostic methods comprise of 

microbiology and mainly bronchoscopic or endotracheal methods which are either not 

very accurate or invasive. Furthermore, failure in precise diagnosis leads to 
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inappropriate antibiotic therapy which in turn has the risk of increasing drug resistant 

pathogens. 

 

This study explored the potential of volatile fingerprints generated by the various micro-

organisms not only in vitro but also those present within the clinical samples using an e-

nose in discriminating between these species. It also attempted to correlate the 

microbiology culture results with the e-nose responses for the clinical samples.        

       

4.2 Materials and Methods 

4.2.1 Collection of clinical samples 

Patients recruited for this study were mechanically ventilated for more than 72 hours, at 

the Gloucestershire Royal Hospitals. The control group comprised those that were 

ventilated for less than 24 hours for any reason. The patient groups underwent a blind 

bronchoalveolar lavage (BAL) performed by the clinician on day three for the 

experimental group and within the first day for the control group (ethics approval in 

Appendix D, D.1). 

 

The procedure involved introducing 20 ml sterile normal saline into the lungs by means 

of a sterile catheter attached with a 20 ml syringe. The solution was injected and 

immediately aspirated back. In order to avoid contamination from microbes colonising 

the tubes, precaution was taken not to aspirate during catheter withdrawal. The aspirate 

was collected in sterile containers and then divided, with one set being sent for standard 

microbiological analysis (hospital labs) and the second set (up to 5 ml) posted to the 

University for volatile analysis (blind study). The samples were stored at 4°C prior to 
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analysis. A total of 67 samples were collected over a period of 13 months (May 2006 to 

June 2007).             

  

4.2.2 Microbial isolates  

A total of 16 microbial species (such as Staphylococcus, Streptococcus, MRSA, 

Proteus, Pseudomonas, Klebsiella, Enterobacter and Candida) isolated from 

mechanically ventilated patients in the intensive care units at the Gloucestershire Royal 

Hospitals were obtained from the Cheltenham General Hospital (specific details can be 

found in Appendix A, A.2). These were maintained on nutrient agar (LabM) at 37°C for 

this study and stored at 4°C until required. 

 

4.2.3 Headspace analysis 

The clinical samples were removed from the cold room and allowed to thaw at room 

temperature. Following which the samples were pipetted into 25 ml glass vials and set 

aside for an hour to equilibrate at room temperature. The headspace was then analysed 

in a random order using an e-nose, the NST 3320 (Applied Sensor, Sweden) – 

comprising a hybrid sensor array.  

 

For the microbial species, the isolates were maintained on nutrient agar plates. One 

colony per species was initially inoculated in 10 ml sterile nutrient broth (LabM) and 

incubated for four hours at 37°C in a rotary shaker at 100 rpm. Thereafter 100 µl of 

each microbial suspension was transferred into fresh 10 ml sterile nutrient broth and 

incubated for 18 hours at 37°C in a rotary shaker at 100 rpm. Subsequently, 5 ml from 

each suspension (approximately 108 and 106 cfu ml-1 for the bacterial and yeast species 

respectively) was transferred into 25 ml glass vials, set aside for one hour at 37°C for 
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headspace generation. Uninoculated nutrient broth was used as controls and five 

replicates per treatment were analysed in a random order using the e-nose. These studies 

were repeated at least twice.             

 

4.2.4 Data analysis 

 The responses generated by the e-nose sensors, in the form of normalised, mean-

centred data for the response parameter, were analysed by Matlab 7.2 (Mathworks Inc.). 

Multivariate statistics involving principal component analysis (PCA) and linear 

discriminant analysis (LDA) were applied to the data in order to identify any possible 

relationships between sample treatments and check the prediction capability. The results 

were displayed in the form of scores plots.   

 

In case of the clinical samples, the PCA scores plots were analysed and the results were 

then correlated to the findings obtained from microbial analysis on the patient’s lavage 

samples. This was done with the help of the clinician involved in the entire study based 

at the Gloucester Royal NHS Hospital. At no point were the patients’ identity disclosed, 

all analysis and correlations were based on identification numbers.  

       

4.3 Results 

4.3.1 Discrimination of the microbial isolates 

For the in vitro studies the bacterial and yeast species could be discriminated from the 

controls, but not all of the microbial species could be distinguished from each other 

(Figure 4.1). Within this thirteen group system it was observed that mainly the 

Klebsiella, Enterobacter and Proteus species could be clearly differentiated, whilst the 

remaining groups were rather tightly clustered. This was however further justified on 
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considering a four group system viz. gram positive, gram negative, fungi and controls. 

Figure 4.2 depicts a PCA scores plot of these four groups, which indicated that the gram 

negative organisms were best differentiated from the others. The three PCs accounted 

for approximately 90% of the variance in the data in both instances. Upon supervised 

analysis using LDA, a relatively clearer segregation was observed based on the four 

group model as seen in Figure 4.3. It was seen that 81 of 98 samples were correctly 

classified (i.e. a classification accuracy of about 83%). The classification matrix and the 

distance measures between the four groups based on the supervised technique are shown 

in Tables 4.1 and 4.2 respectively. 

 

 
Figure 4.1: The 13 group PCA scores plot showing the discrimination between the 

various microbial species and the controls (B). 
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Figure 4.2: 3D PCA scores plot depicting segregation between the gram positive (GP), 

gram negative (GN), fungal (F) treatments and controls (B).   

- B - F - GP - GN
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Figure 4.3: LDA of the four group model depicting segregation between the microbial 

species and the controls in nutrient broth. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

 

Table 4.1: Classification matrix of the four group model of microbial samples and 

controls having an 83% prediction accuracy. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

- B - F - GP - GN

 
 Predicted Class 

 GP  GN  F  B  

GP 25 

A
ct

ua
l C

la
ss

 

0 8 1 
GN  5 24 1 0 

F  1 0 14 0 

B  1 0 0 18 
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Table 4.2: Distance measures between the microbial treatments and the controls based 

on the LDA model. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

  
Class GP  GN  F  B  

GP 0 9.11 3.40 7.74 

GN   0 15.30 22.95 

F    0 8.54 

B     0 
 
 
4.3.2 Analyses of clinical samples 

Following headspace analysis of the clinical samples, the e-nose data was then 

correlated with growth information obtained from the hospital microbiology results. The 

data was again divided into the four groups as mentioned previously. From the 67 

samples, only 62 samples were included in the analysis as five had no results from 

microbiology (Figure 4.4). However, a further ten samples, highlighted in the figure, 

were subsequently excluded from the analysis as they were considered to be outliers. 

The final results are shown in PCA scores plots (Figures 4.5 and 4.6) that depict the 

segregation of the clinical samples into the distinct groups. Subsequent discriminant 

analysis on the reduced data is illustrated in Figure 4.7. LDA indicated that 81% of the 

samples were correctly identified as those having microbial growth and no growth. 

Based on the four groups, the LDA model correctly classified 63% (n=52) of the 

clinical samples. Table 4.3 depicts the classification matrix of the LDA model. 

Furthermore, based on the e-nose sensor responses 12 of 31 samples were classified as 

infected, whereas these had no growth based on the microbiology results. Also, cross-

validation studies resulted in a poor performance of 44% (data not shown).   
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- B - F - GP - GN

Samples analysed 
on the same day

Samples analysed in sets 
on different days 

Figure 4.4: PCA scores plot of the four group clinical model indicating that a set of ten 

samples might be outliers. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

 
Figure 4.5: PCA map showing the classification of the reduced set of clinical samples 

(n=52) into their respective groups. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

- B 
- F 
- GP 
- GN 
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Figure 4.6: 3D PCA scores plot illustrating the classification of the 52 clinical samples 

into the respective four groups. 

- B - F - GP - GN

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

 

 
Figure 4.7: LDA of the 52 clinical samples depicting their differentiation into groups. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

- B 
- F 
- GP 
- GN 
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Table 4.3: Classification matrix based on the LDA model of the clinical samples. 

