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Abstract

In the field of explosive science, the existence of the ‘hot-spot’ is generally ac-
cepted as essential to any theory on shock initiation. Continuum-based shock initia-
tion models only account for ‘hot-spots’ implicitly, and the majority of these models
use pressure-dependent reaction rates. The development ofa simple but physically
realistic model to predict desensitisation (double shock)effects within the confines
of an existing pressure-based model is described and simulations compared with
experimental data with mixed results. The need to invoke a separate desensitisa-
tion model for double shocks demonstrates that reaction rates are not substantially
dependent on local pressure.

The newly developed continuum, entropy-dependent, CREST model has been
implemented and validated in a number of hydrocodes. However, the move to
entropy-based reaction rates introduces a number of computational problems not
associated with pressure-based models. These problems aredescribed, in particular,
an entropy-dependent model over-predicts the rate of energy release in an explosive
adjacent an impact surface, and requires a finer mesh than a pressure-dependent
model to achieve mesh converged results. The CREST model, fitted only to one-
dimensional data of the shock to detonation transition, is shown to be able to accu-
rately simulate two-dimensional detonation propagation data. This gives confidence
in the predictive capability of the model.

To account for ‘hot-spots’ explicitly, a simple model to describe ‘hot-spot’ ini-
tiation has been developed. The simple model is presented where ‘hot-spots’ are
formed as a result of elastic-viscoplastic stresses generated in the solid explosive
during pore collapse. Results from the model compare well with corresponding re-
sults from direct numerical simulations, and both are consistent with observations
and commonly held ideas regarding the shock initiation and sensitivity of heteroge-
neous solid explosives. The results also indicate that viscoplastic ‘hot-spot’ models
described in the literature are built on an invalid assumption.
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Chapter 1

Introductory Chapter

1.1 Introduction

Explosive materials are compact sources of chemical energythat are designed
to decompose exceedingly quickly to very hot, high pressuregases. They are able
to decompose very rapidly because fuel (e.g. carbon or hydrogen) and oxidiser
(e.g. oxygen or fluorine) are wrapped up together in the chemical structure of the
explosive. One example of an explosive compound is HMX (cyclotetramethylene
tetranitramine), another is TATB (triamino trinitrobenzene) [1]. Although the ex-
plosive compounds such as HMX and TATB can be used in their pure form, the
majority of uses for explosives require mechanical properties that the pure materi-
als do not have. In order to change the mechanical properties, the pure explosives
are often blended with other (usually) inert materials. Theresulting mixtures have
good mechanical strength, and the explosives can be easily machined into desired
shapes.

Modern day explosives exist in an energetically metastablestate, that is an ex-
plosive cannot undergo rapid chemical decomposition untilsufficient energy has
first been added to get the process started. This is usually termed explosive initia-
tion or ignition. For scientists and engineers who use explosives, it is necessary to
understand exactly how explosives work. In particular, a very good understanding
of how explosives initiate is essential for the developmentof safer explosives, and
to avoid or reduce the chance of inadvertent explosive events which could injure or
kill. Various methods for initiation of explosives exist, including heat, electrostatic
impulses, friction, shock waves, or any combination of these energy sources. In this
work, attention is restricted to the study of the shock initiation mechanism.

The ease with which an explosive can be shock initiated is as known as its
sensitivity. To help understand the initiation and sensitivity of explosive materials
subjected to shock waves, a variety of experimental tests are routinely conducted.
Although the experiments give valuable information on the reaction behaviour and
sensitivity of shock initiated explosives, many of the testing methods provide little

1
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insight into the fundamental physical and chemical processes occuring during an
initiation event. Coupled with the high costs of experiments and scenarios of in-
terest that may be beyond acceptable costs and safety bounds, this has resulted in
increasing demands being placed on the development of computational models of
shock initiation to provide both an understanding and predictive capability.

Over the years, a relatively large number of shock initiation models, also known
as reactive burn models, have been developed. Numerical models of shock initia-
tion need to be coupled to large computer programs called hydrocodes so that the
dynamics of shock wave initiation in explosives can be computed. Hydrocodes are
programs that use a number of different solution techniquesto solve a wide variety
of non-linear problems in solid, fluid, and gas dynamics. Hydrocode calculations
usually require a good number of meshes through an explosive’s reaction zone for
accurate phenomenon resolution. Since reaction zone widths in explosives are very
small, typically∼0.1mm for HMX-based explosives, and∼1.0mm for TATB-based
explosives, then reactive burn models are very mesh and timeintensive. As a result
shock initiation models have tended to be relatively simpleand this can limit their
predictive capability.

Researchers are now making use of recent advances and developments in both
hydrocodes and computers. The appearance of powerful Teraflop and Picoflop com-
puters, coupled with modern numerical methods such as adaptive mesh refinement
techniques in hydrocodes, gives an opportunity to develop improved shock initia-
tion models for explosives where calculations allow good mesh resolution of the
reaction zone. However, any new reactive burn model will only be as good as the
quality and quantity of the experimental data against whichit has been validated.
Therefore, accurate modelling of explosive shock initiation and growth of reaction
requires appropriate and accurate experimental data. In developing new reactive
burn models, consideration also needs to be given to the requirement that it must be
relatively straightforward to implement any model in a hydrocode. In this thesis, a
number of aspects of the mathematical and numerical modelling of shock initiation
of explosives is considered.

1.2 Background On Explosive Shock Initiation

There has been a significant quantity of experimental research, performed over
the past several decades, aimed at understanding the initiation and growth of reac-
tion behaviour in explosive materials subjected to shock waves. When discussing
shock initiation of explosives, the process is usually categorised in terms of the
physical nature of the explosive as either homogeneous or heterogeneous. The ex-
plosive materials themselves are commonly referred to as homogeneous or hetero-
geneous explosives. Homogeneous explosives are typicallyliquids or single crys-
tals in which there are a minimal number of physical imperfections (e.g. bubbles
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or voids). Heterogeneous explosives are generally all other types; heterogeneous
means a material that contains any kind of imperfection (e.g. void or gas cavities,
cracks, solid inclusionsetc). Homogeneous and heterogeneous explosives exhibit
different shock initiation properties, as described in theclassic experimental studies
of Campbellet al. [2] [3]. Homogeneous initiation occurs by a thermal explosion
which produces waves that develop into a reactive wave behind the initial shock [2].
Heterogeneous initiation occurs because the shock wave interacts with the material
heterogeneities producing so-called ‘hot-spots’ that start the chemical reaction in
the material [3]. In this work, attention is restricted to shock wave initiation of
heterogeneous explosives.

The physical structure of a heterogeneous explosive usually consists of pores
(void or gas cavities), cracks, and binder material, in addition to the explosive crys-
tals or grains, and distinct boundaries exist between the various constituents. Figure
1.1 is a micrograph showing the physical structure of a typical hetergeneous solid
explosive, while Figure 1.2 gives an illustration of a smallsample from the micro-
graph. The irreguarly shaped explosive crystals or grains are clearly visible, and
there is mixture of coarse and fine grains to achieve a high packing density. The
grains contain imperfections such as cracks. A binder is used to hold the crystals
together and to make the explosive safe to handle by stoppingthe crystals rubbing
together. The binder material also helps to improve the mechanical properties of the
explosive, meaning that it can be easily manufactured into desired shapes. On the
micrograph a number of ‘dark holes’ are also visible. It is unsure what these are;
they could be pores, or a by-product of sample preparatione.g.polishing. Note the
scale of the explosive grains and imperfections; the largest components of the mix
are the grains, and the largest explosive grain size is∼150µm.

The key to understanding initiation in heterogeneous explosives was first dis-
cussed in detail by Bowden and Yoffe [4] whom, to help explainthe initiation pro-
cess, introduced the concept of the ‘hot-spot’, and who considered that all ignitions
were thermal in origin. ‘Hot-spots’ are small localised regions of elevated tempera-
ture that are produced by the interaction of a shock wave withthe inhomogeneities
in a heterogeneous explosive which create sufficiently hightempertaures to lead to
reaction. The necessity of the ‘hot-spot’ concept arises because, under shock com-
pression, the bulk (homogeneous) temperature is too low to initiate reaction. Local
chemical decompostion occurs at the ‘hot-spot’ sites if sufficient thermal energy
is generated and retained there. If sufficient thermal energy is produced, then the
‘hot-spots’ can burn outwards into the bulk of the (cooler) explosive leading to a
possible growth of reaction.

Based on the experimental evidence, the shock initiation process in heteroge-
neous explosives is usually described as having two separate phases:(i) an ignition
phase where ‘hot-spots’ are created due to shock compression, and the subsequent
chemical decomposition of the explosive in these localisedheated regions, and(ii)
a growth phase where the build-up of chemical reaction occurs as the ‘hot-spots’
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grow and coalesce to consume the remainder of the explosive material. Figure 1.3
illustrates the process of ‘hot-spot’ initiation by a shockwave leading to growth of
reaction. The figure shows a snapshot in time when the material behind the leading
shock is at various stages of decomposition. Here, growth ofreaction from the local
dynamically overheated ‘hot-spot’ regions is shown. However, ignition of ‘hot-
spots’ does not necessarily result in a build-up of reaction. ‘Hot-spots’ are cooled
by the conduction of heat from the ‘hot-spots’ into the cooler material surrounding
them so there is a competition between ‘hot-spot’ induced reaction and cooling. If
the ‘hot-spot’ is hot enough that the material begins to react before heat conduction
cools it too much, the surrounding material can initiate andthe reaction can then
grow.

When a violent, explosive event occurs we often hear the termdetonation men-
tioned. Detonation is synonymous with shock initiation. Ifthe input shock to a
heterogeneous explosive is sufficiently large and sustained, the shock can grow to
detonation and this process is usually called a shock-to-detonation transition. In
this process the ‘hot-spots’, created from the interactionof the input shock with
the heterogeneities, decompose and add their energy to the flow. This strengthens
the leading shock so that when it interacts with additional heterogeneities, higher
temperature ‘hot-spots’ are formed and more of the explosive is decomposed. The
shock wave grows stronger and stronger, releasing more and more energy, until it
becomes stong enough to produce self-sustaining propagating detonation. A popu-
lar means of assessing the shock sensitivity of heterogeneous explosives is by study-
ing the shock-to-detonation transition.

1.3 Shock Initiation Mechanisms and Related Exper-
imental Studies

The importance of ‘hot-spots’ in describing initiation andgrowth of reaction in
heterogeneous explosives is firmly established. In contrast to the general acceptance
of the ‘hot-spot’ concept, the exact origin of the ‘hot-spots’ is not well understood.
This is due to the very nature of their properties; small dimension, short duration,
and high temperature. As a result, it is difficult to obtain direct experimental ev-
idence on the fundamental mechanisms involved in their creation. Bowden and
Yoffe [4] attempted to quantify ‘hot-spot’ temperatures, duration, and sizes. They
presented evidence that ‘hot-spots’ need to have dimensions of typically 0.1 - 10
µm, durations of 10−5 - 10−3 s, and temperatures greater than 700 K. Despite the
fact that little is known or has been directly observed regarding the evolution of
‘hot-spots’ behind a shock wave, a large number of mechanisms for ‘hot-spot’ for-
mation have been proposed as summarised by Field [5]. In his paper Field lists ten
possible ‘hot-spot’ mechanisms:
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1. Adiabatic compression of trapped gas spaces.

2. Other mechanisms involving cavity collapse such as viscous or plastic heating
of the surrounding matrix material or, for very high shock collapse pressures,
hydrodynamic shock focusing.

3. Friction between sliding or impacting surfaces, or between explosive crystals
and/or grit particles in an explosive.

4. Localised adiabatic shear of the material during mechanical failure.

5. Viscous heating of material rapidly extruded between impacting surfaces.

6. Heating at crack tips.

7. Heating at dislocation pile-ups.

8. Spark discharge.

9. Triboluminescent discharge.

10. Decomposition, followed by Joule heating of metallic filaments.

The proposed ‘hot-spot’ mechanisms are based on a mixture ofexperimental ob-
servations and numerical modelling work, and there is currently no universal agree-
ment as to the mechanism(s) by which energy localisation occurs to produce ‘hot-
spots’.

It is well known experimentally that the introduction of pores (voids or gas
cavities) in an explosive material causes increased sensitivity to shock initiation.
Bowden and Yoffe [4] were among the first researchers to show that the shock sen-
sitivity of explosives could be greatly increased by the presence of gas bubbles, and
who attributed the formation of ‘hot-spots’ to adiabatic compressive heating of the
gas. A purely hydrodynamic mechanism to explain ‘hot-spot’formation as a result
of shock wave interactions with density discontinuities was proposed by Mader [6]
[7]. These interactions produce hydrodynamic heating due to void collapse, jetting,
and shock collisions. ‘Hot-spots’ can also be created by thestrains invoked in the
solid explosive material surrounding the collapsing poreseither via inviscid plastic
work [8] or viscoplastic work [9]. The modelling studies of Frey [9] showed that
heating due to viscoplastic work in the vicinity of collapsing cavities can supply
significant heating for ignition to occur within the timescales for shock initiation.

In heterogeneous solid explosives, pores are usually present as part of the man-
ufacturing process, and all heterogeneous explosives havesome porosity. Unfor-
tunately, the majority of explosive experiments record only the quantity of pores
in terms of an overall percentage extracted by comparing thesample density with
the theoretical maximum density (TMD) expected for the particular composition
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(TMD is the weighted average of the densities of the constituent parts). Pore size
distributions are given only a passing nod by assuming pore size and particle size
are related, and the position of the pores is generally ignored. Experimental studies
which only record the bulk porosity do, however, show a strong relationship be-
tween this porosity and shock sensitivity, with sensitivity increasing for increasing
porosity (decreasing density), as observed in the classical studies of Campbellet al.
[3] and Gittings [10]. More recent work has shown that void content, rather than
binder or binder amount, appears to be the dominating factorin shock initiation of
pressed granular explosives [11]. For the above reasons, many proposed ‘hot-spot’
mechanisms are based on shock induced pore collapse.

As well as the pore collapse mechanism, shear banding or adiabatic shear has
also been suggested as a possible source of ‘hot-spot’ formation in shock initiation
of heterogeneous solid explosives. Plastic deformation ina solid is an efficient way
to convert mechanical energy to thermal energy and, in most crystalline solids, plas-
tic flow occurs inhomogeneously along crystallographic slip planes, called shear
bands. Significant localised temperature rises, leading to‘hot-spot’ formation, can
occur due to this deformation as discussed by Afanasev and Bobolev [12], and Win-
ter and Field [13]. By analysing recovered damaged samples,Howe et al. [14]
observed shear zones in heavily confined explosive targets subjected to shock im-
pact. Since there was little or no decomposition in their experiments on TNT and
Composition-B, it was unclear whether the observed shear damage would have con-
tributed to the initiation process. Using high speed photography and heat sensitive
film techniques, Fieldet al. [15] [16] have observed shear driven plastic defor-
mation and associated ignition in PBX’s and PETN crystals indrop-weight impact
tests. Further experimental evidence on initiation resulting from shear induced plas-
tic flow has recently been provided by Plaksinet al. [17] using their high resolution
optical probe technique. In addition to the experimental observations, Frey [18]
attempted to calculate the temperature rise in shear bands.In TNT explosive, ‘hot-
spot’ temperatures in excess of 1000 K in times<1µs, and where the shear band
(heated region) is∼1µm wide were calculated. These conditions are sufficient for
ignition to occur in TNT explosive charges.

A dislocation description of localised shear deformation has been developed by
Coffey and Armstrong [19] [20] to describe initiation in crystalline explosives by
shock or impact. Although they showed that dislocation pile-ups can produce sig-
nificant localised heating, Field [5] questioned whether such ‘hot-spots’ reach the
critical parameters to cause ignition during the impact or shock loading of explo-
sives. Experiments performed by Mohanet al. [21], in which single crystals of
RDX and PETN were subjected to particle impact, showed evidence of dislocation
pile-up, however, ignition did not take place.

Frictional heating between sliding explosive grains and/or grit particles is an-
other possible source of ‘hot-spot’ formation as first described by Bowden and co-
workers, and whose work is summarised in [4]. To study initiation by friction,
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Chaudhri [22] devised an experiment in which a truncated conical striker penetrates
a column of the test explosive. The striker picks up a layer ofadhering crystals as
it enters and drags them along into the compact, causing frictional heating between
the adhered particles and the other explosive crystals. In Chaudhri’s experiments, it
was found that the temperature rise in a compact of lead azotetrazole due to friction
during the penetration was sufficient to cause ignition. Chidesteret al. [23] de-
scribed experiments to examine the role of frictional work on explosive initiation.
In flat plate impact experiments on the HMX-based explosive LX-10, the conditions
of impact (0.3 - 1.0 GPa) were less than that required for direct shock initiation but
still resulted in violent events. The role of friction in theinitiation of explosives has
also been dicussed by Frey [18], who formulated a model to describe the tempera-
ture rise which can occur at sliding interfaces in an explosive.

The fracture of explosive crystals is also considered as another possible ‘hot-
spot’ mechanism leading to explosive initiation [24]. Using high speed photo-
graphic techniques, Chaudhri [22] examined initiation by fracture on single crystals
of silver azide, lead azide, and PETN. These studies showed that fast fractures (trav-
elling at several hundred metres per second) were unable to produce the initiation
of a fast reaction in the explosive samples. However, an increase in explosive sen-
sitivity to shock loading was observed by Swallowe and Field[25] by the addition
of polymers that fail catastrophically by fracture or localised shear.

Direct experimental evidence of ‘hot-spots’ in shock compressed explosives is
very scarce. Edenet al. [26] saw some evidence of reacting ‘hot-spots’ for weak
shocks into a heterogeneous explosive. Using high-speed photographic techniques,
they observed small areas of local darkening in the explosive material behind a
shock of sufficient strength. These areas did not grow (at a sufficient rate) nor
multiply in time at a given location in the explosive, but as the pressure increased,
more and larger areas were created. These were deduced to be areas of localised
reaction in the explosive, or ‘hot-spots’, which failed to propagate. Bourne and Field
[27] have studied the collapse of ‘large’ gas cavities (> 1 mm in diameter ) within a
reactive material as the result of the passage of relativelyhigh amplitude (< 3.5 GPa
) shocks. They concluded that the two main causes for ignition are hydrodynamic
(compressive) heating in the region impacted by the jet, andadiabatic heating of the
trapped gas. They estimated that temperatures in excess of 1000 K were achieved
in the adiabatically compressed gas. On a similar theme, theexperimental study
of cavity collapse leading to explosive ignition has been discussed in a number of
other paperse.g.[28] [29].

Experiments such as those of Bourne and Field [27] provide useful insight into
viable mechanisms for ‘hot-spot’ formation, however the typical size of defects in
heterogeneous explosives are much less than 1 mm (usuallyµm size). Observa-
tions of the elementary ‘hot-spot’ processes occuring around microscopic defects in
shocked heterogeneous explosives, within very short (order-µs) timescales, presents
obvious great difficulties and is beyond current experimental capabilities. Areas of
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uncertainty are therefore: (i) the nature and size of ‘hot-spots’ formed by shock
compression of the explosive material, (ii) the statistical nature of the ‘hot-spot’
distribution, (iii) cooling effects due to heat conduction, and (iv) the description of
the evolution of the reaction front from the ‘hot-spot’ sites.

Although experimental studies of shock initiation typically have not provided di-
rect information on the mechanisms for ‘hot-spot’ formation and subsequent chem-
ical energy release, experimental observations have however shown that explosive
initiation is strongly dependent on the explosive microstructure (porosity, grain size,
crystal orientationetc), initial temperature, and the applied shock profile. The ex-
perimental studies conducted on shock initiation of heterogeneous solid explosives
typically provide data on the macroscopic or bulk response of the explosive.

Early experimental studies were restricted to characterising explosive shock ini-
tiation by the distance (or time) required for a sustained input shock to achieve
detonation, usually termed the run-distance to detonation. Run-distance to detona-
tion data as a function of input pressure was obtained from Wedge Test experiments
using optical techniques [3] [30]. In a Wedge Test the explosive sample is subjected
to a sustained planar shock of a prescribed pressure. As the reaction proceeds, the
shock velocity in the sample increases until, very late in the run to detonation pro-
cess, the shock velocity accelerates rapidly to reach detonation velocity. For a given
explosive, the tests are performed at various input pressures. The derived shock
initiation data is then presented in the form of Pop-Plots [31] which express the
relationship between the input shock pressure and the run-distance to detonation as
measured from the input boundary. However, such experiments give no information
on the growth of reaction in the body of explosive before detonation is attained.

For short duration shock loading, Walker and Wasley [32] introduced the con-
cept of a critical imparted energy, related to the initial shock amplitude and duration,
which is constant for a given explosive. If the shock transmitted into the explosive
exceeds this critical value, an initiation is triggered which leads to detonation pro-
vided there is sufficient explosive present. The boundary between the go and no-go
situations corresponds to a point on the initiation threshold curve. Just above the
threshold curve, the shock grows to detonation despite the following rarefaction,
but the run to detonation is extended compared with a sustained shock of the same
initial shock strength. Just below the threshold curve, theshock attenuates and reac-
tion eventually dies out. A similar intiation criterion forshort pulses has also been
developed by James [33]. The type of initiation threshold experiments described
in [32] and [33] also give no information on the reaction history in the shocked
material.

More recently, the development of in-material gauging techniques has enabled
the shock initiation response of explosives to be characterised in greater detail [34]
[35]. Using embedded gauges, simple one-dimensional gas-gun experiments, where
projectiles are fired at explosive targets to deliver well defined shocks into the sam-
ples, are now routinely performed to provide reaction history data on explosives of
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interest. Wackerleet al. [34] described the use of embedded manganin pressure
gauges to provide information on reaction inside samples ofthe HMX-based ex-
plosive PBX9404. On a similar theme, the electromagnetic gauging technique of
Vorthmanet al. was first described in [35]. Since this time their gauging technique
has been used extensively to provide high quality data from inside shocked, reacting
explosives from gas-gun experiments [36] [37].

The experimental set-up for a gas-gun shot diagnosed using electromagnetic
particle velocity gauges is illustrated in Figure 1.4. Whenthe impactor strikes the
explosive sample, a well defined planar shock is generated which starts the initia-
tion process. The particle velocity gauges detail the growth of the bulk reaction as
a function of time at different (Lagrangian) particle positions in the explosive sam-
ple. Typical of data obtained from the experiments, Figure 1.5 shows the particle
velocity gauge data for a 5.2GPa sustained shock into the HMX-based explosive
PBX9501 [36]. Here, the gauges are located at approximately0.5mm intervals in
the explosive sample. The first gauge is located on the impactsurface, and records
the input shock to the target. It can be seen that the wave is flat-topped early on, but
after∼0.5µs, the particle velocity at this position begins to gradually decrease, indi-
cating reaction is occuring in the body of the explosive and decelerating the impact
surface. The other gauge profiles show a small increase in amplitude at the shock
front, and a large following reactive hump that builds with depth. If the impact
pressure is high enough, as in this case, then the following reactive hump eventually
catches up with the shock front and detonation occurs very shortly thereafter. If the
target material was inert, then the sustained input wave would propagate unchanged
through the sample. Thus, the build-up in particle velocityis due to reaction in-
side the explosive, and stronger reaction is produced at greater depths as the wave
builds towards detonation. This figure shows an example of the shock to detonation
transition in an explosive where, in this case, detonation occurs at a run-distance
of ∼5mm into the explosive sample. These features, a small amount of growth in
the shock front and a large amplitude following wave, have been seen in the shock
initiation of a range of heterogeneous explosivese.g. [38]. This type of data has
proved invaluable for: (i) understanding the processes involved in shock initiation
of heterogeneous solid explosives, and (ii) calibrating reaction rate models.

Recently, a suite of gas-gun experiments diagnosed with electromagnetic par-
ticle velocity gauges have been fired to examine the shock initiation response of
the HMX-based explosive EDC37 [38]. The response of the explosive to sustained
single shocks, thin pulse shocks, and double shocks was studied. In the case of the
double shock compression of EDC37, the initiation and run-distance to detonation
was significantly modified by preshocking the explosive. This is commonly termed
‘shock desensitisation’, where a weak precursor wave renders the explosive less
sensitive to a following stronger shock, and has been observed in other HMX-based
explosives [39]. On a similar theme, ‘dead pressing’ has been observed in multiple
shock compression of the TATB-based explosive LX-17 [40]. In their experiments,
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which were diagnosed using embedded pressure gauges, a weakinitial shock, which
is below the initiation threshold for the explosive, is reflected from a rigid boundary.
The initial shock wave removed the ‘hot-spots’ sites available to the reflected wave,
such that it simply propagated as an inert wave and did not transition to detonation
as would have been expected at the pressure of the reflected wave alone.

Many experimental studies have also examined the effects ofvarying the phys-
ical properties of the explosive material, and initial temperature. Factors that have
been shown to affect the shock initiation and sensitvity of heterogeneous solid ex-
plosives are: initial density (initial porosity), crystalor grain size distribution, crys-
tal orientation, and initial temperature of the explosive.The early experiments of
Campbellet al. [3] showed that the time required for a given initial shock toreach
detonation increased with increasing density. The effectsof density on growth to
detonation were examined in greater detail for the explosive PETN by Stripeet al.
[41]. Low density samples were found to be more shock sensitive than high density
samples. Gustavsenet al. [36] observed significant differences in Pop-Plot data for
the HMX-based explosive PBX9501 with initial density. At the same input pres-
sures, the run-distances to detonation decreased with decreasing density (increasing
porosity) showing that lower density material is more sensitive to initiation.

Experimental work on crystal or grain size effects in heterogeneous explosives
is summarised by Moulard [42] [43] and Chicket al. [44]. The general findings are
that in terms of the shock to detonation transition (Pop-Plots), small grains inhibit
ignition at low pressures while larger particles are betterat promoting ignition. At
higher pressures, such as in propagating detonation, it is adifferent story. Here,
larger grains are less sensitive than smaller grains. Moulard postulated that at high
pressures the ignition phase takes a negligible time, but that growth was easier for
fine material due to the larger surface area and ‘hot-spot’ density. In contrast at
lower pressures the ignition takes a significant amount of time but larger ‘hot-spots’
are more efficient and set the growth going sooner. In summarising detonation
experiments on the TATB-based explosive PBX9502, Hillet al. [45] concluded that
finer grained material was more sensitive; keeping the density constant, a decrease
in particle size resulted in an increase in the detonation velocity. There was also
a corresponding correlation between grain size and critical diameter. However, in
relatively low pressure experiments examining the shock todetonation transition in
PBX9502, Gustavsenet al. [46] observed that the particle size distribution has a
negligible effect on shock initiation behaviour. Since it is generally believed that
particle size distribution influences initiation behaviour by determining the size and
number density of ‘hot-spots’, then these findings are surprising.

The shock sensitivity and detonation behaviour of heterogeneous solid explo-
sives is known to vary with temperature, with sensitivity increasing with initial tem-
perature. There are many examples in the literature, see forexample [45] and [47].
Studies of initiation in single crystal explosives, such asHMX, RDX and PETN,
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has shown that crystal orientation can affect shock sensitivity [48]. Initiation mech-
anisms in such single crystals are dislocation pile-up and shear heating.

1.4 Continuum-Based Shock Initiation Models

Complementing the experimental developments and observations, a great deal
of effort has been expended over many years in developing shock initiation models,
also commonly referred to as reactive burn models, to simulate initiation and growth
of reaction behaviour in heterogeneous explosives. Here, the review and discussion
of shock initiation models concentrates mainly on those models which have been
key developments in the field, and those models which are mostwidely used.

Based on the degree of sophistication of the models, for example the physical
and chemical phenomena they attempt to explicitly take account of in the model
description, the review is split into two classes of model: (i) continuum-based mod-
els, and (ii) physics-based or mesoscale models. Continuum-based shock initiation
models give only a generalised description of the underlying physical and chemical
processes involved, and their reaction rate equations are simple algebraic relation-
ships, usually in terms of pressure and/or temperature, which model the ‘hot-spot’
and grain burning contributions implicitly. Physics-based or mesoscale models at-
tempt to explicity take account of the fundamental processes involved in shock ini-
tiation, e.g. formation and ignition of ‘hot-spots’, usually by taking one particular
‘hot-spot’ mechanism and modelling its behaviour in detail. The continuum-based
models are described below, while the physics-based or mesoscale models are de-
scribed in the next section.

Continuum-based reactive burn models first appeared in the late 1970’s and
early 1980’s, and well known models of this era include the Forest-Fire model [6],
the Lee and Tarver Ignition and Growth model [49], and the Johnson-Tang-Forest
(JTF) model [50]. Due to the computing facilities availableat the time, these models
had to be relatively simple. Forest Fire [6] is a reaction rate model that predicts the
response of explosives subjected to sustained single shocks, where the rate of de-
composition is expressed as a simple polynomial in pressurelimited by a depletion
term. The model is purely phenomenological and relates eachexplosive’s reaction
rate to Pop-Plot data and the partially reacted Hugoniot. Model calibration is thus
obtained by fitting to Pop-Plot data. The Forest-Fire model assumes that the reac-
tion of the explosive takes place across the shock front which is not in accordance
with experimental data. In addition, with the reaction ratebeing solely dependent
on local pressure, the model cannot account for the phenomenon of ‘shock desensi-
tisation’ [51].

The Lee-Tarver Ignition and Growth model [49] gives a generalised descrip-
tion of the underlying physical and chemical processes involved in shock initiation
and, based on the experimental evidence, the reaction rate laws in the model are



CHAPTER 1. INTRODUCTORY CHAPTER 12

divided into an ignition phase where ‘hot-spots’ are created as a result of the shock
compression, and one or more growth phases where the build-up of chemical reac-
tion occurs from the ignitied ‘hot-spots’. The original version of model divided the
initiation process into an ignition phase and a single growth phase [52], while the
model was later modified by the addition of an extra growth term to enable short
pulse duration shock initiation experiments to be accurately modelled [53]. Since
the model is readily available, it has been embedded in many hydrocodes and has
been parameterised for many explosives. Hence, the Lee-Tarver model is the most
popular reactive burn model in use today.

The Lee-Tarver model has been successful at predicting run-distance to det-
onation (Pop-Plot) data [49], in-material manganin pressure gauge measurements
examining growth of reaction in shock initiated explosives[52], corner turning data
[52], short pulse shock initiation data [53], and detonation propagation and failure
[54]. However, for a given explosive, there are numerous examples in the literature
of reaction rate parameters being continually re-calibrated to fit an ever increas-
ing range of data covering different phenomena, and/or different sets of parameters
being used to model different phenomena. For example, different sets of coeffi-
cients for the TATB-based explosive PBX9502 have been used to model the shock
to detonation transition [55], and corner turning experiments [56]. In addition, in
modelling the shock initiation of the TATB-based explosiveLX-17 at temperature
extremes, different sets of parameters were required to account for the explosive
response to initial temperature [47]. Thus, there are question marks over the ability
of the Lee-Tarver model to predict a wide range of phenomena with a single set of
parameters, or to predict experiments outside its fitting regime. The main deficiency
of the Lee-Tarver model, or any pressure-dependent reaction model, is that there is
no mechanism to predict explosive behaviour under double shock loading, in partic-
ular the phenomena referred to as ‘dead pressing’ [40] and ‘shock desensitisation’
[38] [51].

The JTF model [50] attempts to include an improved description of the ‘hot-
spot’ ignition phase in describing the shock initiation of heterogeneous explosives.
The model partitions the explosive into ‘hot-spots’ and thebalance, or remainder, of
the explosive. Although the authors declare that the model is an explicit ‘hot-spot’
model, the ‘hot-spots’ are defined only in a general way: there are sites within the
explosive that are susceptible to mechanical simulation and have a higher local tem-
perature than the bulk material. The ignition phase is basedon a thermal explosion
where the induction time is a function of temperature. Here,the temperature rep-
resents an average ‘hot-spot’ temperature that is dependent on the pressure of the
incident shock wave. The growth phase in the model, describing the burn of the bal-
ance of the explosive, is represented by a polynomial in pressure that is very similar
to the Forest Fire [6] reaction rate. The main advantage of the JTF model is that
the ignition process includes temperature as an explicit parameter. In the model,
assuming a double shock process, additional heating of the ‘hot-spot’ (created by
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the first shock) due to the second shock is calculated as isentropic compression.
Thus, the model has the potential to describe the phenomenonof desensitisation by
preshocking. The model has been shown to match sustained shock initiation data
and the essential features of shock desensitisation are reproduced by the model [50].

Following Bowden and Yoffe [4], the general consensus is that reaction rates
are largely dependent on temperature and not pressure. To account for this, Partom
[57] [58] developed a temperature-dependent reactive burnmodel based on ignition
at ‘hot-spots’ and propagation of burn surfaces. The reaction rate in the model is
dependent on the (bulk) temperature of the unreacted explosive, and the model co-
efficients are calibrated to Pop-Plot data. For the TATB-based explosive PBX9502,
the model is able to reproduce the Pop-Plot, detonation propagation data, and cor-
ner turning data [58]. Although based on temperature, the model is not predictive
since the reaction rate had to be modified to account for the phenomenon of ‘dead
pressing’ in insensitive high explosives [59].

The ‘classical’ models discussed above were developed at a time when experi-
mental data on the shock initiation of heterogeneous explosives came mainly from
Wedge Test experiments [3] [30]. These experiments give therun-distance and run-
time to detonation from single sustained input shocks, leading to the Pop-Plot [31],
but give no information on the reaction history behind the shock before detonation
is attained. Since this time, advances in diagnostic techniques, in particular the de-
velopment and use of robust in-material gaugese.g. [35], has revealed new data
on the growth of reaction inside shocked decomposing explosives [36]. The newly
acquired in-material gauge data has lead to new ideas and hypotheses being put for-
ward regarding the shock initiation of heterogeneous solidexplosives [60]. These
ideas and hypotheses, coupled with the deficiencies of classical shock initiation
models, lead to the development of the CREST reactive burn model [61].

The continuum-based CREST model [61] is based on the conclusions of exper-
imental observations. Analysis of high quailty, in-material, particle velocity gauge
records shows that, at least to first order, the reaction ratedepends on shock strength
and not on the local thermodynamic state (e.g. pressure and/or temperature) [60].
The best measure for shock strength for use in hydrocodes is afunction of entropy of
the shocked, non-reacted explosive, and hence the model hasan entropy-dependent
reaction rate. CREST needs in-material gauge results in order to calibrate the re-
action model coefficients, coupled with both an unreacted and a reaction products
equation of state in order to calculate explosive behaviour. At present, the model is
giving promising results in simulating a wide range of shockinitiation phenomena
[61] [62].

The criticisms that can be labelled at continuum-based models are summarised
below. Although reaction is said to be temperature-driven,the majority of models
use pressure-dependent reaction rates. Although some aspects of shock initiation
can be adequately described by pressure-dependent reaction ratese.g.the Pop-Plot,
such reaction rates have proved problematic in trying to match in-material particle
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velocity histories behind behind different shock inputs from gas-gun experiments
[63]. In addition, as will be shown in Chapter 2 of this thesis, pressure-based models
have no mechanism to describe the phenomenon of shock desensitisation [38] [51].

The reaction rate expressions in continuum-based models depend upon the av-
erage or bulk conditions in the reacting explosive mixture.Calculation of tempera-
ture, the variable of preference for some reaction rate models due to its presence in
Arrhenius theory, requires knowledge of the specific heat capacity which is poorly
known for most explosives. In any case, it is known that reaction rates in heteroge-
neous explosives are not controlled by bulk temperature or pressure, but are instead
driven by the local ‘hot-spot’ temperatures. In addition, the reaction rate models
usually contain a relatively large number of fitting constants that have to be cali-
brated against experimental data, and it has become apparent that parameters fitted
to a limited set of experimental results have to be adjusted to fit different data and/or
model different phenomena.

The majority of the continuum-level models date back to the 1970’s and 1980’s.
Since this time new experimental data, making use of advances in diagnostic tech-
niques, has been obtained, and new ideas and hypotheses on shock initiation have
emerged. Analysis of recently acquired in-material particle velocity gauge data
from gas-gun experiments has revealed a number of interesting correlations [60].
These findings lead to the development of CREST which is showing promise as a
predictive model, as will be shown in Chapter 3 of this thesis. However, continuum-
based models do not address the fundamental processes involved in shock initiation.
For example, no attempt is made to explicitly model any of theproposed physical
mechanisms leading to ‘hot-spot’ formation in a heterogeneous explosive. Instead
they give only a generalised description of the underlying physical and chemical
processes involved, and their reaction rate laws are simplemathematical expres-
sions that approximate the ‘hot-spot’ mechanisms and subsequent growth of reac-
tion behaviour. This could potentially limit their predictive capability.

For continuum-based reactive burn models, a completely newset of experimen-
tally defined parameters will usually be required if an explosive formulation is var-
ied in any way, for example, if the particle size distribution, porosity, or binder
material is changed. Since it employs a porosity-dependentunreacted equation of
state, CREST is the only continuum-based model that can takeaccount of the effect
of porosity on an explosive’s response with one set of parameters [62]. However, to
predict differences in explosive behaviour due to particlesize effects, the reaction
rate coefficients in CREST would have to be re-fitted to match experimental data.
To predict the effect of changes in explosive morphology on shock initiation and
detonation behaviour so-called physics-based or mesoscale models are required.
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1.5 Physics-Based Shock Initiation Models

The shock initiation and detonation behaviour of heterogeneous solid explosives
can be affected by a number of properties of the explosive, namely crystal or grain
size, pore size and porosity (which may not be wholly independent of grain size),
binder material, and ambient temperature. Without advances in the modelling the
affect of changes in these initial explosive conditions canonly be demonstrated by
a battery of experiments. However, with recent advances in computing technology
e.gTeraflop and Picoflop computers, coupled with modern hydrocodes that exploit
modern numerical methodse.g.adaptive mesh refinement, the opportunity exists to
develop improved models of shock initiation behaviour thatcan address some of the
present shortcomings in the modelling. Below, a number of physics-based models,
sometimes also called mesoscale models are reviewed, with emphasis placed on
describing models that have been implemented in hydrocodes.

Shock initiation models that are more sophisticated and physically realistic than
their continuum-based predecessors have recently been developede.g. AMORC
[64], the Cook-Haskins CHARM model [65], and the model of Bennett [66]. These
models explicitly describe the dynamical formation of ‘hot-spots’ in an explosive,
and their subsequent evolution with time, based on one particular process, that of
the collapse of pores in an explosive material. Pores are prime candidates as poten-
tial ‘hot-spot’ sites as numerous experimental studies have shown that increasing
porosity can make an explosive material more sensitive to shock initiatione.g.[36].
However, pore collapse leading to the formation of ‘hot-spots’ in an explosive ma-
terial is treated differently in these models. In the AMORC model [64], ‘hot-spots’
are created by viscoplastic flow in the vicinity of collapsing voids. In the Cook and
Haskins Model [65], ‘hot-spots’ are formed as a result of theadiabatic compression
of gas-filled bubbles, whereas in the Bennett model [66], pore collapse is modelled
with aP−α model [67], where massless voids represent the initial pores. All three
models assume spherical pores which collapse symmetrically, and include explicit
heat transfer between the ‘hot-spots’ and cooler portions of the material.

The AMORC model [64] effectively consists to two models, developed and cal-
ibrated separately; one devoted to initiation of the reaction by the ‘hot-spots’ based
on viscoplastic pore collapse, and the other to the explosive grain burning which
is modelled via a pressure-dependent burning law. It is claimed that the model is
based on an explicit description of the microstructure of the explosive and has very
few fitting parameters. AMORC has been implemented into a one-dimensional hy-
drocode, and has been successful at modelling pressure histories from in-material
manganin pressure gauges in shock to detonation experiments, the effect of ini-
tial temperature on sensitivity, and the influence of microstructure on explosive re-
sponse in terms of pore and grain size in a number of TATB-based compositions
[64]. The model is also able to describe the phenomenon of desensitisation by
preshocking in HMX, TATB, and HMX/TATB compositions [68].
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The Cook-Haskins model [65] is an ignition and growth model for shock initia-
tion of explosives based on temperature-dependent Arrhenius chemical kinetics. In
the model, heterogeneous effects are accounted for via a ‘hot-spot’ ignition model
based on gas-filled pore collapse. To enable simulations on problems of interest to
be carried out, CHARM has been implemented as a separate equation of state within
the DYNA2D hydrocode [69], and the model successfully applied to fragment im-
pact data [65]. To account for the fact that adiabatic compression of gas bubbles
may not be the only important mechanism in describing ‘hot-spot’ formation, the
model was subsequently improved to include a cumulative damage approach for
‘hot-spots’ [70]. This models straining in the collapsing shell of explosive material,
specifically to account for ‘hot-spot’ phenomena occuring as a result of low velocity
impactse.g.shear heating, viscoplastic flowetc.

The model of Bennett [66] is based on the Void-Inert-Reactive (VIR) model
[71], previously applied to condensed-phase reactions in powder mixtures, but mod-
ified to deal with heterogeneous explosives. The model uses the energy deposited
from collapsing pores in a heterogeneous explosive as a ‘hot-spot’ ignition source
for the material, where the dynamic pore collapse process isdescribed by a P-α
model [67]. The model was built into the DYNA2D hydrocode [69], and was able
to match particle velocity gauge data on PBX9501 explosive from a single gas-gun
experiment of the shock to detonation transition [66].

There also exists a number of explicit ‘hot-spot’ models based on viscoplastic
pore collapse that have been developed and described in the literature [72]-[73]. All
these models use the approach of Carroll and Holt [8] for the study of pore collapse
effects in explosive material. These models were principally developed as stand-
alone models and were not incorporated into hydrocodes. Themodel of Khasainov
[72] has since been implemented into the Autodyn hydrocode [74], and the two-
dimensional Eulerian code EDEN [75]. These viscoplastic ‘hot-spot’ models are
discussed in further detail in Chapter 5.

To date, no theory of hot-spots has attempted to cover all of the different ‘hot-
spot’ phenomena, and most models have isolated the pore collapse mechanism,
as described above, and have modelled ‘hot-spot’ ignition from this perspective.
Clearly such an approach disregards the details of the otherphysically realistic ‘hot-
spot’ mechanismse.g. shear banding, friction between grainsetc, but this is not to
deny the physics of such mechanisms. To allow for the fact that ‘hot-spots’ may be
generated as a result of a number of different mechanisms, a number of so-called
statistical ‘hot-spot’ models have been developed [76] [77].

The statistical ‘hot-spot’ model of Nicholls [76] has been built into the ALE3D
hydrocode [78]. Their approach relies on an assumption of the size and number
density of ‘hot-spots’ in shocked compressed material as the starting point for the
calculations. Such information could come from the resultsof large scale mesoscale
simulations of an ensemble of the explosive consisting of the pore size distribution,
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grain size distribution, binder, and other solid inclusions. These types of simula-
tions have been performed by Baeret al. [79] [80]. However, much ‘data mining’
needs to be performed to extract the relevent ‘hot-spot’ information required as in-
put to any model. In the model of Hamateet al. [77], rather than keeping track
of distributed ‘hot-spots’ as in [76], an aggregated ‘hot-spot’ concept is used which
represents the overall effects of the distributed ‘hot-spots’. The model has been
implemented into the CASH hydrocode [81] developed at Los Alamos National
Laboratory, and is able to reproduce the effect of grain sizeon Pop-Plot data in
RDX-based explosives [77].

1.6 Hydrocodes

To enable the modelling of practical shock initiation problems to be performed,
any developed reactive burn or shock initiation model must be incorporated into
so-called hydrodynamics codes, usually shortened to hydrocodes. Hydrocodes are
large computer programs used to simulate shock hydrodynamics problems [82].
They differ from Computational Fluid Dynamics (CFD) codes in that they must be
applicable to solid materials as well as to liquids and gases. Hydrocodes solve the
equations governing unsteady material dynamic motion in terms of the conservation
of mass, momentum, and energy. In order to obtain a complete solution, in addition
to appropriate initial and boundary conditions, it is necessary to define a further re-
lation between the flow variables. This can be found from a material model which
relates stress to deformation and internal energy (or temperature). In most cases,
the stress may be separated into a uniform hydrostatic pressure and a stress deviator
associated with the resistance of the material to shear distortion. Then, the relation
between the hydrostatic pressure, the local density (or specific volume) and local
specific internal energy (or temperature) is known as the equation of state. Consti-
tutive strength models are used to represent the material resistance to shear distor-
tion. Various forms of equation of state and material strength models are usually
included in hydrocodes.

Hydrocode programs use a discretised mesh in one, two, and three dimensions,
to model the materials being evaluated. Spatial discretisation can be performed in a
Lagrangian, Eulerian, or Arbitrary Lagrangian Eulerian (ALE) setting. To obtain a
numerical solution of the governing flow equations, finite difference, finite element,
or finite volume techniques are commonly used [83]. In general, as the dimensional
degrees of freedom required by the problem increase, so do the computational re-
sources needed to run the problem.

The two main types of hydrocode in common use today are Lagrangian and
Eulerian [84]. Lagrangian codes solve the governing flow equations assuming a
Lagrangian frame of reference, where the computational mesh moves with the ma-
terial flow. Eulerian codes solve the governing equations inthe Eulerian frame of
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reference, the mesh remaining fixed and the material flowing through it. Both meth-
ods have strengths and weaknesses and neither is suitable for all applications. In the
Lagrangian approach, material interfaces and features of the flow, such as shocks,
are well defined. The major disadvantage of Lagrangian codesis that if excessive
material movement occurs, the numerical mesh may become highly distorted lead-
ing to an inaccurate and inefficient solution. Further, thismay lead to a termination
of the calculation. In contrast, Eulerian codes can cope with severe distortion since
material moves through the mesh, however material interfaces and features of the
flow are not tracked as accurately as in a Lagrangian code.

An ALE hydrocode can be considered as an attempt to always runwith the opti-
mum mesh, exploiting the advantages of both the Lagrangian and Eulerian methods
by using the most appropriate description for different parts of a problem. Although
ALE schemes have been in existence for many years [85], most of the methods have
ignored the complexities of material interfaces. These methods can be regarded as
Simple ALE or SALE schemes as they impose the restriction that the interfaces
must remain Lagrangian. This approach may not be adequate for all applications,
and recent work has attempted to address some of the deficiencies of the traditional
ALE methods [86].

Adaptive mesh refinement (AMR) is a technique allowing the level of mesh
resolution to vary significantly across the computational domain and to dynamically
adjust to the evolving solution by placing meshes in regionsof interest, for example,
where the solution is changing rapidly [87]. The aim is to focus high resolution only
where it is needed and, thus, obtain a level of accuracy comparable with existing
(non-AMR) hydrocodes but with less demand on computationalresources. This can
be applied to Lagrangian, Eulerian, or even ALE codes. Reactive burn modelling
is ideally suited to AMR hydrocodes. Accurate resolution ofthe reaction zone in a
block of shock initiated explosive requires many zones/mm.When it is considered
that, for many practical problems of interest, the dimensions of the explosive region
can be many centimetres then calculations of this type can bevery challenging on
non-AMR codes; having to mesh the entire computational domain with uniformly
fine zones is inefficient and the computational costs could beimpractical.

The type of hydrocode to use for practical problems will usually be chosen on a
problem by problem basis. Thus, where possible, any reactive burn model should be
implemented in a range of different types of hydrocodes. In developing new mod-
els, consideration should also be given to the ease with which the model(s) can be
implemented into the different types of codes. For example,model implementation
in Lagrangian and Eulerian codes will be more straightforward than in ALE codes.
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1.7 Thesis Outline

This thesis describes a number of aspects of the mathematical and numeri-
cal modelling of explosive shock initiation. In Chapter 2, the widely popular,
continuum-based, pressure-dependent Lee-Tarver reactive burn model is consid-
ered. For evaluation purposes, the model is implemented andvalidated in a one-
dimensional hydrocode. A critique of the model is given, including discussions re-
garding the predictive capability and limitations of the model. The main deficiency
of pressure-dependent models is that they contain no mechanism to predict the phe-
nomenon of shock desensitisation. Consideration is given as to how to model the
effects of shock desensitisation within the confines of the Lee-Tarver model, and
a simple but physically realistic desensitisation model isdeveloped and described.
The model is then applied to available experimental data to examine its suitability.

Chapter 3 concentrates on a number of aspects of the continuum-based CREST
reactive burn model. For completeness, the background to CREST and an overview
of the model is given. The implementation of the model in a one-dimensional,
and a number of two-dimensional hydrocodes is then described in detail, and the
various implementations validated. During the hydrocode implementation and use
of CREST, it was found that the move to an entropy-dependent reaction rate in-
troduces a number of computational problems not associatedwith pressure-based
models. These problems are described, and where possible solutions to the prob-
lems found or identified. The predictive capability of the CREST model is then
more rigorously examined by application of the model to detonation propagation
data.

The application of a least squares solution approach for determining run-distances
and run-times to detonation, using a method devised at Los Alamos National Labo-
ratory (LANL) for fitting shock trajectory data, is described in Chapter 4. The least
squares solution method is validated against run to detonation distances quoted by
LANL for sustained single shocks into an HMX-based explosive. The method is
then applied to shock time of arrival data from hydrocode calculations using the
CREST model to see how well, or otherwise, CREST fits experimentally derived
Pop-Plot data.

