Loughborough University Institutional Repository

A study of polyaniline membranes for gas separations

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/8003
Publisher: © Yogesh Gupta
Please cite the published version.

This item is held in Loughborough University's Institutional Repository (https://dspace.Iboro.ac.uk/) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

Attribution-NonCommercial-NoDerius 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:
BY:
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes,

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer 민

For the full text of this licence, please go to:

A STUDY OF POLYANILINE MEMBRANES

 FOR GAS SEPARATIONS by
YOGESH GUPTA

A Doctoral Thesis submitted to the Faculty of Engineering at Loughborough University in the partial fulfilment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

in
Chemical Engineering

Advanced Separation Techñologies Group
Department of Chemical Engineering
Loughborough University

ABSTRACT

Membrane based gas separations are proven to be technically attractive because of their simplicity and low energy costs, although they are often limited by insufficient flux, selectivity and stability. During the past thirty years, major developments in this technology have been made by developing high flux asymmetric membranes, and large surface area membrane modules. Today, in the present market, the sales of the membrane gas separation equipments have grown to become a $\$ 150$ million per year business, and substantial growth in the near future is likely.

More than 90% of membrane gas separation business involves the separation of non-condensable gases, i.e., nitrogen from air, carbon dioxide from methane, and hydrogen from nitrogen, argon, or methane. However, a large potential market for membrane gas separation lies in refineries. The separations of hydrogen/hydrocarbon and olefin/paraffin are regarded as import processes (although challenging ones) in the petrochemical industry. The membrane based separation process to separate olefins from paraffins is likely to be developed to the commercial state in the next few years. Industry's demands for increasing the separation effectiveness and productivity have encouraged conducting research into development of new membrane materials. Polyaniline is regarded as, so far, the best alternative for gas separations, since the molecular spacing of polymer chains can be controlled by its interesting doping/dedoping chemistry.

- A novel method to make reproducible defect-free dense self-supported polyaniline films with the thicknesses between 2 and $6 \mu \mathrm{~m}$, and polyaniline nanofilm membranes with selective polyaniline layer thicknesses between 300 and 800 nm supported on a porous polyvinylidene fluoride (PVDF) substrate is developed. Various undoped self-supported polyaniline (EB) films (polyaniline film thickness $=2$ to $6 \mu \mathrm{~m}$), and polyaniline/PVDF composite membranes (selective polyaniline layer thickness $=300$ to 800 nm) were tested to measure their transport properties for various pure gases such as $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$. The ideal (pure gas) selectivities ($\alpha_{\mathrm{A} / \mathrm{B}}$) obtained for the gas pairs $\mathrm{H}_{2} / \mathrm{N}_{2}$ (348), $\mathrm{H}_{2} / \mathrm{O}_{2}$ (69.5), $\mathrm{H}_{2} / \mathrm{CO}_{2}$ (8.6), $\mathrm{CO}_{2} / \mathrm{O}_{2}$ (8.1), $\mathrm{CO}_{2} / \mathrm{N}_{2}$ (40.4), $\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}(757), \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ (256), in the case of undoped self supported
polyaniline films, were considerably higher than those obtained by other researchers, which surpass the selectivities of the majority of the conventional polymeric materials. The results obtained during this work were reproducible for both self-supported polyaniline films and ultrathin polyaniline films supported on a porous PVDF substrate.

The thickness of the polyaniline membrane seemed to have an effect on the productivity (pressure normalised flux) of the permeating gases. The productivity values obtained for all permeating gases were significantly higher in the case of ultrathin polyaniline membranes. The productivity increased almost linearly with decreasing polyaniline film thickness. The pure gas selectivity values for various gas pairs through ultrathin polyaniline membranes supported on porous PVDF substrate (selective polyaniline layer thickness $=0.4$ to 1.37 $\mu \mathrm{m}$) were similar to those of self-supported polyaniline membranes (selective polyaniline film thickness $=2$ to $3 \mu \mathrm{~m}$).

The permeation behaviour of binary gas mixtures (i.e. $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$) through self-supported polyaniline membranes and polyaniline/PVDF composite membranes at various feed compositions was investigated. The pure gas and mixed gas selectivity values were similar for the non-polar mixed gas system ($\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system). The model suggested, to predict mixed gas permeance, is good for achieving the accurate permeance values for non-polar mixed gas systems.

Extraordinarily high gas transport rates (GTR) were obtained for polyaniline based nano-membranes. GTR for various gases were higher by a magnitude of 10^{4} than those reported for self-supported polyaniline membranes.

From the industrial point of view, the productivity (permeance) can be significantly increased by using ultrathin polyaniline membranes having higher permeability and gas flux with the similar separation efficiency for various gas pairs.

Key words: Polyaniline, gas separation, polyaniline nano-membranes, composite membranes, productivity, permeance, separation efficiency.

ACKNOWLEDGEMENT

I would like to thank my supervisors, Prof. Richard J Wakeman and Dr. Klaus Hellgardt, for their constant supervision and guidance over the past three years. Their pursuit of excellence, enthusiasm and total commitment as educators have made this work possible. Special recognition is also paid to their incredible patience, fruitful discussions and excellent ideas throughout the research. Furthermore, I would like to thank Prof. Wakeman for his proof reading of this dissertation.

I would also like to express my utmost appreciation for the Postgraduate Studentship given by the Department of Chemical Engineering, Loughborough University, for making this research possible.

I am deeply indebted to the staff in the laboratory and the workshop, who were always available to help during the period of my experimental work.

A special thank to Mr. Peter Chapman at Imperial College, London (Prof. Andrew G Livingston's Research Group), for his help to analyse polymer samples with Gel Permeation Chromatography (GPC).

The support from all student colleagues is also acknowledged for their practical assistance, know-how and constantly providing creative ideas. I would also like to thank the staff members of Pilkington Library for their continuous help.

At the end I would like to extend my sincere regards and gratitude to my parents. This sojourn would have been tougher and endless had the love, support, affection, guidance and directive criticism not been there. Acknowledging their love and support is beyond my wits and words.

LIST OF CONTENTS

CHAPTER 1 - INTRODUCTION

1. THE EARLY YEARS - A SCIENTIFIC TOOL 1
2. MOTIVATION AND OBJECTIVES 3
3. RAISON D'ETRE FOR THIS PROJECT 5
4. OUTLINE 9
CHAPTER 2 - LITERATURE REVIEW
5. FUNDAMENTALS 11
1.1. Transport Parameters 12
6. GENERAL THEORETICAL BACKGROUND 14
2.1. Membrane Transport Models 16
2.1.1. Irreversible Thermodynamics 16
2.1.2. Preferential Sorption - Capillary Flow Theory 18
2.1.3. The Solution-Diffusion Model 19
2.1.3.1. Macroscopic (Continuum) Models 20
2.1.3.2. Microscopic Models 26
2.1.3.2.1. Transport in Rubbery Polymers 27
2.1.3.2.1.1. Free-Volume Theory 28
2.1.3.2.2. Transport in Glassy Polymers 30
2.1.3.2.2.1. Dual-Mode Sorption Model 32
2.1.3.3. Molecular Models 36
2.2. Effect of Operating Conditions on Membrane Permeability 37
2.2.1. Effect of Concentration and Pressure on Diffusion Coefficient 37
2.2.2. Effect of Temperature on Permeability 40
2.2.3. Effect of Concentration Polarisation 42
2.2.3.1. Concentration Polarisation in Gas Separation Processes 42
2.2.4. Effect of Plasticisation on Permeability 44
7. NEXT GENERATION MEMBRANES - OPPORTUNITIES AND HURDLES 46
3.1. A Practical Path Forward to the Next Generation Membranes 48
8. HYDROGEN PURIFICATION 49
9. OLEFIN / PARAFFIN SEPARATION 53
10. SELECTION OF THE POLYMERIC MATERIAL 57
11. POLYANILINE - A POSSIBLE SOLUTION ??? 59
12. CONCLUSION 65
CHAPTER 3 - EXPERIMENTAL TECHNIQUES
13. MATERIALS AND INSTRUMENTATION 67
14. SYNTHESIS OF POLYANILINE 68
2.1. A General Chemical Route to Produce Polyaniline 69
15. POLYANILINE CHARACTERISATION 72
3.1. Fourier Transform Infrared (FT-IR) Spectroscopy 72
3.1.1. Sample Preparation 72
3.2. UV / Vis Spectrometry 73
3.2.1. Sample Preparation 74
3.3. Polymer Morphology 74
3.3.1. Sample Preparation 74
3.4. Polymer Density Measurements (Pycnometry) 75
3.4.1. Sample Preparation 76
3.5. Molecular Weight Measurements 76
3.5.1. Gel Permeation Chromatography (GPC) 78
3.5.1.1. Primary Calibration 78
3.5.1.2. Sample Preparation for GPC Analysis 79
16. PREPARATION OF POLYANILINE FILMS 80
4.1. Un-doped Self-supported Polyaniline Films 80
4.1.1. Method to Prepare Self-supported Polyaniline Membranes 81
4.2. Polyaniline based Nano-Membranes 82
4.2.1. Method to Prepare Polyaniline/PVDF Composite Membranes 83
17. CHARACTERISATION OF POLYANILINE MEMBRANES 84
5.1. Membrane Morphology Analysis 84
5.1.1. Field Emission Gun Scanning Electron Microscopy (FEGSEM) 84
5.1.1.1. Sample Preparation and Handling 85
5.1.2. Atomic Force Microscopy (AFM) 85
5.1.2.1. Sample Preparation 86
5.2. Mechanical Properties 86
5.2.1. Sample Preparation 87
5.3. Experimental Determination of Gas Transport Properties 87
5.3.1. Construction of Gas Permeation Experimental Set-up 90
5.3.1.1. Feed Gas Supply and Regulatory System 90
5.3.1.2. Membrane Permeation Cell 90
5.3.1.3. Permeate (Downstream) Section 90
5.3.1.4. Mass Spectrometer In-line Sample Interface 91
5.3.1.5. Vacuum Supply Section. 91
5.3.2. Operational Procedure 92
5.3.2.1. Inherent Leak Testing 92
5.3.2.2. Permeate Volume Calibration 92
5.3.2.2.1. Manometric Method 92
5.3.2.2.2. Gas Permeation Method 93
5.3.2.3. Membrane Installation and Membrane Defect Test 94
5.3.2.4. Single (Pure) Gas Permeation Experiment 95
5.3.2.5. Mixed Gas Permeation Experiment 96
CHAPTER 4 - RESULTS AND DISCUSSION
18. MECHANISM OF OXIDATIVE POLYMERISATION OF ANILINE 99
19. POLYANILINE CHARACTERISATION 106
2.1. Fourier Transform Infrared (FTIR) Spectroscopy 106
2.2. UV - Vis Spectrometry 109
2.3. Polymer Morphology 111
2.4. Polymer Density Measurement (Pycnometer) 115
2.5. Molecular Weight Measurements 115
20. POLYANILINE MEMBRNAES 121
3.1. Self-supported Polyaniline EB Films 121
3.2. Polyaniline Nano-Membranes 123
21. CHARACTERISATION OF POLYANILINE FILMS 126
4.1. Morphology Analysis 126
4.2. Mechanical Properties of Polyaniline Membranes 128
4.3. Membrane Permeation Cell 132
4.3.1. Construction of a Membrane Permeation Cell 132
4.3.2. Permeation Cell Downstream Section Volume Calibration 135
4.4. Gas Transport Properties of Polyaniline Membranes 136
4.4.1. Membrane Defects Test 136
4.4.2. \quad Single (Pure) Gas Permeation Experiments 138
4.4.2.1. Polyaniline Membranes for Hydrogen Purification. 138
4.4.2.1.1. Self-supported Polyaniline Films for Hydrogen Purification 138
4.4.2.1.2. Polyaniline/PVDF Composite Films for Hydrogen Purification 146
4.4.2.2. Polyaniline Membranes for Olefin/Paraffin Separations 155
4.4.2.2.1. Self-supported Polyaniline Films for Olefin/Paraffins Separations 156
4.4.2.2.2. Polyaniline/PVDF composite Films for Olefin/Paraffin Separations 160
4.4.3. Correlation of Selectivity vs Permeability of Polyaniline Membranes 166
4.4.4. Mixed Gas Permeation Experiments 175
4.4.4.1. Mixed Gas Permeation Measurements for Undoped Self-supported polyaniline Membranes 179
4.4.4.2. Mixed Gas Permeation Measurements for Undoped Polyaniline/PVDF composite Membranes 187
CHAPTER 5 - CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS
22. CONCLUSIONS 195
1.1. Synthesis of Polyaniline 195
1.2. Characterisation of Polyaniline Powder. 196
1.3. Polyaniline Membranes 197
1.4. Characterisation of Polyaniline Membranes 198
23. RECOMMENDATIONS FOR FUTURE WORK. 200
2.1. Polyaniline Synthesis 200
2.2. Polyaniline Membranes 201

CHAPTER 6 - LIST OF REFERENCES

LIST OF APPENDICES

APPENDIX 1 - LIST OF SYMBOLS
APPENDIX 2 - DESIGN OF THE PERMEATION CELL
APPENDIX 3 - CALIBRATION OF PERMEATE SECTION VOLUME
APPENDIX 4 - CALCULATING POLYANILINE PERCENTAGE YIELD
APPENDIX 5 - ESTIMATING POLYANILINE FILM THICKNESS
APPENDIX 6 - CALCULATING PERMEABILITY, IDEAL (PURE GAS) AND REAL (MIXED GAS) SEPARATION EFFICIENCY

APPENDIX 7 - CALIBRATION OF MASS SPECTROMETER
APPENDIX 8 - LIST OF PUBLICATIONS

LIST OF FIGURES

CHAPTER 1 - INTRODUCTION

Abstract

Figure 1.1 Illustration of the hydrocarbon condensation problem on the residue side of a hydrogen-permeable membrane. As hydrogen is removed from the pessurised feed, the gas becomes enriched in condensable hydrocarbons, and its dew point increases [14]

Figure 1. 2 The generalised composition of polyaniline [63] 7
Figure 1.3 (i) quinoid rings (reduced repeat units); (ii) benzenoid rings (oxidised repeat units) 7
Figure 1.4 (i) reduced leucoemeraldine form; (ii) half-oxidised emeraldine form; (iii) completely oxidised pernigraniline form 7
CHAPTER 2 - LITERATURE REVIEW
Figure 2.1 Schematic representation of mass transport phenomena occurring in a solution-diffusion membrane 12
Figure 2. 2 Schematic of gas separation membrane module 14
Figure 2. 3 Membrane Based Gas Transport and Separation Mechanisms [16] 15
Figure 2.4 Preferential sorption capillary flow - Sourirajan model [122] 18
Figure 2.5 Concentration (c) and pressure (p) profiles in solution-diffusion through nonporous membranes [125] 21
Figure 2. 6 Polymer specific volume as a function of temperature [107]. 31
Figure 2.7 Typical forms for concentration dependent diffusion coefficients in polymer media [72] 38
Figure 2. 8 Typical forms of permeability dependence on pressure during gas transport through polymeric membranes [107] 39
Figure 2.9 Hypothetical present and desired free-volume distribution in polymers considered as membrane materials for gas separations [78] 46
Figure 2. 10 Schematic representation of chemisorption of olefin by a metal complex (Dewar-Chatt Model) [182] 55
Figure 2. 11 Mechanism of facilitated transport: a) mobile Ag^{+}-carriers; b) fixed-site Ag^{+}-carriers [183] 56
Figure 2. 12 Repeat unit of several pertinent conducting polymers [214]. 60
Figure 2. 13 Polyaniline represented with its four basic species; (a) benzenoid-amine state, (b) benzenoid-ammonium salt state, (c) dope-semiquinone radical state, (d) quinoid-diimine state 61
Figure 2. 14 Chemical structure of polyaniline; protonation-induced spin un-pairing in polyaniline, conversion from insulator to metal with no change in the number of electrons [228] 62
Figure 2. 15 Conductivity of electronically conducting polymer [242] 63
CHAPTER 3 - EXPERIMENTAL TECHNIQUES
Figure 3. 1 Steps involved in chemical synthesis of polyaniline 70
Figure 3.2 Histogram demonstrating a possible molecular weight distribution in a polymer 76
Figure 3.3 Schematic of single-gas permeation experiment set-up. 89
Figure 3.4 Modification in gas feed section to perform mixed gas permeation experiments. 97
CHAPTER 4 - RESULTS AND DISCUSSION
Figure 4. 1 Effect of initial reaction solution pH on polyaniline yield. 100
Figure 4.2 (a) Reaction solution temperature profile during the oxidative polymerisation of aniline in 1 Mp -TSA; (b) Ratio of pH of reaction medium at any time $\left(\mathrm{pH}_{\mathrm{t}}\right)$ to the initial solution $\mathrm{pH}\left(\mathrm{pH}_{0}\right)$, for polymerisation of aniline in 1 M p -TSA, at 0 C 101
Figure 4.3 Polyaniline polymerisation reaction stoichiometry 102
Figure 4.4 Variation of polyaniline yield, as a function of oxidant/aniline mole ratio. 102
Figure 4.5 Effect of polymerisation reaction temperature on polyaniline yield 103
Figure 4.6 Proposed polymerisation mechanism of aniline [303] 105
Figure 4.7 FTIR spectra of polyaniline powder: (a) reaction temperature 23.8 C ;
(b) reaction temperature 15 C ; (c) reaction temperature 10 C ; (d) reaction temperature 5 C ; (e) reaction temperature 0 C 107
Figure 4. $8 \quad \mathrm{UV}$-Vis spectra of polyaniline solutions in NMP: (a) reaction temperature23.8 C ; (b) reaction temperature 15 C ; (c) reaction temperature 10 C ;(d) reaction temperature 5 C ; (e) reaction temperature 0 C109
Figure 4.9 Scanning electron micrographs of polyaniline powder prepared in a liquid reaction mixture: polymerisation reaction temperature: (a) 21 C ; (b) 10 C ; (c) 5 C ; (d) 0 C . 113
Figure 4.10 Scanning electron micrographs of polyaniline powder prepared in a frozen reaction mixture: polymerisation reaction temperature: (a) -10 C; (b) -20 C 114
Figure 4. 11 Straight line plot of log (molecular weight) vs GPC retention time for monodispersed polystyrene molecular weight standards at column temperature of 100 C 117
Figure 4.12 GPC chromatograph for polyaniline sample synthesised at 21 C. 118
Figure 4. 13 GPC chromatograph for polyaniline sample synthesised at 0 C 118
Figure 4. 14 GPC chromatograph for polyaniline sample synthesised at -20 C. 119
Figure 4.15 Graph of molecular weight vs polymerisation reaction temperature for various polyaniline batches 120
Figure 4. 16 Scanning electron micrographs of a cross section of self-supported dense polyaniline films: polyaniline film thickness (a) $6.9 \mu \mathrm{~m}$; (b) $4.0 \mu \mathrm{~m}$. 122
Figure 4. 17 SEM images of polyaniline/PVDF composite membranes. 124
Figure 4. 18 Scanning electron micrographs of cross section of ultrathin polyaniline films supported on PVDF support structure: selective polyaniline layer thickness
(a) $1.9 \mu \mathrm{~m}$; (b) 501 nm ; (c) 325 nm 126
Figure 4. 19 Sectional analysis of ultrathin polyaniline layer: (a) AFM image of ultrathin polyaniline film supported on PVDF; (b) the sectional height analysis of the film. 127
Figure 4. 20 Scanning electron micrograph of ultrathin polyaniline film supported on PVDF substrate 128
Figure 4. 21 Mechanical properties of polyaniline membranes with approximately $100 \mu \mathrm{~m}$ film thickness cast from different polyaniline samples (produced at various polymerisation reaction temperatures) 129
Figure 4. 22 Schematic representation to explain toughness of the polymeric films. 130
Figure 4. 23 Graph of Young's Modulus and Break Stress versus polyaniline polymerisation reaction temperature 131
Figure 4. 24 Plan and elevation drawings of membrane permeation cell 134
Figure 4. 25 Graph of rise in the permeate section pressure vs time to test the defects on polyaniline membrane with oxygen and nitrogen as permeating test gases. 137
Figure 4. 26 Permeability, in Barrers (1 Barrer $=10^{-10} \mathrm{~cm}^{3}{ }_{(S T P)} \cdot \mathrm{cm} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}$), for various gases permeating through freestanding undoped polyaniline membranes. 141
Figure 4.27 The performance of undoped self-supported polyaniline membranes characterised with productivity (permeance) in Gas Permeation Unit 143
Figure 4. 28 Ideal separation factors for various gas pairs through self-supported polyaniline membranes 145
Figure 4. 29 Schematic cross section of a polyaniline/PVDF composite membrane. 147
Figure 4.30 The permeance of various permeating gases through undoped ultrathin polyaniline membranes supported on PVDF substrate. 150
Figure 4.31 Ideal separation factors of various gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate. 151
Figure 4.32 Permeability of various gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$ through polyaniline membranes in Barrers. 152
Figure 4. 33 3-D structure of emeraldine base form of polyaniline. 152
Figure 4.34 Effect of polyaniline film thickness on ideal separation factor values of various gas pairs for polyaniline membranes 154
Figure 4.35 Effect of polyaniline film thickness on ideal separation factor values of various gas pairs for polyaniline membranes 154
Figure 4.36 Pressure normalised flux values of ethylene, ethane, propylene and propane through undoped self-supported polyaniline membranes 157
Figure 4.37 Ideal separation factors for ethylene/ethane and propylene/propane through self-supported polyaniline films. 158
Figure 4.38 Ideal separation factors for various gas pairs as a function of self-supported polyaniline membrane thickness 159
Figure 4. 39 The permeance (in GPU) of ethylene, ethane, propylene and propane through undoped ultrathin polyaniline membranes supported on PVDF substrate. 161
Figure 4.40 Ideal separation factor values of $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate. 162
Figure 4.41 Ideal separation factor values of various gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate. 163
Figure 4.42 Permeability values of ethylene, ethane, propylene and propane through polyaniline membranes 164

Figure 4. 43	Ideal separation factor values of $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}$,
	$\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}$, and $\mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$ as a function of selective polyaniline
	film thickness.. 165

Figure 4. 44 Ideal separation factor values of $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$, $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$, and $\mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ as a function of selective polyaniline film thickness. 165
Figure 4. 45 Oxygen/nitrogen selectivity as a function of oxygen permeability for all known membrane materials as of 1991 (Robeson's plot of oxygen permeability and oxygen/nitrogen selectivity). 168
Figure 4. 46 Relationship between $\mathrm{O}_{2} / \mathrm{N}_{2}$ pure gas selectivity and O_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes. 169
Figure 4.47 Relationship between $\mathrm{H}_{2} / \mathrm{N}_{2}$ pure gas selectivity and H_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes. 170
Figure 4.48 Relationship between $\mathrm{H}_{2} / \mathrm{CH}_{4}$ pure gas selectivity and H_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes. 170
Figure 4.49 Relationship between $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ pure gas selectivity and CO_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes. 171
Figure $4.50 \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ experimental upper bound on pure gas permeation data over the range 1-4 atm feed pressure. 172
Figure 4.51 Relationship between $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ pure gas selectivity and $\mathrm{C}_{2} \mathrm{H}_{4}$ permeability for self-supported polyaniline and polyaniline/PVDF composite membranes. 174
Figure 4.52 Relationship between $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ pure gas selectivity and $\mathrm{C}_{3} \mathrm{H}_{6}$ permeability for self-supported polyaniline and polyaniline/PVDF composite membranes 174
Figure 4.53 Effect of molar composition of O_{2} in the feed gas on the total permeance for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases in self-supported polyaniline films. 180
Figure 4.54 Effect of molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases in self-supported polyaniline films. 180
Figure 4.55 Effect of molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases in self-supported polyaniline films 181
Figure 4.56 Effect of the molar composition of the feed gases on the total permeance and mole fraction of O_{2} in the permeated stream for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases. 182
Figure 4.57 A schematic of a two stage polyaniline membrane module for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system 183
Figure 4. 58 Effect of the molar composition of the feed gases on the total permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases. 184

Figure 4.59 Effect of the molar composition of the feed gases on the total permeance and
mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases...... 185
Figure 4.60 Effect of molar composition of O_{2} in the feed gas on the total permeance for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases in polyaniline/PVDF composite films.187

Figure 4. 61 Effect of molar composition of CO_{2} in the feed gas on the total permeance
for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases in polyaniline/PVDF composite films. 188
Figure 4. 62 Effect of molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases in polyaniline/PVDF composite films. 188
Figure 4.63 Effect of the O_{2} feed gas molar composition on the permeance and mole fraction of O_{2} in the permeated stream for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases. 189
Figure 4. 64 Effect of the CO_{2} feed gas molar composition on the permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases 191
Figure 4. 65 Effect of the CO_{2} feed gas molar composition on the permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases. 191

LIST OF TABLES

CHAPTER 1 - INTRODUCTION

Table 1. 1 Principal gas separation markets and membrane systems (2000) [14]. 4
CHAPTER 2 - LITERATURE REVIEW
Table 2. 1 Kinetic sieving dimensions of penetrants based on zeolite sorption cut-offs [153]. 31
Table 2. 2 Current membrane processes for gas separations [90]. 47
Table 2. 3 Developing and potential membrane processes for gas separations [76]. 48
Table 2. 4 Properties of relevant hydrogen selective membranes [173]. 52
Table 2. 5 Technology selection criteria [173]. 53
Table 2. 6 Physical properties of olefins and paraffins [176,177]. 54
CHAPTER 4 - RESULTS AND DISCUSSION
Table 4. 1 Assignments for IR absorption bends for polyaniline [313]. 108
Table 4.2 Absorptions and Q / B ratios in UV-Vis spectra of EB in liquid states. 111
Table 4.3 Skeletal density of polyaniline samples prepared at various polymerisation reaction temperature. 115
Table 4.4 Summary of the molecular weights of the polyaniline samples synthesised at various polymerisation reaction temperatures. 120
Table 4.5 Young's Modulus and fracture stress values for polyaniline film samples prepared from the different polyaniline samples (produced at various polymerisation reaction temperatures) 131
Table 4.6 Pure gas permeability values of various gases through undoped self-supported polyaniline membranes. 140
Table 4. $7 \quad$ Productivities (permeance) of various permeating gases through undoped self-supported polyaniline membranes 142
Table 4.8 Effect of polyaniline film thickness on selectivity coefficients of various gas pairs through self-supported polyaniline membranes 144
Table 4.9 A comparison of published selectivity data for undoped self-supported polyaniline films with the results obtained in this work. 145
Table 4. 10 Pure gas permeance (in GPU) and permeability (in Barrers, bracketed) of various gases through undoped ultrathin polyaniline membranes supported on PVDF substrate in GPU. 149
Table 4. 11 Effect of polyaniline film thickness on ideal selectivities of various gas pairs through ultrathin polyaniline membranes. 150
Table 4. 12 A comparison of published ideal selectivity data for ultrathin polyaniline films supported on porous substrate with the results obtained in this work. 151
Table 4. 13 Permeance (in GPU) and permeability (in Barrers, bracketed) of ethylene, ethane, propylene and propane through undoped self-supported polyaniline membranes 156
Table 4. 14 Pure gas selectivity of ethylene/ethane and propylene/propane for self-supported polyaniline membranes. 158
Table 4. 15 Effect of polyaniline film thickness on ideal (pure gas) separation factors of various gas pairs through self-supported polyaniline membranes. 159
Table 4. 16 A comparison of published selectivity data for hydrocarbons with current work. 160
Table 4. 17 Permeance (in GPU) and permeability (in Barrers, bracketed) and pure gas selectivity of olefins (ethylene, propylene) and paraffins (ethane, propane). 161
Table 4. 18 Ideal selectivities of various gas pairs as a function of ultrathin polyaniline membrane thickness. 163
Table 4. $19 \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ permeation data used to develop the upper bound curve. 172
Table 4. 20 List of abbreviations and corresponding technical names. 171
Table 4. 21 Pure gas and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ for self-supported polyaniline membranes. 186
Table 4. 22 Pure gas and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ for polyaniline/PVDF composite membranes. 192
Table 4.23 A comparison of stage cut and selectivity values for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems for self-supported polyaniline and Polyaniline/PVDF composite membranes. 193

Chapter 1

INTRODUCTION

1. THE EARLY YEARS - A SCIENTIFIC TOOL

The earliest studies on transport of gases and vapours in polymeric membranes were necessarily concerned with natural polymers. The work which followed was mainly concerned with natural and synthetic elastomers, all well above their glass transition temperatures, mainly hydrocarbon in nature, and noncrystalline. Systematic studies of membrane phenomena can be traced to the $18^{\text {th }}$ century philosopher scientists. For example, Jean Antoine (Abbè) Nollet [1] coined the word osmosis to describe the permeation of water through a diaphragm in 1748. By the $19^{\text {th }}$ century, the simple form of the solution-diffusion model had been derived and checked $[2,3]$, and by $20^{\text {th }}$ century, the time lag method to determine the diffusion coefficients had been developed [4,5]. Thomas Graham in 1829 [2] observed that a wet pig bladder inflated to the bursting point when placed in an atmosphere of carbon dioxide. In 1831, a systematic study of the permeation rates of ten different gases through natural rubber was reported by Mitchell [6,7]. A few papers regarding gas transport in rubber appeared in the interim, but the next major breakthrough was the publication of remarkable paper by Graham in 1863 [8], which truly laid the foundation for today's membrane science and technology. However, a major advancement in the field of gas and vapour transport in polymer membranes was achieved in the $20^{\text {th }}$ Century by Daynes [4,5] in 1920. He developed the so-called "time lag" method, which is the basis of most of the gas and some of the vapour transport studies made today.

Fundamental studies of gas transport in polymers other than rubbers began with the classical work of Meares [9] in 1954. He was the first to demonstrate the theories about the break in the Arrhenius plots at the glass transition temperature and to speculate approximately two modes of solution in glassy polymers. Later studies were initiated with many polymers by Barrer,

Mitchell and their co-workers together with important contribution by Brandt, Stern, and many others [10].

By 1960, the elements of modern membrane science had been developed. However, the membranes were used only in few laboratories and small specialized industrial applications. There was no significant membrane industry and total sales of membranes for all applications probably did not exceed $\$ 20$ million per year. Membranes suffered from four problems that prohibited their widespread use: they were too unreliable, too slow, too unselective, and too expensive. Partial solutions to each of these problems have been developed during the last 30 years, and as a result there is a surge of interest in membrane-based separation techniques.

In the early 1960s, the seminal discovery that transformed the membrane separation from a laboratory to an industrial process was the development of the Loeb-Sourirajan process of making a defect-free, high-flux, ultrathin Reverse Osmosis (RO) membranes [11]. These membranes consist of an ultrathin, selective surface film supported on a microporous support that provides the mechanical strength. The first Loeb-Sourirajan membranes had fluxes 10 times higher than any membrane available during that period, which made reverse osmosis a practical technology. Using such processes, including interfacial polymerisation or multilayer composite casting and coating, it is now possible to prepare membranes as thin as $0.1 \mu \mathrm{~m}$ or less. Methods of packaging membranes into spiral wound, hollow fibre, capillary and plate and frame modules were also developed, and advances were made in improving membrane stability. As a result, by 1980 microfiltration, ultrafiltration, reverse osmosis and electrodialysis were all established processes with large plants installed around the world. During the past thirty years, membranes have become known to have the potential to separate important gas mixtures, but the technology to fabricate high performance membranes and modules economically was lacking. Today, the membrane gas separation technology has grown from a simple laboratory scale to an industrial scale with a significant technical and commercial impact, and a considerable amount of work is in progress in academic and industrial laboratories in order to improve the economics of the extant membrane processes for gas separations, as well as to extend the range of applications of this technology.

2. MOTIVATION AND OBJECTIVES

Within the last three decades, major developments in the membrane gas separation technology have been made by developing high-flux asymmetric membranes [11], and large surface area membrane modules [12,13]. Today in the present market, the sales of membrane gas separation equipments have grown to become a $\$ 150$ million per year business, and substantial growth in the near future is likely [14].

Membrane based separation processes are proven to be energy efficient and technically attractive when compared to the traditional separation methods such as distillation, cryogenic, adsorption and absorption processes [15]. These traditional separation processes are based on differing physical or chemical properties of the stream's components, and do not allow separation of stream components having similar physical or chemical properties. The introduction of membrane technology to separate these components has provided a break-through to carry out these separations. Membrane based separation processes offer a number of significant advantages. First, energy requirements, and in some cases also capital investment costs, are lower than the conventional separation processes for a number of important industrial processes. Second, the necessary process equipment is simple, compact, and relatively easy to operate and control.

The immediate challenges faced by current membrane technology can essentially be summarised into a few key areas. Achieving higher permselectivity for the relevant application with at least equivalent productivity is the first of these challenges. Maintaining these properties in the presence of complex and aggressive feeds is the second challenge. A third challenge in certain applications is the need for recompression of the desired product.

Many polymeric materials are known that offer intrinsically attractive properties. That is, when the permeation performance of a film of the material is measured under laboratory conditions, using pure gas samples and operating conditions at modest temperature and pressure conditions, the film exhibits high permeability for some pure gases and low permeability for others, suggesting useful separation capability. Two-thirds of the total gas separation market has involved the separation of nitrogen or water from air and hydrogen from ammonia
purge gas or syngas. These gas streams are clean, and free from components that might foul or plasticise the membrane. However, growing application areas for membranes are in refineries, where the gas streams contain high levels of plasticising, condensable vapours that degrade membrane performance. Hydrogen/hydrocarbon and olefin/paraffin separation are some of the most important processes in the petrochemical industries. Ethylene and propylene are produced in larger quantities than any other organic substance in these industries. Due to very low relative volatility for olefin/paraffin gas mixtures, the separation is currently carried out by energy intensive cryogenic distillation processes [16]. These distillation columns are often up to 90 meters tall and typically contain over 200 trays with reflux ratios greater than 10, and require very high energy input to carry out the separation. According to a report by DOE, $1.27 \times 10^{14} \mathrm{KJ}\left(3.024 \times 10^{6}\right.$ tonne of fuel oil equivalent) of energy is used annually for olefin/paraffin distillation [17].

Membrane separation technology has been proposed to be a potential alternative approach to the conventional distillation process for olefin/paraffin separations [18-48]. Currently, only eight or nine polymer materials (see Table 1.1) have been used to make at least 90% of the total installed gas separation membrane base, and only a few of them are used for olefin/paraffin separations.

Table 1.1 Principal gas separation markets and membrane systems (2000) [14].

Company	Principal Membrane Material Used	Module Type
Permea (Air Products)	Polysulfone	Hollow fibre
Medal (Air Liquide)	Polyimide/polyaramide	
IMS (Paraxair)	Polyimide	
Generon (MG)	Tetrabromo polycarbonate	
GMS (Kvaerner)	Cellulose acetate	Spiral-wound
Separex (UOP)		Hollow fibre
Cynara (Natco)		
Aquilo	Polyphenylene oxide	
Parker-Hannifin	Polyimide	
Ube	Silicone Rubber	Plate-and-frame
GKSS Licensees		Spiral-wound
MTR		

These materials remain susceptible to severe loss of performance through plasticisation and to catastrophic collapse if contacted by liquid hydrocarbons.

Several failures have been reported in refinery applications where these conditions occur. This low process reliability has caused a number of process operators to discontinue applications of membrane separation for hydrogen recovery from hydrocarbons and olefin/paraffin gas separations.

A great deal of research has been performed on improved membrane materials for hydrogen/hydrocarbon separations. During the past few years, several hundred new polymer materials have been reported, and many of them have substantially higher permeability and selectivities than those listed in Table 1.1. The permeabilities and olefin/paraffin selectivities of the conventional polymer membranes are generally too low for an economically viable process. In particular, the performance of polymeric membranes for ethylene/ethane separation is very poor. Currently, the best polymeric membrane exhibit ethylene/ethane selectivities of only 4 to 5 at room temperature, and propylene/propane selectivities of up to 16 [18-48].

Thus, the need remains to discover new membrane materials that will provide and maintain adequate performance under the conditions of exposure to hydrocarbons which are commonplace in refineries, chemical plants, and gas fields. The preferred membrane material for refinery gas separation applications should combine high selectivity (or separation efficiency) with high permeation flux (or productivity) along with durability and mechanical integrity at the operating conditions.

3. RAISON D'ETRE FOR THIS PROJECT

Refinery gas streams contain contaminants such as water vapour, acid gases, olefins, aromatics, and other hydrocarbons. At relatively low concentrations, these contaminants cause membrane plasticisation and loss of selectivity. At higher concentration they can condense on the membrane and cause irreversible damage to it. In the case of hydrogen/hydrocarbon separations, when a feed stream is introduced into a membrane system, the hydrogen permeates faster through the membrane and the gas remaining on the feed side becomes progressively enriched in hydrocarbons, raising the dew point [14]. For example, if the total hydrocarbon content increases from 60% in the feed gas to 85% in the residue gas, the dew point may increase by as much
as 25 C , or more, depending on the hydrocarbon mixture (see Figure 1.1). Maintaining this hydrocarbon rich mixture in a gas phase may require heating up this mixture at 60 C to 80 C or even more, which is costly and may itself eventually adversely affect the mechanical integrity of the membrane. Failure to do so means, the hydrocarbon stream may enter the liquid phase region of the phase diagram before it leaves the membrane module, and condense on the membrane surface, damaging it beyond recovery.

Figure 1.1 Illustration of the hydrocarbon condensation problem on the residue side of a hydrogen-permeable membrane. As hydrogen is removed from the pressurised feed, the gas becomes enriched in condensable hydrocarbons, and its dew point increases [14].

Many refinery gas separation applications require the use of amorphous glassy polymeric materials for hydrogen/hydrocarbon gas separations. Recently, much of the attention has been directed to the application of conducting polymers for gas separation purposes [49-62]. The conducting polymers are unique types of polymers, which have π-conjugated electrons spread along the polymer backbone and have delocalised electron structure after doping. Polyaniline refer to a very important class of electronic/conducting polymer - has the generalised composition (see Figure 1.2):

Figure 1.2 The generalised composition of polyaniline [63].
which consists of alternating reduced (see Figure 1.3(i)), and oxidised (see Figure 1.3(ii)), repeat units [64,65].

Figure 1.3 (i) quinoid rings (reduced repeat units); (ii) benzenoid rings (oxidised repeat units).

The average oxidation state (1-y) can be varied continuously from zero to give the completely reduced polymer (leucoemeraldine) (see Figure 1.4 (i)), to 0.5 to give the "half oxidised" polymer (emeraldine) (see Figure 1.4(ii)), to 1 to give the completely oxidised polymer (pernigraniline) (see Figure 1.4 (iii)) [66,67]. The wide range of associated electrical, electrochemical and optical properties, coupled with good mechanical properties, makes polyaniline very attractive as a membrane material [51-53].

Figure 1.4 (i) reduced leucoemeraldine form; (ii) half-oxidised emeraldine form; (iii) (iii) completely oxidised pernigraniline form.

Polyaniline can undergo a simple acid/base doping/dedoping chemistry enabling control over properties such as free volume [54], solubility [55], electric
conductivity [56], and optical activity [57,58]. Since the precise level of doping can be controlled simply by varying the pH of the doping acid solution, morphology of the polyaniline can be tuned even after the membrane has formed $[64,65]$. The reversible doping characteristic of polyaniline has been utilised in previous studies to investigate the effects of different dopants and their concentrations on gas permeability [50-62]. The nature of dopant and its concentration was found to have an effect on gas permeability and separation efficiency, as the doping of acids changes the ion selectivity of polyaniline [68], which enhances selectivities for various gas pairs through polyaniline membranes.

Polyaniline tends to be fairly impermeable compared with rubbery or elastomeric polymers, so the application potential for gas selective polyaniline membranes has been limited. The use of polyaniline membranes for gas separation applications requires the production of a thin dense selective layer of polyaniline supported on a porous substrate. The permselective polyaniline layer should be as thin as possible to achieve significant gas flux, and the substrate should have good mechanical and chemical strength with negligible gas transport resistance. The use of polyaniline membranes for gas separation applications has been limited, as there are no reports where sufficiently thin ($<1 \mu \mathrm{~m}$) selective layer has been has been generated to achieve commercially attractive gas transport rates. The gas separation process will be more efficient if the selectivity is high. Capital cost can be reduced by increasing gas transport rate (GTR) as less membrane area is required for the desired separation. In the absence of defects, the selectivity is a function of the membrane material properties at the operating conditions and the productivity is a function of the membrane material properties as well as the thickness of the barrier. The size of a membrane package is proportional to the membrane area. Since, the gas transfer is proportional to the membrane area; it remains unchanged for a reduction in both thickness and area by a common factor. This reduction, however, results in an equivalent reduction of the package size. Hence, for many applications, the minimum size of the package (and area of the membrane) will be limited by membrane thickness.

The aim of the present work is to develop a novel technique to produce defect-free self-supported polyaniline films and determine the application
potential of these membranes for hydrogen/hydrocarbon and olefin/paraffin gas separation applications, along with a model to interpret the transport and separation data. It is also proposed to find methods that will enhance the gas flux (productivity) and separation efficiency (performance) of polyaniline membranes, which involves extending the novel concept to produce polyaniline nano-membrane films on a porous substrate. The proposal also extends to doping polyaniline membranes with silver ($\mathrm{Ag}(\mathrm{I})$) and test these membranes to evaluate permeability and selectivity values for ethylene/ethane and propylene/propane gas separations.

In particular, applicability of polyaniline membranes for hydrogen/hydrocarbon and olefin/paraffin (ethylene/ethane and propylene/propane) separations will be investigated, together with the effect of film/membrane thickness on gas transport rate and separation efficiency.

4. OUTLINE

The research presented in this thesis deals exclusively with gas separation through polymeric (polyaniline) membranes. The dissertation has been written as a collection of chapters which deal with the research objectives.

The first chapter (Introduction) provides a critical background about the state of art of membrane gas separation and points out the objectives of the research.

The second chapter (Literature Review) offers a general theoretical background concerning membranes for gas separation applications and the transport mechanisms involved. Various transport models to understand transport through polymeric membranes have been discussed. Trends and possible avenues for refinery gas separation applications (hydrogen purification and olefin/paraffin gas separations) with high performance membranes have been highlighted. At the end, the use of polyaniline as a potential alternative membrane material for these critical gas separation applications has been considered.

At the beginning of the third chapter (Experimental Techniques) the synthesis route to prepare polyaniline powder has been described, followed by the detailed descriptions regarding the techniques (such as FTIR spectroscopy,

UV-Vis spectroscopy, FEGSEM, density measurements, gel permeation chromatography) used to characterise the polyaniline powder. The detailed description of the novel technique developed to prepare self-supported polyaniline membranes and polyaniline nano-film membranes has been given later in the chapter. Finally, the experimental techniques (such as FEGSEM, AFM, mechanical properties, gas permeation measurements) used to characterise both, the self-supported polyaniline and the polyaniline/PVDF composite membranes have been described in details. The experimental tools (e.g. single gas and mixed gas permeation measurement set-ups), developed for the determination of the mass transport behaviours of polyaniline membranes, are also described in detail in this chapter.

In chapter four (Results and Discussion) the application potential of polyaniline membranes for gas separation purposes is emphasised. The gas transport properties of self-supported polyaniline and polyaniline/PVDF composite membranes are investigated and discussed. The effect of a selective polyaniline layer thickness on the productivity and separation effectiveness is investigated to explain the application potential of ultrathin polyaniline membranes for industrial gas separation applications. Finally, the correlation between selectivity and permeability (Robeson's plots) of polyaniline membranes for various gas pairs is discussed to place into context the potential to use ultrathin polyaniline membranes having higher permeability and gas flux with similar separation efficiency for various gas pairs for industrial gas separation applications.

Finally, the results obtained in this research are summarised in the last chapter and suggestions are given for future research work.

Chapter 2

LITERATURE REVIEW

Several books and reviews are available in the literature about gas transport through polymers and polymer membranes [69-105]. Membranes have been commercialised for liquid-liquid and liquid-solid separations long before being applied to gas separations. The knowledge gained during these years was then gradually transferred to gas separating membrane systems. Today, gas separation with polymer membranes is rapidly becoming a mainstream separation technology.

This chapter serves as a brief background concerning membranes for gas separation applications and the transport mechanisms involved. The substantial body of theoretical models on the sorption behaviour of polymers and polymeric membranes is reviewed. Trends and possible avenues for ongoing practical development for hydrogen/hydrocarbon and olefin/paraffin gas separations with high performance membranes are highlighted, with references given to more detailed analyses of these approaches. Finally, conducting polymers have been suggested to be the ideal candidates for critical refinery gas separation applications, and the application potential for polyaniline membranes is discussed within this context.

1. FUNDAMENTALS

Membranes have gained an important position in chemical technology and are used in a broad range of applications. Fundamental issues control the ability of the membrane materials and membrane structures to contribute to high productivity (permeance) and selectivity for important gas mixtures. To obtain a better understanding of the significance of membrane structures and their use in separation processes, a brief discussion of two aspects is essential:

- The basic properties and functions of synthetic membranes
- The driving forces and fluxes involved in separation processes.

1.1. Transport Parameters

The active layers of membranes used for gas separations are dense and do not separate species on the basis of an ordinary sieving mechanism. Separation using these dense membranes is achieved by the solution-diffusion mechanism [69,72,90,106-113]. Mass transport thorough a dense, selective polymeric membrane occurs according to a solution (sorption) step at the upstream side of the membrane, followed by diffusion through the membrane and a desorption step on the downstream side (see Figure 2.1).

Figure 2. 1 Schematic representation of mass transport phenomena occurring in a solution-diffusion membrane.

The total amount of mass transported through a membrane is characterised by its permeability, P. The permeability indicates the rate at which permeate traverse through a membrane. It is a characteristic value for a specific polymer-penetrant system and quantifies the flux, J, which can be defined by:

$$
\begin{equation*}
J=P \cdot \frac{\Delta p}{d x} \tag{2.1}
\end{equation*}
$$

where $\Delta p / d x$, is the pressure gradient across the membrane with the film thickness, t_{m}. According to solution-diffusion mode, permeability is a product of diffusivity, D, and solubility, S;

$$
\begin{equation*}
P=D \times S \tag{2.2}
\end{equation*}
$$

The solubility coefficient, S, is a measure of the amount of gas sorbed by the membrane when equilibrated with a given pressure of gas at given temperature. It is a thermodynamic parameter that is dependent on the amount of free volume, the condensability of the penetrant, and the degree to which the permeant interacts with the polymer matrix. The diffusion coefficient, D, indicates how fast a penetrant is transported through the membrane. It is a kinetic parameter, which is related to the polymer chain mobility or flexibility and permeating species.

Thermodynamics provides a framework for separation but it does not provide a mechanism for separation. In general, size, charge and affinity between the membrane and the feed play an important role in determining the selectivity (separation efficiency). The capacity of solution-diffusion membranes to separate multi-component mixtures is based on specific thermodynamic interactions of the membrane material with the different components in the mixture, and furthermore, on the selective diffusive mass transport through a dense homogeneous layer of the membrane. The selective diffusion of the penetrant molecules through a layer of a dense polymer is mainly influenced by the molecular structure of the polymer. Short range motions in the polymer chains, like chain bending, bond rotation and phenyl ring flips depend on the molecular structure, which allow penetrant molecules to proceed in the direction of the driving force $[114,115]$. The power to separate two constituents in a gas is given by the ratio, α, the separation factor, defined by:

$$
\begin{equation*}
\alpha_{i / j}=\frac{P_{i}}{P_{j}}=\frac{S_{i} \cdot D_{i}}{S_{j} \cdot D_{j}} \tag{2.3}
\end{equation*}
$$

From which, it can be seen that the separation factor is a product of a thermodynamic factor (relative solubility) and a kinetic factor (relative diffusivity).

2. GENERAL THEORETICAL BACKGROUND

The gas stream to be separated is fed to a membrane device at an elevated pressure, where it passes across one side of the membrane (see Figure 2.2). The opposite (permeate) side of the membrane is held at a lower pressure. The pressure and/or concentration difference across the membrane provide the driving force for the gas to permeate through the membrane.

Figure 2. 2 Schematic of gas separation membrane module.

Separation is achieved because of the differences in the relative transport rates of the feed components. Components that diffuse more rapidly become enriched in the low-pressure "permeate" stream, while the slower components are concentrated in the "retentate" or "residue" stream. The degree to which components are separated is governed by the ability of the membrane to discriminate between those components, as well as by the relative driving force of each component. The ideal membrane material must have high permeability coupled with high permselectivity for a gas pair. If a membrane system were permitted to go to equilibrium, permeation would continue to occur until the pressure and composition of gas on both sides of membrane were equal, with no separation being achieved. Separation is achieved only if the system is maintained away from the equilibrium. The size of the permeant species can be significant factor in determining both permeability as well as permselectivity [107].

A membrane will separate gases only if some components pass through the membrane more rapidly than others. This requirement places constraints on the structure of the membrane's separating selective layer, as described in Figure 2.3.

Figure 2. 3 Membrane Based Gas Transport and Separation Mechanisms [16].

If the membrane pores are relatively large, i.e. from 0.1 to $10 \mu \mathrm{~m}$, gases permeate through membrane by convective flow, and no separation will occur. If the pores are smaller than $0.1 \mu \mathrm{~m}$, then the pore diameter is the same size or smaller than mean free path of the gas molecules, and convective flow is replaced by Knudsen diffusion. For Knudsen diffusion, the transport rate of any gas is inversely proportional to the square root of its molecular weight. Finally, if the membrane pores are extremely small (of the order of 5 to $20 \AA$) then the gases are separated by molecular sieving. Transport through this type of membranes is complex and includes both diffusion in gas phase and diffusion of adsorbed species on the surface of the pores (surface diffusion). Commercial application of porous membranes for gas separation has not yet been realized. It is difficult to fabricate membranes with a narrow pore size distribution that is required for molecular sieving, and current materials are fragile. In addition, water and other vapours can condense within the fine pores and affect the transport rates across the membranes.

The membranes currently used in most commercial gas separation applications are non-porous or solution-diffusion membranes. In the next sub-section, the detailed phenomenon involved for the mass transfer in solution-diffusion membranes is discussed.

2.1. Membrane Transport Models

Formulation of gas transport phenomena through polymer membranes is directed in two areas:

- development of quantitative theories based on the thermodynamics and kinetic properties of the gas-polymer system
- experimental study of gas transport through various polymers.

To describe the permeation through membranes, many physical models have been proposed which are mainly based on thermodynamics and/or statistical mechanical principals, thus expressing permeation rates by parameters derived from bulk properties. Several authors $[116,117]$ related the sorption and transport phenomena to molecular properties such as rigidity of polymer backbones, types of pendant group, molecular packing density, and interactions with polar groups, but this is still very qualitative. The later route represents the most fundamental scientific approach. In existing theories distinction is made between membrane separations of liquids and that of gases. In the literature usually one of the following three theories/models are used to describe the transport in dense membranes [89,118]:

- Irreversible thermodynamics
- Preferential sorption - capillary flow theory
- Solution - diffusion theory.

Since diffusion is the only possible transport mechanism in dense membranes, a diffusion coefficient appears, directly or indirectly, in all three models mentioned above.

2.1.1. Irreversible Thermodynamics

In models based on non-equilibrium or irreversible thermodynamics, the membrane is treated as a "black box" barrier separating two phases far from equilibrium. This procedure is useful, especially when the structure of the membrane is not known and the mechanism of transport within it is not fully understood. Less information is required to set up the model, but less
information can be obtained from it about the transport mechanism within the membrane.

For application of irreversible thermodynamics the basic assumption is made that the system can be divided into small subsystems in which "local equilibria" exist, so that they can be described by thermodynamic parameters [117]. Thus at least locally, the system is not too far from the equilibrium which might be correct for the slow transport processes observed in membranes.

Equations for transport rates (fluxes), retention and other membrane related parameters can be derived using general thermodynamic equations [119,120]. For example the flux for each component, J_{i}, is described by;

$$
\begin{equation*}
J_{i}=\sum_{k=1}^{n} L_{i k} \cdot F_{k} \tag{2.4}
\end{equation*}
$$

where the phenomenological coefficients, $L_{i k}$, are often complex functions of compositions and concentrations. The driving forces F_{k}, are chemical potential gradients, and described by;

$$
\begin{equation*}
F_{k}=\left(\bar{v} \cdot \frac{d p}{d x}+\frac{d \mu_{k}^{c}}{d x}\right) \tag{2.5}
\end{equation*}
$$

where, the first term indicates the pressure gradient and the second term expresses the concentration related gradients.

According to the friction model, the generalised force acting on solute k in the membrane is balanced by the frictional force between solute k and the membrane, and that between two solutes k and j;

$$
\begin{equation*}
F_{k}=\sum f_{k j} \cdot\left(u_{k}-u_{j}\right)+f_{k m} \cdot u_{k} \tag{2.6}
\end{equation*}
$$

where u_{k} and u_{j} are the linear velocities of solute k and j in the membrane. In practice, the friction coefficients, $f_{k m}$, are always larger than the free fraction coefficients, $f_{k j}$, which are related to diffusion coefficients, $D_{k j}$, by;

$$
\begin{equation*}
f_{k j}=\frac{R T}{N_{\mathrm{av}} D_{k j}} \tag{2.7}
\end{equation*}
$$

In a binary solution $f_{k j}$ can be described as;

$$
\begin{equation*}
f_{k j}=6 \pi \eta R_{s} \tag{2.8}
\end{equation*}
$$

in which, R_{s} is the Stoke's radius of the solute, which makes it difficult to get quantitative values for various friction coefficients, especially values of $f_{k m}$. More information about the models based on irreversible thermodynamics is reviewed by Soltanieh and Gill [118].

2.1.2. Preferential Sorption - Capillary Flow Theory

Soltanieh and Gill [118] pointed out that, the concept of simple "sieving filtration" for separation on the basis of molecular size is ruled out in reverse osmosis. In late 1950s, Reid and Breton [121] proposed a model in which the membrane is preferentially wetted by water, forming an absorbed film that prevents solute ions from entering the membrane. Sourirajan $[11,122]$ used the same principle and assumed that the mechanism of reverse osmosis is partly governed by surface phenomena and partly by fluid transport under pressure through capillary pores. The water layer thus formed is passed through the pores, as shown schematically in Figure 2.4.

