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Abstract 

The aim of th1s thesis is to develop the Binary DeciSIOn Diagram method for the 

analysis of coherent and non-coherent fault trees. At present the weii-known ite 

techmque for converting fault trees to BDDs IS used Difficulties appear when the 

ordering scheme for bas1c events needs to be chosen, because 1t can have a crucial 

effect on the size of a BDD An alternative method for constructmg BDDs from 

fault trees wh1ch addresses these difficulties has been proposed 

The Binary DecisiOn Dmgram method provides an accurate and efficient tool for 

analysing coherent and non-coherent fault trees. The method IS used for the qual­

itative and quantitative analyses and it is a lot faster and more efficient than the 

conventional techniques of Fault Tree Analysis The Simplification techmques of 

fault trees prior to the BDD conversion have been applied and the method for the 

qualitative analysis of BDDs for coherent and non-coherent fault trees has been 

developed 

A new method for the qualitative analysis of non-coherent fault trees has been 

proposed An analysis of the efficiency has been carried out, comparing the pro­

posed method with the other existmg methods for calculating pnme implicant sets. 

The main advantages and di~advantages of the methods have been identified. 

The combined method of fault tree Simplification and the BDD approach has been 

applied to Phased Misswns This application contains coherent and non-coherent 

fault trees Methods to perform thmr simplification, converswn to BDDs, minimal 

cut sets/prime implicant sets calculatiOn, and the m1sswn unreliab1lity evaluation 

have been produced 
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Chapter 1 

Introduction 

1.1 Risk and Reliability Assessment 

Reliability engmeering is a rapidly developmg field and is becoming mcreasingly 

important in various industnes and technologies It provides those theoretical and 

practical tools wh1ch can specify, design and predict the probability and capabil­

Ity of components and systems to perform their required functwns for the desired 

period w1thout failure. 

Reliability assessment techniques enable the calculation of the probability or fre­

quency of system failure to be performed There are several measures that can be 

used to quantify system failure, mcluding system reliab1lity, availability and fa1lure 

intensity. 

The relzabzlzty of a system, R(t), IS defined as the probab1lity that the system 

operates w1thout fa1lure for a spec1fied period of time under stated conditwns 

The unrelzabzlzty of a system, F(t), IS defined as the probability that the system 

has failed at least once in the mterval [0, t) g1ven that it was working at t = 0 

Smce both functwns are probabilistic. 

R(t) + F(t) = 1. (1 1) 

The system avazlabzlzty, A(t), is defined as the fractwn of total time that the system 

is able to perform Its required function. The unavazlabzlzty, Q(t), is defined as the 

fraction of total time that the system has fmled and is unable to perform its task 

Again, the relatiOnship between the two functions IS defined as: 

A(t) + Q(t) = 1. (1 2) 
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The uncondztzonal Jazlure zntenszty, w(t), IS the rate that a system fails per umt 

time at time t gtven that it was workmg at timet = 0. The rate that a system fails 

per unit ttme at ttme t given that tt was working at ttme t and at time t = 0 is 

defined as the condztzonal fazlure rate, >.(t). The dtfference between w(t) and >.(t) 

is that w(t) is based on the whole populatwn, whereas >.(t) considers only those 

components that are working at ttme t. 

For major hazard assessments risk ts generally defined as the product of the con­

sequences of a particular incident, C, and the probabthty over a time penod or 

frequency of tts occurrence, P 

R=C·P (1.3) 

The risk can be reduced by mimmising the consequences of the mctdent (C) or by 

reducing the probability or frequency of its occurrence (P) Rehabtlity assessment 

techmques evaluatmg the frequencies of incidents have been developed and the 

most widely used is Fault Tree Analysis, whtch is considered later in this chapter 

After risks are tdentified and evaluated 1t must be judged tf they are 'accept­

able' or whether the risk is too high and some modifications to the design of the 

system should be made m order to improve the system rehabthty. Although nsks 

can be decreased by spendmg money 1t is not posstble to avoid them enttrely. The 

dtfficulty faced by safety assessors is to convince regulators that the safety of a 

system ts at an acceptable level 

1.2 Fault Tree Analysis 

Fault Tree Analysts was developed by H A.Watson in the early 1960's. This is 

a deductive procedure for determmmg the causes of a particular system failure 

mode and the probability and frequency wtth which tt could occur. The fault tree 

dtagram represents the combmations of component fatlures and human errors that 

could combme to cause system failure. 'Top event' describes the system failure 

mode and branches below this event describe its causes. The events are redefined 

m terms of their causes, until each branch ends with a basic event 

Kinetic Tree Theory, the technique for performing the quantttative analysis of 

fault trees, was presented in the early 1970's by Vesely [1]. Various system rehabil-
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ity parameters, such as probability of top event ex1stence, frequency of top event 

occurrence and component importance measures can be calculated They are used 

to determme whether the risk of system fa1lure JS sufficiently small and therefore 

whether or not the system meets the required safety standards 

For large fault trees the analys1s can become computatwnally intensive and can 

reqmre the use of approximatwns Th1s IS the disadvantage of the conventional 

method wh1ch leads to maccuracies in the calculations Th1s issue has led to the de­

velopment of a new method for analysing fault trees, known as the Binary Decision 

D1agram techmque 

1.3 Binary Decision Diagrams 

The Bmary Decision Diagram (BDD) technique for Fault Tree Analysis was pre­

sented by Rauzy [2]. This method converts a fault tree to a BDD, wh1ch encodes 

the log1c function of the fault tree. Conventwnal FTA techniques can be computa­

twnally mtens1ve and sometimes inaccurate. The BDD method is an accurate and 

efficwnt method for system rehabihty assessment. F1rstly, the BDD method pro­

vides an accurate quantification process because no approximations are required. 

Secondly the mmimal cut sets are not reqmred for the quantification process, there­

fore, it makes the BDD method efficient The quahtat1ve analysis can be performed 

and minimal cut sets obtained if reqmred. 

The s1ze of the BDD depends upon the order m wh1ch the bas1c events are con­

sidered during the construction process A problem can occur 1f the choice of the 

ordermg scheme results in a t1me-consuming constructiOn process and a large BDD. 

No one ordering scheme w1ll produce the smallest poss1ble BDD from every fault 

tree 

When NOT logic IS mcluded m the fault tree structure 1t becomes non-coherent 

and 1ts analysis usmg the conventional techniques to produce prime implicant sets 

becomes even more problematic. BDDs offer advantages over the conventwnal 

methods for th1s class of fault trees. However, alternative techmques for convert­

ing fault trees to BDDs can improve the efficiency of the approach still further 
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1.4 Research Objectives 

The aim of this research is to improve the techmques which produce BDDs from 

fault trees and conduct the analysis. Four aspects are taken into consideratwn 

In the previous research fault trees were reduced (applymg reduction and mod­

ulansation) pnor to BDD conversiOn This can be used m fault tree quantifica­

tion. The qualitative analysis usmg BDDs is extended to investigate the use of 

these reduced trees The goal of this aspect is to perform the full BDD analys1s 

and to obtain m1mmal cut sets m terms of basic events from the reduced fault trees 

The second aspect explores a new fault tree to BDD conversion technique, as 

an alternative method to the well-known ite technique. The new method is based 

on connectmg previously generated BDD sectwns Th1s technique is presented for 

the analys1s of coherent fault trees D1fferent efficiency measures are used to mves­

tJgate the optimum connection technique. 

The th1rd aspect proposes a new method for converting non-coherent fault trees 

to BDDs The new approach ut1hses a structure where each node contains three 

branches. This part of research contams the comparison of the proposed tech­

nique and the established constructwn methods of BDDs and the mechamsms of 

calculating pnme imphcant sets It also mcorporates some of the methods of the 

coherent fault trees wh1le seekmg for a better efficiency. 

The final part of the research covers some applications of the presented methods 

m system reliability assessment for Phased M1ssions. 
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Chapter 2 

Fault Tree Analysis 

2.1 Introduction 

Fault Tree Analys1s is the most widely used tool in safety and reliability assess­

ment. It IS a deductive technique for analysing the causal relatwnships between 

component failures and system fa1lure The fault tree 1tself prov1des a v1sual rep­

resentation of the structure of the system by expressing a particular system failure 

mode in terms of component fa1lures and human errors. It produces a complete 

description of the causes of system fmlure, wh1ch is important during the des1gn 

stages of a system, as it allows weak areas to be identJfied and correction by re­

design. 

2.2 Construction of Fault Tree 

The system failure mode to be considered is termed the top event and the fault 

tree IS developed m branches below this event showmg its causes In th1s way 

events represented m the tree are continually redefined m terms of lower-resolution 

events [3]. This development process is termmated when component failure events, 

termed bas1c events, are encountered. These bas1c events can be component fail­

ures or human errors Each fault tree cons1ders only one of the many poss1ble 

system fa1lure modes and therefore more than one fault tree may be constructed 

durmg the assessment of any system For example, a typ1cal top event may be 

a hazardous event such as explosiOn or safety system unavailable, a bas1c event 

represents component failures such as pump failure to start or human errors such 

as operator failure to respond. 
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The fault tree diagram contams two basic elements, gates and events. Events 

are categonsed as either intermedmte or basic Intermed1ate events, wh1ch can be 

further developed m terms of other events, are represented by rectangles m the 

tree, bas1c events cannot be developed any further and are represented by Circles 

These symbols are shown in Table 2 1. Gates allow or mh1b1t the passage of fault 

Event symbol Meanmg of symbol 

6 Intermed~ate event 
further developed by 

agate 

0 Bas1c event 

Table 2 1 Event symbols 

log~c up the tree and show the relationships between the events needed for the oc­

currence of a h1gher event. The three fundamental types of gates used in fault trees 

are the 'AND' gate, 'OR' gate and 'NOT' gate. These gates combine events in the 

same way as the Boolcan operations of 'intersection', 'union' and 'complementa­

tion' Another frequently used gate IS the k/n vote gate. This allows the flow of 

logic through the tree 1f at least k out of n inputs occur. The symbols for the gates 

and their causal relations are shown m Table 2 2. A system whose fa1lure modes 

are expressed only m terms of component fmlures 1s known as a 'coherent' system 

A coherent fault tree w1ll contam only 'AND' and 'OR' logic. If the failure modes 

of a system are expressed m terms of both component failures and successes it is 

referred to as a 'non-coherent' system. In addition to the gates used in coherent 

fault trees non-coherent fault trees also contam 'NOT' logic. The work within this 

thesis will cons1der both types of fault trees 

Once a fault tree has been constructed for a system two types of analysis can 

performed. qualitative and quantitative. 

• Qualitative analysis mvolves obtaining the smallest sets of events that com­

bine to cause system failure. In coherent fault trees these are called mzmmal 

cut sets; in non-coherent trees they are called przme zmphcants 

• Quantitative analys1s contams calculating the system fmlure parameters (the 

top event probability and frequency) and event importance measures 
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Gate symbol Gate name Causal relatiOn 

0 Output event occurs 

AND gate 1f all mput events 
occur 

sunultaneously 

Q Output event occurs 
OR gate 1f at least one of the 

m put events occurs 

0 Output event occurs 
kin vote gate 1f at least k-out-of-n 

mput events occur 
nmputs 

0 Output event occurs 
Exclusive OR 1f only one of the 

mput events occur 

* 
Output event occurs 

NOT gate 1f the mput event 
does not occur 

Table 2 2: Common gate types and corresponding symbols 

2.3 Qualitative Analysis 

Each unique way that system failure can occur 1s a system fmlure mode and will 

mvolve the fa1lure of individual components or combinations of components. To 

analyse a system and to eliminate the most likely causes of failure first reqmres 

that each failure mode is identified. One way to identify the system fa1lure modes 

1s to carry out a logical analysis on the system fault tree. The system fmlure modes 

are defined by the concepts of cut sets or m1mmal cut sets wh1ch are defined below 

A cut set is a collection of basiC events such that if they all occur the 

top event also occurs, i e. 1f all components fail the system also fails. 

For industrial engmeering systems there is generally a very large number of cut 

sets each of wh1ch can contain many component failure events. However, only lists 

of component failure modes are interesting, which are both necessary and sufficient 

to produce system failure For example, {a, b, c} may be a cut set and the failure of 

these three components w1ll guarantee system failure But if the failure of a and b 

alone produce system fa1lure this means that the state of component c IS Irrelevant 

and the system will fail whether c fails or not This leads to the definition of a 
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mmimal cut set: 

A mmimal cut set IS the smallest combination of bas1c events, such that 

if any of the basic events is removed from the set the top event w1ll not 

occur, 1 e. if any of the components in the set works the system will 

not fail. 

Two fault trees drawn using different approaches are logically equivalent 1f they 

produce identical m1mmal cut sets. The order of a minimal cut set is the number 

of components w1thm the set. The first-order m1mmal cut sets represent single 

fa1lures wh1ch cause the top event Two-component minimal cut sets (second or­

der) represent double fmlures wh1ch together will cause the top event to occur In 

general the lower-order cut sets contnbute most to system fmlure and 1t IS w1th the 

ehmmation of these that effort should be concentrated m order to improve system 

performance. 

If 'NOT' logic is used or implied the combmations of basic events that cause the 

top event are called implicants. M1mmal sets of 1mphcants are called prime impli­

cants 

The minimal cut set expressiOn for the top event (Top) can be wntten m the 

form 

(2 1) 

where K., ~ = 1, ... , N are the mmimal cut sets ( + represents logical 'OR') Each 

mimmal cut set consists of a combination of component failures and hence the 

general k-component cut set can be expressed as: 

(2.2) 

where x., ~ = 1, ... , k are bas1c component failures on the tree ( · represents log1cal 

'AND') In other words, the top event must be transformed to a sum-of-products 

form 

To determine the minimal cut sets of a fault tree either a top-down or a bottom-up 

approach can be used, dependmg on which end of the tree 1s used to 1mtJate the 

expansiOn process The top-down procedure is descnbed below and illustrated w1th 

the use of an example. The process starts w1th the top event, which IS expanded 
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by substitutmg in the Boolean events appearmg lower down m the tree and sim­

phfymg until the remaming expressiOn has only basic component failures. Usually 

when analysing real fault trees which contain large numbers of repeated events the 

expressiOn obtained may not be minimal. Redundancies must be removed from the 

expression using the laws of Boolean algebra to allow the extractiOn of the mimmal 

cut sets The laws are shown in the next sectiOn. 

2.3.1 Boolean Laws of Algebra 

1. Commutative Laws: 

2. Associative Laws· 

3. Distributive Laws: 

4. Identities. 

5. Idempotent Laws: 

A+B - B+A 

A·B - B·A 

(A+B)+C 

(A· B) C 

A+ (B+C) 

A· (B· C) 

A+ (B. C) - (A+ B). (A+ C) 

A. (B +C) - (A. B) + (A. C) 

A+O 

A·1 

A A·O - 0 

A A+1 1 

(2 3) 

(2.4) 

(2.5) 

(2 6) 

(2.7) 

(2 8) 

(2.9) 

A+ A - A (removes repeated cut sets) (2 10) 

A· A - A (removes repeated events Withm each cut set) (2 11) 

6. AbsorptiOn Laws: 

A+A·B 

A (A+ B) 

A (removes non-mimmal cut sets) 

A 
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7. Complementation· 

A - 1-A 

A·A - 0 

(A) A 

8 De Morgan's Laws 

(A+B) - A·B 

(A· B) A+B 

2.3.2 Example - Obtaining the Minimal Cut Sets 

(2 14) 

(2.15) 

(2 16) 

(2.17) 

(2.18) 

The top-down approach for calculating the mmimal cut sets 1s demonstrated using 

the example fault tree shown in Figure 2 1. Startmg w1th the top event (Top) it 1s 

F1gure 2 1 Example fault tree 

an 'AND' gate w1th three inputs G1, a and G2. It can therefore be expressed as a 

product of these inputs: 

Top= G1 ·a· G2. (2 19) 

As G1 IS an 'OR' gate, made up of three events, a, b and c, it can be written as: 

G1 = a+b+c (2 20) 

Substituting th1s into Top g1ves: 

Top= (a+ b +c)· a· G2 (2.21) 
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Similarly, G2 can be written as the 'sum' of b and d, so Top becomes 

Top= (a+ b +c)· a· (b +d) (2 22) 

The expresswn now contams only basic events, so is expanded to give 

Top - a · a · b + a · a d +a · b · b +a· b · d +a c · b + a · c · d (2 23) 

a· b +a· d +a· b +a· b · d+a · c· b+ a· c· d 

(as a· a= a and b·b= b), 

which gives the cut sets of the fault tree. These are simply the cut sets expressed m 

sum-of-products form. Redundancies can then be removed using the 1dempotent 

and absorptiOn laws: 

Top = a · b + a· d (2 24) 

This is the minimal disjunctive form of the logic equatwn each term of which is a 

m1mmal cut set. For this fault tree there are two m1mmal cut sets, both of order 

two (i e. they each contam two basic events). These are {a, b} and {a, d}. 

A complex system may produce thousands of minimal cut sets. Although the 

algonthm IS not complex the process can be very time-consuming. For this reason 

approximatiOns are often Implemented which removes the cut sets above a certain 

order (for example, above order three) durmg the calculatiOn process. Th1s approx­

imation reduces the number of computations and the time taken for the analysis 

However, this obvwusly leads to a reduction m the accuracy of the m1mmal cut 

sets and therefore in the resulting quantitative analysis for wh1ch mimmal cut sets 

are reqmred. 

2.4 Quantitative Analysis 

Quantitative analysis of the fault tree allows the calculation of a number of param­

eters which are used to assess the system The top event probabrlity and frequency 

are used together wrth the expected number of occurrences of the top event and 

event importance measures to gain a full understanding of the system. 

The methods for fault tree quantificatiOn are known as Kinetrc Tree Theory [1] 
whrch rs a time dependent methodology for system evaluatwn This techmque 

forms the basis of the approach used m the majority of commercial Fault Tree 

Analysis packages 
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2.4.1 Structure Functions 

The structure functwn is a binary functiOn taking the following values 

rf>(x) = { 1 1f the system is fa1led, 

0 1f the system is workmg, 
(2.25) 

where x = (xi> x2 , • , Xn) is an indicator vector showing the status (workmg or 

failed) of each component 

For each system component, J, the bmary indicator vanable, x3 , is presented 

{ 
1 1f component J is fa1led, 

XJ = 
0 1f component J is workmg. 

(2 26) 

The structure funct1on for the top event of a fault tree shows the system state m 

relation to its components and is g1ven by: 

N 

rf>(x) = 1- IT (1- p,(x)), (2.27) 
~=1 

where p,(x) is the bmary indicator functwn for each mimmal cut set K., z = 1 .N: 

( ) IT h h 
{ 

1 if cut set K, eXJsts, 
p, x = x3 sue t at p, = 

JEK, 0 if cut set K, does not ex1st 
(2 28) 

For the fault tree shown m Figure 2 1, wh1ch has minimal cut sets K 1 ={a, b} and 

K2 = {a, d}, the structure function is given by: 

(2 29) 

The probab1lity of the top event is given by the expected value of the structure 

function: 

Q(t) = E[rf>(x)J (2 30) 

If each minimal cut set is mdependent (i e. no event appears m more than one cut 

set) then 1t is also true that: 

E[rf>(x)] = r/>[E(x)J. (2.31) 

Obtaimng the expected value of the structure function for independent m1mmal 

cut sets would Simply be a matter of substitutmg the probability of fa1lure of each 

component mto the structure function and calculatmg the result. However, the 
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mimmal cut sets are not usually independent, and so in this case a full expansion 

of the structure functwn and the reduction of the indicator variables (i.e. x, = x~) 
must be undertaken. 

Applymg this to the structure function for the example fault tree in Equation 2 29, 

gives: 

<P(x) (2.32) 

using expanswn and reduction The probab1hty of the top event IS then g1ven by 

the expected value of th1s structure functwn. 

Q(t) = P(a) · P(d) + P(a) · P(b)- P(a) · P(b) · P(d) (2.33) 

A more effic1ent method of implementing this uses Shannon's Theorem. 

2.4.2 Shannon's Theorem 

Shannon's Theorem can be expressed as follows A Boolean function f(x) can be 

wntten as: 

f(x) = x, · !(1., x) + x, · f(O., x), 

where 

x, 1- x., 

!(1., x) and f(O., x) are known as the res1dues of f(x) w1th respect to x, 

(2.34) 

(2 35) 

(2 36) 

(2.37) 

The structure function is pivoted around the most repeated variable using Shan­

non's expansion. This 1s contmued until no repeated vanables exist in the residues 

Shannon's theorem can be apphed to the structure function g1ven m Equation 2.29. 

Pivoting around the repeated variable, a, gives 

<P(x) Xa[1 - (1- Xb)(1 - Xd)] + (1 - Xa)[O] 

Xa(1- (1- Xb)(1- Xd)) 
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The probability of the top event is therefore g1ven by 

Q(t) - E(rp(x)) (2.39) 

- P(a)(1- (1- P(b))(1- P(d))). 

Expanding th1s gives exactly the same result shown in Equatwn 2 33. 

2.4.3 General Method for the Calculation of the Top Event 

Probability 

Th1s general method of calculating the top event probability (i e. the system un­

availability) uses the minimal cut sets obtained from the qualitative analysis [4]. 

This method can be used whether or not the fault tree contams repeated events 

The top event occurs 1f at least one mmimal cut set exists, therefore for a fault 

tree that has N m1mmal cut sets, K., Q(t) is g1ven by: 

N 

Q(t) = P(U K,). (2 40) 
t=l 

Expandmg g1ves. 

N N •-1 

Q(t) LP(K,)- LLP(K,nK3 )+ (2.41) 
t=l t=2 J=l 

where P(K,) IS the probability of the eXIstence of m1mmal cut set z. 

This expanswn IS known as the mcluswn-exclusion expansiOn and generates the 

exact probability of the top event existence Consider the example fault tree 

shown m Figure 2.1, wh1ch has mimmal cut sets K 1 = {a,b} and K 2 = {a,d} 

Equation 2 41 g1ves the top event probability as: 

Q(t) - P(K1) + P(K2)- P(K1 n K2) (2 42) 

= P(a) · P(b) + P(a) P(d)- P(a). P(b). P(d), 

which is ident1cal to the expression calculated m Equation 2.33. 

It IS usual to have fault trees for engineermg systems which result m tens of thou­

sands of mimmal cut sets Therefore it is impractical m these Situations to calculate 

all terms in the complete expanswn. For th1s reason the calculation 1s simplified 

by the use of approximations 
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2.4.3.1 Upper and lower bounds for system unavailability 

Truncation of the senes m Equation 2 41 at an even-numbered term gives a lower 

bound for the top event probability, truncatiOn at an odd-numbered term gives an 

upper bound for the top event probability 

N N t-! N 

LP(K,)- LLP(K, nK1 ):::; Q(t):::; LP(K,). (2.43) 
~=1 t=2 J=l t=l 

The upper bound IS known as the Rare Event Approximation, PRE(Top), as It IS 

accurate 1f the component failure events are rare 

N 

PRE(Top) = L P(K,) (2 44) 
t=l 

2.4.3.2 Minimal cut set upper bound 

A more accurate upper bound is Minimal Cut Set Upper Bound, PMcsus(Top). 

Th1s IS derived as follows 

P(system failure) 

Also, 

P(at least one m1mmal cut set exists) 

- 1- P(no m1mmal cut sets exist). 

N 

(2 45) 

P(no mimmal cut sets exist)::::: IT P(mmimal cut set z does not exist). (2.46) 
t=l 

Equality exists when no event occurs in more than one cut set. 

Substituting Equation 2 46 mto Equation 2 45 g1ves 

N 

P(system failure) :::; 1- IT ?(minimal cut set z does not exist), (2 47) 
t=l 

which gives the Minimal Cut Set Upper Bound 

N 

PMcsus(Top) = 1- IT (1- P(K,)). (2 48) 
t=l 

It can be shown that 

N N 

Q(t) :::; 1- IT (1- P(K,)) :::; L P(K,). (2 49) 
t=l t=l 
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2.4.4 Top Event Frequency 

The top event frequency IS another system parameter that can be calculated -

this is useful for systems where unreliabihty IS an Important issue. The system 

unconditional failure intensity, Wsys(t), is defined as the expected number of times 

the top event occurs at time t, per umt time Therefore Wsys(t)dt is the expected 

number of times the top event occurs in t to t + dt For the top event to occur in 

the mterval [t, t + dt) none of the cut set failures can exist at time t, and then at 

least one of them must fail m time t to t + dt. This can be wntten as: 

N 

Wsys(t)dt = P(A U 0,), (2 50) 
t=l 

where· 

A is the event that no m1mmal cut sets exist at time t, 

u:l e, is the event that one or more mmimal cut sets occur in time [t, t + dt) 

As P(A) = 1 - P(A), the nght hand of EquatiOn 2.50 can be wntten· 

N N N 

P(A U e,) = P(U e,) - P(A U e,), (2 51) 
t=l t=l t=l 

where A is the event that at least one mimmal cut set exists at t. 

Therefore Wsys(t) becomes· 

N N 

Wsys(t)dt = P(U e,)- P(A u e,). (2.52) 
t=l t=l 

The first term on the right-hand s1de gives the contnbution from the occurrence of 

at least one m1mmal cut set. The second term gives the contribution of the m1mmal 

cut set occurrence while other mmimal cut sets already exist (1 e. the system is 

already failed) These terms are denoted by w~Vs(t)dt and w~V.(t)dt respectively to 

g1ve: 

(2.53) 

The terms on the nght of the above equation can be expanded usmg the inclusiOn­

exclusiOn prmCiple but as this is a computationally mtensive operatiOn, an approx­

imatiOn is required 
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2.4.4.1 Approximation for the system unconditional failure intensity 

If component failures are rare then mimmal cut set fmlures will also be rare events. 

The term wiV.(t), which requires m1mmal cut sets to ex1st and occur at the same 

t1me, would become negligible 1f component fa1lures are unlikely Therefore, an 

upper bound for Wsys(t) IS Simply: 

(2 54) 

As Wsys(t) can be expanded using the mclusion-excluswn pnnciple the series ex­

pansiOn is truncated after the first term (as for the top event probability) to give 

the Rare Event Approximation: 

N N 

Wsys(t)maxdt::::: L P(B,) ::=; L WK,(t)dt, (2.55) 
•=I k=l 

where 

WK, (t) is the unconditiOnal fa1lure intens1ty of mmimal cut set K, 

2.4.4.2 Expected number of system failures 

The expected number of system fmlures m timet, W(O, t), is given by the mtegral 

of the system unconditional fa1lure intensity m the mterval t: 

W(O,t)= lWsys(u)du (2 56) 

For a rehable system the expected number of system fa1lures is an upper bound 

for the system unrehab1hty, F(t) (i e. F(t) ::::: W(O, t)). 

2.4.5 Importance Measures 

A very useful piece of mformation which can be denved from a system rehab1hty 

assessment IS the importance measure for each component or minimal cut set. 

An importance analys1s is a sensitivity analys1s which identifies weak areas of the 

system and can be very valuable at the design stage For each component its 

importance s1gmfies the role that it plays m either causmg or contnbuting to the 

occurrence of the top event. In general a numerical value IS ass1gned to each basic 

event which allows it to be ranked accordmg to the extent of 1ts contnbution to 

the occurrence of the top event. Importance measures can be categonzed m two 

ways: determm1st1c and probabJhst1c 
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2.4.5.1 Deterministic measures 

Determimstic importance measures evaluate the importance of a component with­

out considering its probability to fa1!. One such measure IS Structural Measure of 

Importance It is given by· 

I _ number of cntical system states for component z 

' - total number of states for the ( n - 1) remaining components 
(2 57) 

A critical system state for component z is a state for wh1ch the failure of component 

z will cause the system to go from a workmg to a fa1led state. 

2.4.5.2 Probabilistic measures of system unavailability 

Probab1listic measures are generally of more use than deterministic measures m re­

liability problems as they take mto account the components' probability of fa1lure 

Bzrnbaum's Measure of Importance IS also known as the criticality functiOn which 

defines the probability that the system is m a cnt1cal system state for component 

z. There are two expressiOns which can be used to obtam the criticality function 

a) 
G,(q(t)) = Q(1., q(t))- Q(O., q(t)), (2 58) 

where 

Q( t) IS the probability that the system fmls, 

(1., q(t)) = (q~o ., q,_l> 1, q,+l>. , qn) component z failed, 

(0., q(t)) = (q~o ... , q,_l, 0, qt+l> , qn) component z is workmg. 

The above expresswn gives the probability that the system fails with component z 

failed minus the probability of the system fa1ling with component z workmg, which 

results in the probability that the system fa1ls only 1f component z fails. 

b) 8Q(t) 
G,(q(t)) = 8q,(t). (2 59) 

This is eqmvalent to Equatwn 2 58 as the probability functwn IS lmear m each 

q,(t) 

8Q(t) Q(1., q(t))- Q(O., q(t)) 
-

8q,(t) 1- 0 
(2 60) 

Th1s measure importance forms the basis for many importance measures. 
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In terms of Birnbaum's measure of component reliability importance, the expected 

number of system fa1lures can be calculated as. 

rt n 
W(O,t) = Jn LG,(q(t))w,(u)du, 

0 t=l 

(2 61) 

where w,(t) denotes the component unconditional fa1lure intens1ty and n denotes 

the total number of system components. 

Cntzcalzty Measure of Importance calculates the probability that the system IS 

in a cnt1cal state for component z and that z has failed Unlike Birnbaum's mea­

sure of Importance 1t also takes mto account the fa1lure probab11ity of component 

z 1tself· 

I _ G,(q(t))q,(t) 
'- Q(t) (2 62) 

Pussell- Vesely Measure of Importance calculates the probability that component z 

contnbutes to system fa1lure and IS defined as the probability of the union of the 

mmimal cut sets contaimng z, g1ven that the system has fa1led · 

I - P(UJI•EK, KJ) 
' - Q(t) (2.63) 

Th1s measure gives very s1milar importance rankings to those obtained usmg the 

cntlcality measure. 

Pussell- Vesely Measure of Mznzmal Cut Set Importance ranks the minimal cut sets 

in the order of their contnbutwn to the top event, rather than cons1dering the 

mdividual components. It is defined as the probab1lity of ex1stence of the cut set 

z, given that the system has failed 

P(K,) 
I,= Q(t) . 

2.5 Simplification of the Fault Tree Structure 

(2 64) 

Fault trees can be very large and the1r qualitative and quantitative analyses time­

consuming. Therefore two pre-processing techniques can be applied to the fault 

tree m order to obtain the smallest possible subtrees [5] The first stage of pre­

processmg is a reductiOn, techmque used m the Faunet code [6], winch restructures 

the fault tree to 1ts most conc1se form. Once th1s has been applied it is poss1ble to 
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simplify the analysis further by 1dentJfymg mdependent subtrees (modules) w1thin 

the fault tree that can be treated separately The Rauzy's algorithm [7] is an 

extremely efficient method of modulansation and forms the second stage of fault 

tree pre-processmg. This results m a set of independent fault trees each with the 

simplest possible structure, wh1ch together descnbe the onginal system 

2.5.1 Fault Tree Reduction 

The reduction technique reduces the fault tree to its minimal form so eliminating 

any 'noise' from the system without altermg the underlying logic 

2.5.1.1 Introduction 

Fault trees are rarely written m their most concise format and th1s can have a 

significant effect on the efficiency of the resultmg analysis The1r complexity can be 

reduced by applymg fault tree reduction techniques, wh1ch optimise the structure of 

the tree wh1lst retaining the underlymg logic One such technique is the reductwn 

approach, wh1ch IS applied in four stages 

2.5.1.1.1 Reduction technique 

This method of fault tree reduction cons1sts of four stages. 

1. Contraction 

Subsequent gates of the same type are contracted to form a smgle gate. This 

g1ves an alternatmg sequence of 'AND' gates and 'OR' gates throughout the 

tree 

2 FactorisatiOn 

Pairs of events that always occur together m the same gate type are 1denhfied. 

They are combmed to form a single complex event. 

3 Extraction 

The two structures shown in Figure 2 2 are 1dent1fied and replaced as shown 

4. Absorption 

The structures m the fault tree are identified that could be further s1m plified 

through the application of the absorptiOn and idem potent laws to the fault 

tree logic. If primary and secondary gates with an event in common are of 

a different type, the structure is simplified by removmg the whole secondary 
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gate and 1ts descendants. If pnmary and secondary gates are of the same type, 

the structure is simplified by deleting the occurrence of the event beneath 

the secondary gate. These cases are illustrated in Ftgure 2.3 

Ftgure 2.2: The extractiOn procedure 

Pnmary- 0 0 +- Pnmary fun>~ + 0 0 Pnm~y 
g~e ~ -

0 
gate gate ~ -

6
~ +-gate 

Secondary -£ Secondary -+£ 9 +-Secondary 
~ ~ ~ 

b 
a b a b 

Ftgure 2 3 The absorptiOn procedure 

The above four steps are repeated until no further changes are possible in the fault 

tree, resulting m a more compact representation of the system. 

2.5.1.2 Worked example of the reduction technique 

Thts technique wtll be applied to the example fault tree It IS shown m Ftgure 2 4 

together w1th its numerical form at the start of the reduction process 
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Figure 2.4· Example of fault tree 

2.5.1.2.1 Contraction 

The aim of the first stage is to ident1fy subsequent gates m the tree structure that 

have the same gate type ApplicatiOn of the contraction stage is implemented to 

the fault tree shown m F1gure 2.4. 

In this example gate 1003 appears as an mput to gate 1002 and they both are 

'AND' gates Gate 1003 only appears once m the fault tree data, so 1ts inputs are 

directed to gate 1002. Since gate 1004 IS an input to gate 1002 1t is not listed for 

the second t1me. Now gate 1001 appears as an input to gate 1002 and they are 

both 'AND' gates As gate 1001 only appears once in the fault tree data, its inputs 

are d1rected to gate 1002 The resultmg fault tree is shown in Figure 2.5. 

2.5.1.2.2 Factorisation 

The fault tree now has an alternating sequence of 'AND' and 'OR' gates and can 

be factonsed. The input events to each gate are considered one by one, lookmg for 

pairs that always occur together. Once it has been established that they do always 

occur together and under the same gate type, a complex event IS created, whJCh 

is numbered from 2000 upwards. The new complex event is recorded together 

w1th the gate type and the two events from which it was formed Applicatwn of 

factorisation to the fault tree shown m Figure 2.5 g1ves complex events listed m 

Table 2.3. The modified fault tree is shown in F1gure 2.6. 
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Figure 2.5: The fault tree after contraction 

Complex 
Gate value Event I Event2 

event 
2000 AND a b 
2001 AND 2000 d 
2002 AND 2001 e 

Table 2 3. Complex event data after factorisatiOn 

Figure 2.6: The fault tree after factorisation 
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2.5.1.2.3 Extraction 

The extractiOn process searches for the structures shown m Figure 2 2 If the pn­

mary gate has two or more gates as inputs (referred to as the secondary gates) 

then the gates are selected in pairs. Both secondary gates are then checked to see 

1f they are of the same type, but of a d1fferent type to the primary gate If so, the 

mputs to the secondary gates are checked to see 1f they have a gate or event in 

common If they do then extraction can take place. 

Before extraction can occur, however, there may be some necessary adjustments 

to be made to the data If the primary gate has more than two m puts then a new 

gate must be created which has the same gate type as the primary gate, but wh1ch 

has the primary gate and all its inputs, except the two secondary gates, as mputs. 

This restructures the fault tree into the form required for extractiOn by usmg an 

equivalent representation. Application of the extractwn procedure IS carried out 

on the fault tree shown in F1gure 2 6 

The only gate that has two or more gates as inputs IS top gate 1002, whose inputs 

are 1004 and 1005 These secondary gates are both of a different type to the pri­

mary gate, and have gate 1000 in common, which can be extracted. In order to 

get th1s tree into the reqmred form for extractiOn gate 1006 IS generated, as shown 

in Figure 2. 7. Gate 1002 now only has its two secondary gates as inputs. 

A new gate, 1007, is created, wh1ch is of the same type as the secondary gates 

and has the same common input, 1000, and the primary gate 1002, as 1ts inputs. 

The resulting tree is shown in F1gure 2 8 

It 1s clear from F1gure 2.8 that another extraction can also be undertaken. Gates 

1000 and 1002 also have event 1 in common, wh1ch can be extracted. Since gate 

1006 is the same type as the secondary gates, the same common input 1 and the 

primary gate 1007 are added to the hst of its inputs The fault tree after the 

extraction IS showed in Figure 2 9. 

2.5.1.2.4 Absorption 

Durmg the absorptiOn process the repeated events are considered m the fault tree 

If the type of the pnmary gate IS different from the type of the secondary gate, 
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F1gure 2.7: The fault tree dunng extraction, gate 1006 IS created 

the secondary gate 1s deleted If the types of the primary and secondary gates are 

the same, the repeated event IS deleted from the list of the m puts of the secondary 

gate. ApplicatiOn of the absorption procedure is earned out on the fault tree shown 

m F1gure 2.9. 