Explicit modelling of the formation and initiation of ‘hot-spots’ is described in
Chapter 5, where the mechanism for ‘hot-spot’ formation is elastic-viscoplastic pore
collapse. The chapter is essentially split into two parts. The first part details direct
numerical simulation work performed to support the development of a simplified
‘hot-spot’ initiation model. In the second part, a simple ‘hot-spot’ initiation model is
developed and described. Results from the direct numericalsimulations and simple
model are presented, and the results obtained are discussedin terms of whether they
are consistent with observations, and commonly held ideas,regarding the shock
initiation of heterogeneous solid explosives.

The conclusions are given in Chapter 6, along with a discussion of future work.
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Figure 1.1: Microstructure of a heterogeneous solid explosive.
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Figure 1.2: Illustration of the microstructure of a heterogeneous solid explosive.
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Figure 1.3: Illustration of ‘hot-spot’ formation and growth of reaction in a hetero-
geneous solid explosive (the darkened areas represent material that has burned).



CHAPTER 1. INTRODUCTORY CHAPTER 23

Lexan Projectile Explosive

TARGET

Particle Velocity
Gauges

Impactor

PROJECTILE

Figure 1.4: Experimental configuration for gas-gun shots.
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Chapter 2

Pressure-Dependent Lee-Tarver
Reactive Burn Model

2.1 Introduction

The continuum-based Lee-Tarver model for shock initiationof heterogeneous
solid explosives was first described in 1980 [49]. The model was developed on the
basis, backed by considerable experimental evidence, thatone can clearly distin-
guish two distinct phases during shock initiation, (i) an ignition phase where ‘hot-
spots’ are created due to shock compression, and the subsequent decomposition
of the explosive in these localised heated regions, and (ii)a growth phase where
the build-up of reaction occurs as the reaction grows outwards from the formed
‘hot-spot’ sites to consume the bulk of the material. Indeed, the model divides the
reaction rate into an ignition term and one or more growth terms, and hence is also
known as the Ignition and Growth model.

The ignition and growth concept in the Lee-Tarver model is represented by a
reaction rate equation whose terms are algebraic relationships in terms of density
and pressure. These terms model the ‘hot-spot’ and grain burning contributions of
shock initiation implicity. Many of the fitting constants inthe reaction rate equation
have physical meaning, for example related to viscoplastic‘hot-spot’ heating during
pore collapse, the outward burning of spherical ‘hot-spots’, and the inward burning
of explosive grains. However, the ignition term relates to single shock input, and
the growth terms are purely functions of pressure, which hasdisadvantages that are
discussed below.

At the time, the Lee-Tarver model provided a much improved capability for
modelling shock initiation problems of interest. Today, the Lee-Tarver model is
the most popular reactive burn model for use in hydrocode calculations of shock
initiation, as any review of conference papers in the field will testify. The model
is widely used because; (i) it is readily available, and hence has been embedded in

24
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many hydrocodes, and (ii) it has been applied to a relativelylarge number of explo-
sives. Initially, the Lee-Tarver model was successful at reproducing Pop-Plot data
for single sustained shocks. The Pop-Plot [31], named afterone of its originators,
represents the run distance to detonation in an explosive asa function of the input
shock pressure. However, as time has progressed the limitations of the model have
become apparent as new data, making use of advances in diagnostic techniques, has
become available, and also as the range of phenomena to whichthe model has been
applied has increased.

The main disadvantage of utilising a pressure-dependent reaction rate in any
model is that it has no mechanism to describe complex shock behaviour, for exam-
ple double shock compression of an explosive. Experimentally, it is well known
that the reaction rate behind a second shock travelling through preshocked material
is less than that behind a single shock of the same pressuree.g. [39] [51]. This
phenomenon is commonly referred to as ‘shock desensitisation’. It is important to
considerations of safety, as many accident scenarios for explosives confined by in-
ert materials involve double or multiple shock compressions of the explosive, and
hence needs to be represented in any model. For any reaction rate based on the local
pressure,e.g.Lee-Tarver, it is necessary to have an additional desensitisation model
to account for the double shock observations, otherwise thereaction rate behind the
second shock will be too strong, and detonation will occur much earlier.

In this chapter, the theory of the popular Lee-Tarver model is described. The
model has been implemented in PERUSE [88], a one-dimensional Lagrangian hy-
drocode which is used as a test-bed for developing, testing,and comparing different
reactive burn models. Results of calculations to validate the implementation of the
model are presented. A critique of the Lee-Tarver model is then given, including
discussions of the predictive capability and limitations of the model. To illustrate
one of the major deficiencies of pressure-dependent reactive burn models, the stan-
dard Lee-Tarver model is applied to double shock explosive experiments in which
the phenomenon of shock desensitisation has been observed.Consideration is then
given as to how to model the effects of shock desensitisationwithin the confines of
the Lee-Tarver model, and a simple but physically realisticdesensitisation model is
developed and described. This is then applied to a number of double experiments on
the HMX-based explosive EDC37 to further examine its suitability to model double
shock situations. Finally, the conclusions are given.
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2.2 Description of the Basic Model

2.2.1 Preamble

The Lee-Tarver Ignition and Growth model [49] consists of two basic elements:
(i) an EOS model for the reacting material, and (ii) a reaction rate model to gov-
ern the rate of explosive decomposition. In the model, the reacting material is as-
sumed to be a mixture consisting of two components, unreacted solid explosive
and gaseous reaction products, where the unreacted material and reaction products
are assumed to be in pressure and temperature equilibrium asthe explosive is con-
sumed. Separate Gruneisen-like equations of state in the Jones-Wilkins-Lee (JWL)
form [89] are used to describe the unreacted and gaseous phases, and ideal mixing
in which the volumes and energies of the components are additive is used.

The reaction rate model is based on an ignition and growth of reaction concept
for modelling heterogeneous solid explosives as they transition from unreacted ex-
plosive to gaseous reaction products. The rate equation contains a number of terms,
which are simple functions of local thermodynamic variables in terms of density
and pressure, to phenomenologically represent the ignition and growth processes
observed experimentally during the shock initiation of heterogeneous solid explo-
sives.

The various components of the Lee-Tarver model are described below where,
in the model equations, the subscriptss andg refer to the unreacted solid explosive
and gaseous reaction products respectively.

2.2.2 Equations of State

Separate temperature-dependent JWL equations of state areused for both the
unreacted explosive and the reaction products. For the unreacted explosive the pres-
sure is defined by,

Ps = R1 exp

(

−R5

ηs

)

+R2 exp

(

−R6

ηs

)

+R3ηsT (R3 = ωsCVs) (2.1)

and the energy given by,

εs =
R1

R5
exp

(

−R5

ηs

)

+
R2

R6
exp

(

−R6

ηs

)

+CVsT (2.2)

whereηs is the relative density of the unreacted explosive
(

= ρs
ρ0

)

, ρs is the density

of the solid phase material,ρ0 is the initial density,CVs is the specific heat capacity
of the unreacted explosive, T is the average temperature of the mixture, andR1,
R2, R3, R5, R6, andωs are constants.R2 is usually negative, allowing the solid to
undergo tension. This equation of state is fitted to available experimental Hugoniot
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data, andP = 0 whenηs = 1 at the initial temperature (generally 298K). Tarver
[49] states that this form has some advantages over forms based on a linear shock
velocity-particle velocity fit to Hugoniot data. The JWL equation of state can ac-
commodate the measured bulk sound velocity and the experimentally observed cur-
vature of shock velocity-particle velocity relationship at low shock pressures, while
still approaching the linear shock velocity-particle velocity data at higher shock
pressures.

For the gaseous reaction products, the pressure is defined by,

Pg = A exp

(

−XP1

ηg

)

+B exp

(

−XP2

ηg

)

+GηgT (G = ωgCVg) (2.3)

and the energy given by,

εg =
A

XP1
exp

(

−XP1

ηg

)

+
B

XP2
exp

(

−XP2

ηg

)

+CVgT (2.4)

whereηg is the relative density of the gaseous products
(

=
ρg
ρ0

)

, ρg is the density of

the gaseous phase material,ρ0 is the initial density,CVg is the specific heat capacity
of the gaseous products, and A, B,XP1, XP2, G, andωg are constants. The equa-
tion of state parameters for the reaction products are derived primarily from fits to
cylinder test expansion data. It is noted that the units of the energies,εs andεg, are
Mb cm3/ρ0 g.

2.2.3 Temperature Calculation

Temperature was originally introduced to include the possibility that the reac-
tion rate may be temperature-dependent, and to enforce the thermal equilibrium
assumption for the mixture. The total internal energy of themixture is defined by,

ε = (1−λ)εs+λεg+(1−λ)Q (2.5)

whereεs andεg are calculated from the unreacted and gaseous products equations
of state respectively,λ is the mass fraction of explosive that has reacted, and Q is
the chemical energy released from the unreacted material. As ε = ε(V ,T,λ) then
in incremental form,

dε =
Dε
DV

dV +
Dε
DT

dT +
Dε
Dλ

dλ (2.6)
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Therefore, the energy equation (2.5) written in incremental form is,

dε =

[

(1−λ)
Dεs

DV

∣

∣

∣

∣

T,λ
+λ

Dεg

DV

∣

∣

∣

∣

T,λ

]

dV

+

[

(1−λ)
Dεs

DT

∣

∣

∣

∣

V ,λ
+λ

Dεg

DT

∣

∣

∣

∣

V ,λ

]

dT

−
[

εs− εg+Q− (1−λ)
Dεs

Dλ

∣

∣

∣

∣

T,V

−λ
Dεg

Dλ

∣

∣

∣

∣

T,V

]

dλ (2.7)

Rearranging (2.7), the increment in temperature can be written as,

CVdT = dε−JdV +Hdλ (2.8)

where

CV =
Dε
DT

∣

∣

∣

∣

V ,λ
= (1−λ)

Dεs

DT

∣

∣

∣

∣

V ,λ
+λ

Dεg

DT

∣

∣

∣

∣

V ,λ

J =
Dε
DV

∣

∣

∣

∣

T,λ
= (1−λ)

Dεs

DV

∣

∣

∣

∣

T,λ
+λ

Dεg

DV

∣

∣

∣

∣

T,λ

H = − Dε
Dλ

∣

∣

∣

∣

T,V

= εs− εg+Q− (1−λ)
Dεs

Dλ

∣

∣

∣

∣

T,V

−λ
Dεg

Dλ

∣

∣

∣

∣

T,V

and T is the average temperature of the mixture. Since, from the first law of ther-
modynamics,

dε = −(P+q)dV (2.9)

equation (2.8) can be re-written as,

CVdT = −(P+J+q)dV +Hdλ (2.10)

The temperature change,dT, is calculated in two steps;

• that due to the hydrodynamicsdTH at constantλ

• that due to the chemical reactiondTB at constantV

such thatdT = dTH +dTB. The temperature change in the hydrodynamic and reac-
tion phases are respectively given by,

CVdTH = −(P+J+q)dV (2.11)

CVdTB = Hdλ (2.12)
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Evaluating the change in temperature with respect to time gives,

CV
DT
Dt

= −(P+J+q)
DV
Dt

+H
Dλ
Dt

(2.13)

and then,

CV
DTH

Dt
= −(P+J+q)

DV
Dt

(2.14)

CV
DTB

Dt
= H

Dλ
Dt

(2.15)

are the temperature changes with respect to time in the hydrodynamic and reaction
phases respectively.

2.2.4 EOS Model for Reacting Material

The reacting material is treated as a mixture of two co-existing phases consisting
of the unreacted solid explosive (reactants) and the gaseous reaction products. A
simple mixture law, in terms of the mass fraction reactedλ, is used to express the
relative volume of the mixture as the weighted sum of the relative volumes in the
separate phases, that is,

V = (1−λ)V s+λVg (2.16)

The mass fraction of explosive that has reacted,λ, goes from 0 to 1, whereλ = 0
represents no reaction (solid unreacted explosive), andλ = 1 represents complete
reaction (all products). A suitable equation of state is used for each phase, and
the pressures of the reactants and products are assumed to bein thermodynamic
equilibrium, that is,

P(V ,T,λ) = Ps(V s,T) = Ps(V s,T) (2.17)

where T is the average temperature of the mixture. The relative volumes of the
reactants and products are respectively given by,

V s =
1
ηs

=
β

(1−λ)η
(2.18)

Vg =
1

ηg
=

(1−β)

λη
(2.19)

whereη is the relative density, or compression, of the mixture
(

= ρ
ρ0

)

, ρ0 is the

initial density, ηs and ηg are the relative densities of the reactants and products

respectively, andβ is the (real) volume fraction occupied by the reactants
(

= V s
V

)

.
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The volume fractionβ goes from 1 down to 0, whereβ = 1 represents all reactants,
andβ = 0 represents all gaseous products.

In its inner workings, the model works in terms of the relative densities,ηs

andηg, rather than the relative volumes of the explosive in its solid and gaseous
states. The pressures in the reactants and products are therefore dependent on the
relative densities of the explosive in these two states, andfor pressure equilibrium
it is required that,

Ps(ηs,T)−Pg(ηg,T) = 0 (2.20)

Pressure equilibrium between the reactants and products isattained by adjustment
of the volume fractionβ, via an iterative technique, using equations (2.18), (2.19)
and (2.20), and is performed at fixedλ andT. Using equations (2.18) and (2.19),
(2.16) can be re-written as,

1
η

= (1−λ)
1
ηs

+λ
1

ηg
(2.21)

Adjustment ofβ facilitates changes in bothηs and ηg, however from (2.21) the
compression of the mixture,η, remains constant.

Newton’s iterative method is used to attain pressure equilibrium between the
reactants and products in equation (2.20). If the method does not converge within
a given number of iterations, then the slower Bisection method is used. Several
derivatives of the equation of state of the mixture are needed, both for evaluation of
CV , J, andH, and for sound speed calculations. All these derivatives are evaluated
at pressure equilibrium.

2.2.5 Reaction Rate Model

The reaction rate model is the most important aspect of any reactive burn model
since this controls the rate at which the explosive releasesits stored chemical energy.
The rate equations in the Lee-Tarver model are based on considerable experimental
evidence that the ignition of the explosive occurs in localised ‘hot-spots’, and that
the build-up of reaction occurs as the reaction grows outwards from these localised
ignited sites. Two different pressure-dependent forms forthe reaction rate have
been described [52] [53]. These are generically known as thetwo-term reaction
rate model, and the three-term reaction rate model respectively. In both cases, the
ignition and build-up sensitivities to shock are separatedout.

The original version of Lee-Tarver used a two-term reactionrate equation [52],
consisting of an ignition term and a single growth of reaction term,

dλ
dt

= I(1−λ)b(ηs−1−a)x +G1(1−λ)cλdPy (2.22)

ignition growth
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whereλ is the mass fraction reacted,ηs is the relative density of the shocked unre-
acted explosive,P is the local pressure, andI , a, b, x, G1, c, d, andy are constants.
The first term (ignition) approximates the formation of ‘hot-spots’ created during
shock compression and the subsequent ignition of these localised heated regions,
while the second term (growth) describes the subsequent growth of reaction from
the ignited ‘hot-spots’ as the rest of the explosive is consumed.

The three-term reaction rate model consists of an ignition term and two growth
terms [53], and is given by,

dλ
dt

= I(1−λ)b(ηs−1−a)x +G1(1−λ)cλdPy +G2(1−λ)eλgPz (2.23)

ignition growth completion

whereλ, ηs, andP are as defined above, andI , a, b, x, G1, c, d, y, G2, e, g, andzare
constants. Again, the first term (ignition) represents the formation of ‘hot-spots’ and
their subsequent ignition. The first growth term models the relatively slow growth
of reaction in inward and/or outward burning of the isolated‘hot-spots’, while the
second growth term (completion) represents the rapid completion of the reaction as
the reacting ‘hot-spots’ begin to coalesce. This reaction rate model was shown to
be more effective at simulating shock initiation data involving high pressure, short
duration shocks [53].

The reaction rate constants are empirically fitted to experimental shock initiation
data. In both forms of the reaction rate model, parametera is a critical compression
that is used to inhibit ignition, and hence reaction, until acertain degree of compres-
sion has been reached. The threshold condition,ηs ≥ 1+ a, must be satisfied for
ignition to occur. Examination of the model parameters for avariety of explosives
shows that most of the exponents remain fixed in value for the majority of hetero-
geneous explosives, these being related to the geometry of ‘hot-spots’ (spherical
voids). The parameters that tend to change between explosives areI andx which
control the amount of ignition as a function of shock strength and duration, andG1,
y, G2, andz which control the rate of growth of reaction.

Constraints on the values ofλ are also added to the reaction rate computations so
that the various terms in the reaction rate equations can be turned on, or turned off,
at various values ofλ. For the two-term model (2.22), the ignition rate is set equal
to zero whenλ ≥ λigmax, and the growth rate set equal to zero whenλ ≥ λG1max,
whereas for the three-term model (2.23), the constraints onthe ignition and growth
rates are as per the two-term model, and the completion rate is set equal to zero
whenλ ≤ λG2min. These allow the relative contributions of the ignition andgrowth
term(s) to be adjusted when fitting to experimental data.
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2.3 Implementation in PERUSE

2.3.1 Preamble

The Lee-Tarver Ignition and Growth model has been implemented into the one-
dimensional, finite difference, multi-material Lagrangian hydrocode PERUSE [88].
This is a relatively simple research code which is used as a test-bed for developing,
testing, and comparing different reactive burn models. In PERUSE, the solution
of the governing fluid flow equations is advanced forward in time using an explicit
two-step (predictor-corrector) numerical scheme. The predictor-corrector method
operates by running for half a timestep with first-order accuracy to calculate a half
timestep pressure (the predictor step), and then using thisto advance the equations
for a full timestep with second-order accuracy (the corrector step). The overall
scheme is second order accurate in time and space [90].

2.3.2 Solution Scheme

The steps in the solution method employed for the Lee-Tarvermodel to advance
the solution fromtn to tn+1 over a timestep∆tn+ 1

2 are described below, where it is
assumed that the state of the explosive is that of a reacting mixture. In addition,
it assumes that the two-term reaction rate model (2.22) is being used. In the fol-
lowing difference equations the tilde symbol indicates intermediate values during a
predictor or corrector step, and the superscriptn represents the temporal index. For
reasons of clarity, the spatial index has been omitted.

• Predictor Step (forward Euler half timestep)

The purpose of this stage is to compute values for the Lee-Tarver variables at
the half timestep (n+ 1

2), and proceeds as follows, whereV n+ 1
2 , En+ 1

2 , and
qn have been computed by the hydrocode.

1. Update pressure due to the hydrodynamics (performed at fixedλ).

Temperature:

T̃n+ 1
2 = Tn− (Pn+Jn +qn)

(

V n+ 1
2 −V n

CV
n

)

(2.24)

Mixture model:

Initial guessβ̃n+ 1
2 is given by,

β̃n+ 1
2 =

(1−λn)ηg
n

(1−λn)ηg
n +λnηs

n (2.25)
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Calculate,

η̃n+ 1
2

s = (1−λn)
ηn+ 1

2

β̃n+ 1
2

P̃s
n+ 1

2 = Ps

(

η̃n+ 1
2

s , T̃n+ 1
2

)

η̃n+ 1
2

g =
λn ηn+ 1

2
(

1− β̃n+ 1
2

)

P̃g
n+ 1

2 = Pg

(

η̃n+ 1
2

g , T̃n+ 1
2

)

and iterate oñβn+ 1
2 until

∣

∣

∣
P̃s

n+ 1
2 − P̃g

n+ 1
2

∣

∣

∣
< 10−6.

2. Calculate the explosive burn.

λ̇n = I (1−λn)b
(

η̃n+ 1
2

s −1−a

)x

+G1(1−λn)c (λn)d
(

P̃n+ 1
2

)y

λn+ 1
2 = λn+

∆tn+ 1
2

2
λ̇n

3. Update pressure due to the explosive burn (this is performed at fixedλ).

Temperature:

Tn+ 1
2 = T̃n+ 1

2 +
(

λn+ 1
2 −λn

) H̃n+ 1
2

C̃V
n+ 1

2

(2.26)

Mixture model:

Initial guessβn+ 1
2 is given by,

βn+ 1
2 =

(

1−λn+ 1
2

)

η̃n+ 1
2

g
(

1−λn+ 1
2

)

η̃n+ 1
2

g +λn+ 1
2 η̃n+ 1

2
s

(2.27)
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Calculate,

ηs
n+ 1

2 =
(

1−λn+ 1
2

) ηn+ 1
2

βn+ 1
2

Ps
n+ 1

2 = Ps

(

ηs
n+ 1

2 ,Tn+ 1
2

)

ηg
n+ 1

2 =
λn+ 1

2 ηn+ 1
2

(

1−βn+ 1
2

)

Pg
n+ 1

2 = Pg

(

ηg
n+ 1

2 ,Tn+ 1
2

)

and iterate onβn+ 1
2 until

∣

∣

∣
Ps

n+ 1
2 −Pg

n+ 1
2

∣

∣

∣
< 10−6.

• Corrector Step

The CREST variables are now updated to the time leveln+ 1 as follows,
whereV n+1, En+1, andqn have been computed by the hydrocode.

1. Update pressure due to the hydrodynamics (this is performed at fixedλ).

Temperature:

T̃n+1 = Tn−
(

Pn+ 1
2 +Jn+ 1

2 +qn+ 1
2

)

(

V n+1−V n

CV
n+ 1

2

)

(2.28)

Mixture model:

Initial guessβ̃n+1 is given by,

β̃n+1 =

(

1−λn+ 1
2

)

ηg
n+ 1

2

(

1−λn+ 1
2

)

ηg
n+ 1

2 +λn+ 1
2 ηs

n+ 1
2

(2.29)
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Calculate,

η̃n+1
s =

(

1−λn+ 1
2

) ηn+1

β̃n+1

P̃s
n+1

= Ps
(

η̃n+1
s , T̃n+1)

η̃n+1
g =

λn+ 1
2 ηn+1

(

1− β̃n+1
)

P̃g
n+1

= Pg
(

η̃n+1
g , T̃n+1)

and iterate oñβn+1 until
∣

∣

∣
P̃s

n+1− P̃g
n+1
∣

∣

∣
< 10−6.

2. Calculate the explosive burn.

λ̇n+ 1
2 = I

(

1−λn+ 1
2

)b
(

η̃n+1
s −1−a

)x
+G1

(

1−λn+ 1
2

)c(

λn+ 1
2

)d
(

P̃n+1)y

λn+1 = λn+∆tn+ 1
2 λ̇n+ 1

2

3. Update pressure due to the explosive burn (this is performed at fixedλ).

Temperature:

Tn+1 = T̃n+1 +
(

λn+1−λn) H̃n+1

C̃V
n+1 (2.30)

Mixture model:

Initial guessβn+1 is given by,

βn+ 1
2 =

(

1−λn+1
)

η̃n+1
g

(1−λn+1) η̃n+1
g +λn+1η̃n+1

s
(2.31)
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Calculate,

ηs
n+1 =

(

1−λn+1) ηn+1

βn+1

Ps
n+1 = Ps

(

ηs
n+1,Tn+1)

ηg
n+1 =

λn+1 ηn+1

(1−βn+1)

Pg
n+1 = Pg

(

ηg
n+1,Tn+1)

and iterate onβn+1 until
∣

∣Ps
n+1−Pg

n+1
∣

∣< 10−6.

2.3.3 Validation

To validate the implementation of the Lee-Tarver model in PERUSE, a simple
one-dimensional test problem was run that had previously been successfully mod-
elled on the widely available DYNA2D hydrocode [69]. The problem is that of a
sustained pressure pulse of 0.025 Mbars into a slab of the HMX-based explosive
PBX9404 that is 35mm in length, see Figure 2.1. The sustainedpressure pulse is
introduced from one side of the computational mesh via a pressure boundary con-
dition in PERUSE. The model developed by Tarver for PBX9404 [53] was used,
which is based on the three-term reaction rate equation (2.23). The Lee-Tarver
model parameters for PBX9404 are given in Table 2.1. The calculations were per-
formed using a mesh density of 16 zones/mm, a zoning at which the calculations
are mesh converged.

The calculated pressure profiles from PERUSE at a series of distances (1, 2, 5,
8, 10, 15, 20, and 25mm) along the charge length from the inputface of the ap-
plied pressure are shown in Figure 2.2. The corresponding calculated profiles from
DYNA2D are shown in Figure 2.3. The pressure profiles from PERUSE are in ex-
cellent agreement with the DYNA2D results, thus validatingthe implementation of
the model in PERUSE. In the calculation, the transition to detonation occurs shortly
after 15mm of run into the explosive. Once detonation is attained, the calculated
detonation wave propagates at the correct steady state velocity of 8.8mm/µs.

It is observed that there are significant numerical oscillations behind the shock
front in the early stages of the build-up to detonation in theDYNA2D calcualtion.
However, no such numerical noise is present in the PERUSE results. This is proba-
bly due to the different forms of artificial viscosity, q, used in the two calculations.
PERUSE utilises a scalar monotonic q form [91], whereas in the DYNA2D calcula-
tion the so-called ‘bulk q’ is used [92]. Bulk q is not a particularly accurate form of
artificial viscosity, and is known to suffer from post-shockoscilallations [93].
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Table 2.1: Lee-Tarver parameters for PBX9404 and EDC37.

Parameter PBX9404 PBX9404 EDC37 Units
Three-term Two-term Three-Term
Model [53] Model [52] Model [63]

ρ0 1.842 1.842 1.842 g/cm3

ρ0s 1.842 1.842 1.842 g/cm3

Reaction products equation of state
A 8.524 8.524 8.524 Mb
B 0.1802 0.1802 0.1802 Mb
G 3.8×10−6 3.8×10−6 3.8×10−6

XP1 4.60 4.60 4.60
XP2 1.30 1.30 1.30
CVg 1.0×10−5 1.0×10−5 1.0×10−5 Mb/ K
ωg 0.38 0.38 0.38
Q 0.102 0.102 0.102 Mb
Unreacted equation of state
R1 9522.0 9522.0 69.69 Mb
R2 -0.05944 -0.05944 -1.727 Mb
R3 2.4656×10−5 2.4656×10−5 2.148789×10−5

R5 14.1 14.1 7.8
R6 1.41 1.41 3.9
CVs 2.7813×10−5 2.7813×10−5 2.505×10−5 Mb/ K
ωs 0.8867 0.8867 0.8578
T0 298.0 298.0 298.0 K
Reaction rate parameters
I 7.43×1011 44.0 3.0×1010 µs−1

b 0.667 0.222 0.667
a 0.0 0.0 0.0
x 20.0 4.0 20.0
G1 3.1 850.0 90.0 Mb−yµs−1

c 0.667 0.222 0.667
d 0.111 0.667 0.333
y 1.0 2.0 2.0
G2 400.0 0.0 200.0 Mb−zµs−1

e 0.333 0.0 0.333
g 1.0 0.0 1.0
z 2.0 0.0 2.0
λigmax 0.3 1.0 0.3
λG1max 0.5 1.0 0.5
λG2min 0.0 0.0 0.0
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2.4 Critique of the Lee-Tarver Model

At the time of the development of the Lee-Tarver model, data on shock initiation
of explosives came mainly from Wedge Test experiments [3] [30]. In a Wedge Test,
an explosive sample is subjected to a sustained shock of a prescribed pressure, and
at some distance into the sample the shock wave will transition to a detonation
wave. The variation of shock velocity with distance travelled down the explosive
charge is recorded, from which the run distance to detonation can be determined.
For a given explosive these tests are performed at various input pressures, and the
derived data is presented in the form of so-called Pop Plots.The Pop Plot [31]
expresses the relationship between the input shock pressure and the run distance to
detonation as measured from the input boundary. The reaction rate parameters in
the Lee-Tarver model were traditionally calibrated to Pop Plot data, and the model
has been successful in fitting run to detonation data for a number of explosives.

Wedge Test experiments give the run-distance and run-time to detonation for a
given input shock, however they give no information on the reaction history behind
the shock wave before detonation is attained. The most important advance in di-
agnostic techniques in the last 20 years or so has been the introduction of multiple
in-material gauges, initially measuring pressure and morerecently particle velocity
histories behind shock waves in explosives. In particular,the electromagnetic parti-
cle velocity gauge of Vorthman [35] has been used in many recent gas-gun studies
to provide high quality data on the initiation and growth of reaction inside shocked
explosives [36] [37] [38]. This type of data provides a more rigorous test of reactive
burn models for shock initiation than simple Pop-Plot data.Although some aspects
of explosive shock initiation can be adequately described by pressure-dependent
reaction rates,e.g. the Pop Plot, such reaction rates have proved problematic in
trying to accurately match in-material particle velocity histories behind a range of
sustained shock inputs from gas-gun experiments. To illustrate the problem, an
example is given below in terms of data obtained on the HMX-based explosive
EDC37.

Wedge Test data and in-material gauge data has been aquired on EDC37 explo-
sive. Initial data on the single shock response of EDC37 was obtained from Wedge
Test experiments carried out by Rabie and Harry [30]. These experiments yielded
run distance to detonation data for a range of sustained input shock pressures. More
recently, detailed information on the reaction inside shocked, decomposing EDC37
explosive has been provided by gas-gun experiments fired at Los Alamos National
Laboratory using embedded particle velocity gauges [38]. Based on the data ob-
tained, Winteret al. [63] developed a Lee-Tarver model for EDC37 explosive.

Taken from [63], the calculated Pop-Plot for EDC37 is compared with experi-
ment in Figure 2.4. It is seen that the Lee-Tarver model for EDC37 explosive gives
very good agreement with the experimental run distance to detonation data. Also
taken from [63], the experimental particle velocity histories from EDC37 gas-gun
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Shot 1160, in which a single sustained shock of 35.2 kbars is input into the EDC37
sample, are compared with the corresponding Lee-Tarver calculated histories in Fig-
ure 2.5. The first experimental gauge trace is at the interface, with the other gauges
at depths of 6.07, 7.96, and 9.93mm respectively into the explosive from the input
boundary. Figure 2.5 illustrates the differences in shape between the experimental
and calculated particle velocity profiles. The gauges in thebody of the explosive
show that the experimental reaction histories are ‘convex’-like, whereas the calcu-
lated particle velocity histories are ‘concave’-like. Although the calculation fails to
accurately represent the shape of the reactive hump behind the shock at the gauge
locations, it does however obtain a good match to the shock time of arrival at the
same positions.

Overall, the interesting property of the calculations is that the Lee-Tarver model
for EDC37 reproduces the Pop-plot (run distance to detonation) more or less cor-
rectly, but it does not reproduce the shape of the particle velocity profiles. In the
calculation of EDC37 Shot 1160, it is observed that the reaction behind the shock
is initially under predicted, but then there is rapid growthof reaction up to the peak
in particle velocity. These two calculational effects appear to cancel each other out
such that the shock velocity is correctly modelled. In otherwords, it appears to be
a case of two wrongs making a right!

The calculated particle velocity profiles are more informative characteristics of
the model quality than simple Pop-Plot data. The Lee-Tarvermodel fit to the particle
velocity data from this single experiment (Shot 1160) couldbe improved, however,
the difficulty comes in modelling the profiles from a range of single shock experi-
ments at different input pressures with the same parameter set. Many attempts have
been made to optimise the Lee-Tarver reaction rate parameters to fit EDC37 particle
velocity histories over a range of applied shock pressures.Trying to find a (unique)
set of parameters that would fit run distance data, arrival times, and particle veloc-
ity histories for a range of experiments has not proved possible. In particular, it
has proved difficult to accurately represent the shape of thereactive hump behind
the shock at the gauge positions. These observations are typical of Lee-Tarver cal-
culated profiles obtained from simulations of embedded gauge experiments. The
difficulty in accurately representing the shape of the data obtained from the em-
bedded gauges probably lies in the mathematical form chosenfor the reaction rate
equation(s) in the model.

From a review of the literature, the Lee-Tarver model has been ‘successful’ at
reproducing a range of explosive data including embedded gauge experiments, run
distance to detonation data, detonation velocity as a function of diameter including
failure diameter, and corner turning data. However, reaction rate parameters have
been adjusted widely in an attempt to fit an ever increasing range of data covering
different phenomena, and hence have tended to lose their physical meaning. Thus,
it appears that there are now no guidelines as to the range of values that the pa-
rameters can take. Additionally, there are examples of different sets of parameters
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for a given explosive being used to model different phenomena. For example, a
Lee-Tarver model was developed for TATB-based explosive PBX9502 based on the
shock initiation embedded gauge experiments of Gustavsenet al. [55]. More re-
cently, modelling of detonation wave propagation data and ‘dead zones’ from corner
turning experiments on PBX9502 has been described [56]. TheLee-Tarver parame-
ter set used for modelling detonation propagation in PBX9502 explosive is different
to that described for modelling the shock initiation of PBX9502. Therefore, it would
appear that the predictive capability of the model is low, and its ability to predict
experiments and/or phenomena outside its range of validityis questionable.

The main deficiency of the Lee-Tarver model, or any pressure-dependent model,
is that there is no mechanism to predict explosive behaviourunder double or mul-
tiple shock compression. Experimental studies by several researchers have shown
that, where a weak precursor wave, or preshock, compresses an explosive before be-
ing followed by a stronger second shock, then the reaction behind the second shock
is weaker than that for a single shock alone at the same pressure in uncompressed
material [39] [40] [51] [94]. This effect has been termed ‘shock desensitisation’, and
needs to be represented in any reactive burn model. Since thegrowth terms in Lee-
Tarver reaction rate are dependent on the local pressure, then the model will predict
an increase in reaction rate in such situations, which is at odds with experimental
observations. To enable the Lee-Tarver model to be used to predict desensitisation
effects, a simple but physically realistic model for shock desensitisation has been
developed within the confines of the Ignition and Growth model, and is described
in the next section.

2.5 Shock Desensitisation

2.5.1 Preamble

Over many years numerous researchers have observed significant differences
in reaction rates between singly and multiply shocked explosives [39] [40] [51]
[94]. Specifically, reaction rates are slower behind shockspropagating through
preshocked, but not detonated explosive, in comparison to the same shock prop-
agating through uncompressed material. This type of behaviour has been termed
‘shock desensitisation’, and is important to considerations of safety of explosives,
as many accident scenarios for explosives confined by inert materials may involve
double or multiple shock compressions of the explosive.

Any reaction rate model based on the local pressure,e.g. Lee-Tarver, will pre-
dict an increase in reaction rate in a double shock situationwhere a weak preshock is
followed by a stronger second shock, and will produce results that are very different
to experimental observations. Therefore, for pressure-dependent models it is nec-
essary to have an additional desensitisation model to account for the double shock
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observations. It is noted that with a reaction rate taken to be a function of local
temperature, it is probable that no additional desensitisation mechanism would be
required, since the temperature behind doubly shocked material is less than behind
a single shock to the same final pressure.

Below, the important experimental evidence is reviewed, and then considera-
tion given as to how to model the phenomenon of shock desensitisation within the
confines of the pressure-dependent Lee-Tarver model. A simple but physically re-
alistic desensitisation model is then developed and described. The model is then
applied to double shock data on the HMX-based explosive EDC37 to further assess
the suitability of the model in double shock situations.

2.5.2 Experimental Evidence

Campbellet al. [3] first established the phenomenon of shock desensitisation.
They observed that a 3.9 GPa shock in a plastic bonded HMX-based explosive ren-
dered it less sensitive to initiation by a following 10 GPa shock, in comparison to
initiation by a single 10 GPa shock. The explanation given was that compression
by the weak first shock suppressed the initial porosity, suchthat the preshocked
material reacted to the subsequent shock more like a homogeneous material.

Setchell [94] examined the effects of precursor waves on theshock initiation of
the HMX-based explosive PBX9404. In Setchell’s experiments, initiating shocks
of 5.0 GPa were preceded by either a 3.2 GPa sustained shock lasting 0.37µs, or a
ramp wave having a rise time of 0.6µs. The build-up to detonation was inhibited
while the preshock persisted, with the ramp wave having a greater desensitisating
effect than the sustained precursor. In both cases the run distance to detonation was
extended by an amount that depended on the duration of the precursor wave.

Campbell and Travis [51] studied the shock desensitisationof the HMX-based
explosive PBX9404. In their experiments, a detonation wavewas run into a preshocked
region of the explosive. For a preshock in the range 1.0 to 2.4GPa, the detonation
reaction was weakened and eventually quenched. By observing the extinction of the
detonation wave, an inverse relationship was obtained between the time required
for desensitisation,τ, and the preshock pressure,P, namely: P2.2τ = 1140. The
desensitisation time,τ, is interpreted as the time required to eliminate the potential
‘hot-spot’ sites in the material.

More recently, Mulfordet al. [39] investigated the initiation behaviour of a
number of HMX-based explosives subjected to weak precursorshock waves. In
their experiments a composite impactor was accelerated onto an explosive target
using a gas-gun. This generated successive shocks, a weak preshock followed by a
higher pressure second shock, travelling in the same direction through the explosive
sample, where the second shock eventually catches up and overtakes the preshock.
In experiments on PBX9404, a sustained precursor shock of 2.3 GPa was followed
0.65µs later by an initiating shock 5.6 GPa. It was observed that the precursor wave,
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while it persisted, desensitised the explosive to the following higher pressure shock
wave, resulting in an extension of the run distance to detonation. The transition to
detonation occured at a distance, after the two shocks had coalesced into a single
wave, very similar to that expected from the Pop-Plot for PBX9404 at the pressure
of the main shock alone. Modest growth of reaction was observed behind the second
shock as it travelled through the preshocked region. This may indicate that the
precursor wave reduced, but did not eliminate, the volume ofpotential ‘hot-spots’
available to the second shock. It was noted that according tothe Campbell and
Travis criterion [51], the precursor shock is too short to completely desensitise the
explosive;P2.2τ = 644< 1140.

The double shock response of the HMX-based explosive EDC37 has also been
investigated [38]. In gas-gun experiments very similar to those performed by Mul-
ford et al. [39], planar sequential shocks were input into EDC37 samples. A higher
pressure second shock travelled through preshocked material to catch and overtake
the first shock in the situations where, (i) there was little or no observable reaction
in the first shock, and (ii) there was significant reaction behind the first shock before
it was overtaken by the main shock. In the first set of experiments, where there was
little or no reaction in the first shock, it was observed that the second shock did not
contribute to the build-up of detonation until after wave coalescence, and the run
to detonation was extended by an amount for which the preshock persisted. These
results are consistent with the findings of Mulfordet al. [39]. In a separate set
of experiments, the effect of significant reaction behind the first shock was investi-
gated. It was found that, in this case, reaction before wave coalescence appears to
contribute to the final build-up to detonation; the run distance to detonation from
wave coalescence was found to be shorter than that expected from the Pop-Plot at
the pressure of the main shock alone.

With insensitive high explosives, there is an additional phenomena of ‘dead
pressing’ which was observed by Tarveret al. [40] whilst studying the effect of
reflected shocks on previously shocked samples of the TATB-based explosive LX-
17. Steel flyers were used to impact thin discs of LX-17 which were backed by
high impedence materials to produce reflected shocks of varying magnitude in the
preshocked explosive. ‘Dead pressing’ was observed when aninitial shock of 6.8
GPa was reflected from a copper disc producing a 14.0 GPa shockpropagating
back through the preshocked material. At this pressure it was expected run to det-
onation would occur within the sample thickness. However, the embedded gauges
recorded no reaction due to the reflected shock. The initial shock pressure is just
below the initiation threshold for LX-17, and it was postulated that this shock re-
moved the internal porosity such that the reflected shock found no ignition sites
and just propagted as an inert shock. To model this behaviourusing the Ignition
and Growth model, Tarver [40] added a condition to the ignition term in the reac-
tion rate equation (2.23) to prevent any reaction from occuring if a critical range of
shock compressions (or pressures) was applied to the explosive.
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In experiments on the TATB-based explosive PBX9502, Dick [95] imposed
preshocks of 2.3 and 5.0 GPa respectively on pieces of detonating explosive. In
both instances, the detonation failed to propagate in the preshocked explosive. The
preshock pressures are below the initiation threshold for PBX9502, suggesting ‘dead
pressing’ by mechanically compressing out the potential ‘hot-spot’ sites (e.g.pores).

In summary, the interpretation of the above experimental studies and observa-
tions is that the preshock removes the available ‘hot-spot’sites, such that a subse-
quent stronger shock is then travelling through material deprived of reaction sites.
Pure mechanical compression of pores is one plausible mechanism for ‘hot-spot’
removal, while ‘hot-spot’ initiation and subsequent low level reaction during the
preshock is another suggested mechanism. The shape, magnitude, and duration of
the precursor wave can all affect the extent of residual sensitivity.

The general concensus is that desensitisation due to preshocking will occur ex-
cept when, (i) the time interval between the two shocks is short, and (ii) there is a
following rarefaction wave. Desensitisation is a time dependent process, and a short
time interval between the preshock and main shock will not permit the desensitisa-
tion process to take place, resulting in nearly normal detonation. In the case where
the explosive is allowed to release following preshocking,enhanced sensitisation
could occur due to the porosity recovering, or as a result of damage, which could
lead to an increase in porosity.

2.5.3 Simple Model for Shock Desensitisation

The main disadvantage of pressure-dependent reaction ratemodels is that they
contain no mechanism to predict the effects of so-called shock desensitisation, and
hence a bolt-on desensitisation model is required. Here, a simple but physically
realistic model for shock desensitisation is developed within the confines of the
Lee-Tarver model. It is based on the modelling of the precursor shock experiments
performed by Mulfordet al. [39], where the phenomenon of shock desensitisation
was observed.

Mulford et al. [39] investigated the initiation behaviour of the HMX-based
explosives PBX9404 and PBX9501 subjected to precursor shock waves. In their
experiments, a composite impactor was accelerated onto theexplosive specimens
using a gas-gun. The impactor consisted of a low impedence thin layer (Perspex),
mounted on the front surface of a higher impedence backing material (Vistal). When
the projectile impacts the explosive sample, one shock waveis driven into the ex-
plosive and another is driven back into the Perspex. The wavein the Perspex then
reflects from the higher impedence Vistal eventually delivering a second, higher
pressure shock, to the explosive sample. This second shock initially travels through
the preshocked region but eventually catches up and overtakes the precursor wave.
The experimental set-up and distance-time diagram showingthe shock trajecto-
ries is shown in Figure 2.6. Embedded particle velocity gauges provided data on
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the time evolution of the reaction in the explosive, and the experiments were one-
dimensional over the region and time of interest.

In experiments on PBX9404, a sustained precursor shock of 23kbars was fol-
lowed 0.65µs later by a stronger second shock of 56 kbars. The experimental par-
ticle velocity gauge results are reproduced in Figure 2.7. The first gauge trace is at
the projectile/explosive interface, with the second particle velocity trace at a depth
of 1.0mm into the explosive. All subsequent gauges are at approximately 0.5mm
intervals with the final trace at a depth of 10.0mm into the explosive. For the shock
conditions of interest, the whole build-up process cannot be monitored in a single
experiment. Instead two experiments were fired, one with thegauge package for-
ward monitoring the early build-up, and another monitoringthe late build-up with
the gauge package aft. Figure 2.7 shows the combined data obtained from the two
nominally identical double shock experiments on PBX9404. The generation of en-
ergy in the shocked material behind the shock front is indicated by an increase in
particle velocity above that in the shock front. The resultscontain a wealth of data,
and the observations that may be made are described below.

The amplitude of the preshock was insufficient to cause prompt initiation since
there is little or no observable reaction in the first shock before it gets overtaken.
The higher pressure second shock travels faster than the precursor wave, and the two
waves coalesced after approximately 1.0µs from input of the second shock. Only
modest growth of reaction was observed behind the second shock as it travelled
through the preshocked region. After catch-up, the second shock rapidly grows to
detonation. Detonation occurs after 9.4mm of run from impact of the first shock, or
after 8.7mm after the second shock enters the explosive. ThePop-Plot for PBX9404
predicts a run of 3.5mm at the pressure of the main shock (56 kbars) alone. Mea-
sured from the location of wave coalescence, which is markedon the figure, the run
is 3.8mm. The run distance over which the second shock grows to detonation after
catch-up is therefore very similar to the run distance whichwould be expected for a
single shock at the same pressure. Thus, the run distance to detonation is extended
by an amount for which the preshock persists.

Initially, with the aim of highlighting the inadequacy of the standard Lee-Tarver
model to predict explosive response to double shock inputs,a calculation of the
Mulford precursor shock experiments on PBX9404 was performed using PERUSE.
The set-up consisted of a stationary 30mm thick PBX9404 explosive target im-
pacted by a projectile consisting of a 1.4mm thick Perspex front layer, backed by
30mm of Vistal. The target and projectile were initially in contact, with the projec-
tile given the measured velocity of 0.931mm/µs. The two-term reaction rate model
developed by Tarver for PBX9404 [52] was used, and the model parameters are
given in Table 2.1. The Vistal layer of the impactor was modelled by a Linear
Gruneisen EOS which has the form,

P = PH(V)+
Γ(V)

V
(E−EH(V)) (2.32)
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where P is the pressure, V is the specific volume, E is the specific internal energy,
andPH andEH are the Hugoniot pressure and energy corresponding to the shock
velocity (Us)-particle velocity (Up) relationship,

Us = C0+sUp (2.33)

and the Gruneisen gamma is given by,

Γ(V) = Γ0 +Γ1
V
V0

(2.34)

In the above equationsC0, s, Γ0, andΓ1 are material specific constants. The EOS
and strength constants for Vistal are taken from [96] and aregiven in Table 2.2,
where Y is the yield strength andµ is the shear modulus, and both are assumed
constant. Another Linear Gruneisen EOS was used to model theresponse of the
Perspex layer of the dual material impactor, and the EOS constants for Perpex [97]
are also given in Table 2.2.

Table 2.2: EOS parameters for Vistal and Perspex.

Vistal [96] Perspex [97]

ρ0 (g/cm3) 3.969 ρ0 (g/cm3) 1.186
ρ0s (g/cm3) 3.969 ρ0s (g/cm3) 1.186
C0 (cm/µs) 0.814 C0 (cm/µs) 0.2598
s 1.28 s 1.516
Γ0 0.0 Γ0 0.0
Γ1 2.3 Γ1 0.97
Y (Mb) 0.058
µ (Mb) 1.555

The PERUSE calculation was performed using a mesh density of16 zones/mm
in the PBX9404 region. Lee-Tarver model results are mesh converged at this mesh
density. Appropriate meshing was also defined for the impactor materials, and a
scalar monotonic artificial viscosity was used to accurately represent the propagat-
ing shock discontinuities. Figure 2.8 shows the calculatedparticle velocity histories
at initial positions of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9mm into theexplosive charge
from the side of impact. As expected, very poor agreement with experiment is ob-
tained. Since the growth of reaction in the model is dependent on the local pressure,
then the calculation predicts rapid growth of reaction behind the second shock as it
travels through the preshocked region.

Consideration has been given as to how to model the phenomenon of shock
desensitisation within the confines of the existing Lee-Tarver model. The interpre-
tation of the accumulated experimental evidence on shock desensitisation is that



CHAPTER 2. LEE-TARVER REACTIVE BURN MODEL 46

the preshock compresses and/or initiates the available ‘hot-spot’ sites, such that any
subsequent shock is then travelling through material deprived of such reaction sites.
Since the formation of ‘hot-spots’ in an explosive is a highly irreversible process
and can happen only once then, to a first approximation, the formation and subse-
quent growth of reaction from ‘hot-spots’ is dependent on the shock pressure of the
first wave passing through the explosive. To predict the effects of shock desensiti-
sation within the confines of the Lee-Tarver model, the reaction rate is fixed at the
pressure of the first shock seen at any given point in the explosive,Pshk, such that the
passage of subsequent stronger shocks cannot result in any increase in the reaction
rate. The quantity,

P̄ = min(P,Pshk) (2.35)

replaces the local pressure,P, in the reaction rate equations (2.22) and (2.23). The
value ofPshk is found as follows. In hydrocode calculations, the value ofthe artifi-
cial viscosity is only non-zero through an arriving shock front. When a propagat-
ing shock wave arrives at a given computational cell, the artificial viscosity in that
cell becomes non-zero. It then subsequently rises and fallswith the passage of the
shock, eventually dropping back to zero which occurs at approximately the top of
the rise time of the shock. When this happens, the shock pressure in the cell,Pshk,
is captured.

The PERUSE calculation of the Mulfordet al. [39] precursor shock experiments
on PBX9404 was repeated using the described simple model to predict desensiti-
sation effects within the confines of the Lee-Tarver model. The Lee-Tarver model
constants for PBX9404 were unchanged. The computed particle velocity profiles
utilising the desensitisation model are shown in Figure 2.9. Qualitatively the calcu-
lation reproduces the main features of the experiment; the precursor shock, while it
persists, inhibits the build up to detonation of the main shock, and the run to deto-
nation beginning approximately at the end of the preshockedregion. From impact
of the precursor wave, detonation occurs after approximately 9.5mm of run. This
is in good agreement with the experimentally observed run distance of 9.4mm from
impact of the first shock. In addition, the position and timing of shock coalescence
is well modelled. From this point, the calculated run distance to detonation is ap-
proximately 4.0mm, in good agreement with the experimentally deduced value of
3.8mm.