Figure 2. 4 Preferential sorption capillary flow - Sourirajan model [122].

According to this figure, there exists a critical pore size that yields optimum solute retention and fluid permeability, which should be twice the thickness of the sorbed water layer, t_{w}. Sourirajan also assumed that this pore size could be
several times larger than salt or water molecular diameters and still show reasonable separation.

This model is based on a capillary flow model with viscous flow of water and/or diffusion of the solute, while the "film theory" is applied for salt transport through the adsorbed water layer. If the pores in the dense membrane are small enough then the transport phenomenon takes place at the pore walls. Surface diffusion, or surface flow, can take place when the residence time of the molecule at the pore wall is larger than zero. Depending on the migration energy and the surface diffusivity, a molecule can move along a pore wall. Because of the differences in energies and diffusivities, some selectivity in transport rate can result. For component, i, the flux J_{i}, due to surface diffusion can be described as;

$$
\begin{equation*}
J_{i}=-C^{\prime} \cdot D_{i}\left(\frac{d C_{i}}{d p}\right) \Delta p \tag{2.9}
\end{equation*}
$$

where C^{\prime} is a geometrical parameter that depends on the pore system, and $\left(d C_{j} / d p\right)$ can be determined from adsorption isotherm. The surface diffusion coefficient, D_{i}, is a function of the temperature;

$$
\begin{equation*}
D_{i}=D_{0 i} \cdot \exp (-E / R T) \tag{2.10}
\end{equation*}
$$

where $D_{0 i}$ depends on the main surface free path length, the jump frequency and the surface concentration.

Though the existence of pores seems to be contradictory to the tightness of dense membranes, this surface diffusion model can be used to describe the transport in dense membranes, the intermolecular voids are considered to be the "pores".

2.1.3. The Solution-Diffusion Model

The solution-diffusion model [69,72,90,106-113] has emerged as the most widely accepted explanation of transport in dialysis, reverse osmosis, gas permeation and pervaporation. The model allows these membrane separation processes to be described by a series of simple interrelated equations.

In gas separations, gas dissolves in the solution-diffusion membrane material and diffuses through the membrane down a gradient of driving force (pressure, concentration, temperature). Gas transport across the dense (essentially pore free) polymers can be considered as a process comprising three successive steps:

- sorption of penetrant in the polymer membrane (feed-side)
- diffusion of penetrant through the polymer membrane matrix
- desorption from the polymeric film (permeate-side).

A number of assumptions must be made to define the solution-diffusion model of permeation. Usually, the first assumption governing transport through membranes is that the fluids on either side of the membrane are in equilibrium with the membrane material at the interface. The second assumption is the pressure within the membrane is uniform and that the chemical potential across the membrane is expressed only as a concentration gradient which is generated by a combination of pressure and concentration differences between the feed and permeate phases separated by the membrane. The third assumption is that the rates of absorption and desorption at the membrane interface are much higher than the rate of diffusion through the membrane.

The sorption/desorption and diffusion steps are dependent on the characteristics of the membrane material and the gases, and are studied separately with various sorption and diffusion models. The sorption models are based on the thermodynamics of the penetrant-membrane interaction, with the diffusion is primarily modelled with Fick's laws of diffusion [123], presented in different forms [124]. Ideally, the solution-diffusion model can only be applied to the polymers above their glass transition temperatures [69].

2.1.3.1. Macroscopic (Continuum) Models

The permeation of pure gases and gas mixtures through nonporous polymer membranes is a complex process, which is controlled by the diffusion of the penetrant gas molecules in the membrane matrix. Under the conditions that usually prevail in separation processes, the diffusion process generally satisfies Fick's two laws [123]. Figure 2.5 is a schematic of the transport mechanism of
solution-diffusion through a membrane, where the membrane and the permeants are one single membrane phase.

Figure 2. 5 Concentration (c) and pressure (p) profiles in solution-diffusion through nonporous membranes [125].

The entire feed side membrane phase is at feed pressure, and the pressure steps down from the feed pressure to the permeate pressure at the membrane/permeate interface. The rate of diffusive transport in the membrane is given by Fick's law of diffusion, which for molar fluxes is;

$$
\begin{equation*}
J_{i}=-\frac{D_{i}}{m_{i}} \cdot \frac{d c_{i(m)}}{d x} \tag{2.11}
\end{equation*}
$$

where J_{i} is the molar rate of transfer of component i or molar flux $\left(\mathrm{mol} / \mathrm{cm}^{2} \mathrm{~s}\right), D_{i}$ is the diffusion coefficient $\left(\mathrm{cm}^{2} / \mathrm{s}\right), m_{i}$ is the molar weight of i $(\mathrm{g} / \mathrm{mol})$, and the term $d c_{i(m)} / \mathrm{dx}$ is concentration gradient of i in the membrane. Integration of equation 2.11 over the thickness of the membrane, t_{m}, gives;

$$
\begin{equation*}
J_{i}=\rho_{m} D_{i} \cdot \frac{n_{i, 0(m)}-n_{i, t_{m}(m)}}{t_{m}} \tag{2.12}
\end{equation*}
$$

where ρ_{m} is the molar density of the membrane phase $\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$ and the subscripts $O(m)$ and $t_{m}(m)$ denote the feed side and permeate side of the membrane, respectively. The concentration in the membrane at feed/membrane and membrane/permeate interfaces can be expressed in terms of concentrations outside the membrane because the interfaces are in equilibrium states;

$$
\begin{equation*}
\mu_{i, 0}=\mu_{i, 0(m)} \tag{2.13}
\end{equation*}
$$

and;

$$
\begin{equation*}
\mu_{i, t_{m}}=\mu_{i, t_{m}(m)} \tag{2.14}
\end{equation*}
$$

where μ is the chemical potential ($\mathrm{atm} \mathrm{cm}^{3} / \mathrm{mol}$). Restricting the analysis to driving forces generated by concentration and pressure gradients, the chemical potential is written as;

$$
\begin{equation*}
d \mu_{i}=R \cdot T \cdot d\left(\ln \left(\gamma_{i} n_{i}\right)\right)+v_{i} \cdot d p \tag{2.15}
\end{equation*}
$$

where R is the gas constant ($82 \mathrm{~atm} \mathrm{~cm}^{3} / \mathrm{mol} K$), T is the temperature $(K), n_{i}$ is the mole fraction ($\mathrm{mol} / \mathrm{mol}$) of component i, γ_{i} is the activity coefficient of the component i in the membrane, p is the pressure (atm), and v_{i} is the molar volume of component $i\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$.

In compressible gases, the molar volume changes with pressure and using the ideal gas law to integrate the equation 2.15, gives;

$$
\begin{equation*}
\mu_{i}=\mu_{i}^{\circ}+R \cdot T \cdot \ln \left(\gamma_{i} n_{i}\right)+R \cdot T \cdot \ln \left(\frac{p}{p_{i}^{\text {sat }}}\right) \tag{2.16}
\end{equation*}
$$

where μ_{i}^{o} is the reference chemical potential of pure i at the saturation vapour pressure of $i, p_{i}^{\text {sat }}(\mathrm{atm})$. The equilibrium equations 2.13 and 2.14 then take the following form for a gas phase in contact with membrane, and within the membrane (where it is suitable to assume that the gas is incompressible).

$$
\begin{align*}
& \mu_{i}^{o}+R \cdot T \cdot \ln \left(\gamma_{i} n_{i}\right)+R \cdot T \cdot \ln \left(\frac{p}{p_{i}^{s a t}}\right) \\
& =\mu_{i}^{\circ}+R \cdot T \cdot \ln \left(\gamma_{i(m)} n_{i(m)}\right)+v_{i(m)}\left(p-p_{i}^{s a t}\right) \tag{2.17}
\end{align*}
$$

In gas separation, the membrane is in contact with upstream and downstream gas phases, and the equilibrium equations for the two membrane interfaces are (assuming the activity coefficient is constant in upstream and downstream gas phases);

$$
\begin{align*}
& \mu_{i}^{o}+R \cdot T \cdot \ln \left(\gamma_{i} n_{i, o}\right)+R \cdot T \cdot \ln \left(\frac{p_{o}}{p_{i}^{s a t}}\right) \\
& =\mu_{i}^{o}+R \cdot T \cdot \ln \left(\gamma_{i(m)} n_{i, o(m)}\right)+v_{i(m)}\left(p_{o}-p_{i}^{s a t}\right) \tag{2.18}
\end{align*}
$$

and;

$$
\begin{align*}
& \mu_{i}^{\circ}+R \cdot T \cdot \ln \left(\gamma_{i} n_{i, t_{m}}\right)+R \cdot T \cdot \ln \left(\frac{p_{t_{m}}}{p_{i}^{s a t}}\right) \\
& =\mu_{i}^{\circ}+R \cdot T \cdot \ln \left(\gamma_{i(m)} n_{i, t_{m}(m)}\right)+v_{i(m)}\left(p_{t_{m}}-p_{i}^{\text {sat }}\right) \tag{2.19}
\end{align*}
$$

which yield the following equations 2.20 and 2.21 for the mole fraction of the component i at the membrane feed and membrane permeate interfaces, respectively.

$$
\begin{equation*}
n_{i, 0(m)}=\frac{\gamma_{i}}{\gamma_{i(m)}} \cdot \frac{p_{o}}{p_{i}^{\text {sat }}} n_{i, o} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i t}^{\text {sat }}\right)}{R \cdot T}\right) \tag{2.20}
\end{equation*}
$$

and;

$$
\begin{equation*}
n_{i, t_{m}(m)}=\frac{\gamma_{i}}{\gamma_{i(m)}} \cdot \frac{p_{t_{m}}}{p_{i}^{s a t}} n_{i, t_{m}} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i}^{s a t}\right)}{R \cdot T}\right) \tag{2.21}
\end{equation*}
$$

By introducing a gas phase sorption coefficient $K_{i}\left(\mathrm{~atm}^{-1}\right)$;

$$
\begin{equation*}
K_{i}=\frac{\gamma_{i}}{\gamma_{i(m)} p_{i}^{\text {sat }}} \tag{2.2.2}
\end{equation*}
$$

Hence, equations 2.20 and 2.21 become;

$$
\begin{equation*}
n_{i, o(m)}=K_{i} \cdot p_{o} \cdot n_{i, 0} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i}^{\text {sat }}\right)}{R \cdot T}\right) \tag{2.23}
\end{equation*}
$$

and;

$$
\begin{equation*}
n_{i, t_{m}(m)}=K_{i} \cdot p_{t_{m}} \cdot n_{i, t_{m}} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i}^{s a t}\right)}{R \cdot T}\right) \tag{2.24}
\end{equation*}
$$

which can be combined with the diffusion equation 2.12 to yield for the gas transport equation;

$$
\begin{equation*}
J_{i}=\rho_{(m)} \frac{D_{i} K_{i}}{t_{m}} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i}^{s a t}\right)}{R \cdot T}\right) \cdot\left(n_{i, 0} p_{o}-n_{i, t_{m}} p_{t_{m}}\right) \tag{2.25}
\end{equation*}
$$

or,

$$
\begin{equation*}
J_{i}=\frac{P_{i}}{t_{m}} \cdot \exp \left(\frac{-v_{i(m)}\left(p_{o}-p_{i}^{\text {sat }}\right)}{R \cdot T}\right) \cdot\left(n_{i, 0} p_{o}-n_{i, t_{m}} p_{t_{m}}\right) \tag{2.26}
\end{equation*}
$$

The Poynting correction factor i.e. the exponential term in equation 2.26, is close to unity [126] in most gas separation applications because the molar volume of the permeants involved are relatively small (vapour separation being a potential exception). Hence, equation 2.26 can be reconfigured as;

$$
\begin{equation*}
J_{i}=\frac{P_{i}}{t_{m}} \cdot\left(n_{i, 0} p_{o}-n_{i, t_{m}} p_{t_{m}}\right)=\frac{P_{i}}{t_{m}} \cdot\left(p_{i, 0}-p_{i, t_{m}}\right) \tag{2.27}
\end{equation*}
$$

Equation 2.27 is widely used to rationalise the properties of gas permeation membranes accurately and predictably.

A quantitative measure of the amount of mass transported through the polymeric membrane is characterised by the permeability coefficient, P_{i} ($\mathrm{mol} \mathrm{cm} /\left(\mathrm{cm}^{2} \mathrm{~s}\right.$ atm $)$), which is defined by;

$$
\begin{equation*}
P_{i}=\rho_{(m)} D_{i} K_{i}=\frac{\rho_{(m)} \gamma_{i} D_{i}}{\gamma_{i(m)} p_{i}^{s a t}} \tag{2.28}
\end{equation*}
$$

According to the solution-diffusion model, the permeability is a product of a thermodynamic factor called solubility coefficient, and a kinetic parameter called diffusion coefficient. Hence, a more common way of expressing the permeability coefficient is;

$$
\begin{equation*}
P_{i}=D_{i} \cdot S_{i} \tag{2.29}
\end{equation*}
$$

where D_{i} and S_{i} are the diffusivity and solubility coefficients for component i.
Since the gas permeability is independent of the thickness of the membrane, it is a fundamental property of membrane materials, but it does not consider the detailed solution-diffusion nature of the process [16]. To achieve this description, the gas permeability is described as the product of a mobility (kinetic)-related term and a solubility (thermodynamic)-related term. According to the previous research [127], the diffusion coefficient is a measure of the amount of energy required for the penetrant to execute a diffusive jump through the polymer matrix and the intrinsic degree of segmental packing in the matrix. It is determined by packing and motion of the polymer segments and by size and shape of the penetrating molecules. On the other hand, the solubility coefficient depends on the condensability of the penetrant, the extent of the polymer-penetrant interactions, and the amount of excess volume existing in the glassy polymer. In general, the quantity, S_{i}, is thermodynamic in nature and is affected by polymer-penetrant interactions as well as excess inter-chain gaps in glassy polymers. The average diffusion coefficient, D_{i}, is kinetic in nature and largely determined by polymer-penetrant dynamics.

The ability of the membrane to separate gases is characterized by the separation factor. When the downstream pressure is negligible relative to the upstream pressure, then the selectivity or the separation factor, $\alpha_{i, j}$, of the polymeric membrane towards the different penetrant gases i and j is commonly expressed as;

$$
\begin{equation*}
\alpha_{i, j}=\frac{P_{i}}{P_{j}}=\frac{D_{i} \cdot S_{i}}{D_{j} \cdot S_{j}} \tag{2.30}
\end{equation*}
$$

For the special case in which the absolute downstream pressure is close to zero, the above ratio of permeabilities is referred to as the "ideal" separation factor. In the absence of plasticising effects due to high levels of penetrant sorption, the separation factor for a mixed gas case, $\alpha_{i, j}$, can be closely approximated by the ratio of pure gas permeabilities for individual components i and $j[128,129]$.

For the cases in which the downstream pressure cannot be ignored, the real separation factor can be defined by;

$$
\begin{equation*}
\alpha_{i, j}=\frac{y_{i} / y_{j}}{x_{i} / x_{j}} \tag{2.31}
\end{equation*}
$$

where, y_{i}, x_{i} and y_{j}, x_{j} refer to the mole fraction of component i and j in the product and feed streams, respectively.

Clearly, in separation applications, the actual separation efficiency observed may be lower than the ideal selectivity, because the driving force term will not be equal to unity for non-zero downstream partial pressures. Nevertheless, this factor can be determined by the ideal selectivity and operating conditions are specified so it does not present serious complications.

2.1.3.2. Microscopic Models

Many theoretical models have been proposed in the literature to describe the mechanism of gas transport in polymers (by diffusion) and through polymer membranes (by permeation) on macroscopic level. Such models provide expressions for gas diffusion coefficients or permeability coefficients, or both, derived from free-volume, statistical mechanical, energy, structural, or other considerations. The formulation of these coefficients is complicated by the fact that the gas transport occurs by markedly different mechanisms in rubbery and glassy polymers, i.e., at the temperatures above and below the glass-transition temperature, T_{g}, of the polymers, respectively. Additional complications are due to polymer plasticisation (swelling) by penetrant gas, polymer crystallinity, pre-treatment (particularly in glassy polymers), etc.

As a result, the mechanisms of gas transport in polymers are incompletely understood, particularly below T_{g}, when considered on a microscopic level. The reader is encouraged to refer to the references [69,72,108,110-112,130-135] to understand the transport mechanism at microscopic level.

2.1.3.2.1. Transport in Rubbery Polymers

The transport models for gas transport in "rubbery" polymers are based on free-volume concepts. Such models commonly relate mutual diffusion coefficients for a gas/polymer system to the free volume of the system, and thereby to the concentration of the penetrant gas in the polymer. Reviews of various free-volume models have been published in [110-112,130-135].

One of the simplest free-volume models is that of Fujita [136], which describes the strong concentration dependence of organic vapours in some rubbery polymers. The sorption of low molecular weight penetrants in rubbery materials is typically described by the Henry's law for cases in which the sorbed concentrations are low [105];

$$
\begin{equation*}
c=k_{D} \cdot p \tag{2.32}
\end{equation*}
$$

where c is the gas concentration in the polymer ($\mathrm{cm}^{3}{ }_{\text {sTp }} / \mathrm{cm}^{3}{ }_{\text {polymer }}$), k_{D} is the Henry's law coefficient ($\mathrm{cm}^{3}{ }_{\text {stp }} / \mathrm{cm}_{\text {polymeratm }}^{3}$), and p is the penetrant partial pressure.

For rubbery polymers and with low concentrations of penetrant, the diffusion coefficient is typically constant and the permeability is independent of the feed pressure as indicated in equation 2.33.

$$
\begin{equation*}
P=k_{D} D \tag{2.33}
\end{equation*}
$$

For rubbery polymers in the presence of high activity gases or vapours, deviations from the Henry's law sorption are observed. Sorption and permeation isotherms in such cases are typically strongly convex to the pressure axis. In the absence of strong polymer-penetrant interactions, the Flory-Huggins expression represented by equation 2.34 provides a satisfactory description of penetrant solubility for such behaviour [137].

$$
\begin{equation*}
\ln \left(p / p_{o}\right)=\ln \left(1-\phi_{p}\right)+\phi_{p}+\chi \phi_{p}^{2} \tag{2.34}
\end{equation*}
$$

where, p is the penetrant partial pressure, p_{o} is the vapour pressure of the penetrant, ϕ_{p}, is the volume fraction of the polymer, and χ, is the so-called

Flory-Huggins parameter. For such cases the polymer is likely to be highly swollen, which may result in a concentration-dependent diffusion coefficient.

2.1.3.2.1.1. Free-Volume Theory

A number of free volume models of gas transport in and through polymers have been proposed, but some of these models have not been tested with a sufficient variety of experimental data or have not been tested at all. However, phenomenological transport models based on free-volume concepts are likely to become obsolete during the coming era due to the development of computational techniques of simulating polymer microstructures.

The free volume theory of transport postulates that movement of molecules depends on the free volume available as well as the availability of energy sufficient to overcome polymer-penetrant attractive forces [138]. The specific volume of the polymer is comprised of three components: the occupied volume, which is the volume of the equilibrium liquid at 0 K ; the interstitial free volume, which is small and distributed uniformly throughout the material; and the hole free volume, which is large enough to facilitate molecular transport. Redistribution of interstitial free volume requires a large energy input. However, redistribution of hole free volume requires no additional energy, so this volume randomly migrates through the polymer matrix. Random mobility of the hole free volume may facilitate both a slow inter-diffusion of polymer chains as well as penetrant transport.

The flux of the penetrant can be written in terms of local volume fraction of penetrant in polymer, ϕ, and the mutual diffusion coefficient, D [139];

$$
\begin{equation*}
J=-\frac{D}{1-\phi} \cdot \frac{d \phi}{d x} \tag{2.35}
\end{equation*}
$$

If the partial molar volume of penetrant can be approximated by gaseous molar volume in organic liquids, the volume fraction of penetrant can be estimated from the penetrant sorption level. The relationship between the thermodynamic diffusion coefficient, D_{T}, and the mutual diffusion coefficient, D, is given by;

$$
\begin{equation*}
D_{T}=\left(\frac{D}{1-\phi}\right)\left[\frac{d \ln a}{d \ln \phi}\right]_{T}^{-1} \tag{2.36}
\end{equation*}
$$

Because gases exhibit a relatively low solubility in polymers the term $\left[\frac{d \ln a}{d \ln \phi}\right]_{T}$ is ~ 1.0 [139]; hence, the flux can be expressed by;

$$
\begin{equation*}
J=-D_{T} \cdot \frac{d \phi}{d x} \tag{2.37}
\end{equation*}
$$

The fractional free volume, V_{f}, in a polymer has been expressed as a linear function of temperature, pressure and concentration.

$$
\begin{equation*}
V_{f}=\phi_{\text {fs }}^{0}+\Delta \alpha\left(T-T_{s}\right)-\Delta \beta\left(p-p_{s}\right)+\gamma \phi \tag{2.38}
\end{equation*}
$$

where $\phi_{i s}^{0}$ is the fractional free volume of the pure polymer at the reference temperature, T_{s} (or T_{g}), and pressure, p_{s}. Generally, the reference temperature T_{s} is chosen as the glass transition temperature T_{g}, and the reference pressure p_{s} is 1 atm . The terms $\Delta \alpha$ and $\Delta \beta$ are typically taken as the difference in the thermal expansion coefficients and compressibilities above and below T_{g}, respectively. The parameter γ is used to characterize the ability of the penetrant to plasticise the polymer. The dependence of self-diffusion coefficient on fractional free volume can be given as [136,140];

$$
\begin{equation*}
D_{i}=R \cdot T \cdot A_{d} \exp \left(\frac{-B_{d}}{V_{t}}\right)=u_{i} R \cdot T \tag{2.39}
\end{equation*}
$$

where A_{d} and B_{d} are related to the size and shape of the penetrant molecule and must be determined empirically, and V_{f} is the fractional free volume, which can be determined by equation 2.38 . The term u_{i} is the so-called "mobility" of the penetrant, and is the inverse of the "resistance coefficient" of the medium.

2.1.3.2.2. Transport in Glassy Polymers

A glassy polymer is a polymeric material that is below its softening or glass transition temperature under the condition of use. Gas transport through glassy polymers has been the focus of intense research because of favourable separation properties observed with these polymers. However, full characterisation of the gas transport and separation properties of a glassy polymer is limited by the time dependent changes of the polymer's physical properties. These changes are important in evaluating the performance of the polymer during its anticipated service life. Attempts have been made to explain the observed time-dependent transport behaviour at a molecular level [141-152]. Models have been proposed to describe the observed transport behaviour based upon statistical, mechanical-structural, and thermodynamic considerations. The "hole" vacancy theory, the activated complex theory and the fluctuation theory are the three basic theories used to explain these models, which are originally derived from free volume molecular theory.

Due to more restricted segmental motions in glassy polymers, these materials offer enhanced "mobility selectivity" as compared to rubbery polymers. Because they are inherently more size and shape selective than rubbery materials, glassy polymers are more commonly used as the selective layer in gas separation membranes. Table 2.1 shows the diameter of several common gases [153]. Glassy polymers are able to discriminate effectively between extremely small differences in molecular dimensions of common gases. Solubility often dominates diffusional characteristics for transport in rubbery polymers.

The concept of free volume has been used qualitatively to describe the non-equilibrated nature of the polymer. However, the model is limited by its quantitative description of the nature of polymer chain mobility and free volume size distribution. The simplicity of the free volume theory, a single parameter model, has been the important reason for its wide application in gas transport studies through polymeric membrane [153].

Table 2.1 Kinetic sieving dimensions of penetrants based on zeolite sorption cutoffs [153].

Molecule	Kinetic Diameter (\AA)
He	2.60
H_{2}	2.89
NO	3.17
CO_{2}	3.30
Ar	3.40
O_{2}	3.46
$\mathrm{~N}_{2}$	3.64
CO	3.76
CH_{4}	3.80
$\mathrm{C}_{2} \mathrm{H}_{4}$	3.90
$\mathrm{C}_{3} \mathrm{H}_{8}$	3.96
$n-\mathrm{C}_{4}$	4.30
$\mathrm{CF}_{2} \mathrm{CL}_{2}$	4.30
$\mathrm{C}_{3} \mathrm{H}_{6}$	4.40
CF_{4}	4.50
$i-\mathrm{C}_{4}$	4.70

The physical characteristic of glassy polymers that is commonly linked to the complex sorption isotherm is the "unrelaxed" volume locked into the materials when they are quenched below the glass transition. As illustrated in Figure 2.6, there is a break in the volume vs temperature plot for a polymer as the temperature is lowered below the glass transition T_{g}, the excess or "unrelaxed volume" is $V_{g}-V_{1}$.

Figure 2. 6 Polymer specific volume as a function of temperature [107].

The excess volume is thought to be the result of trapped non-equilibrium chain conformations in quenched glasses, which results from the extraordinary long relaxation times for segmental motions in the glassy state. The excess volume present in glassy polymers allows for the accommodation of additional penetrant above that observed in low molecular weight liquids and rubbers [141]. The most useful phenomenological description of gas transport in glassy polymers is provided by the "dual-mode sorption" model, particularly by its partial immobilization version developed by Paul and Koros [142,143] and Petropoulos [144].

The dual-mode sorption model is strictly applicable in cases where the polymer is not significantly plasticised (swollen) by the penetrant gas.

2.1.3.2.2.1. Dual-Mode Sorption Model

The dual-mode sorption model has been extensively reviewed and discussed by a number of researchers [72,81,110-112,141-152]. The model represents the dependence of solubility, diffusion, and permeability coefficients on penetrant gas pressure, or concentration in the polymers, over a wide range of these variables. The validity of the model has been confirmed for a large number of gas/polymer systems by Paul and Koros [142,143], as well as contributions from many other investigators [72,81,110-112,141-152]. The model is also applicable to the permeation of gas mixtures [145].

The dual-mode sorption model is the concept of sorption into two idealized environments. One type of sorption is viewed as arising from uptake into a dissolved environment similar to sorption in low molecular weight liquids and rubbery polymers, and is described by a Henry's law relation. The second type of sorption is viewed as being due to uptake into the unrelaxed volume or "microvoids" present in glassy polymers, which is described as a Langmuir "holefilling" process. The combination of these two modes of sorption leads to the commonly employed Dual-Mode sorption model.

The total sorption is the sum of these two types of sorption and can be represented by equation 2.40 ;

$$
\begin{align*}
& c=c_{D}+c_{H} \tag{2.40}\\
& c=k_{D} p+c_{H}^{\prime} \frac{b p}{1+b p} \tag{2.41}
\end{align*}
$$

where, k_{D} is the Henry's law solubility constant, p is the partial pressure of the penetrant, c_{H}^{\prime} and b are the Langmuir capacity constant and hole affinity constant, respectively.
At low pressure $b p \ll 1$, hence equation 2.41 reduces to;

$$
\begin{equation*}
c=\left(k_{D}+c_{H}^{\dot{\prime}} b\right) p \tag{2.42}
\end{equation*}
$$

At higher pressure $b p \gg 1$, the modified Henry-like behaviour becomes;

$$
\begin{equation*}
c=k_{D} p+c_{H}^{\prime} \tag{2.43}
\end{equation*}
$$

Equations 2.42 and 2.43 represent c is a linear function of p at both low and high pressure with a nonlinear region in between. Hence, k_{D} and c_{H}^{\prime} can be determined from the slope and intercept, respectively. From equations 2.40 and 2.41;

$$
\begin{equation*}
c_{H}=\frac{c_{H}^{\prime} b p}{1+b p} \tag{2.44}
\end{equation*}
$$

which can be rearranged to;

$$
\begin{equation*}
\frac{p}{c_{H}}=\frac{1}{b \cdot c_{H}^{+}}+\frac{p}{c_{H}^{+}} \tag{2.45}
\end{equation*}
$$

The total solubility of gases in glassy polymers is higher than in rubbers, which is consistent with the apparent existence of an additional sorption site in such polymers.

The temperature dependence of the Henry's law constant can be represented by equation 2.46 ;

$$
\begin{equation*}
k_{D}=k_{D_{0}} \exp \left(\frac{-\Delta H_{D}}{R} \times\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right) \tag{2.46}
\end{equation*}
$$

and the temperature dependence of the Langmuir constant is;

$$
\begin{equation*}
b=b_{0} \cdot \exp \left(\frac{-\Delta H_{H}}{R} \times\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right) \tag{2.47}
\end{equation*}
$$

These equations enable the determination of the sorption enthalpies into the various sites. The Henry-type sorption enthalpy, ΔH_{D}, is of the same order as that in rubbers, whereas the enthalpy for sorption in Langmuir sites, ΔH_{H}, is appreciably higher. This accounts for the empirical finding that the gas sorption in glassy polymers is substantially more exothermic than in rubbers, and it is explained in dual sorption theory by the sorption of gas into pre-existing sites rather than sites that need to be formed by polymer molecular reorientations (as in rubbers).

While the permeability of most rubbery polymers to most gases is pressure independent, the permeability of glassy polymers is usually observed to decline with increasing pressure. This is accounted for by the dual sorption theory if one assumes that both the Henry and Langmuir type sites contribute to permeability [143].

Thus, the companion transport model to the dual-mode sorption model expresses the local flux ' J ' in terms of a two-part contribution [142,146,147].

$$
\begin{equation*}
J=-\left(D_{D} \frac{d c_{D}}{d x}+D_{H} \frac{d c_{H}}{d x}\right) \tag{2.48}
\end{equation*}
$$

where D_{D} and D_{H} refer to the diffusivity of the Henry and Langmuir sorbed components, respectively. For the special case in which the downstream pressure is effectively zero, the appropriate expression derived from the dual-mode sorption and transport models for steady-state permeability of pure component in a glassy polymer is given by [148];

$$
\begin{equation*}
P_{i}=k_{D} D_{D}\left(1+\frac{F \cdot Z}{1+b p}\right) \tag{2.49}
\end{equation*}
$$

where, $F=D_{H} / D_{D}$ and $Z=c_{H}^{\prime} b / k_{D}$ are convenient dimensionless groups and p is the upstream driving pressure.

The above expression for dual-mode transport accounts for two types of diffusion jumps. The terms D_{D} and D_{H} represent diffusional jumps in the Henry's law and Langmuir environment, respectively. Barrer [149] extended the dual-mode transport model to account for the effect of neighbouring gas molecules on the transport, and it is assumed in this treatment that a gas molecule can execute four distinct diffusional jumps.

If the Henry's law and Langmuir environments are denoted as ' D ' and ' H ', respectively, the four possible jumps are depicted by;
D to D : Dissolved to Dissolved
H to H : Hole to Hole
D to H : Dissolved to Hole
H to D : Hole to Dissolved.
where the four diffusion coefficients are represented by $D_{D D}, D_{H H}, D_{D H}$ and $D_{H D}$. The resulting expression for dual-mode transport developed by Barrer [149] is;

$$
\begin{equation*}
P_{i}=k_{D} D_{D D}+\frac{c_{H}^{\prime} b\left(D_{H H}+D_{H D}\right)-k_{D} D_{D H}}{1+b p}+2 k_{D} D_{D H} \frac{\ln (1+b p)}{b p} \tag{2.50}
\end{equation*}
$$

Attempts have been made to improve the dual-mode sorption model by formulating more detailed transport mechanisms [149,150]. However, this was achieved by the introduction of additional adjustable parameters which are difficult to evaluate and which decreases the usefulness of the model.

It is evident that some phenomenological models of gas transport in polymers (by solution and diffusion) and through polymer membranes (by permeation) have been useful for correlating and comparing the pertinent experimental data. The dual-mode sorption model has been particularly successful in this respect, and therefore has been widely applied to the study of structure/permeability relationships of polymers [72,81,110-112,141-152]. The main limitation of these phenomenological models is that they are not predictive
because the model parameters are not directly related to the chemical structure of the polymers.

2.1.3.3. Molecular Models

Efforts have also been made to formulate more detailed descriptions of the mechanisms of gas transport in polymers by means of "molecular" models. These models attempt to analyse specific motions of penetrant molecules and surrounding polymer chains relative to each other and take into consideration the pertinent intermolecular forces [78]. One of the most detailed of the earlier molecular models is that of Pace and Datyner [151,152], which incorporates the features of some previous models. Recent advances in the computer simulations of polymer microstructures and greatly increased capability of computers should make possible the formulation of much more realistic molecular models of gas transport in and through polymers. The first application of these computational techniques to estimate the fractional free volume in polypropylene and poly(vinyl chloride) appeared in 1989 [154].

Computer simulations of gas transport in polymeric membranes are still in an early stage of development. Most of these studies have involved rubbery polymers [155-160]. The transport of penetrant gas molecules in glassy polymers is more difficult to simulate realistically because such polymers are not in a state of true thermodynamic equilibrium. Moreover, gas diffusion coefficients are several orders of magnitude smaller in glassy polymers than in rubbery polymers. Therefore, the evaluation of diffusion coefficients in glassy polymers will require a very large amount of computer time.

Considerable work remains to be done before reliable predictions of diffusion coefficients, and solubility coefficients, for gases in rubbery and glassy polymers can be made by this technique. However, the computational technique has the potential of relating these coefficients, and also solubility and permeability coefficients, directly to the chemical structure of polymers.

2.2. Effect of Operating Conditions on Membrane Permeability

2.2.1. Effect of Concentration and Pressure on Diffusion Coefficient

Accurate engineering modelling of membrane-based gas permeation can be performed if the concentration and pressure dependence of the various component permeabilities are known at the temperature of interest.

For transport in both rubbery and glassy polymers, the flux can be written in terms of Fick's law with an effective diffusion coefficient, $D_{\text {eff }}$ (c), that is dependent on local concentration;

$$
\begin{equation*}
J=-D_{\mathrm{eff}}(c) \cdot \frac{d c}{d x} \tag{2.51}
\end{equation*}
$$

The concentration dependence of the diffusion coefficient for penetrant transport in polymers can be evaluated from steady-state permeability and equilibrium solubility data, without any reference to a particular model.

$$
\begin{equation*}
P \cdot p_{0}=-\int_{d_{0}}^{c_{1}} D_{\text {ef }}(c) d c \tag{2.52}
\end{equation*}
$$

where c_{1} is assumed to be zero for the case where the penetrant pressure is zero at the downstream face. Then by applying the Liebnitz rule,

$$
\begin{equation*}
D_{\mathrm{eff}}\left(c_{0}\right)=p_{0}\left|\frac{d P}{d c}\right|_{c_{0}}+P\left|\frac{d p}{d c}\right|_{c_{0}} \tag{2.53}
\end{equation*}
$$

which can be simplified to form $[72,147]$;

$$
\begin{equation*}
D_{\text {eff }}\left(c_{o}\right)=\left|\frac{d p}{d c}\right|_{\rho_{0}}\left(p_{0}\left|\frac{d P}{d p}\right|_{p_{0}}+|P|_{p_{0}}\right) \tag{2.54}
\end{equation*}
$$

Hence, the concentration dependence of the local diffusion coefficient, $D_{\text {eff }}\left(c_{0}\right)$, can be determined by the pressure dependence of both permeability and solubility isotherms.

For low sorbing gases in rubbery polymers, both P and $d c / d p$ are essentially constant, leading the constant diffusion coefficient. On the other hand when the concentration dependence is observed, the form will generally take the shape of one of the curve shown in Figure 2.7. Transport of penetrants that have a strong affinity for rubbery polymers can be characterised by a linearly increasing diffusion coefficient, as shown in Figure 2.7(a). In cases for which the penetrant has a strong plasticising effect on rubbery polymer, an exponentially increasing diffusion coefficient is found, as illustrated in Figure 2.7(b) [108,110,138,140]. For the transport in glassy polymers, the diffusion coefficient is usually found to be concentration dependent even in the absence of a strong affinity of the penetrant for the material. As shown in Figure 2.7(c), the diffusion coefficient is usually convex to concentration at low sorption levels and is concave to concentration at higher sorption levels [147]. As shown in Figure 2.7(d), the clustering effect usually leads to a decreasing diffusion coefficient because the clustering becomes more severe at higher concentration [161].

c. local penetrant concentration in polvmer

Figure 2.7 Typical forms for concentration dependent diffusion coefficients in polymer media [72].

In some membrane applications, feed streams contain very high levels of strongly interacting gases, which plasticise the membranes. Exposure to high
levels of these gases results in a large depression of the effective glass transition temperature $[162,163]$. The pressure at which the plasticisation condition is reached roughly corresponds to the minimum in the permeability isotherms in Figure 2.8.

Penetrant pressure in polymer
Figure 2.8 Typical forms of permeability dependence on pressure during gas transport through polymeric membranes [107].

Figure 2.8(a), is for the ideal case as both diffusion and solubility are assumed independent of gas pressure. This type of behaviour is observed for the case of supercritical gas permeation in amorphous polymers. Figure 2.8(b) is characteristic of the gas plasticisation effect on the polymer and is observed during organic vapour permeation in rubbery polymers. Figure 2.8(c) corresponds to the case of highly soluble gases in glassy polymers, and Figure 2.8(d) is the combination of Figure 2.8(b) and Figure 2.8(c), which is observed in the case of permeation of organic vapours or plasticising gases in glassy polymers.

This shows that the useful operating range for various membrane materials is widely variable and dependent on a complex interrelation between the penetrant solubility and polymer chain rigidity.

2.2.2. Effect of Temperature on Permeability

Generally polymer permeability varies with concentration, temperature, chain mobility, crystallinity, cross-linking, polarity, gas-polymer interactions, etc. The effect of an increase in temperature may also be expressed in terms of an increase in free volume, which is related to the bulk expansion of the polymer that increases the permeability but decreases the selectivity. The thermal effects on solubility and diffusion show opposite trends. For gas adsorption, solubility decreases with increase in temperature as the condensability of the penetrant decreases with temperature. The solubility dependence with temperature is typically written in terms of the Van't Hoff relationship as follows;

$$
\begin{equation*}
S=S_{0} \exp \left[-\frac{\Delta H_{s}}{R T}\right] \tag{2.55}
\end{equation*}
$$

where S_{0} is constant and ΔH_{s} is the partial molar enthalpy of the sorption.
The solubility in thermodynamic terms is said to be a two step process [76]. The first step involves the condensation of the gas molecule in a polymer, followed by creation of a molecular scale gap for accommodating this gas molecule. These individual steps then contribute to the total enthalpy of sorption and are mathematically represented as;

$$
\begin{equation*}
\Delta H_{s}=\Delta H_{\text {condensation }}+\Delta H_{\text {mixing }} \tag{2.56}
\end{equation*}
$$

Transport through dense films may be considered as an activated process which can usually be represented by an Arrhenius type of equation [164]. The temperature dependence equation for sorption, S, can be given as;

$$
\begin{equation*}
S=S_{0} \exp \left[\frac{-\Delta H_{s}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right] \tag{2.57}
\end{equation*}
$$

For low molecular weight super critical gases, low condensability causes the mixing step to control the sorption property of a polymer. For the case of weak interactions between the gas molecule and the polymer, the change in enthalpy of mixing is positive, which then leads to an increase in solubility with
increase in temperature. For the case of condensable gases and vapours, the enthalpy change for condensation is negative and dominant, thereby showing decreasing solubility with increasing temperature.

Temperature dependence on gas diffusion is well expressed in term of an Arrhenius type relationship, as the movement of gas molecules through a membrane is considered a thermally activated process [76]. Mathematically, the temperature dependence of diffusion is given as;

$$
\begin{equation*}
D=D_{0} \exp \left[\frac{-\Delta E_{D}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right] \tag{2.58}
\end{equation*}
$$

where ΔH_{s} is solution enthalpy ($\mathrm{J} / \mathrm{mol}$) and ΔE_{D} is the energy for diffusion ($J / m o l$). Studies of the thermal effects during gas transport have shown that the activation energy term is dependent on the size of the penetrant, and not on its mass. Diffusion is the most temperature sensitive transport parameter, in comparison to solubility and permeability [72]. Combining the temperature dependence equations for the diffusion and sorption coefficients, the temperature effect on gas permeability is then given as:

$$
\begin{equation*}
P=P_{0} \cdot \exp \left[\frac{-\Delta E_{p}}{R T}\right] \tag{2.59}
\end{equation*}
$$

where ΔE_{ρ} is activation energy for permeation ($\mathrm{J} / \mathrm{mol}$), P_{o} is permeability at STP ($\mathrm{cm}_{\mathrm{stp}}^{3} / \mathrm{cm}^{2} \mathrm{~S} \cdot \mathrm{~Pa}$).

In general, permeability increases with increase in temperature. However, there are exceptions, especially near the glass transition temperature of the polymer, where opposite trends have been observed [126]. This observation was explained in terms of pressure effects on the polymer under isothermal operating conditions. The high stress caused by the applied gas pressure was said to cause a transition in the polymer from a rubbery state to a glassy state. In the case of the glassy polymers, all three gas transport parameters decrease with increasing temperature. Some exceptions are observed at high temperatures
where, due to low solubility, more errors are introduced in the fitting of the dual-mode sorption curve [76].

2.2.3. Effect of Concentration Polarisation

In membrane separation processes, a gaseous or liquid mixture is fed to the feed side of the membrane at higher pressure, and the permeate, enriched in one of the components of the mixture, is withdrawn from the downstream side of the membrane. Because the feed mixture components permeate at different rates, concentration gradients form in the fluids on both sides of the membrane. The phenomenon is called concentration polarisation. The layer of solution immediately adjacent to the membrane surface becomes depleted in permeating solute on the feed side of the membrane and enriched in this component on the permeate side. Concentration polarisation reduces the permeating component's concentration difference across the membrane, thereby lowering flux and the membrane selectivity.

Two approaches have been used to describe the effect of concentration polarisation. One has its origins in the dimensional analysis used to solve heat transfer problems. The second approach to concentration polarisation is to model the phenomenon by assuming that a thin layer of unmixed fluid, with thickness, δ, exists between the membrane surface and the well-mixed bulk solution. The concentration gradients that control concentration polarisation form in this layer. This boundary layer film model oversimplifies the fluid hydrodynamics occurring in membrane modules and still contains one adjustable parameter, the boundary layer thickness. Nonetheless, this simple model can explain most of the experimental data.

2.2.3.1. Concentration Polarisation in Gas Separation Processes

Concentration polarisation in gas separation processes has not been widely studied, and the effect is often assumed to be small because of the high diffusion coefficients of gases. However, the volume flux of gas through the membrane is also high, so concentration polarisation effects are important for several processes.

The simple mass balance for gas permeation can be written as;

$$
\begin{equation*}
J_{v i} c_{i}-D_{i} \frac{d c_{i}}{d x}=J_{v p} c_{i p} \tag{2.60}
\end{equation*}
$$

where $J_{v t}$ is the volume flux of gas on the feed side of the membrane and $J_{v p}$ is the volume flux on the permeate side. The volume fluxes $\left(\mathrm{cm}^{3} /\left(\mathrm{cm}^{2} \mathrm{sec}\right)\right)$ can be linked by correcting for the pressure on each side of the membrane using;

$$
\begin{equation*}
J_{v} p_{o}=J_{v p} p_{t_{m}} \tag{2.61}
\end{equation*}
$$

where p_{o} and $p_{t_{m}}$ are the penetrant partial pressures on the feed and permeate sides of the membrane, respectively. Hence;

$$
\begin{equation*}
J_{v} \frac{p_{o}}{p_{t_{m}}}=J_{v i} \phi=J_{v p} \tag{2.62}
\end{equation*}
$$

where ϕ is the pressure ratio, $p_{o} / p_{t_{m}}$ across the membrane. Substituting equation 2.62 into 2.60 , and rearranging gives;

$$
\begin{equation*}
-D_{i} \frac{d c_{i}}{d x}=J_{v i}\left(\phi \cdot c_{i p}-c_{i}\right) \tag{2.63}
\end{equation*}
$$

Integrating across the boundary later thickness, gives;

$$
\begin{equation*}
\frac{\left[c_{i o} /\left(\phi-c_{i \rho}\right)\right]}{\left[c_{i b} /\left(\phi-c_{i \rho}\right)\right]}=\exp \frac{J_{v} \delta}{D_{i}} \tag{2.64}
\end{equation*}
$$

For gases, the enrichment terms E and E_{0} are most conveniently expressed in volume fractions, so that;

$$
\begin{equation*}
E_{o}=\frac{c_{i p}}{p_{t_{m}}} \cdot \frac{p_{o}}{c_{i o}}=\frac{c_{i p}}{c_{i o}} \cdot \phi \tag{2.65}
\end{equation*}
$$

and,

$$
\begin{equation*}
E=\frac{c_{i p}}{p_{t_{m}}} \cdot \frac{p_{o}}{c_{i b}}=\frac{c_{i p}}{c_{i b}} \cdot \phi \tag{2.66}
\end{equation*}
$$

Equation 2.64 can then be written as;

$$
\begin{equation*}
\exp \frac{J_{v} \delta}{D_{i}}=\frac{1-1 / E_{0}}{1-1 / E} \tag{2.67}
\end{equation*}
$$

which on rearranging gives;

$$
\begin{equation*}
\frac{E}{E_{0}}=\frac{c_{i p}}{c_{i o}}=\frac{\exp \left(\frac{J_{w} \delta}{D_{i}}\right)}{1+E_{0}\left[\exp \left(\frac{J_{w} \delta}{D_{i}}\right)-1\right]} \tag{2.68}
\end{equation*}
$$

Equation 2.68 can be used to calculate the expected concentration polarisation modulus for some of the better-known gas separation applications.

2.2.4. Effect of Plasticisation on Permeability

Plasticisation of the membrane polymer by a sorbed permeant can affect the permeability and selectivity properties significantly. For example, it is known that CO_{2} acts as a plasticiser in $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ separation using a membrane. Plasticisation occurs when the CO_{2} concentration in the polymer is high enough to increase free volume and segmental mobility. Due to the swelling of the polymer matrix, the permeation of CH_{4} is accelerated and as a consequence the polymer looses its selectivity. The study of CO_{2} permeation in polycarbonate by Koros [147] shows minima in the sorption curve, and coincides with the decline in the selectivity of the material. The presence of hysteresis in many sorption/desorption experiments involving a CO_{2} gas-polymer system confirms the plasticisation effects. A quantitative analysis for such behaviour was first given by Mauze and Stern [165], who assumed that the sorption due to the Henry's law is a much stronger function of concentration than the Langmuir mode sorption. Thus the gas concentration sorbed by the Henry's law mode is expressed as;

$$
\begin{equation*}
c_{D}=S(c) \cdot p=\left[k_{D} \exp (\sigma \cdot c)\right] \cdot p \tag{2.69}
\end{equation*}
$$

where σ is a characteristic parameter for the solubility dependence on concentration c. The dual-mode sorption equation is then represented as;

$$
\begin{equation*}
c=\left[k_{D} \exp (\sigma \cdot c)\right] p+\frac{c_{H}^{\prime} b p}{1+b p} \tag{2.70}
\end{equation*}
$$

A correlation for plasticisation effect on c_{H}^{\prime} parameter was described by Kamiyu et al. $[166,167]$. Starting with the concentration effects on the glass transition temperature, an expression can be presented relating the excess free volume to the gas concentration and operating temperature;

$$
\begin{equation*}
v_{H}(c)=\Delta \alpha \cdot\left[\beta \cdot c_{g}\left\{T_{g}(O)-T_{g}(c)\right\}\right] \tag{2.71}
\end{equation*}
$$

Considering the effects in terms of concentration only, the excess free volume can be modified and results in the following equation;

$$
\begin{equation*}
v_{H}(c)=\Delta \alpha \cdot \beta\left(c_{g}-c^{*}\right) \tag{2.72}
\end{equation*}
$$

This equation can then be related to hole concentration coefficient using;

$$
\begin{equation*}
c_{H}^{\prime}=\gamma \cdot v_{H}(c)=c_{H O}^{\prime} \cdot\left(1-\frac{c^{*}}{c_{g}}\right) \tag{2.73}
\end{equation*}
$$

where, $v_{H}(c)$ is the excess free volume per unit volume of the penetrant polymer system, γ is the proportionality constant between the concentration and temperature at the glass transition point, c_{g} is the glass transition concentration at temperature T, and c^{*} is the same as the effective total concentration of sorbed penetrant. Substituting equation 2.73 into 2.70 , the final expression for dual-mode sorption can be given as;

$$
\begin{equation*}
c=\left[k_{D} \exp \left(\sigma \cdot c^{*}\right)\right] p+\frac{c_{H D}^{\prime} b p}{1+b p}\left(1-\frac{c^{*}}{c_{g}}\right) \tag{2.74}
\end{equation*}
$$

The validity of the equation 2.76 , can be examined with a permeability study of CO_{2} in poly(vinyl benzoate), poly(vinyl butyral) and poly(ethylene terephthalate) [166,167].

3. NEXT GENERATION MEMBRANES - OPPORTUNITIES AND HURDLES

This section seeks to define the current scientific, technological and commercial boundaries of the field of membrane-based gas separation and to project the position of these boundaries of the immediate future.

Scientific and engineering achievements over the past ten to fifteen years have promoted the current strong interest in membrane-based gas separations, and promise the steady progress towards removing remaining limitations and enabling long term growth as a technology. In 1991, Robeson [168] raised the important question whether an upper limit ("upper bound") may exist to the gas selectivity of polymers with a given permeability. The "upper bound" will move upwards as new polymers with increased gas permeability and selectivity are synthesised. With suitable structural modifications it is possible to enhance both the permeability and selectivity. Availability of membranes that are simultaneously more robust and less expensive per unit separation area would make membranes a more attractive option in a broader array of applications.

The polymeric materials available currently can be visualised as having a broad free volume distribution, such as shown by the curve in Figure 2.9(a). The shaded area under the distribution curves marked ' A ' represents the free volume in a polymer available only to small penetrant molecule, whereas the cross hatched area marked ' B ' represents the free volume available to both small and large penetrants.

Figure 2.9 Hypothetical present and desired free-volume distribution in polymers considered as membrane materials for gas separations [78].

Current, developing, and potential membrane processes for the separation for the gas mixture separation have been discussed by Koros and Fleming [16]. In the coming years, the economics of the membrane processes listed in Table 2.2 will be improved to various extents by the availability of more highly selective and high-flux polymeric materials. Such improvements are imperative for the membrane separation industry because the economics of competing separation techniques are also being continuously improved. Ultimate displacement of a older technology tends to occur if a new one offers:

- significantly better performance
- greater convenience
- lower cost.

State of the art membranes excel in the last category, primarily based on highly efficient processes adapted and tailored to producing asymmetric and composite asymmetric fibres.

Table 2.2 Current membrane processes for gas separations [90].

Common gas separation	Application
$\mathrm{O}_{2} / \mathrm{N}_{2}$	Oxygen enrichment, inert gas generation
$\mathrm{H}_{2} /$ Hydrocarbons	Refinery hydrogen recovery
$\mathrm{H}_{2} / \mathrm{N}_{2}$	Ammonia purge gas
$\mathrm{H}_{2} / \mathrm{CO}$	Syngas ratio adjustment
$\mathrm{CO}_{2} /$ Hydrocarbons	Acid gas treatment, landfill gas upgrading
$\mathrm{H}_{2} \mathrm{O} /$ Hydrocarbons	Natural gas dehydration
$\mathrm{H}_{2} \mathrm{~S} / \mathrm{Hydrocarbons}$	Sur gas treatment
$\mathrm{He} / \mathrm{Hydrocarbons}$	Helium separation
$\mathrm{He} / \mathrm{N}_{2}$	Helium recovery
$\mathrm{Hydrocarbons} /$ Air	Hydrocarbons recovery, pollution control
$\mathrm{H}_{2} \mathrm{O} /$ Air	Air dehumidification

Some developing and potential membrane processes for separation of gas mixtures are listed in Table 2.3.

Table 2. 3 Developing and potential membrane processes for gas separations [76].

Removal of organic vapours from air
Dehydration of air
Dehydration of Natural Gas
Upgrading of low-quality Natural Gas
Upgrading of biomass and landfill gases
O_{2} enrichment of air
Olefin/Paraffin separations (e.g., ethylene/ethane, propylene/propane)
Flue gas desulphurisation
CO_{2} removal from diving atmospheres
High temperature separations

These applications would benefit from more intrinsically selective and robust membranes. On the other hand, while some new membrane materials often satisfy the first two criteria, high module production cost is currently a serious hurdle to the widespread adoption of higher performance materials with the potential to capture large new markets for membranes.

Another key factor in the development of membrane separation processes is the fabrication of high flux asymmetric or "composite" membranes from a given polymer, either in the hollow fibre or in a flat sheet form [72,98,107,169,170]. Polymer properties required for high gas permeability and selectivity can be very different from those necessary for membrane fabrication. An additional hurdle for these high flux membranes is the chemical and mechanical stability of the polymer membranes under actual operating conditions, especially when the membranes are exposed to a high pressure gas mixture that plasticises (swells) the polymer membrane.

3.1. A Practical Path Forward to the Next Generation Membranes

Evolutionary advancement, based on successive improvements in existing technology, has many attractive aspects as a strategy to introduce advanced materials. In this case, progression from the current state of the art to continually more advanced materials occurs in a series of more or less incremental steps. In this case, each evolutionary step reflects a response to a market pull for higher performance. Alternatively one can seek to jump directly from the current limited
technology to a much higher performance and cost goal. To move beyond the current generation to higher performance, to enable capturing these markets, the evolutionary path appears advisable and is the focus of the current applications.

In some applications, the intrinsic selectivity of current membrane materials may be adequate, but this selectivity cannot be maintained even under moderately aggressive feed conditions. Current focus is on the commercial availability of physically or chemically stabilised materials, and economical pure molecular sieving modules, which would unquestionably expand the markets and application options significantly. The combinations of technical and economic advantages make membranes an exciting new area with a potential to expand to a significant range of applications. All applications listed in Table 2.3 are important emerging membrane processes. In the following sections a detailed review on the opportunities, hurdles, and a possible practical approach forward for hydrogen purification and olefin/paraffin separations is described.