The only repeated event m the fault tree is event 2. The first time it occurs 

as an input to the primary gate 1006, wh1ch IS an 'AND' gate, and the second time 

1t occurs as an input to the secondary gate 1007, which IS an 'OR' gate Since the 

types of the primary and the secondary gates are different the secondary gate can 

be deleted. The fault tree after the absorptiOn IS shown in Figure 2 10 

Fmally, the factorisatiOn can be applied agam and it fimshes the reductwn process 

New complex events are shown in Table 2.4. The reduced fault tree is shown m 

F1gure 2.11 in terms of ongmal gate name and complex event. 
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F1gure 2 8· The fault tree durmg extraction, gate 1007 IS created 

Complex 
Gate value Event I Event 2 

event 
2003 AND 2002 f 
2004 AND 2003 !i 

Table 2 4. Complex event data after the second factorisation 

2.5.1.3 Reduced fault tree 

It can be venfied that the reduced tree IS equivalent to the original tree by exam­

ining the1r minimal cut sets. These w111 be identical for logically equivalent trees. 

The ongmal tree has one m1mmal cut set of order 6 

{!,a, d, b, g, e}. (2 65) 

The minimal cut set for the reduced tree is 

{2004}. (2.66) 

This can be expanded out in terms of the basic events The principle is that 'OR' 

gates mcrease the number of cut sets, whilst 'AND' gates mcrease the number of 

elements in the cut sets Therefore the mimmal cut set of the reduced tree can be 

expanded to give: 

TOP - 2004 = 2003 · g = 2002 f · g = 2001· e · f · g 

= 2000 d e · f · g =a· b · d · e · f · g, 
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F1gure 2 9 Fault tree after extraction 

F1gure 2.10: Fault tree after absorption 

F1gure 2.11: The reduced fault tree 

which IS equivalent to those obtamed from the ongmal tree. 

ReductiOn has s1mphfied the example fault tree considerably. In the original fault 

tree there were six gates and fourteen events, e1ght of them different; the reduced 

fault tree contains one event However, th1s method rarely reduces a fault tree to 

a single event as 1t d1d m this simple example 

Having reduced the fault tree to a more conc1se form the second pre-processing 

technique of modulansation is considered. 
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2.5.2 Fault 'free Modularisation 

Modulansation methods can be applied to fault trees in order to reduce their com­

plexity and simplify the resultmg analys1s The modularisation procedure 1dentilies 

subtrees within the fault tree, known as modules. A module of a fault tree 1s a 

subtree that is completely mdependent from the rest of the tree. It contains no 

bas1c events that appear elsewhere in the fault tree The advantage of ident1fying 

these modules is that each one can be analysed separately from the rest of the tree 

The results from subtrees identified as modules are substituted into the higher-level 

fault trees where the modules occur 

Several modulansation techniques are available for detecting fault tree modules 

but one of particular interest IS Rauzy's linear-time algonthm [7]. The advantage 

of th1s algonthm over other techniques is its efficiency, only two passes through the 

fault tree are required m order to obtain the modules. 

2.5.2.1 Rauzy's algorithm 

Usmg the lmear-t1me algonthm the modules can be identified after JUSt two depth­

first traversals of the fault tree. The first of these performs a step-by-step traversal 

recordmg, for each gate and event, the step number at the first, second and final vis­

Its to that node To demonstrate this process refer to the fault tree in F1gure 2.12. 

Starting at the top event and progressing through the tree m a depth-first manner 

the gates and events are vis1ted in the order shown m Table 2.5. 

Step number 1 2 3 4 5 6 7 8 9 10 11 12 13 

node Top a Gl b G2 c G4 f g G4 G2 G3 d 

Step number 14 15 16 17 18 19 20 21 22 

node e G3 G1 G2 G5 h G3 G5 Top 

Table 2 5: Order m which the gates and events are visited m the depth-first traver­

sal of the fault tree in F1gure 2.12 

Event mputs to any gate are cons1dered before the gate inputs. Each gate is VIS­

Ited at least tw1ce. once on the way down the tree and again on the way back up 

the tree. Once a gate has been visited 1t can be vis1ted agam, but the depth-first 

traversal beneath that gate is not repeated This 1s shown at step 17 and step 

20 where gate G2 and G3 are Visited agam but their descendants (any gates and 
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Figure 2.12. Example fault tree to demonstrate the linear-time algonthm 

events appearmg below that gate in the tree) are not re-v1S1ted. The step numbers 

of the v1sits (first, second and final) are recorded during this traversal and values 

for the gates are shown m Table 2 6. 

Gate Top G1 G2 G3 G4 G5 
pt vis1t 1 3 5 12 7 18 
2nd VISit 22 16 11 15 10 21 

Final visit 22 16 17 20 10 21 

M in 2 4 6 13 8 12 

Max 21 17 10 14 9 20 

Table 2.6· Data for the gates in the fault tree 

As gates G2 and G3 are repeated gates the step numbers of the final VISit are 

different to those of the second visit. The equivalent data for the events is shown 

in Table 2. 7. It should be noted that the step number of the second visit to each 

basic event is equivalent to the step number of the first v1sit to that event 

The second pass through the tree finds the max1mum (max) of the last visits 

and the mmimum (mm) of the first vis1ts to the descendants of each gate, these 

values are also shown m Table 2 6 
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Event a b c d e f g h 

pt VISit 2 4 6 13 14 8 9 19 

2nd VISit 2 4 6 13 14 8 9 19 

Fmal vis1t 2 4 6 13 14 8 9 19 

Table 2. 7. Data for the events m the fault tree 

The prmc1ple of the algorithm is that 1f any descendants of each gate has a first 

vis1t step number smaller than the first visit step number of the gate then 1t must 

occur beneath another gate. Conversely, if any descendant has a last visit step 

number greater than the second visit step number of the gate, then agam it must 

occur elsewhere in the tree. 

Therefore, a gate can be identified as headmg a module 1f 

• The first visit to each descendant is after the first v1sit to the gate, 

• The last visit to each descendant is before the second VISit to the gate. 

That 1s, none of the descendants of a gate can appear anywhere else m the tree 

(unless beneath another occurrence of the same gate). Therefore, the final step of 

the algonthm simply compares the minimum (min) and mrunmum (max) values 

of the descendants visit numbers w1th the first and second v1sit step numbers for 

each gate. 

From Table 2.6 it can be seen that gate Gl cannot be a module as 1ts descen­

dants have a maximum step number greater than the second VISit step number of 

th1s gate Gate G5 IS also not a module as 1ts descendants have a mimmum step 

number smaller than the first visit step number of the gate 

The following gates can therefore be identified as headmg modules 

Top, G2, G3, G4. (2 68) 

The top event w1ll always be a module of the fault tree Each of the subtrees can 

be replaced by a smgle modular event in the fault tree structure and are assigned 

the followmg labels 

G2 -> Ml, G3 -> M2, G4 -> M3. (2 69) 
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Four separate fault trees as shown in Figure 2 13 now replace the single tree shown 

m Figure 2 12 

Figure 2 13 The four modules obtained from the fault tree shown m Figure 2.12 

- Modulansed fault tree, Module M1, Module M 2 and Module M3 

Having identified the modules each one can be analysed separately into the higher­

level fault trees where the modules occur. This process can sigmficantly reduce the 

number of calculatiOns reqmred in the subsequent analysis. 

2.6 Summary 

Fault Trees are an extremely good way of representing the fmlure logic of the 

system in a visual format. The qualitative analysis enables minimal cut sets of the 

tree to be found, which are the smallest combmations of basic events that cause 

system failure. A number of parameters, such as the top event probability and 

frequency, together with the expected number of occurrences of the top event and 

event importance measures, obtained from the quantitative analysis gam a full 

understandmg of the system But this analysis has a disadvantage - if the fault 

tree IS large then performing analysis upon it can reqmre extensive calculatiOns. 

Approximations are needed for many parameters which leads to a loss of accuracy 
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Chapter 3 

Binary Decision Diagrams 

3.1 Introduction 

Binary Decision Diagrams (BDDs) were first used by Lee [8] to represent switching 

circmts. Akers [9] introduced BDDs as a method for defining, analyzing, testing 

and implementmg large digital functions Bryant [10] [11] presented functions by 

directed, acyclic graphs m a manner similar to the prevwus representatiOns but 

with further restnctwns on the ordering of decision vanables in the graph Ini­

tially Schneeweiss [12] presented an algorithm for the productiOn of short diSJOmt­

products form for a fault tree output function usmg a sequential bmary decision 

process The use of BDDs m reliability analysis was developed predommantly by 

Rauzy [2], who suggested that they might provide an alternative, more efficient 

technique for performmg fault tree analysis. 

The BDD method does not analyse the fault tree d~rectly, but converts the tree 

to a Binary Decision Diagram, which represents the Boolean equation for the top 

event. This repre,entation of the logic equatiOn is in a form that is much easier 

to mampulate than a fault tree. Both qualitative and quantitative analysis can 

be performed on the BDD, with the advantage that exact solutions can be cal­

culated very efficiently without the need for the approximatiOns necessary in the 

conventional approach of Kmetic Tree Theory 

3.2 Properties of the BDD 

A BDD is a directed acyclic graph, which means that all paths through the BDD 

are in one directiOn and that no loops can exist. All paths through the BDD 
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termmate in one of two states: either a 1 state, wh1ch corresponds to system fail­

ure, or a 0 state, which corresponds to system success. The BDD is composed 

of termmal and non-terminal vertices (also called nodes) wh1ch are connected by 

branches Terminal vertices correspond to the final state of the system (fmlure or 

success) and non-terminal vertices correspond to the basic events of the fault tree. 

Each non-terminal vertex has a 1 branch, wh1ch represents basic event occurrence, 

and a 0 branch, wh1ch represents basic event non-occurrence. By conventwn, the 

left-hand branch is a 1 branch; the nght-hand branch IS a 0 branch The structure 

of the BDD is presented in Figure 3.1. The size of BDD is usually measured by its 

bas1c event ------J1o-

tenmnall _. 
node 

root vertex 

0 

,....___ tenmnal 0 
node 

Figure 3.1: Example of Bmary Decision Diagram 

number of non-terminal vertices 

All paths through the diagram start at the root vertex and proceed to a terminal 

vertex, wh1ch marks the end of the path. Each path that termmates m a 1 state 

gives a cut set of the fault tree, as that particular combmatwn of component fail­

ures must result m system fmlure Only vertices that he on the 1 branches of these 

paths are mcluded in the cut sets For example, m the BDD shown in F1gure 3 1 

there are two possible paths that termmate m 1 state These are: 

1. a, b 

2 a,c 

which g1ve the two correspondmg cut sets 

1 {a, b} 

2. {c}. 

In this example the BDD is in its mimmal form and so generates only mmimal cut 

sets. However, th1s IS not usually the case, as IS discussed later in this chapter. 
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3.2.1 Formation of the BDD Using If-Then-Else 

Th1s method of constructmg the BDD was developed by Rauzy [2] and proceeds 

by applying an if-then-else (ite) techmque to each of the gates in the fault tree. 

The ite structure denves from Shannon's formula, which is d1scussed m detaJl m 

Chapter 2, Equatwns 2 34- 2 37. If f(x) is the Boolean functiOn for the fault tree 

top event then by p1voting about any variable X Shannon's formula can be written 

as 

f(x) = X· /J +X· h, (3 1) 

where /J and h are Boolean functions with X = 1 and X = 0 respect1vely, and are 

of one order less than f(x). The correspondmg ite structure IS ite = (X, f~> h), 
where X is the Boolean vanable and / 1 and f 2 are log~c functions. This means 

that if X fa~ls then cons1der /J, else consider f2. Therefore, in the BDD structure 

/1 hes below branch 1 of the node encoding X and / 2 lies below branch 0. This is 

shown in F1gure 3 2. 

Figure 3 2 BDD showing ite =(X, /J, h) 

Once a variable ordering has been estabhshed, the followmg procedure can be 

implemented to construct the BDD. 

• Each basic event X is assigned the ite structure ite(X, 1, 0). 

Let J and H be two nodes m the BDD where: 

J = ite(X, F~> F2), H = ite(Y, G~> G2 ). 

• If X < Y (i e. X appears before Y in the variable ordermg) then 

J < op > H = ite(X, F1 < op > H, F2 < op > H). (3 2) 

• If X= Y then 

J < op > H - ite(X, F1 < op > G~> F2 < op > G2), (3 3) 
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where < op > corresponds to a Boolean operatwn of the gates in the fault tree. 

The followmg Identities can also be used to simplify the results: 

1 < op > H - 1, if <op> is an 'OR' gate 

1 < op > H H, If <op> is an 'AND' gate 

0 < op > H = H, if <op> is an 'OR' gate 

0 < op > H = 0, If <op> is an 'AND' gate 

(3.4) 

(3 5) 

(3 6) 

(3.7) 

An advantage of the ite method for constructing the BDD is that the algonthm 

automatically makes use of sub-node sharing. This not only reduces the computer 

memory reqmrements, as each ite structure IS only stored once, but it also in­

creases the efficiency, smce once an ite structure has been calculated the process 

does not need to be repeated. 

This ite method can be demonstrated by constructing a BDD from the fault tree 

shown in Figure 3 3. The ordenng c < d < a < b represents simple top-down, 

Figure 3.3: Example of fault tree 

left-nght traversal of the fault tree 

G 1 IS expressed as: 

G1 - c+d+a 

- ite(c, 1, 0) + ite(d, 1, 0) + ite(a, 1, 0) 

ite(c, 1, ite(d, 1, ite(a, 1, 0))). 
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G2 IS obtamed m a similar way and it giVes 

G2 - a+b (3 9) 

- ite(a, 1, ite(b, 1, 0)). 

The ite structure for Top IS given by 

Top G1·G2 (3 10) 

- ite(c, 1, ite(d, 1, ite(a, 1, 0))) · ite(a, 1, ite(b, 1, 0)) 

ite(c, ite(a, 1, ite(b, 1, 0)), ite(d, 1, ite(a, 1, 0)) · ite(a, 1, ite(b, 1, 0))) 

ite(c, ite(a, 1, ite(b, 1, 0)), ite(d, ite(a, 1, ite(b, 1, 0)), ite(a, 1, 0))) 

The BDD IS constructed by considering branch 1 and branch 0 of each variable in 

turn. In this example 'c' IS the first vanable to be considered and It IS encoded m 

the root vertex of the BDD. The structure ite( a, 1, ite(b, 1, 0)) lies below its branch 

1 and ite(d, ite(a, 1, ite(b, 1, 0)), ite(a, 1, 0)) lies below branch 0 Event 'd' IS the 

next variable to be considered and it IS encoded in the node beneath the nght­

hand branch of the root vertex. Its outgomg branches are determined by breaking 

down the structure ite(d, ite(a, 1, ite(b, 1, 0)), ite(a, 1, 0)) into ite(a, 1, ite(b, 1, 0)) 

for branch 1 and ite(a, 1, 0) for branch 0 This process IS contmued until all 

branches end with terminal vertices. The resultmg BDD is shown in Figure 3 4 

Now both qualitative and quantitative analysis can be earned out on the BDD 

Figure 3 4 BDD obtamed from the fault tree m Figure 3 3 using the ite technique 

They are presented m the later sectiOns 
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3.3 Reduction 

Fault Tree Reduction, presented in Chapter 2, 1s a powerful method wh1ch obtams 

a smaller tree in terms of complex events. It IS expected that a BDD constructed 

from a reduced fault tree w1ll be substantially smaller than that constructed from a 

non-reduced fault tree The onginal tree shown in Figure 2 4 was reduced and was 

presented m F1gure 2.11. Smce there is only one node in the reduced fault tree, 

the BDD from the reduced tree cons1sts of one node only and the ite calculatwn 1s 

applied only once. Obviously, the BDD from the original fault tree would contain 

more nodes and reqUire more ite calculations, smce there are more than one bas1c 

event in the fault tree before the reductwn 

3.4 Modularisation 

The BDD construction process can be made more efficient by modulansing the fault 

tree before the conversion procedure takes place. Modularisatwn 1dentifies inde­

pendent subtrees (modules) within the fault tree that can be analysed separately 

from the rest of the tree A deta!led discusswn of the modulansation technique is 

given in Chapter 2. 

Modulansation can significantly reduce the complexity of a fault tree by breaking 

1t down mto smaller, more manageable pieces that can be dealt with separately 

In terms of the BDD process, the tree can then be analysed m several stages by 

obtainmg smaller BDDs for each subtree These can then be combmed to form a 

BDD that represents the original fault tree structure. It is poss1ble, therefore, that 

a BDD could be constructed for a tree that could not previously be analysed The 

process can be demonstrated usmg the fault tree shown in F1gure 3 5. 

The modulansed tree and modules Ml, M2 and M3 are shown in F1gure 3 6. 

The following modules can be identified: 

• TOP itself IS a module. 

• Module Ml is mcluded in the module TOP. 

• Module M2 is includPd m the module Ml 

• Module M3 is included m the module M2. 
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Figure 3 5: A fault tree that can be modularised 

TO I'" 

Ml 

M3 

Figure 3 6· The modulansed fault tree and three modules 
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To form the BDD from the modulansed tree the modules are treated as events 

and so need to be ordered together w1th the basic events. Takmg top-down order 

M1 <a, the ite structure for the top event can be formed· 

TOP - M1·a (3 11) 

ite(M1, ite(a, 1, 0), 0). 

Each module is then analysed independently to form 1ts own BDD The top-down 

orderings for the modules are as follows: 

M1 

M2 

M3 

M2< b 

c < h < e < d < M3 

g<f 

wh1ch result in the ite structures g1ven by: 

M1 - M2+b 

- ite(M2, 1, ite(b, 1, 0)) 

M2 G1·G2 

(3 12) 

(3.13) 

(3 14) 

(3 15) 

(3.16) 

- ite(c, ite(e, 1, ite(d, 1, 0)), ite(h, ite(e, 1, ite(d, ite(M3, 1, 0), 0)), 0) 

M3 - g+f (3 17) 

ite(g, 1, ite(f, 1, 0)). 

This correspondmg set of BDDs is shown m Figure 3 7 

3.5 Qualitative Analysis 

Quahtat1ve analysis of BDDs IS an efficient way to obtain the cut sets of the fault 

tree, as shown m [13] Every path through the BDD starts from the root vertex and 

proceeds down through the diagram to a terminal vertex. Paths which termmate 

at a 1 vertex yield the cut sets If the BDD is m 1ts minimal form it generates 

minimal cut sets. However, th1s IS not always the case The cut sets of the BDD 

presented in Figure 3 4 are· 

1. {c,a} 

2. {c, b} 

3. {d, a} 
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Ml 

M3 

F1gure 3 7: The BDDs obtained from the modulansed fault tree and three modules 

4. {d, b} 

5 {a} 

The cut sets are not mimmal and the BDD is not in 1ts m1mmal form. The first 

and third cut sets are redundant as they contam the fifth cut set as a subset In 

order to obtain m1mmal cut sets the BDD has to undergo a m1mmisatwn proce­

dure. This algorithm, introduced by Rauzy [2], is applied to the ite form of the 

BDD and creates a new BDD that exactly defines the mmimal cut sets of the fault 

tree 

Consider a general node m the BDD which 1s represented by the function F, where 

F = zte(x, G, H). (3 18) 

If 8 1s a m1mmal solutiOn of G, which is not a mimmal solution of H, then the 

mtersection of 6 and x ( { 8} n x) w1ll be a minimal solution ofF The set of all the 

m1mmal solutiOns of F(solmm(F)) will also mclude the mmimal solutwns of H, so 

solmm(F) = [{6} nx] U [solmm(H)]. (3 19) 
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The 'w1thout' operator was defined by Rauzy, wh1ch removes all the paths from 

Gmm that are mcluded in Hmm In this way the combmed set solmm(F) represents 

the m1mmal solutwns of F by removing any m1mmal solutions of G that are also 

mimmal solutwns of H 

This algonthm can be applied to the BDD in Figure 3 4. Each node is consid­

ered m turn: 

F1 = ite(c, F3, F2) - Event 'a' is included in a path on both the one branch 

(F3) and the zero branch (F2) Therefore 'a' is removed from the one branch by 

replacmg the terminal vertex 1 with a terminal vertex 0 

F2 = ite(d, F3, F4)- There are no events included m path on both the one branch 

(F3) and the zero branch (F4), because event 'a' has been removed from the one 

branch already 

F3 = ite(a, 1, F5) - F5 does not contain any paths that are included in the one 

branch as 1t leads to a terminal vertex. 

F4 = ite(a, 1, 0)- Both the one and zero branches are terminal. 

F5 = ite(b, 1, 0) - Both the one and zero branches are termmal. 

The mmimised BDD IS shown in Figure 3 8 Th1s produces the followmg mini-

F1gure 3 8: The minimised BDD 

mal cut sets 

1. {c,b} 

2. {d,b} 
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3 {a} 

Mm1m1sing the BDD has therefore removed the redundant cut sets { c, a} and 

{d,a}. 

3.5.1 Incorporating Complex Events and Modules into the 

Analysis 

The following section descnbes an extenswn of qualitative analysis, wh1ch consid­

ers BDDs encoding complex events and/ or modular events produced as part of th1s 

research project, published m [14], [15]. The aim of th1s is to obtain the mmimal 

cut sets of the system by extractmg the mmimal combinations of component fail­

ures which produce system failure from every complex and modular event Th1s 

IS necessary because when reductwn and modularisation are used to construct the 

BDDs, it is useful to be able to analyse the system in terms of its ongmal compo­

nents 

The calculation process starts at the root vertex of the primary BDD, comput­

ing all the paths that terminate at a 1 vertex, which represent the cut sets of the 

system. If any of the constituent events in those cut sets is modular the calculation 

is earned out m the BDDs of each module. If a complex event IS included cut sets 

are expanded to the ongmal basic events by following the rules of obtaining cut 

sets for fault trees, presented in Chapter 2. After this the components of the new 

expanded cut sets are combined w1th the primary minimal cut sets. The example 

is presented m Figure 3 9. 

The primary BDD (a) produces the m1mmal cut set· 

{M1,a}. 

Since this mmimal cut set includes the event M1 further calculatwns are carried 

out on the BDD of module M1 The m1mmal cut sets of module M1 are 

1. {M2}, 

2. {b}. 

As one of the components in these mmimal cut sets is the modular event M2 the 

BDD of M2 (c) must now be investigated Four minimal cut sets are obtained 
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M! (b) 

0 0 

Figure 3 9: Example of BDDs for the modules: Primary, MI, M2 

1 {c,e}, 

2. {c,d}, 

3. {h, e }, 

4. {h,d,2000}. 

This time the complex event 2000 must be taken into consideration Since 

2000 = g + J, 

this complex event has two minimal cut sets - {g} and {f}. These minimal cut 

sets contain only basic events, therefore the calculatiOn is fimshed 

Now all the mimmal cut sets must be constructed usmg the extractions from the 

modular (Ml and M2) and complex (2000) events. The substitution of the mim­

mal cut sets of 2000 ( {g} and {f}) into {h, d, 2000} gJVes two mimmal cut sets 

1. {h,d,g}, 

2. {h, d, f}. 

Similar substitutions are done using the minimal cut sets of M2 to find the minimal 

cut sets of Ml Fmally, the mimmal cut sets are 

1. {c, e, a}, 

2 {c, d, a}, 
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3. {h,e,a}, 

4. {h,d,g,a}, 

5. {h,d,J,a}, 

6. {b,a}. 

These cut sets are minimal because the BDDs of every module underwent the 

Rauzy minimisation procedure explained earher, wh1ch gives a mimmal form for 

the BDDs. 

3.6 Quantitative Analysis 

The quantitative analysis of BDDs determines many probab1hstic properties of the 

system. It is an efficient procedure with the advantage that exact solutwns can be 

calculated without the need for the approximations necessary m the conventwnal 

approach of Kinetic Tree Theory In th1s chapter the current procedures for per­

formmg the bas1c elements of quantitative analys1s, such as calculatmg the system 

unavailability, the unconditional fa1lure mtens1ty and the cnticality function for 

bas1c events, are explained, as shown in [16] 

3.6.1 System Unavailability 

The ite structure encoded in the BDD is derived from Shannon's formula, Equa­

tion 3.1 The probab1lity of the top event (1 e system unavailab11ity) can be found 

by takmg the expectation of each term of Equation 3 1, to g1ve: 

E(f(x)) = q,(t) · E(f1) + (1- q,(t)) · E(fz), (3 20) 

where q,(t) = E(x,), the probab1hty that event x, occurs. 

Therefore the probab1hty of occurrence of the top event, Q(t), can be expressed as 

the sum of the probab1ht1es of the dlSJOmt paths through the BDD. The disjoint 

paths can be found by tracmg all paths from the root vertex to termmal 1 vertices 

Each disjoint path represents a combinatwn of workmg and fa1led components that 

leads to system failure. Therefore events lying on both branches 1 and 0 are m­

eluded m the probab1hty calculatwn. 
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In order to calculate the top probability, Equatwn 3 20 can be applied to each 

node in the BDD. For any node, F = ite(x., J, K), the probability value is g1ven 

by: 

P(F) = q,(t) · P(J) + (1- q,(t)) · P(K), (3 21) 

where 

P( J) 1s the probability value of the node on branch 1 ofF, 

P(K) IS the probability value of the node on branch 0 ofF 

Equation 3 21 IS applied to the BDD m a bottom-up manner. Nodes that have 

terminal vert1ces on both their branches 1 and 0 are cons1dered first The values are 

then worked up through the BDD until the top event probability can be evaluated 

3.6.2 System Unconditional Failure Intensity 

It is not possible to use a fault tree to calculate the unreliab1lity for the top event, 

i e. the probability that it w1ll not work contmuously over a given t1me period. 

However, an upper bound for this is the expected number of top event occurrences, 

W(O, t): 

W(O, t) = [ Wsys(t) dt, (3 22) 

where w,y,(t) IS the system unconditional fa1lure mtens1ty. This can be expressed 

as: 

Wsys(t) = L G,(q(t)) w., (3 23) 

where G,(q(t)) IS the criticality function for each component and w, IS the compo­

nent unconditional failure mtens1ty. 

The cntlcality function G,(q(t)) IS defined as the probability that the system is in 

a crit1cal state with respect to component z and that the fa1lure of component l 

Will then cause the system to go from the working state to the failed state, i e the 

probability that the system fa~ls only 1f component l fa1ls. Therefore: 

G,(q(t)) = Q(1., q(t))- Q(O., q(t)), (3 24) 
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where Q(1., q(t)) is the probability of system failure with q,(t) = 1 and Q(O., q(t)) 

is the probab1lity of system failure w1th q,(t) = 0. 

An efficient method of calculating the cnticality function from the BDD considers 

the probabilities of the path sections m the BDD up to and after the relevant nodes 

For example, consider the vanable x., which occurs at two intermediate nodes m 

the BDD, as shown m F1gure 3.10. Q(1., q(t)) and Q(O., q(t)) can be calculated 

0 

Figure 3.10. BDD section showmg the locations of variable x, 

for this variable usmg 

Q(l., q(t)) = L(prx,(q(t)) · po;, (q(t))) + Z(q(t)), 
n 

Q(O.,q(t)) = L(Prx,(q(t)) · po~,(q(t))) + Z(q(t)), 
n 

where 

pr x, ( q( t)) - the probability of the path section from the root vertex to 

the node x, (set to one for the root vertex), 

(3 25) 

(3 26) 

poi, (q(t)) -the probability of the path section from the one branch of 

a node encoding x, to a terminal 1 node (or the probability value of 

the node beneath the one branch of x,), 

po~, (q(t))- the probability of the path section from the zero branch of 

a node encoding x, to a termmal 1 node (or the probability value of 

the node beneath the zero branch of x,), 

Z(q(t))- the probability of paths from the root vertex to the termmal 

1 node that do not go through a node encodmg x., 

n - all nodes encodmg variable x, in the BDD 
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By substJtutmg Equatwns 3 25 and 3.26 into EquatiOn 3 24, the cnt1cality function 

for each event can be expressed as 

G,(q(t)) = LPTx,(q(t))[po;, (q(t))- po~, (q(t))] (3 27) 
n 

The values of pr[F], po1 [F] and po0 [F] (known generally as the 'path probabilities') 

are calculated during one depth-first pass of the BDD, dunng which the structure 

beneath branch 1 of any node is always fully explored before returning to consider 

branch 0. Starting with the root vertex, values of pr[F] are ass1gned to each node 

as the branches are descended. Once the termmal node is reached, the procedure 

continues by working back up through the BDD calculatmg values of po1 [F] and 

po0 [ F] for each of the nodes 

The calculation of the system unavailability can be performed simultaneously, as 

po1[F]1s eqmvalent to the probab1lity value of the node beneath branch 1 ofF, 

and po0 [F] is eqmvalent to the probability value of the node beneath branch 0. 

Therefore at each stage of the calculation, both the path probabilities and the 

terms of EquatiOn 3 21 are evaluated. 

The calculatiOn procedure is demonstrated in the following section, by means of a 

worked example. 

3.6.3 Worked Example 

Cons1der the BDD shown m F1gure 3 11. The calculations w1ll be earned out to 

yield the system unavailability and unconditional failure intens1ty. There are four 

paths through the BDD that lead to a termmal vertex 1. There are three paths on 

branch 1 of node Fl, 1 e Fl - F2- F3, Fl- F2- F3- F5 and Fl- F2- F4, 

and one path on branch 0 of node Fl, i e Fl - F5. 

The calculatiOn results are presented in Table 3 1. The final column of this ta­

ble shows the cnticality values This g1ves the correct cnticahty functwns for 

variables 'a', 'b' and 'd' as they each appear only once m the BDD However, as 

variable 'c' is encoded in two nodes, i e F3 and F4, the1r cntJcality values must 

be added to give the total cnticality function for 'c'. 

qbqa(l- qd) + qa(l- qb) 

q.(l - qbqd) 

47 

(3 28) 



FS 

F1gure 3 11: Example Bmary DecisiOn D1agram 

Node Vanable Probability value pr po' pov Cnlicality 
F! a qa (qb (q,+(!- q,) 1 qb (q,+ (I- qd qb (q,+ (1-q,)qd) 

qJ)+(1- qb) q,) + q,)qJ) +(1- +( 1-qb)q,-qd 
(1- qa) qd Qb)Q, 

F2 b qb (q,+(1- qc) qa q,+(1- q,) q, qa(!-q,) qd 
qJ)+( 1- Qb) q, Qd 

F3 c q,+( 1- q,) qd q.qb 1 qd qaqb(!-qd) 
F4 c q, Qa(!- qb) 1 0 qa(1- qb) 

F5 d Qd 1-qa+ I 0 1-qa+qaqb(]- q,) 
qaqb(!- q,) 

Table 3.1 Quantitative results for the BDD m Figure 3 11 

The final stage of the analysis 1s to calculate the system unconditional failure 

intensity, which is g1ven by: 

Wsys(t) (3 29) 

- Wa(qc + qbqd(l- qc)- qd) + Wb(qa(l- qc)qd) + Wc(qa(l- qbqd)) 

+ wd(l- qa + qbaa(l- qc)). 

The analysis so far has considered BDDs contaming only basic events, but this 

could be extended to incorporate both complex events and modules. 

3.6.4 Incorporating Complex Events and Modules into the 

Analysis 

The following section describes the extenswn of the quant1ficat10n methods to 

consider BDDs encoding complex events and/or modular events The aim of the 
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analys1s IS to obtam not only the system unavailability and unconditional failure 

intensity, but to be able to extract the criticality function for the basic events that 

contnbute to the complex events and modules This IS essential smce, because 

reduction and modulansation may be used to simplify the original fault tree, it 

must be possible to analyse the system in terms of its original components. The 

approach was developed by Reay and Andrews [17]. 

3.6.4.1 Overview of the calculation procedure 

The calculation process starts at the root vertex of the primary BDD and proceeds 

down through the branches, calculatmg the probabilities of the paths from the root 

vertex to each of the nodes The unavmlab1lity of each encoded event is reqmred as 

it enables the calculatwn of pr[F] for the nodes beneath to be performed. There­

fore the probabilities of both the complex and modular events are necessary for 

the analys1s 

Values of po1[F] and po0 [F] are calculated for the nodes on the way up through the 

primary BDD If a node is encountered, that encodes e1ther a complex or modular 

event, then the complex event or module must be analysed m order to ass1gn ap­

propriate values of pr[F], po1[F] and po0 [F] to its component nodes Th1s allows 

the calculatiOn of the cntJcality functwns of the basic events contammg complex 

events and modules 

The criticality functions of basic events encoded withm the primary BDD are 

calculated according to Equatwn 3 27 at the end of the analys1s once the path 

probabilities of the nodes have been evaluated The cnticality functions of all 

bas1c events are then used together with their unconditional failure intensities to 

calculate the system unconditiOnal failure intensity. 

It is also possible to calculate Wsys(t) by cons1denng only the events encoded m 

the primary BDD Th1s would reqmre both the critJcality functions of any encoded 

modular and complex events and their unconditiOnal fa1lure intensities. Although 

these are relatively s1mple to calculate they are values that have no further use 

in the analysis Instead the cnt1cality functions of all basic events are calculated, 

wh1ch allows the analysis of the contnbutions to system fa1lure through component 

or basic event importance measures. 
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The techniques for calculating the complex and modular event probabilities and the 

cnticality functions of their constituent basic events are descnbed m the following 

sections 

3.6.4.2 Unavailability of complex and modular events 

The probabilities of the complex events are calculated as they are formed, which 

ensures the process is as efficient as possible. Determining their probabilities is 

a straightforward procedure, as they are only a combmation of two component 

events. The calculatwn depends on whether the events were combined under an 

'AND' gate or an 'OR' gate, so for a complex event Xc that has constituent events 

X 1 and X 2 , the unavailability IS given by 

'AND' gate qc = q1q2, 

'OR' gate qc = q! + q2- q1q2. 

(3 30) 

(3 31) 

The probabilities of the modular events are not calculated before the quantitative 

analysis takes place, but are determined as and when required during the analysis 

(once a value has been calculated 1t is stored for later use). The calculatiOn of 

the unavailability of a modular event is effectively that of finding the probability 

of the 'top event' of the module A depth-first algonthm is used, wh1ch sums the 

probab1lit1es of the diSJOint paths through the module's BDD. If another modular 

event, x., IS encoded w1thin the module the algonthm 1dent1fies 1ts root vertex, 

M[x,], and proceeds to call itself to calculate the required probability. Thus the 

unavailability of modules encodmg only bas1c and complex events w1ll necessanly 

be evaluated first 

The calculatiOn procedures for evaluatmg the probabilities of the complex and 

modular events are therefore relatively straightforward. At this stage they could 

be used alone to determme the system unavailability by performing the depth-first 

calculations on the pnmary BDD only. The calculatwn of the basic events' crit­

icality functions does however require further analysis This 1s discussed m the 

followmg sections 

3.6.4.3 Criticality of basic events within complex events 

Once the path probabilities have been calculated for a node encoding a complex 

event that complex event must be further analysed by assigning appropriate values 
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of pr x, ( q), po~. ( q) and po~. ( q) to 1ts component events. Consider a node encoding 

the complex event, Xc, as shown m F1gure 3.12. 

Figure 3.12: A complex event node within a BDD 

The two events that combme to form this complex event are joined either by an 

'AND' gate or an 'OR' gate, wh1ch g1ves the possible ite structures and corre­

spondmg BDDs as shown m F1gure 3 13 

AND combmat10n OR combmai!On 

F1gure 3.13: The possible BDD structures of a complex event 

'AND': Xc =XI. x2 (3 32) 

Xc = ite(X1, ite(X2 , 1, 0), 0) 

(3 33) 

Xc = ite(Xb 1, ite(X2, 1, 0)) 

The complex event node effect1vely replaces one of these structures in the ongmal 

BDD (either the primary BDD or the BDD of a module). In order to evaluate the 

path probabilities of the nodes encodmg these component events the terminal 1 

vertices are simply replaced with the probability of the paths below branch 1 of the 

complex event node and the termmal 0 vert1ces are replaced with the probab1hty 

of the paths below branch 0 of the complex event node The probability of the 

paths preceding the root vertex does not have the usual value of one but takes 
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AND combmatron OR combmatron 

Figure 3 14: The complex event structure 

the value of pr[F] of the complex event node (prc)· This is shown in Figure 3 14 

Using F1gure 314 the values of prx,(q), po;.(q) and po~,(q) can be calculated for 

the variables X 1 and X2• The resultmg expresswns are shown m Equations 3.34 

- 3 45. 

'AND' gate: 

x1: prl = prc (3.34) 

pal = q2 · pa~ + (1 - q2) · pa~ (3 35) 

pa~ = pa~ (3 36) 

x2: pr2=Prc·q1 (3 37) 

pa~ = pa~ (3 38) 

pag = pa~ (3 39) 

'OR' gate: 

x1: pr1 = prc (3.40) 

pal= pa~ (3 41) 

pa~ = q2 . pa~ + (1 - q2) . pa~ (3.42) 

x2. pr2 = PTc· (1- ql) (3.43) 

pa~ = pa~ (3.44) 

pag = pa~ (3 45) 

As the events X1 and X 2 may be either basic events or other complex events 

this process is repeated until values have been calculated for all contnbuting bas1c 

events. The cnticality functions of the basic events are then calculated accordmg 
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to Equation 3.27. 