(Key: B – Controls; F – Fungi; GP/GN – Gram positive and gram negative bacteria) 

 

 Predicted Class 

 GP  GN  F  B  

GP 3 
A

ct
ua

l C
la

ss
 

1 0 0 
GN  0 7 3 0 

F  1 1 4 1 

B  2 6 4 19 
 

 

4.4 Discussion 

The potential of the e-nose to discriminate between microbial isolates from patients at 

risk or suffering from VAP as well as between actual clinical lavage samples was 

assessed. For in vitro studies, sixteen bacterial and yeast species were altogether 

analysed; but only a few species could be clearly distinguished from the rest, namely the 

Enterobacteriaceae. There also appeared to be a slight differentiation between the 

Streptococcus, Staphylococcus and Candida species. However, on the whole as the 

individual organisms could not be clearly differentiated, it was decided to opt for a four 

group system which enabled better discrimination. This was also seen when the 

supervised technique utilised resulted in 83% classification accuracy. Furthermore, it 

was observed that not all species actively grew in the medium (as the gram negative 

organisms) especially certain gram positive organisms and some Candida species which 

might explain why they cluster close to the uninoculated broth including the slight 

overlap between them. This implies a need for optimising the liquid medium to enable 

clear distinction between the individual species. 
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Another possibility for improving discrimination between the species could be by using 

lower concentrations of the organisms or shortening the overall incubation period. 

Boilot et al. (2002) reported the possibility of separating six species of bacteria in 

saline, in the form of pure lab cultures, responsible for eye infections using a conducting 

polymer e-nose and neural networks. They could not differentiate between the three 

concentrations of the individual bacteria but only when a single concentration was 

considered. In addition, they also distinguished two closely related Staphylococcus 

species, when considering four bacteria causing ENT infections. Although they made 

use of clinical samples, these were cultured on agar media overnight prior to analysis. 

This indicates that bacterial agar cultures probably produce more perceptible volatiles as 

compared to broth cultures, which was also suggested by Casalinuovo et al. (2006) for 

bacteria but not yeasts. There was no mention about the use of controls in either 

experiment, which may or may not have influenced the discriminatory capability of the 

bacterial species. Furthermore, if fewer bacteria were considered then even in the 

present study there might be a high probability of discriminating almost all species. 

 

For e-nose analysis of the clinical lavage samples the four group model was used as it 

was thought to simplify their identification. Initial analysis revealed the presence of a 

set of samples that were considered outliers. There was reasonably good differentiation 

between the four groups of treatments, after the removal of ten samples. These samples 

could have had a change in their headspace during transport or storage or may also be 

due to some measurement variation. Additionally, some of these samples also contained 

mixed organisms based on microbiology and thus were removed. They could have been 

classified based on the dominant organism’s growth but their effects would be 

unknown. In order to definitely interpret these kinds of samples, it would be interesting 
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to simultaneously carry out volatile profiling of such mixed cultures in vitro, in different 

proportions and then correlate them to the patient samples.  

 

Correlating the microbiology results with e-nose sensor responses, classification was 

found to be more accurate in terms of growth and no growth (81%) when compared to 

the three microbial groups and no growth (63%). Additionally, the e-nose appeared to 

classify certain samples as infected even though the lab culture results suggested 

otherwise. On further analysis of this set of samples, it was found that the traditional 

CPIS system correlated with the e-nose prediction in 21 of the 31 samples. One of the 

most important factors that might influence such a classification was that most of the 

patients were administered antibiotics prior to sampling. This suggests that the drugs 

might be responsible for negative results by culture thereby affecting e-nose analysis. 

However there might be sufficient bacterial cells (following therapy) that produce some 

volatiles for the e-nose to detect and eventually classify them into certain microbial 

groups. Moreover, cross validation showed only a 44% prediction accuracy. This could 

be accounted for by the fact that only four patient samples were identified as gram 

positive. Nonetheless, further studies in this regard need to be carried out to establish 

this relationship; which could be based on in vitro antibiotic studies and analysing more 

clinical samples. This could also help in discerning if discrimination is based solely on 

the bacterial volatiles or host immune response to infection. 

 

There have been a few other studies that have tried to use e-nose technology for 

discriminating VAP organisms (Serneels et al., 2004; Moens et al., 2006). Although 

both studies adopted the same experimental set-up i.e. using a ten metal oxide sensor e-

nose and ten different microbes (in vitro), they used different analysis techniques and 
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reduced the total analysis time to 17 hours. Moens et al. (2006) reported 100% accuracy 

in prediction of the microbes using ANNs; however this was achieved by appropriate 

feature selection where the accuracy ranged from 77 to 86 to 100% depending on the 

treated or untreated data. Moreover, even in these studies there were no controls used in 

the form of uninoculated medium. In another recent study the breath of mechanically 

ventilated patients was analysed with a conducting polymer e-nose (Hanson & Thaler, 

2005). The authors reported good correlation between the actual clinical pneumonia 

score (CPIS) and the e-nose predicted CPIS. They however, used only a small set of 

patients (19) as their culture data was available and did not mention the use of any 

control groups. A conclusion that the correlation obtained was purely on account of the 

microbes responsible for VAP or other contaminants or other substances that form a 

part of the instrument are thus debatable.  

 

This technology has also been used for diagnosing other infections such as bacterial 

sinusitis, tuberculosis and urinary tract infections either in vitro or using clinical 

samples (Pavlou et al., 2002a; Pavlou et al., 2004; Thaler & Hanson, 2006). To enhance 

volatile production from clinical specimens Pavlou et al. (2002a, 2004) successfully 

spiked those using enzymes or nutritive broth. This approach could be useful in the 

present study to obtain clearer discrimination. Apart from identifying clinically 

important bacteria, e-nose technology has also been used in the food industry. For 

example to detect bacterial spoilage in milk matrices (Magan et al., 2001) or in vitro 

detection of Salmonella typhi (Siripatrawan et al., 2006). 

 

This study examined the potential of the e-nose to identify volatiles arising from clinical 

bronchoalveolar lavage samples from patients at risk of VAP and correlated these 
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profiles to the cultured micro-organisms. This technique shows promise in allowing 

early diagnosis of VAP. Thus facilitating prompt administration of antibiotic therapy 

and thereby help in possibly reducing the associated morbidity. It also successfully 

differentiated between the main groups of organisms in vitro. However, more studies 

are required in order to improve the accuracy of this technique for clinical use. 
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5.1 Introduction 

Cancer is a major health concern worldwide and is a result of one in four deaths in the 

U.S. and the U.K. The most commonly diagnosed types of cancer each year are those of 

the lung, colorectal, breast and prostate; which have both high incidence and mortality 

rates (Cancer Research U.K., 2007; Jemal et al., 2007). Despite major advances in 

treatments in the form of new drugs or therapy, some of these cancers are still diagnosed 

at a late stage with poor prognosis. Therefore, a crucial factor to increase the survival 

rate of such patients post-treatment is detecting the disease in its infancy i.e. early 

stages. 

 

However, early diagnoses may pose a problem for certain cancers because early on the 

disease is asymptomatic such as lung carcinomas or oesophageal cancers (Merck 

Manual, 1999). Thus new detection techniques have been and are being constantly 

developed, especially with a major research focus on disease markers. Previous studies 

have identified markers for lung, prostate, colon, pancreatic and breast cancers to name 

a few, mainly using immunohistochemistry or some molecular approaches on tissue or 

serum samples. Similar research on oesophageal cancer has also indicated the 

possibility of potential markers such as elevated levels of p53 proteins in 

precancerous/cancerous cells, p53 antibodies in sera of patients and the presence of 

either certain DNA alterations or cancer specific proliferating cell nuclear antigens in 

diseased individuals (Wang et al., 1993; Lu et al., 2003; Eisenberger et al., 2006; 

Hammoud et al., 2007a). Recently Hammoud et al. (2007b) made use of surface 

enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-

MS) to identify patients with oesophageal adenocarcinoma based on their serum 

proteomic profiles. These techniques however are invasive due to biopsy or surgery and 
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blood withdrawal and can be expensive for clinical use especially the MS based 

techniques. 

