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Abstract

The aim of this thesis is to develop the Binary Decision Diagram method for the
analysis of coherent and non-coherent fault trees. At present the well-known ite
techmque for converting fault trees to BDDs 1s used Difficulties appear when the
ordering scheme for basic events needs to be chosen, because 1t can have a crucial
effect on the size of a BDD An alternative method for constructing BDDs from

fault trees which addresses these difficulties has been proposed

The Binary Decision Diagram method provides an accurate and efficient tool for
analysing coherent and non-coherent fault trees. The method 1s used for the qual-
itative and quantitative analyses and it is a lot faster and more efficient than the
conventional techniques of Fault Tree Analysis The simplification techmques of
fault trees prior to the BDD conversion have been applied and the method for the
qualitative analysis of BDDs for coherent and non-coherent fault trees has been
developed

A new method for the qualhtative analysis of non-coherent fault trees has been
proposed An analysis of the efficiency has been carried out, comparing the pro-
posed method with the other existing methods for calculating prime implicant sets.
The main advantages and disadvantages of the methods have been identified.

The combined method of fault tree sumplification and the BDD approach has been
applied to Phased Missions This application contains coherent and non-coherent
fault trees Methods to perform their simplification, conversion to BDDs, minimal
cut sets/prime implicant sets calculation, and the mission unreliability evaluation

have been produced
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Chapter 1

Introduction

1.1 Risk and Reliability Assessment

Rehability engineering is a rapidly developing field and is becoming ncreasingly

important in various industries and technologies It provides those theoretical and

practical tools which can specify, design and predict the probability and capabil-

1ty of components and systems to perform their required functions for the desired

period without failure.

Reliability assessment techniques enable the calculation of the probability or fre-

! quency of system failure to be performed There are several measures that can be
| used to quantify system failure, including system rehability, availability and failure
| intensity.

The rehability of a system, R(t), 13 defined as the probability that the system
operates without failure for a specified period of time under stated conditions
The unrehabibity of a system, F(t), 1s defined as the probability that the system
has failed at least once in the interval [0,¢) given that it was working at ¢t = 0
Since both functions are probabilistic.

' R()+ F(t) = 1. (11)

The system avaudabelsty, A(t), is defined as the fraction of total time that the system
is able to perform 1ts required function. The unavadlability, Q(t), is defined as the
fraction of total time that the system has failed and is unable to perform its task

Again, the relationship between the two functions 1s defined as:
Alt) + Q(t) = 1. (12)

1




The unconditional farlure intensity, w(t), 18 the rate that a system fails per unmt
time at time ¢ given that it was working at time ¢ = 0. The rate that a system fails
per unit time at time ¢ given that 1t was working at time ¢ and at time { = 0 is
defined as the conditional farlure rate, A(t). The difference between w(t) and A(t)
is that w(t) is based on the whole population, whereas A(t) considers only those

components that are working at time .

For major hazard assessments risk 1s generally defined as the product of the con-
sequences of a particular incident, C, and the probability over a time period or

frequency of 1ts occurrence, P
R=C-P (1.3)

The risk can be reduced by minimising the consequences of the incident (C) or by
reducing the probability or frequency of its occurrence (P) Rehability assessment
techniques evaluating the frequencies of incidents have been developed and the

most widely used is Fault Tree Analysis, which is considered later in this chapter

After risks are identified and evaluated 1t must be judged if they are ‘accept-
able’ or whether the risk is too high and some modifications to the design of the
system should be made 1in order to improve the system relhiability. Although risks
can be decreased by spending money 1t is not possible to avoid them entirely. The
dafficulty faced by safety assessors is to convince regulators that the safety of a

system 1s at an acceptable level

1.2 Fault Tree Analysis

Fault Tree Analysis was developed by H A.Watson in the early 1960’s. This is
a deductive procedure for determining the causes of a particular system failure
mode and the probability and frequency with which 1t could occur. The fault tree
diagram represents the combinations of component failures and human errors that
could combine to cause system failure. ‘Top event’ describes the system failure
mode and branches below this event describe its causes. The events are redefined

in terms of their causes, until each branch ends with a basic event

Kinetic Tree Theory, the technique for performing the quantitative analysis of
fault trees, was presented in the early 1970’s by Vesely [1]. Various system relabil-

2




[

ity parameters, such as probability of top event existence, frequency of top event
occurrence and component importance measures can be calculated They are used
to determine whether the risk of system failure 1s sufficiently small and therefore

whether or not the system meets the required safety standards

For large fault trees the analysis can become computationally intensive and can
require the use of approximations This 1s the disadvantage of the conventional
method which leads to maccuracies in the calculations This issue has led to the de-
velopment of a new method for analysing fault trees, known as the Binary Decision

Diagram technique

1.3 Binary Decision Diagrams

The Binary Decision Diagram (BDD) technique for Fault Tree Analysis was pre-
sented by Rauzy [2]. This method converts a fault tree to a BDD, which encodes
the logic function of the fault tree. Conventional FTA techniques can be computa-
tionally intensive and sometimes inaccurate. The BDD method is an accurate and
efficient method for system reliability assessment. Firstly, the BDD method pro-
vides an accurate quantification process because no approximations are required.
Secondly the minimal cut sets are not required for the quantification process, there-
fore, it makes the BDD method efficient The qualitative analysis can be performed

and minimal cut sets obtained if required.

The size of the BDD depends upon the order in which the basic events are con-
sidered during the construction process A problem can occur 1f the choice of the
ordering scheme results in a time-consuming construction process and a large BDD.
No one ordering scheme will produce the smallest possible BDD from every fault
tree

When NOT logic 15 included 1n the fault tree structure 1t becomes non-coherent
and 1ts analysis using the conventional techniques to produce prime implicant sets
becomes even more problematic. BDDs offer advantages over the conventional
methods for this class of fault trees. However, alternative techmiques for convert-

ing fault trees to BDDs can improve the efficiency of the approach still further




1.4 Research Objectives

The aim of this research is to improve the techniques which produce BDDs from

fault trees and conduct the analysis. Four aspects are taken into consideration

In the previous research fault trees were reduced (applying reduction and mod-
ulansation) prior to BDD conversion This can be used 1n fault tree quantifica-
tion. The qualitative analysis using BDDs is extended to investigate the use of
these reduced trees The goal of this aspect is to perform the full BDD analysis

and to obtain mimmal cut sets 1n terms of basic events from the reduced fault trees

The second aspect explores a new fault tree to BDD conversion technique, as
an alternative method to the well-known ite technique. The new method is based
on connecting previously generated BDD sections This technique is presented for
the analysis of coherent fault trees Dafferent efficiency measures are used to 1nves-

tigate the optimum connection technique.

The third aspect proposes a new method for converting non-coherent fault trees
to BDDs The new approach utilises a structure where each node contains three
branches. This part of research contamns the comparison of the proposed tech-
nique and the established construction methods of BDDs and the mechamisms of
calculating prime implicant sets It also incorporates some of the methods of the

coherent fault trees while seeking for a better efficiency.

The final part of the research covers some applications of the presented methods

1n system reliability assessment for Phased Missions.




Chapter 2

Fault Tree Analysis

2.1 Introduction

Fault Tree Analysis is the most widely used tool in safety and reliability assess-
ment. It 15 a deductive technique for analysing the causal relationships between
component failures and system faillure The fault tree itself provides a visual rep-
resentation of the structure of the system by expressing a particular system failure
mode in terms of component faillures and human errors. It produces a complete
description of the causes of system failure, which is important during the design
stages of a system, as it allows weak areas to be identified and correction by re-

design.

2.2 Construction of Fault Tree

The system failure mode to be considered is termed the top event and the fault
tree 1s developed 1n branches below this event showing its causes In this way
events represented 1n the tree are continually redefined in terms of lower-resolution
events [3]. This development process is terminated when component failure events,
termed basic events, are encountered. These basic events can be component fail-
ures or human errors FEach fault tree considers only one of the many possible
system failure modes and therefore more than one fault tree may be constructed
during the assessment of any system For example, a typical top event may be
a hazardous event such as explosion or safety system unavailable, a basic event
represents component failures such as pump failure to start or human errors such

as operator failure to respond.




The fault tree diagram contains two basic elements, gates and events. Events
are categorised as either intermediate or basic Intermediate events, which can be
further developed 1n terms of other events, are represented by rectangles in the
tree, basic events cannot be developed any further and are represented by circles
These symbols are shown in Table 2 1. Gates allow or inhibit the passage of fault

Event symbol Meaning of symbol

Intermediate event
further developed by
a gate
é Basic event

Table 21 Event symbols

logic up the tree and show the relationships between the events needed for the oc-
currence of a higher event. The three fundamental types of gates used in fault trees
are the ‘AND’ gate, ‘OR’ gate and ‘NOT’ gate. These gates combine events in the
same way as the Boolean operations of ‘intersection’, ‘union’ and ‘complementa-
tion’ Another frequently used gate 1s the k/n vote gate. This allows the flow of
logic through the tree if at least k& out of n inputs occur. The symbols for the gates
and their causal relations are shown 1n Table 2 2. A system whose failure modes
are expressed only 1n terms of component failures 1s known as a ‘coherent’ system

A ccherent fault tree will contain only ‘AND’ and ‘OR’ logic. If the failure modes
of a system are expressed 1n terms of both component failures and successes it is
referred to as a ‘non-coherent’ system. In addition to the gates used in coherent
fault trees non-coherent fault trees also contain ‘NOT” logic. The work within this

thesis will consider both types of fault trees

Once a fault tree has been constructed for a system two types of analysis can

performed. quahtative and quantitative.

¢ Qualitative analysis involves obtaining the smallest sets of events that com-
bine to cause system failure. In coherent fault trees these are called minimal

cut sets; in non-coherent trees they are called prime 1mplhcants

¢ Quantitative analysis contains calculating the system failure parameters (the

top event probability and frequency) and event importance measures




Gate symbol Gate name Causal relation

QOutput event occurs
if all input ¢vents
accur
sunultaneously

AND gate

Output event occurs
OR gate if at least one of the
tnput events occurs

Qutput event occurs

k Knvote gate | if at least k-out-of-n
nput events occur
nnputs
Output event occurs

Exclusive OR if only one of the
1mnput events occur

Output event occurs
NOT gate if the input event

does not occur

Table 2 2: Common gate types and corresponding symbols

2.3 Qualitative Analysis

Each unique way that system failure can occur 1s a system failure mode and will
mvolve the failure of individual components or combinations of components. To
analyse a system and to eliminate the most likely causes of failure first requires
that each failure mode is identified. One way to identify the system failure modes
18 to carry out a logical analysis on the system fault tree. The system failure modes

are defined by the concepts of cut sets or mimimal cut sets which are defined below

A cut set is a collection of basic events such that if they all occur the

top event also occurs, i e. 1f all components fail the system also fails.

For industrial engineering systems there is generally a very large number of cut
sets each of which can contain many component failure events. However, only lists
of component failure modes are interesting, which are both necessary and sufficient
to produce system failure For example, {a, b, ¢} may be a cut set and the failure of
these three components will guarantee system failure But if the failure of o and b
alone produce system failure this means that the state of component ¢ 1s 1irrelevant

and the system will fail whether ¢ fails or not This leads to the definition of a

7




minimal cut set:

A minimal cut set 18 the smallest combination of basic events, such that
if any of the basic events is removed from the set the top event will not
occur, 1e. if any of the components in the set works the system will
not fail.

Two fault trees drawn using different approaches are logically equivalent if they
produce identical minimal cut sets. The order of a minimal cut set is the number
of components within the set. The first-order minimal cut sets represent single
failures which cause the top event Two-component minimal cut sets {second or-
der) represent double failures which together will cause the top event to occur In
general the lower-order cut sets contribute maost to system failure and 1t 1s with the
elimination of these that effort should be concentrated 1n order to improve system

performance,.

If ‘NOT’ logic is used or implied the combinations of basic events that cause the
top event are called implicants. Minimal sets of implicants are called prime impli-

cants

The minimal cut set expression for the top event (Top) can be wrtten mn the

form
T0p=K1+K2+ .-I-KN, (21)

where K,,2 = 1,..., N are the minimal cut sets (4 represents logical ‘OR’) Each
mimimal cut set consists of a combination of component failures and hence the

general k—component cut set can be expressed as:
K, =T Tg9-..." Tk, (2.2)

where z,,7 = 1, ..., k are basic component failures on the tree (- represents logical
‘AND") In other words, the top event must be transformed to a sum-of-products

form

To determine the minimal cut sets of a fault tree either a top-down or a bottom-up
approach can be used, depending on which end of the tree 1s used to imtiate the
expansion process The top-down procedure is described below and illustrated with

the use of an example. The process starts with the top event, which 1s expanded

8




by substituting in the Boolean events appearing lower down 1n the tree and sim-
phfying until the remaining expression has only basic component failures. Usually
when analysing real fault trees which contain large numbers of repeated events the
expression obtained may not be minimal. Redundancies must be removed from the
expression using the laws of Boolean algebra to allow the extraction of the minimal

cut sets The laws are shown in the next section.

2.3.1 Boolean Laws of Algebra

1. Commutative Laws:

A+B = B+ A (23)
A-B = B. A (2.4)
2. Associative Laws:
(A+B)+C = A+(B+0) (2.5)
(A-B) C = A-(B-C) (2 6)
3. Distributive Laws:
A+(B-C) = (A+B)-(A+0C) (2.7)
A-(B+C) = (A-By+(A-0) (28)
4. Identities.
A+0 = A A0 = 0
" (2:9)
A1 = A A4+1 =
5. Idempotent Laws:
A+ A = A (removes repeated cut scts) (2 10)

A-A = A (removes repeated events within each cut set) (2 11)

6. Absorption Laws:
A+A-B = A (removes non-mimmal cut sets) (212}
A (A+B) = A (2.13)
9




7. Complementation’

A=1-4 (2 14)
A-A =0 (2.15)
@) = 4 (2 16)
8 De Morgan’s Laws
(A+B) = A-B (2.17)
(A-B) = A+B (2.18)

2.3.2 Example - Obtaining the Minimal Cut Sets

The top-down approach for calculating the minimal cut sets 1s demonstrated using
the example fault tree shown in Figure 2 1. Starting with the top event (Top) it 1s

Top

Gl G2

Figure 21 Example fault tree

an ‘AND’ gate with three inputs G1,a and G2. It can therefore be expressed as a
product of these inputs:

Top=G1-a-G2. (2 19)
As G115 an ‘OR’ gate, made up of three events, a,b and ¢, it can be written as:
Gl=a+b+c (2 20)
Substituting this into Top gives:
Top=(a+b+c)-a-G2 (2.21)
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Similarly, G2 can be written as the ‘sum’ of b and d, so T'op becomes
Top=(a+b+c)-a-(b+d) (2 22)
The expression now contains only basic events, so is expanded to give

Top = a-a-b+a-a d+a-b-b+a-b-d+a c-b+ta-c-d (223)
= g-b+a-d+a-b+a-b-d+a-c-b+a-c-d
(asa-a=aand b-b=1"),

which gives the cut sets of the fault tree. These are simply the cut sets expressed 1n
sum-of-products form. Redundancies can then be removed using the 1dempotent

and absorption laws:
Top=a-b+a-d (2 24)

This is the minimal disjunctive form of the logic equation each term of which is a
minimal cut set. For this fault tree there are two mimimal cut sets, both of order

two (i e. they each contain two basic events). These are {a,b} and {a,d}.

A complex system may produce thousands of minimal cut sets. Although the
algorithm 1s not complex the process can be very time-consuming. For this reason
approximations are often implemented which removes the cut sets above a certain
order (for example, above order three) during the calculation process. This approx-
imation reduces the number of computations and the time taken for the analysis
However, this obviously leads to a reduction in the accuracy of the mimimal cut
sets and therefore in the resulting quantitative analysis for which mimimal cut sets

are required.

2.4 Quantitative Analysis

Quantitative analysis of the fault tree allows the calculation of a number of param-
eters which are used to assess the system The top event probability and frequency
are used together with the expected number of occurrences of the top event and

event importance measures to gain a full understanding of the system.

The methods for fault tree quantafication are known as Kinetic Tree Theory [1]
which 15 a time dependent methodology for system evaluation This techmque
forms the basis of the approach used 1n the majority of commercial Fault Tree
Analysis packages '

11




2.4.1 Structure Functions

The structure function is a binary function taking the following values

(2.25)

1 1f the system is failed,
Mﬂ—{ Y

0 1if the system is working,

where x = (z1,%2, .,Z,) is an indicator vector showing the status (working or

failed) of each component

For each system component, 7, the binary indicator varnable, z,, is presented

= { 1 1if component 3 is failed, (2.26)

0 1if component 7 is working.

The structure function for the top event of a fault tree shows the system state in

relation to its components and is given by:

N

$(x) =1~ H(]- - p(x)), (2.27)

=1

where p,(x) is the binary indicator function for each mimimal cut set K,,2 =1 .N:

1 if cut set K, exsts,

p(x) = H z, such that p, = { (2 28)

JeK, 0 if cut set K, does not exist

For the fault tree shown 1n Figure 2 1, which has minimal cut sets K; = {a, b} and

K, = {a,d}, the structure function is given by:
d(x) =1— (1 — 2ozp)(1 — To2q). (2 29)

The probabulity of the top event is given by the expected value of the structure

funection:

Q(t) = E[¢(x)] (2 30)

If each minimal cut set is independent (i e. no event appears 1n more than one cut

set) then 1t is also true that:

El¢(x)] = ¢[E(x)]- (2.31)

Obtaining the expected value of the structure function for independent mimmal
cut sets would sumply be a matter of substituting the probability of failure of each

component mto the structure function and calculating the result. However, the
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minimal cut sets are not usually independent, and so in this case a full expansion

of the structure function and the reduction of the indicator variables (i.e. z, = z7)

must be undertaken.

Applying this to the structure function for the example fault tree in Equation 2 29,

gives:

d(x) = 1= (1= 2oy — TaTp + ToTuTpZy) (2.32)

= ToTd + ToTp — ToTpZy,

using expansion and reduction The probability of the top event 1s then given by

the expected value of this structure function.
Q(t) = P(a}- P(d) + P(a) - P(b) — P(a) - P(b) - P(d) (2.33)

A more efficient method of implementing this uses Shannon’s Theorem.

2.4.2 Shannon’s Theorem

Shannon’s Theorem can be expressed as follows A Boolean function f(x) can be

written as:
f(x) =z, f(1,,x) + %, - f(0,,x), (2.34)
where
T, = l-um, (2 35)
f(]-'nx) = f(xla .,561_1,1,33,,.;.1, .,.’En), (2 36)
J(0,,x) = flz1,. 21,0, T0p1, .. , Zn). (2.37)

f(1,,x) and f(0,,x) are known as the residues of f(x) with respect to z,

The structure function is pivoted around the most repeated variable using Shan-

non’s expansion. This 1s continued until no repeated vanables exist in the residues

Shannon’s theorem can be applied to the structure function given in Equation 2.29.

Pivoting around the repeated variable, a, gives

¢(x) = za[l = (1 =z}l —z4)] + (1 — 2)[0] (238)
= ol — (1 —2)(1 — z4))
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The probability of the top event is therefore given by
Q) = E(¢(x)) (2.39)
= Pa)(1— (1 - P(b)(1 - P(d))).

Expanding this gives exactly the same result shown in Equation 2 33.

2.4.3 General Method for the Calculation of the Top Event
Probability
This general method of calculating the top event probability (i e. the system un-

availability) uses the minimal cut sets obtained from the qualitative analysis [4].

This method can be used whether or not the fault tree contains repeated events

The top event occurs if at least one minimal cut set exists, therefore for a fault

tree that has N mummal cut sets, K,, Q(t) is given by:

Q) = P K.). (2 40)
Expanding gives. )
N N -1
Q@) = Y_PK)-> Y PE.NK,)+ (2.41)

+(-D)¥TP(KiN Ky N...NKy),

where P(K,) 1s the probability of the existence of minimal cut set .

This expansion 1s known as the winclusion-exclusion expansion and generates the
exact probability of the top event existence Consider the example fault tree
shown 1 Figure 2.1, which has minimal cut sets K; = {a,b} and K, = {a,d}
Equation 2 41 gives the top event probability as:

Qt) = P(Ki)+ P(K») — P(K1 N Ky) (242)
= P(a)- P(b) + P(a) P(d)— P(a)- P(b)- P(d),

which is identical to the expression calculated in Equation 2.33.

It 15 usual to have fault trees for engineering systems which result 1n tens of thou-
sands of minimal cut sets Therefore it is impractical 1n these situations to calculate
all terms in the complete expansion. For this reason the calculation 1s sumplified

by the use of approximations
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2.4.3.1 Upper and lower bounds for system unavailability

Truncation of the series in Equation 2 41 at an even-numbered term gives a lower
bound for the top event probability, truncation at an odd-numbered term gives an

upper bound for the top event probability

N N -1 N
D PUG) =D Y PK.NK) < Q) <D P(K.). (2.43)
1=1 =2 =1 2=1

The upper bound 1s known as the Rare Event Approximation, Prg(Top), as 1t 18

accurate 1if the component failure events are rare
N
Prp(Top) =Y P(K,) (2 44)
=1

2.4.3.2 Minimal cut set upper bound

A more accurate upper bound is Minimal Cut Set Upper Bound, Pyosys(Top).
Thas 1s derived as follows

P(system failure) = P(at least one minimal cut set exists) (2 45)

= 1 — P(no mimmal cut sets exist).

Also,

N
P(no mmimal cut sets exist) > H P(mnimal cut set 2 does not exist). (2.46)

=1

Equality exists when no event occurs in more than one cut set.

Substituting Equation 2 46 into Equation 2 45 gives

N

P(system failure) < 1 — HP(minimal cut set 2 does not exist), (247)
=1

which gives the Minimal Cut Set Upper Bound

N
Pucsup(Top) = 1— [ [(1 - P(K,)). (2 48)
=1
It can be shown that
N N
Q) <1-J(1-P(k.)) < P(K,). (249)
1=1 1=1
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2.4.4 Top Event Frequency

The top event frequency 1s another system parameter that can be calculated -
this is useful for systems where unreliability 1s an 1mportant issue. The system
unconditional failure intensity, ws,,(t), is defined as the expected number of times
the top event occurs at time ¢, per umit time Therefore w,y,()dt is the expected
number of times the top event occurs in ¢ to £ + dt For the top event to occur in
the interval [t,¢ + dt) none of the cut set failures can exist at time £, and then at
least one of them must fail in time ¢ to ¢ + dt. This can be written as:

Weys(t)dt = P(A U 6,) (2 50)

where:

A is the event that no minimal cut sets exist at time ¢,

UYL, 6. is the event that one or more minimal cut sets oceur in time t,t+di)

As P(A4) = 1— P(A), the night hand of Equation 2.50 can be written:

N
pAl J6) = Ua) P(A U) (2 51)

=1

where A is the event that at least one minimal cut set exists at %.

Therefore wgy,(t) becomes:

N
Weye(t)dt = Ua ) - P(A| J6,). (2.52)

=1
The first term on the right-hand side gives the contribution from the occurrence of
at least one minimal cut set. The second term gives the contribution of the minimal
cut set occurrence while other mmimal cut sets already exist (1e. the system is
already failed) These terms are denoted by wsys( )dt and wilh(¢)dt respectively to
give:

Ways(t) = wi (1) — wih(2). (2.53)

The terms on the right of the above equation can be expanded using the inclusion-
exclusion principle but as this is a computationally intensive operation, an approx-

imation is required
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2.4.4.1 Approximation for the system unconditional failure intensity

If component failures are rare then mimimal cut set failures will also be rare events.
The term wgf,l(t), which requires mimimal cut sets to exist and occur at the same
time, would become negligible if component failures are unlikely Therefore, an

upper bound for w,ys(t) 1s simply:
Weys(tmor = wii)s(t)- (254)

As wgys(t) can be expanded using the inclusion-exclusion principle the series ex-
pansion is truncated after the first term (as for the top event probability) to give

the Rare Event Approximation:

N
Weys(Dmazdt < Y P(6,) <

1=1

w, (t)dt, (2.55)

M=

where

W, (t) is the unconditional failure intensity of minimal cut set K,

2.4.4.2 Expected number of system failures

The expected number of system failures in time ¢, W(0,t), is given by the integral

of the system unconditional failure intensity 1n the interval t:

W(0,1) = f " waye(as) du (2 56)

For a reliable system the expected number of system failures is an upper bound
for the system unrehiability, F'(t) (ie. F(t) < W(0,t)).

2.4.5 Importance Measures

A very useful piece of information which can be derived from a system reliability
assessment 1s the importance measure for each component or minimal cut set.
An importance analysis is a sensitivity analysis which identifies weak areas of the
system and can be very valuable at the design stage For each component its
importance sigmfies the role that it plays in either causing or contributing to the
occurrence of the top event. In general a numerical value 15 assigned to each basic
event which allows it to be ranked according to the extent of 1ts contnbution to
the occurrence of the top event. Importance measures can be categornized n two

ways: determministic and probabilistic
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2.4.5.1 Deterministic measures

Deterministic importance measures evaluate the importance of a component with-
out considering its probability to fail. One such measure 1s Structural Measure of
Importance It is given by

_ number of critical system states for component 2
" total number of states for the (n — 1) remaining components’

(2 57)

1

A critical system state for component 2 is a state for which the failure of component

2 will cause the system to go from a working to a failed state.

2.4.5.2 Probabilistic measures of system unavailability

Probabilistic measures are generally of more use than deterministic measures 1n re-

liability problems as they take into account the components’ probahlity of failure

Barnbaum’s Measure of Importance 1s also known as the criticality function which
defines the probability that the system is 1n a critical system state for component

1. There are two expressions which can be used to obtain the criticality function
) G.(a®) = Q(L,aft) — (0., a®)) (258)

where

Q(t)  1s the probability that the system fails,
(Lya(t)) ={q, - @-1,1,441,. , ) component ¢ failed,
(0, a(t) = (@1 s Goo1,0, Gups, »Gs) cOmponent ¢ is workmg.

The above expression gives the probability that the system fails with component ¢
failed minus the probability of the system failing with component ¢ working, which
results in the probability that the system fails only if component 2 fails.

b) 0Q(t)

Gi(q(t)) = 30 (2 59)

This is equivalent to Equation 2 58 as the probability function 1s hinear in each

(1)

aQ(t) — Q(lz: Q(t)) — Q(O;,Q(t))
B, () 1-0 '

(2 60)

This measure importance forms the basis for many importance measures.
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In terms of Birnbaum’s measure of component reliability importance, the expected

number of system failures can be calculated as.
t n
W0 = [ 3" Gilattuu) (261)
0 1=1

where w,(f) denotes the component unconditional failure intensity and n denotes

the total number of system components.

Critrcality Measure of Importance calculates the probability that the system 1s
in a cnitical state for component 2 and that 2 has failed Unlike Birnbaum’s mea-
sure of importance 1t also takes into account the farlure probability of component
1 1tself

. _ Ga(®)a)
TR

Fussell-Vesely Measure of Importance calculates the probability that component ¢

(2 62)

contributes to system failure and 1s defined as the probahility of the union of the

minimal cut sets contaiming ¢, given that the system has failed-

 PWUpex, )
=T Q0

This measure gives very similar importance rankings to those obtained using the

I, (2.63)

criticality measure,

Fussell-Vesely Measure of Minimal Cut Set Importance ranks the minimal cut sets
in the order of their contribution to the top event, rather than considering the
individual components. It is defined as the probability of existence of the cut set

1, given that the system has failed

L= . (2 64)

2.5 Simplification of the Fault Tree Structure

Fault trees can be very large and their qualitative and quantitative analyses time-
consuming. Therefore two pre-processing techniques can be apphed to the fault
tree 1 order to obtain the smallest possible subtrees [5] The first stage of pre-
processing is a reduction, techmque used 1n the Faunet code [6], which restructures

the fault tree to 1ts most concise form, Once this has been applied it is possible to
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simplify the analysis further by identifying independent subtrees (modules) within
the fault tree that can be treated separately The Rauzy’s algorithm [7] is an
extremely efficient method of modularnsation and forms the second stage of fault
tree pre-processing. This results i a set of independent fault trees each with the
simmplest possible structure, which together describe the original system

2.5.1 Fault Tree Reduction

The reduction technique reduces the fault tree to its minimal form so eliminating

any ‘noise’ from the system without altering the underlying logic

2.5.1.1 Introduction

Fault trees are rarely written in their most concise format and this can have a
significant effect on the efficiency of the resulting analysis Their complexity can be
reduced by applying fault tree reduction techniques, which optimise the structure of
the tree whilst retaining the underlying logic One such technique is the reduction

approach, which 1s applied in four stages

2.5.1.1.1 Reduction technique

This method of fault tree reduction consists of four stages.

1. Contraction
Subsequent gates of the same type are contracted to form a single gate. This
gives an alternating sequence of ’AND’ gates and 'OR’ gates throughout the

tree

2 Factorisation
Pairs of events that always occur together in the same gate type are 1dentified.

They are combined to form a single complex event.

3 Extraction

The two structures shown in Figure 2 2 are 1dentafied and replaced as shown

4. Absorption
The structures in the fault tree are identified that could be further simplified
through the application of the absorption and idempotent laws to the fault
tree logic. If primary and secondary gates with an event in common are of

a different type, the structure is simphfied by removing the whole secondary
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gate and its descendants. If primary and secondary gates are of the same type,

the structure is simphfied by deleting the occurrence of the event beneath

the secondary gate. These cases are illustrated in Figure 2.3

A e
—

. restructure .
—_—

Figure 2.2: The extraction procedure

Primary Pnmary
—p -+ Pnmary Primary
gae gate gale —% -~ cale
» R

Secondary __, Secondary . Sccondary
gate galc gate

Figure 23 The absorption procedure

The above four steps are repeated until no further changes are possible in the fault
tree, resulting 1n 2 more compact representation of the system.
2.5.1.2 Worked example of the reduction technique

This technique will be applied to the example fault tree It 1s shown 1n Figure 2 4

together with its numerical form at the start of the reduction process




Figure 2.4- Example of fault tree

2.5.1.2.1 Contraction

The aim of the first stage is to identify subsequent gates in the tree structure that
have the same gate type Application of the contraction stage is implemented to

the fault tree shown 1n Figure 2.4.

In this example gate 1003 appears as an wmput to gate 1002 and they both are
‘AND’ gates Gate 1003 only appears once 1n the fault tree data, so 1ts inputs are
directed to gate 1002. Since gate 1004 1s an input to gate 1002 1t is not listed for
the second time. Now gate 1001 appears as an input to gate 1002 and they are
both ‘AND’ gates As gate 1001 only appears once in the fault tree data, its inputs
are directed to gate 1002 The resulting fault tree is shown in Figure 2.5.

2.5.1.2.2 Factorisation

The fault tree now has an alternating sequence of ‘AND’ and ‘OR’ gates and can
be factorised. The input events to each gate are considered one by one, looking for
pairs that always occur together. Once it has been established that they do always
occur together and under the same gate type, a complex event 1s created, which
is numbered from 2000 upwards. The new complex event is recorded together
with the gate type and the two events from which it was formed Application of
factorisation to the fault tree shown in Figure 2.5 gives complex events listed
Table 2.3. The modified fault tree is shown in Figure 2.6.
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Figure 2.5:

1004

[ 1005

1000

1000

The fault tree after contraction

Complex Gate value | Event 1 Event 2
event
2000 AND a b
2001 AND 2000 d
2002 AND 2001 e

Table 2 3. Complex event data after factorisation

1002

(9

1005

1000

Figure 2.6: The fault tree after factorisation
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2.5.1.2.3 Extraction

The extraction process searches for the structures shown 1n Figure 2 2 If the pn-
mary gate has two or more gates as inputs (referred to as the secondary gates)
then the gates are selected in pairs. Both secondary gates are then checked to see
if they are of the same type, but of a different type to the primary gate If so, the
inputs to the secondary gates are checked to see if they have a gate or event in
common If they do then extraction can take place.

Before extraction can occur, however, there may be some necessary adjustments
to be made to the data If the primary gate has more than two inputs then a new
gate must be created which has the same gate type as the primary gate, but which
has the primary gate and all its inputs, except the two secondary gates, as inputs.
This restructures the fault tree into the form required for extraction by using an
equivalent representation. Application of the extraction procedure 1s carried out
on the fault tree shown in Figure 2 6

The only gate that has two or more gates as inputs 1s top gate 1002, whose inputs
are 1004 and 1005 These secondary gates are both of a different type to the pri-
mary gate, and have gate 1000 in common, which can be extracted. In order to
get this tree into the required form for extraction gate 1006 1s generated, as shown

in Figure 2.7. Gate 1002 now only has its two secondary gates as inputs.

A new gate, 1007, is created, which is of the same type as the secondary gates
and has the same common input, 1000, and the primary gate 1002, as 1ts inputs.

The resulting tree is shown in Figure 2 8

It 1s clear from Figure 2.8 that another extraction can also be undertaken. Gates
1000 and 1002 also have event 1 in common, which can be extracted. Since gate
1006 is the same type as the secondary gates, the same common input 1 and the
primary gate 1007 are added to the lst of its inputs The fault tree after the

extraction 1s showed in Figure 2 9.

2.5.1.2.4 Absorption

During the absorption process the repeated events are considered 1n the fault tree

If the type of the primary gate 1s different from the type of the secondary gate,
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005

Figure 2.7: The fault tree during extraction, gate 1006 15 created

the secondary gate 1s deleted If the types of the primary and secondary gates are
the same, the repeated event 1s deleted from the list of the mputs of the secondary
gate. Application of the absorption procedure is carried out on the fault tree shown

m Figure 2.9.

The only repeated event in the fault tree is event 2. The first time it occurs
as an input to the primary gate 1006, which 1s an ‘AND’ gate, and the second time
1t occurs as an input to the secondary gate 1007, which 1s an ‘OR’ gate Since the
types of the primary and the secondary gates are different the secondary gate can
be deleted. The fault tree after the absorption 1s shown in Figure 2 10

Finally, the factorisation can be applied again and it finishes the reduction process

New complex events are shown in Table 2.4, The reduced fault tree is shown in

Figure 2.11 in terms of original gate name and complex event.
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1006

@ O [

1000 1002

Figure 2 8 The fault tree during extraction, gate 1007 1s created

Complex Gate value | Event 1 Event 2
event
2003 AND 2002 f
2004 AND 2003 g

Table 2 4. Complex event data after the second factorisation

2.5.1.3 Reduced fault tree

It can be verified that the reduced tree 1$ equivalent to the original tree by exam-
ining their minimal cut sets. These will be identical for logically equivalent trees.

The original tree has one mimimal cut set of order 6
{f,a,d,b,g,e}. (2 65)
The minimal cut set for the reduced tree is
{2004}. (2.66)

This can be expanded out in terms of the basic events The principle is that ‘OR’
gates increase the number of cut sets, whilst ‘AND’ gates increase the number of
elements in the cut sets Therefore the minimal cut set of the reduced tree can be
expanded to give:
TOP = 2004=2003-g=2002 f-g=2001-e-f.g (267)
= 2000 d e-f-g=a-b-d-e-f-g,
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OO O [

Figure 29 Fault tree after extraction

1006

Figure 2.10: Fault tree after absorption

Top

Figure 2.11: The reduced fault tree

which 1s equivalent to those obtained from the ongnal tree.

Reduction has simplified the example fault tree considerably. In the original fault
tree there were six gates and fourteen events, eight of them different; the reduced
fault tree contains one event However, this method rarely reduces a fault tree to

a single event as 1t did 1n this simple example

Having reduced the fault tree to a more concise form the second pre-processing

technique of modularisation is considered.
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2.5.2 Fault Tree Modularisation

Modulansation methods can be applied to fault trees in order to reduce their com-
plexaty and simplify the resulting analysis The modularisation procedure 1dentifies
subtrees within the fault tree, known as modules. A module of a fault tree 1s a
subtree that is completely independent from the rest of the tree. It contains no
basic events that appear elsewhere in the fault tree The advantage of identifying
these modules is that each one can be analysed separately from the rest of the tree
The results from subtrees identified as modules are substituted into the higher-level

fault trees where the modules occur

Several modularisation techniques are available for detecting fault tree modules
but one of particular interest 1s Rauzy’s linear-time algorithm [7]. The advantage
of this algorithm over other techniques is its efficiency, only two passes through the

fault tree are required 1n order to obtain the modules.

2.5.2.1 Rauzy’s algorithm

Using the linear-time algorithm the modules can be identified after just two depth-
first traversals of the fault tree. The first of these performs a step-by-step traversal
recording, for each gate and event, the step number at the first, second and final vis-
1ts to that node To demonstrate this process refer to the fault tree in Figure 2.12.
Starting at the top event and progressing through the tree m a depth-first manner
the gates and events are visited in the order shown 1n Table 2.5.

Step number | 1 213 |45 |6 718 |9([1011]12]13

node Top| a |[G1| b |G2| c |G4| f | g |G4{G2|G3| d

Step number || 14 [ 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
node e | G3|G1|G2 |G| h |G3|1 G5 | Top

Table 2 5: Order 1n which the gates and events are visited 1n the depth-first traver-
sal of the fault tree in Figure 2.12

Event 1inputs to any gate are considered before the gate inputs. Each gate is vis-
ited at least twice. once on the way down the tree and again on the way back up
the tree. Once a gate has been visited 1t can be visited again, but the depth-first
traversal beneath that gate is not repeated This 1s shown at step 17 and step
20 where gate G2 and G3 are visited again but their descendants (any gates and
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Figure 2.12. Example fault tree to demonstrate the linear-time algorithm

events appearing below that gate in the tree) are not re-visited. The step numbers
of the wisits (first, second and final) are recorded during this traversal and values

for the gates are shown 1n Table 2 6.

Gate Top | G11 G2 | G3|G4| G5
1% visit 1 315 (12| 7|18
2" visit 22 |16 {11 |15 10| 21

Final visit || 22 | 16 { 17 {1 20} 10 | 21

Min 2 4 16 |13 8 |12

Max 21 |17 |10 14 | 9 | 20

Table 2.6: Data for the gates in the fault tree

As gates G2 and G3 are repeated gates the step numbers of the final visit are
different to those of the second visit. The equivalent data for the events is shown
in Table 2.7. It should be noted that the step number of the second visit to each

basic event is equivalent to the step number of the first visit to that event

The second pass through the tree finds the maximum (max) of the last visits
and the minimum (min) of the first visits to the descendants of each gate, these

values are also shown 1n Table 2 6
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Event a|bic|d|e|flglh
1¥tvisit ||[2{4(6|13[14[8[9]19
2™ yisit 2|4 (6|13[14[(819(19

Finalvisit || 2 46|13 (1489 |19

Table 2.7. Data for the events in the fault tree

The principle of the algorithm is that if any descendants of each gate has a first
visit step number smaller than the first visit step number of the gate then 1t must
occur beneath another gate. Conversely, if any descendant has a last visit step
number greater than the second visit step number of the gate, then again it must

occur elsewhere in the tree.

Therefore, a gate can be identified as heading a module 1f

¢ The first visit to each descendant is after the first visit to the gate,

¢ The last visit to each descendant is before the second visit to the gate.

That 18, none of the descendants of a gate can appear anywhere else 1 the tree
(unless beneath another occurrence of the same gate). Therefore, the final step of
the algorithm simply compares the minimum (min) and maximum (max) values
of the descendants visit numbers with the first and second visit step numbers for

each gate.

From Table 2.6 it can be seen that gate G1 cannot be a module as 1ts descen-
dants have a maximum step number greater than the second visit step number of
this gate Gate G5 1s also not a module as 1ts descendants have a mimmum step

number smaller than the first visit step number of the gate

The following gates can therefore be identified as heading modules
Top, G2,G3, G4. (2 68)

The top event will always be a module of the fault tree Each of the subtrees can
be replaced by a single modular event in the fault tree structure and are assigned
the following labels

G2 — M1,G3 — M2,G4 — M3. (2 69)
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Four separate fault trees as shown in Figure 2 13 now replace the single tree shown

in Figure 2 12

Top

0
@[] @ [
-

M,

M, G2 M

G3 G4

Figure 2 13 The four modules obtained from the fault tree shown 1n Figure 2.12
- Modularised fault tree, Module M;, Module M, and Module M;

Having identified the modules each one can be analysed separately into the higher-
level fault trees where the modules occur. This process can significantly reduce the

number of calculations required in the subsequent analysis.

2.6 Summary

Fault Trees are an extremely good way of representing the failure logic of the
system in a visual format. The qualitative analysis enables minimal cut sets of the
tree to be found, which are the smallest combinations of basic events that cause
system failure. A number of parameters, such as the top event probability and
frequency, together with the expected number of occurrences of the top event and
event importance measures, obtained from the quantitative analysis gain a full
understanding of the system But this analysis has a disadvantage - if the fault
tree 1s large then performing analysis upon it can require extensive calculations.

Approximations are needed for many parameters which leads to a loss of accuracy
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Chapter 3

Binary Decision Diagrams

3.1 Introduction

Binary Decision Diagrams (BDDs) were first used by Lee [8] to represent switching
circmts. Akers [9] introduced BDDs as a method for defining, analyzing, testing
and 1mplementing large digital functions Bryant [10] [11] presented functions by
directed, acyclic graphs 1n a manner similar to the previous representations but
with further restrictions on the ordering of decision vanables in the graph Ini-
tially Schneeweiss [12] presented an algorithm for the production of short disjoint-
products form for a fault tree output function using a sequential binary decision
process The use of BDDs 1n reliability analysis was developed predomnantly by
Rauzy [2], who suggested that they might provide an alternative, more efficient

technique for performing fault tree analysis.