Any complex event can appear more than once in the BDD, resultmg m new values 

of prx,(q), po;,(q) and po~.(q) being calculated for its component events on each 

occaswn The criticahty function for each of the contributing basic events must 

therefore be calculated in stages usmg the newly ass1gned values each time. Once 

this additional criticahty value has been calculated for each of the contributing 

bas1c events it IS added to the current value so that 1t IS calculated as the analysis 

proceeds, rather than as a separate procedure at the end of the analysis as is the 

case for the basic events m the pnmary BDD. 

3.6.4.4 Criticality of basic events within modules 

Modular events are dealt w1th in a s1milar way to complex events Once the path 

probabilities of the modular event are known the module is further analysed to 

determine the path probabilities of its component nodes These probabilities must 

be assigned as they would have been had the module not been replaced by the 

smgle modular event In order to do th1s the values of po1 [F] and po0 [F] of the 

modular event node replace any termmal 1 and 0 vertices w1thm the module and 

the probability of the paths preceding the root vertex of the module is assigned 

the value of pr[F] ofthe modular event node. This is shown in Figure 3 15. Unlike 

ModuleXm 

A· 
po~ po~ po~ 

-
po~ po~ 

F1gure 3 15: Replacing a modular event with the entire module structure 

complex events the structure of modules is not fixed. They can obtain any number 

of events (bas1c, complex, or indeed other module events), connected by any num­

ber of gates TherPfore the path probabilities are assigned to the nodes by means 
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of a depth-first process, wh1ch 1s capable of dealmg w1th any BDD structure. The 

method IS very Similar to that used for analysmg a smgle BDD The difference is 

that whenever a terminal node is encountered the probability of the paths below 

e1ther branch 1 or branch 0 of the modular event node IS used, rather than a termi­

nal vertex probability values of one and zero Obviously, pr[F] of the root vertex 

will also be set to equal the probability of the paths precedmg the modular event 

node. 

As w1th complex events, the calculatiOns reqmred to obtain the path probabJl­

JtJes for the nodes w1thin the module must be repeated for each occurrence of 

the modular event m the BDD These values are used to calculate the additional 

contnbutions to the cnticahty functions of the bas1c events that arise due to the 

further occurrences of the modular event. 

3.6.5 The Algorithm for Incorporating Complex Events and 

Modules into the Analysis 

The analysis of the primary BDD IS conducted m a similar manner to the analys1s 

of single BDD structures, except for the processes mstigated when a modular or 

complex event is encountered As the probabJht1es of complex events are calcu­

lated as they are formed they are treated as basic events when descending the 

BDD. However, once the path probab1hties have been evaluated for a complex 

event node Equations 3.34 - 3 45 are used to calculate the cnt1cahty functwns of 

1ts constituent basic events. 

If a modular event is encountered when descendmg the BDD the probability of 

the modular event 1s evaluated. When ascending the BDD a depth-first algonthm 

is used to calculate the cnt1cahty functwns of the bas1c events that contnbute to 

the module. 

As the process for determining the path probabilities of the nodes within a module 

is so s1milar to the procedure used for dealing with the primary BDD a separate 

algorithm is not needed. The ex1stmg method is Simply extended to mclude both 

options. 
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3.7 Summary 

The BDD techmque converts the fault tree to a Binary Dec1s10n D~agram, which 

represents the Boolean equatiOn for the top event. The bas1c events of the fault 

tree need to be ordered before the conversion process takes place The BDD con­

struction process can be made more efficient if the fault trees are reduced and 

modularised beforehand Both qualitative and quantitative analyses can be per­

formed on the BDD. The m1mmal cut sets can be obtamed 1f the BDD undergoes 

the minimisation process. Both analyses are extended to the BDDs encodmg com­

plex and modular events obtamed after the reduction and modularisatwn processes 

The extension to the qualitative analysis of BDDs encoding complex and modular 

events was conducted as a part of this research 
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Chapter 4 

Component Connection Method for 

Building BDDs 

4.1 Introduction 

A new construction method of BDDs from fault trees w1ll be presented in this 

chapter. It w1ll contam a descnptwn of connectwn and simplification rules w1th 

some alternative strateg1es for producmg a BDD for any log1c gate m a fault tree 

The efficiency of the new algonthm will be measured by the computational time 

taken to convert a fault tree to a BDD, together with the s1ze of the final BDD 

and the mmnmum required size of the dynamic memory data structure dunng the 

process. 

4.2 Connection Process 

Th1s new proposed method, whose initial idea was presented in [18], for bmlding 

BDDs encoding fault trees ut1hses the same ite structure, which was presented m 

Chapter 3, as the way to descnbe the structure function of the system As a part 

of this research, a number of new ways for connectmg nodes and merging BDDs 

during the converswn process w1ll be presented. Th1s method is an alternative 

to applymg the ite technique for the conversion of fault trees to BDDs and 1ts 

efficiency w1ll be investigated 

Before the construction process starts, selectiOn schemes for connectmg gate in­

puts expressed as e1ther basic events or BDDs needs to be established D1fferent 

ways for connectmg basic events, gates and BDDs w1ll be investigated later m th1s 
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chapter The basic event ordermg as reqmred in Rauzy's method does not neces­

sanly need to be established here because the method can work without following 

any predetermined ordering scheme for the whole system 

The followmg rules can be Implemented to construct a BDD: 

Rule 1. Each input X IS assigned the ite structure ite(X, 1, 0) 

Rule 2. If two inputs in a fault tree are inputs to an 'AND' gate, their rep­

resentmg nodes on a BDD are connected to each other through the 1 branch of the 

node For an 'OR' gate the nodes are connected through the 0 branch. 

Figure 4.1 shows the representation of BDDs for 'AND' and 'OR' gates with event 

mputs X and Y. These two rules explain the mam Idea of a new algonthm, pro-

n 
I 

Figure 4 1. Example for the first and second connection rules 

ducing BDDs for every gate 

The last connection stage durmg bmldmg the final BDD contams one of two strate­

gies dependmg on the way that the fault tree IS traversed dunng the BDD construc­

tion process There are two types of the traversal: the top-down and bottom-up 

approach. 

In the top-down approach the BDD construction process is performed for a par­

ent gate, before cons1dermg lower levels of a fault tree. Then a BDD, representing 

a gate input IS constructed, a gate node is replaced by its BDD in the BDD struc­

ture of a parent gate. The process lasts until no gate nodes are left in the final BDD. 

The bottom-up techmque considers gate inputs to any parent gate in a left-nght 

way so that a BDD for a subtree of the left-most gate is built before considenng 
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the remaining gate inputs. Then all BDDs, representing gate inputs of a parent 

gate, are merged to obtam the BDD of the parent gate The process IS over when 

the BDDs, representing gate inputs of the top-event, are combined. 

Since the nature of the connection process is d1fferent for those two approaches, 

the th1rd rule IS explained for 'AND' and 'OR' gates respectively for each approach. 

Rule 3. 

Top-down approach. 

Rule 3a. During the development of a gate node, which represents an output 

to an 'AND' gate, a structure representing this gate in terms of its inputs is in­

serted into the BDD The BDD structure on the 0 branch of the gate node in the 

anginal BDD is reconnected to every terminal 0 node of the mserted BDD. The 

single terminal 1 node m the new AND structure IS connected to the connectiOn 

on the 1 branch of the original node 1t replaced. 

Rule 3b. During the development of a gate node, wh1ch represents an output 

to an 'OR' gate, a structure representing th1s gate m terms of 1ts m puts is mserted 

into the BDD The BDD structure on the 1 branch of the gate node in the original 

BDD is reconnected to every termmal 1 node of the inserted BDD The smgle 

termmal 0 node in the new OR structure is connected to the connectwn on the 0 

branch of the original node it replaced. 

Bottom-up approach. If there are two BDDs, which represent two gate in­

puts of a parent gate, one of them is set to be the mam BDD, according to the 

rule of selection. 

Rule 3a. If two BDDs are mputs to an 'AND' gate, the secondary BDD 1s con­

nected to every terminal 1 node of the main BDD 

Rule 3b. If two BDDs are inputs to an 'OR' gate, the secondary BDD 1s con­

nected to every terminal 0 node of the main BDD. 

The application of the third rule for the top-down and bottom-up approaches IS 
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explamed and applied to an example fault tree, presented in Figure 4 2. The top-

F1gure 4 2: Example fault tree 

down process for the example m F1gure 4 2 is illustrated m F1gure 4 3, considering 

the left-nght variable ordering for every gate m a fault tree, i.e. 

Top a< Gl, 

Gl c < G2 < G3, 

G2 b < d, 

G3 e <f. 

F1rst of all, the inputs of the top event, a and Gl, are ass1gned ite structures 

w1th terminal vert1ces and then they are connected to each other through the 1 

branch of node a, as shown in F1gure 4 3(z). Th1s results m a BDD with gate 

node Gl, wh1ch IS replaced by the BDD of gate Gl The replacement for Gl is 

formed by connectmg the Gl mputs c, G2 and G3 in an 'OR' cham and results 

in the BDD shown in F1gure 4.3(u). Th1s BDD contams two gate nodes G2 and 

G3. The replacement of gate node G2 by its BDD g1ves the structure presented in 

F1gure 4 3(m). The structure beneath the 0 branch of gate node G2 is reconnected 

to every ava~lable 0 branch after the replacement. Finally, gate node G3 is replaced 

resulting in a BDD wh1ch cons1sts of only bas1c events, as shown in Figure 4 3(w). 

The BDD construction process is finished. Different strategws can be descnbed 

for the selection of the order of m puts of each parent gate before the connection 
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(1) 

(m) 

(IV) 

Figure 4 3: Process of top-down strategy 

process. Th1s w1ll be discussed later in th1s chapter. 

The applicatiOn of the bottom-up technique for the fault tree example in Fig­

ure 4.2 is presented in Figure 4 4. In th1s example, it has been set that when 

combining BDDs representing mputs for gates they are considered m a left-right 

manner and the left-most BDD is set to be the mam BDD to wh1ch the other is 

joined. The left-right vanable ordering for every gate in a fault tree is considered, 

as it was presented for the top-down scheme. First of all, gates G2 and G3 are 

constructed, shown m F1gure 4 4(z) and F1gure 4 4(u), building two BDDs, wh1ch 

are both 'AND' chams. Then gate Gl is considered, creating a BDD for its bas1c 
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F1gure 4 4 Process of bottom-up strategy 
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event c in F1gure 4 4( m) and establishmg 1t to be the main BDD in the process 

Two BDDs from F1gure 4 4( z) and F1gure 4.4( zz) are connected one by one on ev­

ery available 0 branch of the mam BDD Connectmg the BDD of gate G2 on the 

only 0 branch of the mam BDD results m the BDD with two available 0 branches, 

shown in Figure 4.4(zv), where the BDD of gate G3 is connected, as shown in 

F1gure 4.4(v). Fmally, the top event IS investigated, building a BDD for its basic 

event F1gure 4 4( vz) and connecting the BDD of gate G1 on the 1 branch of the 

main BDD The final BDD IS presented in Figure 4 4(vzz) 

This completes the connectwn process However, some Slmphficatwn rules need to 

be applied prior to analys1s 1f there any repeated events in a fault tree 

4.3 Rules of Simplification 

After every connectmg operatwn the repetitwn of bas1c events on any path through 

the BDD are checked If there is at least one repeated event, two simplificatiOn 

rules will be applied: 

• Each path starting at the node that represents the first occurrence of a re­

peated event m a path, and proceeding to a terminal vertex, must be adjusted 

in order to avmd the contradictory states of the event m the BDD. The node, 

that represents the second occurrence of the event, needs to be replaced by 

the events below it on either its 'working' branch or 'failed' branch dependmg 

on the component state as spec1fied by 1ts first occurrence m the path For 

example, if the traverse of the BDD starts w1th the 1 branch of a node, the 

second appearance of that node should be replaced by the BDD structure 

below the 1 branch of th1s second node for consistency. 

• If the state of the system IS the same regardless of the basic event occurrence 

or non-occurrence, the insigmficant vertex must be removed. In other words, 

1f the BDD structures below both branches of the node are the same, the 

node needs to be replaced by the structure below one of the branches. 

In terms of Boolean Laws of Algebra durmg the Simplification process the idem­

potent, complementation, ident1ty and distribution laws will be applied Some 

examples explain the rules of simplification m deta1l. Figure 4 5 presents the first 

Simplification rule Traversmg through the BDD produces the path F1 - F2 - F3 -

F4. The only repeated event m this path IS a, wh1ch IS represented by node F1 and 
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F1gure 4 5 Example of the first simplificatiOn rule 

F3. Node F3 needs to be replaced. Smce the path traverses the 0 branch of node 

Fl, F3 is replaced by node F4 which can be reached by traversing the 0 branch of 

node F3 In th1s way redundancies are removed from the Boolean functiOn BDD 

structure, f(x). The Boolean functiOn of the first BDD in Figure 4.5 is reduced to 

the second one: 

j(x) 

-

because 

a·a 

b·O -

a;.a; 

a+a·b·a+a·b·a·c 

a+a·b·c, 

0 (complementation), 

0 (identity), 

a (!dempotent) 

( 4.1) 

(4 2) 

(4.3) 

( 4.4) 

The second rule IS shown in F1gure 4 6. The system failure does not depend on the 

fa1lure or success of event a, i e. the system will fml if b and c fa1l Therefore, node 

Fl is replaced by one of its branches, for example, F2 - F3 Applymg Boolean 

Laws to the logic functwn of the BDD g1ves 

f(x) - a· F+a· F 

- (a+a) · F 

F, 
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-
F3 

F1gure 4 6· Example of the second simphficatwn rule 

where distributive, complementation and identity laws were used 

The second rule 1s also applied to the case when the node has two Identical terminal 

vert1ces This situatiOn might appear after applying the first rule if the reqmred 

branch of the node with the second repeat leads to a termmal vertex. This case is 

shown m F1gure 4 7 

__.cifml a 
I 0 

I 0 

F4 

Figure 4. 7: Example of both Simphficatwn rules 

In th1s s1tuatwn F3 needs to be replaced by the termmal 0 which g1ves a situation 

of a node w1th two Jdent1cal termmal vertices Therefore node F2 needs to be 
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removed This SituatiOn can be presented 

f(x) - a+ a;. b ·a· c (4 6) 

a. 

4.4 Properties of the BDD Using the Component 

Connection Method 

BDDs constructed using the Component Connection Method preserve the mam 

characteristics as BDDs obtained usmg the ite method, I e. since the BDD en­

codes the structure functiOn of the fault tree and paths through the BDD are 

disjoint, both qualitative and quantitative analyses can be carried out, as it was 

presented m Chapter 3 

For example, consider the BDD m Figure 4.4(vn). For the qualitative analysis 

the BDD needs to be minimised using Equation 3 19 and then every path to a 

termmal vertex 1 describes a mimmal cut set. The minimised BDD IS shown m 

Figure 4 8. This mmimal disjunctive form of the logic equation gives three minimal 

Figure 4.8: Mmimised BDD from Figure 4.4(vn) 

cut sets 

{a,c},{a,b,d},{a,e,f} (4.7) 
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The quantitative analys1s for the BDD m F1gure 4 4( vzz) 1s also cons1dered Ac­

cording to the Equation 3 21, the probability of system failure can be calculated 

as a sum of probabilities of every d!SJOmt path m the BDD. In th1s case 

Q(t) = qaqc + qa(l- qc)qbqd + qa(l- qc)qb(l- qd)qeqf + (4 8) 

qa(l - qc)(l- qb)qeqf. 

So, the qualitat1ve and quantitative analyses of BDDs obtained using the Compo­

nent Connectwn Method can be applied m the same way as 1t was shown for the 

ite technique 

However, BDDs constructed usmg the Component Connection Method have some 

different properties For example, BDDs are not ordered. A speCified ordenng of 

basic events is not required for the method and elements in the BD D appear in the 

order that they were considered in the construction process 

Also, the Component ConnectiOn Method does not use the sub-node sharing method, 

therefore, there are some parts in the BDD structure that are repeated but not 

shared For example, m F1gure 4 4( vzz) the structure beneath the zero branch of 

node b is identical to the structure beneath the zero branch of node d. In the ite 

method the zero branches of nodes b and d would be sharmg the same structure 

The difference of both techmques in the sub-node sharing property IS shown m Fig­

ure 4 9 Th1s property of the Component ConnectiOn Method m1ght lead to a very 

inefficient memory usage. The extension of the Component Connectwn Method 

introducing the sub-node sharing 1s presented m the Sub-node Shanng section of 

this chapter. 

4.5 Measures of Efficiency 

The order which gate inputs of a fault tree are considered to produce a gate 

BDD (top-down approach) or the order BDDs are considered for the combma­

twn (bottom-up approach) can have a crucml effect on the s1ze of the final BDD 

Therefore, effic1ency measures are defined in order to be able to compare the differ­

ent strategies proposed later m this chapter. Using the obtained information some 

indications of optimum selection schemes for the chosen method can be provided. 

The s~ze of the final BDD, m terms of the total number of nodes in the BDD, 

66 



Figure 4.9: Difference of the two techniques, the sub-node sharmg method 

is the most important measure of efficiency. Th1s measure helps to 1dent1fy how 

different conversiOn approaches increase the size of the BDD Despite the accuracy 

and the efficiency of the BDD method itself, sometimes the analysis of the sys­

tem still cannot be performed if the conversion process of fault trees to BDDs is 

time-consuming. Hence the computer run tzme, measured m seconds, is another 

important measure of effic1ency that is taken mto account. Also, 1f it IS reqmred, 

the computational time of qualitative and quantitative analyses can be taken into 

account. 

In some SituatiOns, where the size in terms of the number of nodes cannot be 

improved usmg a different strategy, the maxzmum requzred szze of array iS mea­

sured. Th1s number is the srze of the array reqmred m the constructiOn process 

It is different from the final s1ze of the BDD because along w1th the number of 

actual nodes of the BDD it also contains the number of nodes that were created 

during the conversion process but are not reqmred anymore. This measurement is 

particularly useful for the efficiency analys1s of the Hybnd method, presented later 

in this chapter. 

The order m wh1ch the elements are combmed to form the BDD must be selected 

so that all these measures are minim1sed as much as possible Ideally, the optimum 

selection scheme should enable a BDD of the smallest size, w1th a mimmum re-
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quired array size in the shortest time. Further research contams the mvest1gat10n 

of different approaches and orderings of elements m the BDD construction process. 

4.6 Selection Schemes in the Component Connec­

tion Method 

In order to convert a fault tree to a BDD by applying the Component ConnectiOn 

Algonthm presented, it is needed to know the 

• Traverse approach (top-down or bottom-up) 

• Order of bas1c events selectiOn 

• Order of m puts selection for the top-down techmque 

• Order of BDDs selection for the bottom-up technique 

The traverse approach, e1ther the top-down or the bottom-up method, can be 

chosen to build a BDD. Both strategies will g1ve the same final BDD as long as the 

ordering parameters selected remain consistent However, the b1g advantage of the 

bottom-up technique agamst the top-down is that a smaller memory resource IS 

reqmred This IS because w1th the bottom-up method the fault tree is investigated 

'm portwns', 1 e. bmldmg a BDD for the left-most gate m put is finished and 

simphfications applied before the investigatiOn of other inputs. In the top-down 

techmque the whole set of inputs for the top event IS connected and then every 

gate node 1s replaced, still trailing the rest of the structure until the last gate node 

IS replaced Th1s might have a crucial effect on big fault trees and even cause 

memory capac1ty problems. 

4.6.1 Order of Basic Events Selection 

4.6.1.1 Order as listed process 

The Simplest way to select basic events 1s to connect them according to the order 

that they appear in the list of gate mputs. This strategy IS easy to use because 

basic events can be connected in the same way as they are presented without using 

any processmg to determme the order of events for each gate. The BDDs for gates 

G2 and G3 m F1gure 4.3 or in Figure 4 4 were bml t using this rule. 
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4.6.1.2 Defined ordering 

Another way to select basic events is to use an ordenng scheme for the whole 

fault tree, which is determmed by traversing a fault tree in a chosen structured 

way If the ordering of basic events in the system is a < b < c < d .. , once the 

conversion process of a gate, which contains event inputs, to a BDD takes place, the 

nodes on the resulting BDD Will be considered accordmg to th1s ordenng, example 

m F1gure 4 10 The traverse of the BDD gives the ordering a < b < c. Eight 

F1gure 4.10: Example of ordered traversal of the tree structure 

ordenng schemes, some prevwusly considered m [5] for BDD construction using 

the ite method, w1ll be presented and the1r algonthms w11l be demonstrated on 

the example fault tree, shown in Figure 4.11. The eight ordering schemes are: 

1. Mod1fied top-down ordering 

2 Modified depth-first ordering 

3. Modified priority depth-first ordermg 

4. Depth-first, w1th number of leaves ordenng 

5. Non-dynamic top-down we1ghted ordermg 

6. Dynamic top-down we1ghted ordermg 

7. Bottom-up weighted ordermg 

8 Event cnt1cahty ordering 

The names and the algonthms of the ordering schemes are retained from the orig­

inal work. In th1s research the eight ordenng schemes were chosen to test d1fferent 

conversion techniques and give a range of results for the efficiency analysis. The 
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mod1fied methods (wh1ch give pnonty to repeated events in the ordering) were 

chosen because of the1r efficiency while convertmg fault trees to BDDs. These or­

dering approaches w1ll be demonstrated by applicatiOn to the fault tree shown in 

Figure 4.11 

F1gure 4.11: Example fault tree for d1fferent ordenngs 

4.6.1.2.1 Neighbourhood ordering schemes 

Neighbourhood ordering schemes are very commonly used. They order the van­

abies dunng a systematic traverse of the fault tree These schemes are likely to 

keep the neighbourhoods of the vanables, therefore, events appearmg close to­

gether in the fault tree structure are also close in the ordering and therefore m the 

BDD structure The first neighbourhood ordering heuristic to be presented was 

the depth-first ordering scheme, wh1ch was applied by Rauzy [2] m his mtroductory 

article on usmg the BDD technique for Fault Tree AnalysiS. Four neighbourhood 

schemes are presented below. 

1. Modified top-down ordering 

The top-down ordenng scheme IS the most Simple technique, ordermg the vari­

ables as they appear on a top-down, left-right traversal of the fault tree structure. 
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Basic events from the h1gher levels of the fault tree will be allocated ear her in the 

ordermg than those from the lower levels of the fault tree According to the mod­

Ified top-down scheme variables appearing on the same level of the fault tree are 

ordered accordmg to the1r total number of occurrences in the fault tree, allocating 

those with higher occurrence first If there is more than one event with an equal 

number of occurrences, then those events are ordered as they appear from left to 

nght on that level. Each variable is placed m the ordering the first time 1t appears 

durmg the traverse; subsequent occurrences are ignored. 

This method IS demonstrated by application to the example fault tree, shown 

in Figure 4.11. There are no events to order on the first two levels, so the ordering 

process starts on the third level F1ve bas1c events appear on this level, which con­

SideratiOn from left to nght 1s: c, b, a, f and d They need to be ordered accordmg 

to the1r number of occurrences m the fault tree. Events c, f and d appear the same 

number of times (three occurrences), therefore, they remam m the left to the nght 

order in wh1ch they are placed. In fact, events b and a both occur two t1mes m 

the fault tree, so they are ordered after the other three events in the left to right 

order. The partial ordenng for the th1rd level is: 

c<f<d<b<a (4 9) 

Level four is now considered and the only event appearing on this level that has 

not been ordered yet IS event e The ordenng then becomes 

c < f < d < b < a < e. ( 4.10) 

Level five is not considered, as all the events have already been placed in the or­

dering. 

2. Modified depth-first ordering 

Depth-first ordenng cons1ders the fault tree as being made up of many smaller 

subtrees, w1th each subtree ordered in a top-down left-right manner. The left­

most gate is always completely explored before cons1denng the remaming gate 

mputs, therefore, the lower levels of left-most subtrees are considered before higher 

levels of other subtrees. Any bas1c event inputs to a gate are ordered before the 

gate inputs According to the modified depth-first techmque the basic events w1th 

the greatest number of occurrences are ordered first, but 1f there are two or more 
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vanables with the same number of occurrences they are ordered as they appear 

from left to right in the structure. 

The ordermg scheme can be apphed to the example fault tree in Figure 4.11. 

Smce the top event has no event mputs, Its three gate inputs, Cl, C2 and C3, are 

investigated m turn. The leftmost gate Cl IS considered first Gate Cl has four 

event mputs so they are considered before gate input C4. Events c and f are the 

most repeated events (each appeanng three times), therefore they appear before 

b and a in the ordering, which both occur twice Event c IS ordered before f as 

it occurs leftmost m the hst of inputs and event b appears before a for the same 

reason. This gives the partial ordering 

c<f<b<a (4 11) 

Gate C4 IS considered next, which consists of three events, d, f and e Events d 

and e have not been ordered yet, whereas event f has. Event d appears a greater 

number of times (three occurrences) than event e (two occurrences) therefore, event 

d IS ordered before e This gives the final ordering: 

c < f < b < a < d < e. ( 4.12) 

All the events have been considered, so it is unnecessary to consider gates C2 and 

C3. 

3. Modified priority depth-first ordering 

The pnonty depth-first scheme is an extension to the basic depth-first ordenng, 

where rather than Simply ordermg the gate inputs from left to nght, any gates 

which have only basic events as inputs are given preference The modified versiOn 

of this method orders basic events accordmg to the number of occurrences, such 

that the most repeated event has a pnonty If there is more than one vanable 

with the same number of occurrences, then those variables with equal number of 

occurrences are ordered accordmg to their appearance in the fault tree. Events 

contmue to be considered before any gate mputs 

This ordering method can be apphed to the example fault tree (Figure 4.11) m 

a similar way to the modified depth-first scheme. The top event has no event 

inputs, so Its three gate mputs, Cl, C2 and C3, are considered m turn As gate 
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G2 has no gate mputs, it is explored first, i e. the gate inputs to the top event 

are considered in the order G2, G1 and G3 Gate G2 contams the events b, c and 

d. The most repeated events are c and d (three times), therefore they are ordered 

according to their appearance in the list of outputs. Th1s gives the ordering 

c<d<b (4 13) 

The subtree of the next gate G1 is explored. Its event inputs are considered before 

gate mput. It has two unordered event inputs a and f. They are placed in the 

ordering w1th f first, because th1s event appears the greater number of times (three 

occurrences) than event a (two occurrences) This results in the ordermg 

c<d<b<f<a (4 14) 

Then gate input G4 is investigated and the last unordered event e IS placed in the 

ordering, to give the final result: 

c < d < b < f < a < e. (4 15) 

All the events have now been cons1dered, therefore no remaming gates need to be 

mvest1gated 

4. Depth-first ordering, with number of leaves 

This scheme is an extension to the modified depth-first ordenng, w1th a d1fferent 

way of choosing the order m which gate mputs are considered. They are chosen 

accordmg to the number of 'leaves' beneath the gate 1tself The number of leaves of 

a gate is the total number of bas1c events occurring beneath that gate. The gates 

w1th the smallest number of leaves that have not yet been considered are ordered 

first. If there are at least two gates w1th the same number of leaves, the gate with 

the fewest ordered leaves is chosen earlier. If an order st1ll can not be decided, 

then the gates are s1mply ordered as they appear from left to right in the input 

hst. Events are ordered in the same way as in the modified depth-first method, 

thus the most repeated events are chosen first. Again, basic events are considered 

before any gate inputs 

This technique IS applied to the example fault tree shown m F1gure 4.11. The 

top event has no bas1c event mputs to order, so 1ts gate inputs G1, G2 and G3 are 

cons1dered in turn. The number of leaves, shown m Table 4 1, determines the order 
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Gl G2 G3 

Number of unordered leaves 7 3 5 

Number of ordered leaves 0 0 0 

Table 4 1: Number of ordered and unordered leaves of gates Gl, G2 and G3 

m which they are explored. Since G2 has the fewest number of unordered leaves, 

1t JS considered first, followed by G3, then Gl. G2 consists of three events b, c and 

d, which g1ves the partial ordering, followmg the rules of the mod1fied depth-first 

method 

c < d <b. (4 16) 

The subtree of the next gate, G3, IS now cons1dered Its only unconsidered event 

mput a 1s placed m the ordenng 

c < d < b <a. (4 17) 

Then 1ts only gate input G5 1s mvestigated. Since event d has already been ordered, 

the process is earned out on gate input G6. There are two unordered events e and 

f. Since event f occurs the greater number of times (three occurrences) compared 

to event e (two occurrences), event f is allocated before event e in the ordering· 

c < d < b < a < f < e. (4 18) 

Th1s concludes the ordering, so gate Gl is not examined. 

4.6.1.2.2 Weighted ordering schemes 

Weighted ordering schemes assign we1ghts to the events, wh1ch are then used to 

determine their position in the ordering These methods do not necessanly keep 

neighbourhoods m the same way as neighbourhood ordering schemes, so variables 

that appear together in the fault tree structure may not be close m the ordering. 

There are two categones of weighted ordenng schemes: topological schemes, wh1ch 

determme we1ghts according to the positions of the vanablPs in the fault tree, and 

schemes based on importance measures, which determme weights m a way that IS 

not dependent on the manner the fault tree IS written. Four we1ghted methods 

are presented below. Three of them are topolog1cal methods usmg opposite ends 
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of the fault tree to JmtJate the we1ghting process with non-dynamic and dynamic 

approaches to calculate the weights and one of them 1s based on the Birnbaum's 

structural importance measure 

5. Non-dynamic top-down weighted ordering 

The calculatiOn of the weights m th1s method starts by allocatmg a we1ght of 

1 0 to the top event and then distnbuting the weight at each gate equally between 

1ts inputs For the repeated events their corresponding we1ghts are added together 

After each basic event has been assigned a weight, the vanables are placed in or­

der of decreasmg weight. If two or more events have equal weights, the1r order is 

considered accordmg to their average level of appearance in the fault tree. The 

average level is worked out by summing the levels on which the event appears and 

d1viding this sum by the number of occurrences. Then the event that appears, on 

average, on the h1ghest level m the fault tree is allocated earlier m the ordering. If 

there is more than one event w1th the same charactenstic the most repeated event 

1s chosen. If the events still remain indistinguishable then they are ordered as they 

appeared in the mod1fied top-down ordermg 

Figure 4 12 shows the example fault tree from F1gure 4 11 w1th the ass1gned weights 

for every gate and event. 

Weights can be obtained for every vanable: 

a 1/15 + 1/6 = 7/30 = 42/180 

b - 1/15 + 1/9 = 8/45 = 32/180 

c - 1/15 + 1/9 + 1/36 = 37/180 

d - 1/45 + 1/9 + 1/12 = 39/180 

e - 1/45 + 1/36 = 9/180 

f - 1/15 + 1/45 + 1/36 = 21/180. 

(4.19) 

( 4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The events can now be ordered by decreasing weights. There are no events w1th 

equal weights, therefore the summed weights s1mply give the ordermg 

a<d<c<b<f<e (4 25) 

75 



I/36 I/36 1136 

Figure 4.12: Assigned weights for gates and events 

6. Dynamic top-down weighted ordering 

This method follows the same rules as m the non-dynamic top-down weighted 

scheme, but once an event has been allocated m the ordenng, it is removed from 

the fault tree by deleting all1ts occurrences. Using this modified fault tree, we1ghts 

are reassigned from the begmning. This results m the selectiOn of another event 

and the process continues until all events have been ordered Applymg the dynamic 

ordermg method means that in many cases neighbourmg events appear close m the 

final order 

Applying this method to the example fault tree gives the first set of weights as 

m the non-dynamic ordermg Th1s means that event a IS the first to be allocated 

m the ordenng. Then a IS removed from the fault tree to give the modified tree, 

wh1ch is shown in Figure 4 13. The new weights are. 
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-------------------------------------------------------------------

1/36 1/36 1/36 1/18 1/18 1/18 

F1gure 4.13: Mod1fied example fault tree after event a has been removed 

b - 1/12 + 1/9 = 7/36 (4.26) 

c 1/12 + 1/9 + 1/18 = 9/36 (4.27) 

d - 1/36 + 1/9 + 1/6 = 11/36 (4.28) 

e 1/36 + 1/18 = 3/36 (4.29) 

f - 1/12 + 1/36 + 1/18 = 6/36 (4.30) 

Event d has the largest weight value, so it 1s placed after event a m the ordenng. 

Continuing the same algonthm, event d is removed from the fault tree and further 

we1ghts calculated Th1s process is repeated until all events have been ordered. 

There were no situations with more than one vanable with the largest weight 

value, therefore events were Simply ordered according to the1r we1ght values. The 

final dynamic top-down weighted ordering is 

a<d<c<b<f<e ( 4.31) 

7. Bottom-up weighted ordering 

This techmque starts from the bottom of the fault tree, rather than the top and 

in effect calculates we1ghts for the gates, wh1ch are then used to determine the 

ordering in which they are cons1dered withm a depth-first exploratiOn F1rst of all, 

a weight of 1/2 IS assigned to each basic event. Then the weights of the gates are 
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combmed as 'probabiht1es' according to the type of the gate 

n 

'AND' gate: P(gate) = IT q., ( 4.32) 
t=l 

n 

'OR' gate: P(gate) = 1- IT (1- q,), ( 4.33) 
t=l 

where n is the number of mputs to the gate 

Once each of the mputs to the top event has been assigned weights, the tree is 

explored m the modified depth-first manner, considermg branches with the largest 

weight first If gates have the same weight then they are considered according to 

the percentage of repeated events below that gate. Th1s 1s calculated by summmg 

the number of repeated events and div1dmg by the total number of events below 

that gate. The gate w1th the highest percentage of repeated events is considered 

first. But 1f the percentage is the same for at least two gates they are considered 

from left to nght as they appear in the fault tree The events of each gate are 

ordered before the gate inputs are explored and are ordered accordmg to the high­

est number of occurrences in the fault tree If events occur the same number of 

times then they are simply ordered from left to nght as they appear in the input list. 

Th1s method can now be apphed to the example fault tree F1rst of all, every 

event 1s given a weight of 1/2 and so the weights of the gates are calculated fol­

lowing Equatwns 4 32 and 4.33 and presented in Table 4 2. The top event has 

Gate name Gate type Inputs 
Calculated 
gate weight 

Gl OR G4, c, b, a,f 1211128 

G2 OR b,c,d 7/8 

G3 OR G5,a 23/32 

G4 AND d,f, e 1/8 

G5 AND G6,d 7116 

G6 OR c, e,f 7/8 

Table 4 2: Weights for gates 

three gate inputs, G1, G2 and G3. They are considered m order of h1ghest we1ght 
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accordmg to Table 4 2. In th1s case 1t gives that those gates are explored m the 

same order as they appear in the list, i.e. G1, G2 and G3. Gate G1 has four event 

inputs and following the rules of the modified depth-first method gives the partial 

ordering: 

c<f<b<a. (4 34) 

Then gate mput G4 is exammed and two unordered events d and e are placed m 

the ordering. Event d goes first because 1ts number of occurrences is higher (three 

times) than the number of occurrences for event e (two t1mes). This giVeS the final 

ordenng: 

c < f < b < a < d < e. (4 35) 

The subtrees of gate G2 and G3 are not invest1gated because all the events have 

been ordered. 

8. Event criticality ordering 

This method applies the principle of Birnbaum's structural importance measure 

d1rectly to the fault tree. The contnbutwn of each basic event to the occurrence 

of the top event is calculated accordmg to 

I,= Q(1., 1/2)- Q(O., 1/2), (4 36) 

where 

Q(1., 1/2) is the top event probability with a fmlure probab1lity of 1 for element t 

and failure probabilities of 1/2 for the rema)mng components and 

Q(O., 1/2) 1s the top event probability w1th a fa1lure probab1lity of 0 for element t 

and failure probabilities of 1/2 for the remaining components 

The top event probability calculation for th1s method needs to be fast and approx­

imatiOns are acceptable as 1t is only used to fix the variable ordenng. As such all 

basic events and gates are assumed to be independent and the probabilities worked 

up through the fault tree. 

The selected bas1c event assumes the fmlure probabilities of 1 and 0 on two consec­

utive computations of the top event probability, w1th the remammg components 
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bemg gtven fmlure probabilities of 1/2. The result of the second traversal (wtth a 

fatlure probability 0) is subtracted from the first traversal (wtth fmlure probabil­

ity 1) to give Birnbaum's measure of tmportance for that component The basic 

events are ordered allocating those wtth a greater contribution before those wtth 

smaller contributions If two events have the same contribution, then the event 

wtth the htghest average level of occurrence is ordered first If the events have the 

same highest average level the most repeated event is selected first and tf they are 

sttll mdtstmguishable then they are simply ordered as they appear in the modified 

top-down ordering. 