4. HYDROGEN PURIFICATION

The first large scale commercial applications of membranes to gas separations were the separation of hydrogen from nitrogen, methane and argon in ammonia purge gas streams [14]. Another even larger and more important application of hydrogen permeable membranes exists for hydrogen recovery in refineries. The demand for hydrogen recovery in refineries is increasing because of environmental regulations and heavier crudes. To reduce the economic penalty of environmental compliance, low-cost hydrocarbon separation technologies are required. The need to reduce hydrocarbon losses is especially critical, and facilities can no longer afford to dispose of waste hydrocarbon streams in their flare systems.

The gas separation applications in refineries are seldom simple. The gas mixtures to which the separation membranes are exposed may be hot, contaminated with solid or liquid particles, or at high pressure, may fluctuate in composition or flow rate or, more likely, may exhibit several of these features. Even in a most straightforward situation where the gas stream to be separated is a two component mixture and uncontaminated by other components, at ambient temperature and pressure, one component may interact with the membrane in
such a way as to change the permeation characteristics of the other component, so that the separation factor or selectivity suggested by the pure gas measurements cannot be achieved.

In refineries, ethylene, propylene and other higher olefins may be produced by heating saturated hydrocarbons such as ethane, propane or butane to elevated temperatures. The cracking effluent contains hydrogen, carbon dioxide, steam, olefins, light saturated hydrocarbons, heavy hydrocarbons, and other components. This effluent is sent to a product recovery system. The problem that inhibits the application of membranes in refineries is poor reliability. The condensable component, which is readily sorbed into the polymer matrix, swells or plasticises the membrane, thereby reducing its selective capabilities. Fouling, plasticisation, and condensation of hydrocarbon vapours on the membrane surface are all serious issues.

In principle, recovering hydrogen from the inert purge gas is an easy application for membranes. However, in the case of refinery applications, as hydrogen is removed through the membrane the remaining gas becomes enriched in hydrocarbons raising the dew point. For example, if the total hydrocarbon content increases from 60% in the feed gas to 85% in the residue gas, the dew point may increase by as much as 25 C or more, depending on the hydrocarbon mixture (see Chapter 1, Figure 1.1). In practice, to provide a safety margin and to minimise plasticisation of the membrane, the gas must be heated to $15-20 \mathrm{C}$ above the expected residue gas dew point, at which the membrane and module performance can be adversely affected. Failure to do so means, the hydrocarbon stream may enter into the liquid phase region of the phase diagram before it leaves the membrane module, and condense on the membrane surface to damage it beyond recovery.

Even heating the gas does not provide absolute membrane protection. Variations in gas composition are common in refinery applications, for example, when the gas source is a catalytic process from which off-gas content changes as the catalyst activity changes. More sudden changes occur when the feedstock to the upstream unit changes. The hydrocracker typically handles multiple streams from diverse sources; feed quality changes can be rapid and substantial as one or more streams are added or subtracted. Process parameters, such as pressure and temperature, deviate from the normal
operating range as a result of plant upsets or deliberate plant operator action to optimise the particular product. Any of these changes can bring the gas close to its dew point and cause membrane failure.

The principal technologies available to recover hydrogen from the refinery off-gases are cryogenic separation, pressure swing adsorption (PSA), and membrane separation [16]. Many membrane materials are much more permeable to hydrogen than to other gases and vapours. As many as 100 membrane plants have been installed in refineries, but the market is far from saturated. There are approximately 450-550 large refineries around the world, as well as many smaller ones [14]. Opportunities to place multiple hydrogen recovery units exist in all of these refineries, particularly if the operating margins and capital equipment budgets of refineries continue to increase from the very low levels of the past decade. However, the application of membranes to refinery gas separation operations has been much less successful. Refinery gas streams contain contaminants such as water vapour, acid gases, olefins, aromatics, and other organics. The experience of operators with the membrane plants installed in refineries to date has not been uniformly good, and the problems described above have led to discontinuation of a number of plants. This has inhibited widespread adoption of membrane technology, but nevertheless the opportunity is real. A great deal of research has been performed on improved membrane materials for hydrogen separation. A number of these materials appear to have significantly better properties than the original cellulose acetate or polysulfone membranes $[171,172]$. Hydrogen selective membranes have their own operating ranges, in terms of temperatures and flow compositions. The properties of the flow to be separated are therefore a starting point to select a suitable membrane. Developing new hydrogen permeable membrane materials able to operate at high hydrocarbon partial pressure and at high temperatures is one approach. The following Table 2.4 shows the properties of the relevant hydrogen selective membranes.

Table 2.4 Properties of relevant hydrogen selective membranes [173].

	Dense polymer	Micro porous ceramic	Dense metallic	Porous carbon	Dense ceramic
Temperature range	< 100 C	200-600 C	300-600 C	500-900 C	600-900 C
H_{2} selectivity	5-350	5-139	>1000	4-20	> 1000
H_{2} flux ${ }^{\text {* }}$	Low	60-300	60-300	10-200	6-800
Stability	Swelling, compaction, mechanical strength	$\begin{aligned} & \text { Stable in } \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Phase transition	Brittle oxidising	$\begin{aligned} & \text { Stable in } \\ & \mathrm{CO}_{2} \end{aligned}$
Poisoning	$\begin{aligned} & \mathrm{HCl}, \mathrm{SO}_{\mathrm{x}}, \\ & \mathrm{CO}_{2} \end{aligned}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}, \mathrm{CO}$	Organic vapours	$\mathrm{H}_{2} \mathrm{~S}$
Development status	Commercially available	Prototype tubular silica membranes available up to 90 cm .	Commercially available	Small membrane modules at commercial level	Small modules at commercial level

* flux in $10^{-3} \mathrm{~mol} / \mathrm{m}^{2} \mathrm{sec}$, calculated at 1 bar TMP

Once the membrane type is selected, the membrane module can be chosen or designed taking into account consideration such as manufacturability, maintainability, operability, efficiency, membrane deterioration and costs. Another approach is to use better feed gas pre-treatment to reduce the dew point of the feed gas to the hydrogen permeable membrane. As these problems are solved, this type of refinery application is likely to expand significantly.

The use of hydrogen separation membranes in large scale applications such as ethylene cracker, in which mixtures of hydrogen, methane, ethane, propylene, and other hydrocarbons are separated by low temperature condensation followed by fractional distillation. Hence, a number of opportunities exist for membrane separation units in these plants. A number of companies have worked on different approaches, and some pilot plants have been installed. Table 2.5 gives a brief overview on the present technologies available for hydrogen separations, and compares the membrane technology with them.

Table 2.5 Technology selection criteria [173].

Features	Pressure Swing Adsorption	Membranes	Cryogenics
H_{2} purity	99.9\% +	90-98\%	90-96\%
H_{2} recovery	50-92\%	85-95\%	90-99\%
Feed pressure	150-600 psig	300-2300 psig	$>75-1100$ psig
Feed H_{2} content	>40\%	$>25-50 \%$	> 10\%
H_{2} product pressure	Feed	< $1 / 3$ feed pressure	Feed/low pressure
H_{2} capacity	$\begin{aligned} & 1-200 \\ & \text { MMSCFD } \end{aligned}$	$\begin{aligned} & 1-50 \\ & \text { MMSCFD } \end{aligned}$	$\begin{aligned} & 10-75 \\ & \text { MMSCFD } \end{aligned}$
Pre-treatment requirements	None	Minimum	$\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ removal
Multiple products	No	No	Liquid HC's
Power requirements	None / fuel	H_{2} / fuel	None / H_{2} / refrigeration
Turndown	Good	Good	Very good
Reliability	Good	Very good	Less
Ease of future expansion	Suitable	Very suitable	Suitable
By product recovery	Not economical	Economical	Very economical
Capital cost	Medium	Low	Higher
Scale economics	Moderate	Modular	Good

5. OLEFIN / PARAFFIN SEPARATION

Light olefins and paraffins are valuable raw materials in a wide range of petrochemical applications [174,175]. A significant amount of the light olefins produced during the refining of crude oil is used as refinery fuel. Low molecular weight olefins $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ are widely used for production of plastics and chemicals in the petrochemical industry, or of octane boosters and alkylated hydrocarbons by refineries; the corresponding iso-alkanes are also significant raw materials in alkylation processes for the production of high octane branched paraffins. Large quantities of ethylene and propylene are used as feedstock in the production of a very important industrial polymer such as polyethylene or polypropylene. The most widely used production process for olefins is the cracking of C_{4}-hydrocarbon fractions, followed by dehydrogenation reaction. The obtained olefin/paraffin mixture is difficult to separate, because the boiling points
and the kinetic diameters of olefins and their saturated counterparts are very close, as shown in Table 2.6.

Table 2. 6 Physical properties of olefins and paraffins [176,177].

	Ethylene	Ethane	Propylene	Propane
Boiling Point (C)	-103.9	-88.6	-48	-42.2
$\sigma_{\text {LJ }}(\AA)$	3.90	4.0	4.4	3.96

The separation of olefins from paraffins has been ranked at a high level in evaluation of the potential impact of membrane separations in petroleum refining [178-180]. A large corpus of patent and literature data on membranes for refinery gas separation applications has been accumulated so far that requires generalisation (about 2000 documents over recent 20 years) [181]. The flow of patent and periodic information on the problem of membrane separation of volatile hydrocarbons is steadily growing. The flow is dominated by articles in journals whereas the share of patents is only about one-third. This indicates that for the time being researchers are mainly taking a scientific, rather than commercial, interest in the problem.

Separation of olefin and paraffin gases is currently carried out by energy intensive low temperature distillation. These distillation columns are often up to 300 ft tall and typically contain over 200 trays with reflux ratios greater than 10 , which require very high energy input to carry out separation. According to a report by DOE, $1.27 \times 10^{14} \mathrm{~kJ}\left(3.024 \times 10^{6}\right.$ tonne of fuel oil equivalent) of energy is used annually for olefin/paraffin distillation [17]. This large energy and capital investment requirement provides the incentive for research in developing new techniques for olefin/paraffin separations.

Membrane separation technology has been proposed as a potential alternative approach to the conventional distillation process for olefin/paraffin separation, and various membrane types have been examined for separation of gaseous olefin/alkanes (e.g., ethylene/ethane, propylene/propane) [18-48]. Membrane separations are based on one of the three mechanisms; size difference, charge difference, and solubility difference. In membrane separation of the olefin/paraffin mixture, the predominant selective separation of olefin is evident. Firstly, the olefin molecule is smaller in size as compared to the respective paraffin. It is known that the C-C distance in paraffin is 0.1534 nm ,
where the $\mathrm{C}=\mathrm{C}$ distance in olefins is 0.1337 nm [181]. Atoms of carbon in paraffins are characterised by sp^{3} hybridisation (and free rotation around C-C bonds), and atoms of olefins are characterised by sp^{2} hybridisation. The rigid $\mathrm{C}=\mathrm{C}$ bond impedes internal rotation in the olefin molecule and makes it flat. It is, therefore, clear why the olefin molecule is smaller in size compared to paraffin and why the diffusion coefficient of olefins in polymers would be higher than those of paraffins. Secondly, the presence of unsaturated bonds in olefin molecules makes them capable of specific interactions with the membrane matrix. The attempt of implementing these capabilities resulted in development of an important field of research: facilitated transport. The membrane process using the concept of facilitated transport has been considered to be an energysaving process to separate olefins from paraffins. In facilitated transport membranes carrier-mediated transport occurs, in addition to a normal Fickian transport, due to the reversible reaction of carrier with a specific solute, and separation efficiency can be improved remarkably. The basis for the separation is the formation of a reversible π-bond complexation reaction between metal ions such as Ag^{+}which are incorporated into the membrane polymer matrix, and olefin, when the gas mixture is contacted with a second phase (membrane) containing complexing agent (see Figure 2.10) [19,182].

Figure 2. 10 Schematic representation of chemisorption of olefin by a metal complex (Dewar-Chatt Model) [182].

The un-bonded and filled π-orbitals of the olefin molecules overlap with the vacant hybridised d-orbitals of the metal and donate electrons forming a σ - bond. More important is the back donation of electrons from the filled d orbitals of the metal to the π^{*}-orbitals of the olefins which determines the stability of the olefin-metal complex. It follows that an electron withdrawing group present close to the olefin double bonds in such a complex has a strong stabilising effect on the complex. Also, a more nucleophilic transition metal ion usually forms a more stable complex.

Two possible different types of facilitated transport are schematically shown in Figure 2.11; the olefin transport with mobile carriers and the transport with fixed-site carriers. In the first case (see Figure 2.11(a)), the olefin/silver complexes formed at the feed-side boundary of the membrane permeate due to their concentration gradient and after decomplexation at the permeate side the silver ions permeate back and the circle starts again. In the second case (see Figure 2.11(b)), silver ions are fixed in the polymer and olefin molecules permeate the membrane by "hopping" from one fixed silver ion to another. The complex diffuses owing to its concentration differences across the membrane from the high-pressure side to the low-pressure side, where decomplexation takes place. This completes a facilitated transport cycle, and the complexing agent repeats the cycle. Because of the complexation, the concentration of the olefin in the membrane increases, and the transport of olefin is thus facilitated.

Figure 2.11 Mechanism of facilitated transport: a) mobile Ag^{+}-carriers; b) fixed-site Ag^{+}-carriers [183].

On the other hand, paraffin can not form a complex with silver and the majority of the paraffin is thus rejected. Therefore, the facilitated transport membrane can give high olefin/paraffin selectivity and high olefin purity. However, currently four problems limit the use of facilitated transport membranes for industrial applications:

- poor mechanical stability
- difficulty in preparing thin, high-flux composite membranes
- requirement of a water-vapour-saturated feed to provide mobility for the olefin-selective carrier
- poor chemical stability due to carrier poisoning.

Further research in developing ideal polymer and polymeric membranes which are viable and acceptable in all respect is, therefore, required and emphasised in this work.

6. SELECTION OF THE POLYMERIC MATERIAL

As discussed earlier, hydrogen/hydrocarbon and olefin/paraffin separation processes are energy intensive, and consequently polymer membrane based separations have been considered as an attractive alternative. Most of the commercially available membrane polymers show plasticisation effects when exposed to hydrocarbon mixtures resulting in loss of separation efficiency. Plasticisation is caused by the high solubility of such components in the polymer, and as a consequence an increase in permeability is usually observed with decrease in selectivity. Two important classes of material that may offer the potential for capturing new high volume opportunities in the harsh and demanding operating environment of a petroleum refinery are: cross-linked polymers and blends of molecular sieving domains in polymers (mixed matrix membranes).

Remarkable separation performance of olefin/paraffin mixtures was previously reported by facilitated olefin transport through silver based polymer membranes using the concept of facilitated transport in liquid [21-29], solid membranes [30-47], as well as copper cation membranes [48]. Since, the evaporation of liquid media in liquid membranes is a serious drawback in
practical applications, the development of solid facilitated transport membranes is demanded. Hughes et al. [18,26] described supported liquid membranes of aqueous AgNO_{3} solutions in a porous cellulose acetate reverse osmosis membrane for ethylene/ethane and propylene/propane separations. Shukla and Pienemann [30] were one of the first who recognized the importance of incorporation of silver ions into a polymer matrix as a method to enhance olefin transport and to obtain high olefin/paraffin separation factors. Sungpet et al. [38] described incorporation of silver salt into grafted polymers prepared by pre-irradiation graft methods. Kawakami et al. [22] reported supported liquid membranes of $\mathrm{Rh}\left(\mathrm{NO}_{3}\right)_{3}$,-poly(ethylene glycol) in a glass microfiber filter for selective permeation of ethylene and propylene. Tsou et al. [24] investigated the silver facilitated transport of ethylene in liquid membrane contactor system. They applied a supported liquid membrane in the absorption part of the contactor, whereas desorption was established using a flash pot swept with helium. On silver sulfonate membranes, LeBlanc et al. [25] described a silver-containing cation-exchange sulfonated poly (dimethylphenylene oxide) membrane saturated with water. This membrane showed a very high permeability ratio for ethylene versus ethane, and generated considerable research interest in the facilitated transport of olefins using silver sulfonate membranes $[27,29,31,33]$. Cation-exchange membranes are able to exchange H^{+}for Ag^{+}like sulfonated poly (ether ether ketone) (SPEEK) [38], sulfonated polysulfone [39,42], and Nafion ${ }^{\circledR}$ [34], which are more stable since Ag^{+} is not only physically but also ionically bond to the sulfonated membranes due to the exchange of H^{+}with Ag^{+}. Kraus [27] reported on a water-free ion-exchange Nafion ${ }^{\circledR} 415$ (Du Pont) perfluorosulfonate ionomer membrane containing silver ions and a poly(hydric alcohol) solution for the separation of ethylene from ethane. Koval and Spontarelli [28] described a water-saturated Nafion ${ }^{\circledR} 111$ membrane with Ag^{+}for the liquid phase facilitated transport of 1-hexane and 1,5 hexadiene between feed and permeate water-saturated decane solutions. They also used the same membrane and a Nafion ${ }^{\circledR} 117$ membrane with Ag^{+}, both saturated with water, for the separation of styrene from ethylbenzene [154]. Employing these membranes, Koval et al. [31] further investigated this separation with respect to membrane thickness, membrane solvent and feed concentration. Koval et al. [33] reported that heat treatment of Nafion ${ }^{\circledR}$ membranes with glycerin
at elevated temperatures caused a permanent expansion of the membrane structure, i.e. swelling, which increased the diffusion coefficients by one order of magnitude for the styrene/ethylbenzene separation.

Only limited work has been done to develop new membranes which combine increased selectivities with higher permeation rates towards ethylene/ethane and propylene/propane separations for solid membranes. In the separation of propylene and propane, cellulose and polysulfone membranes were reported to show a selectivity of 3.78 and 1.42, respectively [189]. Membranes of PPO based co-polymers have exhibited higher selectivities of 17.8, and higher propylene permeabilities at 50 C [32]. Polyimide membranes showed extremely high permeabilities of 30-37 Barrers with ideal selectivities of 8.6-11 at 50 C , however, their room temperature values were relatively low [36].

However, recent success [190-204] in achieving excellent separation performance of propylene/propane and ethylene/ethane mixtures has encouraged researchers to continue. For many gas separations, to obtain good selectivity requires the use of amorphous glassy polymer materials. These materials, however, tend to be fairly impermeable compared with rubbery or elastomeric polymers, so very thin selective layers need to be produced to provide adequate trans-membrane flux of the permeating gases. If the polymer exhibits very high values of permeability and selectivity with dense films then it may be a good candidate for development of a practical membrane.

7. POLYANILINE - A POSSIBLE SOLUTION ???...

The 2000 Nobel Prize in Chemistry recognised the discovery of conducting polymers and over 25 years of progress in this field [205]. Conducting polymers are unique type polymers, which have π-conjugated electrons spread along the polymer backbone and have delocalised electron structure after doping. The science of the conducting polymer is rather young. Following the successful synthesis of conducting polyacetylene in 1970 by Shirakawa et al. [206,207], electrically conducting polymers have generated tremendous interest. Chiang et al. [208] discovered that chemical doping of polyacetylene (CH) $)_{x}$, with iodine increases the electric conductivity by several order of magnitude. Many of these properties result from the nature of the polymer backbone, which consists
of the alternating C_{6} rings and nitrogen hetero-atoms in either the amine (N-H) or imine (N only) form. Conducting or conjugated polymers are representative of a low dimensional solid with strong covalent bonds along the molecular backbone and very much weaker inter-chain interactions in the two orthogonal directions. Conductive polymeric materials with π-conjugated bonds are now finding growing applications in optoelectronic and microelectronic components [209-213].
a) trans - polyacetylene

b) poly(p-phenylene)

c) poly(p-phenylene vinylene)

d) polypyrrole

e) polythiophene

f) polyaniline

Figure 2. 12 Repeat unit of several pertinent conducting polymers [214].

The "simple" electronic polymers (see Figure 2.12) were synthesised and studied well over 2 decades, with a strong focus on polyaniline [49-62]. More complex homopolymers were developed and major parallel efforts were made in the study of π-conjugated polymers with non-degenerate ground states including polythiophene, polyaniline, polypyrrole, and poly(p-phenylene).

Polyaniline was first studied in 1910 by Green and Woodhead [215]. Since then, there have been numerous articles and reviews covering this polymer [216-220]. It has been of particular interest because of its environmental stability [221-222], controllable electrical conductivity [223,224], and interesting redox properties associated with the chain nitrogens. The structure of the oxidised insulating form of polyaniline prepared via oxidative polymerisation consists of a mixture of four species, as shown in Figure 2.13.

(a)

(c)

(b)

(d)

Figure 2. 13 Polyaniline represented with its four basic species; (a) benzenoid-amine state, (b) benzenoid-ammonium salt state, (c) dope-semiquinone radical state, (d) quinoid-diimine state.

Polyaniline is a mixture of a benzenoid-amine state (a), a benzenoidammonium salt state (b), a dope-semiquinone radical state (c), and a quinoiddiimine state (d). According to previously prevailing belief [225], polyaniline shows electrochemical behaviour between the benzenoid-amine state or benzenoid-ammonium salt state and the quinoid-diimine state, but Nakajima et al. [226], discovered that polyaniline shows electrochemical or charging/discharging behaviour between the benzenoid-amine state or benzenoid-ammonium salt state and the dope-semiquinone radical state, and that the less the quinoid-diimine state the more the discharge capacity is.

Polyaniline and its derivatives have the peculiarity to present the electrical conductivity that can be controlled either by redox chemistry (i.e. charge transfer doping) [227] or by Brønsted acid-base chemistry (i.e. protonation) [64,228]. The Pauli susceptibility, also known as charge paramagnetism, is essentially linearly proportional to the percentage of protonation [65], in agreement with the proposal that protonation ("proton doping") leads to phase segregation of unprotonated and fully protonated domains. A model based upon a two-step transition from isolated, doubly charged, spin-less bipolarons to a polaronic metal has therefore been suggested (see Figure 2.14). In the bipolaron-lattice case, the benzene ring between the two proton carrying nitrogens has a strongly quinoid geometry with double $\mathrm{C}=\mathrm{C}$ bonds of $1.362 \AA$ and single $\mathrm{C}-\mathrm{C}$ bonds of $1.474 \AA$; the $\mathrm{C}-\mathrm{N}$ bonds around the charged nitrogen posses very different lengths. In the polaronlattice case, those latter C-N bonds are equal ($1.411 \AA$), and only slightly shorter than those around the other nitrogen ($1.414 \AA$); the benzene rings mostly adopt an aromatic geometry, the C-C bond lengths, as one goes away from the charged nitrogen, being equal to $1.440,1.400$, and $1.417 \AA$. Only the $1.440 \AA$ bonds are reminiscent of some residual quinoid character [229].

Figure 2. 14 Chemical structure of polyaniline; protonation-induced spin un-pairing in polyaniline, conversion from insulator to metal with no change in the number of electrons [228].

The physical and chemical properties of polyaniline are influenced by the synthesis route［230－232］，chemical constitution［232］，morphology［233－235］， doping［236－240］，and oxidation state［216－220］．The organic metal polyaniline has some curious properties［241］：it is an organic polymer，but totally un－mouldable and insoluble．Polyaniline is considered as a metal，i．e．it has free electrons in a metallic＂conduction band＂，but the conduction band is＂only＂ extending over about 10 nm ，which is the reason why this metal is referred to as a＂mesoscopic metal＂and behaves as other mesoscopic metals（see Figure 2．15）．Polyaniline is a redox active material and can exist in at least three oxidation states（see Figure 2．14），of which only one is metallic，but does not change its macroscopic form during reversible oxidation or reduction，hence，it can act as a＂redox catalyst＂．

© Ag, Cu	10^{6}						Doped trans－（CH）
边 Mg	10^{4}						
$\Sigma \quad \mathrm{In}, \mathrm{Sn}$	10^{2}						$\longleftarrow \frac{\text { Doped polyaniline }}{\left[10^{3} \mathrm{~S} / \mathrm{cm}\right]}$
$\underset{\sim}{\infty}$	10^{0}						
$\text { 荌 } \quad \mathrm{Ge}$	10^{-02}						
$\stackrel{3}{0}$	10^{-04}						
$\sum_{i n}^{0}$	$10^{-.06}$						$\left[\begin{array}{l}\text { trans－}(\mathrm{CH})_{\mathrm{x}} \\ {\left[10^{-05} \mathrm{~S} / \mathrm{cm}\right]}\end{array}\right.$
凶 Ag，Br	10^{-08}						
Glass Diamond	10^{-10}						
$\begin{array}{ll} \infty & \text { Diamond } \\ \cline { 1 - 2 } & \end{array}$	10^{-12}						［10 S / cm ］
I Nylon	10^{-14}						
$\stackrel{\text { n }}{\text { n }}$（ Quartz	10^{-16}						

Figure 2． 15 Conductivity of electronically conducting polymer［242］．
Polyaniline is＂electro－and chemo－chromic＂，i．e．it changes its transparent colour upon oxidation or reduction．It is green in the stable metal state，blue in the stable oxidised or neutralised form and transparent in the reduced form which is readily reoxidised to the green or blue．In polyaniline a single broad polaron band appears deep in the gap instead of two，and a second very narrow band appears near the conduction band edge，and the band structure for the polaron lattice fully accounts for the optical transition［243］．The plasma frequency of
polyaniline is in the infrared, so it looks shiny and reflective in the infrared but in the visible spectrum it is basically transparent [242].

Great advancements have been made in our understanding of the chemistry, electrochemistry, structure, electrical and optical phenomena, processing and applications of polyaniline since the mid 1980s. The inspiration for using polyaniline for separation stems from the ability to control morphology of a polymer on the molecular level via the doping process either during or after its synthesis. An ability to reproducibly synthesise the pure polymers in a known oxidation state, with a known molecular weight and degree of doping has permitted meaningful physical studies involving structure, conductivity, magnetic and optical phenomena which have resulted in a better understanding of factors controlling conductivity and transport phenomena in general. The molecular conformation of doped polyaniline, i.e. "tight coil" or "expanded" coil, has been shown to have a very large effect on conductivity and transport mechanisms of films of the polymer [244]. An important step in polyaniline research is the solution processing of polyaniline, which has been brought about by the ability to synthesise the doped polyaniline soluble in a variety of solvents by using organic sulfonic acids, containing large organic groups as the dopant acids [245]. Polyaniline in the emeraldine base form is soluble in several solvents including N -methyl pyrrolidinone (NMP) [246,247], sulphuric acid [54], 80% aqueous acetic acid [48], chloroform and m-cresol [249,250].

The wealth of the chemical and physical properties of polyaniline makes it a good candidate for a wide range of technological applications [251-253]. In recent years, there is an increasing interest in the idea of using intrinsically conductive polyaniline membranes for industrial gas separation applications [49-62]. The gas transport selectivity data obtained by Anderson et al. [51] were remarkable. Indeed, if these data are correct, polyaniline is one of the most exciting materials for potential applications in industrial gas separations to be discovered in many years. When polyaniline membranes are exposed to different gases, the measured permeabilities are found to be dependent on the size of the penetrant gas [51]. The values range from 20 Barrers for the relatively small gas helium ($2.6 \AA$) to 0.03 Barrers for the much larger gas methane ($3.8 \AA$). The kinetic diameters of the gases are known from sorption experiments in
zeolites [153]. As cast polyaniline membranes permeate oxygen over nitrogen by a selectivity factor, ' α ', of up to 9 [51-53].

8. CONCLUSION

Because of the exceptional gas-transport data obtained in the previous investigation, this project set out to explore the gas transport properties of polyaniline. The approach, however, is different from that used by Anderson et al. [51] who used thick ($\approx 0.1 \mathrm{~mm}$) free-standing polyaniline films to conduct transport studies. Dense film tests are generally with film samples that are many microns in thickness and therefore actual gas flux through the film is low. To further expand the polyaniline membranes for industrial applications, one must find ways to enhance the gas permeation flux (productivity) and separation efficiency by combining the synthesis of high performance polymeric materials with the innovation of membrane fabrication technology. In this project the concept of supported ultrathin polyaniline films for membrane based separation will be explored. The diffusion through the polymeric layer is a rate-controlling step, and the gas flux through the membrane is inversely proportional to the membrane thickness. The membrane must be made extremely thin to achieve high fluxes, but must also be strong enough to withstand the operating pressures. The approach will be to produce thin film composite membranes consisting of a thin film of selective polymer (polyaniline) coated onto the surface of microporous support material. It is hoped that the advantage of this approach will be to obtain a higher net flux across the composite membrane, noting that the highly permeable support layer do not offer any resistance relative to the selective polymeric layer. Therefore, the gas flux and selectivity characteristics of the composite membrane should be determined solely by the chemically selective polyaniline layer.

It has been shown that electroactive polyaniline based membranes can undergo sharp changes as a result of doping by acids [51,64,250,254-256]. Polyaniline has a simple acid/base doping/dedoping chemistry enabling control over properties such as free volume [51], solubility [250], electric conductivity [64], and optical activity [254-256]. The dopant induced bipolaron to polaron transition is attributed to Coulombic repulsion that leads to enhanced resonance
energy stabilization; hence interaction between polaron and different gases increases solubility. In 1995, Rebattet et al. [58] showed the increase in sorption of various gases in polaron form of polyaniline was the result of interaction between polaron nitrogen atoms to oxygen. Since, polyaniline is dopable material, it can be doped with Group I-B metal ions, such as $\mathrm{Ag}(\mathrm{I})$ to facilitate transport of olefins through polyaniline membranes. The effect of doping, dedoping and controlled redoping of silver ($\mathrm{Ag}(\mathrm{I})$) on permeation rate and separation efficiency of ethylene and propylene through ultrathin polyanilinebased composite membranes will be investigated. Permeability and separation efficiency of free standing undoped polyaniline will also be investigated in the present project.

This research will be therefore to develop a technique to synthesise polyaniline and produce polyaniline membranes for separating a gas from a gas mixture containing organic vapour or vapours. The gas transport properties of free standing undoped polyaniline films as well as polyaniline based nanomembranes for various gas pairs will be investigated. The gas mixture comprises the gas that is required to be separated and other vapour component or components, of which at least one is usually a C_{2+} hydrocarbon (i.e. ethane, ethylene, propane, propylene). The separation will be carried out by running a stream of gas mixture across a polyaniline membrane that is selective for the desired gas to be separated over another component or components. Polyaniline membranes have been selected for this work since they:

- are able to maintain useful separation properties in the presence of organic vapours, particularly C_{2+} hydrocarbon vapours, even at high levels in the gas mixtures.
- can recover from accidental exposure to liquid organic components.

In particular, this research will focus on determining various important transport parameters (e.g., permeability, ideal and separation factors), stability, and mechanical properties of polyaniline membranes for hydrogen/hydrocarbon and olefin/paraffin separations.

Chapter 3

EXPERIMENTAL TECHNIQUES

This chapter describes the synthesis route to prepare polyaniline powder followed by the techniques used to characterise as-synthesised polyaniline powder. The detailed description of the novel technique developed to prepare self-supported polyaniline and polyaniline/PVDF composite membranes has been given later in the chapter followed by the experimental techniques to characterise the polyaniline membranes (self-supported polyaniline films and polyaniline nanofilm membranes supported on porous PVDF substrate). Finally, the experimental tools (e.g. single and mixed gas permeation measurement set-ups), developed to determine the transport properties of the polyaniline membranes, are discussed in detail at the end of the chapter.

1. MATERIALS AND INSTRUMENTATION

Polyaniline Synthesis: Analytical grade aniline, ammonium peroxodisulfate and p-toluene sulfonic acid (p-TSA) were obtained from Sigma-Aldrich, UK. Aniline was distilled in a nitrogen environment before it was used. All the other reactants were used without further purification. Analytical grade methanol was obtained from Fisher Scientific, UK, to wash the as-synthesised polyaniline salt.

Solvents : Analytical grade 1-methyl 2-pyrrolidone (NMP) was obtained from Acros Organics, UK, and analytical grade dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich, UK.

Support Polymers : Laboratory grade cellulose acetate and ethyl cellulose were obtained from Fisher Scientific, UK. Analytical grade poly(vinylidene fluoride) (PVDF) was purchased from Sigma-Aldrich, UK.

Test Gases : Hydrogen, carbon dioxide, oxygen, nitrogen, methane, propylene, propane, ethylene, and ethane were purchased from BOC and were used in the pure permeation experiments. From these gases a gas mixtures with desired gas compositions were prepared.

Instrumentation : As-synthesised polyaniline batches were characterised using FT-IR spectrometry (Mattson-3000, UNICAM), UV-Vis spectrometry (Lambda 12, PERKIN ELMER), field emission scanning electron microscopy (Leo-1530 VP), Multivolume Helium pycnometry (Pycnometer-1305, MICROMERITIES), and gel permeation chromatography (Alliance GPC Systems, WATERS). FTIR grade potassium bromide was purchased from Sigma-Aldrich, UK to prepare translucent pellets to obtain FTIR absorption (or transmission) spectra.

Self-supported polyaniline and polyaniline/PVDF composite membranes were characterised using atomic force microscopy (Dimension 3100, VEECO), and field emission scanning electron microscopy (Leo-1530 VP). The experimental tools (e.g. single gas and mixed gas permeation measurement set-ups) were developed for the determination of the transport properties of both the self-supported polyaniline and the polyaniline/PVDF composite membranes.

2. SYNTHESIS OF POLYANILINE

During the past two decades, the chemical and physical properties of polyaniline have been studied extensively under different conditions, and a complete review on the tremendous advances made to understand the chemistry, electrochemistry, physics, and processing of polyaniline has been given by MacDiarmid [233].

Polyaniline is typically synthesised by oxidizing aniline monomer either electrochemically $[257,258]$ or chemically [259-266]. The physical properties of the polymer are significantly affected by a number of reaction parameters such as oxidant type, solution pH , oxidant/aniline molar ratio, dopant type, dopant size and synthesis temperature [267-274]. In this work, aniline was chemically oxidised with ammonium peroxodisulfate in the presence of p-toluene sulfonic acid. In this work, the effect of reaction parameters such as the starting reaction mixture $\mathrm{pH}(3.0$ to 0.5), oxidant/aniline molar ratio (0.5 to 1.3), oxidant addition
time (0 to 4 hours), total reaction time (0.5 to 4 hours) and polymerisation reaction temperature (+24 C to -20 C) on yield (polymer/monomer weight ratio), molecular weight and physical, chemical as well as transport properties of polyaniline is investigated.

The polymerisation reactions were performed in a reactor which allowed continuous stirring of the reaction mixture and also in situ measurement of the media temperature. The anchor stirrer was designed and used to scrape off polymer as it built up on the inner wall of the reactor. An anchor stirrer is useful because its outer diameter is designed only 4 mm less than the inner diameter of the reactor, hence it does not allow the produced polymer to stick on the inner surface of the reactor. It was possible (see description of the procedure below) to reduce the temperature of the reaction mixture to sub-ambient temperatures (temperature range: 30 C to -60 C) using an external ethylene glycol circulating chilling unit.

2.1. A General Chemical Route to Produce Polyaniline

Aniline was distilled under a nitrogen atmosphere in a distillation apparatus at 120 C before it was used. $9.313 \mathrm{~g}(0.1 \mathrm{~mol})$ of distilled aniline was taken into the glass jacketed reactor. 100 g of $1 \mathrm{M} p$-toluene sulfonic acid (p-TSA) solution was then gradually added (addition time: 2 hours) into the reactor containing distilled aniline with constant stirring. 26.243 g (0.115 mol) of ammonium peroxodisulfate was dissolved in 100 ml deionised water. The
 into the reactor containing aniline and 1 Mp -TSA with stirring speed of 150 to 160 rpm . The progress of polymerisation reaction can be confirmed by change in colour of the solution from white to green, increase in temperature, and precipitation of polymer.

All the reactions were carried out at starting $\mathrm{pH} \sim 1.0$, except that the starting pH was adjusted to $3.0,2.0,1.0$ and 0.5 by the addition of a small amount of ammonium hydroxide or p-toluene sulfonic acid, at a reaction temperature 0 C , oxidant/aniline molar ratio 1.15 , oxidation addition time 2 hours, and total reaction time 48 hours.

The oxidant to aniline molar ratio was varied from 0.5 to 1.3 to observe its effect on polymer yield and molecular weight of polyaniline, and the oxidant addition time was varied between instantaneous addition and 4 hours and the total reaction time was varied from 0.5 to 48 hours, at a reaction temperature of 0 C , and starting $\mathrm{pH} \sim 1.0$.

Figure 3.1 represents the steps involved in the general chemical synthesis of polyaniline. For polymerisation above 0 C (e.g. for the polyaniline batches produced at 24, 20, 15, and 10 C), Solution 1 and Solution 2 (see Figure 3.1) were kept at the same temperature (i.e. at reaction temperature) before being mixed. Below this temperature the reaction mixture freezes and polymerisation then proceeds in the solid state. The dielectric constant of water increases as the temperature is lowered; a salt or co-solvent must be added to Solution 1 if the temperature is to be lower than 0 C .

Figure 3.1 Steps involved in chemical synthesis of polyaniline.

For polymerisations below 0 C , the best salt to use is lithium chloride due to its low molecular mass and high depression of the freezing point of water. Addition of lithium chloride to the reaction mixture enables it to remain mobile at sub-ambient temperatures and increases the dielectric constant of the medium. So, an aqueous solution of lithium chloride would appear to be the best reaction medium for aniline polymerisation at sub-ambient temperatures.

The freezing of the reaction mixture (Solution 1) does not hinder the polymerisation of aniline. The polymerisation also proceeds well in the frozen (solid) state. This was an additional feature which stimulated our interest in producing polyaniline at various temperatures (24 C to -20 C). An external ethylene glycol chilling unit was used to maintain the reaction temperature at 0 , -10 and -20 C to synthesise polyaniline at low temperatures.

After 48 hours of complete addition of oxidant solution, the produced polymer (emeraldine salt) was filtered using an "ash-less" cellulose filter paper to separate by-products and oligomers from polyaniline. The remaining residue is washed with $2 \times 500 \mathrm{ml}$ of demineralised water followed by $1 \times 500 \mathrm{ml}$ methanol and again with $2 \times 500 \mathrm{ml}$ of demineralised water to remove oligomers. The washing steps were repeated up to six times. The colour of as-synthesised polyaniline salt is emeraldine-green. The polymer was then dried in a vacuum oven at 60 C for 48 hours and then kept in a desiccator at room temperature.

The dried polyaniline salt (emeraldine salt) was de-protonated to obtain an undoped emeraldine base (EB). The polyaniline salt was dedoped in an excess amount of ammonia water (about $500 \mathrm{ml} 1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ for 0.5 g of polyaniline salt) for 24 hours. This step was repeated 2 to 3 times to obtain a fully dedoped form of polyaniline, having better solution properties of emeraldine base into 1 -methyl, 2-pyrrolidone (NMP). When the ion-exchange was complete, the emeraldine base was washed with demineralised water several times. The dedoped emeraldine base was then dried in a vacuum oven at 60 C for about 48 hours. The colour of the dedoped polyaniline base is emeraldine blue.

3. POLYANILINE CHARACTERISATION

The synthesis of a polymer is, quite clearly, the sine qua non for polymer characterisation, but without the latter the former becomes an exercise of dubious value no matter how sophisticated the synthesis technique is. There is no definite sequence of characterisation methods that can be applied to a polymer. In this work, various characterisation methods were used to measure molecular structure and physical as well as chemical properties of the polyaniline powder.

3.1. Fourier Transform Infrared (FT-IR) Spectroscopy

Fourier transform infrared spectroscopy is a powerful tool to identify the types of chemical bonds in a polymer molecule by producing an infrared absorption (or transmission) spectrum that is like a molecular "fingerprint" [275]. The wavelength of light absorbed is a characteristic of the chemical bond. Molecular bonds vibrate at various frequencies depending on the elements and the type of bonds. For any given bond, there are several specific frequencies at which it can vibrate. According to quantum mechanics, these frequencies correspond to the ground state (lowest frequency) and several excited states (higher frequencies). One way to cause the frequency of a molecular vibration to increase is to excite the bond by having it absorb light energy. The energy corresponding to these transitions between molecular vibrational states generally corresponds to the infrared portion of the electromagnetic spectrum.

Infrared spectroscopy can be conveniently used to study the various intrinsic oxidation states of polyaniline [233,276-280]. In this work, FTIR spectra of polyaniline were recorded in the range 400 to $4000 \mathrm{~cm}^{-1}$ on a Mattson-3000 (UNICAM) instrument with a resolution of $2 \mathrm{~cm}^{-1}$.

3.1.1. Sample Preparation

Since FTIR is an absorption process, there is often a high probability that samples will absorb some bands so intensely that light will not penetrate through the samples. Thus, the sample must be carefully prepared for FTIR
measurements. The samples need to be appropriately thinned or diluted by mixing with potassium bromide (KBr) crystals to obtain transmission spectra.
0.03 to 0.05% by weight dried polyaniline EB powder was mixed with FTIR grade potassium bromide (KBr) and pressed in a mechanical die press to form a translucent pellet. The diameter and thickness of the pellet were 13 mm and 1.3 to 1.5 mm , respectively. The analysis was carried out at ambient temperature $(20 \mathrm{C})$. Both, absorption and transmission spectra were obtained for the all polyaniline batches produced at various polymerisation reaction temperatures (24 to 0 C). It is important to note that spectra obtained from different sample preparation methods looked slightly different from each other due to the different physical and oxidation states of the sample.

3.2. UV / Vis Spectrometry

Ultraviolet (UV) and visible (Vis) absorption spectroscopy is the measurement of the attenuation of a beam of light after it passes through a sample or after reflection from a sample surface. It corresponds to electronic excitations between the energy levels that correspond to the molecular orbitals of the system. Absorption of UV and visible radiation in organic molecules is restricted to certain functional groups (chromophores) that contain valence electrons of low excitation energy. The spectrum of a molecule containing these chromophores is complex. This is because superposition of rotational and vibrational transitions on the electronic transitions gives a combination of overlapping lines. This appears as a continuous absorption band.

UV-Vis spectroscopy has been widely used to characterise polyaniline composites [233,279-284]. In this work, a dual-beam UV-Vis spectrometer (Lambda 12 (PERKIN ELMER)) was used to determine different concentration and compositions of polyaniline solutions prepared in 1-methyl, 2-pyrrolildone (NMP). The dual-beam design greatly simplifies the measurement process by obtaining transmittance of the sample and solvent simultaneously. The detection electronics then manipulate the measurements to give absorbance. The use of UV-Vis spectra allow identification of various doping states of polyaniline since the transmission in UV-Vis range (wavelength: 190 to 900 nm) is directly related to the doping state and the degree of doping.

3.2.1. Sample Preparation

0.001% by weight clean, dried polyaniline powder was dissolved in NMP to prepare the sample solutions. Quartz cells were used for the analysis. The spectrometer was calibrated with pure NMP before the UV-Vis spectra for each polyaniline batches was obtained.

3.3. Polymer Morphology

Molecular shape and the way molecules are arranged in a polymer matrix are important factors in determining properties of polymers. The morphology of most polymers is semi-crystalline. That is, if the molecular weight of the polymer is large, it generally packs together in a non-uniform fashion, with ordered or crystalline like regions mixed together with disordered or amorphous domains. The observed morphology is a strong function of the level of magnification at which a material is observed. Polymer morphology can be observed using structural characterisation techniques such as, scanning electron microscopy (SEM), atomic mass spectroscopy (AFM), and scanning tunnelling microscopy (STM).

Scanning electron microscopy (SEM) is a useful tool to determine the morphology of polyaniline. This structural characterisation technique was used to observe the effect of the polymerisation reaction temperature on the morphology of polyaniline powder. Electron micrographs of polyaniline powder produced at various reaction temperatures were taken using a Leo-1530 VP field emission scanning electron microscope (FEGSEM).

3.3.1. Sample Preparation

A small quantity of clean, dried polyaniline powder was glued to a holder using an adhesive tape. Since, EB form of polyaniline is non-conducting, the polymer sample was sputtered with gold for the imaging analysis. As the morphology is a function of the level of magnification at which a material is observed, all SEM images were taken with the accelerating voltage 5 kV .

3.4. Polymer Density Measurements (Pycnometry)

Density is a basic physical property of the polymer, which is calculated by taking the ratio of polymer mass to volume. Determining the mass of the polymer is straightforward; it is the determination of volume which is more difficult. The volume of a solid object, whether a single piece of a mass of finely divided powder, is one of those concepts that cannot be bundled up into a single, neat definition.

A number of manual and automated methods are used to determine the volume and density of a polymer. The laboratory automated methods are often used in research and quality control applications. A multivolume pycnometer was used to measure the density of the polyaniline produced in our laboratory. It operates by detecting the pressure change resulting from displacement of gas by the polymer. The multivolume pycnometer is designed to measure rapidly the skeletal volume of the powders, granules, or any other solid objects having low vapour pressures and to permit computation of absolute density when weight information is supplied. The skeletal volume is the sum of volumes of the solid material and closed (or blind) pores within the pieces. The multivolume pycnometer measures with diminishing effectiveness the volumes of polyaniline which have appreciable vapour pressures. It differs from similar products in that three different size sample chamber configurations are provided and each has an associated expansion volume sized to provide the maximum accuracy and resolution for that range.

The accuracy and precision of the gas pycnometer in the determination of skeletal volume and density is quite high, but relies greatly on the sample material analysis gas being free of moisture. The sample must also be free from any volatile substances that can contribute their partial pressures and cause error and instability. The polyaniline sample was dried in a vacuum oven at 60 C for 48 hours before it was analysed. Helium was used as a displacement gas as it readily diffuses into small pores, and the volume obtained permits computation of the ultimate theoretical density of the polyaniline comprising the sample if there are no closed pores. $35 \mathrm{~cm}^{3}$ sample chamber was used to analyse all polyaniline samples.

3.4.1. Sample Preparation

Polyaniline sample batches were dried in a vacuum oven at 60 C for 48 hours to remove any volatile substances. The clean, dried polyaniline was taken into the $35 \mathrm{~cm}^{3}$ sample chamber and weighed accurately. During the analysis, the helium gas inlet pressure was limited to $19.5 \pm 0.2 \mathrm{psi}(134 \pm$ 1.4 kPa) to avoid possible damage to the instrument.

3.5. Molecular Weight Measurements

The chain length is an important parameter in determining the properties of a polymer. Polymers generally consist of a large number of chains and these do not necessarily have the same chain length. Hence, there is a distribution in molecular weight. The length of the chain can often be expressed quite adequately by means of the molecular weight. The consequence of the existence of different chain lengths in a polymer is that a uniform molecular weight does not exist but rather a molecular weight average. Figure 3.2 shows a histogram of a polymer exhibiting a particular molecular weight distribution. This figure illustrates the number of fractions of molecules, n_{i}, with a particular molecular weight, M_{i}. The molecular weight distribution is an important property relative to membrane preparation and particularly to membrane characterisation.

Figure 3. 2 Histogram demonstrating a possible molecular weight distribution in a polymer.

There is some difference of opinion as to what constitutes a polymer in terms of molecular weight. There are various definitions of the molecular weight of polymer [100]. The methods of molecular weight measurement are distinguished by whether the contribution of each molecule to a measured property is proportional to the number of molecules or to a power of the weight of the molecules present. The first category leads to a number average molecular weight, M_{n} which can be calculated by multiplying the number of chains of a certain length with their weight and adding this to the number of a second class of chain multiplied by their molecular weight, and so on, and then dividing by the total number of chains (see equation 3.1).

$$
\begin{equation*}
M_{n}=\frac{\sum_{i} n_{i} \cdot M_{i}}{\sum_{i} n_{i}} \tag{3.1}
\end{equation*}
$$

In order to calculate the weight average molecular weight, M_{w}, the weight of the fraction, w_{i}, is used instead of number of molecules, n_{i} with a molecular weight, M_{i}.

$$
\begin{equation*}
M_{w}=\frac{\sum_{i} w_{i} \cdot M_{i}}{\sum_{i} w_{i}} \tag{3.2}
\end{equation*}
$$

When a relatively small amount of very long chains is present in the polymer, M_{w} may differ quite considerably from M_{n}. This broad distribution can be expressed in terms of the polydispersity, which is the ratio of the weight average molecular weight, M_{w} to number average molecular weight M_{n}.

The analytical techniques used for the determination of molecular weight can be categorised into absolute and relative techniques. The main applicable technologies used to measure molecular weight of a polymer are:

- Mass spectrometry coupled with time-of-flight (MALDI-TOF MS)
- Gel permeation chromatography (GPC)
- Multiple angle laser light scattering (MALLS)
- Viscometry.

Amongst these, gel permeation chromatography was used to measure the molecular weight of polyaniline which was produced at various polymerisation reaction temperatures.

3.5.1. Gel Permeation Chromatography (GPC)

Since the introduction of gel permeation chromatography (GPC) by Moore [288], this physicochemical method of polymer characterisation has progressed at an extraordinary rate [289]. The primary purpose and use of the GPC is to provide molecular weight (MW) and molecular weight distribution (MWD) information about a particular polymeric material. The graphical data display typically depicts a linear detector response on the ordinate vs either chromatographic elution volume or, if processed, the logarithm of molecular weight on the abscissa. A typical GPC system is essentially a specialised isocratic high performance liquid chromatography. It is commonly purged with helium in order to degas it and prevent air bubbles from entering the detector downstream. A high pressure pump capable of operating at pressures up to $6000 \mathrm{psi}(41.4 \mathrm{MPa})$ forces the mobile phase through line filters and pulse dampeners to the sample injector where an aliquot of dilute polymer solution is introduced. The polymer solution sample, which initially exists as a narrow band in the system, is then carried through the pre-column and the analytical column set where molecular size discrimination occurs. The discriminated sample elutes from the column set and passes through a detector, which generates an electrical signal proportional to the instantaneous sample concentration. The sample and mobile phase then exit the detector and are carried to a waste container while the electrical signal is transmitted to an integrator, recorder, or computer for display and/or further processing.

3.5.1.1. Primary Calibration

The purpose of calibration in GPC is to define the relationship between molecular weight and retention volume in the selective permeation range of the column set used and to calculate the molecular weight average of the polymer sample. In modern high performance GPC, there are four commonly employed
calibration methods. Three of these can be utilised in conjunction with a single (i.e. concentration) detector GPC system. The fourth type of GPC calibration requires the use of a second, molecular weight sensitive detector connected in series with the concentration detector.

A primary calibration curve (i.e. molecular weight vs retention volume) of standard monodispersed polystyrenes was used for the calibrations. Polystyrene molecular weight standards were made to 0.05% by weight solutions in NMP and detected at 264 nm . The calibration curve for monodispersed polystyrene for the molecular weight range 8,500 to 316,500 was obtained, and is only valid for GPC analysis of linear polystyrene samples.

3.5.1.2. \quad Sample Preparation for GPC Analysis

Polyaniline sample batches were dried in a vacuum oven at 60 C for 48 hours. The clean, dried polyaniline samples (0.002 g of each) were dissolved in HPLC grade NMP (4 gm) to give 0.05% by weight solutions. The solution was placed in an ultrasonic bath for 15 minutes and then left to stand for 2 hours before passing through a $0.45 \mu \mathrm{~m}$ syringe filter to remove undissolved polyaniline particles. The GPC Styragel ${ }^{\circledR}$ HT4 column ($300 \times 7.8 \mathrm{~mm}$), consisting $10 \mu \mathrm{~m}$ spherical particles with polymer substrate was obtained from Waters Corporation together with the molecular weight standards (molecular weight range: 5 K to $600 \mathrm{~K})$. A column oven was set to 100 C for the sample flow rate of $0.5 \mu \mathrm{l}$ at a pressure between 300 to 325 psi (2 to 2.24 MPa). The carrier solvent was HPLC grade NMP which was degassed by dynamic vacuum while immersed in an ultrasonic bath. The degassing of carrier solvent reduces the noise in the GPC chromatograms. The GPC system consisted of a Waters low pressure gradient pump (600E Multisolvent delivery system), a 717plus Autosampler and a 2996 Photodiode Array UV Detector. The UV detector was set to 350 nm to monitor the polyaniline elution, and the size of the sample injection coil was 20μ.

4. PREPARATION OF POLYANILINE FILMS

4.1. Un-doped Self-supported Polyaniline Films

Currently, there are no commercial membrane technology products that use π-conjugated polymers (conducting polymers) [290]. Nonetheless, during the past 10-15 years there have been considerable research studies that have explored the potential of the conducting polymers for gas separations [49-62]. Interest in polyaniline membranes for gas separation stems from the work by Anderson et al. [51-53,55-57] who reported some of the highest ideal separation factors ever achieved for polymer films. However, processing polyaniline into useful forms for membranes with common organic solvents has been a key problem due to insolubility and unmouldability for basic research and industrial applications.

Based on experimental and thermodynamical considerations, it is reasonable to state that polyaniline cannot be truly soluble, but processable in colloidal dispersion [291]. This creates more doubts about whether the solvent approach - which in reality is only a different form of colloidal dispersion - is appropriate for improving the metallic properties and for making industrially useful, reproducible properties and products. Most other scientists [49,51-54,60,291-296] claimed that the true solutions of polyaniline exist, and the solvents have positive effects on crystallinity and metallic properties. However, according to Wessling [291], basic thermodynamic properties which prevent polyaniline from becoming completely soluble are:

- Unmouldability: solvent has to overcome the melt enthalpy before it can solvate; unmouldable polymers cannot be solvated.
- If a hypothetical melting point is assumed, and a hypothetical melting enthalpy, then the dissolution enthalpy prevents any solubility, as calculated using Flory-Huggins equation.
- The extremely high lattice energy which was calculated to be ca. $1.100 \mathrm{KJ} / \mathrm{mol}$; the hydration energy of the anion and the cation is much smaller, resulting in insolubility in water, or organic solvents cannot invest a higher solvation energy
- the extremely high surface tension, as measured by inverse gas chromatography, around $150 \mathrm{MN} / \mathrm{m}$, and expected to be even up to $1,500 \mathrm{MN} / \mathrm{m}$; no solvent can overcome these surface energies.