The BDD method does not analyse the fault tree directly, but converts the tree
to a Binary Decision Diagram, which represents the Boolean equation for the top
event. This representation of the logic equation is in a form that is much easier
to manipulate than a fault tree. Both qualitative and quantitative analysis can
be performed on the BDD, with the advantage that exact solutions can be cal-
culated very efficiently without the need for the approximations necessary in the

conventional approach of Kinetic Tree Theory

3.2 Properties of the BDD

A BDD is a directed acyclic graph, which means that all paths through the BDD
are in one direction and that no loops can exist. All paths through the BDD
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termnate in one of two states: either a 1 state, which corresponds to system fail-
ure, or a 0 state, which corresponds to system success. The BDD is composed
of terminal and non-terminal vertices (also called nodes) which are connected by
branches Terminal vertices correspond to the final state of the system (failure or
success) and non-terminal vertices correspond to the basic events of the fault tree.
Each non-terminal vertex has a 1 branch, which represents basic event occurrence,
and a 0 branch, which represents basic event non-occurrence. By convention, the
left-hand branch is a 1 branch; the nght-hand branch 1s a 0 branch The structure
of the BDD is presented in Figure 3.1. The size of BDD is usually measured by its

root vertex

1 branch

4—— termunal 0
node

terminal 1 ——jp
node

Figure 3.1: Example of Binary Decision Diagram

number of non-terminal vertices

All paths through the diagram start at the root vertex and proceed to a terminal
vertex, which marks the end of the path. Each path that terminates in a 1 state
gives a cut set of the fault tree, as that particular combination of component fail-
ures must result in system failure Only vertices that lie on the 1 branches of these
paths are included in the cut sets For example, in the BDD shown in Figure 3 1

there are two possible paths that terminate 1n 1 state These are:
1. a,b
2 @c
which give the two corresponding cut sets
1 {a,b}
2. {c}.

In this example the BDD is in its minimal form and so generates only minimal cut

sets. However, this 1s not usually the case, as 1s discussed later in this chapter.
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3.2.1 Formation of the BDD Using If-Then-Else

This method of constructing the BDD was developed by Rauzy [2] and proceeds
by applying an if-then-else (ite) technique to each of the gates in the fault tree.
The ite structure derives from Shannon’s formula, which is discussed n detail 1in
Chapter 2, Equations 2 34 - 2 37, If f(x) is the Boolean function for the fault tree
top event then by pivoting about any variable X Shannon’s formula can be written

as
fE)=X -fi+X-fo (31)

where f; and f; are Boolean functions with X = 1 and X = 0 respectively, and are
of one order less than f(x). The corresponding ite structure 1s ite = (X, fi, f2),
where X is the Boolean variable and f; and f; are logic functions. This means
that if X fails then consider f;, else consider f,. Therefore, in the BDD structure
JS1 lies below branch 1 of the node encoding X and f; lies below branch 0. This is

shown in Figure 3 2.

fi f

Figure 32 BDD showing ite = (X, f1, fa)

Once a variable ordering has been established, the following procedure can be
implemented to construct the BDD.

¢ Each basic event X is assigned the ite structure ite(X, 1, 0).

Let J and H be two nodes 1n the BDD where:
J = ite(X, Fl, Fg), H= ite(Y, G]_, Gg)

o If X <Y (ie. X appears before Y in the variable ordering) then

J<op>H = ite(X,Fy<op>H,F; <op> H). (32)
e If X =Y then
J<op>H = ite(X,Fy <op>G,F<op>Gy), (33)
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where < 0p > corresponds to a Boolean operation of the gates in the fault tree.

The following 1dentities can also be used to simplify the results:

l<op>H = 1, if <op> is an "OR’ gate (3.4)
l<op>H = H, if <op>is an ’AND’ gate (35)
0<op>H = H, if <op>isan’OR’ gate (36)
O<op>H = 0, 1f <op> isan’AND’ gate (3.7)

An advantage of the ite method for constructing the BDD is that the algorithm
automatically makes use of sub-node sharing. This not only reduces the computer

memory requirements, as each ite structure 18 only stored once, but it also in-

creases the efficiency, since once an ite structure has been calculated the process
| does not need to be repeated.

This ite method can be demonstrated by constructing a BDD from the fault tree

shown in Figure 33. The ordering ¢ < d < a < b represents simple top-down,

TorP

)

1 I
Gl G2

Figure 3.3: Example of fault tree

left-right traversal of the fault tree

(G1 15 expressed as:

Gl = c+d+a (3 8)
= ite(c,1,0) + ite(d, 1,0) + ite(a, 1,0)
= ite(c, 1,ite(d, 1,ite(q,1,0))).
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(G2 15 obtained 1n a similar way and it gives

G2 a+b (39)

= ite(a,1,ite(d, 1,0)).

1

The ite structure for T'op 15 given by

Top = G1-G2 (3 10)
= ite(c,1,ite(d, 1,ite(a,1,0))) - ite(a, 1, ite(h, 1,0))
= ite(c,ite(q, 1,ite(b, 1,0)),ite(d, 1,ite(a, 1,0)) - ite(a, 1, ite(b, 1,0)))
= ite(c,ite(q, 1,ite(b,1,0)),ite(d, ite(a, 1,ite(b, 1,0)), ite(a, 1, 0)))

The BDD 1s constructed by considering branch 1 and branch 0 of each variable in
turn. In this example ‘c’ 1s the first vaniable to be considered and 1t 15 encoded
the root vertex of the BDD. The structure ite(q, 1, ite(d, 1,0)}) lies below its branch
1 and ite(d, ite(q, 1,ite(b, 1,0)),ite(a,1,0)) lies below branch 0 Event ‘d’ 1s the
next variable to be considered and it 15 encoded in the node beneath the right-
hand branch of the root vertex. Its outgoing branches are determined by breaking
down the structure ite{(d, ite(a,1,ite(b, 1,0)),ite(a, 1,0)) into ite(e, 1,ite(d, 1,0))
for branch 1 and ite(a,1,0) for branch 0 This process 15 continued until all
branches end with terminal vertices. The resulting BDD is shown in Figure 3 4
Now both qualitative and quantitative analysis can be carried out on the BDD

Figure 34 BDD obtained from the fault tree in Figure 3 3 using the ite technique

They are presented 1n the later sections
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3.3 Reduction

Fault Tree Reduction, presented in Chapter 2, 1s a powerful method which obtains
a smaller tree in terms of complex events. It 1s expected that a BDD constructed
from a reduced fault tree will be substantially smaller than that constructed from a
non-reduced fault tree The original tree shown in Figure 2 4 was reduced and was
presented 1n Figure 2.11. Since there is only one node in the reduced fault tree,
the BDD from the reduced tree consists of one node only and the ite calculation 1s
applied only once. Obviously, the BDD from the original fault tree would contain
more nodes and require more ite calculations, since there are more than one basic

event in the fault tree before the reduction

3.4 Modularisation

The BDD construction process can be made more efficient by modularising the fault
tree before the conversion procedure takes place. Modularisation 1dentifies inde-
pendent subtrees (modules) within the fault tree that can be analysed separately
from the rest of the tree A detailed discussion of the modulansation technique is

given in Chapter 2.

Modularsation can significantly reduce the complexity of a fault tree by breaking
1t down into smaller, more manageable pieces that can be dealt with separately
In terms of the BDD process, the tree can then be analysed 1n scveral stages by
obtaining smaller BDDs for each subtree These can then be combined to form a
BDD that represents the original fault tree structure. It is possible, therefore, that
a BDD could be constructed for a tree that could not previously be analysed The

process can be demonstrated using the fault tree shown in Figure 3 5.
The modularised tree and modules M1, M2 and M3 are shown in Figure 3 6.

The following modules can be identified:

e TOP itself 15 a module.
e Module M1 is included in the module TOP.
o Module M2 is included 1n the module A1

o Module M3 is included 1n the module M2,
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Figure 3 6 The modularised fault tree and three modules
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To form the BDD from the modularised tree the modules are treated as events
and so need to be ordered together with the basic events. Taking top-down order
M1 < a, the ite structure for the top event can be formed-

TOP

Ml-a (311)
= ite(M1,ite(a,1,0),0).

Each module is then analysed independently to form its own BDD The top-down

orderings for the modules are as follows:

M1 : M2<b (312)
M2 : e<h<e<d< M3 (3.13)
M3 : g<f (314)

which result in the ite structures given by:

M1 = M2+ (315)
= ite(M?2,1,ite(b,1,0))

M2 = G1-G2 (3.16)
= ite(c,ite(e, 1,ite(d, 1,0)), ite(h, ite(e, 1, ite(d, ite( M3, 1,0), 0)), 0)

M3 = g+f (317)
= ite(g,1,ite(f,1,0)).

This corresponding set of BDDs is shown 1n Figure 3 7

3.5 Qualitative Analysis

Qualitative analysis of BDDs 1s an efficient way to obtain the cut sets of the fault
tree, as shown in [13] Every path through the BDD starts from the root vertex and
proceeds down through the diagram to a terminal vertex. Paths which terminate
at a 1 vertex yield the cut sets If the BDD is 1n 1ts minimal form it generates
minimal cut sets. However, this 1s not always the case The cut sets of the BDD

presented in Figure 3 4 are
1. {c,a}
2. {c,b}
3. {d,a}
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Figure 3 7: The BDDs obtained from the modulansed fault tree and three modules

4. {d, b}

5 {a}

The cut sets are not minimal and the BDD is not in 1ts mimimal form. The first
and third cut sets are redundant as they contain the fifth cut set as a subset In
order to obtain mimmal cut sets the BDD has to undergo a mimmmisation proce-
dure. This algorithm, introduced by Rauzy [2], is applied to the ite form of the
BDD and creates a new BDD that exactly defines the minimal cut sets of the fault

tree
Consider a general node 1n the BDD which 1s represented by the function F, where

F =te(z,G, H). (3 18)

If § 15 a minimal solution of G, which is not a minimal solution of H, then the
mtersection of 6 and z ({6} Nxz) will be a minimal solution of F' The set of all the

minimal solutions of F(s0l,,(F)) will also include the minimal solutions of H, so
80lpun (F) = [{8} N 2] U [s0lmun (H))- (3 19)
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The ‘without’ operator was defined by Rauzy, which removes all the paths from
Gmun that are included in Hp,,, In this way the combined set sol,,.,(F) represents
the minimal solutions of F by removing any mimimal solutions of G that are also

minimal solutions of H

This algornithm can be applied to the BDD in Figure 3 4. Each node is consid-

ered 1n turn:

F1 = ite(c, F3,F2) - Event ‘a’ is included in a path on both the one branch
(F'3) and the zero branch (F2) Therefore ‘a’ is removed from the one branch by
replacing the terminal vertex 1 with a terminal vertex 0

F2 =ite(d, F'3, F4) - There are no events included n path on both the one branch
(F3) and the zero branch (F4), because event ‘a’ has been removed from the one
branch already

F3 = ite(a, 1, F5) - F5 does not contain any paths that are included in the one
branch as 1t leads to a terminal vertex.

F4 = ite(a, 1,0) - Both the one and zero branches are terminal.

F5 = ite(b,1,0) - Both the one and zero branches are terminal.

The minimised BDD 1s shown in Figure 38 This produces the following mini-

Figure 3 8: The minimised BDD

mal cut sets

1. {c, b}

2. {d, b}
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3 {a}

Mimimising the BDD has therefore removed the redundant cut sets {c,a} and

{d,a}.

3.5.1 Incorporating Complex Events and Modules into the
Analysis

The following section describes an extension of qualitative analysis, which consid-
ers BDDs encoding complex events and /or modular events produced as part of this
research project, published 1n [14], [15]. The aim of this is to obtain the minimal
cut sets of the system by extracting the minimal combinations of component fail-
ures which produce system failure from every complex and modular event This
1s necessary because when reduction and modularisation are used to construct the
BDDs, it is useful to be able to analyse the system in terms of its original compo-

nents

The calculation process starts at the root vertex of the primary BDD, comput-
ing all the paths that terminate at a 1 vertex, which represent the cut sets of the
system. If any of the constituent events in those cut sets is modular the calculation
is carried out 1 the BDDs of each module. If a complex event 1s included cut sets
are expanded to the onginal basic events by following the rules of obtaining cut
sets for fault trees, presented in Chapter 2. After this the components of the new
expanded cut sets are combined with the primary minimal cut sets. The example

is presented 1n Figure 3 9.

The primary BDD (a) produces the mimimal cut set:
{M1,a}.

Since this minimal cut set includes the event M1 further calculations are carried
out on the BDD of module M1 The minmimal cut sets of module M1 are

1. {M2},

2. {b}.

As one of the components in these minimal cut sets is the modular event M2 the

BDD of M2 (c) must now be investigated Four minimal cut sets are obtained
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Figure 3 9: Example of BDDs for the modules: Primary, M7, M,

1 {ce},
2. {¢,d},

3. {h,e},
4. {h,d,2000}.
This time the complex event 2000 must be taken into consideration Since
2000 = g + f,
this complex event has two minimal cut sets - {g} and {f}. These minimal cut

sets contain only basic events, therefore the calculation is finished

Now all the minimal cut sets must be constructed using the extractions from the
modular (M1 and M2) and complex (2000) events. The substitution of the mini-
mal cut sets of 2000 ({¢} and {f}) into {A, d, 2000} gives two mimmal cut sets

1. {h,d, g},
2. {h,d, f}.

Similar substitutions are done using the minimal cut sets of M2 to find the minimal

cut sets of M1 Finally, the mimimal cut sets are
1. {c,e,a},

2 {e,d,a},
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3. {h,e,a},
4. {h,d,g,a},

5' {h,d,f,a},
6. {b,a}.

These cut sets are minimal because the BDDs of every module underwent the
Rauzy minimisation procedure explained earlier, which gives a minimal form for
the BDDs.

3.6 Quantitative Analysis

The quantitative analysis of BDDs determines many probabilistic properties of the
system. It is an efficient procedure with the advantage that exact solutions can be
calculated without the need for the approximations necessary 1n the conventional
approach of Kinetic Tree Theory In this chapter the current procedures for per-
formng the basic elements of quantitative analysis, such as calculating the system
unavailability, the unconditional failure intensity and the criticality function for

basic events, are explained, as shown in [16]

3.6.1 System Unavailability

The ite structure encoded in the BDD is derived from Shannon’s formula, Equa-
tion 3.1 The probabulity of the top event (1 e system unavailahility) can be found
by taking the expectation of each term of Equation 3 1, to give:

E(f(x)) = @@t} - E(f) + (1 - a.(t)) - E(f2), (3 20)

where ¢,(t} = E(z,), the probability that event z, occurs.

Therefore the probability of occurrence of the top event, Q(t), can be expressed as
the sum of the probabilities of the disjoint paths through the BDD. The disjoint
paths can be found by tracing all paths from the root vertex to terminal 1 vertices
Each disjoint path represents a combination of working and failed components that
leads to system failure. Therefore events lying on both branches 1 and 0 are n-
cluded 1n the probability calculation.
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In order to calculate the top probability, Equation 3 20 can be applied to each
node in the BDD. For any node, F = ite(z,, J, K'), the probability value is given
by:

P(F) = q(t)- P(J) + (1 — a(t)) - P(K), (3 21)
where

P(J) 1s the probabulity value of the node on branch 1 of F,
P(K) 18 the probability value of the node on branch 0 of F

Equation 3 21 15 applied to the BDD 1n a bottom-up manner. Nodes that have
terminal vertices on both their branches 1 and 0 are considered first The values are
then worked up through the BDD until the top event probability can be evaluated

3.6.2 System Unconditional Failure Intensity

It is not possible to use a fault tree to calculate the unrehability for the top event,
i e. the probability that it will not work continuously over a given time period.

However, an upper bound for this is the expected number of top event occurrences,
W(0,1):

W(0,t) = /0 age(2) i, (322)

where wgy(t) 15 the system unconditional failure intensity. This can be expressed

as:
wes(t) = > Gila(t)) w, (3 23)

where G,(q(t)} 1s the criticality function for each component and w, 1s the compo-

nent unconditional failure intensity.

The criticality function G,{(q(t)) 1s defined as the probability that the system is in
a critical state with respect to component 2 and that the faillure of component 2
will then cause the system to go from the working state to the failed state, ie the

probability that the system fails only if component ¢ fails. Therefore:

Gi(a(t)) = QL. q(t)) — Q(0,, a(?)), (324)
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where Q(1,,q(t)) is the probability of system failure with ¢,(t) = 1 and X{0,, q(t))
is the probability of system failure with g,(¢) = 0.

An efficient method of calculating the cnticality function from the BDD considers
the probabilities of the path sections in the BDD up to and after the relevant nodes
For example, consider the variable z,, which occurs at two intermediate nodes 1n
the BDD, as shown in Figure 3.10. @Q(1,,q(t)) and Q(0,,q(t)) can be calculated

Figure 3.10. BDD section showing the locations of variable z,

for this variable using

Q(L,a(t)) =Y _(pre(a(t)) - oz, (a(t))) + Z(a(t)), (3 25)
Q0L a()) = > (prs.(a(t)) - pod, (at)) + Z(a(t)), (3 26)

n

where

prz, (d(t)) - the probability of the path section from the root vertex to

the node z, (set to one for the root vertex),

pol (q(t)) - the probabihity of the path section from the one branch of
a node encoding z, to a terminal 1 node (or the probability value of

the node beneath the one branch of z,),

pol (q(t)) - the probability of the path section from the zero branch of
a node encoding x, to a terrinal 1 node (or the probability value of
the node beneath the zero branch of z,),

Z(q(t)) - the probability of paths from the root vertex to the terminal
1 node that do not go through a node encoding z,,

n - all nodes encoding variable z, in the BDD
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By substituting Equations 3 25 and 3.26 into Equation 3 24, the cniticality function

for each event can be expressed as
Ga(t)) = > pra,(a(t)) [po, (a(t)) — pod, (a(®))] (327)

The values of pr[F], po'[F] and po®[F] (known generally as the ‘path probabilities’)
are calculated during one depth-first pass of the BDD, during which the structure
beneath branch 1 of any node is always fully explored before returning to consider
branch 0. Starting with the root vertex, values of pr[F| are assigned to each node
as the branches are descended. Once the terminal node is reached, the procedure
continues by working back up through the BDD calculating values of po![F] and
po’[F) for each of the nodes

The calculation of the system unavailability can be performed simultaneously, as
po'[F] 1s equivalent to the probability value of the node beneath branch 1 of F,
and po®[F] is equivalent to the probability value of the node beneath branch 0.
Therefore at each stage of the calculation, both the path probabilities and the
terms of Equation 3 21 are evaluated.

The calculation procedure is demonstrated in the following section, by means of a

worked example,

3.6.3 Worked Example

Consider the BDD shown in Figure 3 11. The calculations will be carried out to
yield the system unavailability and unconditional failure intensity. There are four
paths through the BDD that lead to a terminal vertex 1. There are three paths on
branch 1 of node Fl,1e F1—-F2—F3,F1—-F2—-F3—F5and F1— F2— F4,
and one path on branch 0 of node F1,ie F1-— F5.

The calculation results are presented in Table 3 1. The final column of this ta-
ble shows the criticahty values This gives the correct criticality functions for
variables ‘a’, ‘b’ and ‘d’ as they each appear only once in the BDD However, as
variable ‘c’ is encoded in two nodes, ie F3 and F4, their criticality values must

be added to give the total criticality function for ‘c’.

Ge = 001 -a2)+q(1—q) (3 28)
= (1 — 0%a)
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Figure 3 11: Example Binary Decision Diagram

]

Node | Vanable | Probability value pr po1 po_ | Cnticality
F1 a ga (gs (gt (1- q.) 1 qp (gt (1- | g2 | q» (gt (1-g0)qa)
ga+(l-gp) qo) + qc)qu) +(1- +(1-g5)g-qu
(1- g2) g4 gp)qe
F2 b g (g-H1- qc) Ga g+(1-g2 | 4. 7a(1-g2) qa
ga+(1- gs) g. q4

F3 c q-+H1- g.) qu .9 1 g4 2.95(1-g2)
F4 c qdc 4.(1- gp) 1 0 Gall- g5)

F5 d qd 1-g.+ | 0 | 1-gotgage(l- qo)

qdags(l- q.)

The final stage of the analysis 1s to calculate the system unconditional failure

Table 3.1 Quantitative results for the BDD 1n Figure 3 11

intensity, which is given by:

Woys(t)

The analysis so far has considered BDDs contamning only basic events, but this

= Gawa + beb + Gcwc + Gawg

(3 29)

= Wo(ge + @a(1l ~ gc) — qa) + wo(ga (1 — ge}aa) + we(ga(l — goga))
+ wa(l — ¢ + @aa(l — ¢.)).

could be extended to incorporate both complex events and modules.

3.6.4 Incorporating Complex Events and Modules into the

Analysis

The following section describes the extension of the quantification methods to

consider BDDs encoding complex events and/or modular events The aim of the
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analysis 18 to obtain not only the system unavailability and unconditional failure
intensity, but to be able to extract the criticality function for the basic events that
contribute to the complex events and modules This 1s essential since, because
reduction and modulansation may be used to simphfy the original fault tree, it
must be possible to analyse the system in terms of its original components. The

approach was developed by Reay and Andrews [17].

3.6.4.1 Overview of the calculation procedure

The calculation process starts at the root vertex of the primary BDD and proceeds
down through the branches, calculating the probabilities of the paths from the root
vertex to each of the nodes The unavailability of each encoded event is required as
it enables the calculation of pr[F] for the nodes beneath to be performed. There-
fore the probabilities of both the complex and modular events are necessary for

the analysis

Values of po![F] and po®[F] are calculated for the nodes on the way up through the
primary BDD If a node is encountered, that encodes either a complex or modular
event, then the complex event or module must be analysed in order to assign ap-
propriate values of pr[F], po![F] and pc®[F] to its component nodes This allows
the calculation of the criticality functions of the basic events containing complex

events and modules

The criticality functions of basic events encoded within the primary BDD are
calculated according to Equation 3 27 at the end of the analysis once the path
probabilities of the nodes have been evaluated The cnticality functions of all
basic events are then used together with their unconditional failure intensities to

calculate the system unconditional failure intensity.

It is also possible to calculate wsy,(t} by considering only the events encoded 1n
the primary BDD This would require both the criticality functions of any encoded
modular and complex events and their unconditional failure intensities. Although
these are relatively simple to calculate they are values that have no further use
in the analysis Instead the criticality functions of all basic events are calculated,
which allows the analysis of the contributions to system failure through component

or basic event importance measures.
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The techniques for calculating the complex and modular event probabilities and the
criticality functions of their constituent basic events are described in the following

sections

3.6.4.2 TUnavailability of complex and modular events

The probabilities of the complex events are calculated as they are formed, which
ensures the process is as efficient as possible. Determining their probabilities is
a straightforward procedure, as they are only a combination of two component
events. The calculation depends on whether the events were combined under an
‘AND’ gate or an ‘OR’ gate, so for a complex event X, that has constituent events
X; and X5, the unavailability 1s given by

‘AND’ gate g, = qigo, (3 30)
‘OR’ gate ¢ =¢q1 + ¢2 — 142 (3 31)

The probabilities of the modular events are not calculated before the quantitative
analysis takes place, but are determined as and when required during the analysis
(once a value has been calculated 1t is stored for later use). The calculation of
the unavailability of a modular event is effectively that of finding the probability
of the ‘top event’ of the module A depth-first algorithm is used, which sums the
probabilities of the disjoint paths through the module’s BDD. If another modular
event, x,, 15 encoded within the module the algorithm identifies its root vertex,
M[z,], and proceeds to call itself to calculate the required probability. Thus the
unavailability of modules encoding only basic and complex events will necessarily
be evaluated first

The calculation procedures for evaluating the probabilities of the complex and
modular events are thercfore relatively straightforward. At this stage they could
be used alone to determine the system unavailability by performing the depth-first
calculations on the primary BDD only. The calculation of the basic events’ crit-
icality functions does however require further analysis This 1s discussed in the

following sections

3.6.4.3 Criticality of basic events within complex events

Once the path probabilities have been calculated for a node encoding a complex

event that complex event must be further analysed by assigning appropriate values
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of pra,(q), po;, (q) and po; (q) to its component events. Consider a node encoding

the complex event, X, as shown 1n Figure 3.12.

Figure 3.12: A complex event node within a BDD

The two events that combine to form this complex event are joined either by an
‘AND’ gate or an ‘OR’ gate, which gives the possible ite structures and corre-

sponding BDDs as shown 1n Figure 3 13

OO
(x) [ [0 G

AND combmation OR combination

Figure 3.13: The possible BDD structures of a complex event

‘AND": X, = X;- Xo (3 32)
X. = ite(X,, ite( Xz, 1,0),0)
‘OR: Xo= X1+ X, (3 33)

Xc = ite(Xl, 1, ite(Xg, 1, 0))

The complex event node effectively replaces one of these structures in the original
BDD (either the primary BDD or the BDD of a module). In order to evaluate the
path probabilities of the nodes encoding these component events the terminal 1
vertices are simply replaced with the probability of the paths below branch 1 of the
complex event node and the terminal 0 vertices are replaced with the probability
of the paths below branch 0 of the complex event node The probability of the

paths preceding the root vertex does not have the usual value of one but takes
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Figure 3 14: The complex event structure

the value of pr[F] of the complex event node {pr.). This is shown in Figure 3 14
Using Figure 3 14 the values of prg,(q), pol (q) and pol (q) can be calculated for
the variables X; and X,. The resulting expressions are shown 1n Equations 3.34
-3 45.

‘AND’ gate:

X1: pri=pre (3.34)
po; = go + pog + (1 — g2) - pog (3 35)
pol = po} (3 36)
Xz: pro=pre-qi (337)
poy = po, (3 38)
poh = pog (3 39)
‘OR’ gate:
Xy pri=pre (3.40)
poy = po, (341)
pol = g2 - po; + (1 = g2) - po} (3.42)
Xy. pro=pre-(1—q1) (3.43)
poy = po, (3.44)
poh = pog (3 45)

As the events X; and X, may be either basic events or other complex events
this process is repeated until values have been calculated for all contributing basic

events. The criticality functions of the basic events are then calculated according
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to Equation 3.27.

Any complex event can appear more than once in the BDD, resulting in new values
of pre,(q), pol (q) and pod (q) being calculated for its component events on each
occasion The criticahty function for each of the contributing basic events must
therefore be calculated in stages using the newly assigned values each time. Once
this additional criticality value has been calculated for each of the contributing
basic events it 1s added to the current value so that 1t 1s calculated as the analysis
proceeds, rather than as a separate procedure at the end of the analysis as is the

case for the basic events in the primary BDD.

3.6.4.4 Criticality of basic events within modules

Modular events are dealt with in a simlar way to complex events Once the path
probabilities of the modular event are known the module is further analysed to
determine the path probabilities of its component nodes These probabilities must
be assigned as they would have been had the module not been replaced by the
single modular event In order to do this the values of po'[F] and po®[F] of the
modular event node replace any terminal 1 and 0 vertices withm the module and
the probability of the paths preceding the root vertex of the module is assigned
the value of pr[F] of the modular event node. This is shown in Figure 3 15. Unlike

Prm

Module X,,,

Prm
/ : +
pon po,

1

po, po

Figure 3 15: Replacing a modular event with the entire module structure

complex events the structure of modules is not fixed. They can obtain any number
of events (basic, complex, or indeed other module events), connected by any num-

ber of gates Therefore the path probabilities are assigned to the nodes by means
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of a depth-first process, which 1s capable of dealing with any BDD structure. The
method 1s very sumilar to that used for analysing a single BDD The difference is
that whenever a terminal node is encountered the probability of the paths below
either branch 1 or branch 0 of the modular event node 1s used, rather than a termi-
nal vertex probability values of one and zero Obviously, pr[F] of the root vertex
will also be set to equal the probability of the paths preceding the modular event
node.

As with complex events, the calculations required to obtain the path probahbl-
ities for the nodes within the module must be repeated for each occurrence of
the modular event 1n the BDD These values are used to calculate the additional
contributions to the criticality functions of the basic events that arise due to the

further occurrences of the modular event.

3.6.5 The Algorithm for Incorporating Complex Events and
Modules into the Analysis

The analysis of the primary BDD 1s conducted 1 a similar manner to the analysis
of single BDD structures, except for the processes instigated when a modular or
complex event is encountered As the probabilities of complex events are calcu-
lated as they are formed they are treated as basic events when descending the
BDD. However, once the path probabilities have been evaluated for a complex
event node Equations 3.34 - 3 45 are used to calculate the criticality functions of

1ts constituent basic events.

If a modular event is encountered when descending the BDD the probability of
the modular event 1s evaluated. When ascending the BDD a depth-first algorithm
is used to calculate the criticality functions of the basic events that contribute to
the module.

As the process for determining the path probabilities of the nodes within a module
is so similar to the procedure used for dealing with the primary BDD a separate
algorithm is not needed. The existing method is simply extended to include both

options.
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3.7 Summary

The BDD technique converts the fault tree to a Binary Decision Diagram, which
represents the Boolean equation for the top event. The basic events of the fault
tree need to be ordered before the conversion process takes place The BDD con-
struction process can be made more efficient if the fault trees are reduced and
modularised beforehand Both quahtative and quantitative analyses can be per-
formed on the BDD. The minimal cut sets can be obtained 1f the BDD undergoes
the minimisation process. Both analyses are extended to the BDDs encoding com-
plex and modular events obtained after the reduction and modularisation processes
The extension to the qualitative analysis of BDDs encoding complex and modular

events was conducted as a part of this research
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Chapter 4

Component Connection Method for
Building BDDs

4.1 Introduction

A new construction method of BDDs from fault trees will be presented in this
chapter. It will contain a description of connection and simplification rules with
some alternative strategies for producing a BDD for any logic gate n a fault tree
The efficiency of the new algorithm will be measured by the computational time
taken to convert a fault tree to a BDD, together with the size of the final BDD
and the maximum required size of the dynamic memory data structure during the

process.

4.2 Connection Process

This new proposed method, whose initial idea was presented in [18], for building
BDDs encoding fault trees utilises the same ite structure, which was presented in
Chapter 3, as the way to describe the structure function of the system As a part
of this research, a number of new ways for connecting nodes and merging BDDs
during the conversion process will be presented. This method is an alternative
to applying the ite technique for the conversion of fault trees to BDDs and its

efficiency will be investigated

Before the construction process starts, selection schemes for connecting gate in-
puts expressed as erther basic events or BDDs needs to be established Dafferent
ways for connecting basic events, gates and BDDs will be investigated later in this
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chapter The basic event ordering as required in Rauzy’s method does not neces-
sarily need to be established here because the method can work without following
any predetermined ordering scheme for the whole system

The following rules can be implemented to construct a BDD:

Rule 1. Each input X 1s assigned the ite structure ite(X, 1,0)

Rule 2. If two inputs in a fault tree are inputs to an ‘AND’ gate, their rep-
resenting nodes on a BDD are connected to each other through the 1 branch of the

node For an ‘OR’ gate the nodes are connected through the 0 branch.

Figure 4.1 shows the representation of BDDs for ‘AND’ and ‘OR’ gates with event
mputs X and Y. These two rules explain the main 1dea of a new algorithm, pro-

Figure 4 1. Example for the first and second connection rules

ducing BDDs for every gate

The last connection stage during building the final BDD contains one of two strate-
gies depending on the way that the fault tree 1s traversed during the BDD construc-
tion process There are two types of the traversal: the top-down and bottom-up

approach.

In the top-down approach the BDD construction process is performed for a par-
ent gate, before considering lower levels of a fault tree. Then a BDD, representing
a gate input 1s constructed, a gate node is replaced by its BDD in the BDD struc-
ture of a parent gate. The process lasts until no gate nodes are left in the final BDD.

The bottom-up techmque considers gate inputs to any parent gate in a left-night
way so that a BDD for a subtree of the left-most gate is built before considering
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the remaining gate inputs. Then all BDDs, representing gate inputs of a parent
gate, are merged to obtain the BDD of the parent gate The process 1s over when

the BDDs, representing gate inputs of the top-event, are combined.

Since the nature of the connection process is different for those two approaches,
the third rule 1s explained for ‘AND’ and ‘OR’ gates respectively for each approach.

Rule 3.

Top-down approach.

Rule 3a. During the development of a gate node, which represents an output
to an ‘ANI)’ gate, a structure representing this gate in terms of its inputs is in-
serted into the BDD The BDD structure on the 0 branch of the gate node in the
original BDD is reconnected to every terminal 0 node of the mnserted BDD. The
single terminal 1 node 1n the new AND structure 1s connected to the connection

on the 1 branch of the original node 1t replaced.

Rule 3b. During the development of a gate node, which represents an output
to an ‘OR’ gate, a structure representing this gate in terms of 1ts inputs is inserted
into the BDD The BDD structure on the 1 branch of the gate node in the original
BDD is reconnected to every terminal 1 node of the inserted BDD The single
terminal 0 node in the new OR structure is connected to the connection on the 0

branch of the original node it replaced.
Bottom-up approach. If there are two BDDs, which represent two gate in-

puts of a parent gate, one of them is set to be the main BDD, according to the

rule of selection.

Rule 3a. If two BDDs are inputs to an ‘AND’ gate, the secondary BDD 1s con-

nected to every terminal 1 node of the main BDD

Rule 3b. If two BDDs are inputs to an ‘OR’ gate, the secondary BDD 1s con-
nected to every terminal 0 node of the main BDD.

The applhication of the third rule for the top-down and bottom-up approaches 1s
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explained and applied to an example fault tree, presented in Figure 4 2. The top-

0P

©

G2 G3

Figure 4 2: Example fault tree

down process for the example 1n Figure 4 2 is 1llustrated in Figure 4 3, considering

the left-right variable ordering for every gate in a fault tree, i.e.

Top . a<(Gl,
Gl : ¢<(G2<(G3,
G2 . b<d,
G3 : e< /.

First of all, the inputs of the top event, @ and (G1, are assigned ite structures
with terminal vertices and then they are connected to each other through the 1
branch of node a, as shown in Figure 4 3(z). This results in a BDD with gate
node G1, which 1s replaced by the BDD of gate G1 The replacement for G1 is
formed by connecting the G1 inputs ¢, G2 and (3 in an ‘OR’ chain and results
in the BDD shown in Figure 4.3(z2). This BDD contains two gate nodes G2 and
GG3. The replacement of gate node G2 by its BDD gives the structure presented in
Figure 4 3(z2:). The structure beneath the 0 branch of gate node G2 is reconnected
to every available 0 branch after the replacement. Finally, gate node G3 is replaced
resulting in a BDD which consists of only basic events, as shown in Figure 4 3(wv).
The BDD construction process is finished. Different strategies can be described

for the selection of the order of inputs of each parent gate before the connection
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Figure 4 3: Process of top-down strategy

process. This will be discussed later in this chapter.

The application of the bottom-up technique for the fault tree example in Fig-
ure 4.2 is presented in Figure 4 4. In this example, it has been set that when
combining BDDs representing inputs for gates they are considered 1n a left-right
manner and the left-most BDD is set to be the mamm BDD to which the other is
joined. The left-right vaniable ordering for every gate in a fault tree is considered,
as it was presented for the top-down scheme. First of all, gates G2 and (G3 are
constructed, shown n Figure 4 4(z) and Figure 4 4(:2), building two BDDs, which
are both ‘AND’ chains. Then gate (1 is considered, creating a BDD for its basic

60




0
0
0
[
0
b
1 0
d
0
24
1 o
f 01(f
0 1
0 1
)
1 b
1 0
d
1 0
i e e
1 0 1 0
f 0l f 0
1 0 1 0
1 0 1 0
(vu)

Figure 4 4 Process of bottom-up strategy
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event ¢ in Figure 4 4(222) and establishing 1t to be the main BDD in the process
Two BDDs from Figure 4 4(2) and Figure 4.4(z) are connected one by one on ev-
ery available 0 branch of the main BDD Connecting the BDD of gate G2 on the
only 0 branch of the main BDD results in the BDD with two available 0 branches,
shown in Figure 4.4(2v), where the BDD of gate G3 is connected, as shown in
Figure 4.4(v). Finally, the top event 1s investigated, building a BDD for its basic
event Figure 4 4(ve) and connecting the BDD of gate G1 on the 1 branch of the
main BDD The final BDD is presented in Figure 4 4(wvz)

This completes the connection process However, some simplification rules need to

be applied prior to analysis if there any repeated events in a fault tree

4.3 Rules of Simplification

After every connecting operation the repetition of basic events on any path through
the BDD are checked If there is at least one repeated event, two simplification
rules will be applied:

e Each path starting at the node that represents the first occurrence of a re-
peated event 1n a path, and proceeding to a terminal vertex, must be adjusted
in order to avoid the contradictory states of the event in the BDD. The node,
that represents the second occurrence of the event, needs to be replaced by
the events below it on either its ‘working’ branch or ‘failed’ branch depending
on the component state as specified by 1ts first occurrence 1n the path For
example, if the traverse of the BDD starts with the 1 branch of a node, the
second appearance of that node should be replaced by the BDD structure

below the 1 branch of this second node for consistency.

o If the state of the system 1s the same regardless of the basic event occurrence
or non-occurrence, the insignificant vertex must be removed. In other words,
if the BDD structures below both branches of the node are the same, the
node needs to be replaced by the structure below one of the branches.

In terms of Boolean Laws of Algebra during the simplification process the 1dem-
potent, complementation, identity and distribution laws will be applied Some
examples explain the rules of simphfication in detail. Figure 4 5 presents the first
simplification rule Traversing through the BDD produces the path F1 - F2 - F3 -
F4. The only repeated event 1n this path 1s a, which 1s represented by node F'1 and
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Figure 4 5 Example of the first simphfication rule

F3. Node F'3 needs to be replaced. Since the path traverses the 0 branch of node
F1, F3 is replaced by node F4 which can be reached by traversing the 0 branch of
node F3 In this way redundancies are removed from the Boolean function BDD
structure, f(x). The Boolean function of the first BDD in Figure 4.5 is reduced to
the second one:

flz) = a+@-b-at+a@-b-a-c (4.1)
= a+a-b-c
because
@-a = 0 (complementation), (42)
b-0 = 0 (identity), (4.3)
@-@ = a (1dempotent) (4.4)

+

The second rule 1s shown in Figure 4 6. The system failure does not depend on the
failure or success of event a, i e. the system will fail if b and ¢ fail Therefore, node
F1 is replaced by one of its branches, for example, F2 - F3 Applying Boolean
Laws to the logic function of the BDD gives

flz} = a-F+a@-F (4 5)
= (a+a)-F
- F
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1 0
F2(p Fal'p
1 0 1 0
B 0 cYF5 {o
1 0 1 0
1 0 1 0

Figure 4 6- Example of the second simplification rule

where distributive, complementation and identity laws were used

The second rule 1s also applied to the case when the node has two 1dentical terminal
vertices This situation might appear after applying the first rule if the required
branch of the node with the second repeat leads to a terminal vertex. This case is

shown 1n Figure 4 7

Fl1{ a
1 0
Fl{a
1 F2{ b
1 0
1 0
1 0
F3{ a 0
1 0
Farl . 0
1 0
1 0

Figure 4.7: Example of both simplhification rules

In this situation F'3 needs to be replaced by the terminal 0 which gives a situation

of a node with two identical terminal vertices Therefore node F2 needs to be
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removed This situation can be presented

flz) = a+@-b-a-c (4 6)

= a.

4.4 Properties of the BDD Using the Component
Connection Method

BDDs constructed using the Component Connection Method preserve the main
characteristics as BDDs obtained using the ite method, 1e. since the BDD en-
codes the structure function of the fault tree and paths through the BDD are
disjoint, both qualitative and quantitative analyses can be carried out, as it was

presented 1n Chapter 3

For example, consider the BDD 1n Figure 4.4(viz). For the qualitative analysis
the BDD needs to be minimised using Equation 3 19 and then every path to a
terminal vertex 1 describes a minimal cut set. The minimised BDD 1s shown 1n

Figure 4 8. This minimal disjunctive form of the logic equation gives three minimal

Figure 4.8: Mimimised BDD from Figure 4.4(vtz)

cut sets

{a,c},{a,b,d},{a,e, f} (4.7)
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The quantitative analysis for the BDD 1n Figure 4 4(v22) 15 also considered Ac-

cording to the Equation 3 21, the probablity of system failure can be calculated
as a sum of probabilities of every disjoint path in the BDD. In this case

QW) = @uge+ (1 — @059 + ¢l — ge)a(1 — ga)geqy + (4 8)
2 (1 — ¢c)(1 — @) qegy.

So, the qualitative and quantitative analyses of BDDs obtained using the Compo-
nent Connection Method can be applied in the same way as 1t was shown for the

ite technique

However, BDDs constructed using the Component Connection Method have some
different properties For example, BDDs are not ordered. A specified ordering of
basic events is not required for the method and elements in the BDD appear in the

order that they were considered in the construction process

Also, the Component Connection Method does not use the sub-node sharing method,
therefore, there are some parts in the BDD structure that are repeated but not
shared For example, in Figure 4 4(v2) the structure beneath the zero branch of
node b is identical to the structure beneath the zero branch of node d. In the ite
method the zero branches of nodes b and d would be sharing the same structure
The difference of both techniques in the sub-node sharing property 1s shown in Fig-
ure 4 9 This property of the Component Connection Method might lead to a very
inefficient memory usage. The extension of the Component Connection Method
introducing the sub-node sharing 1s presented 1n the Sub-node Sharing section of

this chapter.

4.5 Measures of Efficiency

The order which gate inputs of a fault tree are considered to produce a gate
BDD (top-down approach) or the order BDDs are considered for the combina-
tion (bottom-up approach) can have a crucial effect on the size of the final BDD
Therefore, efficiency measures are defined in order to be able to compare the differ-
ent strategies proposed later 1n this chapter. Using the obtained information some

indications of optimum selection schemes for the chosen method can be provided.

The size of the final BDD, 1n terms of the total number of nodes in the BDD,
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Figure 4.9: Difference of the two techniques, the sub-node sharing method

is the most important measure of efficiency. This measure helps to 1dentify how
different conversion approaches increase the size of the BDD Despite the accuracy
and the efficiency of the BDD method itself, sometimes the analysis of the sys-
tem still cannot be performed if the conversion process of fault trees to BDDs is
time-consuming. Hence the computer run time, measured 1n seconds, is another
important measure of efficiency that is taken into account. Also, if it 15 required,
the computational time of qualitative and quantitative analyses can be taken into

account.