Thts scheme can be applied to the example fault tree. The contnbutions are 

shown in Table 4 3. The events are placed in the ordering such that those wtth 

Probabthty of system Probability of system 
Contnbut10n to 

Event frulure With event failure With event 
system frulure 

failure probability I failure probability 0 

a 0875 0 341 0534 

b 0719 0480 0239 

c 0750 0459 0 291 

d 0894 0352 0542 

e 0625 0564 0061 

f 0656 0 526 0130 

Table 4 3: Calculated contnbutwns of every basic event to system fatlure 

larger contributions appear earlier than events with smaller contnbutions. The 

event criticality ordering is: 

d < a < c < b < f < e. (4 37) 

All etght ordering schemes can be used to select basic events for every gate m 

the top-down or bottom-up technique Dtfferent schemes wtll have a dtfferent 

effect on the efficiency measures. The netghbourhood schemes might be faster, 

because no spectal calculatwns are needed to be earned out as for the wetghted 

schemes. They may also require a smaller number of connections, because the 

neighbourhoods of events are kept However, the wetghted schemes might result m 

smaller BDDs, because the most Important events wtll appear on the htgh level of 
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a BDD. Therefore, the SimplificatiOn rules will be applied high m a BDD, which 

might result in a smaller BDD. All those assumptiOns will be tested later m this 

chapter. 

4.6.2 Order of Inputs Selection for the Top-Down Technique 

Before the connectiOn process m the top-down technique, gate inputs need to be 

selected m the order that they w1ll be connected to represent a BDD of a parent 

gate. For the bottom-up method this 1s not an issue, because every gate mput is 

analysed separately. 

4.6.2.1 Order as listed process 

The Simplest way is to connect gate inputs in the way that they appear m the fault 

tree This strategy was apphed m F1gure 4 3, when gate inputs for the construction 

process were considered m the top-down left-right manner 

4.6.2.2 Ordering event inputs before gate inputs 

Since the new construction method does not use sub-node sharmg, the replacement 

process, where new gate BDD structures are incorporated into the existing BDD, 

results m the duplications of structures which are connected to each 1 branch (for 

OR gates) or each 0 branch (for AND gates) The number of duplications can be 

mJmm1sed by placing bas1c events before gate events when considenng the mputs 

for any gate Compare two cases m F1gure 4.14 

In case ( z) the variable ordering is chosen to be a < G1, and during the replacement 

of the gate node no duplications occur, because there are no structures beneath 

the 1 branch of node G1 to repeat. In case ( zz) the variable ordering G1 < a results 

m the duplication of node a, because node a 1s a structure beneath the 1 branch 

of node G1, which is connected to the 1 branches after the replacement Case 

(zz) results in a bigger BDD The number of nodes in a BDD usmg the top-down 

scheme can be minimised by placing basic events prior to gate events m the BDD 

4.6.2.3 Ordering gate inputs according to the number of their event 

inputs 

The max1mum reqmred s1ze for the array can be minimised if gate inputs are se­

lected according to the1r number of basic events, selectmg the gate with the smallest 
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(•) 

(n) 

Figure 4.14: Process of to]}-down strategy, d1fferent ordenng 

number of bas1c events first. Compare two strategies for the example fault tree in 

F1gure 4.15. The first strategy considers gates G1 and then G2 in a way that they 

Figure 4.15· Example fault tree 

appear m the list of inputs, 1 e a< G1 < G2, F1gure 4.16. In th1s case the number 

of nodes in the BDD IS 10. For the second strategy the number of m puts IS taken 

mto cons1deratwn. Since gate G1 has more mputs than gate G2, it IS placed after 

G2, i e. a < G2 < G1, Figure 4 17. The number of nodes m the BDD is 9. 
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(•) 

0 

0 

(w) 

Figure 4 16· Ordering of mputs for the top event IS a < Gl < G2 

If there are no repeated events m the fault tree, this strategy always produces 

the smallest s1ze of the final BDD, as 1t was presented in this example. 

Even when the top gate has more than one level below 1t, followmg this rule 

mimmises the reqmred size for the array The maximum reqmred s1ze of array for 

all 6 d1fferent possible gate ordering strategies for the fault tree in Figure 4.18 IS 

presented m Table 4 4. 

The ordering, wh1ch results in the smallest reqmred size, IS Gl < G3 < G2, 

where gate events are placed according to their increasmg number of event m puts 
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0 

0 

(1) 

F1gure 4.17: Ordering of inputs for the top event is a < G2 < Gl 

4.6.3 Order of BDDs Selection for the Bottom-Up Tech­

mque 

In forming the BDD of a parent gate the BDDs of its input events are merged 

together, one at a time A deciSIOn needs to be made about the order in which 

BDDs, representing the gate inputs, will be merged m order to obtam the final 

BDD for a parent gate 

4.6.3.1 Order as listed process 

BDDs can be selected according to the order that gate mputs are listed, 1 e. the 

BDD, presentmg the left-most gate, IS set to be the main BDD. If a gate has any 

event m puts, their BDD is set to be the mam BDD to wh1ch the rest of the BDDs 
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Figure 4 18: Example fault tree 

Ordering Value 

G1 < G2 < G3 21 

G1 < G3 < G2 19 

G2 < G1 < G3 24 

G2 < G3 < G1 27 

G3 < G1 < G2 20 

G3 < G2 < G1 26 

Table 4.4 · Maximum required size for 6 different strategies 

are connected. An example Illustrating this strategy IS presented m Figure 4 4. 

4.6.3.2 According to a defined ordering of basic events 

The mam BDD can be chosen according to the position of the top node m the 

ordenng scheme of the whole system. Some situations are explamed below. 

1. The main BD D IS selected accordmg to the order of their root nodes If two 

BDDs need to connected and their top nodes are a and b respectively, the first 

BDD is set to be the mam BDD, If the ordering is a < b < c < d, (Figure 4 19) As 

can be seen from this example, the resultmg BDD does not necessarily preserve the 

same specified ordenng scheme throughout the BDD, i e. the final BDD ordering 

Isa<c<b<d. 

2. If there are two BDDs with the same root node the decision of which BDD 
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Figure 4 19: Example of two BDDs w1th d1fferent top nodes 

IS going to be the mam BDD is made according to the order of the nodes below on 

the 1 and 0 branches A BDD is set to be the main BDD if any of its descendant 

nodes appear as the earliest node m the ordering scheme. Th1s rule IS explamed by 

considenng the example in F1gure 4.20. Since the ordermg IS a < b < c < d < e, 

and c, the 'ear hest' node of the first BDD at the second level, IS after b, the 'earli­

est' node of the second BDD at the second level, therefore, the second BDD 1s set 

to be the mam BDD. Th1s rule can be applied to the lowest poss1ble level in the 

BDD until the choice about the ordering can be made. 

(MAIN) 

F1gure 4 20. Example of two BDDs with the same top and different descendants 

3. If there are two BDDs with the same 'earliest' node at the second level and one 

of them consists a node w1th a termmal vertex, the BDD w1th a terminal vertex is 

set to be the main BDD, as shown in Figure 4 21 

Th1s strategy keeps variables, which are close m the ordering scheme, close to­

gether m the BDD structure However, when a parent gate contains both event 
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0 

(MAIN) 

Figure 4 21: Example of two BDDs w1th some termmal vertices 

and gate inputs, 1t does not use the BDD of basic events as the mam BDD Th1s rule 

was highlighted to be efficient in the top-down approach, where event mputs were 

cons1dered before gate m puts, constructing a BDD for the parent gate This aspect 

can have a crucial effect on the size of the final BDD. Therefore, wh1le analysmg 

the efficiency of th1s strategy, an exception, that the BDD of basic events 1s set to 

be the main BDD regardless of 1ts top node label, w1ll be made. 

4.6.3.3 According to the number of available branches 

BDDs could be selected according to their number of available branches The 

number of nodes and the maximum size for the final BDD can be mmim1sed 1f a 

BDD with the smallest number of available branches (potent1al connectiOn pomts) 

IS set to be the main BDD, when the merging IS performed. For example, in Fig­

ure 4 22 the BDDs represent gate inputs to an 'OR' gate, the first BDD has two 

available 'OR' branches for connectiOn (two termmal 0 nodes) and the second has 

one Therefore, the second BDD IS chosen to be the main BDD, the final BDD has 

four nodes (the structure on the left) instead of six (the structure on the right) if 

the second BDD was set to be the main BDD. This rule also covers the previously 

mentioned case when a BDD of bas1c events IS set to be the mam BDD 1f the parent 

gate has some gate inputs. Analysing the efficiency th1s rule will result m not only 

the minimum size of array, but also the mmimum final BDD, 1f no repeated events 

appear in the system. 

All presented strategies will be mvestigated and efficiency measures o btamed in 

the next sectwn 
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F1gure 4 22: Example of connectwn process usmg the number of available branches 

4.6.4 Results 

Research has been earned out testmg all the presented strategies of selectmg gates, 

basiC events and BDDs in order to work out their relative advantages. A specific 

approach wJll work well on some fault trees and not on others It is the performance 

of an approach over the range of problems that 1t may encounter that should be 

established All algonthms are applied to a library of 265 coherent fault trees. 

Characteristics of test fault trees are shown in Tables A.l - A.6. The first column 

is a label to identify an example fault tree, then three followmg columns present 

the complexity of a fault tree in terms of the number of gates, the number of bas1c 

events and the number of repeated events. The fifth and the sixth columns show 

the results of the simplification process, presented in Chapter 2, i e. the number of 

complex events and the number of modules after the reduction and the modulan­

sation respectively The simplification process is applied in order to maximise the 

number of fault trees converted to BDDs because for some 'large' fault trees the 

conversiOn process of the original fault tree would be impossible The last column 

presents the number of mmimal cut sets. 
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Example fault trees are categorised as small fault trees (221 FTs) and 'large' fault 

trees (44 FTs) 'Large' fault trees are classified as those w1th a large number of 

m1mmal cut sets Also, h1gh complexity fault trees, 1.e. w1th a large number of 

gates and non-repeated bas1c events, are ranked as 'large' fault trees These two 

propert1es of fault trees result m a t1me consuming analysis process or even makes 

the analys1s Impossible m reasonable times. If results do not appear in 24 hours 

(86400s) the conversion process is terminated. It is 'large' fault trees which present 

the h1ghest degree of d1fficulty in the1r analysis. As such it is these fault trees which 

will really test the competence of any algonthm. 

A major part of 'large' example fault trees cons1sts of a benchmark of problems 

obtained from Rauzy [19], 1dent1fied by a star in the column of the FT name in 

the complexity Table A.6. 

During the analys1s every fault tree undergoes the BDD construction process. The 

first two parts of the results reported m this section examine merits of the top­

down and bottom-up techmques respectively. In those two tnals basic events are 

selected as hsted or accordmg to one of the eight ordering schemes Gates (top­

down approach) and BDDs (bottom-up approach) are chosen as listed The main 

difference between the two chosen tnals is the starting pomt (top or bottom) when 

traversmg a fault tree. Therefore, the companson of the two techmques gives an 

ind1cation of advantages and disadvantages of the two ways of traversing fault trees 

during the BDD conversion procedure The two efficiency measures, the number of 

nodes and the processing t1me, are calculated and analysed and then a comparison 

between the top-down and bottom-up techmques is made 

The 8 bas1c event ordenng schemes are ranked in order accordmg to the effec­

tiveness of the conversiOn process that they produce. In some methods '0' ordenng 

scheme is considered, where elements are considered in the order that they appear 

m the fault tree The performance of the schemes is assessed in three ways F1rstly, 

the sum of each charactenst1c measure 1s calculated over the whole set of test fault 

trees, for example, the time taken to build BDDs for the whole set of fault trees 

is obtamed. Secondly, the number of times that each scheme produces the highest 

(best) ranking 1s assessed. Finally, the average rankmg of each scheme across the 

set of fault trees is considered. These measures g1ve an md1cat10n of the overall 
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performance of the ordenng scheme The ordermg schemes are ranked for all the 

efficiency measures accordmg to the1r performance on small fault trees, 'large' fault 

trees and the whole set of fault trees Th1s IS done in order to be able to identify 

the 'optimum' ordering scheme for every method in each complexity category 1f 

one ex1sts 

4.6.4.1 Top-down technique 

Description Gates are selected as listed. BasiC events are selected as listed or 

accordmg to one of the eight ordering schemes. 

4.6.4.1.1 Summary results 

Summary details of test results for the fault trees are presented in Tables A 7 -

A 11, wh1ch show the number of nodes for small fault trees Table A 12 shows the 

number of nodes for the large fault trees. The time taken to perform calculations 

for small fault trees is shown m Tables A.13 - A.17, together w1th Table A.18 for 

the large fault trees The first column m all tables ident1fies the test fault tree, 

then the next 9 columns show the outcome of a particul?-r efficiency measure for 

9 different schemes, i e the 8 presented ordering schemes are extended along w1th 

the 'order as listed' strategy, called the 0 scheme The last column represents the 

best (mmimum) result over all ordenng schemes. 

Summanzmg these tables g1ves that the nme ordermg schemes gave 1dentJcal re­

sults in the number of nodes for 100 small fault trees (out of 221) and 8 'large' fault 

trees (out of 44). Out of them 74 small fault trees and 5 'large' fault trees were 

simplified so much that their representmg BDD contains only 1 node, therefore, 

the1r results w1ll not be taken mto account wh1le the concluswns are drawn For 

nme 'large' fault trees the computatiOns were not poss1ble in reasonable t1mes. 

4.6.4.1.2 Variable ordering for the top-down approach 

Analysis of the number of nodes m BDDs and processing time for 'small', 'large' 

and all example fault trees is presented in this section, applying the three ranking 

techniques of the ordenng schemes The result of the analysis IS shown m Table 4 5 

and Table 4 6 for the number of nodes and the processmg t1me respectively 

First of all, these results show that in almost all the cases any of the e1ght or-
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I I Scheme 0 1 2 3 4 5 6 7 8 

11 ~"" Number of nodes 99284 62117 66056 65807 62260 61165 61108 66673 63104 

0~ Rank 9 3 7 6 4 2 1 8 5 
~ m 

Number of FTs 
; 1ghest Wllh the highest 2 7B 67 69 77 BB 90 77 93 
~ pcheme rank 
~F""' 
~ Rank 9 4 8 7 5-6 3 2 5-6 1 

(/) I"'"" Added ranking 910 256 355 32B 294 213 233 302 227 
E~me Rank 9 4 8 7 5 1 3 6 2 f,n,,.., 

otal Number of nodes 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 
m ~antity 

Rank 9 5 7 8 6 1 3 2 4 Q) ankmc:i 
jg Number of FTs 
~ 1ghest With the highest 0 B 6 6 6 14 11 9 12 
0 f'home 2 rank 
m anklng 

Rank 9 5 5-7·8 5-7·8 5-7-8 1 3 4 2 0 

!l ~~ Added ranking 204 83 117 11B 99 60 70 9B 72 

anklna Rank 9 4 7 8 6 1 2 5 3 

""' Number of nodes 10727677 5714119 5890470 6067593 5776568 5423526 5614829 5595369 5700493 
~lly Rank 9 5 7 8 6 1 3 2 4 w ank1nci 

m Number of FTs m , Highest w1th the highest 2 B6 73 75 B3 102 101 86 105 
3 ''""" rank 
2 ank.mg 

Rank 8 7 6 2 
'i: 

9 4-5 3 4-5 1 

~. Added rank1ng 1114 339 472 446 393 273 303 400 299 

~kma Rank 9 4 8 7 5 1 3 6 2 

Table 4 5. Top-down method, number of nodes 

denng schemes can perform s1gmficantly better than the 'order as listed' method 

In other words, choosmg any of the defined ordering schemes in the top-down con­

nectwn method is more efficient than connectmg bas1c events in the order that 

they are hsted Therefore, the 'order as hsted' method 1s ranked last. 

Secondly, the ranking of the other eight ordenng schemes (1-8) depends on the 

efficiency measure and the rankmg techmque However, some general remarks can 

be made Accordmg to the number of nodes in the final BDD the best performance 

was obtained using the two top-down weighted schemes, (5) and (6), and the worst 

performance was obtained by the two mod1fied depth-first schemes, (2) and (3) 

It is qmte clear, that the four weighted ordering schemes (5-8) gave smaller BDDs 

than the four neighbourhood ordering schemes (1-4). Th1s can be a valuable result 

while choosing the ordering schemes. 

Finally, for the processing time the event cnticality scheme (8) and the non­

dynamiC top-down weighted scheme (5) were ranked high because they resulted 

in a fast converswn process The two mod1fied depth-first schemes, (2) and (3), 

performed poorly, however, the distinction in the effiCiency between the we1ghted 

and neighbourhood schemes was still present but not as marked as for the number 
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Scheme 0 1 2 3 4 5 6 7 8 

oU>J ome 1770 1502 11 91 1114 957 10 38 916 1047 9 07 

m ~a:~ Rank 9 B 7 6 3 4 2 5 1 
~ 

Number of FTs "' ~ rghest !wtth the highest 5 11 3 4 6 8 7 8 11 al cl'leme rank :: ankmg 
Rank 7 1·2 9 B 6 3-4 5 3-4 1·2 " c\5 ddod Added ranking 525 510 401 416 434 534 428 410 397 

'"""" ~''"" 
Rank B 7 2 4 6 9 5 3 1 

ooaJ I me 42521 221 73 21764 22537 25215 17310 23495 20410 180 54 

!~= Rank 9 5 4 6 B 1 7 3 2 
Number of FTs 

:!: 19hest w1th the h1ghest 5 11 3 4 6 8 7 8 11 al cheme rank 
;ranking 

Rank 7 1·2 9 B 6 3-4 5 3·4 1·2 
~ dded Added ranking 165 89 114 110 117 90 102 99 78 ~,home 

lankma Rank 9 2 7 6 B 3 5 4 1 

oU>J ome 44291 23675 229 55 23651 261 72 183 48 24411 21457 189 61 l,oamtty 
Rank 9 6 4 5 8 1 7 3 2 VI anklnci 

~ Number of FTs g H19hast !with the highest 49 51 65 65 63 40 57 74 71 3 chgme rank .! ankmg 
Rank 8 7 3-4 3-4 5 9 6 1 2 

~ Added rankmg 690 ~ 599 515 526 551 624 530 509 475 

ranklnq Rank 9 8 3 5 7 4 6 2 1 

Table 4 6. Top-down method, processmg time 

of nodes 

4.6.4.2 Bottom-up technique 

Description. BDDs are selected as listed. Bas1c events are selected as listed or 

accordmg to one of the eight ordenng schemes. 

4.6.4.2.1 Summary results 

Summary deta1ls of test fault trees are presented m Tables A.19 - A 23, wh1ch 

show the number of nodes for small fault trees and Table A.24 shows the number 

of nodes for 'large' fault trees Tables A 25 - A 29 show time taken to perform 

calculatwns for small fault trees and Table A 30 show time for 'large' fault trees 

The representation of results 1s the same as for the top-down strategy 

4.6.4.2.2 Variable ordering for the bottom-up approach 

Analysis of the number of nodes m BDDs and processing time for 'small', 'large' 

and all example fault trees is presented in th1s sectwn, applymg the three rankmg 

techmques of the ordermg schemes The result of the analys1s is shown m Table 4. 7 

and Table 4.8. 
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Scheme 0 1 2 3 4 5 6 7 8 

""' Number of nodes 99284 62117 66056 65807 62260 61165 61108 66673 63104 
~~rutty Rank 9 3 7 6 4 2 1 8 5 m ankln0 

" ~ Number of FTs 

~ 
1ghest wtlh the highest 2 78 67 69 77 BB 90 77 93 

f<h.me 
~~., 

rank 
jij 

Rank 9 4 8 7 5-6 3 2 5-6 1 E 
(f) 

~ Added ranking 910 256 355 328 294 213 233 302 227 

faokloo Rank 9 4 8 7 5 1 3 6 2 

"" Number of nodes 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 
~ = Rank 9 5 7 8 6 1 3 2 4 ! 

~1ghest 
Number of FTs 

~ 
With the highest 0 8 6 6 6 14 11 9 12 E<-· rnok 

" "'""' Rank 9 6-7·8 6-7·8 6-7-8 3 2 
§ 

5 1 4 

~ Added ranking 204 83 117 118 99 60 70 98 72 

faokl"'l Rank 9 4 7 8 6 1 2 5 3 

olal Number of nodes 10727677 5714119 5890470 6067593 snssea 5423526 5614829 5595369 5700493 
~ollty 

Rank 9 5 7 8 6 1 3 2 4 m ank1ng'_ 

" Number of FTs " ~~ .. with the highest 2 86 73 75 83 102 101 86 105 

~ rank ~-ao~., 
Rank 9 4-5 8 7 6 2 3 4-5 1 

" f"dded Added ranking 1114 339 472 446 393 273 303 400 299 
oheme 
an king- Rank 9 4 8 7 5 1 3 6 2 

Table 4 7 Bottom-up method, number of nodes 

Similarly to the top-down approach, these results show that m almost all the cases 

any of the eight ordenng schemes can perform significantly better than the 'order as 

listed' method. The rankmg of the other e1ght ordenng schemes (1-8) according to 

the number of nodes is the same as the rankmg of the top-down techmque, because 

the number of nodes obtamed IS the same m the two approaches The smallest 

BDDs were obtamed using the two top-down weighted schemes, (5) and (6), and 

the largest BDDs were resulted m usmg the two modified depth-first schemes, (2) 

and (3) 

For the processing time the event cnticality scheme (8) was ranked h1gh and the 

two modified depth-first schemes, (2) and (3), performed poorly. However, the 

overall ranking of the eight ordering schemes was dependent on the set of fault 

trees and the ranking technique chosen, therefore, no further conduswns on the 

smtab1hty of the ordenng schemes can be drawn. 

4.6.4.3 Comparison of top-down and bottom-up technique 

The total summary of the performance parameters for both the top-down and the 

bottom-up methods during the conversion of 121 small fault trees and 27 'large' 
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Scheme 0 1 2 3 4 5 6 7 8 

otaJ Number of nodes 99284 62117 66056 65807 62260 61165 61108 66673 63104 
~lily 

Rank 9 3 7 6 4 2 1 8 5 m ankmg 

~ Number of FTs 
...... 1ghest w1th the highest 2 7B 67 69 77 BB 90 77 93 
~ fcheme rank :: ankmg .. Rank 9 4 8 7 5-6 3 2 5-6 1 E 
</) 

~·- Added rankmg 910 256 355 32B 294 213 233 302 227 
1"-· Rank 9 4 8 7 5 1 3 6 2 """'"'' otaJ Number of nodes 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 

~ """'lty 
Rank 9 5 7 8 6 1 3 2 4 ID ank1rn:i 

ID 
Number of FTs " ~ 1ghest Wlth the highest 0 B 6 6 6 14 11 9 12 

~ cheme rank 
; anklng 

Rank 9 5 6-7-8 6-7-8 6-7-8 1 3 4 2 ~ 

~~ Added ranking 204 83 117 11B 99 60 70 9B 72 

hmkiO<! Rank 9 4 7 8 6 1 2 5 3 

otaJ Number of nodes 107276n 5714119 5890470 6067593 5776568 5423526 5614829 5595369 5700493 f-Illy 
Rank 9 5 7 8 6 1 3 2 4 (/) ankmci 

ID Number of FTs 
~ !Qhsst with the highest 2 B6 73 75 B3 102 101 B6 105 
3 chama 

~-... rank 
<'! Rank 9 4-5 8 7 6 2 3 4-5 1 -< 
~=Q Added ranking 1114 339 472 446 393 273 303 400 299 

ankl~ Rank 9 4 8 7 5 1 3 6 2 

Table 4 8 Bottom-up method, processmg time 

fault trees to BDDs is presented m Table 4.9 and Table 4 10 

Efficiency 0 I 2 3 4 5 6 7 8 
measure scheme scheme scheme scheme scheme scheme scheme scheme scheme 

Number of nodes 
for the top-down 99284 62117 66056 65807 62260 61165 61108 66673 63104 

approach 
Number of nodes 
for the bottom-up 99284 62117 66056 65807 62260 61165 61108 66673 63104 

approach 
Tune for the top-

1770 15 02 1191 11 14 9 57 10 38 9 16 1047 907 down approach 
Tune for the 
bottom-up 3 13 3 30 2 78 2 86 2 60 3 01 309 2 61 2 77 
approach 

Table 4 9: Total summary of the top-down and the bottom-up technique for 'small' 

fault trees 

Accordmg to these results it is clear that the number of nodes in the final BDD 

for every example fault tree does not depend on the constructiOn method. In both 

tnals basic events are connected in a BDD chain in the same manner and gates or 

BDDs are selected m the same order Therefore, despite the fact that the top-down 

and the bottom-up approaches apply a different traversal of a fault tree, they both 

are expected to give the same final structure for a BDD. 
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Effictcncy 0 1 2 3 4 5 6 7 8 
measure <;cheme scheme <;cheme <;cheme <;cheme <;eh erne <;cheme <;cheme <;cheme 
Number 
of node~ 
for the 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 

top-down 
approach 
Number 
of nodes 
for the 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 

bottom-up 
approach 
lime for 
the top-

425 21 221 73 217 64 225 37 252 15 173 1 234 95 2041 180 54 
down 

approach 
Ttmcfor 

the 
269 79 11884 125 93 137 6 21215 122 72 135 31 117 58 125 74 

bottom-up 
approach 

Table 4.10: Total summary of the top-down and the bottom-up techmque for 'large' 

fault trees 

However, using the bottom-up techmque converts fault trees to BDDs faster than 

applying the top-down approach. The slower process for the latter techmque can 

be explained by a higher usage of memory resources When the BD D for the parent 

gate 1s constructed, the nodes beneath the reqmred branch are reconnected every 

time after the replacement of a gate node m the structure. 

Therefore, the top-down approach IS dtscarded and further developments of the 

bottom-up method are presented. Since the etght ordering schemes resulted in 

smaller number of nodes m BDDs and shorter time of calculatiOns than in the case 

of 'order as hsted' manner (0 scheme), 1t IS expected that further mvestigations 

of the bottom-up techmque usmg the eight ordenng schemes can give even better 

effictency. 

4.6.4.4 Bottom-up technique, chosen trials 

4.6.4.4.1 Introduction 

After the top-down scheme was discarded because of its meffiCJent usage of mem­

ory, further mvestJgatwns were earned out on other strategies usmg the bottom-up 

technique. The purpose was to test dtfferent ways that BDDs can be selected dur­

mg the connection process The values of effictency measures, such as number of 

nodes and processing time, were calculated and the ordering schemes were ranked. 
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In the first trial, whose results were presented and compared with the top-down 

technique, basic events are ordered according to one of the 9 ordering schemes but 

BDDs are selected as hsted, 1.e. a BDD which represents the first input of a gate 

m a hst of inputs is chosen to be the main BDD. 

In the second tnal the ordering schemes are used not only to order basic events 

but also to choose the order that BDDs are considered in the connectiOn process 

The deta1led description of th1s strategy was presented earlier in th1s chapter. 

In the third trial BDDs are merged accordmg to the number of pomts at wh1ch the 

BDDs are combmed. Intuitively, this trial should be effic1ent, since the minimal 

number of points should be a good cnteria for choosing the mam BDD during the 

connection process The ordering schemes are still applied for the selection of bas1c 

events but not for the selection of BDDs. Results of this method are also presented 

in this sectwn. 

The companson of the three techniques is performed usmg the results of 'large' 

fault trees only since their compleXIty allows a reasonable test of each method. The 

ordering schemes are ranked in the same way as it was performed m the previous 

section, 1 e the three different ranking techniques are apphed. 

4.6.4.4.2 First trial 

Description. Selectwn of BDDs is 'order as listed', as presented in SectiOn 

4.6.3.1. SelectiOn of bas1c events is accordmg to one of the nine ordering schemes 

There were 44 'large' fault trees analysed. The analysis of 9 fault trees from th1s 

set was not poss1ble m reasonable times, and for 5 examples the simplification pro­

cess was so effic1ent that the final BDD contams only 1 node. So, those fault trees 

were not considered m the analysis For the remaming 30 'large' fault trees results 

were presented m Table A.24 and Table A 30 for number of nodes and processing 

time respectively The result of the analysis IS shown m Table 4 11 and Table 4 12, 

which is a part of the results presented m Section 4.6.4.2.2. 

For all 'large' fault trees considering the number of nodes and the processmg t1me 

any of the eight ordering schemes performed Significantly better than the 'order 
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Scheme 0 1 2 3 4 5 6 7 8 

otaJ Number of nodes 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 

~~ Rank 9 5 7 8 6 1 3 2 4 
w 

Number of FTs " J.i1ghest 

~ 
Wllh the highest 0 B 6 6 6 14 11 9 12 

f<t.eme rank 
m ankmg 
E' Rank 9 5 6-7-8 6-7·8 6-7·8 1 3 4 2 
."l 
~~. dded ranking 204 83 117 118 99 60 70 98 72 

~kll'l(l Rank 9 4 7 8 6 1 2 5 3 

Table 4 11: Bottom-up method, first trial, number of nodes 

Scheme 0 1 2 3 4 5 6 7 8 

"" 1me 26979 118 84 125 93 137 60 21215 12272 135 31 117 58 12574 
~mlty 

Rank 9 2 5 7 8 3 6 1 4 :fi ankmg 
m 

Number of FTs " "' ighest w1th the highest 4 9 6 9 10 ' 8 5 8 
~ ohomo 2 ankmg rank 
w 
E' Rank 9 2-3 6-7 2·3 1 6-7 4-5 8 4-5 
~ 
-' "'"" Added ranking 145 71 110 98 92 83 89 100 82 

"'"'"'' Rank 9 1 8 6 5 3 4 7 2 
~"'"' 

Table 4 12 Bottom-up method, first trial, processing time 

as listed' method. For the number of nodes the non-dynamic top-down weighted 

scheme (5) performed best and the two modified depth-first schemes, (2) and (3), 

came last. Overall, the four weighted schemes (5-8) resulted in smaller BDDs than 

the four neighbourhood schemes (1-4) For the processing time the rankmg of the 

ordering schemes was dependent on the ranking method. However, the modified 

top-down ordermg scheme (1) gave good results and was ranked high using all three 

ranking methods. The distinction between the efficiency of the type of ordering 

scheme was mmor and no further conclusions could be drawn. 

4.6.4.4.3 Second trial 

Description. Selection of BDDs IS accordmg to the ordermg of their top nodes, 

as presented in Section 4.6.3.2. Selection of basic events is according to one of the 

e1ght ordermg schemes 

Summary details of test results for the fault trees are presented in Tables A 31 

and A 32 for the number of nodes and the processmg t1me respectively As it was 

obtained in the first trial, the eight ordenng schemes gave identical results in the 

number of nodes for 5 'large' fault trees (out of 44), 1 e BDDs of 1 node were pro-
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duced For 9 'large' fault trees the computatiOns were not poss1ble m reasonable 

times Therefore, those fault trees are not taken into cons1deratwn wh1le ranking 

the ordering schemes. The 'order as hsted' technique is not apphed because every 

step m th1s method requires a defined ordermg. 

The result of the analysis for the 30 'large' fault trees IS shown in Table 4 13 

and Table 4.14 for the number of nodes and processing t1me respectively 

Scheme 0 1 2 3 4 5 6 7 8 

""'' Number of nodes NIA 8214468 20477527 18103597 5924252 3577896 5783722 6755913 3449351 
uantity 

Rank NIA r.n rSnk1nO 6 8 7 4 2 3 5 1 m 
m 

Number of FTs , 
"' 1ghest with the highest NIA 2 3 3 3 B 7 1 19 0 ohome -"! ank1ng rank 

"' i? Rank NIA 7 4-5-6 4-5-6 4-5-6 2 3 8 1 
.'l dded !Added ranklng NIA 115 133 126 116 77 94 142 56 

":~,"'"" rankln!l Rank NIA 4 7 6 5 2 3 8 1 

Table 4.13: Bottom-up method, second tnal, number of nodes 

Scheme 0 1 2 3 4 5 6 7 8 

"" Time N/A 180 97 26717 141 94 120 88 5915 10373 16045 266 78 
f!uaotlty 

Rank NIA 6 8 4 3 1 2 5 7 (/)~king 
m 
m 

Number of FTs .. 
H1ghest 

~ 
w1th the highest N/A 5 5 3 B 4 4 5 11 

ch&me 
ankmg n~nk 

m 

~ Rank NIA 3-4-5 3-4-5 8 2 6-7 6-7 3-4-5 1 
~ '""' Added rank1ng N/A B7 90 105 83 75 BB 102 55 

ohoo" 
Rank NIA 4 6 8 3 2 5 7 1 

Table 4 14: Bottom-up method, second tnal, processing t1me 

For the number of nodes the event cnt1cality scheme (8) performed well together 

with the two top-down weighted schemes, (5) and (6) The two modified depth­

first schemes, (2) and (3), resulted in a lot larger BDDs and came last. For the 

processmg time the rankmg of the ordenng schemes was dependent on the ranking 

method However, the main pattern of the rankmg 1s sim1lar to the one for the 

number of nodes 

4.6.4.4.4 Third trial 

Description SelectiOn of BDDs is accordmg to the number of connectwn points 

ava!lable, presented in Section 4.6.3.3. Selection of bas1c events IS accordmg to 

one of the nme ordermg schemes 
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Summary details of test results for the fault trees are presented m Tables A 33 

and A 34 for the number of nodes and the processing t1me respectively As it was 

obtamed m the two prevwus trials, all the ordering schemes gave identical results 

in the number of nodes for 5 'large' fault trees (out of 44), i.e. BDDs of 1 node 

were produced For 9 'large' fault trees the computations were not possible m rea­

sonable t1mes. Therefore, 30 'large' fault trees are taken into consideratiOn while 

rankmg the ordering schemes 

The result of the analysis is shown m Table 4 15 and Table 4.16 for the num­

ber of nodes and processing t1me respectively. 