 

Non-invasive procedures are a relatively recent approach, mainly dealing with breath 

analysis and lately using tumour cell lines. Studies so far have however been on lung 

cancer and performed using new technologies such as e-noses to differentiate between 

diseased and healthy individuals based on markers in breath (Di Natale et al., 2003; 

Chen et al., 2005) or selected ion flow tube mass spectrometry (SIFT-MS) to detect the 

presence of VOCs in vitro in cell cultures (Smith et al., 2003).    

 

This study investigated the application of volatile fingerprints for the early diagnosis of 

and discrimination between the various forms of oesophageal cancer based on in vitro 

cell cultures using sensor array technology. It also aimed to identify compounds that 

may serve as potential markers of the disease. An attempt was also made to correlate the 

volatile profile patterns to in vivo situations by using clinical samples.  

 

5.2 Materials and Methods 

5.2.1 Cell lines and media 

The human cell lines used for the experiments were: HET-1A (ATCC No: CRL-2692), 

OE21 (ECACC No: 96062201), OE33 (ECACC No: 96070808) and CaCO2 (ATCC 

No: HTB-37). Further details regarding these can be found in Appendix A, A.3. These 

were maintained/grown in either RPMI-1640 or DMEM F-12 Ham (for the normal cell 

line) media (Invitrogen); each of which were supplemented with 10% foetal calf bovine 

serum (FCS), 500 µl penicillin/streptomycin, 1 ml amphotericin B and 1 ml glutamine 

per 500 ml media.  
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5.2.2 Cell culturing 

All the cell lines were initially cultured in T25 tissue culture flasks (NUNC) in an 

incubator at 37°C with 5% CO2. Once the cells reached 90% confluence, they were 

washed with phosphate saline buffer (PBS) and trypsinised (enzymatically dissociate 

the cells) using 5 ml of a 1x Trypsin (Sigma-Aldrich) solution per flask. Following 5 

min incubation at 37°C, the mixture was transferred to a 15 ml centrifuge tube (Fischer) 

with equal volume of media to neutralise the enzyme. It was then centrifuged at 1500 

rpm at 4°C for 5 min after which the pellet was re-suspended in 3 ml of media. This 

suspension was then equally apportioned to T75 culture flasks, to which 9 ml media was 

added and incubated as described previously. Media was changed every alternate day.     

 

5.2.3 Differentiation of cell lines 

The cells were scraped off the surface of the tissue culture flasks, once they reached 

90% confluence, and 5 ml of the cell suspension was transferred to 25 ml vials and 

Universal bottles. Four replicates per treatment were set aside for an hour for headspace 

generation. Plain media were used as controls. The headspace was measured using the 

two sensor array systems (BH114, Bloodhound, UK and the NST 3320 - Nordic, 

Applied Sensors, Sweden) and samples were analysed in a random order.   

 

Alternative sampling employed coating sterile e-nose vials with poly-L-lysine (Sigma) 

in order to enable the cell lines to adhere to the glass. The glass surfaces were coated 

with 5 ml poly-L-lysine solution for 10 min after which the solution was removed and 

the glassware allowed to dry overnight in the laminar cabinet. The screw lids and septa 

were UV-irradiated. The cell lines were then cultured as described previously and 

passaged to allow a total volume of 5 ml of cell suspension in the e-nose vials. They 
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were covered with a 0.45 µm nitrocellulose Millipore membrane filter (Sigma-Aldrich) 

- in order to allow gaseous exchange, and screw lids and incubated at 37°C with 5% 

CO2. Three or five replicates per treatment were prepared. When the cells covered the 

lower surface of the vials, the media was changed; the membrane filters were replaced 

with septa and set aside for one, four or 24 hours for headspace generation at 37°C. The 

headspace was then analysed using the hybrid sensor array system (NST 3320, Applied 

Sensors, Sweden). In addition, the medium was transferred into separate vials, after 

which the medium alone, and the cells alone, were analysed as described earlier. These 

studies were repeated at least twice.     

 

5.2.4 Detection of possible markers  

100 ml medical flasks were autoclaved, coated with poly-L-lysine on one side and used 

for culturing cells (10 ml cell suspension) as illustrated previously. When the cells 

reached 90 to 100% confluence they were trypsinised, centrifuged with the pellet being 

re-suspended in 30 ml media and incubated for 24 hours at 37°C with three replicates 

per treatment. The headspace of the samples were then analysed for potential markers 

by using selected ion flow tube mass spectrometry (SIFT-MS).  

 

The flasks were connected to the inlet capillary of the SIFT-MS instrument by piercing 

the septa with a needle connected directly to the instrument for analysis. The reaction of 

each SIFT-MS precursor ion (H3O+, NO+ and O2
+) with the sample was monitored for 

90 seconds to generate mass spectra at m/z values between 10 and 160, using the full 

scan mode. 
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5.2.5 Clinical sample collection 

Patients attending upper gastrointestinal (GI) endoscopy at the Gloucester Royal NHS 

Hospital were enrolled for an upper GI study (ethics approval in Appendix D, D.2). One 

part of the study involved sucking gas out of the oesophagus or stomach during the 

endoscopy from the suction port on the endoscope. These gas samples were trapped or 

sealed in air tight sputum traps and posted to the University for analysis using the 

hybrid e-nose (NST 3320 - Nordic, Applied Sensors, Sweden). The study was carried 

out blindly at the University on thirteen patient samples. 

 

5.2.6 Data analysis 

The sensor data collected was analysed by built-in software packages in both the 

electronic nose systems and Statistica 7 (Statsoft Inc.). Normalised data for divergence 

(indicating maximum step response) was analysed using XLStat (a Microsoft® Excel 

add-in) for the Bloodhound and mean-centred data for the response parameter was 

analysed using the NSTSenstool for the Nordic.  

 

Multivariate statistics involving principal component analysis (PCA) and hierarchical 

cluster analysis (CA) were applied to the sensor responses to check for discrimination 

between sample treatments. The results were displayed in the form of PCA scores plots 

and dendrograms in order to identify any possible relationships between the cell lines.  

 

In case of the patient samples, the PCA scores plots were analysed and the results were 

then correlated to the findings obtained during routine biopsy on the patient. This was 

done with the help of a clinician (based on information from the clinician) involved in 

the entire study based at the Gloucester Royal NHS Hospital.  
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5.3 Results 

5.3.1 Cell line differentiation 

Headspace measurements of the cell lines using the conducting polymer (Bloodhound) 

system did not indicate any significant differentiation between the three cell lines 

(OE21, OE33 and HET1A) and the controls (the two media), even though the variance 

accounted for 99% of the data. The PCA scores plot shown in Figure 5.1 showed no 

specific discrimination although two clusters were observed. This was further supported 

by the dendrogram (Figure 5.2). On the other hand, the hybrid sensor system 

differentiated the two controls from each other and the treatments (Figure 5.3a) based 

on the first two principal components (PCs). The third PC however removed the 

segregation between the two controls when observed with the first PC but maintained 

the discrimination between the controls and the treatments (Figure 5.3b). The samples 

representing the normal cell lines, HET1A (N) appear to be clustering together and 

away from the remaining samples; but it might be the effect of the different medium 

used for its culture. In either case, approximately 97-98% of the data was represented by 

the variance. 
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Figure 5.1: Data from the conducting polymer sensor array in the form of a PCA map 

showing no discrimination between the controls and cell lines. 

(Key: N–HET1A; U–OE21; B–OE33; MN–DMEM medium; MC–RPMI medium) 
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Figure 5.2: Dendrogram from the BH114 e-nose indicating no differentiation between 

samples including controls. 

(Key: N–HET1A; U–OE21; B–OE33; MN–DMEM medium; MC–RPMI medium) 
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Figure 5.3: Discrimination between the controls from each other and treatments seen in 

PC1 vs. PC2 (A) and no discrimination between the two controls in PC1 vs. PC3 (B) 

with data from the hybrid sensor array. 