The substances that dissolve polyaniline can be divided into two groups. The first group comprises substances with strong hydrogen-bonding groups, such as 1-methyl, 2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), m-cresol, dimethylformamide (DMF) [233,246,248,291-295], formic acid and other strong acids. These substances are capable of readily dissolving polyaniline at room temperature. A second class of organic solvents are those species without hydrogen bonding ability or with only very weak hydrogen bonding ability, such as toluene, p-xylene, decain and chlorobenzenes [291,295]. In general, the solvents used to dissolve polyaniline have carbonyl functional groups which form strong hydrogen bonds between the carbonyl group of the solvent and the secondary amine group of the emeraldine base.

4.1.1. Method to Prepare Self-supported Polyaniline Membranes

In this work, NMP was used as a suitable solvent to prepare polyaniline (EB) solutions. Such solutions were cast into dry dense films after the wet film was thermally treated to evaporate the solvent. Before the polymer could be dissolved into NMP, it has to be essentially water free as the residual water in the polymer matrix greatly reduces its solubility in NMP. The polyaniline powder was dried in a vacuum oven at 50 C for 48 hours before it was processed.

5 g of clean and dry polyaniline polymer was dissolved in 500 g of NMP. About 0.5 gm of polymer was added at an interval of half an hour with constant stirring. After addition of all 5 g of polymer, the temperature of the NMP was raised to at 50 C for 30 minutes. The polymer was stirred for 24 hours with a magnetic stirrer and then homogenised with an ultra-turrax homogeniser for 30 minutes. This solution was then filtered by glass wool followed by ash less filter papers of different grade and pore size down to $0.45 \mu \mathrm{~m}$. The final filtered solution was analysed by Zetasizer (MALVERN Instruments) to measure the particle size of undissolved polyaniline particles. It was observed that the final filtered polyaniline solution did not contain particles larger than 300 nm .

In this work, ground glass petri dishes (20 cm diameter) were obtained from Glasgerätebau Ochs GmbH , Germany, and used to produce uniform layers of emeraldine base self-supported films. In order to get defect-free and stable membrane films, the glass petri dish used to produce the membranes had to be extremely flat, clean and without any scratches. The petri dish was washed with soap, rinsed with demineralised water and methanol and dried for approximately 2 to 3 hours, before being used. Defect-free polyaniline films of desired thicknesses were prepared by pouring a known amount of the final filtered polyaniline (EB) solution onto glass plate (petri dish) followed by evaporation of solvent. Approximately $0.16 \mathrm{ml} / \mathrm{cm}^{2}$ of 1% by weight of polyaniline emeraldine base solution in NMP was required to produce a $1 \mu \mathrm{~m}$ thick film. The emeraldine base solution prepared in NMP was spread onto a glass petri dish and the solvent was evaporated at 70 C for 12 hours followed by annealing at 120 C for 2 hours in an oven fitted with NMP recovery system. The NMP recovery system was designed and mounted onto the oven, which allowed the recovery of approximately 40 to 50% of NMP which was purified by distillation and recycled for membrane preparation. The copper coloured polyaniline film was cooled down for 1 hour, and separated from the petri dish by scratching along the outer edge using a spatula and rinsing with the mixture of iso-propanol and water (1:1 by volume) underneath of the membrane. When the membrane was totally separated from the petri dish, it was taken out carefully and placed between 2 to 4 paper towels. With the weight of a 15 kg press, the membrane was pressed for 2 to 3 days between these paper towels.

In this way it was possible to produce reproducible defect-free, selfsupported, polyaniline membranes with thicknesses of 2 to $6 \mu \mathrm{~m}$.

4.2. Polyaniline based Nano-Membranes

Reducing the polyaniline membrane thickness will increase the gas transport rate, and supporting them with a suitable porous support layer will increase their mechanical properties. A selective separation layer can be supported by the same type of polymers (asymmetric gas separation membranes), or a porous support layer of a different polymeric material (composite gas separation membranes). Polysulfone, polyamide, polyimide,
polyetherimide, poly(vinylidene) fluoride (PVDF), etc... can be used as a support polymer to increase the mechanical strength of an ultrathin selective polyaniline layer. Illing et al. [296] discovered that PVDF, cellulose acetate, ethyl cellulose and PEI served best as a support material as they have maximum mechanical stability together with excellent support porosity.

In this work, the gas mixtures, to which the polyaniline membranes are exposed, are condensable (i.e. ethylene, ethane, propylene, propane) and have potential to degrade the performance of a selective polyaniline layer through plasticisation. The polymer material used to support the selective polyaniline layer would also suffer from such severe conditions and should be chemically stable to withstand these conditions. The preferred support materials to withstand these severe conditions are the co-polymers of the fluorinated or per-fluorinated polymers [297]. PVDF is chosen for this work as it does not fuse with polyaniline, and makes a stable entity with it. It is comparatively flexible after having been dried, and has negligible resistance to the permeating gas; the permeation properties only governed by the polyaniline layer. Hence, due to its excellent support porosity and mechanical as well as chemical stability, PVDF was used as a support polymer in this work.

4.2.1. Method to Prepare Polyaniline/PVDF Composite Membranes

A process to prepare polyaniline nano-film membranes can be divided into two steps. In the first step a dense, defect-free, ultrathin layer of polyaniline was produced on a glass petri dish. A known amount of 1% by weight of polyaniline solution in NMP was spread onto a clean glass petri dish to produce polyaniline film having thickness between 0.4 and $0.8 \mu \mathrm{~m}$. The solvent was evaporated in a clean oven as per the method described earlier (see Section 4.1.1) except the film was annealed for 1 hour at 120 C . In the second step, the copper coloured ultrathin, dense polyaniline film was supported by poly(vinylidene) fluoride (PVDF). 3% by weight PVDF was dissolved in 3:1 mixture of NMP and dimethyl sulfoxide (DMSO). A known amount of PVDF solution was poured onto the ultrathin polyaniline film onto the petri dish. The ultrathin film of emeraldine base does not redissolve entirely when PVDF solution is poured onto it, because the initial solvent evaporation process at 120 C transforms amorphous glassy
polyaniline films into crystalline polyaniline films, which decreases the solubility of the polymer [298]. Approximately 25 ml of 3% by weight PVDF solution was required to support $100 \mathrm{~cm}^{2}$ of the ultrathin polyaniline film. The solvent mixture was evaporated at 60 C for 6 to 7 hours in a clean oven. After complete evaporation, a porous support structure of PVDF that is combined with the ultrathin polyaniline emeraldine layer forms. The ultrathin polyaniline membrane supported on PVDF was separated from the petri dish by immersing it into 1:1 mixture of iso-propanol and distilled water. The prepared composite membrane was taken off the petri dish and pressed for 2 to 3 days between the paper towels with the weight of a 15 kg press.

This novel technique allows production of reproducible defect-free, ultrathin polyaniline membranes with thicknesses of 0.4 to $0.8 \mu \mathrm{~m}$.

5. CHARACTERISATION OF POLYANILINE MEMBRANES

5.1. Membrane Morphology Analysis

5.1.1. Field Emission Gun Scanning Electron Microscopy (FEGSEM)

FEGSEM is an ultra-high resolution field emission scanning electron microscope and is ideal to study materials on the nanometer scale. A field emission cathode in the electron gun of a scanning electron microscope provides narrower probing beams at low as well as high electron energy, resulting in both improved spatial resolution and minimised sample charging and damage. FEGSEM produces clearer, less electrostatically distorted images with spatial resolution down to 1.5 nm , which is 3 to 6 times better than conventional SEM.

The Leo-1530 VP FEGSEM is a high-resolution field emission scanning electron microscope, and used for imaging and analysis of self-supported polyaniline films as well as ultrathin polyaniline films supported on PVDF. The membrane thicknesses for self-supported polyaniline membranes were measured using a micrometer with the accuracy of $\pm 1 \mu \mathrm{~m}$ and the data were verified by electron micrographs obtained by FEGSEM facility. The use of the FEGSEM facility was a suitable approach to measure the thickness of the selective polyaniline layer supported on PVDF. The thicknesses measured by

FEGSEM imaging were used to calculate permeability of various gases through polyaniline films.

5.1.1.1. Sample Preparation and Handling

Polyaniline films were freeze fractured using liquid nitrogen and glued to the holder. Similar to the polyaniline EB powder, polyaniline EB films were sputtered with gold for the imaging analysis. The samples were placed in a sample chamber through a large front door. The FEGSEM was equipped with a TV-camera which was mounted parallel to the sample stage tilt axis to facilitate operations at short working distances. The eccentric specimen stage was capable of an $80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 30 \mathrm{~mm}$ range of travel, 360 degrees of rotation, and 15 to 80 degrees of tilt. The thickness of a film was calculated by averaging the measured thicknesses at various points from a graduation scale in the lens.

5.1.2. Atomic Force Microscopy (AFM)

The atomic force microscope (AFM) is a very high resolution type of scanning probe microscope, with demonstrated resolution of fractions of an Angstrom, more than a 1000 times better than the optical diffraction limit. The AFM consists of a micro-scale cantilever with a sharp "tip" (probe) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into the proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever. This deflection is measured using a laser spot reflected from the top of the cantilever into an array of photodiodes.

An AFM image contrast can be obtained in many ways. The primary imaging modes of operation are static (contact) and dynamic (tapping) mode. In the static (contact) mode of operation, the static tip deflection is used as a feedback signal. It operates by measuring attractive or repulsive forces between a tip and the sample. In the case of the dynamic (tapping) mode, the cantilever is externally oscillated at or close to its resonance frequency (often hundreds of kHz) and positioned above the surface so that it only taps the surface for a very small fraction of its oscillation period. In the case of polymer films, if the film
were scanned with the contact mode method, there would be a risk that the tip would collide with the surface, causing damage. Hence, the tapping mode of operation is the more appropriate way to obtain AFM images for polymeric films.

AFM images of ultrathin polyaniline membranes supported on PVDF were obtained using a Dimension 3100 (VEECO) atomic force microscope with tapping mode of operation. The images were analysed by NanoScope ${ }^{\text {TM }} 3 \mathrm{D}$, and a $1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$ area of surface was scanned using an etched Silicon probe ("tip"). Height image data obtained by the AFM was three dimensional. The usual method of colour mapping for height was used to display the data.

5.1.2.1. Sample Preparation

An adhesive tape was used to glue $0.5 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ sample of PVDF supported polyaniline membrane to a magnetic sample holder. For tapping mode AFM, an etched silicon probe was installed in the AFM tip holder. The membrane was placed on the sample holder in a way that a selective polyaniline layer was facing the cantilever and the tip. The magnet of the sample holder holds the sample mounting disk securely in place. The cantilever was placed above the polyaniline membrane surface and oscillated at 300 kHz . The laser deflection method was used to detect the root-mean-square amplitude of the cantilever oscillation. A feedback loop maintained the constant oscillation amplitude by moving the scanner vertically at every x, y data point. Recording this movement formed the topographical image of polyaniline layer, which was analysed by the NanoScope ${ }^{T M} 3 D$ controller.

5.2. Mechanical Properties

The mechanical behaviour involves the deformation of a polyaniline film under the influence of an applied force. Generally, mechanical properties are not very important in membrane processes because the membrane is held by supporting material. However, it becomes important for high pressure gas separation processes used to separate various gas mixtures.

The tensile testing of self-supported polyaniline films were performed by elongating a polyaniline film and measuring the load carried by the film. The load
and deflection data were translated into a stress-strain curve from the knowledge of the film dimensions. The shape of the test polyaniline film sample is described in ISO 527-2 [299], with an overall length of 150 mm , and effective test length 50 mm and a width of 10 mm . The thicknesses of the self-supported polyaniline sample membranes were between 95 and $100 \mu \mathrm{~m}$.

5.2.1. Sample Preparation

Prior to the analysis, the polyaniline test samples were dried in a vacuum oven at 60 C for 24 hours and then exposed to the atmospheric conditions for 3 hours. The polyaniline membranes were cut into the shape as described in ISO 527-2 [299]. The elongation rate of 0.2 mm per minute was kept for all polyaniline samples. The linear interpolation in the appropriate part of the stress vs strain graph was used to calculate the Young's Modulus.

5.3. Experimental Determination of Gas Transport Properties

The permeation rate of a penetrant through a membrane can be obtained by either the steady state diffusion or time-lag techniques. Both of these techniques require well defined conditions of membrane surface concentration. In this work, an integral permeation method $[80,300]$ was used to estimate gas transport properties through polyaniline membranes. This method is usually performed by allowing the penetrant to permeate through an initially degassed polymeric membrane, and accumulate in an evacuated chamber. The rise in pressure at constant volume or the increase in the volume at constant pressure is then monitored with respect to time. The barometric technique was used to monitor the pressure rise in a known downstream volume and is the most commonly used technique to measure the permeability of pure gases.

The permeability for pure penetrating gas was calculated independently using the following equation 3.3 ;

$$
\begin{equation*}
P_{i}=\frac{1}{p_{i, 0}} \times \frac{V_{d} \cdot t_{m}}{R \cdot T \cdot A_{m}} \times\left[\left(\frac{d p_{i}}{d t}\right)_{\text {steady-state }}-\left(\frac{d p_{i}}{d t}\right)_{\text {leak }}\right] \tag{3.3}
\end{equation*}
$$

where V_{d} is the down stream volume of the permeation cell $\left(\mathrm{cm}^{3}\right), t_{m}$ is membrane thickness (cm), $p_{i, 0}$ is the feed side penetrant pressure maintained in the permeation cell, R is the gas constant ($0.278 \mathrm{~cm}^{3} \cdot \mathrm{cmHg}^{2} \mathrm{~cm}_{s T P}^{3} \cdot K$), and T represents the absolute temperature $(K) . A_{m}$ is the membrane surface area $\left(c m^{2}\right)$, and $(d p / d t)_{\text {steady-state }}$ and $(d p / d t)_{\text {leak }}$ are the steady-state rates of pressure rise ($\mathrm{cmHg} / \mathrm{s}$) in the downstream (permeate) volume at a fixed pressure and under vacuum, respectively. The permeability coefficient, P_{i}, is often expressed with the unit Barrer,

$$
\begin{equation*}
1 \text { Barrer }=1 \times 10^{-10}\left(\frac{\mathrm{~cm}_{s T P}^{3} \cdot \mathrm{~cm}}{\mathrm{~cm}_{\text {polymer }}^{2}}\right) \tag{3.4}
\end{equation*}
$$

The schematic of the experimental technique is shown in Figure 3.3. The set-up is best described by categorising it into five broad sections. Every section is interconnected and performs different functions at various stages of an experimental run. Besides allowing pure gas permeation experiments, the set-up can be used to carry out mixed gas permeation experiments, with minor modifications during the data collection. With prior knowledge of the volume of the downstream chamber and the applied feed gas pressure, the measured accumulation rate is then related to the membrane's gas permeability. For mixed gas permeation experiments, besides monitoring the accumulation rate, the concentration of the permeate gas mixture is also measured at regular time intervals. The set-up is designed and constructed with 316 stainless steel case (operating pressure up to 50 bar (5 MPa)), tubing and fittings for high pressure permeation studies (0 to 150 psi; 0 to 1.03 MPa).

Figure 3. 3 Schematic of single-gas permeation experiment set-up.

5.3.1. Construction of Gas Permeation Experimental Set-up

5.3.1.1. Feed Gas Supply and Regulatory System

The feed section supplies the test gases to the feed side of the membrane in the permeation test cell. The feed section is connected to the membrane cell through valve (a), and to the vacuum system through valve (g). The feed pressure is regulated by a two stage pressure regulator and valve (a), and measured by a pressure gauge having a range 0 to $150 \mathrm{psi}(0$ to 1.03 MPa$)$. The pressure in the upstream section of the permeation cell is maintained by back pressure regulator (valve (d)). Valve (c) and back pressure regulator (valve (d)) can be used to depressurise the system if and when needed.

5.3.1.2. Membrane Permeation Cell

The permeation cell was designed and made in the laboratory. The detailed design of the permeation cell is discussed in Appendix 2. The cell is made of stainless steel (SS 316) and consists of two halves which are bolted together. The upstream section is connected to the gas supply section and the bottom part to the permeate section. The cell houses a circular membrane with the diameter 90 mm , with the effective diameter for diffusion being 80 mm . A flat rubber gasket was used to provide the vacuum seal between the upstream and downstream sections. The membrane is supported against pressure stress by a fritted stainless steel disc. The sintered steel disc, with a porosity of over 100 microns, acts as a highly porous ineffective filter for the permeating gases.

5.3.1.3. Permeate (Downstream) Section

The permeate section constitutes the calibrated constant volume downstream chamber used for accumulating the permeating gases during the experiments. The gas permeation rate was calculated by measuring the rise in pressure in downstream section by a MKS Baratron pressure transducer having a range of 0 to 1000 torr. Valve (g) can act as a safeguard against overpressurisation in the downstream section due to membrane breakdown. The design of this section has a provision for changing the total volume of the
chamber by connecting the gas sample cylinders of a known volume. This permits the transport study of high flux polyaniline nano-membranes with optimised transducer response. The data collected by the MKS Baratron pressure transducer were analysed by PicoLog ${ }^{\circledR} 16$ which was installed in a computer connected to it.

5.3.1.4. Mass Spectrometer In-line Sample Interface

The sampling interface (mass spectrometer) is used only for mixed gas permeation experiments. The mass spectrometer separates the gas molecules by mass. The major usage of such an instrument is in identification of elements and hence it is more popular in the study of reactive systems where species are being generated or lost. The instrumentation of mass spectrometer involves performing following steps.

- Sample ionisation : Here the sample, injected as a low pressure gas into the chamber, is ionised by either bombarding it with electrons generated from a filament (electron-impact ionisation) or from an ion-molecule reaction in the gas phase (chemical ionisation).
- Acceleration of ions by applied electric field: This helps in speeding up the charged molecules to produce their own magnetic field.
- Dispersion of the ions : The accelerated ions are passed through a magnetic field where the interaction between applied and generated magnetic field occurs which then tends to change the path of ions.
- Detection of ions: The deflection of the ions is recorded on a detector plate to produce a corresponding electrical signal. This is then used for quantitative and qualitative analysis of the gas molecule.

5.3.1.5. Vacuum Supply Section

The vacuum pump used to evacuate the entire set-up is a two stage vacuum pump obtained from Edwards, and can generate vacuum up to 0.2 torr.

5.3.2. Operational Procedure

5.3.2.1. Inherent Leak Testing

The inherent leak rate of the feed (upstream) and permeate (downstream) sections was measured by using an aluminium foil as a membrane. The entire gas permeation set-up was degassed for 48 hours. The pressure increase in both sections was monitored for 8 hours. Necessary adjustments were made with the tube fittings to minimise the leak rate. The experiment was repeated with another sample of aluminium foil to confirm the leak rate and the sealing of the permeation cell.

5.3.2.2. Permeate Volume Calibration

The volume of the downstream section must be measured accurately, in order to obtain the correct permeability values of various permeating gases through polyaniline membranes. The volume calibration involved measurement of the internal volume of the tube segments and fittings which constitutes the permeate section volume. The downstream volume was determined with high accuracy by using a Manometric method, and the measured value was confirmed by conducting single permeation test with standard membrane with known permeability, under similar operating conditions.

5.3.2.2.1. Manometric Method

A circular (90 mm) sample of aluminium foil is used as a membrane to isolate the downstream section from the upstream section. A sample of aluminium foil was placed on a sintered metal disk in the permeation cell. A flat rubber gasket was used to provide the vacuum seal between upstream and downstream section. The downstream section was evacuated using a vacuum pump for 48 hours. Once steady state is reached, valve (g) (see Figure 3.3) which connects the downstream section to the vacuum pump was closed. The pressure change with time in the downstream section was monitored for 8 hours using a MKS Baratron pressure transducer. The data were analysed on a computer using PicoLog ${ }^{\circledR}$ 16. This experiment was run for 8 hours, and the
pressure change monitored over 8 hours was 0.008 cmHg , which could reasonably be neglected.

Once the leak test was performed, the downstream section was evacuated using a vacuum pump for 12 hours. When steady state was reached, the valve (g) was closed. The vacuum pump was replaced by a gas sample cylinder of known gas volume at atmospheric pressure. The valve (g) was then opened briefly (for 2 to 3 s). The rise in pressure in the downstream section is measured using a MKS Baratron pressure transducer. Several sets of calibration runs were performed for one gas sample cylinder to calculate the downstream volume, V_{d}, in order to reduce the manual error. The experiment was performed with three gas sample cylinders (10,15 and $25 \mathrm{~cm}^{3}$). The following equation was used to calculate downstream volume:

$$
\begin{equation*}
V_{d} \times p_{0}+V_{1} \times p_{1}=p_{2}\left(V_{d}+V_{1}\right) \tag{3.5}
\end{equation*}
$$

where, V_{d} is the downstream volume of the permeation cell $\left(\mathrm{cm}^{3}\right), V_{1}$ is volume of gas sample cylinder $\left(\mathrm{cm}^{3}\right), p_{0}$ is the pressure in the downstream section before opening the valve $(\mathrm{g})(\mathrm{cmHg}), p_{1}$ is atmospheric pressure (cmHg) and p_{2} is pressure in the downstream section after opening the valve $(\mathrm{g})(\mathrm{cmHg})$.

5.3.2.2.2. Gas Permeation Method

To confirm the value obtained for the downstream volume using a manometric method, a single gas permeation test was conducted using a PDMS membrane having selective layer. thickness $2 \mu \mathrm{~m}$. The aluminium foil seal used in the Manometric method (see Section 5.3.2.2.1) in the permeation cell was replaced by the PDMS membrane. The permeation cell was degassed under vacuum for 24 hours to eliminate the effect of adsorbed volatile chemicals in the PDMS membrane. The upstream section was pressurised and gas permeation through the PDMS membrane was monitored by measuring the rise in pressure in the downstream section using a MKS Baratron transducer. The detailed operational steps, to carry out the experiment, are discussed in Section 5.3.2.4 of this chapter.

The approach was to calculate the downstream volume by rearranging equation 3.3 to the following equation 3.6 ;

$$
\begin{equation*}
V_{d}=\frac{P_{i} \cdot p_{i, 0} \cdot R \cdot T \cdot A_{m}}{t_{m}\left[\left(\frac{d p_{i}}{d t}\right)_{\text {steady-state }}-\left(\frac{d p_{i}}{d t}\right)_{\text {leak }}\right]} \tag{3.6}
\end{equation*}
$$

where, V_{d} is the down stream volume of the permeation cell $\left(\mathrm{cm}^{3}\right), t_{m}$ is the selective PDMS layer thickness (cm), $p_{i, o}$ is the feed side penetrant pressure maintained in the permeation cell, R is the gas constant ($0.278 \mathrm{~cm}^{3} \cdot \mathrm{cmHg} / \mathrm{cm}_{\text {STP }}^{3} \cdot K$), and T represents the absolute temperature (K). A_{m} is the membrane surface area $\left(c m^{2}\right)$, and $(d p / d t)_{\text {steady-state }}$ and ($\left.d p / d t\right)_{\text {leak }}$ are the steady-state rates of pressure rise ($\mathrm{cmHg} / \mathrm{s}$) in the downstream (permeate) volume at a fixed pressure and under vacuum, respectively; and P_{i} is the permeability coefficient (Barrer) of a penetrant gas.

5.3.2.3. Membrane Installation and Membrane Defect Test

The proper placement of the membrane in the cell is important in preventing membrane damage and in accurately defining the effective surface area of the membrane available for permeation. Precaution has to be taken, especially in the case of curled polyaniline membranes (films with thickness less than $5 \mu \mathrm{~m}$), where it is difficult to place the membrane flat on top of the sintered metal disc and tighten the membrane cell blocks together. Also, stress from uneven contact between the membrane and flat rubber gasket, during tightening two blocks together, could damage the polyaniline film. The procedure employed for membrane placement in the cell was to tighten the blocks slowly while allowing some gas from the feed section to press the membrane against the metal sintered disc. With the gas escaping radially from the membrane top surface, the two blocks were tightened to lock the membrane flat with the flat rubber gasket in the permeation cell.

After the membrane installation, tests were conducted to check for any membrane defects, such as stress fracture and pin-holes. The presence of defects can be detected by performing single gas permeation experiments using
nitrogen and oxygen. The presence of stress fracture is evident when no resistance is observed by the membrane to the applied feed pressure. The membrane is regarded as pin-hole free by matching the calculated permeability and the selectivity of the oxygen and nitrogen gases ($\alpha_{\mathrm{O}_{2} / \mathrm{N}_{2}}$) with data available in literature.

5.3.2.4. \quad Single (Pure) Gas Permeation Experiment

Single gas permeation experimental set-up is given schematically in Figure 3.3. Once the membrane (i.e. polyaniline self-supported membrane or polyaniline nano-membrane) was properly mounted and checked for defects, the feed and permeate section along with the membrane section were degassed for at least 24 hours. The complete degassing of the membrane was checked by closing valve (b), valve (c), and valve (g) (see Figure 3.3) and monitoring the pressure increase in the upstream and downstream sections. An observed leak rate in the permeation section, close to the inherent leak rate of the system, confirmed the degassing of the membrane.

The experiment was then started by running the PicoLog 16 program on the computer, which records the downstream pressure of the permeation cell. The test gas was introduced by opening valve (a) and valve (b). This was simultaneously accompanied by a measurement of the feed pressure and the permeate pressure with respect to time. The feed pressure was maintained at the test pressure using back pressure regulator (valve (d)). The time difference between the opening of valve (b) and attainment of constant feed pressure at the surface of the membrane was assumed negligible. The total time of the experiment was set to 4 hours, that is the time at which the change in permeate pressure rate was observed to be constant for at least 1000 sampling periods.

As the gas starts permeating through the membrane the rise in pressure in the downstream section with time is measured and plotted by PicoLog ${ }^{\circledR}$. The gradient of pressure vs time graph can be calculated and utilised to calculate permeability, P, using equation 3.3. The whole procedure was repeated twice (with two different polyaniline membrane samples) before changing any operating conditions such as, feed gas, or feed pressure.

5.3.2.5. Mixed Gas Permeation Experiment

Pure gas permeation measurements have often been used to estimate the intrinsic separation properties of polymeric membranes. Understanding the transport behaviour of the target gases through membranes is the foundation of realising effective separation of mixed gases and selecting the appropriate feed conditions. Considerable amounts of data are available on the permeation of pure gases through polyaniline membrane [49-62], but less or none on the permeation of gas mixtures.
Pure and mixed gas permeation experiments differ in two ways:

- In a mixed gas experiment, the feed flows along the film and the permeate flows perpendicular to the film (cross flow configuration).
- It is necessary to measure the gas composition of the permeate as well as the feed gas in mixed gas experiments. This is done using a mass spectrometer which can be brought online by opening valve (f) (see Figure 3.3).

The permeation behaviour of a pure gas through a polyaniline membrane depends mainly on the properties of the gas and membrane as well as feed conditions. However, some differences between pure gas and mixed-gas permeation results may exist because of:

- the competition in sorption amongst the penetrants
- the possible plasticisation induced by CO_{2} and hydrocarbon gases when this exist in the feed
- concentration polarisation
- non-ideal gas behaviour.

Therefore, in actual membrane separation applications, it is very important to measure the permeation data of the mixed-gas for a polymeric membrane to optimise the separation design and determine the true membrane performance in industrial applications. It is also necessary to establish a mathematical model based on the available experimental data. The model can be used as a powerful tool to evaluate or predict the performance of the separation system at various feed conditions for a specific gas pair-membrane system.

The permeate flow, J_{ρ}, is calculated using the following equation;

$$
\begin{equation*}
J_{\rho}=\frac{P_{\text {total }}}{t_{m}} \cdot p_{t} \cdot A_{m} \tag{3.7}
\end{equation*}
$$

The separation factor is calculated with the ratio of the mole fractions in the permeate divided by the ratio of the mole fractions in the feed (see equation 2.31; Chapter 2). Since the permeate pressure is kept close to zero, the separation factor will further be referred to as the selectivity. Furthermore, equation 2.31 is only valid if the feed composition is kept constant during the permeation experiment.

The mixed gas permeation experiment involved similar start-up as the single gas permeation experiment, except some modifications in the gas feed section are required to prepare the gas mixture to the desired composition (see Figure 3.4).

Figure 3.4 Modification in gas feed section to perform mixed gas permeation experiments.

Before any mixed gas permeation experiments were performed, a calibration curve was plotted between the intensity and the injected standard gas samples of known concentration, under fixed operating conditions. The same operating conditions were then maintained during the mixed gas permeation experiments. The permeate concentration at the start of any permeation experiment for self-supported polyaniline films is very low, so it is difficult to
measure the gas concentration in the first 15 to 20 minutes. Several attempts to detect this low mixed gas concentration by changing permeate volume did not result in any reliable results.

The mixed gas permeation experiment was performed in two consecutive steps. In the first stage, the permeation cell along with polyaniline membrane was degassed using a vacuum pump for 24 hours. After the complete degassing of the membrane, valves (b), (c), and (g) were closed. In the second stage valves (h) and (i) were used to control the flow of gas A and gas B, respectively. Gas A and gas B were mixed in the desired proportion to feed the upstream section of the permeation cell. The feed mixed gas was allowed to escape through valve (j) till the steady gas composition was monitored on the mass spectrometer. Once the steady gas composition rate was monitored on the mass spectrometer, the valve (j) was closed and valve (b) was opened to feed the gas mixture to the permeation cell (see Figure 3.3). The experiment was then started by running the PicoLog 16 program to record the downstream pressure of the permeation cell. The feed pressure was maintained at the test pressure using a back pressure regulator (valve (d)). The total time of the experiment was set to 4 hours, that is the time at which the change in permeate pressure rate was observed to be constant for at least 1000 sampling periods. As the gas starts permeating through the membrane the rise in pressure in the downstream section with time is measured by a pressure transducer and plotted by PicoLog. After the permeate rate had reached steady state condition, the in-line sampling interface was used to transfer the permeate mixed gas sample to the mass spectrometer. In order to accomplish this, valve (f), shown in Figure 3.3, was opened to inject the permeate gas mixture to the mass spectrometer. The intensity response for the permeate gas mixture was measured and plotted against time. Once the steady state was reached, equation 2.31 was used to measure the selectivity of the permeating gas mixture.

The whole procedure was repeated twice (with two different polyaniline membrane samples) before changing any operating conditions such as, feed gas, or feed pressure.

Chapter 4

RESULTS \& DISCUSSION

1. MECHANISM OF OXIDATIVE POLYMERISATION OF ANILINE

Polyaniline can be chemically synthesised by the polymerisation of aniline in acidic aqueous solution using $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ [263-264], KIO_{3} [266], or $\mathrm{H}_{2} \mathrm{O}_{2}$ [269] as an oxidant. The protonic acid used in oxidative polymerisation of aniline is not especially limited as long as the acid dissociation constant, pK_{a}, value is less than 3.0 [268]. For example, inorganic acids such as hydrochloric acid, sulphuric acid, nitric acid, perchloric acid, hydrofluoroboric acid, hydrofluorophosphoric acid, hydrofluoric acid, hydro-iodic acid, etc., aromatic sulfonic acids such as benzene sulfonic acid, p-toluene sulfonic acid, etc., alkane sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, etc., phenols such as picric acid, etc., aromatic carboxylic acids such as m-nitrobenzoic acid, etc., aliphatic carboxylic acids such as dichloroacetic acid, malonic acid, etc., and polymer acids such as, polystyrene sulfonic acid, polyvinyl sulphuric acid, etc., can be used as a protonic acid. In order to improve the solubility of polyaniline in common solvents, the use of functionalised protonic acids (e.g. p-toluene sulfonic acid, octyl-benzenesulfonic acid, camphor sulfonic acid, etc.) as dopants was proposed $[245,250]$. The amount of protonic acid used depends on the reaction mode of the oxidising agent used. However, Tzou and Gregory [272] observed that increasing the acid concentration (between 0.1 M and 1 M) increases the polymerisation rate.

In this work, ammonium peroxodisulfate $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ was used as an oxidant and p-toluene sulfonic acid (p-TSA) was chosen as a functionalised protonic acid. During the polyaniline synthesis, the effect of the starting reaction solution pH , polymerisation reaction temperature and oxidant to aniline molar ratio on the molecular weight and percentage yield of polyaniline was investigated in this study.

According to most authors [216-220,301-308], the first step in polyaniline polymerisation involves the oxidation of aniline to form a radical cation. This
initial step is pH independent, and is the governing criterion for the polymerisation reaction. However, the subsequent coupling step is strongly dependent on pH of the reaction medium. Ohaska et al. [309] compared the oxidation products of aniline prepared in a sulphuric acid medium ($\mathrm{pH}=1$), in a neutral phosphoric medium ($\mathrm{pH}=7$), and in an acetonitrile/pyridine (0.3 M) solution. They noticed that the $\mathrm{N}-\mathrm{N}$ characteristics arising from the "head-to-head" coupling was observed only in the spectra of products produced under neutral or alkaline conditions. On the other hand, the aniline oxidation products obtained in acid media had a predominantly "head-to-tail" arrangement. These results were consistent with the work published by Mohilner et al. [305].

Figure 4.1 shows the effect of initial polymerisation reaction pH on the yield (product/monomer weight ratio) of the polyaniline. The highest yield was obtained for the reactions at the starting solution pH of +1.0 , at 0 C . Polyaniline yield dropped only slightly for the starting reaction solution pH below +1.0 and sharply for the solution pH above +1.5 . Hence, the optimum starting reaction pH found to be was +1.0 , and used to produce further polyaniline batches at various reaction temperatures.

Figure 4.1 Effect of initial reaction solution pH on polyaniline yield.

The progress of the polymerisation reaction can be monitored by measuring the change in the colour of the reaction solution from white to emeraldine green, the increase in reaction temperature, and the reduction in pH . Figure 4.2 shows that as the polymerisation progressed the temperature of the reaction mixture increased (where the reaction temperature wasn't maintained externally), and the pH of the solution dropped from the initial value +1.0 to +0.75.

Figure 4. 2 (a) Reaction solution temperature profile during the oxidative polymerisation of aniline in 1 Mp -TSA; (b) Ratio of pH of reaction medium at any time $\left(\mathrm{pH}_{\mathrm{t}}\right)$ to the initial solution $\mathrm{pH}\left(\mathrm{pH}_{0}\right)$, for polymerisation of aniline in 1 Mp -TSA, at 0 C .

Figure 4.3 shows the reaction stoichiometry for the polymerisation of aniline in 1 Mp -TSA using ammonium peroxodisulfate as an oxidant. According to reaction stoichiometry, 1.25 mols of ammonium peroxodisulfate are needed for the polymerisation of 1 mol of aniline into the emeraldine form of polyaniline. The oxidation proceeds with stoichiometric yield in aqueous media at ambient or lowered temperature.

Figure 4. 3 Polyaniline polymerisation reaction stoichiometry.

Figure 4.4 shows the effect of oxidant/aniline molar ratio on percentage yield of polyaniline. The starting pH of the reaction solution was 1.0, and polymerisation was carried out at 0 C . The oxidant addition time and the total reaction time were kept to 2 hours and 48 hours, respectively. The values for percent yield and the mole ratio of oxidant to aniline at 0 C show that the yield is only just below 90% for the oxidant to aniline mole ratio of 1.15.

Figure 4.4 Variation of polyaniline yield, as a function of oxidant/aniline mole ratio.

The polymer yield increases with the use of larger amount of oxidant. The concentration of radical cation increases with increasing the amount of oxidant, however the excess oxidising agent decomposes the polyaniline to colourless low-molecular-weight products of the quinone type and the yield of emeraldine reduces. Hence, the yield drops when the oxidant to aniline mole ratio is higher than 1.25 . The percent yield rises only slightly with increasing oxidant addition times from instantaneous addition to 8 hours. The minimum reaction time of about 15 hours was necessary for the polymerisation reactions below 0 C , whereas about 4 to 6 hours was sufficient at 0 C . The polyaniline percent yield rise is only slight for the polymerisation reactions with oxidant addition time more than 4 hours and total reaction time more than 24 hours.

The results on Figure 4.5 show that the polyaniline yield increased when the polymerisation reaction temperature was reduced. The percentage yields calculated were subject to an estimated 2% by weight error due to sulphur (and oxygen) contaminants. The weight of the polymer obtained was reproducible to the variation of $\pm 1 \%$ by weight in identical reaction conditions.

Figure 4.5 Effect of polymerisation reaction temperature on polyaniline yield.

The mechanism of oxidative polymerisation of aniline is still debatable. However, it is likely that the radical cation species are produced as a result of oxidative attack on the aniline monomers; these then condense with the loss of protons to give the protonated, semi-oxidised emeraldine salt form of polyaniline as a reaction product [267]. If aniline polymerisation does indeed follow the proposed theory, it is a difficult reaction to classify as it shows characteristics of both cationic chain polymerisation and condensation polymerisation reactions. Cationic chain polymerisations are usually carried out at low polymerisation temperatures, which favour propagation over competing side reactions, and use solvents with a high dielectric constant, which favours both initiation and propagation leading to high molecular weight polymers. One of the characteristics of condensation polymerisation is that the molecular weight of the polymer rises steadily through the reaction, and therefore long reaction times are essential to obtain high molecular weights.

The consideration of the mechanism of oxidative polymerisation of aniline as a redox process, however, has been limited basically to the initial stage of the process, while at further stages a kinetic approach, which is characteristic of polymerisation studies, has been used [301-303]. The most generalised mechanism of aniline polymerisation, suggested by Wei et al. [301,303], is based on kinetic studies of the electrochemical polymerisation of aniline. The slowest step in the polymerisation is the oxidation of aniline monomers to form dimeric species, because the oxidation potential of aniline is higher than those of dimers, subsequently formed oligomers and polymers [218]. Upon formation, the dimers are immediately oxidised and then react with an aniline monomer via an electrophilic aromatic substitution, followed by further oxidation and deprotonation to form the trimers; this process is repeated, leading eventually to the formation of polyaniline [301]. However, Genies et al. [304] suggested that the oxidation of aniline up to the dimer occurred by formation of the nitrenium cation and it was not the slowest step in the polymerisation, but appeared to be the step requiring the highest electrochemical potential of the system.

The mechanism proposed by Wei et al. [303], which is illustrated in Figure 4.6, is consistent and widely accepted [216-220,302] mechanism. In this mechanism, the first step involves the oxidation of the neutral aniline monomers to radical cations, which leads to formation of the dimeric species.

Mohilner et al. [305] suggested that these dimeric species result from radical coupling of the radical cations. Because these dimeric species have lower oxidation potentials than aniline, oxidation will occur immediately after their formation, to yield their corresponding quinoidal diiminium ions.

Initiation

Propogation

Termination

Figure 4. 6 Proposed polymerisation mechanism of aniline [303].

An electrophilic attack of aniline monomer either by the diiminium ion [303] or by the nitrenium ion $[306,307]$, which could be readily generated from a deprotonation of diiminium ions, would accomplish a polymer growth step. The propagation of polymer chains proceeds by a redox process between the growing chain (as an oxidant) and aniline (as a reducer) with addition of monomer to the chain end. The high concentration of a strong oxidant, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, at the initial stage of the polymerisation enables the fast oxidation of oligo- and poly-aniline, as well as their existence (and consequently their registration) in the oxidised
form. This explains the presence of oxidised oligomers and pernigraniline at the initial stage of polymerisation. The high degree of oxidation (and consequently a high concentration of the imine bonds) of the growing chains at the initial stage of the polymerisation, favours the hydrolysis of imine bonds. The subsequent oligomers also have lower oxidation potentials then aniline [305,308] and the reactions proceed leading eventually to the emeraldine salt form of polyaniline. The oxidation potential of oligo- and poly-aniline chains depends not only on the degree of oxidation, but also on the degree of protonation of the chains. Thus, a decreasing degree of protonation of the medium brings about a lowering of the oxidation potential of the chains. This results not only in retardation or even impossibility of chain growth, but also in their easy oxidation by traces of oxidant, or even by atmospheric oxygen.

Therefore, the oxidative polymerisation of aniline can be regarded as a new area in cationic polymerisation, since during the polymerisation the chain propagation all the chains are thermodynamically equivalent with respect both to the monomer addition (since they have the same oxidation potential) and the termination. The termination is a result of the establishment of thermodynamic equilibrium in the redox process corresponding to the chain propagation.

2. POLYANILINE CHARACTERISATION

2.1. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectrum is one of the most informative fingerprints of a compound, and is frequently used to obtain specific information about emeraldine base (EB) molecular conformations and oxidation states [311-314]. The infrared transmittance spectra for polyaniline powder produced at different reaction temperature are shown in Figure 4.7. Since, all polyaniline batches were washed with demineralised water, the hydrolysed product was present in all FTIR spectra. The absorption due to the deformation vibrations outside the $\mathrm{C}-\mathrm{H}$ plane of mono-substituted benzene is clearly recognised by the peaks between 650 and $850 \mathrm{~cm}^{-1}$. However, these peaks might be also indicative of some sort of branching on the individual molecules. A blue shift of the bands at 1580 and
$1508 \mathrm{~cm}^{-1}$ indicate quinoid ring $\mathrm{C}=\mathrm{C}$ stretch and benzenoid ring $\mathrm{C}=\mathrm{C}$ stretch, respectively. The polyaniline EB FTIR spectra obtained here were similar to the spectra reported by other researchers [278,279,283,284,311-314].

The emeraldine base form of the polymer should contain the equal numbers of benzenoid and quinoid units $[66,67]$. From the ratio of the intensity of the peaks at 1580 and $1508 \mathrm{~cm}^{-1}$, a Q / B (quinoid/benzenoid) ratio between 0.50 and 0.53 can be determined. Based on this, it can be attributed that some of the polyaniline batches contain more benzenoid rings than quinoid rings.

Figure 4.7 FTIR spectra of polyaniline powder: (a) reaction temperature 23.8 C ; (b) reaction temperature 15 C ; (c) reaction temperature 10 C ; (d) reaction temperature 5 C ; (e) reaction temperature 0 C .

The peaks at 1245 and $1100 \mathrm{~cm}^{-1}$ represent, $\mathrm{C}-\mathrm{N}$ stretch and $\mathrm{C}-\mathrm{O}$ stretch in the aromatic ring, respectively. The peaks at $2360 \mathrm{~cm}^{-1}$ represent $\mathrm{C}=\mathrm{O}$ pollution from air $\left(\mathrm{CO}_{2}\right)$. The amount of CO_{2} present in different branches of polyaniline produced at $23.8,15,10,5$ and 0 C was $14.06,14.58,16.58$, 33.92 , and 50.18 , respectively. Earlier, it was the general notion that the CO_{2} solubility in the polymer is a function of pressure and temperature only [310]. In fact, the amount of dissolved CO_{2} varies from one polymer to another even at the
same conditions. The specific intermolecular interaction between CO_{2} and polymer is responsible for the difference in solubility. The nature of interaction present between CO_{2} and the polymer is mostly of a Lewis acid-base kind. In CO_{2}, a Lewis acidity results from the electro-positivity of the carbon atom due to a deficiency of the electron density compared to the oxygen atom. Thus, an electron acceptor-donor interaction is present when CO_{2} is contacted with the polymer containing Lewis base sites. Higher interaction between CO_{2} and polyaniline was observed when polymer was produced at sub-ambient reaction temperature due to fewer defect sites on the polymer chain, which accounts for the higher transport rates for CO_{2} observed in gas permeation experiments. Table 4.1 summarises the assignments of \mathbb{R} absorption bands for polyaniline powder.

Table 4.1 Assignments for IR absorption bends for polyaniline [313].

Frequency (cm^{-1})	Assignment
3460	NH_{2} asymmetric stretching
3380	NH_{2} asymmetric stretching, $\mathrm{N}-\mathrm{H}$ stretching
3310	H -bonded $\mathrm{N}-\mathrm{H}$ stretching
3170	$=\mathrm{N}-\mathrm{H}$ stretching
2930	Impurity or sum frequency
2850	Impurity or sum frequency
1580	Stretching of $N=Q=N$
1508	Stretching of $\mathrm{N}-\mathrm{B}-\mathrm{N}$
1450	Stretching of benzene ring
1380	$C-N$ stretching in $Q-B_{\text {trans }}-Q$
1315	$C-N$ stretching in $Q-B_{c i s}-Q, Q-B-B, B-B-Q$
1240	$C-N$ stretching in $B-B-B$
1160	A mode of $N=Q=N$
1140	A mode of $Q=\mathrm{N}^{+} \mathrm{H}-\mathrm{B}$ or $B-\mathrm{NH}-\mathrm{B}$
1220	$\mathrm{C}-\mathrm{H}$ in-plane bending of 1,4-ring
1105	
1010	
1115	C-H out-of-plane bending of 1,2,4-ring
1060	
960	
910	C-H out-of-plane bending of 1,2,4-ring
895	
850	
830	C-H out-of-plane bending of 1,4-ring
740	C-H out-of-plane bending of 1,2-ring
690	
645	Aromatic ring deformation
530	

[^0]
2.2. UV - Vis Spectrometry

The degree of aggregation in the as-synthesised polyaniline EB powder impacts the solubility and solution characteristics of the polymer. The more aggregated the structure, the less soluble is the EB. In the solution, depending on the nature of the solvent polyaniline dissolves to different extents. As the polymer is dissolved, some of the internal H-bonding disrupts. The better the solvent, the less aggregated will be the polymer. As the polymer is deaggregated, the solvent can better dissolve the individual chains and thus, a conformational change occurs in which the chains become more expanded. The solution characteristics in turn determine the morphology of emeraldine base films [233]. EB films will have different levels of deaggregation and chain expansion depending on the solvent, and therefore exhibit different properties. The optical absorption, and in particular the exciton absorption, of EB films is found to depend on the solvent and the concentration of the solution used to process the films and on the amount of residual solvent in the film.

Figure 4. 8 UV-Vis spectra of polyaniline solutions in NMP: (a) reaction temperature 23.8 C ; (b) reaction temperature 15 C ; (c) reaction temperature 10 C ; (d) reaction temperature 5 C ; (e) reaction temperature 0 C .

A red shift was observed in the $\lambda_{\text {max }}$ of the exciton absorption when the expanded coil structure of polyaniline is attained. The UV-Vis spectra of polyaniline in NMP, shown in Figure 4.8, show that at least two major absorption peaks exist in all spectra for polyaniline batches produced at different polymerisation reaction temperatures. The first band at $\sim 640 \mathrm{~nm}$ is indicative of a charge-transfer exciton-like transition from the highest occupied levels on benzenoid rings to the lowest occupied energy levels on quinoid rings. This peak results from either intra- or inter-chain absorption; therefore, its intensity changes with the EB inter-chain configuration [233,315,316], which is affected by the solution's concentration, solvent and doping level. The second band at $\sim 320 \mathrm{~nm}$ can be attributed to the $\pi-\pi^{*}$ transition associated with the π electrons of the benzene ring, and it is contributed to mainly by intra-chain absorption [316-318]. Albuquerque et al. [282] observed that, the benzenoid peak ($\sim 640 \mathrm{~nm}$) tends to disappear as the EB samples were more and more reduced. In the oxidised samples, this peak is replaced by other absorption whose maximum from 600 nm , reaching to 570 nm , was observed in the oxidised samples.

The quinoid and benzenoid peak values were compared to the results obtained by other researchers [233,246,282,315-317]. A $\sim 10 \mathrm{~nm}$ shift on the values obtained by other researchers on 630 nm absorption and 320 nm absorption were observed. The bands shift to higher wavelengths when the chain length of the molecules is increased. The UV-Vis-spectra obtained of the produced polyaniline samples have shown the two major peaks at about 326 nm and 640 nm , which clearly show the peak shift. Later in this section, the chain length of the molecules (molecular weight) was measured by gel permeation chromatography (GPC) to verify these shifts.

The quinoid/benzenoid (Q / B ratio) from the $U V$-Vis spectra was calculated by the relative intensity ratio of the peak at 640 nm to the peak at 320 nm . It is proportional to the composition of the quinoid units and benzenoid units along the EB backbone. The chain configuration of EB changes on the interaction of an amine with an EB molecule. These changes will be reflected in the UV-Vis spectral changes, such as peak shifts and/or changes in Q / B ratio. A blue shift of the Q peak is caused by an increased energy gap between of the highest occupied molecular orbit of benzenoid rings and the lowest unoccupied molecular orbit of the localised quinoid rings. When the quinoid rings are reduced to
benzenoid rings, a decrease in the Q / B ratio and a blue shift on the B peak are observed [315]. The red shifts on both Q and B peaks indicate that their absorptions have shifted to a lower energy. This red energy shift has been observed when polymer chains take on a more expanded configuration [233,315,316]. Table 4.2 shows absorptions and Q/B ratios in UV-Vis spectra of polyaniline batches produced at various polymerisation reaction temperatures. The Q / B ratio for polyaniline batches produced at various polymerisation reaction temperatures was calculated. The Q / B values obtained through UV-Vis spectra corresponded to the values obtained through FTIR analysis. The effect of EB solution ageing on Q / B ratio was examined and found to change negligibly up to 72 hours.

Table 4.2 Absorptions and Q / B ratios in UV-Vis spectra of $E B$ in liquid states.

Label	Wavelength ($\mathbf{n m}$)		Q/B ratio
	Benzenoid peak (B)	Quinoid peak (Q)	
EB (a)	637	326	0.51
EB (b)	639	326	0.51
EB (c)	633	326	0.52
EB (d)	611	326	0.53
EB (e)	640	326	0.50

Polyaniline sample batches: EB (a): produced at 23.8 C ; EB (b): produced at 15 C ; EB (c): produced at 10 C ; EB (d): produced at 5 C ; EB (e): produced at 0 C .

2.3. Polymer Morphology

The properties of polyaniline such as conductivity, mechanical properties, transport properties, etc. have been shown to be dependent on the morphology of the polymer [228,233,245,250,259]. The morphology (i.e. the molecular chain conformation with twisting and bending of the chain backbone, and the intermolecular chain to chain configuration) is at the heart of their complex phenomenology, and generally determined by the polymerisation reaction conditions in which the polymer is produced. Therefore, there is a strong interdependence between the properties of polyaniline, its processing parameters, and its morphology. It has been shown that the polymer synthesised at room temperature was of fairly low molecular weight [273] and contained defect sites [274]. In this work, it was hoped that a sub-ambient polymerisation reaction temperature would result polyaniline having higher crystallinity and
higher molecular weight, which may lead to the improvements in its mechanical and transport properties.

Morphology is a generic term encompassing various levels of structure in the solid state including the molecular chain conformation, intermolecular chain to chain configuration, degree of order, and crystallinity. The granular morphology produced by the polymerisation in liquid mixture changes to the continuous structure, when the polymerisation proceeds in the frozen state (see Figure 4.9 and Figure 4.10).

Polyaniline prepared at higher temperatures was obtained as a fluffy emeraldine blue powder, while that produced at sub-ambient temperatures was a macro-porous material. The distinction in morphology was well seen when polyaniline was washed with acetone after preparation. Direct drying from aqueous medium results in more compact products; the interfacial tension between polyaniline and water is higher compared with acetone and it forces polyaniline entities close to each other during drying process. As can be seen from Figures 4.9 and 4.10 , the crystallinity of polyaniline powder increased when the polymer was produced at reduced polymerisation reaction temperature. This increased crystallinity results in higher free volume and this higher free volume then leads to higher permeability for various gases, which was observed during the permeation experiments (discussed later in the chapter).
 temperature: (a) 21 C ; (b) 10 C ; (c) 5 C ; (d) 0 C .

2.4. Polymer Density Measurements (Pycnometer)

A multivolume pycnometer 1305 (MICROMERITICS) was used to measure the densities of various polyaniline batches prepared at our laboratory. Table 4.3 represents the densities of various polyaniline samples. The density values of the emeraldine salt (ES) form of polyaniline samples were measured to be between 1.34 and $1.44 \mathrm{~g} / \mathrm{cm}^{3}$, whereas values between 1.25 and $1.31 \mathrm{~g} / \mathrm{cm}^{3}$ were obtained for the emeraldine base (EB) form of polyaniline.

Table 4. 3 Skeletal density of polyaniline samples prepared at various polymerisation reaction temperature.

Reaction Temperature (C)	Polymer Density (g/cm ${ }^{\mathbf{3}}$)	
	Emealdine Salt (ES)	Emeraldine Base (EB)
21	1.342	1.248
10	1.385	1.255
5	1.34	1.270
0	1.408	1.281
-10	1.431	1.295
-20	1.438	1.307

The density values obtained for doped samples (ES) were higher than un-doped ones. This is because of the polymer contains small amount of the p-toluenesulfonate atom on C_{6} rings. Moreover, lowering the reaction temperature (and therefore the amount of LiCl present) increases the amount of ring chlorination (although the amount is not excessive), which increases the polymer density. The results obtained here also correspond to Figure 4.5, showing that the higher polyaniline yield was obtained at sub-ambient polymerisation reaction temperatures.

2.5. Molecular Weight Measurements

In this study, several batches of polyaniline (EB) were produced at various polymerisation reaction temperatures to investigate their effect on the molecular weight of polyaniline. The Waters gel permeation chromatography (GPC) facility was used to evaluate the molecular weights of polyaniline samples prepared in our laboratory.

The molecular weight of the polyaniline can be controlled by the polymerisation reaction conditions. Zheng et al. [319] reported that the molecular
weight of polyaniline can be increased by decreasing the polymerisation reaction temperature. Ohtani et al. [320] observed that weight-average molecular weight, M_{w}, of polyaniline, increased from 120,000 to 160,000 when polymerisation was carried out below -3 C. Oh et al. [321] polymerised aniline at 0 and -30 C ; molecular weight was 6.8 times higher at lower temperature. Mattoso et al. [322] similarly found that molecular weight of polyaniline increased 7.3 times when the polymerisation reaction proceeded at $-40 \quad \mathrm{C}$ instead at $0 \quad \mathrm{C}$. Adams et al. [263-265] showed that the molecular weight of polyaniline prepared by oxidation of aniline with ammonium peroxodisulfate was $M_{w}=29,700$ at 18 C and 122,000 at 0 C while it increased to 166,000 at -35 C . In all cases, at subambient temperatures, the polymerisation reactions were carried out in presence of added inorganic salts, e.g. lithium chloride.