Scheme 0 1 2 3 4 5 6 7 8 

""" Number of nodes 12518644 4972154 5515658 5466903 5650688 5148732 4992002 4870866 5375739 

'"'"' :g anki~;;' Rank 9 2 7 6 8 4 3 1 5 

" Number of FTs ~ L1ghest Wtth the highest 0 12 8 9 9 15 9 11 9 ~ rs;;t.eme rank 
"; ankmg 

~~~d 
Rank 9 2 8 4-5-6-7 4-5-6-7 1 4-5-6-7 3 4-5-6-7 

dded ranking 200 71 96 88 97 61 79 83 97 

~= Rank 9 2 6 5 7·8 1 3 4 7·8 

Table 4 15 Bottom-up method, third trial, number of nodes 

Scheme 0 1 2 3 4 5 6 7 8 

""" Number of nodes 12518644 4972154 5515658 5466903 5650688 5148732 4992002 4870866 5375739 

Ul raun~~z Rank 9 2 7 6 8 4 3 1 5 
" " ~~mber of FTs ; ~lghest lth the highest 0 12 8 9 9 15 9 11 9 
~ cheme rank ; ankmg 

1ij Rank 9 2 8 4-5-6-7 4-5·6-7 1 4-5-6-7 3 4-5-6-7 
-' ddod deled rank1ng 200 71 96 88 97 61 79 83 97 

cheme 
Rank 9 2 6 5 1·8 1 3 4 1·8 

Table 4 16· Bottom-up method, third trial, processmg time 

As 1t was observed previously, any of the e1ght ordenng schemes performed better 

than the 'order as hsted' approach. The modified top-down scheme (1) and the 

non-dynamic top-down weighted scheme (5) performed well accordmg to the two 

measurements, i e. the number of nodes and the processing time. The depth-first 

with number of leaves ordermg scheme (4) gave the worst performance because it 

resulted in larger BDDs m a longer processing t1me than the majonty of the e1ght 

ordermg schemes (1-8) 
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4.6.4.4.5 Comparison of the bottom-up techniques 

The three trials were compared and concluswns were drawn, takmg into account 

the total number of nodes and the total processmg time. Results are presented m 

Table 4.17 and Table 4.18. 

Strateov\scheme 0 1 2 3 4 5 6 7 8 
Ftrst tnal 10628393 5652002 5824414 6001786 5714308 5362361 5553721 5528696 5637389 
Second tnal N/A 8214468 20477527 18103597 5924252 3577896 5783722 6755913 3449351 
1Th1rd tnal 1251864 4972154 5515658 5466903 5650688 5148732 4992002 4870866 5375739 

Table 4.17: Bottom-up, comparison of the three trials, total number of nodes, 

'large' fault trees 

Strateov\scheme 0 1 2 3 4 5 6 7 8 

Ftrst tnal 425 21 221 73 217 64 22537 25215 173 1 234 95 204 1 180 54 
Second tnal N/A 180 97 26717 141 94 120 88 5915 103 73 16045 266 78 
Th1rd tnal 298 21 81 19 90 98 93 84 105 21 97 7 83 35 83 58 102 25 

Table 4.18 Bottom-up, companson of the three tnals, total processing time, 'large' 

fault trees 

The third trial of the bottom-up strategy approach gave the best result. The 

total number of nodes m BD Ds using the third tnal was smaller than the total 

number of BDDs from the first trial using the eight ordering schemes (1-8). Only 

using the 'order as listed' scheme (0) the total number of nodes was larger than 

in the first trial. However, the 'order as listed' scheme (0) was not ranked highly 

for any of the trials, so this result can be discounted. The total processmg t1me 

was shorter for the third trial than for the first tnal usmg all mne ordenng schemes 

Also, the th1rd tnal was more efficient than the second method for most of the 

ordenng schemes. Only for the non-dynamic top-down we1ghted scheme (5) and 

the event criticality scheme (8) the total number of nodes usmg the th1rd tnal 

was larger than the total number of nodes using the second method. Th1s can im­

prove the efficiency of the bottom-up technique, especially when the two ordenng 

schemes (5) and (8) were highly ranked for the bottom-up techmque The total 

processing time was shorter for the third trial than the second tnal for every or­

dermg scheme, except scheme 5 Those results make the th1rd tnal the best optiOn 

for the bottom-up approach 
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Companng the first and the second trials, 1t gave different results for the two 

efficiency measurements The first trial resulted in the smaller total number of 

nodes than the second trial for almost every ordenng scheme Agam, only for 

the non-dynamic top-down weighted scheme (5) and the event cnt1cahty scheme 

(8) the total number of nodes was smaller using the second tnal rather than the 

first tnal. For the total processmg t1me the second tnal performed better than the 

first trial, i.e. 1t resulted in a shorter total processing time of the converswn process. 

Summansmg the bottom-up approach method, the third trial that uses the se­

lection of BDDs according to the number of connection points ava1lable and the 

selectiOn of bas1c events according to one of the nme ordering schemes, IS the most 

efficient method out of all proposed approaches m th1s work The h1ghly ranked 

ordering schemes were the non-dynam1c top-down we1ghted scheme (5) and the 

modified top-down scheme ( 1). Using the ranking from the prevwus section the 

worst performance was obtamed by the 'order as listed' scheme (0) 

The efficiency of this new approach w1ll be compared w1th other current BDD 

conversion techmques. Therefore, in the next section the Component Connection 

Method, usmg the third trial of the bottom-up approach, w1ll be compared w1th the 

well-known BDD conversiOn techmque, called the ite method, that was established 

by Rauzy [2] and was presented in Chapter 3 

4. 7 Comparison Between the Component Connec­

tion and the ite method 

Smce the third attempt of the bottom-up techmque gave the best performance 1t 

will be compared w1th the ite method using the number of nodes and the process­

mg t1me, as metncs to JUdge the efficiency of the two methods 

Results of the number of nodes and the processmg t1me for the ite method for 

'large' fault trees are presented m Table A 35 and Table A.36 The variable order­

mg IS required for the construction method, therefore, there are no results for the 

0 scheme The BDD conversion process was performed for all 44 'large' fault trees. 

Only for 1 example fault tree m one ordering scheme the computations were not 

poss1ble m reasonable times and for 5 fault trees the eight ordenng schemes gave 
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the same result. 

The ranking results for 38 'large' fault trees are shown in Table 4 19 and Ta­

ble 4.20 according to the number of nodes and the processing time respectively. 

Scheme 1 2 3 4 5 6 7 8 
otal Number of nodes 2176461 722103 718377 572428 2464680 675169 715325 1619301 
""'''Y Rank 7 5 4 1 8 2 3 6 m anklnQ 

" Number of FTs "' HrgheS1 

~ eh erne 
!wrth the htghest 1 2 6 5 4 11 6 9 

anktng rank 

" "' Rank 8 7 3-4 5 6 1 3-4 2 
j Addod iAdded ranking 214 147 131 152 162 111 168 147 

scheme 
anktnQ Rank 8 3-4 2 5 6 1 7 3-4 

Table 4.19 ite method, number of nodes 

Scheme 1 2 3 4 5 6 7 8 

0"' Time 15602 82 1776 48 1764 99 1832 96 21710 86 2012 57 1839 74 11092 22 
~uantrty 

Rank 7 2 1 3 8 5 4 6 :g ankmci 

~ Number of FTs 

" 
Htghest wrth the hrghest 7 8 10 13 7 14 7 8 

~ 
cheme rank 

"' 
anktng 

~ Rank 6-7-8 5 3 2 6-7-8 1 6-7-8 4 
i"'ddGd Added rankmg 186 134 128 120 166 113 157 156 

cheme 
anklnQ Rank 8 4 3 2 7 1 6 5 

Table 4 20: ite method, processmg t1me 

The dynamic top-down weighted scheme (6) gave good results for both measure­

ments and was ranked high. Add1t10nally accordmg to the processing time the 

modified priority depth-first scheme (3) performed well The worst performance 

was achieved wh1le using the mod1fied top-down scheme (1) and the non-dynam1c 

top-down weighted scheme (5) There is no clear md1cat10n of which ordering 

schemes are most efficient. 

The total number of nodes of the 'large' fault trees, that were converted to BDDs 

usmg both the ite method and the Component Connection Method, was compared 

for the eight ordenng schemes in Table 4 21 

The total number of nodes is a lot smaller for the ite method than for the Compo­

nent ConnectiOn Method. Also, usmg the ite method the analys1s of the complete 
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Strateav\scheme 1 2 3 4 5 6 7 8 
lte method 94996 92843 73205 38500 55259 110687 76790 33042 
Connectron method 4972154 5515658 5466903 5650688 514873 4992002 4870866 5375739 

Table 4 21: Comparison Between the ite and the Component Connection Method, 

total number of nodes 

set of fault trees was performed, whereas calculatwns for 9 trees usmg the Com­

ponent Connection Method were not posstble in reasonable t1mes. The biggest 

dtsadvantage of the Component Connection Method is that of the inefficient mem­

ory usage, where parts of a BDD are repeated but not shared. 

The comparison in the total processing time for 'large' fault trees is shown in 

Table 4 22. The ite method resulted in a shorter fault tree conversion process. 

Strategy\scheme 1 2 3 4 5 6 7 8 
ite method 207 94 71 34 7000 102 84 294 5719 116 88 3819 
Connectron method 81 19 90 98 93 84 105 21 97 7C 83 35 83 58 102 25 

Table 4.22 Comparison Between the 1te and the Component Connection Method, 

total processmg t1me 

However, there were some cases where the Component Connection Method has 

produced better results than the ite method, for example, in the modtfied top­

down scheme (1) or the bottom-up wetghted scheme (7). If those ordenng schemes 

were chosen to bmld BDDs for example fault trees using the Component Connec­

tion Method, a faster process would be obtained. This is only a mmor advantage 

of th1s method, because 1f the number of nodes was critical for the analysts none 

of the eight ordering schemes performed better using the Component Connectwn 

Method than m the ite method 

In summary, the Component Connectwn Method produced significantly bigger 

BDDs than the ite method. For some examples the calculations were not even 

fimshed m reasonable t1mes. This approach has a htgh demand for memory space 

since the tdenttcal parts m the BDD structure are repeated but not shared. There­

fore, further investigations are carried out and the apphcatwn of the sub-node 

shanng technique is mtroduced in the Component ConnectiOn Method 
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4.8 Sub-node Sharing 

Usmg the Component Connection Method there are some parts in the final BDD 

structure, wh1ch are ident1cal. This causes an mefficient memory usage. The sub­

node sharing w1ll be introduced during the combining of two gates, i e. all available 

branches would pomt to the same structure, mstead of makmg a separate copy for 

each of them. However, smce after the connectiOn proce&s the SimplificatiOn IS 

applied 1f repeated events appear m the structure, there are some defined rules 

that need to be followed in order to achieve the effective connection process. 

4.8.1 Presentation of the Sub-node Sharing in Component 

Connection Method 

The sub-node shanng can be implemented dunng the connectiOn of two BDDs, as 

1t is illustrated in Figure 4.23. In th1s example the left BDD is set to be the mam 

a F1 

F4 

Figure 4 23 The process of sub-node sharing 

BDD. There are two ava1lable pomts, i e two termmal vertices 1, that can share 

the same copy of the second BDD 

This connectwn IS always smtable if there are no repeated events m a fault tree. 

Otherw1se, this implementatiOn can cause ambiguous Situations wh1ch reqmre fur­

ther processmg. For example, consider the example in F1gure 4.24. If the second 

appearance of an element can be reached traversmg both branches of the first 

occurrence of an element, it is descnbed as an ambiguous s1tuatwn Element a 

IS repeated The second appearance of element a (node F 4) can be reached by 
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F1gure 4.24: An ambiguous situation in a structure 

traversmg the 1 branch of the first appearance of element a (node F1) and by 

traversmg the 0 branch of node Fl. This situation is inconsistent dunng the sim­

plification process. 

In order to av01d amb1guous situatwns, they need to be 1dent1fied before the con­

nection process takes place. To do th1s, for every connection point that will be used 

in the connection process a vector of states of repeated events 1s reqmred Those 

alternative states, that can have a value 1, 0 or -1, define 1f a repeated event was 

v1sited on a path from the root node to the avmlable point and on which branch of 

the first occurrence of the repeated event was traversed. So, the states 1 and 0 mean 

that a path includes the repeated event on its 1 and 0 branch respectively, and the 

state -1 describes the situation that the repeated event is not mcluded in th1s path. 

The sub-node sharing rule is: 

If paths to two avazlable connectwn pomts of the mam BDD have the same record 

of repeated events, 1 e the same states of repeated events are obtamed, the same 

copy of the second BDD can be connected to both of the two ava!lable branches 

The connection algorithm wh1ch considers the sub-node shanng 1s shown in Fig­

ure 4.25. In the representation of this algonthm array A( 1) contams records of 

states for every repeated event throughout the whole system (not only those be­

tween two BDDs that are to be connected'), because ambiguous s1tuatwns can 

appear during the later connections Only 1f there are no more connectwns to 

proceed, i e. the last connection is calculated, repeated events between two BDDs 

(instead of the whole system) can be cons1dered ApplicatiOn of the algorithm IS 
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connection( node F, branch b, node G) 

I 

} 

If ( (b= I) and (F= I)) /* mputs of an AND gate are considered *I 
or ((b=O) and (F=O)) /*inputs of an OR gate are constdered */ 

I 

else 

If(computatiOn_table has entry I array lA(!), R}}) 
return R, 

else 
/*create a connectiOn*/ 
F=eopy(G); 
Snnpbfy(F, A(1)); 
msert_m_computatiOn_table array lA(!), F) 

If (F->node) IS repeated 
adjust A(1), 

/*traverse further* I 
connection(F->left, b, G), 
connecllon(F->nght, b, G); 

Figure 4.25: Connection algorithm usmg the sub-node sharing 

presented for an example in Figure 4 26. Two BDDs, presented in Figure 4 26, 

are to be connected, where the first BDD is chosen to be the main BDD Smce 

those two BDDs represent two gate inputs of an 'OR' gate, the second BDD will 

be connected on every ava1lable 0 branch of the main BDD, i e to the 0 branches 

of nodes F1, F2 and F3 Since the only repeated event in the example fault tree 

is event 'a', array A(t) w1ll contam only one element A(O) 

The connection process starts from the root node F1, event 'a'. The first available 

vertex 0 IS reached on the nght of node F1, traversmg the 0 branch of 'a', there­

fore, A(O) = 0. The second BDD IS connected, as shown Figure 4 26(n) Then 

the s1mphfications are applied and an entry (0, 0) IS included in the computational 

table, i e the 0 branch of the repeated event 'a' was traversed and the terminal 

vertex 0 was retamed after the connection and simplification process Then the 

second avmlable vertex 0 is reached on the right branch of node F2, traversing 

the 1 branch of node F1, therefore, th1s vertex holds a value A(O) = 1. Since m 

the computatiOnal table there is no input w1th a value A(O) = 1, a new copy of 

the second BDD 1s created. Then 1t IS connected to the available vertex m Fig­

ure 4.26(m), and s1mphfications are applied An entry (1, F7) IS mcluded in the 
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F3 

(u) 

F! a 
(m) 

0 

F7 

0 

Figure 4.26: ApplicatiOn of the algonthm 

computational table Finally, the last available vertex 0 IS visited and the record 

(1, F7) from the computational table 1s used, smce this vertex contains the same 

value A(O) = 1, Figure 4 26(w) The connection process is finished 

The efficiency of the sub-node sharing technique m the Component ConnectiOn 

Method was shown by applymg this techmque to the library of 'large' fault trees. 

4.8.2 Comparison Between the ite and the Component Con­

nection Method Using the Sub-node Sharing 

After the sub-node sharing procedure was mtroduced in the Component Connec­

tiOn method (the bottom-up approach, the third trial), the algorithm was applied 
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to the same library of 'large' fault trees. Then this method was compared w1th the 

ite method using the two main efficiency measures - the number of nodes and the 

processing time 

Results of the number of nodes and the processmg time for the Component Con­

nectiOn method w1th sub-node sharing property convertmg 'large' fault trees were 

presented m Table A 37 and m Table A 38. 44 'large' fault trees were investigated. 

As 1t was obtamed m the Component Connection Method before applying the 

sub-node sharing, for 9 fault trees the process was not fimshed in reasonable times. 

5 fault trees were simplified a lot, so that the final BDD contamed only 1 node. 

Therefore, 30 fault trees were analysed. Some of the results were pubhshed in [21]. 

The ranking results are shown in Table 4 23 and Table 4.24 for the number of 

nodes and processmg t1me respectively 

Scheme 0 1 2 3 4 5 6 7 8 
otal Number of nodes 8958795 3787943 4526422 4458395 4262936 4023426 3824815 3972504 4046246 

""'"" ~ ankmci Rank 9 1 8 7 6 4 2 3 5 
w 

Number of FTs l= 
~ rghest jwtth the highest 0 12 8 9 10 14 8 11 9 
~ sch_ernt 
; ankmg rank 

~ Rank 9 2 7-8 5-6 4 1 7-8 3 5-6 
-' ddod Added rankmg 196 66 96 89 92 62 81 87 88 

'"""" anklna Rank 9 2 8 6 7 1 3 4 5 

Table 4.23: Component ConnectiOn Method with sub-node sharing, number of 

nodes 

Scheme 0 1 2 3 4 5 6 7 8 
otal Trme 3205 40 110564 1081 30 109237 1126 38 1163 28 116415 1118 70 131241 
uantrty 

~ ankrrni Rank 9 3 1 2 5 6 7 4 8 
m 

Number of FTs " '§ rghest jwrth the highest 6 11 8 7 5 7 9 8 6 
~ 

cheme 

"'"" m ankrng 

e> 
m 

Rank 7·8 1 3-4 5-6 9 5-6 2 3-4 1·8 
-' ddod Added ranking 151 86 83 101 115 102 109 99 114 

ohemo 
nkii'Wl Rank 9 2 1 4 8 5 6 3 7 

Table 4 24· Component ConnectiOn Method with sub-node sharing, processing 

t1me 

The ranking results are s1m1lar to the ones usmg the Component Connection 

Method before mtroducmg the sub-node sharmg FJTSt of all, any of the eight 
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ordenng schemes (1-8) performed better than the 'order as hsted' scheme The 

modified top-down scheme (1) as well as the non-dynamic top-down weighted 

scheme (5) performed well and was ranked high. For the number of nodes the 

two modified depth-first schemes, (2) and (3), gave worst results However, for the 

processing time those two schemes gave a good performance. The depth-first w1th 

number of leaves ordermg scheme ( 4) performed poorly and was ranked low This 

repeats the pattern of the ranking in the Component Connection Method w1thout 

the sub-node shanng 

The companson of the ite techmque and the Component Connection Method with 

sub-node sharmg IS shown in Table 4 25 The total number of nodes m final BDDs 

Strateqy\scheme 1 2 3 4 5 6 7 8 
lte technique 94996 92843 73205 38500 55259 110687 76790 33042 
Component Connection 3787943 4526422 4458395 4262936 4023426 3824815 3972504 4046246 
Method 

Table 4.25· Comparison between the ite and the Component Connection Method 

w1th sub-node sharing, total number of nodes 

using the Component Connectwn method was remarkably greater than using the 

ite method, desp1te the fact that the sub-node sharing optiOn was introduced 

However, introducing the sub-node sharing in the Component Connection Method 

has decreased the number of nodes, as shown in Table 4 26. 

Strategy\scheme 0 1 2 3 4 5 6 7 8 
Component 
Connection 
Method Without 12518644 4972154 5515658 5466903 5650688 5148732 4992002 4870866 5375739 
the Sub-node 
shannQ 
Component 
Connect1on 
Method w1th the 8958795 3787943 4526422 4458395 4262936 4023426 3824815 3972504 4046246 
Sub-node 
sharmg 

Table 4.26: Comparison between the Component Connection Method without the 

Sub-node sharing and with the Sub-node sharing, total number of nodes 

The comparison of the Component Connection Method and the ite techmque is 

shown in Table 4 27. The total processmg time for converting large fault trees to 

BDDs using the Component ConnectiOn Method was greater than usmg the ite 

method. Also, mtroducing the sub-node shanng in the Component Connectwn 
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Strateqy\scheme 1 2 3 4 5 6 7 8 

lte technrque 207 94 71 34 70 00 102 64 2944 5719 116 88 3819 
Component Connectron 

1105 64 1081 3 1092 37 112638 116328 116415 1118 7 131241 
Me1hod 

Table 4.27: Comparison Between the 1te and the Component ConnectiOn Method 

with sub-node sharing, total processing t1me 

Method has mcreased the processing ttme, as shown in Table 4 28 It can be ex­

plained by the fact, that parts of a BDD suitable for the sub-node sharmg need to 

be identified and this takes some extra processing time. 

Strategyl,scheme 0 1 2 3 4 5 6 7 8 
Component 
Conneclron 
Method wrthout 29821 8119 9098 93 84 105 21 977 83 35 83 58 102 25 
the Sub-node 
shannq 
Component 
Connectron 
Method wrth the 3205 40 110564 1081 3 1092 37 1126 38 116328 116415 1118 7 131241 
Sub-node 
sharrnq 

Table 4 28: Comparison between the Component Connection Method without the 

Sub-node shanng and w1th the Sub-node sharmg, processing time 

Summarismg, the sub-node sharing in the Component Connectwn Method reduced 

the number of nodes in the final BDD. However, there was st1ll the same number 

of unfimshed fault trees like it was in the Component Connection Method without 

th1s property. Also, the processing time increased after the sub-node shanng was 

introduced in the method. It was shown that th1s extenswn of the method has not 

made it as efficient as the ite method and further development that would combine 

the two methods 1s required. 

4.9 Hybrid method 

The Hybnd method combines the best features of the two constructiOn methods 

of BDDs, the ite method, presented in Chapter 3 and the Component ConnectiOn 

Method, presented earlier in th1s chapter. The new method incorporates the most 

efficient parts of both algonthms. The results in the previous section showed that 

• m the Component Connection Method usmg the gate constructs for ba­

sic events and branches w1thout repeated events BDDs can be immediately 
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formed without any of the pre-processmg time requued by the ite method 

• in the ite technique the sub-node sharing feature provides an efficient repre­

sentation of the logiC functmn. 

Therefore, a new algorithm has been created based on the effective features of each 

algorithm to obtain the most overall efficient approach. 

In the sections presented previously, using the Component Connection Method 

does not require a variable ordering However, smce the new approach also uses 

the ite method a vanable ordering needs to be introduced from the start of the 

process. This then produces ordered BDDs, wh1ch can be ut1lised m the ite tech­

mque. 

4.9.1 Presentation of the Method 

Rule 1 

Fust of all, a variable ordering needs to be established which w1ll be used when 

applymg the rules of both methods. Then gates contammg event m puts only can 

be cons1dered In this situation events are put m a cham according to the type of 

the gate, applying the rules of the Component ConnectiOn Method. For example, 

if a gate 1s an 'AND' gate the nodes representing its basic events are connected to 

each other through the 1 branch of the node Respectively, if a gate IS an 'OR' 

gate the nodes representing its bas1c events are connected to each other through 

the 0 branch of the node. This construction process can be applied regardless of 

the number of events into a gate w1thout breakmg them down into pairs. This is 

reqmred m the ite technique because 1t deals only w1th two ite structures at once. 

The variable ordenng is retained while puttmg basic events m a chain. This rule 

for the two types of gate is presented in F1gure 4.27. 

Rule 2 

When considering gates of the fault tree which do not contain any repeated bas1c 

events - and so only bas1c events which occur once in the fault tree structure are 

considered - the straightforward connection can also be applied. However, the van­

able ordenng needs to be taken into consideration, since it needs to be retamed for 
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Figure 4 27: BDDs for gates contammg event inputs only 

the further stages of connection where ite rules might be applied 1\vo possib1ht1es 

are suggested. 

• The merging of the two BDDs can be applied only if all the events of the main 

BDD are before the events of the secondary BDD in the vanable ordenng 

• The BDDs can be merged w1thout considering the variable ordering and then 

nodes must be swapped to retain the ordered BDD. 

The first option is presPntPd m F1gure 4 28, where the left-most BDD is set to 

be the main BDD. The vanable ordering IS a < b < c < d. The events in the 

main BDD are before the events m the secondary BDD, therefore the BDDs can 

be connected m the straightforward way. 

a<b<c<d -

F1gure 4 28: The straightforward connectiOn of two BDDs, no reordering 

In the second approach the vanable ordermg is not initially considered during the 

connectiOn process, but mterchanging some nodes is reqmred afterwards m order 

to retam the variable ordering The reordenng of ordered BDDs [20]1s presented 
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in Figure 4 29. The ongmal ordenng is y < z < w < x, F1gure 4.29(i) The new 

variable ordermg is set to be x < y < z < w. Accordmg to it, nodes w1th vanable 

x, that appear on the bottom of the BDD, need to be removed to the top of the 

BDD. F1rst of all, vanable xis swapped with vanable z on the 1 branch of variable 

y and w1th vanable w on the 0 branch of variable y. Variables are exchanged 

together with the swap of theJr terminal functwns, F1gure 4.29(il) The second 

swap involves the exchange of variables y and x and the swap of the1r terminal 

function, Figure 4.29(iil) The rule IS deduced by applying the distnbutive laws to 

the expression of function r/J. 

r/J = y(z(x· !1 +x· fz) +z(x· h +x· j4)) + 
y(w(x · fs + x · !6) + w(x · h + x · fs)) 

y(x(z· !1 +z· fa) +x(z· fz +z· j4)) + 
y(x(w · fs + w ·h)+ x(w · !6 + w · fs)) 

- x(y(z· !J +z· fa) +y(w · fs +w ·h))+ 

x(y(z · Jz + z · !4) + y(w · !6 + w ·Is)) 

An example is shown m F1gure 4 30. 

(!) 

/ 

(m) 

Figure 4 29: Reordermg BDDs 
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F1gure 4.30: The straightforward connection of two BDDs, w1th reordermg 

Rule 3 

Wh1le bmlding the BDD for gates w1th repeated events, the ite constructiOn rules 

are applied The Hybrid method can be demonstrated by constructmg a BDD for 

the fault tree shown m Figure 4 31 

F1rst of all, the vanable ordenng needs to be introduced, a < b < c < g < 
d < e < f < h. Then the gates with event inputs only are mvestigated and 'AND' 

and 'OR' chains for gates Gl, G2, G4 and G5 constructed, shown m F1gure 4 32 

After that gate G3 is mvestigated There IS only one repeated event in the fault 

tree, a, but it does not appear as an input for gate G3. Therefore, the straight­

forward connection can be applied for this part of the fault tree The left-most 

BDD is set to be the main BDD Smce not all its elements are before the elements 

of the secondary BDD m the ordermg scheme, the second solution of rule 2 needs 

to be applied, 1 e the secondary BDD is attached on the 0 branches of the main 

BDD and then nodes are reordered. The connection is shown m F1gure 4 33 Now 

considering the Top gate, again, the left-most BDD IS set to be the mam BDD, the 
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F1gure 4 31: Example of fault tree 

F1gure 4 32. BDDs for gates with event inputs only 

F1gure 4 33· BDDs for a gate with no repeated events, node swap applied 

secondary BDD 1s that for gate 02. These two BDDs contain the repeated event, 
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therefore, they are merged usmg the ite rules, i e 

G1· G2 - ite(a, 1, ite(b, 1, 0)) · ite(a, 1, ite(c, 1, 0)) 

ite(a, 1,ite(b,ite(c, 1,0),0)) 

(4.39) 

The final step contains connection of the BDD of gate G3 onto the BDD obtained 

for G1 and G2. This can be performed applymg the first rule The BDD of gate 

G3 IS connected to all the available '1' branches of the main BDD The resulting 

BDD is pictured m F1gure 4 34. 

0 

Figure 4 34: Final BDD for fault tree shown m F1gure 4.31 

4.9.2 Comparison Between the ite and the Hybrid Method 

The Hybrid method was applied to the library of large fault trees, using the 8 

ordenng schemes for the variables, presented earlier Two variat10ns of the Hybrid 

method were used. The first variation, called the Bas1c Hybnd method, cons1sted 

of usmg rule 1 for gates with event inputs only and rule 3 for all other gates The 

second variat10n, called the Advanced Hybnd method, used all three rules as de­

scribed in the previous sect10n. Then the Hybrid method (Bas1c and Advanced) 

was compared w1th the anginal ite method, usmg the three efficiency measures, 

the number of nodes, the maximum reqmred s1ze of the array and the processing 

time. 
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The companson between the Basic Hybrid method and the ite method was done 

using the hbrary of 44 'large' example fault trees used in the previous analysis. 

However, the efficiency of the Advanced Hybnd method was analysed usmg a set 

of small fault trees. This is because rule 2 apphed in the Advanced Hybnd method 

only comes mto use 1f the factonsation (the method m the reductiOn technique) on 

fault trees is not apphed. If 'large' fault trees from the example hbrary were not 

reduced (and not factonsed) the calculations of some fault trees became impossi­

ble in reasonable times. Therefore, while comparing the Basic Hybrid method and 

the Advanced Hybrid method a set of smaller fault trees, that did not need to be 

reduced, was used in order to show the efficiency of the two techmques Some of 

the results were published in [22], [23] 

4.9.2.1 Comparison between the Basic Hybrid method and the ite tech­

nique 

The number of nodes m the resulting BDDs was the same using the Hybrid (Bas1c 

or Advanced) method and the ite technique. Th1s IS because the Hybrid method 

expresses the structure function of a fault tree in terms of a BDD in the same 

way as 1t does the ite techmque. Therefore, the rankmg of the ordenng schemes 

according to the number of nodes for the ite method is shown m Table 4.19 and 

1t is the same for the Hybnd method. 

Processing t1mes for large fault trees using the ite technique and the Basic Hy­

brid method are presented in Table A 36 and Table A 39 Smce the number of 

nodes was the same for the ite technique and the Hybnd method and no further 

analysis could be earned out, another efficiency measure, i e maximum reqmred 

s1ze of array, was applied Results of the maximum required s1ze are presented in 

Table A 40 and Table A 41 for the ite technique and the Basic Hybnd method 

respectively. 

The rankmg results are shown in Table 4 29 and Table 4.30 for the processmg 

t1me and the maximum reqmred s1ze respectively 

The efficient process was obtained usmg the dynamic top-down weighted scheme 

(6) as well as the two depth-first ordering schemes, (3) and ( 4) The slowest process 

resulting in a large s1ze of array was obtamed using the mod1fied top-down scheme 

(1) The rankmg results match the results for the ite technique (SectiOn 4. 7.) 

117 



Scheme 1 2 3 4 5 6 7 8 

otaJ T1me 15783 83 1773 32 1760 93 1808 42 21760 04 196618 1840 76 1179872 
uantrty 

Rank "' ankmO 7 2 1 3 8 5 4 6 
"' "' Number of FTs ... 

Highest 

~ 
With the highest 4 6 8 15 6 16 6 11 

cheme rank 

"' 
ankmg 

E" 
"' 

Rank 8 5-6-7 4 2 5-6-7 1 5-6-7 3 
-' Added Added rankmg 189 143 134 114 165 101 157 154 

cheme 
anklnQ Rank 8 4 3 2 7 1 6 5 

Table 4 29 Basic Hybrid method, processing time 

Scheme 1 2 3 4 5 6 7 8 

otal Maximum required s1ze 2186898 735938 731472 603274 2472127 696889 736031 1624807 

"'"' ~ ankmQ Rank 7 4 3 1 8 2 5 6 

~ Number of FTs 
~ H1ghest w1th the highest 1 2 6 5 4 12 5 9 ~ ohem 
~ ankmg rank 

" E" Rank 
"' 

8 7 3 4-5 6 1 4·5 2 
-' fdded Added rankmg 210 150 135 154 160 106 172 146 

ohem 

"'~"' 
Rank 8 4 2 5 6 1 7 3 

Table 4 30 Bas1c Hybnd method, mruomum s1ze of array 

The comparison of the two techmques according to the processmg t1me IS shown m 

Table 4.31. This table shows that the Basic Hybnd method has slightly improved 

StrateQy\scheme 1 2 3 4 5 6 7 8 
lte method 15602 8 1776 48 1764 99 1832 96 2171086 2012 57 183974 11092 2 
bas1c hvbnd method 15783 83 1773 32 1760 93 1808 42 21760 04 196618 1840 76 117987 

Table 4 31 Companson of the two techniques, processmg time, 'large' fault trees 

the processmg t1me for some ordering schemes, but for some ordenng schemes the 

processmg t1me was longer In general, the Bas1c Hybnd method resulted in a 

comparable length of analysis process. 

The comparison of the two techmques according to the maximum array size IS 

shown in Table 4.32. Th1s table shows that the maximum reqmred size of the 

array has decreased usmg the Bas1c Hybnd method The decrease m the maxi­

mum reqmred size (and the processing t1me) can be explamed by a more efficient 

conversion process in the Basic Hybrid method, where gates containing only event 

m puts do not need to be broken down to contain only two inputs Those gates can 

be directly converted to a BDD accordmg to the type of the gate However, for 
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Strateav\scheme 1 2 3 4 5 6 7 8 
lte method 2177226 737808 733349 605039 2473927 705358 735930 1579836 
bas1c hvbnd method 2186898 735938 731472 603274 2472127 696889 736031 162480 

Table 4.32 Companson of the two techmques, maximum reqmred s1ze, 'large' fault 

trees 

some ordermg schemes the maximum reqmred size has increased. Th1s can be a 

consequence of th1s straightforward connectwn. If a pair of events, which appear 

in the BDD built directly from more than two events, also appear somewhere else 

in the fault tree, an add1twnal ite structure is reqmred Th1s can happen because 

in the Basic Hybrid method gates are not broken down to contain only two inputs 

and a reqmred ite structure for a pa1r of events does not exist. In the ite method 

every gate has only two inputs and every ite structure for a pair of bas1c events is 

kept m memory and can be reused when required. 

The companson results of the two techniques usmg the maximum reqmred ar­

ray are similar to the results usmg the processing time. Therefore, 1t can be 

concluded that the Basic Hybrid method resulted in a shorter process for some 

ordermg schemes because there were fewer calculations to perform and a smaller 

s1ze of the array was required. 

4.9.2.2 Comparison between the Basic Hybrid Method and the Ad­

vanced Hybrid method 

As it was sa1d before, the efficiency of the Advanced Hybnd method is more no­

ticeable 1f fault trees are not reduced, therefore, a set of small fault trees is used, 

that do not need to be reduced. The complexity of the small fault trees used in 

this part of the analysis was shown m Tables A.l-A.5. 

The results of the number of nodes for small fault trees are shown m Tables A.42-

A.45. The number of nodes in the resulting BDDs was the same using the Basic 

Hybrid method and the Advanced Hybnd technique, because both techmques al­

low the structure functwn of a fault tree to be expressed m terms of a BDD m 

the same way The results of processing time and maximum reqmrcd s1ze for small 

fault trees using the Bas1c Hybnd Method are shown m Tables A 46 - A.53. The 

ranking results in the Bas1c Hybnd method for the processmg t1me and the maxi­

mum required s1ze are shown m Table 4 33 and Table 4.34 
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Scheme 1 2 3 4 5 6 7 8 

otal T1me 73 97 101 39 103 05 106 16 86 27 96 18 116 15 84 92 
uant1 

oo ankln Rank 1 5 6 7 3 4 8 2 
Q) 

' ~ Number of FTs 

~ 
H1ghest w1th the highest 141 3 1 93 6 14 9 12 
chem rank ankmg 

'fij 
Rank 1 7 8 2 6 3 5 4 E 

(/) Added Added rankmg 342 924 1016 457 876 978 1038 815 
chem 
ankmg Rank 1 5 7 2 4 6 8 3 

Table 4 33 Basic Hybnd method, small fault trees, processing time 

Scheme 1 2 3 4 5 6 7 8 
otal 
uant 

Max1mum requ1red s1ze 121644 141061 137387 151249 106811 112716 141690 105958 

(/) ankrn Rank 4 6 5 8 2 3 7 1 
Q) 

~ Number of FTs 
"S 

Highest ~1th the highest 17 44 35 43 30 68 37 47 
chem .l'! ankmg rank 

'" Rank 8 3 6 4 7 1 5 2 E 
(/) Added Added rankmg 1035 905 872 798 841 642 925 790 

chem 
anklng Rank 8 6 5 3 4 1 7 2 

Table 4.34 Bas1c Hybnd method, small fault trees, maximum size of array 

The rankings are different for the two efficiency measurements. The modified top­

down scheme (1) resulted faster process than any other ordenng scheme but 1t 

gave poor results for the max1mum reqmred s1ze The dynamic top-down we1ghted 

scheme (6} and the event criticality scheme (8} gave good results accordmg to the 

maximum required s1ze but resulted in average results for the processing time 

The results of processing time and maximum required size for small fault trees 

usmg the Advanced Hybnd Method are shown m Tables A.54 - A 61. The ranking 

results m the Advanced Hybnd method for the processmg time and the maximum 

required size are shown m Table 4.35 and Table 4.36. 

The rankings are very similar to the ones for the Bas1c Hybnd method 

The companson of the two techmques accordmg to the processmg t1me IS shown 

m Table 4 37 The comparison shows that the conversiOn process using the Ad­

vanced Hybnd method took longer than using the Basic Hybrid method. Th1s 

result was expected because of the node swap rule (rule 2} applied m the Ad-
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Scheme 1 2 3 4 5 6 7 8 

otal T1me 80 37 107 72 109 42 117 48 9262 101 23 121 9 92 92 
~~ant Rank 1 5 6 7 2 4 8 3 r.n fankma 

" " Number of FTs " 
~ 

Highest w1th the highest 137 4 4 80 13 3 10 10 
cheme rank ankrng 

'" Rank 1 6-7 6-7 2 3 8 4·5 4-5 E 
(/) f"dded Added ranking 344 917 956 576 858 860 991 862 

chem 
ankmg Rank 1 6 7 2 3 4 8 5 

Table 4 35: Advanced Hybnd method, small fault trees, processmg time 

Scheme 1 2 3 4 5 6 7 8 

otal Max1mum requ1red s1ze 121248 140429 136972 150647 106399 112216 140708 105668 
uant 

VJ ank1n Rank 4 6 5 8 2 3 7 1 

" jg Number of FTs 
'§ Highest wrth the highest 16 43 36 43 31 66 39 46 
~ 

eh em rank ankmg 

'" Rank 8 3 6 4 7 1 5 2 E 
(/) Added Added rankmg 1050 909 882 799 849 646 893 793 

chem 
rankmg Rank 8 7 5 3 4 1 6 2 

Table 4 36 Advanced Hybrid method, small fault trees, maximum Size of array 

vanced Hybrid method The ordenng of nodes was not taken mto account during 

the process, therefore, the ordenng of nodes in the BDD was adjusted by swappmg 

nodes around that reqmred additiOnal processmg time. 

The comparison of the two techmques accordmg to the maximum required size 

IS shown m Table 4 38. The comparison shows that using the Advanced Hybrid 

method decreased the maximum reqmred size for all ordermgs Despite the fact 

that the node swap was performed, the maximum required size was smaller than 

in the Basic Hybrid method 

Overall, the Hybrid method (Basic or Advanced) gave shghtly better results than 

the ite method, where it resulted in a more eflicwnt process of conversion This 

was due to the fact that the Hybnd method (Basrc or Advanced) apphed more 

'straightforward' connectrons than in the ite technique where all connections were 

done usmg the ite rule for each parr of events Whrle comparing the two types of 

the Hybrid method, the Advanced Hybnd method, which allowed the node swap, 

gave a slightly better performance than the Basic Advanced method The max-
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StrateQylscheme 1 2 3 4 5 6 7 8 
bas1c hybnd method 7397 101 39 103 05 106 16 86 27 9618 116 15 84 92 
advanced hybnd method 8037 107 72 109 42 117 48 92 62 101 23 121 9 92 92 

Table 4.37: Comparison of the two techmques, processmg t1me, 'small' fault trees 

Strategylscheme 1 2 3 4 5 6 7 8 
bas1c hybnd method 121644 141061 137387 151249 1 06811 112716 141690 105958 
advanced hybnd method 121248 140429 136972 150647 106399 1122t 6 140708 105668 