(Key: N–HET1A; U–OE21; B–OE33; Mn–DMEM medium; Mc–RPMI medium) 
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Subsequent experiments were performed using a single medium with the cells being 

grown in glass vials itself. Analysis of the headspace of the cells growing in medium 

after one hour incubation at 37°C, suggested no discrimination between controls and 

treatments based on the PCA scores plot. Cluster analysis, using Euclidean distance and 

Ward’s linkage, confirmed this (Figure 5.4). An extended incubation time of four hours 

for headspace generation also resulted in the same outcome. Similarly, no 

differentiation was observed when just the headspace of the cells without the medium 

were analysed. In case of only the media from the cells being analysed, the controls 

(blank media) appeared to separate from that of the others as seen in Figure 5.5, but was 

not sufficiently distinct.   
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Figure 5.4: Cluster analysis on e-nose data from cells in medium depicting no 

differentiation between the controls and cell lines after 1 hour headspace incubation. 

(Key: M – RPMI medium; C – CaCO2; N – HET1A; U – OE21; B – OE33) 
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Figure 5.5: PCA scores plot indicating no distinct separation between only the media of 

the cells and the control medium after four hours incubation for headspace.  

(Key: Media from HET1A (N), OE21 (U), OE33 (B), CaCO2 (C) cell lines and control 

medium (M)) 

 

However, when the headspace of the cell cultures in media were analyzed after 24 hours 

incubation at 37°C not only could the controls (pure medium) be differentiated from the 

other treatments, but also the OE21 samples were clearly separate (Figure 5.6). The 

normal and OE33 samples could not be distinguished and were clustered together, but 

those belonging to CaCO2 even when considered with the first three PCs (accounted for 

99.5% of variance) were only barely distinct from the normal and OE33 cluster (Figure 

5.7). Figure 5.8 depicts the clusters formed by all the cell culture treatments and the 

medium in the form of a dendrogram.   
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Figure 5.6: Controls (M) and OE21 cells being clearly segregated from the other cell 

cultures after 24 hour incubation for headspace generation in a PCA plot. 
Figure 5.7: 3D PCA plot depicting clear separation between controls (M) and OE21 cells, but slight separation of CaCO2 cells from the other samples. 
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Figure 5.7: 3D PCA plot depicting clear separation between controls (M) and OE21 

cells, but slight separation of CaCO2 cells from the other samples. 
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Figure 5.8: Dendrogram of the cell cultures after 24 hour incubation depicting clear 

clusters of controls (Blank) and OE21 cells. 

  

5.3.2 Detection of potential markers 

Headspace analysis of the various cell lines and controls by SIFT-MS did not indicate 

the presence of specific markers or identifiers, but detected very few analytes. Ammonia 

was found to be present in higher amounts in the controls (medium) than in the cell 

lines. The acetaldehyde concentration was higher in the cell lines than in the medium, as 

was the case with a compound at m/z 93 which could be toluene but due to its trace 

quantity difficult to identify. Methanol also appeared to be present in the CaCO2 cell 

lines in trace amounts. Two unidentified compounds at m/z 44 and 98 were present in 

low concentrations in the cell lines and absent in the controls, with the former probably 

being slightly higher in the CaCO2.   
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5.3.3 Clinical sample analysis 

The clinical samples containing gases trapped from the upper GI tract were analysed 

using the metal oxide-metal ion e-nose. Based on the post-endoscopic information 

provided by the clinician, each of the samples were assigned respective classes based on 

their pathologies. The first set included six patient samples, data analysis on which 

indicated that no obvious clustering of the pathologies was observed. However, when 

all the thirteen clinical samples data were analysed simultaneously by means of PCA, 

no specific pattern was achieved to discriminate the pathologies (Figure 5.9). 
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Figure 5.9: PCA map of the clinical data depicting no discrimination between the 

various upper GI pathologies. 
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5.4 Discussion 

There have been many reports of e-nose systems with different types of sensor arrays 

outperforming others based on a diverse range of applications. Similarly, in this study 

the hybrid e-nose (metal oxide-metal ion) appeared to be better than the conducting 

polymer system, even though the former only distinguished between the controls (plain 

media) and treatments (cultures of oesophageal cell lines). Multivariate analyses on the 

data from the latter did not result in any sort of distinction, albeit the variance accounted 

for was extremely high. To my knowledge this is the first study using e-nose technology 

for discriminating between human oesophageal cancer cell lines. Only recently, a 

preliminary study has been attempted to differentiate between six different human lung 

carcinoma cell lines using a conducting polymer e-nose (Gendron et al., 2007). The 

authors used saline suspensions of the cancerous and normal (fibroblasts and smooth 

muscle) cells and could differentiate between them in two separate sets each with three 

cell lines. However, their results might be altered if all the cell lines were analysed 

together. In addition, they did not use saline as a negative control. Control media could 

have a significant impact on the discrimination obtained. In the present study, a medium 

effect was observed which was due to the higher response of the CO2 sensor for the 

normal medium (DMEM) seen on the second PC, when the loadings were examined. 

This could perhaps be on account of the constituents of the medium.   

 

Other e-nose based cell line studies have mainly involved industrially important animal 

cell lines such as the Chinese hamster ovary (CHO) cell line that are used for the 

production of pharmaceutical products e.g. recombinant proteins. These studies mainly 

deal with on-line bioprocess monitoring and detection of microbial contaminants 

(Bachinger & Mandenius, 2000; Kreij et al., 2005). The other medical applications have 
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included breath analysis for diseases or detecting infections or organ disorders (Fend et 

al., 2004; Pavlou et al., 2004; Dutta et al., 2005).  

 

The subsequent selection of a single medium for culture was done in order to resolve 

the potential effects of the separate media. Additionally, another cell line representing 

colorectal adenocarcinoma was included in the study. It was observed that initial lower 

incubation periods for headspace equilibrium did not lead to marked differentiation 

between the cell lines and the controls, when grown in the vials. However, a 24 hour 

incubation period prior to headspace analysis resulted in definite segregation between 

the controls and at least one cell line (OE21). This could possibly be because more time 

is required for the compounds/metabolites released by the cells to move into the 

headspace. This may also be because the medium of the cells was changed before 

setting aside for generating the headspace resulting in insufficient volatiles being 

present. Another explanation could be that the cell numbers were relatively low which 

lead to lower production of organic compounds (probably as the rate of cell generation 

for the various cell lines is not uniform) or cell viability was affected. In support of the 

former, previous in vitro studies on lung cancer cells have indicated that the amount of 

compounds in the headspace is directly proportional to cells (Smith et al., 2003). These 

could possibly be overcome by measuring the culture suspension without changing the 

medium or using a more concentrated cell suspension; that might also enable 

differentiation between the other cell lines.  

 

Apart from only qualitative differentiation, the SIFT-MS technique further enabled the 

search for potential markers for this condition. However, not many organic compounds 

were identified by this process. This might be because the headspace of the samples was 
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not sufficiently concentrated. That in turn could also be the result of a lower 

concentration of cells unable to produce sufficient volatiles for detecting specific 

identifiers, if not markers. Smith et al. (2003) reported the production of acetaldehyde 

in the headspace of two lung cancer cell lines in vitro using this technique. They 

simultaneously indicated that the production of the compound was affected when a cell 

line was treated with a medically used cytotoxic drug. Other in vitro studies have 

indicated the presence of elevated levels of formaldehyde in a variety of human tumour 

cell lysates – breast, cervical, leukaemia, when treated with anti-tumour drugs (Kato et 

al., 2000; Kato et al., 2001). Formaldehyde was also shown to be present in higher 

concentrations in the urine headspace in patients suffering from bladder and prostate 

cancer than in healthy individuals (Španěl et al., 1999).  

 

Markers for upper GI malignancies have long been researched, nevertheless none have 

been put to practical use for the purposes of screening. Biopsied tissue and serum from 

patients were shown to indicate elevated levels of p53 proteins based on 

immunohistochemical staining and immunoassays for oesophageal squamous cell 

carcinoma (Ralhan et al., 2000; Shimada et al., 2000). It has also been suggested that 

these serum antibody levels could be used for monitoring the treatment of the disease. 