However, the calculated time to detonation from the point where the two shocks
coalesce is shorter than experiment. In addition, the smallamount of observed
growth in the second shock before catch-up is not modelled correctly probably due
to the code freezing the reaction rate in the material at the level of the first shock.
Although it is unlikely that this deficiency is significant inthis particular experi-
ment, it could become important if the second shock was stronger or if the time
difference between the shocks was greater. In reality it appears that the preshock
puts a brake on the growth of reaction, but does not render theexplosive completely
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incapable of sustaining a build-up process as assumed by thesimple desensitisation
model.

The described desensitisation model is a very simple way of attempting to sim-
ulate shock desensitisation within the framework of the Lee-Tarver model. The
validity of this treatment needs to be investigated in the context of other multiple
shock situations, and for other explosives of interest. Another HMX-based explo-
sive on which double shock data has recently been obtained isEDC37, and the
experiments and their modelling is described in the next section.

2.5.4 Modelling EDC37 Double Shock Experiments

A number of gas-gun experiments have recently been performed at Los Alamos
National Laboratory to study the double shock response of the HMX-based explo-
sive EDC37 [38]. These experiments, in which a weak preshockwas followed by
a stronger main shock, were very similar to the precursor shock experiments per-
formed by Mulfordet al. [39], and which showed an extended run to detonation in
preshocked material. The experimental configuration for the EDC37 double shock
experiments was the same as that shown in Figure 2.6, except that the composite
impactor consisted of Kel-F mounted on the front surface of z-cut Sapphire in order
to generate the required sequential shocks. Kel-F was used instead of Perspex for
generation of the weaker first shock as this material has a better impedence match
to EDC37 than Perspex. In the experiments, the growth of reaction in the shocked
explosive samples was monitored by embedded particle velocity gauges.

The EDC37 double shock experiments and the results obtainedare summarised
in Table 2.3. Experiments have been performed at different input conditions; the
magnitude of the input shocks is determined by the velocity of the impactor, and
the time delay between the two shocks is set by the thickness of the Kel-F layer.
In order to monitor the whole reaction history at each input condition, it was nec-
essary to fire a pair of nominally identical shots, one with the gauge package mon-
itoring the early build up, and one monitoring the late buildup. The first pair of
experiments (Shots 1175/76) were chosen such that there would be no observable
reaction in the first shock before it is overtaken by the main shock, thus comple-
menting Mulford’s experiments on PBX9404, an explosive similar in composition
to EDC37. The second pair of experiments (Shots 1194/95) were chosen such that
there would be significant reaction behind the first shock before the second shock
traversed the preshock region. This regime for double shockexplosive had been
hitherto unexplored.

The derived run distances to detonation in Table 2.3 are measured from impact
of the first shock, and the value quoted in brackets is the run distance as measured
from the point of shock coalescence. For Shots 1175/76 the derived run distances to
detonation from impact of the first shot show reasonably goodconsistency between
the pair of shots. The average run distance after wave coalescence in 6.35mm. This



CHAPTER 2. LEE-TARVER REACTIVE BURN MODEL 48

Table 2.3: Summary of EDC37 Double Shock Experiments.

Shot No. Impact Vel. Particle Vel. Shock Vel. Input Pressure Run Distance
(mm/µs) up (mm/µs) Us (mm/µs) (kbars) (mm)

1175A 0.921 0.44± 0.020 3.63± 0.10 29.4 11.96
1175B 0.77± 0.020 4.25± 0.20 62.0 (6.18)
1176A 0.925 No data No data 12.29
1176B 0.77± 0.020 4.25± 0.20 62.0 (6.51)

1194A 1.170 No data No data 39.3 9.43
1194B No data No data 85.8 (2.40)
1195A 1.165 No data No data 39.3 8.40
1195B No data No data 85.8 (2.00)

is very similar to the run distance that would be expected from the Pop-Plot, see
Figure 2.4, for a single shock of 62 kbars into EDC37. These results appear to
indicate that the second shock does not contribute to the build up of detonation until
after wave coalescence, and the run distance to detonation is extended by an amount
for which the preshock persists. The observed desensitisation behaviour is thus very
similar to that seen in preshocked PBX9404 and PBX9501 [39],where there was
also no observable reaction seen behind the first shock in theexperiments.

For Shots 1194/95, the reproducibility of the experimentaldata is not as good
as in Shots 1175/76. For Shot 1194, detonation is attained at9.43mm, 2.18µs from
impact of the first shock. For Shot 1195, the run distance is deduced to be 8.40mm,
and the run time is 2.00µs. The reasons for the differences are not known. The
run distance to detonation after wave coalescence is 2.40mmfor Shot 1194, and
2.00mm for Shot 1195. The expected run distance to detonation for a single shock
of 86 kbars into EDC37 is approximately 4mm based on the Pop-Plot for this explo-
sive, see Figure 2.4. Thus, reaction before wave coalescence contributes to the final
build up to detonation, and the rule of thumb for lower pressure first waves, that the
distance to detonation is approximately equal to the run distance at the pressure of
the second shock, plus the distance to wave coalescence, does not apply if there is
significant reaction in the first shock.

PERUSE calculations of the EDC37 double shock gas-gun experiments have
been performed using the Lee-Tarver three-term reaction rate model for EDC37
[63] in conjunction with the simple shock desensitisation model. The Lee-Tarver
EDC37 parameters are reproduced in Table 2.1. These calculations were run to test
the applicability of the desensitisation model in the situation of planar sequential
shocks input to the EDC37 samples, where (i) there is no observable reaction in the
first shock (Shots 1175/76), and (ii) there is significant reaction in the first shock
(Shots 1194/95). In the calculations, the double layered impactor was modelled
using a Linear Gruneisen EOS (2.32)-(2.34) for the z-cut Sapphire backing material,
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while the Kel-F front layer was modelled using a Cubic Gruneisen EOS [98] of the
form,

P =
ρ0s C0
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[
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2
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]
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is the compression, and the shock velocity (Us)-particle velocity (Up) relationship
is non-linear,
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The EOS parameters for the impactor materials are given in Table 2.4. The param-
eters for z-cut Sapphire were taken from [99], while the parameters for Kel-F are
due to Steinberg [98].

Table 2.4: EOS parameters for z-cut Sapphire and Kel-F.

z-cut Sapphire [99] Kel-F [98]

Initial Density,ρ0 (g/cc) 3.985 Initial Density,ρ0 (g/cc) 2.133
Solid Density,ρ0s (g/cc) 3.985 Solid Density,ρ0s (g/cc) 2.133
C0 (cm/µs) 1.119 C0 (cm/µs) 0.205
s 1.00 s1 1.66
Γ0 0.0 s2 0.4064
Γ1 2.3 s3 -1.037

Γ0 0.66
A 0.0

In the calculational set-up for EDC37 Shots 1175/76, the composite impactor
consisted of a 30mm thick layer of z-cut Sapphire backing a front layer of Kel-F of
thickness 1.0mm. The impactor was initially in contact witha 30mm thick EDC37
explosive target, and had an initial velocity of 0.923mm/µs. The computed particle
velocity profiles for EDC37 Shots 1175/76 are compared with the experimental
gauge records in Figure 2.10. The profiles correspond to gauges located at depths
of 0, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, and 11mm into the explosive. Again, at least
qualitatively, the desensitisation model is able to reproduce the main features of
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the experiment; little or no reaction in the first shock, the build-up to detonation of
the second shock being inhibited by the first wave while it persists, and the run to
detonation only beginning at the end of the preshocked region. However, it is noted
that there are some subtle differences.

The two shock waves coalesce at approximately 5.20mm and 1.50µs compared
with 5.78mm and 1.59µs respectively in the experiment. Experimentally, some re-
action is observed behind the second shock as it traverses the preshocked region.
However, this is not reproduced in the calculation which predicts very little or no
growth of reaction in this region. After shock coalescence,normal build-up to det-
onation occurs. From wave coalescence, the computed run distance to detonation
is 6.00mm, which is in good agreement with the value of 6.35mmdeduced from
experiment. It is observed, however, that the shape of the wave profiles in the build
up to detonation after wave coalescence is different between experiment and calcu-
lation.

The calculational set-up for EDC37 Shots 1194/95 was the same as that de-
scribed above for Shots 1175/76 except, (i) the Kel-F front layer was 1.428mm (in
order to increase the time separation between the two shocks), and (ii) the velocity
of the flyer was set at 1.168mm/µs. The comparison of experimental and calcu-
lated particle velocity profiles for EDC37 Shots 1194/95 is shown in Figure 2.11.
Again the profiles correspond to gauges located at depths of 0, 2.5, 3, 4, 5, 6, 7,
8, 9, 10, and 11mm into the explosive. In the case of significant reaction behind
the preshock, poor overall agreement is obtained between calculation and experi-
ment. The input shocks to the explosive sample are well modelled, however poor
agreement with experiment is obtained for the subsequent explosive response. The
experiment shows significant reaction due to the first shock,however the calculation
fails to predict any growth of reaction in or behind the first shock. As a result, the
velocity of the first shock is slower than observed. The failure to model the growth
of reaction due to the first shock is a direct consequence of the desensitisation model
which limits the reaction growth rate at the shock pressure of the first wave seen at
any given point in the explosive.

As the second shock travels through the preshocked region, arapid increase in
the calculated particle velocity at the shock front is observed, and its magnitude
is much larger than seen experimentally. At first glance thisseems a little odd
as the desensitisation model is meant to limit the reaction rate in preshocked ma-
terial, whereas an enhancement of the reaction is observed.Examination of the
relative contributions of the three terms in the rate law to the overall reaction rate
reveals why this is so. At the pressure of the second shock (86kbars), the ignition
term dominates the response, which, unlike the growth termshas no restrictions
placed upon it in the desensitisation model. In the EDC37 three-term reaction rate
model, the ignition term contributes to the overall reaction rate until the mass frac-
tion reacted in a computational cell equals 30% (λigmax=0.3). This allows significant
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reaction to occur before the ignition term is switched off, and results in wave co-
alescence occuring much earlier than observed. The amount of material ignited in
the second shock is not modelled correctly, thus giving evidence to suggest that the
contribution of the ignition term to the reaction rate should be reduced.

2.5.5 Summary

A considerable amount of experimental data has been accumulated which shows
that initiation and run distance to detonation in explosives can be significantly mod-
ified by preshocking the material. For example, where a weak precursor wave, or
preshock, is followed by a stronger second shock, the reaction behind the second
shock is weaker than that for a single shock of the same pressure. This effect has
been termed ‘shock desensitisation’.

Using the standard Lee-Tarver model, simulations of experiments where shock
desensitisation has been observed give poor agreement to experiment. Calculation-
ally, the reaction rate behind the second shock is too strongand detonation occurs
much earlier. This illustrates that reaction rates based onthe local pressure have no
mechanism for describing explosive behaviour under doubleshock compression,
and require an additional desensitisation model to accountfor the double shock
observations.

Consideration has been given as to how to model the effects ofshock desensi-
tisation within the confines of the pressure-based Lee-Tarver model. The develop-
ment of a simple, but physically realistic model to predict desensitisation effects has
been described, where the reaction rate is fixed at the pressure of the first shock seen
at any given point in the explosive. This is a compromise between ensuring that the
passage of any subsequent shock through preshocked material does not result in any
significant increase in the reaction rate, yet ensuring thatsingle shocks in pristine
material are still able to grow to detonation more or less as given by the Pop-Plot.

Application of the desensitisation model to double shock gas-gun experiments
on the HMX-based explosives PBX9404 and EDC37 has shown that, where there
is little or no observable reaction in the first shock, the explosive response is well
modelled. The simple desensitisation model is able to qualitatively reproduce the
main experimental features; the weak precursor wave, whileit persists, inhibiting
the build-up to detonation of the main shock, and the run to detonation beginning
approximately at the end of the preshocked region.

Applying the model outside its fitting regime, where there issignificant reaction
in the first shock in double shock experiments on EDC37, poor agreement with
experiment is obtained. The calculation fails to correctlypredict the growth of
reaction due to the first shock. This is a direct consequence of the desensitisation
model limiting the reaction rate at the pressure of the first shock. In addition, the
agreement to the build-up of reaction due to the second shockis poor. This is due to
the ignition term dominating the explosive response. Thus,the wider applicability
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of the simple desensitisation model to simulate a range of double or multiple shock
situations must be questioned.

The need to invoke a separate desensitisation model for double shocks is simply
a manifestation of using a reaction rate model that is dependent on the local pres-
sure. With a reaction rate dependent mainly on temperature,for example, it is quite
possible that no additional mechanism is required to account for the double shock
observations since the second shock develops a lower temperature than it would be
behind a single shock of the same pressure. Expressed another way, the fact that,
experimentally, the reaction rate behind a second shock is less than that behind a
single shock of the same pressure demonstrates that the reaction rate is not largely
dependent on pressure.

2.6 Conclusions

For evaluation purposes, the widely used, continuum-based, Lee-Tarver reactive
burn model has been implemented and validated in the one-dimensional Lagrangian
hydrocode PERUSE. The reaction rate law in the Lee-Tarver model is based sub-
stantially on the local pressure. Although some aspects of explosive shock initiation
can be adequately described by a pressure-dependent reaction rate,e.g. Pop Plot
data for sustained single shocks, such reaction rates cannot account for explosive
behaviour under double shock compression.

For a reaction rate based on pressure-dependence, it is necessary to postulate an
additional desensitisation model to account for double shock observations. A simple
desensitisation model, developed within the confines of theLee-Tarver model, has
been applied to double shock data with mixed results. The fact that, experimentally,
the reaction rate behind a second shock is less than that behind a single shock of
the same pressure demonstrates that the reaction rate is notsolely dependent on
pressure. It follows that reaction rate models such as Lee-Tarver are based on a
false premise.

To account for double shock observations without requiringto invoke a separate
desensitisation model, a different form of reaction rate isneeded. For example,
with a reaction rate dependent mainly on temperature, it is quite possible that no
additional mechanism is required since a higher pressure second shock develops a
lower temperature than it would be behind a single shock of the same pressure.

Discussed in the following chapter, a new approach to shock initiation modelling
that utilises a reaction rate based on entropy rather than pressure, also allows double
shock experiments to be modelled without recourse to a separate desensitisation
model. However, the move from a pressure-dependent reaction rate to an entropy-
dependent reaction rate introduces additional numerical complexities, and these are
described in detail in the next chapter.
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Figure 2.1: Definition of simple one-dimensional test problem.
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Figure 2.2: Calculated pressure profiles from PERUSE for a 0.025 Mb sustained
pressure pulse into PBX-9404.
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Figure 2.3: Calculated pressure profiles from DYNA2D for a 0.025 Mb sustained
pressure pulse into PBX-9404.
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Figure 2.4: Pop-Plot data for EDC37 explosive.
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Figure 2.5: Particle velocity histories for EDC37 Gas-Gun Shot 1160.
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Figure 2.6: LANL precursor shock experiments; experimental arrangement and
distance-time diagram showing preshock and main shock generation.

Figure 2.7: Data from LANL precursor shock experiments on PBX-9404; 23 kbar
preshock followed 0.65µslater by 56 kbar shock.
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Figure 2.8: LANL precursor shock experiments; calculated particle velocity profiles
in PBX9404 using the standard Lee-Tarver model.
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Figure 2.9: LANL precursor shock experiments; calculated particle velocity profiles
in PBX-9404 using the simple desensitisation model.
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Figure 2.10: Comparison of calculated and experimental particle velocity profiles
for EDC37 double shock gas-gun shots 1175/76.
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Figure 2.11: Comparison of calculated and experimental particle velocity profiles
for EDC37 double shock gas-gun shots 1194/95.



Chapter 3

Entropy-Dependent CREST Reactive
Burn Model

3.1 Introduction

Traditionally, reaction rates in continuum-based reactive burn models to calcu-
late explosive shock initiation have been based on pressureand/or temperature. For
example, the most widely used continuum reactive burn modelin use in hydrocodes
today, the Lee-Tarver model [49], uses a pressure-dependent reaction rate to de-
scribe the explosive response. The majority of these modelsdate back to the 1970’s
and 1980’s and, as time has progressed, (i) it has become apparent that parameters
fitted to a limited set of experimental results have to be adjusted to fit different data
and/or model different phenomena, and (ii) the developmentof new experimental
techniques have permitted a far greater insight into the shock initiation process. In
particular, heterogeneous explosive response to multipleshock inputs is now much
better understood. This is one aspect of explosive shock initiation that cannot be
predicted by pressure-based models without recourse to an additional desensitisa-
tion model (see Chapter 2). Analysis of recently acquired data from shock initiation
experiments, coupled with the inability of pressure-dependent models to accurately
simulate a wide range of shock initiation phenomena, has lead to the development
of a new reactive burn model.

CREST [61] is a new continuum reactive burn model for simulating shock wave
initiation and propagation of detonation in heterogeneoussolid explosives based on
the conclusions of experimental observations. The model has a completely different
basis from other continuum reactive burn models in that its reaction rate is indepen-
dent of local flow variables behind the shock such as pressureand temperature. The
foundation for CREST, based on a detailed analysis of experimental data, is that re-
action, at least to first order, is a function of shock strength [60]. The best measure
for shock strength for use in hydrocodes is a function of entropy of the shocked,

59
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non-reacted, explosive and hence the model utilises an entropy-dependent reaction
rate. This form of reaction rate coupled with both an unreacted and a reaction
products equation of state (EOS) allows CREST to calculate explosive behaviour.
The overall objective of CREST is to accurately model as widea range of explo-
sive phenomena as possible with a relatively simple model, and without having to
change the model parameters and/or the form of the reaction rate equation in order
to simulate different phenomena for a given explosive.

This chapter commences by giving a brief summary of the theoretical and ex-
perimental background to CREST and, for completeness, gives an overview of the
model itself. To enable shock initiation and detonation problems of interest to be
modelled using CREST, the model has been built into a number of hydrocodes.
The implementation of the model in a one-dimensional, and a number of two-
dimensional, hydrocodes is then described in detail, and results of calculations are
presented to validate the implementation of the model. During the hydrocode im-
plementation and use of the CREST model, a number of computational problems,
not associated with pressure-based models, were identified. These problems are
described and, where possible, solutions have been sought to minimise the effect
of these additional problems on CREST calculations. To provide a rigorous test
of CREST’s predictive capability, a CREST model for the TATB-based explosive
PBX9502, fitted to in-material gauge data from one-dimensional experiments ex-
amining the shock to detonation transition, has been applied to two-dimensional
explosive data from detonation experiments. The calculational detonation studies
are described, and the results discussed, particularly in relation to the wider appli-
cability of the CREST model. Finally, the conclusions are given.

3.2 Background to CREST

Before developing a new reaction rate model for heterogeneous solid explosives,
it is important to understand the experimental data obtained in shock initiation ex-
periments. At the time of the development of some of the continuum models that
are widely used today, such as the Lee-Tarver model [49], thedata available on the
shock response of explosives came mainly from so-called Wedge Tests [3] [30].
These experiments measure the trajectory of the leading shock from which the vari-
ation of shock velocity can be determined. It was found that the shock velocity
increases very slowly to begin with, but after a depth into the explosive, dependent
on the initial shock strength, the shock velocity increasesrapidly to full detonation
velocity. These experiments give the run-distance and run-time to detonation from
sustained input shocks, leading to the Pop Plot [31], where the run-distance and run-
time to detonation decrease as the shock strength increases. However, Wedge Test
experiments give no information on the reaction history behind the shock before
detonation is attained.
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More recently, the development of new experimental diagnostic techniques has
helped to improve our understanding of the shock initiationbehaviour of hetero-
geneous explosives. For example, the development and use ofrobust in-material
gauges, such as the electromagnetic particle velocity gauge of Vorthman [35], has
revealed new data on the growth of reaction inside shocked explosives. Using in-
material particle velocity gauges, a wealth of valuable information on the reaction
behaviour of impact initiated explosives has been obtainedfrom one-dimensional
gas-gun experiments carried out by Gustavsenet al. [36] [37] [38] at Los Alamos
National Laboratory. Effectively, the particle velocity gauges indicate the growth of
the bulk reaction along a number of different (Lagrangian) particle paths within the
explosive samples.

CREST is based on the detailed analysis [60] of the in-material particle ve-
locity gauge records obtained from the experiments carriedout by Gustavsen and
co-workers. Since all the experiments were one-dimensional in nature, the analysis
is centred on one-dimensional shock initiation phenomena.The analysis showed a
strong correlation of time to peak particle velocity with shock strength, and from the
fact that particle velocity histories at the same shock strength scale independently of
how the shock strength had developed. The conclusion of these observations is that,
at least to first order, the reaction rate history for any explosive particle must depend
on the shock strength experienced by the particle, and does not depend on the pres-
sure or temperature developing along the particle path, as is assumed by all other
reaction rate models. The best measure for shock strength for use in hydrocodes is a
function of entropy of the shocked, non-reacted explosive,which remains constant
behind the shock, unless a further shock is propagated into the explosive. CREST
therefore utilises an entropy-dependent reaction rate to model the explosive reac-
tion, where the function of entropy is evaluated from the solid phase internal energy
(and specific volume) within the non-reactive EOS for the explosive.

The main advantage of using an entropy-dependent reaction rate is that no ad-
ditional desensitisation model (as required by pressure-based models) is needed to
model multiple shock situations. In double shock experiments, it has been shown
that the reaction rate behind the second shock following a weak first shock is signif-
icantly less than behind a single shock at the same pressure,see for example [38].
Since the internal energy (and therefore entropy) reached in a material by a double
shock up to a given pressure is less than that reached by a single shock to the same
pressure, then a reaction rate based on entropy can naturally account for double
shock phenomena.

In any reactive burn model, it is important that the equations of state of the differ-
ent components of the reacting mixture are modelled as accurately as possible. Any
errors in these EOS will naturally be folded into the parameters in the reaction rate
model, which in turn could lead to inaccurate conclusions being made about the re-
active behaviour of an explosive. The EOS for the unreacted explosive is especially
important for shock initiation because, (i) it determines the pressure, temperature,
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entropyetc in the initial shock state, and (ii) the explosive near the shock front is
at or near its non-reactive state for the majority of the run to detonation. Heteroge-
neous explosives are always, by design, to a greater or lesser extent porous. Since
the porosity can vary from sample to sample, and it is well known experimentally
that small changes in porosity can change both the non-reactive Hugoniot and shock
sensitivity of an explosive [36], then porosity should be a variable in any reactive
burn model.

However, continuum reactive burn models have never included porosity as a pa-
rameter, and have always implicitly assumed that the unreacted Hugoniot has been
measured at exactly the required degree of porosity (which will rarely be available).
If an explosive sample has a different porosity to that at which the Hugoniot has
been measured, then in the absence of Hugoniot data at the required porosity, the
unreacted EOS of the material can only be guessed at. Therefore, to accurately
model an explosive with differing porosities, the parameters in the unreacted EOS
and/or reaction rate model usually have to be adjusted to match the data. To address
this issue, CREST employs a porosity-dependent unreacted EOS in the model.

In CREST, porous non-reactive Hugoniots are evaluated froma single baseline
EOS for the fully dense material using the Snowplough porosity model. Since there
is no Hugoniot data for explosives at zero porosity, the unreacted EOS for the fully
dense material is determined by extrapolating available (usually sparse) Hugoniot
data for the porous explosive to a best estimate of the fully dense Hugoniot using a
methodology devised by Lambourn [100]. This baseline EOS, when used in con-
junction with an appropriate porosity model, allows the unreacted Hugoniot at any
given porosity to be determined. CREST utilises the Snowplough model as this is
the standard form currently used in the hydrocodes to model porous materials.

CREST needs in-material gauge results in order to calibratethe reaction model
coefficients, coupled with both an unreacted and a reaction products EOS in order
to calculate explosive behaviour. From the one-dimensional shock initiation studies
carried out by Gustavsenet al., in-material gauge data has been obtained on a num-
ber explosives, including the HMX-based explosives PBX9501 [36] and EDC37
[38], and the TATB-based explosive PBX9502 [37]. By fitting to the particle veloc-
ity gauge histories from sustained single shock gas-gun experiments, CREST pa-
rameters for two explosives EDC37 [61] and PBX9502 [62] havebeen developed.
A model for PBX9501 explosive is under development.

Using a single parameter set, the fitted CREST model for EDC37explosive
was subsequently shown to be able to simulate a range of one-dimensional shock
initiation data involving sustained, thin pulse, and double shock inputs [61]. A
clear advantage over pressure-dependent models is that, byutilising an entropy-
dependent reaction rate, the results of double shock experiments can be predicted
without recourse to a separate desensitisation model. For PBX9502 explosive, it
was shown that the fitted CREST model was able to reproduce one-dimensional
shock initiation data covering a range of input pressures for both sustained and thin
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pulse shocks [62]. In addition, the use of the Snowplough porosity model allows
CREST to predict the effects of porosity on initiation threshold data for RX-03-AU
[101] (which has the same composition as PBX9502) without having to adjust the
model parameters [62].

3.3 Overview of the CREST Model

3.3.1 Preamble

The CREST model [61] consists of two basic parts: (i) an EOS model for the
reacting material, and (ii) a reaction rate model. The reacting material is assumed
to be a mixture of two co-existing phases consisting of unreacted solid explosive
and gaseous reaction products, and an EOS must be provided for each phase. The
non-reactive explosive is modelled via a finite strain form of EOS [100]. This is
thermodynamically complete as temperature is evaluated. To model the explosive
reaction products, the universal Jones-Wilkins-Lee (JWL)form of EOS [89] is used.
To yield the EOS of the reacting mixture, CREST uses the Isentropic Solid Equa-
tion (ISE) model [102], where it is assumed that the solid andgaseous phases of
the reacting material are in pressure equilibrium. The unreacted solid explosive is
assumed to be on an isentrope through the point on its Hugoniot to which it was
shocked with the gaseous detonation products taking up the remaining volume and
internal energy at pressure equilibrium. The Snowplough porosity model is used to
account for porosity in determining the unreacted explosive response.

The reaction rate model controls the rate of explosive decomposition in going
from unreacted explosive to gaseous reaction products. Thereaction rate terms in
CREST are based on detailed analysis of in-material particle velocity gauge histo-
ries from explosive gas-gun experiments which suggests that, in the early stages of
the growth to detonation, the reaction rate at any given particle position depends
only on the shock strength at that position [60] [103]. This indicates that the solid
phase entropy, which remains constant between shocks, might be an appropriate
variable representing shock strength for use in a reaction rate model.

The various components of the CREST model are described below where, in the
model equations, the subscriptss andg refer to the unreacted solid explosive and
gaseous reaction products respectively.

3.3.2 Equations of State

Unreacted EOS

A Mie-Gruneisen form of EOS [100] [104] is used to model the unreacted ex-
plosive, where the principal isentrope, written in finite strain form, is taken to be the
reference curve. This form of EOS has the advantage that it allows the temperature
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and a function of entropy of the unreacted explosive to be easily evaluated for their
potential use in any temperature and/or entropy-dependentreaction rate model. The
unreacted EOS is described by the following expressions,

Ps = Pi(Vs)+
Γ(Vs)

Vs
(Es−Ei(Vs)) (3.1)

Pi(Vs) = 3K0s f (2 f +1)
5
2

(

F +
f
2

dF
d f

)

(3.2)

Ei(Vs) =
9
2

V0s K0s f 2F +Q (3.3)

f =
1
2

[

(

V0s

Vs

)
2
3

−1

]

(3.4)

F = exp [g( f )] (3.5)

g( f ) = gA+gB +gC (3.6)

gA = A1 f +A2 f 2 +A3 f 3 (3.7)

+
[

B1( f − fc)+B2( f − fc)
2+B3( f − fc)

3
] 1

2

[

1− 2
π

tan−1
(

f − fc
δ

)]

gB =
δ

2π
(

B1−δ2B3
)

ln
[

δ2 +( f − fc)
2
]

− B2δ2

π
tan−1

(

f − fc
δ

)

(3.8)

+
δ

2π
( f − fc) [2B2+B3( f − fc)]

gC =
[

B1 fc−B2 fc
2 +B3 fc

3] 1
2

[

1− 2
π

tan−1
(− fc

δ

)]

(3.9)

− δ
2π
(

B1−δ2B3
)

ln
(

δ2 + fc
2)+

B2δ2

π
tan−1

(− fc
δ

)

+
δ

2π
fc(2B2−B3 fc)

Γ(Vs) = γ00+Γ1

(

V
V0s

)m

exp

[

−Γ2

(

V
V0s

)]

(3.10)

wherePs, Vs, andEs are respectively the pressure, specific volume, and specific
internal energy of the unreacted explosive,Pi(Vs) andEi(Vs) are the pressure and



CHAPTER 3. CREST REACTIVE BURN MODEL 65

specific internal energy on the principal isentrope,Γ is the Gruneisen gamma,Q is
the initial specific internal energy of the non-reacted explosive, f is the finite strain
variable used to define the compression,V0s is the specific volume at solid density,
K0s is the isentropic bulk modulus, andA1, A2, A3, B1, B2, B3, fc, δ, m, γ00, Γ1, and
Γ2 are constants.

The EOS is thermodynamically complete since it allows for the evaluation of
temperature. In this instance temperatures are obtained most easily by defining
specific heat at constant volume,CVs, as a function of temperature in the unreacted
explosive onVs = V0s. With the principal isentrope as the reference curve, the other
isentropes are given by,

Es = Ei(Vs)+ τ(Vs)Zs(Vs) (3.11)

whereZs(S) is a function of entropy of the non-reacted explosive, and

τ(Vs) = exp

(

−
Z Vs

V0s

Γ
Vs

dVs

)

(3.12)

Given any state point(Vs,Es), τ is easily evaluated from (3.12), and henceZs can
be determined from (3.11). The important point to note is that Zs remains constant
on an isentrope, and the functionZs is the specific internal energy atVs = V0s on
the isentrope through the current(Vs,Es) point. Assuming a linear variation ofCVs

with the temperature in the unreacted explosive,Ts, (which is about the best that
is available experimentally) then the temperature at the point where the isentrope
through(Vs,Es) intersects the lineVs = V0s is given by,

T1s = T0s+
2Zs

CV0s +
√

CV0s
2+2Zs

dCV s
dTs

(3.13)

whereT0s is the initial or ambient temperature. The temperature at the chosen point
(Vs,Es) is then related toT1s via the expression,

Ts(Vs,Es) = τ(Vs) T1s (3.14)

The above unreacted EOS for the explosive relates to material at solid density.
Since all heterogeneous explosives of interest have some degree of porosity, the
unreacted EOS is based on porous Hugoniot data which is first extrapolated back
to zero porosity using a method devised by Lambourn [104]. The zero porosity
Hugoniot is then converted to form the principal isentrope,written in finite strain
form, which is used as the basis for a Gruneisen form of the EOS[100]. This EOS,
when used in conjunction with an appropriate porosity model, allows the unreacted
Hugoniot of the porous explosive to be determined. CREST currently utilises the
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Snowplough porosity model to evaluate the unreacted Hugoniot of a porous explo-
sive.

Reaction Products EOS

For hydrocode modelling applications, a universally used analytic EOS for the
reaction products is the JWL form [89] which is given by,

Pg = A

(

1− w
R1

V0s

Vg

)

exp

(

−R1
Vg

V0s

)

+B

(

1− w
R2

V0s

Vg

)

exp

(

−R2
Vg

V0s

)

+
wEg

Vg
(3.15)

wherePg, Vg, andEg are respectively the pressure, specific volume, and specific
internal energy of the gaseous reaction products,V0s is the specific volume at solid
density, andA, B, R1, R2, andw are constants.

3.3.3 EOS Model for Reacting Material

In CREST, the ISE model [102] is used to determine the EOS of the reacting
material between unreacted solid explosive and gaseous reaction products, with the
assumption that the solid and gaseous phases are in pressureequilibrium. The un-
reacted solid explosive is assumed to be on an isentrope through the point on its
Hugoniot to which it was shocked with the gaseous detonationproducts taking up
the remaining volume and internal energy at pressure equilibrium.

The entropy in the unreacted solid explosive is set by the leading shock wave
after which, in the absence of additional shocks, the solid phase entropy remains
constant. To calculate shock discontinuities in the hydrocodes by a continuous but
rapid jump [105], an artificial viscosity,q, is added to the pressure in the governing
flow equations. In order that the solid component of the mixture reaches the correct
entropy appropriate to the initial shock, or to the initial shock plus any other shocks
that enter the region in which reaction is taking place, the artificial viscosity needs
to be applied to the unreacted solid component of the mixture, as well as to the
mixture itself, so that it experiences the shock transition(s).

Simple mixture laws in terms of the mass fraction reacted,λ, are used to express
the specific volume and the specific internal energy of the mixture as the weighted
sums respectively of the specific volumes and specific internal energies in the sepa-
rate phases. The appropriate equations for the model are,

dE+(P+q)dV = 0 (3.16)

dES+(P+q)dVs = 0 (3.17)

V = (1−λ)Vs+λVg (3.18)

E = (1−λ)Es+λEg (3.19)
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Ps = Ps(Vs,Es) (3.20)

Pg = Pg(Vg,Eg) (3.21)

P = Ps = Pg (3.22)

whereP, V, andE are respectively the pressure, specific volume, and specificin-
ternal energy of the mixture,q is the artificial viscosity, andλ is the mass fraction
reacted. These equations are written with the assumption that the initial specific
internal energy of the unreacted explosive is Q, the detonation specific energy. ‘Re-
lease’ of energy is treated within the phase change from unreacted explosive to
detonation products, withλ as the progress variable.

There are normally two ways of treating the origin of energy for the unreacted
explosive. In the perhaps more traditional method, the solid starts off with zero spe-
cific internal energy atP = 0, V = V0, and energy is released through the reaction
zone. The conservation of energy in the explosive is thendE+(P+q)dV = λdQ.
In the alternative method, the solid explosive is assumed tohave potential energy
Q at P = 0, V = V0, Q being the detonation energy per unit mass. Energy is not
then released explicitly in the reaction zone, but implicitly through the transforma-
tion of the unreacted solid explosive to detonation products. For hydrocodes it is
convenient to use the potential energy method, since it doesnot require a change to
the conservation of energy equation in the integration scheme. Thus, the potential
energy method is used in the CREST model.

For pressure equilibrium it is required that,Ps−Pg = 0. Given (V,E,λ) for any
point in the mixture, there are then 4 equations (3.17), (3.18), (3.19), and (3.22) and
5 unknowns (P, Vs, Es, Vg, andEg). Note that equation (3.16) is the internal energy
equation for the mixture which is calculated by the hydrocode rather than the model
itself. To solve for the unknown parameters, an iterative technique is used where
the specific volume of the unreacted material,Vs, is allowed to adjust to achieve
pressure equilibrium. For numerical reasons, to iterate for pressure equilibrium
between the reactants and products ‘significant’ amounts ofboth components of
the mixture need to be present. A cut-off,ε, is included in the model to signify
where the mixture treatment is turned on, and then turned off, in a computational
cell based on the value of the mass fraction reacted,λ, in the cell. Ifλ < ε, then the
explosive is modelled with its unreacted EOS only, whereas if (1−λ) < ε then the
explosive is modelled with the EOS for the reaction products. For all other values of
λ, the explosive is treated as a mixture based on the two EOS’s.Typically, a value
of ε = 10−4 is used in numerical simulations using CREST.

Newton iteration is used to to attain pressure equilibrium between the solid and
gaseous phases in equation (3.22). If convergence is not attained within a given
number of iterations, then the much slower Bisection methodis used. This should
be full-proof, and to date has not caused any problems, however alternative iterative
methods could be easily implemented should the need arise.
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3.3.4 Reaction Rate Model

To describe the explosive decomposition, the CREST reaction rate model utilises
two reaction rates; (i) a fast reaction,λ̇1, which encompasses all the primary sources
of reaction (‘hot-spots’etc), and (ii) a slower reaction rate,λ̇2, associated with the
bulk burn of the explosive and activated by the fast reaction. The overall reaction
rate in the explosive is given by the weighted sum of these tworates, both of which
are dependent on a function of entropy of the unreacted solidexplosive,Zs, which
is calculated within the finite strain EOS.

The overall reaction rate,λ̇, describing the explosive decomposition is given by,

λ̇ = m1 λ̇1+m2 λ̇2 (3.23)

wherem1 andm2 are weighting factors. The forms of the individual reactionrates
are given by,

λ̇1 = (1−λ1) [−2b1 ln(1−λ1)]
1
2 (3.24)

λ̇2 = (1−λ2) λ1

[

2b2

(

b2λ1

b1
− ln(1−λ2)

)] 1
2

(3.25)

and the derivation of these equations is discussed in [61]. All λ’s can range be-
tween 0 and 1 where, in particular,λ = 0 represents no reaction (unreacted solid
explosive), andλ = 1 represents complete reaction (gaseous products).

Following the reasoning given in [61], the reaction rate parametersb1 andb2,
which largely determine the time of the peak reaction rates,andm1 andm2, which
determine the magnitude of the peak reaction rates, are functions of the entropy
parameterZs given by the expressions,

b1 = c0(Zs)
c1 (3.26)

b2 = c2(Zs)
c3 (3.27)

m1 = (1−λ)
c6(Zs)

c12

√
b1

(3.28)

m2 = (1−λ)

[

c8(Zs)
−c9 +c10(Zs−c13)

c11

√
b2

]

(3.29)

wherec0,c1,c2,c3,c6,c8,c9,c10, c11, andc12 are constants which are fitted to par-
ticle velocity gauge data from one-dimensional, sustainedshock, gas-gun experi-
ments. An additional constant,c13, is included to represent a threshold in entropy
below which there is no reaction. Incorporating the depletion factor(1−λ) in the
expressions for the weighting factors ensures that the overall reaction rate,̇λ, is a
smoothly varying function of time.
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3.4 Implementation of CREST in Hydrocodes

3.4.1 Overview

To enable computer simulations of a range of explosive problems of interest to
be performed using CREST, the model needs to be implemented into one or more
hydrocodes. Hydrocodes are large computer programs that solve the equations gov-
erning unsteady material dynamic motion in terms of the conservation of mass,
momentum, and energy. In order to obtain a complete solution, in addition to ap-
propriate initial and boundary conditions, it is necessaryto define a further relation
between the flow variables. This can be found from a material model which re-
lates stress to deformation and internal energy (or temperature). In most cases, the
stress may be separated into a uniform hydrostatic pressure, and a stress deviator
associated with the resistance of the material to shear distortion. Then, the relation
between the hydrostatic pressure, the local density (or specific volume) and local
specific internal energy (or temperature) is known as the equation of state. Various
forms of equation of state (EOS) and material strength models are usually included
in hydrocodes.

The CREST reactive burn model described above has been implemented into the
one-dimensional hydrocode PERUSE [88], and the two-dimensional hydrocodes
CORVUS [86], PETRA [106], and SHAMROCK [87]. The hydrocodessolve the
governing flow equations which describe the conservation ofmass, momentum, and
internal energy of the reacting explosive mixture. The equations associated with
the model, as given in Section 3.3, are solved within the EOS call, and hence the
model appears to the hydrocodes just like any other EOS routine. However, to link
the model to the hydrocodes required the creation of a numberof extra arrays in
PERUSE, CORVUS, PETRA, and SHAMROCK, to store the appropriate variables
associated with the model that need to be carried from timestep to timestep.

The common features of the hydrocodes into which the CREST model has been
implemented are: (i) the use of explicit time integration for temporal discretisation,
(ii) use of the microsecond (µs), centimetre (cm), and gramme (g) system of units,
and (iii) use of a staggered grid in the solution scheme. The grids are termed stag-
gered since velocity and position are nodal quantities, while all other flow variables
are cell centred. In some staggered grid schemes the nodal and cell centred quanti-
ties are at different time levels, but in the hydrocodes dicussed here the numerical
schemes are such that at the end of a timestep all the flow variables are at the same
time level.

In the following Sections, the implementation of the CREST model in PERUSE
is described first, followed by its implementation in CORVUS, PETRA and SHAM-
ROCK in turn.
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3.4.2 PERUSE

Preamble

PERUSE is a one-dimensional Lagrangian, finite difference,multi-material hy-
drocode for the calculation of time dependent compressibleflow [88]. It is used
as a test-bed for the development and testing of models of explosive shock ini-
tiation behaviour. The strategy is to develop and test models within a relatively
simple research code before implementing these models in the more complex two-
dimensional hydrocodes.

The solution of the governing fluid flow equations is advancedforward in time
using an explicit two-step (predictor-corrector) numerical scheme. The predictor-
corrector method operates by running for half a timestep with first-order accuracy
to calculate a half timestep pressure (the predictor step),and then using this to
advance the equations for a full timestep with second-orderaccuracy (the corrector
step). The overall scheme is second order accurate in time and space [90].

Solution Scheme

The steps in the solution method employed for the CREST modelto advance
the solution fromtn to tn+1 over a timestep∆tn+ 1

2 are described below, where it
is assumed that the state of the explosive is that of a reacting mixture. In the fol-
lowing difference equations the tilde symbol indicates intermediate values during a
predictor or corrector step, and the superscriptn represents the temporal index. For
reasons of clarity, the spatial index has been omitted.

• Predictor Step (forward Euler half timestep)

The purpose of this stage is to compute values for the CREST variables at the
half timestep (n+ 1

2), and proceeds as follows, whereVn+ 1
2 , En+ 1

2 , andqn are
given data, computed by the hydrocode.

1. Update pressure due to the hydrodynamics. This involves solution of
equations (3.11) and (3.17)-(3.21), and is performed at fixed λ.

ISE model: InitialiseṼs
n+ 1

2 (start with value ofVs from end of previous
step). Calculate,

Ẽs
n+ 1

2 = Es
n− (Pn+qn)

(

Ṽs
n+ 1

2 −Vs
n
)

Z̃
n+ 1

2
s =

Ẽ
n+ 1

2
s − Ẽ

n+ 1
2

i (Vs)

τ̃n+ 1
2(Vs)
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P̃s
n+ 1

2 = Ps

(

Ṽs
n+ 1

2 , Ẽs
n+ 1

2

)

Ṽg
n+ 1

2 =
Vn+ 1

2 − (1−λn)Ṽs
n+ 1

2

λn

Ẽg
n+ 1

2 =
En+ 1

2 − (1−λn) Ẽs
n+ 1

2

λn

P̃g
n+ 1

2 = Pg

(

Ṽg
n+ 1

2 , Ẽg
n+ 1

2

)

and iterate oñVs
n+ 1

2 until
∣

∣

∣
P̃s

n+ 1
2 − P̃g

n+ 1
2

∣

∣

∣
< 10−6 Mbars.

2. Calculate the explosive burn. Solve equations (3.23)-(3.29).

b̃
n+ 1

2
1 = c0

(

Z̃
n+ 1

2
s

)c1

b̃
n+ 1

2
2 = c2

(

Z̃
n+ 1

2
s

)c3

m̃
n+ 1

2
1 = (1−λn)

c6

(

Z̃s
n+ 1

2

)c12

√

b̃
n+ 1

2
1

m̃
n+ 1

2
2 = (1−λn)











c8

(

Z̃
n+ 1

2
s

)−c9

+c10

(

Z̃
n+ 1

2
s −c13

)c11

√

b̃
n+ 1

2
2











λ1
n+ 1

2 = λ1
n+

∆tn+ 1
2

2
λ̇n

1

λ2
n+ 1

2 = λ2
n+

∆tn+ 1
2

2
λ̇n

2

λn+ 1
2 = λn+

∆tn+ 1
2

2
λ̇n

3. Update pressure due to the explosive burn. This involves solution of
equations (3.11) and (3.17)-(3.21), and is performed at fixed λ.
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ISE model: InitialiseVs
n+ 1

2 (start with value ofṼ
n+ 1

2
s from 1. above).

Calculate,

Es
n+ 1

2 = Es
n−
[

1
2

(

Pn+ P̃n+ 1
2

)

+qn
]

(

Vs
n+ 1

2 −Vs
n
)

Zs
n+ 1

2 =
Es

n+ 1
2 −Ei

n+ 1
2(Vs)

τn+ 1
2(Vs)

Ps
n+ 1

2 = Ps

(

Vs
n+ 1

2 ,Es
n+ 1

2

)

Vg
n+ 1

2 =
Vn+ 1

2 −
(

1−λn+ 1
2

)

Vs
n+ 1

2

λn+ 1
2

Eg
n+ 1

2 =
En+ 1

2 −
(

1−λn+ 1
2

)

Es
n+ 1

2

λn+ 1
2

Pg
n+ 1

2 = Pg

(

Vg
n+ 1

2 ,Eg
n+ 1

2

)

and iterate onVs
n+ 1

2 until
∣

∣

∣
Ps

n+ 1
2 −Pg

n+ 1
2

∣

∣

∣
< 10−6 Mbars.

4. Update reaction rates ready for the corrector step. Solveequations (3.23)-
(3.29).

b1
n+ 1

2 = c0

(

Zs
n+ 1

2

)c1

b2
n+ 1

2 = c2

(

Zs
n+ 1

2

)c3

m1
n+ 1

2 =
(

1−λn+ 1
2

) c6

(

Zs
n+ 1

2

)c12

√

b1
n+ 1

2

m2
n+ 1

2 =
(

1−λn+ 1
2

)







c8

(

Zs
n+ 1

2

)−c9
+c10

(

Zs
n+ 1

2 −c13

)c11

√

b2
n+ 1

2







λ̇n+ 1
2

1 =
(

1−λ1
n+ 1

2

)[

−2 b1
n+ 1

2 ln
(

1−λ1
n+ 1

2

)] 1
2
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λ̇n+ 1
2

2 =
(

1−λ2
n+ 1

2

)

λ1
n+ 1

2

[

2b2
n+ 1

2

(

b2
n+ 1

2 λ1
n+ 1

2

b1
n+ 1

2

− ln
(

1−λ2
n+ 1

2

)

)]
1
2

λ̇n+ 1
2 = m1

n+ 1
2 λ̇n+ 1

2
1 + m2

n+ 1
2 λ̇n+ 1

2
2

• Corrector Step

The CREST variables are now updated to the time leveln+ 1 as follows,
whereVn+1, En+1, andqn are given data, computed by the hydrocode.

1. Update pressure due to the hydrodynamics. This involves solution of
equations (3.11) and (3.17)-(3.21), and is performed at fixed λ.

ISE model: InitialiseṼs
n+1 (start with value ofVs

n+ 1
2 from the predictor

step).

Calculate,

Ẽs
n+1

= Es
n−
(

Pn+ 1
2 +qn

)(

Ṽs
n+1−Vs

n
)

Z̃n+1
s =

Ẽn+1
s − Ẽn+1

i (Vs)

τ̃n+1(Vs)

P̃s
n+1

= Ps

(

Ṽs
n+1

, Ẽs
n+1
)

Ṽg
n+1

=
Vn+1−

(

1−λn+ 1
2

)

Ṽs
n+1

λn+ 1
2

Ẽg
n+1

=
En+1−

(

1−λn+ 1
2

)

Ẽs
n+1

λn+ 1
2

P̃g
n+1

= Pg

(

Ṽg
n+1

, Ẽg
n+1
)

and iterate oñVs
n+1 until

∣

∣

∣
P̃s

n+1− P̃g
n+1
∣

∣

∣
< 10−6 Mbars.
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2. Calculate the explosive burn. Solve equations (3.23)-(3.29).

b̃n+1
1 = c0

(

Z̃n+1
s

)c1

b̃n+1
2 = c2

(

Z̃n+1
s

)c3

m̃n+1
1 =

(

1−λn+ 1
2

) c6
(

Z̃n+1
s

)c12

√

b̃n+1
1

m̃n+1
2 =

(

1−λn+ 1
2

)





c8
(

Z̃n+1
s

)−c9 +c10
(

Z̃n+1
s −c13

)c11

√

b̃n+1
2





λ1
n+1 = λ1

n+∆tn+ 1
2 λ̇n+ 1

2
1

λ2
n+1 = λ2

n+∆tn+ 1
2 λ̇n+ 1

2
2

λn+1 = λn+∆tn+ 1
2 λ̇n+ 1

2

3. Update pressure due to the explosive burn. This involves solution of
equations (3.11) and (3.17)-(3.21), and is performed at fixed λ.