In some situations, where the size in terms of the number of nodes cannot be
improved using a different strategy, the mazimum required size of array 15 mea-
sured. This number is the size of the array required in the construction process
It is different from the final size of the BDD because along with the number of
actual nodes of the BDD it also contains the number of nodes that were created
during the conversion process but are not required anymore. This measurement is
particularly useful for the efficiency analysis of the Hybrid method, presented later
in this chapter.

The order 1n which the elements are combined to form the BDD must be selected

so that all these measures are minimised as much as possible Ideally, the optimum

selection scheme should enable a BDD of the smallest size, with a minimum re-

67




quired array size in the shortest time. Further research contains the investigation

of different approaches and orderings of elements 1n the BDD construction process.

4.6 Selection Schemes in the Component Connec-
tion Method

In order to convert a fault tree to a BDD by applying the Component Connection

Algorithm presented, it is needed to know the
e Traverse approach (top-down or bottom-up)
e Order of basic events selection
e Order of mnputs selection for the top-down technique
e Order of BDDs selection for the bottom-up technique

The traverse approach, either the top-down or the bottom-up method, can be
chosen to build a BDD. Both strategies will give the same final BDD as long as the
ordering parameters selected remain consistent However, the big advantage of the
bottom-up technique against the top-down is that a smaller memory resource 1s
required This 1s because with the bottom-up method the fault tree is investigated
‘in portions’, 1e. building a BDD for the left-most gate input is finished and
simplifications apphed before the investigation of other inputs. In the top-down
techmque the whole set of inputs for the top event 1s connected and then every
gate node 1s replaced, still trailing the rest of the structure until the last gate node
1s replaced This might have a crucial effect on big fault trees and even cause

memory capacity problems.

4.6.1 Order of Basic Events Selection
4.6.1.1 Order as listed process

The simplest way to select basic events 15 to connect them according to the order
that they appear in the list of gate inputs. This strategy 1s easy to use because
basic events can be connected in the same way as they are presented without using
any processmg to determine the order of events for each gate. The BDDs for gates
G2 and G3 11 Figure 4.3 or in Figure 4 4 were built using this rule.

68




way

4.6.1.2 Defined ordering

Another way to select basic events is to use an ordering scheme for the whole

fault tree, which is determined by traversing a fault tree in a chosen structured

If the ordering of basic events in the system is a < b < ¢ < d .., once the

conversion process of a gate, which contains event inputs, to a BDD takes place, the
nodes on the resulting BDD will be considered according to this ordering, example
in Figure 410 The traverse of the BDD gives the ordering a < b < ¢. Eight

Figure 4.10: Example of ordered traversal of the tree structure

ordering schemes, some previously considered 1n [5| for BDD construction using

the ite method, will be presented and their algorithms will be demonstrated on

the example fault tree, shown in Figure 4.11. The eight ordering schemes are:

1.

2

8

7.

Modified top-down ordering
Modified depth-first ordering
Modified priority depth-first ordering

Depth-first, with number of leaves ordering

. Non-dynamic top-down weighted ordering

Dynamic top-down weighted ordering
Bottom-up weighted ordering

Event cniticality ordering

The names and the algonthms of the ordering schemes are retained from the orig-

inal work. In this research the eight ordering schemes were chosen to test different

conversion techniques and give a range of results for the efficiency analysis. The
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modified methods (which give priority to repeated events in the ordering) were
chosen because of their efficiency while converting fault trees to BDDs. These or-
dering approaches will be demonstrated by application to the fault tree shown in
Figure 4.11

| Tor | Level 1

Figure 4.11: Example fault tree for different orderings

4.6.1.2.1 Neighbourhood ordering schemes

Neighbourhood ordering schemes are very commonly used. They order the van-
ables during a systematic traverse of the fault tree These schemes are likely to
keep the neighbourhoods of the variables, therefore, events appearing close to-
gether in the fault tree structure are also close in the ordering and therefore 1n the
BDD structure The first neighbourhood ordering heuristic to be presented was
the depth-first ordering scheme, which was applied by Rauzy [2] in his introductory
article on using the BDD technique for Fault Tree Analysis. Four neighbourhood

schemes are presented below.
1. Modified top-down ordering

The top-down ordering scheme 1s the most simple technique, ordering the vari-

ables as they appear on a top-down, left-right traversal of the fault tree structure.
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Basic events from the higher levels of the fault tree will be allocated earlier in the
ordering than those from the lower levels of the fault tree According to the mod-
ified top-down scheme variables appearing on the same level of the fault tree are
ordered according to their total number of occurrences in the fault tree, allocating
those with higher occurrence first If there is more than one event with an equal
number of occurrences, then those events are ordered as they appear from left to
right on that level. Each variable is placed 1n the ordering the first time 1t appears

during the traverse; subsequent occurrences are ignored.

This method 15 demonstrated by application to the example fault tree, shown
in Figure 4.11. There are no events to order on the first two levels, so the ordering
process starts on the third level Five basic events appear on this level, which con-
sideration from left to right 1s: ¢, b, @, f and d They need to be ordered according
to their number of occurrences 1n the fault tree. Events ¢, f and d appear the same
number of times (three occurrences), therefore, they remain 1n the left to the night
order in which they are placed. In fact, events b and a both occur two times 1n
the fault tree, so they are ordered after the other three events in the left to right
order. The partial ordering for the third level is:

c< f<d<b<a (49)

Level four is now considered and the only event appearing on this level that has

not been ordered yet 1s event ¢ The ordering then becomes
e< f<d<b<a<e (4.10)

Level five is not considered, as all the events have already been placed in the or-

dering.
2. Modified depth-first ordering

Depth-first ordering considers the fault tree as being made up of many smaller
subtrees, with each subtree ordered in a top-down left-right manner. The left-
most gate is always completely explored before considering the remaining gate
inputs, therefore, the lower levels of left-most subtrees are considered before higher
levels of other subtrees. Any basic event inputs to a gate are ordered before the
gate inputs According to the modified depth-first techmque the basic events with

the greatest number of occurrences are ordered first, but 1f there are two or more
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variables with the same number of occurrences they are ordered as they appear

from left to right in the structure.

The ordering scheme can be applied to the example fault tree in Figure 4.11.
Since the top event has no event inputs, 1ts three gate inputs, G1, G2 and G3, are
investigated 1n turn. The leftmost gate (1 1s considered first Gate G1 has four
event 1nputs so they are considered before gate input G4. Events ¢ and f are the
most repeated events {each appearing three times), therefore they appear before
b and ¢ in the ordering, which both occur twice Event ¢ 1s ordered before f as
it occurs leftmost 1n the list of inputs and event b appears before a for the same

reason. This gives the partial ordering
c< f<b<a (411)

Gate G4 1s considered next, which consists of three events, d, f and e Events d
and e have not been ordered yet, whereas event f has. Event d appears a greater
number of times (three occurrences) than event e (two occurrences) therefore, event
d 1s ordered before e This gives the final ordering:

c<f<b<a<d<e. (4.12)

All the events have been considered, so it is unnecessary to consider gates G2 and
G3.

3. Modified priority depth-first ordering

The prionity depth-first scheme is an extension to the basic depth-first ordering,
where rather than simply ordering the gate inputs from left to right, any gates
which have only basic events as inputs are given preference The modified version
of this method orders basic events according to the number of occurrences, such
that the most repeated event has a prionity If there is more than one variable
with the same number of occurrences, then those variables with equal number of
occurrences are ordered according to their appearance in the fault tree. Events

continue to be considered before any gate inputs

This ordering method can be apphed to the example fault tree (Figure 4.11) n
a similar way to the modified depth-first scheme. The top event has no event

inputs, so 1ts three gate mmputs, G1, G2 and G3, are considered 1 turn As gate
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G2 has no gate 1nputs, it is explored first, i e. the gate inputs to the top event
are considered in the order G2, G1 and G3 Gate G2 contains the events b, ¢ and
d. The most repeated events are ¢ and d (three times), therefore they are ordered

according to their appearance in the list of outputs. This gives the ordering
e<d<b (4 13)

The subtree of the next gate G1 is explored. Its event inputs are considered before
gate mmput. It has two unordered event inputs a and f. They are placed in the
ordering with f first, because this event appears the greater number of times (three

occurrences) than event a (two occurrences) This results in the ordering
ce<d<b< f<a (4 14}

Then gate input G4 is investigated and the last unordered event e 1s placed in the

ordering, to give the final result:
c<d<b< f<a<e (4 15)

All the events have now been considered, therefore no remaining gates need to be

mvestigated

4. Depth-first ordering, with number of leaves

This scheme is an extension to the modified depth-first ordering, with a different
way of choosing the order in which gate inputs are considered. They are chosen
according to the number of ‘leaves’ beneath the gate itself The number of leaves of
a gate is the total number of basic events occurring beneath that gate. The gates
with the smallest number of leaves that have not yet been considered are ordered
first. If there are at least two gates with the same number of leaves, the gate with
the fewest ordered leaves is chosen earlier. If an order still can not be decided,
then the gates are siumply ordered as they appear from left to right in the input
Iist. Events are ordered in the same way as in the modified depth-first method,
thus the most repeated events are chosen first. Again, basic events are considered

before any gate inputs

This technique 1s apphed to the example fault tree shown in Figure 4.11. The
top event has no basic event inputs to order, so 1ts gate inputs G1, G2 and G3 are

considered in turn. The number of leaves, shown 1n Table 4 1, determines the order
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Gl | G2 | G3

Number of unordered leaves | 7 3 5

Number of ordered leaves 0 O 0

Table 4 1: Number of ordered and unordered leaves of gates G1, G2 and G3

in which they are explored. Since G2 has the fewest number of unordered leaves,
1t 18 considered first, followed by G3, then G1. G2 consists of three events b, ¢ and
d, which gives the partial ordering, following the rules of the modified depth-first
method

c<d<b. (4 16)

The subtree of the next gate, G3, 1s now considered Its only unconsidered event

mnput a 1s placed 1n the ordering
c<d<b<a. (4 17)

Then 1ts only gate input G5 15 investigated. Since event d has already been ordered,
the process is carried out on gate input G6. There are two unordered events e and
f. Since event f occurs the greater number of times (three occurrences) compared

to event e {two occurrences), event f is allocated before event e in the ordering:
c<d<b<a< f<e. (418)

This concludes the ordering, so gate G1 is not examined.

4.6.1.2.2 Weighted ordering schemes

Weighted ordering schemes assign weights to the events, which are then used to
determine their position in the ordering These methods do not necessarily keep
neighbourhoods in the same way as neighbourhood ordering schemes, so variables
that appear together in the fault tree structure may not be close 1n the ordering.
There are two categories of weighted ordering schemes: topological schemes, which
determine weights according to the positions of the variables in the fault tree, and
schemes based on importance measures, which determine weights in a way that 1s
not dependent on the manner the fault tree 15 written. Four weighted methods

are presented below, Three of them are topological methods using opposite ends
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of the fault tree to imtiate the weighting process with non-dynamic and dynamic

approaches to calculate the weights and one of them 1s based on the Birnbaum’s

structural importance measure

5. Non-dynamic top-down weighted ordering

The calculation of the weights in this method starts by allocating a weight of
1 0 to the top event and then distributing the weight at each gate equally between
its inputs For the repeated events their corresponding weights are added together

After each basic event has been assigned a weight, the vanables are placed in or-
der of decreasing weight. If two or more events have equal weights, their order is
considered according to their average level of appearance in the fault tree. The
average level is worked out by summing the levels on which the event appears and
dividing this sum by the number of occurrences. Then the event that appears, on
average, on the highest level in the fault tree is allocated earlier in the ordering. If
there is more than one event with the same characteristic the most repeated event
1s chosen. If the events still remain indistinguishable then they are ordered as they

appeared in the modified top-down ordering

Figure 4 12 shows the example fault tree from Figure 4 11 with the assigned weights

for every gate and event.

Weights can be obtained for every variable:

a = 1/15+1/6 = 7/30 = 42/180 (4.19)
b = 1/15+1/9 = 8/45 = 32/180 (4.20)
¢ = 1/15+1/9+1/36 = 37/180 (4.21)
d = 1/45+1/9+ 1/12 = 39/180 (4.22)
e = 1/45+1/36 = 9/180 (4.23)
f = 1/15+1/45+1/36 = 21/180. (4.24)

The events can now be ordered by decreasing weights. There are no events with

equal weights, therefore the summed weights simply give the ordering

a<d<c<b< f<e (4 25)
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Figure 4.12: Assigned weights for gates and events

6. Dynamic top-down weighted ordering

This method follows the same rules as in the non-dynamic top-down weighted
scheme, but once an event has been allocated in the ordering, it is removed from
the fault tree by deleting all 1ts occurrences. Using this modified fault tree, weights
are reassigned from the beginning. This results 1n the selection of another event
and the process continues until all events have been ordered Applying the dynamic
ordering method means that in many cases neighbouring events appear close 1n the

final order

Applying this method to the example fault tree gives the first set of weights as
1in the non-dynamic ordering This means that event a 1s the first to be allocated
in the ordering. Then a 15 removed from the fault tree to give the modified tree,

which is shown in Figure 4 13. The new weights are.
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Figure 4.13: Modified example fault tree after event a has been removed

b = 1/124+1/9=7/36 (4.26)
¢ = 1/12+1/9+1/18 = 9/36 (4.27)
d = 1/36+1/9+1/6=11/36 (4.28)
e = 1/3641/18=3/36 (4.29)
F o= 1/12+1/36+1/18 = 6/36 (4.30)

Event d has the largest weight value, so it 1s placed after event a 1n the ordering.
Continuing the same algorithm, event d is removed from the fault tree and further
weights calculated This process is repeated until all events have been ordered.
There were no situations with more than one vamable with the largest weight
value, therefore events were simply ordered according to their weight values. The

final dynamic top-down weighted ordering is
a<d<c<b f<e (4.31)

7. Bottom-up weighted ordering

This technique starts from the bottom of the fault tree, rather than the top and
in effect calculates weights for the gates, which are then used to determine the
ordering in which they are considered within a depth-first exploration First of all,

a weight of 1/2 1s assigned to each basic event. Then the weights of the gates are
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combined as ‘probabilities’ according to the type of the gate

k(]
‘AND’ gate: P(gate) = Hq,, (4.32)
=1
n
‘OR’ gate: P(gate) =1- H(l - q), (4.33)
1=1

where n is the number of inputs to the gate

Once each of the inputs to the top event has been assigned weights, the tree is
explored in the modified depth-first manner, considering branches with the largest
weight first If gates have the same weight then they are considered according to
the percentage of repeated events below that gate. This 1s calculated by summing
the number of repeated events and dividing by the total number of events below
that gate. The gate with the highest percentage of repeated events is considered
first. But if the percentage is the same for at least two gates they are considered
from left to right as they appear in the fault tree The events of each gate are
ordered before the gate inputs are explored and are ordered according to the high-
est number of occurrences in the fault tree If events occur the same number of

times then they are simply ordered from left to right as they appear in the input list.

This method can now be applied to the example fault tree First of all, every
event 18 given a weight of 1/2 and so the weights of the gates are calculated fol-

lowing Equations 4 32 and 4.33 and presented in Table 4 2. The top event has

e R =
Gl OR | G4,c.b,af | 1217128
G2 OR be,d 28
G3 OR GS,a 23132
G4 AND dfe 178
G5 AND G6, d 7116
G6 OR cef 718

Table 4 2: Weights for gates

three gate inputs, G1, G2 and G3. They are considered n order of highest weight
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according to Table 4 2. In this case 1t gives that those gates are explored in the
same order as they appear in the list, i.e. G1, G2 and G3. Gate G1 has four event
inputs and following the rules of the modified depth-first method gives the partial

ordering:
c< f<b<a. (4 34)

Then gate immput G4 is examined and two unordered events d and e are placed in
the ordering. Event d goes first because 1ts number of occurrences is higher (three
times) than the number of occurrences for event e (two times). This gives the final

ordering;
c< f<b<a<d<e. (4 35)

The subtrees of gate G2 and 3 are not investigated because all the events have

been ordered.
8. Event criticality ordering

This method applies the principle of Birnbaum’s structural importance measure
directly to the fault tree. The contribution of each basic event to the occurrence

of the top event is calculated according to

I = Q(lu 1/2) - Q(Ou 1/2)1 (4 36)
where

@(1,,1/2) is the top event probability with a failure probability of 1 for element @
and failure probabilities of 1/2 for the remaining components and
(0,,1/2) 1s the top event probability with a failure probability of 0 for element ¢

and failure probabilities of 1/2 for the remaining components

The top event probability calculation for this method needs to be fast and approx-
imations are acceptable as 1t is only used to fix the variable ordering. As such all
basic events and gates are assumed to be independent and the probabilities worked

up through the fault tree.

The selected basic event assumes the failure probabilities of 1 and 0 on two consec-

utive computations of the top event probability, with the remaiming components
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being given failure probabilities of 1/2. The result of the second traversal (with a

failure probability 0) is subtracted from the first traversal (with failure probabil-
ity 1) to give Birnbaum’s measure of importance for that component The basic
events are ordered allocating those with a greater contribution before those with
smaller contributions If two events have the same contribution, then the event
with the highest average level of occurrence is ordered first If the events have the
same highest average level the most repeated event is selected first and if they are
st1ll indistinguishable then they are simply ordered as they appear in the modified

top-down ordering.

This scheme can be applied to the example fault tree. The contributions are
shown in Table 4 3. The events are placed in the ordering such that those with

Event Pri;lbli?g lgl&f:\)::::m P}zll)lilr);h glt(l))fs\)::;m Contribution to
failure probability 1 | farlure probability O system failure

a 0875 0341 0534

b 0719 0480 0230

¢ 0750 0459 0291

d 0894 0352 0542

€ 0625 0 564 0061

f 0 656 0526 0130

Table 4 3: Calculated contributions of every basic event to system failure

larger contributions appear earlier than events with smaller contributions. The

event criticality ordering is:
d<a<c<b< f<e (4 37)

All eight ordering schemes can be used to select basic events for every gate
the top-down or bottom-up technique Different schemes will have a different
effect on the efficiency measures. The neighbourhood schemes might be faster,
because no special calculations are needed to be carricd out as for the weighted
schemes. They may also require a smaller number of connections, because the
neighbourhoods of events are kept However, the weighted schemes might result 1n

smaller BDDs, because the most important events will appear on the high level of
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a BDD. Therefore, the simplification rules will be applied high 1n a BDD, which
might result in a smaller BDD. All those assumptions will be tested later in this
chapter.

4.6.2 Order of Inputs Selection for the Top-Down Technique

Before the connection process in the top-down technique, gate inputs need to be
selected 1n the order that they will be connected to represent a BDD of a parent
gate. For the bottom-up method this 1s not an issue, because every gate mnput is

analysed separately.

4.6.2.1 Order as listed process

The simplest way is to connect gate inputs in the way that they appear in the fault
tree This strategy was applied in Figure 4 3, when gate inputs for the construction

process were considered 1n the top-down left-right manner

4.6.2.2 Ordering event inputs before gate inputs

Since the new construction method does not use sub-node sharing, the replacement
process, where new gate BDD structures are incorporated into the existing BDD,
results 1n the duplications of structures which are connected to each 1 branch (for
OR gates) or each 0 branch (for AND gates) The number of duplications can be
mimmised by placing basic events before gate events when considering the inputs

for any gate Compare two cases 1n Figure 4.14

In case (z) the variable ordering is chosen to be a < (1, and during the replacement
of the gate node no duplications occur, because there are no structures beneath
the 1 branch of node G1 to repeat. In case (1) the variable ordering G1 < a results
in the duplication of node a, because node a 1s a structure beneath the 1 branch
of node G1, which is connected to the 1 branches after the replacement Case
(22) results in a bigger BDD The number of nodes in a BDD using the top-down

scheme can be minimised by placing basic events prior to gate events in the BDD
4.6.2.3 Ordering gate inputs according to the number of their event
inputs

The maximum required size for the array can be minimised if gate inputs are se-

lected according to their number of basic events, selecting the gate with the smallest
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Figure 4.14: Process of top-down strategy, different ordering

number of basic events first. Compare two strategies for the example fault tree in

Figure 4.15. The first strategy considers gates G1 and then G2 in a way that they

Figure 4.15- Example fault tree

appear 1n the list of inputs, 1e ¢ < G1 < G2, Figure 4.16. In this case the number
of nodes in the BDD 1s 10. For the second strategy the number of mmputs 1s taken
into consideration. Since gate G'1 has more mputs than gate G2, it 1s placed after
G2,ie. a < G2 < (1, Figure 4 17. The number of nodes 1n the BDD is 9.
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Figure 4 16° Ordering of inputs for the top event 15 a < G1 < G2

If there are no repeated events in the fault tree, this strategy always produces

the smallest size of the final BDD, as 1t was presented in this example.

Even when the top gate has more than one level below 1it, following this rule
minimises the required size for the array The maximum required size of array for
all 6 different possible gate ordering strategies for the fault tree in Figure 4.18 15
presented 1in Table 4 4.

The ordering, which results in the smallest required size, 15 G1 < G3 < G2,

where gate events are placed according to their increasing number of event inputs
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Figure 4.17: Ordering of inputs for the top event is ¢ < G2 < G1

4.6.3 Order of BDDs Selection for the Bottom-Up Tech-
nique

In forming the BDD of a parent gate the BDDs of its input events are merged
together, one at a time A decision needs to be made about the order in which
BDDs, representing the gate inputs, will be merged 1n order to obtain the final
BDD for a parent gate

4.6.3.1 Order as listed process

BDDs can be selected according to the order that gate iputs are listed, 1e. the
BDD, presenting the left-most gate, 15 set to be the main BDD. If a gate has any
event mnputs, their BDD is set to be the main BDD to which the rest of the BDDs
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TOP

Figure 4 18: Example fault tree

Ordering Value
Gl<G2<G3 21
Gl<G3<G2f 19
G2< Gl < G3 24
G2<G3<Gl| 27
G3<Gl<G2| 20
G3<G2< Gl 26

Table 4.4 Maximum required size for 6 different strategies

are connected. An example 1llustrating this strategy 1s presented 1 Figure 4 4.

4.6.3.2 According to a defined ordering of basic events

The main BDD can be chosen according to the position of the top node in the

ordering scheme of the whole system. Some situations are explained below.,

1. The main BDD 1s selected according to the order of their root nodes If two
BDDs need to connected and their top nodes are a and b respectively, the first
BDD is set to be the main BDD, 1f the orderingis ¢ < b < ¢ < d, (Figure 4 19) As

can be seen from this example, the resulting BDD does not necessarily preserve the

same specified ordering scheme throughout the BDD, ie. the final BDD ordering
sa<c<b<d

2. If there are two BDDs with the same root node the decision of which BDD
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Figure 4 19: Example of two BDDs with different top nodes

1s going to be the main BDD is made according to the order of the nodes below on
the 1 and 0 branches A BDD is set to be the main BDD if any of its descendant
nodes appear as the earliest node 1n the ordering scheme. This rule 1s explained by
considering the example in Figure 4.20. Since the ordering1sa < b<c < d < e,
and ¢, the ‘earhiest’ node of the first BDD at the second level, 1s after b, the ‘earli-
est’ node of the second BDD at the second level, therefore, the second BDD 1s set
to be the main BDD. This rule can be applied to the lowest possible level in the
BDD until the choice about the ordering can be made.

Figure 4 20. Example of two BDDs with the same top and different descendants

3. If there are two BDDs with the same ‘earliest’ node at the second level and one
of them consists a node with a terrmnal vertex, the BDD with a terminal vertex is

set to be the main BDD, as shown in Figure 4 21

This strategy keeps variables, which are close in the ordering scheme, close to-

gether m the BDD structure However, when a parent gate contains both event
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(MAIN)

Figure 4 21: Example of two BDDs with some terminal vertices

and gate inputs, 1t does not use the BDD of basic events as the main BDD This rule
was highlighted to be efficient in the top-down approach, where event inputs were
considered before gate mputs, constructing a BDD for the parent gate This aspect
can have a crucial effect on the size of the final BDD. Therefore, while analysing
the efficiency of this strategy, an exception, that the BDD of basic events 1s set to
be the main BDD regardless of 1ts top node label, will be made.

4.6.3.3 According to the number of available branches

BDDs could be selected according to their number of available branches The
number of nodes and the maximum size for the final BDD can be minimised if a
BDD with the smallest number of available branches (potential connection points)
15 set to be the main BDD, when the merging 1s performed. For example, in Fig-
ure 4 22 the BDDs represent gate inputs to an ‘OR’ gate, the first BDD has two
available ‘OR’ branches for connection (two terminal 0 nodes) and the second has
one Therefore, the second BDD 1s chosen to be the main BDD, the final BDD has
four nodes (the structure on the left) instead of six (the structure on the right) if
the second BDD was set to be the main BDD. This rule also covers the previously
mentioned case when a BDD of basic events 1s set to be the main BDD if the parent
gate has some gate inputs. Analysing the efficiency this rule will result 1n not only
the minimum size of array, but also the mmimum final BDD, if no repeated events

appear in the system.

All presented strategies will be investigated and efficiency measures obtained in

the next section
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Figure 4 22: Example of connection process using the number of available branches

4.6.4 Results

Research has been carried out testing all the presented strategies of selecting gates,
basic events and BDDs in order to work out their relative advantages. A specific
approach will work well on some fault trees and not on others It is the performance
of an approach over the range of problems that 1t may encounter that should be
established All algonthms are applied to a library of 265 coherent fault trees.
Characteristics of test fault trees are shown in Tables A.1 - A.6. The first column
is a label to 1dentify an example fault tree, then three following columns present
the complexity of a fault tree in terms of the number of gates, the number of basic
events and the number of repeated events. The fifth and the sixth columns show
the results of the simplification process, presented in Chapter 2, i e. the number of
complex events and the number of modules after the reduction and the modulari-
sation respectively The simplification process is applied in order to maximise the
number of fault trees converted to BDDs because for some ‘large’ fault trees the
conversion process of the original fault tree would be impossible The last column

presents the number of minimal cut sets.
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Example fault trees are categorised as small fault trees (221 F'Ts) and ‘large’ fault

trees (44 FTs) ‘Large’ fault trees are classified as those with a large number of
minmmal cut sets Also, high complexity fault trees, 1.e. with a large number of
gates and non-repeated basic events, are ranked as ‘large’ fault trees These two
properties of fault trees result 1n a time consuming analysis process or even makes
the analysis impossible 1n reasonable times. If results do not appear in 24 hours
(86400s) the conversion process is terminated. It is ‘large’ fault trees which present
the highest degree of difficulty in their analysis. As such it is these fault trees which
will really test the competence of any algorithm.

A major part of ‘large’ example fault trees consists of a benchmark of problems
obtained from Rauzy [19], 1dentified by a star in the column of the FT name in
the complexity Table A.6.

During the analysis every fault tree undergoes the BDD construction process. The
first two parts of the results reported 1n this section examine merits of the top-
down and bottom-up techmques respectively. In those two trials basic events are
sclected as listed or according to one of the eight ordering schemes Gates (top-
down approach) and BDDs (bottom-up approach) are chosen as listed The main
difference between the two chosen trials is the starting point (top or bottom) when
traversing a fault tree. Therefore, the comparison of the two techniques gives an
indication of advantages and disadvantages of the two ways of traversing fault trees
during the BDD conversion procedure The two efficiency measures, the number of
nodes and the processing time, are calculated and analysed and then a comparison

between the top-down and bottom-up techmques is made

The 8 basic event ordening schemes are ranked in order according to the effec-
tiveness of the conversion process that they produce. In some methods ‘0’ ordering
scheme is considered, where elements are considered in the order that they appear
1n the fault tree The performance of the schemes is assessed in three ways Firstly,
the sum of each characteristic measure 1s calculated over the whole set of test fault
trees, for example, the time taken to build BDDs for the whole set of fault trees
is obtained. Secondly, the number of times that each scheme produces the highest
(best) ranking 1s assessed. Finally, the average ranking of each scheme across the

set of fault trees is considered. These measures give an indication of the overall
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performance of the ordering scheme The ordering schemes are ranked for all the
efficiency measures according to their performance on small fault trees, ‘large’ fault
trees and the whole set of fault trees This 1s done in order to be able to 1dentify
the ‘optimum’ ordering scheme for every method in each complexity category if

one exists

4.6.4.1 Top-down technique

Description Gates are selected as listed. Basic events are selected as histed or

according to one of the eight ordering schemes.

4.6.4.1.1 Summary results

Summary details of test results for the fault trces are presented in Tables A 7 -
A 11, which show the number of nodes for small fault trees Table A 12 shows the
number of nodes for the large fault trees. The time taken to perform calculations
for small fault trees is shown 1in Tables A.13 - A.17, together with Table A.18 for
the large fault trees The first column 1n all tables identifies the test fault tree,
then the next 9 columns show the outcome of a particular efficiency measure for
9 different schemes, i e the 8 presented ordering schemes are extended along with
the ‘order as listed’ strategy, called the 0 scheme The last column represents the

best (minimum) result over all ordering schemes.

Summanzing these tables gives that the nine ordering schemes gave 1dentical re-
sults in the number of nodes for 100 small fault trees (out of 221} and 8 ‘large’ fault
trees (out of 44). Out of them 74 small fault trees and 5 ‘large’ fault trees were
simplified so much that their representing BDD contains only 1 node, therefore,
their results will not be taken into account while the conclusions are drawn For

mne ‘large’ fault trees the computations were not possible in reasonable times.

4.6.4.1.2 Variable ordering for the top-down approach

Analysis of the number of nodes in BDDs and processing time for ‘small’, ‘large’
and all example fault trees is presented in this section, applying the three ranking
techniques of the ordering schemes The result of the analysis 1s shown in Table 4 5

and Table 4 6 for the number of nodes and the processing time respectively

First of all, these results show that in almost all the cases any of the eight or-
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Scheme | 0 | 1 2 3 4 5 ) 7 8

Number of nodes 99284 62117 66056 65807 62260 61165 61108 66673 63104

[Total

kuantity
¢ Fanking Rark 9 3 Fi 6 4 2 1 8 5
g Number of FTs
= Hghest fwin the ighest 2 78 67 69 77 88 90 77 93
& peheme rank
"=' ranking
g Rank 9 4 8 7 5-6 3 2 56 1
o :Cdr;i:d Added ranking 910 256 355 328 204 213 233 a0z 227

me
ranking |Rank 9 4 8 7 5 1 3 6 2

nglmhy Number of nodes  {10628393 | 5652002 | 5824414 | 6001786 | 5714308 | 5362361 | 5563721 | 5528696 | 5637389

8 Fankng [Rank 9 5 7 8 6 1 3 2 a |
= Number of FTs
£ Fhighast ik the highest 0 8 6 6 6 14 11 o 12
k! f:::j:; rank
% Rank 9 5 6-7-8 6-7-8 6-7-8 1 3 4 2
o [pdded  |added ranking 204 83 117 118 99 60 70 98
seheme
banking [Rank 9 4 7 8 6 1 2 5
T°‘B'ﬂy Nurnber of nodes | 10727677 | 5714119 | 5890470 | 6067593 | 5776568 | 5423526 | 5614829 | 5595369 | 5700493
« faning_|Rank ) 5 7 8 6 1 3 2 4
2 Number of FTs
& [Hhghest Lk the highest 2 86 73 75 83 102 1™ a6
5 [t fank
= Rank 9 4.5 8 7 8 2 3 4.5
< ladded |added ranking 1114 338 472 446 393 273 303 400

|| ;"ﬁ;"; Rank 9 4 8 7 5 1 3 6

Table 4 5. Top-down method, number of nodes

dering schemes can perform sigmficantly better than the ‘order as listed’ method
In other words, choosing any of the defined ordering schemes in the top-down con-
nection method is more efficient than connecting basic events in the order that

they are hsted Therefore, the ‘order as histed’ method 1s ranked last.

Secondly, the ranking of the other eight ordering schemes (1-8) depends on the
efficiency measure and the ranking technique However, some general remarks can
be made Accordmg to the number of nodes in the final BDD the best performance
was obtained using the two top-down weighted schemes, (5) and (6), and the worst
performance was obtained by the two modified depth-first schemes, (2) and (3)
It is quite clear, that the four weighted ordering schemes (5-8) gave smaller BDDs
than the four neighbourhood ordering schemes (1-4). This can be a valuable result

while choosing the ordering schemes.

Finally, for the processing time the event cnticality scheme (8) and the non-
dynamic top-down weighted scheme (5) were ranked high because they resulted
in a fast conversion process The two modified depth-first schemes, (2) and (3),
performed poorly, however, the distinction in the efficiency between the werghted

and neighbourhood schemes was still present but not as marked as for the number
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|  scheme 0 1 2 | 3 | 4 5 | s | 7 | s
:ﬁﬁm Time 1770 1502 11 91 1114 957 1038 916 1047 a7 |
§rank.ng Rank 9 8 7 6 3 [ 2 5 1
= ighest Number of FTs
E e gnrrkme highest 5 it 3 4 6 8 7 8 1
=™ [Rank 7 1.2 9 8 6 34 5
&Added |aded ranking 525 510 401 416 434 534 a2
lscherme
ks Rank 8 7 2 4 6 9 5
' q_f:‘:lm [Time 42521 | 22173 | 21764 | 22537 | 25215 | 17310 | 23495
Byanking |Rank 9 5 4 6 8 1 7
,:H host Number of FTs
= Highes!
= kcheme ::Elkthe highest 5 11 3 4 -] 8 7
== yankin
S |rank 7 | 12 | o 8 6 | 34 | 5
= :Cdded Added ranking 165 89 114 110 117 20 102
_-ank..,; Rank 9 2 7 ] 8 3 5
;:ﬂa' Time 44291 | 23675 | 22955 | 23651 | 26172 | 18348 | 24411
o Farking Rank 9 -] 4 5 8 1 7
3 Number of FTs
& [Hghest fin the highest 49 51 65 65 63 40 57 74 71
E fandkl"n; rank
= Rank 8 7 3-4 3-4 5 9 6 1 2
< pded “added ranking 690 539 515 526 551 624 530 509 475
[sChame
Fanking JRank 9 8 3 5 7 4 -] 2 1

Table 4 6. Top-down method, processing time

of nodes

4.6.4.2 Bottom-up technique

Description. BDDs are selected as listed. Basic events are selected as listed or

according to one of the eight ordering schemes.

4.6.4.2.1 Summary results

Summary details of test fault trees are presented in Tables A.19 - A 23, which
show the number of nodes for small fault trees and Table A.24 shows the number
of nodes for ‘large’ fault trees Tables A 25 - A 29 show time taken to perform
calculations for small fault trees and Table A 30 show time for ‘large’ fault trees
The representation of results 1s the same as for the top-down strategy

4.6.4.2.2 Variable ordering for the bottom-up approach

Analysis of the number of nodes 1n BDDs and processing time for ‘small’, ‘large’
and all example fault trees is presented in this section, applying the three ranking
techmiques of the ordering schemes The result of the analysis is shown 1n Table 4.7
and Table 4.8.
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| { Scheme [ 0 1 2 | 3 | 4 | 5 | 8 7 | 8
gﬂalﬂ‘nmy Nurmberofnodes | oozgs | 62117 | 66056 | 65807 | 62260 | 61165 | 61108 | 66673 | 63104
& panking Rark 9 3 7 6 4 2 1 8 5
j'é biahast Number of FTs
= Highe:
S kchome w:::nr': the highest 2 78 67 69 77 88 90 77 93
Z fanking
2 Ranrk 9 4 8 7 5-6 3 2 56 1
@ added  |Added ranking 810 256 355 328 204 213 233 302 227
lscheme
[z Rank 9 4 8 7 5 1 3 8 2
fotal  [Number of nodes | 10628393 | 5652002 | 5824414 | 6001786 | 5714308 | 5362361 | 5553721 | 5528696 | 6637389
§rank@g’ Rank 9 5 7 8 6 1 3 2 4
= Number ot FTs
§ :éﬁzm“; :;::( the highest 0 8 6 6 6 14 1 9 12
. fanking
‘é’, Rank 9 5 6-7-8 6-7-8 6-7-8 1 3 4 2
= fded Added ranking 204 83 17 113 99 60 70 98 72
fL_kariing Rank 9 4 7 8 3 1 2 5 a
;ﬁw Nurnber of nodes | 10727677 | 5714119 | 5800470 | 6067583 | 5776568 | 5423526 | 5614829 | 6595360 | 5700403
o Fantung |Rank 9 S 7 8 6 1 3 2 4
] Number of FTs
= Highest uiin the highest 2 86 73 75 83 102 101 B6 105
3 fnh;:‘; rank
p Rank 9 a5 8 7 6 2 3 4-5 1|
< Mm Added ranking 1114 339 472 445 393 273 303 400 299
e 1]
Farking [Rank 9 4 8 7 5 1 3 8 2

Table 4 7 Bottom-up method, number of nodes

Similarly to the top-down approach, these results show that in almost all the cases
any of the eight ordering schemes can perform significantly better than the ‘order as
listed’ method. The ranking of the other eight ordering schemes (1-8) according to
the number of nodes is the same as the ranking of the top-down technique, because
the number of nodes obtained 18 the same 1n the two approaches The smallest
BDDs were obtamned using the two top-down weighted schemes, (5) and (6), and
the largest BDDs were resulted in using the two modified depth-first schemes, (2)
and (3)

For the processing time the event criticality scheme (8) was ranked high and the
two modified depth-first schemes, (2) and (3), performed poorly. However, the
overall ranking of the eight ordering schemes was dependent on the set of fault
trees and the ranking technique chosen, therefore, no further conclusions on the

suitability of the ordering schemes can be drawn.

4.6.4.3 Comparison of top-down and bottom-up technique

The total summary of the performance parameters for both the top-down and the

bottom-up methods during the conversion of 121 small fault trees and 27 ‘large’
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Scheme 0 1 2 3 4 5 6
mm Number of nodes 90284 | s2117 ) 65056 | 65807 | 62260 | 61165 | 61108 | 66673 | 63104
& fanking Rark 9 3 7 8 4 2 1 8 5
£ Number of FTs
£ [Hhahest lwih the highest 2 78 67 69 77 e a0 Fad 93
@ fheme ooy
= fanking
g Rank 9 4 8 7 58 3 2 5-8 1
w ggge Added ranking 910 256 355 328 294 213 233 a0z 227
kanking [Rank 9 4 8 7 5 1 3 8 2
:Sfm oy Number of nodes [ 10628393 5652002 { 5824414 | 6001786 | 5714308 | 5362361 | 5553721 | 5528696 | 5637389
& fanking_[Rank 9 5 7 8 8 1 3 2 4
1)
:'-3 ighast Number of FTs
:_?s lcheme \r‘:;};(the highest 0 8 B 6 6 14 11 g 12
= Fankl
S 9 5 678 | 678 | 678 1 3 4 2
= ?ddedcmme Added ranking 204 83 117 118 ag 80 70 98 72
Fanking [Rank 9 4 7 8 6 1 2 5 3
;‘r‘nm Number of nodes (10727677 | 5714119 | 5850470 | 6067593 | 5776568 | 5423528 | 5614829 | 5595368 | 5700493
o fanking |Rank ] 5 7 8 [ 1 3 2 4
8 Number of FTs
£ Bhghest it the highest 2 86 73 75 83 102 101 86 105
3 schzme rank
ran|
o 25 8 7 8 2 3 45 1
< [Added " |added ranking 1114 339 472 446 393 273 303 400 269
lcheme
| Fenking Rank 8 4 8 7 | 5 1 3 B 2
Table 4 8 Bottom-up method, processing time
fault trees to BDDs is presented n Table 4.9 and Table 4 10
Efficiency 0 2 3 4 5 6 7 8
measure scheme | scheme | scheme | scheme | scheme | scheme | scheme | scheme | scheme
Number of nodes
for the top-down | 99284 | 62117 | 66056 | 65807 | 62260 | 61165 | 61108 | 66673 | 63104
approach
Number of nodes
for the bottom-up | 99284 | 62117 | 66056 | 65807 | 62260 | 61165 | 61108 | 66673 | 63104
approach
Time for the top-
1770 | 1502 | 1191 1114 957 1038 916 1047 907
down approach
Time for the
bottom-up 313 330 278 286 260 301 309 261 277
approach

fault trees
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are expected to give the same final structure for a BDD.

Table 4 9: Total summary of the top-down and the bottom-up technique for ‘small’

According to these results it is clear that the number of nodes in the final BDD
for every example fault tree does not depend on the construction method. In both
trials basic events are connected in a BDD chain in the same manner and gates or
BDDs are selected in the same order Therefore, despite the fact that the top-down
and the bottom-up approaches apply a different traversal of a fault tree, they both




Efficiency 0 1 2 3 4 5 6 7 ]

measure scheme | scheme | scheme | scheme | scheme | scheme | scheme | scheme | scheme
MNumber
of nodes
forthe | 10628393 | 5652002 | 5824414 | 6001786 | 5714308 | 5362361 | 5553721 | 5528696 | 5637389
top-down
approach
Number
of nodes
forthe | 10628393 | 5652002 | 5824414 | 6001786 | 5714308 | 5362361 | 5553721 | 5528696 | 5637389
bottom-up
approach
lme for
the top-
down

approach
Time for

the

bottom-up
approach

42521 | 22173 | 21764 | 22537 | 25215 | 1731 | 23495 | 2041 180 54

26979 | 11884 | 12593 | 1376 | 21215 | 12272 | 13531 | 11758 | 12574

Table 4.10: Total summary of the top-down and the bottom-up technque for ‘large’

fault trees

However, using the bottom-up technique converts fault trees to BDDs faster than
applying the top-down approach. The slower process for the latter techmque can
be explained by a higher usage of memory resources When the BDD for the parent
gate 1s constructed, the nodes beneath the required branch are reconnected every

time after the replacement of a gate node 1n the structure.

Therefore, the top-down approach 1s discarded and further developments of the
bottom-up method are presented. Since the eight ordering schemes resulted in
smaller nurmber of nodes in BDDs and shorter time of calculations than in the case
of ‘order as hsted’ manner (0 scheme), 1t 13 expected that further investigations
of the bottom-up technique using the eight ordering schemes can give even better
efficiency.