Recently, Hammoud et al. (2007a) reported the presence of a possible marker - cancer 

specific proliferating cell nuclear antigen (csPCNA) only in adenocarcinoma tissues that 

could enable identification of invasive oesophageal cancer from varying forms of 

dysplasia and no cancer. The authors also developed a specific antibody against the 

antigen. Proteomics has lately also gained popularity, where mass spectrometry has 

been coupled to other techniques to differentiate normal individuals from those with 

cancer based on either their serum protein profiles (Hammoud et al., 2007b) or up/down 
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regulation of specific proteins present only in cancerous tissues (Zhou et al., 2002; 

Nishimori et al., 2006).    

 

Clinical samples were also utilised in this study to further investigate the potential of the 

e-nose to differentiate between the various oesophageal tumours. In the thirteen patients 

that were studied, there was no specific pattern of discrimination that was observed. It 

could probably be on account of the sampling technique, where endoscopy was utilised 

to trap the gas. One more rationale could be that the samples were not analysed instantly 

on site, and the transport and storage might have changed the headspace. However, it 

must be noted that the sample size was extremely small. Furthermore, due to certain 

problems associated with endoscopic gas sampling, further clinical samples were not 

collected. Perhaps direct breath analysis of such patients might be an alternative that 

could yield better results. Breath has been previously studied using e-noses with gas 

sensors for identifying patients with lung cancer from healthy subjects (Di Natale et al., 

2003; Chen et al., 2005); but these authors built their instrument based on sensors 

specific to alkanes and benzene derivatives that have been shown to be markers of the 

disease. Therefore, facilitating distinction between healthy individuals from those that 

were diseased. 

 

This study is the first of its kind to make use of volatile profile patterns of tumour cell 

lines for differentiating between the various forms of oesophageal cancer from normal 

cells in vitro. Although in vitro studies show some promise, in case of clinical samples 

alternate methods need to be explored. There is definite advantage for this technique in 

a clinical setting for fast, early and probably non-invasive diagnosis. It shows potential 

for such use, but requires significant further investigations to draw definite conclusions.  
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The present chapter highlights some of the common features that were encountered 

during the process of the studies presented in this thesis and attempts to describe the 

steps taken or suggest any alternative precautionary measures. The main aspects 

comprised sampling issues – their collection, preparation for analysis or even the 

representative size; certain aspects of data analysis or in relation to the instruments 

utilised. 

 

6.1 Sampling 

Presentation of standardised samples and good replication along with randomisation is 

important in obtaining useful results using electronic nose systems or any other type of 

analyses for that matter. In certain cases some sample replicates were considered 

‘outliers’ as they either fell into different groups or deviated substantially from their 

respective class after multivariate analysis. This could possibly be either on account of 

the screw cap on the e-nose vial being loose leading to outside air altering the headspace 

or too little/too much growth of a specific replicate in case of both microbial species and 

cell line samples. Removal of such outliers considerably improved the variance and thus 

the discrimination between the microbial species (for e.g. from ≈ 73 to 83% for VAP 

clinical samples). Nevertheless, care must be taken whilst identifying outliers because it 

might just be that the sensitivity of the sensors has gradually changed over time causing 

a drift and thus varying responses. There might also be a slight possibility of genetic 

drift, probably due to repeated sub-culturing or species attenuation causing the change. 

 

Furthermore, the type of medium also appeared to affect the results. It was observed that 

in broth cultures, especially the fungal cultures, replicates showed more variation than 

in agar. This could be on account of relatively tighter vial lids preventing aerobic 
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respiration or insufficiently homogenised initial mixtures causing certain samples to 

contain relatively more CFUs. Additionally, a depletion of nutritional content over time 

in liquid broth (based on the mean CO2 response) could also have affected results. 

Casalinuovo et al. (2006) also reported similar issues regarding volatiles from bacterial 

broth cultures. Thus, further investigation is required for liquid medium optimisation 

since it might prove to be feasible for clinical specimens. 

 

Nutritional constituents that make up the media also appeared to play a role in the 

volatile generation. This effect could be observed when two different agar media were 

used for discriminating the Trichophyton species suggesting that specific media could 

be used to enhance volatile production. Pavlou et al. (2002a; 2004) made use of 

complex media with supplements or enzymes to facilitate volatile production from the 

clinical samples.       

 

Besides these, the low concentration of volatiles in certain types of samples could also 

affect their discrimination. For example, samples where low levels of detection are 

essential (microbes) or where the sample availability is limited - in terms of the amount 

of sample being scarce (cell lines or clinical samples). In these instances 

preconcentration of the samples prior to exposure to the sensor array could enable 

detection of small amounts of volatiles. Mostly such research has been performed with 

GC-MS type methods. However, recent studies have made use of MS based e-noses or 

piezoelectric based sensor arrays along with SPME fibres for preconcentration of 

volatiles based on foods, beverages or human breath (Marsili, 1999; Schaller et al., 

2000; Pearce et al., 2002; Marín et al., 2007).                 
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6.2 Sensors 

Commercially available e-noses have a broad range of specificity due to the nature of 

the sensor arrays as well as the number of sensors that make up the array, i.e. they are 

generic in nature. Therefore, it is of utmost importance that the sensors chosen are 

suitable for the application in question. In this study, it was found that the hybrid metal 

oxide sensor array was more suitable than the conducting polymer sensors. 

 

Occasionally it was found that the first sample to be analysed might not be a 

representative of the replicates in that set, since it responded variably to some sensors. 

This could be on account of the instability of the sensors or the instrument warming up 

after being idle. It is however, not necessary that all sensors give meaningful 

information. They might rather be contributing to background noise or produce very 

low signals rendering them insignificant. Hence, suitable sensor selections by means of 

PCA loadings improved discrimination and overcomes the effect of noise.  

 

This raises another issue regarding the long term stability and reproducibility of such 

sensors. On the whole however, the hybrid sensors used during this research showed 

good reproducibility and gave consistent results. Although towards the end of the study 

some of the sensors did appear to show signs of slight drift (Appendix B, B.2) which 

indeed highlighted one of its main drawbacks. It could be on account of sensor material 

ageing or poisoning or saturation of the sensors due to exposure to excessive amounts of 

a specific volatile compound. The latter could possibly explain the inability of 

discriminating low thresholds (101-2 cells ml-1) of the fungal species. The excessive 

growth of the higher inocula after 96 hours might have saturated the sensors masking 

the effect of the volatiles, if any, at the lower inoculum levels.  
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Nevertheless, in order to alleviate or remove the effect of sensor drift, studies have 

suggested use of external calibration samples along with the application of certain 

mathematical algorithms, whereby the drift direction from the external calibration 

sample is removed from the remaining samples (Artursson et al., 2000; Haugen et al., 

2000). This approach could prove beneficial for future use on the e-nose systems used 

in this study. Furthermore, recently researchers have reported the use of signal filtering 

methods to remove drift (Zuppa et al., 2007). Since the field of sensor technology is 

constantly evolving, there is definite scope for improvement.  

 

6.3 Multivariate analyses and computational prediction  

The ability to classify unknown samples into specific groups is a more attractive 

prospect for the food quality and medical sectors, apart from just the normal 

identification or discrimination of samples. Multivariate techniques involving PCA, 

DFA or PLS were normally used for making models for this purpose, but Goodner et al. 

(2001) warned that if not used with care, these methods could easily lead to erroneous 

results. Subsequently, the use of more robust and non-linear methods such as ANNs 

gained popularity for building such classification models. 

 

However, an important feature that could hinder the results is the sample size. It is 

extremely important that samples are well represented and are sufficient to allow 

appropriate training followed by validation or testing of the network model. In this 

thesis because of the relatively small sample size, for ANN analysis the ‘leave one out 

cross validation’ approach was administered. It involved individually testing every 

sample against the trained network. Furthermore, the ratio of samples and variables 

could also lead to incorrect classifications. In general the number of samples must be 
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much higher than that of the variables. Another constraint with neural network models 

is over-fitting where it just memorises the training data. This implies high accuracy 

during training but results in poor validation and thus poor generalisation i.e. the 

inability to correctly predict an unknown.  