ISE model: InitialiseVs
n+1 (start with value ofṼs

n+1 from 1. above).
Calculate,

Es
n+1 = Es

n−
[

1
2

(

Pn+ 1
2 + P̃n+1

)

+qn
]

(

Vs
n+1−Vs

n)

Zs
n+1 =

Es
n+1−Ei

n+1(Vs)

τn+1(Vs)

Ps
n+1 = Ps

(

Vs
n+1,Es

n+1)

Vg
n+1 =

Vn+1−
(

1−λn+1
)

Vs
n+1

λn+1

Eg
n+1 =

En+1−
(

1−λn+1
)

Es
n+1

λn+1

Pg
n+1 = Pg

(

Vg
n+1,Eg

n+1)

and iterate onVs
n+1 until

∣

∣Ps
n+1−Pg

n+1
∣

∣< 10−6 Mbars.
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4. Update reaction rates ready for the next timestep. Solve equations (3.23)-
(3.29).

b1
n+1 = c0

(

Zs
n+1)c1

b2
n+1 = c2

(

Zs
n+1)c3

m1
n+1 =

(

1−λn+1) c6
(

Zs
n+1
)c12

√

b1
n+1

m2
n+1 =

(

1−λn+1)
[

c8
(

Zs
n+1
)−c9 +c10

(

Zs
n+1−c13

)c11

√

b2
n+1

]

λ̇n+1
1 =

(

1−λ1
n+1
)[

−2 b1
n+1 ln

(

1−λ1
n+1
)] 1

2

λ̇n+1
2 =

(

1−λ2
n+1
)

λ1
n+1

[

2b2
n+1

(

b2
n+1λ1

n+1

b1
n+1 − ln

(

1−λ2
n+1
)

)]
1
2

λ̇n+1 = m1
n+1 λ̇n+1

1 + m2
n+1 λ̇n+1

2

3.4.3 CORVUS

The two-dimensional, finite element hydrocode CORVUS was initially a La-
grangian code but has since evolved into an Arbitrary Lagrangian Eulerian (ALE)
code via the introduction of multi-material advection [86]. At the present time, the
CREST model can only be used in Lagrangian mode in CORVUS as ithas yet to be
linked to the ALE package.

In the Lagrangian hydro phase of CORVUS, the time differencing is performed
using a predictor-corrector solution method as per PERUSE.Thus, the steps re-
quired to advance the CREST model variables fromtn to tn+1 over a timestep∆tn+ 1

2

in CORVUS are as detailed above in Section 3.4.2.

3.4.4 PETRA

Preamble

PETRA is a legacy two-dimensional Eulerian hydrocode [106]. Each hydro
timestep in PETRA is composed of a Lagrangian phase followedby a remap phase.
The Lagrangian phase involves advancing the values of the mesh quantites as if the
mesh were free to move. However, as an Eulerian code is based on a stationary
grid, the mesh quantities will be incorrectly located unless a correction procedure
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is applied. This is the remap phase which corrects the mesh quantites back onto the
fixed grid, and which shall be referred to as the advection phase. The Lagrangian
and advection phases are dealt with separately below.

Lagrangian Phase

The Lagrangian phase of PETRA has the the same solution method as CORVUS
(Lagrangian mode), the only difference being that in PETRA the predictor-corrector
algorithm for the time differencing may be applied a number of times per timestep
to reduce the number of advection steps performed (since theadvection step is com-
putationally more expensive). Thus, the order of the calculation in any timestep in
the Lagrangian phase of PETRA is the same as that given for PERUSE in Sec-
tion 3.4.2 above, except that∆tn+ 1

2 is replaced by∆tl
n+ 1

2 (the Lagrangian timestep)
where∆tl

n+ 1
2 = ∆tn+ 1

2/N, andN is the number of Lagrangian steps to be performed

per advection step. Thus, each predictor step has timestep∆tl
n+ 1

2/2, and each cor-

responding corrector step has timestep∆tl
n+ 1

2 , and a total of 2N steps are required
to advance the solution fromtn to tn+1 in the Lagrangian phase.

Advection Phase

PETRA is based on a fixed grid and so at the end of the Lagrangianphase the
mesh quantities have to be mapped back to the original mesh. For CREST, the vari-
ables associated with the model need be corrected back to thestationary mesh such
that the pressure equilibrium assumption for the reacting mixture is maintained. In
addition, the reaction rates need to be re-calculated in preparation for the start of the
next timestep. The advection method employed for CREST is byno means unique.
Indeed two different advection methods were tried; the moresuccessful of the two
methods, as described below, has been shown to give good results.

By default PETRA advects mass, momentum, and specific internal energy. Ad-
ditionally for CREST, the following quantities are advected via the PETRA ‘black-
box’ advector; the mass fractions reactedλ1, λ2, andλ, and the solid component
variables comprising the specific volume,Vs, specific internal energy,Es, and spe-
cific entropyZs. In the following description, the superscript 0 indicatesvalues
obtained from the ‘black-box’ advector, while the superscript 1 indicates values
that have been corrected to pressure equilibrium. It is assumed thatλ1, λ2, λ, and
Zs are fixed so thate.g. Zs1 = Zs

0.
The steps in the solution method employed for the advection phase are given

below. Perform ‘black-box’ advection, then;
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1. Calculate the reaction rates ready for the next timestep.Solve equations
(3.23)-(3.29).
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2. Update pressure due to advection. This involves solutionof equations (3.11)
and (3.17)-(3.21), and is performed at fixedλ.

ISE model: InitialiseVs (start withVs
0, the value returned from the ‘black-

box’ advector). Also useEs
0 from advection. Calculate,

Es
1 = Es

0− (P+q)
(

Vs
1−Vs

0) (3.30)

Ps
1 = Ps

(

Vs
1,Es

1) (3.31)

Vg
1 =

V1−
(

1−λ1
)

Vs
1

λ1 (3.32)

Eg
1 =

E1−
(

1−λ1
)

Es
1

λ1 (3.33)

Pg
1 = Pg

(

Vg
1,Eg

1) (3.34)

and iterate onVs until
∣

∣Ps
1−Pg

1
∣

∣< 10−6 Mbars.
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3.4.5 SHAMROCK

Preamble

SHAMROCK is a modern two-dimensional, adaptive mesh refinement (AMR),
Eulerian hydrocode that essentially combines the PETRA Lagrange/remap fluid
scheme with a block-patching refinement methodology [87]. AMR is a technique
allowing the level of resolution to vary significantly across the computational do-
main and to dynamically adjust to the evolving solution by placing meshes in re-
gions of interest, for example, where the solution is changing rapidly. The aim is
to focus high resolution zoning only where it is needed and, thus, obtain a level of
accuracy comparable with existing (non-AMR) hydrocodes but with less demand
on computational resources.

With PETRA, having to mesh the entire computational domain with uniformly
fine zones can be inefficient and the computational costs can become impractical.
For example, accurate resolution of the reaction zone in a block of shock initiated
explosive requires many zones/mm. When it is considered that, for many practi-
cal problems of interest, the dimensions of the explosive region can be many cen-
timetres, it becomes obvious why calculations of this type can be so challenging
on PETRA. Thus, reactive burn modelling is ideally suited toan AMR code and,
in particular, for modelling large scale two-dimensional reactive burn problems,
SHAMROCK will be preferred to PETRA.

As stated above, SHAMROCK uses essentially the same hydro scheme as the
legacy code PETRA to advance the solution through time,ie the variables are first
advanced in time using a Lagrangian step, and then the grid ismapped back to the
stationary Eulerian mesh by advecting the cell quantities across cell boundaries to
account for the mesh movement. The only difference between the two Eulerian
codes in this respect is that SHAMROCK only allows one Lagrangian step to be
performed per advection step. Thus, the order of the calculation in any timestep in
the Lagrangian phase of SHAMROCK is the same as that given in Section 3.4.2,
and the remap or advection phase is as given in Section 3.4.4.

The AMR procedure in SHAMROCK uses a domain wide coarse mesh as a
starting point. Using various criteria, cells of interest are flagged for refinement.
From this list of flagged cells, a set of mesh patches is created that covers these cells,
and is finer by a factor two in each direction. The data from thecoarse mesh is then
transferred to the new mesh using a second order, montone mapping method. This
procedure is continued until either the finest level of refinement has been reached
or no more flagging criteria have been met. Refined cells that no longer meet the
various refinement criteria are subsequently de-refined back down, eventually, to
the coarse level grid.
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Refinement Criteria for CREST

A suitable refinement criteria in SHAMROCK for the reactive burn material
is required in order to flag-up cells that need to be refined to ensure accurate but
efficient calculations using the CREST model. One possible refinement criteria
that could be used for reactive burn calculations is to keep any cell with a mass
fraction reacted greater than 0 and less than 1 refined to the finest level specified.
However, this criteria has been found to be unsuitable for CREST. In CREST, for
low shock strengths, the total mass fraction reacted,λ, may never reach a value of
1. This would mean those cells whose mass fraction reacted never gets to a value of
1 being refined at the finest level for all time once reaction starts in a cell which is
clearly inefficient. Since the reaction rate histories fromCREST are ‘bell-shaped’,
see Figure 3.1 which is taken from [61], then in most instances the reaction rate
eventually falls back to zero when reaction is complete which may not necessarily
coincide with the burn fraction being 1.

Rather than refine the mesh based on the total mass fraction reacted,λ, explosive
cells modelled using CREST are refined based on the total reaction rate,λ̇. The
refinement criteria is that iḟλ > λ̇min, whereλ̇min is a minimum specified value for
the total reaction rate, then those cells where this criteria is met will be refined at
the finest level specified in the user input file. The default value for λ̇min is 0.0001.
The user can flag cells with a reaction rate greater than the default minimum value
to a specified level for a specified time. The default is the finest level for all time for
any region modelled with the CREST model.

3.5 Validation

3.5.1 Initial Validation

The CREST model described in Section 3.3 was initially builtinto the one-
dimensional Lagrangian hydrocode PERUSE [88]. This relatively simple code was
used as a test-bed to examine a number of numerical aspects ofthe CREST model,
and to develop the mathematical form for its reaction rate model. The first explo-
sive to be considered was the conventional, HMX-based explosive EDC37. Data
on the shock initiation behaviour of EDC37 explosive was obtained from gas-gun
experiments fired at Los Alamos National Laboratory using their embedded particle
velocity gauge technique [37]. The relevent EDC37 experiments are summarised in
Table 3.1. By fitting to the particle velocity gauge data froma number of the sus-
tained single shock experiments, a CREST reaction rate model for EDC37 explosive
was developed [61]. The fitting was carried out using PERUSE,and at a mesh res-
olution of 50 zones/mm, a meshing density at which mesh converged results using
CREST are attained (see Section 3.6.4 for more details on mesh sensitivity and the
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CREST model). The derived CREST model was subsequently shown to be able to
accurately reproduce the shock initiation response of EDC37 to sustained single and
double shocks, and thin pulse shock inputs with one set of parameters, and without
recourse to a separate desensitisation model for double shocks.

Table 3.1: Summary of EDC37 Gas Gun Experiments

Shot No. Impact Vel. Impactor Input Pressure Run Distance Type
(mm/µs) Material (kbars) (mm)

1267 0.487 Z-cut sapphire 27.6± 1.5 >16.0 Single shock
1160 0.608 Vistal 35.2± 1.6 14.4 Single shock
1122 0.682 Vistal 39.5± 1.7 12.4 Single shock
1120 0.809 Vistal 49.1± 1.9 No data Single shock
1159 0.918 Vistal 59.2± 2.1 7.0 Single shock
1277 1.403 Z-cut sapphire 108.0± 3.0 2.8 Single shock

1175A 0.921 Kel-F backed 29.4± 1.7 11.96 Double shock
1175B with Sapphire 62.0 (6.18)
1176A 0.925 Kel-F backed 12.29 Double shock
1176B with Sapphire 62.0 (6.51)
1194A 1.170 Kel-F backed 39.3 9.43 Double shock
1194B with Sapphire 85.8 (2.40)
1195A 1.165 Kel-F backed 39.3 8.40 Double shock
1195B with Sapphire 85.8 (2.00)
1281/ 1.220 Kel-F backed 41.5 / 90.6 10.00 Double shock
1282 with Sapphire
1279 1.321 Kel-F 44.5± 1.5 >12.0 Thin pulse shock
1280 1.320 Kel-F 44.5± 1.5 17.0 Thin pulse shock

To validate the implementation of the CREST reactive burn model in the two-
dimensional hydrocodes, the majority of the EDC37 gas gun experiments listed in
Table 3.1 were calculated on CORVUS, PETRA, and SHAMROCK, and the results
compared to the corresponding PERUSE results. The CREST parameters used for
EDC37 in the simulations were taken from [61], and are reproduced in Table 3.2.
For the impactor materials, Vistal was modelled using a Linear Gruneisen EOS
with a strength description [96]. A Linear Gruneisen EOS wasalso used to model
the z-cut Sapphire [99], while Kel-F was modelled using a Cubic Gruneisen EOS
[98]. For consistency with PERUSE, all the calculations used a mesh density of 50
zones/mm in the EDC37 explosive (the SHAMROCK simulation was performed
using a uniform 0.02mm grid), with appropriate meshing defined for the impactor
materials. A scalar monotonic artificial viscosity was usedto give an accurate rep-
resentation of the shock discontinuity [91].

As an example of results obtained from the simulations, consider the calcula-
tion of EDC37 Shot 1159 where a sustained single shock of∼59 kbars is input into
the explosive sample via a Vistal impactor. The calculational set-up consisted of
a 30mm thick Vistal flyer impacting a 30mm thick stationary EDC37 target, see
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Table 3.2: CREST parameters for EDC37 [61] and PBX9502 [62]

Parameter EDC37 PBX9502 Units

ρ0 1.8445 1.889 g/cm3

ρ0s 1.8445 1.942 g/cm3

Reaction products equation of state
A 6.642021 4.603 Mbar
B 0.2282927 0.09544 Mbar
R1 4.25 3.903
R2 1.825 1.659
ω 0.25 0.48
Q 0.0719557 0.0373 Mbar cm3/g
Unreacted equation of state
K0s 0.1424525 0.09314021 Mbar
A1 2.417494 0.246257
A2 2.208027 11.44221
A3 0.0 0.0
B1 0.0 16.8477
B2 0.0 6.534913
B3 0.0 0.0
fc 0.0 0.05
δ 0.0 0.021322
Γ1 32.33557 126.4052
Γ2 3.596933 6.554447
γ00 0.4 0.4
m 2.0 2.0
T0s 293.0 293.0 K
CV0s 9.17×10−6 1.068×10−5 Mbar cm3/g/K
dCVs/dT 0.0 2.42×10−8 Mbar cm3/g/K2

Reaction rate parameters
c0 2.0×108 2.0×107 µs−2(Mbar cm3/g)−c1

c1 2.0 2.5
c2 2.2×108 8.0×106 µs−2(Mbar cm3/g)−c3

c3 2.5 2.5
c6 0.0 1.8×1012 µs−1

c8 1.6×10−4 0.0 µs−1(Mbar cm3/g)c9

c9 1.0 1.0
c10 4.0×105 3.0×103 µs−1(Mbar cm3/g)−c11

c11 1.8 1.25
c12 0.0 5.0
c13 0.0 0.0012 Mbar cm3/g
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Figure 3.2. The two materials were assumed to be initially incontact with the mesh
nodes of the flyer material being given the prescribed velocity of u=0.918 mm/µs,
apart from the interface nodes which had a velocity of u/2. Inthe simulations, cal-
culated profiles were obtained at a number of Lagrangian particle positions along
the explosive charge length from the impact surface. The initial Lagrangian posi-
tions were at 0.0, 0.9, 1.9, 2.9, 3.9, 4.9, 5.5, 6.0, 6.5, 7.0,8.0, 9.0, 10.0, and 11.0
mm into the EDC37 explosive charge.

As stated above, the Vistal impactor was modelled using a Linear Gruneisen
EOS which has the form,

P = PH(V)+
Γ(V)

V
(E−EH(V)) (3.35)

where P is the pressure, V is the specific volume, E is the specific internal energy,
andPH andEH are the Hugoniot pressure and energy corresponding to the shock
velocity (Us)-particle velocity (Up) relationship,

Us = C0+sUp (3.36)

and the Gruneisen gamma is given by,

Γ(V) = Γ0 +Γ1
V
V0

(3.37)

In the above equationsC0, s, Γ0, andΓ1 are material specific constants. The EOS
and strength constants for Vistal are given in Table 3.3, where Y is the yield strength
andµ is the shear modulus, and both are assumed constant.

Table 3.3: EOS parameters for Vistal, Perspex, and Kel-F.

Vistal [96] Perspex [97] Kel-F [98]

ρ0 (g/cm3) 3.969 ρ0 (g/cm3) 1.186 ρ0 (g/cm3) 2.133
ρ0s (g/cm3) 3.969 ρ0s (g/cm3) 1.186 ρ0s (g/cm3) 2.133
C0 (cm/µs) 0.814 C0 (cm/µs) 0.2598 C0 (cm/µs) 0.205
s 1.28 s 1.516 s1 1.66
Γ0 0.0 Γ0 0.0 s2 0.4064
Γ1 2.3 Γ1 0.97 s3 -1.037
Y (Mb) 0.058 Γ0 0.66
µ (Mb) 1.555 A 0.0

The calculated particle velocity profiles from CORVUS, PETRA, and SHAM-
ROCK are shown in Figures 3.4-3.6 respectively, whereas thecorresponding calcu-
lated profiles from the original PERUSE calculation are reproduced in Figure 3.3.
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In each case, the first calculated history corresponds to theinterface gauge (0.0mm),
with the remaining traces at ever deeper positions into the explosive. The last cal-
culated trace is at an initial depth of 11.0mm as measured from the impact surface.
Overall, Figures 3.3-3.6 indicate that very similar results are obtained between all 4
hydrocodes.

To analyse the calculated results more closely, the computed particle velocity
profiles from all 4 hydrocodes for EDC37 Shot 1159 are compared in Figure 3.7.
Only a selected number of the histories are displayed for ease of viewing, and these
were at initial depths of 0.0, 0.9, 2.9, 4.9, 6.0, 7.0, 9.0, and 11.0mm into the explo-
sive. In addition, the corresponding calculated function of entropy profiles at the
same positions are also compared in Figure 3.8. The functionof entropy defines
the reaction rate in the CREST model, and it is seen from Figure 3.8 that once the
explosive material has been shocked the entropy, in this single shock case, remains
constant behind the shock at each Lagrangian position for the rest of the calculation.
It is observed that there are some minor differences betweenthe calculated results
from the different hydrocodes and these are explained below.

The reaction rate terms in CREST are chosen such that the reaction rate depends
only on the local shock strength. Since entropy remains constant between shocks,
a function of entropy of the unreacted explosive is chosen asthe most appropriate
variable representing shock strength for use in hydrocode calculations. For a sus-
tained single shock into an explosive the shock grows in strength with depth. This
is because the pressure increases behind the shock as energyis liberated and this in-
formation is fed forward due to the flow being supersonic withrespect to the shock,
therefore increasing the shock strength that then increases the reaction rate. Thus,
the calculated function of entropy should increase monotonically with depth. How-
ever, it is seen in Figure 3.8 that the calculated function ofentropy at the interface is
over-predicted in all 4 codes since the entropy here is greater than the entropy at the
next gauge position shown. Thereafter, the calculated entropy increases monotoni-
cally with depth as expected. The over-calculation in the function of entropy at the
impact interface is analogous to the calculational errors described by Noh [93], and
occurs as a result of a numerical start up error due to excess shock heating on shock
formation. This phenomenon is known generically as ‘wall heating’ [107] and, in
relation to CREST, is discussed in more detail in Section 3.6.2.

It is observed that, in this case, the over-calculation of entropy at the interface
(‘wall heating’ effect) is greater in magnitude in the Lagrangian codes than the
Eulerian codes, consistent with the findings of Rider [107],with CORVUS giving
the largest, and PETRA the smallest, over-prediction in entropy at the interface.
This trend is replicated in the calculated particle velocity histories in Figure 3.7.
For example, looking at the calculated histories at depths of 6.0 and 7.0mm, it is
observed that the magnitude of the peak particle velocity isgreatest in the CORVUS
calculation followed by, in order of decreasing magnitude,PERUSE, SHAMROCK,
and PETRA. However, the observed differences are small, andit can therefore be
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concluded that the different hydrocodes give consistent results.

3.5.2 SHAMROCK AMR Calculations

In the previous section, calculations using the SHAMROCK hydrocode were
carried out with a uniform mesh,i.e. without using adaptive mesh refinement
(AMR). To validate CREST in AMR calculations on SHAMROCK, a number of
simulations of EDC37 gas-gun Shot 1159 were performed. Up toa maximum of 3
refinement levels were included in the calculations; the coarse level mesh and the
number of refinement levels were varied as follows,

1. 0.02 mm uniform mesh (3200 x 16 cells) (no mesh refinement)

2. 0.04 mm coarse level mesh (1600 x 8 cells), with 1 level of refinement

3. 0.08 mm coarse level mesh (800 x 4 cells), with 2 levels of refinement

4. 0.16 mm coarse level mesh (400 x 2 cells), with 3 levels of refinement

The number of refinement levels was chosen such that in each calculation the mesh
size at the highest refinement level remained constant. Thiscorresponds to the mesh
size in the uniform mesh case (0.02mm). Remember at each level of refinement the
mesh is finer by a factor two in each direction. Using the refinement criteria for
CREST as given in Section 3.4.5 withλ̇min=0.0001, the calculated particle velocity
histories from the 4 calculations are shown in Figures 3.9-3.12 respectively. These
figures indicate that very similar results are obtained between AMR calculations
using CREST with different numbers of refinement levels specified.

Again, to analyse the calculated results more closely, the computed particle ve-
locity profiles from all 4 calculations are compared in Figure 3.13, and the corre-
sponding calculated function of entropy profiles at the samepositions are compared
in Figure 3.14. With different levels of refinement specifiedin the calculations, it
can be seen that near identical results are obtained. However, some numerical noise
is observed in the calculated histories as the number of refinement levels specified
is increased. Looking at the calculated entropy profiles in particular, there are a
number of occurances where the entropy changes from a constant value for a short
time before reverting back to the correct value. These changes in entropy occur
where the mesh is being de-refined back down from the highest refinement level
to the coarse level grid as a result of the reaction rate falling belowλ̇min. It is ob-
served that the magnitude of these numerical oscillations increases with the number
of mesh refinement levels used. The numerical noise is due to the mesh refinement
algorithm in the hydrocode, and not a function of the CREST model. This is an area
that requires further investigation to examine whether thenumerical noise can be re-
moved, or at least significantly reduced, to provide improved results when several
refinement levels are specified in a calculation.
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3.5.3 Summary

For the particular gas-gun experiment modelled (EDC37 Shot1159), consistent
results between all 4 hydrocodes, and between SHAMROCK calculations with dif-
ferent levels of mesh refinement, have been obtained. In addition, consistent results
between PERUSE, CORVUS, PETRA, and SHAMROCK were also obtained for
the other EDC37 gas-gun experiments listed in Table 3.1, thus validating the imple-
mentation of the CREST model in the hydrocodes. The small differences observed
between the calculated results correlate with the amount of‘wall-heating’ associ-
ated with the function of entropy solutions obtained from the different hydrocodes.
This is discussed further in Section 3.6.2.

In adaptive mesh refinement calculations on SHAMROCK, increasing the num-
ber of refinement levels leads to increased numerical noise in CREST calculations.
This occurs when the adaptive mesh is de-refined back down to the coarse level grid,
and is a function of the mesh refinement algorithm in SHAMROCK. It is recom-
mended that CREST AMR calculations on SHAMROCK are not run with a large
number of refinement levels specified until further investigations are carried out to
identify, and fix, the source of the observed numerical noise.

At present, CREST can only be used in Lagrangian mode in the two-dimensional
ALE code CORVUS. In future, CREST will be incorporated into the ALE package
in CORVUS, and the validation work carried out to date will provide a baseline
against which this work can be tested.

3.6 Numerical Issues Regarding the CREST Model

3.6.1 Introduction

During the hydrocode implementation and use of the CREST reactive burn
model, a number of areas of concern arose from hydrocode calculations using the
model. In particular, the move to entropy-based reaction rates introduces a num-
ber of computational problems, not associated with pressure-based models, which
have to be addressed. The problems are: (i) an over-prediction of internal en-
ergy/entropy/temperature at the impact interface in the modelling of explosive im-
pact problems (eggas-gun experiments), (ii) shocks in porous materials in conjunc-
tion with the Snowplough porosity model, and (iii) mesh sensitivity of an entropy-
dependent model.

Although the use of entropy-based reactive burn models introduces additional
numerical complexities, their ability to model a wider range of initiation phenomena
when compared with pressure-based models, see [61] and [62], makes it worthwhile
to identify and, where possible, attempt to solve these additional problems.
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3.6.2 Modelling Gas Gun Experiments

In-material, particle velocity gauges, which are fielded inone-dimensional ex-
plosive gas-gun experiments, provide valuable insight into the reaction behaviour
in impact initiated high explosives, see for example [37]. The modelling of these
gas-gun experiments is required to help determine the parameters in the CREST
reaction rate model by fitting to the available particle velocity gauge data. A classi-
cal problem in the modelling of such experiments is an over-prediction of internal
energy, and hence, a function of entropy and temperature at the impact interface.

To illustrate this problem consider a simple, hypothetical, one-dimensional im-
pact problem where a 30mm long Perspex projectile travelling at a velocity of
u=0.931 mm/µs impacts a stationary PBX9501 explosive target also 30mm inlength,
see Figure 3.15. The two materials were assumed to be initially in contact with the
mesh nodes of the projectile being given the prescribed velocity u, apart from the
interface node which had a velocity of u/2. On impact a well defined, flat-topped,
shock wave should travel into the target material, and a similar shock wave travel
back into the projectile. Over the timescales considered here, the dimensions of the
problem are such that the projectile and the target are affected only by the initial
shock wave. For this hypothetical problem, the magnitude ofthe shock generated
in the explosive would start the initiation process in PBX9501. However, here the
PBX9501 region was treated as an inert material (no energy release). When de-
veloping reactive burn models, non-reactive calculationsare performed to ensure
that the explosive’s unreacted behaviour is accurately modelled before considering
calculations with energy release.

The simulations were carried out using the one-dimensional, multi-material hy-
drocode PERUSE [88], which is used as a test-bed for model development. A mesh
density of 10 zones/mm was defined in both materials, and a monotonically limited
artificial viscosity was used to accurately represent the propagating shock disconti-
nuity [91]. The non-reactive calculations are mesh converged at this 0.1mm resolu-
tion. The explosive was modelled with its non-reactive EOS only from the CREST
model, and was assumed to be non-porous,i.e. the explosive was at its solid den-
sity or theoretical maximum density (TMD). The non-reactive EOS parameters for
PBX9501 [108] at TMD are given in Table 3.4. The Perspex impactor was modelled
using a Linear Gruneisen EOS (3.35)-(3.37), and the EOS parameters for Perspex
[97] are given in Table 3.3.

The calculated pressure and particle velocity profiles through the problem at
two different times from impact are shown respectively in Figures 3.16 and 3.17.
As the projectile and explosive target are initially in contact, time of impact is t=0.0
µs where the material interface is at 30mm. At t=2.0µs and t=4.0µs from impact,
the material interface is at 30.8mm and 31.5mm respectively. The pressure-particle
velocity Rankine-Hugoniot solution to this simple impact problem is shown in Fig-
ure 3.18, where both materials were described by their respective EOS’s in Tables
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Table 3.4: Non-reactive EOS parameters for PBX9501 at TMD [108]

Parameter Value Units

ρ0s 1.860 g/cm3

K0s 0.1403788 Mbar
A1 3.489228
A2 5.635034
A3 0.0
B1 0.0
B2 0.0
B3 0.0
fc 0.0
δ 0.0
Γ1 89.40868
Γ2 4.929351
γ00 0.4
m 2.0
T0s 293.0 K
CV0s 1.016×10−5 Mbar cm3/g/K
dCVs/dT 3.16×10−8 Mbar cm3/g/K2

3.3 and 3.4. The condition at the interface after impact is that pressure and particle
velocity must be equal in both materials. This condition is satisfied at the intersec-
tion of the Hugoniot curve for PBX9501 at a density of 1.860 g/cm3 (TMD), and
the Perspex Hugoniot through the impact velocity (ui=0.0931 cm/µs). Comparing
this solution with the calculated profiles in Figures 3.16 and 3.17, it is seen that,
in the shocked region, pressure and particle velocity are both modelled correctly
as continuous across the impact interface, and with the correct magnitudes. Thus,
by examining the pressures and particle velocities from thecalculation, all appears
well with the modelling of this impact problem.

However, now consider the calculated internal energy profiles through the prob-
lem at the same times from impact (t=2.0µs and t=4.0µs), see Figure 3.19. For ease
of illustration, the internal energy-distance plot in the unreacted explosive region
only is shown in Figure 3.20. The internal energy in the shocked state is different
in Perspex and unreacted PBX9501 explosive due to the different compressibilities
to the two materials. Perspex has the higher internal energydue to the greater vol-
ume change in the shock. The feature to note in Figures 3.19 and 3.20 is that the
internal energies immediately adjacent to the impact interface in both the Perspex
and unreacted PBX9501 are over-predicted as a result of the impact. Away from
the immediate vicinity of the impact interface, the internal energies in both the flyer
and target materials are correctly modelled. CORVUS, PETRA, and SHAMROCK
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calculations of this problem also over-calculate the internal energies either side of
the impact interface. Since the entropy function and temperatures calculated in the
unreacted PBX9501 explosive are both functions of the solidphase internal energy,
then there is a corresponding over-prediction in these quantities adjacent to the im-
pact surface, as shown in Figures 3.21 and 3.22 respectively. Since the pressure in
the shocked state is correctly modelled then, for a P(ρ, E) EOS, an over-calculation
in internal energy results in a corresponding under-prediction in density.

The internal energy, function of entropy, and temperature in the non-reactive
explosive material are significantly over-predicted in thefirst 3-4 meshes adjacent to
the impact surface. Calculations with different mesh resolutions have shown that the
over-predicted region is a fixed number of meshes (∼3-4), and hence the length of
this region will vary dependent on the mesh size used. In CREST, the reaction rate is
a function of the current entropy of the unreacted explosivein a mesh. Thus, unlike
models that use pressure-dependent reaction rates, CREST will over-predict the
extent of reaction in the explosive immediately adjacent tothe impact surface since
the reaction rate will be artifically too high for the first fewzones in the explosive.
This could potentially have serious consequences on the rest of the modelling, and
could lead to incorrect conclusions being made about the reactive behaviour of the
explosive.

The over calculation in internal energy at the impact interface is analogous to
the computational errors described by Noh [93], and is a result of a numerical start
up error due to excess ‘wall-heating’ on shock formation. Artificial viscosity based
hydrocodes typically spread shocks over a fixed number of meshes (∼3 or 4). Upon
impact, it thus takes a finite time for the shock to be formed, and during this time
excessive shock heating occurs in the first few zones adjacent to the impact surface,
which then propagates as an error over the time frame of the calculation. Since eval-
uation of temperature within hydrocodes is based on internal energy calculations,
then temperature-based reactive burn models will also suffer from the same (‘wall-
heating’) problem. To the authors knowledge, this problem has not been discussed
in relation to temperature-dependent reactive burn models.

The ‘wall-heating’ problem has been an issue for as long as shock physics cal-
culations have been performed. It is a very difficult and challenging problem for
artificial viscosity based hydrocodes to overcome, and manystudies analysing this
phenomenon have been carried out, see for example [107] [109]. Suitable solutions
to try to minimise the effect of this long-standing problem include, (i) an artificial
heat conduction cure proposed by Noh [93], (ii) use of an adaptive mesh shock
capturing technique [109], and (iii) new artificial viscosity formulations [110]. To
examine whether it is necessary to apply a suitable solutionmethod to the ‘wall-
heating’ problem in relation to CREST, the effect of the error in the function of
entropy at an impact interface has been studied in reactive (energy release) gas-
gun calculations of the HMX-based explosive EDC37 [111]. Toprevent an over-
prediction in reaction rate occuring, the entropy functionin the ‘wall-heated’ zones



CHAPTER 3. CREST REACTIVE BURN MODEL 89

was scaled locally to remove the ‘wall-heating’ effect. This involved running two
calculations; it is necessary to firstly run an inert simulation to determine the ‘wall-
heating’ effect, and then run the reactive (energy release)calculation with the en-
tropy modified locally to remove the entropy over-prediction in the vicinity of the
impact surface. Comparing energy release CREST calculations with and without
entropy scaling factors, showed that the over-prediction in the entropy function at
the impact surface made little difference to the calculatedparticle velocity histories.

To an extent, the effect of the ‘wall heating’ problem can be seen by examining
Figures 3.7 and 3.8 which compare the hydrocode results for EDC37 Shot 1159.
The over-prediction in the function of entropy at the impactinterface is different
between the different hydrocodes, yet the differences between the calculated parti-
cle velocity histories at the different Lagrangian positions is small. This suggests
that the ‘wall-heating’ effect may not be problematic in modelling EDC37 explo-
sive. However, this may not be the case for other explosives of interest, and will
need to be investigated every time a CREST model for a new or different explosive
is developed. Therefore, to avoid having to do this, appropriate methods will in
future be applied to minimise the effect of this long standing problem in relation to
CREST.

3.6.3 Snowplough Shocks

All heterogeneous solid explosives of interest contain some degree of porosity,
and it is well known that this has an important influence on an explosive mate-
rial’s non-reactive Hugoniot, see for example [36]. Recently, a methodology for
determining the EOS of unreacted explosives as a function ofporosity has been
developed [100]. This involves extrapolating available experimental Hugoniot data
for the porous explosive to a best estimate of the fully denseHugoniot. The EOS
for the fully dense material used in conjunction with an appropriate porosity model
then allows the unreacted porous Hugoniot at any porosity tobe recovered.

CREST employs a porosity-dependent unreacted EOS. To take account of poros-
ity in determining a porous explosive’s non-reactive Hugoniot, CREST currently
uses the Snowplough porosity model. In this model, the porous material is assumed
to compact to close to its solid density at zero pressure, until its state lies on the
EOS surface of the fully dense material for the rest of the calculation, see Figure
3.23. In addition, it is assumed that the sound speed is zero during the compaction
process. The modelling of shocks in porous materials in conjunction with the Snow-
plough porosity model has been shown to be an area of concern regarding the use
of the CREST model. To illustrate this, the simple impact problem described pre-
viously in Section 3.6.2 was re-run with porous PBX9501 explosive in place of
the explosive at TMD. The initial density of the PBX9501 region was taken to be
1.825 g/cm3, corresponding to an initial porosity of∼2%, with the explosive ma-
terial again being assumed inert, and hence modelled with its non-reactive EOS
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taken from the CREST model. The EOS constants for the Perspeximpactor, and
unreacted PBX9501 target at TMD, were as given in Tables 2.2 and 3.4 respectively.
The non-reactive EOS for the porous explosive was evaluatedfrom the EOS at solid
density using the Snowplough model.

The Rankine-Hugoniot solution to this impact problem is shown in Figure 3.18.
In this case, where the Perspex projectile impacts on porousPBX9501 explosive, the
solution is given by the intersection of the Hugoniot curve for PBX9501 at a density
of 1.825 g/cm3, and the Perspex Hugoniot through the impact velocity (ui=0.0931
cm/µs). The calculated pressure-distance and particle velocity-distance profiles at
t=2.0µs and t=4.0µs from impact are shown in Figures 3.24 and 3.25 respectively.
Comparing the calculated profiles with the Rankine-Hugoniot solution, it is seen
that the calculated values across the interface are in agreement with the Hugoniot
solution. However, with the introduction of porosity into the explosive, small nu-
merical oscillations in the pressure and particle velocityprofiles are now observed
behind the propagating shock wave in the initially porous explosive.

The corresponding calculated internal energy profiles through the problem at
the same times from impact are shown in Figure 3.26, whereas the internal energy
profiles through the explosive region only are shown in Figure 3.27. When the ex-
plosive was assumed to be at TMD, the calculated internal energy, away from the
immediate vicinity of the impact interface, gave a flat-topped profile behind the
shock front. With the porous explosive, the calculated internal energy oscillates
about the correct value throughout that part of the explosive that has been traversed
by the shock giving a ‘sawtooth’-like profile. Again, as withthe impact calculation
where the explosive was at its TMD, the calculated internal energies immediately
adjacent the impact surface in both the Perspex impactor andunreacted PBX9501
explosive target are over-predicted. However, with the introduction of porosity, the
magnitude by which the internal energies are over-predicted has been reduced in
comparison to the calculation where the explosive was at itsTMD. As the function
of entropy and temperature calculated in the non-reactive explosive are both related
to the solid phase internal energy, then the observed ‘sawtooth’-like behaviour be-
hind the shock front in the explosive is repeated in the calculated profiles of these
quantities, see Figures 3.28 and 3.29 respectively.

The ‘sawtooth’-like behaviour seen in the computed internal energy, function of
entropy, and temperature profiles in the explosive region isclearly an undesirable
feature, particularly when using a reaction rate model dependent on the function of
solid phase entropy in a mesh. These oscillations could giverise to numerical in-
stabilities when considering CREST calculations with energy release. Interestingly,
the numerical oscillations in the calculated entropy profiles persist throughout that
part of the explosive that has been traversed by the shock, whereas the oscillations
in the pressure profiles appear to be damped out at some distance behind the shock
wave propagating through the explosive.

The observed numerical oscillations in the computed profiles in the explosive
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region are as a result of the assumptions made in the Snowplough model, in par-
ticular that the sound speed is zero while the material is in its porous state. This
assumption affects the calculation of artificial viscosity. The form of artificial vis-
cosity, q, used in hydrocodes to represent a shock discontinuity is generally defined
as a combination of linear and quadratic viscosities (e.g.monotonic q),

q = Cl ρc|∆u|+Cqρ(∆u)2 (3.38)

whereρ is density, c is sound speed,∆u is the velocity jump across a mesh, andCl

andCq are constants. For a shock wave propagating into a porous material using the
Snowplough model, the artificial viscosity is defined by onlythe quadratic viscosity
term during compaction. The linear viscosity term is only non-zero once the poros-
ity has been removed. From past experience of modelling inert solid materials, use
of only a quadratic viscosity term results in numerical oscillations behind the shock
front. The purpose of the linear term is to damp out these undesirable oscillations. It
is also noted that, (i) at the point at which the initially porous material compresses
up to its solid density there is a discontinuity in q, and (ii)the change in internal
energy during compaction is given by dE= -q dV (since P=0), where q is given by
the quadratic viscosity term only.

By the particular method that the hydrocode uses to evaluatethe sound speed,
examination of the squares of the sound speed (c2) calculated from the non-reacted
EOS for the explosive material in its porous state has shown that, at low porosi-
ties (∼few %), a realistic sound speed is returned. At higher porosities, c2 is
non-physically negative, a state that cannot be tolerated in a hydrocode. Thus, for
only slightly porous explosive materials, the calculated sound speed from the non-
reactive explosive’s EOS could be used in the calculation ofthe artificial viscosity
while the material is in its porous state. In PBX9501 explosive at a density of 1.825
g/cm3 (∼2% porosity), the unreacted EOS returns realistic values for c2 while the
material is being compressed to solid density. Thus, the Snowplough model was
modified by removing the assumption that the sound speed is zero during the com-
paction process, and using the sound speed as evaluated fromthe non-reactive EOS.

The inert impact calculation with porous PBX9501 was repeated using the mod-
ified Snowplough model, and the computed pressure, particlevelocity, function of
entropy, and temperature profiles are shown in Figures 3.30,3.31, 3.32, and 3.33
respectively. These figures show that using a realistic sound speed in the calcula-
tion of artificial viscosity while the explosive material isin its porous state, all but
removes the numerical oscillations and ‘sawtooth’-like behaviour previously seen
when assuming that the sound speed was zero. However, the modified Snowplough
model is not suitable for highly porous explosivese.g.Non-Ideal explosives, since
the c2 values evaluted from the non-reactive EOS will be non-physically negative.
In this case, a P-α porosity model [67] will be required. The main difference be-
tween a P-α porosity model and the Snowplough model is that a P-α model provides
a realistic description of the compaction process at low stress levels which is absent
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from the Snowplough model, see Figure 3.23. Thus, it allows the calculation of a
realistic pressure and sound speed while the material is being compressed up to its
solid density, and hence use of a P-α porosity model, in place of the Snowplough
model, should help improve the modelling of shocks in porousexplosives using
CREST.

3.6.4 Mesh Sensitivity

In developing reactive burn models, fine zoning is usually required in hydrocode
calculations to ensure adequate phenomenon resolution. Aninitial study of the sen-
sitivity of CREST calculations, with energy release, to mesh density has been per-
formed by modelling one-dimensional gas-gun experiments on the conventional,
HMX-based high explosive EDC37 [37]. By fitting to embedded particle veloc-
ity gauge data from these experiments, a CREST model for EDC37 explosive was
developed [61], and the model parameters are given in Table 3.2. The PERUSE
hydrocode [88] was used to perform the mesh sensitivity study where the mesh res-
olutions used ranged from 5-100 zones/mm. For each calculation, a monotonically
limited artificial viscosity was used to represent the propagating shock discontinu-
ity [91]. Since the porosity of EDC37 is small (∼0.2%), for the purposes of this
study it has been treated as a fully dense material. In addition, the effect of the
over-prediction in the function of entropy, due to the ‘wallheating’ effect, has been
shown to be very small in EDC37 explosive [111].

As an example of results obtained from the mesh sensitivity study, Figure 3.34
shows the calculated particle velocity histories at a number of different gauge loca-
tions for EDC37 Shot 1159. For ease of illustration, only theresults at the 2.9mm,
4.9mm, and 8.0mm gauge locations are shown which correspondroughly to the
early, middle, and late stages respectively of the growth todetonation process. In
the calculations reaction is allowed to proceed as the function of entropy rises with
the arriving shock,i.e. there is reaction through the shock front. The computed
CREST results show that mesh resolution has a significant effect on the calculated
particle velocity histories. There is increased reaction at the 2.9mm and 4.9mm
gauge locations with decreasing mesh density, which in turnresults in earlier shock
time of arrival at the gauge locations since the shock wave isaccelerating faster.
Correspondingly, there is a shortening of the computed run-distance and run-time
to detonation with decreasing mesh density. Overall, the results indicate that a mesh
density of 50 zones/mm is required to obtain mesh converged results.

The CREST mesh sensitivity results are to be compared with the corresponding
calculations of EDC37 Shot 1159 using a pressure-dependentreactive burn model.
The pressure-based Lee-Tarver model [49] is the most widelyused reactive burn
model for hydrocode simulations of shock initiation in heterogeneous explosives,
and has been implemented in the PERUSE hydrocode (see Chapter 2). A Lee-
Tarver model for EDC37 explosive was previously developed by Winter et al. [63]
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by attempting to fit to a number of the EDC37 sustained single-shock gas-gun ex-
periments as given in Table 3.1. The Lee-Tarver parameters for EDC37 explosive
are reproduced in Table 3.5.

The calculated particle velocity profiles for EDC37 Shot 1159 at 2.9mm, 4.9mm,
and 8.0mm gauge locations using the Lee-Tarver model are shown in Figure 3.35.
As with the CREST simulations, reaction was allowed to proceed through the ar-
riving shock front in each computational mesh. Using the Lee-Tarver model, there
is only minimal effect on the calculated results with decreasing mesh resolution
over the range of mesh densities used. It is only at the coarsest resolution tested (5
zones/mm) that the resolution used starts to have some noticeable effect on the cal-
culated particle velocity histories. The trend is to slightly delay the growth of reac-
tion with increasing mesh size, rather than to increase it asobserved with CREST.
Using Lee-Tarver, there are only small differences in the run-distances and run-
times to detonation over the range of mesh densities used. The Lee-Tarver calcu-
lated results show that mesh convergence occurs at a mesh density of 10 zones/mm.
Thus, it would appear that an entropy-dependent model requires a finer mesh than a
pressure-dependent model in order to achieve mesh converged results.

The CREST mesh sensitivity study was repeated using two alternative approaches,
termed ‘q-switching’, for turning on the reaction in a computational mesh, namely
(i) reaction turned on when the derivative of artificial viscosity, q, with respect to
time is less than zero (dq

dt < 0), which occurs approximately half way through the
rise time of the arriving shock front, and (ii) the reaction was suppressed until the ar-
tificial viscosity dropped below a specified threshold (eg10−6 Mb), such that there
is no reaction throughout the rise time of the shock front. The computed results
for EDC37 Shot 1159 using ‘q-switching’ method (i) for the onset of reaction in
a mesh are shown in Figure 3.36. The calculated profiles are very similar to those
in Figure 3.34, showing only a small improvement in mesh convergence properties
compared to the results where reaction was allowed to proceed through the arriving
shock wave.

The calculated results for EDC37 Shot 1159 using ‘q-switching’ method (ii)
above for the onset of reaction in a computational cell are shown in Figure 3.37.
Delaying the onset of reaction to start at approximately thetop of the rise time of
the arriving shock front, has improved the mesh convergence. There is now only a
small effect on the calculated particle velocity results, and hence run-distances and
run-times to detonation, with decreasing mesh resolution over the range of mesh
densities used. It is only the 5 zones/mm results at late times that show any signif-
icant differences. Results are mesh converged at 10 zones/mm giving comparable
mesh convergence properties to the pressure-based Lee-Tarver model. Comparing
the CREST results in Figure 3.37 with the Lee-Tarver resultsin Figure 3.35, and
ignoring the differences in the shape of the calculated profiles, there is a remarkable
similarity, in terms of the mesh size effect, between the twosets of calculations.

Comparing all three approaches in CREST for turning reaction on in a cell,
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Table 3.5: Lee-Tarver parameters for EDC37 [63] and PBX9502[112]

Parameter EDC37 PBX9502 Units

ρ0 1.842 1.911 g/cm3

ρ0s 1.842 1.911 g/cm3

Reaction products equation of state
A 8.524 5.31396 Mb
B 0.1802 0.027039 Mb
G 3.8×10−6 4.6×10−6

XP1 4.60 4.1
XP2 1.30 1.1
CVg 1.0×10−5 1.0×10−5 Mb/ K
Q 0.102 0.069 Mb
Unreacted equation of state
R1 69.69 70.75 Mb
R2 -1.727 -0.0023005 Mb
R3 2.148789×10−5 2.20×10−5

R5 7.80 8.617
R6 3.90 -2.1306
CVs 2.505×10−5 2.487×10−5

T0 298.0 297.827 K
Reaction rate parameters
I 3.0×1010 1.5×105 µs−1

b 0.667 0.667
a 0.0 0.237
x 20.0 7.0
G1 90.0 0.8 Mb−yµs−1

c 0.667 0.667
d 0.333 0.111
y 2.0 1.0
G2 200.0 3500.0 Mb−zµs−1

e 0.333 0.333
g 1.0 1.0
z 2.0 3.7
λigmax 0.3 0.3
λG1max 0.5 0.5
λG2max 0.0 0.0
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the same results are essentially obtained at the highest mesh densities (100 and 50
zones/mm) irrespective of where the reaction is turned on inrespect of the arriv-
ing shock front. However, at coarser resolutions significantly different results are
obtained between the different approaches. Least variation in the calculated results
with mesh size is observed where reaction is suppressed throughout the arriving
shock front. It is not clear why one particular method for reaction commencement
in a computational cell should be preferred over any other ofthe approaches tried
here. However, to implement the ‘q-switching’ methods described above required
additional modifications to be made to the hydrocode, and hence the more natural
approach is to allow reaction to proceed through the arriving shock wave. The mesh
sensitivity study on the HMX-based explosive EDC37 has shown that using this ap-
proach the entropy-dependent CREST model requires a finer mesh (50 zones/mm)
than the pressure-based Lee-Tarver model (10 zones/mm), toachieve mesh con-
verged results.

More recently, a CREST model for the TATB-based insensitivehigh explosive
PBX9502 has been developed [62]. Four one-dimensional, single shock, gas-gun
experiments and the one-dimensional Pop-Plot were used to determine the param-
eters in the CREST reaction rate model for PBX9502. The single shock gas-gun
experiments that the model has been calibrated to are summarised in Table 3.6. It is
well known that insensitive high explosives have much longer reaction zones than
conventional high explosives; typical reaction zone widths deduced from detona-
tion experiments are (i)∼0.1 mm for HMX-based explosives, and (ii)∼1.0 mm for
TATB-based explosives. Since the standard rule of thumb is that∼10 meshes are
needed to resolve the reaction zone in an explosive, then insensitive high explosives
should be less demanding on mesh resolution than conventional high explosives.

Table 3.6: Summary of single-shock PBX9502 gas-gun experiments

Shot No. Density Impact Vel. Impactor Input Pressure Run Distance
(g/cm3) (mm/µs) Material (kbars) (mm)

2S-70 1.889 2.349 Kel-F 106.5 11.82
2S-69 1.889 2.493 Kel-F 116.2 9.17
2S-86 1.888 2.766 Kel-F 135.5 6.01
2S-85 1.886 3.118 Kel-F 162.2 3.68

To examine the mesh resolution requirements for an insensitive high explosive,
the mesh sensitivity study performed on EDC37 has been repeated on PBX9502.
Hydrocode calculations of gas-gun Shot 2S-69 have been carried out on PERUSE
at resolutions of 5, 10, 20, 50, and 100 zones/mm to examine the mesh convergence
properties of the CREST model for PBX9502 explosive. The CREST model param-
eters for PBX9502 are given in Table 3.2. In the calculationsthe Kel-F impactor
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was modelled using a Cubic Gruneisen EOS [98] of the form,

P =
ρ0s C0
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is the compression, and the shock velocity (Us)-particle velocity (Up) relationship
is non-linear,
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The EOS parameters for Kel-F are from Steinberg [98] and are given in Table 3.3.
Particle velocity histories were obtained from the calculations at the following La-
grangian positions in the explosive material; 0.00, 3.06, 4.18, 4.96, 5.74, 6.54, 7.34,
8.12, 8.92, 9.70, 10.50, 11.00, 12.00, and 13.00mm.