4.6.4.4 Bottom-up technique, chosen trials
4.6.4.4.1 Introduction

After the top-down scheme was discarded because of its mefficient usage of mem-
ory, further investigations were carried out on other strategies using the bottom-up
technique. The purpose was to test different ways that BDDs can be selected dur-
ing the connection process The values of efficiency measures, such as number of

nodes and processing time, were calculated and the ordering schemes were ranked.
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In the first trial, whose results were presented and compared with the top-down
technique, basic events are ordered according to one of the 9 ordering schemes but
BDDs are selected as Listed, 1.e. a BDD which represents the first input of a gate

1 a list of inputs is chosen to be the main BDD.

In the second trial the ordering schemes are used not only to order basic events
but also to choose the order that BDDs are considered in the connection process

The detailed description of this strategy was presented earlier in this chapter.

In the third trial BDDs are merged according to the number of points at which the
BDDs are combined. Intuitively, this trial should be efficient, since the minimal
number of points should be a good criteria for choosing the main BDD during the
connection process The ordering schemes are still applied for the selection of basic
events but not for the selection of BDDs. Results of this method are also presented

in this section.

The companson of the three techniques is performed using the results of ‘large’
fault trees only since their complexity allows a reasonable test of each method. The
ordering schemes are ranked in the same way as it was performed in the previous

section, 1e the three different ranking techniques are apphed.

4.6.4.4.2 First trial

Description. Selection of BDDs is ‘order as listed’, as presented in Section

4.6.3.1. Selection of basic events is according to one of the nine ordering schemes

There were 44 ‘large’ fault trees analysed. The analysis of 9 fault trees from this
set was not possible in reasonable times, and for 5 examples the simphfication pro-
cess was so efficient that the final BDD contamns only 1 node. So, those fault trees
were not considered 1n the analysis For the remaining 30 ‘large’ fault trees results
were presented 1n Table A.24 and Table A 30 for number of nodes and processing
time respectively The result of the analysis 1s shown m Table 4 11 and Table 4 12,
which is a part of the results presented 1n Section 4.6.4.2.2.

For all ‘large’ fault trees considering the number of nodes and the processing time

any of the eight ordering schemes performed significantly better than the ‘order
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Scheme 0 1 ] 2 3 4 | 5 6 7 8
Total Nurnber of nodes | 10628393} 5652002 | 5824414 | 6001786 | 5714308 | 5362361 | 5553721 | 5528696 | 5637389 I
§ Fanking Rank 9 5 7 8 6 1
2 iahest Number of FTs
= anest hath the highest 0 8 & 6 ] 14
& pehomo rank
; ranking
g Rank 9 5 6-7-8 6-7-8 6-7-8 1
= xl:r:a |Added ranking 204 83 117 118 EE] 60
Fanking |Rank ] 4 T B8 ] 1

Schema 0 1
mhy Time 26979 | 11884
@ Fanking Rank 9 2
£  sgnogy [Vmber of FTS
= lwith the highest 4 ]
§ scheme | o
@ Fanking
g Rank ) 2-3
- Mﬁ Added ranking 145 Fal 10 98 92 83 a9 100 82
I5Ci [-]
Fanking |Rank 9 1 8 § 5 3 4 7 2

Table 4 12 Bottom-up method, first trial, processing time

as listed’ method. For the number of nodes the non-dynamic top-down weighted
scheme (5) performed best and the two modified depth-first schemes, (2) and (3),
came last. Overall, the four weighted schemes (5-8) resulted in smaller BDDs than
the four neighbourhood schemes (1-4) For the processing time the ranking of the
ordering schemes was dependent on the ranking method. However, the modified
top-down ordering scheme (1) gave good results and was ranked high using all three
ranking methods. The distinction between the efficiency of the type of ordering

scheme was minor and no further conclusions could be drawn.

4.6.4.4.3 Second trial

Description. Selection of BDDs 1s according to the ordering of their top nodes,
as presented in Section 4.6.3.2. Selection of bagic events is according to one of the

eight ordering schemes

Summary details of test results for the fault trees are presented in Tables A 31
and A 32 for the number of nodes and the processing time respectively As it was
obtained in the first trial, the eight ordering schemes gave identical results in the

number of nodes for 5 ‘large’ fault trees (out of 44),1 ¢ BDDs of 1 node were pro-
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duced For 9 ‘large’ fault trees the computations were not possible in reasonable
times Therefore, those fault trees are not taken into consideration while ranking
the ordering schemes. The ‘order as listed’ technique is not applied because every

step 1 this method requires a defined ordering.

The result of the analysis for the 30 ‘large’ fault trees 1s shown in Table 4 13
and Table 4.14 for the number of nodes and processing tiume respectively

[ Scheme 0 1 2 3 | a4 | 5 6 7 8
::E::w Number of nodes N/A_ | 8214468 | 20477527 | 18103507 | 5924252 | 4577896 | 5783722 | 6755913 | 3449351
@ fanking Rank N/A 6 8 7 4 2 3 5 1
g INumber of FTs
= Highest \ith the highest NA 2 3 3 3 8 7 1 18
= scheme ank
=y ranking
g Rank N/A 7 4-5-6 4.56 | 4.5 2 3 8 1
= Adhded \Added ranking N/A 115 133 126 116 77 94 142 56
Echeme
Fanking {Rank N/A 4 7 6 5 2 3 8 1
Table 4.13: Bottom-up method, second tnal, number of nodes
[ T T scheme o [+ [ 2 3 4 5 | 6 | 7 | 8 |
;3;1‘“? Tima N/A 18087 | ?6717 | 141064 | 12088 | 5015 | 10373 | 16045 | 28678 “
& Fanking Rank N/A 8 8 4 3 1 2 5 7
2 Number of FTs
£ [Highast yih the highest N/A 5 5 3 8 4 4 5 "
& pcheme |k
"q" Fankmg
g Rank N/A 3-4-5 3-4-5 B 2 6-7 87 3-3-5 1
- Mm Added ranking N/A 87 a0 105 83 75 88 102 55
=le -]
Fanking [Rank N/A 4 6 8 3 2 5 7 1

Table 4 14: Bottom-up method, second trial, processing time

For the number of nodes the event criticality scheme (8) performed well together
with the two top-down weighted schemes, (5) and (6) The two modified depth-
first schemes, (2} and (3), resulted in a lot larger BDDs and came last. For the
processing time the ranking of the ordering schemes was dependent on the ranking
method However, the main pattern of the ranking 1s similar to the one for the

number of nodes

4.6.4.4.4 Third trial

Description Selection of BDDs is according to the number of connection points
available, presented in Section 4.6.3.3. Selection of basic events 1s according to

one of the nine ordering schemes
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Summary details of test results for the fault trees are presented 1n Tables A 33
and A 34 for the number of nodes and the processing time respectively As it was
obtained 1n the two previous trials, all the ordering schemes gave identical results
in the number of nodes for 5 ‘large’ fault trees (out of 44), i.e. BDDs of 1 node
were produced For 9 ‘large’ fault trees the computations were not possible 1n rea-
sonable times. Therefore, 30 ‘large’ fault trees are taken into consideration while

ranking the ordering schemes

The result of the analysis is shown 1n Table 4 15 and Table 4.16 for the num-

ber of nodes and processing time respectively.

Scheme 0 1 i 2 l 3 i 4 5 B 7 8 J_
Tﬁﬁw Number of nodes [ 12518644 | 4972154 | 5515658 | 5466903 { 5650688 | 5148732 | 4992002 | 4870866 | 5275739
. panking [Rank g 2 7 ) B 4 3 1 5
b Nurrber of FTs
£ [Highest wirh the highest 0 12 8 g 9 15 9 11 9
5] lscheme rank
‘; ranking
<4 Rank 9 2 8 4567 (4567 [ 1 4567 | 3  [4567]
— pdded [added ranking 200 71 98 a8 g7 61 79 83 7 |
Fanking [Rank 9 2 6 5 7-8 1 3 4 78 ||
Table 4 15 Bottom-up method, third trial, number of nodes
Scheme | 0 [ 1 [ 2 [ 3 4 | 5 8 7 8 |
T":'me Number of nodes | 12518644 | 4972154 | 5515658 | 5466903 | 5650688 | 5148732 | 4992002 | 4870856 | 5375739
L.
@ q'anklng Rank 9 2 7 6 8 4 3 1 5
3 Number of FTs
& Highest byin tha highest 0 12 8 9 g 15 g 1 9
T fchoma f o o
“q; ranking
2 Rank 9 2 8 4-56-7 | 4567 | 1 8-5-6:7 3 |as67]
= :\:::'ga ladded ranking 200 7 08 88 97 61 79 23 97
| Fanking [Rank . 9 2 6 5 _ 7-8 1 3 4 7-8

Table 4 16 Bottom-up method, third trial, processing time

As 1t was observed previously, any of the erght ordering schemes performed better
than the ‘order as listed’ approach. The modified top-down scheme (1) and the
non-dynamic top-down weighted scheme (5) performed well according to the two
measurements, i e. the number of nodes and the processing time. The depth-first
with number of leaves ordering scheme (4) gave the worst performance because it
resulted in larger BDDs 1n a longer processing time than the majority of the eight

ordering schemes (1-8)
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4.6.4.4.5 Comparison of the bottom-up techniques

The three trials were compared and conclusions were drawn, taking into account

the total number of nodes and the total processing time. Results are presented m
Table 4.17 and Table 4.18.

Strategy\scheme 0 1 2 3 4 5 6 7 8

Hirst tnal 10628393 5652002 | 5824414 | 6001786 [5714308 | 5362361 | 5553721 | 5528696 | 5637389
Second trial N/A  [B8214468120477527|18103597| 5924252 | 3577896 | 5783722 | 6755913 | 3449351
IThird tral 12518644] 4872154} 5515658 [ 5466903 [ 5650688 | 5148732 | 4892002 | 4870866 [ 5375739

Table 4.17: Bottom-up, comparison of the three trials, total number of nodes,
‘large’ fault trees

Strategy\scheme 0 1 2 3 4 5 6 7 8

First tnal 42521 | 22173 | 21764 | 22537 { 25215 1731 23495 | 2041 180 54
Second tnal N/A 18097 | 26717 | 14194 112088 | 5915 10373 | 16045 §| 26678
Third tria! 2398 21 8119 90 98 93 84 105 21 977 8335 8358 102 25

Table 4.18 Bottom-up, companson of the three trials, total processing time, ‘large’
fault trees

The third trial of the bottom-up strategy approach gave the best result. The
total number of nodes in BDDs using the third tnal was smaller than the total
number of BDDs from the first trial using the eight ordering schemes (1-8). Only
using the ‘order as listed’ scheme (0} the total number of nodes was larger than
in the first trial. However, the ‘order as listed’ scheme (0) was not ranked highly
for any of the trials, so this result can be discounted. The total processing time

was shorter for the third trial than for the first trial using all nine ordering schemes

Also, the third trnal was more efficient than the second method for most of the
ordering schemes. Only for the non-dynamic top-down weighted scheme (5) and
the event criticality scheme (8) the total number of nodes using the third tnal
was larger than the total number of nodes using the second method. This can im-
prove the efficiency of the bottom-up technique, especially when the two ordering
schemes (5) and (8) were highly ranked for the bottom-up technique The total
processing time was shorter for the third trial than the second trial for every or-
dering scheme, except scheme 5 Those results make the third tral the best option
for the bottom-up approach
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Companng the first and the second trials, 1t gave different results for the two
efficiency measurements The first trial resulted in the smaller total number of
nodes than the second trial for almost every ordering scheme Again, only for
the non-dynamic top-down weighted scheme (5) and the event criticality scheme
(8) the total number of nodes was smaller using the second trial rather than the
first tnal. For the total processing time the second tnal performed better than the

first trial, i.e. 1t resulted in a shorter total processing time of the conversion process.

Summarnsing the bottom-up approach method, the third trial that uses the se-
lection of BDDs according to the number of connection points available and the
selection of basic events according to one of the mne ordering schemes, 1s the most
efficient method out of all proposed approaches in this work The highly ranked
ordering schemes were the non-dynamic top-down weighted scheme (5) and the
modified top-down scheme (1). Using the ranking from the previous section the

worst performance was obtained by the ‘order as listed’ scheme (0)

The efficiency of this new approach will be compared with other current BDD
conversion techmques. Therefore, in the next section the Component Connection
Method, using the third trial of the bottom-up approach, will be compared with the
well-known BDD conversion technique, called the ite method, that was established
by Rauzy [2] and was presented in Chapter 3

4.7 Comparison Between the Component Connec-

tion and the ite method

Since the third attempt of the bottom-up techmque gave the best performance 1t
will be compared with the ite method using the number of nodes and the process-

ing time, as metrics to judge the efliciency of the two methods

Results of the number of nodes and the processing time for the ite method for
‘large’ fault trees are presented in Table A 35 and Table A.36 The variable order-
g 15 required for the construction method, therefore, there are no results for the
0 scheme The BDD conversion process was performed for all 44 ‘large’ fault trees.
Only for 1 example fault tree in one ordering scheme the computations were not

possible 1n reasonable times and for 5 fault trees the eight ordering schemes gave
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the same result.

The ranking results for 38 ‘large’ fault trees are shown in Table 4 19 and Ta-

ble 4.20 according to the number of nodes and the processing time respectively.

| | Scheme | 1 | 2 | 3 4 5 6 7 8
I toml number of rodes 675160 | 715308 | 1810301 1
Tmalmy Number of nodes | 2176461 | 722103 | 718377 | 572428 | 2454680 | 675169 | 715325 | 1619301 ||
uan
@ :':'Er'lklng Rank 7 5 4 1 8 2 3 8
g Number of FTs
£ fighest hyh the highest 1 2 6 5 4 1 6 8
& pscheme rank
‘; ranking
g Rank 8 7 3-4 5 ] 1 34 2
- Ad;*ed Added ranking 214 147 131 152 162 111 168 147
sCname
Fankng Rank B 3-4 2 5 6 1 7 3-4

Table 4.19 ite method, number of nodes

Scheme 1 | 2 [ a8 | 4 5 6
OV Do,

;ﬁﬁmy Time 15602821 177648 | 176499 | 183296 | 2171086) 201257 | 183974
¢ Fanking Rank 7 2 1 3 8 5 4 6
.9—.,. Number of FTs
= [Highest i the highest 7 8 10 13 7 14 7 8
@ [Feheme |
‘;) Fanking
% Rank 6-7-8 5 3 2 6-7-8 1 6-7-8 4
—'_M:GG [Added ranking 188 134 128 120 166 113 157 156

[scheme

rankin Rank 8 4 3 2

Table 4 20: ite method, processimng time

The dynamic top-down weighted scheme (6) gave good results for both measure-
ments and was ranked high. Additionally according to the processing time the
modified priority depth-first scheme (3) performed well The worst performance
was achieved while using the modified top-down scheme (1) and the non-dynamic
top-down weighted scheme (5) There is no clear indication of which ordering

schemes are most efficient.

The total number of nodes of the ‘large’ fault trees, that were converted to BDDs
using both the ite method and the Component Connection Method, was compared

for the eight ordering schemes in Table 4 21

The total number of nodes is a lot smaller for the ite method than for the Compo-

nent Connection Method. Also, using the ite method the analysis of the complete
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Strategy\scheme 1 2 3 4 5 6 7 8
ite method 04006 92843 73205 38500{ 55259 110687 76790 33042
Connection method 4972154| 5515658| 5466903 5650688] 5148732 4992002 4870866| 5375739

Table 4 21: Comparison Between the ite and the Component Connection Method,
total number of nodes

set of fault trees was performed, whereas calculations for 9 trees using the Com-
ponent Connection Method were not possible in reasonable times. The biggest
disadvantage of the Component Connection Method is that of the inefficient mem-

ory usage, where parts of a BDD are repeated but not shared.

The comparison in the total processing time for ‘large’ fault trees is shown in

Table 4 22. The ite method resulted in a shorter fault tree conversion process.

Strategy\scheme 1 2 | 3 4 5 & 7 8
ite method 207 94 71 34| 7000 102 64 2944 5719 11688 3819
Connection method 8119 a0 98| 2384 10521 97 70 83 35 8358 10225

Table 4.22 Comparison Between the 1te and the Component Connection Method,

total processing time

However, there were some cases where the Component Connection Method has
produced better results than the ite method, for example, in the modified top-
down scheme (1) or the bottom-up weighted scheme (7). If those ordering schemes
were chosen to build BDDs for example fault trees using the Component Connec-
tion Method, a faster process would be obtained. This is only a minor advantage
of this method, because 1if the number of nodes was critical for the analysis none
of the eight ordering schemes performed better using the Component Connection
Method than in the ite method

In summary, the Component Connection Method produced significantly bigger
BDDs than the ite method. For some examples the calculations were not even
finished 1n reasonable times. This approach has a high demand for memory space
since the 1dentical parts in the BDD structure are repcated but not shared. There-
fore, further investigations are carried out and the apphcation of the sub-node

sharing technique is introduced in the Component Connection Method
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4.8 Sub-node Sharing

Using the Component Connection Method there are some parts in the final BDD
structure, which are identical. This causes an nefficient memory usage. The sub-
node sharing will be introduced during the combining of two gates, i e. all available
branches would point to the same structure, instead of making a separate copy for
each of them. However, since after the connection process the simphfication 1s
applied 1If repeated events appear in the structure, there are some defined rules
that need to be followed in order to achieve the effective connection process.

4.8.1 Presentation of the Sub-node Sharing in Component
Connection Method

The sub-node sharing can be implemented during the connection of two BDDs, as
1t is 1llustrated in Figure 4.23. In this example the left BDD is set to be the mamn

Figure 4 23 The process of sub-node sharing

BDD. There are two available points, i e two termmnal vertices 1, that can share
the same copy of the second BDD

This connection 1s always suitable if there are no repeated events 1n a fault tree.
Otherwise, this implementation can cause ambiguous situations which require fur-
ther processing. For example, consider the example in Figure 4.24. If the second
appearance of an element can be reached traversing both branches of the first
occurrence of an element, it is described as an ambiguous situation Element a

15 repeated The second appearance of element a (node F4) can be reached by
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Figure 4.24: An ambiguous situation in a structure

traversing the 1 branch of the first appearance of element ¢ (node F1) and by
traversing the 0 branch of node F'1. This situation is inconsistent during the sim-

plification process.

In order to avord ambiguous situatrons, they need to be 1dentified before the con-
nection process takes place. To do this, for every connection point that will be used
in the connection process a vector of states of repeated events 1s required Those
alternative states, that can have a value 1, 0 or -1, define if a repeated event was
visited on a path from the root node to the available point and on which branch of
the first occurrence of the repeated event was traversed. So, the states 1 and 0 mean
that a path includes the repeated event on its 1 and 0 branch respectively, and the

state -1 describes the situation that the repeated event is not included in this path.

The sub-node sharing rule is:
If paths to two avaiable connection points of the main BDD have the same record
of repeated events, 1 ¢ the same states of repeated events are obtained, the same

copy of the second BDD can be connected to both of the two avarlable branches

The connection algorithm which considers the sub-node sharing 1s shown in Fig-
ure 4.25. In the representation of this algorithm array A(z) contains records of
states for every repeated event throughout the whole system (not only those be-
tween two BDDs that are to be connected!), because ambiguous situations can
appear during the later connections Only if there are no more connections to
proceed, i e. the last connection is calculated, repeated events between two BDDs

(instead of the whole system) can be considered Application of the algorithm 1s
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connection{node F, branch b, node G)
{
if ((b=1} and (F=1)) /* mputs of an AND gate are considered */
or {{b=0) and (F=0)) /* inputs of an OR gate are considered */
{
if (computation_table has entry {array{A(1), R}})
return R,
else
[*create a connection*/
F=copy(G);
Smplify(F, A(1));
msert_in_computation_table array{ A(1), F}

else

adjust A(1),
[*traverse further*/
connection(F->left, b, G),

if (F->node) 1s repeated
|
connection(F->nght, b, G); ‘

Figure 4.25: Connection algorithm using the sub-node sharing

presented for an example in Figure 4 26. Two BDDs, presented in Figure 4 26,
are to be connected, where the first BDD is chosen to be the main BDD Since
those two BDDs represent two gate inputs of an ‘OR’ gate, the second BDD will
be connected on every available 0 branch of the main BDD, ie to the 0 branches
of nodes F1, F2 and F3 Since the only repeated event in the example fault tree

is event ‘a’, array A(z) will contain only one element A(0)

The connection process starts from the root node F1, event ‘a’. The first available
vertex 0 1s reached on the right of node F1, traversing the 0 branch of ‘a’, there-
fore, A(0) = 0. The second BDD 1s connected, as shown Figure 4 26(z:) Then

the ssmplifications are applied and an entry (0,0) 1s included in the computational

table, ie the 0 branch of the repeated event ‘a’ was traversed and the terminal
vertex 0 was retained after the connection and simplification process Then the
second available vertex 0 is reached on the right branch of node F2, traversing
the 1 branch of node F'1, therefore, this vertex holds a value A(0) = 1. Since n
the computational table there is no input with a value A(0) = 1, a new copy of
the second BDD 1s created. Then 1t 1s connected to the available vertex in Fig-
ure 4.26(222), and simphfications are applied An entry (1, F7) 1s included in the
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Figure 4.26: Application of the algorithm

computational table Finally, the last available vertex 0 1s visited and the record
(1, F'7) from the computational table 15 used, since this vertex contains the same

value A(0) = 1, Figure 4 26(zv) The connection process is finished

The efficiency of the sub-node sharing technique in the Component Connection
Method was shown by applying this technique to the library of ‘large’ fault trees.

4.8.2 Comparison Between the ite and the Component Con-

nection Method Using the Sub-node Sharing

After the sub-node sharing procedure was introduced in the Component Connec-

tion method (the bottom-up approach, the third trial), the algorithm was applied
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to the same library of ‘large’ fault trees. Then this method was compared with the
ite method using the two main efficiency measures - the number of nodes and the

processing time

Results of the number of nodes and the processing time for the Component Con-
nection method with sub-node sharing property converting ‘large’ fault trees were
presented 1n Table A 37 and 1n Table A 38. 44 ‘large’ fault trees were investigated.
As 1t was obtammed m the Component Connection Method before applying the
sub-node sharing, for 9 fault trees the process was not finished in reasonable times.
5 fault trees were sumplified a lot, so that the final BDD contained only 1 node.
Therefore, 30 fault trees were analysed. Some of the results were published in [21].

The ranking results are shown in Table 4 23 and Table 4.24 for the number of

nodes and processing time respectively

[ I 1 scheme 0 1 2 3 4 5 6 7 8 |

! ;?:w Number of nodes | 8958795 | 3787943 | 4526422 | 4458395 | 4262936 | 4023426 | 3824815 | 3972504 | 4046245
L,

& Fanking Rank 9 1 8 7 6 4 2 3 5

E Nurmber of FTs

£ fHighest iy the highest o 12 8 9 10 14 8 " 9

..‘E [scheing rank

p Fanking

g‘ Rank 9 2 7-8 58 4 1 7-8 3 56

= jadded |added ranking 196 €6 96 89 a2 62 81 87 88
seheme
anking Rank 9 2 8 6 7 1 3 4 5

—_____________ ———————— — ——— |

Table 4.23: Component Connection Method with sub-node sharing, number of

nodes
Scheme o] ! 1 | 2 I 3 | 4 | 5 1 6 7 B8 I
;ﬁgmy Time 320540 | 110564 | 108130 | 109237 | 112638 | 116328 | 1164 15 | 111870 | 131241
& panking Rank 9 3 1 2 5 6 7 4 8
g Number of FTs
& Hghest yth the highest 6 11 8 7 5 7 9 8 6
o fpehems |y
"6 ranking
2 Rank 7-8 1 34 56 9 5-8 2 34 78 ||
~ fidded_laddied ranking 151 a5 83 101 115 102 109 99 114 ||
[SCi
| Fankng |Rank 8 2 1 4 8 5 [ 3 7

Table 4 24: Component Connection Method with sub-node sharing, processing

tune

The ranking results are similar to the ones using the Component Connection

Method before mtroducing the sub-node sharing First of all, any of the eight
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ordering schemes (1-8) performed better than the ‘order as listed’ scheme The

modified top-down scheme (1} as well as the non-dynamic top-down weighted
scheme (5) performed well and was ranked high. For the number of nodes the
two modified depth-first schemes, (2) and (3), gave worst results However, for the
processing time those two schemes gave a good performance. The depth-first with
number of leaves ordering scheme (4) performed poorly and was ranked low This
repeats the pattern of the ranking in the Component Connection Method without
the sub-node sharing

The comparison of the ite technique and the Component Connection Method with

sub-node sharing 1s shown in Table 4 25 The total number of nodes 1n final BDDs

Strategy\scheme 1 2 3 4 4] [ 7 8
Ite technique 94996 92843 73205 38500 55259 § 110687 76790 33042

;‘;m‘;”e”t Connection | 5757043 | 4526422 | 4458395 | 4262936 | 4023426 | 3824815 | 3972504 | 4046246

Table 4.25- Comparison between the ite and the Component Connection Method

with sub-node sharing, total number of nodes

using the Component Connection method was remarkably greater than using the
ite method, despite the fact that the sub-node sharing option was introduced
However, introducing the sub-node sharing in the Component Connection Method

has decreased the number of nodes, as shown in Table 4 26.

Strategy\scheme 0 1 2 3 4 5 6 7 ]
Component
Connection
Method without 12518644 | 4972154 | 5515658 | 5466203 | 5650688 | 5148732 | 4992002 | 4870866 | 5375739
the Sub-node
sharing

Component
Connection
Method with the 8958795 | 3787943 | 4526422 | 4458395 | 4262935 | 4023426 | 3824815 | 3972504 | 4046246
Sub-node
shanng

Table 4.26: Comparison between the Component Connection Method without the

Sub-node sharing and with the Sub-node sharing, total number of nodes

The comparison of the Component Connection Method and the ite technique is
shown in Table 4 27. The total processing time for converting large fault trees to
BDDs using the Component Connection Method was greater than using the ite

method. Also, introducing the sub-node sharing in the Component Connection
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Strategy\scheme 1 2 3 4 5 B 7 B8
e technique 207 94 71 34 7000| 10264 2944 5719 116 88 3819

ﬁ‘;;';’;g“entc°”"e°t'°" 110564 | 10813| 109237 112638 | 116328 ) 116415| 11187] 131241

Table 4.27: Comparison Between the 1te and the Component Connection Method
with sub-node sharing, total processing time

Method has increased the processing time, as shown in Table 4 28 It can be ex-
plained by the fact, that parts of a BDD suitable for the sub-node sharing need to

be identified and this takes some extra processing time.

Strategy\scheme 0 1 2 3 4 5 8 7 8
Component
Connechion
Methed without 298 21 8119 90 98 93 84 105 21 977 83 35 8358 10225
the Sub-node
shanng
Component
Connection
Method with the 320540 [ 110564 | 10813 | 109237 | 112638 | 116328 | 116415 | t1187 | 13124
Sub-node
sharmg

Table 4 28: Comparison between the Component Connection Method without the

Sub-node sharing and with the Sub-node sharing, processing time

Summarising, the sub-node sharing in the Component Connection Method reduced
the number of nodes in the final BDD. However, there was still the same number
of unfinished fault trees like it was in the Component Connection Method without
this property. Also, the processing time increased after the sub-node sharing was
introduced in the method. It was shown that this extension of the method has not
made it as efficient as the ite method and further development that would combine

the two methods 1s required.

4.9 Hybrid method

The Hybrid method combines the best features of the two construction methods
of BDDs, the ite method, presented in Chapter 3 and the Component Connection
Method, presented earlier in this chapter. The new method incorporates the most

efficient parts of both algorithms. The results in the previous section showed that

¢ 1n the Component Connection Method using the gate constructs for ba-
sic events and branches without repeated events BDDs can be immediately
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formed without any of the pre-processing time required by the ite method

e in the ite technique the sub-node sharing feature provides an efficient repre-

sentation of the logic function.

Therefore, a new algorithm has been created based on the effective features of each

algorithm to obtain the most overall efficient approach.

In the sections presented previously, using the Component Connection Method
does not require a variable ordering However, since the new approach also uses
the ite method a vanable ordering needs to be introduced from the start of the
process. This then produces ordered BDDs, which can be utihised 1n the ite tech-

nique.

4.9.1 Presentation of the Method

Rule 1

First of all, a variable ordering needs to be established which will be used when
applying the rules of both methods. Then gates contamning event inputs only can
be considered In this situation events are put 1n a chain according to the type of
the gate, applying the rules of the Component Connection Method. For example,
if a gate 1s an ‘“AND’ gate the nodes representing its basic events are connected to
each other through the 1 branch of the node Respectively, if a gate 1s an ‘OR’
gate the nodes representing its basic events are connected to each other through
the 0 branch of the node. This construction process can be appled regardless of
the number of events into a gate without breaking them down into pairs. This is
required 1n the ite technique because 1t deals only with two ite structures at once.
The variable ordering is retained while putting basic events in a chain. This rule

for the two types of gate is presented in Figure 4.27.

Rule 2

When considering gates of the fault tree which do not contain any repeated basic
events - and so only basic events which occur once in the fault tree structure are
constdered - the straightforward connection can also be applied. However, the van-

able ordering needs to be taken into consideration, since it needs to be retained for
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a<b<¢ a<b<c

Y0 O

Figure 4 27: BDDs for gates containing event inputs only

the further stages of connection where ite rules might be applied Two possibilities
are suggested.

¢ The merging of the two BDDs can be applied only if all the events of the main
BDD are before the events of the secondary BDD in the variable ordering

e The BDDs can be merged without considering the variable ordering and then
nodes must be swapped to retain the ordered BDD.

The first option is presented 1n Figure 4 28, where the left-most BDD is set to
be the main BDD. The vanable ordering 1s ¢ < b < ¢ < d. The events in the
main BDD are before the events 1n the secondary BDD, therefore the BDDs can

be connected 1n the straightforward way.

Figure 4 28: The straightforward connection of two BDDs, no reordering

In the second approach the variable ordering is not initially considered during the
connection process, but interchanging some nodes is required afterwards in order

to retain the variable ordering The reordening of ordered BDDs [20] 1s presented
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in Figure 4 29. The ongmal ordening is y < 2 < w < z, Figure 4.29(1)) The new
variable ordering is set to be £ < y < z < w. According to it, nodes with vanable
z, that appear on the bottom of the BDD, need to be removed to the top of the
BDD. First of all, variable z is swapped with vanable z on the 1 branch of variable
y and with variable w on the 0 branch of variable y. Variables are exchanged
together with the swap of their terminal functions, Figure 4.29(i1) The second
swap involves the exchange of variables y and x and the swap of their terminal
function, Figure 4.29(ii1) The rule 1s deduced by applying the distnibutive laws to

the expression of function ¢.

¢ = yllz-h+7-fo)+Zx- 1+T- fa)) + (4.38)
w(z- fs+T- fo)+w(z f1+7Z fs))
2(z- f1+Z- f5)+T(z-fo+Z- fa)) +
z(w- fs+T- fr) +T(w- fo +T- f5))
(z-
(

I
@ o«

(
(
(
(

2

y(z- Li+Z- o) +yw - fs+T- f7)) +
Wz - fotZ fo) +7(w- fo+W- fs))

|
8

(
(

8l

An example is shown 1n Figure 4 30.

Figure 4 29: Reordering BDDs
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Figure 4.30: The straightforward connection of two BDDs, with reordering

Rule 3

While building the BDD for gates with repeated events, the ite construction rules
are applied The Hybrid method can be demonstrated by constructing a BDD for
the fault tree shown 1n Figure 4 31

First of all, the varable ordering needs to be introduced, ¢ < b < ¢ < g <
d < e < f < h. Then the gates with cvent inputs only are investigated and ‘AND’
and ‘OR’ chains for gates G1, G2, G4 and G5 constructed, shown 1n Figure 4 32
After that gate G3 is investigated There 18 only one repeated event in the fault
tree, a, but it does not appear as an input for gate G3. Therefore, the straight-
forward connection can be appled for this part of the fault tree The left-most
BDD is set to be the main BDD Since not all its elements are before the elements
of the secondary BDD in the ordering scheme, the second solution of rule 2 needs
to be applied, 1e the secondary BDD is attached on the 0 branches of the main
BDD and then nodes are reordered. The connection is shown 1n Figure 4 33 Now

considering the Top gate, again, the left-most BDD 1s set to be the main BDD, the
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Figure 4 31: Example of fault tree

Figure 4 33- BDDs for a gate with no repeated events, node swap applied

secondary BDD 1s that for gate G2. These two BDDs contain the repeated event,
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therefore, they are merged using the ite rules,ie

Gl1-G2 = ite(a,l,ite(d, 1,0)) - ite(a, 1,ite(c, 1,0)) (4.39)
= ite(a, 1,ite(d,ite(c,1,0),0))

The final step contains connection of the BDD of gate G3 onto the BDD obtained
for G1 and G2. This can be performed applying the first rule The BDD of gate
G315 connected to all the available ‘1’ branches of the main BDD The resulting
BDD is pictured in Figure 4 34.

Figure 4 34: Final BDD for fault tree shown in Figure 4.31

4.9.2 Comparison Between the ite and the Hybrid Method

The Hybrid method was applied to the hibrary of large fault trees, using the 8
ordering schemes for the variables, presented earlier Two variations of the Hybrid
method were used. The first variation, called the Basic Hybnd method, consisted
of using rule 1 for gates with event inputs only and rule 3 for all other gates The
second variation, called the Advanced Hybrid method, used all three rules as de-
scribed in the previous section. Then the Hybrid method (Basic and Advanced)
was compared with the original ite method, using the three efliciency measures,
the number of nodes, the maximum required size of the array and the processing

time.
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The comparison between the Basic Hybrid method and the ite method was done

using the library of 44 ‘large’ example fault trees used in the previous analysis.
However, the efficiency of the Advanced Hybrid method was analysed using a set
of small fault trees. This is because rule 2 applied in the Advanced Hybrid method
only comes nto use 1if the factonsation (the method 1n the reduction technique) on
fault trees is not apphed. If ‘large’ fault trees from the example library were not
reduced (and not factorised) the calculations of some fault trees became 1mpossi-
ble in reasonable times. Therefore, while comparing the Basic Hybrid method and
the Advanced Hybrid method a set of smaller fault trees, that did not need to be
reduced, was used in order to show the efficiency of the two techniques Some of
the results were published in [22], [23]

4.9.2.1 Comparison between the Basic Hybrid method and the ite tech-
nique

The number of nodes 1n the resulting BDDs was the same using the Hybrid (Basic
or Advanced) method and the ite technique. This 1s because the Hybrid method
expresses the structure function of a fault tree in terms of a BDD in the same
way as 1t does the ite technique. Therefore, the ranking of the ordering schemes
according to the number of nodes for the ite method is shown in Table 4.19 and
1t is the same for the Hybrid method.

Processing times for large fault trees using the ite technique and the Basic Hy-
brid method are presented in Table A 36 and Table A 39 Since the number of
nodes was the same for the ite technique and the Hybrid method and no further
analysis could be carried out, another efficiency measure, i e maximum required
size of array, was applied Results of the maximum required size are presented in
Table A 40 and Table A 41 for the ite technique and the Basic Hybrnid method
respectively.

The ranking results are shown in Table 4 29 and Table 4.30 for the processing

time and the maximum required size respectively

The efficient process was obtained using the dynamic top-down weighted scheme
(6) as well as the two depth-first ordering schemes, (3) and (4) The slowest process
resulting in a large size of array was obtained using the modified top-down scheme

(1) The ranking results match the results for the ite technique (Section 4.7.)
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Scheme 2 3 | a4 [ 5 J & [ 7 I 8 |

gzgﬂnm Time 1678383 177332 | 176093 | 180842 (2176004 | 106618 | 184076 [11798 72

& fanking Rank 7 2 1 3 8 5 4 -]

g Number of FTs

= HIghest ik the highest 4 & 8 15 6 16 & 1

@ [eheme o

E ranking

g Rank 8 5-6-7 4 2 5-6.7 1 567 3

- 2::::19 Added ranking 189 143 134 114 165 101 157 154
rankfng Rank 8 4 3 2 7 1 6 5

Table 4 29 Basic Hybrid method, processing time

L[] Scheme 1 2 3 a4 5 5 7 8
Toa!  [Maximum required size| 21868958 | 735938 731472 | 603274 | 2472127 | 656889 | 736031 | 1624807
uanti!
1 Farkang|[Rank 7 a 3 1 8 2 5 8
g Number of FTs
= [Highestlyih the highest 1 2 8 5 4 12 5 9
m LTHENT] rank
; Fanking
=4 Rank 8 7 3 4.5 6 1 4-5 2
— (Added |Added ranking 210 150 135 154 160 106 172 146
barkang |Pank 8 4 2 5 6 1 7 3

Table 4 30 Basic Hybrid method, maximum size of array

The comparison of the two techmques according to the processing time 1s shown 1n
Table 4.31. This table shows that the Basic Hybrid method has shghtly improved

|Strategy\scheme 1 2 3 4 5 6 7 8
|lte method 1560282 177648] 176499 183296 2171088( 201257 1839 74] 11092 22,
|baSIC hybnd method 1578383 177332 1760 93] 180842 2176004 1966 18 184076 11798 72,

Table 4 31 Companson of the two techniques, processing time, ‘large’ fault trees

the processing time for some ordering schemes, but for some ordering schemes the
processing time was longer In general, the Basic Hybrid method resulted in a

comparable length of analysis process.

The comparison of the two techmques according to the maximum array size 1s
shown in Table 4.32. This table shows that the maximum required size of the
array has decreased using the Basic Hybrid method The decrease in the maxi-
mum required size (and the processing time) can be explained by a more efficient
conversion process in the Basic Hybrid method, where gates containing only event
inputs do not need to be broken down to contain only two inputs Those gates can

be directly converted to a BDD according to the type of the gate However, for
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Strategy\scheme 1 2 3 4 5 5 7 B
ite method 2177226  737808) 7333491 605039) 2473927| 705358| 735930 1579836
basic hybnd method 2186898 735938 731472] 603274 2472127] 696889 736031 1624807

Table 4.32 Companson of the two techniques, maximum required size, ‘large’ fault

trees

some ordering schemes the maximum requred size has increased. This can be a
consequence of this straightforward connection. If a pair of events, which appear
in the BDD built directly from more than two events, also appear somewhere else
in the fault tree, an additional ite structure is required This can happen because
in the Basic Hybrid method gates are not broken down to contain only two inputs
and a required ite structure for a pair of events does not exist. In the ite method
every gate has only two inputs and every ite structure for a pair of basic events is

kept 1n memory and can be reused when required.

The comparison results of the two techniques using the maximum required ar-
ray are similar to the results using the processing time. Therefore, 1t can be
concluded that the Basic Hybrid method resulted in a shorter process for some
ordering schemes because there were fewer calculations to perform and a smaller

size of the array was required.

4.9.2.2 Comparison between the Basic Hybrid Method and the Ad-
vanced Hybrid method

As it was said before, the efficiency of the Advanced Hybrid method is more no-
ticeable 1if fault trees are not reduced, therefore, a set of small fault trees is used,
that do not need to be reduced. The complexity of the small fault trees used in
this part of the analysis was shown in Tables A.1-A.5.

The results of the number of nodes for small fault trees are shown in Tables A.42-
A.45. The number of nodes in the resulting BDDs was the same using the Basic
Hybrid method and the Advanced Hybrid technique, because both techmques al-
low the structure function of a fault tree to be expressed 1n terms of a BDD
the same way The results of processing time and maximum required size for small
fault trees using the Basic Hybrid Method are shown in Tables A 46 - A.53. The
ranking results in the Basic Hybrid method for the processing time and the maxi-
mum required size are shown 1n Table 4 33 and Table 4.34
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[ [ scheme [ 1+ 1 2 | 3 | 4 { 5 | & | 7 |

;L?fdm Time 7397 | 10139 | 10305 | 10616 | @527 | 9618 116 15 | B4g2 ||

¥

@ fanking Rank 1 5 6 7 3 4

£ Number of FTs [

x (Highestiyih the highest 14 3 1 03 6 14 ] 12

T schemerank

= Fanking

g Rank 1 7 8 2 6 3 5 4

2 Added iadded ranking 342 924 1016 457 876 978 1038 815
kanking jRank 1 5 7 2 4 6 8 3

Scheme

ggata’m Masimum required size 141061 | 137387 | 151249 | 105811 | 112716 | 141690 | 105058

@ rankmglr Rank 4 6 5 8 2 3 7 1

,9—_’, Number of FTs

£ Hghestyyih the highest 17 a4 35 43 30 68 37 47

o5 LINETI rank

= fpanking

g2 Rank 8 3 6 4 7 1 5 2

¥ |added |added ranking 1035 905 872 748 841 642 925 790
faricing |Rank 1 s 8 5 3 4 1 7 2 “

Table 4.34 Basic Hybnid method, small fault trees, maximum size of array

The rankings are different for the two efficiency measurements. The modified top-
down scheme (1) resulted faster process than any other ordering scheme but 1t
gave poor results for the maximum required size The dynamic top-down weighted
scheme (6) and the event criticality scheme (8) gave good results according to the

maximum required size but resulted in average results for the processing time

The results of processing time and maximum required size for small fault trees
using the Advanced Hybnid Method are shown in Tables A.54 - A 61. The ranking
results in the Advanced Hybrid method for the processing time and the maximum

required size are shown in Table 4.35 and Table 4.36.