GPC, also known as specialised isocratic high performance liquid chromatography, is widely used to provide molecular weight (MW) and molecular weight distribution (MWD) information about polyaniline [231,263-265,319-325]. However, the determination of molecular weight of polyaniline by GPC is questionable due to the presence of aggregates in NMP, formed by hydrogen bonds between the amine and imine segments when the polyaniline solutions are left for a prolonged period. To overcome this, the polyaniline samples were prepared 30 minutes prior to GPC analysis.

Firstly, the calibration plot with a straight-line fit for log (peak molecular weight) vs retention time was obtained for polystyrene molecular weight standards (see Figure 4.11). The primary calibration curve of the monodispersed polystyrene is analysed using the peak position method; the retention volume of the chromatographic peak is precisely measured and the molecular weight is deduced from the calibration curve:

$$
\begin{equation*}
y=8.197-0.241 x \tag{4.1}
\end{equation*}
$$

where $y=\log$ (molecular weight) and $x=$ retention time, fitting this straight line.

Figure 4. 11 Straight line plot of log (molecular weight) vs GPC retention time for monodispersed polystyrene molecular weight standards at column temperature of 100 C .

The weight-average and number-average molecular weights, M_{w} and M_{n}, were calculated from the GPC chromatographs (see Figures 4.12, 4.13 and 4.14) by the usual method of dividing the space under the chromatogram into equal segments, measuring the heights from the baseline to the curve and calculating the corresponding molecular weight for each line (see equations 3.1 and 3.2; Chapter 3). An estimate of the errors for these points was made by calculating the molecular weight with the longer of the two retention times, followed by the shorter of the two retention times. All the retention times were within 0.04 minutes of each sample, which represents 10% error in the experimental results.

Figures $4.12,4.13$ and 4.14 show the gel permeation chromatographs of polyaniline samples produced at $21 \mathrm{C}, 0 \mathrm{C}$ and -20 C , respectively. A comparison between these three graphs (Figures 4.12, 4.13 and 4.14) clearly indicates that the sample prepared at ambient temperature has longer exit times and thus shorter polymer chain length. Polyaniline prepared at ambient temperature was poorly soluble in any solvents due to large amount of by-products which was produced due to side reactions at ambient temperature. The mechanical properties of polyaniline prepared at lower temperature were
likely to improve compared with those of obtained at higher polymerisation temperatures, because of the higher molecular weight of the products.

Figure 4. 12 GPC chromatograph for polyaniline sample synthesised at 21 C .

Figure 4.13 GPC chromatograph for polyaniline sample synthesised at 0 C .

Figure 4. 14 GPC chromatograph for polyaniline sample synthesised at -20 C.

As can be seen from the GPC chromatographs (Figures 4.12, 4.13 and 4.14), polyaniline prepared in our laboratory exhibited a broad molecular weight distribution (MWD). This broad molecular weight distribution is understandable from the fact that the polymerisation was carried out in an heterogeneous way, i.e., the chains were growing on insoluble particles generated in the first stage of the polymerisation, whereby monomer and oxidant are soluble in the acid water reaction medium.

Molecular weight of polyaniline decreased with increasing reaction temperature due to condensation of radical cation species which lose protons to give the protonated emeraldine form. Cationic chain polymerisation is usually carried out at low polymerisation temperatures in the solvents with a high dielectric constant, which favours both initiation and propagation leading to high molecular weight [263,264]. The low temperature increases the dipole moment and this favours the production of high molecular weight polyaniline compared to materials prepared at ambient temperature.

Table 4.4 shows the summary of the molecular weights of polyaniline samples prepared at various polymerisation reaction temperatures.

Table 4.4 Summary of the molecular weights of the polyaniline samples synthesised at various polymerisation reaction temperatures.

Reaction Temperature (C)	Initial reaction solution pH	Weight of Polyaniline (g)	Yield $(\%)$	Molecular Weight $\left(\mathrm{M}_{\mathrm{w}}\right)$	Polydispersity $\left(\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}\right)$
21	1.0	5.58	60	101078	8.49
10	0.98	6.61	71	154103	11.36
5	1.1	7.35	79	170650	111.90
0	1.0	8.28	89	208471	12.73
-10	1.0	8.56	92	229860	11.24
-20	1.0	8.94	96	281338	13.04

A graph of the molecular weight vs the polymerisation reaction temperature was plotted for the various polyaniline batches produced in our laboratory (See Figure 4.15). This shows that the molecular weight of the polymer increased when polyaniline was prepared at lower reaction temperature. This is in good agreement with the graph in Figure 4.5, showing that the polyaniline yield increased with decreasing the polymerisation reaction temperature.

Figure 4.15 Graph of molecular weight vs polymerisation reaction temperature for various polyaniline batches.

It should be noted that the higher column temperature (> 80 C) was required for the GPC analysis, because the polystyrene standards do not
dissolve well in NMP. Also, the absorption peak at $\sim 264 \mathrm{~nm}$ for polystyrene is at the cut-off point of the NMP carrier solvent. Clearly, for this reason, polyvinylpyridine standards, which are more soluble and give a better straight line fit for a graph of \log (molecular weight) vs retention time, are recommended in the future work.

3. POLYANILINE MEMBRNAES

3.1. Self-supported Polyaniline EB Films

Many researchers have published permeabilities for various gases permeating through polyaniline membranes with thicknesses between 10 and $100 \mu \mathrm{~m}$ [49-62], and it was claimed that it would be impossible to produce defect-free self supported polyaniline films with thickness less than $10 \mu \mathrm{~m}$. This is because defects in the polyaniline layer can result from a number of causes: for example, solvent evaporation, or un-dissolved polyaniline particles, or micro-agglomeration of the polyaniline in the solution, can result in micro scale defects.

In this study, the defect-free self-supported polyaniline EB films with film thicknesses between 2 and $7 \mu \mathrm{~m}$ were prepared by the novel method reported earlier (Section 4.1.1; Chapter 3). It was necessary to examine the structure and thickness of polyaniline EB films to evaluate the permeation coefficient for various gases. Field emission gun scanning electron micrographs were used for imaging and analysis of self-supported polyaniline films.

Figures 4.16(a) and (b) represent scanning electron micrographs of the dense, defect-free self supported polyaniline films having film thicknesses of 6.9 and $4.0 \mu \mathrm{~m}$, respectively. The thickness of the polyaniline film was controlled by the amount of 1% by weight polyaniline solution in NMP used to prepare the membranes. The membrane thickness for a self-supported polyaniline film was measured by a micrometer and verified by the electron micrographs. For the better accuracy in evaluating permeability for various gases through polyaniline membranes, the film thickness values measured by SEM images were used. The thicknesses of the self-supported membranes were observed to be between 2 and $7 \mu \mathrm{~m}$ for various samples. These self-supported membranes were
essentially pore-free and did not show any microporous structures even at higher magnifications.

(a)

(b)

Figure 4. 16 Scanning electron micrographs of a cross section of self-supported dense polyaniline films: polyaniline film thickness (a) $6.9 \mu \mathrm{~m}$; (b) $4.0 \mu \mathrm{~m}$.

3.2. Polyaniline Nano-Membranes

To be of commercial interest, the active separation later of a composite membrane should probably have an equivalent dense polymeric film thickness of the order of 100 nm [326]; if thin coherent films of the polymer cannot be prepared then useful membrane devices will not result. Asymmetric membranes, having an ultrathin dense selective layer made from glassy polymers supported on a porous substrate are widely used in industrial gas separations [72,76]. A selective polymeric layer performs the separation and the suitable substrate provides the mechanical strength.

Production of the thinnest possible selective polyaniline layer on a suitable porous support structure is recognised as important, as a smaller driving force (or upstream pressure) is required to obtain the desired separation through ultrathin dense polyaniline membrane. In the absence of defects, the selectivity is a function of material properties at the operation conditions and the productivity (permeance) is a function of the material properties as well as the thickness of the barrier; and the smaller the thickness, the higher the productivity.

The novel technique developed in this research, also published elsewhere [327], allows reproducible production of polyaniline nano-films (selective polyaniline layer thicknesses between 300 and 800 nm) supported on PVDF porous substrate. The continuous defect-free dense selective polyaniline layer can be clearly seen on top of porous PVDF substrate in Figures 4.17(a) and (b). The SEM images taken at higher magnifications (see Figure 4.17(b)) helped to analyse the adhesion of polyaniline layer to the porous substrate, and any microporous defects present in a selective polyaniline layer. It was interesting to see (in Figure 4.17(b)) that the ultrathin polyaniline layer on top of PVDF substrate is anisotropic. The ultrathin polyaniline film structure appeared to be denser for approximately 50 to 70 nm (from the top) than rest of the polyaniline film.

Figures 4.18(a), (b) and (c) represent scanning electron micrographs of cross sections of ultrathin polyaniline films supported on PVDF substrate; the selective polyaniline layer thickness were $1.9 \mu \mathrm{~m}, 501 \mathrm{~nm}$ and 325 nm , respectively. These micrographs were also useful to get an insight into the morphology of the composite materials.

(a)

(b)

Figure 4. 17 SEM images of polyaniline/PVDF composite membranes.

(c)

Figure 4. 18 Scanning electron micrographs of cross section of ultrathin polyaniline films supported on PVDF support structure: selective polyaniline layer thickness (a) $1.9 \mu \mathrm{~m}$; (b) 501 nm ; (c) 325 nm .

4. CHARACTERISATION OF POLYANILINE FILMS

4.1. Morphology Analysis

A Dimension 3100 (VEECO) atomic force microscope was used to measure the continuity of the dense polyaniline layer supported on a PVDF substrate. Since, AFM does not require a current between the polymer sample surface and the tip, it can move into potential regions inaccessible to the SEM (and/or STM). The basic objective of the analysis was to measure the forces (at the atomic level) between a sharp probing tip (which was attached to a cantilever spring) and a polyaniline sample surface. Images were taken by scanning the sample relative to the probing tip and measuring the deflection of the cantilever as a function of lateral position.

AFM images of ultrathin polyaniline films supported on PVDF substrate were obtained using the tapping mode of operation, which was used as the soft
polymeric surfaces could be damaged by a direct contact with the tip. The following Figures 4.19(a) and (b) show the sectional analysis for the selected scanning area of the ultrathin polyaniline layer.

Figure 4. 19 Sectional analysis of ultrathin polyaniline layer: (a) AFM image of ultrathin polyaniline film supported on PVDF; (b) the sectional height analysis of the film.

The sectional analysis of a polyaniline nano-film over the scanned area revealed that the layer has structural dips up to 8 nm and peaks up to 6 nm , which are orders of magnitude smaller than the total selective polyaniline layer thickness (total selective polyaniline layer thickness = 501 nm).

The ultrathin polyaniline film supported on PVDF substrate was also examined by the SEM imaging facility for any microporous defects on the selective polyaniline surface. Figure 4.20 represents the SEM image of the top view of the selective polyaniline layer, which shows that even at higher magnifications the film did not contain any visible microporous defects over the scanned area. Figure 4.20 also provides supporting evidence that the polyaniline film prepared on the PVDF substrate was anisotropic (see Figure 4.18(b)), dense and defect-free over the scanned area.

Figure 4. 20 Scanning electron micrograph of ultrathin polyaniline film supported on PVDF substrate.

4.2. Mechanical Properties of Polyaniline Membranes

The mechanical properties of a polymer are the facets of behaviour that are evident when the polymer is subjected to some form of a mechanical stress.

One of the goals of this research has been to produce polyaniline with increased crystallinity and higher molecular weight to improve its mechanical and transport properties. The increased molecular weight and crystallinity (among samples of the same polymer) tend generally to give a higher modulus, lower elongation, higher tensile strength, and greater resistance to creep [275].

The precise determination of mechanical properties requires that samples used are free of defects, such as voids, cracks, nicks and other abnormalities that could act as stress concentrators. Defect-free self-supported polyaniline films, with the film thicknesses between 95 and $100 \mu \mathrm{~m}$, were prepared using the method described in Section 4.1.1 (see Chapter 3). The mechanical properties of the self-supported polyaniline (EB) films cast from different polyaniline samples (produced at various polymerisation reaction temperatures) were studied using a dual column S Series H50KS - 0476 (TINIUS OLSEN) material testing machine (machine capacity 50 kN).

The stress vs strain curves for various polyaniline films are shown in the following Figure 4.21.

Figure 4.21 Mechanical properties of polyaniline membranes with approximately $100 \mu \mathrm{~m}$ film thickness cast from different polyaniline samples (produced at various polymerisation reaction temperatures).

The area under the stress-strain curve, also known as the toughness, is a valuable piece of information that can be calculated. Toughness is a measure of the energy that a sample can absorb before it breaks. It is important to know that a strong material is not necessarily going to be tough. Figure 4.22 shows a schematic explanation of the toughness of the material using stress-strain curves. Plot ' A ' is the stress-strain curve for a sample that is strong, but not tough. It takes a lot of force to break the sample, but not much energy, as the area under the curve is small. Likewise, this sample cannot be stretched very far before it breaks. A material like this is strong, but cannot deform very much before it breaks. On the other hand, plot ' B ' is a stress-strain curve for a sample that is both strong and tough. This material is not as strong as the sample in plot ' A ', but the area under this curve is a lot larger than the area under the plot ' A '. So, this material can absorb more energy than the plot ' A ' sample. The plot ' B ' sample elongate lot more before breaking than plot ' A ' sample, and this deformation allows a sample to dissipate energy.

Figure 4. 22 Schematic representation to explain toughness of the polymeric films.
Young's Modulus (the initial slope of the stress-strain curve), also known as initial linear modulus, tensile strength (fracture stress) and toughness values for the polyaniline membranes prepared from different polyaniline samples (produced at various polymerisation reaction temperature) are summarised in Table 4.5.

Table 4. $5 \quad$ Young's Modulus and fracture stress values for polyaniline film samples prepared from the different polyaniline samples (produced at various polymerisation reaction temperatures).

Polyaniline Membrane Sample	Molecular Weight $\left(\mathbf{M}_{\mathrm{w}}\right)$	Young's Modulus (MPa)	Tensile Strength (MPa)	Toughness (MPa)
21 C	101078	1.384	1.906	1.508
10 C	154103	1.892	4.335	8.357
5 C	170650	3.046	8.029	23.229
0 C	208471	3.662	13.633	52.382
-10 C	229860	4.951	16.064	51.208
-20 C	281338	6.389	18.861	50.967

It was clear from the stress-strain curves plotted for polyaniline (produced at -10 and -20 C) film samples that these membranes were strong but not tough. On the other hand films produced from polyaniline produced at 0 C were not as strong as the films produced at -10 and -20 C. However, the toughness values of these films were in a close proximity to the films produced at -10 and -20 C . Figure 4.23 shows the relationship between Young's Modulus, tensile strength and polyaniline polymerisation reaction temperature.

Figure 4. 23 Graph of Young's Modulus and Break Stress versus polyaniline polymerisation reaction temperature.

The gel permeation chromatography results showed that higher molecular weight polyaniline was obtained when the polymerisation was carried out at subambient temperatures. The physical properties are strongly affected by the molecular weight and crystallinity of the polymers. It is apparent from Table 4.5 and Figure 4.23 that the strength and toughness as measured by tensile strength and elongation at breakage for polyaniline film samples increased with the molecular weight and crystallinity of the polymer.

Hence, the higher molecular weight polyaniline samples resulted in higher tenacity and higher Young's Modulus polyaniline EB films due to the structure and chain length of the polymer.

4.3. Membrane Permeation Cell

4.3.1. Construction of a Membrane Permeation Cell

The permeation rates of various penetrant gases through a polyaniline membrane were measured by an integral permeation method. The permeation cell was designed (see Appendix 2) and constructed from stainless steel (SS 316) in our laboratory to investigate the gas transport properties of polyaniline membranes (free standing self-supported polyaniline membranes and ultrathin polyaniline/PVDF composite membranes). The operating pressure of the permeation cell was designed to be up to $60 \mathrm{bar}(6 \mathrm{MPa})$ with the tubing and fittings for high pressure gas permeation experiments. Figures 4.24(a) and (b) show the plan and elevation drawings of the permeation cell used to conduct gas permeation experiments.

(a)

Figure 4. 24 Plan and elevation drawings of membrane permeation cell.

4.3.2. Permeation Cell Downstream Section Volume Calibration

The volume of the permeate (downstream) section was calibrated to calculate the permeation coefficients of various permeating gases through polyaniline membranes precisely. The downstream volume was evaluated with high accuracy by using a Manometric method, and the obtained value was verified by using a gas permeation method with PDMS membrane (selective PDMS layer thickness $=2 \mu \mathrm{~m}$) under similar operating conditions.

The Manometric method was repeated for several times with different gas sample cylinders of known gas volumes (10, 15 and $25 \mathrm{~cm}^{3}$), and the downstream section volume was calculated using equation 3.3 (see Chapter 3), and the calculated downstream volume data were averaged to obtain the accurate permeate section volume. The downstream section volume calculated from the Manometric method (from equation 3.3) was $30.0829 \mathrm{~cm}^{3}$, which corresponds to the geometrical value ($29.8815 \mathrm{~cm}^{3}$) of the downstream section volume of the permeation cell.

A single gas permeation experiment was conducted using a circular sample of flat sheet PDMS membrane having a selective layer thickness of $2 \mu \mathrm{~m}$ with nitrogen as a permeating gas, as per the method described in Section 5.3.2.4 (see Chapter 3). The downstream volume of the permeation cell was calculated using equation 3.4. The permeate section volume obtained by using the gas permeation method (calculated using equation 3.4) was $31.1628 \mathrm{~cm}^{3}$, which is in a close proximity of the value obtained by Manometric method. Since the permeation data for PDMS membrane vary with the operating conditions, the downstream volume value of the permeation cell obtained by Manometric method was considered appropriate to calculate permeability coefficients of various permeating gases through polyaniline membrane.

The procedure and calculation steps involved to calibrate permeate section volume is explained in detain in Appendix 3.

4.4. Gas Transport Properties of Polyaniline Membranes

4.4.1. Membrane Defects Test

The proper placement of the polyaniline membrane in the permeation cell is important, as the stress from uneven contact between the membrane and flat rubber gasket during bolting together of the upstream and downstream sections could damage the polyaniline film. On the other hand, the sudden overpressurisation of the upstream section of the permeation cell can also damage the polymer film. The bursting pressure values of the test polyaniline films (self-supported polyaniline films and polyaniline/PVDF composite films) were calculated from the stress-strain curve (see Figure 4.21). The upstream pressure in the permeation study was maintained always below the bursting pressure value of the test polyaniline sample. The bursting pressure value for the ultrathin polyaniline film (selective polyaniline film thickness $=500 \mathrm{~nm}$) was calculated to be 0.6 bar (0.06 MPa), assuming the linear relationship between calculated bursting pressure and polyaniline film thickness. However, gas permeation tests, with ultrathin polyaniline films, were conducted at the maximum upstream pressure of 1.5 bar (0.15 MPa), which shows the contribution of the PVDF support layer to the mechanical strength of the composite film.

A test was conducted to check for any microporous defects (including stress fracture) on the polyaniline membrane surface. The feed (upstream) side of the permeation section was pressurised to test the stress fracture. The absence of any membrane fracture was evident since the membrane showed a resistance to the applied feed pressure. Single gas permeation experiments were conducted to monitor any microporous (or macroporous) defects in the polyaniline membrane, using oxygen and nitrogen as a permeating gas and the procedure discussed in Section 5.3.2.4 (see Chapter 3). The rise in the pressure in the downstream section of the permeation cell was monitored by a pressure transducer. Figure 4.25 shows typical test results of the increase in permeation section pressure with time for oxygen and nitrogen.

Figure 4. 25 Graph of rise in the permeate section pressure vs time to test the defects on polyaniline membrane with oxygen and nitrogen as permeating test gases.

The permeability and selectivity values were calculated by equations 3.3 (see Chapter 3) and 2.30 (see Chapter 2), respectively. The experiment was repeated at least three times to verify the ideal separation efficiency value for oxygen and nitrogen $\left(\alpha_{\mathrm{O}_{2} / N_{2}}\right)$. The calculated ideal separation efficiency for oxygen and nitrogen (using equation 2.32) was compared with the values obtained by the other researchers [50-56]. The ideal separation ($\alpha_{\mathrm{O}_{2} / N_{2}}$) obtained was 5.3 ± 0.2, which corresponds to the values obtained by other researchers.

It was evident from the results obtained by gas permeation experiments that the polyaniline membrane was a dense and defect-free continuous layer.

4.4.2. \quad Single (Pure) Gas Permeation Experiments

4.4.2.1. Polyaniline Membranes for Hydrogen Purification

Membranes are in use for the recovery of hydrogen from purge streams and for the production of nitrogen-enriched air. Membranes have failed, however, to make any significant impact on other important gas separation separations, such as production of oxygen from air or the separation of hydrogen from carbon dioxide-rich streams. The main obstacle is limited membrane selectivity; the selectivity of the best polymeric membranes for $\mathrm{O}_{2} / \mathrm{N}_{2}$ is ~ 6 to 8 , and for $\mathrm{H}_{2} / \mathrm{CO}_{2}, 6$ [328].

A major focus of the current research is, therefore, to assign a highly selective membrane material for the proposed applications and to investigate the gas transport properties of the selected polymeric material (polyaniline). Gas separation membranes based on conducting polymer (polyaniline) were first reported in the early 1990s [51-53], in which permeability and selectivity of gas pairs were modified by altering the morphology and oxidation states of polymer through doping, dedoping and redoping. The exceptional gas transport data obtained in previous investigations [50-57] have encouraged us to explore the gas transport properties of polyaniline membranes and investigate the effect of film thickness on the separation efficiency and gas transport rate of various gases through polyaniline membranes.

In the following sub-sections, the gas transport properties of selfsupported polyaniline films (film thickness $=2$ to $6 \mu \mathrm{~m}$) as well as ultrathin polyaniline films supported on PVDF substrate (selective polyaniline layer thickness $=0.4$ to $0.8 \mu \mathrm{~m}$), in respect to hydrogen purifications, are presented and discussed.

4.4.2.1.1. Self-supported Polyaniline Films for Hydrogen Purification

The gas permeation measurements were conducted for self-supported polyaniline membranes using the pure (single) gas permeation method at a feed pressure of 1 to 4 bar (0.1 to 0.4 MPa) at room temperature ($21 \pm 2 \mathrm{C}$). The single gas permeation apparatus used in this study is shown in Figure 3.3 (see

Chapter 3). The operational procedure to conduct a single gas permeation experiment is discussed in detail in Section 5.3.2.4 (see Chapter 3).

Self-supported polyaniline (EB) membranes were prepared reproducibly using a novel method [327], and used to evaluate their potential for hydrogen purification applications. The polyaniline films having selective polyaniline layer thicknesses between 2 and $6 \mu \mathrm{~m}$ were tested for various pure gases $-\mathrm{H}_{2}, \mathrm{CO}_{2}$, $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$. Prior to the gas permeation measurements, these polyaniline membranes were dried overnight in a vacuum oven at 60 C . A free standing undoped polyaniline membrane was mounted on a porous sintered metal plate in the permeation cell. A flat rubber gasket was used to provide a vacuum seal between the upstream and downstream sections. Before the permeation experiments, both upstream and downstream sections of the permeation cell were degassed under vacuum ($<10^{-9}$ bar) overnight to eliminate the effect of adsorbed volatile chemicals in the polyaniline film. The gas permeation experiments were conducted using a standard manometric method (also known as constant volume method). The upstream section was pressurised and permeation through the polyaniline membrane was measured using the integral permeation method (also known as manometric time-lag method) of analysis. The rise in pressure against time in the permeate section was monitored by a MKS Baratron pressure transducer, and equation 3.3 (in Chapter 3) was used to calculate the permeability of a permeating gas through undoped free standing polyaniline membranes.

It was hoped that the polyaniline membranes will maintain useful separation properties in the presence of organic vapours, particularly C_{2+} hydrocarbon vapours. To quantify this, single (pure) gas permeation experiments were conducted using various gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}\right.$ and $\mathrm{C}_{3} \mathrm{H}_{8}$) with respect to upstream (feed gas) pressure (between 1 and 4 bar) to observe the effect of the plasticising gases on the performance of the polyaniline membranes. A single gas permeation test was performed three times at the same operating (feed gas) pressure to check the reproducibility of the permeability data. Since the tests were conducted at ambient temperature (without an external oven), a slight variation in room temperature and manual errors have resulted $\pm 10 \%$ experimental error in the permeation data.

In Table 4.6, the permeability values of various gases through undoped self-supported polyaniline membranes (polyaniline film thickness ~ 2 to $4 \mu \mathrm{~m}$) are summarised against operating (feed gas) pressure.

Table 4.6 Pure gas permeability values of various gases through undoped selfsupported polyaniline membranes.

Upstream Pressure (bar)	Permeability (Barrers*)								
	H_{2}	CO_{2}	O_{2}	N_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
$4.01 \mu \mathrm{~m}$									
1	1.407	0.573	0.082	0.015	0.0034	0.058	0.015	0.014	0.0015
2	1.438	0.571	0.081	0.016	0.0034	0.058	0.015	0.014	0.0016
3	1.426	0.579	0.086	0.015	0.0034	0.067	0.018	0.015	0.0016
4	1.460	0.583	0.087	0.015	0.0036	0.072	0.017	0.015	0.0018
$2.89 \mu \mathrm{~m}$									
2.89	1.446	0.583	0.088	0.016	0.0034	0.083	0.016	0.009	0.0019
2	1.429	0.588	0.088	0.016	0.0037	0.092	0.016	0.012	0.0019
3	1.486	0.587	0.093	0.016	0.0037	0.093	0.019	0.014	0.0023
4	1.481	0.594	0.098	0.017	0.0038	0.108	0.021	0.015	0.0023
$2.52 \mu \mathrm{~m}$									
1	1.433	0.589	0.095	0.016	0.0035	0.068	0.011	0.014	0.0031
2	1.459	0.592	0.097	0.015	0.0036	0.073	0.013	0.015	0.0035
3	1.410	0.592	0.097	0.017	0.0036	0.081	0.016	0.017	0.0035
4	1.488	0.595	0.107	0.016	0.0038	0.076	0.016	0.018	0.0037

* 1 Barrer $=1 \times 10^{-10} \mathrm{~cm}^{3}(\mathrm{STP}) \cdot \mathrm{cm} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}$

It was apparent from the permeability data (see Table 4.6) that the permeability values of most gases through self-supported polyaniline membranes varied only slightly within the operating pressure range (1 to 4 bar), hence the solution-diffusion model is supported by the lack of influence of pressure on the permeability. Furthermore, the effect of polar gases $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}\right.$ and $\mathrm{C}_{3} \mathrm{H}_{8}$) on the separation properties of polyaniline membranes was very little, within the operating pressure range, i.e. 1 to 4 bar.

Henceforth, the single gas permeation experiments, for self-supported polyaniline membranes, were conducted within the feed gas pressure range of 1 to 4 bar to avoid any plasticisation of the polyaniline films.

The permeability values, calculated at room temperature, i.e. $21 \pm 2 \mathrm{C}$ and upstream pressure of 4 bar (0.4 MPa), of various gases through self-supported polyaniline membranes are plotted in the following Figure 4.26.

Figure 4. 26 Permeability, in Barrers (1 Barrer $\left.=10^{-10} \mathrm{~cm}^{3}{ }_{(S T P)} \cdot \mathrm{cm} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}\right)$, for various gases permeating through freestanding undoped polyaniline membranes.

Currently, permeability is widely used to characterise the performance of a polymeric gas separation membrane. For example, Robeson [168] proposed the upper limit of the separation performance of polymeric gas separation membranes, and Singh et al. [330] identified the commercially attractive membrane performance area for separation of oxygen and nitrogen. In those two papers, the performance of a gas separation membrane was characterised with the permeability. The permeability, or more precisely permeability coefficient, is a thickness-normalised productivity of a polymeric gas separation membrane. Though permeability is calculated from the product of the productivity of a membrane and its thickness, permeability and productivity are two different concepts. The permeability is a material characteristic, which is not a membrane characteristic. The permeability of a membrane material is independent of the thickness of a membrane while the productivity of a membrane is always related
to its thickness. Hence, from the concept point of view, it is not correct to use permeability to characterise the performance of a gas separation membrane. The productivity (permeance, or the pressure normalised gas flux) of selfsupported polyaniline films for various permeating gases as calculated using the following equation;

$$
\begin{equation*}
\left(\frac{J_{i}}{\Delta p}\right)=\left(\frac{P_{i}}{t_{m}}\right) \tag{4.2}
\end{equation*}
$$

where $J_{i} / \Delta p$ is the productivity (or permeance) of a permeating gas, t_{m} is the selective polyaniline membrane thickness, and P_{i} is the permeability coefficient of the permeating gas. The calculated pressure normalised flux (productivity) values for various gases through undoped self-supported polyaniline films are summarised in Table 4.7.

Table 4.7 Productivities (permeance) of various permeating gases through undoped self-supported polyaniline membranes.

Membrane	Permeance ($\left.\mathrm{cm}^{3}{ }_{\text {STP }} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}\right) \times 10^{6}$								
($\mu \mathrm{m}$)	H_{2}	CO_{2}	O_{2}	N_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
4.01	0.36	0.15	0.026	0.004	0.0009	0.017	0.004	0.004	0.0004
2.89	0.52	0.20	0.033	0.006	0.001	0.037	0.007	0.005	0.0008
2.52	0.56	0.23	0.042	0.006	0.001	0.030	0.006	0.007	0.0009

In the Figure 4.27, the productivity (permeance) of various permeating gases through various polyaniline membranes are plotted (polyaniline film thickness $=2$ to $4 \mu \mathrm{~m}$).

Figure 4. 27 The performance of undoped self-supported polyaniline membranes characterised with productivity (permeance) in Gas Permeation Unit.
1 Gas Permeation Unit (GPU) $=1 \times 10^{6} \mathrm{~cm}^{3}{ }_{(\text {STP })} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}$.

It is possible to use the permeability of a membrane material to represent the relative productivity of membranes if all membranes have the same thickness. However, in this work, self-supported polyaniline membranes with the selective polyaniline layer thicknesses between 2 and $4 \mu \mathrm{~m}$ were produced and tested with various pure gases. Henceforth, the productivity (or permeance) of a permeating gas through polyaniline membranes is used to characterise the performance of the self-supported polyaniline membranes.

Ideal separation factors $\left(\alpha_{A / B}\right)$, also known as the ratio of the rates at which two gases traverse through the membrane, were calculated using equation 2.30 (which is the ratio of the permeability of gas ' A ' to gas ' B '). The calculated ideal (pure gas) separation efficiencies for various gas pairs through various undoped polyaniline membranes (polyaniline film thickness $=2$ to $4 \mu \mathrm{~m}$) are summarised in Table 4.8), and plotted in Figures 4.28 (a) and (b)).

Table 4. 8 Effect of polyaniline film thickness on selectivity coefficients of various gas pairs through self-supported polyaniline membranes.

	Ideal Separation Factor $\left(\alpha_{A / B}\right)$		
	$\mathbf{4 . 0 0} \boldsymbol{\mu m}$	$\mathbf{2 . 8 9} \boldsymbol{\mu \mathbf { m }}$	$\mathbf{2 . 5 2 \mu m}$
$\mathrm{H}_{2} / \mathrm{CO}_{2}$	2.5	2.5	2.7
$\mathrm{H}_{2} / \mathrm{O}_{2}$	17	15	15
$\mathrm{H}_{2} / \mathrm{N}_{2}$	95	85	89
$\mathrm{H}_{2} / \mathrm{CH}_{4}$	405	389	391
$\mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$	21	14	20
$\mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}$	84	72	96
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	100	100	81
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	797	639	401
$\mathrm{CO}_{2} / \mathrm{O}_{2}$	6.9	6.1	5.6
$\mathrm{CO}_{2} / \mathrm{N}_{2}$	38	36	37
$\mathrm{CO}_{2} / \mathrm{CH}_{4}$	161	156	156
$\mathrm{O}_{2} / \mathrm{N}_{2}$	5.7	5.8	6.7
$\mathrm{~N}_{2} / \mathrm{CH}_{4}$	4.3	4.4	4.3

(a)

Figure 4. 28 Ideal separation factors for various gas pairs through self-supported polyaniline membranes.

The ideal separation factor values obtained for various gas pairs through self-supported polyaniline membranes were comparable to the values reported by the other researchers (see Table 4.9).

Table 4.9 A comparison of published selectivity data for undoped self-supported polyaniline films with the results obtained in this work.

Researcher	Ideal separation efficiency					
	$\mathrm{H}_{2} / \mathbf{C O}_{2}$	$\mathrm{H}_{2} / \mathbf{O}_{2}$	$\mathrm{H}_{2} / \mathbf{N}_{2}$	$\mathbf{C O}_{2} / \mathbf{O}_{2}$	$\mathbf{C O}_{2} / \mathbf{N}_{2}$	$\mathbf{O}_{2} / \mathbf{N}_{2}$
Anderson et al. [51]	7.3	21.8	207	3.0	28.3	9.5
Anderson et al. [57]	5.0	24.6	164	4.9	32.7	6.7
Rebattet et al. [58]	7.8	30.7	195	3.9	25.1	6.4
Wang et al. [61] Illing et al. [296]	6.1	29.0	265	4.8	38.7	9.1
This work: Polyaniline films [327] (film thickness: $6.9 ~$ m)	8.1	16.8	164	3.3	32.3	9.8

The ideal (pure gas) selectivity $\left(\alpha_{A / B}\right)$ values obtained for some of the gas pairs (i.e. $\mathrm{H}_{2} / \mathrm{N}_{2}$ (348), $\mathrm{H}_{2} / \mathrm{O}_{2}$ (69.5), $\mathrm{H}_{2} / \mathrm{CO}_{2}$ (8.6), $\mathrm{CO}_{2} / \mathrm{O}_{2}$ (8.1), $\mathrm{CO}_{2} / \mathrm{N}_{2}$ (40.4), $\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ (757), $\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ (256)), in the case of undoped self supported polyaniline films, surpassed the selectivities of the majority of the conventional polymeric materials.

The permeability of selected test gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$ through undoped polyaniline (EB) films essentially followed a size dependent (kinetic diameter) relationship, that is;

$$
\mathrm{H}_{2}(2.89 \AA)>\mathrm{CO}_{2}(3.30 \AA)>\mathrm{O}_{2}(3.46 \AA)>\mathrm{N}_{2}(3.64)>\mathrm{CH}_{4}(3.80 \AA)
$$

The enhanced permeation of O_{2} over N_{2} suggests that polyaniline membranes could be effective in separating O_{2} from air, which is especially challenging since $\mathrm{N}_{2}(3.64 \AA)$ is only slightly larger than $\mathrm{O}_{2}(3.47 \AA)$. The ideal $\mathrm{O}_{2} / \mathrm{N}_{2}$ selectivity value obtained for self-supported polyaniline film of 7 , which is comparable to commercially available polysulfone and polyimide membranes $(4<\alpha<8)$. It was found that the polyaniline membranes exhibited higher selectivity values for polar (or quadrupolar)/nonpolar gas pairs (e.g. $\mathrm{H}_{2} / \mathrm{CO}_{2}$, $\mathrm{CO}_{2} / \mathrm{O}_{2}$ and $\mathrm{CO}_{2} / \mathrm{N}_{2}$). This could be explained by the interaction between CO_{2} (polar gas) and the polymeric matrix. In the FTIR spectra (see Figure 4.7) of various polyaniline batches prepared at various polymerisation reaction temperatures, it can be seen that the interaction between CO_{2} and polyaniline polymer matrix increases with the polymerisation reaction temperature.

The results obtained during this work were reproducible for both self-supported polyaniline films and ultrathin polyaniline films supported on porous PVDF substrate.

4.4.2.1.2. Polyaniline/PVDF Composite Films for Hydrogen Purification

In addition to chemical resistance, thermal resistance and mechanical requirement, a high performance polymeric gas separation membrane needs to have both high separation efficiency and high productivity. The optimum gas permselective membrane is achieved when the membrane material combines high selectivity with high flux (gas transport rate (GTR)). These two basic properties are determined by the membrane material and the membrane thickness.

The use of polyaniline membranes in gas separation applications has been limited due to fairly low gas transport rates through self-supported polyaniline films. As the gas flux through a polymer membrane is inversely
proportional to the membrane thickness, the thickness of the selective polyaniline must be reduced to achieve sufficient gas transport rates. One way to reduce the membrane thickness is to prepare a composite membrane consisting of a thin film supported on a porous substrate. These membranes are classified on the basis of whether the support material controls the separation properties. If the selective polyaniline layer has a large number of defects, the transport behaviour of permeating gases through the polyaniline films can be described by Knudsen diffusion [329]. If the selective polyaniline layer is defect-free, the gas transport of composite membranes is similar to that in the dense self-supported polyaniline film, which can be described by the solution-diffusion mechanism.

A novel method was developed [327] and used (see Section 4.2.1; Chapter 3) to prepare an ultrathin polyaniline membrane supported on highly permeable PVDF substrate. A schematic cross-section of a polyaniline/PVDF composite membrane is shown in Figure 4.29.

Figure 4. 29 Schematic cross section of a polyaniline/PVDF composite membrane.

Using the expression for the resistances in series, the equation to calculate the flux (GTR) through polyaniline/PVDF composite membrane can be written as;

$$
\begin{equation*}
J_{(A)}=\frac{\Delta p}{R_{\text {total }}} \tag{4.3}
\end{equation*}
$$

where,

$$
\begin{equation*}
R_{\text {total }}=R_{1}+R_{2}=\frac{t_{m 1}}{P_{1(\mathrm{~A})}}+\frac{t_{m 2}}{P_{2(\mathrm{~A})}} \tag{4.4}
\end{equation*}
$$

where Δp is the pressure difference across the membrane, $R_{\text {total }}$ is the total resistance offered by the selective polyaniline layer $\left(R_{1}\right)$ and porous PVDF layer
$\left(R_{2}\right), t_{m 1}$ and $t_{m 2}$ are the thicknesses of the selective polyaniline layer and porous PVDF layer, respectively. $P_{1(A)}$ and $P_{2(A)}$ are the permeability coefficients of the selective polyaniline layer and porous PVDF layer of gas A, respectively.

The ideal selectivity of the membrane for gas A over gas $\mathrm{B}, \alpha_{A / B}$, can be calculated from equation 2.30. However, the equation to calculate the ideal selectivity of a composite membrane can be modified and written from equation 2.30 as;

$$
\begin{equation*}
\alpha_{A / B}=\frac{P_{1(A)} / t_{m 1}+P_{2(A)} / t_{m 2}}{P_{1(B)} / t_{m 1}+P_{2(B)} / t_{m 2}} \tag{4.5}
\end{equation*}
$$

It is apparent from the expression that the ideal selectivity of the composite membrane is determined by both layers of composite structure (selective polyaniline layer and porous PVDF substrate). However, the highly porous PVDF substrate has a microporous structure (see Figures 4.17 and 4.18) the resistance of the composite membrane to gas permeation lies only within the permselective polyaniline layer. Since the resistance offered by the highly porous PVDF layer is negligible, the term $R_{2}=P_{2(A)} / t_{m 2}$ can be neglected from the equation 4.4, and the equation to calculate the pressure normalised flux can be rewritten as;

$$
\begin{equation*}
\left(\frac{J_{(A)}}{\Delta p}\right)=\left(\frac{P_{1(A)}}{t_{m 1}}\right) \tag{4.6}
\end{equation*}
$$

and the equation to calculate the ideal (pure gas) selectivity becomes;

$$
\begin{equation*}
\alpha_{A / B}=\frac{P_{1(A)} / t_{m 1}}{P_{1(B)} / t_{m 1}} \tag{4.7}
\end{equation*}
$$

Henceforth, the above expressions (equations 4.6 and 4.7) were used to calculate permeance and ideal separation efficiencies of various penetrant gases for undoped ultrathin polyaniline membranes.

As discussed earlier, the bursting pressure value for the ultrathin polyaniline film (selective polyaniline film thickness $=500 \mathrm{~nm}$) was calculated to be 0.6 bar (0.06 MPa), assuming the linear relationship between calculated
bursting pressure (from the stress-strain curve) and polyaniline film thickness. A test was performed to evaluate the bursting pressure of the polyaniline/PVDF composite film (total film thickness $=60 \mu \mathrm{~m}$). The bursting pressure was measured by mounting the polyaniline/PVDF composite membrane in the permeation cell and gradually pressuring the upstream section of the permeation cell. The bursting pressure measured for the ultrathin polyaniline film to be was 4.3 bar (± 0.2 bar), which shows the PVDF support layer increased the mechanical strength of the composite film. Hence, to prevent the polyaniline/PVDF composite film from bursting during the gas permeation experiment, the experiments were conducted, using the pure gas permeation method (see Section 5.3.2.4; Chapter 3), in the feed pressure range of 0.2 to 1.5 bar (0.02 to 0.15 MPa) and room temperature ($21 \pm 2 \mathrm{C}$).

The ultrathin polyaniline films with the selective layer thicknesses between 0.4 and 1.37μ m were analysed with various pure gases $-\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$. The polyaniline/PVDF composite membranes were dried overnight in a vacuum oven at 60 C , and a single gas permeation experiment was conducted with the method described in Section 5.3.2.4 (see Chapter 3).

The pressure normalised flux values (in GPU) and permeabilities (in Barrer, bracketed) of various gases through undoped ultrathin polyaniline membranes (selective polyaniline layer thickness between 0.4 and $1.37 \mu \mathrm{~m}$) are summarised in Table 4.10.

Table 4.10 Pure gas permeance (in GPU) and permeability (in Barrer, bracketed) of various gases through undoped ultrathin polyaniline membranes supported on PVDF substrate.

Membrane Thickness ($\mu \mathrm{m}$)	Permeance (GPU*) and Permeability (Barrer**, bracketed)								
	H_{2}	CO_{2}	O_{2}	N_{2}	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
1.37	3.635	1.058	0.223	0.035	0.0093	0.286	0.086	0.044	0.0067
	(4.98)	(1.45)	(0.31)	(0.048)	(0.013)	(0.39)	(0.12)	(0.059)	(0.009)
0.63	25.99	4.916	1.575	0.273	0.0796	1.474	0.302	0.519	0.1081
	(16.4)	(3.10)	(0.99)	(0.172)	(0.050)	(0.93)	(0.19)	(0.327)	(0.068)
0.448	1315	433.2	132.4	29.59	4.343	111.1	30.25	18.10	4.29
	(590)	(194)	(59.4)	(13.26)	(1.946)	(49.7)	(13.6)	(8.11)	(1.922)
0.4	1531	433.3	105	23.97	6.683	159.1	46.60	25.97	4.70
	(613)	(173)	(42.0)	(9.589)	(2.673)	(63.6)	(18.5)	(10.39)	(1.879)

In Figure 4.30 the permeance (pressure normalised flux) values of various gases through polyaniline/PVDF composite film are plotted.

Figure 4.30 The permeance of various permeating gases through undoped ultrathin polyaniline membranes supported on PVDF substrate.

The ideal separation efficiencies of various gas pairs for undoped ultrathin polyaniline membranes, calculated using equation 4.7, are summarised in Table 4.11 and plotted in Figure 4.31.

Table 4.11 Effect of polyaniline film thickness on ideal selectivities of various gas pairs through ultrathin polyaniline membranes.

	Ideal Separation Efficiency $\left(\alpha_{A / B}\right)$			
	$\mathbf{1 . 3 7 1} \boldsymbol{\mu} \mathbf{m}$	$\mathbf{0 . 6 3 \boldsymbol { \mu }}$	$\mathbf{0 . 4 4 8} \boldsymbol{\mu \mathrm { m }}$	$\mathbf{0 . 4 ~ \boldsymbol { ~ m }}$
$\mathrm{H}_{2} / \mathrm{CO}_{2}$	3.43	5.29	3.03	3.53
$\mathrm{H}_{2} / \mathrm{O}_{2}$	16.3	16.5	9.93	14.6
$\mathrm{H}_{2} / \mathrm{N}_{2}$	104	95.2	45.1	63.9
$\mathrm{H}_{2} / \mathrm{CH}_{4}$	392	326	302	229
$\mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$	41.9	85.9	43.5	32.9
$\mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}$	12.7	17.6	11.9	9.63
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	83.4	50.1	72.7	58.9
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	540	240	306	326
$\mathrm{CO}_{2} / \mathrm{O}_{2}$	4.73	3.12	3.27	4.13
$\mathrm{CO}_{2} / \mathrm{N}_{2}$	30.2	18.1	14.6	18.1
$\mathrm{CO}_{2} / \mathrm{CH}_{4}$	114	61.7	99.7	64.8
$\mathrm{O}_{2} / \mathrm{N}_{2}$	6.37	5.76	4.47	4.38
$\mathrm{~N}_{2} / \mathrm{CH}_{4}$	3.78	3.43	6.81	3.59

Figure 4. 31 Ideal separation factors of various gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate.

In Table 4.12, the calculated ideal separation efficiency values for polyaniline/PVDF composite membranes are compared with the data published by Wang et al. [62]

Table 4.12 A comparison of published ideal selectivity data for ultrathin polyaniline films supported on porous substrate with the results obtained in this work.

Researcher	Ideal separation factor $\left(\alpha_{A / B}\right)$					
	$\mathbf{H}_{2} / \mathbf{C O}_{2}$	$\mathbf{H}_{2} / \mathbf{O}_{2}$	$\mathbf{H}_{2} / \mathbf{N}_{2}$	$\mathbf{C O}_{2} / \mathbf{O}_{2}$	$\mathbf{C O}_{2} / \mathbf{N}_{2}$	$\mathbf{O}_{2} / \mathbf{N}_{2}$
Wang et al. (film thickness: $0.178 ~ \mu \mathrm{~m})$	2.3	9.9	75.2	4.3	32.7	5.6
This work:						
PAni/PVDF (film composite film (fickness: $0.63 ~ \mu \mathrm{~m}$)	5.3	16.5	95.2	3.1	18.0	5.8
polyaniline nano-film membrane supported on porous PVDF substrate.						

It is apparent from Table 4.12 that the selectivity values obtained for ultrathin polyaniline films were similar to that of obtained by Wang et al. [62]. Polyaniline films with a selective polyaniline layer thickness below $1 \mu \mathrm{~m}$ showed different permeation behaviours than intermediate or thick polyaniline films.

In Figures 4.32, the permeability in Barrer is plotted as a function of polyaniline film thickness for $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$ and CH_{4}.

Figure 4. 32 Permeability of various gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$ through polyaniline membranes in Barrers.

It is apparent from the Figure 4.32 that the thickness of the selective polyaniline membrane affects the permeability of the permeating gases through polyaniline films. The permeability values obtained for all permeating gases were significantly higher in the case of ultrathin polyaniline membranes supported on a porous PVDF substrate. The permeability increased almost linearly with decreasing polyaniline film thickness. The increase in permeability, which was contrary to previously widely held views, of various gases for ultrathin polyaniline membranes can be explained by chemical structure of polyaniline (see Figure 4.33).

Figure 4. 33 3-D structure of emeraldine base form of polyaniline.

The dense skin morphology depicted is based on photomicrographs of the actual self-supported polyaniline films as well as of ultrathin polyaniline membranes supported on a porous PVDF substrate. It is thought that the dense skin is comprised of several layers, observed to be in the form of "nodules". Although at a low resolution, the nodules appear approximately spherical, they actually have no well-defined shape; we believe that they are interconnected by polymer chains. Since the tie chains keep adjacent nodules "fused" together, the effective thickness of a chemically selective polyaniline membrane may be much lower than observed in scanning electron micrographs due to its molecular structure. This hypothesis could also account for the observations noted in the literature $[78,326,331-335]$. Alternatively, the higher productivity for polyaniline membranes may be associated with curing time (solvent evaporation method) and temperature. Since the ultrathin polyaniline films were annealed at 120 C for 1 hour, the degree of crosslinking between the polyaniline chains is less, which could result in expansion of the free volume and in higher permeance values. Furthermore, during the synthesis, protonating all the imine nitrogens in the polyaniline backbone, may require the conjugate base of the doping acid to act as a counterion to maintain electroneutrality in the salt form of polyaniline. The close association of this counterion with the polymer backbone means that the polymer microstructure must distort to accommodate the extra mass. This distortion remains after the removal of the counterion with ammonium hydroxide and is likely to an increase in free volume in the film that results in greater permeability of gases over the polyaniline membranes.

The effect of polyaniline film thickness on the pure gas selectivity of various gas pairs was examined. In Figures 4.34 and 4.35, the ideal selectivities for various gas pairs through polyaniline membranes are plotted as a function of selective polyaniline layer thickness.

Figure 4. 34 Effect of polyaniline film thickness on ideal separation factor values of various gas pairs for polyaniline membranes.

Figure 4. 35 Effect of polyaniline film thickness on ideal separation factor values of various gas pairs for polyaniline membranes.

It is clear from Figures 4.34 and 4.35 that the ideal selectivity values for various gas pairs through self-supported polyaniline membranes (selective polyaniline film thickness $=2$ to $3 \mu \mathrm{~m}$) were similar to those of ultrathin polyaniline membranes supported on porous PVDF substrate (selective polyaniline layer thickness $=0.4$ to $1.37 \mu \mathrm{~m}$).

The results obtained during this work were reproducible for both selfsupported polyaniline films and ultrathin polyaniline films supported on porous PVDF substrate.

4.4.2.2. Polyaniline Membranes for Olefin/Paraffin Separations

The separation of olefins and paraffins (e.g. ethylene, ethane, propylene and propane) is an important process in the petrochemical industry. These close boiling mixtures (see Table 2.6; Chapter 2) are separated on a very large scale in the synthesis of ethylene and propylene, the two largest-volume organic chemical feed stocks. Since the mixtures are close-boiling, large towers and high reflux ratios are required to achieve good separation. Membrane separations with their low energy consumption and simple operation could have a significant impact on these separations. Several groups [30-47] have measured the selectivities of polymeric membranes, particularly ethylene/ethane and propylene/propane mixtures.

Olefin/paraffin separation is such an attractive target separation for membranes (although a challenging one), that the process is likely to be developed to the commercial stage in the next few years. However, if ethylene/ethane and propylene/propane distillation columns are to be replaced by membranes, far more selective membranes will be required, because the selectivities of a conventional polymer membranes used to separate olefin/paraffin gas mixtures are too low for an economically viable process.

There are no reports where polyaniline membranes have been used for ethylene/ethane and propylene/propane gas separation applications. In this work, we initiated an investigation into the application potential of polyaniline membranes for these separations. In the following sub-sections, the gas transport properties of self-supported polyaniline films (film thickness $=2$ to $4 \mu \mathrm{~m}$) as well as ultrathin polyaniline films supported on PVDF substrate (selective
polyaniline layer thickness $=0.4$ to $0.8 \mu \mathrm{~m}$), in respect to olefin/paraffin (ethylene/ethane, and propylene/propane) separations, are presented and discussed.

4.4.2.2.1. Self-supported Polyaniline Films for Olefin/Paraffins Separations

The single gas permeation experiments were conducted using ethylene, ethane, propylene and propane for self-supported undoped polyaniline membranes (polyaniline film thickness $=2$ to $4 \mu \mathrm{~m}$) with the method discussed earlier in Section 5.3.2.4 (see Chapter 3), at a feed side pressure between 1 to 4 bar (0.1 to 0.4 MPa) and ambient temperature ($21 \pm 2 \mathrm{C}$).

The permeance (in GPU) and permeability (in Barrers, bracketed) values, calculated at room temperature, i.e. $21 \pm 2 \mathrm{C}$ and upstream pressure of 4 bar (0.4 MPa), of ethylene, ethane, propylene and propane for self-supported polyaniline membranes are summarised in Table 4.13.

Table 4. 13 Permeance (in GPU) and permeability (in Barrers, bracketed) of ethylene, ethane, propylene and propane through undoped self-supported polyaniline membranes.

Membrane	Productivity (GPU*) and Permeability (Barrers**)			
($\mu \mathrm{m}$)	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
4.01	0.017 (0.072)	0.004 (0.017)	0.04 (0.0146)	0.0004 (0.0018)
2.89	0.037 (0.108)	0.007 (0.021)	0.005 (0.0148)	0.0008 (0.0023)
2.52	0.030 (0.076)	0.006 (0.016)	0.007 (0.0183)	$0.0009(0.0037)$
$\begin{array}{ll} * & 1 \text { GPU }=1 \\ * & 1 \text { Barrer }= \end{array}$	$\begin{aligned} & 10^{6} \mathrm{~cm}^{3}(\mathrm{sTrp}) / \mathrm{cn} \\ & \left\langle 10^{-10} \mathrm{~cm}^{3} / \mathrm{scp}\right. \end{aligned}$	$\cdot \mathrm{s} \cdot \mathrm{cmHg}^{\mathrm{cm} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cml}}$		

The pressure normalised flux (productivity or permeance) values of ethylene, ethane, propylene and propane for self-supported polyaniline membranes are plotted in Figure 4.36.

Figure 4. 36 Pressure normalised flux values of ethylene, ethane, propylene and propane through undoped self-supported polyaniline membranes.

As discussed earlier, the permeability of selected test gases through undoped polyaniline (EB) films essentially followed a size dependent (kinetic diameter) relationship. However, the exceptions from this trend were $\mathrm{C}_{2} \mathrm{H}_{4}(3.9 \AA), \mathrm{C}_{2} \mathrm{H}_{6}(4.0 \AA), \mathrm{C}_{3} \mathrm{H}_{6}(4.4 \AA)$ and $\mathrm{C}_{3} \mathrm{H}_{8}(3.96 \AA)$, since their permeability values were higher than $\mathrm{CH}_{4}(3.80 \AA)$, even though the kinetic diameters of $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are larger molecules than CH_{4}. According to the kinetic diameters of the permeating gases (ethylene, ethane, propylene and propane) the permeability order should have been:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(3.90 \AA)>\mathrm{C}_{3} \mathrm{H}_{8}(3.96 \AA)>\mathrm{C}_{2} \mathrm{H}_{6}(4.0 \AA)>\mathrm{C}_{3} \mathrm{H}_{6}(4.40 \AA)
$$

and the permeability order through polyaniline membranes observed to be was:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(3.90 \AA)>\mathrm{C}_{3} \mathrm{H}_{6}(4.40 \AA)>\mathrm{C}_{2} \mathrm{H}_{6}(4.0 \AA)>\mathrm{C}_{3} \mathrm{H}_{8}(3.96 \AA)
$$

This was, we believe, because of a relatively higher solubility of ethylene and propylene in the polyaniline membranes than ethane and propane. The
propylene dissolves more in polyaniline than ethane and propane, and therefore the calculated permeability for propylene was higher than ethane and propane.