Figure 3.38 shows the calculated particle velocity resultsfor Shot 2S-69 over
the range of mesh densities used, where reaction was allowedto proceed through
the arriving shock front in each computational mesh. Again,for ease of illustration,
only a handful of gauge locations are plotted, namely the 4.18mm, 7.34mm, and
11.0mm gauge positions, which correspond roughly to the early, middle, and late
stages respectively of the growth to detonation process. For PBX9502, moving to
coarser zoning increases the numerical oscillations on thecalculated particle ve-
locity histories. The shock time of arrival, and the timing and magnitude of peak
particle velocity, is relatively well matched down to∼10 zones/mm, and there is
very little difference in the computed run-distances and run-times to detonation. At
5 zones/mm meshing, significant oscillations appear on the computed particle ve-
locity histories, and there is increased reaction at the 7.34mm gauge position which
results in earlier shock time of arrival at the 11.0mm gauge location. As a result, the
computed run-distance to detonation is slightly shorter than those computed at the
other mesh resolutions used here. Over the range of mesh densities used, the calcu-
lated CREST results show that there is less sensitivity to mesh size with PBX9502
compared to EDC37. Mesh converged results are obtained at a mesh density of 20
zones/mm for PBX9502, whereas a mesh density of 50 zones/mm is required to
obtain mesh converged results on EDC37 explosive.

The CREST mesh sensitivity results on PBX9502 explosive have been com-
pared with the corresponding calculated results using the pressure-dependent Lee-
Tarver model. By fitting to experimental Pop-Plot data [37],a Lee-Tarver model for
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PBX9502 has been developed [112], and the model parameters are reproduced in
Table 3.5. The calculated particle velocity profiles at the 4.18mm, 7.34mm, and
11.0mm gauge positions for Shot 2S-69 using the Lee-Tarver model are shown
in Figure 3.39, where reaction was allowed to proceed through the arriving shock
front. Over the range of mesh densities used, it is observed that there is very little
or no difference between the computed profiles. It is only at mesh densities less that
5 zones/mm that significant differences are observed in the computed particle ve-
locity histories, and hence the calculated results are converged at a mesh density of
5 zones/mm. Thus, for a different explosive, it is again observed that the entropy-
dependent CREST model requires a finer mesh than the pressure-dependent Lee-
Tarver model to obtain mesh converged results. Again, consistent with CREST,
calculations using the Lee-Tarver model are less demandingon mesh resolution for
PBX9502 in comparison to EDC37. This is due to the longer reaction zones in
insensitive high explosives.

To complete the CREST mesh sensitivity study on PBX9502 explosive, calcu-
lations using the two ‘q-switching’ approaches for turningon reaction in a com-
putational mesh, as described previously, were also run. Figure 3.40 shows the
calculated particle velocity histories at the 4.18mm, 7.34mm, and 11.0mm gauge
locations for Shot 2S-69 using ‘q-switching’ method (i) forthe onset of reaction in
a mesh. Again, as with the EDC37 results, the calculated histories are very similar
to those where reaction was allowed to proceed through the arriving shock front, see
Figure 3.38, thus showing little improvement in the mesh convergence properties of
the model. The calculated results for PBX9502 Shot 2S-69 using ‘q-switching’
method (ii) are shown in Figure 3.41. It is observed that, consistent with results on
EDC37 explosive, mesh convergence is improved by delaying the commencement
of reaction in a mesh until after the shock has formed.

To independently address the issue of mesh convergence using an entropy-based
reaction rate model, Fluid Gravity, as part of an external contract, were asked to
perform calculations using their two-dimensional Eulerian hydrocode EDEN [113].
Calculations on EDC37 explosive over a range of mesh densities, where different
EOS’s and a different form of the entropy-dependent reaction rate were used, gave
very similar results to those obtained with CREST for EDC37.Therefore, it can be
concluded that the form of the reaction rate and/or the EOS’sused in CREST are not
the cause of the mesh convergence problems. It is not yet understood why CREST
requires a finer mesh than a pressure-dependent model to achieve mesh converged
results, and further work is therefore required to understand the mesh convergence
properties of entropy-based models.

To overcome the more restrictive mesh size requirements of an entropy-dependent
model, CREST has been implemented into the two-dimensionalEulerian adaptive
mesh refinement (AMR) hydrocode SHAMROCK with an appropriate refinement
criteria defined for the model. This will enable large, two-dimensional shock initia-
tion problems of interest to be simulated at the size of mesh required by CREST to
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obtain mesh converged results.

3.6.5 Discussion

The modelling of simple impact problems involving explosives is important for
two reasons. Firstly, many safety problems of interest involve situations of im-
pact initiation of high explosives and, secondly, the modelling of explosive gas-gun
experiments is usually required to calibrate the reaction rate parameters in a reac-
tive burn model. The modelling of a simple, hypothetical, one-dimensional impact
problem, where a Perspex projectile impacts a stationary (inert) explosive target,
has been performed to highlight two areas of concern relating to the hydrocode
implementation and use of the CREST reactive burn model.

The first area of concern relates to the over-calculation of specific internal en-
ergy in both the impactor and, more importantly, the unreacted explosive target in
the immediate vicinity of the impact interface. This occursirrespective of whether
or not the material to be impacted is porous. To be able to model the essential exper-
imental phenomena in shock initiation of heterogeneous solid explosives, CREST
employs a reaction rate that is a function of the current entropy of the unreacted
explosive in a mesh. Since the function of entropy calculated in the non-reactive
explosive is related to the specific internal energy, then CREST will over-predict
the rate of energy release in the explosive in the vicinity ofthe impact surface. This
could potentially have serious repercussions on the rest ofthe modelling, and could
lead to incorrect conclusions being made about the initiation and reaction behaviour
in impact initiated explosives. The error in internal energy at the interface in mod-
elling impact problems is caused by excessive shock heatingon shock formation.
This has been termed ‘wall-heating’, and is an inherent problem for artificial vis-
cosity based hydrocodes to which there is no known solution,although a number of
methods have been suggested to minimise the effect of the ‘wall-heating’ problem.

The effect of the error in the function of entropy at an impactinterface was ex-
amined in energy release calculations of EDC37 gas-gun experiments [111]. To pre-
vent an over-prediction in reaction rate occuring, the entropy function in the ‘wall-
heated’ zones was scaled locally to remove the ‘wall-heating’ effect. By comparing
CREST energy release calculations, both with and without entropy scaling factors,
it was shown that the over-prediction in the entropy function at the impact surface
made little difference to the calculated particle velocityhistories. The conclusion
from this study was that the ‘wall-heating’ effect is not problematic in modelling
EDC37 explosive, and thus allows CREST to be used to model two-dimensional
geometries without the need to use complicated methods to determine and apply
appropriate entropy correction factors. However, this maynot be the case for other
explosives of interest, and will need to be investigated every time a CREST model
for a new or different explosive is developed. Therefore, toavoid having to do this,
proposed suitable methods to minimise the effect of the longstanding ‘wall-heating’
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problem will in future be tried out in relation to CREST.
The second area of concern is the modelling of shocks in porous materials in

conjunction with the Snowplough porosity model. The application of the Snow-
plough model in CREST to accurately determine the Hugoniot of unreacted porous
explosive produces undesirable numerical oscillations inthe calculated profiles from
the simple impact problem, in particular the calculated function of entropy of the
solid phase explosive. Since this is the variable upon whichthe CREST reaction
rate model is dependent, then this could give rise to numerical instabilities in en-
ergy release calculations. The source of these unwanted oscillations has been traced
to the calculation of artificial viscosity in the porous material to represent the shock
discontinuity. In the Snowplough model, the velocity of sound is zero while the
material is in its porous state, and hence the artificial viscosity is defined by only a
quadratic viscosity term during the compaction process. The linear viscosity term,
whose purpose is to damp out post-shock oscillations, is only non-zero once the
porosity has been removed.

The modelling of shocks in porous materials in conjunction with the Snow-
plough model can be improved by removing the assumption thatthe sound speed is
zero while the material is being compressed to solid density. It has been shown that
if a real sound speed is calculated from the unreacted EOS while the material is in
its porous state, and this is then used in the calculation of the artificial viscosity, then
the undesirable numerical oscillations are very significantly reduced. However, this
is only applicable to low porosity materials since, for highly porous materials, the
values of the square of the sound speed calculated from the unreacted EOS will be
non-physically negative, a state that cannot be tolerated in a hydrocode. To over-
come these problems, use of a P-α type porosity model in place of the Snowplough
model is being considered for CREST. The P-α porosity model aims to provide a
realistic description of the compaction process at low stress levels, and enables a
realistic sound speed to be calculated while the material isbeing compressed up to
solid density. Therefore, use of a P-α model should help improve the modelling of
shocks in porous materials with CREST.

In energy release calculations using the CREST reactive burn model, a further
area of concern relates to the sensitivity of the model to mesh size. This has been ex-
amined by modelling one-dimensional gas-gun experiments on two different explo-
sives, namely the conventional HMX-based explosive EDC37,and the insensitive
TATB-based explosive PBX9502. Where reaction is allowed toproceed through the
arriving shock front, a mesh density of 50 zones/mm is required for EDC37 to ob-
tain mesh converged results of the shock to detonation transition, whereas PBX9502
requires a mesh density of 20 zones/mm. The coarser mesh required by PBX9502
for mesh convergence is a reflection of the longer reaction zone of insensitive high
explosives like PBX9502 compared to near ideal explosives like EDC37. Using
the above approach for reaction commencement in a computational cell, compari-
son of the mesh convergence properties of the CREST model, and pressure-based
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Lee-Tarver model, has shown that the entropy-dependent CREST model requires a
finer mesh than the pressure-dependent Lee-Tarver model to obtain mesh converged
results; 50 zones/mm (CREST) vs 10 zones/mm (Lee-Tarver) for EDC37, and 20
zones/mm (CREST) vs 5 zones/mm (Lee-Tarver) for PBX9502.

The mesh convergence of the CREST model is improved when ‘q-switching’
treatments are applied. In particular, the mesh convergence properties are greatly
improved in the case where the reaction rate is effectively switched off until the
shock front has passed. It is not clear why one particular method for the start of
reaction in a mesh should be preferred over any of the other methods that have
been tried. Since modifications are required to the hydrocodes to implement the ‘q-
switching’ methods, then the more natural approach is to allow reaction to proceed
through the arriving shock front. In this case, it is not yet understood why CREST
requires a finer mesh than a pressure-dependent model to achieve mesh converged
results, and the work undertaken by Fluid Gravity indicatesthat it is not the form
of the reaction rate equation and/or the EOS’s used in CREST.Therefore, further
investigations are required to understand the mesh convergence issues relating to
an entropy-dependent model. One possible suggestion is that the CREST method
may be more mesh sensitive being an entropy-dependent model, because entropy is
more sensitive to errors in shock heating introduced by the artificial viscosity than
a pressure-dependent method. Since artificial viscosity isan integral part of the
CREST model, further investigations could include trying other types of artificial
viscosity to see if different forms show more or less sensitivity to mesh size.

The finer meshing required by CREST has led to the implementation of the
model in a two-dimensional Eulerian AMR hydrocode to enablelarge problems
of interest to be calculated at appropriate mesh resolutions. The question of mesh
convergence in two-dimensional calculations also needs tobe addressed. The mesh
sensitivity study performed needs to be extended to see whether the findings in one-
dimensional calculations are also true in two-dimensionalcalculations. In addition,
different meshing may be required to obtain mesh converged results in modelling
different phenomenae.g. shock to detonation transition, detonation propagation,
corner turningetc, and this also needs to be examined.

3.7 CREST Applied to Two-Dimensional Experiments

3.7.1 Preamble

To date CREST models for the conventional high explosive EDC37 [61], and the
insensitive high explosive PBX9502 [62], have been developed. The EDC37 model
[61] was fitted to one-dimensional particle velocity gauge data from a number of
sustained, single shock, gas-gun experiments examining the shock to detonation
transition. The same model was then subsequently shown to beable to simulate
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one-dimensional double shock and thin pulse shock initiation experiments. Un-
like pressure-based models, the double shock data was fittedwithout recourse to an
additional desensitisation model. Four one-dimensional,single shock, gas-gun ex-
periments and the one-dimensional Pop-Plot were used to determine the parameters
in the CREST model for PBX9502 [62]. The same model was then also able to pre-
dict a number of other sustained single shock, and thin pulseinitiation experiments.
In addition, by utilising a porosity-dependent unreacted EOS in CREST, the model
was also able to predict the effects of porosity on RX-03-AU (which has the same
composition as PBX9502) initiation threshold data. Thus, CREST is able to accu-
rately reproduce a range of one-dimensional shock initiation data on both EDC37
and PBX9502.

At the outset of the development of the CREST model, one important objec-
tive was that CREST should be a comprehensive model, meaningthat it should
be capable of modelling all relevent phenomena from simple shock initiation to
the propagation of full detonation and its capability to fail. To examine the wider
applicability of the CREST model, and to test its predictivecapability, by which
it is meant can it model experiments outside its fitting regime, it needs to be ap-
plied to a representative range of both one-dimensional, and more importantly two-
dimensional experimental data. One such situation is whether the model can predict
detonation propagation, which by its very nature is two-dimensional, as well as the
one-dimensional build-up or growth to detonation from relatively weak shock in-
puts.

Two-dimensional detonation propagation data on EDC37 explosive is scarce.
However, the detonation propagation behaviour of Los Alamos’ insensitive high ex-
plosive PBX9502 has been extensively studied [114] [115] [116]. Therefore, to pro-
vide a more rigorous test of CREST’s predictive capability,the PBX9502 model is
applied, unmodified, to two-dimensional detonation propagation experiments. Data
on the diameter effect (detonation velocity as a function ofcharge diameter) includ-
ing failure diameter and detonation waveshapes in PBX9502,is used to see how
well, or otherwise, the PBX9502 CREST model, fitted to one-dimensional shock
initiation data, can predict two-dimensional detonation propagation experiments.

3.7.2 PBX9502 Detonation Experiments

A fundamental detonation performance test is the detonation rate stick, a cylin-
der of unconfined explosive in which the detonation velocityis measured. For
propagation along a cylinder of explosive, the detonation wave interacts with the
explosive surface resulting in waves reflected into the reaction zone, which change
the rate of reaction. These effects diffuse inwards along the reaction zone and the
wave becomes curved. The steady state velocity decreases with the diameter of
the cylinder as a result of the wave curvature. When the diameter of the explosive
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reduces below a critical size the detonation wave is unable to support itself and ul-
timately fails to propagate. A series of rate sticks fired at different diameters gives
the so-called diameter effect curve, which plots the detonation velocity as a function
of inverse radius or inverse diameter. The diameter effect curve terminates at the
so-called failure diameter, the size below which detonation will not steadily propa-
gate. In addition to measuring the detonation velocity, thedetonation waveshape of
the wave emerging from the downstream end of the cylinder canalso be measured
in rate stick experiments. This collection of data has been obtained on PBX9502
explosive.

The diameter effect in PBX9502 explosive was first examined by Campbell and
Engelke [114]. A later detailed study by Campbell [115] explored the combined
effects of charge size (including failure diameter) and initial temperature (75oC,
24oC, and -55oC) on unconfined PBX9502 rate sticks ranging in diameter from6 to
108mm. The results showed that the diameter effect curve andfailure diameter in
PBX9502 are temperature dependent. In particular, at largediameters the detona-
tion velocity decreases as the temperature increases, due to the effect of temperature
on initial density, whereas as at small diameters the detonation velocity falls in line
with temperature due to a decrease in the reaction rate. At intermediate charge
sizes, the detonation velocity remains approximately constant with change in tem-
perature. Finally, the failure diameter varies inversely with the initial temperature
of the explosive charge.

In a more recent study of detonation in PBX9502, Hillet al. [116] added a
wavefront measurement to the basic rate stick experiment. Waveshape and detona-
tion velocity data were obtained for charge diameters ranging from 8 to 50mm, and
at the same temperatures as the Campbell experiments in [115]. The results were
consistent with Campbell’s findings showing that detonation velocities in PBX9502
vary with temperature. The measured detonation waveshapesalso showed a sensi-
tivity to temperature with, at a given charge size, the hotter waves being slightly flat-
ter. This was attributed to (due to temperature-sensitive kinetics) PBX9502 having
thinner reaction zones at elevated temperatures. Comparing the available PBX9502
rate stick data, Hillet al. [45] noted some variability in the detonation behaviour
of the explosive between the different studies; for example, the detonation veloci-
ties measured by Hillet al. [116] are∼0.5% lower than those of Campbell [115].
This was attributed to the different material lots used, andwill be discussed in more
detail later.

This collection of detonation data on PBX9502, the diametereffect curve, fail-
ure diameter, and detonation waveshapes, contains a significant amount of useful
information about the explosive that the CREST model for PBX9502 can be tested
against. At the present time the model for PBX9502 has been applied to the ambient
temperature data only. It is planned to apply the model to thedata at the temperature
extremes in the near future.
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3.7.3 Numerical Simulations

Preamble

The two-dimensional Eulerian hydrocode PETRA, incorporating the CREST
model, was used to simulate the unconfined PBX9502 rate stickexperiments. Here,
only the ambient temperature (24oC) experimental results are considered for com-
parison with CREST model calculations. Rate stick calculations were carried out at
charge diameters of 6, 7, 7.5, 8, 8.5, 9, 10, 12, 18, and 24mm. The basic calcula-
tional set-up is shown in Figure 3.42, where only half the geometry is modelled due
to the problem being cylindrically symmetric.

The PBX9502 main charge is initiated by a booster charge of PBX9501 explo-
sive of the same diameter as the main charge. In general, the booster had a length-to-
diameter (L/D) ratio of one, whereas the PBX9502 main chargehad a L/D ratio of at
least seven. The detonation wave reaches a steady state after propagating about four
diameters in the cylindrical charge. Programmed burn, where wave propagation is
determined by a Huygens’ construction assuming a constant detonation velocity,
is used for the booster explosive. This is initiated via a single detonation point
on the axis of symmetry, and the expanding detonation products for PBX9501 are
modelled via the JWL form of EOS, and whose parameters are taken from Dobratz
[117]. The CREST model is used for the PBX9502 main charge where the model
parameters were as given in Table 3.2, and a starting densityof 1.890 g/cm3 was
used in all calculations.

The hydrocode simulations were carried out at uniform mesh resolutions of 10
and 20 zones/mm, and a scalar monotonic artificial viscositywas used to represent
the propagating shock discontinuity [91]. Lagrangian marker particles were used
to record the time of arrival of the shock front at various positions. These were
placed along the length of the PBX9502 main charge, on axis tohelp determine the
velocity of the detonation front, and also across the rear face of the explosive to help
determine the detonation waveshape at the end of the charge.

Failure Diameter

At ambient temperature, the measured failure diameter in PBX9502 is∼7.5-
8.0mm [5]. To examine whether CREST can correctly predict the failure diameter
of PBX9502, consider simulations of the 8.5mm diameter and 6.0mm diameter rate
sticks, which are respectively above and below the measuredfailure diameter. Fig-
ure 3.43 shows the 20 zones/mm simulation of the 8.5mm diameter rate stick. The
first plot shows the initial set-up, whereas the remainder ofthe figure shows a se-
quence of pressure colour plots at different times from detonation of the booster.
The first pressure colour plot is at 0.5µs, and subsequent frames are at 1µs time in-
tervals. The pressure scale runs from 0 to 0.3 Mbars. The calculated results show
that at a diameter of 8.5mm, the wave propagates as a steady detonation to the end
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of the charge.
The corresponding simulation of the 6.0mm diameter rate stick at 20 zones/mm

is shown in Figure 3.44. The sequence of pressure colour plots are at approximately
0.4µs intervals. In this case the calculation shows detonation failure. A detonation
wave initially propagates in the PBX9502 explosive, but at later times a gradual
fading of the detonation front is observed, with a corresponding lowering of the
shock velocity, eventually leading to detonation failure.The function of entropy
is lower at the charge edge than on axis. The increased curvature of the wave at
small charge diameters leads to a lowering of the function ofentropy along the
wavefront as the wave propagates down the length of the charge. Since the reaction
rate is dependent on entropy, there is a corresponding decrease in the reaction rate
eventually leading to detonation failure at some distance down the rate stick from
the input face of the PBX9502 main charge.

The 6.0mm diameter rate stick simulation is in agreement with the observations
of Campbell [115] who states that “charges having diametersslightly less than the
failure diameter exhibit slow fading of detonation”. It would be interesting to know
in this instance, whether the CREST calculation agreed withthe experimental dis-
tance to fade. Unfortunately, the distance to fade had not been reported from the
experiment and so this comparison cannot be made. In the CREST simulations,
detonation failure occurs in unconfined PBX9502 rate stickswith a charge diameter
less than 7mm, which is within∼1mm of experimental observations [115].

Diameter Effect Curve

The variation of detonation velocity with charge size from the numerical simu-
lations is compared with the ambient temperature experimental data in Figure 3.45.
For each calculation the marker particle results are carefully checked to ensure that
the determination of the detonation velocity is carried outwhere the wave is a steady
detonation wave. The infinite charge diameter points are from one-dimensional hy-
drocode simulations on PERUSE. It is observed from Figure 3.45 that CREST gives
a good match to the experimental diameter effect data at small and intermediate
charge sizes. However, the model does not represent the concave upwards feature
of the diameter effect curve at large charge sizes, and this is a discrepency in our
current modelling capability.

For the majority of heterogeneous solid explosives, the diameter effect curve is
eveywhere concave down [114]. The diameter effect curve forPBX9502, like other
explosives, is concave down at small and intermediate charge sizes, but is concave
up at large charge sizes [115]. At the time, the observed upturn at large charge
diameters was surprising, and the reason for this feature was unknown. Today, this
is now understood to be a by-product of PBX9502’s reaction zone structure [45].
PBX9502 is known to have a fast reaction component followed by a long tail, which
represents a slow, late time, reaction component. At small and intermediate charge
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sizes, it is known that this slow reaction component has little or no effect on the
wave propagation. However, at larger sizes, the shock becomes flatter and a greater
fraction of this tail influences the wave propagation givingit an extra ‘kick’. It is
this extra ‘kick’ that gives the diameter effect curve its upturn at large sizes.

From Figure 3.45, it is seen that the calculated diameter effect curve is every-
where concave down, following the well known trend of other heterogeneous explo-
sives. CREST is unable to match the detonation velocity in large charges because
the additional, slow reaction component, of PBX9502’s reaction zone structure is
not currently taken account of in the CREST reaction rate model. To account for the
upturn at large charge sizes in the diameter effect curve, a slow (late time) reaction
component needs to be added to the CREST model for PBX9502 to predict this fea-
ture. In addition, it is noted that the calculated diameter effect curve extrapolates to
∼7.6 mm/µs. This is because the JWL reaction products coefficients in the CREST
model for PBX9502, which are taken from [117], have been calibrated to a cylinder
test experiment with a 1-inch charge diameter. The cylindertest studies the move-
ment of explosively driven hollow metal cylinders and the data obtained is used
to determine the equation of state of the detonation products [118]. As seen from
the diameter effect data, the infinite charge, or Chapman-Jouguet (CJ), detonation
velocity is close to∼7.8 mm/µs, indicating that the standard 1-inch cylinder test is
really too small to determine the JWL coefficients. Thus, theJWL coefficients in
the CREST model for PBX9502 need to be re-calibrated for the ‘real’ CJ state.

Over most of the range of data in Figure 3.45, it is observed that there is only a
very small difference in the calculated detonation velocities with mesh size. How-
ever, close to the failure diameter, mesh size does have a significant effect on the
calculated results; for example, at 10 zones/mm the 7mm diameter rate stick cal-
culation fails, whereas at 20 zones/mm steady detonation isattained for the same
size of charge. The results indicate that, for modelling detonation propagation in
relatively large charges, a coarser mesh is required to obtain mesh converged results
compared to modelling the shock to detonation transition. However, at or very close
to detonation failure, finer meshing is needed for modellingsmall charge sizes. This
finer meshing is required to accurately resolve the interaction of the detonation wave
with the explosive surface in small sizes, as this affects the curvature of the wave in
the vicinity of the charge surface, which in turn ultimatelydetermines whether the
detonation wave will fail to propagate.

Detonation Waveshapes

Detonation waveshapes were extracted from the 10mm and 18mmdiameter rate
stick calculations. Following [116], the calculated waveshapes are given byz(r) =
D0 ∆t(r), whereD0 is the steady detonation velocity on axis, and∆t is the time delay
as a function of the radius,r, at each of the Lagrangian marker particle positions
across the end face of the PBX9502 charge relative to the timeof arrival on axis.
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The calculated waveshape data is compared with experiment in Figure 3.46. Very
good representations of the experimental waveshapes are obtained with CREST,
with the smaller diameter charge giving the better calculated fit.

3.7.4 Discussion

A significant amount of detonation data on PBX9502 explosivein terms of the
diameter effect (detonation velocity as a function of charge diameter) including fail-
ure diameter, and detonation waveshapes, has been used to see if the CREST model
for PBX9502, developed by fitting to one-dimensional shock initiation data, can
predict two-dimensional detonation propagation experiments. This is an exercise
to test the wider applicability of the CREST model, and to examine whether it can
predict experiments outside its fitting regime.

For the ambient temperature detonation data, it has been shown that the model
is able to predict the failure diameter of PBX9502 in unconfined ratesticks to within
∼1mm of the experimental value, and accurately reproduces detonation waveshape
data. At intermediate and small charge sizes, the model alsogives an accurate
representation of the diameter effect curve. However, detonation velocities at large
charge sizes are not well modelled. Overall, the calculatedresults indicate that
CREST is capable of predicting experiments outside its fitting regime, however
further work is still required as discussed below.

A discrepency in our current modelling capability is not being able to represent
the concave upwards feature of the diameter effect curve at large charge sizes. A
slow reaction component, which is known to give the PBX9502 curve its upturn
at large sizes, needs to be added to the current CREST model for PBX9502 to
predict this feature. Following experimental observations, any slow or late time
reaction component added to CREST should only be apparent inincreasing the
detonation velocity for large charge sizes, and should havevery little or no effect
on the detonation velocity at intermediate and small chargesizes. It should also
not influence the shock to detonation transition. This necessary improvement to the
CREST reaction rate will be incorporated in due course. In addition, the coefficients
for the reaction products JWL EOS in the CREST model for PBX9502 need to be
re-calibrated to reflect the ‘real’ infinite charge detonation velocity.

To date the modelling has only considered the ambient temperature PBX9502
detonation data. Since the experimental data shows a clear effect due to initial tem-
perature, modelling at the hot and cold extremes using CRESTwill be addressed
once the problem of correcting the reaction rate model to account for the upturn
in the diameter effect curve at large charge sizes has been solved. To take account
of temprature effects using CREST, the following approach will initially be tried.
Given the initial temperature, the correct starting conditions in terms of the specific
internal energy and specific volume of the explosive can be calculated from the un-
reacted EOS in the CREST model. Consequently, the non-reactive explosive will
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have different Hugoniots at the temperature extremes to theambient temperature
Hugoniot. Thus, once shocked, the unreacted explosive willbe on different isen-
tropes through the shock state, and the calculated functionof entropy, and hence
reaction rate, will vary with starting temperature. Thus, CREST has the potential to
take account of the effect of initial temperature on explosive performance.

In Figure 3.45, it is observed that there is some variabilityin the diameter ef-
fect data between the different experimental studies conducted. For example, the
detonation velocities measured by Hillet al. [116] are∼0.5% lower than those of
Campbell [115]. In the different studies, where duplicate shots have been performed
to test experimental repeatability, the agreement is very good. Thus, the differences
between the datasets of Hillet al. and Campbell are significantly greater than dif-
ferences expected as a result of test repeatability. The observed differences have
been attributed to the different material lots used in the studies [45]. In Campbell’s
experiments [115] ‘recycled’ PBX9502 material was used which is mainly made
up of scrap taken from machine cuttings, whereas ‘virgin’ material containing only
unused explosive was used in Hill’s experiments [116]. Recycled PBX9502 has a
finer grain structure than virgin material since explosive crystals are damaged and/or
broken in the machining process.

Grain or particle size is an important parameter that influences explosive perfor-
mance. It is generally accepted that if you reduce the grain size but maintain the
same density, the detonation velocity will increase. This is because as you decrease
the grain size you introduce more particles to the mixture and in doing so increase
the surface area available for decomposition. A decrease inparticle size results in
an increase in detonation velocity and an increase in sensitivity. Hill et al. [45] con-
cluded that the finer grained PBX9502 in Campbell’s experimental study behaved
more ideally with respect to the propagation of an established detonation. The phys-
ical argument is that ‘hot-spots’ will tend to concentrate around grain boundaries.
This is true for most identified ‘hot-spot’ mechanisms, including jetting and pore
collapse. Reaction must spread from these ignition sites over a distance of order
the grain diameter to consume the explosive. Thus, the smaller the grains, the faster
this consumption takes place, and hence finer grained material is more sensitive.

Since CREST does not explicitly take account of the explosive material struc-
ture, it cannot account for differences in detonation behaviour due to grain size
effects with one set of parameters. The best that can be done is to produce a model
for PBX9502 explosive that can simulate detonation propagation within lot varia-
tion, which may be all that is required. To accurately model lot-dependent varia-
tions using CREST, different sets of reaction rate parameters would be required for
different grain size distributions.
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3.8 Conclusions

The newly developed entropy-dependent CREST reactive burnmodel has been
successfully incorporated and validated in a number of hydrocodes. The model
is available for use in the one-dimensional Lagrangian codePERUSE, the two-
dimensional ALE code CORVUS (Lagrangian mode only), the two-dimensional
Eulerian code PETRA, and the two-dimensional adaptive meshrefinement (AMR)
Eulerian code SHAMROCK. This enables CREST to be used to simulate a wide
range of explosive problems of interest. CREST will shortlybe linked to the ALE
package in CORVUS to further enhance this capability.

During the hydrocode implementation and use of the CREST reactive burn
model, it was found that an entropy-based model suffers froma number of com-
putational problems not associated with pressure-dependent models. The classical
‘wall-heating’ problem at an impact interface could affectthe selection of param-
eters in CREST’s reaction rate model when fitting to data fromexplosive gas-gun
experiments. This in turn could have possible consequenceson the modelling of a
range of shock initiation problems, and could lead to inaccurate conclusions being
made about the reactive behaviour of an explosive. However,from the explosives
modelled thus far, ‘wall-heating’ has only a minimal effecton the calculated results
from CREST. In future, appropriate methods will be applied to try to minimise the
effect of this long standing problem in relation to CREST simulations.

Application of the Snowplough porosity model in CREST to determine the EOS
of the non-reacted porous explosive produces undesirable numerical oscillations in
the calculated function of entropy of the solid phase explosive, the variable upon
which the CREST reaction rate model is dependent. This couldgive rise to nu-
merical instabilities in CREST calculations. To improve the modelling of shocks
in low porosity explosives, the Snowplough model was modified by removing the
assumption that the sound speed is zero during the compaction process. Although
this modification removes unwanted numerical oscillationsfrom calculations, it is
only applicable to low porosity materials. In future, to improve the modelling of
shocks in porous materials, and to enable explosives with a large range of initial
porosities to be modelled using CREST, the Snowplough modelwill be replaced by
a P-α porosity model.

A study of the sensitivity of CREST calculations to mesh density has shown that,
where reaction is allowed to proceed through the arriving shock front, an entropy-
dependent model requires a finer mesh than a pressure-dependent model to obtain
mesh converged results. This led to the implementation of CREST in an adaptive
mesh refinement (AMR) hydrocode to enable large, two-dimensional, shock initi-
ation and detonation propagation problems of interest to calculated at appropriate
mesh resolutions. It is not yet understood why CREST requires a finer mesh than
a pressure-dependent model to achieve mesh converged results, and further work
is required to understand the mesh convergence properties of an entropy-dependent
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model.
To test the predictive capability of CREST, the model for PBX9502 explosive,

developed from fitting one-dimensional data of the shock to detonation transition,
has been applied, without modification, to two-dimensionaldetonation propaga-
tion experiments. At ambient temperature, CREST predicts the failure diameter of
PBX9502 in unconfined ratesticks to within∼1mm of the experimental value, and
accurately reproduces detonation waveshape data. At intermediate and small charge
sizes, the model gives an accurate representation of the diameter effect curve. How-
ever, a slow reaction component needs to be included in the model to represent the
upturn in the diameter effect curve for PBX9502 at large sizes. From the modelling
performed to date, CREST appears capable of predicting experiments outside its
fitting regime, giving confidence in the ability of the model to accurately simulate a
wide range of shock initiation and detonation phenomena.

One of the interesting properties about PBX9502 explosive is that its detonation
behaviour is a function of grain size (lot variation). If theCREST model calcula-
tions are within lot variation, then in some sense this is theideal CREST calculation
to within material repeatability. To model grain size effects accurately, a reactive
burn model that explicitly takes account of the structure ofthe explosive material
will be required. This leads researchers to consider so-called mesoscale models of
explosive behaviour.
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Figure 3.1: Typical CREST reaction rates (from a gauge positioned near the Vistal-
EDC37 interface in a simulation of Shot 1159).
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Figure 3.2: Initial calculational set-up for EDC37 Shot 1159.
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Figure 3.3: Calculated particle velocity profiles from PERUSE for Shot 1159.
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Figure 3.4: Calculated particle velocity profiles from CORVUS for Shot 1159.
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Figure 3.5: Calculated particle velocity profiles from PETRA for Shot 1159.
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Figure 3.6: Calculated particle velocity profiles from SHAMROCK for Shot 1159.
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Figure 3.7: Comparison of calculated particle velocity profiles for Shot 1159.
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Figure 3.8: Comparison of calculated entropy function profiles for Shot 1159.
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Figure 3.9: Calculated particle velocity profiles from SHAMROCK for Shot 1159;
uniform 0.02mm grid.

-0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
Time (µs)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ar

tic
le

 v
el

oc
ity

 (c
m

/µ
s)

SHAMROCK - CREST Model
EDC37  Shot 1159  (1600 x 8, nl=1)

Figure 3.10: Calculated particle velocity profiles from SHAMROCK for Shot 1159;
coarse 0.04mm grid and 1 level of mesh refinement.
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Figure 3.11: Calculated particle velocity profiles from SHAMROCK for Shot 1159;
coarse 0.08mm grid and 2 levels of mesh refinement.
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Figure 3.12: Calculated particle velocity profiles from SHAMROCK for Shot 1159;
coarse 0.16mm grid and 3 levels of mesh refinement.
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Figure 3.13: Calculated particle velocity profiles from SHAMROCK for Shot 1159;
comparison of runs with different levels of mesh refinement.
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Figure 3.14: Calculated function of entropy profiles from SHAMROCK for Shot
1159; comparison of runs with different levels of mesh refinement.
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Figure 3.15: Initial geometry for simple impact problem.
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Figure 3.16: Pressure profiles for simple impact problem.
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Figure 3.17: Particle velocity profiles for simple impact problem.
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Figure 3.18: Pressure-particle velocity Hugoniot solution of simple impact problem.
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Figure 3.19: Internal energy profiles for simple impact problem.
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Figure 3.20: Internal energy profiles in solid PBX9501 for simple impact problem.
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Figure 3.21: Entropy function profiles in solid PBX9501 for simple impact problem.
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Figure 3.22: Temperature profiles in solid PBX9501 for simple impact problem.
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Figure 3.23: Schematic of porous Hugoniots in pressure-specific volume (P-V)
space.
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Figure 3.24: Pressure profiles for simple impact problem.
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Figure 3.25: Particle velocity profiles for simple impact problem.
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Figure 3.26: Internal energy profiles for simple impact problem.
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Figure 3.27: Internal energy profiles in porous PBX9501 for simple impact prob-
lem.
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Figure 3.28: Entropy function profiles in porous PBX9501 forsimple impact prob-
lem.
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Figure 3.29: Temperature profiles in porous PBX9501 for simple impact problem.
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Figure 3.30: Pressure profiles for simple impact problem (using sound speed as
calculated from EOS whenV0 ≥V ≥V0s).
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Figure 3.31: Particle velocity profiles for simple impact problem (using sound speed
as calculated from EOS whenVo ≥V ≥V0s).
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Figure 3.32: Entropy function profiles in porous PBX9501 forsimple impact prob-
lem (using sound speed as calculated from EOS whenV0 ≥V ≥V0s).
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Figure 3.33: Temperature profiles in porous PBX9501 for simple impact problem
(using sound speed as calculated from EOS whenV0 ≥V ≥V0s).
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Figure 3.34: Calculated CREST profiles at 2.9, 4.9, and 8.0mmgauges for Shot
1159 (reaction through the arriving shock front).
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Figure 3.35: Calculated Lee-Tarver profiles at 2.9, 4.9, and8.0mm gauges for Shot
1159 (reaction through the arriving shock front).
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Figure 3.36: Calculated CREST profiles at 2.9, 4.9, and 8.0mmgauges for Shot
1159 using ‘q-switching’ method (i).
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Figure 3.37: Calculated CREST profiles at 2.9, 4.9, and 8.0mmgauges for Shot
1159 using ‘q-switching’ method (ii).
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Figure 3.38: Calculated CREST profiles at 4.18, 7.34, and 11.0mm gauges for Shot
2S-69 (reaction through the arriving shock front).
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Figure 3.39: Calculated Lee-Tarver profiles at 4.18, 7.34, and 11.0mm gauges for
Shot 2S-69.
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Figure 3.40: Calculated CREST profiles at 4.18, 7.34, and 11.0mm gauges for Shot
2S-69 using ‘q-switching’ method (i).
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Figure 3.41: Calculated CREST profiles at 4.18, 7.34, and 11.0mm gauges for Shot
2S-69 using ‘q-switching’ method (ii).
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Figure 3.42: Basic set-up for PBX9502 ratestick calculations.
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Figure 3.43: Simulation of the PBX9502 8.5mm diameter ratestick.
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Figure 3.44: Simulation of the PBX9502 6.0mm diameter ratestick.
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Figure 3.45: Detonation velocity as a function of charge diameter for PBX9502.
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Figure 3.46: Calculated fits to PBX9502 wavefront data.



Chapter 4

Application of a Least Squares
Approach for Determining Run
Distances to Detonation Based on the
LANL Methodology for Fitting
Shock Trajectory Data

4.1 Introduction

Important measurements in explosive shock initiation are the run-distance and
run-time to detonation. When shocked, an explosive does notinstantly attain full
detonation. Instead, the shock wave usually travels some finite distance into the
explosive charge before detonation is achieved. This is termed therun-distance,
and is defined as the distance from the input boundary to the position at which the
shock wave transitions to a detonation wave. Therun-time is defined as the time
between shock input and the time at which the run-distance isreached.

Information on the shock initiation of EDC37 explosive has recently been pro-
vided by gas-gun experiments fired at Los Alamos National Laboratory (LANL)
[38]. In the LANL experiments, two different types of gauge package were fielded
to provide data on the shock response of the explosive; (i) particle velocity gauges to
give information on the build-up of reaction behind the shock front at different loca-
tions within the explosive sample, usually before detonation occurs, and (ii) a shock
tracker gauge to measure the distance-time(x− t) trajectory of the shock front as
it propagates through the explosive. The experimental run-distance and run-time to
detonation are determined from the analysis of the shock tracker data.

An example of the data obtained from the shock tracker gauge in a gas-gun
experiment is shown in Figure 4.1. This shows the shock tracker data for EDC37

134
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gas-gun Shot 1159 in which a single sustained shock of∼59 kbars is input into
the explosive sample. It is observed that the shock velocityincreases very slowly
to begin with as shown by the straight line slope through the first handful of data
points. Thereafter, the reaction starts to build-up behindthe shock front, the wave
starts to accelerate, and the shock velocity increases. Close to full detonation, as
indicated by the straight line through the last dozen or so data points, the shock
velocity increases rapidly and the turn over to detonation occurs. The wave then
travels at a constant speed corresponding to the detonationvelocity.

From a plot such as this there are a number of ways to determinethe run-distance
and run-time to detonation. One can pick out the point by eye,looking to see where
the wave is a detonation front travelling at constant velocity. The problem with this
approach is that the transition to detonation is not very abrupt making it difficult
to determine accurately where the onset of detonation occurs. Alternatively, the
run-distance to detonation can be deduced from the intersection of the lines giving
the initial shock velocity (initial slope) and the detonation velocity (final slope) as
shown in Figure 4.1. However, this method has also been foundto be unreliable
[119].

A more accurate method for deducing the run-distances and run-times to det-
onation from shock trajectory data has been devised by LarryHill at LANL [11].
His approach is to choose a differential equation which mimics the shock front be-
haviour in the(x− t) plane, and which also behaves appropriately in every other
plane which can be reached by integration or differentiation. Hill found that a dif-
ferential equation in the shock velocity-shock acceleration plane, when integrated,
could produce excellent fits to experimental shock trajectory data. From such fits
the run-distances and run-times to detonation can be accurately determined.

Here, a fast and efficient solution method is developed and applied to the LANL
approach for determining run-distances and run-times to detonation from explosive
shock initiation experiments. The method chosen, suggested by Lambourn [120], is
non-linear least squares fitting with constraints. To test and validate the constrained
least squares solution method, it has been applied to the shock tracker data from
EDC37 gas-gun experiments involving sustained single shock inputs, and the de-
rived run-distances and run-times to detonation compared with the corresponding
values quoted by LANL.

Shock trajectories, together with in-material particle velocity gauge records
from explosive gas-gun experiments, comprise the primary information available
for appraising reaction rate models in the shock to detonation regime. Any reac-
tive burn model incorporated into a hydrocode should, at thevery least, be able to
reproduce (i) the experimental particle velocity gauge histories, and (ii) the exper-
imentally derived Pop-Plot (run-distances and run-times to detonation plotted as a
function of the input pressure) [31].

The newly developed CREST reaction rate model [61] is able toreproduce the
particle velocity gauge records from EDC37 gas-gun experiments which show the
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reaction build-up in shocked EDC37 explosive before detonation is attained. Since
the LANL methodology for analysing shock trajectories can be applied equally well
to calculated as well as experimental data, the method has also been applied to shock
arrival data from hydrocode calculations of the EDC37 gas-gun experiments using
CREST, to see how well, or otherwise, the CREST model for EDC37 explosive fits
the experimental Pop-Plot.

The LANL methodology for fitting(x− t) shock initiation data is described in
Section 4.2. A number of solution methods to the LANL approach for determining
run-distances and run-times to detonation from analysis ofshock trajectory data,
including the constrained least squares method, are described in Section 4.3. In
order to apply the constrained least squares method to shocktrajectory data, a series
of FORTRAN routines have been written, and the overall program is described in
Section 4.4. Section 4.5 then details the application of thechosen method to EDC37
experimental shock tracker data from gas-gun shots to test and validate the method.
In Section 4.6 the method is then applied to shock time of arrival data from CREST
calculations of the EDC37 gas-gun experiments to see how well, or otherwise, the
CREST model for EDC37 fits shock time of arrival data and the Pop Plot. The
conclusions are given in Section 4.7.

4.2 The LANL Method of Analysing Shock Trajecto-
ries

Post-shot analysis of explosive gas-gun experiments fired at LANL involves de-
termination of the run-distance and run-time to detonationfrom the shock tracker
data, assuming that detonation has been attained within thetime frame of the ex-
periment. The quoted run-distances and run-times are usually determined using a
method derived by Larry Hill [11]. Hill found that a differential equation in the
shock velocity-shock acceleration ( ˙x− ẍ) plane gave a good representation of the
shock front trajectory from explosive gas gun experiments involving a run to deto-
nation. The form of the differential equation suggested by Hill is,

ẍ =

( a
100

)

ẋb+2(ẋ−C)b+1(Dc j − ẋ
)

(2ẋ−C)
(

Dc j −0.99ẋ
) (4.1)

wherea controls the acceleration of the wave,b controls where turnover to deto-
nation occurs,C is the intercept of the explosive’s unreacted Hugoniot in the shock
velocity-particle velocity (Us−Up) plane,Dc j is the Chapman-Jouguet detonation
velocity, and the dots indicate differentiation with respect to time. An example of
the form of this function is shown in Figure 4.2. The differential equation (4.1) can-
not be solved analytically and numerical integration techniques must be used to find
x(t) with the boundary conditions, (i) ˙x(t = 0) = Us, and (ii)x(t = 0) = x0, where
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Us is the initial shock velocity in the explosive, andx0 is the intial position (nomi-
nally 0.0).Us can either be estimated (from fitting to the first few shock tracker data
points) or calculated from the unreacted Hugoniot if this isknown.

The Hill function (4.1) is essentially a method for determining the run-distance,
xrun, which is defined as the depth at which the shock velocity in the target explosive
reaches 99% of the detonation velocityDc j, whereDc j is usually obtained from the
fit to the last few data points of the measured (x− t) trajectory. The run-time to
detonation,trun, is defined as the time between impact and the time at which the
run-distance to detonation is attained. The run-distance,xrun, and run-time,trun,
to detonation are evaluated from the following integrals with the given integration
limits,

xrun =

0.99Dc j
Z

Us

ẋ
ẍ

dẋ (4.2)

trun =

0.99Dc j
Z

Us

1
ẍ

dẋ (4.3)

There are essentially five free parameters in the method;a, b, C, Dc j, andUs. In
their analyses, LANL assume thatC andDc j are fixed, and initially used “machine”
fits in which theMathematica software package was used to vary the parameters
a, b, andUs over a limited range in an attempt to find the best fit accordingto a
least squares criterion. Rather than rely on a commercial software package, a series
of FORTRAN programs are written to solve the Hill differential equation (4.1) to
determine run-distances and run-times to detonation.

4.3 Solution Methods to the LANL Approach for De-
termining Run-Distances to Detonation

4.3.1 Search Method

To solve the Hill differential equation (4.1) to determine run-distances and run-
times to detonation from shock trajectory data, an initial solution method involved
searching on a 2D grid to find the best solution. In this approach, suitable fixed
values forC, Dc j, andUs are chosen, and the parametersa andb are varied in an
attempt to find the best fit to the shock trajectory data. A 2D matrix of (a,b) values
is created which is then used to solve equation (4.1) to produce a matrix of(x− t)
fits. Further refined 2D matrices of(a,b) values centred on a number of the best fits
from the initial grid are then searched until a ‘best’ best fitis found.

Although this solution method produces acceptable fits to the data, there are two
main problems with this approach. Firstly, the solution method is numerically very
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inefficient; for example, a calculation using a 100 x 50 grid of (a,b) values takes
approximately 20 minutes to run on a SUN workstation. Secondly, the initial shock
velocity in the explosive,Us, is assumed fixed, thus there is no flexibility in the
solution method to adjust this value within experimental uncertainty to improve the
calculated fit to the data. Therefore, it was felt that an improved and more compu-
tationally efficient solution method for determining run-distances to detonation was
required.

4.3.2 Standard Least Squares Method

Suppose we have a set ofn data points(xi , tiexpt) from a given experiment where,
in this case,n is the number of recorded measurements from the shock tracker
gauge. Suppose given starting values of(a,b,Us) we have a set ofn calculated
data points

(

xi , ti f it
)

. Assuming that this calculated fit can be improved upon, then
the values of(a,b,Us) need to be adjusted to give the best fit,i.e. to vary(a,b,Us)
to minimise the sum of squares,S1, of the deviations of the measured values,tiexpt,
from the calculated values,ti f it ,

S1 =
n

∑
i=1

(

ti
expt− ti

f it
)2

(4.4)

The minimum is found by partially differentiatingS1 with respect toa, b, andUs,
and setting the partial derivatives to zero. As the fitting function,ti f it , is non-linear,
the equations found by setting the partial derivatives ofS1 to zero are non-linear
equations, and hence an iterative method is required to solve them. An alternative is
to linearise the function being fitted in the neighbourhood of some initial values of
(a,b,Us) and to use least squares to find corrections(∆a,∆b,∆Us). To do this, the
gradients of eachti f it with respect to(a,b,Us) are found, and thenti f it is expanded
by Taylor’s series to first order to give,

ti
∗ = ti

f it +
∂ti f it

∂a
∆a+

∂ti f it

∂b
∆b+

∂ti f it

∂Us
∆Us (4.5)

For least squares purposes, the sum to minimise is,

S1
∗ =

n

∑
i=1

(

ti
expt− ti

∗)2 (4.6)

and substituting forti∗ gives,

S1
∗ =

n

∑
i=1

(

ti
expt− ti

f it − ∂ti f it

∂a
∆a− ∂ti f it

∂b
∆b− ∂ti f it

∂Us
∆Us

)2

(4.7)

The sensitivities (partial derivatives) in (4.7) can be estimated, by a finite differ-
ence approximation, from calculations with slightly different(a,b,Us) values, thus
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it is necessary to perform 4 separate calculations (original plus one each for each of
the above sensitivities) before the method can be applied. By partially differentiat-
ing S1

∗ with respect to(∆a,∆b,∆Us) and setting the resulting derivatives to zero, a
system of 3 linear equations is obtained,

∂S1
∗

∂∆a
= −2

n

∑
i=1

(

ti
expt− ti

f it − ∂ti f it

∂a
∆a− ∂ti f it

∂b
∆b− ∂ti f it

∂Us
∆Us

)

∂ti f it

∂a
= 0

∂S1
∗

∂∆b
= −2

n

∑
i=1

(

ti
expt− ti

f it − ∂ti f it

∂a
∆a− ∂ti f it

∂b
∆b− ∂ti f it

∂Us
∆Us

)

∂ti f it

∂b
= 0

∂S1
∗

∂∆Us
= −2

n

∑
i=1

(

ti
expt− ti

f it − ∂ti f it

∂a
∆a− ∂ti f it

∂b
∆b− ∂ti f it

∂Us
∆Us

)

∂ti f it

∂Us
= 0

The above equations can be subsequently re-arranged and solved for ∆a, ∆b,
and∆Us. In the general case it is necessary to start again with the new values of
ti∗, re-evaluate the derivatives, and solve again for(∆a,∆b,∆Us). The process is
repeated until∆a, ∆b, and∆Us are simultaneously smaller than prescribed values so
that a minimum inS1

∗ has been reached,ie several iterations may be required and
this will depend to some extent on how close the initial values (a,b,Us) are to the
minimum.