 

Integrating artificial neural networks with evolutionary methods such as genetic 

algorithms further serves to enhance the performance of the networks. This form of 

evolutionary computation enables feature selection, structure optimisation and improves 

the overall efficiency of ANNs. Thus enhancing their discriminatory and classification 

power. This approach has been successfully used by Pavlou et al. (2000; 2002a; 2002b; 

2004) for differentiating various bacteria using e-nose data. 

 

6.4 (Bio)-marker identification 

Identifying markers, more specifically biomarkers, would significantly aid the process 

of diagnosing medical conditions or detecting the presence or absence of certain micro-

organisms to administer drugs. However, it is not always possible to find markers as 

these products depend on the metabolism of either the host (can also be the host’s 

immune response) or the invading microbe or possibly a combination of both. In the 

present study it was found that certain compounds were present in higher concentrations 

in some organisms than in the others. Perhaps by using a combination of these 

detectable compounds might help form a ‘marker pattern’ that could be correlated to the 

e-nose volatile profiles for individual microbes. 

 

Identification of marker compounds is predominantly done by means of GC-MS 

techniques. However, these are not practical for routine use in clinics. Therefore, once 
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specific markers are identified - e.g. those belonging to specific microbial species or 

specific cancers (or stages thereof) - based on the current detection methods it increases 

the probability of building smaller, portable e-nose instruments with fewer sensors. 

Thus suggesting there is potential for regular clinical utilisation including as a screening 

tool.  

 

6.5 Real-time analysis and monitoring 

The major challenge of e-nose technology is its eventual use in the desired field. Based 

on the literature and present studies, the e-nose is a good instrument for obtaining 

simple yes-no answers but how reliable would it be for the next level? In case of the 

research in this thesis, it has been successful for most species level discriminations. The 

ultimate goal however, would be analysing the clinical samples in real-time with an 

application specific portable instrument. It could lead to the standard laboratory 

protocols or other routine invasive diagnostic procedures being completely bypassed. 

This would enable rapid if not instant diagnosis, facilitating the clinician to take prompt 

action – whether that is prescribing appropriate medication or initiating other forms of 

treatment. It might also form the basis for initial screening of diseases and possibly 

checking for building drug resistance, especially in microbial infections. Another asset 

of a portable machine would be the additional ability to use it for monitoring the 

progress of diseases and individuals, and thus truly moving it from ‘bench to bedside’ in 

relevant scenarios. 
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7.1 Conclusions 

The main aim of the present research was to use volatile profile patterns in order to 

diagnose different kinds of diseases in their infancy, which in turn would alleviate or 

perhaps even eliminate the need for the traditional ‘gold-standard’ and invasive 

techniques. This section highlights the main points and inferences from the various 

phases carried out in this research. 

 

A. Dermatophytes: 

 From the two different e-nose systems that were compared, the hybrid (metal 

oxide-metal ion) sensor array system proved to possess better discriminatory 

capabilities than the conducting polymer sensors, over a period of 72-96 hours 

of fungal incubation even after using an alternative sampling method for the 

latter. 

 There was clear differentiation between the four pathogenic Trichophyton 

species (T. mentagrophytes, T. rubrum, T. verrucosum and T. violaceum) on 

both solid media within 96 hours of incubation. Liquid culture studies gave 

similar results but were not as well defined as those from the agar. With the 

starting inoculum of 105-6 spores ml-1 in each instance. 

 The threshold for detecting the sensitivity of T. mentagrophytes and T. rubrum 

in both forms of media was found to be an initial concentration of 103 CFU ml-1 

after 96 hours, although for broth cultures once again the clusters were not as 

distinct as for the solid media. 

 In terms of intra-strain comparisons, it was found that the strains of T. rubrum 

were more different from each other than the T. mentagrophytes strains on 

comparing their volatile fingerprints respectively after 96-120 hours. These 
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similarities and differences were also observed when correlated with the 

respective growth rates.  

 A clear discrimination between the fungi responsible for animal (M. canis) and 

human (T. mentagrophytes and T. rubrum) infections was also found to be 

possible based on the volatile profiles, within 96-120 hours. 

 Interestingly, large concentration of ammonia was detected by SIFT-MS to be 

present in the fungi, especially in T. mentagrophytes. Other compounds of 

interest were traces of dimethylamine, formaldehyde and hydrogen cyanide 

present only in the fungi. Although, no specific markers were identified. 

 GC-MS detected the presence of a few compounds in the fungi that were absent 

in the controls such as methoxybenzene (high in T. mentagrophytes), 1-Octen-3-

ol and 3-Octanone (the last two being larger amounts in T. rubrum). These 

could help serve as potential identifiers.   

 The simulated predictive models successfully classified the samples into their 

respective classes with high accuracy. It was also seen that the use of fewer 

sensors improved the classification ability of the network model. 

 The antifungal agent, itraconazole, almost completely inhibited the growth of 

the two dermatophytes (T. mentagrophytes and T. rubrum) at 2 ppm with its 

effect being more pronounced at 25 than at 30°C. 

 The antifungal treatments were clearly differentiated from those without the 

antifungal at both temperatures, with the two non-treated fungal species also 

being separated from each other. It was however, not possible to discriminate 

between the different antifungal concentrations at this stage. 
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B. Ventilator associated pneumonia: 

 The e-nose successfully discriminated the in vitro bacterial/yeast cultures from 

the controls. Although, it could not differentiate between all the individual 

species, it differentiated between the four basic groups (gram positive, gram 

negative, fungi and controls) with 83% accuracy. 

 The microbiology culture results were successfully correlated with the e-nose 

sensor responses for the clinical samples. 

 Based on the volatile fingerprints of the clinical samples, reasonably good 

discrimination between the four treatment groups was obtained, with 63% 

classification accuracy. 

 

C. Oesophageal Cancer: 

 The e-nose with hybrid sensors outperformed the e-nose housing conducting 

polymer sensors in terms of their discriminatory abilities in this study. 

 There was clear differentiation between the controls and the various cell lines 

(normal oesophageal, Barrett’s oesophagus, squamous cell carcinoma, 

colorectal carcinoma) when incubated for a short period (one to four hours). 

After 24 hour incubation only the squamous cell carcinoma cell line (OE21) 

could be distinguished from the others and controls. 

 SIFT-MS was unable to detect the presence of specific markers or identifying 

compounds due to the headspace being poorly concentrated. However, two 

unidentified compounds at m/z 44 and 98 were detected in the cell lines but not 

in the controls and background, also in small amounts.  
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 No distinctive pattern was observed based on the volatile profiles from the 

clinical samples, where none of the upper gastrointestinal pathologies could be 

distinguished.    

 

The use of qualitative volatile fingerprinting by means of electronic nose technology is 

a useful approach for the early discrimination of pathogenic micro-organisms as well as 

other non-microbial conditions. It holds promising prospects for the future where it may 

serve to be an economic, easily operative and rapid screening method. 

 

7.2 Suggestions for future work 

The following section lists some suggestions for continuing the present research which 

could eventually take it a step closer to being an onsite routine clinical device. 

A. Dermatophytes: 

 Incorporating keratin based nutrients in the medium followed by volatile 

analysis. This might enhance the volatile production especially of the slower 

growing species and determine if addition of keratin causes a major change in 

volatile fingerprints.  

 Another alternative would be using human skin explants as the substrate rather 

than agar or broth. Skin explants have been recently used to study the invasive 

mechanism of T. mentagrophytes (Kaufman et al., 2007) as well as for delivery 

of biological macromolecules for gene therapy (Coulman et al., 2006). This 

could be an approach in bringing the study closer to clinical scenarios that might 

possibly help in establishing whether the volatile profiles might differ from type 

cultures and be closer to clinical specimens. 
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 Increasing the number of samples for artificial neural network analysis, in order 

to obtain a robust and accurate predictive model. 

 Application of the procedures to clinical samples, preferably in optimised liquid 

media, and validating the approach by exploiting the built predictive neural 

network as a classifier for unknown specimens. 

 Investigating the presence of the same or new marker/identifier compounds by 

including the different strains of the Trichophyton and Microsporum species 

using the GC-MS and SIFT-MS techniques, thus further facilitating intra-strain 

comparisons. 