The ideal (pure gas) separation efficiencies for ethylene/ethane and propylene/propane were calculated using equation 2.30. These calculated ideal separation efficiencies are summarised in the following Table 4.14, and plotted in Figure 4.37.

Table 4. 14 Pure gas selectivity of ethylene/ethane and propylene/propane for selfsupported polyaniline membranes.

Membrane Thickness $(\mu \mathrm{m})$	Ideal Separation Factor $\left(\alpha_{A / B}\right)$	
4.01	$\mathbf{C}_{2} \mathrm{H}_{4} / \mathbf{C}_{2} \mathrm{H}_{6}$	$\mathbf{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$
4.89	4.13	7.98
2.52	5.24	6.39

Figure 4. 37 Ideal separation factors for ethylene/ethane and propylene/propane through self-supported polyaniline films.

The pure gas selectivity values for various gas pairs such as $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}, \quad \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}, \quad \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}, \quad \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}, \quad \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}, \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}, \quad \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}, \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$, and $\quad \mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ were also calculated using equation 2.30. These calculated ideal selectivities are summarised in Table 4.15, and plotted in Figure 4.38.

Table 4. 15 Effect of polyaniline film thickness on ideal (pure gas) separation factors of various gas pairs through self-supported polyaniline membranes.

	Ideal Separation Factor $\left(\alpha_{A / B}\right)$		
	$\mathbf{4 . 0 0} \boldsymbol{\mu m}$	$\mathbf{2 . 8 9} \boldsymbol{\mu m}$	$\mathbf{2 . 5 2 \boldsymbol { \mu m }}$
$\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$	2.25	5.51	7.52
$\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}$	9.31	28.8	36.97
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	11.1	40.14	31.3
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	87.9	256	154
$\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}$	27.5	28.4	24.6
$\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}$	6.65	5.42	5.01
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}$	5.62	3.89	5.90
$\mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$	1.42	1.64	0.84
$\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}$	17.9	6.14	4.76
$\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}$	4.35	1.17	0.97
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$	3.67	0.84	1.14
$\mathrm{~N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	2.17	7.61	4.31

Figure 4. 38 Ideal separation factors for various gas pairs as a function of selfsupported polyaniline membrane thickness.

Table 4.16 shows a comparison of published selectivity data for hydrocarbons in the literature with the data obtained for self-supported polyaniline films in this work.

Table 4.16 A comparison of published selectivity data for hydrocarbons with current work.

Ideal Selectivity ($\alpha_{A / B}$)	Researcher		
	$\begin{gathered} \text { Pinnau et al. } \\ \left(\text { Hyflon }^{\top}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Krol et al. } \\ \text { (Polyimide) [184] } \end{gathered}$	This work (Polyaniline Films")
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	100		101
$\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	110	----	757
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$	1.10	21.0	7.98
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	----	-----	40.1
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	8.70	----	256
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$	13.0	----	3.67
$\mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	---	----	7.61

* Undoped self-supported polyaniline films

4.4.2.2.2. Polyaniline/PVDF composite Films for Olefin/Paraffin Separations

The single gas permeation measurements were conducted using the pure gas permeation method (see Section 5.3.2.4; Chapter 3) at a feed pressure of 0.2 to 1.5 bar (0.02 to 0.15 MPa) and ambient temperature (i.e $21 \pm 2 \mathrm{C}$). The ultrathin polyaniline films supported on a porous PVDF substrate with the selective polyaniline layer thickness between 0.4 and $1.37 \mu \mathrm{~m}$ were tested with ethylene, ethane, propylene and propane to measure their transport properties.

The permeance (pressure normalised flux) and pure gas selectivity ($\alpha_{A / B}$) values of ethylene, ethane, propylene and propane for undoped ultrathin polyaniline membranes were calculated using equations 4.6 and 4.7, respectively. The calculated permeance (in GPU) and permeability (in Barrers, bracketed) data for $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$, along with ideal (pure gas) selectivities for $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ gas pairs for ultrathin polyaniline membranes supported on porous PVDF substrate are summarised in Table 4.17.

Table 4. 17 Permeance (in GPU) and permeability (in Barrers, bracketed) and pure gas selectivity of olefins (ethylene, propylene) and paraffins (ethane, propane).

Membrane Thickness ($\mu \mathrm{m}$)	Permeance (GPU*) and Permeability (Barrers*)				Pure gas Selectivity$\left(\alpha_{A / B}\right)$	
	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$
1.37	$\begin{gathered} 0.286 \\ (0.392) \end{gathered}$	$\begin{gathered} 0.086 \\ (0.119) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.0067 \\ (0.0092) \end{gathered}$	3.30	6.48
0.63	$\begin{gathered} 1.474 \\ (0.929) \end{gathered}$	$\begin{gathered} 0.302 \\ (0.191) \end{gathered}$	$\begin{gathered} 0.519 \\ (0.327) \\ \hline \end{gathered}$	$\begin{gathered} 0.1081 \\ (0.0681) \\ \hline \end{gathered}$	4.88	4.80
0.448	$\begin{gathered} 111.1 \\ (49.73) \end{gathered}$	$\begin{gathered} 30.25 \\ (13.55) \end{gathered}$	$\begin{gathered} 18.10 \\ (8.113) \end{gathered}$	$\begin{gathered} 4.290 \\ (1.922) \end{gathered}$	3.67	4.22
0.4	$\begin{gathered} 159.1 \\ (63.65) \end{gathered}$	$\begin{gathered} 46.60 \\ (18.64) \end{gathered}$	$\begin{gathered} 25.97 \\ (10.39) \end{gathered}$	$\begin{gathered} 4.698 \\ (1.879) \end{gathered}$	3.41	5.53

* $1 \mathrm{GPU}=1 \times 10^{6} \mathrm{~cm}^{3}{ }_{(\mathrm{STP})} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}$
** 1 Barrer $=1 \times 10^{-10} \mathrm{~cm}^{3}{ }_{(\mathrm{STP})} \cdot \mathrm{cm} / \mathrm{cm}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}$

In Figures 4.39 and 4.40, the permeance (in GPU) of ethylene, ethane, propylene and propane and ideal separation efficiency of $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ gas pairs for polyaniline/PVDF composite membranes (selective polyaniline layer thickness between 0.4 and $1.37 \mu \mathrm{~m}$) are plotted, respectively.

Figure 4. 39 The permeance (in GPU) of ethylene, ethane, propylene and propane through undoped ultrathin polyaniline membranes supported on PVDF substrate.

Figure 4.40 Ideal separation factor values of $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate.

A similar trend was found for the ultrathin polyaniline membranes to the permeability of $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ over CH_{4}; the permeability values of ethylene, ethane, propylene, and propane were higher than methane. This shows consistency in the argument made before that the relative solubility of these gases may be higher than methane, and the porous PVDF layer does not affect the transport properties of the selective polyaniline layer.

The pure gas selectivity values for various gas pairs such as $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$, and $\mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ were also calculated for undoped ultrathin polyaniline/PVDF composite membranes using equation 2.30. These calculated ideal selectivities are summarised in Table 4.18, and plotted in Figure 4.41.

Table 4. 18 Ideal selectivities of various gas pairs as a function of ultrathin polyaniline membrane thickness.

	Ideal Separation Factor $\left(\alpha_{A / B}\right)$			
	$\mathbf{1 . 3 7 1} \boldsymbol{\mu m}$	$\mathbf{0 . 6 3 \boldsymbol { \mu m }}$	$\mathbf{0 . 4 4 8} \boldsymbol{\mu \mathrm { m }}$	$\mathbf{0 . 4} \boldsymbol{\mu \mathrm { m }}$
$\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$	3.70	3.33	3.90	2.72
$\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}$	12.2	16.3	14.3	9.31
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$	24.3	9.47	23.9	16.7
$\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	157	45.5	100	92.2
$\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}$	30.9	18.5	25.6	23.8
$\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}$	9.35	3.79	6.96	6.97
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}$	4.70	6.51	4.17	3.89
$\mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$	1.38	0.74	1.01	1.42
$\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}$	8.17	5.40	3.75	6.64
$\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}$	2.47	1.11	1.02	1.94
$\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$	1.21	1.90	0.61	1.08
$\mathrm{~N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$	5.21	4.52	6.90	5.10

Figure 4. 41 Ideal separation factor values of various gas pairs through undoped ultrathin polyaniline membranes supported on porous PVDF substrate.

In Figure 4.42, the permeability values (in Barrers) for $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ is plotted as a function of polyaniline membrane thickness.

Figure 4. 42 Permeability values of ethylene, ethane, propylene and propane through polyaniline membranes.

It is clear from the Figure 4.42 that the permeability values of ethylene, ethane, propylene and propane through polyaniline membranes increased with decreasing polyaniline film thickness. The thickness of the polyaniline membrane appeared to have an effect on the permeability of the penetrant gases. The permeability values for all gases increased almost linearly with decreasing polyaniline thickness.

In Figures 4.43 and 4.44, the selectivity values for various gas pairs to are plotted as a function of polyaniline membrane thickness.

Figure 4. 43 Ideal separation factor values of $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}, \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}$, and $\mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$ as a function of selective polyaniline film thickness.

Figure 4. 44 Ideal separation factor values of $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}, \quad \mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}, \quad \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}$, $\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$, and $\mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ as a function of selective polyaniline film thickness.

It was interesting to examine from Figures 4.43 and 4.44 that the ideal selectivity values for various gas pairs $\left(\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}\right.$, $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8} / \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{N}_{2}, \mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{N}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{N}_{2}$, and $\mathrm{N}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$) through self-supported polyaniline membranes (polyaniline film thickness $=2$ to $4 \mu \mathrm{~m}$), and polyaniline/PVDF composite membranes (selective polyaniline film thickness $=0.4$ to $1.37 \mu \mathrm{~m}$) were similar.

The results obtained for olefin/paraffin separations were reproducible for both self-supported and ultrathin polyaniline/PVDF composite membranes.

4.4.3. Correlation of Selectivity vs Permeability of Polyaniline Membranes

The separation of gases utilising polymeric membranes has emerged into a commercially utilised unit operation. Probably, the key to this development was the ability to obtain ultrathin membranes (of the order of $1000 \AA$) via improvement of asymmetric membranes of thin-film composite fabrication. Over the past decade or more, an extensive body of experimental data on permeation of gases has been generated for a wide array of glassy polymers [13,76,78,96,110,112,129,139,168,187,336-342]. Much of this work has been done in laboratories in an attempt to learn the principles that govern the relationship between gas permeability and polymer repeat unit structure because of an interest in developing better gas separation membranes. It has been recognised that the separation factors for gas pairs varies inversely with the permeability of the more permeable gas of the specific pair. In fact these references allude to an "upper bound" relationship for specific gas pairs, generally plotted as $\alpha_{A / B}$ vs $\log \left(P_{A}\right)$ where a linear or curved line denotes the limit of separation ability of polymers for specific gas pairs. These correlations often present the data as the expected behaviour for polymeric systems and utilise the data to show unexpected behaviour for the particular polymer under investigation. Robeson [168] in 1991 briefly attempted, in a qualitative manner, to correlate the gas pair separation factors to polymer properties or structure. He defined the upper bound limit for most gas mixtures by compiling the permeability data from over 300 references. The data demonstrated the "upper bound"
concept for the limits of ideal selectivities for specific values of permeabilities for specific gas pairs.

The permeability of a penetrant in the membrane, defined as a thickness normalised flux, can be expressed as a product of a kinetic factor D, the diffusion coefficient, and a thermodynamic factor S, the sorption coefficient (see equation 2.29; Chapter 2). The sorptivity, S, is measured as the secant slope of the sorption isotherm at the upstream pressure conditions when the downstream pressure of the membrane is negligible. The diffusivity, D, is determined by taking the ratio of penetrant permeability and the sorption coefficient. Following from equation 2.32 (see Chapter 2), the permselectivity of practical gas separation membranes can be interpreted as a product of diffusivity and solubility. The sorption selectivity, S_{A} / S_{B}, has proven difficult to adjust without seriously off-setting the diffusivity selectivity for nonporous polymeric materials [336]. On the other hand, the separation of common gas pairs is accomplished by a size selective sieving mechanism (thus diffusion controlling), and adjustment of the diffusivity selectivity has been the major tool used in moving from the 1980 upper bound limit to 1991 upper bound limit [14,330].

Practical gas separation membranes need to be highly permeable to one of the mixture components while significantly rejecting the others. The benefits achievable with tailored glassy polymer structures seem to be approaching a limit, as shown in the extensive trade-off data for gas permeability and selectivity (see Figure 4.45) which is an adaptation of a similar figure published in 1991 [168].

Figure 4. 45 Oxygen/nitrogen selectivity as a function of oxygen permeability for all known membrane materials as of 1991 (Robeson's plot of oxygen permeability and oxygen/nitrogen selectivity).
(\circ) rubbery polymers, and (\bullet) glassy polymers.

Molecular sieving materials like zeolites and carbon molecular sieves (CMS) lie above the upper bound for polymers on this trade-off curve [330]. The research on facilitated selective carriers, block-copolymers, polymer nano-composites, carbon membranes and surface modified glass membranes is being carried out to work in the commercially attractive region (the shaded area on Figure 4.45) [343]. Understanding why polymeric membranes have been unable to achieve selectivities of the same orders as zeolites or CMS is both scientifically and technologically interesting.

The challenge, therefore, is to identify and introduce the missing key elements in polymeric materials to boost performance above the upper bound and approach that of molecular sieving materials. Self-supported polyaniline membranes and polyaniline/PVDF composite membranes were produced and analysed during this work. It was observed from the gas permeation measurements that the productivity of the various gases through dense self-supported polyaniline films was fairly low. To expand the application
potential of the polyaniline membranes to the industrial gas separation applications, the concept of polyaniline nano-film membranes supported on a porous PVDF substrate for gas separation was explored in this research. The permeability and permselectivity for hydrogen, nitrogen, oxygen, carbon dioxide, methane, ethylene, ethane, propylene, propane through self-supported polyaniline membranes and polyaniline nano-film membranes supported on a PVDF substrate were plotted on Robeson's plots. Figure 4.46 shows the relationship between oxygen/nitrogen pure gas selectivity and oxygen permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.

Figure 4. 46 Relationship between $\mathrm{O}_{2} / \mathrm{N}_{2}$ pure gas selectivity and O_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.
(\circ) rubbery polymers, and (\bullet) glassy polymers.

Similarly, the relationship between $\mathrm{H}_{2} / \mathrm{N}_{2}$ pure gas selectivity and H_{2} permeability, $\mathrm{H}_{2} / \mathrm{CH}_{4}$ pure gas selectivity and H_{2} permeability, and $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ permselectivity and CO_{2} permeability for self-supported polyaniline membranes and polyaniline/PVDF composite membranes are plotted in Figures 4.47, 4.48 and 4.49, respectively.

Figure 4. 47 Relationship between $\mathrm{H}_{2} / \mathrm{N}_{2}$ pure gas selectivity and H_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.
(\circ) rubbery polymers, and (\bullet) glassy polymers.

Figure 4. 48 Relationship between $\mathrm{H}_{2} / \mathrm{CH}_{4}$ pure gas selectivity and H_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.
(\circ) rubbery polymers, and (\bullet) glassy polymers.

Figure 4. 49 Relationship between $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ pure gas selectivity and CO_{2} permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.
(\circ) rubbery polymers, and ((\bullet) glassy polymers.

In all cases, higher productivity (permeance) coupled with higher selectivity were achieved for all gases. It was apparent that even a 300 to 400 nm selective layer of polyaniline on a porous substrate (PVDF) was sufficient to separate gases effectively. The productivity (permeance, or pressure normalised flux) obtained for ultrathin polyaniline membranes supported on porous PVDF substrate were significantly high, yet still maintaining their separation effectiveness.

The gas permeation data for olefin and paraffin (volatile gases, i.e., ethylene, ethane, propylene and propane) gases through polymeric membranes have become available in recent years. There are no reports, however, that have established the upper bound analysis for these cases. The upper bound plot for the $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ separation is constructed using available data $[36,43,184-188]$ in the literature. These data are compiled in Table 4.19, and plotted in Figure 4.50.

Table 4. $19 \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ permeation data used to develop the upper bound curve.

Polymer (see Table 4.20)	Temperature	Feed Pressure	$\mathrm{PC}_{3} \mathrm{H}_{6}$ $($ Barrer $)$	Selectivity
Matrimid $^{\circledR}$	26	$2-3 \mathrm{bar}$	0.10	16
Matrimid $^{\circledR}$-Thermid 85/15	26	$2-3 \mathrm{bar}$	0.03	4
Pyralin 2566	26	$2-3 \mathrm{bar}$	0.09	21
Torlon Al-10	26	$2-3 \mathrm{bar}$	<0.02	-
PPO	30	$2-4 \mathrm{bar}$	9	4.25
EC	30	$3-3.9 \mathrm{~atm}$	52^{a}	3.25
CA	30	$3-3.9 \mathrm{~atm}$	15.2^{a}	2.6
PSF	30	$3-3.9 \mathrm{~atm}$	25^{a}	1.4
6FDA-mPD	35	3.8 atm	0.13	10
6FDA-IpDA	35	3.8 atm	0.58	15
6FDA-6FpDA	35	3.8 atm	0.89	16
Matrimid	35	2 atm	0.10	10
6FDA-33'DMDB	35	1.1 atm	0.15	13.2
6FDA-TeMPD	50	2 atm	37	8.6
6FDA-TrMPD	50	2 atm	30	11
6FDA- DDBT	50	2 atm	1.8	20
6FDA- DDBT	50	2 atm	0.76	27
BPDA-TeMPD	50	2 atm	3.2	13
PPO	50	2 atm	2.3	9.1
P4MP	50	2 atm	54	2
1.2PB	50	2 atm	260	1.7
PDMS	50	2 atm	6600	1.1
6FDA-ODA	100	2 atm	0.48	11

${ }^{\text {a }}$ Mixed gas results : 55% propylene / 45% propane feed.

Figure 4. $50 \quad \mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ experimental upper bound on pure gas permeation data over the range 1-4 atm feed pressure. ($\mathbf{\Delta}$) pure gas experiments, ($\mathbf{\square}$) mixed gas results.

Table 4. 20 List of abbreviations and corresponding technical names.

Abbreviation	Chemical name
6FDA	4,4'-(Hexafluoro-isopropylidene)diphthalic anhydride
6FpDA (BAAF)	4,4'-(Hexafluoro-isopropylidene)dianiline
TrMPD (DAM)	Trimethylphenylinediamine
DDBT	Dimethyl-3,7-diaminodiphenylthiophene-5,5-dioxide
33'DMDB	3,3'-Dimethyl-4,4'diaminophenyl
Matrimid ${ }^{\text {® }}$	$3,3^{\prime}, 4,4^{\prime}$-Benzophenone tetracarboxylic dianhydride and 5(6)-amino-1-(4' aminophenyl)-1,3-trimethylindane
BPDA	3,3', 4,4'-Biphenyltetracarboxylic dianhydride
mPD	1,3-Phenylenediamine
IPDA	4,4'-(Isopropylidene)dianiline
ODA	4,4'-Oxydianiline
TeMPD	2,3,5,6-Tetramethyl-1,4-phenylenediamine
1.2PB	1,2-Polybutadiene
PDMS	Polydimethylsiloxane
EC	Ethyl cellulose
CA	Cellulose acetate
PSF	Polysulfone
P4MP	Poly(4-methylpentene-1-co-a-oleifn)
Thermid 85/15	6FDA based oligomers
Torlon Al-10	Poly(amide-imide) precursor as supplied
Pyralin 2566	Polyimide precursor based on 6FDA-ODA

In Figures 4.51 and 4.52, the upper bound plot for $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ separations is constructed using available data in the literature and measurements reported herein at $21 \pm 1 \mathrm{C}$, and from 0.5 to 4 bar feed pressure with self-supported polyaniline and polyaniline/PVDF composite membranes.

Figure 4. 51 Relationship between $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{C}_{2} \mathrm{H}_{6}$ pure gas selectivity and $\mathrm{C}_{2} \mathrm{H}_{4}$ permeability for self-supported polyaniline and polyaniline/PVDF composite membranes.

Figure 4. 52 Relationship between $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ pure gas selectivity and $\mathrm{C}_{3} \mathrm{H}_{6}$ permeability for self-supported polyaniline and polyaniline/PVDF composite membranes
(•) pure gas experiment results, and (o) mixed gas experiment results.

The remarkable separation performance of silver based polymer membranes using the concept of facilitated transport for olefin/paraffin separations has been published elsewhere [21-48]. However, limited work has been done to develop new membranes which combine increased selectivities and higher productivity for these separations. The use of polyaniline membranes has been proposed for these applications (olefin/paraffin gas separations) due to their excellent chemical stability against the gas streams containing high levels of plasticising, condensable vapours. However, the permeability for self-supported polyaniline membranes for $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$ were far too low. It was clear from the above figures (Figures 4.50 and 4.51) that the use of polyaniline nano-film membranes resulted in substantially higher productivities for $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$.

Furthermore, polyaniline is a dopable material, so it can be doped with $\mathrm{Ag}(\mathrm{I})$ (a Group I-B metal ion) to facilitate transport of olefins through the polyaniline films. Hence, it is important, and recommended, to measure the effect of doping, dedoping and controlled redoping of $\mathrm{Ag}(\mathrm{I})$ on permeance and separation efficiency of ethylene and propylene through polyaniline membranes in the future work.

4.4.4. Mixed Gas Permeation Experiments

Polymeric membranes have been successfully used in many gas separation applications. Their success has been largely based on their mechanical and thermal stability, along with good separation properties. Understanding the transport phenomena of the target gases through membranes is the foundation of realising effective separation of a mixed gas and selecting the appropriate feed conditions. Generally, the permeation behaviour of pure gas through a membrane depends mainly on the properties of the gas, the membrane and the feed conditions. As for the gas mixture, the transport behaviour of one component through a membrane is affected by the presence of other penetrants so that it deviates from that of the pure gas. Hence, it is difficult to evaluate the relative contribution of diffusion coupling or competitive solubility effects on the membrane selectivity from the use of single (pure) gas permeation data. In the actual membrane separation application, to optimise the separation design and determine the proper feed conditions, it is necessary to establish a mathematical
model based on the available experimental data. The model can be used as a powerful tool to evaluate or predict the performance of the separation system at various feed conditions for a specific gas pair-membrane system.

In this study, based on the permeation behaviour of binary gas mixtures (i.e. $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{O}_{2}-\mathrm{CO}_{2}$ and $\mathrm{N}_{2}-\mathrm{CO}_{2}$) through self-supported polyaniline membranes (polyaniline film thickness $=2.89 \mu \mathrm{~m}$) and polyaniline/PVDF composite membranes (selective polyaniline layer thickness $=0.448 \mu \mathrm{~m}$) at various feed conditions, a simple and practical mathematical model expressed in terms of feed compositions was derived to interpret the experimental data, and predict the permeation flux and the composition of the permeated stream quantitatively.

For ideal mixed gas permeation experiments in which there are no interactions between the gases, as well as no special gas-polymer interactions in the presence of the second gas, the total permeation flux of the gas mixture can be calculated form the following equation;

$$
\begin{equation*}
J_{\text {total }}=\frac{P_{\text {total }} \cdot \Delta p_{\text {total }}}{t_{m}} \tag{4.8}
\end{equation*}
$$

where t_{m} is the membrane thickness, $\Delta p_{\text {total }}$ is the total pressure difference across the polymeric membrane, and $J_{\text {total }}$ and $P_{\text {total }}$ are the total permeation flux and total permeability of the mixed gases, respectively.

The total permeation flux and total pressure difference across the polymeric film can be calculated from following equations;

$$
\begin{align*}
& J_{\text {total }}=J_{1}+J_{2} \tag{4.9}\\
& \Delta p_{\text {total }}=\left(p_{i, 1}+p_{i, 2}\right)-\left(p_{0,1}+p_{0,2}\right) \tag{4.10}
\end{align*}
$$

where J, p_{i} and p_{o} are the permeation flux, partial pressure of the permeating gas in the feed, and partial pressure of the permeating gas in the permeate, respectively; and the subscripts 1 and 2 denote the component gases.

Equation 4.10 can be rearranged in terms of total feed side pressure, $p_{i, \text { total }}$ and total permeate side pressure, $p_{0, \text { total }}$ as follows;

$$
\begin{equation*}
\Delta p_{\text {total }}=\left(p_{i, \text { totaal }} \cdot \phi_{i, 1}+p_{i, \text { total }} \cdot \phi_{i, 2}\right)-\left(p_{0, \text { otatal }} \cdot \phi_{0,1}+p_{0, \text { otoal }} \cdot \phi_{0,2}\right) \tag{4.11}
\end{equation*}
$$

where ϕ_{i} and ϕ_{o} are the volume fraction of the permeating gas in the feed and permeate, respectively.

Equation 4.11 can be rearranged to;

$$
\begin{equation*}
\Delta p_{\text {total }}=\left(p_{i, \text { total }} \cdot \phi_{i, 1}-p_{0, t o t a l} \cdot \phi_{0,1}\right)+\left(p_{i, \text { total }} \cdot \phi_{i, 2}-p_{0, t o t a l} \cdot \phi_{0,2}\right) \tag{4.12}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\Delta p_{\text {total }}=\frac{J_{1} \cdot t_{m}}{P_{1}}+\frac{J_{2} \cdot t_{m}}{P_{2}} \tag{4.13}
\end{equation*}
$$

The permeation flux for the component 1 in a gas mixture can be calculated from the following equation 4.14.

$$
\begin{equation*}
J_{1}=\frac{P_{1} \cdot\left(p_{i, \text { total }} \cdot \phi_{i, 1}-p_{0, \text { total }} \cdot \phi_{0,1}\right)}{t_{m}} \tag{4.14}
\end{equation*}
$$

Similarly for the component 2 in a gas mixture, the permeation flux can be calculated as;

$$
\begin{equation*}
J_{2}=\frac{P_{2} \cdot\left(p_{i, \text { total }} \cdot \phi_{i, 2}-p_{0, t o t a l} \cdot \phi_{0,2}\right)}{t_{m}} \tag{4.15}
\end{equation*}
$$

At the beginning of the mixed gas permeation experiment (experimental time, $t=0$), the volume fraction of the component 1 in the permeate, $\phi_{0,1}=0$. The total permeate side pressure, $p_{0, t o t a l}$ can be neglected as the permeate side of the membrane permeation cell is under vacuum (at the beginning, the permeate side pressure $=0.561 \mathrm{cmHg}$) and $p_{i, \text { total }} \gg p_{\text {o,total }}$, hence it is suitable to assume $p_{i, \text { total }} \cdot \phi_{i, 1} \gg p_{0, \text { totala }} \cdot \phi_{0,1}$, and $p_{0, t o t a l} \cdot \phi_{0,1} \approx 0$. However, for the experimental time, $t>0$, the volume fraction of the component 1 in the permeate, $\phi_{0,1}>0$, but the
permeate side is still under vacuum and $p_{\text {i.total }} \gg p_{\text {ototal }}$, hence at the experimental time, $t>0, p_{i, \text { total }} \cdot \phi_{i, r} \gg p_{0, \text { total }} \cdot \phi_{0,1}$, and $p_{0, \text { total }} \cdot \phi_{0,1} \approx 0$.
Hence, equations 4.14 and 4.15 can be rewritten as;

$$
\begin{align*}
& J_{1} \approx \frac{P_{1} \cdot\left(p_{i, \text { total }} \cdot \phi_{i, 1}\right)}{t_{m}} \tag{4.16}\\
& J_{2} \approx \frac{P_{2} \cdot\left(p_{i, \text { total }} \cdot \phi_{i, 2}\right)}{t_{m}} \tag{4.17}
\end{align*}
$$

The total permeation flux, $J_{\text {total }}$ can be calculated by substituting equations 4.16 and 4.17 to equation 4.9.

$$
\begin{equation*}
J_{\text {total }}=\frac{P_{1} \cdot\left(p_{i, \text { total }} \cdot \phi_{i, 1}\right)}{t_{m}}+\frac{P_{2} \cdot\left(p_{i, t o t a l} \cdot \phi_{i, 2}\right)}{t_{m}} \tag{4.18}
\end{equation*}
$$

Hence the total permeance (pressure normalised flux) can be calculated as;

$$
\begin{equation*}
\frac{J_{\text {total }}}{p_{i, \text { total }}}=\frac{P_{1} \cdot \phi_{i, 1}}{t_{m}}+\frac{P_{2} \cdot \phi_{i, 2}}{t_{m}} \tag{4.19}
\end{equation*}
$$

However, the complex factors such as coupling effect, plasticisation effect and concentration polarisation interact with each other and thus influence the transport of mixed gases through polymeric membranes, resulting in a deviation of the permeation behaviour of the actual binary gas mixture from that of the ideal gas mixture. Hence, it is necessary to reformulate equation 4.19, in order to predict the permeation behaviour of an actual binary gas mixture, by incorporating the effects of these complex factors on the permeability coefficient for the mixed gas system.

The actual total permeance (pressure normalised flux) of a binary gas mixture through a polyaniline membrane can be expressed as follows;

$$
\begin{equation*}
\frac{J_{\text {total }}}{p_{i, t o t a l}}=\frac{P_{1} \cdot \phi_{i, 1}}{t_{m}}+\frac{P_{2} \cdot \phi_{l, 2}}{t_{m}} \pm \sum \zeta \tag{4.20}
\end{equation*}
$$

where, ζ is the characteristic parameter of gas-gas and gas-membrane interactions (due to coupling effects, plasticisation effects, and concentration polarisation).

4.4.4.1. Mixed Gas Permeation Measurements for Undoped Self-supported Polyaniline Membranes

The mixed gas permeation experiments for self-supported polyaniline membranes involved similar start up as the single permeation experiments, except for some modifications in the feed gas section (see Section 5.3.2.5; Chapter 3). The calibration curves were constructed for $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2}, relating the mass spectroscopic intensity and the injected standard gas concentration under the fixed conditions (see Appendix 7). Similar operating conditions were maintained during the mixed gas permeation experiments. The detailed operational procedure to conduct mixed gas permeation measurements is described in Section 5.3.2.5 (see Chapter 3). The mixed gas permeation behaviour of $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO} 2-\mathrm{N}_{2}$ was measured in this study.

The mixed gas permeance through a self-supported polyaniline membrane (polyaniline film thickness $=2.89 \mu \mathrm{~m}$) for an $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system was measured using a MKS Baratron pressure transducer, and plotted in Figure 4.53. The "theoretical straight line" in the Figures 4.53 to 4.55 corresponds to the permeance values calculated using equation 4.19 , and the "experimental values" are the mixed gas permeance measured experimentally.

Figure 4.53 Effect of the molar composition of O_{2} in the feed gas on the total permeance for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases in self-supported polyaniline films.

Similarly, the mixed gas permeance of the mixed gas system containing $\mathrm{CO}_{2}-\mathrm{O}_{2}$, and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ are plotted in Figures 4.54 and 4.55 , respectively.

Figure 4. 54 Effect of the molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases in self-supported polyaniline films.

Figure 4. 55 Effect of the molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases in self-supported polyaniline films.

The permeance values calculated from equation 4.19 were compared (see Figures 4.53 to 4.55) with the experimental data, and found to be in a good agreement with the experimental data. The maximum errors of the model prediction are no more than 9%. Figures 4.53 to 4.55 revealed the dependence of the permeation behaviour of the binary gas mixed gases on the feed composition. The total permeation flux of $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system increased with increasing the mole fraction of O_{2} in the feed gases. Similarly, with the increase of the mole fraction of CO_{2} in the feed gases, the total permeation flux increased for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems.

The effect of the gas-gas and gas-polyaniline membrane interactions on transport properties of a binary gas system is clearly seen from Figures 4.53 to 4.55. Due to the permeating gas-gas and permeating gas-polyaniline membrane interactions the actual experimental permeance values in an $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems were marginally different than the values predicted using the equation 4.19. These phenomena indicated that the contribution of the faster gas to the total permeance is dominating. Hence, development of a more accurate permeation model, involving the characteristic parameters for coupling
and plasticisation effects and concentration polarisation, is recommended in the future work for mixed gas permeation studies through polyaniline membranes.

In order to verify the application limitations of the developed permeation function, a series of mixed gases permeation experiments with different feed gas molar compositions were carried out at the feed pressure of 2 bar (0.2 MPa). The permeance and permeate gas composition data obtained for $\mathrm{O}_{2}-\mathrm{N}_{2}$ against the molar composition of O_{2} in the feed gases were plotted in Figures 4.56.

Figure 4. 56 Effect of the molar composition of the feed gases on the total permeance and mole fraction of O_{2} in the permeated stream for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases.

It is clear from Figure 4.56 that the total permeance and mole fraction of O_{2} in the permeate (in $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system) increased with increasing the mole fraction of O_{2} in the feed. During the $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas experiment, oxygen permeates five times ($\alpha_{\mathrm{O}_{2} / N_{2}} \sim 5$) faster than nitrogen through a polyaniline membrane. The molar fraction of oxygen in permeate can be predicted by the following equation (obtained from the mixed gas permeation experiment data);

$$
\begin{equation*}
y=-2.66 x^{4}+7.49 x^{3}-7.97 x^{2}+4.15 x \tag{4.21}
\end{equation*}
$$

where $y=$ mole fraction of oxygen in the permeate and $x=$ mole fraction of oxygen in the feed gases.

The oxygen composition values in the permeate obtained using equation 4.21 were within 0.03 mole fraction of each experimental run which represents 0.7% error in the predicted values (from equation 4.21). It is recognised that the data over a limited range of O_{2} mole fractions in the feed were used to fit equation 4.21, and the limits of the equation are correct (at $x=0, y=0$ and at $x=$ $1, y=1$). The complete curve over $x=0$ to $x=1$ is given to show the possible variation of mole fraction of oxygen in the permeate, y, over the complete range of mole fraction of oxygen in the feed, x.

Figure 4.57 illustrates the schematics of the polyaniline membrane module cascade with $15: 85$ by moles $\mathrm{O}_{2}-\mathrm{N}_{2}$ feed gas ratio.

Figure 4. 57 A schematic of a two stage polyaniline membrane module for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system.

The number of membrane module stages in a membrane cascade required to achieve desired permeate oxygen composition can be estimated from a plot similar (see Figure 4.56) to the McCabe-Thiele plot used in distillation. For example, the permeate oxygen composition after the second stage in the module cascade can be calculated using equation 4.21 , as the permeate stream from the stage one becomes feed stream for the second module in the cascade.

The stage cut (also defined by the ratio of the permeate flow rate per unit feed flow rate to the membrane module) is a major parameter for separation process design, since it affects the overall retentate and permeate separation factors. The stage cut for a given membrane module can be calculated by equation 4.22;

> Stage Cut (SC) = Permeate Flow Rate / Feed Flow Rate

A low stage cut means the highest purity of oxygen in the permeate and nitrogen in the retentate; but only small amount of oxygen can be enriched in the permeate (see Table 4.23). For example, the stage cut and oxygen purity in the permeate (mole fraction of O_{2} in the permeate) values for self-supported polyaniline membrane (for $15: 85$ by volume $\mathrm{O}_{2}-\mathrm{N}_{2}$ feed gas mixture) were 1.38×10^{-5} and 0.86 , respectively.

Similarly, the permeance and permeate gas composition data obtained for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{O}_{2}$ against the molar composition of CO_{2} in the feed gases were plotted in Figures 4.58 and 4.59.

Figure 4. 58 Effect of the molar composition of the feed gases on the total permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases.

Figure 4.59 Effect of the molar composition of the feed gases on the total permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases.

Similar trends, for total permeance and molar composition of CO_{2} in the permeate vs increasing the molar composition of CO_{2} in the feed gases, were observed in the $\mathrm{CO}_{2}-\mathrm{O}_{2}$, and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas permeation measurements. From the mixed gas permeation measurements, the equations to predict the molar concentration of CO_{2} in the permeate for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ (equation 4.23) and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ (equation 4.24) mixed gas systems can be written as;

$$
\begin{align*}
& y=-2.91 x^{4}-7.78 x^{3}-7.88 x^{2}+3.99 x \tag{4.23}\\
& y=-23.66 x^{6}+84.39 x^{5}-121.46 x^{4}+91.03 x^{3}-38.25 x^{2}+8.95 x \tag{4.24}
\end{align*}
$$

where $y=$ mole fraction of CO_{2} in the permeate and $x=$ mole fraction of CO_{2} in the feed gases for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ (equation 4.22) and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ (equation 4.23).

The stage cut values for the $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems were calculated to be 8.75×10^{-5} and 7.31×10^{-5}, respectively. The stage cut values obtained for a membrane system for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$, and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas separation systems using a self-supported polyaniline membrane were very low,
which may partially explain the reason why polyaniline membranes have not been explored in commercial gas separation processes.

The pure gas and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems through self-supported polyaniline membranes are summarised in Table 4.21.

Table 4.21 Pure gas and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ for selfsupported polyaniline membranes.

	Selectivity ($\alpha_{A / B}$)		
	Pure gas (ldeal)	Mixed Gas	
		Mole Fraction	Selectivity
$\mathrm{O}_{2}-\mathrm{N}_{2}$	5.56	0.1	4.32
		0.2	5.16
		0.3	5.31
		0.4	5.33
		0.5	5.89
$\mathrm{CO}_{2}-\mathrm{O}_{2}$	6.06	0.1	4.43
		0.2	4.79
		0.3	4.58
		0.4	4.66
		0.5	4.82
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	33.8	0.1	21.1
		0.2	24.7
		0.3	24.9
		0.4	25.3
		0.5	26.4

Mole Fraction = mole fraction of O_{2} for $\mathrm{O}_{2}-\mathrm{N}_{2}$, and CO_{2} for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ in the feed gas

It is apparent that the mixed gas selectivity values for the $\mathrm{O}_{2}-\mathrm{N}_{2}$ binary gas system vary with molar composition of O_{2} in the feed. Similarly, the mixed gas selectivities for $\mathrm{CO}_{2} / \mathrm{O}_{2}$ and $\mathrm{CO}_{2} / \mathrm{N}_{2}$ were also dependent on the molar composition of CO_{2} in the feed gases. The mixed gas selectivity data for $\mathrm{O}_{2}-\mathrm{N}_{2}$, $\mathrm{CO}_{2} / \mathrm{O}_{2}$ and $\mathrm{CO}_{2} / \mathrm{N}_{2}$ binary gas systems are close to the pure-gas selectivity values. This shows that extraordinarily high permeability is not due to the microporous defects in the polyaniline films, as separation occurs. The difference between the mixed gas selectivities and pure gas selectivities was small in the case of the $\mathrm{O}_{2}-\mathrm{N}_{2}$ binary gas system, whereas it was considerable in the case of $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems due to the gas-gas interactions (interactions between CO_{2} and O_{2}, and CO_{2} and N_{2}) and gasmembrane (CO_{2}-polyaniline membrane) interactions. It is important to note that,
for self-supported polyaniline films, the $\mathrm{O}_{2} / \mathrm{N}_{2}$, and $\mathrm{CO}_{2} / \mathrm{O}_{2}$ and $\mathrm{CO}_{2} / \mathrm{N}_{2}$ selectivity values increased with increasing O_{2}, and CO_{2} concentration in the feed gases, respectively.
4.4.4.2. Mixed Gas Permeation Measurements for Undoped

Polyaniline/PVDF Composite Membranes

The mixed gas permeation measurement experiments were conducted through the undoped ultrathin polyaniline membranes supported on a porous substrate (selective polyaniline layer thickness $=0.448 \mu \mathrm{~m}$) for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems. In Figures 4.60 to 4.62 , the relationship between the mixed gas permeance and the mole fraction of a permeating gas is plotted. The theoretical straight lines in Figures 4.60 to 4.62 correspond to the permeance values calculated using equation 4.19, and the experimental values correspond to the mixed gas permeance measured experimentally.

Figure 4. 60 Effect of molar composition of O_{2} in the feed gas on the total permeance for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases in polyaniline/PVDF composite films.

Figure 4. 61 Effect of molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases in polyaniline/PVDF composite films.

Figure 4. 62 Effect of molar composition of CO_{2} in the feed gas on the total permeance for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases in polyaniline/PVDF composite films.

Similar to the results obtained for self-supported polyaniline films, the calculated permeance values using equation 4.19, for polyaniline/PVDF composite membranes, were found to be in good agreement with the experimental data, and the permeation behaviour was dependent on the mixed gases feed composition. The effects of the gas-gas and gas-polyaniline membrane interactions were also seen on transport properties of a binary gas system (for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems) for polyaniline/PVDF composite films. The permeance data measured experimentally were similar for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system, whereas marginally scattered for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems.

A series of binary gas permeation experiments (for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems) with different molar compositions were conducted at 0.4 bar (0.04 MPa). In Figure 4.63 the permeance and permeate gas composition data, obtained for $\mathrm{O}_{2}-\mathrm{N}_{2}$ binary gas system, against the molar composition of O_{2} in the feed gases are plotted.

Figure 4. 63 Effect of the O_{2} feed gas molar composition on the permeance and mole fraction of O_{2} in the permeated stream for $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gases.

From the mixed gas permeation data, the following equation can be developed to predict the mole fraction of the oxygen (product purity) in the permeate stream.

$$
\begin{equation*}
y=4.75 x^{5}-15.03 x^{4}+18.76 x^{3}-12.06 x^{2}+4.59 x \tag{4.25}
\end{equation*}
$$

where $y=$ mole fraction of O_{2} in the permeate, and $\mathrm{x}=$ mole fraction of O_{2} in the feed gases.

For the same O_{2} mole concentration in the feed, the number of membrane module stages in a cascade required to achieve a desired permeate oxygen composition when using self-supported polyaniline membrane (see Figure 4.56) and when using ultrathin polyaniline membranes supported on a porous PVDF substrate are similar. However, the total permeance, $P_{\mathrm{O}_{2}+N_{2}}$, obtained for polyaniline/PVDF composite membranes is 1000 times higher than that of free standing self-supported polyaniline membranes. Hence, substantially higher productivity can be obtained for same number of modules using ultrathin polyaniline membranes for oxygen enrichment having similar product purity.

The stage cuts (calculated from equation 4.22) and oxygen product purity (molar composition of oxygen in the permeate) for $15: 85$ by moles $\mathrm{O}_{2}-\mathrm{N}_{2}$ feed gas mixture and 0.4 bar (0.04 MPa) upstream pressure for polyaniline/PVDF composite membranes were 0.01047 and 0.799 , respectively.

The total permeance (permeation flux of a gas mixture) and permeate gas composition data obtained for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems against CO_{2} feed molar composition were plotted in Figures 4.64 and 4.65.

Figure 4.64 Effect of the CO_{2} molar composition in the feed on the permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ mixed gases.

Figure 4. 65 Effect of the CO_{2} feed gas molar composition on the permeance and mole fraction of CO_{2} in the permeated stream for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gases.

The total permeance $\left(P_{\mathrm{CO}_{2}+\mathrm{O}_{2}}\right.$ and $\mathrm{P}_{\mathrm{CO}_{2}+\mathrm{N}_{2}}$) and mole fraction of CO_{2} in the permeate increased with increasing the molar composition of CO_{2} in the feed gases. The equations to predict the molar concentration of CO_{2} in the permeate for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas system can be written (from the mixed gas permeation measurements) as;

$$
\begin{align*}
& y=0.756 x^{3}-1.96 x^{2}+2.197 x \tag{4.26}\\
& y=-26.57 x^{6}+98.02 x^{5}-142.5 x^{4}+104.1 x^{3}-40.63 x^{2}+8.59 x \tag{4.27}
\end{align*}
$$

The stage cut values for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems were calculated to be 0.0443 and 0.0341 , respectively.

The pure gas (ideal) and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$, $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems for polyaniline/PVDF composite membranes are summarised in Table 4.22.

Table 4.22 Pure gas and mixed gas selectivities for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}, \mathrm{CO}_{2}-\mathrm{N}_{2}$ for polyaniline/PVDF composite membranes.

	Selectivity ($\alpha_{A / B}$)		
	Pure gas (ldeal)	Mixed Gas	
		Mole Fraction	Selectivity
$\mathrm{O}_{2}-\mathrm{N}_{2}$	5.08	0.1	4.89
		0.2	4.73
		0.3	4.97
		0.4	5.29
		0.5	5.11
$\mathrm{CO}_{2}-\mathrm{O}_{2}$	4.13	0.1	2.38
		0.2	2.41
		0.3	2.53
		0.4	2.51
		0.5	2.46
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	18.08	0.1	10.45
		0.2	9.37
		0.3	10.38
		0.4	11.1
		0.5	11.29

Mole Fraction = mole fraction of O_{2} for $\mathrm{O}_{2}-\mathrm{N}_{2}$, and CO_{2} for $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ in the feed gas

Similar to the results obtained for self-supported polyaniline membranes, the mixed gas selectivity values for $\mathrm{O}_{2}-\mathrm{N}_{2}$, and $\mathrm{CO}_{2} / \mathrm{O}_{2}$ and $\mathrm{CO} / \mathrm{N}_{2}$ were dependent on the molar composition of O_{2}, and CO_{2} in the feed gases. Due to the gas-gas and gas-membrane interactions, the mixed gas selectivity values were marginally different than pure gas (ideal) selectivity values.

In Table 4.23 the stage cut and selectivity values for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems for both self-supported polyaniline membranes and polyaniline/PVDF composite membranes were compared to examine the effect of polyaniline film thickness on the productivity and product purity.

Table 4.23 A comparison of stage cut and selectivity values for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems for self-supported polyaniline and polyaniline/PVDF composite membranes.

	Stage Cut (SC)				Selectivity ($\alpha_{\text {A/B }}$)			
	A		B		A		B	
	MF	$\begin{gathered} \text { SC } \\ \left(\times 10^{5}\right) \end{gathered}$	MF	SC	MF	$\alpha_{\text {A/B }}$	MF	$\alpha_{\text {A/B }}$
$\mathrm{O}_{2}-\mathrm{N}_{2}$	0.1	0.579	0.1	0.0053	0.1	4.32	0.1	4.89
	0.2	0.693	0.2	0.0065	0.2	5.16	0.2	4.73
	0.3	0.897	0.3	0.0078	0.3	5.31	0.3	4.97
	0.4	1.037	0.4	0.0089	0.4	5.33	0.4	5.29
	0.5	1.382	0.5	0.0105	0.5	5.89	0.5	5.11
$\mathrm{CO}_{2}-\mathrm{O}_{2}$	0.1	2.608	0.1	0.0215	0.1	4.43	0.1	2.38
	0.2	3.883	0.2	0.0233	0.2	4.79	0.2	2.41
	0.3	3.924	0.3	0.0305	0.3	4.58	0.3	2.53
	0.4	6.195	0.4	0.0348	0.4	4.66	0.4	2.51
	0.5	8.751	0.5	0.0443	0.5	4.82	0.5	2.46
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	0.1	1.584	0.1	0.0087	0.1	21.1	0.1	10.45
	0.2	2.380	0.2	0.0114	0.2	24.7	0.2	9.37
	0.3	3.633	0.3	0.0175	0.3	24.9	0.3	10.38
	0.4	5.076	0.4	0.0259	0.4	25.3	0.4	11.1
	0.5	7.307	0.5	0.0341	0.5	26.4	0.5	11.29
AB								

Clearly, the thickness of the selective polyaniline layer seemed to have an effect on the productivity and product purity of the permeating gas mixture. The stage cut values obtained for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems for ultrathin polyaniline membranes were significantly higher than the values obtained for self-supported polyaniline films. A number of membrane module stages in a membrane cascade required to achieve a desired permeate
composition for self-supported polyaniline membranes and for ultrathin polyaniline membranes supported on a porous PVDF substrate are similar. However, the productivity obtained for polyaniline/PVDF composite membranes is 1000 times higher than that of free standing self-supported polyaniline membranes.

The mixed gas selectivity values for self-supported polyaniline membranes and polyaniline/PVDF composite membranes are dependent on the molar composition of the feed gases. The difference between the mixed gas selectivities and pure gas selectivities was small in the case of $\mathrm{O}_{2}-\mathrm{N}_{2}$ binary gas system, whereas it was considerable in the case of $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems due to the gas-gas interactions (interactions between CO_{2} and O_{2}, and CO_{2} and N_{2}) and gas-membrane (CO_{2}-polyaniline membranes) interactions.

The permeance values calculated from equation 4.19 were found to be in a good agreement with the experimental data. The total permeation flux of $\mathrm{O}_{2}-\mathrm{N}_{2}$ mixed gas system increased with increasing the mole fraction of O_{2} in the feed gases for both self-supported polyaniline and polyaniline/PVDF composite membranes. However, in the case of $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ binary gas systems, an increase in the total permeance does not follow the linear relationship with CO_{2} feed concentration due to gas-gas interactions (interaction between $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}$) and CO_{2}-polyaniline membrane interactions. It is thought that the polar gas $\left(\mathrm{CO}_{2}\right)$ induced swelling of the polyaniline films, leading to the higher diffusion coefficient of the permeating gas mixture containing CO_{2}. These phenomena indicated that the contribution of the faster gas to the total permeance is dominating.

The model suggested earlier is good for achieving the accurate productivity (from equation 4.19) and product purity (from curve fit equations) values for a binary gas permeation experiments in which there are no interactions between the gases, and no special gas-polymer interactions in the presence of the second gas. However, for the gas mixtures containing one or more plasticising gases, the development of a more accurate permeation model, involving the characteristic parameters for coupling and plasticisation effects and concentration polarisation, is recommended for mixed gas permeation studies through polyaniline membranes in the future work.

Chapter 5

CONCLUSIONS \& FUTURE WORK

1. CONCLUSIONS

1.1. Synthesis of Polyaniline

Polyaniline was chemically synthesised by the polymerisation of aniline in the presence of p-toluene sulfonic acid ($p-T S A$) using ammonium peroxodisulfate. In this research, the effect of reaction parameters such as starting reaction mixture pH , oxidant to aniline molar ratio, oxidation addition time, total reaction time, and polymerisation reaction temperature on the percentage yield, molecular weight and physical, chemical and as well as transport properties of polyaniline were investigated.

The highest polyaniline yield was obtained for the polymerisation reactions at the starting reaction solution pH of +1.0 . Polyaniline yield dropped slightly for the pH values below +1.0 and sharply for the reaction solution pH above +1.5 . Hence, the optimum starting reaction pH found to be was +1.0.

The polymer (polyaniline) yield increased with the use of larger amount of oxidant. The highest polyaniline percentage yield was monitored for the oxidant to aniline molar ratio of 1.20 . This was due to the concentration of radical cation increased with increasing the amount of the oxidant. However, the polyaniline percentage yield dropped sharply for the oxidant to aniline ratio higher than 1.20. The excess oxidising agent decomposed the polyaniline to colourless low molecular weight products of the quinone type, and the yield of the polyaniline (EB) reduced.

The polyaniline yield also increased when the polymerisation reaction temperature was reduced. Lower reaction temperature increases the dielectric constant and this favours the production of higher molecular weight polyaniline than at room temperature, which accounts to the higher polymer yield. The percent yield increased only slightly with increasing the oxidant addition from
instantaneous addition to 8 hours. The minimum reaction time of about 15 hours was necessary for the polymerisation reactions below 0 C , whereas about 4 to 6 hours was sufficient at 0 C . The polyaniline percent yield increased only slight for the polymerisation reactions with oxidant addition time more than 4 hours and total reaction time more than 24 hours.

1.2. Characterisation of Polyaniline Powder

The as-synthesised polyaniline powder was characterised by the various polymer characterisation techniques including FTIR spectroscopy, UV-Vis spectroscopy, FEGSEM, density measurements, gel permeation chromatography.

The infrared transmittance spectra for polyaniline powder produced at different polymerisation reaction temperatures were similar to the polyaniline FTIR spectra obtained by other researchers, which endorsed the fact that the polymer synthesis route was correct and the produced polymer was pure. The ratio of quinoid rings to benzenoid rings for polyaniline was calculated from the FTIR transmittance peaks at 1580 and $1508 \mathrm{~cm}^{-1}$. A ratio of quinoid/benzenoid of 0.5 to 0.53 attributed that some of the polyaniline batches contain more benzenoid rings than quinoid rings. The amount of CO_{2} present increased with decreasing the polymerisation reaction temperature, which accounts for the higher transport rates of CO_{2} observed through polyaniline membranes in the gas permeation experiments.

The optical absorption and exciton absorption of polyaniline was found to depend on the concentration of the polyaniline in the solvent (NMP). The UV-Vis spectra of all polyaniline samples prepared in NMP showed that at least two major absorption peaks existed in all UV-Vis spectra. The first band at $\sim 640 \mathrm{~nm}$ is an indicative of a charge-transfer exciton-like transition from the highest occupied levels on benzenoid rings to the lowest occupied energy levels on quinoid rings. The second band at $\sim 320 \mathrm{~nm}$ can be attributed to $\pi-\pi^{*}$ transition associated with the π electrons of the benzene ring. A relative intensity ratio of the peak at 640 nm to the peak at 320 nm (also known as quinoid/benzenoid ratio) was calculated from the polyaniline UV-Vis spectra. The quinoid/benzene
ratio values obtained through UV-Vis spectra were similar to the values obtained in FTIR analysis.

The morphology of the polyaniline powder was determined by the field emission scanning electron microscope (FEGSEM). Polyaniline prepared at higher temperature was obtained as a fluffy emeraldine blue powder, whereas that produced at sub-ambient temperatures was a macro-porous material. The FEGSEM images revealed that the crystallinity of polyaniline powder increased when the polymer was produced at reduced polymerisation reaction temperature.