4.3.3 Constrained Least Squares Method

The problem with the standard least squares method above is that there are no
limits on the magnitude of the changes to the parameters (a, b, Us). In practice, it
is desirable to be able to restrict the size of the parameter changes (∆a, ∆b, ∆Us) in
case, (i) there are any rapid changes of gradient, or (ii) theparameters are known to
lie within experimental uncertainities.

The method of least squares with constraints gets over thesedifficulties by
adding extra terms to the sum to be minimised,

S2
∗ =

(

∆a
α1

)2

+

(

∆b
α2

)2

+

(

∆Us

α3

)2

+
n

∑
i=1

(

tiexpt− ti∗

β

)2

(4.8)

whereβ is a limit on acceptable deviations of the experimental points from the
best fit. The final term of equation (4.8) is the standard (weighted) least squares
expression for minimising the sum of the residual squares. The first three terms of
(4.8) are the extra terms, where the different constraintsα1, α2, andα3 are applied
to produce respective acceptable variations in∆a, ∆b, and∆Us separately. In order
to minimiseS2

∗, the values of∆a, ∆b, and∆Us are such that,

∂S2
∗

∂∆a
=

∂S2
∗

∂∆b
=

∂S2
∗

∂∆Us
= 0 (4.9)
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After differentiating and rearranging the resulting equations, this leads to a system
of 3 linear equations to be solved for∆a, ∆b, and∆Us, namely,




β2

α1
2 +

n

∑
i=1

(

∂ti
f it

∂a

)2


∆a+

[

n

∑
i=1

(

∂ti
f it

∂a

)(

∂ti
f it

∂b

)]

∆b

+

[

n

∑
i=1

(

∂ti
f it

∂a

)(

∂ti
f it

∂Us

)]

∆Us =
n

∑
i=1

(

ti
expt− ti

f it
) ∂ti f it

∂a

[

n

∑
i=1

(

∂ti
f it

∂a

)(

∂ti
f it

∂b

)]

∆a+





β2

α2
2 +

n

∑
i=1

(

∂ti
f it

∂b

)2


∆b

+

[

n

∑
i=1

(

∂ti
f it

∂b

)(

∂ti
f it

∂Us

)]

∆Us =
n

∑
i=1

(

ti
expt− ti

f it
) ∂ti f it

∂b

[

n

∑
i=1

(

∂ti
f it

∂a

)(

∂ti
f it

∂Us

)]

∆a+

[

n

∑
i=1

(

∂ti
f it

∂b

)(

∂ti
f it

∂Us

)]

∆b

+





β2

α3
2 +

n

∑
i=1

(

∂ti
f it

∂Us

)2


∆Us =
n

∑
i=1

(

ti
expt− ti

f it
) ∂ti f it

∂Us

Each of the sensitivities (partial derivatives) in the above equations can be estimated
from two calculations with slightly different values fora, b, andUs respectively.

The above system of 3 linear equations can be simplified to a simple, single
matrix equation to be solved by normal matrix inversion techniques. The matrix
equation is written as,

(

A+HTH
)

∆p = HT
(

texpt− t f it
)

(4.10)

where,

texpt =











t1expt

t2expt

...
tnexpt











is vector of experimental times (dimensions (n x 1))

t f it =











t1 f it

t2 f it

...
tn f it











is the vector of fitted times (dimensions (n x 1))
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∆p =





∆a
∆b
∆Us



 is vector of unknown changes (dimensions (3 x 1))

H =

























∂t1 f it

∂a
∂t1 f it

∂b
∂t1 f it

∂Us

∂t2 f it

∂a
∂t2 f it

∂b
∂t2 f it

∂Us

...
...

...

∂tn f it

∂a
∂tn f it

∂b
∂tn f it

∂Us

























is matrix of partial derivatives (dimensions (n x 3))

HT =















∂t1 f it

∂a
∂t2 f it

∂a · · · ∂tn f it

∂a

∂t1 f it

∂b
∂t2 f it

∂b · · · ∂tn f it

∂b

∂t1 f it

∂Us

∂t2 f it

∂Us
· · · ∂tn f it

∂Us















is transposed matrix of derivatives (3 x n)

A =









β2

α1
2 0 0

0 β2

α2
2 0

0 0 β2

α3
2









diagonal matrix of constraints (dimensions (3 x 3))

On solving the system of equations for∆p, the new estimates of the parameters are,

anew = aold +∆a (4.11)

bnew = bold +∆b (4.12)

Us
new = Us

old +∆Us (4.13)

and the least squares process is then repeated (starting with the new estimates) until
the changes (∆a, ∆b, ∆Us) are simultaneously smaller than prescribed convergence
limits (ε1, ε2, ε3) such that an acceptable fit is obtained. In other words, it issimul-
taneously required that∆a < ε1, ∆b < ε2, and∆Us < ε3, so that a minimum inS2

∗

has been reached.
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4.4 Fortran Programs for Application of the Constrained
Least Squares Method to Shock Trajectory Data

4.4.1 Preamble

The use of the constrained least squares method for calculating run-distances
and run-times to detonation based on the Hill method for fitting shock trajectory
data has been written into a series of Fortran routines. The overall program can be
applied to either experimental or calculated shock time of arrival data. A flowchart
of the program is provided at Appendix A which illustrates the key steps involved.
Standard symbols have been used in the flow diagram to represent, processing (rect-
angle), input-output (parallelogram), if-then branching(diamond)etc.

The least squares program uses the Fortran intrinsic procedure MATMUL to
perform the matrix multiplications, and the resulting system of linear equations
is solved via a direct matrix factorisation method using routines kindly supplied
by Richard Smedley-Stevenson [121]. The program is very efficient in the use of
computer time, with calculations typically taking severalCPU seconds to complete.

4.4.2 User Input

The input required by the program is read in from a file calledlsa.dat which is
supplied by the user. There is a slight difference in the required input, depending
upon whether the method is being applied to experimental or calculated data, and
this difference is described below. Irrespective of the type of data that is being
fitted, the user input file must contain, (i) initial values for (a,b,Us), (ii) values for
the constraints(β,α1,α2,α3), (iii) the convergence limits (ε1, ε2, andε3), (iv) the
value forC, (v) values for small changes in the parameters (δa, δb, δUs) so that the

sensitivities∂ti f it

∂a , ∂ti f it

∂b , and ∂ti f it

∂Us
can be calculated, (vi) number of gauge positions,

and (vii) the position and arrival time data for each gauge location. In the method
a value forDc j, the Chapman-Jouguet detonation velocity, is also required. For
experimental data, the user specifies the value ofDc j directly, but for calculated
data the user inputs the JWL reaction products’ EOS parameters from the reactive
burn model being used, and the program calculatesDc j from the supplied constants.

4.4.3 Specification of Constraints

The variability of the parametersa, b, andUs from their respective initial starting
values is controlled by their associated constraintsα1, α2, andα3 respectively. The
smaller the value of the associatedα, the tighter the constraint on that parameter,
and hence the smaller will be the change in the parameter as a result of applying the
least squares method. The shock velocity,Us, should have a small value specified
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for α3 since this parameter is known to a reasonably high accuracy,e.g.from fitting
to the first few experimental shock tracker data points. LANLusually quote the
shock velocity within given limits, and thus the user shouldchoose the value ofα3

appropriately to ensure that the value ofUs stays within experimental uncertainty.
On the other hand relatively larger values forα1 andα2 can be input since the values
for a andb are known with less certainty.β controls the goodness of the calculated
fit to the experimental data, and can also be thought of as a measure of uncertainty
in the experimental shock wave arrival times. Additionally, the constraintsβ, α1,
α2, andα3 can also be thought of as adjustable parameters to give an improved fit.
In reality, however, it is the ratio ofβαi

that is important, and the best fit can to some
extent be altered by varying these ratios appropriately. Typical values chosen for
the constraints in the analyses performed were;α1=1.0,α2=1.0,α3=0.1, andβ=1.0.

4.4.4 Specification of Convergence Limits

Separate convergence limitsε1, ε2, andε3 are supplied for the calculated changes
in the parameters∆a, ∆b, and∆Us respectively. The program stops iterating when
the changes are simultaneously within the specified limits,ie ∆a < ε1, ∆b < ε2, and
∆Us < ε3, such that it is deemed that an acceptable fit to the supplied shock time of
arrival data has been obtained.

The quality of the calculated fit will be dependent on the convergence limits
specified. In each iteration, the root mean square (RMS) error for the fit is com-
puted from the residuals (tidata− ti f it ) and is printed out, wheretidata can be either
experimental or calculated time of arrival data. The RMS error provides a useful in-
dicator of the goodness of the overall calculated fit at each iteration. If the program
stops as a result of the convergence criteria being met, but it is noted that the calcu-
lated RMS value is still decreasing and has not yet reached a steady value, then it is
likely that the calculated fit could be improved by reducing the convergence limits
and re-running the program. Typical values chosen for the convergence limits in the
analyses performed were;ε1=0.0001,ε2=0.001, andε3=0.001.

4.4.5 Calculation of Sensitivities

The sensitivities∂ti f it

∂a , ∂ti f it

∂b , and ∂ti f it

∂Us
are estimated numerically by calculating

the times of arrival,ti f it , with slightly different values of(a,b,Us). The simple
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one-sided finite difference approximations given below areused,

∂ti f it

∂a
=

ti f it (a+δa,b,Us)− ti f it (a,b,Us)

δa
(4.14)

∂ti f it

∂b
=

ti f it (a,b+δb,Us)− ti f it (a,b,Us)

δb
(4.15)

∂ti f it

∂Us
=

ti f it (a,b,Us+δUs)− ti f it (a,b,Us)

δUs
(4.16)

and the sensitivities are re-evaluated during each iteration until an acceptable solu-
tion is found. At each iteration, 4 separate calculations need to be performed using
respectively(a,b,Us), (a+δa,b,Us), (a,b+δb,Us), and(a,b,Us+δUs), so that the
above sensitivities can be evaluated. For stability of the method, the two different
initial starting points for each of the variables should notbe too far apart, and it is
recommended that users restrict changes to≤ 5% in each variable.

4.4.6 General Guidance

In general there is a degree of trial and error to obtaining acceptable fits using the
constrained least squares method. The calculated fits will be dependent on a number
of factors including; (i) how good the data is that you are attempting to fit to, (ii)
starting values chosen for the parameters(a,b,Us), and how close these values are
to a minimum, (iii) values chosen for the constraints and convergence limits, and
(iv) the computed derivatives (sensitivities). In particular, the solutions obtained
are not unique; for example there can be a range of(a,b,Us) values that can give
equally good calculated fits (see Section 4.4 below), and thesolution reached will
depend on the chosen initial values for(a,b,Us).

Once a solution is found, the program outputs the actual(x− t) data, the cal-
culated fit to the data, the residuals (tidata− ti f it ), the Hill fit coefficients (a, b, Us,
C, Dc j), and the computed run-distance and run-time to detonation. At this stage
the user should compare the calculated fit to the actual data and also plot out the
residuals. Ideally, the residuals should be randomly distributed about zero, and all
lie within acceptable limits. The user then has to use their judgement to answer
the following questions; (i) is the fit acceptable?, and (ii)could the fit be possibly
improved? If the user is not happy with the calculated fit, theinput data should be
‘intelligently’ modified and the program re-run with the amended input.

If an acceptable solution has not been found after a specifiednumber of itera-
tions then the program currently stops. If this occurs, the user should modify either
the initial starting values, the constraints, or the convergence limits, or a combina-
tion of the above and re-run the program. Alternatively, theuser could extend the
program to include a different stop condition to terminate the iterating process,e.g.
say when the calculated RMS error is less than a specified value.
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4.4.7 Description of Fortran Routines

The Fortran routines which apply the constrained least squares method to the
described analysis of shock trajectory data are detailed below, and the listings of the
routines are given on the attached CD-ROM.

• lsa.f - Main program. Reads in user input data, performs the matrix multipli-
cations, and outputs results.

• calc fit.f - Calculates the Hill function fit and computes the run-distance and
run-time to detonation.

• linsolve.f - Solves a system of linear equations.

• velocities.f - Calculates the detonation velocity,Dc j, from the supplied reac-
tion products JWL EOS.

The above suite of programs have been used in the analyses described in Sec-
tions 4.5 and 4.6 below.

4.4.8 Ancillary Programs

There are also a number of ancillary programs that are also particularly useful in
relation to applying the constrained least squares method to shock trajectory data.
The listings of these routines are also on the attached CD-ROM.

arrivaltimes.f

This program calculates arrival times for the shock front atgiven positions (e.g.
gauge locations) from experimental or simulated Lagrangian particle velocity histo-
ries. The program is particularly useful for extracting shock wave arrival times from
calculated data since this information is not readily available from hydrocode runs.
At each given position, the time of arrival of the propagating shock wave is taken
to occur when the output first reaches a critical value of the particle velocity. This
(constant) value is input by the user, and linear interpolation is used to calculate the
correct time of arrival from the supplied, discrete, particle velocity data. Note that
the critical value input by the user will be dependent on the units used; particle ve-
locity in a hydrocode is in cm/µs, whereas experimental particle velocity data from
LANL is usually in mm/µs.

The critical value usually chosen as input to the program is half the particle
velocity through the initial shock wave entering the explosive. However, since the
particle velocity in the propagting shock increases with depth into the explosive,
ideally the critical value should vary with shock strength.The program will be
modified in future to calculate shock arrival times at given positions at values of
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particle velocity that depend on the shock strength. The arrivaltimes.f program was
used to extract shock wave arrival times from the CREST calculations described in
Section 4.6.

contour.f

This program can be used to indicate where local minima occurfor given(a,b)
values, assuming a fixed value ofUs, and hence determine suitable starting values
for the parameters(a,b,Us) in the application of the constrained least squares solu-
tion method to fitting shock trajectory data. The program is essentially a version of
the search method (described in Section 4.3.1) to solve the Hill differential equation
(4.1) to determine run-distances and run-times to detonation. Suitable fixed values
for Us, C, andDc j are chosen, and the parameters(a,b) are varied within given
limits in an attempt to find suitable values that produce acceptable fits to shock time
of arrival data by integrating equation (4.1). The RMS errorfor each calculated fit
is computed from the residuals to give a measure of the goodness of the fit corre-
sponding to each(a,b) pair.

To visualise the data, an IDL script was written that produces a surface plot of
the inverse of the RMS error over the range of(a,b) values used. A maximum in the
inverse of the RMS error gives a mimimum in the calculated fit.An example surface
plot is shown in Figure 4.3 corresponding to fitting the shocktracker data from
EDC37 gas-gun Shot 1159 using a 200 x 200 grid of(a,b) values. It is observed that
there is a ‘ridge’ of suitable(a,b) values over the ranges shown that will produce
equally good calculated fits since the RMS errors are very similar. This plot thus
gives an indication of resonable starting values of(a,b) to use that will be close to
a local minimum.

4.5 Application of the Least Squares Method to Ex-
perimental Shock Trajectory Data

To test and validate the application of the constrained least squares solution
method for determining run-distances and run-times to detonation, it has been ap-
plied to the shock tracker data obtained from EDC37 sustained single shock gas-gun
experiments [38]. These experiments are summarised in Table 4.1. Out of the total
of 6 single sustained shock experiments fired, the run to detonation has been de-
duced from 4 of the experimental shots. In one experiment (Shot 1120) the shock
tracker gauge failed, while in Shot 1267, run to detonation occured beyond the end
of the gauge package. Note that the run-distances to detonation given in Table 4.1
are those quoted by LANL.

Using the constrained least squares solution method, the calculated fits to the
experimental shock tracker data from Shots 1160, 1122, 1159, and 1277 are shown
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Table 4.1: Summary of EDC37 Sustained Single Shock Gas Gun Experiments.

Shot No. Impact Vel. Impactor Input Pressure Run Distance
(mm/µs) Material (GPa) xrun (mm)

1267 0.487 Z-cut sapphire 2.76± 1.5 >16.0
1160 0.608 Vistal 3.52± 1.6 14.4
1122 0.682 Vistal 3.95± 1.7 12.3
1120 0.809 Vistal 4.91± 1.9 No data
1159 0.918 Vistal 5.92± 2.1 7.0
1277 1.403 Z-cut sapphire 10.8± 3.0 2.8

respectively in Figures 4.4-4.7. Shown on each of these plots is the experimental
shock tracker data, the best fit to this data by integrating (4.1), and the residuals
(tiexpt− ti f it ) multiplied by 10. It is observed that some of the calculatedfits are
better than others. For example, a very good fit has been obtained to the shock
tracker data from Shot 1159 (Figure 4.6), where the majorityof the residuals for the
fit are typically within±0.005µs, and all are within±0.01µs. However, a poorer
fit is obtained to the early gauge elements from Shot 1122 (Figure 4.5) where the
residuals for the fit are typically±0.05µs. It is seen that there is a noticeable ‘kink’
in the data for Shot 1122 for the early gauge elements, indicating that either the
tracker data is questionable or the wave is not acceleratingas smoothly as would
be expected. This illustrates clearly the point that the obtained calculated fits will
only be as good as the data that is being fitted! The values usedas input to the least
squares method are given in Table 4.2, where subscript 0 indicates initial values.

Table 4.2: Input Values to Constrained Least Squares Program.

Shot No.
Parameter 1120 1122 1159 1160 1267 1277

a0 0.05 0.05 0.05 0.05 0.05 0.10
b0 2.50 2.50 2.50 1.50 2.00 2.00
Us0 4.00 3.84 4.19 3.75 3.56 5.00
∆a -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
∆b -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
∆Us -0.10 -0.10 -0.10 -0.10 -0.10 -0.10

β 1.0 1.0 1.0 1.0 1.00 1.00
α1 1.0 1.0 1.0 1.0 1.0 1.0
α2 1.0 1.0 1.0 1.0 1.0 1.0
α3 1.0 1.0 1.0 0.5 0.1 0.5
ε1 2.0×10−4 2.0×10−3 1.0×10−4 1.0×10−3 1.0×10−3 5.0×10−4

ε2 2.0×10−3 2.0×10−3 1.0×10−3 1.0×10−3 1.5×10−3 1.0×10−3

ε3 1.0×10−3 1.0×10−3 1.0×10−3 1.0×10−3 1.0×10−3 1.0×10−3

The values for the parameters in the Hill function (4.1) thatgive the fits shown
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in Figures 4.4-4.7 are given in Table 4.3, whereC is from the measured EDC37
Hugoniot [11], and the values quoted forDc j are obtained from the fits to the last few
data points of the respective measured(x− t) trajectories. Values ofDc j consistent
with published data [122] are obtained for Shots 1159, 1160,and 1277. The value
of Dc j quoted for Shot 1122 is lower than would be expected indicating that either
the wave has not reached a steady detonation or again that theshock tracker data
for this experiment is questionable. The remaining values required as input to the
method are given in Table 4.2.

Table 4.3: Hill Function Parameters Fitted to EDC37 Shock Trajectory Data.

Shot No. a b Us C Dc j

(mm/µs) (mm/µs) (mm/µs)

1160 0.055222 2.534801 3.674033 2.40 8.72
1122 0.050055 2.644321 3.692185 2.40 8.53
1159 0.034845 2.497354 4.230644 2.40 8.76
1277 0.021087 2.493027 5.000284 2.40 8.70

The run-distances and run-times to detonation derived fromthe calculated fits
to the EDC37 experimental shock tracker data are compared with those quoted by
LANL in Table 4.4. The point where detonation is attained is defined to be the
point where 99% ofDc j is reached in the fit. Good agreement is obtained between
the run-distances and run-times to detonation derived fromthe application of the
constrained least squares method to the Hill function (4.1), and the corresponding
run-distances and run-times given by LANL. It is noted that LANL quote an accu-
racy in their fitting process of 0.4 mm in run distance and 0.1µs in run time. Thus
the majority of values derived from this work are within the accuracies quoted by
LANL. The largest discrepency occurs for Shot 1277 which hasthe shortest run-
distance. This discrepency is probably due to the fact that,unlike the remaining
shots, there are only a handful of gauge points to fit to beforethe turnover to deto-
nation occurs, thus leading to a larger margin for error in the calculated run-distance
and run-time.

Table 4.4: Run Distance Analysis of EDC37 Single Shock Gas Gun Experiments.

LANL Quoted Values This Work
Shot No. Run Distance Run Time Run Distance Run Time

xrun (mm) trun (µs) xrun (mm) trun (µs)

1160 14.4 3.47 14.4 3.52
1122 12.3 2.95 12.2 2.99
1159 7.0 1.45 7.0 1.46
1277 2.8 0.51 3.2 0.56

Note that although run-distances and run-times to detonation were quoted by
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LANL, the fitting parameters in the Hill function (4.1) were not supplied.

4.6 Application of the Least Squares Method to Cal-
culated Shock Trajectory Data

The application of the constrained least squares method to fitting experimental
shock trajectory data based on the Hill method was successfully validated above,
and can thus be applied with confidence to data from hydrocodesimulations to
determine run-distances and run-times to detonation from calculated results. The
entropy-dependent CREST reactive burn model [61] is able toreproduce the parti-
cle velocity gauge records from EDC37 gas-gun experiments which show the reac-
tion build-up in the shocked explosive, usually before detonation is attained. Here,
the constrained least squares method is applied to shock trajectory data from hy-
drocode calculations of the EDC37 gas-gun experiments using CREST, to enable
run-distances and run-times to detonation deduced from CREST calculations to be
compared with experiment.

Calculations of the EDC37 gas-gun experiments detailed in Table 4.1 were car-
ried out using PERUSE [88], the one-dimensional Lagrangianhydrocode which is
used as a test-bed for reactive burn model development. A meshing of 50 zones/mm
was used in the calculations, a resolution at which the CRESTmodel for EDC37
is mesh converged. The CREST model parameters for EDC37 explosive were as
given in [61]. Calculated arrival times for the propagatingshock wave at given po-
sitions in the explosive were deduced from the calculated particle velocity histories
using thearrivaltimes.f program described in Section 4.4.8, where the critical value
of the particle velocity was taken to be 0.02 cm/µs.

The Hill function fits to the calculated arrival times for theEDC37 gas-gun shots
are shown in Figures 4.8-4.13, where each plot shows the calculated shock arrival
data, the best fit to this data by numerically integrating (4.1), and the residuals
(ti calc− ti f it ) multiplied by 10. It is observed that a good fit is obtained toall 6
shots. The majority of the residuals for the fits are within±0.01µs, with the largest
discrepency in arrival time being approximately 0.03µs for Shot 1267. The values
used as input to the least squares method are as given in Table4.2, and the Hill
function (4.1) parameters fitted to the EDC37 calculated shock wave arrival data
are given in Table 4.5. The quoted values forC andDc j are from the respective
unreacted EOS and reaction products EOS in the EDC37 CREST model.

The calculated run-distances and run-times to detonation deduced from the fits
are compared with the experimentally deduced values in Table 4.6. Run-distance
data is usually presented in the form of a Pop-Plot [31], named after one of its orig-
inators, which expresses the relationship between the input shock pressure and the
run-distance (or run-time) to detonation, usually on logarithmic scales. The calcu-
lated Pop-Plot for EDC37 is compared with experiment in Figure 2.4. In addition
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Table 4.5: Hill Function Parameters Fitted to EDC37 Calculated Shock Arrival
Data.

Shot No. a b Us C Dc j

(mm/µs) (mm/µs) (mm/µs)

1267 0.705792 1.737367 3.491805 2.779045 8.811656
1160 0.756806 1.550453 3.644656 2.779045 8.811656
1122 0.639189 1.579896 3.754207 2.779045 8.811656
1120 0.101327 2.366737 4.016714 2.779045 8.811656
1159 0.066028 2.487148 4.192159 2.779045 8.811656
1277 0.126551 2.003240 5.001590 2.779045 8.811656

to the gas-gun data, the plot also shows EDC37 run-distance data obtained from
earlier explosively driven wedge test experiments carriedout by Rabie and Harry
[30]. The straight line relationship is the best fit to all theexperimental data. It
is observed in Figure 2.4 that a good fit is obtained to the experimental Pop-Plot
at high and intermediate input shock pressures, however theCREST calculations
start to tail off at the low pressure end with the model givinga shorter run-distance
to detonation compared to experiment. This indicates that the CREST model for
EDC37 explosive is too reactive at low shock pressures (<3.5 GPa).

Table 4.6: EDC37 Gas-Gun Run Distance Analysis.

Experiment Calculation
Shot No. Pressure Run Distance Run Time Pressure Run Distance Run Time

(GPa) xrun (mm) trun (µs) (GPa) xrun (mm) trun (µs)

1267 2.76 > 16.0 > 4.00 2.78 16.8 4.29
1160 3.52 14.4 3.52 3.61 14.3 3.42
1122 3.95 12.2 2.99 4.16 12.7 2.94
1120 4.91 No data No data 5.15 9.4 2.11
1159 5.92 7.0 1.46 6.06 7.4 1.58
1277 10.8 3.2 0.56 10.8 3.1 0.54

For completeness, the calculated Hill function fits to the experimental and simu-
lated shock time of arrival data for Shots 1160, 1122, 1159, and 1277 are compared
respectively in Figures 4.15-4.18. For each shot it is seen that the CREST calcula-
tions give a good match to the experimental shock trajectories. The acceleration of
the shock wave is well matched to the experimental data over the majority of the run
to detonation, with some differences seen in the late stagesof acceleration before
the turnover to detonation occurs.
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4.7 Conclusions

The described constrained least squares method has been applied to shock time
of arrival data from explosive gas-gun experiments to provide a fast and efficient
solution method for determining run-distances and run-times to detonation using a
technique devised by Larry Hill at LANL for fitting shock trajectory data. Good
matches to the experimental shock tracker data from sustained single shock EDC37
gas-gun shots have been obtained, and the derived run-distances and run-times to
detonation are in very close agreement with the corresponding values quoted by
LANL, thus validating the application of the method.

The method was then subsequently applied to shock time of arrival data from
hydrocode calculations of the EDC37 gas-gun experiments using the CREST re-
active burn model. Overall, the CREST model for EDC37 explosive gives good
agreement with the experimental shock trajectory data and run-distance to detona-
tion data, however the fit to the EDC37 Pop-Plot starts to diverge at low pressures,
indicating that the EDC37 CREST model needs to be improved inthe low pressure
region.
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Figure 4.1: Position-time (x-t) plot for EDC37 Shot 1159 obtained from shock
arrival at shock tracker gauge elements.

4 5 6 7 8 9 10
Velocity (mm/µs)

0

20

40

60

80

100

120

140

160

180

Ac
ce

le
ra

tio
n 

(m
m

/µ
s2 )

Hill fit function

99% of Dcj

Hill Fit Analysis - EDC37 Shot 1159
(a=0.0348, b=2.4974, C=2.4, Us=4.23, Dcj=8.76)

Figure 4.2: Plot of the acceleration-shock velocity function for EDC37 Shot 1159.
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Figure 4.3: Surface plot for EDC37 Shot 1159.
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Figure 4.4: Calculated fit to experimental shock tracker data from EDC37 gas-gun
Shot 1160.
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Figure 4.5: Calculated fit to experimental shock tracker data from EDC37 gas-gun
Shot 1122.
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Figure 4.6: Calculated fit to experimental shock tracker data from EDC37 gas-gun
Shot 1159.
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Figure 4.7: Calculated fit to experimental shock tracker data from EDC37 gas-gun
Shot 1277.
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Figure 4.8: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1120.
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Figure 4.9: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1122.



CHAPTER 4. DETERMINING RUN DISTANCES TO DETONATION 157

0 2 4 6 8 10 12
Gauge position (mm)

-0.5

0

0.5

1

1.5

2

W
av

e 
ar

riv
al

 ti
m

e 
(µ

s)

Calculated arrival times

Hill fit

Residuals (x10)

EDC37 Shot 1159

Figure 4.10: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1159.
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Figure 4.11: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1160.
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Figure 4.12: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1267.
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Figure 4.13: Calculated fit to CREST time of arrival data for EDC37 gas-gun Shot
1277.
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Figure 4.14: Pop Plot Data for EDC37.

0 2 4 6 8 10 12 14 16 18 20 22
Gauge position (mm)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

W
av

e 
ar

riv
al

 ti
m

e 
(µ

s)

Experiment

CREST calculation

EDC37 Shot 1160

Figure 4.15: Calculated fits to shock time of arrival data forEDC37 gas-gun Shot
1160.
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Figure 4.16: Calculated fits to shock time of arrival data forEDC37 gas-gun Shot
1122.
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Figure 4.17: Calculated fits to shock time of arrival data forEDC37 gas-gun Shot
1159.
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Figure 4.18: Calculated fits to shock time of arrival data forEDC37 gas-gun Shot
1277.



Chapter 5

Explicit ‘Hot-Spot’ Modelling

5.1 Introduction

Shock initiation of heterogeneous solid explosives is a complex problem involv-
ing a number of mechanical, thermal, and chemical processes. The key to initiation
in such explosives is the generation of ‘hot-spots’ at material discontinuities (crys-
tal/binder boundaries, pores, crystal defectsetc) which act as concentration points
for energy density and locally trigger the thermal reactionin the explosive [4]. Dur-
ing shock compression, a distribution of ‘hot-spot’ sizes and temperatures is created
that is dependent on the initial conditions of the explosivesuch as initial pore size
distribution, explosive particle size distribution, and binder distribution. These ‘hot-
spots’ can then grow to consume neighbouring explosive particles or fail to grow
as thermal conduction lowers their temperature before reaction can be completed.
The initial conditions of the explosive are important sinceit is well known exper-
imentally that the explosive morphology (initial pore sizedistribution, grain size
distribution, crystal orientationetc) can affect the explosive response [45] [48].

Continuum-based reactive burn models, such as the pressure-based Lee-Tarver
model [49] and the entropy-dependent CREST model [61], do not explicitly take
account of the fundamental processes involved in shock initiation of heterogeneous
solid explosives. For example, no attempt is made to model ‘hot-spot’ formation
in an explosive as a result of shock compression. Instead, such models give a gen-
eralised description of the underlying physical and chemical processes involved.
Their reaction rate equations are mathematical expressions that approximate ‘hot-
spot’ formation and ignition, and subsequent growth of reaction behaviour, and the
rate constants are empirically fitted to experimental data.Although the CREST
reactive burn model [61] [62] is giving promising results insimulating a range of
explosive phenomena with a single set of parameters, it is unable to account for the
effect of particle or grain size, pore size, and binder distribution on the explosive re-
sponse. These models will only be capable of reproducing theeffects of changes in
the initial conditions of the explosive by varying some of the constants in the model
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until an improved fit with experimental data is obtained. Thus, without advances in
the modelling, the effects of pore and grain size distribution, crystal orientationetc
on an explosive’s response can only be demonstrated by a battery of experiments.
This approach is very costly.

Recent advances in computational capabilities now offer the chance to develop
more sophisticated models of explosive initiation, and over the past decade or so, re-
searchers have begun to consider and develop so-called physics-based or mesoscale
models of explosive behaviour. Such models attempt to take account of the mor-
phology of an explosive in terms of the initial particle or grain size, pore size, and
binder distribution, and therefore have the potential to account for such initial con-
dition differences. However, to develop such a model that can be used in hydrocode
calculations to simulate real problems of interest is a large undertaking. The diffi-
culties are obvious; at least two scales of behaviour have tobe simulated, (i) micro-
scopic ‘hot-spots’ (e.g.0.1-10µm), and (ii) macroscopic bulk response (e.g.0.1-10
mm). In addition, detailed knowledge of the material properties of the constituent
parts is required, the chemistry is far from straightforward, and there are many po-
tential sources of ‘hot-spots’ as discussed by Fieldet al. [5].

Physics-based or mesoscale models of explosive shock initiation that have been
developed for use in hydrocode calculations essentially fall into two categories;
(i) statistical ‘hot-spot’ models, and (ii) ‘hot-spot’ models based on a particular
mechanism,e.g.pore collapse. The former class of model does not explicity model
the formation of ‘hot-spots’ in a material, but instead utilises the output from large
scale, direct numerical simulationse.g. [79] [80] to define the size and distribution
of ‘hot-spots’ as the initial conditions for a hydrocode calculation. Nicholls’s recent
statistical ‘hot-spot’ model [76] is one example of this type of approach. The aim
is to model the dynamics of a population of ‘hot-spots’ that are able to start the
chemical reaction in the explosive, and so allows for the fact that ‘hot-spots’ may
be generated as a result of a number of different mechanisms.However, very large
multiprocessor computers are required to perform the direct numerical simulations,
and the task of extracting the data required as input to a statistical ‘hot-spot’ model
is far from straightforward.

The other, and to date, more popular approach to developing amesoscale reac-
tive burn model is to take one particular mechanism for ‘hot-spot’ formation in a
heterogeneous solid explosive, and use its results to deduce the form of the initial
stages of the release of energy. However, various ‘hot-spot’ mechanisms have been
proposed over the yearse.g.pore collapse, shear banding, friction, and fracture, and
currently there is no universal agreement as to the mechanism(s) by which energy
localisation occurs as a result of shock compression. It is possible that there may
be more than one ‘hot-spot’ mechanism at play, and the dominant mechanism may
be dependent on factors such as the type of explosive (e.g. plastic bonded vs rub-
berised), manufacturing process (e.g. pressed vs cast), and type and magnitude of
the shock loading.
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Most modelling work carried out recently in this respect hasconcentrated on
describing ‘hot-spot’ formation due to the collapse of pores in the explosive ma-
terial. In heterogeneous solid explosives, pores are usually present as part of the
manufacturing process. The explosive crystals or grains are usually small and irreg-
ularly shaped, hence it is difficult to manufacture them to a density near theoretical
maximum density. As a result, all solid explosives have someporosity. Pores are
prime candidates as potential ‘hot-spot’ sites since experimental work has shown
an increase in sensitivity with increasing porosity (decreasing density)e.g. [36].
This indicates that more pores leads to more ‘hot-spots’, and hence a more sensitive
material. Other work has also shown that void content, rather than binder or binder
amount, appears to be the dominating factor in shock initiation of heterogeneous
solid explosives [11].

The heating of the material as a result of pore collapse can bedue to several
mechanisms. Mader [7] described a purely hydrodynamic mechanism in which the
upstream surface of a cavity is accelerated by the shock, leading to the formation
of a jet that impacts the downstream side of the cavity. Heating is produced by
compression of the solid phase material as a result of the high pressure jet impact.
In the work of Bowden and Yoffe [4] the role of adiabatic compression of gaseous
pores as a source of ignition was emphasised. Cooket al. [65] described a gas pore
collapse mechanism in which gaseous pores are heated to hightemperatures as a
result of adiabatic compression. Explicit heat transfer from the hot gas to a thin
shell of the surrounding explosive then allows the explosive to be ignitied. Since
solid explosives are able to withstand a certain amount of distortion, and thus have
strength properties, ‘hot-spot’ formation as a result of pore collapse due to pure
hydrodynamic effects is thought to be unlikely.

Carroll and Holt [8] considered heating due to inviscid, plastic flow during pore
collapse. In their analysis pore collapse occurs in three phases; an initial elas-
tic phase, a transitional elastic-plastic phase, and a fully plastic phase. Carroll
and Holt noted that the pore volume is essentially unchangedduring the first two
phases, and hence the analysis could be further simplified byignoring the initial
elastic, and transitional elastic-plastic phases of pore collapse. Later, Butcheret al.
[123] incorporated viscous effects into the Carroll and Holt model. Frey [9] studied
the mechanics of pore collapse in an energetic material. Of anumber ‘hot-spot’
mechanisms including hydrodynamic solid phase compression, hydrodynamic gas
phase heating, inviscid plastic work, and viscoplastic work, it was concluded that
the mechanism of viscoplastic work gave the most important contribution to the
heating of the materials. Therefore, currently most shock initiation models based
on pore collapse use the viscoplastic heating mechanism to describe the creation
and subsequent ignition of ‘hot-spots’.

Khasainovet al. [72] were the first to build a viscoplastic pore collapse model
and apply it to ‘hot-spot’ formation resulting from shock propagation in heteroge-
neous solid explosives. As per the pore collapse model of Carroll and Holt [8], it
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was assumed the pore volume remained unchanged until the applied stress exceeded
the plastic yield strength of the material. The ‘hot-spots’model described by Bel-
maset al. [64], is similar to that of Khasainov, and both models include the effects
of thermal conduction on the ‘hot-spot’ temperatures. The viscoplastic models of
Kanget al. [124], Bonnett and Butler [125], and Massoniet al. [73] are more com-
plex than the other viscoplastic pore collapse models sincea full description of the
gas phase, and the interaction between the gaseous and solidphases is included in
their models.

All the viscoplastic ‘hot-spot’ models described above usethe Carroll and Holt
hollow sphere model [8], and are built on the assumption of anincompressible solid
phase at the microscopic scale proposed and justified by Carroll and Holt. Again,
following the observations of Carroll and Holt [8], these models also assume that
pore contraction in the inital elastic, and transitional elastic-viscoplastic phases is
negligible, and that porosity changes occur as a result of viscoplastic flow only in the
solid material. The model of Kim [126] is the only one of this class of model that is
based on elastic-viscoplastic flow during pore collapse rather than just viscoplastic
flow only.

In this chapter, a start is made in the development of a physics-based reactive
burn model for hetergeneous solid explosives. The ultimateaim is to develop a
‘simple’ model that can be incorporated in a hydrocode, and that will be able to
predict the effects of changes in particle size, pore size, and binder distribution on
explosive shock initiation. The first step in this process isto model the initiation
or ignition phase where ‘hot-spots’ are created, and decomposition starts to occur
in these localised heated regions, as a result of shock compression of the explo-
sive material. The approach described here takes one particular mechanism, that of
elastic-viscoplastic pore collapse, as the basis for ‘hot-spot’ formation.

As part of the approach, direct numerical simulations are performed to support
the development of a simplified model. Direct numerical simulations of pore col-
lapse in a heterogeneous solid explosive are very useful for: (i) gaining insight into
what parameters, or combination of parameters are important in ‘hot-spot’ forma-
tion and subsequent ignition, (ii) identifying the important phenomena that need to
be included in any simplified model, and (iii) testing the various assumptions and
results of a simple ‘hot-spot’ model.

The one-dimensional, multi-material, Lagrangian hydrocode PERUSE [88] con-
tains an elastic-viscoplastic constitutive model. This constitutive model can be used
to examine plastic deformation around a collapsing pore as apossible ‘hot-spot’
mechanism. This code will be used to perform direct numerical simulations, inves-
tigating phenomena in which the viscous heating effect is expected to be significant
and a likely source of ignition. The hydrocode calculationscan also be used to test
the assumptions and results of a simplified pore collapse model to describe explo-
sive ignition that it is intended to incorporate or build into a hydrocode.
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This chapter is essentially split into two parts. The first part details the direct nu-
merical simulation work performed using PERUSE, where ‘hot-spots’ are formed
as a result of elastic-viscoplastic flow in the vicinity of a collapsing pore. Results of
simulations are presented showing how such obvious physical parameters as poros-
ity and pore size, rise time of the shock, magnitude of the shock pressure, double
shock loading, or material parameters can affect ‘hot-spot’ formation in a hetero-
geneous solid explosive, and to observe whether the resultsof the calculations are
consistent with commonly held ideas about shock initiationand sensitivity of porous
explosives. The second part describes a simple ‘hot-spot’ initiation model, based
on elastic-viscoplastic pore collapse, that has been developed. The described simple
model contains a number of features found in other viscoplastic ‘hot-spot’ models
described in the literature, but with one major important difference that brings into
question the validity of the simplifying assumption that pore collapse occurs by
virtue of viscoplastic flow only, which is common to all theseother models. Re-
sults from the simple model are compared with direct numerical simulations using
PERUSE to examine how well, or otherwise, the simple ‘hot-spot’ model is per-
forming. Finally, the conclusions are given and future workdiscussed.

5.2 Direct Numerical Simulations of Explosive ‘Hot-
Spot’ Initiation

5.2.1 Preamble

Direct numerical simulations of physical processes that are thought to be of
importance in the formation of ‘hot-spots’ in an explosive material (pore collapse,
friction, shearetc) are very useful for gaining insight into whether, and underwhat
conditions, proposed ‘hot-spot’ mechanisms will be important. Such simulations
require sub-micron sized meshes due to the dimensions of ‘hot-spots’ created as a
result of shock compression (0.1 - 10µm [4]). Since it is currently impractical to
use such meshing in hydrocode simulations of large scale shock initiation problems
of interest, the results of the direct numerical simulations, in the first instance ex-
amining the formation and subsequent reaction of a single ‘hot-spot’ in isolation,
can be used to support the development of simpler mesoscale models of explosive
behaviour.

Baer [79] [80] has performed large scale, direct numerical simulations of an en-
semble of explosive grains, pores, and binder defining the mesoscale structure of an
explosive, subject to shock wave loading. This type of modelling helps to provide
new insights into the micro-mechanical behaviour of heterogeneous energetic ma-
terials. In particular, sources of energy localisation leading to the formation of ‘hot-
spots’ can be identified, and the distribution of ‘hot-spots’ obtained can be used as
input to a statistical ‘hot-spot’ model [76]. However, suchsimulations require very
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large amounts of computing power.
A comparatively simpler approach is to take a particular ‘hot-spot’ mechanism,

and model the details of the chosen mechanism and the subsequent explosive re-
sponse. Pore collapse, viscoplastic effects, shear banding, adiabatic gas compres-
sion, friction, and shock reflections from internal imperfections, are all ‘hot-spot’
mechanisms that have been proposed as energy sources [5]. However, the relative
importance of each of these mechanisms is still subject to considerable conjecture.
The most popular mechanism for describing ‘hot-spot’ formation in a heteroge-
neous solid explosive is viscoplastic pore collapse. This is because: (i) it is well
known experimentally that variations in porosity can affect the shock sensitivity of
an explosive [36], and (ii) viscoplastic flow in the solid phase material in the vicin-
ity of a collapsing pore has been shown to be a very efficient heating mechanism
leading to ‘hot-spot’ ignition [9].

One important question concerns the location of the pores inan explosive mate-
rial. The possibilities are: (i) the pores are in the binder,(ii) the pores are within the
explosive crystals, (iii) the pores are adjacent to an explosive crystal (e.g. between
crystal and binder), or (iv) some combination of the above. The viscoplastic pore
collapse models [72]-[73] assume that pores are located at the centre of a spheri-
cal shell of the solid explosive material. This can account for (ii) and (iii) above,
however these models do not consider the effect that the binder material may have
on the explosive response. The elastic-viscoplastic modelof Kim [127] is the only
model to consider the effect of binder on the pore collapse response.

In the direct numerical simulations described in this section, the ‘hot-spot’ mech-
anism is shock induced pore collapse. In the first instance, following the approach
taken elsewhere [72]-[73], it is assumed that the pores are located at the centre of
a spherical shell of the solid material. The one-dimensional Lagrangian hydrocode
PERUSE [88] is used to perform the simulations. PERUSE contains an elastic-
viscoplastic constitutive model which is used to examine elastic-viscoplastic defor-
mation around a collapsing pore as a ‘hot-spot’ mechanism. Various phenomena in
which elastic-viscoplastic heating is thought to be significant and a likely source of
ignition are investigated. The results of the simulations are later used to test the as-
sumptions, and compare results from a simplified ‘hot-spot’model that is intended
to be incorporated in a hydrocode.

In order to be able to perform direct numerical simulations of shock induced
‘hot-spot’ formation in heterogeneous solid explosives, it is necessary to define the
model for the explosive upon which numerical simulations will be carried out, and
then to define the fundamental material properties of the explosive. The model of
the explosive, and its associated equation of state (EOS) and material parameters
are described in the following sections.

The usefulness of performing direct numerical simulationsis illustrated by show-
ing how the formation of ‘hot-spots’ can be affected by such obvious physical pa-
rameters as porosity and pore size, rise time of the shock, and magnitude of the
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shock pressure, or to material properties such as viscosity. The effect of a double
shock on the pore collapse response has also been investigated to look at the ef-
fect of preshocking the material before arrival of a second stronger shock. This is to
examine the phenomenon of ‘shock desensitisation’. In the course of this work, gen-
eral trends rather than quantitative results were of interest, and to observe whether
the results of the calculations are consistent with commonly held ideas about shock
initiation and sensitivity of porous explosives.

5.2.2 Overview of PERUSE

PERUSE is a one-dimensional, Lagrangian, multi-material hydrocode [88]. It
solves a system of partial differential equations describing time-dependent com-
pressible flow (in Lagrangian form), and includes the modelling of material strength.
Material strength effects are accounted for via a rate-dependent elastic-viscoplastic
constitutive model [128]. The implementation of this strength model in PERUSE
allows calculations of elastic-viscoplastic heating effects in explosive materials to
be studied. Previous hydrocode modelling work has shown that elastic-viscoplastic
work in the vicinity of a collapsing pore is a very efficient heating mechanism lead-
ing to the formation of ‘hot-spots’ in an explosive material[88]. Specific to the
hydrocode modelling of ‘hot-spots’ performed here, the capabilities of PERUSE
have subsequently been expanded to include the effects of heat conduction and an
Arrhenius reaction rate law as described respectively in Sections 5.2.3 and 5.2.4.

In the elastic-viscoplastic strength model, viscosity is introduced via modifica-
tion of the classical Wilkins radial return scheme [129]. The predicted stress devi-
ators, rather than being retracted directly onto the yield surface are instead relaxed
towards it, the relaxation rate being governed by the viscosity parameter,η. When
the viscosity is zero, the elastic-viscoplastic model reduces to the elastic-plastic for-
mulation of Wilkins [129]. In this model, the yield condition of Von Mises [130] is
used to describe the elastic limit, and the shear modulus, yield strength and viscos-
ity are all assumed to be constant. Here, the concept of viscosity is that of a solid
viscosity which is qualitatively different from the more familiar concept of viscosity
in a fluid.

The elastic-viscoplastic strength model [128] is based on the network shown
in Figure 5.1. This network forms the basis of the Perzyna model [131] which is
widely used in other application areas. The response of the elastic and plastic el-
ements are as described by Wilkins [129] for rate-independent elastic-plastic flow.
The rate sensitivity of response is provided by complicating the response of the plas-
tic element to include a viscous drag. The viscous element response assumed is a
generalisation of the standard textbook linear viscous fluid formulated originally by
Newton (1687) and developed into the Navier-Stokes continuum form by the work
of various authors including Navier and Poisson. For a more detailed description
of the elastic-viscoplastic strength model, and its implementation in PERUSE, the



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 169

reader is referred to [88].
The governing flow equations that are solved in the current version of PERUSE

are summarised below. This includes extending the capabilities of the code to in-
clude the effects of heat conduction and a reaction rate equation carried out for this
thesis. In the following equations the parameterg defines the geometry of the sys-
tem as: slab (g=1), axisymmetric (g=2), or spherical (g=3). The stress and strain
quantities relating to the elastic, viscous, and plastic elements of the strength model
are denoted by the superscriptse, v, andp respectively. The superscriptvpqualifies
quantities relating to the parallel connection of the viscous and plastic elements.
Total stress and strain quantities for the overall responseof the material will carry
no qualifying superscripts.