Table 4 38: Companson of the two techniques, maximum required size, 'small' 

fault trees 

imum required size of array was decreased usmg the Advanced Hybrid method 

instead of the Basic Hybrid method. However, this was true only for small fault 

trees that have not been reduced m order to test the Advanced Hybnd method. 

In terms of the ordering rankmg, the dynamic top-down scheme (6) and the event 

criticality scheme (8) performed very well, 1t gave the best result for the two mea­

surements (the number of nodes and the maximum required size). For the process­

ing time the modified top-down scheme (1) performed its best, but 1t gave poor 

results for the other two measurements 

4.10 Summary 

This chapter presents an alternative techmque by wh1ch fault trees are converted 

to BOOs. The new Component Connection Method combines gate structures ac­

cordmg to the1r types and apphes Simphficatwn rules 1f repeated events appear in 

the structure. Example fault trees have been used and the results for a number of 

different connection strategies were compared. Number of nodes, processmg time 

and the maximum reqmred size were used as efficiency measures. 

• Top-down and bottom-up approaches were introduced and analysed. It has 

been shown that the bottom-up technique converted fault trees to BOOs 

faster than the top-down approach. The slower process for the latter tech­

nique can be explained by a higher requirement of memory resources. There­

fore, the top-down approach was discarded and further developments of the 

bottom-up method were presented 
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• Three tnals of the bottom-up technique were presented, mcorporatmg 8 or­

denng schemes for basic events and three different rules for the way of the 

connection of two BDDs dunng the bmldmg process The connectiOn tech­

niques were 'as listed' method, accordmg to the ordenng of the root vertex 

techmque and according to the number of connectwn points in the structure 

method. The th1rd tnal (accordmg to the number of connection points) gave 

the best results and could be used as an efficient strategy m the Component 

Connection Method presented. 

• It has been shown that the Component ConnectiOn Method has a high de­

mand for memory space since the identical parts in the BD D structure are 

repeated but not shared. Even after the sub-node shanng mtroductwn in the 

Component ConnectiOn Method, It was shown that as a general fault tree to 

BDD converswn technique the ite method was to perform a lot better than 

the proposed method 

• The Hybrid method, which combines the ite method and the Component 

Connection Method, was developed mtroducmg some additional converswn 

rules The Basic Hybrid Method and the Advanced Hybnd Method were 

analysed It has been shown that the Hybnd method (Basic and Advanced) 

compares w1th the ite method well and can provide an efficient alternative 

tool for constructmg BDDs for fault trees The Advanced Hybnd method 

has a slight advantage over the Basic Hybrid method, especially m the size 

of the structure. 

• Any of the eight ordenng schemes used performed s1gmficantly better in any 

of the analysed construction meth'Ods than the 'order as listed' method that 

considers basic events m the way that they appear m the list. The four 

weighted ordering schemes, (5-8), resulted in a more efficient process in the 

majonty of the methods than the four neighbourhood ordenng schemes, (1-

4). Accordmg to the results for the particular set of example fault trees, there 

were some indications that the two top-down weighted schemes, (5) and (6), 

were favourite according to the1r performance The two modified depth-first 

schemes, (2) and (3), gave poor results for the maJority of the methods 
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Chapter 5 

Non-coherent Systems 

5.1 Introduction 

The initial guidelines for fault tree constructiOn for practical engineering systems 

recommends that failure logic should be restricted to the use of 'AND' and 'OR' 

gates ([1], [3]) This makes the fault tree coherent. Non-coherent structures can 

be obtained 1f the third log1c operator 'NOT' is used In this case components 

'NOT' falling (working) contnbute to the fallure of the system. The objections 

for using 'NOT' logic are that 1t can be considered a bad design of the system 

1f a repaired component makes the system fail. Also, 1t results in a remarkable 

increase m complexity for the analysis of the system. However, Andrews [24] 

demonstrated that m the case of multi-tasking systems 'NOT' logic is essential. 

This is also relevant for event tree analys1s m which the consideration of success 

states 1s an Important feature of the technique [25] The consideration of 'NOT' 

logic is important and even essential for some system assessments, smce it gives a 

better understanding of the system and provides an accurate analysis. 

5.2 Fault Tree Analysis of Non-coherent Fault Trees 

5.2.1 Introduction 

Fault trees can be descnbed as e1ther coherent or non-coherent systems according 

to the1r log1c. If the failure logic cons1sts of the 'AND' and 'OR' gates only, the 

resultmg fault tree is said to be coherent. Otherw1se, 1f the 'NOT' gate 1s used or 

d1rectly imphed, the resultmg fault tree can be non-coherent. 
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5.2.2 The Use of NOT Logic 

In this section 1t will be illustrated that 1f a system performs more than one task, the 

use of 'NOT' log~c during fault tree construction IS very important for meaningful 

and accurate analys1s. In the mult1-functwn system the outcomes of the system 

performance can produce combinations of some tasks being performed whilst others 

have failed. The causes of each system outcome cannot be identified correctly 

w1thout accounting for the parts of the system which have worked. Consider the 

simplified gas detection system shown in Figure 5 1 Two gas sensors, D1 and 

LU 

'-rT1 -,-,1--' Power 
,, ---' 1 L___, supply 

Process L~l J _L-j y.fj I 
~-JSO!auon 

Figure 5.1· Simplified gas detection system 

D2, are used to detect leakage of gas in a confined space. The signals from the 

detectors are sent along md1vidual cables to the computer log1c control umt, LU. 

When the signal of a gas leak from any sensor is obtained, three functions must be 

performed: 

1. Process shut-down (isolatwn) by de-energismg relay R1 

2. Inform the operator of the leak by a lamp/ s1ren labelled L 

3 Remove the power supply (potential igmtion sources) to affected areas by 

de-energising relay R2 

The system can be considered fa~led 1f it does not perform any of the three tasks, 

followmg detection of the leak occurrence There are seven poss1ble fa~lure states 

for this system, listed m Table 5 1 Cons1der one of these outcomes - outcome 

3. Fault Tree Analysis can be performed avmding the use of 'NOT' log1c but it 
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Fa1lure state Operator mformed Process shut-down Power 1solatwn 

1 w w F 

2 w F w 
3 w F F 

4 F w w 
5 F w F 

6 F F w 
7 F F F 

Table 5.1 The seven possible fa1lure states of the system in Figure 5 1 

delivers less information. The constructed fault tree for outcome 3 IS shown in 

F1gure 5.2. Three mimmal cut sets can be identified from this fault tree: 

Figure 5 2. Fault tree obtained from a coherent assessment of the outcome 3 

{R1, R2}, {Dl, D2}, {LU} (5.1) 

Although th1s fault tree has been constructed in a log1cal manner 1t is inaccurate 

If the operator is mformed, then either D1 and LU or D2 and LU must be working. 
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Thus the second and the thtrd minimal cut sets listed would not cause outcome 3 

failure. Consequently quantification of thts fault tree will result in an overestimate 

of the probability of the top event For a correct assessment it is important to use 

'NOT' logic so that the workmg part of the system is taken into account The non­

coherent fault tree for outcome 3 is shown in Figure 5 3. Workmg m a top-down 

Ftgure 5 3: Fault tree obtamed from a non-coherent assessment of the outcome 3 

way the followmg logic expression is obtained: 

Top - (L + LU + Dl · D2) · (Rl + LU + D1 D2). (R2 + LU + D1 · D2) 

- L · LU · (Dl + D2) · (Rl+ LU + Dl D2) (R2 + LU + D1 · D2) 

L. LU. Rl. R2. (Dl + D2). (5.2) 

The coherent approxzmatwn of prime implicant sets can be performed, which m­

valves identlfymg only the postttve parts of the pnme imphcant sets (1 e failmg 

components), known as the mznzmal p-cuts of the fault tree In this example the 

coherent approxtmatwn IS Rl · R2 thus the 'NOT' logic has successfully removed 

the inappropriate fatlure combinations and w1ll enable accurate quantttattve anal­

ysis to be performed. Therefore, whtlst 'NOT' logtc can mcrease the complexity 
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of analys1s m the case of multitaskmg systems the use of 'NOT' logic 1s essential. 

The method used to obtain the prime implicants 1s presented in the next section. 

5.2.3 Qualitative Analysis 

The object1ve is to determine the combmations of component conditions (workmg 

or failed) wh1ch are necessary and sufficient to cause system failure. They are 

called przme zmplzcants. The analys1s to determine pnme 1mphcants reqmres more 

work than for the mm1mal cut sets in a coherent case. The order of the pnme 

1mphcants, wh1ch represents the number of components, working or fatled, tend 

to be larger than minimal cut sets due to the incorporation of the working states, 

w h1ch do not appear in the expression of the mm1mal cut sets 

5.2.3.1 Calculation of prime implicants 

In order to calculate the prime implicants of a non-coherent fault tree 1t 1s neces­

sary to remove any 'NOT' gates from the fault tree structure. De-Morgan's laws 

presented m Equatwns 5 3 and 5 4 can be used to push down the 'NOT' log1c down 

the fault tree to complement the basic events: 

(A+B)=A·B, 

(A·B) =A+B 

(5.3) 

(54) 

To Illustrate this process consider the output to the 'NOT' gate in the non-coherent 

fault tree in F1gure 5.3 

L + LU + D1 · D2 - L · (LU + D1 · D2) 

L·LU Dl·D2 

L · LU · (Dl + D2). 

(5 5) 

The apphcatwn of De-Morgan's laws to this fault tree results in an equivalent fault 

tree that contams only 'AND' and 'OR' gates, see F1gure 54, 1 e from the origmal 

structure the effect is to mterchange 'AND' and 'OR' gates and to negate the basic 

events 

After all of the 'NOT' gates have been elimmated, the logic expresswn of the 

Top event 1s analysed As a s1mple example, consider the fault tree lilustrated m 

F1gure 5 5. Derivmg a logic expression for the Top event g1ves 
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Figure 5 4 Restructured non-coherent fault tree 

Top = a · b +a· c. (56) 

Since this JS a sum-of-products expressiOn m 1ts Simplest form, two prime 1mphcant 

sets {a,b}, {a,c} can be 1dent1fied. However, th1s is not a complete hst of prime 

imphcant sets. In fact, 1f both component b and c are m a failed state then the 

system will be in a fa1led state regardless of the state of component a The th1rd 

prime 1mplicant set {b, c} can be identified by applying the consensus law, g1ven 

in Equatwn 5.7: 

AX +AY= AX +AY+ XY (5.7) 

The followmg expression is obtained for the top gate 

Top=a·b+a·c+b·c (5.8) 

In summary, for the identification of a full list of prime implicant sets an expresswn 

of the log1c IS obtained usmg the top-down approach Then the consensus law is 

applied to pairs of pnme 1mphcant sets mvolvmg a normal and negated literal. For 

larger fault trees 1t may not be poss1ble to 1dentify a complete hst of the prime 
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F1gure 5.5: Non-coherent fault tree 

implicant sets One of the solutwns to this IS to obtam the m1mmal p-cuts that 

can be used to quantify the system approximately using the conventiOnal FTA 

techmques 

5.2.4 Quantitative Analysis 

Quantification of a non-coherent fault tree cannot be ach1eved using the quantifica­

tion methods for coherent fault trees presented in Chapter 2 because those methods 

do not take into account the working states that contnbute to system failure Sys­

tem unava1lab1hty, unconditional fa1lure intensity and importance measures will be 

presented in th1s section 

5.2.4.1 Calculating the system unavailability 

Inagaki and Henley [26] have modified the inclusion-exclusion method used in the 

coherent case to enable the calculation of the system unava1lab1lity of non-coherent 

fault trees Q(t) 1s g1ven by 

N N t-1 

Q(t) = 2::: P(K,)- 2:::2::: P(K, n K1 ) + 
t=l t=2 J=l 

(59) 

where P(K,) IS the probab1hty of the eXIstence of pnme 1mphcant set z. This 

probabihty IS calculated as follows 

P(K,) (5.10) 
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where 

i e. J appears, 

i e. J appears, 
(5 11) 

(5.12) 

rf' stands for the probabilities of hterals contained in any of the pnme Implicant 

sets Conflictmg hterals, i.e. x, x, = 0, and all redundancies, i e x, · x, = x., are 

eliminated from pnme implicant sets Np denotes the number of basic events m a 

pnme imphcant set. 

When calculations can be unmanageable even for moderate sized fault trees the 

approximations are apphed as it was presented m the coherent case An alternative 

means is to obtain a coherent approximation for qualitative analysis and use this 

to calculate the Rare Event Apprmamatwn and the Mmimal Cut Set Upper Bound 

presented m Chapter 2. 

5.2.4.2 Calculating the unconditional failure intensity 

The calculatwn of the unconditional failure intensity that was introduced m Chap­

ter 2 was extended by Inagaki and Henley for use with non-coherent fault trees. 

The top event occurs m the mterval [t, t + dt) if and only if no prime Implicant sets 

exist at t1me t and at least one prime implicant set occurs in the interval [t, t+ dt): 

N N 

Wsys(t)dt = P(U K,)- P(A U K,) = wi~(t)- wiV.,(t)dt, (5.13) 
t=l t=l 

here A is the event that at least one pnme Implicant set exists at timet and U:1 K, 

is the event that one or more pnme implicants K, occur in time [t, t + dt). The 

probability P(U;-::,1 K,) IS calculated as follows 

where 

N 

P(UK,) 
t=l 

rf'(t) = { qz(t) 
pz(t) 

If Xt = 1 

If Xt = 0 

Np Np 

I>x'(t) IT qx'(t), (5.14) 
J=l 

(5 15) 
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x, is set to 1 if the literal exists m its positive form and 0 if the literal is negated 

w1 (t) is the unconditional failure intensity of component J and v1 (t) is the uncon­

ditional repair intensity of component J. 

Both terms m Equation 5 13 can be expanded usmg the mclusion-exclusion for­

mula The calculatiOn of unconditiOnal fa1lure intensity is a time consuming and 

exhaustive process. Rare Event ApproximatiOn and Upper Bound Approximation 

can be used as it was presented m the coherent case in Chapter 2. 

The second method was developed by Becker and Camarinopoulos [27] where the 

unconditiOnal fa1lure mtens1ty can be expressed as the probability that the system 

is in a cntlcal state for one or more components at t1me t and one of those cnt1cal 

components fa1ls m the interval [t, t + dt). In the non-coherent case components 

can be both failure and repair critical, therefore two types of system cnticality 

functwns are defined: 

• Failure criticality function. System 1s working when component t is working 

and fa1led when component t IS failed. 

1>[ = Q(1., q(t))(1- Q(O., q(t))). (5.16) 

• Repair cntJcahty functwn System IS workmg when component t is failed 

and working when component t is working: 

1>; = Q(O., q(t))(1- Q(1., q(t))). (5.17) 

From th1s the unconditional failure intensity can be calculated: 

Ne Ne 

Wsystdt = L 1>[ w,dt + L 1>; v,dt. (5 18) 
t=l t=l 

This method can only be applied if Q(l., q(t)) and Q(O., q(t)) are mdependent. 

5.2.4.3 Importance measures 

Btrnbaum 's Measure of component rehab1hty importance is a fundamental measure 

of importance It calculates the probability that component t is critical to the 

system state. In the non-coherent case this probability can be expressed as the 

probability that component t is repair crit1cal, G~(q(t)), or the probability that 

component t IS fa1lure cntJcal, G;'(q(t)), as shown in [28]: 

G,(q(t)) = G~(q(t)) + G{"(q(t)). (5.19) 
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The top event can only ex1st at time t if at least one prime implicant set ex1sts 

at time t Hence the failure and repair cnt1cality can be calculated separately by 

differentiatmg the system unavailability function, Q(t), with respect to q,(t) and 

p, ( t) respectively 

G;"(q(t)) 
oQ(t) 

(5.20) -
oq,(t)' 

G~(q(t)) 
aQ(t) 

(5.21) -
op,(t) 

In terms of B1rnbaum's measure of component reliability importance the expected 

number of system failures can be calculated as: 

t Ne Ne 

W(O, t) = 1 (2: G;"(q(t))w,(u) + 2: G~(q(t))v,(u) )du, 
0 t=l t=l 

(5.22) 

where w,(t) denotes the component unconditional failure intensity, v,(t) denotes 

the component unconditional repair mtens1ty and Ne is the total number of system 

components. The first term m the equation calculates the number of occurrences 

of system failure due to the fa1lure of component ~ in a g1ven t1me mterval and the 

second term is the number of occurrences of system fa1lure due to the repa1r of 

component z m a g1ven t1me mterval. 

Component Fazlure Crzt~calzty Measure of Importance IS defined as the probability 

that component ~ IS failure cntJcal to the system and ~ has failed we1ghted by the 

system unavailability: 

IF= G[(q(t))q,(t) 
' Q(t) 

(5 23) 

Similarly, Component Repa~r Crzt~calzty Measure of Importance is calculated as the 

probability that component ~ IS repair cntical and is in a workmg state weighted 

by the system unavailability: 

IR = G~(q(t))p,(t) (5 24) 
' Q(t) 

The total cnticality measure of importance IS obtained by summing the fa1lure and 

repair part: 

(5 25) 

Fuss ell- Vesely's Measure of Component Importance can also be extended for non­

coherent analys1s. The Fussell-Vesely fa1lure importance is expressed as 

IF= P(UJI•EK, KJ) 
• Q(t) 

(5 26) 
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The Fussell-Vesely repair importance 1s calculated 

(5.27) 

5.3 Simplification Process of Non-coherent Fault 

Trees 

Dealmg With complex mdustnal systems can result in very large fault trees, whose 

analysis is time consuming. As it was presented in the coherent case in Chapter 2 

two pre-processmg techniques can be apphed to the fault tree m order to obtam 

the smallest possible subtrees and reduce the size of the problem. The first part 

of the simplification process is a reduction technique which resizes the fault tree 

to its simplest form. The second part identifies independent modules (subtrees) 

within the fault tree that can be dealt with separately. The linear-time algonthm 

is apphed to the second part and a set of independent fault trees m their s1mplest 

poss1ble structure 1s obtamed It 1s eqmvalent to the onginal system fmlure causes 

and is easier to manipulate dunng the analysis process. 

5.3.1 Faunet Reduction in the Non-coherent Fault Tree Case 

The Faunet Reduction techmque for non-coherent FTs can be descnbed m four 

stages, as 1t was presented m the coherent case 

1 ContractiOn 

2. Factonsatwn 

3. Extraction 

4. Absorption. 

F1rst of all, the fault tree is mampulated so that the NOT log1c 1s 'pushed' down 

the fault tree until it is applied to basic events using De Morgan's laws, presented 

in Equatwns 5 3 and 5 4. 

For the contractwn, subsequent gates of the same type are contracted to form 

a smgle gate so that the fault tree becomes an alternatmg sequence of 'AND' and 

'OR' gates 
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Dunng the factorisatiOn, pairs of events that always occur together as mputs to 

the same gate type are identified and combmed forming a single complex event If 

events appear m the1r working and fa1led states m the fault tree, only those basic 

events that appear together m their negated state under the opposite gate type 

can be combined. (Note. m this sense the 'AND' type gate IS oppos1te to the 'OR' 

type gate). By De Morgan's equations 53 and 54, 1f a+ band/or a· b appear m 

the fault tree, then a+ b forms a complex event, or if a · b and/ or a+ b appear in 

the fault tree, then a · b forms a complex event. The complex events identified are 

then substituted into the fault tree structure 

In the extractiOn stage, the two structures shown in Figure 2.2 are identified and 

replaced in order to reduce the repeated occurrence of events to a single occurrence 

and facilitate further reduction If another component is repeated in the structure 

and 1t IS repeated m 1ts negated state, the structures shown m Figure 5 6 can be 

simplified even more, i e the whole structure is replaced by the component that 

appears only in one state, failed or workmg. 

rc<;tructure -Q 

F1gure 5 6. ExtractiOn procedure m non-coherent case 

Dunng absorption, structures were identified that could be further Simplified through 

the application of the absorption and idem potent laws to the fault tree log1c, Fig­

ure 2.3. If a component is repeated m 1ts negated state, the absorption rule can also 

be applied. In this case the absorptiOn cannot be applied 1f the primary gate is an 

'OR' gate. Therefore, if the pnmary gate is an 'AND' gate and the secondary gate 

1s an 'OR' gate, then the structure is simplified by deleting the occurrence of the 

event beneath the secondary gate. If both the primary gate and the secondary gate 

are 'AND' gates, the whole secondary gate can be deleted. These s1tuatwns are 

presented m F1gure 5 7. The order of appearance of positive and negative events 

m pnmary and secondary gates is irrelevant. The above four steps are repeated 

until no further changes take place in the fault tree 
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Figure 5 7· Absorption procedure in non-coherent case 

Consider a simple example in Figure 5.8, on the left the fault tree in terms of 

Its ongmal components is presented and on the right the fault tree in Its numerical 

form IS shown. An array of negated data IS also assigned that holds the informatiOn 

Figure 5 8 Non-coherent fault tree for reduction 

that basic events 5 and 6 are negated forms of basic events 1 and 2. 

The fault tree has an alternating sequence of 'AND' and 'OR' gates, therefore 

the contractiOn IS not needed 

The mput events to each gate are considered one by one, lookmg for pairs that 

always occur together. The factonsed fault tree IS shown in Figure 5 9 The corn-
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plex events are shown m Table 5 2 

Figure 5 9 Non-coherent fault tree after factorisation 

Complex Gate value Event I Event 2 
event 

2000 OR a b 

4000 AND a b 

Table 5 2 Complex event data for non-coherent fault tree 

The number of repeated events can be minimised during the extraction process 

The only gate that has two or more gate inputs is top gate 1000, whose m puts are 

1002 and 1003 These secondary gates are both of a different type to the pnmary 

gate, and have basic event 4 in common, that can be extracted In order to get this 

into the required form for the extraction, gate 1005 IS generated. Another new gate 

1006 is created which is of the same type as the secondary gates and has the same 

common output, event 4, and the primary gate 1000, as mputs. The sequence of 

the extractiOn procedure is shown m Figure 5 10 

Finally, the only repeated event in the fault tree is event 2000. It IS repeated 

m Its negated form. The first time It occurs as an input to the primary gate 1005, 

which is a 'AND' gate, and the second time It occurs m Its negated form as an 

mput to the secondary gate, which is also an 'AND' gate Smce the types of the 

primary and the secondary gates are the same the secondary gate can be deleted. 

The fault tree after the absorption IS shown in Figure 5 11. 

137 



F1gure 5.10: Non-coherent fault tree dunng extraction, gate 1005 and 1006 created 

F1gure 5 11: Non-coherent fault tree after absorption 

The reduction process is completed. 

5.3.2 Linear Modularisation in the Non-coherent FT Case 

Modulansation identifies independent modules within the fault tree that can be 

analysed separately from the rest of the tree The hnear-time algorithm m the non­

coherent case can be applied in the same way hke it was presented m the coherent 

case m Chapter 2 The state of the basic event IS not relevant to the traversal and 

the modulansation of the fault tree. 

The application of the simplificatiOn techmques in non-coherent case has been 

published in [29] 
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5.4 Summary 

The use of NOT logic during fault tree construction can add to the complexity of 

analysis However, it has been demonstrated by Andrews [24] that NOT logic can 

be essential for meaningful and accurate analysis of certain systems. Therefore, 1t 

1s essential to be able to analyse non-coherent fault trees accurately 

Conventional methods of fault tree analysis have been extended for the purposes of 

non-coherent FTA. However, NOT logic increases the complex1ty of the analysis, 

and even for moderate s1zed examples the analys1s m1ght not always be possible. 

Although a coherent approximatiOn can be used to reduce the work required for 

the analys1s, the techmques are still computationally intensive. 

The fault tree dmgram is a useful descnptwn of the system being analysed, but 

alternative techmques for both quahtat1ve and quantitative analysis are reqmred, 

so that the effic1ency and the accuracy could be 1mproved. The BDD method, as 

a means for a better analysis of non-coherent fault trees, is presented in the next 

chapter 
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Chapter 6 

The BDD Method for the Analysis 

of Non-coherent Fault Trees 

6.1 Introduction 

Conventional techmques of FTA can be used to perform the qualitative and quanti­

tative analysis of non-coherent fault trees. However, even for moderate sized trees 

approximations are unavoidable The BDD method IS more efficient and accurate 

than conventiOnal FTA methods. The fault tree is converted to the SFBDD (struc­

ture function binary decision diagram) from wh1ch exact analysis IS performed 

However, It is not possible to ident1fy the prime implicant sets directly from the SF­

BDD, this requires more calculations. A full set of pnme implicants is determined 

by applying the consensus theorem [24] to pairs of prime implicant sets involving 

a normal and negated literal. A new alternative method for performmg the quah­

tatJve analysis of non-coherent fault trees IS proposed as a part of this research In 

this approach a fault tree is converted to a Ternary Deciswn D1agram (TDD). The 

main concept of a TDD was presented by Sasao [30]. The method was developed 

further mtroducing the conversion rules from fault trees to TDDs, applymg the 

minimisation techmque and presentmg an efficient way to obtam pnme 1mphcant 

sets 

There are several methods for the calculation of prime 1mphcant sets proposed 

in the literature. The first of these methods was introduced by Courdet and 

Madre [31] and then developed by Rauzy and Dutmt [32] This method involves 

calculation of the Meta-products BDD from which prime implicant sets can be 
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1dent1fied. The second alternative method presented by Rauzy [33] uses the ob­

tained SFBDD and converts 1t to the Zero-suppressed BDD (ZBDD), presented 

by Minato [34]. The th1rd alternat1ve method produces a Labelled Binary De­

cision Diagram (1-BDD), presented by Contini [35] All these methods produce 

pnme imphcant sets and have their advantages and disadvantages m the conver­

SIOn and representation techniques Therefore, the analysis w1ll be performed and 

the effic1ency of the proposed TDD method estimated 

6.2 Computing the SFBDD in Non-coherent Case 

The SFBDD for a non-coherent fault tree IS computed usmg the same ite procedure 

presented m Chapter 3. The only extra rule is the ite structure for negated events 

In th1s case, the one and zero branches have been switched compared to the ite 

expressiOn for the pos1tive event: 

x = ite(x, 0, 1), (6 1) 

Consider the fault tree example given in F1gure 5 5 Introducmg a variable ordenng 

b < a < c and assigning each basic event an ite structure g1ves: 

a 

a 
b 

c 

G1 IS expressed 

G1 -

-

Then dealmg with G2 gives. 

G2 -

-

-

- ite(a, 1, 0), 

- ite(a, 0, 1), 

- ite(b, 1, 0), 

ite(c, 1, 0) 

b a 

ite(b, 1, 0) · ite(a, 1, 0) 

ite(b, ite(a, 1, 0), 0) 

a·c 
ite(a, 0, 1) · ite(c, 1, 0) 

ite(a, 0, ite(c, 1, 0)). 
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Fmally the Top gate is expressed 

Top = G1+G2 (6 8) 

= ite(b, ite(a, 1, 0), 0) + ite(a, 0, ite(c, 1, 0)) 

= ite(b,ite(a, 1,ite(c, 1,0)),ite(a,O,ite(c, 1,0))). 

So, th1s IS the ite structure computed for the fault tree from F1gure 5.5 and the 

SFBDD is shown in Figure 6.1. 

F1gure 6 1: SFBDD for non-coherent fault tree 

6.3 Qualitative Analysis 

Knowledge of pnme 1mplicant sets can be valuable in gaimng an understandmg 

of the system under analysis. It can help to develop a repa1r schedule for failed 

components 1f a system cannot be taken off !me for repa1r. For example, there 

is a system w1th three components A, B, C. One fa1lure state of the system 1s 

represented by the prime 1mplicant set {A, B, C} and this fa1lure state results m 

a hazard Therefore, it 1s important to know this prime implicant set If all com­

ponents have fmled, 1t IS obvwus from th1s set that component C should not be 

repmred until e1ther component A or B had been repaired Hence unnecessary 

system fa1lures could be av01ded 

The SFBDD which encodes the structure function cannot be used d1rectly to pro­

duce the complete hst of prime 1mphcant sets of a non-coherent fault tree. For 

example, consider a general component x m a non-coherent system. Component x 

can be m a fmled or workmg state, or can be excluded from the failure mode. In the 
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first two situations x is said to be relevant, m the third case it is irrelevant to the 

system state Component x can be e1ther failure relevant (the prime implicant set 

contains x) or repair relevant (the prime implicant set contains x) A general node 

in the SFBDD, which represents component x, has two branches. The 1 branch 

corresponds to the failure of x; therefore, x is either failure relevant or irrelevant. 

Similarly, the 0 branch corresponds to the functwmng of x and so x is either repair 

relevant or Irrelevant Hence 1t is impossible to distinguish between the two cases 

for each branch and the pnme 1mphcant sets cannot be 1dent1fied from the SFBDD 

The SFBDD encodes the structure functiOn of the fault tree and 1ts mimmal form 

can only be used to obtain a coherent apprmamatwn for qualitative analys1s. Th1s 

1s presented later in th1s section In order to obtam pnme 1mphcant sets add1t10nal 

calculations are reqmred. A new method will be proposed for the quahtat1ve anal­

ysis and its efficiency w1ll be compared with the established methods 

6.3.1 Coherent Approximation 

The coherent approximation for qualitative analysis involves identifymg only the 

pos1t1ve parts of the prime implicants, known as m1mmal p-cuts. The SFBDD of 

a non-coherent fault tree needs to be minimised, removmg non-minimal cut sets 

and then a full hst of m1mmal p-cuts is obtamed tracing the paths to a termmal 

1 through the minimised structure. The SFBDD in F1gure 6 1 is non-minimal 

and thus must be m1mmised before the m1mmal p-cuts can be identified exactly. 

Traversmg node F4 on the zero branch of node F2 results in the non-m1mmal 

combmation {b, c}. Therefore the zero branch of node F2 is terminated with 0 

resulting m the m1mm1sed SFBDD shown m F1gure 6 2. This SFBDD produces 

two m1mmal p-cuts 

{a, b}, {c} (6 9) 

They are the coherent approximatiOn of the three pnme 1mplicant sets 

{a, b}, {a, c}, {b, c}. (6 10) 

6.3.2 Ternary Decision Diagram Method 

A new approach to bmld a Ternary DecisiOn Diagram (TDD) for the analysis of 

non-coherent fault trees IS proposed m this section. It employs the consensus the­

orem and creates, m additiOn to the two branches of the BDD, a third branch for 
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F2 

I 

Fl 

0 

F3 

0 

F1gure 6 2· Mimmised SFBDD 

every node, called the consensus branch. This third branch encodes the 'hidden' 

prime 1mplicant sets The mimmisation algonthm [2] IS applied to remove non­

minimal paths and obtam pnme 1mplicant sets only 

The representation now lends itself to a node structure with three ex1t branches. 

A new ifre structure IS presented wh1ch distinguishes not only between relevant 

and Irrelevant components but also it d1stingmshes between the type of relevancy, 

1 e. failure relevant and repair relevant The ifre structure for a component x 1s 

given below: 

(6.11) 

The 1 branch encodes prime implicant sets for which component x is fmlure rele­

vant, the 0 branch encodes prime 1mphcant sets for wh1ch component x 1s repair 

relevant, and the 'C' branch encodes pnme 1mphcant sets for which component x 

IS Irrelevant. The ifre structure shown m Figure 6 3 can be mterpreted as follows 

If x 1s fa1lure relevant 

or x IS repmr relevant 

else 

consider function J~, 

consider function fo, 

consider function /2 

(6 12) 

(6 13) 

(6 14) 

Function / 2 encodes pnme 1mplicant sets for which x IS irrelevant, but this branch 

is not important for all components For components that are only fa1lure or repair 

relevant, but not both, this branch can be kept 'empty'. In this method f2 =NIL 
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One Consensus 
branch 

Figure 6 3· Three-way tte structure 

ts asstgned, if the conJunctwn of the two branches ft · fo is not required. While 

operatmg the new symbol in the Boolean algebra, tt ts defined that NIL < op > 
A = NIL Symbol NIL 1s used to tdenttfy cases when the 'C' branch ts not 

required and no Boolean operatwns that mvolve thts branch are needed. 

6.3.2.1 Computing the TDD 

The conversion process for computing the TDD ts stmtlar to the previous method 

Basic events of the fault tree must be ordered Then the following process ts used 

1 Assign each basic event x an ifre structure 

If a ts only fatlure or repair relevant, then. 

X ifre(x, 1,0,NIL), 

x - ifre(x,O, 1,NIL) 

If a is failure and repair relevant, then: 

X ifre(x, 1, 0, 0), 

x - ifre(x, 0, 1, 0) 

(6 15) 

(6 16) 

(6.17) 

(6 18) 

2. By the apphcation of De Morgan's laws push any 'NOT' gates down through 

the fault tree unttl 1t reaches baste event level 

3. If the two gate inputs are G and H such that: 

G = ite(x, Ft. Fo, F2), 

H = ite(y, Ht, Ho, H2), 

then the followmg rules are apphed: 

If x < y, G < op > H = ifre(x, Kt. K 0 , [K1 · K0]), 
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where K1 = F1 < op > H and K0 = F0 < op > H, and K1 · K0 represents 

the consensus of K1 and Ko 

If x = y, G < op > H = ifre(x, L1, L0 , [L1 · Lo]), (6 22) 

where L1 = F1 < op > H1 and L0 = F0 < op > H0 , and L1 · L0 represents 

the consensus of L1 and Lo 

Remark. If component x IS faliure or repair relevant, K 1 · K0 NIL 

and L1 · L0 = NIL m Equatwns 6.21 and 6 22. 

These rules are used in conJunctiOn with the following Identities· 

1 < op> H= H, 

1 < op > H = 1, 

0 < op> H = 0, 

1f < op > is an 'AND' gate 

0< op> H=H, 

1f < op > is an 'OR' gate. 

(6 23) 

(6 24) 

Withm each ite calculatwn an additional consensus calculation is performed to 

ensure all the 'hidden' pnme Imphcant sets are encoded m the BDD obtained. It 

calculates the product of the 1 and the 0 branch of every node and thus identifies 

the consensus of each node. If a node in the TDD encodes a component which is 

only failure or repair relevant the conjunctwn of the 1 and 0 branch for the node 

IS not reqmred, because there are no 'hidden' pnme implicant sets associated with 

this component Th1s property makes the TDD method an efficient techmque for 

performing the qualitative analysis of non-coherent fault trees. 

Consider the non-coherent fault tree m Figure 5.5. A variable ordenng is b < a < c. 

Component b is failure relevant, component c is repair relevant and component a 

1s both, failure and repair, relevant. Each vanable is assigned an ifre structure: 

a= ifre(a, 1,0,0), 

a= ifre(a, 0, 1, 0), 

b = ifre(b, 1, 0, NIL), 

c = ifre(c, 1, 0, NIL). 

Computing the ifre structure for gate G1· 

G1 b·a 

- ifre(b,1,0,NJL) ·ifre(a,1,0,0) 

- ifre(b,!J,fo,!J · fo), 
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where 

fi = 1 · ifre(a, 1, 0, 0) = ifre(a, 1, 0, 0), 

fo 

!I· fo 

0 ifre(a, 1, 0, 0) = 0, 

NIL. 

Therefore, the ifre structure for gate G1 1s g1ven below: 

ifre(b, ifre(a, 1, 0, 0), 0, NIL) 

Dealing with gate G2· 

G2 

where 

!I -

fo -

!1 · fo -

l'i·c 

ifre(a, 0, 1, 0) · ifre(c, 1, 0, NIL) 

= ifre(a,Ji> fo, !I· fo), 

0 ifre(c, 1,0,NIL) = 0, 

1 ifre(c, 1, 0, NIL)= ifre(c, 1, 0, NIL), 

0 · ifre(c, 1, 0, NIL)= 0 

Hence the ifre structure for gate G2 IS 

ifre(a, 0, ifre(c, 1, 0, NIL), 0) 

Fmally, calculating the top gate Top· 

Top G1+G2 

- ifre(b, ifre(a, 1, 0, 0), 0, NIL)+ ifre(a, 0, ifre(c, 1, 0, NIL), 0) 

- ifre(b, fi,Jo,JJ · fo), 

where 

!I - ifre(a, 1, 0, 0) + ifre(a, 0, ifre(c, 1, 0, NIL), 0) 

- ifre(a, 1, ifre(c, 1, 0, NIL), ifre(c, 1, 0, NIL)), 

(6 27) 

(6.28) 

(6.29) 

(6 30) 

(6.31) 

(6 32) 

(6 33) 

fo - 0 + ifre(a, 0, ifre(c, 1, 0, NIL), 0) = ifre(a, 0, ifre(c, 1, 0, NIL), 0), 

!1· fo - NIL 

The final ifre structure obtained for the fault tree m F1gure 5.5 

ifre(b, ifre(a, 1, ifre(c, 1, 0, NIL), ifre(c, 1, 0, NIL)), J, NIL), (6 34) 
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where 

f = ifre(a,O,ifre(c, l,O,NIL),O) (6 35) 

The obtamed TDD IS shown m Figure 6 4 

Figure 6.4: TDD for fault tree shown m Figure 5.5 

6.3.2.2 Minimising the TDD 

Once the TDD has been computed there is no guarantee that the resultmg structure 

w1ll be mmimal, 1 e. produce the prime 1mphcant sets exactly For quantitative 

analysis the initially generated TDD needs to be retained, but m order to perform 

the qualitative analys1s a m1mmisat10n procedure needs to be implemented 

The algonthm developed by Rauzy for mmimising the BDD [2] can be used to 

create a m1mmal TDD that encodes the pnme implicant sets exactly 

Consider a general node in the TDD wh1ch is represented by the functwn F, where 

F = ifre(x,G,H,K). (6 36) 

The process of minimisation is described in three cases· 

• Component x is fa~lure and repair relevant, 

• Component x is fa1lure relevant, 

• Component x is repair relevant. 
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In case 1, the set of all mmimal solutwns of F w1ll include minimal solutiOns of 

G (Gmm) and H (Hmm) that are not mimmal solutions of K and also all minimal 

solutions of K (Kmm) If c5 IS a m1mmal solutiOn of G, wh1ch is not a mimmal 

solution of K, then the intersection of c5 and x (on x) will be a minimal solution 

of F. SJmJlarly, let 1 be a mmimal solutiOn of H wh1ch IS not a mmimal solution 

of K, then the mtersectwn of 1 and x (! n x) w1ll be a m1mmal solutwn of F. 

The set of all the mmimal solutions ofF (solmm(F)) will also include the minimal 

solutions of K, so: 

solmm(F) = (c5 n x) U (! n x) U Kmm· (6 37) 

The 'without' operator removes all the paths from Gmm and Hmm that are mcluded 

in Kmm· In this way the combmed set solmm(F) represents the mimmal solutwns 

ofF by removing any minimal solutions of G and H that are also m1mmal solutions 

of K. 

In case 2, where x IS failure relevant, K = NIL and the calculatiOn of pnme 

1mplicant sets is equivalent to the BDD case where the 'C' branch does not ex1st, 

i.e 

solmm(F) = (c5 n x) U Hmm· (6 38) 