The density of the various polyaniline batches prepared at our laboratory was measured by pycnometer. The density values of emeraldine salt form of polyaniline were higher than undoped (emeraldine base) polyaniline samples. This was because of the polymer chains contained small amount of p-toluenesulfonate atoms on C_{6} rings. In addition to that, the density of the emeraldine base samples increased with lowering the polymerisation reaction temperature. This was because of the presence of LiCl (added for the polymerisation reactions at sub-ambient temperatures) increased the amount of ring chlorination, which accounted for the higher polymer density at lower polymerisation reaction temperature.

The weight-average and number-average molecular weight of the various polyaniline batches were calculated from the GPC chromatographs. The molecular weight of the polyaniline decreased with increasing polymerisation reaction temperature due to condensation of radical cation species which lose protons to give protonated emeraldine form. The lower polymerisation reaction temperature increases the dipole moment and this favours the production of higher molecular weight polyaniline compared to material prepared at ambient temperature.

1.3. Polyaniline Membranes

A novel method was developed to make reproducible defect-free self-supported polyaniline films with thicknesses between 2 and $6 \mu \mathrm{~m}$, and polyaniline nano-film membranes with selective polyaniline layer thicknesses between 300 and 800 nm supported on a highly porous substrate (polyvinylidene fluoride). The mechanical and gas transport properties of free standing undoped
self-supported polyaniline films and polyaniline/PVDF composite membranes were investigated.

1.4. Characterisation of Polyaniline Membranes

The morphology (structure and thickness) of the self-supported polyaniline membranes was examined by the FEGSEM image analysis, and the continuity of the dense selective polyaniline layer in polyaniline/PVDF composite membrane was measured by the atomic force microscope (AFM). The sectional analysis of polyaniline nano-film membrane with AFM, for a scanned area, revealed that the layer had structural dips up to 5 nm and peaks up to 6 nm , which are orders of magnitude smaller than the total selective polyaniline layer thickness. This provided the evidence that the polyaniline prepared on PVDF substrate was continuous, dense and defect-free over the scanned area.

The mechanical properties of self-supported polyaniline membranes prepared from various polyaniline samples (prepared at various polymerisation reaction temperatures) were examined. The strength and toughness as measured by tensile strength and elongation break for polyaniline film samples increased with the molecular weight and crystallinity of the polymer (observed for the polyaniline samples prepared at sub-ambient polymerisation reaction temperature).

The permeation rate of a permeating gas through a polyaniline film was measured by an integral permeation method. The effect of selective polyaniline membrane thickness on the productivity (pressurised normalised flux) and the separation efficiency was investigated.

Various undoped self-supported polyaniline (EB) films (polyaniline film thicknesses between 2 and $6 \mu \mathrm{~m}$), and polyaniline/PVDF composite membranes (selective polyaniline layer thicknesses between 300 and 800 nm) were tested to measure their transport properties for various pure gases such as $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}$, $\mathrm{N}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$. The permeability of selected test gases $\left(\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}\right.$ and CH_{4}) through undoped polyaniline (EB) films essentially followed a size dependent (kinetic diameter) relationship, that is;

$$
\mathrm{H}_{2}(2.89 \AA)>\mathrm{CO}_{2}(3.30 \AA)>\mathrm{O}_{2}(3.46 \AA)>\mathrm{N}_{2}(3.64)>\mathrm{CH}_{4}(3.80 \AA)
$$

However, for the plasticising gases $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}\right.$ and $\left.\mathrm{C}_{3} \mathrm{H}_{8}\right)$ the permeability through undoped polyaniline membranes did not follow the size dependent relationship. According to the kinetic diameters of the permeating gases the permeability order should have been:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(3.90 \AA)>\mathrm{C}_{3} \mathrm{H}_{8}(3.96 \AA)>\mathrm{C}_{2} \mathrm{H}_{6}(4.0 \AA)>\mathrm{C}_{3} \mathrm{H}_{6}(4.40 \AA)
$$

and the permeability order through polyaniline membranes observed to be was:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(3.90 \AA)>\mathrm{C}_{3} \mathrm{H}_{6}(4.40 \AA)>\mathrm{C}_{2} \mathrm{H}_{6}(4.0 \AA)>\mathrm{C}_{3} \mathrm{H}_{8}(3.96 \AA)
$$

This was because of a relatively higher solubility of ethylene and propylene in the polyaniline membranes than ethane and propane. The propylene dissolves more in polyaniline than ethane and propane, and therefore the calculated permeability for propylene was higher than ethane and propane.

The ideal (pure gas) selectivities ($\alpha_{A / B}$) obtained for the gas pairs $\mathrm{H}_{2} / \mathrm{N}_{2}$ (348), $\mathrm{H}_{2} / \mathrm{O}_{2}$ (69.5), $\mathrm{H}_{2} / \mathrm{CO}_{2}$ (8.6), $\mathrm{CO}_{2} / \mathrm{O}_{2}$ (8.1), $\mathrm{CO}_{2} / \mathrm{N}_{2}$ (40.4), $\mathrm{H}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ (757), $\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$ (256), in the case of undoped self supported polyaniline films, surpassed the selectivities of the majority of the conventional polymeric materials. The results obtained during this work were reproducible for both selfsupported polyaniline films and ultrathin polyaniline films supported on porous PVDF substrate.

The thickness of the polyaniline membrane seemed to have an affect on the permeability of the permeating gases. The permeability obtained for all permeating gases were significantly higher in the case of ultrathin polyaniline membranes. The permeability increased almost linearly with decreasing polyaniline film thickness. However, the pure gas selectivity values for various gas pairs through ultrathin polyaniline membranes supported on porous PVDF substrate (selective polyaniline layer thickness between 0.4 and $1.37 \mu \mathrm{~m}$) were similar to those of self-supported polyaniline membranes (selective polyaniline film thickness between 2 and $3 \mu \mathrm{~m}$). Extraordinarily high gas transport rates (GTR) were observed for polyaniline based nano-membranes. GTR for various
gases were higher in the magnitude of 10^{4} than those reported for self-supported polyaniline membranes.

From the industrial point of view productivity can be significantly increased by using ultrathin polyaniline membranes having higher productivity (permeance) and similar separation efficiency for various gas pairs.

2. RECOMMENDATIONS FOR FUTURE WORK

2.1. Polyaniline Synthesis

The organic acids such as 2-6 naphthalene disulfonic acid, 4-5 dihydroxy 2-7 naphthalene disulfonic acid, anthraquinone 2-6 disulfonic acid can be used as dopants during the synthesis. During the polymerisation of aniline, protonating all the imine nitrogens in the polyaniline backbone, requires the conjugate base of the doping acid to act as a counterion to maintain electroneutrality in the salt polyaniline. The close association of this with the polymer backbone means that the polymer microstructure must distort to accommodate the extra mass. This distortion remains after the removal of the counterion with ammonium hydroxide. The use of the strong organic acids which are active on their both ends as a dopant is recommended in the polyaniline synthesis, which can bridge the polyaniline polymer chains (also known as "ladder cross-linking"), and increase the free volume within the polyaniline matrix.

The GPC was used to calculate the molecular weight of the polyaniline samples prepared at various polymerisation reaction temperatures. The primary calibration curve of monodispersed polystyrene was analysed using the peak position method and the molecular weight of the polyaniline sample was calculated from the calibration curve. The higher column temperature was required for the GPC analysis because the polystyrene standards do not dissolve well in NMP. For this reason, polyvinlypyridine standards, which are more soluble and give a better straight line fit for the graph of log (molecular weight) vs retention time, are recommended for the future GPC analysis to measure the molecular weight of polyaniline.

2.2. Polyaniline Membranes

Self-supported polyaniline membranes were fairly impermeable compared to other polymer membrane materials, so the application potential for gas selective polyaniline membranes has been limited. To further extend the use of polyaniline membranes for industrial applications, one must find the way to enhance the productivity (permeance) and the separation efficiency. Nanocomposite materials can be incorporated in the free standing polyaniline films to achieve higher permeation rates of permeating gases. In this research, however, the concept of ultrathin polyaniline films to increase the productivity of permeating gases was explored. It was often challenging to develop the defect-free dense ultrathin polyaniline layer on a highly porous polymer substrate; environmental dust, membrane cooking time, and cooking rate may create defects in the polyaniline layer. The effect of membrane cooking (and annealing) time and cooking temperature on the gas transport properties may be investigated in order to understand the effect of degree of crosslinking on the gas permeability. The method, developed in our research, resulted in 60% of the ultrathin polyaniline membranes made being defect-free. To plug the micro-porous defects a thin layer of polysiloxanes can be developed on the selective polyaniline layer.

The membrane process using the concept of facilitated transport has been considered to be an energy-saving process to separate olefins from paraffins. The permselectivities of natural and synthetic membranes can be increased by several orders of magnitude in the presence of mobile carriers, which are considered to remain within the membrane and which react reversibly and selectively with desired permeant. Remarkable separation performance of olefin/paraffin mixtures was previously reported by facilitated olefin transport through silver-based polymer membranes using the concept of facilitated transport. Since polyaniline is a dopable conjugated polymer it can be doped with Group I-B metal ions, such as silver ($\mathrm{Ag}(\mathrm{I})$), to facilitate transport of olefins through polyaniline films. The effect of doping, dedoping and controlled redoping of silver on the permeation rate and separation efficiency of ethylene over ethane and propylene over propane should be investigated.

To develop the detailed permeation model explaining the diffusion of individual and mixed gas transport through polyaniline membranes for various
permeating gases, more experiments (for both, single and mixed gas permeation system) at higher feed side pressure (i.e. for the pressure range of 10 to 50 bar (1 to 5 MPa)) can be done. A permeation model needs to be developed together with the sorption isotherms of ethylene, ethane, propylene and propane to calculate the solubility of permeating gases through polyaniline membranes.

Chapter 6

LIST OF REFERENCES

1. Nollet, J.A. (1748), "Investigation on the causes for the ebullition of liquids", Histoire de L'Académie Royale des Sciences, Année MDCCXLVIII, 57.
2. Graham, T. (1829), "Notice of the singular inflation of bladder", Quarterly J. Sci., Vol. II, 88.
3. Graham, T. (1833), "On the law of the diffusion of gases", The London \& Edinburgh Philosophical magazine and J. Sci., Vol. II, 175-190, 269-276, 351-358.
4. Daynes, H.A., Shakespear, G.A. (1920),"The theory of the katharometer", Proc. Roy. Soc., Series A, 97, 273.
5. Daynes, H.A. (1920), "The process of diffusion through a rubber membrane", Proc. Roy. Soc., Series A, 97, 286.
6. Mitchell, J.K. (1831), "On the penetrativeness of fluids", Roy. Inst. Journ., II, 101-118, 307-321.
7. Mitchell, J.K. (1833), "On the penetration of gases", Amer. J. Med. Sci., VII, 100.
8. Graham, T. (1863), "On the absorption and dialytic separation of gases by colloid septa", Phil. Mag., XXXII, 401.
9. Meares, P. (1954), "The diffusion of gases through polyvinyl acetate", J. Am. Chem. Soc., 76, 3415.
10. See for example, the reviews given in Crank J., Park, G.S. (1968), Diffusion in Polymers, Academic Press, NY.
11. Leob, S., Sourirajan, S. (1962) "Sea water demineralization by means of an osmotic membrane", Adv. Chem. Ser., 38, 117.
12. Pinnau, I., Freeman, B.D. (1999), "Formation and modification of polymeric membranes: Overview in membrane formation and modification", in: ACS Symposium Series 744, I., Pinnau, B.D., Freeman, (Eds.), American Chemical Society: Washington, DC.
13. Koros, W.J., Pinnau, I. (1994), "Membrane formation for gas separation processes", in: Polymeric Gas Separation Membranes, D.R. Paul, Y.P. Yampol'skii (Eds.), CRC Press, Boca Raton, FL, pp 209.
14. Baker, R.W. (2002), "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393.
15. Rousseau, R.W. (1987), Handbook of Separation Process Technology, John Wiley \& Sons, NY.
16. Koros, W.J., Fleming, G.K. (1993), "Membrane based gas separation", J. Memb. Sci., 83, 1.
17. Gottschlich, D.E., Roberts, D.L. (1990), "Energy minimization of separation processes using conventional/membrane hybrid systems". DOE Report - DE-AC-07-761D01570.
18. Hughes, R.D., Mahoney, J.A., Steigelmann, E.F. (1986), "Olefin separation by facilitated transport", in: Recent Developments in Separation Science, Vol-9, Li, N.N., Calo, J.M. (Eds.), CRC Press, Boca Raton, FL, pp 173.
19. Way, J.D., Noble, R.D. (1992), "Facilitated Transport", in: Membrane Handbook, W.S. Ho, K.K., Sirkar (Eds.), Van Nostrand, NY.
20. Eldridge, R.B. (1993), "Olefin/paraffin separation technology: A review", Ind. Eng. Chem. Res., 32, 2208.
21. Teramoto, M., Matsuyama, H., Yamashiro, T., Katayama, Y. (1986), "Separation of ethylene from ethane by supported liquid membranes containing silver nitrate as carrier", J. Chem. Eng. Jpn., 19, 419.
22. Kawakami, M., Tateishi, M., Iwamoto, S. (1987), "Selective permeation of ethylene and propylene through Rh (III)-polyethylene glycol liquid membranes", J. Memb. Sci., 30, 105.
23. Teramoto, M., Matsuyama, H., Yamashiro, T., Okamoto, S. (1989), "Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier", J. Memb. Sci., 45, 115.
24. Tsou, D.T., Blachman, M.W., Davis, J.C (1994), "Silver-facilitated olefin/paraffin separation in liquid membrane contactor system". Ind. Eng. Chem. Res., 33, 3209.
25. LeBlanc, O.H., Ward, W.J., Matson, S.L., Kimura, S.G. (1980), "Facilitated transport in ion-exchange membranes", J. Memb. Sci., 6, 339.
26. Hughes, R.D., Mahoney, J.A., Steigelmann, E.F. (1981), "Olefin separation by facilitated transport membranes", $90^{\text {th }}$ AIChE National Meeting, Houston, TX. Pre-print No.1D.
27. Kraus, M.A. (1986), "Water-free hydrocarbon separation membrane and process", US Patent No. 4,614,524.
28. Kovel, C.A., Spontarelli, T. (1988), "Condensed phase facilitated transport of olefins through an ion-exchange membrane", J. Am. Chem. Soc., 110, 293.
29. Kovel, C.A., Spontarelli, T. (1988), "Facilitated transport of liquid phase olefins through perfluorosulfonate ionomer membranes", Polym. Mater. Sci. Eng., 59, 132.
30. Shukla, S.K., Pinemann, K.V. (1989), "1-butene/n-butane separation using fixed carrier membranes", Pre-prints of $6^{\text {th }}$ International Symposium on Synthetic Membranes in Science and Industry. Tübingen, Germany.
31. Kovel, C.A., Spontarelli, T., Noble, R.D. (1989), "Styrene/ethylbenzene separation using facilitated transport through perfluorosulfonate ionomer membranes", Ind. Eng. Chem. Res., 28, 1020.
32. llinitch, O.M., Semin, G.L., Chertova, M.V., Zamaraev, K.I. (1992), "Novel polymeric membranes for separation of hydrocarbons", J. Memb. Sci, 66, 1.
33. Kovel, C.A., Spontarelli, T., Noble, R.D., Thoen, P. (1992), "Swelling and thickness effects on the separation of styrene and ethylbenzene based on facilitated transport through ionomer membranes", Ind. Eng. Chem. Res., 31, 1116.
34. Eriksen, O.I., Aksnes, E., Dahl, I.M. (1993), "Facilitated transport of ethane through Nafion membranes, part-l, water swollen membranes", J. Memb. Sci., 85, 89.
35. Ho, W.S., Dalrymple, D.C. (1994), "Facilitated transport of olefins in Ag+ containing polymer membranes", J. Memb. Sci., 91, 13.
36. Tanaka, K., Taguchi, A., Hao, J., Kita, H., Okamoto, K. (1996), "Permeation and separation properties of polyimide membranes to olefins and paraffins". J. Memb. Sci,, 121, 197.
37. Yamaguchi, T., Baertsch, C., Koval, C.A., Noble, R.D., Bowman, C.N. (1996), "Olefin separation using silver impregnated ion-exchange membranes and silver/polymer blend membranes", J. Memb. Sci., 117, 151.
38. Sungpet, A., Way, J.D., Theon, P.M., Dorgen, J.R. (1997), "Reactive polymer membranes for ethylene/ethane separation", J. Memb. Sci., 136, 111.
39. Zyl van, A.J., Kerres, J.A., Cui, W., Junginger, M. (1997), "Application of new sulfonated ionomer membranes in the separation of pentene and pentane by facilitated transport", J. Memb. Sci., 137, 173.
40. Sunderrajan, S., Freeman, B.D., Pinnau, I. (1997) "Sorption and spectroscopic analysis of silver-olefin interaction in polymer electrolytes", Polym. Mater. Sci. Eng., 77 (2), 267.
41. Pinnau, I., Toy, L.G., Sunderrajan, S., Freeman, B.D. (1997) "Solid electrolyte membranes for olefin/paraffin separation", Polym. Mater. Sci. Eng., 77 (2), 269.
42. Zyl van, A.J., Kerres, J.A. (1999), "Development of new ionomer blend membranes, their characterisation, and their application in the perstractive separation of alkenes from alkene-alkane mixtures, II, electrical and facilitated transport properties". J. Appl. Polym. Sci., 74, 422.
43. Staudt-Bickel, C., Koros, W.J. (2000), "Olefin/paraffin separation with 6FDA-based polyimide membranes", J. Memb. Sci., 170, 205.
44. Hong, S.U., Jin, J.H., Won, J., Kang, Y.S. (2000) "Solid polymer electrolytes containing silver ions and their application to facilitated transport membranes", Adv. Mater., 12, 968.
45. Yoon, Y.S., Won, J., Kang, Y.S. (2000) "Polymer electrolyte membranes containing silver ion for facilitated olefin transport", Macromolecules, 33, 3185.
46. Kim, H.S., Ryu, J.H., Kim, H., Ahn, B.S., Kang, Y.S. (2000), "Reversible olefin complexation by silver ions in dry poly(vinylmethylketone) membrane and its application to olefin/paraffin separations", Chem. Commun., 1261.
47. Hong, S.U., Kim, J.Y., Kang, Y.S. (2001), "Effect of water on the facilitated transport of olefins through solid polymer electrolyte membranes", J. Memb. Sci., 181, 289.
48. Kim, Y.H., Ryu, J.H., Bae, J.Y., Kang, Y.S., Kim, H.S. (2000), "Reactive polymer membranes containing cuprous complexes in olefin/paraffin separation", Chem. Commun., 195.
49. Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R. (1986), Handbook of Conductive Polymers, $2^{\text {nd }}$ Ed., Marcel Dekker, NY.
50. Liang, W. Martin, C.R. (1991), "Gas transport in electronically conductive polymers", Chem. Mater., 3, 390.
51. Anderson, M.R., Matts, B.R., Reiss, H., Kaner, R.B. (1991), "Conjugated polymer films for gas separations", Science, 252, 1412.
52. Anderson, M.R., Matts, B.R., Reiss, H., Kaner, R.B. (1991), "Gas separation membranes: a novel application for conducting polymers", Synth. Met., 41-43, 1151.
53. Anderson, M.R. (1992), "An investigation of conducting polymer materials as gas separation membranes", Dissertation, University of California, USA.
54. Martin, C.R., Liang, W., Menon, V., Parthasarathy, R., Parthasarathy, A. (1993), "Electronically conductive polymers as chemically-selective layers in membrane based separation", Synth. Met., 55-57, 3766.
55. Matts, B.R., Anderson, M.R., Conklin, J.A., Reiss, H., Kaner, R.B. (1993), "Morphological modification of polyaniline films for separation of gases", Synth. Met., 57, 3655.
56. Kuwabata, S., Charles, R. (1994), "Investigation of the gas transport properties of polyaniline", J. Membr. Sci., 91, 1.
57. Kaner R.B., Anderson, M.R., Reiss, H., Mattes, B.R. (1994), "Membrane having selective permeability", US Patent No. 5,358,556.
58. Rebattet, L, Excoubes, M., Genies, E., Pineri, M. (1995), "Effect of doping treatment on gas permeation properties and separation factors of polyaniline membranes", J. Appl. Polym. Sci., 57, 1595.
59. Chang, M.-J., Liao, Y.-H., Myerson, A.S., Kwei, T.K. (1996), "Gas transport properties of polyaniline membranes", J. Appl. Polym. Sci., 62, 1427.
60. Conklin, J.A., Su, T.M., Haung, S.-C., Kaner, R.B. (1998), "Gas and liquid separation application of polyaniline", in: Handbook of Conducting Polymers, T.A., Skotheim, R.L., Elsenbaumer, J.R., Reynolds (Eds.), $2^{\text {nd }}$ Ed., Marcel Dekker, NY, pp 945-956.
61. Wang, H.-L., Mattes, B.R. (1999), "Gas transport and sorption in polyaniline thin films", Synth. Met., 102, 1333.
62. Wang, H.-L., Mattes, B.R. (2004), "Permeable polyaniline articles for gas separation", US Patent No. 6,797,325 B2.
63. Stafström, S., Bredas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Haung, W.S., MacDiarmid, A.G. (1987), "Polaron lattice in highly conductive polyaniline: theoretical and optical studies", Phys. Rev. Lett., 59, 1464.
64. Chiang, J.C., MacDiarmid, A.G. (1986), "Polyaniline: protonic acid doping of the emeraldine form to the metallic regime", Synth. Met., 13, 193.
65. Epstein, A.J., Ginder, J.M., Zuo, F., Bigelow, R.W., Woo, H.S., Tanner, D.B., Richter, A.F., Haung, W.S., MacDiarmid, A.G. (1987), "Insulator-tometal transition in polyaniline", Synth. Met., 18, 303.
66. Libert, J, Bredas, J.L, Epstein, A.J. (1995), "Theoretical study of p-and n-type doping of the leucoemeraldine base form of polyaniline: Evolution of the geometric and electronic structure", Phys. Rev. B, 51, 5711.
67. Libert, J., dos Santos, D.A., Bredas, J.L. (1997), "From neutral oligoanilines to polyanilines: A theoretical investigation of the chain-length dependence of the electronic and optical properties", Phys. Rev. B, 56, 8638.
68. Lei, W., Kocherginsky, N.M. (1999), "Doping-dependent ion selectivity of polyaniline membranes", Synth. Met., 106, 19.
69. Crank, J. (1975), The Mathematics of Diffusion, $2^{\text {nd }}$ Ed., Oxford Science Publications, Oxford.
70. Comyn, J. (1985), Polymer Permeability, Elsevier Applied Science, London.
71. Vieth, W.R. (1991), Diffusion In and Through Polymers: Principles and Applications, Hanser, New York.
72. Koros, W.J., Chern, R.T. (1987), "Separation of gaseous mixtures using polymer membranes", in: Handbook of Separation Process Technology, R.W., Rousseau (Ed.), John Wiley \& Sons, NY.
73. Ghosal, K. Freeman, B.D. (1994), "Gas separation using polymer membranes: An overview", Polym. for Adv. Tech., 5, 673.
74. Paul, D.R., Yampol'skii, Y.P. (1994), Polymeric Gas Separation Membranes, CRC Press, Boca Raton, FL.
75. Crank J., Park, G.S. (1968), Diffusion in Polymers, Academic Press, NY.
76. Kesting, R.E., Fritzsche, A.K. (1993), Polymeric Gas Separation Membranes, John Wiley \& Sons, NY.
77. Stannett, V. (1978), "The transport of gases in synthetic polymeric membranes: An historic perspective", J. Memb. Sci., 3, 97.
78. Stern, S.A. (1994), "Polymers for gas separations: The next decade", J. Memb. Sci., 94, 1.
79. Smith, B.E., Wessling, M., Smolders, C.A. (1991), "Diffusion through rubbery and glassy polymer membranes", Macromolecular Symposia, 45, 237.
80. Felder, R.M. (1978), "Estimation of gas transport coefficients from differential permeation, integral permeation, and sorption rate data", J. Memb. Sci., 3, 15.
81. Frisch, H.L. (1980), "Sorption and transport in glassy polymers: A review", Polym. Engg. Sci., 20, 12.
82. Koros, W.J., Ma, Y.H., Shimidzu, T. (1996), "Terminology for membranes and membrane processes", J. Memb. Sci, 120, 149.
83. Silvis, H.C. (1997), "Recent advances in polymers for barrier applications", Trends Polym. Sci., 5, 75.
84. Naylor, T. deV. (1989), "Permeation properties", in: Comprehensive Polymer Science, S.G., Allen, J.C., Bevington, (Eds.), Pergamon Press, NY, 643.
85. Freeman, B.D., Pinnau, I. (1997), "Separation of gases using solubilityselective polymers", Trends Polym. Sci., 5, 167.
86. Wang, X., Spencer, H.G. (1997), "Polymer membranes for use in food processing", Trends Polym. Sci., 5, 38.
87. Vieth, W.R. (1988), Membrane Systems: Analysis and Design, John Wiley \& Sons., NY.
88. Baker, R.W., Cussler, E.L., Eykamb, W., Koros, W.J., Riley, R.L., Strathmann, H. (1991), Membrane Separation Systems: Recent Development and Future Directions, Noyes Data Corporation, Park Ridge, NJ.
89. Bitter, J.G.A. (1991), Transport Mechanisms in Membrane Separation Processes, Plenum Chemical Engineering Series, Plenum Press, NY.
90. Noble, R.D., Stern, S.A. (1995), Membrane Separations Technology: Principles and Applications, Elsevier, Amsterdam.
91. Starzak, M.E. (1984), The Physical Chemistry of Membranes, Academic press, OL.
92. Neogi, P. (1996), Diffusion in Polymers, Marcel Dekker Inc., NY.
93. Koros, W.J. (1990), Barrier Polymers and Structures, ACS Symposium Series, vol. 423, American Chemical Society, Washington D.C..
94. Matsuura, T. (1994), Synthetic Membranes and Membrane Separation Processes, CRC Press.
95. Felder, R.M., Huvard, G.S. (1980), "Permeation, diffusion, and sorption of gases and vapours", in: Methods of Experimental Physics, 16c, Chapter 17, Academic Press, NY.
96. Koros, W.J., Hellums, M.W. (1989), "Transport properties", in: Encyclopaedia of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Mendes, (Eds.), $2^{\text {nd }}$ Eds, John Wiley \& Sons, NY.
97. Rautenbach R., Albrecht, R. (1989), Membrane Processes, John Wiley \& Sons, NY.
98. Kesting, R.E. (1985), Synthetic Polymeric Membranes, $2^{\text {nd }}$ Ed., John Wiley \& Sons, NY.
99. Toshima, N. (1992), Polymers for Gas Separation, VCH, Deerfield Beach, FL.
100. Mulder, M. (1991), Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht.
101. Osada, Y., Nakagawa, T (1992), Membrane Science and Technology, Marcel Dekker, NY.
102. Frisch, H.L. (1991), "Fundamentals of membrane transport", Polymer, 23, 445.
103. Cussler, E.L. (1984), Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, NY; also $2^{\text {nd }}$ Eds. (1997), Cambridge University Press, NY.
104. Odani, H., Uyeda, T. (1991), "Theories of sorption and transport in polymer membranes", Polymer, 23, 467.
105. Stannett, V.T., Koros, W.J., Paul, D.R., Lonsdale, H.K., Baker, R.W. (1979), "Recent advances in membrane science and technology", Adv. Polym. Sci., 32, 69.
106. Matson, S.L., Lopez, J., Quin, J.A. (1983), "Separation of gases with synthetic membranes", Chem. Eng. Sci., 38, 503.
107. Zolandz, R.R., Fleming, G.K. (1992), "Gas permeation", in: Membrane Handbook, W.S.W. Ho, K.K. Sirkar (Eds.), Van Nostrand Reinhold, NY, pp 17-101.
108. Rogers, C.E. (1965), "Solubility and diffusivity", in: Physics and Chemistry of the Organic Solid State, D. Fox, M.M. Labes, A. Weissberger (Eds.), Interscience, NY, pp 509-635.
109. Barrer, R.M. (1975), "Formal theory of diffusion through membranes", in: Permeability of Plastic Films and Coatings to Gases, Vapours, and Liquids, H.B. Hopfenberg (Ed.), Plenum Press, NY, pp 113-124.
110. Stern, S.A., Frisch, H.L. (1981), "Selective permeation of gases through polymers", Annu. Rev. Mater. Sci., 11, 523.
111. Frisch, H.L., Stern, S.A. (1983), "Diffusion of small molecules in polymers, CRC Crit. Rev. Solid State Mater. Sci., 11, 123.
112. Stern, S.A., Trohalaki, S. (1990), "Gas diffusion in rubbery and glassy polymers", ACS Symp. Ser., 423, 22.
113. Kimura, S., Hirose, T. (1992), "Theory of membrane permeation", in: Polymers for Gas Separation, N. Toshima (Ed.), VCH, NY, pp 15-49.
114. Husk, G.R., Cassidy, C.E., Gebert, K.L. (1988), "Synthesis and characterisation of a series of polyimides", Macromolecules, 21, 1234.
115. Smit, E. (1991), "Modelling the diffusion of gases through membranes of novel polyimides", PhD Thesis, University of Twente, The Netherlands.
116. Puleo, A.C. (1988), "The effects of pendant groups on gas sorption and transport in polymers", PhD Thesis, University of Texas, Austin, TX.
117. Pitzer, K.S., Brewer, L. (1961), Thermodynamics (revision of Lewis and Randall), ${ }^{\text {nd }}$ Ed., McGraw-Hill Publications, NY.
118. Soltanieh, M., Gill, W.N. (1981), "Reverse osmosis", Chem. Eng. Commun., 12, 279.
119. Onsager, L. (1931), "Reciprocal relations in irreversible processes - 1 ", Phys. Rev., 37, 405.
120. Onsager, L. (1931), "Reciprocal relations in irreversible processes - II", Phys. Rev., 38, 2265.
121. Reid, C.E., Breton, E.J (1959), "Water and ion flow across cellulosic membranes", J. Appl. Polym. Sci., 1, 133.
122. Sourirajan, S. (1970), Reverse Osmosis, Academic Press, NY.
123. Fick, A. (1855), "Ueber diffusion", Phil. Mag., X, 30.
124. Jost, W. (1960), Diffusion in Solids, Liquids, Gases, Academic Press, NY.
125. Wijmans, J.G. (2004), "The role of permeant molar volume in the solution-diffusion model transport equations", J. Memb. Sci., 237, 39.
126. Wijmans, J.G., Baker, R.W. (1995), "The solution-diffusion model: A review", J. Memb. Sci., 107, 1.
127. Costello, L.M., Koros, W.J (1992), "Temperature dependence of gas sorption and transport properties in polymers: measurement and applications", Ind, Eng. Chem. Res., 31, 2708.
128. Kim, T.H. (1988), "Gas Sorption and Permeation in a Series of Aromatic Polyimides". Ph. D. dissertation, University of Texas at Austin, TX.
129. Kim, T.H., Koros, W.J., Husk, G.R., O’Brien, K.C. (1988), "Relationship between gas separation properties of aromatic polyimides", J. Memb. Sci., 37, 45.
130. Stannett, V., Hopfenberg, H.B., Petropoulos, J.H. (1972), "Diffusion in polymers", MTP Int. Rev. Sci., Macromol. Sci., 8, 329.
131. Hopfenberg, H.B., Stannett, V. (1973), "The diffusion and sorption of gases and vapours in glassy polymers", in: The Physics of Glassy Polymers, R.N. Haward (Ed.), Wiley, NY, pp 504-547.
132. Rogers, C.E. (1985), "Permeation of gases and vapours in polymers", in: Polymer Permeability, J. Conyn (Ed.), Elsevier, NY, pp 11-73.
133. Kumins, C.A., Kwei, T.K. (1968), "Free volume and other theories", in: Diffusion in Polymers, J. Crank, G.S. Park (Eds.), Academic Press, NY, pp 107-140.
134. Rogers, C.E., Machin, D. (1972), "The concentration dependence of diffusion coefficients in polymer penetrant systems", CRC Crit. Rev. Macromol. Sci., 245.
135. Yampol'skii, Y.P. (1989), "Sorption and gas and vapour permeability in membranes based on glassy polymers, role of free volume", in: Advances in Membrane Phenomena and Processes, A.M. Mika, T.Z. Winnicki (Eds.), Wroclaw Technical University Press, Wroclaw, pp 129-146.
136. Fujita, H. (1964), "Diffusion in polymer-diluent systems", Fortschr. Hochpolym. Forsch., 3, 1.
137. Flory P.J. (1969), Principles of Polymer Chemistry, Ithaca, Cornell University, NY.
138. Vrentas, J.S., Duda, J.L. (1986), "Diffusion", in: Encyclopedia of Polymer Science, J.I. Kroschwitz (Ed.), $2^{\text {nd }}$ ed., Vol. 5, John Wiley \& Sons, NY.
139. Stern, S.A., Kulkarni, S.S., Frisch, H.L. (1983), "Test of a free volume model of gas permeation through polymer membranes, pure $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ in polyethylene", J. Polym Sci., Polym. Phys., 21, 467.
140. Fujita, H., Kishimoto, A., Matsumoto, K. (1960), "Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates", Trans. Faraday Soc., 56, 424.
141. Chern, R.T., Koros, W.J., Sanders, E.S., Chen, S.H. Hopfenberg, H.B. (1983), "Implications of the Dual Mode Sorption and Transport Models for Mixed Gas Permeation", in: Industrial Gas Separations, T.E. Whyte, C.M. Yon, E.H. Wagener (Eds.), ACS Symp. Serial No. 233, American Chemical Society, Washington-DC.
142. Paul, D.R., Koros, W.J. (1976), "Effect of partially immobilizing sorption on permeability and the diffusion time-lag", J. Polym. Sci., Polym. Phys., 14, 675.
143. Koros, W.J., Paul, D.R., Huvard, G.S. (1979), "Energetics of gas sorption in glassy polymers", Polymer, 20, 956.
144. Petropoulos, J.H. (1970), "Quantitative analysis of gaseous diffusion in glassy polymers", J. Polym. Sci., 2, 1979.
145. Koros, W.J., Chern, R.T., Stannett, V., Hopfenberg, H.B. (1981), "A model for permeation of mixed gases and vapours in glassy polymers", J. Polym. Sci., Polym. Phys., 19, 1513.
146. Chan, A.H., Koros, W.J., Paul, D.R. (1978), "Analysis of hydrocarbon gas sorption and transport in ethyl cellulose using the dual-mode sorption/partial immobilization models", J. Memb. Sci., 3, 117.
147. Koros, W.J., Chan, A.H., Paul, D.R. (1977), "Sorption and transport of various gases in polycarbonates", J. Memb. Sci., 2, 165.
148. Koros, W.J., Paul, D.R. (1978), "Transient and steady state permeation in poly(ethylene- terephthalate) above and below the glass transition", J. Polym. Sci., Polym. Phys., 16, 2171.
149. Barrer, R.M. (1984), "Diffusivities in glassy polymers for the dual-mode sorption model", J. Memb. Sci., 18, 25.
150. Fredrickson, G.H., Helfand, E. (1985), "Dual-mode transport of penetrant in glassy polymers", Macromolecules, 18, 2201.
151. Pace, R.J., Datyner, A. (1979), "Statistical mechanical model for diffusion of simple penetrants in polymers, I - theory", J. Polym. Sci., Polym. Phys., 17, 437.
152. Pace, R.J., Datyner, A. (1979), "Statistical mechanical model for diffusion of simple penetrants in polymers, I - theory", J. Polym. Sci., Polym. Phys., 17, 1675.
153. Breck, D.W. (1974), Zeolite Molecular Sieves, John Wiley \& Sons, NY.
154. Shah, V.M., Stern, S.A., Ludovice, P.J. (1989), "Estimation of the free volume in polymers by means of Monte Carlo technique", Macromolecules, 22, 4660.
155. Trohalaki, S., Rigby, D., Kloczkowski, A., Mark, J.E., Roe, R.J. (1991), "Estimation of diffusion coefficients for small molecular penetrants in amorphous polyethylene", in: Computer Simulation of Polymers, R.J. Roe (Ed.), Prentice Hall, Englewood Cliffs, NJ, pp 220-232.
156. Takeuchi, H., Okazaki, K. (1990), "Molecular dynamics simulation of diffusion of simple gas molecules in short chain polymer", J. Chem. Phys., 92, 5643.
157. Trohalaki, S., Kloczkowski, A., Mark, J.E., Roe, R.J. (1992), "Molecular dynamics simulation of small molecule diffusion in polyethylene", Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 33, 629.
158. Pant, P.V.K., Boyd, R.H. (1993), "Molecular dynamics simulation of small penetrants in polymers", Macromolecules, 26, 679.
159. Müller-Plathe, F. (1991), "Calculation of the free energy for gas absorption in amorphous polypropylene", Macromolecules, 24, 6475.
160. Sok, R.M., Berendsen, H.J.C. (1992), "Molecular dynamics simulation of the transport of small molecules across a polymer membrane", Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 33, 641.
161. Barrie, J.A. (1968), "Water in polymers", in: Diffusion in Polymers, J. Crank, G.S. Park (Eds.), Academic Press, NY.
162. Chiou, J.S., Barlow, J.W., Paul, D.R. (1985), "Plasticisation of glassy polymers by $\mathrm{CO}_{2}{ }^{2}$, J. Appl. Polym. Sci., 30, 2633.
163. Sanders, E.S. (1988), "Penetrant induced plasticisation and gas permeation in glassy polymers", J. Memb. Sci., 37, 63.
164. Van Amerongen, G. J. (1964), "Diffusion in elastomers", Rubb. Chem. Tech., 37, 1065.
165. Mauze, G.R., Stern, S.A. (1983), "The dual mode solution and transport of water in Poly(acrylonitrile)", Polym .Eng. \& Sci., 24, 548.
166. Kamiyu, Y., Kirose, T., Mizoguchi, K., Naito, Y. (1986), "Gravimetric study of high pressure sorption of gases in polymers", J. Polym. Sci., 24, 1525.
167. Kamiyu, Y., Kirose, T., Mizoguchi, K., Terada, K. (1988), "Sorptive dilation of poly(vinyl benzoate) and poly(vinyl butyral) by carbon dioxide", J. Polym. Sci., Polym. Phy., 26, 1409.
168. Robeson, L.M. (1991), "Correlation of separation factor versus permeability for polymeric membranes", J. Memb. Sci., 62, 165.
169. Stern, S.A. (1986), "New developments in membrane processes for gas separations", MMI Press Symp., 5, 1.
170. Cabasso, I. (1987), "Membranes", in: Encyclopaedia of Polymer Science and Engineering, J.I. Kroschwitz (Ed.), Vol. 9, $2^{\text {nd }}$ Ed., Wiley, NY, pp 509-579.
171. Hayes, R.A. (1989), "Polyimide gas separation membranes", US Patent No. 4,880,442.
172. Kusuki, Y., Yoshinaga, T., Shimazaki, H. (1992), "Aromatic polyimide double layered hollow filamentary membrane and process for producing same", US Patent No. 5,141,642.
173. Kluiter, S.C.A (2001), "Status review on membrane systems for hydrogen separation", Intermediate Report EU Project, MIGREYD NNEU-2001670.
174. Engler, Y., Dupuis, G (2000), "Process for recovering olefins", US Patent No. 6,141,988.
175. Barchas, R., Hickey, T. (1992), "Membrane separation process for cracked gas", US Patent No. 5,082,481.
176. D'Aquino, R., Ondrey, G. (1999), "Refiners get cracking on petrochemicals", Chem. Eng., 30.
177. West, J. (1996), International Petroleum Encyclopaedia. PennWell Publishing Co., Oklahoma, USA.
178. Humphrey, J.L., Seibert, A.F., Koort, R.A. (1991), "Separation technologies advances and priorities", US Department of Energy Report.
179. Barron, T.S., Heist, J.A., Hunt, K.M., Wroble, P.J. (1987), "Industrial application of freeze concentration technology", Final Report to Electric Power Research Institute, EM-5232-1.
180. Wilson, R.B., Brown, A. (1994), "Evaluation of separation processes in petroleum refining", SRI Report, SRI International.
181. Semenova, S.I. (2004), "Polymer membranes for hydrocarbon separation and removal", J. Memb. Sci., 231, 189.
182. Herberhold, M. (1974), Metal đ-Complexes: Part II: Specific Aspects, Vol. 2, Elsevier Publications, Amsterdam.
183. Heß, S., Scharfenberger, G., Staudt-Bickel, C., Lichtenthaler, R.N. (2002), "Propylene/propane separation with copolyimides containing benzo-15-crown-5-ether to incorporate silver ions", Desalination, 145, 359.
184. Krol, J.J., Boerrigter, M., Koops, G.H. (2001), "Polyimide hollow fibre gas separation membranes: preparation and the suppression of plasticisation in propane/propylene environments", J. Memb. Sci., 184, 275.
185. Sridhar, S., Khan, A.A. (1999), "Simulation studies for the separation of propylene and propane by ethylcellulose membrane", J. Memb. Sci., 159, 209.
186. Bai, S., Sridhar, S., Khan, A.A. (1998), "Metal-ion mediated separation of propylene from propane using PPO membranes", J. Memb. Sci., 147, 131.
187. Okamoto, K., Noborio, K., Hao, J., Tanaka, K., Kita, H. (1997), "Permeation and separation properties of polyimide membranes to 1,3-butadiene and n-butane", J. Memb. Sci., 134, 171.
188. Burns, R.L., Koros, W.J. (2003), "Defining the challenges for $\mathrm{C}_{3} \mathrm{H}_{6} / \mathrm{C}_{3} \mathrm{H}_{8}$ separation using polymeric membranes", J. Memb. Sci., 211, 299.
189. Kim, J.K., Won, J., Kang, Y.S. (2004), "Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their application to olefin/paraffin separation", J. Memb. Sci., 241, 403.
190. Hong, S.U., Jin, J.H., Won, J., Kang, Y.S. (2000), "Polymer-salt complexes containing silver ions and their application to facilitated olefin transport membranes", Adv. Mater., 12, 968.
191. Kim, J.H., Min, B.R., Kim, C.K., Won, J., Kang, Y.S. (2001), "Role of transient cross-links for transport properties in silver-polymer electrolytes", Macromolecules, 34, 6052.
192. Kim, J.H., Min, B.R., Kim, C.K., Won, J., Kang, Y.S. (2002), "Spectroscopic interpretation of silver ion complexation with propylene in silver polymer electrolytes", J. Phys. Chem. B, 106, 2786.
193. Kim, J.H., Min, B.R., Won, J., Kang, Y.S. (2002), "Complexation mechanism of olefin with silver ions dissolved in polymer matrix and its effect on facilitated olefin transport", Chem. Eur. J., 8, 650.
194. Kim, J.H., Min, B.R., Kim, C.K., Won, J., Kang, Y.S. (2002), "New insights into the coordination mode of silver ions dissolved in poly(2-ethyl-2-oxazoline) and its relation to facilitated olefin transport", Macromolecules, 35, 5250.
195. Kim, J.H., Min, B.R., Kim, Joo, S.H., C.K., Won, J., Kang, Y.S. (2003), "Role of polymer matrix in polymer/silver complexes for structure, interactions and facilitated olefin transport", Macromolecules, 36, 6183. Kim, J.H., Min, B.R., Kim, C.K., Won, J., Kang, Y.S. (2002), "Ionic interaction behavior and facilitated olefin transport in PVP:AgCF SO_{3} electrolytes: effect of molecular weight", J. Polym. Sci. B, 40, 1813.
196. Kim, J.H., Min, B.R., Lee, K.B., Won, J., Kang, Y.S. (2002), "Coordination structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport", Chem. Commun., 2732.
197. Kim, J.H., Min, B.R., Kim, C.K., Won, J., Kang, Y.S. (2003), "Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF_{4} on the photoreduction of silver ions", J. Membr. Sci., 212, 283.
198. Kim, J.H., Min, B.R., Won, J., Kang, Y.S. (2003), "Revelation of facilitated olefin transport through silver-polymer complex membranes using anion complexation", Macromolecules, 36, 4577.
199. Pinnau, I., Toy, L.G., Casillas, C. (1997), "Olefin separation membrane and process", US Patent No. 5,670,051.
200. Sunderrajan, S., Freeman, B.D., Hall, C.K., Pinnau, I. (2001), "Propane and propylene sorption in solid polymer electrolytes based on poly(ethylene oxide) and silver salts", J. Membr. Sci., 182, 1.
201. Merkel, T.C., He, Z., Morisato, A., Pinnau, I. (2003), "Olefin/paraffin solubility in a solid polymer electrolyte membrane", Chem. Commun., 1596.
202. Kim, J.K., Won, J., Kang, Y.S. (2004), "Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their application to olefin/paraffin separation", J. Memb. Sci., 241, 403.
203. Ito, A., Hwang, S.T. (1989). "Permeation of propane and propylene through cellulosic polymer membranes", J. Appl. Polym. Sci., 38, 483.
204. Norden, B., Krutmeijer, E. (2000), "The Nobel Prize in chemistry, 2000: Conductive Polymers", The Royal Swedish Academy of Sciences, Stockholm, Sweden.
205. Shirakawa, H., Ikeda, S. (1980), "Preparation and morphology of asprepared and highly stretch-aligned polyacetylene", Synth. Met., 1, 175.
206. Fincher, C.R., Peebles, D.L., Heeger, A.J., Druy, M.A., Matsumura, Y., MacDiarmid, A.G., Shirakawa, H., Ikeda, S. (1978), "Anisotropic optical properties of pure and doped polyacetylene", Solid. State. Commun., 27, 489.
207. Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirkawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G. (1997), "Electrical conductivity in doped polyacetylene", Phys. Rev. Lett., 39, 1098.
208. Dogan, S., Akbulut, U., Yalcin, T., Suzer, S., Toppare, L. (1993), "Conducting polymer of aniline II. a composite as a gas sensor", Synth. Met., 60, 27.
209. Kabayashi, T., Yoneyama, H., Tamura, H. (1984), "Polyaniline filmcoated electrodes as electrochromic display device", J. Electro. Chem., 161, 419.
210. Paul, E.W., Ricco, A.J., Wrighton, M.S. (1995), "Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices", J. Phys. Chem., 89, 1441.
211. Cao, Y., Treacy, G.M., Smith, P, Heeger, A.J. (1992), "Solution-cast films of polyaniline: optical-quality transparent electrodes", Appl. Phys. Lett., 60, 2711.
212. Parkhutik, V., Martinez-Duart, J., Diaz Calleja, R., Matveeva, E.S. (1993), "Deposition of polyaniline films onto porous silicon layers", J. Electrochem Soc., 140, L94.
213. Winokur, M.J., Chunwachirasiri, W. (2003), "Nanoscale structure/property relationship in conjugated polymers: Implications for current and future device applications", J. Polym. Sci., 41, 2630.
214. Green, A.G., Woodhead, A.E. (1910), "Aniline-black and allied compounds, Part I", J. Chem. Soc. 97, 2388.
215. Kang, E.T., Neoh, K.G., Tan, K.L. (1998), "Polyaniline: A polymer with many interesting intrinsic redox states", Prog. Polym. Sci., 23, 277.
216. Genies, E.M., Boyle, A., Lapkowski, M., Tsintavis, C. (1990), "Polyaniline: A historical survey", Synth. Met., 36, 139.
217. Gospodinova, N., Terlemezyan, L. (1998), "Conducting polymers prepared by oxidative polymerisation: Polyaniline", Prog. Polym. Sci., 23, 1443.
218. Syed, A.A., Dinesan, M.K. (1991), "Review: Polyaniline - a novel polymeric material", Talanta, 38, 815.
219. Anand, J., Palaniappan, S., Sathyanarayana, D.N. (1998), "Conducting polyaniline blends and composites", Prog. Polym. Sci., 23, 993.
220. Amano, K., Ishikawa, H., Kobayashi, A., Satoh, M. Hasegawa, E. (1994), "Thermal stability of chemically synthesised polyaniline", Synth. Met., 62, 229.
221. Pyo, M., Reynolds, J.R., Warren, L.F.O., Marcy, H.O. (1994), "Long term switching stability of polypyrrole", Synth. Met., 68, 71.
222. Ray, A., Asturias, G.E., Kershner, D.L., Richter, A.F., MacDiarmid. A.G., Epstein, A.J. (1989), "Polyaniline: Doping, structure and derivatives", Synth. Met., 29, 141.
223. Khor, S.H., Neoh, K.G., Kang, E.T. (1990), "Synthesis and characterisation of some polyaniline-organic acceptor complexes", J. Appl. Polym. Sci., 40, 2015.
224. Salaneck, W.R., Lundström I, Haung, W.S., MacDiarmid, A.G. (1986), "A two dimentional surface 'state diagram' for polyaniline", Synth. Met., 13, 291.
225. Nakajima, T., Toyosawa, S., Kijima, S., Arai, K., Maeda, Y., Osawa, M., Kawagoe, T., lino, Y., Osawa, R. (1990), "Polyaniline", US Patent No. 4,904,553.
226. Bredas, J.L., Silbey, R. (1991), Conjugated polymers: The novel science and technology of highly conducting and nonlinear optically active materials, Kluwer Academic Press, Dordrecht, Netherlands.
227. MacDiarmid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J. (1987), "Polyaniline: a new concept in conducting polymers", Synth. Met., 18, 285; and references therein.
228. Furukawa, Y., Hara, T., Hyodo, Y., Harada, I. (1986), "Vibrational spectra of polyaniline and its ${ }^{15} \mathrm{~N}$ - and ${ }^{2} \mathrm{H}$-substituted derivatives in as-polymerized, alkali-treated and reduced states", Synth. Met., 16, 189.
229. Yang, S.M., Chen, J.T. (1995), "The effect of synthesis conditions on the properties of polyaniline film", Synth. Met., 69, 153.
230. Wang, H.L., Romero, R.J., Mattes, B.R., Zhu, Y., Winokur, M.J. (2000), "Effect of processing conditions on the properties of high molecular weight conductive polyaniline fibre", J. Polym. Sci., Polym. Phys., 38, 194.
231. Stejskal, J., Riede, A., Hlavata, D., Prokes, J., Helmstedt, M., Holler, P. (1998), "The effect of polymerisation temperature on molecular weight crystallinity, and electrical conductivity of polyaniline", Synth. Met., 96, 55.
232. Angelopoulos, M., Dipietro, R., Zheng, W.G., MacDiarmid, A.G. (1997), "Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity", Synth. Met., 84, 35.
233. Demoustier-Champagne, S., Stavaux, P.Y. (1999), "Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerised polypyrrole nanotubules", Chem. Mater., 11, 829.
234. Sabatani, E., Gafni, Y., Rubinstein, I. (1995), "Morphology control in electrochemically grown conducting polymer films. 3. a comparative stydy of polyaniline films on bare gold and on gold pretreated with p-aminothiophenol", J. Phys. Chem., 99, 12305.
235. MacDiarmid, A.G., Epstein, A.J. (1995), "Secondary doping in polyaniline, Synth. Met., 69, 85.
236. Salzer, C.Z., Elliott, C.M. (2000), "Quantitative in situ studies of ionic doping of polypyrrole employing rotated ring disk electrode voltammetry", Chem. Meter., 12, 2099.
237. Lee, D., Swager, T.M. (2003), "Defining space around conducting polymers: reversible protonic doping of a canopied polypyrrole", J. Am. Chem. Soc., 125, 6870.
238. Hatchett, D.W., Josowicz, M., Janata, J. (1999), "Acid doping of polyaniline: spectroscopic and electrochemical studies", J. Phys. Chem. B., 103, 10992.
239. Polk, B.J., Potje-Kamloth, K., Josowicz, M., Janata, J. (2002), "Role of protonic and charge transfer doping in solid state polyaniline", J. Phys. Chem. B., 106, 11457.
240. Hardaker, S.S., Gregory, R.V. (1999), "Polyaniline", in: Polymer Data Handbook, J. Mark (Ed.), Oxford University Press, Oxford.
241. Braun, D., Heeger A.J. (1991), "Visible light emission from semiconducting polymer diodes", App. Phy. Lett., 58, 1982.
242. Epstein, A.J., Woo, H.S., Tanner, D.B., Haung, W.S., MacDiarmid, A.G. (1987), "Polaron lattice in highly conducting polyaniline: Theoretical and optical studies", Phys. Rev. Lett., 59, 1464.
243. Avlyanov, J.K., Min, Y., MacDiarmid, A.G., Epstein, A.J. (1995), "Polyaniline: conformational changes induced in solution by variation of solvent and doping level", Synth. Met., 72, 65; and references therein.
244. Yang, C.Y., Cao, Y., Smith, P., Heeger, A.J. (1993), "Morphology of conductive, solution-processed blends of polyaniline and poly(methyl methacrylate)", Synth. Met., 53, 293; and references therein.
245. Angelopoulos, M., Asturias, G.E., Ermer, S.P., Ray, A., Scherr, E.M, MacDiarmid, A.G., Akhtar, M., Kiss, Z., Epstein, A.J. (1988), "Polyaniline: solutions, films and oxidation state", Mol. Cryst. Liq. Cryst., 160, 151.
246. Tang, X., Sun, Y., Wei, Y. (1988), "Molecular weight of chemically polymerised polyaniline", Makromol. Chem., 9, 829.
247. Angelopoulos, M., Ray, A., MacDiarmid, A.G., Epstein, A.J. (1987), "Polyaniline: Processability from aqueous solutions and effect of water vapour on conductivity", Synth. Met., 21, 21.
248. Epstein, A.J., Joo, J., Wu, C.Y., Benatar, A., Faust, C.F., Zegarski, J. (Jr), MacDiarmid, A.G (1993), "Polyanilines: Recent advances in processing and applications to welding of plastics", in: Intrinsically Conducting Polymers, Aldissi, M. (Ed.), Kluwer Academic, Dordrecht, pp. 165.
249. Cao, Y., Smith, P., Heeger, A.J. (1992), "Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers", Synth. Met., 48, 91.
250. Aldissi, M. (1992), Intrinsically Conducting Polymers: An Emerging Technology, NATO-ASI series, Vol. E246, Kluwer Academic, Dordrecht.
251. Salaneck, W.R., Clark, D.T., Samuelsen, E.J. (1991), Science and Applications of Conducting Polymers, Adam Hilger, Bristol.
252. Prasad, P.N., Mark, J.E., Fai, T.J. (1995), Polymers and Other Advanced Materials. Emerging Technologies and Business Opportunities, Plenum Press, London.
253. Cao, Y. Smith, P., Heeger, A.J. (1993), "Counter-ion induced processibility of conducting polyaniline", Synth. Met., 57, 3514.
254. Xia, Y.N., Wiesinger, J.M., MacDiarmid, A.G., Epstein A.J. (1995), "Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near infrared spectroscopic method", Chem. Mater., 7, 443.
255. Majidi, M.R., Kane-Maguire, L.A.P., Wallace, G.G. (1994), "Enantioselective electropolymerisation of aniline in presence of $(+)$-or (-) - camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity", Polymer, 35, 3113.
256. Rozsnyai, L.F., Wrighton, M.S. (1996), "Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers", Chem. Mater., 8, 309.
257. Liu, G., Freund, M.S. (1996), "Nucleophilic substitution reactions of polyaniline with substituted benzenediazonium ions: a facile method for controlling the surface chemistry of conducting polymers", Chem. Mater., 8, 1164.
258. MacDiarmid, A., Manohar, S.K. (1994), "High molecular weight polyanilines and synthetic methods therefore", US Patent No. 5,276,112.
259. Järvinen, H, Laakso, J, Auvinen, I., Silvasti, E. (1995), "Method for preparing polyaniline", US Patent No. 5,436,317.
260. Palaniappan, S., Chellachamy, A.A. (2003), "Process for the preparation of polyaniline salt", US Patent No. 6,630,567 B1.
261. Subramaniam, R., Deshpande, S.D. (2005), "Process for preparation of conducting polyaniline", US Patent No. 6,900,282 B2.
262. Adams, P.N., Laughlin, P.J., Monkman, A.P. (1996), "Synthesis of high molecular weight polyaniline at low temperature", Synth. Met., 76, 157. Adams, P.N., Laughlin, P.J., Monkman, A.P., Kenwright, A.M. (1996), "Low temperature synthesis of high molecular weight polyaniline", Polymer, 37, 3411.
263. Adams, P.N., Abell, L, Middleton, A., Monkman, A.P. (1997), "Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant", Synth. Met., 84, 61.
264. Geng, Y., Li, J., Sun, Z., Jing, X., Wang, F. (1998), "Polymerisation of aniline in an aqueous system containing organic solvents", Synth. Met., 96, 1.
265. Genies, E.M., Syed, A.A., Tsintavis, C. (1985), "Electrochemical study of polyaniline in Aqueous and organic medium, redox and kinetic properties", Mol. Cryst. Liq. Cryst., 121, 181.
266. Masao, A., Akira, O., Hiroyuki, H., Minoru, E., Shinya, A., Keiji, N., Keiko, M., Yasuhiro, U., Michio, U (1998), "Organic polymer, conducting organic polymer, production methods and uses of the same", US Patent No. 5,728,321.
267. Sun, Z., Geng, Y., Li, J., Jing, X., Wang, F. (1997), "Chemical polymerisation of aniline with hydrogen peroxide as oxidant", Synth. Met., 84, 99.
268. Yasuda, A., Shimidzu, T. (1993), "Chemical and electrochemical analysis of polyaniline prepared with $\mathrm{FeCl}_{3} "$, Synth. Met., 61, 239.
269. Mažeikieně R., Malinauskas, A. (2000), "Deposition of polyaniline on glass and platinum by autocatalytic oxidation of aniline with dichromate", Synth. Met., 108, 9.
270. Tzou, K., Gregory, R.V. (1992), "Kinetic study of the chemical polymerisation of aniline in aqueous solution", Synth. Met., 47, 267.
271. Adams, P.N., Apperley, D.C., Monkman, A.P. (1993), "A comparison of the molecular weights of polyaniline samples obtained from gel permeation chromatography and solid state ${ }^{15} \mathrm{~N}$ n.m.r. spectroscopy", Polymer, 34, 328.
272. Kenwright, A.M., Feast, W.J., Adams, P., Milton, A.J., Monkman, A.P., Say, B.J. (1992), "Solution state carbon-13 nuclear magnetic resonance studies of polyaniline", Polymer, 33, 4292.
273. Bikales, N. (1971), Characterisation of Polymers, Wiley-Interscience, John Wiley \& Sons, NY.
274. Fukuda, T., Takezoe, H., Ishikawa, K., Fukuda, A., Wood, H.S., Jeong, S.K., Oh, E.J., Suh, J.S. (1995), "IR and Raman studies in three polyanilines with different oxidation levels", Synth. Met., 69, 175.
275. Gazotti, W.A., De Paoli M.-A. (1996), "High yield preparation of a soluble polyaniline derivative", Synth. Met., 80, 263.
276. Trchová, M., Sapurina, I., Prokeš, J., Stejskal, J. (2003), "FTIR spectroscopy of ordered polyaniline films", Synth. Met., 135, 305.
277. Chen, S.A., Lee, H.T. (1993), "Polyaniline plasticised with 1-methyl, 2-pyrrolidone: structure and doping behaviour", Macromolecules, 26, 3254.
278. Lux, F., Samuelsen, E.J., Kang, E.T. (1995), "A new assessment of the crystalline structure of undoped and doped aniline oligomers and polymers", Synth. Met., 69, 167.
279. Dominis, A.J., Spinks, G.M., Kane-Maguire, A.P., Wallace, G.G. (2002), "A dedoping/redoping study of organic soluble polyaniline", Synth. Met., 129, 165.
280. Albuquerque, J.E., Mattoso, L.H.C., Balogh, D.T., Faria, R.M., Masters, J.G., MacDiarmid, A.G. (2000), "A simple method to estimate the oxidation state of polyanilines", Synth. Met., 113, 19.
281. Lindfors, T., Kvarnström, C., Ivaska, A. (2002), "Raman and UV-vis spectroscopic study of polyaniline membranes containing a bulky cationic additive", J. Elect. Chem., 518, 131.
282. Yang, D., Mattes, B.R. (2002), "Polyaniline emeraldine base in N-methyl-2-pyrrolidinone containing secondary amine additives: B. characterisation of solutions and thin films", Synth. Met., 129, 249.
283. Hanton, S.D. (2001), "Mass spectrometry of polymers and polymer surfaces", Chem. Rev., 101, 527.
284. Jackson, C.A., Simonsick, W.J. (Jr.) (1997), "Application of mass spectrometry to the characterisation of polymers", Curr. Opin. Sol. State Mater. Sci., 2, 661.
285. Karas, M., Hillenkamp, F. (1988), "Laser desorption ionisation of proteins with molecular masses exceeding 10,000 Daltons", Anal. Chem., 60, 2269.
286. Moore, J.C. (1964), "Gel permeation chromatography. I. a new method for molecular weight distribution of high polymers", J. Polym. Sci., A2, 835.
287. Quivoron, C. (1984), "Use for polymer analysis", in: Steric Exclusion Liquid Chromatography of Polymers, J. Janča (Ed.), Marcel Dekker, Inc. NY.
288. Pellegrino, J. (2003), "The use of conducting polymers in membrane based separations", Ann. N.Y. Acad. Sci., 984, 289.
289. Wessling, B. (1999), "Polyaniline on the metallic side of the insulator-tometal transition due to dispersion: the basis for successful nanotechnology and industrial applications of organic metals", Synth. Met., 102, 1396; and references therein.
290. Shacklette, L., Han, C. (1994), "Solubility and dispersion characteristics of polyaniline", Mat. Res. Soc.:Symp. Proc., 328, 157.
291. Wessling, B. (1991), "On the structure of binary conductive polymer/solvent systems", Synth. Met., 41, 907.
292. Monkman, A.P., Adams, P.N. (1991), "Optical and electronic properties of stretch-oriented solution-cast polyaniline films", Synth. Met., 40, 87.
293. Cao, Y., Qiu, J., Smith, P. (1995), "Effect of solvents and co-solvents on the processibility of polyaniline: I. solubility and conductivity studies", Synth. Met., 69, 187.
294. Illing, G., Hellgardt, K., Wakeman, R. J., Jungbauer, A. (2001), "Preparation and characterisation of polyaniline based membranes for gas separations", J. Memb. Sci., 184, 69.
295. Pinnau, I, He, Z., Da Costa, A.R., Amo, K.D., Daniels, R. (2002), "Gas separation using C_{3+} hydrocarbon resistant membranes", US Patent No. 6,361,582 B1.
296. Jozefowicz, M.E., Laversanne, R., Javadi, H.H.S., Epstein, A.J., Pouget, J.P., Tang, X., MacDiarmid, A.G. (1989), "Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline", Phys. Rev. B., 39, 12958.
297. ISO Standards (1993), "Plastics - determination of tensile properties part 2: test conditions for moulding and extrusion plastics", ICS 83.080.01.
298. Pye, D.G., Hoehn, H.H., Paner, M. (1976), "Measurement of gas permeability of polymers. I. permeabilities in constant volume/variable pressure apparatus", J. Appl. Sci., 20, 1921.
299. Wei, Y., Jang, G.W., Chan, C.C. Hsuen, K.F., Hariharan, R., Patel, S.A., Whitecar, C.K. (1990), "Polymerisation of aniline and alkyl ring substituted anilines in the presence of aromatic additives", J. Phys. Chem., 94, 7716.
300. Mattoso, L.H.C., Manohar, S.K., MacDiarmid, A.G., Epstein, A.J. (1995), "Studies on chemical synthesis and on characteristics of polyaniline derivatives", J. Polym. Sci., Part A: Polym. Chem., 33, 1227.
301. Wei, Y., Tang, X., Sun, Y., Focke, W.W. (1989), "A study of the mechanism of aniline polymerisation", J. Polym. Sci., Part A: Polym. Chem., 27, 2385.
302. Genies, E.M., Lapkowski, M. (1987), "Polyaniline films. electrochemical redox mechanisms", Synth. Met., 24, 61.
303. Mohilner, D.M., Adams, R.N., Argersinger, W.J. (1962), "Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulphuric acid solution at a platinum electrode", J. Am. Chem. Soc., 84, 3618.
304. Breitenbach, M., Heckner, K.H. (1971), "Untersuchungen zur kinetic der anodischen oxidation von aniline in azetonitril an der rotierenden platinelektrode", J. Electro-anal. Chem., 29, 309.
305. Breitenbach, M., Heckner, K.H. (1971), "Elektrochemische untersuchungen der bildung and elgenschaften von polyanilinfilmen auf platin- und kohleelektronden", J. Electro-anal. Chem., 43, 267.
306. Sasaki, K., Kaya, M., Yano, J., Kitani, A., Kunai, A. (1986), "Growth mechanism in the electropolymerisation of aniline and p-aminodiphenylamine", J. Electro-anal. Chem., 215, 401.
307. Ohsaka, T., Ohnuki, Y., Oyama, N., Katagiri, G., Kamisako, K. (1984), "IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerisation of aniline", J. Electro-anal. Chem., 161, 399.
308. Nalawade, S.P., Picchioni, F., Marsman, J.H., Janssen, L.P.B.M. (2006), "The FTIR studies of interactions of CO_{2} and polymers having different chain groups", J. Supercrit. Fluids, 36, 236.
309. Zheng, W., Angelopoulos, M., Epstein, A.J., MacDiarmid, A.G. (1997), "Concentration dependence of aggregation of polyaniline in NMP solution and properties of resulting cast films", Macromolecules, 30, 7634.
310. Cao, Y., Li, S., Xue, Z., Guo, D. (1986), "Spectroscopic and electrical characterisation of some aniline oligomers and polyaniline", Synth. Met., 16, 305.
311. Tang, J., Jing, X., Wang, B., Wang, F. (1988), "Infrared spectra of soluble polyaniline", Synth. Met., 24, 231.
312. Harada, I., Furukawa, Y., Ueda, F. (1989), "Vibrational spectra and structure of polyaniline and related compounds", Synth. Met., 29, 303.
313. Wan, M. (1992), "Absorption spectra of thin film of polyaniline", J. Polym. Sci., Part A: Polym. Chem., 30, 543.
314. Zuo, F., McCall, R.P., Ginder, J.M., Roe, M.G., Leng, J.M., Epstein, A.J., Asturias, G.E., Ermer, S.P., Ray, A., MacDiarmid, A.G. (1989), "Solution studies of the emeraldine oxidation state of polyaniline", Synth. Met., 29, 445.
315. Haung, W.S., MacDiarmid, A.G. (1993), "Optical properties of polyaniline", Polymer, 34, 1833.
316. Zheng, W.Y., Levon, K., Laakso, J., Oesterholm, J.E. (1994), "Characterisation and solid state properties of processable N -alkylated polyanilines in natural state", Macromolecules, 27, 7754.
317. Zheng, W., Min, Y., Lee, S.J., MacDiarmid, A.G., Angelopoulos, M., Liao, Y.H., Epstein, A.J. (1996), "The molecular conformation of non-doped polyaniline and its effect on the properties of doped polyaniline", Mater. Res. Soc. Symp. Proc., 413, 535.
318. Ohtani, A., Abe, M., Ezeo, M., Doi, T., Miyata, T., Miyake, A. (1993), "Synthesis and properties of high molecular weight soluble polyaniline and its application to the 4MB-capacity barium ferrite floppy disk's antistatic coating", Synth. Met., 57, 3696.
319. Oh, E.J., Min, Y., Wiesinger, J.M., Manoher, S.K., Sherr, E.M., Prest, P.J., MacDiarmid, A.G., Epstein, A.J. (1993), "Polyaniline: dependency of selected properties on molecular weight", Synth. Met., 55, 977.
320. Mattoso, L.H.C., MacDiarmid, A.G., Epstein, A.J. (1994), "Controlled synthesis of high molecular weight polyaniline and poly(omethoxyaniline)", Synth. Met., 68, 1.
321. Boara, G., Sparpaglione, M. (1995), "Synthesis of polyanilines with high electrical conductivity", Synth. Met., 72, 135.
322. Adams, P.N., Monkman, A.P. (1997), "Characterisation of high molecular weight polyaniline synthesised at -40 C using a $0.25: 1$ mole ratio of persulfate oxidant to aniline", Synth. Met., 87, 165.
323. Vilčnik, M., Žigon, M., Zupan, M., Šebenik, A. (1998), "Influence of polymerisation parameters on the molecular weight of polyaniline", Acta Chim. Slov., 45, 173.
324. Pfromm, P.H., Pinnau, I., Koros, W.J. (1990), "Gas transport through asymmetric membranes: a comparison to isotropic film transport properties", J. Memb. Sci., 48, 2161.
325. Gupta, Y., Hellgardt, K., Wakeman, R.J. (2006), "Enhanced permeability of polyaniline based nano-membranes for gas separation", J. Memb. Sci., 282, 60.
326. Athayde, A.L., Baker, R.W., Nguyen, P. (1994), "Metal composite membranes for hydrogen separation", J. Memb. Sci., 94, 299.
327. Schofield, R.W., Fane, A.G., Fell, C.J.D. (1990), "Gas and vapour transport through microporous membranes. I - Knudsen-Poiseuille transport", J. Memb. Sci., 53, 59.
328. Singh, A., Koros, W.J. (1996), "The significance of entropic selectivity for advanced gas separation membranes", Ind. Eng. Chem. Res., 35, 1231.
329. Nagai, K., Masuda, T., Nakagawa, T., Freeman, B.D., Pinnau, I. (2001), "Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions", Polymer Science, 26, 721.
330. Nakagawa, T., Fujisaki, S., Nakano, H., Higuchi, A. (1994), "Physical modification of poly[1-(trimethylsilyl)-1-propyne] membranes for gas separation", J. Membrane Sci., 94, 183.
331. Jordan, S.M., Henson, M.A., Koros, W.J. (1990), "The effect of carbon dioxide conditioning on the permeation behaviour of hollow fibre asymmetric membranes", J. Membrane Sci., 54,102.
332. White, L.S., Blinka, T.A., Kloczewski, H.A., Wang, I. -F. (1995), "Properties of polyimide gas separation membrane in natural gas streams", J. Membrane Sci., 103, 73.
333. Wang, Z., Chen, T., Xu, J. (1997), "Novel, poly(aryl ether ketone)s containing various pendant groups. II. gas transport properties", J. Appl. Polym. Sci., 64, 1725.
334. Koros, W.J., Coleman, M.R., Walker, D.R.B. (1992), "Controlled permeability of polymer membranes", Ann. Rev. Mater. Sci, 22, 47.
335. McHattie, J.S., Koros, W.J., Paul, D.R. (1991), "Gas transport properties of polysulfones: 1. Role of summery of methyl group placement on bisphenol rings", Polymer, 33, 1701.
336. Muruganandam, N., Paul, D.R. (1987), "Evaluation of substituted polycarbonated and a blend with polystyrene as gas separation membranes", J. Memb. Sci., 34, 185.
337. Aitken, C.L., Koros, W.J., Paul, D.R. (1993), "Gas transport properties of biphenol polysulfones", Macromolecules, 25, 3651.
338. Aitken, C.L., Koros, W.J., Paul, D.R. (1992), "Effect of structural symmetry of gas transport properties of polysulfones", Macromolecules, 25, 3424.
339. McHattie, J.S., Koros, W.J., Paul, D.R. (1991), "Effect of isopropylidene replacement of gas transport properties of polycarbonates", J. Polym. Sci., Part B, Polym. Phys., 29, 731.
340. Mohr, J.M., Paul, D.R., Tullos, G.L., Cassidy, P.E. (1991), "Gas transport properties of a series of poly(ether ketone) polymers", Polymer, 32, 2387.
341. Gupta, Y., Wakeman, R.J., Hellgardt, K. (2006), "The potential of polyaniline nano-membranes for gas separation", $10^{\text {th }}$ Nordic Filtration Symposium, Trondheim, Norway.