Conservation of mass :

Dρ
Dt

= −ρ∇.u (5.1)

Equation of motion :

Du
Dt

= −rg−1 ∂Σr

∂m
+ (g−1)

(Σθ −Σr)

ρr
(5.2)

Energy equation :

De
Dt

= −(P+Q)
∂
(

rg−1u
)

∂m
+

1
ρ

DWP

Dt
+

∂
∂m

(

κ rg−1∂T
∂r

)

(5.3)

Velocity :
Dr
Dt

= u (5.4)

Lagrangian mass coordinate :

dm= ρ dV = ρ rg−1dr (5.5)

Lagrangian derivative :
D
Dt

=
∂
∂t

+u
∂
∂r

(5.6)

Total stresses :
Σr = P + Q − S1 (5.7)

Σθ = P + Q − S2 (5.8)

Velocity strains :

ε̇1 =
∂u
∂r

(5.9)

ε̇2 =
u
r

(ε̇2 = 0 for g=1) (5.10)
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ε̇3 = ε̇2 (ε̇3 = 0 for g=1 and g=2) (5.11)

Stress Deviators :

Ṡi = 2µėi , ‖S‖ ≤
√

2
3

Y i = 1,2,3 (5.12)

Ṡi +
µ
η

(

1−
√

2
3

Y
‖S‖

)

Si = 2µėi , ‖S‖ >

√

2
3

Y i = 1,2,3 (5.13)

ėi = ε̇i −
1
3

∇.u i = 1,2,3 (5.14)

∇.u = ε̇1+ ε̇2 + ε̇3 (5.15)

‖S‖ =

√

S1
2 +S2

2 +S3
2 (5.16)

S1+S2+S3 = 0 (5.17)

Von Mises Yield Condition:

S1
2 +S1

2 +S3
2− 2

3
Y2 ≤ 0 (5.18)

Stress/strain response :

Si = Si
e = Si

vp : ε̇i = ε̇e
i + ε̇vp

i : ėi = ė
e
i + ė

vp
i i = 1,2,3

Si
vp = Si

v +Si
p : ε̇vp

i = ε̇v
i = ε̇p

i : ė
vp
i = ė

v
i = ė

p
i i = 1,2,3

(5.19)

3

∑
i=1

ε̇p
i =

3

∑
i=1

ε̇v
i =

3

∑
i=1

ε̇vp
i = 0 : ė

vp
i = ε̇vp

i (5.20)

Si
v = 2η ė

vp
i , Si

p =

√

2
3

Y
‖S‖ Si i = 1,2,3 (5.21)

Total plastic work :

DWP

Dt
=

DWv

Dt
+

DWp

Dt
(5.22)

DWv

Dt
= S1

v
ė

vp
1 +S2

v
ė

vp
2 +S3

v
ė

vp
3 (5.23)

DWp

Dt
= S1

p
ė

vp
1 +S2

p
ė

vp
2 +S3

p
ė

vp
3 (5.24)
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Reaction rate:
∂λ
∂t

= f (ρ,P,Zs,T,λ) (5.25)

Pressure equation of state:
P = P (ρ, e, λ) (5.26)

The above system of equations is solved numerically via the method of finite
differences using an explicit two-step (predictor-corrector) scheme that is second-
order accurate in time and space. The numerical solution scheme was previously
described in detail in [88], and the difference equations given. The scheme was
vaildated against a number of well established test problems, and further details of
the validation procedure can be found in [88]. The numericalsolution of the new
features, heat conduction and a reaction rate law, recentlyadded to PERUSE are
described respectively in Sections 5.2.3 and 5.2.4 below.

5.2.3 Heat Conduction

Heat conduction effects are deemed to be very important in shock initiation of
heterogeneous solid explosives, particularly in relationto the dynamic formation of
‘hot-spots’. Passage of a shock wave of sufficient strength will lead to the creation
of ‘hot-spots’ in the explosive material. However, dependent upon factors such as
shock strength and duration, and the size and temperature ofthe ‘hot-spots’ created
as a result of the shock compression, the ‘hot-spots’ could cool before any reaction
occurs. This could be due to heat loss to the surrounding cooler material, or as
a result of release waves cooling the ‘hot-spots’. To include the effects of heat
conduction in the modelling, the capabilities of the PERUSEhydrocode have been
expanded to include heat conduction as described below.

The one-dimensional heat conduction equation that describes the diffusion of
heat in a medium is written in its most general form as,

∂(ρ CV T)

∂t
=

∂
∂r

(

κ
∂T
∂r

)

(5.27)

wherer is the space coordinate,ρ is the density,CV is the specific heat at constant
volume,T is the temperature, andκ is the coefficient of thermal conductivity. Fol-
lowing the notation in [88], rewritting (5.27) in Lagrangian form in terms of the
specific internal energy,e, assumingT = e/CV , gives

De
Dt

=
∂

∂m

(

κ rg−1∂T
∂r

)

(5.28)

wherem is the Lagrangian mass coordinate, parameterg equals 1, 2 , or 3 according
to whether the geometry is plane, axisymmetric, or spherical, andCV and κ are
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assumed constant. Heat conduction therefore gives an additional term to the internal
energy equation, see equation (5.3), and in the current implementation this is solved
explicitly. Following the notation in [88], the one-dimensional heat conduction
equation (5.28) is discretised as follows:

Predictor step

Add toe
n+ 1

2

j+ 1
2
,

1
2

∆tn+ 1
2

M j+ 1
2

[

Hn
j+1−Hn

j

]

(5.29)

where∆tn+ 1
2 is the timestep,M j+ 1

2
is the Lagrangian cell mass, and the heat flux

through a boundary cellj is given by,

Hn
j = An

j κn
j





Tn
j+ 1

2
−Tn

j− 1
2

1
2

(

rn
j+1− rn

j−1

)



 (5.30)

whereA j is the cell face area, and

κn
j =

1
2

(

κn
j+ 1

2
+κn

j− 1
2

)

(5.31)

Corrector step

Add toen+1
j+ 1

2
,

∆tn+ 1
2

M j+ 1
2

[

H
n+ 1

2
j+1 −H

n+ 1
2

j

]

(5.32)

where the heat flux through a boundary cellj is given by,

H
n+ 1

2
j = A j κn+ 1

2
j







T
n+ 1

2

j+ 1
2
−T

n+ 1
2

j− 1
2

1
2

(

r j+1− r j−1
)






(5.33)

and

A j =
1
2

(

An+1
j +An

j

)

(5.34)

r j =
1
2

(

rn+1
j + rn

j

)

(5.35)

κn+ 1
2

j =
1
2

(

κn+ 1
2

j+ 1
2
+κn+ 1

2

j− 1
2

)

(5.36)
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The A j ’s are the cell face areas and are computed as given in [88]. The stability
timestep criterion for the explicit solution of the one-dimensional heat conduction
equation given by,

∆t =
1
2

ρCV

κ
(∆r)2 (5.37)

is taken into account when determining the overall stable timestep for each compu-
tational cycle.

5.2.4 Reaction Rate Law

Many reaction rate models have been developed by various researchers. These
models usually describe the rate of increase of the reacted (or burned) mass fraction
λ of the explosive material as a function of its thermodynamicstate, and can be
considered special cases of the general form,

∂λ
∂t

= f (ρ,P,Zs,T,λ) (5.38)

whereρ, P, Zs, andT are respectively the density, pressure, entropy function,and
temperature of the material. The reaction rate laws in the Lee-Tarver Ignition and
Growth model [52] [53] are examples of such models, and thesedepend on pressure
(and density) but not temperature. However, in reality reaction rates are initially
dependent on the temperature attained in the ‘hot-spots’.

One of the simplest and most popular temperature-dependentreaction rate mod-
els is the first-order Arrhenius rate law [1] which has the (Lagrangian) form,

Dλ
Dt

= (1−λ) Z e−
E∗
RT (5.39)

whereλ is the mass fraction reacted,Z is the frequency factor,E∗ is the activation
energy of the material,R is the universal gas constant, andT is the current tem-
perature. The Arrhenius model depends on temperature only;as the temperature
increases the rate of burning increases. In the numerical scheme the mass fraction
reacted,λ, is a cell centred quantity, and the difference equations corresponding to
the discretisation of equation (5.39) are;

Predictor step : λn+ 1
2

j+ 1
2

= λn
j+ 1

2
+

1
2

∆tn+ 1
2

(

1−λn
j+ 1

2

)

Z e
− E∗

R Tn
j+ 1

2 (5.40)

Corrector step : λn+1
j+ 1

2
= λn

j+ 1
2

+ ∆tn+ 1
2

(

1−λn+ 1
2

j+ 1
2

)

Z e

− E∗

R T
n+ 1

2
j+ 1

2 (5.41)

whereZ, E∗, andR are assumed constant.
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At the present time the reaction rate is decoupled from the hydrodynamics. In
other words, for a given temperature, the reaction rate and hence mass fraction re-
acted will be computed, but this then does not feed back into the hydrodynamics.
In reality, once the reaction starts this will further raisethe temperature of the ex-
plosive material resulting in an increase in the reaction rate. Thus, the solution of
the reaction rate equation is currently used to get a minimumestimate of the mass
fraction of material that could be ignitied in the ‘hot-spots’.

5.2.5 Explosive Model

A one-dimensional idealised spherical model for the explosive is assumed which
consists of an isolated spherical pore at the centre of a spherical shell of the solid
material, see Figure 5.2. This model is based on the work of Carroll and Holt
[8] who showed that a simple hollow sphere model could describe the dynamic
compaction behaviour of porous materials reasonably well.The initial pore radius
is a0 which is equal to the inner radius of the solid material,b0 is the outer radius
of the solid, andPs is the time-dependent pressure applied to the external surface of
the solid. The applied external stress,Ps, represents the effect of a shock wave, and
the resulting pore collapse is assumed to be spherically symmetric.

Defining,α0, the initial distention ratio as,

α0 =
total volume of the porous material

volume of solid material
=

V0

Vs0
(5.42)

then the relationship betweenα0, and the inner radiusa0 and the outer radiusb0 of
the solid material, is

α0 =
b0

3

b0
3−a0

3
or

(

b0

a0

)3

=
α0

α0−1
(5.43)

and the initial porosity of the explosive,φ0, is defined by,

φ0 =

(

a0

b0

)3

=
α0−1

α0
(5.44)

The pore can be treated as a spherical void or can be gas filled.Where the pore is
assumed to be gaseous, the gas phase is not modelled explicitly in the calculations.
Instead the gaseous pore is modelled as a boundary conditionto the solid using an
ideal gas equation of state, and pressure and temperature are assumed to be uniform
through the gas.

The model of the explosive is obviously a strong simplification of the actual
explosive geometry. In reality, a heterogeneous solid explosive material consists
of a suspension of pores inside the mixture of crystals, binder etc, where the size
and distribution of pores are not uniform. In addition, the collapse of the pores



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 175

resulting from the passage of a shock will be non-spherical.Only an isolated pore
is considered here, wherea0 represents the average pore radius in the explosive, and
the outer radiusb0 represents some average measure of the distance between two
pores. Pore-pore interactions are neglected. Although very simplistic, the model
shown in Figure 5.2 does allow the formation of ‘hot-spots’ to be described in a
simple and generic fashion without loss of the basic characteristics of ‘hot-spots’.

5.2.6 Equation of State and Material Parameters

The well characterised HMX-based explosive PBX9404 was chosen as the ma-
terial to be modelled. This is because the initiation behaviour of PBX9404 is fairly
representative of solid heterogeneous explosives in general, and the majority of its
material constants and parameters are to be readily found inthe literaturee.g.[31].

The solid (unreacted) explosive material was modelled using a simple polyno-
mial EOS based on the linear shock velocity (Us)-particle velocity (Up) fit to unre-
acted shock data on PBX9404 [132]. The analytic simple polynomial EOS [129]
has the form,

P = A0+A1 ξ+ Ã2 ξ2+A3 ξ3+
(

B0+B1 ξ+B2 ξ2)ρ0E (5.45)

where ξ =
ρ
ρ0

−1, and Ã2 =

{

A2 ξ ≥ 0
A∗

2 ξ < 0
(5.46)

andA0, A1, A2, A2
∗, A3, B0, B1, andB2 are constants. Starting from the quoted

Us−Up relationship for PBX9404 [132], reference [133] was used toderive the
constants for the simple polynomial EOS for PBX9404, and these are given in Table
5.1.

Table 5.1: EOS constants for PBX9404.

Parameter Value

Initial Density,ρ0 (g/cm3) 1.84
A0 0.0
A1 0.11408184
A2 0.30573933
A2

∗ -0.30573933
A3 0.0
B0 1.0
B1 1.0
B2 0.0

The assumed default material parameters for PBX9404 are given in Table 5.2,
the majority of which have been taken from the literature. The values for the yield
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strength,Y, shear modulus,µ, and specific heat,CV , were taken from [52], while
the coefficient of thermal conductivity,κs, was obtained from [117]. The Arrhenius
constants,Z andE∗, for PBX9404 are due to Rogers [134], and the universal gas
constant,R, is 8.3147×10−5 Mbcm3/ K mole.

Table 5.2: Material parameters for PBX9404.
Material parameter Value

Yield strength,Y (Mb) 0.002
Shear modulus,µ (Mb) 0.0454
Viscosity,η (Mb µs) 0.001
Initial temperature,T0 (K) 300.0
Specific heat,CV (Mb cm3/g/K) 1.512×10−5

Thermal conductivity,κs (Mb cm3/cm/µs/K) 4.1667×10−14

Frequency factor,Z 1.81×1019

Activation energy,E∗ (Mb cm3/mole) 2.205
Pressure stress,Ps (Mb) 0.01
Initial pore radius,a0 (µm) 10.0
Initial outer radius,b0 (µm) 46.416
Initial porosity,φ0 (%) 1.0
Rise time of shock,τ (µs) 0.1

The porosity of PBX9404 pressed to a density of 1.84 g/cm3 is typically of the
order of 1%, and the initial pore radius is assumed to be 10µm. From (5.44) this
then defines the initial outer radius of the explosive shell as 46.416µm. The applied
pressure stress,Ps, is taken to be 10 kbars, which corresponds to a relatively weak
shock, and the rise time of the applied pressure or shock isτ = 0.1µs, i.e. there
is a linear correspondence between pressure and time fromt = 0µs to t = 0.1µs
after which the applied pressure remains constant at 10 kbars, see Figure 5.3(a).
The assumed value for the material viscosity is 0.001 Mbµs, andT0 is the initial
(ambient) temperature of the solid explosive.

If the pore is assumed to be gaseous, the gas phase is modelledwith an ideal gas
EOS of the form,

P = (γ−1) ρ e (5.47)

whereρ is the density,e is the specific internal energy, andγ is a constant. Where
the pore is assumed gaseous in the calculations, the initialconditions in the gas
were as defined in Table 5.3. The initial density of the gas is 1.293×10−3 g/cm3

corresponding to the mean density of air at the reference temperature and pressure
(1 atmosphere), and it is assumed thatγ =1.4. The initial energy in the gas is then
defined by (5.47), and the specfic heat can then be calculated from the initial energy
and temperature. The coefficient of thermal conductivity ofair was taken from
[135].
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Table 5.3: Initial conditions for gas-filled pore.

Parameter Value

Initial density,ρg0 (g/cm3) 1.293×10−3

Initial pressure,Pg0 (Mb) 1.0×10−6

Ratio of specific heats,γ 1.4
Initial temperature,Tg0 (K) 298.0
Initial energy,eg0 (Mb cm3/g) 1.93349×10−3

Specific heat,CV (Mb cm3/g/K) 6.4882×10−6

Thermal conductivity,κg (Mb cm3/cm/µs/K) 2.3917×10−15

The calculations described in the following sections should be taken as being
representative of the explosive PBX9404, rather than quantitative. In all cases, the
mesh sizes employed in the simulations were chosen so as to ensure good resolu-
tion of the physics of the pore collapse during the timescales of the calculations.
Typically 600-2000 mesh cells were employed through the thickness of the solid
material dependent on the rate of pore collapse; the faster the speed of collapse, the
finer the meshing required to adequately resolve the phenomena in the vicinity of
the collapsing pore.

5.2.7 ‘Hot-Spot’ Formation Due to Elastic-Viscoplastic Heating

To illustrate the very high effectiveness of the elastic-viscoplastic mechanism of
heating the solid explosive material which surrounds a collapsing pore, consider a
calculation using the defined model of the explosive, and taking the EOS constants
and material parameters for PBX9404 as given in Tables 5.1 and 5.2 respectively.
In this example, the pore was assumed to be a void and heat conduction was not
modelled. The time evolution of the pore radius is plotted inFigure 5.4, and the cor-
responding increase in temperature at the surface of the collapsing pore is shown in
Figure 5.5. The calculated radial distribution of temperature through the thickness
of the solid material at various times during the calculation is shown in Figure 5.6.
Temperature profiles such as these help to show the extent of the ‘hot-spot’ region
in the vicinity of the collapsing pore.

It is observed that significant temperature increases are calculated in a thin layer
of the solid material surrounding the collapsing pore. The maximum calculated
temperature occurs at the pore surface, with the temperature montonically decreas-
ing away from this surface. The radius of this thin heated layer, or ‘hot-spot’, is
approximately equal to the initial pore radius. Most ‘hot-spot’ reaction theories in-
dicate that the size of a ‘hot-spot’ is very nearly the size ofa particle or of a void or
pore before it collapsed. Away from the ‘hot-spot’ region there is only a small in-
crease in temperature above ambient. Energy dissipation due to elastic-viscoplastic
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work in the vicinity of the collapsing pore is responsible for the significant heating
of the solid material leading to the creation of the observed‘hot-spot’.

With heat conduction modelled, heat will be transferred from the ‘hot-spot’ re-
gion to cooler portions of the solid material. In addition, if the pore is gaseous then,
at the same time, heat will be transferred from the gas to the surrounding solid ma-
terial as it has been shown that significantly higher temperatures are calculated in
the gas phase than in the solid phase [88]. A calculation was performed to illus-
trate the effect of including heat conduction in the modelling, where the pore was
assumed to be gas-filled with initial conditions as given in Table 5.3. The solid
phase was modelled as described previously using the EOS constants and material
parameters as given in Tables 5.1 and 5.2 respectively. The computed results are
presented in terms of the radial distribution of temperature in the solid shell at vari-
ous times during the calculation, see Figure 5.7. At atmospheric pressure and with
heat conduction modelled, it has been observed that the gas in this particular case
has an insignificant effect on the calculated temperatures in the solid (due to the
amount of energy in the gas being very small) in comparison tothe situation where
the pore was treated as a void. Thus, the effect of including heat conduction in this
calculation can be seen by comparison with the results in Figure 5.6. It is seen that
heat conduction has a significant effect on the calculated temperatures, where the
re-distribution of heat in the solid phase through heat transfer to the cooler portions
of the material results in a lower temperature ‘hot-spot’.

Passage of a shock wave of sufficient strength will lead to thecreation of ‘hot-
spots’ in the explosive material. However, dependent upon factors such as the shock
strength and the size and temperature of the ‘hot-spots’ created by the shock com-
pression, the ‘hot-spots’ could die out due to loss of heat from these localised high
temperature regions to their cooler surroundings before ignition occurs. This il-
lustrates that heat conduction is an important phenomena inmodelling ‘hot-spot’
initiation.

5.2.8 Material Viscosity

Most of the material parameters for a given explosive are usually fairly well
known or can be found relatively easily,e.g.shear modulus and yield strength. One
of the biggest uncertainties is in the material viscosity,η. Data on the material
viscosity of solid explosives is not readily available in the literature, and it can only
be estimated indirectly, for example, by calibration to experimental shock initiation
data. In the elastic-viscoplastic strength model,η is currently assumed constant.

To examine the sensitivity of computations to the value chosen for the viscosity,
calculations were run for different values ofη in the range 1.0×10−5 to 5.0×10−3

Mb µs. In the calculations, the pore was assumed to be a void, and the effects of
heat conduction were not modelled. Apart from the change in the value ofη, the
EOS constants and material parameters were as given in Tables 5.1 and 5.2. Figures
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5.8 and 5.9 respectively show the effect on the calculated pore radius, and the pore
surface temperature, to changes in the value of the viscosity. As the maximum
temperature occurs at the pore surface, it is of interest to follow the temperature
here. It is seen that the value of material viscosity has a significant effect on the
pore collapse response and the associated calculated temperatures adjacent to the
pore surface. With increasing viscosity, the calculated temperatures at the pore
surface increase, but the rate of pore collapse decreases. However, at the higher
values ofη a point appears to be reached where increasing the viscositydoes not
result in any further significant increase in temperature, but merely delays the time
to reach that temperature through a slower pore wall velocity.

These results show that careful consideration needs to be given to the choice
of appropriate values for viscosity for any given heterogeneous solid explosive. In
the constitutive model,η is assumed to be constant, and a value of 0.001 Mbµs
has been used in the remainder of this work. However, furtherwork is needed to
ascertain what values ofη are appropriate, and to investigate whether, and to what
extent, viscosity varies with pressure, temperature, and strain.

5.2.9 Porosity and Initial Pore Size

The initial porosity of the explosive material is defined by equation (5.44), and
there are two different ways of changing the initial porosity within the context of our
model: (i) keep the inner radius of the shell fixed, and changethe outer radius, and
(ii) keep the outer radius of the shell fixed, and change the inner radius. Changing
the shell inner radius changes the initial pore size.

To examine the sensitivity of ‘hot-spot’ formation in the explosive to changes in
porosity, hydrocode calculations were run at three different initial porosities: 1%,
2%, and 5%. Both methods of changing the initial porosity, asoutlined above, were
examined. Keeping the initial inner radius fixed ata0 = 10µm, the initial outer radii,
b0, corresponding to 1%, 2%, and 5% porosity are respectively 46.42µm, 36.84µm,
and 27.14µm. Similarly, keeping the initial outer radius fixed atb0 = 46.42µm, the
initial pore sizes,a0, corresponding to porosities of 1%, 2%, and 5% are 10µm,
12.5µm, and 17.2µm respectively. The EOS constants for the solid explosive were
as given in Table 5.1 and, apart from the changes to the initial inner and outer radii,
the remaining explosive parameters were as given in Table 5.2. In the calculations,
the pore was assumed to be a void, and initially the effects ofheat conduction were
not modelled.

The computed results corresponding to the changes in initial porosity, where the
initial inner radius is fixed and the initial outer radius adjusted to change the initial
porosity, are shown in Figure 5.10. These plots show the timeevolution of the pore
radius, the temperature at the surface of the collapsing pore, and the mass fraction
reacted of explosive material as a percentage of the total mass. It is seen that the
initial porosity has a significant effect on the pore collapse response. Increasing the
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overall porosity results in an increase in velocity of the pore wall, a higher pore
surface temperature and hence a higher temperature ‘hot-spot’, and a faster reaction
rate. Thus, the calculations show an increase in sensitivity of the explosive with
increasing porosity, which is well established experimentally, see for example [136].
The results also indicate that only a small fraction of the material would be ignited
or burned in the ‘hot-spots’. This ties in with experimentalevidence indicating that
the amount of explosive contributing to the ignition process is related to the material
porosity.

Using the alternative approach to changing the initial porosity by changing the
initial inner radius, hence pore size, and keeping the initial outer radius fixed, no
significant differences in the calculated results were observed compared with those
in Figure 5.10. In other words, at a constant porosity and without heat conduction
modelled, the same results are obtained irrespective of theinitial pore size. How-
ever, it is generally understood that pore size is an important physical parameter
affecting shock initiation and sensitivity of heterogeneous solid explosives. When
heat conduction is included in the modelling, the initial pore size, assuming con-
stant porosity, does have a significant effect on the computed results. This is il-
lustrated by looking at the case of 5% initial porosity. The computed results with
heat conduction modelled and assuming 5% porosity are shownin Figures 5.11-
5.13. Figure 5.11 shows the time evolution of the pore surface temperature and
mass fraction reacted, where the results without heat conduction modelled are also
shown for comparison, while Figures 5.12 and 5.13 show the radial distribution of
temperature through the solid explosive for initial pore sizes of 10µm and 17.2µm
respectively.

With heat conduction modelled, it is now observed that, at constant porosity,
the pore surface temperature is lower in the case of the smaller initial pore size,
and hence a lower temperature ‘hot-spot’ is formed. In each case, the radius of the
heated layer, or ‘hot-spot’, is approximately equal to the initial pore radius. Large
initial pores thus lead to large ‘hot-spots’, and small pores to small ‘hot-spots’. Heat
conducts faster out of the smaller ‘hot-spot’ as a result of the larger temperature
gradient through the heated layer in comparison to the bigger ‘hot-spot’. As small
‘hot-spots’ cool more rapidly, it will therefore take higher pressures and higher
‘hot-spot’ temperatures to get a material with small sized pores to ignite before the
‘hot-spots’ cool. The above results are consistent with experimental observations of
ignition thresholds being correlated with the size and temperature of the ‘hot-spots’
created by shock passage [137].

5.2.10 Rise Time of the Shock

Calculations have been performed to examine the effect of the rise time of the
shock on the pore collapse response. Three different rise times for the shock were
used in the calculations, namely (i)τ = 0.1µs, (ii) τ = 0.5µs, and (iii) τ = 1.0µs,
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after which the applied pressure,Ps, remained constant at 10 kbars. In each case,
there was a linear relationship between pressure and time over the duration of the
rise time. In the calculations the pore was treated as a void.Apart from the change
in the rise time, the EOS constants and material parameters for the solid explosive
were as given in Tables 5.1 and 5.2 respectively.

Initially calculations were run without heat conduction modelled, and the com-
puted results are shown in Figure 5.14. As expected, the risetime of the shock has
a significant effect on the pore response. The pore surface temperature decreases
for increasing rise time of the shock, and hence lower temperature ‘hot-spots’ are
obtained. The reduction in the ‘hot-spot’ temperatures dueto the longer rise time of
the shock therefore leads to slower reaction rates, and hence less material reacted.
It is noted that the final (stopping) radius is the same in eachcalculation. This is as
expected following the approach of Carroll and Holt [8], where the final radius of
the pore using their simple hollow sphere model is a functionof the yield strength,
initial density and porosity, and final pressure.

The hydrocode calculations were then repeated but with heatconduction intro-
duced into the modelling. Figure 5.15 shows the comparison of calculated results
with and without taking account of heat transfer. Heat conduction clearly has a
significant effect on the computed results, resulting in a reduction in the pore sur-
face temperature and thus giving lower temperature ‘hot-spots’. Looking ahead to
the development of a simple ‘hot-spot’ initiation model forimplementation in a
hydrocode to enable realistic shock initation problems to be modelled, it is worth
noting that the above results show that the physics of the pore will be very depen-
dent on the capture (rise time) of the shock. Thus, a very accurate shock capturing
method will be needed in the hydrocode in conjunction with the simple pore col-
lapse model. To capture the shock accurately, this may require the model to be
incorporated in an adaptive mesh refinement hydrocode such as SHAMROCK [87].

5.2.11 Magnitude of the Pressure

To study how the magnitude of the pressure loading can effectthe pore collapse
response, calculations were run at three different shock pressures, namely, (i)Ps =
10 kbars, (ii)Ps = 15 kbars, and (iii)Ps = 20 kbars. In each case the rise time of the
shock was 0.1µs and, thereafter, the pressure remained constant at the prescribed
value. In the calculations the pore was assumed to be a void. Apart from the change
in the magnitude of the pressure, the EOS constants and material parameters for the
solid material were as given in Tables 5.1 and 5.2 respectively. Heat conduction
effects were not modelled.

The computed results corresponding to the different pressure loadings are shown
in Figure 5.16, which shows the time evolution of the pore radius, pore surface
temperature, and mass fraction of explosive reacted. As expected, the pore wall
collapses faster with increased pressure loading, resulting in higher pore surface
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temperatures and hence higher temperature ‘hot-spots’, and faster reaction rates.
The observed small scale oscillations seen in Figure 5.16 are due to the propagation
of the elastic wave in the solid explosive, where the period of oscillation corresponds
to the transit time of this wave as it travels backwards and forwards through the
thickness of the solid material. At higher pressures, assuming the pore is a void,
the pore may fully implode. This will not occur if the pore is gaseous. The energy
of the gas phase may become significant at higher pressures, and heat transfer from
the gas to the solid may be important.

5.2.12 Double Shock Loading (Preshocking)

The effects of multiple shocks on the pore collapse responseand subsequent for-
mation of ‘hot-spots’ can be easily examined via direct numerical simulations. Of
interest is the phenomenon of ‘shock desensitisation’, discussed in previous chap-
ters, where a weak first shock renders an explosive less sensitive to a following
stronger shock. The pore response to a double shock process has been studied,
where the double shock loading consisted of a precursor wave, or preshock, ofP1

= 10 kbars followed a given time later by a main shock ofP2 = 20 kbars. Both the
precursor and main shocks had a rise time ofτ = 0.1 µs. The input shock profile
is shown in Figure 5.3(b). Two calculations were performed using the given shock
magnitudes but varying the time delay,δ, between the first and second shocks with,
(i) δ = 0.5µs, and (ii)δ = 1.0µs. In the calculations the pore was assumed to be a
void, and the EOS constants and material parameters for the solid material were as
given in Tables 5.1 and 5.2 respectively. Heat conduction effects were not modelled.

The calculated double shock results showing the time evolution of the pore ra-
dius, the temperature at the pore surface, and the mass fraction reacted are shown in
Figure 5.17, where the corresponding single shock results are also shown for com-
parison. It is seen that the temperature at the pore surface in a double shock process
up to pressureP2 is less than in a single shock at the pressure of the second shock
alone. Thus, preshocking the explosive material results ina lower temperature ‘hot-
spot’ in comparison to the single shock response. These observations are explained
as follows. The pore starts to contract as a result of the compression due to the first
shock. When the second shock is input into the material, the porosity of the ex-
plosive and pore size are both less than they were initially.A reduction in porosity
makes the material less sensitive, as shown previously in Section 5.2.9, resulting in
a lower temperature ‘hot-spot’. Assuming a temperature-dependent reaction rate,
then the reaction rate is slower behind a shock propagating through preshocked
explosive, in comparison to the same shock propagating through pristine material,
giving less material reacted in the ‘hot-spot’.

The results obtained are qualitatively consistent with observations on the so-
called desensitisation effecte.g. [38]. In addition, the calculated ‘hot-spot’ temper-
atures are also dependent on the time delay between the precursor and main shocks;
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the longer the time delay, the lower the ‘hot-spot’ temperature obtained. The longer
the time separation between the first and second shocks, the more the porosity and
the size of the pore are reduced before the second shock enters the material. This
further reduces the sensitivity of the material, resultingin a further reduction in
the ‘hot-spot’ temperature. This indicates a time-dependent ‘hot-spot’ deactivation
process which is consistent with the theory of Campbell and Travis [51].

5.2.13 Discussion

The mechanism by which spherical pores collapse to form ‘hot-spots’ in an ex-
plosive material as a result of elastic-viscoplastic flow has been examined using
the one-dimensional Lagrangian hydrocode PERUSE. Overall, the results obtained
from the direct numerical simulations are consistent with observations, and com-
monly held ideas, regarding the initiation and sensitivityof heterogeneous solid
explosives subjected to weak shock waves. General trends inpore response and
associated ‘hot-spot’ temperatures have initially been ofinterest rather than quanti-
tative results.

The computed results show that ‘hot-spot’ temperatures increase with increasing
porosity. Assuming that initiation is thermal in origin, then increasing porosity
results in an increase in sensitivity. This correlates withexperimental evidence that
explosive sensitivity is related to porosity. For example,significant differences have
been observed in Pop-plot data for a given explosive at different initial densities
[36]. The data shows that lower density material is more sensitive (shorter run
distance to detonation for a given input pressure), with theimplication that this is
because the material is more porous.

At constant porosity and with heat conduction included in the modelling, the ini-
tial pore size also has a significant effect on the calculated‘hot-spot’ temperatures.
It is observed that the formed ‘hot-spots’ as a result of porecollapse are approxi-
mately equal to the intial pore radius. Smaller ‘hot-spots’are more easily cooled by
heat conduction than larger ones as a result of a larger temperature gradient in the
smaller ‘hot-spot’. Therefore, bigger initial pores, which yield larger ‘hot-spots’,
are more efficient at igniting the explosive. Conversley, itis more difficult to ignite
an explosive with smaller pores, and higher pressures will be required in comparison
to a material containing larger pores. The results are in agreement with commonly
held ideas regarding the effect of pore size on explosive response, and shows the
importance of including the effects of heat conduction in the modelling.

The shock sensitivity of heterogeneous solid explosives isusually discussed in
terms of grain size and/or porosity, rather than pore size. This is because it is dif-
ficult to obtain data on pore sizes in a heterogeneous solid explosive. Thinking in
terms of grain size rather than pore size, assuming constantporosity, a larger pore
has a larger volume of solid explosive associated with it compared to a smaller
pore, and hence has a larger grain size. This is a plausible argument if the pores
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are located between grains, but not if the pores are in the grains. In terms of Pop-
Plot behaviour, the sensitivity of heterogeneous explosives to grain size effects has
shown that, at low shock pressures, fine grain material is less sensitive than coarse
grain material [42] [43]. Thus, the calculations examiningthe effect of pore size
on ‘hot-spot’ temperatures appear to be consistent with these observations. It is
noted that the sensitivity behaviour for weak shocks is in contrast to the behaviour
at higher pressures, such as at detonation, where finer grained material is more sen-
sitive, as discussed in Chapter 3 and [42]. The hypothesis isthat the difference in
behaviour is related to time to ignition for ‘hot-spots’; atlow pressures the igni-
tion time is long in comparison to that at high pressures where it is thought to be
negligible.

In the case of double shocks, the calculated results show that subjecting the ex-
plosive to a weak first shock renders the material less sensitive to following stronger
shocks. Shocking the material to a given pressure in a two shock process generates
a lower temperature ‘hot-spot’ in comparison to where the material was shocked
to the same (final) pressure by a single shock. This follows commonly held ideas
regarding the phenomenon known as ‘shock desensitisation’[38]; the precursor
wave, or preshock, deactivates the ‘hot-spots’ by reducingthe overall porosity (and
pore size) before the arrival of the second shock. The results also indicated that the
‘hot-spot’ deactivation process is time-dependent since ‘hot-spot’ temperatures are
lowered by increasing the time separation between the two shocks. These observa-
tions are consistent with the theory of Campbell and Travis [51].

To date the modelling work neglects the effect of binder on the explosive re-
sponse. One possibility is that the important pores in a heterogeneous solid explo-
sive are located in the binder material rather than next to, or inside, the explosive
crystals. A layer of binder could be included between the pore and the solid explo-
sive to examine pore collapse leading to ‘hot-spot’ formation in this case. This will
require knowledge of the equation of state and material properties for the binder as
well as the solid explosive. A further complication is whether the binder is pure or
is laden with fine explosive particles [138]. As part of the manufacturing process, it
is generally believed that fine crystallites mix with the binder to give what is known
as ‘dirty binder’, and the material behaviour of pure and contaminated binder may
be different.

In reality, pore collapse in a shock compressed explosive will be non-spherical.
Two-dimensional direct numerical simulations of a shock wave interacting with a
pore are required to test whether spherical pore collapse isa valid approximation.
Additionally, the pores in an explosive may be irreguarly shaped, and the geom-
etry of the ‘hot-spots’ formed as a result of shock compression could also be an
important factor in determining the explosive response. Thus, simulations to exam-
ine the geometry of pores on ‘hot-spots’ are also required. Two dimensional direct
numerical simulations could also be performed to study the effect of a shock wave
interacting with a matrix of pores to examine, for example, pore-pore interactions.
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Since the elastic-viscoplastic constitutive model in PERUSE is also available in
the two-dimensional, adaptive mesh refinement, Eulerian hydrocode SHAMROCK
[87], then such calculations could be performed.

The development of a simplified ‘hot-spot’ initiation modelbased on elastic-
viscoplastic pore collapse is described in the next section. The results of the direct
numerical simulations will be used as a reference to test thevalidity of the various
assumptions in a simplified ‘hot-spot’ model, and to check that the simple model
can reproduce to a reasonable degree of accuracy the resultsfrom the PERUSE
calculations.

5.3 Simple ‘Hot-Spot’ Initiation Model

5.3.1 Introduction

The mesh sizes used in the direct numerical simulations of ‘hot-spot’ initia-
tion described above, are way beyond current computing resources for these to be
utilised in macroscopic hydrocode modelling of shock initiation problems of inter-
est. The only way forward, therefore, is to develop a simplified ‘hot-spot’ initiation
model which can be coupled to a hydrocode, and which should beable give com-
parable results (e.g. pore radius, temperature, and mass fraction reacted) to those
obtained from the direct numerical simulations. Any such model should explic-
itly describe the important physical, thermal, and chemical processes involved in
explosive shock initiation,e.g. dynamics of pore collapse, heat conduction, ‘hot-
spot’ decompositionetc, but still be simple enough to use in a hydrocode without
unacceptably increasing the computation time.

The direct numerical simulation work showed that ‘hot-spots’ in heterogeneous
solid explosives can be created by local elastic-viscoplastic strains in the vicinity of
a collapsing spherical pore due to the passage of relativelyweak shocks. The result-
ing increases in temperature would lead to ignition (the start of chemical decompo-
sition) in the explosive. Based on mechanical deformation (primarily viscoplastic
flow) around collapsing pores, a number of models to describe‘hot-spot’ forma-
tion and subsequent ignition in heterogeneous solid explosives have been developed
[72]-[73] and [126]. Since the description of the ‘hot-spot’ should be simple, these
models utilise the Carroll and Holt [8] hollow sphere model,and all assume spheri-
cal symmetry of the pore collapse process. In addition, the models are built on the
assumption of an incompressible solid phase, proposed and justified by Carroll and
Holt, which leads to a great simplification of the theoretical analysis, and makes
the development of a simple ‘hot-spot’ model tractable. Following the approach of
Carroll and Holt [8], these models assume that mechanical deformation of the solid
material occurs as a result of viscoplastic flow only in the vicinity of the collapsing
pore. Only the model of Kim [126] is based on elastic-viscoplastic flow.
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The model developed and described here is also based on the work of Carroll
and Holt [8] and Butcheret al. [123]. It therefore contains a number features found
in other micro-mechanical ‘hot-spot’ models described in the literature [72]-[126],
and which have had some success in describing the response ofporous explosives
to a range of different shock loadings. However, there is onemajor difference. In
the viscoplastic ‘hot-spot’ models developed elsewhere [72]-[73], heating of the
solid phase material occurs as a result of viscoplastic flow only in the vicinity of a
collapsing pore. This assumption is consistent with the observations of Carroll and
Holt [8] who showed that volume changes in the first two phasesof pore collapse
(initial elastic and transitional elastic-viscoplastic)are negligible. This implicitly
assumes that the whole of the spherical shell of solid material has yielded, and is
undergoing viscoplastic flow. For solid explosives subjected to weak shocks it will
be shown that this is an invalid assumption.

In the following sections, the construction of a simple, preliminary, ‘hot-spot’
initiation model based on elastic-viscoplastic pore collapse is described. Firstly, a
description of the geometrical configuration used in developing the mathematical
model is presented, and the assumptions made to simplify themodel are given. The
general form of the partial differential equations for elastic-viscoplastic pore col-
lapse are then introduced, and the interface, boundary, andinitial conditions needed
to solve the system of equations are given. To make an efficient numerical solution
of the governing equations possible, they are integrated toyield a set of ordinary dif-
ferential equations to describe the pore response. By simplifying the modelling in
this way, the aim is to eventually incorporate the simple ‘hot-spot’ initiation model
into a hydrodynamics code without unacceptably increasingthe amount of compu-
tation.

The initial model described below provides the framework for further model
enhancements to be made, and which are planned. For example,in the preliminary
model described below, the effects of heat conduction are ignored. However, this is
an important physical process in the formation and ignitionof ‘hot-spots’, and will
therefore be included as the model is developed further. It is emphasised that the aim
of the simple ‘hot-spot’ model is to describe the ignition phase in explosive shock
initiation, i.e. formation of ‘hot-spots’ resulting from shock compression, and the
subsequent decomposition of the explosive in these localised heated regions. The
model, as it currently stands, is not intended to describe the subsequent growth of
reaction behaviour from the ‘hot-spots’ as the rest of the explosive is consumed.

5.3.2 Physical Model and Assumptions

Consistent with PERUSE hydrocode calculations, and following previous ‘hot-
spot’ modelling work [72]-[126], the explosive is represented by the one-dimensional
hollow sphere pore collapse model described by Carroll and Holt [8] for compaction
of inert porous materials, see Figure 5.2. This consists of an isolated spherical pore
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surrounded by a spherical shell of the solid explosive material. This single pore
model is used to represent the average response of a much larger sample of the ex-
plosive containing multiple, randomly distributed pores.Therefore, the initial inner
radius,a0, of the sphere represents the average pore radius in the explosive sam-
ple, and its initial outer (external) radius,b0, is chosen such that the initial porosity
and the measured overall porosity of the porous material areequal. It is noted that
this explosive model does not take account of the binder nor pore-pore interactions
which may both be important.

In conjunction with the physical model of the explosive detailed above, the fol-
lowing assumptions are made in developing a simple ‘hot-spot’ initiation model;

1. Pore collapse and flow of the solid material is treated as one-dimensional,
spherically symmetric. This is valid when the time requiredfor a shock wave
to transit the pore is small compared to the collapse time [9].

2. The solid explosive material is assumed incompressible during its radial mo-
tion, after passage of the shock wave.

3. The solid explosive is an isotropic elastic-viscoplastic material, where the
yield strength,Y, and the material viscosity,η, are constant.

4. The pore is a void,i.e. contains no gas.

The formulation of a preliminary ‘hot-spot’ initiation model, based on the ex-
plosive model and the assumptions detailed above, is now described.

5.3.3 Governing Partial Differential Equations

Application of the laws of conservation of mass, momentum, and energy, to the
hollow sphere configuration shown in Figure 5.2, and under the assumptions given
above, yields a system of coupled partial differential equations (PDE’s) which,
along with the appropriate initial and boundary conditions, describes the behaviour
of the porous material under shock loading. For one-dimensional, spherically sym-
metric flow of an incompressible material, the form of the governing equations can
thus be written as (compare with Section 5.2.2);

Conservation of mass :
∇.u = 0 (5.48)

Equation of motion :

ρ
Du
Dt

= −∂Σr

∂r
+

2
r
(Σθ−Σr) (5.49)

Energy equation :

ρ CV
DT
Dt

=
DWP

Dt
(5.50)
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Velocity :
Dr
Dt

= u (5.51)

Lagrangian derivative :
D
Dt

=
∂
∂t

+u
∂
∂r

(5.52)

Total stresses :
Σr = P − S1 (5.53)

Σθ = P − S2 (5.54)

Viscoplastic dissipation,

DWP

Dt
= 12η

(

u2

r2

)

+2Y

( |u|
r

)

(5.55)

The equations defining the velocity strains and stress deviators are as given in
Section 5.2.2. In order to solve the set of coupled, governing partial differential
equations that comprise the mathematical model, the appropriate boundary and ini-
tial conditions must be specified. The initial conditions (t = 0) are:

u = 0 (5.56)

T = T0 (5.57)

a = a0 (5.58)

b = b0 (5.59)

The boundary conditions at the inner pore radius,r = a,

u = ȧ (5.60)

The boundary conditions at the outer pore radius,r = b,

Σr = Ps (5.61)

where the functionPs represents the stress-time profile applied to the solid shell.

5.3.4 Model Formulation

Preamble

The governing equations presented above form a general set of coupled PDE’s
that describe the dynamic and thermodynamic behaviour of a hollow sphere sub-
jected to an externally applied stress-time profile. Ratherthan solving this system
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of PDE’s, it is possible to reduce the governing equations toa set of ordinary dif-
ferential equations (ODE’s) in order to make their numerical solution less compu-
tationally intensive. The transformation of the governingequations from PDE’s to
ODE’s is described below, and presented here are the final form of the equations
(ODE’s) solved in the preliminary ‘hot-spot’ initiation model.

Pore Radial Motion

When the time-dependent pressure stress,Ps, is applied to the external surface
of the solid shell, see Figure 5.2, this initiates the contraction of the pore. The
integration of the mass and momentum equations, with the application of the proper
interface and boundary conditions leads to an expression for the radial acceleration
of the pore surface. The integration of the equation for the conservation of mass
(5.48) with the substitution of the radial velocity interface condition (5.60) into the
resulting equation, gives an expression for the velocity field in the solid shell,

u =
ȧ a2

r2 (5.62)

which depends only on radial position, and the position and velocity of the pore
interface. By substituting the above expression for velocity into the momentum
equation (5.49), integrating from the inner radius,r = a, to the outer radius,r = b,
and applying the boundary conditions at these radii, an expression for the accelera-
tion of the pore interface is found,

−ρ
{

a ä
(

1−φ
1
3

)

+
1
2

ȧ
[

4ȧ
(

1−φ
1
3

)

− ȧ
(

1−φ
4
3

)]

}

= Ps+Pv−Py (5.63)

whereφ is the porosity,Pv is the viscous (strain-rate dependent) stress,Py is the
elastic-plastic (strain dependent) stress, and a dot abovea symbol denotes a deriva-
tive with respect to time. Equation (5.63) is essentially the classic Rayleigh bubble
equation [139] but extended to take account of material strength effects and finite
porosity on pore radial motion. The viscous and elastic-plastic stresses, which act
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together to resist the pore collapse, are given by the equations,

Pv =































0 , α0 ≥ α ≥ α1

12a2 ȧ
Z c

a

η
r4 dr , α1 ≥ α ≥ α2

12a2 ȧ
Z b
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η
r4 dr , α2 ≥ α ≥ 1

and
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Y ln

(
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α−1

)

, α2 ≥ α ≥ 1

whereη is the material viscosity,r is radius,µ is the shear modulus,Y is the yield
strength, andα is the distention ratio. The distention ratio,α, and porosity,φ, are
respectively given by the equations,

α0 =
b0

3

b0
3−a0

3
; α =

b3

b3−a3 (5.64)

φ0 =

(

a0

b0

)3

=
α0−1

α0
; φ =

(a
b

)3
=

α−1
α

(5.65)

where the subscript 0 denotes initial conditions, and the location of the external
radius,b, is found from the assumption of incompressibility of the solid material,
i.e.

b3−a3 = b0
3−a0

3 (5.66)

As a result of the applied stress,Ps, the deformation of the sphere occurs in three
distinct phases:(i) an initial (elastic) phase where there is no yielding(α0 ≥ α ≥
α1), (ii) a transitional elastic-viscoplastic phase where part of the shell has yielded
(α1≥α≥α2), and(iii) a totally viscoplastic phase where the whole of the spherical
shell has yielded(α2 ≥α ≥ 1). Initial yield (elastic to elastic-viscoplastic) and total
yield (elastic-viscoplastic to viscoplastic) occur at distention ratios

α1 =
2µα0+Y

2µ+Y
(5.67)
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and

α2 =
2µα0

2µ+Y
(5.68)

respectively, and the transitions are smooth as you go from one state of stress to the
next. As the shear modulus,µ, and the yield strength,Y, are assumed constant, then
the values ofα1 andα2 are the same for all applied pressure profiles, however, the
transition pressures will be different for different applied pressure profiles.

The equation describing the elastic phase holds within the elastic range of the
material,i.euntil the yield limit is reached. If the applied pressure increases beyond
this point, yielding begins at the pore wall and propagates outwards, and the material
is described by the transitional elastic-viscoplastic phase. In this transitional phase,
the time-dependent interface between elastic and viscoplastic flow, denotedc, is
given by,

c =
3

√

2 µ B
Y

, where B =
a0

3(α0−α)

α0−1
(5.69)

The equation describing the pore radius in this phase holds until the elastic-viscoplastic
interface reaches the outer radius of the shell (c = b), corresponding to the entire
spherical shell yielding. Thereafter, the motion is governed by the equation describ-
ing the fully viscoplastic phase.

Following the observation of Carroll and Holt [8], ‘hot-spot’ initiation models
based on viscoplastic pore collapse that have been developed elsewhere [72]-[73]
assume that the pore volume remains essentially unchanged until the applied pres-
sure,Ps, exceeds the yield valuePy where,

Py =
2
3

Y ln

(

α
α−1

)

(5.70)

In other words, volume changes during the elastic and elastic-viscoplastic phases of
collapse are assumed negligible, and pore collapse occurs by virtue of viscoplastic
flow only in the material. This in turn assumes that, once the yield condition is
satisfied, the whole of the spherical shell instantaneouslyyields and is flowing vis-
coplastically. However, results of PERUSE calculations (to be shown shortly) have
shown that, for weak and moderate shock waves, the whole of the spherical shell
does not yield but is instead in the transitional elastic-viscoplastic state. Therefore,
our simple ‘hot-spot’ initiation model explicitly models all of the three possible
phases of pore collapse.

Temperature Increase Resulting From Pore Collapse

As the pore contracts due to the applied pressure stress, thetemperature in-
creases in the solid shell during its radial motion as a result of mechanical deforma-
tion due to the elastic-plastic and viscous stresses generated. For any model to be
useful in a hydrocode to simulate explosive shock initiation, the total averaged burn
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fraction,λ, in the hollow sphere needs to be computed. In order to obtainthis, we
need to know how the local burn fraction varies through the solid shell as a function
of radius,r, and time,t: λ(r, t). The local burn fractions,λ(r, t), are found from
integrating a reaction rate law which in general is written as,

dλ
dt

= f (ρ,P,Zs,T,λ) (5.71)

whereρ, P, Zs, andT are respectively the density, pressure, function of entropy,
and temperature of the material. In this work, the temperature-dependent Arrhenius
reaction rate equation [1] is chosen as the reaction rate law. Therefore, to compute
the local reaction rates,dλ

dt (r, t), in the hollow sphere, the temperature field in the
collapsing shell,T(r, t), is required.