The rankings are very similar to the ones for the Basic Hybrid method

The companson of the two techmiques according to the processing time 1s shown
in Table 4 37 The comparison shows that the conversion process using the Ad-

vanced Hybrid method took longer than using the Basic Hybrid method. This

result was expected because of the node swap rule (rule 2) applied in the Ad-
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Scheme 1 2 3 4 5 6 7 8

motal  [Time
lquant
Fanking Rank

Number of FTs

H'%'L'“ ‘[with the hughest
schemet

Rank
Added ranking

W
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o
I
o
E
w

Table 4 35: Advanced Hybnid method, small fault trees, processing tiume

[ I 1  scheme | 1 | 2 [ 3 4 1 s ] 8 | 7 | 8 |

-q{o;alm Maximum required size| 121248 | 140429 | 136972 | 150647 | 106399 | 112216 | 140708 | 105668
uan
¢ franking Rank 4 6 5 8 2 3 7 1
f—.’. - INumber of FTs
57995 lwith the highest 16 43 36 43 31 66 39 48
 [sehema o
> panking
g Rank 8 3 6 4 7 1 5 2
w Ad[:bd Added ranking 1050 909 882 799 849 645 893 793 “
lschem
ranking {Rank "_8 7 5 3 4 1 6 |

Table 4 36 Advanced Hybrid method, small fault trees, maximum size of array

vanced Hybrid method The ordering of nodes was not taken into account during
the process, therefore, the ordering of nodes in the BDD was adjusted by swapping

nodes around that required additional processing time.

The comparison of the two techmiques according to the maximum required size
1s shown 1n Table 4 38. The comparison shows that using the Advanced Hybrid
method decreased the maximum required size for all orderings Despite the fact
that the node swap was performed, the maximum required size was smaller than
in the Basic Hybrid method

Overall, the Hybrid method (Basic or Advanced) gave shghtly better results than
the ite method, where it resulted in a more efficient process of conversion This
was due to the fact that the Hybrnd method (Basic or Advanced) applied more
‘straightforward’ connections than in the ite technique where all connections were
done using the ite rule for each pair of events While comparing the two types of
the Hybrid method, the Advanced Hybrid method, which allowed the node swap,
gave a slightly better performance than the Basic Advanced method The max-
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Strategy\scheme 1 2 3 4 5 6 7 8

basic hybnd method 7397 10139 | 10305 | 10616 86 27 96 18 116 15 84 92

advanced hybrid method| 80 37 10772 | 10942 | 11748 92 62 101 23 1219 92 92

Table 4.37: Comparison of the two techniques, processing time, ‘small’ fault trees

Strategy\scheme 1 2 3 4 5 6 7 8

basic hybrid method 121644 | 141061 { 137387 | 151249 | 106811 | 112716 | 141690 | 105958

advanced hybrid method] 121248 | 140429 | 136972 | 150647 | 106399 | 112216 | 140708 [ 105668

Table 4 38: Comparison of the two techniques, maximum required size, ‘small’

fault trees

imum required size of array was decreased using the Advanced Hybrid method
instead of the Basic Hybrid method. However, this was true only for small fault

trees that have not been reduced 1n order to test the Advanced Hybrid method.

In terms of the ordering ranking, the dynarmic top-down scheme (6) and the event
criticality scheme (8) performed very well, 1t gave the best result for the two mea-
surements (the number of nodes and the maximum required size). For the process-
ing time the modified top-down scheme (1) performed its best, but it gave poor

results for the other two measurements

4.10 Summary

This chapter presents an alternative technique by which fault trees are converted
to BDDs. The new Component Connection Method combines gate structures ac-
cording to their types and applies ssmphfication rules if repeated events appear in
the structure. Example fault trees have been used and the results for a number of
different connection strategies were compared. Number of nodes, processing time

and the maximum required size were used as efficiency measures.

e Top-down and bottom-up approaches were introduced and analysed. It has
been shown that the bottom-up technique converted fault trees to BDDs
faster than the top-down approach. The slower process for the latter tech-
nique can be explained by a higher requirement of memory resources. There-
fore, the top-down approach was discarded and further developments of the

bottom-up method were presented

122




e Three trials of the bottom-up technique were presented, incorporating 8 or-
dering schemes for basic events and three different rules for the way of the
connection of two BDDs during the building process The connection tech-
niques were ‘as listed’ method, according to the ordering of the root vertex
technique and according to the number of connection points in the structure
method. The third tnal (according to the number of connection points) gave
the best results and could be used as an efficient strategy in the Component
Connection Method presented.

It has been shown that the Component Connection Method has a high de-
mand for memory space since the identical parts in the BDD structure are
repeated but not shared. Even after the sub-node sharing introduction in the
Component Connection Method, 1t was shown that as a general fault tree to
BDD conversion technique the ite method was to perform a lot better than

the proposed method

The Hybrid method, which combines the ite method and the Component
Connection Method, was developed introducing some additional conversion
rules The Basic Hybrid Method and the Advanced Hybnd Method were
analysed It has been shown that the Hybrid method (Basic and Advanced)
compares with the ite method well and can provide an efficient alternative
tool for constructing BDDs for fault trees The Advanced Hybrid method
has a slight advantage over the Basic Hybrid method, especially 1n the size

of the structure.

Any of the eight ordering schemes used performed significantly better in any
of the analysed construction methods than the ‘order as listed’ method that
considers basic events in the way that they appear in the list. The four
weighted ordering schemes, (5-8), resulted in a more efficient process in the
majority of the methods than the four neighbourhood ordenng schemes, (1-
4). According to the results for the particular set of example fault trees, there
were some indications that the two top-down weighted schemes, (5) and (6),
were favourite according to their performance The two modified depth-first

schemes, (2) and (3), gave poor results for the majority of the methods
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Chapter 5

Non-coherent Systems

5.1 Introduction

The initial guidelnes for fault tree construction for practical engineering systems
recommends that failure logic should be restricted to the use of ‘AND’ and ‘OR’
gates ([1], [3]) This makes the fault tree coherent. Non-coherent structures can
be obtained if the third logic operator ‘NOT’ is used In this case components
‘NOT’ failing (working) contribute to the failure of the system. The objections
for using ‘NOT”’ logic are that 1t can be considered a bad design of the system
if a repaired component makes the system fail. Also, 1t results in a remarkable
increase 1 complexity for the analysis of the system. However, Andrews [24]
demonstrated that in the case of multi-tasking systems ‘NOT’ logic is essential.
This is also relevant for event tree analysis in which the consideration of success
states 15 an important feature of the technique [25] The consideration of ‘NOT’
logic is important and even essential for some system assessments, since it gives a

better understanding of the system and provides an accurate analysis.

5.2 Fault Tree Analysis of Non-coherent Fault Trees

5.2.1 Introduction

Fault trees can be described as either coherent or non-coherent systems according
to their logic. If the failure logic consists of the ‘AND’ and ‘OR’ gates only, the
resulting fault tree is said to be coherent. Otherwise, if the ‘NOT" gate 1s used or

directly implied, the resulting fault tree can be non-coherent.
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5.2.2 The Use of NOT Logic

In this section 1t will be 1llustrated that i1f a system performs more than one task, the
use of ‘NOT" logic during fault tree construction 1s very important for meaningful
and accurate analysis. In the multi-function system the outcomes of the system
performance can produce combinations of some tasks being performed whilst others
have failed. The causes of each system outcome cannot be identified correctly
without accounting for the parts of the system which have worked. Consider the

simphfied gas detection system shown in Figure 51 Two gas sensors, D1 and

[D1h
ek

D2

Power
L—-ﬁ supply

I
E |
TJ T
Process =
1s0lation

Figure 5.1 Simplified gas detection system

D2, are used to detect leakage of gas in a confined space. The signals from the
detectors are sent along individual cables to the computer logic control umt, LU.
When the signal of a gas leak from any sensor is obtained, three functions must be

performed:
1. Process shut-down (isolation) by de-energising relay R1
2. Inform the operator of the leak by a lamp/siren labelled L

3 Remove the power supply (potential igmtion sources) to affected areas by
de-energising relay R2

The system can be considered failed if it does not perform any of the three tasks,
following detection of the leak occurrence There are seven possible failure states
for this system, listed in Table 51 Consider one of these outcomes - outcome
3. Fault Tree Analysis can be performed avoiding the use of ‘NOT’ logic but it
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Failure state || Operator informed | Process shut-down | Power 1solation
1 A W F
2 W F W
3 W F F
4 F W W
5 F W F
6 F ¥ W
7 F F F

Table 5.1 The seven possible failure states of the system in Figure 51

delivers less information. The constructed fault tree for outcome 3 1s shown in

Figure 5.2. Three minimal cut sets can be identified from this fault tree:

Cutcome
3
I 1
Process Power supply
shutdown fails not 1solated
No signal No signal
from LU from LU

A

No signal
from detector

Figure 5 2. Fault tree obtained from a coherent assessment of the outcome 3

{R1, R2}, {D1, D2}, {LU} (5.1)

Although this fault tree has been constructed in a logical manner 1t is inaccurate
If the operator is informed, then either D1 and LU or D2 and LU must be working.
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Thus the second and the third minimal cut sets listed would not cause outcome 3
failure. Consequently quantification of this fault tree will result in an overestimate
of the probability of the top event For a correct assessment it is important to use
‘NOT’ logic so that the working part of the system is taken into account The non-

coherent fault tree for outcome 3 is shown in Figure 5 3. Working in a top-down

Qulcome
q

]
Process Power supply
shutdown fauls not isolated

Operator not

informed
No signal No signal
from LU from LU

No signal A A
from LU

No signal
from detector

Figure 5 3: Fault tree obtained from a non-coherent assessment of the outcome 3

way the following logic expression is obtained:

Top = (L+LU+DL-D2)-(R1+ LU+ D1 D2)-(R2+ LU + D1- D2)
= L-LU-(DI1+D2)-(R1+ LU+ D1 D2) (R2+ LU+ D1-D2)
= L-LU-R1-R2.(D1+ D2). (5.2)

The coherent approzimation of prime implicant sets can be performed, which 1n-
volves identifying only the positive parts of the prime implicant sets (1e failing
components), known as the minimal p-cuts of the fault tree In this example the
coherent approximation 1s R1- R2 thus the ‘NOT’ logic has successfully removed
the inappropriate fallure combinations and will enable accurate quantitative anal-

ysis to be performed. Therefore, whilst ‘NOT’ logic can increase the complexity
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of analysis 1n the case of multitasking systems the use of ‘NOT" logic 1s essential.

The method used to obtain the prime implicants 1s presented in the next section.

5.2.3 Qualitative Analysis

The objective is to determine the combinations of component conditions (working
or failed) which are necessary and sufficient to cause system failure. They are
called prime emplicants. The analysis to determine prime implicants requures more
work than for the minmimal cut sets in a coherent case. The order of the prime
implicants, which represents the number of components, working or failed, tend
to be larger than minimal cut sets due to the incorporation of the working states,

which do not appear in the expression of the minimal cut sets

5.2.3.1 Calculation of prime implicants

In order to calculate the prime implicants of a non-coherent fault tree 1t 15 neces-
sary to remove any ‘NOT’ gates from the fault tree structure. De-Morgan’s laws
presented 1n Equations 5 3 and 5 4 can be used to push down the ‘NOT” logic down

the fault tree to complement the basic events:

(A+B)=A-B, (5.3)
(A-By=4A+B (5 4)

To 1llustrate this process consider the output to the ‘NOT’ gate in the non-coherent
fault tree in Figure 5.3

L+LU+D1-D2 = L-(LU+ D1-D2) (55)
= L-TU DI-D2
= L.LU-(D1+ D2).

The application of De-Morgan’s laws to this fault tree results in an equivalent fault
tree that contains only ‘AND’ and ‘OR’ gates, see Figure 5 4, 1e from the original
structure the effect is to interchange ‘AND’ and ‘OR’ gates and to negate the basic

events
After all of the ‘NOT’ gates have been eliminated, the logic expression of the

Top event 1s analysed As a simple example, consider the fault tree 1llustrated 1n

Figure 5 5. Deriving a logic expression for the Top event gives
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Outcome

| ]
Operator Process Power supply
mformed shutdown fails not 1sofated

Signal No s N 1
gnal 0 s1gnal
from LU ° from LU @ from LU

A

Signal from
detector

No signal
from detector

Figure 5 4 Restructured non-coherent fault tree

Top=a-b+T-c (56)

Since this 1s a sum-of-products expression 1n 1ts sumplest form, two prime umplicant
sets {a, b}, {@,c} can be 1dentified. However, this is not a complete hst of prime
imphcant sets. In fact, if both component b and ¢ are 1n a failed state then the
system will be in a failed state regardless of the state of component ¢ The third
prime 1mplicant set {b,c} can be identified by applying the consensus law, given

in Equation 5.7:
AX + AY = AX + AY + XY (5.7)
The following expression is obtained for the top gate
Top=a-b+a@-c+b-c (5.8)

In summary, for the identification of a full list of prime implicant sets an expression
of the logic 15 obtained using the top-down approach Then the consensus law is
applied to pairs of prime implicant sets involving a normal and negated Iiteral. For
larger fault trees i1t may not be possible to 1dentify a complete list of the prime
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G1 G2

() ()
OOO

Figure 5.5: Non-coherent fault tree

implicant sets One of the solutions to this 1s to obtain the mimimal p-cuts that
can be used to quantify the system approximately using the conventional FTA

technmques

5.2.4 Quantitative Analysis

Quantification of a non-coherent fault tree cannot be achieved using the quantifica-
tion methods for coherent fault trees presented in Chapter 2 because those methods
do not take into account the working states that contribute to system failure Sys-
tem unavailability, unconditional failure intensity and importance measures will be

presented in this section

5.2.4.1 Calculating the system unavailability

Inagaki and Henley [26] have modified the inclusion-exclusion method used in the
coherent case to enable the calculation of the system unavailability of non-coherent

fault trees Q(t} 1s given by

o) = S PE) -3 S PUK.NK) +
+(-D)"IP(K N KyN. NKy), (59)

where P(K,) 1s the probability of the existence of prime implicant set 2. This

probability 1s calculated as follows

P(K) = [[e ), (5.10)




where

(1) = g, (t) 'Tf z, =1, %e. zappears, (5 11)
p,(t) ifz, =0, ie. 7 appears,
p=1-gq (5.12)

¢%? stands for the probabilities of literals contained in any of the prime implicant
sets Conflicting literals, i.e. z, 7, =0, and all redundancies, ie =z, -z, = z,, are
eliminated from prime implicant sets NV, denotes the number of basic events 1n a

prime implicant set.

When calculations can be unmanageable even for moderate sized fault trees the
approximations are applied as it was presented 1n the coherent case An alternative
means is to obtain a coherent approximation for qualitative analysis and use this
to calculate the Rare Event Approximation and the Mimimal Cut Set Upper Bound
presented 1n Chapter 2.

5.2.4.2 Calculating the unconditional failure intensity

The calculation of the unconditional failure intensity that was introduced 1n Chap-

ter 2 was extended by Inagaki and Henley for use with non-coherent fault trees.

The top event occurs in the interval [¢, £+ dt) if and only if no prime implicant sets
exist at time ¢ and at least one prime implicant set occurs in the interval [, +dt):

sys

N N

wys(t)dt = P JK.) - PA|JK) = wQi(t) —wi)dt,  (5.13)
=1 =1

here A is the event that at least one prime 1mplicant set exists at time ¢ and Ufil K,

is the event that one or more prime implicants K, occur in time [¢,¢ + dt). The

probability P’(Uf\r= , K.) 15 calculated as follows

N Np Np
P(JK) = > =@ [[ O, (5.14)
1=1 =1 i=1l#g

where

FH(t) = { qa(t) fz; =1 i (f) = { w,(t)y fz,=1 515




Z, is set to 1 if the literal exists 1n its positive form and 0 if the literal is negated
w,(t) is the unconditional failure intensity of component 7 and v,(t) is the uncon-

ditional repair intensity of component 3.

Both terms in Equation 5 13 can be expanded using the inclusion-exclusion for-
mula The calculation of unconditional failure intensity is a time consuming and
exhaustive process. Rare Event Approximation and Upper Bound Approximation

can be used as it was presented 1n the coherent case in Chapter 2.

The second method was developed by Becker and Camarinopoulos [27] where the
unconditional failure intensity can be expressed as the probability that the system
is in a critical state for one or more components at time ¢ and one of those critical
components fails in the interval [t,¢ + dt). In the non-coherent case components
can be both failure and repair critical, therefore two types of system criticality

functions are defined:

¢ Failure criticality function. System 1s working when component 2 is working

and failed when component ¢z 1s failed.
¢! = Q(L, a())(1 - Q0. a()))- (5.16)

e Repair cnticality function System 1s working when component ¢ is failed

and working when component ¢ is working;:

¢ = Q0 at)(1 ~ QL. a(®)))- (5.17)
From this the unconditional failure intensity can be calculated:
Neg Ne
Weystdt =Y ¢wdt + ) ¢ru,dt. (5 18)
1=1 =1

This method can only be applied if Q(1,,q(t)) and Q(0,, q(¢)) are independent.

5.2.4.3 Importance measures

Birnbaum’s Measure of component reliability importance is a fundamental measure

of importance It calculates the probability that component 2 is critical to the

system state. In the non-coherent case this probability can be expressed as the
probability that component 2 is repair critical, G¥(q(t)), or the probability that

component 2 1s failure critical, GF(q(t)), as shown in [28]:
G.(a(t)) = Gi(alt)) + G{ (a(t))- (5.19)
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The top event can only exist at time ¢ if at least one prime implicant set exists
at time ¢ Hence the failure and repair criticality can be calculated separately by
differentiating the system unavailability function, Q(t), with respect to g,(t) and
p,(t) respectively

Gl (a(t)) = quEg (5.20)
GR(a(t) = -g-g% (5.21)

In terms of Birnbaum’s measure of component reliability importance the expected

number of system failures can be calculated as:
t Ne

Neg
w(0,t) = /0 O Gl a®)w.(w) + > GHa))w(u) )du, (5.22)

where w,(t) denotes the component unconditional failure intensity, »,(t) denotes
the component unconditional repair intensity and N¢ is the total number of system
components. The first term 1n the equation calculates the number of occurrences
of system failure due to the faillure of component ¢ in a given time 1nterval and the
second term is the number of occurrences of system failure due to the repair of

component ¢ 1n a given time 1nterval.

Component Failure Criticality Measure of Importance 1s defined as the probahlity
that component 2 1s failure critical to the system and ¢ has failed weighted by the
system unavailability:
IF = Gl (a®)a(t) " (523)
Q(t)
Simularly, Component Repair Criticality Measure of Importance is calculated as the
probability that component 2 1s repair ¢critical and is in a working state weighted
by the system unavailability:
7 G0
Q(t)

The total criticality measure of importance 1s obtained by summing the failure and

(5 24)

repair part:
IL=IF+ IR (5 25)

Fussell-Vesely’s Measure of Component Importance can also be extended for non-

coherent analysis. The Fussell-Vesely fallure importance is expressed as

P(U_ﬂzEKJ KJ)

IFf = (5 26)

' Q(t)
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The Fussell-Vesely repair importance 1s calculated

R _ P(UJIEE& K;)
I'= ———*Q(t) (5.27)

5.3 Simplification Process of Non-coherent Fault
Trees

Deahng with complex industrial systems can result in very large fault trees, whose
analysis is time consuming. As it was presented in the coherent case in Chapter 2
two pre-processing techniques can be applied to the fault tree in order to obtain
the smallest possible subtrees and reduce the size of the problem. The first part
of the simplification process is a reduction technique which resizes the fault tree
to its simplest form. The second part identifies independent modules (subtrees)
within the fault tree that can be dealt with separately. The linear-time algorithm
is appled to the second part and a set of independent fault trees in their simplest
possible structure 1s obtained It 15 equivalent to the original system failure causes

and is easier to manipulate during the analysis process.

5.3.1 Faunet Reduction in the Non-coherent Fault Tree Case

The Faunet Reduction techmque for non-coherent FTs can be descnibed in four

stages, as 1t was presented 1n the coherent case
1 Contraction
2. Factorisation
3. Extraction
4, Absorption.

First of all, the fault tree is mampulated so that the NOT logic 1s ‘pushed’ down
the fault tree until it is applied to basic events using De Morgan’s laws, presented

in Equations 5 3 and 5 4.
For the contraction, subsequent gates of the same type are contracted to form

a single gate so that the fault tree becomes an alternating sequence of ‘AND’ and
‘OR’ gates
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Durning the factorisation, pairs of events that always occur together as inputs to
the same gate type are identified and combined forming a single complex event If
events appear 1 their working and failed states in the fault tree, only those basic
events that appear together in their negated state under the opposite gate type
can be combined. (Note. 1n this sense the ‘AND’ type gate 1s opposite to the ‘OR’
type gate). By De Morgan’s equations 5 3 and 5 4, 1f a 4 b and/or @ - b appear 1n

the fault tree, then a + b forms a complex event, or if @ - b and/or @+ b appear in
then substituted into the fault tree structure

In the extraction stage, the two structures shown in Figure 2.2 are identified and
replaced in order to reduce the repeated occurrence of events to a single occurrence
and facilitate further reduction If another component is repeated in the structure
and 1t 18 repeated 1n 1ts negated state, the structures shown in Figure 5 6 can be
simplified even more, i e the whole structure is replaced by the component that

appears only in one state, failed or working.

. resiructure . restructure
5 ._’@ — ©

0101016 0101016

the fault tree, then a - b forms a complex event. The complex events identified are
Figure 5 6. Extraction procedure 1n non-coherent case

During absorption, structures were identified that could be further ssmplified through
the application of the absorption and idempotent laws to the fault tree logic, Fig-
ure 2.3. If a component is repeated 1n 1ts negated state, the absorption rule can also
be applied. In this case the absorption cannot be appled if the primary gate is an
‘OR’ gate. Therefore, if the primary gate is an ‘AND’ gate and the secondary gate
1s an ‘OR’ gate, then the structure is simplified by deleting the occurrence of the
event beneath the secondary gate. If both the primary gate and the secondary gate
are ‘AND’ gates, the whole secondary gate can be deleted. These situations are
presented i Figure 5 7. The order of appearance of positive and negative events
mn primary and secondary gates is irrelevant. The above four steps are repeated

until no further changes take place in the fault tree
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Figure 5 7- Absorption procedure in non-coherent case

Consider a simple example in Figure 5.8, on the left the fault tree in terms of
1ts original components is presented and on the right the fault tree in 1ts numerical

form s shown. An array of negated data 1s also assigned that holds the information

Top 1600
I 1 I : 1
Gl G2 G3 1001 1002 1003

0000 0/K OlOO/KD

Figure 5 8 Non-coherent fault tree for reduction

that basic events 5 and 6 are negated forms of basic events 1 and 2.

The fault tree has an alternating sequence of ‘AND’ and ‘OR’ gates, therefore

the contraction 1s not needed

The put events to each gate are considered one by one, looking for pairs that
always occur together. The factorised fault tree 1s shown in Figure 59 The com-
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plex events are shown 1n Table 5 2

1000

|
1002 1003

Figure 59 Non-coherent fault tree after factorisation

Complex Gate value | Event 1 Event 2
cvent
2000 OR a b
4000 AND 7] b

Table 52 Complex event data for non-coherent fault tree

The number of repeated events can be minimised during the extraction process

The only gate that has two or more gate inputs is top gate 1000, whose inputs are
1002 and 1003 These secondary gates are both of a different type to the primary
gate, and have basic event 4 in common, that can be extracted In order to get this
into the required form for the extraction, gate 1005 1s generated. Another new gate
1006 is created which is of the same type as the secondary gates and has the same
common output, event 4, and the primary gate 1000, as inputs. The sequence of

the extraction procedure is shown n Figure 5 10

Finally, the only repeated event in the fault tree is event 2000. It 1s repeated
1n 1ts negated form. The first time 1t occurs as an input to the primary gate 1005,
which is a ‘AND’ gate, and the second time 1t occurs n 1ts negated form as an
mput to the secondary gate, which is also an ‘AND’ gate Since the types of the
primary and the secondary gates are the same the secondary gate can be deleted.

The fault tree after the absorption 1s shown in Figure 5 11.
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Figure 5.10: Non-coherent fault tree during extraction, gate 1005 and 1006 created

The reduction process is completed.

the modulansation of the fault tree.

® O

Figure 5 11: Non-coherent fault tree after absorption
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5.3.2 Linear Modularisation in the Non-coherent FT Case

Modularisation identifies independent modules within the fault tree that can be
analysed separately from the rest of the tree  The linear-time algorithm 1n the non-
coherent case can be applied in the same way like it was presented 1n the coherent
case 1n Chapter 2 The state of the basic event 15 not relevant to the traversal and

The application of the simplification techniques in non-coherent case has been




5.4 Summary

The use of NOT logic during fault tree construction can add to the complexity of
analysis However, it has been demonstrated by Andrews [24] that NOT logic can
be essential for meaningful and accurate analysis of certain systems. Therefore, 1t

15 essential to be able to analyse non-coherent fault trees accurately

Conventional methods of fault tree analysis have been extended for the purposes of
non-coherent FTA. However, NOT logic increases the complexity of the analysis,
and even for moderate sized examples the analysis might not always be possible.
Although a coherent approximation can be used to reduce the work required for

the analysis, the techniques are still computationally intensive.

The fault tree diagram is a useful description of the system being analysed, but
alternative techmiques for both qualitative and quantitative analysis are required,
so that the efficiency and the accuracy could be improved. The BDD method, as
a means for a better analysis of non-coherent fault trees, is presented in the next

chapter
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Chapter 6

The BDD Method for the Analysis

of Non-coherent Fault Trees

6.1 Introduction

Conventional techmques of FTA can be used to perform the qualitative and quanti-
tative analysis of non-coherent fault trees. However, even for moderate sized trees
approximations are unavoidable The BDD method 1s more efficient and accurate
than conventional FTA methods. The fault tree is converted to the SFBDD (struc-

ture function binary decision diagram) from which exact analysis 1s performed

However, 1t is not possible to identify the prime implicant sets directly from the SF-
BDD, this requires more calculations. A full set of prime implicants is determined
by applying the consensus theorem [24] to pairs of prime implicant sets involving
a normal and negated literal. A new alternative method for performing the qual-
tative analysis of non-coherent fault trees 1s proposed as a part of this research In
this approach a fault tree is converted to a Ternary Decision Diagram (TDD). The
main concept of a TDD was presented by Sasao [30]. The method was developed
further introducing the conversion rules from fault trees to TDDs, applying the
minimisation technique and presenting an efficient way to obtain prime implicant

sets

There are several methods for the calculation of prime implicant sets proposed
in the literature. The first of these methods was introduced by Courdet and
Madre [31] and then developed by Rauzy and Dutuit [32] This method involves
calculation of the Meta-products BDD from which prime implicant sets can be
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identified. The second alternative method presented by Rauzy [33] uses the ob-
tained SFBDD and converts 1t to the Zero-suppressed BDD (ZBDD), presented
by Minato [34]. The third alternative method produces a Labelled Binary De-
cision Diagram (L-BDD), presented by Contini [35] All these methods produce
prime implicant sets and have their advantages and disadvantages in the conver-
sion and representation techniques Therefore, the analysis will be performed and

the efficiency of the proposed TDD method estimated

6.2 Computing the SFBDD in Non-coherent Case

The SFBDD for a non-coherent fault tree 1s computed using the same ite procedure
presented in Chapter 3. The only extra rule is the ite structure for negated events
In this case, the one and zero branches have been switched compared to the ite

expression for the positive event:
T = ite(z,0,1), (61)

Consider the fault tree example given in Figure 55 Introducing a variable ordering

b < a < ¢ and assigning each basic event an ite structure gives:

a = ite(a,1,0), (6.2)
a = ite(a,0,1), (6.3)
b = ite(d1,0), (6.4)
c = ite(e,1,0) (6.5)
(G115 expressed
Gl = b a (6 6)

= ite(d,1,0)-ite(q,1,0)
= ite(b,ite(a,1,0),0)

Then dealing with G2 gives.

G2 = @-c (67)
e(a,0,1) -ite(c, 1,0)
= ite(a,0,ite(c, 1,0)).
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Finally the Top gate is expressed

Gl+G2 (6 8)
= ite(b,ite(q,1,0),0) + ite(q, 0, ite{c, 1,0))
= ite(b,ite(q,1,ite(c, 1,0)),ite(q, 0, ite(c, 1,0))).

Top

So, this 1s the ite structure computed for the fault tree from Figure 5.5 and the
SFBDD is shown in Figure 6.1.

Figure 6 1: SFBDD for non-coherent fault tree

6.3 Qualitative Analysis

Knowledge of prime implicant sets can be valuable in gaining an understanding
of the system under analysis. It can help to develop a repair schedule for failed
components 1f a system cannot be taken off line for repair. For example, there
is a system with three components A, B,C. One failure state of the system 1s
represented by the prime implicant set {4, B,C} and this failure state results i
a hazard Therefore, it 18 important to know this prime implicant set If all com-
ponents have failed, 1t 1s obvious from this set that component C should not be
repaired until either component A or B had been repaired Hence unnecessary

system failures could be avoided

The SFBDD which encodes the structure function cannot be used directly to pro-
duce the complete list of prime implicant sets of a non-coherent fault tree. For
example, consider a general component z 1n a non-coherent system. Component z

can be n a farled or working state, or can be excluded from the failure mode. In the
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first two situations z is said to be relevant, in the third case it is irrelevant to the
system state Component z can be erther failure relevant (the prime implicant set
contains z) or repair relevant (the prime implicant set contains ) A general node
in the SFBDD, which represents component z, has two branches. The 1 branch
corresponds to the failure of x; therefore, x is either failure relevant or irrelevant.
Similarly, the O branch corresponds to the functioning of x and so z is either repair
relevant or wrrelevant Hence 1t is impossible to distinguish between the two cases

for each branch and the prime implicant sets cannot be 1dentified from the SFBDD

The SFBDD encodes the structure function of the fault tree and 1ts mimmal form
can only be used to obtain a coherent approximation for qualitative analysis. This
1s presented later in this section In order to obtamn prime implicant sets additional
calculations are required. A new method will be proposed for the qualitative anal-

ysis and its efficiency will be compared with the established methods

6.3.1 Coherent Approximation

The coherent approximation for qualitative analysis involves identifying only the
positive parts of the prime implicants, known as minimal p-cuts. The SFBDD of
a non-coherent fault tree needs to be minimised, removing non-minimal cut sets
and then a full list of minimal p-cuts is obtamned tracing the paths to a terminal
1 through the minimised structure. The SFBDD in Figure 6 1 is non-minimal
and thus must be mimimised before the minimal p-cuts can be identified exactly.
Traversing node F4 on the zero branch of node F2 results in the non-minimal
combination {b,c}. Therefore the zero branch of node F2 is terminated with 0
resulting 1n the mimmsed SFBDD shown 1 Figure 6 2. This SFBDD produces

two minimal p-cuts

{a,0},{c} (69)

They are the coherent approximation of the three prime implicant sets

{a: b}’ {6, c}= {ba c}° (6 10)

6.3.2 Ternary Decision Diagram Method

A new approach to bmld a Ternary Decision Diagram (TDD) for the analysis of
non-coherent fault trees 1s proposed 1n this section. It employs the consensus the-

orem and creates, 1n addition to the two branches of the BDD, a third branch for
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Figure 6 2- Minimised SFBDD

every node, called the consensus branch. This third branch encodes the ‘hidden’
prime implicant sets The minimisation algorithm [2] 1s applied to remove non-

minimal paths and obtain prime implicant sets only

The representation now lends itself to a node structure with three exit branches.
A new ifre structure 1s presented which distinguishes not only between relevant
and 1irrelevant components but also it distingushes between the type of relevancy,
1e. failure relevant and repair relevant The ifre structure for a component z 1s
given below:

ifre(z, f1, fo, f2)- (6.11)

The 1 branch encodes prime implicant sets for which component z is failure rele-
vant, the 0 branch encodes prime implicant sets for which component z 1s repair
relevant, and the ‘C’ branch encodes prime implicant sets for which component z

15 1rrelevant, The ifre structure shown mn Figure 6 3 can be interpreted as follows

If z 1s failure relevant  consider function fi, (6 12)
or z 1s repair relevant  consider function fy, (6 13)
else  consider function fo (6 14)

Function f; encodes prime implicant sets for which z 1s irrelevant, but this branch
is not important for all components For components that are only failure or repair
relevant, but not both, this branch can be kept ‘empty’. In this method f, = NIL

144




Consensus
branch

h Jo h23

Figure 6 3 Three-way 1te structure

1s assigned, if the conjunction of the two branches f; - fp is not required. While
operating the new symbol in the Boolean algebra, 1t 1s defined that NIL < op >
A = NIL Symbol NIL 1s used to 1dentify cases when the ‘C’ branch 1s not

required and no Boolean operations that involve this branch are needed.

6.3.2.1 Computing the TDD

The conversion process for computing the TDD 1s simular to the previous method

Basic events of the fault tree must be ordered Then the following process 1s used

1 Assign each basic event z an ifre structure

If @ 1s only failure or repair relevant, then.

z = ifre(z,1,0,NIL), (6 15)
T = ifre(z,0,1, NIL) (6 16)

If a is failure and repair relevant, then:

z = ifre(z,1,0,0), (6.17)
Z = ifre(z,0,1,0) (6 18)

2. By the application of De Morgan'’s laws push any ‘NOT’ gates down through

the fault tree until 1t reaches basic event level

3. If the two gate inputs are G and H such that:

G = itE(IE, Fl, Fo, Fz), (6 19)
H= ite(y? Hl! HO: H2)1 (6 20)

then the following rules are applied:
Ifr <y,G <op>H = ifre(z, K1, Ko, [Ki - Ko]), (6 21)
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where Ky = Fy < op> H and Ky = Fy < op > H, and K, - K) represents

the consensus of K; and K,
If z =y,G <op> H =ifre(z, Ly, Ly, [L1 - L)), (6 22)

where [ = Fy < op > Hy and Ly = Fy < op > Hy, and L, - Ly represents
the consensus of L, and Ly

Remark. If component z 1s faillure or repair relevant, K, - Ko = NIL
and L; - Ly = NIL 1 Equations 6.21 and 6 22.

These rules are used in conjunction with the following 1dentities:

l<op>H=H, O0<op>H=0, (6 23)
if <op> isan ‘AND’ gate

l<op>H=1, O<op>H=H, (6 24)
if <op> isan ‘OR’ gate.

Within each ite calculation an additional consensus calculation is performed to
ensure all the ‘hidden’ prime implicant sets are encoded in the BDD obtained. It
calculates the product of the 1 and the 0 branch of every node and thus identifies
the consensus of each node. If a node in the TDD encodes a component which is
only failure or repair relevant the conjunction of the 1 and 0 branch for the node
1s not required, because there are no ‘hidden’ prime implicant sets associated with
this component Ths property makes the TDD method an efficient techmique for

performing the qualitative analysis of non-coherent fault trees.

Consider the non-coherent fault tree in Figure 5.5. A variable orderingisb < a <c.
Component b is failure relevant, component ¢ is repair relevant and component a

1s both, failure and repair, relevant. Each variable is assigned an ifre structure:

a = ifre(a,1,0,0), b= ifre(y, 1,0, NIL), (6 25)
g = ifre(e,0,1,0), c=ifre(c,1,0,NIL).

l

Computing the ifre structure for gate G1-
Gl = b-a (6 26)
= ifre(d,1,0,NIL)-ifre(a,1,0,0)
= ifre(b, f1, fo, f1 - fo),
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fi = 1-ifre(a,1,0,0) = ifre(a, 1,0,0),
fo = 0 ifre(a,1,0,0)=0,
Si-fo = NIL.

Therefore, the ifre structure for gate G1 1s given below:
ifre(b, ifre(e, 1,0,0),0, NI L)

Dealing with gate G2

= ifre(a,0,1,0)-ifre(c,1,0,NIL)
= ifre(aaflﬁfO)fl'fO)a

where

fi = 0 ifre(c,1,0,NIL) =0,
fo = 1 ifre(e,1,0,NIL) = ifre(c,1,0,NIL),
fi-fo = 0-ifre(e,1,0,NIL)=0

Hence the ifre structure for gate G2 1s
ifre(a, 0,ifre(c, 1,0, NIL),0)
Finally, calculating the top gate Top:

Top = G1+G2

= ifre(b, ifre(a, 1,0,0),0, NIL) + ifre(a, 0, ifre(c, 1,0, NIL),0)

= ifre(ba fl)fOsfl ' fU)?

where

fi = ifre(q,1,0,0) + ifre(a, 0, ifre(c, 1,0, NIL),0)
= ifre(a,1,ifre(c, 1,0, NIL),ifre(c,1,0, NIL)),

(6 27)

(6.28)

(6.29)

(6 30)

(6.31)

(6 32)

(6 33)

fo = 0-+ifre(a,0,ifre(e, 1,0, NJTL),0) = ifre(a, 0, ifre(c, 1,0, NIL), 0},

fi-fo = NIL

The final ifre structure obtained for the fault tree in Figure 5.5

ifre(d, ifre(a, 1,ifre(c, 1,0, NIL),ifre{c, 1,0, NIL)), f, NIL),
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where
f =ifre(a,0,ifre(c, 1,0, NIL), 0) (6 35)

The obtained TDD 1s shown 1n Figure 6 4

Figure 6.4: TDD for fault tree shown 1n Figure 5.5

6.3.2.2 Minimising the TDD

Once the TDD has been computed there is no guarantee that the resulting structure
will be minimal, 1e. produce the prime implicant sets exactly For quantitative
analysis the initially generated TDD needs to be retained, but in order to perform

the qualitative analysis a mimimisation procedure needs to be implemented

The algorithm developed by Rauzy for minimising the BDD [2] can be used to

create a minimal TDD that encodes the prime implicant sets exactly

Consider a general node in the TDD which is represented by the function F, where
F =ifre(z,G, H, K). (6 36)
The process of minimisation is described in three cases
¢ Component z is fallure and repair relevant,

e Component z is failure relevant,

¢ Component z is repair relevant.
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In case 1, the set of all minimal solutions of F will include minimal solutions of
G (Gpun) and H (Hypn) that are not minimal solutions of K and also all minimal
solutions of K (Ky,) If § 15 a minimal solution of G, which is not a minimal
solution of K, then the intersection of § and z (6 N =) will be a minimal solution
of F. Similarly, let v be a minimal solution of H which 15 not a minimal solution
of K, then the intersection of v and T (y NZ) will be a mimmal solution of F.
The set of all the mnimal solutions of F' (50l,,(F')) will also include the minimal

solutions of K, so:
80l (F) = (6N2) U (7 NT) U K. (6 37)

The ‘without’ operator removes all the paths from G,,,,,, and H,,,, that are included
in K. In this way the combined set sol,,.,(F) represents the minimal solutions
of ' by removing any minimal solutions of G and H that are also mimimal solutions
of K.

In case 2, where z 1s failure relevant, K = NIL and the calculation of prime
mmplicant sets is equivalent to the BDD case where the ‘C’ branch does not exist,

ie
§0lmn(F) = (0 Nz) U Hopun. (6 38)

The set $0ly.n(F) represents the minimal solutions of F by removing any minimal

solutions of (7 that are also minimal solutions of H

In case 3, where z is repair relevant, K = NIL and the calculation of prime

implicant sets is defined as.
50l (F) = (Y NE) U Grun (6.39)

Simularly to the previous cases, the set 80!, (F') represents the minimal solutions
of F' by removing any minimal solutions of H that are also minimal solutions of

G

To 1llustrate this procedure consider the TDD in Figure 6 4. The nodes are consid-
ered in the top-down manner, starting with the root-node. The minimal solutions
are computed for the 1 branch first, then for the 0 branch and finally for the con-
sensus branch Then all solutions that exist on either the 1 or 0 branch of a node

that also exist on the consensus branch of the node are removed from the 1 or 0
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branch by replacing the corresponding part with a terminal vertex 0 If a node 18

terminal it 1s minimal automatically, 1f 1t is non-terminal the structure below needs

to be mimmmused before the mimimisation of the current node can be completed.
Each node 18 considered in turn

F1 = ifre(b, F2, '3, NIL) - No minimisation is required at this stage

F2 = ifre(a, 1, F4, F4) = ifre(a, 1,0, F'4) - Since the 1 branch is terminal, it does
not contain any paths that are included in the consensus branch. Minimal solu-
tions of the 0 branch and the consensus branch are the same, therefore, the minimal
solutions of the 0 branch are removed by replacing the 0 branch with a terminal
vertex 0.

F3 = ifre(a, 0, F4,0) - Since the consensus branch 1s terminal, 1t does not contain
any paths that are included in the 1 and 0 branches.

F4 =ifre(c, 1,0, NIL) - All the branches are terminal.

The mimmal BDD is shown in Figure 6 5 Now it is possible to obtain a full list

Figure 6 5: Minimmised BDD obtained from the TDD 1n Figure 6 4

of prime 1mplicant sets by tracing all the terminal paths through the minimised
BDD:

{a,b}, {@ c},{b,c}. (6 40)

This concludes the presentation of the TDD method, which has been published
n [36]
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6.3.3 Established methods

This section consists of the application of the three methods that were established
in the literature The first method is the meta-products BDD method [32]. After
the SFBDD is constructed, every basic event in a meta-products BDD 1s repre-
sented by two variables, P, and S,. P, represents the relevancy of the component
(relevant or irrelevant) and S, represents the type of the relevancy (failure rele-
vant or reparr relevant). The second approach is the zero-suppressed BDD method
(ZBDD) [33]. In this method the system SFBDD is constructed and then used
to build a ZBDD All nodes in the ZBDD are labelled with failed and/or working
states of basic events and priume implicant sets are decomposed according to the
presence of a given state of a basic event. The ZBDD obtained 1s always 1n its
minimal format In the third alternative method, a labelled binary decision dia-
gram (L-BDD) method [35], every basic event is labelled according to its type, 1€
failure or/and repair relevant. This additional information about the occurrence
of every basic event is considered while converting a fault tree to an L-BDD. It
does not provide all prime imphcant sets, therefore the additional caleulations are
required followed by the mimimsation technique. These three established methods
wil! be considered for the efficiency test of the TDD method later in the section

6.3.3.1 Rauzy and Dutuit Meta-products BDD

Rauzy and Dutuit developed an alternative notation that associates two variables
with every component . The first vanable, P,, denotes relevancy and the second
variable, S, denotes the type of relevancy, i e failure or repair relevant A meta-
product, M P(7), is the intersection of all the system components according to their
relevancy to the system state and = represents the prime implicant set encoded 1n
the meta-product M P(r)

(P, ASy) fz€em,
MP(n)={ (P,AS,) fZem, (6.41)
P, if neither = nor = belongs to .