 Screening a range of other current antifungal drugs, in order to correlate their 

volatile profile patterns and providing possible therapeutic alternatives by 

finding novel ones. 

 Determining the changes, if any, in the volatile fingerprints based on the effect 

of the antifungals on the different strains of the dermatophytes. 

 Monitoring drug resistance using the volatile production patterns of these 

pathogenic fungi. 

       
B. Ventilator associated pneumonia: 

 Use of a more specific or enriched broth medium rather than nutrient broth, to 

enable growth of all bacterial and yeast species/strains of the clinical isolates, 

which might enhance volatile production and therefore probably facilitate in 

differentiating the individual species. 

 Attempt to mimic the clinical sample, by making the microbial suspensions in 

saline or Ringer’s solution, in order to observe and if possible correlate any 

difference or similarities in the volatile profiles in both clinical and non-clinical 

instances. These results might eventually help in identifying whether the cause 
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of clinical discrimination is owing to the bacterial volatiles or due to products of 

the host’s immune responses in the lavage fluid.   

 Preparing mixed bacterial suspensions or cultures of the most important species 

in the laboratory to try to discriminate between them and individual species, and 

eventually comparing with clinical samples as certain patients were found to be 

infected by multiple organisms. 

 Determining the effect of various antibiotics on the volatile fingerprints of the 

different bacteria and yeast species/strains, as most of the affected individuals 

are normally already on antibiotic therapy. 

 Enriching the volatile production of clinical samples by either spiking with 

specific enzymes or adding to broth for a short time period prior to headspace 

analysis. Similar to the procedure adopted by Pavlou et al. (2002a; 2004) for 

diagnosing tuberculosis or urinary tract infections, but those studies dealt with a 

much smaller set/number of micro-organisms. 

 Determining the compounds responsible for discrimination of the clinical 

isolates and clinical samples by means of GC-MS and SIFT-MS. 

 If possible, obtaining clinical samples where the patients have not yet been 

administered with antibiotics and comparing their volatile profile patterns 

against those who have been treated with drugs. 

 Application of artificial neural networks for building a predictive model for 

classification of unknowns. 

     
C. Oesophageal cancer: 

 Finding an alternative sampling procedure for the cell lines for headspace 

analysis with the hybrid sensor array. 
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 Using more concentrated cell cultures, i.e. by combining the cell cultures from 

two or three flasks that would increase the cell density which could in turn lead 

to higher volatile production, thus enabling better discrimination between the 

individual cell lines. 

 Measuring the sample headspace without changing the medium when grown in 

the glass vials. This would possibly prevent any loss of cells, if at all, whilst 

changing the media. 

 Use of Nalophan bags for concentrating the headspace for SIFT-MS analysis, 

with the culture flasks being placed in them individually and incubated in 5% 

CO2 atmosphere. This might enable better identification of possible markers. 

 Increasing the number of patient samples for analysis and trying breath analysis 

as an alternative to endoscopic gas traps, this could serve to be a better and non-

invasive form of diagnosis. 
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Appendix A – Details on micro-organisms and human cell lines 

A.1 Fungal Isolates 

a) Trichophyton mentagrophytes (stat. conid. of Arthroderma vanbreuseghemii)§§ 
 
COLLECTION: CNCPF - National Collection of Pathogenic Fungi  
STRAIN NUMBER: 224  
ORGANISM_TYPE: Fungal dermatophyte 
SOURCE: Human 
SITE_ORIGIN: beard hairs 
COUNTRY_ORIGIN: UK 
YEAR_OF_RECEIPT: 1954 
SPECIFIC_REMARKS: "Plus" strain. = IMI 98299. 
Dr R. E. Bowers, Gloucester***

 
b) Trichophyton rubrum§§  
 
COLLECTION: CNCPF - National Collection of Pathogenic Fungi  
STRAIN NUMBER: 115  
ORGANISM_TYPE: Fungal dermatophyte 
SOURCE: Human 
India - Connaught Military H., Woking, Surrey***   
  
c) Trichophyton verrucosum§§ 
 
COLLECTION: CNCPF - National Collection of Pathogenic Fungi  
STRAIN NUMBER: 685  
ORGANISM_TYPE: Fungal dermatophyte 
SOURCE: Human 
COUNTRY_ORIGIN: UK 
YEAR_OF_RECEIPT: 1986 
Mr. J. Evans, Belfast, 1986 as D 382***  

 
d) Trichophyton violaceum§§ 
 
COLLECTION: CNCPF - National Collection of Pathogenic Fungi  
STRAIN NUMBER: 677  
ORGANISM_TYPE: Fungal dermatophyte 
SOURCE: Human 
SITE_ORIGIN: nail 
COUNTRY_ORIGIN: UK 
YEAR_OF_RECEIPT: 1986 
Dr P. O'Neill, Lewisham H., London***

 
 
                                                 
§§  http://www.ukncc.co.uk/html/Databases/search.asp
*** http://www.hpa.org.uk/srmd/div_cdmssd_nctc/searcher.html
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e) Trichophyton rubrum D12 
 
Strain D12 was kindly supplied by the University of Oxford. 
 
 
f) T. rubrum - R55, R57 & R59 and T. mentagrophytes – M61, M62, M63 & M64 
 
The following strains R55, R57, R59, M61, M62, M63 and M64 were kindly supplied 

by Prof. F. J. Cabañes, Autonomous University of Barcelona, Catalonia, Spain. 

 
 
A.2 Bacterial Isolates 

COLLECTION: Microbiology Department, Cheltenham General Hospital 
SOURCE: Clinical isolates from patients 
SITE_ORIGIN: Lung, BAL fluid aspirate 
 
a) 16129695††† - Staphylococcus species 

Candida species 
Klebsiella pneumoniae 
  

b) 16191218 -  Candida albicans 
Enterobacter species 

 
c) 15949060 -  Proteus mirabilis 

Streptococcus oralis 
 

d) 16366778 -  MRSA 
 
e) 15943723 -  Pseudomonas species 
 
f) 15945707 -  Candida species 
 
g) 16191211 -  Enterobacter cloacae 
 
h) 16124960 -  Klebsiella pneumoniae 
 
i) 15622851 -  Staphylococcus species 
 
j) 15636121 -  Staphylococcus species 
 
k) 1562286X - Streptococcus species  
 
l) 16129605 -  Aerococcus species      
 
 
 

                                                 
††† Hospital’s microbiology laboratory identification number  
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A.3 Cell Lines 

a)  HET 1A 

COLLECTION: ATCC- American Type Culture Collection‡‡‡  
ATCC NUMBER: CRL-2692 
ORGANISM: Human 
SOURCE: Oesophagus 
DESCRIPITION: Oesophageal epithelium (normal) 
ORIGIN: Oesophageal autopsy of 25 year old black male  
 
b)  OE21 

COLLECTION: ECACC - European Collection of Cell Culture§§§ 
ECACC NUMBER: 96062201 
ORGANISM: Human 
SOURCE: Oesophagus 
DESCRIPTION: Oesophageal squamous cell carcinoma 
ORIGIN: Squamous carcinoma of mid oesophagus of a 74 year old Caucasian male 
 
c)  OE33 

COLLECTION: ECACC - European Collection of Cell Culture  
ECACC NUMBER: 96070808 
ORGANISM: Human 
SOURCE: Oesophagus 
DESCRIPTION: Oesophageal carcinoma from Barrett’s metaplasia 
ORIGIN: Adenocarcinoma of the lower oesophagus of a 73 year old Caucasian female 
 
d) CaCO2 

COLLECTION: ATCC - American Type Culture Collection 
ATCC NUMBER: HTB-37 
ORGANISM: Human 
SOURCE: Colon 
DESCRIPITION: Colorectal adenocarcinoma 
ORIGIN: Adenocarcinoma from a 72 year old Caucasian male 
 

                                                 
‡‡‡ http://www.lgcpromochem-atcc.com/common/catalog/cellBiology/cellBiologyIndex.cfm
§§§ http://www.ecacc.org.uk/
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Appendix B – NST operating principle and sensor tests 

B.1 NST operating principle 

The NST 3320 Lab emission analyser consists of an automated set-up. It has an ‘in’ 

needle, through which the sample gas passes and simultaneously replaced by the filtered 

air (by means of a hydrocarbon filter and a silica drying column) passively as depicted 

in Figure B.1 by an ‘out’ needle. Figure B.2 illustrates the typical sensor response of 

raw data. 