In the viscoplastic ‘hot-spot’ models [124]-[73], two different approaches to cal-
culating the temperature profile through the solid shell have been adopted. In [124]
an integral transformation method was used to compute the interface temperature.
This simplified the problem by converting the energy equation into a single inte-
gral differential equation and eliminated the need to solvethe thermal field in the
entire solid shell(a < r < b). However, the integral approach requires the assump-
tion of a thermal profile in the solid shell, and both exponential and polynomial
expressions have been used for this purpose. The applicability of this approach was
questioned by Bonnett [125] and Massoniet al. [73] who instead opted to solve the
energy equation in its (original) PDE form using finite difference methods. Both
approaches have their advantages and disadvantages. Clearly, the latter approach is
computationally more expensive than the former.

An alternative approach to those described above for calculating the tempera-
ture field has been adopted here for the simple ‘hot-spot’ initiation model. From
the direct numerical simulations describing ‘hot-spot’ formation (see Section 5.2),
it was shown that the size of a ‘hot-spot’ created in the vicinity of a collapsing pore
is approximately equal to the size of the pore before it collapsed. Outside this re-
gion there is only a small increase in temperature above ambient, and this does not
significantly affect the total averaged reaction rate, and hence burn fraction, through
the spherical shell. These observations are used to define a domain for the ‘hot-spot’
(a < r < rhs) which is a fraction of the total domain(a < r < b) for the solid shell.
The ‘hot-spot’ domain is then defined by a number of discrete (Lagrangian) points.
It is convenient to use Lagrangian particles as the solid material deforms during
pore collapse, and the spacing of the initial points is carefully chosen to reflect this
motion. The local temperature, reaction rate, and burn fraction, are computed at
each of the Lagrangian positions at each step. Therefore, for computational effi-
ciency, it is important one should use the least number of points which still gives an
accurate representation of the temperature, reaction rate, and burn fraction fields in
the ‘hot-spot’ domain.
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The ODE describing the temperature increase at the Lagrangian particle posi-
tions as a result of the mechanical deformation (viscous work and elastic-plastic
work) during pore radial motion is given by,

ρ Cv
dT
dt

= 12η
(

u2

r2

)

+2Y

( |u|
r

)

(5.72)

where T is the local temperature,t is time,CV is the specfic heat capacity at con-
stant volume,r is the radial (Lagrangian) position, and the velocity field in the solid
shell, u, is given by equation (5.62). The position and velocity of the pore sur-
face,a and ȧ respectively, are found from integration of equation (5.63), and the
Lagrangian radial positions in the solid material at each step are calculated from the
incompressibility assumptioni.e.

r3−a3 = r0
3−a0

3 (5.73)

In reality, the increase in temperature due to the mechanical deformation will be
followed by two other processes in the explosive ‘hot-spots’; heat conduction and
chemical reaction. Both of these are dependent on, and at thesame time, modify
the temperature distribution in the explosive. At the present time, the effects of heat
conduction are not included in the preliminary ‘hot-spot’ model. However, heat
conduction will be incorporated into the model at a later date, as this phenomena
has been shown to be important in ‘hot-spot’ initiation fromthe direct numerical
simulation work (see Section 5.2).

Reaction Rate and Burn Fraction

The reaction rate at the Lagrangian particle positions is calculated according to
the first-order temperature-dependent Arrhenius rate law,

dλ
dt

= (1−λ) Z e−
E∗
RT (5.74)

whereλ is the local mass fraction of explosive that has reacted,Z is the frequency
factor, E∗ is the activation energy,R is the universal gas constant, andT is the
local temperature. Equation (5.74) represents the local reaction rate in the ‘hot-
spot’, giving a maximum at the inner radius where the temperature is the highest,
a minimum at the extent the ‘hot-spot’ domain, and a monotonic decrease between
them. Integration of (5.74) yields the burn fractions at theLagrangian positions,
λ(r, t). Since we are interested in the total averaged burn fractionin the hollow
sphere, the local burn fractions are integrated over the ‘hot-spot’ domain to obtain
this quantity,

λ(t) =

Z rhs

a
λ(r, t) 4π r2dr

4
3

π (b3−a3)
(5.75)
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It is assumed that the reaction rate, and hence burn fraction, is zero outside the
‘hot-spot’ domain(rhs< r < b).

5.3.5 Initial Testing of the Simple ‘Hot-Spot’ Model

The ODE’s describing the simplified ‘hot-spot’ initiation model (5.63), (5.72)
and (5.74) are integrated numerically using a fifth-order Runge-Kutta method with
adaptive stepsize control [140] to obtain respectively thetime evolution of the pore
radius, local temperatures, and local burn fractions. Numerical integration of the lo-
cal burn fraction field to obtain the total averaged burn fraction through the spherical
shell (5.75), is performed using the classical trapezoidalrule.

Sample results obtained from the described simple ‘hot-spot’ initiation model
are now presented, and the results are compared with the corresponding direct nu-
merical simulations (Section 5.2) to illustrate how well, or otherwise, the simple
‘hot-spot’ model is performing. Consistent with the PERUSEcalculations, the ex-
plosive material was taken to be PBX9404 with initial density, ρ0=1.84 g/cc, and
the default material parameters were as given by Table 5.2.

Calculated results from the simple ‘hot-spot’ model corresponding to an applied
shock pressure ofPs = 10 kbars, with a rise time ofτ = 0.1µs, are shown in Figures
5.18-5.20. Figure 5.18 shows the time evolution of the pore radius, temperature
at the surface of the collapsing pore, and the total averagedmass fraction reacted,
where the results from the corresponding PERUSE hydrocode calculation are also
shown for comparison. Figure 5.19 shows the time evolution of the various inter-
faces for this particular problem, namely the inner shell radius (a), the outer shell
radius (b), and the interface between elastic and viscoplastic flow (c). The time evo-
lution of c shows that, for this example, the whole of the solid shell does not yield,
and the collapse is in the transitional elastic-viscoplastic phase. The solid shell
yields initially at the pore surface, and as the collapse progresses, the viscoplastic
region spreads further out. The radial distribution of temperature through the spher-
ical explosive shell as calculated by the simple model is shown in Figure 5.20, and
the corresponding PERUSE results are shown in Figure 5.21.

Overall, the calculated results from the simple model are consistent with those
from the direct numerical simulation. Good agreement is obtained between the
two modelling approaches in terms of the time evolution of the pore radius and the
pore surface temperature. In addition, the calculated temperature profiles through
the thickness of the solid explosive show good agreement between the simple ‘hot-
spot’ model and hydrocode calculations. Consistent with the PERUSE results, the
simple model gives the maximum temperature at the surface ofthe collapsing pore,
with the temperature monotonically decreasing away from the pore surface, and
the extent, or radius, of the ‘hot-spot’ region agrees very well with the hydrocode
simulation. The agreement between the hydrocode and simplemodel in terms of the
calculated mass fraction reacted is not as good as that obtained to the pore radius or
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the ‘hot-spot’ temperatures. As the temperature profiles through the ‘hot-spot’ are
in very good agreement, then this could be due to the simple trapezium integration
formula (5.75) used in the simple model to integrate the local burn fraction field to
obtain the total averaged burn fraction through the shell. Use of a more accurate
integration technique may therefore be required. Here, it is observed that only a
small fraction of the total explosive material by mass is ignited in the ‘hot-spots’.

One of the key assumptions of the simple ‘hot-spot’ model is that the shell of
solid explosive collapses incompressibly. The observed small differences between
the PERUSE and simple model calculations are due to the assumption of incom-
pressibility of the solid material in the simple ‘hot-spot’model, as shown below.
The incompressibility assumption gives a small reduction in the velocity of the
pore wall during collapse in comparison to the hydrocode calculation, and the fi-
nal (stopping) radius is slightly bigger than that predicted by the hydrocode. This
small difference in the velocity of the pore results in a slightly lower temperature
at the pore surface from the simple model. As the temperatures in the hydrocode
are cell centred quantities then, the pore surface temperature in fact corresponds to
the temperature at the cell centre of the first cell adjacent to the pore surface,i.e.
the temperature half a cell’s width away from the actual poresurface. The calcu-
lated pore surface temperature from the simple model corresponds to this position
to allow a direct comparison to be made.

In the simple polynomial EOS used in the PERUSE calculation to model the
repsonse of the solid explosive, the constantA1 is the bulk modulus, K, of the mate-
rial [133]. The bulk modulus is given by,K = ρ0c0

2, whereρ0 is the initial density
andc0 is the bulk sound speed. ChangingA1 changes the sound speed, which in
turn changes the compressibility of the material; increasing A1 implies increasing
the sound speed which makes the material less compressible.Indeed, the bulk mod-
ulus, K, is sometimes referred to as incompressibility. Conversely, the reciprocal of
K is called the compressibility. Thus, by adjusting the value ofA1 in the polynomial
EOS, the hypothesis that the calculational differences aredue to the incompressibil-
ity assumption in the simple model can be tested.

In the default PERUSE calculation, the maximum density of the unreacted ex-
plosive is 1.975 g/cm3, corresponding to the explosive being compressed by∼7%
from its starting density of 1.84 g/cm3. Three further calculations have been per-
formed with different values of the constantA1 namely 0.2, 0.4, and 1.0. At these
values ofA1 in the simple polynomial EOS, the maximum calculated densitites in
the shell of PBX9404 are 1.928, 1.887, and 1.860 g/cm3 respectively. The time
evolution of the pore radii from the hydrocode calculationsare shown in Figures
5.22 and Figure 5.23 along with the corresponding simple ‘hot-spot’ model calcu-
lation. It is seen that the PERUSE calculations now approachthe incompressible
solution of the simple model as the compressibility of the material is reduced, thus
confirming that the observed differences between the hydrocode and simple ‘hot-
spot’ model calculations is due to the incompressibility assumption in the simple
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model.
The direct numerical simulations using PERUSE have shown that, for weak

and moderate shocks, the solid explosive shell does not fully yield but is instead
in the transitional elastic-viscoplastic phase of pore collapse. For this reason, all
three phases of collapse (initial elastic, transitional elastic-viscoplastic, and fully
viscoplastic) as described by Carroll and Holt [8] are included in the simple ‘hot-
spot’ initiation model. Other ‘hot-spot’ initiation models [72]-[73] based on Carroll
and Holt’s pore collapse concept [8] assume that, followingCarroll and Holt, vol-
ume changes in the first two phases of collapse are negligible, and pore collapse
occurs by virtue of viscoplastic flow only whenPs > Py, wherePy is given by equa-
tion (5.70). This assumes that, once the yield limit threshold is exceeded, the whole
of the spherical shell of solid material is instantaneouslyflowing viscoplastically.

To compare and contrast the different modelling approaches, pore collapse as
a result of viscoplastic flow only has been carried out for theproblem described
above where the spherical shell is subjected to a weak shock of Ps = 10 kbars which
has a rise time of 0.1µs. This required only minor modification of the simple
‘hot-spot’ model. The calculated results assuming elastic-viscoplastic flow and vis-
coplastic flow only are compared in Figure 5.24, where the corresponding PERUSE
results are also shown for comparison. For this particular problem, it is observed
that ignoring the initial elastic, and elastic-viscoplastic phases of collapse, results
in significant differences in pore response when compared tothe simple model and
PERUSE results. The viscoplastic ‘hot-spot’ model under predicts the rate of col-
lapse, and this results in a lower ‘hot-spot’ temperature. Thus, models based on pore
collapse as a result of viscoplastic flow only are in error where it is shown that the
shell is not fully viscoplastic. Thus, for weak and moderateshocks, the viscoplastic
‘hot-spot’ models [72]-[73] are built on an invalid assumption.

For the particular problem described above, good agreementwas obtained be-
tween the computed results from the simple ‘hot-spot’ modeland the correspond-
ing results from the direct numerical simulation. To check the applicability of the
‘hot-spot’ model in other sample problems of interest, additional calculations have
been performed using: (i) different initial porosities, (ii) different rise times for the
shock wave (ii) different magnitudes for the shock pressure, and (ii) a double shock
input. These problems were considered previously for the direct numerical simu-
lation work, and hence the results from the simple model can be compared to the
corresponding results from the PERUSE simulations to further examine how well
the simple model is performing. Unless stated otherwise, the material parameters
for the solid shell of PBX9404 were as given by Table 5.2.

The effect of initial porosity on pore response in the simple‘hot-spot’ model has
been examined. Calculations have been performed at three different initial porosi-
ties, 1%, 2%, and 5%. In each case the initial pore radius was fixed at 10µm, and
the initial outer radii were 46.42µm, 36.84µm, and 27.14µm, which respectively
correspond to porosities of 1%, 2%, and 5%. The computed results from the simple
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‘hot-spot’ model are compared with the corresponding results from the PERUSE
hydrocode simulations in Figure 5.25. For the cases studied, very good agreement
is obtained between the results from the simple model and thedirect numerical sim-
ulations on PERUSE. This indicates that the simple ‘hot-spot’ initiation model can
account for the trend in porosity effects in heterogeneous solid explosives.

The pore response to the rise time of a shock has also been studied. The different
rise times for the shock used in the calculations were: (i)τ=0.1µs, (ii) τ=0.5µs, and
(iii) τ=1.0µs. In each case the final sustained shock pressure wasPs=10 kbars, with
a linear relationship between pressure and time over the duration of the rise time of
the shock. Figure 5.26 shows the results comparison betweenthe simple ‘hot-spot’
model and PERUSE simulations in terms of the time evolution of the pore radius
and the temperature at the pore surface. Good agreement is obtained between the
calculated results from the two different modelling approaches. It is noted that the
physics of the pore is very dependent on the rise time of the shock. Since artificial
viscosity-based hydrocodes typically spread a shock wave over∼3-4 meshes, then
any hydrocode into which the simple ‘hot-spot’ model is to beincoroporated will
require an accurate shock capturing method and/or fine meshing to ensure that the
physics of the pore is accurately represented.

To examine the effect of the magnitude of the shock pressure on pore response,
calculations were run at two other different shock pressures, namely, (i)Ps = 15
kbars, and (ii)Ps = 20 kbars. In each case the rise time of the shock wasτ =
0.1 µs. Figure 5.27 shows the comparison of the computed results from the sim-
ple ‘hot-spot’ model (dashed lines) with the correspondingPERUSE results (solid
lines) for each of the different shock pressures, where the results corresponding to
Ps = 10 kbars are also shown. In terms of the pore radial motion, it is seen that
the comparisons (simple model vs direct numerical simulation) at the higher pres-
sures initially follow the same pattern as the comparison atPs = 10 kbars, with the
simple ‘hot-spot’ model predicting a slightly larger pore radius than the hydrocode
during the early stages of pore collapse. Subsequently, however, differences in the
calculational comparisons are seen atPs = 15 and 20 kbars when compared to the
comparison atPs = 10 kbars, and the final radii at the higher pressures, as calculated
by the simple model, are now slightly smaller, not bigger, than those predicted by
the PERUSE hydrocode.

For the different input pressures, the calculated pore surface temperatures and
total averaged mass fractions reacted from the simple ‘hot-spot’ model are in rea-
sonable agreement with the corresponding PERUSE results. However, it would
appear that the differences between model and hydrocode results increase with in-
creasing pressure. Further investigations are required tounderstand the observed
differences between the results from the simple model and PERUSE as shown in
Figure 5.27. Since the velocity of the collapsing pore increases with increasing
shock pressure, it is possible that in the direct numerical simulations even finer zon-
ing is required to fully resolve the motion at higher pressures, particularly in the
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important region in the immediate vicinity of the pore surface.
To examine the effect of preshocking an explosive, the response of the hollow

sphere model to a pressure profile consisting of two shocks has been calculated
using the simple ‘hot-spot’ model. The double shock loadingconsisted of an initial
shock ofP1 = 10 kbars followed a given time later by a second shock ofP2 = 20
kbars, see Figure 5.3b. Both the precursor and main shocks each had a rise time of
τ = 0.1µs. Two separate calculations were performed using different values for the
time delay,δ, between the precursor and main shocks; (i)δ = 0.5µs, and (ii)δ = 1.0
µs. Computed results from the simple ‘hot-spot’ model and PERUSE hydrocode
simulation, corresponding to separate time delays ofδ = 0.5µs andδ = 1.0µs, are
compared in Figures 5.28 and 5.29 respectively, where the single shock results are
also shown for comparison.

The calculated double shock results from the simple ‘hot-spot’ model in terms
of the time evolution of the pore radius, pore surface temperature, and mass frac-
tion reacted, are in good agreement with the results from thedirect numerical sim-
ulations. These results show that the explosive response todouble shocks can be
accurately modelled with the simple ‘hot-spot’ initiationmodel, and it thus shows
the potential to be able to account for the phenomenon of ‘shock desensitisation’ in
heterogeneous solid explosives.

5.3.6 Implementation of the Simple ‘Hot-Spot’ Model in a Hy-
drocode

The described simple ‘hot-spot’ initiation model is currently being incorporated
in a two-dimensional hydrocode, and the details of the implementation are sketched
out below. The described elastic-viscoplastic pore collapse model is well adapted to
describe the ignition phase of the explosive shock initation process, where the ‘hot-
spots’ are created as a result of the shock compression, and the subsequent reaction
occurs in these localised heated regions. In this ignition phase, as the calculated
results have shown, only a small fraction of the explosive will be ignited or burned
in the ‘hot-spots’. Thus, there still remains the problem ofmodelling the subsequent
growth of reaction outwards from the ignited ‘hot-spots’ asthe rest of the material
is consumed. This subsequent growth of reaction is usually termed surface burning
or grain burning.

In order to provide a capability to model the whole reaction process, the reac-
tion due to surface burning needs to be modelled in addition to the ignition phase.
At present, changes are made to the implementation of the Lee-Tarver model [49],
where the ignition term is replaced by a term deduced from thesimple model of
‘hot-spot’ formation arising from the elastic-viscoplastic collapse of a spherical
pore. The two growth terms in the Lee-Tarver reaction rate equation [53] are re-
tained to represent the surface burning. Thus, the total reaction rate at any time is
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expressed as a sum of two terms, each of which is calculated separately; the reaction
rate during the ignition phase (as described by the simple ‘hot-spot’ model), and a
reaction rate for surface burning (due to Lee-Tarver),

dλ
dt

=
dλ
dt ignition

+
dλ
dt surface burn

(5.76)

where,
dλ
dt surface burn

= G1(1−λ)cλdPy + G2(1−λ)eλgPz (5.77)

whereP is the local pressure, andG1, c, d, y, G2, e, g, andz are constants.

5.3.7 Discussion

To describe the ignition phase of shock initiation of heterogeneous solid explo-
sives, a simple ‘hot-spot’ initiation model based on elastic-viscoplastic pore col-
lapse is currently under development. The model currently contains a number of
components commonly found in other mechanistic ‘hot-spot’models, particularly
those based on viscoplastic pore collapse. In particular, the simple ‘hot-spot’ model
utilises the Carroll and Holt [8] hollow sphere model, and isbuilt on the assumption
of an an incompressible solid phase during pore collapse. However, there is one
major important difference between the simple model and other similar models that
have been developed elsewhere; the assumption that pore collapse occurs as a result
of viscoplastic flow only is not followed in the simple ‘hot-spot’ model.

Computed results from the simple ‘hot-spot’ model have beencompared to the
corresponding results from the direct numerical simulations using PERUSE to as-
sess how well, or otherwise, the current simple model is performing, and to test
some of the assumptions in the model. Overall, for the problems studied, the simple
‘hot-spot’ model reproduces very well the results from the direct numerical simu-
lations. This gives confidence in the performance of the model at the current stage
of development. It has been shown that the differences between the results from the
direct numerical simulations and the simple ‘hot-spot’ model are due to the incom-
pressibility assumption of the solid phase material in the simple model. Overall, it
appears that this has only a small effect on the calculated results since the change in
density of the solid material as a result of shock compression is relatively small.

Viscoplastic ‘hot-spot’ models that have been developed elsewhere follow the
assumption made by Carroll and Holt [8] that of the three phases of pore collapse
(initial elastic, transitional elastic-viscoplastic, and fully viscoplastic), the first two
phases can be neglected (due to the volume change in these phases being small
compared to the final phase), and that pore collapse occurs asa result of viscoplas-
tic flow only in the solid material. This implicity assumes that the whole of the
spherical shell has yielded, and is undergoing plastic flow.For weak and moderate
shock waves, the direct numerical simulation work has shownthat pore collapse is
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in the transitional elastic-viscoplastic phase, and the whole of the spherical shell
does not yield. Therefore, in the simple ‘hot-spot’ model the assumption that pore
collapse occurs as a result of viscoplastic flow only is not followed, and all three
phases of pore collapse are included in the model.

For weak shocks, where the whole of the spherical shell does not yield, the
pore response, assuming viscoplastic flow only in the solid phase material, is sig-
nificantly different to that in the transitional elastic-viscoplastic phase. Where it
is assumed the pore collapse is entirely viscoplastic, the model under-predicts the
rate of pore collapse, which in turn gives significantly lower pore surface tempera-
tures. Since the problem is treated as accurately as possible in the PERUSE simu-
lations, and very good agreement is obtained between the simple model, assuming
elastic-viscoplastic flow, and PERUSE results, it appears that viscoplastic ‘hot-spot’
models are built on a false assumption. Thus, not including the initial elastic and
elastic-viscoplastic stages of the pore collapse is a shortcoming of the class of ‘hot-
spot’ models based on viscoplastic flow only.

Additional investigations are now required to further testthe range of valid-
ity of the simple ‘hot-spot’ model; for example, to higher applied pressures, and
increased range of porosities, particularly low porosities (≤1%). At higher pres-
sures, it is possible that the whole of the spherical shell yields and the collapse is
fully viscoplastic. Thus, the assumption made in other ‘hot-spot’ models that the
shell collapses as a result of viscoplastic flow only, may be valid at higher pres-
sures. However, if the shell is fully viscoplastic, this will not occur instantaneously
throughout the shell once the yield limit is exceeded as assumed in the viscoplastic
models. The viscoplastic region spreads out from the inner pore surface towards
the outer regions of the shell, and hence there will be a time lag before the shell
becomes completely viscoplastic. Thus, the models based onviscoplastic flow will
be in error while this occurs, and this discrepency may be significant.

The HMX-based explosive EDC37 has a low initial porosity∼0.2%, yet its
shock initiation behaviour [38] is similar to that of another HMX-based explosive
PBX9501 whose initial porosity is∼1.5% [36]. Investigations are required to ex-
amine whether viscous heating effects as a result of pore collapse can be significant
and a likely source of ignition in such low porosity explosives. A further complicat-
ing factor is that EDC37 has an energetic binder whereas PBX9501, like most other
heterogeneous solid explosives, does not. Thus, it may be necesary to include the
binder material in the calculations to ensure accurate modelling of the pore collapse
response.

One interesting aspect of the calculations is that the physics of the pore and
associated ‘hot-spot’ temperatures are very dependent on the (capture) rise time
of the shock. Artificial viscosity based hydrocodes typically spread shock waves
over a fixed number of meshes (∼3 or 4), and thus it takes a finite time for the
arriving shock wave to be formed. When the simple ‘hot-spot’model is considered
for implementation in a hydrocode a very accurate shock capturing method and/or
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fine meshing will probably be needed in hydrocode calculations to ensure that the
physics of the pore is accurately modelled. To capture the shock accurately without
placing excessive demand on computational resources, thismay require the simple
‘hot-spot’ model to be incorporated in an adaptive mesh refinement hydrocode.

As in the direct numerical simulation work, the current simple ‘hot-spot’ model
does not allow for the possibility that the binder material may be an important factor
in the determining the explosive response. If the importantpores are thought to be
located in the binder, and assuming that its mechanical properties are known, a
layer of this material can be included in the modelling between the pore and the
solid explosive to examine ‘hot-spot’ formation in this case. Of particular interest,
by comparison with corresponding results from direct numerical simulations, will
be the effect of assuming an incompressible binder, and whether this will tend to
limit the collapse and make ignition more difficult than a compressible one.

The next stage is to futher develop the simple ‘hot-spot’ model to include other
important physical and chemical processes of interest. Thetemperature rise in the
solid material will be followed by two other processes; heatconduction and chemi-
cal reaction. Both of these processes are dependent on and, at the same time, modify
the ‘hot-spot’ temperatures. Thus, the first step in future work shall be to include
heat conduction effects in the simple ‘hot-spot’ model, andto couple this to the
mechanics and heating effects of pore collapse.

5.4 Conclusions

Recent advances in computational capabilities now offer the chance to develop
more sophisticated models of explosive shock initiation. By explicitly considering
the fundamental physical and chemical processes involved,more complex models
that are able to predict the effect of changes in initial poresize distribution, explo-
sive particle size distribution, and binder material can bebuilt. The first stage in
developing such a model is to explicitly account for the formation and ignition of
‘hot-spots’.

Explicit ‘hot-spot’ modelling in one-dimension is a simplefirst step towards
addressing the complex behaviour of shock initiation in heterogeneous solid explo-
sives. The ‘hot-spot’ mechanism chosen in this work is elastic-viscoplastic flow
around collapsing pores in an explosive material. The approach is two-fold: (i)
perform direct numerical simulations to study ‘hot-spot’ formation and ignition in
detail, and (ii) develop a simplified ‘hot-spot’ ignition model that can be built into a
hydrocode. The former is used to aid understanding, and to also support the devel-
opment of the later.

The one-dimensional, multi-material, Lagrangian hydrocode PERUSE contains
an elastic-viscoplastic constitutive model. This code hasbeen used to perform direct
numerical simulations of ‘hot-spot’ initiation, where theformation of ‘hot-spots’
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occurs as a result of elastic-viscoplastic deformation dueto shock induced pore col-
lapse. This is a very efficient heating mechanism, and a likely source of ignition in
shock compressed heterogeneous explosives. Overall, the results obtained from the
PERUSE simulations are consistent with observations, and commonly held ideas,
regarding the shock initiation and sensitivity of heterogeneous solid explosives sub-
jected to weak shock waves. For example, calculated ‘hot-spot’ temperatures corre-
late well with porosity and pore size/grain size effects, and the mechanism by which
pores collapse to form ‘hot-spots’ as a result of elastic-viscoplastic flow also shows
the potential to describe the phenomenon of shock desensitisation.

A simple model based on elastic-viscoplastic pore collapse, that is intended for
incorporation in a hydrocode to describe ‘hot-spot’ initiation, has been developed
and described. In the simple model, all three phases of pore collapse are included;
initial elastic, transitional elastic-viscoplastic, andfully viscoplastic. The results
from the direct numerical simulations have been used to testthe assumptions and
results of the simple ‘hot-spot’ model. The simple model is performing well since
it is able to accurately reproduce the results from the PERUSE simulations. The
observed differences between the results from the two modelling approaches are
due to the incompressibility assumption of the solid phase material in the simple
‘hot-spot’ model. At the shock pressures studied, the incompressibility assumption
has only a small effect on the calculated results.

Viscoplastic ‘hot-spot’ models described in the literature assume that pore col-
lapse occurs as a result of viscoplastic flow only in the solidexplosive material. For
weak and moderate shock waves, the direct numerical modelling work work has
shown that the collapsing shell is never fully viscoplastic, and hence these models
are built on an invalid assumption. Where pore collapse is inthe transitional elastic-
viscoplastic phase, viscoplastic pore collapse models arein error; they under-predict
the rate of pore collapse, and give significantly lower ‘hot-spot’ temperatures.

Shock induced pore collapse is very dependent on the (capture) rise time of the
shock. Artificial viscosity based hydrocodes typically spread shock waves over a
fixed number of meshes (∼3 or 4). When the simple ‘hot-spot’ model is considered
for implementation in a hydrocode a very accurate shock capturing method and/or
fine meshing will be needed in calculations in conjunction with the simple model.
To capture shocks accurately without placing excessive demand on computational
resources, the simple ‘hot-spot’ model may need to be incorporated in an adaptive
mesh refinement hydrocode.

The explicit ‘hot-spot’ modelling work needs to be extendedto include the ef-
fects of binder on the explosive response since the important pores in an explosive
material may be located in the binder material rather than next to, or inside, the
explosive crystals. This will require knowledge of the equation of state and mate-
rial properties for the binder as well as the solid explosive. An added complication
is whether the binder is pure or is laden with fine explosive particles, termed ‘dirty
binder’, and the pore collapse response may be different as aresult of these particles



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 203

contaminating the binder material.
In the modelling, pore collapse has been treated as one-dimensional spherically

symmetric, however this may not reflect reality. Two-dimensional direct numerical
simulations of shock induced pore collapse are required to test whether the assump-
tion of spherical collapse is a valid approximation. Such detailed studies could
also lead to an improved understanding of the formation and subsequent ignition of
‘hot-spots’ in a heterogeneous solid explosive.

The next stages of development for the simple ‘hot-spot’ model are to include
heat conduction effects, and to couple these to the mechanics and heating effects
of pore collapse. In addition, reaction schemes for solid explosives need to be
developed. Subsequently coupling these to the elastic-viscoplastic pore collapse
model will then allow a comprehensive study of pore collapseas an ignition source.
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Figure 5.1: Network illustrating elastic-viscoplastic response.
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Figure 5.4: Time evolution of pore radius.a0=10 µm, φ0=1%, Ps=0.01 Mb,τ=0.1
µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.5: Temperature at surface of collapsing pore.a0=10 µm, φ0=1%,Ps=0.01
Mb, τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.6: Radial distribution of temperature through thesolid explosive (without
heat conduction).a0=10µm,φ0=1%,Ps=0.01 Mb,τ=0.1µs,Y=0.002 Mb,µ=0.0454
Mb, andη=0.001 Mbµs.
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Figure 5.7: Radial distribution of temperature through thesolid explosive (heat
conduction modelled).a0=10 µm, φ0=1%, Ps=0.01 Mb, τ=0.1 µs, Y=0.002 Mb,
µ=0.0454 Mb,η=0.001 Mbµs, andκs=4.1667×10−14 Mb cm3/cm/µs/K.



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 208

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time (µs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

P
or

e 
ra

di
us

 (µ
m

)

eta = 0.00001

eta = 0.0001
eta = 0.0005

eta = 0.001
eta = 0.003
eta = 0.005

Pore Radius vs Time

Figure 5.8: Time evolution of pore radius for different values of viscosity,η. a0=10
µm, φ0=1%,Ps=0.01 Mb,τ=0.1µs,Y=0.002 Mb, andµ=0.0454 Mb.
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Figure 5.9: Temperature at the surface of the collapsing pore for different values of
viscosity,η. a0=10µm, φ0=1%,Ps=0.01 Mb,τ=0.1µs,Y=0.002 Mb, andµ=0.0454
Mb.
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Figure 5.10: Computed results showing the effect of changesin initial porosity,φ0

(without heat conduction modelled).a0=10 µm, Ps=0.01 Mb,τ=0.1 µs, Y=0.002
Mb, µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.11: Computed results showing the effect of changesin the initial poros-
ity (heat conduction modelled).a0=10 µm, Ps=0.01 Mb,τ=0.1 µs, Y=0.002 Mb,
µ=0.0454 Mb,η=0.001 Mbµs, andκs=4.1667e-14 Mbcc/cm/µs/K.
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Figure 5.12: Radial distribution of temperature through the thickness of the explo-
sive. (φ0 = 5%,a0 = 10µm, andb0 = 27.14µm).

0.0 10.0 20.0 30.0 40.0 50.0
Distance (µm)

300

400

500

600

700

800

900

1000

Te
m

pe
ra

tu
re

 (K
)

t = 0.5 µs

t = 1.0 µs

t = 1.5 µs

t = 2.0 µs

t = 4.0 µs

Radial Distribution of Temperature

Figure 5.13: Radial distribution of temperature through the thickness of the explo-
sive. (φ0 = 5%,a0 = 17.2µm, andb0 = 46.57µm).
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Figure 5.14: Computed results showing the effect of changing the rise time of
the shock (without heat conduction modelled).a0=10 µm, φ0=1%, Ps=0.01 Mb,
Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.15: Computed results showing the effect of changing the rise time of
the shock with (dashed lines) and without (solid lines) heatconduction modelled.
a0=10 µm, φ0=1%,Ps=0.01 Mb,Y=0.002 Mb,µ=0.0454 Mb,η=0.001 Mbµs, and
κs=4.1667e-14 Mbcc/cm/µs/K.



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 214

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (µs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Po
re

 ra
di

us
 (µ

m
)

Ps = 10 kbars

Ps = 15 kbars

Ps = 20 kbars

Collapse of Pore

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (µs)

500

1000

1500

2000

2500

Te
m

pe
ra

tu
re

 (K
)

Ps = 10 kbars

Ps = 15 kbars

Ps = 20 kbars

Temperature at Pore Surface

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (µs)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
as

s 
fra

ct
io

n 
re

ac
te

d 
(%

 to
ta

l m
as

s)

Ps = 10 kbars

Ps = 15 kbars

Ps = 20 kbars

Mass Fraction Reacted

Figure 5.16: Computed results showing the effect of changesin the magnitude of
the pressure.a0=10µm, φ0=1%,τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001
Mb µs.
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Figure 5.17: Calculated double shock results.a0=10 µm, φ0=1%, Y=0.002 Mb,
µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.18: Comparison of results from simple ‘hot-spot’ model and PERUSE
calculation.a0=10µm, φ0=1%,Ps=0.01 Mb,τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb,
andη=0.001 Mbµs.
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Figure 5.19: Comparison of the time evolution of the inner shell radius (a), the outer
shell radius (b), and the interface between elastic and viscoplastic flow (c) from
simple ‘hot-spot’ model and PERUSE calculation.a0=10µm, φ0=1%,Ps=0.01 Mb,
τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.20: Calculated radial distribution of temperature through the solid ex-
plosive from simple ‘hot-spot’ model.a0=10 µm, φ0=1%, Ps=0.01 Mb,τ=0.1 µs,
Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Distance (µm)

300

400

500

600

700

800

Te
m

pe
ra

tu
re

 (K
)

t = 0.5 µs

t = 1.0 µs

t = 1.5 µs

t = 2.0 µs

t = 4.0 µs

Radial Distribution of Temperature

Figure 5.21: Calculated radial distribution of temperature through the solid explo-
sive from PERUSE calculation.a0=10µm, φ0=1%,Ps=0.01 Mb,τ=0.1µs,Y=0.002
Mb, µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.22: Comparison of results from simple ‘hot-spot’ model and PERUSE
calculations. a0=10 µm, φ0=1%, Ps=0.01 Mb, τ=0.1 µs, Y=0.002 Mb,µ=0.0454
Mb, andη=0.001 Mbµs.

0.0 1.0 2.0 3.0 4.0
Time (µs)

0

10

20

30

40

50

Po
re

 ra
di

us
 (µ

m
)

`hot-spot’ model

hydrocode (A1=0.114)

hydrocode (A1=0.2)

hydrocode (A1=0.4)

hydrocode (A1=1.0)

Collapse of Pore

a

b

c

Figure 5.23: Comparison of the time evolution of the different shell radii (inner
(a), outer (b), and plastic interface (c)) from simple ‘hot-spot’ model and PERUSE
calculations. a0=10 µm, φ0=1%, Ps=0.01 Mb, τ=0.1 µs, Y=0.002 Mb,µ=0.0454
Mb, andη=0.001 Mbµs.
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Figure 5.24: Comparison of results from simple ‘hot-spot’ model, modified ‘hot-
spot’ model (viscoplastic flow only), and PERUSE calculation. a0=10µm, φ0=1%,
Ps=0.01 Mb,τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.



CHAPTER 5. EXPLICIT ‘HOT-SPOT’ MODELLING 221

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (µs)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

P
or

e 
ra

di
us

 (µ
m

)

1% porosity

2% porosity

5% porosity

Collapse of Pore

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (µs)

300

400

500

600

700

800

900

1000

Te
m

pe
ra

tu
re

 (K
)

1% porosity

2% porosity

5% porosity

Temperature at Pore Surface

Figure 5.25: Comparison of computed results from simple ‘hot-spot’ model (dashed
lines) and PERUSE (solid lines) showing the effect of changes in initial porosity,
φ0. a0=10µm, τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.26: Comparison of computed results from simple ‘hot-spot’ model (dashed
lines) and PERUSE (solid lines) showing the effect of rise time of the shock,τ.
a0=10µm, φ0=1%,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.27: Comparison of computed results from simple ‘hot-spot’ model (dashed
lines) and PERUSE (solid lines) showing the effect of changes in the magnitude of
the pressure.a0=10µm,φ0=1%,τ=0.1µs,Y=0.002 Mb,µ=0.0454 Mb, andη=0.001
Mb µs.
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Figure 5.28: Calculated double shock results from simple ‘hot-spot’ model (dashed
lines) and PERUSE (solid lines).a0=10 µm, φ0=1%, δ=0.5 µs, Y=0.002 Mb,
µ=0.0454 Mb, andη=0.001 Mbµs.
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Figure 5.29: Calculated double shock results from simple ‘hot-spot’ model (dashed
lines) and PERUSE (solid lines).a0=10 µm, φ0=1%, δ=1.0 µs, Y=0.002 Mb,
µ=0.0454 Mb, andη=0.001 Mbµs.



Chapter 6

Conclusions and Future Work

Heterogeneous solid explosives are composed primarily of amix of explosive
crystals, binder material, and inter and intra-crystalline pores, where the pores and
explosive crystals are usually of various sizes. It is generally accepted that the shock
initiation of such explosives arises from the creation of so-called ‘hot-spots’,i.e.
small regions of high temperature that are surrounded by cooler bulk material. ‘Hot-
spots’ are created as a result of an incident shock wave interacting with material
discontinuities which act as concentration points for the supplied energy and locally
trigger the reaction in the explosive. ‘Hot-spots’ are therefore an essential ingredient
in any theory on shock initiation.

For many years, continuum-based reactive burn models have been used to cal-
culate the shock initiation behaviour of heterogeneous solid explosives. In the
continuum-level models, effects occuring at the scale of the pores and explosive
crystals,e.g.formation and ignition of ‘hot-spots’, are implicitly aggregated to cal-
culate the bulk response. The next generation of shock initiation models, so-called
physics-based or mesoscale models, are currently being developed to exploit ad-
vances in computing power, where the goal is to develop models that explicitly take
account of the important physical and chemical processes that occur at the scale
of the individual components in reactive flows. Only throughthe development of
physics-based or mesoscale models will the effects of changes in explosive mor-
phology (pore size distribution, crystal or grain size distribution, binder material
etc) on explosive response be able to be predicted. However, such work is still in
its infancy, and there is a long way to go before these types ofmodels are routinely
used to calculate explosive shock initiation behaviour. Inthis thesis, the mathemat-
ical and numerical modelling of shock initiation in heterogeneous explosives from
the aspect of both continuum and mesoscale modelling has been considered.

The majority of continuum-level reactive burn models currently used in hy-
drocodes to model shock initiation in heterogeneous solid explosives use pressure-
dependent reaction rates. For evaluation purposes the popular, pressure-dependent,

226
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Lee-Tarver reactive burn model has been implemented and validated in a one-
dimensional hydrocode. The main deficiency of the Lee-Tarver model, or any
pressure-dependent model, is that there is no mechanism to predict explosive be-
haviour under double shock compression. In particular, pressure-based models can-
not account for the phenomenon of ‘shock desensitisation’,where a weak precursor
shock renders an explosive less sensitive to following stronger shocks. For any re-
action rate based predominately on the local pressure, it isnecessary to consider an
additional desensitisation model to account for double shock observations.

To provide a capability to model the effects of shock desensitisation within the
confines of the Lee-Tarver model, a simple but physically realistic desensitisation
model has been developed. To examine its validity, the modelhas been applied to
data, where desensitisation by preshocking has been observed, with mixed results.
It is concluded that the simple desensitisation model is suitable for modelling dou-
ble shock situations where there is little or no reaction in the first shock. Applying
the model where there is significant reaction in the precursor wave has yielded poor
agreement with experimental data. The fact that it is necessary to postulate an addi-
tional desensitisation model to account for double shock observations demonstrates
that reaction rates do not depend substantially on the localpressure. It follows that
pressure-dependent models are based on a false premise, andthat the predictive
capability of such models is low.

CREST is a new continuum reactive burn model that, by utilising entropy-,
rather than pressure-, dependent reaction rates provides an improved predictive ca-
pability to model shock initiation behaviour that, importantly, removes the need
for an additional desensitisation model for double shocks.The CREST model has
been successfully implemented and validated in a one-dimensional, and a number
of two-dimensional hydrocodes so that a wide range of explosive problems can be
simulated using the model. However, during the hydrocode implementation and use
of CREST, it was found that the move to entropy-based reaction rates introduces a
number of computational problems not associated with pressure-based models.

The parameters in CREST’s reaction rate model are fitted to particle velocity
gauge data from gas-gun experiments. In the modelling of explosive impact prob-
lems such as gas-gun shots, CREST over-predicts the rate of energy release in an
explosive adjacent the impact surface due to the classical ‘wall-heating’ error. This
could affect the selection of the reaction rate parameters in the model, and has the
potential to lead to inaccuarte conclusions being made about the reactive behaviour
of an explosive. From the explosives that have so far been parameterised for the
model, ‘wall-heating’ has only a very small effect on the calculated results from
CREST. However, this may not be the case for other explosivesof interest, and in
future appropriate methods will be applied in an attempt to minimise the effect of
this long standing problem in relation to CREST simulations.

A study of the sensitivity of CREST calculations to mesh density for both a
HMX-based, and a TATB-based explosive, has indicated that an entropy-dependent
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model requires a finer mesh than a pressure-dependent model to achieve mesh con-
verged results. An independent study, using a different entropy-dependent reac-
tion rate and different equations of state, came to similar conclusions. To over-
come the more restrictive mesh size requirements of an entropy-dependent model,
CREST has been implemented into a two-dimensional Eulerianadaptive mesh re-
finement hydrocode with an appropriate refinement criteria defined for the model.
This will enable large problems of interest to be calculatedat the size of mesh
required by CREST to obtain mesh converged results. The increased mesh require-
ments for entropy-based models are not yet understood, and further work is required
to understand the mesh convergence properties of entropy-dependent models. The
mesh sensitivity study will also be extended to two-dimensional calculations to ex-
amine whether the findings in one-dimensional calculationsare also true in two-
dimensions.

In CREST, an explosive’s initial porosity is included as a parameter in the non-
reactive equation of state using the Snowplough porosity model. Application of the
Snowplough model, however, produces undesirable numerical oscillations in the
calculated function of entropy of the solid phase explosive, the variable upon which
the CREST reaction rate model is dependent. This could give rise to numerical
instabilities in CREST simulations. To improve the modelling of shocks in porous
explosives, the Snowplough model was modified by removing the assumption that
the sound speed is zero while the material is in its porous state. Although this
modification removes unwanted numerical oscillations in entropy calculations, it is
only applicable to low porosity explosives, and hence is viewed as a short-term fix.
In future, to both improve the modelling of shocks in porous materials and enable a
larger range of porosities to be modelled with CREST, the Snowplough model will
be replaced by a P-α porosity model.

To examine the predictive capability of CREST, a model for the insensitive high
explosive PBX9502, fitted to one-dimensional data of the shock to detonation tran-
sition, has been applied, without modification, to two-dimensional detonation prop-
agation data. CREST accurately matches detonation waveshape data, predicts the
failure diameter of the explosive to within∼1mm of the experimental value, and
over most the range of charge sizes, the diameter effect cuvre for PBX9502 is well
represented. The only discrepency with the experimental detonation data is that
CREST fails to predict the upturn in the diameter effect curve at large charge sizes.
It is recognised that a slow reaction component needs to be added to the model
to represent this feature. Once this problem has been addressed, future work will
examine whether CREST can also predict the effects of temperature on PBX9502
detonation data.

Overall, the CREST model is giving promising results in modelling a range of
different initiation and detonation phenomena. CREST appears capable of predict-
ing experiments outside its fitting regime, and this gives confidence in the ability
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of the model to accurately simulate a wide range of initiation and detonation phe-
nomena; not only is CREST a model for the shock to detonation transition, it is also
a model for detonation propagation. In future, the model will be applied to other
explosive phenomena of interest,e.g. corner turning, detonation extinctionetc, to
examine, (i) the wider applicability of CREST, and (ii) to look for any deficiencies
with the current model. Once the model has been applied to a wider range of ex-
plosive phenomena, a clearer picture of the predictive capability of the model will
emerge.

A constrained least squares method has been applied to shocktime of arrival
data to provide a fast and efficient solution method for determining run-distances
and run-times to detonation using a technique devised at LosAlamos National Lab-
oratory (LANL) for fitting shock trajectory data. The methodcan be applied equally
well to experimental and calculated data. Good fits to experimental shock trajectory
data from sustained single shock EDC37 gas-gun experimentshave been obtained,
and the derived run-distances and run-times to detonation are in very close agree-
ment with corresponding values quoted by LANL, thus validating the application
of the method.

The least squares method was then applied to calculated shock time of arrival
data from CREST calculations of EDC37 gas-gun shots. Overall, the calculated
run-distance to detonation data is in good agreement with experiment, however,
the fit to the EDC37 Pop-Plot starts to diverge at low pressures, indicating that the
EDC37 CREST model needs to be improved in the low pressure region. Future
work will expand the capabilities of the least squares program to output shock ve-
locities at each of the particle velocity gauge locations ina gas-gun experiment, as
well as giving the run-distances and run-times to detonation. This data, along with
the particle velocities at the shock at each gauge location,can be used to give ad-
ditional Hugoniot points. This will increase the amount of non-reactive Hugoniot
data available from which to develop non-reacted equationsof state for explosives.

Continuum-level reactive burn models such as Lee-Tarver and CREST, do not
explicitly account for phenomena occuring at the mesoscale, e.g.the formation and
ignition of ‘hot-spots’. As a result, such models are unableto account for the effect
of changes in crystal or grain size, pore size, and binder distribution on the explo-
sive response. To predict the effect of changes in morphology, the model constants
would have to be re-calibrated to experimental data. As a simple first step towards
addressing the complex phenomena occuring at the mesoscale, explicit modelling
of ‘hot-spot’ initiation in one-dimension has been performed. Using a simple model
for the explosive that consists of a pore at the centre of a spherical shell of solid ma-
terial, ‘hot-spots’ are formed as a result of elastic-viscoplastic flow in the collapsing
solid shell. Direct numerical simulations to study ‘hot-spot’ initiation in detail were
initially performed. Following this, a simple ‘hot-spot’ initiation model that can be
built into a hydrocode for macroscopic modelling has been developed.

Results from the simple ‘hot-spot’ model compare very well with corresponding
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results from the direct numerical simulations. The observed differences between
the two modelling approaches are due to the incompressibility assumption in the
simple model. At the shock pressures studied, the incompressibility assumption
has only a small effect on the calculated results. The results obtained from both
approaches are consistent with observations, and commonlyheld ideas regarding
the shock initiation and sensitivity of heterogeneous solid explosives. This gives
confidence in the approach of using an elastic-viscoplasticpore collapse model to
describe ‘hot-spot’ initiation in heterogeneous solid explosives.

Whilst developing the simple ‘hot-spot’ initiation model,it was found that vis-
coplastic ‘hot-spot’ models described in the literature are built on an invalid assump-
tion. These models assume that pore collapse occurs as a result of viscoplastic flow
only in the solid phase material. The direct numerical modelling work has shown
that, for weak and moderate shock waves, the collapsing solid shell is never fully
viscoplastic. Where pore collapse is in the transitional elastic-viscoplastic phase,
viscoplastic pore collapse models under-predict the rate of pore collapse, and give
significantly lower ‘hot-spot’ temperatures in comparisonto the simple ‘hot-spot’
initiation model. Thus, in the shock regimes studied, the viscoplastic ‘hot-spot’
models are in error.

It is acknowledged that the important pores in a heterogeneous solid explosive
may be located in the binder material. Thus, in future the modelling work will be
extended to include the binder material. Assuming that the equation of state and
constitutive properties of the binder are known, the effects on ‘hot-spot’ initiation
of pure versus ‘dirty’ binders, and inert versus energetic binders, can be studied.
Future work will also examine the validity of the assumptionthat pore collapse
is spherically symmetric. To address this issue, two-dimensional direct numerical
simulations of shock induced pore collapse are required. This study could also be
extended to examine whether the geometry of the ‘pores’ is animportant factor in
determining the explosive response.

The explicit ‘hot-spot’ modelling work performed in this thesis provides a good
starting point for further development of the simple ‘hot-spot’ initiation model. In
the short term, improvements will be made to the simple modelby including heat
conduction effects since ‘hot-spot’ temperatures can be cooled by heat conduction
to the surrounding bulk material. In addition, reaction schemes for solid explosives
need to be developed and included so that the whole process of‘hot-spot’ formation
and localised heating, through to ‘hot-spot’ ignition can be modelled. To build a
comprehensive model to describe mesoscale effects, consideration will be given
longer term to developing a model for the growth of reaction as the explosive burn
spreads out from ‘hot-spots’ to consume the bulk of the material.
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Appendix A - Flowchart Showing the Key Steps
in the Least Squares Program
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