Rauzy proposed a method for calculating the Meta-products BDD of a fault tree
from the SFBDD The Meta-products BDD is always minimal, therefore 1t encodes
the prime implicant sets exactly. A procedure called MPPI that converts the
SEFBDD into the Meta-products BDD is outhined below
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6.3.3.1.1 MPPI algorithm

A basic node in a SFBDD is described as

ite(z,, f1, fo) (6.42)

The meta-products structure for this node is denoted as:
PI[ite(l’“fl,fo),L], (6 43)

where L is the ordered hist of all basic events except for those that appear on the
current path from the root node to this node.

Pllite(z,, f1, fo), L] is evaluated according to the following rules:

1. If z, is the first basic event in L

PI[ite(:c,, fl-; fg), L] = ite(th, ite(Sxt, Pl, PO), PZ), (6 44)
where
P2 = PI[f;- fo, L], (6.45)
P1 = PI[fi,L]-P2, (6.46)
PO = PI[fo,L']- P2, (6.47)
and
L = Tyy La41y 0y Ty (6 48)
L' = %1, T2, s Zn. (6 49)

2 If z, is not the first basic event in L, 1.e L =x,,%,41,..,%, such that 2 > 7.

PIlite(z,, f1, fo), L] = ite(Py,,0, PI[ite(z, fi, fo), L']). (6.50)

The following identities are applied:
PI[0,L] = 0, (6 51)
PI[l,z-L] = ite(P,,0,PI[1,L]) (6 52)

For every vertex ite(z, fi, fo) P2 encodes the prime implicant sets for which z 1s
irrelevant, P1 encodes the prime implicant sets for which z is failure relevant and

P0 encodes the prime implicant sets for which z 1s repair relevant.
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In order to calculate P2 the basic ite structure of fo = f; fo must be calcu-
lated Then the meta-products structure of fz, presented as PI[fs, L], must be

computed. If 2 is a terminal node
1 If fo=0, PI[fy, L] =0,
2 If fo =1, PI[fy, L] = ite(P,,,0,ite( Py, ,,0,. ,ite(P;,,0,1))).
If f; is not terminal, MPPI calls 1tself to compute the meta-products structure of

fa, before continuing the calculation at the previous level.

The same procedure is implemented for caleulating the meta-products structure
of fi and fo, denoted by PI[f;, L] and PI{fy, L] respectively To ensure that the
Meta-products BDD is minimal the conjunction of the meta-products structure for

f1 and fp and P2 is performed This eliminates repeated minimal solutions.

To illustrate how this algorithm is apphed in practice consider the SFBDD 1n
Figure 6 1, which has the following ite structure.

ite(b, ite(a, 1,ite(c, 1,0)), ite(q, Oite(e, 1, 0))). (6.53)
The meta-products structure must be computed for this ite structure

PIiite(b, ite(a, 1, ite(c, 1, 0)), ite(a, Oite(c, 1,0))), bac] = (6 54)
ite( P, ite(S;, P1, P0), P2),

where
P2 = PIlite(a, 1,ite(c, 1,0)) - ite(a, 0, ite(c, 1, 0)), ad}, {6.55)
P1 = PlIlite(a,1,ite(c, 1,0)),ac] - P2, (6 56)
PO = PI[ite(a,0,ite(c,1,0)),ac) - P2, (6 57)
Calculating P2.
P2 = Pllite(q,0,ite(c, 1,0)), ac| (6 58)

= ite(P,,ite(S,, P11, P0.1),P21)
= jte(F,, ite(S,, 0, ite( 7, ite(S,, 1,0}, 0)),0),
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where

Calculating P1.

where

P1

P22

P12

P02

P21

Pl1

P01

PI[0-ite(c, 1,0),¢]
PI[0, ]

0,

PI[0,d-P2.1

0-1

0,

Pllite(c,1,0),d- P21
ite(F,,ite(S,,1,0),0) -1
ite( P.,ite(S,, 1,0),0)

PlI[ite(a, 1,ite(c, 1,0)), ac] - P2

-

(
ite( R, ite
(
(

ite

te( Py, ite(S, P1.2, P0 2), P2.2)- P2
S,, ite(F,, 0,1}, 0), ite( P, ite(S,, 1,0),0
P,,ite(S,, 1,ite( F,, ite(S,, 0,1),1)),1
ite( P, ite(S,, ite(F,, 0, 1), 0), ite( P., ite(S,, 1,0),0

= PI[1-ite(c, 1,0),d]
= Pl[ite(e, 1,0),¢]
= ite(F,,ite(S,,1,0),0),

PI(1,c- P22
= ite(P,,0,1)-ite(F,,ite(S,0,1),1
(

= ite(R,0,1),
= Pl[ite(c,1,0),c] - P2.2

= ite(F,,ite(S,,1,0),0)-ite( P, ite(S,,0,1),1

(
= ite(P,ite(S,,0,0),0)

= 0
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Calculating PO
P0 = PlIJite(a,0ite(c, 1,0)),ac] - P2 (6.66)
= ite(R,0, Pllite(c,1,0),c]): P2
= ite(F,,ite(S,,0, ite(P,, ite(S,,1,0),0)),0) -
ite(P,,ite(S,, 1, ite(P,, ite(S,,0,1),1)),1)
= ite(F,,ite(S,,0, ite( P, ite(S,, 0,0),0)),0)
= 0

The ite structure of Meta-products BDD for the SFBDD in Figure 6 1 1s given

below:

ite( Py, ite(Sy, ite(P,, ite(S,, ite(P,, 0,1),0), f),0), (6 67)
ite(F,,ite(S,,0, f),0)),

where
f =ite(P,, ite(S,, 1,0),0). (6 68)

The Meta-products BDD is given 1n Figure 6 6. Now 1t is possible to obtain the

Py
1 0
RY b P, a
1 0 1 0
P, 0 S, 0
1 0 1 0
Sz 0
1 0
P. 0 3
0 1 5. o
1 0
1 0

Figure 6 6- Meta-products BDD calculated from the BDD given in Figure 6.1
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meta-products and 1dentify the prime implicant sets:

Pb/\Sb/\.Pu/\Sa/\}_j; = {a,b} (669)
P,ASyAP,AP,AS, = {bc} (6 70)
PAP,AS,AP.AS. = {a,c}. (6.71)

For example, in the first meta-product means F, signifies that component b is rel-
evant and S, signifies that component b is failure relevant. Component a is also
failure relevant. Finally, P, means that component ¢ is irrelevant Hence the addi-

tional prime implicant set {a,b} is obtained.

Since in the Meta-products BDD every basic event 1s represented by two elements,
P, and S,, the size of the BDD can expand quite a lot

6.3.3.2 Zero-suppressed BDD Method

As 1t was discussed earlier, working with non-coherent fault trees a SFBDD 1s not
a sufficient means to identify prime implicant sets Another alternative method
presented by Rauzy [33] uses BDDs but with a different meaning The 1dea of
Zero-suppressed BDDs (ZBDD) introduced by Mmato [34] is used to calculate
prime 1mphcant sets. This method requires nodes to labelled with failed and/or
working states of basic events and to decompose prime mmplicant sets according to

the presence of a given state of a basic event

6.3.3.2.1 Presentation of a ZBDD

Zero-suppressed BDDs are BDDs obtained after applying a reduction rule. This
data structure brings a unique and compact representation of sets and it 1s more
efficient and simpler than the usual BDDs when manipulating sets in combinatorial

problems The following reduction rules for BDDs are:

e Eliminate all the nodes that have the 1 branch pointing to terminal vertex
0 Then connect the branch that was pointing to the eliminated node to
the BDD structure beneath the O branch of the eliminated node, shown in
Figure 6 7

e Share all equmvalent BDD structures as for original BDDs.

ZBDDs automatically suppress basic events that do not appear 1n prime imphcant

sets It is very efficient when calculating sets with basic events that are far apart
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6.3.3.2.2 Decomposition rule

cases

PI(¢)
where S;
51

So

Figure 6.7: Elimination process

1. Basic event x appears in both, failed and working, states:

z-51+T So+ 5s,
PI(f1- fo},
PI(fi)\ S,
PI{fo) \ S

2 Basic event z appears 1n its failed state only.

PI(¢)

| where S

51

= r 51+ 5,
= PI(fO)?
= PI(fi)\ S

in the variable ordering scheme. For example, in Figure 6 7 the represented BDD
contains a prime implicant set {a, e}. The established variable ordering is a < b <
¢ < d < e. The obtained ZBDD brings basic events close since the intermediate
nodes, F'2, F3 and F4, can be eliminated.

The principle of the ZBDD algonthm 1s to traverse the SFBDD that encodes
structure function ¢ = ite(z, fi, fo) 1n a depth-first way and to bwild a ZBDD that

encodes the prime implicant sets in a bottom-up way The rule is described 1n four



3. Basic event = appears 1n 1ts working state only This case is similar to case
2.

4. Basic event z does not appear 1n the system:
PI{¢) = PI(fi + fo)- (6 79)

Here \ 1s the ‘without’ operator used in the coherent case

Produced ZBDDs retain the variable ordering from the SFBDD case. In addi-
tion, working states of basic events that appear in both states are incorporated 1n
the ordering scheme, 1 e. they appear after the basic event that describes the failed
state in the ordering scheme. For example, the variable ordering constructing a
SFBDD for the example i Figure 55 is b < a < ¢, in the ZBDD method the

introduced orderingisb<a<a <c.

6.3.3.2.3 Worked example

Consider the example fault tree in Figure 5 5. Using the variable orderingb < a < ¢
the SFBDD obtained is shown in Figure 6 1. Each node is considered in the bottom-

up way.
F4 = ite{c,1,0), PI(F4) = ite(c, 1,0), (6 80)
because both vertices are terminal,
F2 = ite(a,1, F4), PI(F2) = ite(a, S, ite(a, S, S2)), (6 81)
because a appears in both states.
Sy = PI(1-F4)= PI(F4), (6 82)
S = 1, (6 83)
So = PI(F4)\ PI(F4)=0. (6 84)
Therefore
PI(F2) = ite(a,1,ite(c,1,0)). (6 85)
Then
F3 = ite(a,0, F4), PI(F3) = ite(a, 5, ite(a, Sy, S2)), (6 86)
S = 0, (6 87)
S =0, (6.88)
So = PI(F4). (6.89)




Therefore

PI(F3) = ite(g,ite(c,1,0),0). (6.90}
Finally
F1 = ite(b, F2,F3),PI(F1) = ite(b, 51, Sy), (6.91)
So = PI(F3), (6 92)
S1 = PI(F2)\ PI(F3)= PI{(F2). (6.93)
Therefore:

PI(F1) = ite(b,ite(a,l1,ite(c, 1,0)),ite(z,ite(c, 1,0),0)). (6 94)
The obtained ZBDD 1s shown in Figure 6 8. Every path in a ZBDD from the root

Fl{ b

N
a3

Figure 6 8 ZBDD for non-coherent fault tree

vertex to terminal vertex 1 presents a prime implicant set Only vertices that lie
on the 1 branch of a path are included in a prime implicant set Therefore, this

ZBDD contains three prime implicant sets shown in Table 6 1

Path Prime implicant
F1-F2 {b,a}
F1-F2-F4 {b,c}
F1-F3-F4 {@,c}

Table 6.1 Prime implicant sets using the ZBDD

This method provides a compact representation of prime implicant sets and enables

an efficient qualitative analysis to be performed
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6.3.3.3 Labelled Variable Method

The labelled variable method is the third alternative method for constructing BDDs
for non-coherent fault trees BDDs obtained using this approach of conversion
consist of variables that are labelled according to their type. The construction of a
BDD with labelled variables (L-BDD) and the efficiency of the method 1s presented
in this section

6.3.3.3.1 Classification of variables

As it was recogmsed before, the structure function ¢(z) of a non-coherent fault
tree may contain three different types of basic events. In this method they are

described as:

¢ Positive events that appear in the failed state only, referred to as single form
positive variables (SFP),

¢ Negative events that appear in the working state only, referred to as single
form negated variables (SFN),

o Events that appear both in positive and negative forms, i e that appear in

the failed and working states, called double form variables {DF).

For example, the function ¢(z) = a-b+a-¢+b-¢ contains the DF variable a, the SFP
variable b and the SFN variable ¢. Coherent fault trees contain only SFP variables.

In the presentation below the SFP variable 2 will be simply presented by z, the
SFN variable z will be labelled ‘$z’ character and the DF variable z will be labelled

‘&z’ character.

Let ¢(z) be a non-monotonic function and  the vanable selected for expansion.

The following three cases are possible.

o For SFP variables the expansion of ¢(z) gives:

From the probabihstic viewpoint:

P(z) =9, P(T)=1— . (6 96)
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e For SFN variables the expansion of ¢{z) is:
o(z) = $z- ¢(1,2) + 8z - $(0, z). (6 97)
In terms of the probability:
P($z) =1— g, P(32) = ¢.. (6.98)
The vaniable labelled with the § symbol 1s equivalent to variable
e If z is of DF type the expansion of ¢{z) gives:
#(z) = &z - #(1,7) + &z - (0, 7). (6 99)
The probability can be calculated according to:
P(&z) = qu, P&z)=1-q,. (6 100)
6.3.3.3.2 Construction of the L-BDD

To construct the L-BDD the first composition rule (Equation 3 2) from Chapter 3
needs to be extended, so that it would be possible to take into account the labelled
variables The second rule (Equation 3 3) can be applied as it was presented for
the coherent case. Consider the ordering of the labelled variables &z < = < $z the
following additional rules are developed

Let J and H bhe two nodes in the BDD.
o Let J = ite(x, 1, B3), H = ite($z, G1, G2).

Since z < $z then:
J<op>H=1ttellz, [} <op>Gs Fy < op>G). (6 101)
In this case:
J<op>H = ite(&z,(J <op> H) |gp=1,(J < 0p > H) |gz=0) =
ite(&z, (F |z=1< 0p > G lsz=0), (F |z=0< 0p > G |gz=1))
e Let J = ite(&z, 11, F), H = ite(z, G, Ga).
Since &z < z then-
J<op>H = ite(&z,Fy <op> G, F<op>Ge). (6.102)
Here

J<op>H = ite(&z,(J <op> H) |gg=1,(J < 0p>H) |gz=0) =
ite(&z, (F |gz=1< 0p > G |z=1), (F |gz=0< 0p > G |z=0))-
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o Let J = ite(&zx, 1, F3), H = ite(8z, Gy, G2).
Since &z < $z then

J<op>H = ite(&x, Fi<op> Gy, Fy <op> G]) (6103)
In this case

J<op>H = ite(&z,(J <op > H) |ge=1,(J <0p > H) |gz=0) =
ite(&:c, (F I&a:=1< op > G |$x=0); (F |&a:=0< op > G ’$w=l))'

here < op > as before corresponds to the Boolean operations ‘AND’ or ‘OR’.

The trivial relationships are considered as

0 A a=0, (6 104)
1 A a=q, (6.105)
0V a=aq, (6 106)
1V a=1, (6 107)

where o 1s from the set {&z,z, 3z}

This algorithm will be applied to the example fault tree in Figure 55 There
are 3 vaniables in the fault tree. Two of them are the SFP variables, b, ¢, since they
only appear in the failed state. One variable 1s the DP vanable, a, since 1t appears
mn both working and failed states The variable ordering b < &a < a < $a < ¢ is
introduced. Then the composition rules are applied and ite structures for gates
G'1 and G2 are calculated

Gl = ite(b,1,0)-ite(a, 1,0) = ite(b, ite(a, 1, 0),0) (6 108)
G2 = ite($a,1,0)-ite(c,1,0) = ite($a, ite(c, 1,0),0). (6.109)

Fnally, Top gate 1s considered

Top = ite(b,ite(a,1,0),0)+ite(3a,ite(c, 1,0),0) (6 110)
= ite(d,ite(a, 1,0) + ite(3a, ite{c, 1,0),0), ite($a, ite(c, 1,0),0))
= ite(d,ite(&aq, 1,ite(c, 1,0)),ite($a, ite(c, 1,0),0))
This connection considers the application of new rules in the case of z < $z.

The resulting BDD 1s shown 1n Figure 6 9 The sub-node sharing property is stall
applicable
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Figure 6 9. Resulting L-BDD for example tree in Figure 5.5

6.3.3.3.3 Determination of prime implicants

The labelled variables are considered for determining the set of prime implicants.
For the SFP and the SFN variables the algorithm applied is presented in [2] as the
method for the calculation of minimal cut sets in the coherent case. For the DF

variables the algorithm proposed in [32] is used

Let the structure function be:

dz)=2z,-F+7,-G, (6111)
where the two residues are

F = ¢z, .., 1,...,72), (6 112)

G = ¢z, .,0,...,Zn). (6.113)

Let PI{¢$) be the prime implicants of ¢ Visiting the L-BDD in the bottom-up
way the procedure to be applied to the node x, to determine the prime implicants
15 as follows

e If 2, has label ‘&’ then:

PI{¢) = z,-F*+8%1,-G" +P, (6 114)
where P = FAG,F*=F\P,G*=G\P, (6 115)
o else
PI(¢) = a-F' +G, (6.116)
where a = (z, 0r $2,), F* = F\ G (6 117)
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‘\’ 15 the ‘without’ operator proposed by Rauzy [2]

In the case of the L-BDD for the application of the ‘\’ operator 1t is necessary
to take mnto account the type of label The mumimisation of the L-BDD 1s based
on the algorithm presented in the coherent case. All prime implicant sets need
to be obtained for ‘&’ variables, by producing the conjunction of the ‘1’ and ‘0’
branches of every node, Therefore, there are some additional rules for minimisation
considering situations with labelled variables, because the conjunction of the two

branches can have some sets that are non-mimmal

The most time consuming operation is the intersection F' A G that, however, is
applied only when dealing with ‘&’ type variables. If there are no ‘&’ type vari-
ables, the L-BDD contains all prime implicant sets

Once the minimisation is completed the rules for writing the prime implicant sets
from an L-BDD are straightforward. On the path from the root to any terminal

node’
e For variables z, $z do not consider the negated part,
e For variables &z consider the nght branch as 7.

Since the heaviest operations in this algorithm for determining the prime implicants
set are applied to DF vanables, it is convement to reduce their number. The

simplification rules are presented 1n the next section.

6.3.3.3.4 Simplification of L-BDD

The sstmplhification is possible if one of the residues 1s terminal,1e F or GG 1s equal
tolor 0 The simplification rules are presented below providing the expression for
¢ presented in Equation 6.111.

e fF=1then P=FAG=G,F*=1,G*=0.
Therefore, =z + G

¢ f F=0then P=FAG=0,F*=0,G*=0G.
Therefore, =7 G

e fG=1then P=FAG=F,F*=0,G*=1.
Therefore, ¢ =ZF + F
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e IfG=0then P=FAG=0,F*=F,G*=0.
Therefore, ¢ =z F.

All four simplification rules are shown in Figure 6 10. In the first and the fourth
lA % A
Figure 6.10 Four simplification rules

cases variable &z behaves as a positive variable z, in the second and the third

cases variable &z behaves as a negative variable $z.

Now the example shown in Figure 6.9 is considered. Before the calculation of
prime implicant sets the simplification process can be implemented, trying to min-
imise the number of DP variables. The simplified example L-BDD is shown in
Figure 6.11. The first simplification rule was applied in this example to the node

Figure 6 11 Simplified example L-BDD

variable &a Therefore, &a was simply replaced with a.

The prime implicant sets can be obtained using Equations 6.114 - 6.117 Traversal
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of the L-BDD starts in the bottom-up way

PI(F3) = c-F*+G,here F*=1,G =0, (6.118)
PI(F3) = ¢,

PI(F2) = a-F*+G,here F*=1,G = F3=PI(F3)=c, (6119)
PI(F2) = a+e

PI(F4) = $a-F*+G, here F* = F3=PI(F3)=¢,G =0, (6.120)
PI(F4) = 8a-¢,

PI(F1) = b-F*+G, here F* = F2 = PI(F2) = a+c, (6 121)

G =F4=PI(F4)=8a-c,
PI(F1) = b-a+b-c+8%a-c

Therefore, for the above example the prime implicant sets are

{b’ a}? {ba C}? {E, c} (6 122)

The calculation of prime implicant sets is shown in Figure 6 12 Variable $a is

Fl1 o <— {bal,{bec}.(F,c)
oe@
(<)

{e} |1 0

F2
/

{a} {c}

™~ @

Figure 6.12: Calculation of prime implicant sets for example L-BDD

replaced by @, since they are equivalent variables

This concludes the description of the fourth method for the non-coherent fault
tree analysis It provides a means for obtaining prime implicant sets However,
the introduction of labels increases the number of variables and the complexity of

the process can affect the efficiency of the analysis.

6.3.4 Comparison of the Four Methods

Research has been carried out testing the proposed TDD method and comparing
its efficiency with the other techniques in order to identafy their strengths and
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weaknesses. A specific approach will work well on some fault trees and not on oth-
ers. It is the performance of an approach over the range of problems that 1t may
encounter that should be established. All algorithms are applied to a hibrary of
220 fault trees The example fault trees from the coherent case were converted to
non-coherent examples by randomly introducing some negated events and gates
Characteristics of test fault trees are shown in Tables A.62 - A 66. The struc-
ture of the tables 1s equivalent to the coherent case, except that the last column

identafies the number of prime imphcant sets instead of number of minimal cut sets.

Example fault trees are categorised as small fault trees (207 F'Ts) and ‘large’ fault
trees (13 FTs). ‘Large’ fault trees are classified as those with a large number of
prime implicant sets Also, high complexity fault trees, ie with a large number
of gates and non-repeated basic events, are ranked as ‘large’ fault trees. These
two properties of fault trees result in a time consuming analysis process or even
can make calculations impossible in reasonable times. It is these fault trees which
present the largest degree of difficulty in their analysis. As such it is these fault

trees which will really test the competence of any algorithm.

During the analysis every fault tree is converted to a SFBDD that represents the
structure function of the fault tree. The SFBDD 1s not suitable for the full qual-
itative analysis, therefore other alternative methods are required. Four different
techniques are investigated using the hbrary of fault trees. In the first method,
the Ternary Decision Diagram method, that has been developed as a part of this
research, the TDD 1s calculated straight from the fault tree. Therefore, no ad-
ditional BDD is required that would encode prime implicant sets This could be
an advantage over the other techniques. The ‘missing’ prime implicant sets that
can not be found from the SFBDD are covered through the conjunction of the two
branches of components that can be failure and repair relevant. However, it needs
to be minimised before the calculation of prime implicant sets and this can increase

the processing time.

The three established methods are also considered. During the first of them, i.e.
the Meta-products BDD method, every SFBDD is converted to a Meta-products
BDD that encodes all prime imphicants and is minimal Every basic event is pre-
sented by two variables that can increase the size of the structure. The second
technique, the ZBDD method, converts a fault tree to a SFBDD and then an
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additional Zero-suppressed BDD is obtained that encodes prime implicant sets.
Despite the fact that an additional BDD needs to be created, it is mimmal, zero-
suppressed and can be an efficient techmque for the qualitative analysis. The last
method, the L-BDD method, converts a fault tree to a labelled BDD that allows
the qualitative analysis. The conjunction of the two branches is similar to the TDD
method However, extra vanables are introduced before the conversion process and
the minimsation needs to be applied Those two issues can increase the number

of nodes 1n the structure and the processing time required

The efficiency measures are calculated and analysed. The number of nodes and
the processing time are the most important characteristics, therefore, according to

their values a comparison between the four techniques is made.

The 8 basic event ordering schemes are ranked in order according to the effective-
ness of the conversion process that they produce. The performance of the schemes
15 then assessed in three ways, as 1t was used 1n the coherent case - according to
their totals, according to their highest ranking and according to their total rank-
mng. The ordering schemes are ranked for all the efficiency measures according to
their performance on small fault trees, ‘large’ fault trees and the whole set of fault
trees This 1s done in order to show if the performance of the ordering schemes de-
pends on the complexity of the system and to give an indication of which ordering

schemes should be used for small and ‘large’ fault trees

6.3.4.1 TDD method results

Summary details of test fault trees are presented 1n Tables A 67 - A.70, which
show the number of nodes in TDDs for small fault trees. Table A.71 shows the
number of nodes for the large fault trees. The time taken to convert fault trees to
TDDs and perform the full qualitative analysis 1s shown in Tables A.72 - A.75 and
Table A 76 for small and large fault trees respectively.

Some fault trees were simplified so much that their TDDs contamned only 1 node.
There were 45 fault trees of that type Therefore, the ranking was performed
without taking into account those examples, together with the 26 other fault trees
that had the same number of nodes in the TDD for all eight ordering schemes
Summarising, there were 149 example fault trees taken for the ranking according

to the number of nodes, where 13 of them were ‘large’ examples
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Considering the processing time, there were 8 fault trees whose processing time
was the same in each ordering scheme, therefore, those fault trees were not taken
into account while ranking the ordering schemes according to the processing time.
199 small fault trees and 13 large fault trees were considered 1n the ranking analysis

according to the processing time.

6.3.4.1.1 Variable ordering for the TDD method

Analysis of the number of nodes in TDDs and processing time for ‘small’, ‘large’
and all example fault trees is presented in this section, applying the three ranking
techmiques of the ordering schemes. The result of the analysis is shown in Table 6 2
and Table 6 3 for the number of nodes and the processing time respectively.

Scheme 4[5]6]7]

ol Number of nodes

quantity
@ ranking [Rank
.9—_’. Number of FTs
£ [Hghest i the highest 20 40 30 34 20 40 34
= peheme oo
+ Fankung
g Rank 7-8 1-2 6 4-5 7-8 1-2 45
@ Jaddad added ranking 509 472 462 449 492 287 500

Rank

Number of nodes

w [uantiy Rank

@ yanking an 5 8 6 2 4 1 3 7

= Number of FTs

5 [Hghest i the highest 0 0 0 3 2 2 4 2

© [scheme rank

= ranking

g, Rank 6-8 6-8 6-8 2 3-5 3-5 1 35
5 jpdded ladded ranking 74 68 69 44 58 40 49 56

scheme
rankin

Rank

;Satalnmy Number of nodes 45720 464885 44123 35285 40081 32297 412986 41297

w Fanking [Rank 7 8 6 2 3 1 4 S5

g Number of FTs

= [fghest \yih the highest 20 40 30 37 22 42 a8 a7

= cheme

= rank

@ Fanking

ha Rank 8 2 6 4-5 7 1 3 25

< :;f::w Adided ranking 673 540 531 493 550 427 558 536
kanking |Rank

Table 6 2 TDD method, number of nodes

There are some clear ranking results for the TDD method The dynamic top-down
weighted scheme (6) performed well for the number of nodes and the processing
time. The modified top-down scheme (1) gave the worst results for the number
of nodes for small fault trees and ‘large’ fault trees considering any of the three

ranking methods. For the processing time scheme (1) gave average results, and the
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| scheme 1 | 2 T a3 | 4 | s | & |

[Total Time 2251 2254 2252 22 33 2196 2197
o AUty
& fanking |Rank 5 7 [ 3 1 2
g Number of FTs
= [Highest lynih the highest 7 79 71 78 78 83
T [scheme rank
= Fanking
] Rank 57 2-3 5-7 2-3 4 1
g% :::::m Added ranking 552 551 543 548 499 512
kanking |Rank 6 5 3 a4

[fotal  Tyme 882 1308 12 47 706
Kuantiy
kanking |Rank

Number of FTs

H'%hes‘ with the highest
FCNema | ank

Fanking
Ranhk

Added  (Adeled ranking
Rank

Large fault trees

Time

kanking |Rank

Number of FTs

[Highest luith the highest
scheme rank

Rank

dded  |Added ranking
Beherme
Fanking jRank

ranking

All fault trees

Table 6 3: TDD method, processing time

two modified depth-first ordering schemes (2) and (3) gave poor results Overall,
the difference 1n performance of the eight ordering schemes is marginal, especially,

for the processing time, therefore, no further conclusions can be drawn.

6.3.4.2 Meta-products method results

Summary details of the test fault trees are presented in Tables A 77 - A 80, which
show the sum of nodes in the obtained SFBDDs and in Meta-products BDDs for
small fault trees Table A 81 shows the sum of nodes for the large fault trees The
time taken to convert fault trees to SFBDDs, obtain Meta-products BDDs and
perform the full qualitative analysis is shown 1n Tables A 82 - A 85 and Table A 86
for small and large fault trees respectively.

Some fault trees were simplified so much that their SFBDDs contained only 1
node. There were 45 fault trees of that type Also, for 26 fault trees the eight
ordering schemes gave the same number of nodes, therefore, the ranking analy-
s1s was performed without taking into account those examples. There were some
‘large’ example fault trees for which the conversion process and analysis could not

be finished 1n a reasonable time, 1 e 1t took longer than 24 hours, and therefore the

170




calculation process was terminated There were only 6 *large’ fault trees (out of

13) where the analysis was performed for all the eight ordering schemes In total,
there were 142 fault trees taken for the ranking analysis according to the number

of nodes, where 6 of them were ‘large’ examples.

For the processing time 186 small fault trees and 6 ‘large’ fault trees were analysed,
since for the rest of the fault trees either the eight ordering schemes gave the same

processing time or the calculations were not finished.

6.3.4.2.1 Variable ordering for the MPPI method

Analysis of the number of nodes 1n meta-product BDDs and processing time for
‘small’, ‘large’ and all example fault trees 1s presented 1n this section, applying
the three ranking techniques of the ordering schemes. The result of the analysis is

shown in Table 6.4 and Table 6 5 for the number of nodes and the processing time

respectively
[ ] { scheme | 1 [ 2 T 3 [ 4 [ 5 ] 6 [ 7 | &8 1
gﬁa‘a'm ty Numberof nodes | 59401 | 56186 | 54162 | 51510 | 51778 | 48200 | 51931 | 49115
o panking Rank 8 7 6 3 & 1 5 2
g Number of FTs
2= [Highest hyuh the highest 15 33 27 33 16 a7 51 25
o lscheme rank
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g Rank 8 3-4 5 34 7 2 1 6
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kanking jRank 8 5 4 3 7 1 2 6
gﬁatalmy Number of nodes | 1779183 | 1689973 | 1774833 | 533454 | 1245614 | 508603 | 1493336 | 621596
§mnk.ng Rank 8 5 7 2 4 1 5 3
= Number of FTs
5 [Highest th the highest 0 ] 0 2 0 3 1 0
i pcheme | ..
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Sl |Rank 4.8 4-8 4.8 2 48 1 3 4-8
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> Number of FTs
+ [Hghest Lyth the highest 15 33 27 35 16 40 52 25
= schkeme rank
Q Fankl
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panking iRank 8 5 4 3 7 1 2 6

Table 6 4 MPPI method, number of nodes

The dynamic top-down weighted scheme (6} performed best and was ranked high

for both the number of nodes and the processing time It also resulted in the
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Table 6 5: MPPI method, processing time

smallest number of unfinished processes, 1e. only for 1 fault tree the calculation
process could not be fimished in a reasonable time, whereas for some ordering
schemes, (1) and (3), there were 4 fault trees whose conversion was impossible.
The depth-first with number of leaves ordering (4) performed well for the number
of nodes and the event criticality scheme (8) gave good results for the processing
time. The worst results were obtained by the modified top-down scheme (1) which
was ranked last for both the efficiency measurements in almost all the ranking
methods. The modified priority depth-first ordering scheme (3) also gave poor
results for the processing time.

6.3.4.3 ZBDD method results

Summary details of the test fault trees are presented in Tables A 87 - A 90, which
show the sum of nodes 1n the SFBDDs and obtained ZBDDs for small fault trees
Table A 91 shows the sum of the nodes for the large fault trees The time taken
to convert fault trees to SFBDDs, then obtain the ZBDDs and perform the full
qualitative analysis is shown in Tables A.92 - A.95 and Table A 96 for small and

large fault trees respectively.
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The ranking analysis was performed without taking into account examples that
were simplified to one complex event and the 37 other fault trees that had the
sarmne number of nodes in the ZBDD for all eight ordering schemes. Overall, for
the ranking according to the number of nodes there were 138 example fault trees
taken for the analysis, where 13 of them were ‘large’ examples.

For the processing time there were 205 small fault trees and 13 large fault trees
taken into account, because there were 2 small fault trees where the processing

time was the same for the eight ordering schemes

6.3.4.3.1 Variable ordering for the ZBDD method

Analysis of the number of nodes in ZBDDs and processing time for ‘small’, ‘large’
and all example fault trees is presented in this section, applying the three ranking
techniques of the ordering schemes The result of the analysis 1s shown in Table 6 6
and Table 6.7 for the number of nodes and the processing time respectively

I l Scheme 1 2 3 4 5
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Table 6 6: ZBDD method, number of nodes

The depth-first, with number of leaves scheme (4) performed well for the number

of nodes and the processing time. It was highly ranked for small and ‘large’ fault
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:T,ﬁawm iy Time 3284 333 3378 | 3281 3447 | 3339 | 8384 | 3365
§ kanking _[Rank 2 3 6 1 8 4 7 5
= Number of FTs
Z Hghest iy the highest 104 ) €3 100 50 70 64 55
& fpoheme |
* ranking
= Rank 1 3 ] 2 8 4 5 7
& Qf::r‘;‘e Added ranking 466 474 562 450 680 564 551 607 |
ranking Rank 2 3 5 1 8 6 4 7
;Satilmy Time 9 96 1544 | 1389 878 1048 854 1077 | 1478
§ ranking |Rank 3 8 6 2 4 1 5 7
= Number of FTs
£ Hghest |y the highest 0 3 3 4 5 5 2 a
 peheme | oo
= rankin
%, 9 Rank
Added  (Add K
Shoens ed ranking
kanking [Rank

Total  [Time

uantiy
o Fanking jRANK 3 8 6 1 5 2 4 7
g Number of FTs
= [Highest lwith the highest 104 94 €6
5 peheme rank
@ panking
= Rank 1-2 3 3-6
< :S::ge Added ranking 505 538 819
Yanking |Rank 2 3 5

Table 6 7: ZBDD method, processing time

trees using three ranking methods For the number of nodes the dynamic top-down
weighted scheme (6) also performed well The modified top-down scheme (1) per-
formed poorly for the number of nodes but 1t gave good results for the processing
time. The worst performance according to the processing time was obtained by
the non-dynamic top-down weighted scheme (5). Overall, the difference n per-
formance of the eight ordering schemes 1s marginal, especially, for the processing

time, therefore, no further conclusions can be drawn.

6.3.4.4 L-BDD method results

Summary details of the test fault trees are presented in Tables A.97 - A 100, which
show the sum of the number of nodes in the L-BDD before applying the inter-
mediate calculations and the minimisation, which is equivalent to the SFBDD,
and the number of nodes in the minimised L-BDD. Table A.101 shows the sum of
nodes for the large fault trees. The time taken to convert fault trees to L-BDDs,
then minimise the L-BDDs and perform the full qualitative analysis 1s shown 1n
Tables A 102 - A 105 and Table A.106 for small and large fault trees respectively

Some fault trees were simphfied so much that their SFBDDs contain only 1 node.

174




There were 45 fault trees of that type. Also, for 27 fault trees the eight ordering

schemes gave the same results Those fault trees are not taken into account while
ranking the schemes. Overall, there were 147 fault trees considered for the anal-
ysis, where 13 of them were ‘large’ fault trees There were 10 fault trees that the
processing time was the same for the eight ordering schemes Those fault trees

were not taken into account while performing the ranking according to the time

6.3.4.4.1 Variable ordering for the L-BDD method

Analysis of number of nodes in LBDDs and processing time for ‘small’, ‘large’
and all example fault trees 1s presented in this section, applying the three ranking
techniques of the ordering schemes The result of the analysis is shown in Table 6.8

and Table 6.9 for the number of nodes and the processing time respectively.
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= :gr‘]’::w Added ranking 47 89 78 58 36 47 69 38
kanking |Fank 34 1 3-4 6 2

;Satalntny Number of ncdes | 200267 | 402912 | 360011 | 346808 | 325863 | 257484 | 479192 | 400882
o ranking [Rank 2 7 5 4 3 1 8 ]
o Number of FTs
& [Hahest h the highest 15
3 scheme rank
@ fanking
= Rank 8
< ladded [added ranking 629

scheme

Fanking Rank Fi

Table 6.8: LBDD method, number of nodes

For the number of nodes the dynamic top-down scheme (6) performed well and
was ranked highly for the main part of fault trees using the three different ranking
techmques. For the processing time this ordering scheme gave average results and
the best performance was obtained by the depth first, with number of leaves scheme

(4) For the number of nodes and the processing time the worst performance was
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Scheme 1 2 3 4 5 3] 7 8

_—

zsrlnmy Time 25301 | 24402 | 17002 | 7901 9547 | 1144 | 26183 | 775 ||

u banking |[Rank 7 6 5 2 3 4 8 1

g Number of FTs

£ [Highest luuih the highest 52 54 51 87 68 66 55 74

] scheme rank

= fanking

g Rank 7 6 8 1 3 4 5 2

@ froded  |Added ranking 632 576 600 449 536 539 523 521
Fanking |Rank 8 5 6 1 3 4 7 2
;3:1”‘ ty Time 15833 69 | 10838 13| 708568 | 88308 34101 91| 3660 23 | 658085 38 [ 54179 03

& panking [Rank 5 4 3 1 6 2 8 7

= Number of FTs

% [Haghest lyh the highest 0 2 0 4 1 4 1 1

= ptheme rank

*= Fankini

gl [Rank 7-8 3 7-8 12 46 12 4-6 4-6

5§ jpdded added ranking 75 67 56 42 49 44 64 61
kehemg
kanking [Rank 8 7 6 1 3 2 5 4
:l‘za‘a'm ty Time 160867 |1108215| 72557 | 9621 34197381 377463 | 68347 0154256 39

e Fanking |Rank 5 4 3 1 2] 2 8 7

g Number of FTs

= Highest i the highest 52 56 51 81 69 70 56 75

5 lschema rank

& fanking

= Rank 7 5-6 8 1 4 3 56 2

< raded  |Added ranking 707 643 566 491 585 583 687 sa2
yanking Rank 8 5 5 1 4 3 7 2 II

Table 6.9: LBDD method, processing time

obtained by the modified top-down scheme (1) and the bottom-up weighted scheme

(7.

6.3.5 Overall Variable Ordering for the Qualitative Analysis

of Non-coherent Fault Trees

A theoretical comparison of the methods 1s explained 1n Table 6 10, where the main

advantages and disadvantages are identified.

Analysing the results obtained of the four methods for the encoding prime impli-
cant sets, it can be said that the four methods are quite different in their efficiency.
Their performance 1s shown 1n the following tables. The comparison of the four
techniques according to the number of nodes is shown in Table 6 11 Also, the

comparison according to the processing time 1s shown in Table 6 12.

Analysing these results 1t was clear that there were two methods that performed
well on the example fault trees They were the TDD method and the ZBDD
method For the number of nodes the ZBDD method performed slightly better
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Method | Miminusa Construction Advantages Disadvantages
tien techmque
Temary Required | Basic event x 1s A clear 1 Mmimmisation 18
Decision coded by a node representation required
Diagram with three branches of all implicant | 2 TDD size 15 3",
(TDD) The third branch 1s sets1s
the conjunction of provided
the 1 and the 0
branches and the
conjunction 1s
performed for every
node that represents
failure and repair
relevant component
Meta- Not Basic event x 15 No 1 Meta-products
products | required | coded by two minimisation BDD size 15 2°°
BDD variables P, and S; 15 required 2Itresultsma
time consunung
process
Zero- Not Basic event x 15 1No Dual state events
suppres- | requured | coded by x and, m munmusation are coded by two
sed BDD additron, by X, 1f 1s required vanables
(ZBDD) needed The 2 Compact
conjunction of the 1 representation
and the O branches of prime
15 performed only implicant sets
for dual state 1s provided
varlables
Labelled | Required | Basic event a1s Labels idenufy | 1 Mimmisation 1s
BDD (L~ labelled according where the required
BDD) to 1ts occurrence, conjunction of | 2 Labelling
{&x<x<$ x) The the 1 and the ¢ introduces some
conjunction of the 1 bianches 13 additional
and the 0 branches required vanables
15 performed only
for dual state
variables

Table 6 10 A theoretical comparison of the four techniques

than the TDD method and the TDD method resulted in a slightly faster process
than the ZBDD method. The L-BDD method appeared to be the second worst

method. The worst method was the Meta-products BDD method.

As expected the Meta-products BDD algonthm produced significantly larger final
BDDs than any other method that was used for the calculation of prime imphcant
sets. Processing time was also greater. This 1s due to the fact that after the con-
version of fault tree to a SFBDD another BDD, called the Meta-products BDD, is
required, where all components are described by two vanables This mcreased the

size of the BDD and the processing time unavoidably.
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1+ | 2 | 3 | a | 5 | & | 72 | 8 |

& |TOD method 24167 23050 21729 20434 18976 18138 23339 18515
_‘é MPP! method 59491 56186 54162 51510 51778 48200 51931 49115
;: ZBOD method 19332 15939 159204 15758 17169 15079 15808 16537
UE) |.-BDD method 48400 50938 47662 45308 39778 38344 63687 36768
§ TDD method 6634 7658 7479 4739 5049, 4688 5806 4409
% MPPI method 1779183 1689973] 1774833| 533464| 1246614 508603 1493336 621594
"; ZBDD method 5058 4860 4406 3337 3902 3189 3876 3405
."La L-BDD method 45972 80406 73827 651089 39806 48299 €0518 35790
. TDD method 30801 30608 29208 25173 25025 22826 29145 2292;I
g MPPI method 1838674 1746159 1828995 584974| 1298392| 556803 1545267 6€70711
E ZBDD method 24390 20799 20326 19085 21071 18268 19684 19942
< L-BDE method 94372 131344 121489 106997, 78584 B6643| 124205 72558

Table 6.11: Summary of the four methods, number of nodes

The TDD method resulted in an efficient fault tree conversion process and a fast
qualitative analysis. In the TDD method the consensus terms were produced by
finding the conjunction of the 1 and the 0 branches for every node that is failure
and repair relevant. The ZBDD method also gave good results The SFBDD was
constructed and then converted to the ZBDD, which encoded the prime implicant
sets. On one hand, the TDD method was slightly faster than the ZBDD method
That could be explained by the fact that only one structure (a TDD) was required
in this method, whereas 1n the ZBDD method a SFBDD was constructed and then
an additional ZBDD was built On the other hand, the ZBDD was minimal there-
fore a smaller number of nodes was obtained than in the TDD method, whereas a

TDD needed to be munmumised before obtaining prime imphcant sets.