Appendix 1

LIST OF SYMBOLS

A_{m}	Membrane surface area	$\left(\mathrm{cm}^{2}\right)$
C^{\prime}	Geometrical parameter that depends on pore system	
D	Diffusion coefficient	$\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$
$D_{\text {D }}$	Mobility (diffusion) of the dissolved components	($\mathrm{cm}^{2} \mathrm{~s}^{-1}$)
$D_{\text {eff }}$	Effective diffusion coefficient	$\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$
D_{H}	Mobility (diffusion) of the Langmuir sorbed components	($\mathrm{cm}^{2} \mathrm{~s}^{-1}$)
D_{i}	Surface diffusion coefficient	$\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$
D_{T}	Thermodynamic diffusion coefficient	($\mathrm{cm}^{2} \mathrm{~s}^{-1}$)
E	Activation energy	($\mathrm{kJ} \mathrm{mol}^{-1}$)
F_{k}	Driving force (such as chemical potential) of component ' k '	($\mathrm{cmHg} \mathrm{cm}^{3} \mathrm{~mol}^{-1}$)
J	Permeation rate (flux)	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
J_{p}	Total permeate flux (for mixed-gas system)	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
$J_{\text {vf }}$	Volumetric flux of the gas on the feed side	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
$J_{v p}$	Volumetric flux of the gas in the permeate side	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$)
K_{i}	Sorption coefficient of i '	$\left(\mathrm{cmHg}^{-1}\right)$
$L_{\text {ik }}$	Phenomenological coefficient	
M_{n}	Number average molecular weight	
$M_{\text {w }}$	Weight average molecular weight	
P	Permeability coefficient	$\left(\mathrm{cm}^{3} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{cmHg}^{-1}\right.$)
P_{0}	Permeability at STP	$\left(\mathrm{cm}^{3} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{cmHg}^{-1}\right)$
P_{i}	Permeability coefficient of the component i '	$\left(\mathrm{cm}^{3} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{cmHg}^{-1}\right)$
P_{j}	Permeability coefficient of the component ${ }^{\prime}$ '	$\left(\mathrm{cm}^{3} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{cmHg}^{-1}\right)$
$P_{\text {total }}$	Total permeability coefficient (for mixed-gas system)	$\left(\mathrm{cm}^{3} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{cmHg}^{-1}\right)$
R	Ideal Gas constant	$\left(\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{cm}^{-1} \mathrm{stP} \mathrm{K}^{-1}\right.$)
R_{s}	Stoke's radius of the solute	(cm)
S	Solubility coefficient	$\left(\mathrm{cm}^{3}\right.$ gas cm^{-3} polymer cmHg^{-1})
T	Temperature	(K)
v	Specific volume of the polymer	$\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$
V_{d}	Downstream volume of the permeation cell	$\left(\mathrm{cm}^{3}\right)$
V_{f}	Fractional free volume	$\left(\mathrm{cm}^{3}\right)$
V_{g}	Actual glassy specific volume	$\left(\mathrm{cm}^{3}\right)$
V	Equilibrium volume of densified glass	(cm^{3})
ΔE_{D}	Activation energy for diffusion	($\mathrm{kJ} \mathrm{mol}^{-1}$)

ΔE_{p}	Activation energy for permeation	($\mathrm{kJ} \mathrm{mol}^{-1}$)
ΔH_{D}	Henry type sorption enthalpy	($\mathrm{kJ} \mathrm{mol}^{-1}$)
ΔH_{H}	Langmuir type sorption enthalpy	($\mathrm{kJ} \mathrm{mol}^{-1}$)
ΔH_{s}	Partial molar enthalpy of the sorption	($\mathrm{kJ} \mathrm{mol}^{-1}$)
${ }_{\text {b }}{ }^{\text {c }}$	Langmuir's hole affinity constant Effective total concentration of the sorbed penetrant	$\begin{aligned} & \left(\mathrm{cmHg}^{-1}\right) \\ & \left(\mathrm{g} \mathrm{~cm}^{-3}\right) \text { or }\left(\mathrm{mol} \mathrm{~cm}^{-3}\right) \end{aligned}$
C_{D}	Sorption described by Henry's law relation	($\mathrm{mol} \mathrm{cm}^{-3}$)
c_{g}	Concentration of solute at glass transition temperature	($\mathrm{g} \mathrm{cm}^{-3}$) or ($\mathrm{mol} \mathrm{cm}^{-3}$)
CH_{H}	Sorption described by Langmuir's "hole filling" process	$\left(\mathrm{mol} \mathrm{cm}^{-3}\right)$
C_{H}	Langmuir's capacity constant	($\mathrm{mol} \mathrm{cm}{ }^{-3}$) or $\left(\mathrm{cm}^{3} \mathrm{STP} \mathrm{cm}^{-3}\right)$
$c_{i, 0}$	Concentration of ' i ' in the feed	($\mathrm{g} \mathrm{cm}^{-3}$) or ($\mathrm{mol} \mathrm{cm}{ }^{-3}$)
$c_{i, 0(m)}$	Concentration of 'i' on the feed side membrane surface	($\mathrm{g} \mathrm{cm}^{-3}$) or ($\mathrm{mol} \mathrm{cm}{ }^{-3}$)
$C_{i, t_{m}}$	Concentration of $' i \prime$ in the permeate	($\mathrm{g} \mathrm{cm}^{-3}$) or ($\mathrm{mol} \mathrm{cm}{ }^{-3}$)
$C_{i, t_{m}(m)}$	Concentration of 'i' on the permeate side membrane surface	($\mathrm{g} \mathrm{cm}^{-3}$) or ($\mathrm{mol} \mathrm{cm}{ }^{-3}$)
$f_{k j}$	Free frictional coefficient	
$f_{k m}$	Frictional coefficient	
k_{D}	Henry's law solubility coefficient	$\left(\mathrm{cm}^{3}{ }_{\text {STP }} \mathrm{cm}^{-3}\right.$ polymer cmHg^{-1})
m_{i}	Molar weight of ' i '	(mol)
n_{i}	Mole fraction	($\mathrm{mol} \mathrm{mol}^{-1}$)
$n_{i(0)}$	Mole fraction of ' i ' in the feed	($\mathrm{mol} \mathrm{mol}^{-1}$)
$n_{i(m)}$	Mole fraction of ' i ' on the feed side membrane surface	($\mathrm{mol} \mathrm{mol}^{-1}$)
$n_{i, l_{m}}$	Mole fraction of ' i ' in the permeate	$\left(\mathrm{mol} \mathrm{mol}^{-1}\right)$
$n_{i, \ell_{m}(m)}$	Mole fraction of ' i ' on the permeate side membrane surface	($\mathrm{mol} \mathrm{mol}^{-1}$)
p_{0}	Feed side pressure	(cmHg)
p_{f}	Feed side pressure	(cmHg)
p_{0}	Vapour pressure of the penetrant	(cmHg)
$p_{t_{m}}$	Permeate side pressure	(cmHg)
$p_{i}^{\text {sat }}$	Saturated vapour pressure	(cmHg)
t_{m}	Thickness of the polymeric membrane	(cm)
u_{k}	linear velocity of solute ' k '	($\mathrm{cm} \mathrm{s}^{-1}$)
u_{j}	Linear velocity of solute 'j'	$\left(\mathrm{cm} \mathrm{s}^{-1}\right.$)
u_{i}	Mobility coefficient of the penetrant	$\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$
V_{H}	Excess free volume	$\left(\mathrm{cm}^{3}\right)$
$V_{H(c)}$	Excess free volume per unit volume of the penetrant polymer system	
w_{i}	Weight of the fraction	(g)
x_{i}	Molar fraction of the component i ' in the feed	($\mathrm{mol} \mathrm{mol}^{-1}$ total

x_{j}	Molar fraction of the component j ' in the feed	$\left(\mathrm{mol} \mathrm{mol}^{-1}{ }^{\text {total }}\right.$)
y_{i}	Molar fraction of the component i ' in the permeate	($\mathrm{mol} \mathrm{mol}^{-1}{ }_{\text {toalal }}$)
y_{j}	Molar fraction of the component j ' in the permeate	$\left(\mathrm{mol} \mathrm{mol}^{-1}{ }_{\text {total }}\right.$)
$\alpha_{i j}$	Separation factor	
μ_{i}°	Reference chemical potential of pure ' i '	$\left(\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{mol}^{-1}\right)$
$\mu_{i, 0}$	Chemical potential of $i \prime$ ' in the feed	($\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{mol}^{-1}$)
$\mu_{1,0(m)}$	Chemical potential of ' i ' on the feed side membrane surface	($\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{mol}^{-1}$)
$\mu_{i t_{m}}$	Chemical potential of ' i ' in the permeate	$\left(\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{mol}^{-1}\right)$
$\mu_{i, t_{m}(m)}$	Chemical potential of i ' on the permeate side membrane surface	($\mathrm{cm}^{3} \mathrm{cmHg} \mathrm{mol}^{-1}$)
ρ	Density of the pure gas	$\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
ρ_{m}	Molar density of the membrane phase	($\mathrm{mol} \mathrm{cm}^{-3}$)
$\rho_{\text {total }}$	Density of the gas mixture (for mixed-gas system)	($\mathrm{g} \mathrm{cm}^{-3}$)
σ	Characteristic parameter for the solubility dependence on the concentration	
ϕ	Local volume fraction of the penetrant in the polymer	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}{ }_{\text {total }}\right)$
ϕ_{p}	Volume fraction of the polymer	$\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right.$ total
$\phi_{\text {Is }}^{\circ}$	Fractional free volume of the penetrant in pure polymer	$\left(\mathrm{cm}^{3}\right)$
\bar{u}	Molar Volume	$\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$
v_{i}	Molar volume of the component ${ }^{\prime}$ '	$\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$
$v_{i(m)}$	Molar volume of ' ' ' in the feed side membrane surface	$\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$
ζ	Characteristic parameter of gas-gas and gas-membrane interactions	
χ	Flory-Huggins parameter	
γ	Characteristic parameter of penetrant to plasticise the	
γ_{i}	Activity coefficient linking the mole fraction activity	
$\gamma_{i(m)}$	Activity coefficient linking the mole fraction activity in the membrane surface	
δ	Thickness of the layer of unmixed fluid on the feed side membrane surface	(cm)
$\Delta \alpha$	Difference between thermal expansion and compressibility coefficient above glass transition temperature	

$\Delta \beta$	Difference between thermal expansion and compressibility coefficient below glass transition temperature	
$\left(\frac{d c_{i(m)}}{d x}\right)$	Concentration gradient in membrane	$\left(\mathrm{g} \mathrm{cm}^{-3} \mathrm{~cm}^{-1}\right)$
$\left(\frac{d p}{d t_{m}}\right)$	Pressure gradient across the membrane	$\left(\mathrm{cmHg} \mathrm{cm}^{-1}\right)$
$\left(\frac{d p_{i}}{d t}\right)_{\text {steady-state }}$	Steady state rate of pressure rise in the downstream section of the permeation cell at a fixed upstream pressure	$\left(\mathrm{cmHg} \mathrm{cm}^{-1}\right)$
$\left(\frac{d p_{i}}{d t}\right)_{\text {leak }}$	Steady state rate of pressure rise in the downstream section of the permeation cell under vacuum	$\left(\mathrm{cmHg} \mathrm{cm}^{-1}\right)$

Appendix 2

DESIGN OF THE PERMEATION CELL

1. DESIGN OF PERMEATION CELL

1.1. Operational Conditions

The normal and transient operational conditions have to be specified to design the permeation cell.

1.1.1. \quad Normal Conditions

- The operating internal pressure existing during normal operating condition should be specified. The operating pressure considered for this design was 60 bar (6 MPa). The maximum pressure is generally not more than 10 percent in excess of the operating pressure.
- The operating temperature should also be specified depending on the contained fluid in the cell. The experiments were considered to be conducted at ambient temperature; hence, there is no thermal stress that needs to be considered for the design.

1.1.2. Transient Conditions

- The transient conditions may be repetitive, for example, those occurring during starting up and shutting down. It is necessary to know the anticipated modes of operation, including rates of changes of internal pressure, and possible emergency loads due to sudden pressure rise in the section.

1.2. National Codes

A number of National Codes which specify requirements of design, fabrication, inspection and testing of unfired pressure vessels are available. In most countries the National Codes have the force of law and strict adherence to their rules is required. It is therefore desirable that any design, regardless of the method adopted, should be checked with the standard code. In the current design, the code used was BS 5500-2003.

1.3. Material Selection for High Pressure Vessels

Ductility is an essential requirement in steel for use as a pressure vessel and should guide the choice of steel and its heat treatments. Ni-Cr-Mo are the most common steels are used for high pressure vessels. The stainless steel SS316 was used to design the permeation cell to conduct the gas permeation experiments. The nominal data sheet for 316 stainless steel was summarised in the following table.

Table I 1 The nominal data sheet for 316 stainless steel.

Chemical Composition	Mechanical Properties (Annealed Condition)		
Cr	$16-18$	Ultimate Tensile Strength	$90,000 \mathrm{psi}$
Ni	$10-14$	0.2% Offset Yield Strength	$40,000 \mathrm{psi}$
Mo	$2-3$	Percent Elongation in 2"	50%
Mn	2.2 max	Hardness Rockwell	$\mathrm{B80}$
C	0.03 max		
Si	1.00 max		
S	0.03 max		
P	0.045 max		

1.4. Stress Calculation

The main loading in the shell is due to the internal pressure. The stresses across the shell thickness due to pressure are not uniform. The stresses due to other load (e.g. dead loads), are comparatively smaller in magnitude and, therefore, were ignored. Three principal stresses are produced in the wall of the shell du to high pressure, which are:

- Tangential (circumferential or hoop) stress
- Radial stress

Appendix 2

- Longitudinal (axial) stress.

The tangential stresses are of high magnitude. According to Lame's analysis (assuming a fully elastic cylinder) the variation of tangential and radial stresses along the radius, R, of the shell is given by following equations.

Tangential stress $f_{p}=A+\frac{B}{R^{2}}$
Radial stress $\quad f_{R}=A-\frac{B}{R^{2}}$

Longitudinal stress $f_{a}=A$
where A, B are the constants.

The tangential stress may either be tensile or compressive depending on the relative magnitude of the internal pressure. The radial stress is always compressive and the axial stress is tensile. It is assumed that the axial force due to pressure is wholly carried by the wall.

Figure 11 Schematic of the high pressure permeation cell.

If the inner radius of the pressure vessel is R_{1}, the pressure p_{1}, and at the outer radius R_{2}, the pressure is p_{0} (see Figure $1-1$), the constant A and B can be determined as;

$$
\begin{equation*}
A=\frac{R_{1}^{2} \cdot p_{i}-R_{2}^{2} \cdot p_{0}}{R_{2}^{2}-R_{1}^{2}}=\frac{\left(p_{i}-p_{0}\right) \cdot K^{2}}{K^{2}-1} \tag{1.4}
\end{equation*}
$$

where, $K=\frac{R_{2}}{R_{1}}$

$$
\begin{equation*}
B=\frac{\left(p_{i}-p_{o}\right) \cdot R_{1}^{2} \cdot R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}=\frac{\left(p_{i}-p_{o}\right) \cdot K^{2} \cdot R_{1}^{2}}{K^{2}-1} \tag{1.5}
\end{equation*}
$$

It is important to note that the tangential and radial stresses consist of a pure shear stress ($q=-B / R^{2}$) with a superimposed hydrostatic stress, A. The maximum values of stresses depend only on the ratio of the radii and not on the absolute magnitude. In many cases only the internal pressure, p_{i}, is present and the above equations $I .1$ and I. 2 at the inner surface (i.e. $R=R_{1}$) are therefore simplified to;

$$
\begin{align*}
& f_{p}=A+\frac{B}{R^{2}}=\frac{R_{1}^{2} \cdot p_{i}}{R_{2}^{2}-R_{1}^{2}}\left(1+\frac{R_{2}^{2}}{R_{1}^{2}}\right) \tag{I.6}\\
& f_{R}=A-\frac{B}{R^{2}}=\frac{R_{1}^{2} \cdot p_{i}}{R_{2}^{2}-R_{1}^{2}}\left(\frac{R_{2}^{2}}{R_{1}^{2}}-1\right) \tag{1.7}\\
& f_{a}=A=\frac{R_{1}^{2} \cdot p_{i}}{R_{2}^{2}-R_{1}^{2}} \tag{I.8}
\end{align*}
$$

1.5. Application to Permeation Cell Design

1.5.1. Design based on Tangential Stress

The thickness of the cylinder can be determined on the basis of the maximum tangential stress at inner surface of the cylinder. The equation 1.6 can be written in terms of thickness (i.e. $t=R_{2}-R_{1}$) as;

$$
\begin{equation*}
f_{p(\text { max })}=\frac{p_{i}}{t}\left(\frac{R_{1}^{2}+R_{2}^{2}}{R_{1}+R_{2}}\right) \tag{I.9}
\end{equation*}
$$

If f_{p} is taken as the allowable tensile stress, f, then;

$$
\begin{equation*}
t=R_{1}\left(\sqrt{\frac{f J+p_{i}}{f J-p_{i}}}-1\right) \tag{I.10}
\end{equation*}
$$

where J is the joint efficiency.

The above equation 1.10 was used to calculate the thickness of the permeation cell based on tensile stress at the inner surface of the cylinder. The joint efficiency, J, was assumed to be 0.9 for the welded cylinders. For the maximum operating internal pressure, $p_{i}, 60$ bar (6 MPa), and internal radius, $R_{1}, 4 \mathrm{~cm}$, the thickness of the permeation cell is;

$$
t=4\left(\sqrt{\frac{620.528 \times 0.9+6}{620.528 \times 0.9-6}}-1\right)=0.0432 \mathrm{~cm}
$$

1.5.2. Design Based on Shear Stress

The another approach to design is based on the maximum shear stress produced at any point on the wall of the permeation cell, which is given by;

$$
\begin{equation*}
f_{s(\max)}=\frac{1}{2}\left(f_{p}-f_{R}\right) \tag{I.11}
\end{equation*}
$$

The limit of elastic action occurs when

$$
\begin{equation*}
f_{s} \text { (at yield point) }=\frac{1}{\sqrt{3}} f_{y p} \text { (direct tensile stress at yield point) } \tag{I.12}
\end{equation*}
$$

If the cylindrical shell is to be designed within the limits of elastic action, the maximum internal pressure at the inner radius is given by;

$$
\begin{equation*}
p_{\max }=\left[\frac{1}{\sqrt{3}} f_{y p} \cdot \frac{K^{2}-1}{K^{2}}\right] \tag{I.13}
\end{equation*}
$$

For purpose of design a factor of safety should be used to get the allowable stress. The value of K can then be determined as;

$$
\begin{equation*}
K=\sqrt{\frac{f}{f-p_{i} \sqrt{3}}} \tag{I.14}
\end{equation*}
$$

and

$$
\begin{equation*}
t=R_{1}(K-1) \tag{I.15}
\end{equation*}
$$

from the above equation I.14, the value of K is;

$$
K=\sqrt{\frac{620.528}{620.528-6 \times \sqrt{3}}}=1.00848
$$

and the thickness of the permeation cell is (from the equation I.15);

$$
t=4 \times(1.00848-1)=0.0339 \mathrm{~cm}
$$

1.6. Gasket

Gasket, also known as static seal, was used to make a pressure-tight joint between upstream and downstream of the permeation cell. Flat ring rubber gaskets were cut from a Buna rubber sheet were interposed between the upstream and downstream sections and were held tight by six M10 bolts and nuts.

1.7. Threaded Fasteners

Bolts and nuts were used for fastening and making detachable joints between upstream and downstream sections of the permeation cell. In the current design, M10 bolts and nuts were used to fasten upstream and downstream section. The size of the bolt is specified by the external diameter of the thread and the length is measured under the head.

The minimum bolt load and the number and size of the bolts were determined from the following equations (in terms of the size of the gasket);

At atmospheric conditions

$$
\begin{equation*}
W_{m_{1}}=A_{g} \times Y_{a}=\pi \times b \times G \times Y_{a} \tag{I.16}
\end{equation*}
$$

where, b is the effective gasket surface width, G is diameter of gasket load reaction, and Y_{a} is the gasket seating stress.

At operating conditions

$$
\begin{equation*}
W_{m_{2}}=A_{g} \times Y_{p}+A_{h} \times p=\pi 2 b G m p+(\pi / 4) G^{2} p \tag{I.17}
\end{equation*}
$$

where m is the gasket factor, $2 b$ is the effective gasket surface width under pressure and p is the design pressure.

The bolt loads $W_{m_{1}}$ or $W_{m_{2}}$ will create a tensile stress in the cross-section of the bolt.

$$
\begin{equation*}
A_{m_{1}}=\frac{W_{m_{1}}}{f_{\mathrm{a}}} \tag{I.18}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{m_{2}}=\frac{W_{m_{2}}}{f_{b}} \tag{1.1}
\end{equation*}
$$

where, $A_{m_{1}}$ and $A_{m_{2}}$ are the cross-section of the bolt, f is the permissible tensile stress, and the subscripts a and b are for under atmospheric and operating conditions, respectively.

Further,

$$
\begin{equation*}
A_{m_{1}} \text { or } A_{m_{2}}=A_{m} \times \text { Number of bolts } \tag{1.2}
\end{equation*}
$$

where A_{m} is the area of the bolt.
The values of $W_{m_{1}}$ and $W_{m_{2}}$ were (calculated using equations I.16 and I.17, respectively) 1477.77 N and 51385.51 N , respectively. In this design, M10 bolts were used to fasten the upstream and downstream sections. Hence, the required number of bolts, calculated using equation 1.20 , were ~ 2.

In order to make the design safe for the extended operation pressure range, the thickness of the permeation cell was extended to 10 mm and the number of the bolts used was 6 .

Appendix 3

CALIBRATION OF PERMEATE SECTION VOLUME

1. CALIBRATION OF PERMEATE SECTION VOLUME

The permeate (downstream) volume was determined with high accuracy using a Manometric Method, and the measured value was confirmed by conducting a single gas permeation measurement with a standard PDMS membrane with known permeability, under similar operating conditions.

1.1. Manometric Method

The operational procedure to measure the downstream volume of the permeation cell using Manometric method is described in details in Section 5.3.2.2.1 (see Chapter 3). The experiment was performed with two sample gas cylinders (10 and $25 \mathrm{~cm}^{3}$), and equation 3.3 (see Chapter 3) was used to calculate the permeate section volume.

For experiment with $V_{1}=10 \mathrm{~cm}^{3}$ sample gas cylinder:

- The pressure in the downstream section (after evacuating the section for 12 hours) before opening the Valve (g), p_{0}, was 0.733 cmHg .
- The atmospheric pressure, p_{1}, monitored at the time of the experiment was 75.95 cmHg (at 18 C).
- The pressure monitored in the permeate section after opening the Valve (g), p_{2}, was 14.921 cmHg .

The permeate section volume (calculated by equation 3.3) was $49.161 \mathrm{~cm}^{3}$. However, to evaluate the actual volume of the permeate section, the additional volumes (e.g. tubing and internal volume of the pressure transducer) were deducted from the calculated value. After precise
measurements and data obtained for the internal volume of the transducer from the pressure transducer manufacturing company, the actual volume of the permeate (downstream) section was $30.0829 \mathrm{~cm}^{3}$.

The experiment repeated for with another sample gas cylinder ($V_{1}=25$ cm^{3}). The permeate section volume obtained with $25 \mathrm{~cm}^{3}$ sample gas cylinder was $48.837 \mathrm{~cm}^{3}$, and the actual downstream section (after deducting additional volumes) was $29.8815 \mathrm{~cm}^{3}$.

The values obtained via Manometric method correspond to the geometrical volume of the downstream (permeate) section volume, which is $29.1855 \mathrm{~cm}^{3}$.

1.2. Gas Permeation Method

To confirm the value obtained for permeate section volume by Manometric method, a single gas permeation test was conducted using a standard circular PDMS membrane having selective PDMS layer thickness $2 \mu \mathrm{~m}$ with the method described in Section 5.3.2.2.2 (see Chapter 3). Nitrogen was used as a permeating gas to conduct an experiment at 2 bar (0.2 MPa) upstream (feed side) pressure and ambient temperature (20 C). The permeability coefficient of nitrogen through PDMS membrane, used to calculated downstream volume, was 240 Barrer (obtained from the manufacturer (GKSS, Germany)).

The downstream section volume was calculated using the equation 3.4 (see Chapter 3). The downstream (permeate) section volume obtained with gas permeation method was $31.1628 \mathrm{~cm}^{3}$, which is also in a close proximity of the geometrical volume of the permeate section.

Appendix 4

CALCULATING POLYANILINE YIELD

CALCULATING THE YIELD OF POLYANILINE POWDER

The percentage yield of the as-synthesised polyaniline powder was calculated by using the following equation.
$\%$ yield $=($ weight of the polymer produced $) /($ weight of aniline used $) \times 100$

The weight of the aniline (monomer) used to synthesise polyaniline was 9.313 g . The weight of polyaniline produced in the first batch (polymerisation reaction temperature $=21 \mathrm{C}$) is $6.43 \pm 0.5 \mathrm{~g}$.

The percentage yield of the polyaniline powder was calculated from the above equation;

$$
\% \text { yield }=(6.43 / 9.313) \times 100=69.04 \%
$$

The weight loss during the washing the polyaniline powder was assumed to be $\pm 0.5 \mathrm{~g}$ for each polyaniline batch, which represents 7% error in the percentage yield calculation.

Appendix 5

ESTIMATING POLYANILINE FILM THICKNESS

ESTIMATING THE POLYANILINE FILM THICKNESS

In this work, 1-methyl, 2-pyrrolidone (NMP) was used as a suitable solvent to prepare polyaniline (EB) membranes. The glass petri dishes (20 cm diameter) were obtained from Glasgerätebau Ochs GmbH, Germany, and used to prepare uniform layers of polyaniline membranes.

The polyaniline films having desired thicknesses were prepared by pouring a known amount of 1% by weight polyaniline emeraldine base solution in NMP onto a glass petri dish followed by evaporating the solvent in a clean vacuum oven. In this work, several polyaniline films having polyaniline layer thicknesses between $14.389 \mu \mathrm{~m}$ and $0.166 \mu \mathrm{~m}$ were prepared. The following Figure IV. 1 shows the relationship between amount of 1% by weight polyaniline solution in NMP used and polyaniline membrane thickness.

Figure IV 1 Graph of polyaniline membrane thickness ($\mu \mathrm{m}$) vs amount of 1% by weight polyaniline solution used to prepare films.

Approximately, $0.16 \mathrm{ml} / \mathrm{cm}^{2}$ of 1% by weight polyaniline solution in NMP was required to prepare a $1 \mu \mathrm{~m}$ thick film.

Appendix 6

CALCULATING PERMEABILITY, IDEAL (PURE GAS) AND REAL (MIXED GAS) SEPARATION EFFICIENCY

1. PERMEABILITY COEFFICIENT

The permeability coefficient of a permeating gas was calculated by using the equation 2.58 (see Chapter 2) that is;

$$
\begin{equation*}
P_{i}=\frac{1}{p_{i, 0}} \times \frac{V_{d} \cdot t_{m}}{R \cdot T \cdot A_{m}} \times\left[\left(\frac{d p_{i}}{d t}\right)_{\text {steady-state }}-\left(\frac{d p_{i}}{d t}\right)_{\text {leak }}\right] \tag{VI.1}
\end{equation*}
$$

where V_{d} is the down stream volume of the permeation cell $\left(\mathrm{cm}^{3}\right), t_{m}$ is membrane thickness (cm), $p_{i, 0}$ is the feed side penetrant pressure maintained in the permeation cell, R is the gas constant ($0.278 \mathrm{~cm}^{3} \cdot \mathrm{cmHg}^{2} \mathrm{~cm}_{\text {sTP }}^{3} \cdot K$), and T represents the absolute temperature $(K) . A_{m}$ is the membrane surface area $\left(\mathrm{cm}^{2}\right)_{\text {, }}$, and $\left(d p_{i} / d t\right)_{\text {steady-state }}$ and $\left(d p_{i} / d t\right)_{\text {leak }}$ are the steady-state rates of pressure rise ($\mathrm{cmHg} / \mathrm{s}$) in the downstream (permeate) volume at a fixed pressure and under vacuum, respectively.

For example, the permeability coefficient for nitrogen (as a permeating gas through self-supported polyaniline film having thickness $2.89 \mu \mathrm{~m}$) can be calculated by substituting all the known parameters, which are;

$$
\begin{aligned}
& V_{d}=48.8365 \mathrm{~cm}^{3} \\
& t_{m}=2.89 \mu \mathrm{~m}=2.89 \times 10^{-4} \mathrm{~cm}, \\
& p_{i, 0}=2 \mathrm{bar}=150.0126 \mathrm{cmHg} \\
& R=0.278 \mathrm{~cm}^{3} \cdot \mathrm{cmHg} / \mathrm{cm}_{\mathrm{STP}}^{3} \cdot \mathrm{~K} \\
& T=293.65 \mathrm{~K} \\
& A_{m}=7.068 \mathrm{~cm}^{2}
\end{aligned}
$$

$(d p / d t)_{\text {steady-state }}$ is the gas permeation rate, which was calculated from the graph of rise in the pressure in the downstream section vs time, and the ($d p / d t)_{\text {leak }}$ was assumed to be zero for all permeation coefficient calculations.

The accumulation (permeation) rate (calculated from the graph of rise in downstream pressure vs experiment time) for nitrogen through self-supported polyaniline membrane was $1.041 \times 10^{-5} \mathrm{cmHg} / \mathrm{s}$.

These values were substituted in the above equation in order to calculate the permeability coefficient for nitrogen through self-supported polyaniline membrane (selective polyaniline film thickness $=2.89 \mu \mathrm{~m}$).

$$
\begin{aligned}
P_{N_{2}} & =\frac{1}{150.0126} \times \frac{48.8365 \times 0.000289 \times 0.00001041}{0.278 \times 293.65 \times 7.068} \\
& =1.71 \times 10^{-11}\left(\frac{\mathrm{~cm}_{\text {STP }}^{3} \cdot \mathrm{~cm}_{\text {polymer }}}{\mathrm{cm}_{\text {polymer }}^{2} \cdot \mathrm{~s} \cdot \mathrm{cmHg}}\right)
\end{aligned}
$$

The permeability coefficient is often expressed with the unit Barrer,

$$
1 \text { Barrer }=10^{-10}\left(\frac{c m_{S T P}^{3} \cdot c m_{\text {polymer }}}{c m_{\text {polymer }}^{2} \cdot s \cdot c m H g}\right)
$$

Hence, permeability coefficient value of nitrogen through self-supported polyaniline membrane was calculated to be 0.0171 Barrer.

2. IDEAL (PURE GAS) SEPARATION EFFICIENCY

The ability of the polymeric membrane to separate gases is characterised by the separation efficiency. Since the downstream pressure is negligible relative to the upstream pressure, the selectivity is commonly expressed by the ratio of the pure gas permeability coefficients for individual components of two gases.

$$
\begin{equation*}
\alpha_{i, j}=\frac{P_{i}}{P_{j}} \tag{VI.2}
\end{equation*}
$$

The permeability coefficients of pure (individual) gases were calculated from equation VI.1. The pure gas permeability of oxygen and nitrogen were 0.098 and 0.0176 Barrers, respectively.

The ideal (pure gas) selectivity for oxygen and nitrogen was calculated from the equation VI. 2 as follows;

$$
\alpha_{O_{2} / N_{2}}=\frac{0.098}{0.0176}=5.56
$$

The pure gas selectivity for oxygen over nitrogen indicates that the oxygen permeates 5.56 times faster than nitrogen through a self-supported undoped polyaniline film.

3. MIXED GAS SEPARATION EFFICIENCY

For mixed gas permeation system, the downstream pressure can not be ignored, henceforth, the real (mixed gas) separation efficiency can be defined by;

$$
\begin{equation*}
\alpha_{i, j}=\frac{y_{i} / y_{j}}{x_{i} / x_{j}} \tag{VI.2}
\end{equation*}
$$

where, y_{i}, x_{i} and y_{j}, x_{j} refer to the mole fraction of component i and j in the product and feed streams, respectively.

For oxygen/nitrogen mixed gas system, molar fractions of oxygen and nitrogen in the permeate side were monitored by the mass spectrometer. The molar fractions of oxygen and nitrogen were calculated from the feed composition. Oxygen and nitrogen molar fractions in the feed (calculated from the feed composition) were 0.467 and 0.533 , respectively. The molar fractions for oxygen and nitrogen measured in the permeate were 0.834 and 0.166 , respectively. The separation efficiency for oxygen/nitrogen mixed gas system was calculated by using equation VI. 2 as follows;

$$
\alpha_{\mathrm{O}_{2} / N_{2}}=\frac{y_{\mathrm{O}_{2}} / y_{N_{2}}}{x_{\mathrm{O}_{2}} / x_{N_{2}}}=\frac{(0.834 / 0.116)}{(0.467 / 0.533)}=5.012
$$

Appendix 7

Appendix 7

CALIBRATION OF MASS SPECTROMETER

The permeation behaviour of a pure gas through membrane depends mainly on the properties of the gas and membrane as well as the feed conditions. In the mixed gas system, the gas transport of a penetrant gas through polymer membrane is affected by the presence of other competitive penetrant gas. In this work, the sampling interface (mass spectrometer) was used for mixed gas experiments ($\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{O}_{2}$, and $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixed gas systems). The calibration curves for $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2} relating the mass spectroscopic intensity and the injected standard gas concentration under the fixed conditions were constructed, and the concentration of the permeating gas (from the spectroscopic intensity) was precisely calculated from the calibration curve. The following Figures VI.1, VI. 2 and VI. 3 show the relationship between the spectrometer intensity and the concentration of the injected standard gas ($\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2}) sample in the feed gases.

Figure VI 1 Straight line plot of N_{2} partial pressure $v s$ concentration of N_{2} in the feed gases.

Figure VI 2 Straight line plot of N_{2} partial pressure vs concentration of N_{2} in the feed gases.

Figure VI 3 Straight line plot of N_{2} partial pressure vs concentration of N_{2} in the feed gases.

Appendix 8

LIST OF PUBLICATIONS

Journals (Refereed)

1. Y. Gupta, K. Hellgardt, R.J. Wakeman (2006), "Enhanced permeability of polyaniline based nano-membranes for gas separation", J. Memb. Sci., 282, 60.
2. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "High-productivity, nanostructured polyaniline membranes for gas separation", Desalination, 199, 474.
3. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "Synthesis and gas transport studies of nano-structured polyaniline membranes", J. Nanoscience and Technology, (submitted).

Conferences (Proceedings)

1. R.J. Wakeman, Y. Gupta, K. Hellgardt (2007), "Polyaniline nanomembranes for gas separations - structure and performance", FILTECH - 2007, Wiesbaden, Germany.
2. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "The potential of polyaniline nano-membranes for gas separations", The $10^{\text {th }}$ Nordic Filtration Symposium, The Nordic Filtration Society, Norwegian University of Science and Technology, Trondheim, Norway.

Technical Conference Presentations

1. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "Enhanced permeability of polyaniline based nano-membranes for gas separation", Advanced Membrane Technology III, Engineering Conferences International Inc., Cetraro, Italy.
2. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "Synthesis and gas transport studies of nano-structured polyaniline membranes", $5^{\text {th }}$ Annual Research Symposium, Fluid Separation Subject Group, IChemE, Sunbury, UK.
3. Y. Gupta, R.J. Wakeman, K. Hellgardt (2006), "High productivity, polyaniline nano-film membranes for gas separations", $17^{\text {th }}$ Annual Meeting, North American Membrane Society, NAMS - 2006, Chicago, USA.

Technical Poster Presentations

1. Y. Gupta, R.J. Wakeman, K. Hellgardt (2005), "Enhanced permeability of polyaniline based nano-membranes", $7^{\text {th }}$ World Congress of Chemical Engineering - Incorporating $5^{\text {th }}$ European Congress of Chemical Engineering, Glasgow, Scotland.

[^0]: Abbreviations: Q, Quinoid unit, B, benzenoid unit