The set solmzn(F) represents the m1mmal solutions ofF by removmg any minimal 

solutions of G that are also minimal solutions of H 

In case 3, where x is repair relevant, K 

1mplicant sets is defined as. 

NIL and the calculatiOn of pnme 

(6.39) 

Similarly to the previous cases, the set solmm(F) represents the minimal solutions 

of F by removing any mmimal solutwns of H that are also m1mmal solutwns of 

G 

To 1llustrate this procedure consider the TDD in Figure 6 4. The nodes are consid­

ered in the top-down manner, starting w1th the root-node. The m1mmal solutwns 

are computed for the 1 branch first, then for the 0 branch and finally for the con­

sensus branch Then all solutwns that ex1st on e1ther the 1 or 0 branch of a node 

that also ex1st on the consensus branch of the node are removed from the 1 or 0 
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branch by replacmg the corresponding part with a terminal vertex 0 If a node IS 

terminal it IS minimal automatically, 1f 1t is non-termmal the structure below needs 

to be mimm1sed before the m1mmisation of the current node can be completed. 

Each node IS cons1dered in turn 

F1 = ifre(b,F2,F3,NIL)- No minimisation is required at th1s stage 

F2 = ifre(a, 1, F4, F4) = ifre(a, 1, 0, F4)- Smce the 1 branch is termmal, it does 

not contam any paths that are included m the consensus branch. Minimal solu­

tions of the 0 branch and the consensus branch are the same, therefore, the minimal 

solutwns of the 0 branch are removed by replacmg the 0 branch w1th a termmal 

vertex 0. 

F3 = ifre(a, 0, F4, 0)- Since the consensus branch IS termmal, 1t does not contam 

any paths that are included in the 1 and 0 branches. 

F4 = ifre(c, 1,0,NIL)- All the branches are terminal. 

The m1mmal BDD is shown in Figure 6 5 Now it is poss1ble to obtain a full list 

F1gure 6 5: Minim1sed BDD obtained from the TDD m F1gure 6 4 

of prime 1mplicant sets by tracing all the terminal paths through the minimised 

BDD: 

{a,b},{a,c},{b,c}. (6 40) 

This concludes the presentatwn of the TDD method, wh1ch has been pubhshed 

m [36] 
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6.3.3 Established methods 

This sectiOn consists of the applicatiOn of the three methods that were established 

in the literature The first method is the meta-products BDD method [32]. After 

the SFBDD is constructed, every basic event in a meta-products BDD JS repre­

sented by two variables, Px and Bx. Px represents the relevancy of the component 

(relevant or irrelevant) and Bx represents the type of the relevancy (failure rele­

vant or repa1r relevant). The second approach is the zero-suppressed BDD method 

(ZBDD) [33]. In this method the system SFBDD is constructed and then used 

to bmld a ZBDD All nodes in the ZBDD are labelled w1th fa1led and/or workmg 

states of basic events and pnme 1mplicant sets are decomposed accordmg to the 

presence of a g1ven state of a bas1c event. The ZBDD obtained 1s always m its 

m1mmal format In the third alternative method, a labelled binary decisiOn dia­

gram (L-BDD) method [35], every basic event is labelled according to its type, 1 e 

failure or/ and repair relevant. This additional mformatwn about the occurrence 

of every basic event is considered wh1le convertmg a fault tree to an 1-BDD. It 

does not prov1de all prime implicant sets, therefore the additional calculations are 

reqmred followed by the mmJmJsation technique. These three established methods 

will be cons1dered for the efficiency test of the TD D method later in the section 

6.3.3.1 Rauzy and Dutuit Meta-products BDD 

Rauzy and Dutmt developed an alternative notatiOn that associates two variables 

w1th every component x. The first vanable, Px, denotes relevancy and the second 

vanable, Bx, denotes the type of relevancy, i e failure or repair relevant A meta­

product, M P(1r), is the intersection of all the system components accordmg to their 

relevancy to the system state and 1r represents the prime implicant set encoded m 

the meta-product MP(1r) 

{ 

(Px 1\ Bx) 1f x E 1r, 

MP(1r)= (Px/\Bx) 1f:XE1r, 

P x 1f neither x nor x belongs to 1r. 

(6.41) 

Rauzy proposed a method for calculating the Meta-products BDD of a fault tree 

from the SFBDD The M eta-products BDD is always mimmal, therefore 1t encodes 

the prime 1mplicant sets exactly. A procedure called MPPI that converts the 

SFBDD into the Meta-products BDD is outlmed below 
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6.3.3.1.1 MPPI algorithm 

A basic node in a SFBDD is described as 

ite(x., !1> fo) (6.42) 

The meta-products structure for this node is denoted as: 

PI[ite(x., f1> fo), L], (6 43) 

where L is the ordered hst of all basic events except for those that appear on the 

current path from the root node to th1s node. 

P I[ite(x., !J, j 0 ), L] is evaluated according to the followmg rules: 

1. If x, is the first basic event in L 

PI[ite(x., fl>fo), L] = ite(Px,, ite(Sx,, Pl, PO), P2), (6 44) 

where 

P2 P I[h · fo, L'], (6.45) 

Pl - P I[JI> L'] · P2, (6.46) 

PO P I[fo, L'] · P2, (6.47) 

and 

L - x,0 xl+b ... , Xn, (6 48) 

L' Xz+b Xt+2, · , Xn· (6 49) 

2 If x, is not the first basic event in L, 1.e L = x3 , x3+b .. , Xn such that z > J. 

PI[ite(x.,!J,j0 ),L] = ite(Px,,O,PI[ite(x.,f1 ,Jo),L']). (6.50) 

The following identities are applied: 

PI[O, L] - 0, 

P I[l, x · L] - ite(Px, 0, P I[l, L]) 

(6 51) 

(6 52) 

For every vertex ite(x, !J, fo) P2 encodes the pnme 1mplicant sets for wh1ch x 1s 

melevant, Pl encodes the prime implicant sets for which x is failure relevant and 

PO encodes the pnme imphcant sets for which x IS repair relevant. 
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In order to calculate P2 the basic ite structure of f 2 = !I fo must be calcu­

lated Then the meta-products structure of h, presented as P I[h, £], must be 

computed. If f2 is a terminal node 

I If h = 0, P I[h, L] = 0, 

2 If h = I, P I[h, L] = ite(Px,, 0, ite(Px,+" 0,. , ite(Px., 0, I))). 

If h is not terminal, MPPI calls 1tself to compute the meta-products structure of 

h, before contmuing the calculation at the prevwus level. 

The same procedure is implemented for calculating the meta-products structure 

of !I and fo, denoted by P I[h, L] and P I[j0 , L] respectively To ensure that the 

Meta-products BDD is minimal the conjunctwn of the meta-products structure for 

fi and fo and P2 is performed This ehmmates repeated minimal solutiOns. 

To illustrate how th1s algorithm is applied in practice consider the SFBDD m 

F1gure 6 I, wh1ch has the following ite structure. 

ite(b, ite(a, I, ite(c, I, 0)), ite(a, Oite(c, I, 0))). (6.53) 

The meta-products structure must be computed for this ite structure 

PJ[ite(b, ite(a, I, ite(c, I, 0)), ite(a, Oite(c, I, 0))), bac] = (6 54) 

ite(Pb, ite(Sb, PI, PO), P2), 

where 

P2 - PJ[ite(a,I,ite(c,I,O))·ite(a,O,ite(c,I,O)),ac], (6.55) 

PI P J[ite( a, I, ite( c, I, 0)), ac]· P2, (6 56) 

PO - PJ[ite(a,O,ite(c,I,O)),ac]·P2. (657) 

Calculating P2 . 
• 

P2 PI[ite(a, 0, ite(c, I, 0)), ac] 

ite(P., ite(Sa, PII, PO. I), P2 I) 

- ite(Pa, ite(Sa, 0, ite(Pc, ite(Sc, I, 0), 0)), 0), 

I 53 

(6 58) 



where 

P21 - P I[O · ite(c, 1, 0), c] 

PI[O, c] 

- 0, 

P11 - P I[O, c]· P2.1 

- 0·1 

- 0, 

PO 1 - PJ[ite(c, 1,0),c]· P21 

- ite(Pc, ite(Sc, 1, 0), 0) ·1 

- ite(Pc, ite(Sc, 1, 0), 0) 

Calculating Pl. 

P1 

where 

P I[ite(a, 1, ite(c, 1, 0)), ac]· P2 

ite(Pa, ite(Sa, Pl.2, PO 2), P2.2) · P2 

- ite(Pa, ite(Sa, ite(Pc, 0, 1), 0), ite(Pc, ite(Sc, 1, 0), 0)) · 

ite(Pa, ite(Sa, 1, ite(Pc, ite(Sc, 0, 1), 1)), 1) 

- ite(Pa, ite(Sa, ite(Pc, 0, 1), 0), ite(Pc, ite(Sc, 1, 0), 0)), 

P22 - PI[1· ite(c, 1, 0), c] 

- PJ[ite(c, 1,0),c] 

ite(Pc, ite(Sc, 1, 0), 0), 

P12 P 1[1, c] · P2.2 

- ite(Pc, 0, 1) · ite(Pc, ite(Sc, 0, 1), 1) 

ite(Pc, 0, 1), 

P02 - PJ[ite(c, 1,0),c]· P2.2 

- ite(Pc, ite(Sc, 1, 0), 0) · ite(Pc, ite(Sc, 0, 1), 1) 

- ite(Pc, ite(Sc, 0, 0), 0) 

0 
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Calculating PO 

PO - P I[ite(a, Oite(c, 1, 0)), ac]o P2 

- ite(Pb,O,PI[ite(c, 1,0),c]) o P2 

ite(Pa, ite(Sa, 0, ite(Pc, ite(Sc, 1, 0), 0)), 0) o 

ite(Pa, ite(Sa, 1, ite(Pc, ite(Sc, 0, 1), 1)), 1) 

- ite(Pa, ite(Sa, 0, ite(Pc, ite(Sc, 0, 0), 0)), 0) 

- 0 

(6o66) 

The ite structure of Meta-products BDD for the SFBDD in F1gure 6 1 IS g1ven 

below: 

ite(Pb, ite(Sb, ite(Pa, ite(Sa, ite(Pc, 0, 1), 0), f), 0), (6 67) 

ite(P., ite(S., 0, f), 0)), 

where 

f = ite(Pc, ite(Sc, 1, 0), O)o (6 68) 

The Meta-products BDD is g1ven m Figure 6 60 Now 1t is poss1ble to obtam the 

Figure 6 6° Meta-products BDD calculated from the BDD g1ven in Figure 601 
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meta-products and 1dent1fy the pnme imphcant sets: 

H 11 Sb 11 Pa 11 Sa 11 Pc {a, b} 

Pb 11 Sb 11 Pa 11 Pc 11 Se = { b, c} 

H /1 Pa /1 Sa /1 Pc /1 Se {a, c}. 

(6 69) 

(6 70) 

(6. 71) 

For example, in the first meta-product means Pb s1gnifies that component b is rel­

evant and Sb sigmfies that component b is failure relevant. Component a is also 

fmlure relevant. Finally, Pc means that component c is irrelevant Hence the addi­

tiOnal prime implicant set {a, b} is obtamed. 

Since in the Meta-products BDD every bas1c event IS represented by two elements, 

Px and Sx, the s1ze of the BDD can expand qmte a lot 

6.3.3.2 Zero-suppressed BDD Method 

As 1t was discussed earlier, workmg w1th non-coherent fault trees a SFBDD IS not 

a sufficient means to 1dentify pnme imphcant sets Another alternat1ve method 

presented by Rauzy [33] uses BDDs but with a d1fferent meaning The 1dea of 

Zero-suppressed BDDs (ZBDD) mtroduced by Mmato [34] is used to calculate 

prime 1mphcant sets. Th1s method requires nodes to labelled with fa1led and/or 

working states of bas1c events and to decompose pnme 1mplicant sets according to 

the presence of a g1ven state of a basic event 

6.3.3.2.1 Presentation of a ZBDD 

Zero-suppressed BDDs are BDDs obtamed after applying a reduction rule. Th1s 

data structure brings a unique and compact representatiOn of sets and it 1s more 

efficient and Simpler than the usual BDDs when mampulatmg sets m combinatorial 

problems The followmg reductwn rules for BDDs are: 

• Ehmmate all the nodes that have the 1 branch pointing to terminal vertex 

0 Then connect the branch that was pointing to the eliminated node to 

the BDD structure beneath the 0 branch of the eliminated node, shown in 

Figure 6 7 

• Share all eqmvalent BDD structures as for onginal BDDs. 

ZBDDs automatically suppress bas1c events that do not appear m prime 1mphcant 

sets It is very efficient when caJculatmg sets with bas1c events that are far apart 
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Figure 6.7: Elimination process 

in the variable ordenng scheme. For example, in Figure 6 7 the represented BDD 

contains a prime 1mplicant set {a, e }. The established variable ordenng is a < b < 
c < d < e. The obtamed ZBDD brings basic events close smce the intermed1ate 

nodes, F2, F3 and F4, can be eliminated. 

6.3.3.2.2 Decomposition rule 

The pnnc1ple of the ZBDD algonthm 1s to traverse the SFBDD that encodes 

structure function <f; = ite(x, JI,J0 ) m a depth-first way and to bmld a ZBDD that 

encodes the pnme implicant sets in a bottom-up way The rule is descnbed m four 

cases 

1. Bas1c event x appears in both, failed and working, states: 

PI(<f;) 

where S2 PI(JI · fo), 

S1 - PI(fi) \ S2, 

So PI(fo) \ S2 

2 Bas1c event x appears m its fmled state only. 

PI(<f;) - x S1 +So, 

where S0 - PI(fo), 

S1 - PI(!J) \So 
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3. Bas1c event x appears m 1ts workmg state only Th1s case is sim1lar to case 

2. 

4. Bas1c event x does not appear m the system: 

PI( if;) = PI(!J + fo)- (6 79) 

Here \ IS the 'w1thout' operator used in the coherent case 

Produced ZBDDs retain the vanable ordenng from the SFBDD case. In addi­

tion, working states of basic events that appear in both states are incorporated m 

the ordering scheme, 1 e. they appear after the basic event that descnbes the fa1led 

state in the ordenng scheme. For example, the variable ordering constructmg a 

SFBDD for the example m Figure 55 is b < a < c, in the ZBDD method the 

mtroduced ordering is b < a < a < c. 

6.3.3.2.3 Worked example 

Consider the example fault tree in Figure 5 5. Using the variable ordering b < a < c 

the SFBDD obtamed is shown m F1gure 6 1. Each node is considered in the bottom-

up way. 

F4 -

F2 

Therefore 

Then 

F3 

82 

SI 

So -

ite(c, 1, 0), P I(F4) = ite(c, 1, 0), 

because both vertices are terminal, 

ite(a, 1, F4), PI(F2) = ite(a, S1, ite(a, S0 , S2 )), 

because a appears in both states. 

s2 PI(1· F4) = PI(F4), 

SI - 1, 

So - PI(F4) \ PI(F4) = 0. 

PI(F2) ite(a, 1, ite(c, 1, 0)). 

ite(a,O,F4),PI(F3) = ite(a,S1,ite(a,S0,S2 )), 

0, 

0, 

PI(F4). 
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Therefore 

Fmally 

Therefore: 

PI(F3) - ite(a, ite(c, 1, 0), 0). 

F1 ite(b, F2, F3), PI(F1) = ite(b, S~o S0 ), 

So - PI(F3), 

SI - PI(F2) \ PI(F3) = PI(F2). 

(6.90) 

(6.91) 

(6 92) 

(6.93) 

P I(F1) = ite(b, ite(a, 1, ite(c, 1, 0)), ite(a, ite(c, 1, 0), 0)). (6 94) 

The obtamed ZBDD IS shown in Figure 6 8. Every path m a ZBDD from the root 

F3 

Figure 6 8: ZBDD for non-coherent fault tree 

vertex to terminal vertex 1 presents a prime Imphcant set Only vertices that lie 

on the 1 branch of a path are included in a prime Implicant set Therefore, this 

ZBDD contains three prime imphcant sets shown in Table 6 1 

Path Pnme Imphcant 

F1-F2 {b, a} 

F1- F2- F4 {b,c} 

F1- F3- F4 {a,c} 

Table 6.1· Pnme imphcant sets usmg the ZBDD 

This method provides a compact representatwn ofpnme Imphcant sets and enables 

an efficient quahtative analysis to be performed 
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6.3.3.3 Labelled Variable Method 

The labelled variable method is the th1rd alternative method for constructmg BDDs 

for non-coherent fault trees BDDs obtained using th1s approach of conversion 

cons1st of variables that are labelled according to the1r type. The construction of a 

BDD w1th labelled variables (L-BDD) and the efficiency of the method IS presented 

in th1s sectwn 

6.3.3.3.1 Classification of variables 

As it was recogmsed before, the structure functwn <f>(x) of a non-coherent fault 

tree may contain three different types of basic events. In th1s method they are 

described as: 

• Positive events that appear in the fa1led state only, referred to as smgle form 

positive vanables (SFP), 

• Negative events that appear m the working state only, referred to as single 

form negated variables (SFN), 

• Events that appear both in pos1ttve and negative forms, i e that appear m 

the failed and workmg states, called double form variables (DF). 

For example, the function <f>(x) = a·b+a·c+b·c contains the DF variable a, the SFP 

vanable band the SFN variable c. Coherent fault trees contain only SFP variables. 

In the presentation below the SFP vanable x wtll be simply presented by x, the 

SFN variable x will be labelled '$x' character and the DF vanable x w1ll be labelled 

'&x' character. 

Let <f>(x) be a non-monotonic functwn and x the vanable selected for expanswn. 

The followmg three cases are possible. 

• For SFP variables the expansion of <f>(x) gives· 

<f>(x) = x. </>(1, x) + x. </>(0, x). (6 95) 

From the probab1hst1c v1ewpomt: 

P(x) = qx, P(x) = 1- qx. (6 96) 
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• For SFN vanables the expanswn of if;( x) is: 

lj;(x) = $x ·f/;(1, x) + $x ·f/;(0, x). (6 97) 

In terms of the probability: 

P($x) = 1- q"' P($x) = qx. (6.98) 

The vanable labelled w1th the $ symbol1s eqmvalent to variable x 

• If xis of DF type the expansiOn of lj;(x) g1ves· 

lj;(x) = &x ·f/;(1, x) + &x ·f/;(0, x). (6 99) 

The probability can be calculated according to: 

(6 100) 

6.3.3.3.2 Construction of the L-BDD 

To construct the L-BDD the first composition rule (Equation 3 2) from Chapter 3 

needs to be extended, so that it would be possible to take into account the labelled 

variables The second rule (Equation 3 3) can be applied as it was presented for 

the coherent case. Consider the ordermg of the labelled vanables &x < x < $x the 

followmg additiOnal rules are developed 

Let J and H be two nodes in the BDD. 

• Let J = ite(x, F1, Fz), H = ite($x, G~, Gz). 

Since x < $x then: 

J < op > H = ite(&x, F1 < op > Gz, Fz < op > G1). (6 101) 

In th1s case: 

J < op > H - ite(&x, (J < op >H) l&x=b (J < op >H) l&x=o) = 

ite(&x, (F lx=l < op > G 1$x=o), (F lx=o< op > G 1$x=i)) 

• Let J = ite(&x, F~, F2 ), H = ite(x, G1, G2). 

Since &x < x then· 

J<op>H 

Here 

J<op>H ite(&x, (J < op > H) l&x=l> (J < op >H) l&x=o) = 

ite(&x, (F l&x=i< op > G lx=J), (F l&x=o< op > G lx=o)). 
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• Let J = ite(&x, F1, F2 ), H = ite($x, G1, G2). 

Smce &x < $x then 

J < op > H - ite(&x, F1 < op > G2, F2 < op > G1). (6.103) 

In th1s case 

J < op > H - ite(&x, (J < op >H) l&x=b (J < op >H) l&x=o) = 

ite(&x, (F l&x=l < op > G l$x=o), (F l&x=o< op > G l$x=l)). 

here < op > as before corresponds to the Boolean operatwns 'AND' or 'OR'. 

The trivial relationships are considered as 

0 1\ a=O, 

1 1\ a=a, 

0 V a=a, 

1 V a= 1, 

where a JS from the set { &x, x, $x} 

(6 104) 

(6.105) 

(6 106) 

(6 107) 

Th1s algonthm w1ll be applied to the example fault tree in F1gure 5 5 There 

are 3 vanables m the fault tree. 1\vo of them are the SFP variables, b, c, smce they 

only appear in the failed state. One variable 1s the DP vanable, a, since 1t appears 

m both workmg and fa1led states The variable ordering b < &a < a < $a < c is 

mtroduced. Then the composition rules are apphed and ite structures for gates 

Gl and G2 are calculated 

G1 - ite(b, 1, 0) · ite(a, 1, 0) = ite(b, ite(a, 1, 0), 0) 

G2 - ite($a, 1, 0) · ite(c, 1, 0) = ite($a, ite(c, 1, 0), 0). 

Fmally, Top gate 1s cons1dered 

Top ite(b, ite(a, 1, 0), 0) + ite($a, ite(c, 1, 0), 0) 

(6 108) 

(6.109) 

(6 110) 

- ite(b, ite(a, 1, 0) + ite($a, ite(c, 1, 0), 0), ite($a, ite(c, 1, 0), 0)) 

- ite(b, ite(&a, 1, ite(c, 1, 0)), ite($a, ite(c, 1, 0), 0)) 

This connection considers the apphcatwn of new rules m the case of x < $x. 

The resulting BDD JS shown m F1gure 6 9 The sub-node shanng property is stJII 

apphcable 
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OR G2 Top. b 

Figure 6 9. Resultmg 1-BDD for example tree in Figure 5.5 

6.3.3.3.3 Determination of prime implicants 

The labelled variables are considered for determimng the set of prime implicants. 

For the SFP and the SFN variables the algorithm applied is presented in [2] as the 

method for the calculation of minimal cut sets in the coherent case. For the DF 

variables the algonthm proposed in [32] is used 

Let the structure function be: 

<P(x) =x, · F+x, · G, 

where the two residues are 

F - <P(xi, .. , 1, ... , Xn), 

G - <P(xi, . , 0, ... , Xn). 

(6 lll) 

(6 112) 

(6.113) 

Let PI(<P) be the pnme Imphcants of <P VIsiting the L-BDD in the bottom-up 

way the procedure to be apphed to the node x, to determme the pnme Imphcants 

IS as follows 

• If x, has label '&' then: 

PI(<P) x,·F*+$x,·G*+P, 

where P - FA G, F* = F \ P, G* = G \ P, 

• else 

PI(<P) a· F* + G, 

where a - (x, or $x,), F* = F \ G 
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'\' IS the 'w1thout' operator proposed by Rauzy [2] 

In the case of the 1-BDD for the applicatiOn of the '\' operator 1t is necessary 

to take mto account the type of label The mm1misatwn of the 1-BDD IS based 

on the algorithm presented in the coherent case. All prime implicant sets need 

to be obtained for '&' variables, by producmg the conJunctwn of the '1' and '0' 

branches of every node. Therefore, there are some additional rules for minimisation 

considering situations with labelled variables, because the conjunctiOn of the two 

branches can have some sets that are non-mimmal 

The most time consuming operatwn is the intersection F 1\ G that, however, is 

applied only when dealmg with '&' type variables. If there are no '&' type vari­

ables, the 1-BDD contams all pnme implicant sets 

Once the minimisation is completed the rules for wnting the prime 1mplicant sets 

from an 1-BDD are straightforward. On the path from the root to any termmal 

node· 

• For variables x, $x do not consider the negated part, 

• For variables &x cons1der the nght branch as x. 

Smce the heavJCst operatwns m th1s algonthm for determining the pnme 1mplicants 

set are applied to DF vanables, it is convement to reduce their number. The 

s1m plification rules are presented m the next section. 

6.3.3.3.4 Simplification of L-BDD 

The Simphfication is possible if one of the res1dues IS termmal, 1 e F or G 1s equal 

to 1 or 0 The Slmphficatwn rules are presented below providing the expression for 

r/> presented in Equatwn 6.111. 

• If F = 1 then P = F 1\ G = G, F* = 1, G* = 0. 

Therefore, r/> = x + G 

• If F = 0 then P = F 1\ G = 0, F* = 0, G* = G. 

Therefore, r/> = x G 

• If G = 1 then P = F 1\ G = F, F* = 0, G* = 1. 

Therefore, r/> = x + F 
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• If G = 0 then P = F 1\ G = 0, F* = F, G* = 0. 

Therefore, </! = x F. 

All four simplification rules are shown m Figure 6 10. In the first and the fourth 

~--p ~--~ 
c6 \ c6 \ F / 0 c6 '\F 

(I) (3) 

~--~ ~--p 
c6\t[i]/0{[i] 

(2) (4) 

Figure 6.10 Four simphficatwn rules 

cases variable &x behaves as a positive variable x, m the second and the third 

cases variable &x behaves as a negative variable $x. 

Now the example shown in Figure 6.9 is considered. Before the calculation of 

pnme Implicant sets the simplification process can be implemented, trying to min­

Imise the number of DP variables. The simplified example L-BDD is shown in 

Figure 6.11. The first simplification rule was applied in this example to the node 

F4 

Figure 6 11 Simplified example 1-BDD 

variable &a Therefore, &a was simply replaced with a. 

The prime implicant sets can be obtamed using EquatiOns 6.114- 6.117 Traversal 
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of the 1-BDD starts m the bottom-up way 

PI(F3) c · F* + G, here F* = 1, G = 0, (6.118) 

PI(F3) - c, 

PI(F2) a· F* + G, here F* = 1, G = F3 = P I(F3) = c, (6 119) 

PI(F2) - a+c, 

PI(F4) - $a· F* + G, here F* = F3 = P I(F3) = c, G = 0, (6.120) 

PI(F4) $a· c, 

PI(F1) - b· F* +G,here F* = F2 = PI(F2) = a+c, (6 121) 

G = F4 = PI(F4) =$a· c, 

PI(F1) - b · a + b · c + $a · c 

Therefore, for the above example the prime imphcant sets are 

{b,a},{b,c},{a,c} (6 122) 

The calculation of prime implicant sets is shown in F1gure 6 12 Variable $a is 

Fl b - {b,a),{b,c),{a,c] 

{a}, {c) 
.......___ {a,c] 

I c J 0 

F1gure 6.12: Calculation of prime 1mphcant sets for example 1-BDD 

replaced by a, since they are equivalent variables 

This concludes the description of the fourth method for the non-coherent fault 

tree analysis It prov1des a means for obtaimng pnme 1mplicant sets However, 

the mtroductwn of labels mcreases the number of variables and the complexity of 

the process can affect the effic1ency of the analys1s. 

6.3.4 Comparison of the Four Methods 

Research has been carried out testmg the proposed TDD method and comparing 

1ts effic1ency w1th the other techmques m order to 1dent1fy their strengths and 
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weaknesses. A specific approach will work well on some fault trees and not on oth­

ers. It is the performance of an approach over the range of problems that 1t may 

encounter that should be established. All algorithms are applied to a library of 

220 fault trees The example fault trees from the coherent case were converted to 

non-coherent examples by randomly introducing some negated events and gates 

Charactenstics of test fault trees are shown in Tables A.62 - A 66. The struc­

ture of the tables IS equivalent to the coherent case, except that the last column 

Identifies the number of pnme implicant sets instead of number of minimal cut sets. 

Example fault trees are categorised as small fault trees (207 FTs) and 'large' fault 

trees (13 FTs). 'Large' fault trees are classified as those with a large number of 

prime implicant sets Also, h1gh complexity fault trees, i e w1th a large number 

of gates and non-repeated bas1c events, are ranked as 'large' fault trees. These 

two properties of fault trees result in a t1me consummg analysis process or even 

can make calculatwns impossible in reasonable times. It is these fault trees which 

present the largest degree of difficulty in their analysis. As such it is these fault 

trees which will really test the competence of any algorithm. 

During the analysis every fault tree is converted to a SFBDD that represents the 

structure functwn of the fault tree. The SFBDD 1s not suitable for the full qual­

itative analysis, therefore other alternative methods are required. Four different 

techmques are investigated usmg the library of fault trees. In the first method, 

the Ternary DeciSIOn D1agram method, that has been developed as a part of th1s 

research, the TDD IS calculated straight from the fault tree. Therefore, no ad­

ditiOnal BDD is required that would encode pnme 1mplicant sets This could be 

an advantage over the other techniques. The 'm1ssmg' pnme implicant sets that 

can not be found from the SFBDD are covered through the conjunctwn of the two 

branches of components that can be failure and repa1r relevant. However, it needs 

to be mmimised before the calculation of prime implicant sets and th1s can mcrease 

the processing time. 

The three established methods are also considered. During the first of them, i.e. 

the Meta-products BDD method, every SFBDD is converted to a Meta-products 

BDD that encodes all pnme implicants and is minimal Every basic event is pre­

sented by two variables that can mcrease the size of the structure. The second 

technique, the ZBDD method, converts a fault tree to a SFBDD and then an 
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additional Zero-suppressed BDD is obtained that encodes pnme Implicant sets. 

Despite the fact that an additwnal BDD needs to be created, it is mmimal, zero­

suppressed and can be an efficient techmque for the qualitative analysis. The last 

method, the 1-BDD method, converts a fault tree to a labelled BDD that allows 

the qualitative analysis. The conJunctiOn of the two branches is similar to the TDD 

method However, extra vanables are introduced before the converswn process and 

the mmimisation needs to be applied Those two issues can increase the number 

of nodes m the structure and the processing time reqmred 

The efficiency measures are calculated and analysed. The number of nodes and 

the processing time are the most important characteristics, therefore, according to 

theu values a comparison between the four techniques is made. 

The 8 basic event ordering schemes are ranked in order according to the effective­

ness of the conversion process that they produce. The performance of the schemes 

IS then assessed m three ways, as It was used m the coherent case - accordmg t~ 

their totals, accordmg to their highest ranking and accordmg to their total rank­

mg. The ordering schemes are ranked for all the effiCiency measures accordmg to 

their performance on small fault trees, 'large' fault trees and the whole set of fault 

trees This IS done in order to show If the performance of the ordering schemes de­

pends on the complexity of the system and to give an mdication of which ordenng 

schemes should be used for small and 'large' fault trees 

6.3.4.1 TDD method results 

Summary detmls of test fault trees are presented m Tables A 67 - A.70, which 

show the number of nodes m TDDs for small fault trees. Table A.71 shows the 

number of nodes for the large fault trees. The time taken to convert fault trees to 

TDDs and perform the full qualitative analysis IS shown in Tables A.72- A.75 and 

Table A 76 for small and large fault trees respectively. 

Some fault trees were simplified so much that their TDDs contamed only 1 node. 

There were 45 fault trees of that type Therefore, the ranking was performed 

without taking into account those examples, together with the 26 other fault trees 

that had the same number of nodes in the TDD for all eight ordering schemes 

Summansmg, there were 149 example fault trees taken for the rankmg according 

to the number of nodes, where 13 of them were 'large' examples 
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Considering the processing time, there were 8 fault trees whose processmg time 

was the same in each ordermg scheme, therefore, those fault trees were not taken 

into account while ranking the ordermg schemes accordmg to the processmg time. 

199 small fault trees and 13 large fault trees were cons1dered m the rankmg analysis 

accordmg to the processmg time. 

6.3.4.1.1 Variable ordering for the TDD method 

Analysis of the number of nodes in TDDs and processing time for 'small', 'large' 

and all example fault trees is presented in this section, applymg the three rankmg 

techmques of the ordenng schemes. The result of the analysis is shown in Table 6 2 

and Table 6 3 for the number of nodes and the processmg time respectively. 

Scheme 1 2 3 4 5 6 7 8 
otaJ Number of nodes 24167 23050 21729 20434 19976 18138 23339 18515 

~~antrty Rank 8 6 5 4 3 1 7 2 UJ ank1na 

"' ~ Number of FTs 

"' 1ghest wtth the hrghest 20 40 30 34 20 40 34 35 
" cheme $ an~ng 

rank 

o; 
Rank 7·8 1·2 6 4-5 7-8 1-2 4-5 3 E 

({) ddOd Added rank1ng 599 472 
cheme 

462 449 492 387 509 480 

anklna Rank 8 4 3 2 6 1 7 5 

otaJ Number of nodes 21553 23436 22394 14861 20115 14159 17957 22782 
gJ 

uantrty 
Rank 3 ankmQ 5 8 6 2 4 1 7 

~ Number of FTs 

'5 Htghest w1!h the htghest 0 0 0 3 2 2 4 2 
$ cheme rank 

" 
an~ng 

Rank 6-8 6-8 6-8 2 3-5 3·5 1 3-5 
~ dded Added rank1ng 74 68 69 44 58 40 49 56 -' cheme 

anklno Rank 8 6 7 2 5 1 3 4 

otaJ Number of nodes 45720 46486 44123 35295 40091 32297 41296 41297 
uantrty 

Rank 8 6 2 3 5 00 ankmQ 7 1 4 

"' Number of FTs 
~ Htghest w1th the htghest 20 40 30 37 22 42 38 37 

~ 
cheme rank ank1ng 

Rank 8 2 6 4-5 7 1 3 4-5 
< dded Added rankmg 673 540 531 493 550 427 558 536 

cheme 
anklno Rank 8 5 3 2 6 1 7 4 

Table 6 2 TDD method, number of nodes 

There are some clear rankmg results for the TDD method The dynam1c top-down 

we1ghted scheme (6) performed well for the number of nodes and the processmg 

time. The mod1fied top-down scheme (1) gave the worst results for the number 

of nodes for small fault trees and 'large' fault trees cons1denng any of the three 

rankmg methods. For the processmg time scheme (1) gave average results, and the 
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Scheme 1 2 3 4 5 6 7 8 

otal T1me 22 51 2254 2252 22 33 21 96 21 97 2284 2245 
"'~amrty 

Rank 5 7 6 3 1 2 8 4 a> ank1nci 
~ Number of FTs 

"' H1ghest wrth the highest 71 79 71 79 78 83 64 71 
.§ chemo rank 

'" 
[an•ng 

Rank 5-7 2·3 5-7 2-3 4 1 8 5-7 
E 
~- Added ranking 552 551 543 548 499 512 583 568 "' chome 
ank1nQ Rank 6 5 3 4 1 2 8 7 
otaJ T1me 8 82 1398 1247 706 1044 6 73 8 56 1342 

! 
uantrty 

Rank 8 6 2 3 7 l-3nklnci 4 5 1 

IH1ghest 
Number of FTs 

"S wrth the highest 1 1 0 6 3 1 3 4 
~ 

chome rank 

"' 
ank1ng 

Rank 5-7 5-7 8 1 3-4 5-7 3-4 2 "' ij; 

~=· 
Added rank1ng 55 61 65 33 46 43 51 41 ~ 

anklnQ Rank 6 7 8 1 4 3 5 2 

otal 1me 31 33 36 52 3499 29 39 32 4 287 31 4 3587 
uantrty 

tn ank1nci Rank 3 8 6 2 5 1 4 7 

"' Number of FTs 
~ IHrghest wrth the highest 72 so 71 85 81 84 67 75 
"S cheme rank 
~ ank1ng 

Rank 6 4 7 1 3 2 8 5 -« ~d- Added rank1ng 607 612 608 581 545 555 634 609 
cheme 

8 6 anklnQ Rank 4 7 5 3 1 2 

Table 6 3: TDD method, processing time 

two mod1fied depth-first ordenng schemes (2) and (3) gave poor results Overall, 

the d1fference m performance of the e1ght ordermg schemes is margmal, especially, 

for the processing time, therefore, no further conclusions can be drawn. 

6.3.4.2 Meta-products method results 

Summary deta1ls of the test fault trees are presented m Tables A 77 - A 80, wh1ch 

show the sum of nodes in the obtamed SFBDDs and in Meta-products BDDs for 

small fault trees Table A 81 shows the sum of nodes for the large fault trees The 

t1me taken to convert fault trees to SFBDDs, obtain Meta-products BDDs and 

perform the full qualitative analys1s is shown m Tables A 82 - A 85 and Table A 86 

for small and large fault trees respectively. 

Some fault trees were simplified so much that their SFBDDs contamed only 1 

node. There were 45 fault trees of that type Also, for 26 fault trees the eight 

ordenng schemes gave the same number of nodes, therefore, the rankmg analy­

SIS was performed without taking mto account those examples. There were some 

'large' example fault trees for which the conversion process and analys1s could not 

be fimshed m a reasonable time, 1 e 1t took longer than 24 hours, and therefore the 
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calculatiOn process was termmated There were only 6 'large' fault trees (out of 

13) where the analysis was performed for all the eight ordering schemes In total, 

there were 142 fault trees taken for the ranking analysis accordmg to the number 

of nodes, where 6 of them were 'large' examples. 

For the processing time 186 small fault trees and 6 'large' fault trees were analysed, 

smce for the rest of the fault trees either the eight ordermg schemes gave the same 

processmg time or the calculatiOns were not finished. 

6.3.4.2.1 Variable ordering for the MPPI method 

Analys1s of the number of nodes m meta-product BDDs and processing t1me for 

'small', 'large' and all example fault trees 1s presented m this sectwn, applying 

the three rankmg techniques of the ordermg schemes. The result of the analys1s is 

shown in Table 6.4 and Table 6 5 for the number of nodes and the processing time 

respectively 

Scheme 1 2 3 4 5 6 7 8 

ot.> Number of nodes 59491 56186 54162 51510 51778 48200 51931 49115 
uantrty 

Rank 8 6 3 2 "' nkmo 7 4 1 5 
"' !'! Number of FTs 
3 

Hrghest wrth the hrghest 15 33 27 33 16 37 51 25 
~ 

cheme rank 
ank~ng 

<ii Rank 8 3·4 5 3-4 7 2 1 6 E 
<I) Added Added ranking 644 486 458 451 564 430 431 522 

cheme 
anklnQ Rank 8 5 4 3 7 1 2 6 
otaJ Number of nodes 1779183 1689973 1774833 533464 1246614 508603 1493336 621596 

"' 
uantrty 

Rank "' ank~nO 8 6 7 2 4 1 5 3 
~ Number of FTs 
3 

Hrghest wrth the hrghest 0 0 0 2 0 3 1 0 
~ 

cheme rank 

"' "''"" Rank 4-8 4-8 4-8 2 4-8 1 3 4-8 0> 

j Added 
cheme 

Added ranking 22 16 20 6 16 8 12 8 
ankmo Rank 8 5-6 7 1 5-6 2·3 4 2·3 

ot.> Number of nodes 1838674 1746159 1828995 584974 1298392 556803 1545267 670711 
uantrty 

Rank (f) anklnci 8 6 7 3 4 1 5 2 

"' Number of FTs 
~ Hrghest wrth the hrghest 15 33 27 35 16 40 52 25 
3 cheme rank 
~ ankmg 

Rank 8 3 2 6 4 5 7 1 
<!' deled Added rankrng 666 502 478 457 580 438 443 530 

cheme 
anklnQ Rank 8 5 4 3 7 1 2 6 

Table 6 4 MPPI method, number of nodes 

The dynam1c top-down weighted scheme (6) performed best and was ranked h1gh 

for both the number of nodes and the processmg t1me It also resulted in the 
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Scheme , 2 3 4 5 6 7 8 

otaJ T1me 16072 92 9125 99 5941 00 8113 49 3961 66 2070 27 5511 35 1442 22 
(/) uantrty 

Rank 8 7 5 6 3 2 4 1 w anklnci 
j!; Number of FTs 

~ 
Highest lw1th the h1ghest 55 64 45 50 48 70 63 67 
cheme 
ankmg rank 

-;; Rank 5 3 8 6 7 1 4 2 
E 

~=. Added ranking 645 616 665 609 608 499 598 497 (f) 

nkmQ Rank 7 6 8 5 4 2 3 1 

otaJ T1me 65906 72 83737 84 117648 78 13181 58 51992 24 12201 20 60442 25 1102712 
(/) uant1ty 

Rank 6 7 8 3 4 1 5 2 

11~ 
Number of FTs 
jw1th the highest 0 0 0 2 0 2 1 1 
rank 

g 
Rank 5-8 5-8 5-8 1-2 5-8 1·2 3-4 3-4 

scheme 
Added rank1ng 21 14 15 11 20 9 10 8 

anklng Rank 8 5 6 4 7 2 3 1 

otal 1me 81979 64 92863 83 123589 78 21295 07 55953 90 14271 47 65953 60 12469 34 
uant1ty 

(/) anklnci Rank 6 7 8 3 4 2 5 1 

"' Number of FTs j!; Highest with the highest 55 64 45 52 48 72 64 68 
3 cheme rank 
~ ankmg 

Rank 5 3-4 8 6 7 1 3-4 2 
<( 

A~ded Added rankmg 666 630 680 620 628 508 608 505 
cheme 
ankmq Rank 7 6 8 4 5 2 3 1 

Table 6 5: MPPI method, processing t1me 

smallest number of unfinished processes, 1 e. only for 1 fault tree the calculation 

process could not be fimshed in a reasonable time, whereas for some ordering 

schemes, (1) and (3), there were 4 fault trees whose converswn was impossible. 

The depth-first with number of leaves ordenng ( 4) performed well for the number 

of nodes and the event criticality scheme (8) gave good results for the processmg 

time. The worst results were obtamed by the mod1fied to]J-down scheme (1) which 

was ranked last for both the efficiency measurements in almost all the rankmg 

methods. The mod1fied pnonty depth-first ordering scheme (3) also gave poor 

results for the processmg t1me. 

6.3.4.3 ZBDD method results 

Summary details of the test fault trees are presented m Tables A 87 - A 90, which 

show the sum of nodes m the SFBDDs and obtained ZBDDs for small fault trees 

Table A 91 shows the sum of the nodes for the large fault trees The time taken 

to convert fault trees to SFBDDs, then obtam the ZBDDs and perform the full 

qualitative analysis is shown in Tables A.92 - A.95 and Table A 96 for small and 

large fault trees respectively. 
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The ranking analys1s was performed w1thout takmg mto account examples that 

were simphfied to one complex event and the 37 other fault trees that had the 

same number of nodes in the ZBDD for all e1ght ordenng schemes. Overall, for 

the ranking accordmg to the number of nodes there were 138 example fault trees 

taken for the analys1s, where 13 of them were 'large' examples. 

For the processing time there were 205 small fault trees and 13 large fault trees 

taken into account, because there were 2 small fault trees where the processing 

time was the same for the eight ordering schemes 

6.3.4.3.1 Variable ordering for the ZBDD method 

Analys1s of the number of nodes m ZBDDs and processing t1me for 'small', 'large' 

and all example fault trees is presented in this section, applying the three ranking 

techniques of the ordermg schemes The result of the analys1s 1s shown m Table 6 6 

and Table 6. 7 for the number of nodes and the processmg tlme respect1vely 

Scheme 1 2 3 4 5 6 7 8 
otaJ Number of nodes 19332 15939 15920 15758 17169 15079 15808 16537 

~~antrty 
Rank 8 5 4 2 7 1 3 6 :g anklnQ 

~ Number of FTs ., Hrghest with the hrghest 12 52 40 40 12 34 39 21 
~ 

cheme rank ankrng .,. 
Rank 7·8 1 2-3 2-3 7-8 5 4 6 E 

Cf) f"dded Added rankrng 650 359 353 363 549 403 433 536 
cheme 

~_kino Rank 8 2 1 3 7 4 5 6 
otaJ Number of nodes 13432 10302 9370 8026 12967 8312 8730 11744 

"' ~-uantrty Rank 8 5 4 1 7 2 3 6 0> ankmQ 
~ Number of FTs 

~ 
Hrghest wrth the hrghest 0 3 1 2 1 2 4 0 
cheme rank 

0> 
ankmg 

Rank 7-8 2 5-6 3-4 5-6 3-4 7-8 g 1 
f"dded Added rankmg 86 57 57 39 67 45 43 59 

oheme 
ankrno Rank 8 4·5 4-5 1 7 3 2 6 

otaJ Number of nodes 32764 26241 25290 23764 30136 23391 24538 28281 
~_u.antrty 

Rank 8 5 4 2 7 1 3 6 (/) anklnQ 
0> Number of FTs 
~ Hrghest wrth the highest 12 55 41 42 13 36 43 21 

~ 
cheme rank ankmg 

Rank 8 1 4 3 7 5 2 6 -< f"dded Added rankmg 736 416 410 402 616 448 476 595 
cheme 
anklng Rank 8 3 2 1 7 4 5 6 

Table 6 6: ZBDD method, number of nodes 

The depth-first, w1th number of leaves scheme (4) performed well for the number 

of nodes and the processmg time. It was highly ranked for small and 'large' fault 
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Scheme 1 2 3 4 5 6 7 8 

otaJ 1me 32 84 333 33 78 32 81 3447 33 39 3384 3365 

"' 
uantrty 

Rank 
"' ankrnR 2 3 6 1 8 4 7 5 
~ Number of FTs 

Hrghest 

~ 
rth the hrghest 104 91 63 100 50 70 64 55 

cheme rank ank1ng 

'" Rank 1 3 6 2 8 4 5 7 
E Added Added ranking 466 474 562 450 680 564 561 607 (f) 

cheme 
8 6 7 ankrng Rank 2 3 5 1 4 

otaJ Trme 996 1544 13 89 8 78 1048 8 54 1077 14 78 

ifl 
uantrty 

Rank 3 8 6 2 5 7 ranking 4 1 
~ 