Comparing the TDD method and the L-BDD method, the 1dea of both meth-
ods was very similar, 1e. the conjunction of the 1 branch and the 0 branch was
only carried out for nodes that represent dual state basic events. However, there
were some differences that made the L-BDD method perform less efficiently than
the TDD method. In the L-BDD method the number of basic events was increased
by introducing three different types of basic events (&z < z < $z), according to
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[ T scheme | 1 [ 2 | 3 4 | 5 | 8 7 | s

" % |TDD method 2251 2254 22 52, 22 33 2196 21 97) 22 84 22 45
é MPPI method 16072 92| 912599] 594100 811348 396166 207027 551135 14422
;: ZBDOD method 32 84 33 30 3378 32 81 34 47 33 39 33 84 336
UE) L-BDD method 253 1 244 02 170 02 79 01 9547 11440, 26163 773
§ TDD method 080 181 160 059 054 056 103 04
;; MPPI method 65906 72| 83737 84) 117648 78] 1318158 51992 24 12201 20| 6044225 11027 1
gZBDD method 099 1 87| 1861 066 ce4 065 188 05
§ L-BDD method 506 19 148 08 1717 3809 247 84 55 26| 91848 1103
o TDD method 233 24 35 2412 22 92 2250 22 53 23 87| 22 90'
% MPPI method 81979 64| 92863 83| 123589 78 21295 07} 55953 90| 14271 47| 65953 60| 12468 34
.."—:‘,_5 ZBDD method 3383 35 17 3539 33 47 3511 34 04 3572 34 24
< L-BDD method 758 20 39210 287 19 11710 343 31 16966 1180 11 187 65

Table 6.12: Summary of the four methods, processing time

their occurrence. Also, some extra connection rules were used in the conversion
process and in the calculation of prime implicant sets. The TDD technique was
clearer and more efficient than the L-BDD techmique, 1e it sumply encoded the
third branch that enabled ‘hidden’ prime implicant sets to be calculated.

Overall, the efficiency of the four methods was very similar when small fault trees
were considered. The difference in both measurements between the TDD method
and the ZBDD method was marginal. Even the L-BDD method and the meta-
products BDD gave close results, especially for the number of nodes, considering
small fault trees. However, the analysis of ‘large’ fault trees allowed a better way to
test the methods, because while dealing with ‘large’ fault trees, the advantages and
disadvantages of the different techniques were more noticeable. The TDD method
and the ZBDD method performed a lot better than the two other techniques and
should be used for the BDD analysis of non-coherent fault trees. Also, considering
‘large’ fault trees the meta-products BDD method performed a lot worse than the
L-BDD method The difference between the two advantageous methods was still
marginal. Therefore, any of the two methods used for a different hbrary of example

fault trees should provide a similar efficiency of the analysis.

179




6.4 Quantitative Analysis

6.4.1 Introduction

Unlike the conventional Fault Tree Analysis the BDD method does not require
knowledge of prime implicant sets for quantification. It is therefore possible to use
the SFBDD to perform full and exact quantitative analysis Since the L-BDD is
mn a similar format to the SFBDD, 1t can also be quantified The quantification of
the TDD 1s presented as a part of this research.

6.4.2 System Unavailability

The SFBDD for a non-coherent fault tree encodes Shannon’s decomposition. There-
fore, for calculating the top event probablity for a non-coherent fault tree the SF-
BDD can be employed. It is obtained as a sum of probabilities of the disjoint paths
through the BDD, as 1t was shown in the coherent case in Chapter 3 Consider
example SFBDD in Figure 6 1. There are three paths from the root node to the

terminal vertex 1, therefore, the Q(t) is expressed as

Q(t) = @sGa + GPaGe + PrPale- (6 123)

There are three prime implicant sets represented by this SFBDD and using the

inclusion-exclusion expansion gives the same expression:

Q(t) = @da + @le + Padc — Wlale — GPale = Qs + BGcPa + PalcPs (6 124)

Since the L-BDD also encodes the SFBDD before starting the calculations for the
qualitative analysis. Therefore, the L-BDD can be used in the same way as the
SFBDD, assumng that gg. = ¢, and gg, = p;. Traversing the example L-BDD 1n
Figure 6 11 gives the Q(t) expression

Q) = @sla + GPale + P1G5ede = BGa + BPaqe + PrPole (6.125)

The system unavailability can be calculated directly from the TDD, because the
SFBDD is encoded within the TDD The SFBDD could be obtained 1if all consensus
branches were removed from the TDD. The system unavailability can be calculated
as a sum of probabilities of the disjoint paths through the BDD that only pass
through the 1 and 0 branches of non-terminal nodes. Consider example TDD in

Figure 64. Again, there are three paths from the root vertex to the terminal
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vertex 1, because paths passing through consensus branches of non-terminal nodes

are ignored. The three paths are ba, bac, bac therefore, the Q(t) 1s calculated as

Q(t) = gsda + BPale + PoPale (6.126)

6.4.3 Importance Measures

The BDD method enables exact and efficient calculation of the measures of 1m-
portance to be performed eliminating both the intermediate stage of identifying
the prime implicant sets and the need to evaluate lengthy series expansions. Birn-
baum’s measure of component failure and repair importance 1s presented for the
case of the SFBDD, that has been established in {37]. The calculation process 1s
easy to adapt i the L-BDD case, since the SFBDD and the L-BDD structure are
very similar. The Birnbaum’s measure for the TDD techmgque 1s developed 1n this

research and presented later in the section.

6.4.3.1 Birnbaum’s measure of failure and repair importance

The failure importance of component ¢ 1s defined as the probability that the system
1s 1 a working state such that failure of component 2 would cause system failure.
Therefore, it is possible to define Birnbaum’s measure of component failure impor-

tance as
GF(q) = E[Tim] - E[Th=-), (6.127)

where F[T,—] 18 the probability that component : 1s either failure relevant or 1r-
relevant to the state of the system and E[T,—_] 1s the probability that component

¢ 15 1rrelevant.
Simularly, Birnbaum’s measure of component repair importance can be defined
as the probability that component z is repair relevant to the system state:

GR(q) = B[Timo] - B[T—_], (6.128)
where EfT,_o] 1s the probability that component 2 is repair relevant or irrelevant

to the system state.

Once Birnbaum’s measure has been calculated it enables the unconditional fail-
ure intensity and the expected number of system failures 1n a given interval to be

calculated.
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6.4.3.1.1 The SFBDD method

The procedure for calculating the probabilities E[T,—1] and E[T,—o] is outlined here

E[T,—] =) _pre,(a) - pol (q), (6.129)
E[Ti=o] = > pre,(a) - pl (q), (6.130)

where the path probabilities pr.,(q), pol (q), pod (q) were explained 1n the coherent
case 1n Chapter 3, section 3.6.2.

The expression for E[T,—_] can be obtained by computing an intermediate BDD
for each node, that is calculated by the conjunction of the 1 and 0 branches of
the node. Then the E[T,__] is obtained by multiplying the probabihity preceding
the node in the SFBDD by the sum of probabilities of all paths to terminal vertex
1 Considering the example SFBDD in Figure 6.1 and 1ts path probabilities
Table 6 13 Probabilities E[T,—;] and E[T,—o] will be calculated according to equa-

Node || pr..(q) pop{a) | pod (q)
F1 1 Qo+ Pafe | Pale
F2 b 1 e
F3 Dy 0 Qe
F4 || @pa + popa 1 0

Table 6 13: Path probabulities for each node 1n the SFBDD 1 Figure 6 1

tions 6 129 and 6 130 For calculation of E[T,—_] intermediate BDDs are obtained
and their paths probabilities used.

For node F1 = ite(b, F2, F3):
F2-F3 = ite(a,1, F4)-ite(a,0, F4) = ite(a, 0, F4). (6.131)

The only path through this SFBDD 1s @c, its probability 1s p,q.

For node F2 = ite(a, 1, F4)
1-F4 = FA. The only path 1s ¢, its probability is ¢, . (6.132)
For node F3 = ite(a, 0, F4)

0-F4 = 0 The probability 15 0 (6 133)
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Dealing with node F'4 = ite{e, 1,0) gives 0

Summary of results obtained for E[T,,], E[T,—o] and E[T,—_] is shown in Ta-
ble 6.14. Using these results and equations 6.127 and 6 128 the failure and repair

Node || E[Ti=1] | E[Ti=q] | F[Ti=_]
F1 Go + Pale Palc Pale

F2 b Qo e
F3 0 Pvle 0
F3 GvPe + DPrPe 0 0

Table 6.14 Summary of results for the SFBDD of E|[7,:], E|{T\=) and E[T,__]

importance of each component 1s calculated

Gf = 4 + Pafe — Pale = Ga; (6134)
G = @—qe+0—-0=gqp., (6 135)
GY = QPa+DPPa=Pa, (6 136)
G{} = DPalc = Pafc = 0; (6 137)
G¥ = @lc— @+ Podc — 0 = P, (6 138)
GF = 0-0=0 (6 139)
The unconditional failure intensity can be calculated:
Weys(t) = atWs + GPetWa + PatWe + PoGcVa. (6 140)

6.4.3.1.2 The L-BDD method

The similar approach to the SFBDD method can be applied in the L-BDD tech-

nique The calculation of the probabilities is outlined below.

ElT]= ) pra(q)-pok(@)+ Y pra(a)-pod (a), (6.141)
2,,(&z,z) x,,{3z)

ElTio)= Y pra(a)-pod(@)+ Y prs(q) - po} (a)- (6 142)
s, (&2,1) 2,($)

For $z vanables extra summing 1s required ‘switching’ the 1 and 0 branches over.

Consider the L-BDD in Figure 6 11 and its path probabilities in Table 6 15. Probahlities
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Node | pre(q) | pop(q) |po} (q)
Fl 1 ga +Palc | G2alc
2 Gb 1 Qe
F3 || @D + Podsa 1
F4 Dy e

Table 6 15 Path probabilities for each node in the L-BDD 1n Figure 6 11

E[T,—1] and E[T,—o] will be calculated according to equations 6 141 and 6.142. For
calculation of E[T,—_] intermediate BDDs are obtained and their paths probabili-
ties used.

For node F'1 = ite(b, F'2, F4):

F2.F4 = ite(a,1, F3)-ite($a, F3,0) = ite(&a,0,F3)  (6143)
= ite(8a, F3,0)

The only path through this L-BDD 15 $ac, 1ts probability 1s gg,q.

For node F2 = ite{a,1, F3):
1-F3 = F3. The only path is ¢, its probability is ¢, (6 144)

Dealing with node F3 = ite(c, 1,0} gives 0

For node F'4 = ite(3a, F'3,0)
F3-0 = 0. The probability 15 0 (6.145)

Summary of results obtamned for E[T,~;], E[T;=o] and E[T,—_] are shown m Ta-
ble 6 16. Using these results and equations 6 127 and 6 128 the failure and repair

importance of each component is calculated.

G = Qo+ Pale — G50l = Go> (6 146)
GI = ¢—@g+0—0=gp., (6 147)
GE = qpe+ Posa = Pa, (6 148)
Gf = Gsale — Gsadc =0, (6.149)
GEF = @~ @0+ Poge — 0 = poge, (6 150)
- GR = 0-0=0 (6.151)

184




Node | E[Tim] | E[L=o] | E[Ti=-]
F1 Qo + Dol d3ae @Sale

F2 Qs Qe ®Ye
F3 || gupa + Polsa 0 0
F4 0 DoGe 0

Table 6 16: Summary of results for the L-BDD of E[T;—1], F[Ti=] and E[T,—_]

These results are the same as the results obtained using the SFBDD in Equa-
tions 6 134 - 6.139. The expression of the unconditional failure intensity is also
1dentical to Equation 6.140

6.4.3.1.3 The TDD method

Terms E[T,—], E[T,—0) and E[T,—_] can be calculated directly from the TDD. The

procedure 15 outlined below:

E[Tim] = Zp?‘z. ) - poyc(a), (6.152)
Timo) = Zm.  pol(q), (6.153)
E[T-] =Zprx.(q ) - pog, (a), (6.154)

where

e po;©1s the probability of the path section from the one branch of node z, to

a terminal vertex 1 via only 1 and 0 branches of non-terminal nodes,

. pogf is the probability of the path section from the zero branch of node z, to

a terminal vertex 1 via only 1 and (0 branches of non-terminal nodes,

e pof is the probability of the path section from the consensus branch of node

z, to a terminal vertex 1 via only 1 and 0 branches of non-terminal nodes

Therefore, the failure and repair cnticality of component ¢ are expressed as:
Zprz, )[poz<(a) — pog, ()], (6 155)
Zm, )po3(a) — pos, ()] (6 156)

185




These expressions are true for every component 2 that is failure and repair relevant

The other two cases, i.e. when component ¢ is failure relevant or repair relevant,

are deseribed below where the ‘C’ branch contains the value NI L

If component 2 15 only failure relevant, its criticality is calculated as
GFl@) = > pra(@)porf(a) — pods(a), (6.157)
z
Gla) = 0 (6.158)
If component z 1s only repair relevant, 1ts criticality is calculated as
GF(q) = 0, (6.159)
Giq) = ZP% (@)[pog?(@) — pog(q)]. (6 160)

The application of the algorithm in practice to calculate both the failure and repair

importance of components is explained using the example TDD in Figure 6 4. Now

Node | pre(q) | poz{q) | pod<(a) | pog, (a)
F1 1 Qo+ Pale | Pale -
F2 0 1 e de
F3 Db 0 Qe 0
F4 || gypa + prpa 1 0 -

Table 6 17 Path probabulities for each node 1n the TDD in Figure 6 4

the failure and repair importance for each component can be calculated by summing
the contributions of nodes of the same component. Thus using the expressions in
equations 6.155 and 6.156 and probabilities in Table 6.17 gives:

Gy = 1:[¢a+Pale — Pale] = ay (6 161)
Gy = @ [1—q]+p-[0—-0] = g, (6.162)
GY = (apa+popa) - [L— 0] = pa, (6.163)
Gy = 0, (6.164)
G} = @ la.—ql+p g~ 0] = pge, (6.165)
Gi =0 (6 166)

These results, as well as the unconditional failure intensity, are the same as using
the SFBDD or the L-BDD method.
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This concludes the presentation of the quantitative analysis of non-coherent fault

trees converted to BDDs.

6.5 Hybrid Method in the Non-coherent Fault Tree

Case

As a good alternative BDD construction technique for coherent fault trees, the
Hybrid method can also be utilised in the conversion of non-coherent fault trees to
SFBDDs. As it was presented 1n the coherent case the Hybrid method combines the
best features of the two construction methods of BDDs, the ite method, presented
im Chapter 3 and the Component Connection Method, presented in Chapter 4.
The new method incorporates the most efficient parts of both algorithms In this
section the two strategies are compared usmg the two efficiency measures, the num-

ber of nodes and the processing time.

According to the first strategy a non-coherent fault tree 1s simphfied, then 1t 1s
converted to an SFBDD using the ite technique. For the qualitative analysis its
corresponding SFBDD 1s converted to an ZBDD which produces prime implicant
sets. The ZBDD method was chosen as one of the two most efficient tools for the
qualitative analysis of non-coherent fault trees. It does not matter which method
is chosen to get the prime 1implicant sets, because the test on the Hybr'id method
will be performed while a SFBDD 1s constructed, i e. prior to the qualitative
analysis The qualitative analysis is performed more for the validation purposes of

the implementation of the method, rather than for the efficiency test of the method.

The second strategy utilises the Hybrd technique for the conversion of simplified
non-coherent fault trees to SFBDDs and then the ZBDD method is also applied
for the qualitative analysis. The Advanced Hybrid method is used in the analysis
since 1t was more efficient than the Basic Hybrid method for the coherent fault
trees

The hbrary of 13 large non-coherent fault trees is used in the analysis Their

complexity 1s shown in Table A 62 These are the same fault trees that were used

mn the analysis of non-coherent fault trees using the four different methods for the
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qualitative analysis

The number of nodes 1n the resulting SFBDDs 1s the same using the ite technique
and the Hybrid method. The Hybrid method expresses the structure function of a
fault tree in terms of a BDD in the same way as 1t does the ite technique. There-

fore, the final result of both methods was the same and was shown in Table A 91

The processing time and the maximum required size of array were also analysed
as was done in the efficiency analysis of the Hybrid method in the coherent case.
The results for the ite method are shown in Tables A 96 and A 108, and for the
Hybrid method - in Tables A 107 and A 109. The comparison of the two techniques
according to the processing time and the maximum required size of array 1s shown
in Table 6.18

| [ scheme [ 1 2 3 4 5 6
Ite method 996 15 44 1389 878 1048 854
£
-
Hybrid method 85
g Ite method 7868
EFQ
F© O
= Hybrid method 98N 8027 11780 76804

Table 6 18- Comparison of the two technmiques

This table shows that the processing time 1s very similar using the ite technique
and the Hybrid method while building SFBDDs However, the maximum required
size of array decreases 1f the Hybrid method is used instead of the ite technique
This comparison for non-coherent fault trees matches the results in the coherent
case quite well. The Hybrid method appears to be a good alternative technique to
the ite method for converting non-coherent fault trees to SFBDDs

The ranking of the eight ordering schemes was also performed. The results ac-
cording to the number of nodes, the processing time and the maximum required
size are shown in Tables 6 19 - 6 21 Ranking results are similar between the two
methods. The best performance was obtained by the dynamic top-down scheme
(6) for almost all efficiency measures and ranking methods. The modified top-down

scheme (1) gave poor results The rankings are similar to the ones obtained 1n the
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Scheme l | 1 7 _|___18

Total  [Number of nodes 13432
lquantrty

Fankng [Rank 8

B Number of £Ts

£ Highest lyth the highest ]
lscheme rank

E Fanking

= Rank 7-8
Added  1added ranking 86
lscheme
kanki Rank 8

Total Number of nodes 13432

luantty
3 Janking_|Rank 8
FS Number of FTs
g Highest fw;th the highest 0
scheme rank
8 fanking
5 Rank 7-8
T jrdoed  |added ranking 88
scheme
panking |Rank 8

Table 6 19 ite and Hybrid method, ranking according to the number of nodes

coherent case for ‘large’ fault trees

6.6 Summary

The BDD method for the analysis of non-coherent fault trees can be more effi-
cient and accurate than the conventional techniques of non-coherent FTA The
qualitative analysis can be performed fully using the BDD method and the system
unavailability can be calculated without knowing prime implicant sets. Therefore,
there are no long series expansions to perform that can be very inefficient The

importance measures can also be calculated using the BDDs

In some situations the prime implicant sets can be valuable, especially while plan-
ning repair schedules and designing the incorporation of safety systems The SF-
BDD is only suitable for the quantitative analysis. It 1s not suitable for the qualita-
tive analysis because 1n the SFBDD structure there is no distinction of component

failure relevance, repair relevance or irrelevance.

A new method, the Ternary Decision Diagram method, was presented in this chap-
ter for the calculation of prime implicant sets. This method produced a TDD where
all prime implicants were obtained after the minimisation. In the second method,
mitially a SFBDD was produced and then 1t was converted to a Meta-products

BDD, containing all prime implicant sets. The third method resulted in a Zero-
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scheme | 1+ | 2 [ 3 | 4 | 5 [ 6 [ 7 | =8

Zﬁi’m Time 996 1544 1389 878 10 48 854 1077 14 78
ranking |Rank 3 8 3 2 4 1 5 7

B Mumber of FTs

£ [49hest with the highest 0 3 3 4 5 5 2 4
lschame rank

E ranking

= Rank 8 5-6 5-6 34 1-2 1-2 7 34
prdded Iadded ranking 59 84 57 39 47 34 63 39

Rank 4 1 7 23 ||

:E?ﬂrty Time 997 151 1347 | 9o 1055 gs 1080 | 1488

3 Fanking Rank 3 8 6 2 4 1 5 7

F= Number cf FTs

g Highest |yt the highest o} 2 2 1 4 4 2 6
scheme rank

B pankin

5[ [Rank 8 46 46 7 23 23 48 1

L fcmed | [Added ranking 54 59 54 a4 40 31 59 30
panking Rank 56 7-8 56 4 3 2 7-8 1

Table 6 20 ite and Hybrid method, ranking according to the processing time

Scheme
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quaniity
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H'a"“' with the highest
PENEMS fank

ranking
Rank

frdded  (Added ranking
scheme

Fanking Rank

Teal  Maximum array size
quantty
ranking |Rank

Number of FTs

Highest Luin the hughest
kcherne rank

ranking

ite method

Rank

Hybrid method

fAdded ladded ranking
lscheme
rankin Rank

Table 6.21: ite and Hybnd method, ranking according to the maximum array size

suppressed BDD that enabled an efficient qualitative process to be achieved. The
fourth method computed a Labelled Binary Decision Diagram, where all variables
were labelled and prime 1mplicant sets were obtained after the minimisation The
efficiency of the new method was estimated comparing 1t to the conventional ap-

proaches.

A comparison of the four methods revealed that the TDD method and the ZBDD
method performed well for both measurements, 1 ¢ the number of nodes and the
conversion time The TDD method was shghtly faster than the ZBDD method.
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That possibly was due to the fact that one structure (a TDD) was required 1 this
method, which presented a SFBDD as well as it was smtable for the qualitative
analysis In the ZBDD method a SFBDD was constructed and then an additional
ZBDD was built that resulted in a longer conversion process However, the ZBDD
structure was minimal, therefore the number of nodes was smaller than in the
TDD method where each TDD was mimimised before obtaining prime implhcant
sets. Both methods gave close results and provided the efficient means for the

analysis of non-coherent fault trees

The Meta-products BDD algorithm produced a lot larger final BDDs than 1n any
other methods that were used for the calculation of prime implicant sets. Process-
mng time was also greater This was due to the fact that after the conversion of
fault tree to a SFBDD another BDD, called the Meta-products BDD, was required,
where all components were described by two vanables This increased the size of

the BDD and the processing time unavoidably.

During the L-BDD method labelled variables were introduced, using three dif-
ferent types of basic events (&z < z < $z). In order to get all prime mmplicant sets
the conjunction of the 1 branch and the 0 branch was performed for nodes that
represent dual state basic events, as it was done in the TDD method However, the
increase in number of variables and the introduction of some extra connection and

minmimisation rules made this method not as efficient as the TDD or ZBDD method.

Overall, as expected, the efficiency of the four methods was marginal when small
fault trees were considered While analysing ‘large’ fault trees the advantages
and disadvantages of the different techmques were more considerable. The TDD
method and the ZBDD method performed a lot better than the two other tech-
niques and should be used for the BDD analysis of non-coherent fault trees The
meta-products BDD method performed a lot worse than the L-BDD method. The
difference between the two advantageous methods, the TDD method and the ZBDD
method, was still marginal. Therefore, any of the two methods used for a different

library of example fault trees should provide an efficient analysis
The eight ordering schemes were ranked for the four conversion methods There
are some clear conclusions about the efficiency of the schemes Using the example

fault tree Library provided the dynamic top-down weighted scheme (6) performed
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well for all the methods and both measurements. The depth-first, with number
of leaves scheme (4) was also ranked highly. The modified top-down scheme (1)
gave average or poor results, especially according to the number of nodes The two
depth-first schemes, (2) and (3}, also performed poorly. Summarising the ranking,
for the majority of the methods the weighted ordering schemes, (5)-(8), performed
better than the neighbourhood ordering schemes, (1)-(4)

In some cases the fault tree to BDD conversion was impossible in a reasonable
time, therefore, example fault trees were simplified prior to the BDD conversion
process. In that case some complex and modular events appeared in the BDDs.
While performing the qualitative and quantitative analyses these events were ex-
panded back to the level of basic events in order to be able to obtain the results
in terms of original components. Overall, this strategy provided is an efficient tool

for the analysis of non-coherent fault trees.

The application of the Hybnd method in the analysis of non-coherent fault trees
was also performed. The Hybrid method was used for building SFBDDs. This
approach resulted 1in some further improvement on the efficiency of the method in

terms of the processing time and maximum size of array required.
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Chapter 7

Application of Proposed Methods in
Phased Mission Analysis

7.1 Introduction

Many types of system operate for missions that are made up of several phases. For
example, an aircraft mission could be considered 1n the following phases taxung to
the runway, take-off, chmbing to a certain altitude, cruising, descending, landing
and taxung back to the terminal The system must operate successfully during
each phase so that the mission would be completed successfully. Components can
fail at any point during the mission but it can be critical only for one particular
phase Therefore, 1t may be that the transition from one phase to another is the
critical event causing mission failure and the component failures may have occurred

previously

FTA can be used as a means for analysing the rehability of non-repairable sys-
tems that undergo phased missions The required results are the system failure
modes and failure probability of each phase, followed by the total mission unrelia-
bility. The complexity of fault trees might make the analysis impossible, therefore,
some alternative methods will be incorporated in the calculation process First of
all, non-coherent fault trees representing phase failures will be ssmplhified. Then the
BDD method will be employed to calculate the unrehiability of each phase This

will allow a more efficient and accurate Phased Mission Analysis.
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7.2 Fault Tree Method for Phased Mission Analy-
sis

A very simple phased mussion problem consisting of non-repairable components
A,B,C,D and E representing component failures in each of the phases is used

to demonstrate the approach Example is shown in Figure 71 During phase 1,

- oS

»

> 1

fo Ll 31 LY

Figure 7.1 Example of a simple phased mission system

which lasts until time ¢;, the success of the mission depends on the success of the
two components, A, B. After the successful completion of phase 1 the system then
enters phase 2, which requires component C' to function between times ¢, and i,
along with at least one of the two remaining components D and E. In the final
phase only one of the two components D and E 1s required to function between

times t5 and t3 1 order to accomplish the mission successfully.

Considering the phases as separate systems individual phase failures are presented

by fault trees in Figure 7.2. Component fatlure in phase 2 is 4,, B,, C,, ), and E,

Phasc I Phase I1 Phase I
failure failure fajlure

Figure 72 Fault trees of individual phase failures

for components A, B, C, I} and E respectively.
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The reliability of a phased mission cannot be obtained simply by the multipli-

cation of the reliabilities of each of the individual phases because it would involve
assumptions that the phases are independent and all components are working at
the beginning of each phase. One of the methods proposed 1n [38] contains the
transformation of a mission to that of an equivalent single-phase mission. This
method involves three stages and is only concerned with the faillure of the mission,
1.e it does not take into account failures of the individual phases. It is impossible

to calculate individual phase failure probabilities.

An alternative method was proposed by La Band and Andrews n [39] that en-
hances the fault tree approach but also enables the probability of failure in each
phase to be determined in addition to the whole mission rehability. For every phase
the method combines the causes of success in previous phases with the causes of
failure for the phase being considered This allows both qualitative and quantita-

tive analyses of both phase failure and mission failure

System failure in phase 2 is presented by the AND of the success of phases 1
to ¢ — 1 and the failure during the phase #, as shown in Figure 7.3. The mission

unreliability, (Qyuss, 15 then obtained as a sum of failure probabilities in phase 2,

Qv
N
Qmws = Z Qu (7 1)

1=1

here N 1s the total number of phases

For the example shown 1n Figure 7.1 the fault tree to show the mitial phase failure
remains 1dentical to the fault tree representation of the individual phase failure of
phase I in Figure 7 2. Phase II failure can then be shown as the combination of
phase I success and failure in phase II, as shown in Figure 74 Also, every basic
event 1n the phase II fault tree 1s replaced by an OR combmnation of the failure
events for that and all preceding phases In the same way phase III failure can
be represented as the combination of phase I and phase II successes and failure in

phase III, presented in Figure 7.5.

To determine the minimal cut sets of a phase or a mission a top-down or a bottom-

up approach 1s applied to the relevant fault tree The notation used to represent
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Phase ! fault tree with each
basic event replaced with an
OR. combination of
component falure m any
previous phase

Figure 7.3 Phase failure fault tree in a general case
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the failure of component A in phase 2 1s A,; A, represents the functioning of compo-
nent A throughout phase 1. The notation used to indicate the failure of component
1n phase 2 to 7 is A, ,, i e. the component fails at some point from the start of phase
¢ to the end of phase 3. This notation defines an algebra over the phases to ma-

Therefore, 1f two implicant sets contain exactly the same components, where all
but one occur over the same time mntervals and the other is a faillure 1n contiguous
phases, the two implicant sets may be combined with the period of failure for
the component with time discrepancy adjusted, e g two imphcant sets A;B; and
A1 B; can be replaced by AyB;, This simplification approach allows the prime




Sueccess in Failure n
Phase | Phase I

Figure 7.4. Phase II failure fault tree

IPhase 111
falure
k 1
Success 1n Success 1n Jailure 1n
Phase IT Phase If Phase Il

Figure 7.5: Phase III failure fault tree

implicants for the simple example given in Figure 7 1 to be expressed as follows:

Phase I: (7.9)
v = A+ B
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This gives two mimimal cut sets {A;} and {B:}

Phase IIL: (7.10)
Ty = A1Bi(Cy+ Cy+ (D1 + Do)(Er + E))
= 215101,2 + Z1§1D1,2E1,2-

Prime implicants obtamned are A;B1Cy 5 and A, By Dy 2B 5.

Finally,

Phase III: (7.11)

Ty = A BCiCx(D:iDs+ ElEg)(Dl + Do + D3)(Ey + By + E3)

This gives two prime imphcant sets Ay B1C12D3Fq3 and A B,C13F3 D3

Having established the prime implicant sets for each phase, they may now be
used to quantify the probability of phase and mission failure. Using the inclusion-
exclusion expansion in Equation 2.41 the event of phase faillure for this simple

three-phase mission is expressed as

1 = qa, +39B, — 94,98, (7.12)

Q = (1-ga)(1—gm)ecr, + (1 - 9a)(1 — ¢8)aD1 08, =  (713)
(1= q4,)(1 — 48,)96, 29D, 2 9B 25

Qs = (1-ga4)(1-98, {1 —4gc, — 9c;)D:05,5 + (7 14)
(1—ga,)(1 —gp){(1 —qc, — ch)QEﬂDl,s -
(L= q4,)(1 — a8, ){1 — go, — 9¢,)qD4s 055

As the failure of each of the phases produces mutually exclusive causes, the prob-
ability of mission failure may be expressed as the sum of the unrehability of the

individual phases:

N
Quiss =Y _ @ (7.15)
1=1

7.3 Phase FT simplification

Fault tree simplification techniques are helpful to reduce the size of a fault tree to

enable prime mmplicant sets to be found more efficiently. They were presented 1n
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Chapter 2 for coherent fault trees and 1n Chapter 5 for non-coherent fault trees

These techniques reduce both memory and time requirements The factorisation

of phase fault trees is a part of this research and will be explained more 1n detail.
Fault trees of every individual phase are considered

Rule. If there 1s a pawr of basic events that always occur together and under
the same gate type, throughout the set of fault trees of every indindual phase, that

par can be replaced by a single complexr event.

Introduce a phased mission with NV phases as shown in Figure 7 6. Since A AND B

Phase I Phase I} Phase N
: fatlure failure

Figure 7 6: N-phase mission

always occur together they can be factorised, i e. A AND B =2000. This example
contains a set of AND gates, however, the process of sumplfication to OR gates
can be applied in the same way. The factorised fault trees are shown in Figure 7.7.

Phase I Phase 11
il kEkL d L

Figure 77 Factorised fault trees

JdLUVTE

Following the method, presented in the previous section, OR combinations of event
farlures 1n each phase replace every basic event in a FT. Also, the success of ev-
ery preceding phase 1s included 1n the phase failure logic Fault trees representing
failures for phase I, phase II and phase III are shown in Figure 7.8. After the ab-
sorption has been apphed on the fault trees, prime imphcant sets can be calculated

from fault trees in Figure 7 9
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Phase 1 Phase I1 Phase N
failure farture

Gh

Figure 7.8: Phase I, phase II and phase III failure fault trees

farlure failure

| Phase T1 Phase N

Figure 79 Fault trees after the absorption

Phase I' Ty = 20004, (7.16)
Phase Il T, = 2000,2000,

Phase N: Ty = 2000, 2000y

This gives prime implicant sets-

Phase I - 2000, (7.17)
Phase I : 2000,,

Phase N : 2000x.

While extracting prime imphcant sets in terms of basic events, two types of gate
are considered For an AND gate, 1e. 2000=A- B

PhaseI : A,Bi, (718)
Phase II AsBrg+ BoAj 2,

Phase N AnByny + BnAin.
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For an OR gate,ie 2000 = A+ B:

Phase I Ay + By, (719)
Phase II - BjAy+ A By,
Phase N : Byn_1An+ Ajn-1Bn.

Also, while calculating the unreliability of each phase two types of gate will be
considered. For an AND gate.

Q1 = oo, = 94,98, (7 20)
Q2 = 42000, = JA29B 2 + G894, 2 — GA9B,,
QN = qeo00n = JAnGB) N + dBnGA;,n — 9ANTBN
For an OR gate:
Q1 = Qooo, = 94, + 4B, — qa, 9B, (721)

@2 = oo, = (1 —¢p, )04, + (1 — qa,)88, — ¢4,98;,

Qn = G000y = (1 -4 — .. QBN_l)QAN +

(1 — Ay T e T Q'AN_.l)CIBN — GAndBy-
Remark.

For an AND gate:
2000,y = 2000, + 20002 + . + 2000y (7.22)
= AB1+ .+ AnBin+ BnAiny=AinBin
For an OR gate:
2000,y = 2000, + 20002 + .. + 2000y (7.23)
= Ai+ By +..+ BinyAn + AinBy.

This simplification technique will be applied using the example mission 1n Fig-
ure 7 1

First of all, the factorisation of fault trees shown 1n Figure 7.2 is performed re-
sulting in the fault trees shown in Figure 7.10 Events D AND FE are replaced by
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Phase I Phase I1 Phase [H
failure lailure

Figure 7.10: Factorised example fault trees

a complex event 2000.

Now fault trees for every phase are constructed using the method explamed before.
Phase I fault tree remains identical to the fault tree representation of the individ-
ual phase failure of phase I 1n Figure 7.10 Phase II and phase III fault trees are
presented 1n Figure 7 11 and Figure 7.12 respectively.

Phase II
failure

0

Success i Failure 1n
Phase [ Phase 11

Figure 7 11 Phase II failure fault tree from the example

Now prime implicant sets can be calculated Phase I failure fault tree 1s 1dentical

to the individual phase failure fault tree, therefore:

Phase I: (724)
T1 = Al + Bl

Now for phase II the rules for an AND gate in Equation 7 18 are followed.

Phase II: (7.25)
Ty = AiBi(C1 + Cs + 2000, + 2000;)
= A, B1(C,2 + 2000, 2)
= Z1§1(01,2 + D1,2E1,2)
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Phasc 1

farlure
I : 1
Suceess 1n Success in Failure in
Phase i1 Phase 1T Phase ITT

N
£

(@) (@) )

Figure 7.12: Phase III failure fault tree from the example

Therefore, the two prime implicant sets obtaned are 4, B,C; » and A, By D, ,F; ».

For phase III Equation 7.18 is used once again.

Phase IIT

T, = A1B1C1C>2000;20002(20004 + 2000, + 20003)

= Z1§16162(D3.El,3 + E3Dy 3)

(7 26)

Two prime mmplicant sets obtained are E1§1€16293E1,3 and 21_3_16162E3D1,3.

Prime implicant sets match the ones obtained from the original fault trees, there-

fore, the unrcliability of each phase will also have the same expression.

For phase I

For phase II-
Q2

Ql =qa, + gB, — 94,98, -

It

(1 - q4)(1 — a,)401,

(1~ g4,)(1 — 98,)92000, »

—(1 - (IAl)(l - qB1)q01,2q20001,2
= (1— g {1 - ¢m)9c1,

+(1 — 94,)(1 — g8, }4D, 29515
—(1 = g4,)(1 ~ ¢B,)90, 29012951 2
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For phase III.

Q3 = (1 - qu)(]' - qu)(l —dqc, — QCQ)Q20003 (7 29)
= (1 - qu)(]. - qu)(l —4c, — QC2)
(QDa qE: 3 + 9E;9D13 — QESQDS)'

This concludes the calculation of mission unreliability using the simplified phase

failure fault trees.

7.4 Binary Decision Diagram Analysis for Phased

Missions

A fault tree represents system failure logic efficiently but 1s not ideal for mathemat-
ical analysis. Therefore, the BDD method can be applied that provides an accurate
and efficient analysis Especially this will be particularly useful for complex fault

trees or fault trees that are non-coherent, such as the phase failure fault trees

The representation of the BDD method is explained in Chapter 3. This method
will be applied to the simple three-phase mussion illustrated in Figure 7 2, where
each phase can be represented by a SFBDD and then the unrehability of each
phase can be calculated The SFBDD represents the structure function of the non-
coherent fault tree, as 1t was explained in Chapter 6, and it can be apphed for the
quantitative analysis but not for the quahitative analysis. So, the fault trees for
phase I, phase II and phase III in Figure 7 10, 7.11 and 7.12 are first converted to
SFBDDs. These SFBDDs are shown n Figures 7 13 and 7 14 Now their quanti-
tative analysis can be performed.
(")

IO

Figure 7 13- SFBDD representing phase I failure
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Figure 7.14: SFBDDs representing phase II and phase III failures

For phase I, the ite structure represented by the SFBDD in Figure 7 13 1s.
ite(Aq, 1,ite(By, 1,0)) (7 30)
There are two disjoint paths to terminal 1, A; and A;Bi. Therefore

Q) = qa, +Pags:- (7 31)

The quantification process is equivalent to the method, presented in Chapter 3
The SFBDD for failure during phase II is given by the following ite structure

ite(A;,0,ite(By,0,ite(Cy, 1, ite(Cy, 1, ite(20004, 1,ite(20002, 1,0)))))) (7.32)
There are four paths to terminal 1

A1B1Ch, (7 33)

A1B1C 10y,
A, B5,C, 052000,

During quantification the fact, that the events representing the same component

farlure in different phases, like C; and Cj, are mutually exclusive, needs to be taken
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into account. If component C fails in phase II it must have survived phase I This
rule 1s covered by Equation 7 6. Therefore, phase II failure probability is calculated

as

Q: = (1-qa)(1-g8)ge +4c,) + (734)
(1 —qa, (1 = g8,)(1 ~ gc, — 90, ) (@200, + G2000,)-
Since 20004 + 20002 = Dy o F) 2 according to Equation 7.22 1t gives
Q@ = (1-qa)(1-¢8)g012 + (1 — 90,,)8D, 295, 2) (7 35)
= (1—q4)(1~98)(gc12 + 4D 29815 — 9C129D1 291 2)-
Finally, the SFBDD representation for the fault tree of the failure during phase ITI
18
ite(A;,0,ite( By, 0, ite((, 0,ite(Cy, 0,1)))), (7 36)
where

¢ = ite(20004, 0, ite(20004, 0, ite(20003, 1, 0))).

The only path is

A, B,(C1C52000,20005,20005. (7 37)
The failure probability of phase III 1s expressed as

Q3 = (1 - qu)(l - qu)(l — 4o, — qcz)QZOOO:;' (738)

Following the expression 1n Equation 7.20 gives

@ = (1—-94)(1—g8)1—qc, —a9c,) (7.39)
(qDaqE1,3 + dedp, 3 — QE3QD3)

Therefore, 1t can be seen that the unrehability of each of the phases found by the
BDD method is 1dentical to that obtained using the fault tree analysis of original
or ssmphfied fault trees.

The quantitative analysis of the phase faillure probability using BDDs 1s efficient,
because the paths to terminal vertices are disjoint and the phase failure probability
can be calculated by summing the probabilities of each path. This approach also
shows that the size of phase fault trees can be reduced by applying the simplifica-
tion process Therefore, the analysis becomes even more efficient because the size
of BDDs is also reduced since a smaller number of vanables appears in the fault

tree after the simplification.
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7.5 Summary

The accurate assessment of mission unreliability for systems with non-repairable
components operating over a sequence of phases can be performed using non-
coherent fault tree structures This provides a full description of the performance
of the system and allows the calculation of not only the failure probability for the
whole mission but also for every phase. Applying algebraic rules the prime imph-
cant sets are obtained and used n the inclusion-exclusion expression for the phase

failurc probability.

Since the direct quantification of the fault trees is frequently problematic even
for moderately sized problems, fault trees can be reduced before calculating prime
implicants. Fault trees for individual phases can be reduced and then fault trees
of every phase failure are built. New rules for expressing prime implicant sets and
calculating phase failure probability were considered 1n this chapter when fault

trees were factorised beforehand

As a further extension, the use of the BDD method to calculate the failure prob-
ability of each phase in the mission provides an efficient and accurate means of
evaluating mussion unreliability The prime mmplicant sets are not required for
the quantitative analysis and this property makes the BDD method efficient This
method incorporates building BDDs for both coherent and non-coherent, fault trees,
tracing all disjoint paths and estimating phase failure probability followed by mis-

sion failure probability.
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Chapter 8

Computer Implementation of BDD
Method

8.1 Introduction

A system faillure modelling and analysis tool based on the Binary Decision Dia-
gram analysis is developed. This program integrates the fault tree simplification
process, presented in Chapter 2, and the BDD conversion techniques, explained in
Chapters 3, 4, 5, prior to the qualitative and quantitative analyses. The system
faillure analysis software runs on personal computers running Microsoft’s Windows
95, 98 and NT operating systems. The tool enables users to edit and display fault

trees 1n textual form The type of the analysis can be selected from menu options.