 

 

Figure B.1: NST system’s operating principle (NST Senstool manual extras, 1999). 
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Figure B.2: The typical sensor responses to a particular sample. 

 

B.2 Testing sensors with standards 

The sensors were tested over time for the effect of drift using certain standard controls 

such as 0.1 % acetone (1ml), 0.1% propan-1-ol (1ml), 0.05% propan-2-ol (1ml) and air. 

Figure B.3A depicts a PCA scores plot showing the clear separation between the 

different groups of controls (i.e. acetone, alcohols and air), but there appears to be signs 

of drift between the chemical compounds although the pattern of differentiation seems 

to be maintained. This drift over time is much clearer when PC1 and PC3 are observed 

(Figure B.3B). The data presented in the plots are from two different time periods (run 

approximately seven-eight months apart).  
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Figure B.3: PCA scores plots of certain standards depicting sensor drift over time for 

the chemical standards (A) which is much clearer when observing PC1 vs. PC3 (B). 

Samples 1-20 indicate time period 1 and those from 21 onwards indicate time period 2. 

(Key: A – reference air; Ac – acetone; IPA – propan-2-ol; P – propan-1-ol) 
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Appendix C – Probabilistic neural network (PNN) development 

 
PNNs are one of the variants of radial basis networks, which are two layered networks 

that work faster than conventional back propagation feed forward networks. However, 

they do require many more neurons. These networks are mainly used for classification 

purposes (Demuth & Beale, 2006), and thus used in the study to predict the classes of 

the fungal species. 

 

In the PNN, the ultimate result is a vector that represents either a 1 for the correct or a 0 

for an incorrect classification. The first layer calculates the distance between the 

weights and inputs, and uses a radial basis function (Eq. C.1) that creates an output 

vector with the help of the bias to indicate the closeness between the input and training 

sets. The second layer, a competitive layer, then uses the previous output to calculate 

the probabilities which then eventually results in a 1 or 0 using a compet function. 

Hence, it is because of the maximum probability of a specific class being true that the 

network classifies the inputs into those classes (Demuth & Beale, 2006).  

2X
radbas eY −=                                        … (Eqn C.1) 

where X is the product of the distances between the inputs and weights and the biases. 

 

C.1 Network Architecture 

This two layered network also consists of an input layer made up of the same number of 

elements as there are sensors (in this case 5 or 18 or 24 sensors). The radial basis layer 

consists of as many nodes as there are samples or treatments in the training phase, 

whilst the final competitive layer consists of 5 neurons based on the fungal species. The 

topology of the network used in the Trichophyton species study is shown in Figure C.1. 
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IW{1,1} 

LW{2,1} 

b{1} 
52418

 || dist || C 

KEY: 
IW {1,1}  → Input Weights (associated with layer 1); b{1} → bias of layer 1; 
LW {2,1} → Layer Weights (from first to the second layer); 

Figure C.1: Topology of the probabilistic neural network showing a single input 

comprising 18 elements, the layer with 24 neurons with the radbas transfer function and 

finally the compet transfer function producing the output. 

 

C.2 Dataset Construction 

In case of any mathematical model that is built, it needs to be validated or tested on 

unseen data. Thus, the original dataset was split into training and test sets, each with 

their pair-wise combination of inputs (sensor responses) and targets (fungal classes). 

Due to the limited number of samples available, the datasets were generated using a 

process called ‘leave one out cross validation’; where one sample was excluded and the 

remaining were used for training the network. The sample that was omitted was used for 

testing the model. Thus, for the aforementioned scenario, 25 training and test sets were 

generated. Prior to feeding the training data into the neural network, it was normalised 

so that its interval was in the range of -1 to +1.  

 

Subsequent to obtaining the result from the network, the accuracy of the classification 

was calculated and regression analysis performed. 
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C.3 Pseudocode 

 Load data  

 For varying spread values (0 to 1 in steps of 0.1) 

• Spilt into training and test sets 

• Normalise the training sets 

• Create the network 

• Train and test the network 

• Save networks 

 Calculate the classification accuracy 

 Calculate the confusion matrix 

 Perform regression analysis 
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Appendix D – Ethics approval 

D.1 VAP study 
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D.2 Upper GI Study 
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Appendix E – Publications, Oral presentations and Posters 

E.1 Papers 

Sahgal, N., Monk, B., Wasil, M. & Magan, N. (2006). Trichophyton species: use of 

volatile fingerprints for rapid identification and discrimination. Br J Dermatol 

155(6):1209-1216. (doi:10.1111/j.1365-2133.2006.07549.x) 

Sahgal, N., Needham. R., Cabañes, F. J. & Magan, N. (2007). Potential for detection 

and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using 

volatile production patterns: a review. Food Additives and Contaminants 24(10):1161-

1168. (doi:10.1080/02652030701519096) 

Sahgal, N. & Magan, M. (2008). Fungal volatile fingerprints: discrimination between 

dermatophyte species and strains by means of an electronic nose. Sensors & Actuators 

B: Chemical 131(1): 117-120. (doi:10.1016/j.snb.2007.12.019) 

Sahgal, N., Turner, C. & Magan, N. Identification of potential volatile markers 

generated by common dermatophyte species using mass spectrometric techniques. 

(Submitted to Br J Dermatol) 

 
E.2 Book Chapters 

Magan, N. & Sahgal, N. (2007). Electronic sensing: food and feed applications. In: 

Rapid methods for food and feed quality determination, pp 15-28. Edited by: A.van 

Amerongen, D. Barug & M. Lauwaars: Wageningen Academic Publishers.  

Magan, N. & Sahgal, N. (2007). Electronic nose for quality and safety control. In 

Advances in Food Diagnostics, pp. 119-129. Edited by L. Nollet & F. Toldra: Blackwell 

Publishing. 

 

E.3 Oral presentations 

Sahgal, N. & Magan, M. Fungal volatile fingerprints: discrimination between 

dermatophyte species and strains by means of an electronic nose. Presented at the 12th 

International Symposium on Olfaction & Electronic Nose, May 2007, St. Petersburg, 

Russia. 
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Sahgal, N. & Magan, M. Fungal Volatile Fingerprints - species and strain 

discrimination of dermatophytes. Presented at the Annual British Mycological Society 

Meeting, September 2007, Manchester, UK. 

 

E.4 Posters 

Sahgal, N., Monk, B., Wasil, M. & Magan, N. Use of electronic nose for early detection 

and discrimination between dermatophytes. 11th International Symposium on Olfaction 

and Electronic Nose, April 2005, Barcelona, Spain.  

Sahgal, N., Monk, B., Wasil, M. & Magan, N. Potential of electronic nose technology 

for early detection and discrimination between dermatophytes. 8th International 

Mycological Congress, August 2006, Cairns, Australia. 

Sahgal, N., Monk, B., Wasil, M. & Magan, N. (2007). Fungal volatile fingerprints and 

machine learning: potential of discriminating and classifying dermatophyte species. 

BioSysBio: Systems Biology, Bioinformatics and Synthetic Biology, January 2007, 

Manchester, U.K [BMC Sys Biol 1(Suppl 1):P37]. 

Humphreys, M. L., Orme, R., Smith, S., Sahgal, N. & other authors. Electronic Nose 

Analysis of Bronchoalveolar Lavage Fluid for the Diagnosis of Ventilator-associated 

Pneumonia. th36  Critical Care Congress, February 2007, Orlando, Florida. 

Humphreys, M. L., Orme, R., Sahgal, N., Kendall, C., Magan, N. & Stone, N. 

Electronic Nose Analysis of Bronchoalveolar Lavage Fluid for the Diagnosis of 

Ventilator-associated Pneumonia. Intensive Care Society’s (ICS) State of the art 

meeting, December 2007, London, UK. 
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