8.2 Overview

This tool is a procedure for performing system failure analysis based on the Binary

Decision Diagram method The facility includes:
1. System data input in a fault tree format
2. Component failure data input
3. Conversion of fault tree to a numerical form
4. Simplification pre-processing of fault trees
5 Fault tree conversion to a binary decision diagram

6 Identification of mimmal cut sets/prime imphcant sets using the BDD

208




7. Calculation of probability and frequency of top event occurrence from the
BDD

8. Importance measures facility
9. Tabular presentation of results

The process begins with a particular failure mode of an industrial system which is
represented by a fault tree. The fault tree 1s then converted to its numerical form
and then simphfied, if requested, 1dentifying independent modules and simphfying
the logic function. After that the fault tree is converted to a BDD and the re-
quired analysis performed, identifying mimimal cut sets or prime implicant sets of
component conditions that cause system failure. The probability of the top event
occurrence 1s calculated together with the frequency of the top event. Importance
measures which rank the contribution of every component are also calculated If
the system being analysed is subdivided into modules the program assesses each
module in turn and then combines the module information to obtain results for

the overall system. The flowchart of the program 1s shown in Figure 8 1.

8.3 Established Modules

The main modules of the program are presented in the following sections explaining

the data format and highlighting the important parts of the algorithm

8.3.1 Data Input Module

A fault tree provides a structured description of causes of a particular system
fallure mode. Data describing the fault tree structure is specified such that each
line 1n the data file provides details for each gate The hne starts with the name
and the type of a gate, followed by the number of gate inputs, the number of event
inputs and concludes with a hist of its gate and event inputs The top gate can
appear on any line of the data file. During the mnput the data is converted to a
numerical representation for ease of manipulation. Every gate 1s assigned a unique
number from 10000 upwards (not more than 19999) and every event 1s assigned
a unique number from 1 upwards (not more than 9999). An ‘OR’ gate is coded
by 1 and an ‘AND’ gate 1s coded by 2 Complex events that are created during
the reduction process are described starting with a number from 20000 upwards.

Modular events that are created during the modularisation process are assigned a
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Figure 8.1: Flowchart of the developed program
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number 20000 + namenumd upwards, here namenum3 is the number of complex

events in the fault tree. Arrays are used to represent a fault tree Figure 8 2
shows the way the data input scheme works On the left there 1s an example fault
tree with 1ts equivalent data file on the top right, followed by the hst of events.
‘The numerical representation of the fault tree is shown on the bottom right. This

numerical data is manipulated further during the analysis

Top

Tep OR 20 G1 G2 Event List
Gl1ANDO2ab la
’ G2ZANDO2b¢ gb
c

|

Gl G2
line gate val | num | num \nputevent(]
number | number | gate | gates | events P
1 10000 1 2 0 {10001, 10002}

2 10001 | 2 | 0 2 {12}

oooo 3 10002 | 2 | 0 2 [{23)

Figure 8.2 Data input scheme

8.3.2 Simplification Module

This part of the program provides the fault tree simplhfication tool applying both

the reduction and the linear modularisation, presented in Chapter 2

First of all, the numerical array that represents the input fault tree is scanned
from the beginning and all the four reduction phases are applied by factorising
pairs of events that always occur together and removing redundancies of repeated
events by performing extraction and absorption procedures The numerical fault
tree 1s scanned until there are no more changes possible A reduced numerical
fault tree 1s obtained together with an array that describes the complex events

constructed.

The Linear modularisation algorithm is applied by traversing the fault tree twice -
the first time every basic event and gate are assigned a visit number, the second
time independent modules are identified according to the visit numbers that were

assigned The set of modules 1s stored 1n a numerical format together with the n-
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formation 1dentifying the top event of every module This data is used performing

the analyses later in the process

8.3.3 BDD Conversion Module

A fault tree (or a set of fault trees if independent modules were obtained) 1s con-
verted to a BDD A two-dimensional array 1s used to store the BDD representation.
Every node 1n a BDD 1s presented by a line of three entries in a BDD array The
first element represents the numerical code for the basic event associated with the
node. The second entry contains a pointer to the number of the hine where the
BDD structure on the 1 branch of the node starts. Consequently, the third entry
of every line in the BDD array identifies a pointer to the number of the line that
marks the start of the BDD structure on the 0 branch.

Applying the conventional ite method the fault tree is traversed and basic ele-
ments are ordered according to a selected variable ordering scheme from the ones
presented 1n Chapter 4. Then the fault tree needs to under go pre-processing tasks
where every gate is reconstructed allowing only two inputs. In this manner new
gates are created. Then all basic events are replaced by their number of the posi-
tion 1n the variable ordering. This allows the connection rules of the ite technique
to be used 1n a more convenient way An example fault tree 1s shown in Figure 8 3.
The vanable ordering 1s assigned b < a < ¢, in the numerical format 1t 15 described

10000 10000
10001 10002 10001 10002

Figure 8.3: Example fault tree for the ite method

as 2 < 1 < 3. First of all, every basic event is assigned a line in the BDD array
with two terminal vertices, ie. -1 for the second entry (1 branch) and 0 for the
third entry (0 branch) -1 is used to represent the termunal 1 vertex so that the

ambiguity between the reference to line 1 in the array and the terminal 1 vertex is
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avoided. This representation is shown in Table 8 1. Then the numerical fault tree

Line | \rode | 1 branch | 0 branch
number
1 1 | 0
2 2 1 0
3 3 q 0
4 1 2 0
5 1 3 0
6 1 7 0
7 2 1 3

Table 8.1: ite array

15 traversed converting every gate to its representing BDD and recording the fact

that the conversion process of the gate has been completed

Gates with event inputs only are considered first. Considering gate G1 which
has two basic events as its inputs, new line 4 in the ite array is created It en-
codes an ite structure for gate G1, ite(1, ite(2,-1,0),0). Therefore, line 4 contains
1 as the first entry, since 1 < 2 in the vanable ordering The second entry is 2,
1e pownting to the second line in the ite array that represents basic event 2, and
the third entry 1s 0 because it points to terminal vertex 0 The sub-node sharing

property is applied using the existing line 2 in the ite array for the ite(2,-1,0).

At the same time a computational table 1s generated where every line represents
the first and the second input of the gate together with the type of the gate and the
resulting line of the root node in the ite array, presented in Table 8.2. Therefore,

Line Type Furst | Second | Resulting
number | of gate | 1nput mput line
1 2 2 1 4
2 2 1 3 5
3 1 4 5 6

Table 8 2 Computational table in the ite method

for gate G1 the first entry i the computational table 1s constructed the gate type
is 2, the first input is from line 2, the second input is from line 1 and resulting ite

structure 1s placed in line 4 of the ite array This entry can be used further in the
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conversion process, i ¢ 1f the same two inputs, 1 e. input 2 and 1nput 1, appear else-

where in the fault tree again as inputs to a gate of type 2 the resulting conversion

of the gate can be referenced immediately reusing the ite structure obtamed earlier

New line 5 in the BDD 1s created for gate G2, ite(l, ite(3,-1,0),0) Consider-
ing the top gate two new lines 6 and 7 are created that represent the ite for the
top event, ite(1, ite(2,-1,ite(3,-1,0)),0). Two more entries are made in the com-
putational table The number of the line representing the root node of the BDD
is returned and the conversion process is concluded by replacing numbers in nodes
with the basic events if required. Therefore, the BDD for this example 1s expressed
as ite(b, ite(a, 1,ite(c, 1,0)),0). This resulting BDD can be used to perform the

qualitative and quantitative analyses described 1n the next sections

The BDD module 15 used in the research investigating the conversion techniques
of FTs to BDDs considering different methods and ordering schemes. In the BDD
module eight alternative ordering schemes for basic events can be used. An effi-
ciency measure factlity is also incorporated in the module that allows the calcula-

tion of the number of repeated and non-repeated nodes in the ite array.

8.3.4 Quantitative Analysis Module

This part of the program performs the quantification of the system where the
failure mode is represented by the BDD. This module performs the calculation of
the probahility and the frequency of top event occurrence and the computation
of Birnbaum’s measure of importance for every basic event in the system The
detailed explanation of the application is presented in Chapter 3. The probability
of occurrence of the top event is expressed as the sum of the probabilities of the
disjoint paths through the BDD. All the disjoint paths can be found by tracing
all paths from the root vertex to terminal 1 vertices. This calculation process is
performed in a bottom-up manner Nodes with terminal vertices on both their
branches are considered first Once the probability of a particular part of the BDD
is calculated the process does not need to be repeated again. The criticality of
every basic event 1s calculated during the same traversal of the BDD by recording

path probabilities
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8.3.5 Qualitative Analysis Module

This module consists of the mimmisation algorithm of the BDD and the procedures

to calculate the minimal cut sets (or prime implicant sets).

8.3.5.1 Minimisation module

In the application of the minimisation algorithm every path 1s analysed 1n a bottom-
up manner Nodes with terminal vertices on both of their branches are considered
first. First of all, the structure beneath the 1 branch of the node 15 minimised
Then the ‘without’ operator is applied removing the paths from the structure on
the 1 branch that are repeated in the structure on the 0 branch. Finally, the struc-
ture beneath the O branch 1s minimised. Each of those three steps can produce
new entries 1n the BDD array that replace exastent lines. The minimisation result
of every node, ie a new line that will replace the structure after the minimisation,
is stored 1n the array of minimal solutions and can be reused if required. Also,
the information generated when applying the ‘without’ operator is stored in the

‘without’ array and can be reused during the application of the ‘without’ operator .

For example, consider the ite structure ite(1, ite(2, ite(3,1,0), ite(4,1,0)), ite(3,1,0))

as shown in Figure 84 The BDD 1s traversed 1n a bottom-up way The minimi-

Figure 8.4: Example BDD before and after the minimisation

sation process is explained in Figure 8 5 where every step of the algorithm and the

resulting line in the ite array are traced recursively

I step - The minimal solution of ite(3,1,0) is obtained and stored in the array

of minimal solutions, Iine 3 1n the Table 8.3.
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K=minsol(3)
U=without(K,4) 3
V=minsol(4) 11
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Figure 8 5: Applhication of the minimisation process
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Table 8 3+ Minimal solutions table

IT step - The ‘without(3,4)’ operator is applied. Since there are no paths in the
structure described by line 3 (ite(3,1,0)) that are repeated in the structure de-
scribed by line 4 (ite(4,1,0)), the ‘without’ operator returns the value 3 (ite(3,1,0)).
The first line 1s assigned in the ‘without’ array, 1e the first entry 1s 3 (the first
parameter of ‘without’ operator), the second entry is 4 (the second parameter of
‘without’ operator) and the third entry 1s 3 (the returned value), shown i Ta-
ble 8§ 4

Line F G “without *
number solution
1 3 4 3
2 4 3 4
3 5 3 7

Table 8.4: ‘without’ solutions table

IIT step - After that the mimimal solution of ite(4,1,0) is obtained and stored in
the array of minimal solutions, line 4 1n the Table 8 3.

IV step - Since the ite structure ite(2, ite(3,1,0), ite(4,1,0)) is minimal, the solu-

tion 15 kept 1 the array of minimal solutions, line 5 in the Table 8.3
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V step - The ‘without(3, 3)’ operator removes the repeated path, 1.e. line 3, from

the structure replacing 1t by 0

VI step - The ‘without(4,3)’ operator is applied. Since there are no repeated
paths, the ‘without’ operator returns the value 4 (ite(4,1,0)). The second line 1s
assigned in the ‘without’ array, shown in Table 8 4

VII step - While applying the ‘without(5, 3)’ operator, a new entry in the BDD
array is created, line 7, shown i Table 8.5. Also a new entry, hne 3, 15 created mn

the ‘without’ array as shown in Table § 4.

Line | \rode | 1 branch | 0 branch
number
I I | 0
2 2 q 0
3 3 q 0
4 4 1 0
5 2 3 4
6 1 5 3
7 2 0 4
g 1 7 3

Table 8.5: ite table for minimisation

VIII step - During the minimisation of ite(3,1,0) the value 3 (line 3) 1s reused from
the array of minimal solutions

IX step - Finally, the last line in the BDD array 1s created that represents the
root node of the minimised BDD Also, the last entry in the array of mimimal
solutions is produced as it is shown in Table 8§ 3

8.3.5.2 Calculation of minimal cut sets

During the calculation of minimal cut sets every path to a terminal 1 vertex in the

minimised BDD 1s passed to collect basic events on 1 branches in a bottom-up way.

Consider the minimised BDD on the right in Figure 8 4. The process of obtaining

minimal cut sets is shown in Figure 8.6

I step - The process starts from the root vertex traversing the first path to the

terminal vertex 1. In this way the node ite(4,1,0) that contains a terminal vertex
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Figure 8 6 Application of minimal cut sets computation

is reached, therefore, the first mimimal cut set containing one element is created

and basic event 4 is included in it as shown 1n Table 8 6.

II step - Then following the path back up basic event 1 1s also included 1n the

first minimal cut set before analysing the 0 branch of the root vertex.

III step - The final minimal cut set 1s conducted, creating a new entry in the

minimal cut sets array and allocating basic event 3 as shown in Table 8.6.

Row \
Column 1 2
1 4 1
2 3

Table 8 6 Minimal cut sets array

In the event that a fault tree has been simplified before the quahtative analysis
the resulting mimimal cut sets will contain complex and/or modular events. It
15 essential to be able to analyse the system 1n terms of 1ts origmnal components,
therefore, the next stage of the qualitative analysis 1s to extract the combinations
of component failures from every complex and modular event A key point of the
expansion algorithm, which is the same as the MOCUS method [3] for calculat-
g minimal cut sets from fault trees, 1s that an AND gate 1ncreases the number
of basic events in each minimal cut set (or prime implicant set) and an OR gate
increases the number of minimal cut sets {or prime imphcant sets) in the system

The array 1s repeatedly scanned replacing

1. Each complex event which 1s an OR gate by a vertical expansion including
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the input events to the gate (duplicating all other events in this row)

2 Each complex event which 1s an AND gate by a horizontal expansion includ-

ing the input events to the gate

3. Each modular event by a vertical and/or horizontal expansion including the

minimal cut sets obtained from the BDD, which represents the modular event.

The process 18 over when only basic events appear in the array

8.3.6 Component Connection Method

When the Component Connection Method is used for converting fault trees to
BDDs, an alternative data structure of a binary tree 15 used to store the BDD A
binary tree is an efhicient form of data representation because the memory for a
new node 1n the binary tree is assigned when it is required not all in advance A
binary tree has a root node, a left binary tree and a right binary tree The root
node contains numerical data of the node vanable, the left tree corresponds to the
BDD structure beneath the 1 branch of the node and the right tree corresponds to
the BDD structure beneath the 0 branch of the node. No pre-processing time is
required to prepare fault trees for the conversion to BDDs process if an ordering

scheme 15 not used

In the Component Connection Method two alternative approaches of traverse are
used - the top-down method and the bottom-up method In the top-down method
BDDs are created for every gate starting from the top event. Then every node
that represents a gate is replaced by 1ts BDD. In the bottom-up way the gates of
the fault tree are traversed constructing BDDs for gates with event inputs only.
Then 1n a bottom-up way the BDDs are constructed for every gate until the top
event 1s reached. A detailed explanation of the bottom-up method 1s provided in

this section.

Initially every gate that has as inputs only basic events are put in a binary tree
according to the type of the gate. If the gate 15 an ‘AND’ gate the basic events are
connected on the left branch (the 1 branch) of the tree, if the gate is an ‘OR’ gate
the basic events are connected on the right branch (the 0 branch) of the tree. If
a basic event ordering scheme 1s used the set of event inputs 1s ordered before the

connection process For any gate with gate inputs a selection rule is implemented
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n order to ascertain which is selected to be the main BDD during the conversion

process. Then the process of connection starts merging two chosen BDDs The
main binary tree 1s traversed searching for terminal vertices, i e terminal vertices
1 for an ‘AND’ gate and terminal vertices 0 for an ‘OR’ gate. A new copy of the
secondary BDD is then created and connected to the main BDD at every appro-
priate terminal vertex After the connection process the new, combined, BDD is
scanned. If there are some repeated events on any path through the BDD the
simplification process is applied. The resulting BDD 1s then set to be the main
BDD for the next connection step for the gate until all BDDs representing gate

inputs are merged

In order to determine when sub-node sharing can be used during the connec-
tion process, paths in the main BDD to where the second BDD will be attached
are checked for the occurrence of the repeated events Those terminal vertices
that are reached traversing the same branches of the nodes with repeated basic
events can be replaced by the same copy of the secondary BDD. In other cases a
new copy of the secondary BDD is created. BDDs for repeated gates can be reused

For example consider the fault tree shown in Figure 8.3. Let the fault tree con-
version to BDD technique be the bottom-up method, with no variable ordering
required and the left-most BDD always chosen to be the main BDD. First of all,
two binary trees are created for gates 10001 and 10002, shown in Figure 8.7. Note:

NULL is the null-pointer value used with the pointer operation. An information

Figure 8 7* Binary trees for gates 10001 and 10002

array 1s also created, shown in Table 8 7. The first entry 1s the address of the root
of each binary tree, the second entry 1s the label of the gate represented by the
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Line top gate number | membersf] used
number
1 address 1 10001 2 {1,2} 0
2 address 2 | 10002 2 {2,3} 0

Table 8 7: References table

binary tree, the third entry is the number of different events in the tree, the fourth
entry is the array of those events and the last entry identifies if the binary tree has

been used while merging BDDs of a parent gate.

Then the left-most BDD (of gate 10001} is chosen to be the main BDD. Since
gate 10000 1s an ‘OR’ gate every node with value 0 1s replaced by the secondary
BDD First of all, the vertex 0 1s reached on the right branch of the node with
basic event 2. It is replaced by the secondary BDD. Then the second vertex 0 13
found on the right branch of root node 1 and 1t 1s replaced by a new copy of the
secondary BDD The result is shown in Figure 8 8 and Table 8 8

4—— address 3

Figure 8 8 Binary tree for gate 10000, before the simplhfication

Line | top gate number | members|] | used
1 address 1 10001 2 {1,2} 1
2 address 2 10002 2 {2,3} 1
3 address 3 10000 3 {1,2,3} 0

Table 8 8§ References table after connection
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The two arrays of events of the binary trees with ‘address 1’ and ‘address 2’ are
scanned and a repeated event 2 1s found Therefore, the simplification process
is applied 1n the resulting binary tree removing repeated events from every path.
The only repetition 1s on the right branch of the first node with basic event 2,
the second appearance of basic event 2 1s replaced by the binary tree on its right
branch, i e node with terminal vertex 0. The list of events for the resulting BDD
of gate 10000 is created merging basic events of the two BDDs Sometimes, af-
ter the simplification process this array needs to be adjusted because some events
might not appear in the tree anymore. This new entry is added to the reference
table shown 1n Table 8 8.

In the sub-node sharing version of the Component Connection Method a record
of every visited repeated event is stored before the connection process, therefore,
it can be deaided if the same copy of the secondary BDD can be reused or a new
copy needs to be made. Considering the two binary trees for gates 10001 and 10002
in Figure 8.7, for the first terminal vertex on the nght branch of the node (gate
10001) with basic event 2 the state of the repeated event 2, which is 0, is recorded.
An onginal secondary BDD can be used The simplifications are made before
the connection process since all the required information about repeated events
1s known. A simplified BDD 1s connected replacing the terminal vertex 0 The
address of the simplified BDD is recorded and 1s reused for the terminal vertices
with the same record of repeated events For the second occurrence of a terminal
0 vertex (right branch of node 1) and the record of the repeated event is recorded
as -1, because repeated event 2 1s not encountered on this path A new copy of a
secondary BDD 1s obtained and the connection performed. No simplifications are
performed because no repeated events were passed The final tree and the changes

m the record array are shown 1n Figure 8 9 and Table 8.9.

Line element | record root Line element | record Toot
number number
1 2 0 address 4 1 2 -1 address 5

Table 8 9: Record of visits of repeated events
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44— address 5

Figure 89 Binary tree for gate 10000, sub-node sharing

8.3.7 Hybrid Method

The core of the algorithm for the Hybrid method is based on the ite techmque.
Parts of the fault tree where the Component Connection Method can be introduced
are 1dentified before the conversion process These parts are gates that consist of
event inputs only and gates whose descendants do not have any repeated events.

They are not pre-processed to create gates with two events only.

For example consider the left-hand fault tree in Figure 8 10. In the pre-processing

0000]00000]000000

Figure 8 10: Example fault tree for the Hybrid method

stage, having converted 1t to a numerical format (centre fault tree), gate 10001 1s
not altered because 1t has event inputs only When considering the ite method,
the varniable ordering is assigned, 1n this case, ¢ < @ < b < d and every basic
event 15 assigned a position in the BDD array with two terminal vertices Then

gates 10001 and 10002 are considered and their hasic events are linked m a chamn
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according to the specified order, entry 5 for gate 10001 and entry 7 for gate 10002

in the BDD array. The final connection 1s performed using the ite techmque, since
there 1s event 1 (c) repeated, and the BDD for gate 10000 starts at entry 8. The
complete BDD array 1s shown 1in Table 8 10

Line Node | 1 branch | 0 branch

number
1 1 -1 0
2 2 -1 0
3 3 -1 0
4 4 -1 0
10001 ~emm——mp 5 1 6 0
6 2 3 0
10002 ——» 7 1 4 0
10000 —» g 1 9 0
9 2 10 4
10 3 4

-1

Table 8.10: ite array of the Hybrid method

8.3.8 Non-coherent FT Input Format and Conversion to SF-
BDD

Non-coherent fault trees contain some basic events that can appear in both, failed
and working, states In the data file every negated basic event or gate is presented
starting with a ' sign, i.e. @ 15 equivalent to —a and G1 1s equivalent to —G1
During the data input two states of a basic event are assigned two separate num-
bers and the information 1s kept 1n the array of negated variables After the data
input all negations of gates are pushed down to the level of basic events adjust-

ing their basic events and the content of the array of negative values according to it

During the conversion of a fault tree to a SFBDD the ite technique is applied
in the same way as 1t was in the coherent case. The only additional rule is that the
negated basic events (that appear 1n their working states) are assigned an entry n
the ite array in a different way The first entry is a numerical value of its faled
state if basic event appears 1n both states or a numerical value of its working state
if basic event appears only in its working state. The second entry is a terminal
vertex 0 and the third entry is a terminal vertex 1, coded by -1. Then the con-
version process 15 carried out in the same way as was described 1n the ite module.

Consider the example fault tree shown in Figure 8 11. The array of negative values
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is presented in Table 8 11. After the conversion process the final BDD is shown in

Table 8 12.

Figure 8.11- Example non-coherent fault tree

A

OOOOOG

Line element | element | element
number | _char _mt _pos
1 -a 1 3

Table 8.11: Array of negative values

Lime | \ode | 1 branch | O branch

number

I I | 0

7 ] 0 1

3 3 1 0

4 4 5] 0
10001 ——» 5 1 3 0
10002 ——— 6 1 0 4
10000 ——> 7 1 3 )

Table 8 12: ite array for non-coherent fault tree

8.3.9 Non-coherent Fault Tree Conversion to BDDs for the

Qualitative Analysis

The following modules represent four different algorithms to perform qualitative

analysis of non-coherent fault trees.
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The TDD module converts a fault tree to a TDD. In this case the ite array
has an additional fourth column that represents the ‘C’ branch The basic ite
technique is followed when creating a TDD with the addition that 1t has an entry
in the fourth column in every row which 1s the consensus of the entry of the second
column and the entry of the third column. The ‘C’ branch is only required for those
nodes that represent faillure and repair relevant components. For the other entries,
i.e. where nodes represent failure or repair relevant components the value in the
fourth column 1s assigned -1000, which 1s just a number chosen to identify the fact
that the ‘C’ branch is not required. During the minimisation of the TDD and the
calculation of prime implicant sets updated versions of the minimisation module
and minimal cut sets calculation module from the coherent case are used While
minimising a TDD repeated paths that appear on the ‘C’ branch are removed not
only from the 1 branch (as it was in the conventional minimisation module) but
also from the 0 branch. During the identification of prime implicant sets every
path from the root vertex to a termmal vertex 1 1s traversed. Basic events on the
1 branch of the path enter the prime mmplicant set 1n their falled state (as it was
in the conventional mimimal cut sets calculation module) and basic events on the
0 branch of the path enter the prime implicant set 1n their working state. Basic
events passed on the ‘C’ branch are not included 1n a set. If the ‘C’ branch does
not exist the minimisation and the calculation of minimal cut sets is equivalent to

the processes in the coherent case.

The Meta-products BDD module traverses the SFBDD 1n a top-down way
and converts 1t to a Meta-products BDD. The result of the process is stored in the
same ite array together with the SFBDD. Then the meta-products are obtained
utilising the module which calculates minimal cut sets. Finally, the decoding of
prime implicant sets from the meta-products 1s applied resulting in the prime 1m-
plicant sets.

The ZBDD module hike the Meta-products BDD module handles the SFBDD
developed in the BDD module The SFBDD 1s traversed in a bottom-up way
The rules of decomposition are appled and a new two-dimensional array 1s ob-
tained that contains the resulting ZBDD. During the process the consensus of two
branches 1s calculated for certain parts of the SFBDD (as was presented 1n the

TDD method) The ‘without’ operator from the minimisation module is also used
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The L-BDD module calculates a BDD structure, called an L-BDD, that can
be used for both, qualitative and quantitative analyses. An additional vanable 15

introduced for every basic event that appears in both working and failed states.
The composition of the L-BDD depends on the type of the basic events encoun-
tered Thus the rules of the main BDD construction module are augmented with
some additional laws for those cases. During the mimimisation procedure some ad-
ditional rules of operator ‘without’ are used. Since the consensus of two branches
18 required for some nodes the information 1s saved in a reference array. This data
is used while identifying prime implicant sets and it incorporates the minimal cut

sets calculation module.
In all four methods the computational table is kept so that the ite entries (or

the ifre entries in the TDD method) can be reused Mimmal solutions and values

of ‘without’ operator are also stored and can be used again later in the process
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Chapter 9

Conclusions and Future Work

9.1 Summary of Work

The four main areas of the BDD method development were

e The simplification techmques of fault trees prior to their conversion to BDDs

and their qualitative analysis;

e The alternative Component Connection Method for conversion of fault trees
to BDDs;

e The new Ternary Decision Diagram method and the efficiency analysis of the
other established methods for the conversion and the qualitative analysis of

non-coherent fault trees,

e The system reliability assessment of Phased Mission Systems using the BDD
method and simphfication methods for fault trees.

The summary of each part of the research 1s explained in the following sections

9.1.1 Qualitative Analysis of Coherent Systems

The qualitative analysis of coherent fault trees using BDDs was extended to the
method, where fault trees were simplified and modularised prior to conversion of
fault trees to BDDs The simphfication of fault trees can minimise the size of
the problem remarkably which is very important for memory management and
performance of analysis. After the fault tree simplification, BDDs were obtamed
Their qualbitative analysis resulted in minimal cut sets that contained modular and

complex events that were not easy to understand and might not have had a clear
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reliability meaning behind them. Therefore, the qualitative analysis was extended

by proposing an algorithm to extract basic events from modular and complex
events This method allowed system failure combinations to be obtained 1n terms

of its original basic events that could be analysed.

9.1.2 Component Connection Method

The ite techmque for converting fault trees to BDDs involves applying the if-then-
else (ite) technique to each of the gates in the fault tree. Before the process takes
place every gate is broken down to two inputs A variable ordering for basic events
15 1ntroduced and applied in every step of the process. Once the BDD is con-
structed, the quantitative and qualitative analyses are performed. An advantage
of the ite method for constructing the BDD is that the algorithm automatically
makes use of sub-node sharing. This not only reduces the computer memory re-
quirements, as each ite structure is only stored once, but it also increases the
efficiency, since once an ite structure has been calculated the process does not
need to be repeated However, in the ite method the ordering scheme needs to be
introduced and it can have a crucial effect on the size of the BDD

An alternative techmque was developed as part of the research reported in this
thesis. The Component Connection Method is applied for any logic gate in a fault
tree BDDs are built for every gate and then recursively combined until the BDD
for the top gate 1s obtained If there are some repeated events in the fault tree,
stmplification rules are applied that remove repeated nodes from every path in the
BDD The advantages of the Component Connection Method are that no ordering
scheme of vanables is required because basic events can be connected in the order
that they appear in the fault tree. Also, gates do not need to be broken down to

two 1nputs, since the connection process can deal with all the inputs of the gate

Dafferent connection technmiques were 1nvestigated. Selection schemes for the tra-
verse approach (top-down or bottom-up), for the order of basic events selection,
for the order of mputs selection (for the top-down technique) and for the order of
BDDs selection (for the bottom-up technique) were assigned. The efficiency of the
algorithm and proposed different techniques was measured by the computational
time taken to convert a fault tree to a BDD, together with the size of the final BDD

and the maximum required size of the dynamic memory data structure during the

229




process.

The traverse approach, the top-down or the bottom-up method, was chosen to
build a BDD Both strategies gave the same final BDD as long as the ordering
parameters selected remain consistent. However, the big advantage of the bottom-
up technique against the top-down was that a smaller memory resource was re-
quired This was because in the bottom-up method the fault tree was investigated
‘in portions’, i e. building a BDD for the left-most gate input was finished and
simplifications applied before the investigation of other inputs In the top-down
technique the whole set of inputs for the top event was connected and then ev-
ery gate node was replaced, still trailing the rest of the structure until the last
gate node was replaced Therefore, for the further analysis the top-down traverse
approach was discarded Also, eight ordering schemes for selecting basic events
were assigned and analysed together with the ‘order as hsted’ scheme, where basic

events were put 1n a BDD according to the order that they appeared in a fault tree

The bottom-up approach was investigated using three BDD selection schemes,
i.e. three different ways that BDDs representing gate inputs of a parent gate can
be connected In the first trial, basic events were ordered according to the one out
of the 8 ordering schemes or ‘order as listed’. BDDs were selected as listed,ie a
BDD which represented the first input of a gate i a hist of inputs was chosen to
be the main BDD In the second trial the ordering schemes were used not only to
order basic events but also to chose the order that BDDs were considered 1n the
connection process The priority was given to the BDD whose top event was the
highest in the ordering scheme. Finally, in the third trial BDDs were merged ac-
cording to the number of points at which the BDDs were combined. The ordering
schemes were applied for the selection of basic events but not for the selection of
BDDs The comparison of the three techniques was performed using the example
fault tree hbrary with different complexity of fault trees.

The ordenng schemes were ranked using the three ranking methods - the to-
tal quantity ranking, the highest scheme ranking and the added scheme ranking
Firstly, the sum of each characteristic measure was calculated over the whole set of
test fault trees, for example, the time taken to build BDDs for the whole set of fault
trees was obtained Secondly, the number of times that each scheme produced the
highest (best) ranking was assessed. Finally, the average ranking of each scheme
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across the set of fault trees was considered These measures gave an indication of

the overall performance of the ordering scheme The ordering schemes were ranked
for all the efficiency measures according to their performance on small fault trees,
‘large’ fault trees and the whole set of fault trees This was done 1n order to be
able to 1dentify the ‘optimum’ ordering scheme for every method 1n each complex-

ity category if one exists.

The third tnal of the bottom-up strategy approach gave the best result. The
total number of nodes 1n BDDs using the third trial was smaller than the total
number of BDDs from the first tnal or the second trial. The total processing time
was shorter for the third trial than for the first or the second tral using different
ordering schemes The third trial that uses the selection of BDDs according to the
number of connection points available and the selection of basic events according
to one of the mne ordering schemes, was the most efficient method out of the all

proposed bottom-up approaches.

The Component Connection Method could not convert some fault trees to BDDs
1n reasonable times, whereas the ite technique was giving good results. The main
disadvantage of the method was identified The strongest property of the ite tech-
nique 1s the sub-node sharing method, which is the property that the Component
Connection Method lacks The Component Connection Method produced sigmfi-
cantly bigger BDDs than the ite method. This approach had a high demand for
memory space since the identical parts in the BDD structure were repeated but not
shared. Therefore, the sub-node sharing was introduced 1n the proposed method
This property was introduced while combining two gates, 1 e all available branches
would point to the same structure, instead of making a separate copy for each of
them This rule has increased the efficiency of the techmque However, since after
the connection process the sumplifications were applied if repeated events appeared
1n the structure, there were some limitations on the described rule. Therefore,
overall the Component Connection Method could not give as good efliciency as the

ite method.

Finally, the Hybrid method was proposed that combined the best features of the
two construction methods of BDDs, the ite method and the Component Con-
nection Method. The new method incorporated the most efficient parts of both
algorithms By using the gate constructs for basic events and branches without
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repeated events BDDs were immediately formed without any of the processing

required by the ite method For the rest of the fault tree the sub-node sharing
feature of the ite method was employed which provided a more efficient repre-
sentation of the logic function. The results of the Hybrid method that combined
the two techniques were comparable with the ite method, because an improve-
ment, albeit slight, in all efficiency measures was observed. Two types of the
Hybrid method were proposed - the Basic Hybrid method and the Advanced Hy-
brid method While comparing the two types of the Hybrid method, the Advanced
Hybrid method, which allowed the node swap, gave a slightly better performance
than the Basic Hybrid method according to the number of nodes but not according

to the processing time.

Analysing the ranking of the ordering schemes it was clear that the two top-down
weighted schemes, (5) and (6), were favourite 1n many cases The two modified
depth-first schemes, (2) and (3), performed poorly for the majority of examples
As 1t was expected, some orderings performed better on certain fault trees. How-
ever, there was a tendency that the weighted ordering schemes (5-8), that order
events according to their importance in the fault tree, performed better than the
neighbourhood ordering schemes (1-4), that order events according to their posi-
tion 1n the fault tree Also, choosing any of the proposed ordering schemes was
better than using ‘ordered as listed’ method. Therefore, an ordered approach for
the Component Connection Method was advisable even when 1t was not required.
This was due to the fact that the ordering schemes brought the repeated events

‘closer’ and there were fewer parts in 2 BDD that were repeated

9.1.3 Qualitative Analysis of Non-coherent Systems

Qualtative analysis using BDDs was expanded on non-coherent systems, because
the BDD method 1s more efficient and accurate than conventional FTA methods.
Every fault tree is converted to a BDD from which exact quantitative analysis 18
performed. However, it 1s not possible to identify the prune implicant sets directly
from the BDD In non-coherent fault trees components can be failure or/and repair
relevant, and it is impossible to distinguish between the two cases from the BDD
while performing the qualitative analysis. Therefore, alternative methods are re-

quired.
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A new Ternary Decision Diagram Method has been proposed mn this work A
TDD has three branches leaving every node. It encodes all prime implicant sets,
since the consensus branch for every node is calculated by the conjunction of the
1 and the 0 branches for every node. The TDD is non-minimal, therefore, the
minimisation process needs to be performed in order to be able to obtain prime
implicant sets The TDD can be used for the quantitative analysis if required. The
efficiency of the new approach was analysed comparing it with the three established
methods for the analysis of non-coherent fault trees, identifying the advantages and
disadvantages of the different techniques, while testing them on a range of fault

trees.

In 1998 Rauzy and Dutuit developed a techmque for computing prime implicant
sets using the Meta-products BDD. The produced Meta-products BDD 1s min-
imised, therefore, prime implicant sets can be obtained without the minimisation
operation However, using this method 1t 1s necessary to compute two BDDs to
perform the qualitative analysis Also, all components are described by two vari-
ables. While converting example fault trees to BDDs the size of the structure and

the processing time increased unavoidably

The second established method is called the Zero-suppressed BDD method The
conception of a ZBDD was introduced by Minato {34] and later it was accommo-
dated by Rauzy [33] for a compact representation to express prime implicant sets.
Like in the Meta-products BDD method, the technique involves computing an ad-
ditional BDD, where nodes are labelled with failed and/or working states of basic
events. Then prime implicant sets are decomposed according to the presence of a
given state of a basic event. The resulting ZBDD 1s 1n 1ts minimal form and prime
implicant sets can be obtained ZBDDs automatically suppress basic events that
do not appear 1n prime implicant sets. It is very efficient when calculating sets with
basic events that are far apart in the variable ordering scheme. The ZBDD method
resulted in an efficient process, where all prime implicant sets were described by a
compact and easy handling structure The efficiency of the ZBDD method was very
close to the performance of the TDD method in both measurements This made the

two methods most suitable for the analysis of the non-coherent example fault trees

The Labelled Binary Decision Diagram (L-BDD) was developed by Contini 1n [35],
where every basic event 1s labelled according to its type. The additional infor-
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mation about the occurrence of every basic event is considered at an early stage
of the algorithm. An L-BDD has two branches, therefore, 1t does not provide all
prime implicant sets. The L-BDD obtained from the fault tree is simplified and
then the determination of prime implicant sets is performed, where the rules of the
calculation depend on the type of a basic event. The 1dea of the L-BDD method is
similar to the TDD method, i.e. the conjunction of the 1 branch and the 0 branch
is only carried out for nodes that represent dual state basic events However, there
are some differences that make the L-BDD method perform less efficiently than
the TDD method. In the L-BDD method the number of basic events is increased
by introducing three different types of basic events according to their occurrence
Also, some extra connection rules are used in the conversion process and in the
calculation of prime implicant sets While converting example fault trees, the L-
BDD performed better than the Meta-products BDD method, but not as well as
the TDD method or the ZBDD method, which provided efficient methods for the
caleulation of prime implicant sets For ‘large’ fault trees the difference in efficiency

between the techniques was larger than for small fault trees.

In summary, a companson of the four methods revealed that the TDD method
and the ZBDD method performed well for both measurements, 1e the number
of nodes and the conversion time. The TDD method was slightly faster than the
ZBDD method. This was because of the fact that one structure {a TDD) was
required 1n this method, which presented a SFBDD as well as 1t was suitable for
the qualitative analysis In the ZBDD method a SFBDD was constructed and then
an additional ZBDD was bult that resulted in a longer conversion process How-
ever, the ZBDD structure was minimal, therefore the number of nodes was smaller
than 1n the TDD method, where each TDD was mimmised before obtaining prime
mmplicant sets Both methods gave close results and provided the efficient means

for the analysis of non-coherent fault trees

The Advanced Hybrid method was also introduced for non-coherent systems One
of the best chosen methods, the ZBDD method, was combined with the Advanced
Hybrid method. The SFBDD, that was used for the quantitative analysis and the
construction of the background for the ZBDD, was built using the Hybrid method,
i e. the combination of the ite techmque and the Component Connection Method
The overall result was slightly better than the result obtained using the ite tech-
nique Therefore, the Advanced Hybrid method in a non-coherent case provided

234




an efficient technique for converting fault trees to BDDs.

The eight ordering schemes were ranked for the four conversion methods. Using
the example fault tree hbrary provided the dynamic top-down weighted scheme
(6) performed well for all the methods and both measurements The depth-first,
with number of leaves scheme {4) was also ranked highly. The modified top-down
scheme (1) gave average or poor results, especially according to the number of
nodes The two depth-first schemes, (2) and (3), also performed poorly Sum-
marising the ranking, the weighted ordering schemes, (5)-(8), performed better
than the neighbourhood ordering schemes, (1}-(4). Those results are based on ex-
ample fault trees For a different set of examples the ordering schemes will perform

differently, however, the main efficiency pattern should be the same

9.1.4 Application of Proposed Methods in Phased Mission
Analysis

Many types of system operate for missions that are made up of several phases
FTA can be used as a means for analysing the reliabihity of non-repairable sys-
tems that undergo phased missions The required results are the system failure
modes and failure probability of each phase, followed by the total mission unreha-
bility. The complexaty of fault trees might make the analysis impossible, therefore,
some alternative methods were incorporated in the analysis process. The accurate
assessment of mission unreliability for systems with non-repairable components
operating over a sequence of phases can be performed using non-coherent fault
tree structures Therefore, at the start non-coherent fault trees representing phase
failures were simplified. Then the BDD method was employed to calculate the un-
reliability of each phase. New rules for expressing disjoint path sets and calculation
of phase failure probability were considered This method allowed a more efficient

and accurate Phased Mission Analysis.

9.2 Conclusions

e The BDD method can be used to perform the efficient qualitative analysis
and accurate quantitative analysis of system rehabihty. When analysing large
industrial systems, fault trees can be simplified and modularised prior to

the conversion to BDDs. Then during the qualitative analysis modular and
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complex events in mimmal cut sets need to be extracted so that system failure
combinations could be analysed 1n terms of basic events. An algorithm was
presented 1n order to able to obtain minimal cut sets in terms of the original

components of the system

e An alternative method to the ite technique was developed for converting
fanlt trees to BDDs, which involves computing the BDDs in the Component
Connection manner Whilst this method has some advantages over the con-
ventional ite technique, only the Hybrid method, that combines the efficiency

of the two conversion techniques, gives comparable results.

e A new approach, the Ternary Decision Diagram method, has been proposed
and developed for the conversion and analysis of non-coherent fault trees. Its
efficiency was analysed comparing 1t with the established methods. The TDD
method and the ZBDD method were 1dentified to be efficient for calculating
prime implicant sets of non-coherent fault trees. Application of the Hybrid
method provided a good extension and additional efficiency in the qualitative

analysis of non-coherent systems

¢ The simplification of phase failure fault trees and the apphcation of the BDD
method for obtaining mission failure probability is an efficient application of

the proposed methods in the Phased Mission Analysis

9.3 Future Work

9.3.1 Component Connection Method

The efficiency of the Component Connection Method 1s not comparable with the
efficiency of the ite techmque. Only the Hybrid method, that combines the Com-
ponent Connection Method and the ite method, gives better results. However, the
improvement in the efficiency is marginal. Therefore, more work could be done
on researching new ways that BDDs are considered in the connection process, or
new ways of connecting nodes in the BDD structure. Also, trying to increase the
. sub-node sharing capacity and improving the algorithm proposed 1n the Compo-
nent Connection Method, the sub-node sharmg could be applied to all the available

nodes and then the ‘unsharing’ process could be performed if needed.

For the currently proposed Component Connection Method there were some fault
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trees where calcula