~~~hest 
Number of FTs 

'5 with the hrghest 0 3 3 4 5 5 2 4 
$ cheme rank 

"' f>n'ng 
Rank 8 5-6 5-6 3-4 1-2 1·2 7 3-4 

"' j ~dded Added rankrng 59 64 57 39 47 34 63 39 
cheme 

2-3 1-ankrna Rank 6 B 5 2-3 4 1 7 

otaJ Trme 42 8 48 74 4767 41 59 4495 41 93 4461 4843 
uantrty 

(I) rankrn9 Rank 3 8 6 1 5 2 4 7 

"' Number of FTs 
~ Hrghest wrth the hrghest 104 94 66 104 55 75 66 59 
3 cheme rank 
$ f.nk~ng 

Rank 1-2 3 5-6 1·2 8 4 5-6 7 
<i' ~dded Added rankmg 525 538 619 489 727 598 624 646 

cheme 
ankmg Rank 2 3 5 1 8 4 6 7 

Table 6 7: ZBDD method, processing t1me 

trees usmg three rankmg methods For the number of nodes the dynamic top-down 

we1ghted scheme (6) also performed well The mod1fied top-down scheme (1) per­

formed poorly for the number of nodes but 1t gave good results for the processing 

t1me. The worst performance accordmg to the processmg time was obtained by 

the non-dynam1c top-down we1ghted scheme ( 5). Overall, the difference m per­

formance of the e1ght ordermg schemes 1s margmal, especially, for the processmg 

t1me, therefore, no further concluswns can be drawn. 

6.3.4.4 L-BDD method results 

Summary details of the test fault trees are presented m Tables A.97- A 100, which 

show the sum of the number of nodes in the L-BDD before applymg the mter­

medlate calculatwns and the rmnim1sation, which is equivalent to the SFBDD, 

and the number of nodes m the mmimised L-BDD. Table A.101 shows the sum of 

nodes for the large fault trees. The t1me taken to convert fault trees to L-BDDs, 

then minimise the L-BDDs and perform the full quahtat1ve analysis IS shown m 

Tables A 102 - A 105 and Table A.106 for small and large fault trees respect1vely 

Some fault trees were simphfied so much that their SFBDDs contam only 1 node. 

174 



There were 45 fault trees of that type. Also, for 27 fault trees the eight ordering 

schemes gave the same results Those fault trees are not taken mto account wh1le 

ranking the schemes. Overall, there were 14 7 fault trees considered for the anal­

ysis, where 13 of them were 'large' fault trees There were 10 fault trees that the 

processing time was the same for the e1ght ordermg schemes Those fault trees 

were not taken into account wh1le performing the ranking according to the time 

6.3.4.4.1 Variable ordering for the L-BDD method 

Analysis of number of nodes in LBDDs and processmg time for 'small', 'large' 

and all example fault trees IS presented m th1s sectwn, applymg the three rankmg 

techmques of the ordermg schemes The result of the analysis is shown in Table 6.8 

and Table 6.9 for the number of nodps and the processmg time respectively. 

Scheme 1 2 3 4 5 6 7 8 
otaJ Number of nodes 48400 50938 47662 45908 39778 38344 63687 36768 
uantrty 

Rank 
"' ankmci 6 7 5 4 3 2 8 1 
"' jg Number of FTs 
'5 Highest w1th the highest 13 33 22 35 23 45 32 35 
.l'1 cheme rank 

an'"'J .,. 
Rank 8 4 7 2·3 6 1 5 2·3 E en fdded Added ranking 582 511 507 467 474 361 562 443 

cheme 
an king Rank 8 6 5 3 4 1 7 2 
otaJ Number of nodes 250867 351974 312349 300990 286085 219140 415505 364114 

"' 
uantrty 

"' ank1nQ Rank 2 6 5 4 3 1 8 7 
i" Number of FTs 

'5 
Highest w1th the highest 2 0 0 2 2 2 2 3 

.l'1 cheme rank 

"' 
ank1ng 

Rank 2-6 7-8 7-8 2-6 2-6 2-6 2-6 
~ 

1 
!"dded Added rankmg 47 89 78 58 36 47 69 38 

cheme 
an king Rank 3-4 8 7 5 1 3-4 6 2 

otaJ Number of nodes 299267 402912 360011 346898 325863 257484 479192 400882 
ru~otrty Rank 2 7 5 4 3 1 8 6 (/) ankmQ 

"' Number of FTs jg 1ghest w1th the highest 15 33 22 37 25 47 34 38 

~ 
cheme 

rank ank1ng 
Rank 8 3 6 2 - 5 7 1 4 

" !"dded Added rankmg 629 600 585 525 510 408 631 481 
cheme 
ankmg Rank 7 6 5 4 3 1 8 2 

Table 6.8: LBDD method, number of nodes 

For the number of nodes the dynamic top-down scheme (6) performed well and 

was ranked highly for the main part of fault trees usmg the three d1fferent rankmg 

techmques. For the processmg t1me th1s ordermg scheme gave average results and 

the best performance was obtamed by the depth first, with number ofleaves scheme 

( 4) For the number of nodes and the processmg t1me the worst performance was 
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Scheme 1 2 3 4 5 6 7 8 
otaJ T1me 253 01 244 02 17002 79 01 95 47 114 4 261 63 77 36 

~antrty 
Rank 7 6 5 2 3 4 8 1 Ill JankmQ 

"' "' Number of FTs " ~1ghest " w1th the highest 52 54 51 67 66 66 55 74 
~ 

cheme rank ank1ng 
\ii Rank 7 6 8 1 3 4 5 2 E 
(f) f"dded 

cheme 
Added rankmg 632 576 600 449 536 539 623 521 

anklnQ Rank 8 5 6 1 3 4 7 2 
otaJ Time 15833 69 1083813 7085 68 883 09 34101 91 3660 23 68085 38 5417903 

"' ~~antrty Rank 5 4 3 1 6 2 8 7 "' anklnQ 
~ 

~1ghest 
Number of FTs 

~ 
w1th the highest 0 2 0 4 1 4 1 1 

cheme rank 

" 
rn•ng 

Rank 7-8 3 7-8 1-2 4-6 1-2 4-6 4-6 0> 

5 fAdded Added rankmg 75 67 66 42 49 44 64 61 
cheme 
ank1nQ Rank 8 7 6 1 3 2 5 4 

otaJ Time 16086 7 1108215 7255 7 962 1 3419738 an463 68347 01 54256 39 
~~antrty 

Rank 5 4 3 1 6 2 8 7 Ill anklnQ 

"' Number of FTs 
~ ~1ghest w1th the highest 52 56 51 91 69 70 56 75 
'5 cheme rank 
~ ankmg 

Rank 7 5-6 8 1 4 3 5-6 2 
< '"'' Added rankmg 707 643 666 491 585 583 687 582 

cheme 
anklnq Rank 8 5 6 1 4 3 7 2 

Table 6.9: LBDD method, processing time 

obtamed by the mod1fied top-down scheme (1) and the bottom-up we1ghted scheme 

(7). 

6.3.5 Overall Variable Ordering for the Qualitative Analysis 

of Non-coherent Fault 'frees 

A theoretical companson of the methods IS explamed m Table 6 10, where the main 

advantages and d1sadvantages are identified. 

Analysmg the results obtained of the four methods for the encoding prime impli­

cant sets, it can be said that the four methods are qmte d1fferent m the1r efficiency. 

The1r performance IS shown m the following tables. The comparison of the four 

techmques accordmg to the number of nodes is shown m Table 6 11 Also, the 

companson accordmg to the processing time 1s shown in Table 6 12. 

Analysing these results 1t was clear that there were two methods that performed 

well on the example fault trees They were the TDD method and the ZBDD 

method For the number of nodes the ZBDD method performed slightly better 
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Method Mtmm1sa Construction Advantages Disadvantages 
tiOn techmque 

Ternary Requued Baste event x ts A clear 1 Mmlffilsation IS 

Dectston coded by a node representation requtred 
D~agram wtth three branches of all tmphcant 2 TDD s1ze IS 3". 
(TDD) The thU'd branch 1s sets ts 

the CODJUDCtlOD of prov1ded 
the I and the 0 
branches and the 
CODJUDCtlOD IS 

performed for every 
node that represents 
fatlure and repall' 
relevant component 

M eta- Not Baste event x ts No I Meta-products 
products requued coded by two rrnmrmsatlon BDD s1ze IS 2211 

BDD vanables Pxand S~ IS reqmred 2 It results m a 
tune consummg 
proce'i'i 

Zero- Not Baste event xIS I No Dual state events 
suppres- requll'ed coded by x and, m nummtsauon are coded by two 
sedBDD add1tton, by x . 1f IS reqmred vanables 
(ZBDD) needed The 2Compact 

CODJUDCtlOD of the 1 representation 
and the 0 branches ofpnme 
IS performed only tmpllcant sets 
for dual 'tate ts provtded 
vanables 

Labelled Requued Baste event A ts Labels 1denttfy 1 Mmmm.at10n IS 
BDD(L- labelled accordmg where the requued 
BDD) to tts occurrence. CODJUDCtlOD Of 2 Labelling 

(&.x<x<$ x) The the I and the 0 mtroduces 'iome 
conJunctton of the I btanchesis addltJOnal 
and the 0 branches reqmred vanables 
IS perfonned only 
for dual state 
vanables 

Table 6 10 A theoretical companson of the four techmques 

than the TDD method and the TDD method resulted m a slightly faster process 

than the ZBDD method. The 1-BDD method appeared to be the second worst 

method. The worst method was the Meta-products BDD method. 

As expected the Meta-products BDD algonthm produced significantly larger final 

BDDs than any other method that was used for the calculation of prime imphcant 

sets. Processing time was also greater. This IS due to the fact that after the con­

version of fault tree to a SFBDD another BDD, called the Meta-products BDD, is 

required, where all components are descnbed by two vanables This mcreased the 

size of the BDD and the processmg t1me unavoidably. 
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Scheme 1 2 3 4 5 6 7 8 

"' TOO method 24167 23050 21729 20434 19976 18138 23339 1851~ Q) 

~ 
MPPI method 59491 56186 54162 51510 51778 48200 51931 4911~ "' ::> 

"' - ZBOO method 19332 15939 15920 15758 17169 15079 15808 16537 

"' E 
(f) l-800 method 48400 50938 47662 45908 39778 38344 6368 3676E 

"' TOO method 6634 7558 7479 4739 5049 4688 5806 4409 Q) 

~ 
MPPI method 1779183 1689973 1774833 533464 1246614 508603 1493336 62159E -::> 

"' - ZBOO method 5058 4860 4406 3337 3902 3189 3876 340c Q) 

E:' 
"' L-800 method 45972 80406 7382 61089 39806 48299 60518 3579C ...J 

TOO method 30801 30608 29208 25173 25025 22826 29145 22924 
"' Q) 

~ MPPI method 1838674 1746159 1828995 584974 1298392 556803 154526' 670711 -3 
~ ZBOO method 24390 20799 20326 19095 21071 18268 19684 1994< 
<( 

L-800 method 94372 131344 121489 10699 79584 86643 124205 7255E 

Table 6.11: Summary of the four methods, number of nodes 

The TDD method resulted in an efficient fault tree conversiOn process and a fast 

qualitative analysis. In the TDD method the consensus terms were produced by 

finding the conjunctiOn of the 1 and the 0 branches for every node that is fmlure 

and repair relevant. The ZBDD method also gave good results The SFBDD was 

constructed and then converted to the ZBDD, which encoded the pnme 1mplicant 

sets. On one hand, the TDD method was slightly faster than the ZBDD method 

That could be explamed by the fact that only one structure (a TDD) was required 

in this method, whereas m the ZBDD method a SFBDD was constructed and then 

an additwnal ZBDD was bmlt On the other hand, the ZBDD was mmimal there­

fore a smaller number of nodes was obtamed than m the TDD method, whereas a 

TDD needed to be m1mmised before obtaimng pnme imphcant sets. 

Companng the TDD method and the L-BDD method, the Idea of both meth­

ods was very similar, 1 e. the conJunctiOn of the 1 branch and the 0 branch was 

only carried out for nodes that represent dual state basic events. However, there 

were some differences that made the L-BDD method perform less efficiently than 

the TDD method. In the L-BDD method the number of basic events was increased 

by mtroducing three different types of basic events (&x < x < $x), accordmg to 
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Scheme 1 2 3 4 5 6 7 8 

U> TDD method 22 51 2254 2252 2233 21 96 21 9 2284 224 
" jg 

MPPI method 16072 92 9125 99 5941 00 8113 49 3961 66 2070 27 5511 35 1442 2 ~ 

" "' - ZBDD method 32 84 3330 33 78 32 81 3447 33 39 3384 33 6 
"' E 

L-BDD method UJ 253 01 24402 170 02 79 01 9547 114 40 261 63 773 

gJ TDD method 0 80 1 81 1 60 0 59 054 0 56 1 03 04 
jg 

MPPI method 65906 72 83737 84 117648 78 13181 58 51992 24 12201 20 60442 25 110271 "' " "' 1 87 - ZBDD method 0 99 1 61 0 66 064 0 65 1 88 05 " e> 
.5 L-BDD method 506 19 148 OB 11717 38 09 247 84 55 26 918 48 110 3 

TDD method 23 31 2435 2412 22 92 2250 22 53 23 81 229 
U> 

" jg MPPI method 81979 64 92863 83 123589 78 212950t 55953 90 14271 47 65953 60 12469 3 
:; 
~ ZBDD method 3383 3517 35 39 33 47 35 11 34 O< 35 72 342< 
;;;: 

L-BDD method 75920 39210 28719 11710 343 31 169 66 118011 187 61 

Table 6.12: Summary of the four methods, processmg time 

their occurrence. Also, some extra connection rules were used m the conversion 

process and in the calculation of pnme 1mplicant sets. The TDD technique was 

clearer and more effic1ent than the 1-BDD techmque, 1 e it s1mply encoded the 

th1rd branch that enabled 'hidden' prime implicant sets to be calculated. 

Overall, the efficiency of the four methods was very similar when small fault trees 

were considered. The difference in both measurements between the TDD method 

and the ZBDD method was marginaL Even the 1-BDD method and the meta­

products BDD gave close results, especially for the number of nodes, considering 

small fault trees. However, the analysis of 'large' fault trees allowed a better way to 

test the methods, because wh1le dealing w1th 'large' fault trees, the advantages and 

disadvantages of the different techniques were more noticeable. The TDD method 

and the ZBDD method performed a lot better than the two other techniques and 

should be used for the BDD analysis of non-coherent fault trees. Also, considenng 

'large' fault trees the meta-products BDD method performed a lot worse than the 

1-BDD method The difference between the two advantageous methods was still 

margmaL Therefore, any of the two methods used for a different library of example 

fault trees should provide a similar efficiency of the analysis. 
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6.4 Quantitative Analysis 

6.4.1 Introduction 

Unlike the conventional Fault Tree Analys1s the BDD method does not reqmre 

knowledge of prime implicant sets for quantificatiOn. It is therefore poss1ble to use 

the SFBDD to perform full and exact quantitative analys1s Smce the 1-BDD is 

m a s1m11ar format to the SFBDD, 1t can also be quantified The quantificatiOn of 

the TD D IS presented as a part of this research. 

6.4.2 System Unavailability 

The SFBDD for a non-coherent fault tree encodes Shannon's decomposition. There­

fore, for calculatmg the top event probability for a non-coherent fault tree the SF­

BDD can be employed. It is obtained as a sum of probabilities of the disjoint paths 

through the BDD, as 1t was shown in the coherent case m Chapter 3 Consider 

example SFBDD in F1gure 6 1. There are three paths from the root node to the 

terminal vertex 1, therefore, the Q(t) is expressed as 

(6 123) 

There are three prime 1mplicant sets represented by th1s SFBDD and usmg the 

inclusion-exclusion expansion g1ves the same expression: 

Since the 1-BDD also encodes the SFBDD before startmg the calculations for the 

qualitative analys1s. Therefore, the 1-BDD can be used m the same way as the 

SFBDD, assummg that q&x = qx and q$x = Px· Traversing the example 1-BDD m 

F1gure 6 11 gives the Q(t) expression 

(6.125) 

The system unavailability can be calculated directly from the TDD, because the 

SFBDD is encoded within the TDD The SFBDD could be obtained 1f all consensus 

branches were removed from the TDD. The system unavmlab1lity can be calculated 

as a sum of probabilities of the d!SJOmt paths through the BDD that only pass 

through the 1 and 0 branches of non-terminal nodes. Consider example TDD in 

F1gure 6 4. Agam, there are three paths from the root vertex to the terminal 

180 



vertex 1, because paths passmg through consensus branches of non-terminal nodes 

are ignored. The three paths are ba, bac, bac therefore, the Q ( t) 1s calculated as 

(6.126) 

6.4.3 Importance Measures 

The BDD method enables exact and efficient calculation of the measures of Im­

portance to be performed elimmating both the intermediate stage of identifying 

the pnme 1mplicant sets and the need to evaluate lengthy series expansions. Bun­

baum's measure of component failure and repair importance IS presented for the 

case of the SFBDD, that has been established in [37]. The calculatiOn process IS 

easy to adapt m the 1-BDD case, since the SFBDD and the 1-BDD structure are 

very similar. The Birnbaum's measure for the TDD techmque IS developed m th1s 

research and presented later in the section. 

6.4.3.1 Birnbaum's measure of failure and repair importance 

The failure importance of component z 1s defined as the probability that the system 

IS m a workmg state such that failure of component z would cause system failure. 

Therefore, it is possible to define Birnbaum's measure of component failure Impor­

tance as· 

(6.127) 

where E[T.=1] IS the probability that component z IS e1ther fmlure relevant or Ir­

relevant to the state of the system and E[T.=-]Is the probability that component 

z IS Irrelevant. 

Similarly, B1rnbaum's measure of component repair Importance can be defined 

as the probability that component z is repair relevant to the system state: 

(6.128) 

where E[T.=o] IS the probability that component z is repair relevant or irrelevant 

to the system state. 

Once Birnbaum's measure has been calculated it enables the unconditional fail­

ure intensity and the expected number of system failures m a g1ven mterval to be 

calculated. 
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6.4.3.1.1 The SFBDD method 

The procedure for calculating the probabilities E[T.=1] and E[T.=ol is outlined here· 

(6.129) 
x, 

E[T,=o] = Lprx,(q) • po~.(q), (6.130) 
x, 

where the path probabilities prx, (q),po!, (q), po~. (q) were explamed m the coherent 

case m Chapter 3, section 3.6.2. 

The expressiOn for E[T.=-l can be obtained by computing an intermediate BDD 

for each node, that is calculated by the conjunction of the 1 and 0 branches of 

the node. Then the E[T.=-l is obtamed by multiplying the probability preceding 

the node m the SFBDD by the sum of probabilities of all paths to termmal vertex 

1 Considering the example SFBDD in Figure 6.1 and Its path probabilities m 

Table 6 13 Probabilities E[T.=1] and E[T.=ol will be calculated accordmg to equa-

Node PTx,(q) po!, (q) po~. (q) 
F1 1 Qa + PaQc PaQc 

F2 Qb 1 Qc 

F3 Pb 0 Qc 

F4 QbPa + PbPa 1 0 

Table 6 13: Path probabilities for each node m the SFBDD m Figure 6 1 

tions 6 129 and 6 130 For calculatiOn of E[T.=-l intermediate BDDs are obtained 

and their paths probabilities used. 

For node F1 = ite(b, F2, F3): 

F2 · F3 = ite(a, 1, F4) · ite(a, 0, F4) = ite(a, 0, F4). (6.131) 

The only path through thrs SFBDD IS ac, its probability IS PaQc 

For node F2 = ite(a, 1, F4) 

1 · F4 = F4. The only path IS c, its probability is Qc . (6.132) 

For node F3 = ite(a, 0, F4) 

O·F4 0 The probabiirty IS 0 (6 133) 

182 



Dealmg w1th node F4 = ite(c, 1, 0) gives 0 

Summary of results obtained for E[T,=1], E[T.=ol and E[T.=-l is shown in Ta­

ble 6.14. Using these results and equations 6.127 and 6 128 the fa1lure and repair 

Node E[T.=I] E[T.=ol E[T.=-] 

F1 qa + Paqc Paqc Paqc 

F2 qb qbqc qbqc 

F3 0 Pbqc 0 

F3 qbPa + PbPa 0 0 

Table 6.14 Summary of results for the SFBDD of E[T.=i], E[T.=ol and E[T.=-l 

Importance of each component 1s calculated 

e[ - qa + Paqc - Paqc = qa, 

eF - qb - qbqc + 0 - 0 = qbpc, a 

eF - qbPa + PbPa = Pa, c 

en b - Paqc - Paqc = 0, 

en - qbqc - qbqc + Pbqc - 0 = Pb%, a 

en c 0-0=0 

The unconditional failure mtens1ty can be calculated: 

6.4.3.1.2 The L-BDD method 

(6.134) 

(6 135) 

(6 136) 

(6 137) 

(6 138) 

(6 139) 

(6 140) 

The Similar approach to the SFBDD method can be applied in the L-BDD tech­

mque The calculation of the probabilities is outlmed below. 

E[T.=I]= L prx,(q)·po!,(q)+ L prx,(q)·po~.(q), (6.141) 
x.,($x) 

E[T.=o] = L prx,(q) · po~.(q) + L prx,(q) · po!,(q). (6 142) 

For $x vanables extra summing 1s reqmred 'switching' the 1 and 0 branches over. 

Consider the L-BDD in Figure 6 11 and its path probabilities m Table 6 15. Probabilities 
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Node prx,(q) po~. (q) po~.(q) 

F1 1 Qa + PaQc Q$aQc 

F2 Qb 1 Qc 

F3 QbPa + PbQ$a 1 0 

F4 Pb Qc 0 

Table 6 15 Path probab1hties for each node in the L-BDD m Figure 6 11 

E[T,=1] and E[T.=ol w1ll be calculated according to equatwns 6 141 and 6.142. For 

calculatiOn of E[T.=-l intermed1ate BDDs are obtamed and their paths probabili­

ties used. 

For node Fl = ite(b, F2, F4): 

F2 · F4 - ite(a, 1, F3) · ite($a, F3, 0) = ite(&a, 0, F3) 

ite($a, F3, 0) 

The only path through this L-BDD IS $ac, Jts probability IS Q$aQc 

For node F2 = ite(a, 1, F3): 

1 · F3 = F3. The only path is c, its probab1hty is Qc 

Dealing w1th node F3 = ite( c, 1, 0) pves 0 

For node F4 = ite($a, F3, 0) 

F3 · 0 = 0. The probability JS 0 

(6 143) 

(6 144) 

(6.145) 

Summary of results obtamed for E[T,=1], E[T.=ol and E[T.=-l are shown m Ta­

ble 6 16. Using these results and equations 6 127 and 6 128 the fa1lure and repair 

importance of each component is calculated. 

e[ 
eF -a 

eF -c 

ef -

eR -a 

eR -c 

Qa + PaQc - Q$aQc = Qa, 

Qb - QbQc + 0 - 0 = QbPc, 

QbPa + PbQ$a = Pa, 

Q$aQc - Q$aQc = 0, 

QbQc - QbQc + PbQc - 0 = PbQc, 

0-0=0 
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(6 148) 

(6.149) 
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Node E[T,=l] E[T.=ol E[T.=-l 

F1 qa + Paqc q$aqc q$aqc 

F2 qb qbqc qbqc 

F3 qbPa + Pbq$a 0 0 

F4 0 Pbqc 0 

Table 6 16: Summary of results for the L-BDD of E[T,=l], E[T.=ol and E[T.=-l 

These results are the same as the results obtained using the SFBDD in Equa­

twns 6 134 - 6.139. The expresswn of the unconditional fa1lure mtensity is also 

1dent1cal to Equatwn 6.140 

6.4.3.1.3 The TDD method 

Terms E[T,=1], E[T.=ol and E[T.=-l can be calculated directly from the TDD. The 

procedure 1s outlined below: 

(6.152) 
x, 

(6.153) 
x, 

E[T.=-l = L:Prx.(q) · po~,(q), (6.154) 
x, 

where 

• po;;c IS the probability of the path section from the one branch of node x, to 

a terminal vertex 1 v1a only 1 and 0 branches of non-terminal nodes, 

• po~;c is the probab1hty of the path section from the zero branch of node x, to 

a terminal vertex 1 v1a only 1 and 0 branches of non-termmal nodes, 

• po~, is the probab1hty of the path section from the consensus branch of node 

x, to a terminal vertex 1 via only 1 and 0 branches of non-terminal nodes 

Therefore, the failure and repair cnt1cality of component z are expressed as: 

(6 155) 
x, 

G~(q) = L:prx,(q)[po~;c(q)- po~,(q)] (6 156) 
x, 
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These expressiOns are true for every component z that is failure and repa1r relevant 

The other two cases, i.e. when component z is failure relevant or repair relevant, 

are described below where the 'C' branch contams the value NIL 

If component z IS only fa1lure relevant, its cntlcality is calculated as 

e;"(q) - Lprx,(q)[po;;c(q)- po~;c(q)], 
x, 

e~(q) 0 

If component z IS only repair relevant, 1ts cnt1cahty is calculated as 

e;"(q) - 0, 

e~(q) LP~'x,(q)[po~;c(q)- po;;c(q)]. 
x, 

(6.157) 

(6.158) 

(6.159) 

(6 160) 

The application of the algorithm in practice to calculate both the failure and repair 

importance of components is explained usmg the example TDD in Figure 6 4. Now 

Node prx,(q) po~;c(q) po~;c( q) po:;, (q) 

F1 1 qa + Paqc Paqc -
F2 qb 1 qc qc 

F3 Pb 0 qc 0 

F4 qbPa + PbPa 1 0 -

Table 6 17 Path probabilities for each node m the TDD in F1gure 6 4 

the failure and repair importance for each component can be calculated by summing 

the contnbutwns of nodes of the same component. Thus usmg the expressiOns in 

equatiOns 6.155 and 6.156 and probabJht1es in Table 6.17 gives: 

e[ 1 ' [qa + Paqc - Paqc] = qa, (6 161) 

eF - qb [1 - qc] + Pb · [0 - 0] = QbPc, (6.162) a 

eF - (QbPa + PbPa) · [1- 0] = Pa, (6.163) c 

eR b - 0, (6.164) 

eR - Qb' [qc- Qc] + Pb' [qc- 0] = PbQc, (6.165) a 

eR - 0 (6 166) c 

These results, as well as the unconditiOnal failure mtensity, are the same as usmg 

the SFBDD or the 1-BDD method. 
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This concludes the presentation of the quantitative analys1s of non-coherent fault 

trees converted to BDDs. 

6.5 Hybrid Method in the Non-coherent Fault 'free 

Case 

As a good alternative BDD construction technique for coherent fault trees, the 

Hybnd method can also be utilised in the conversion of non-coherent fault trees to 

SFBDDs. As it was presented m the coherent case the Hybnd method combines the 

best features of the two constructiOn methods of BDDs, the ite method, presented 

m Chapter 3 and the Component Connection Method, presented in Chapter 4. 

The new method mcorporates the most effic1ent parts of both algorithms In this 

section the two strateg1es are compared usmg the two effic1ency measures, the num­

ber of nodes and the processmg time. 

According to the first strategy a non-coherent fault tree IS simplified, then 1t 1s 

converted to an SFBDD usmg the ite techmque. For the qualitative analysis its 

correspondmg SFBDD IS converted to an ZBDD wh1ch produces prime implicant 

sets. The ZBDD method was chosen as one of the two most efficient tools for the 

qualitative analys1s of non-coherent fault trees. It does not matter which method 

is chosen to get the pnme 1mplicant sets, because the test on the Hybr!d method 

w111 be performed wh1le a SFBDD IS constructed, i e. pnor to the qualitat1ve 

analysiS The qualitative analys1s is performed more for the validation purposes of 

the 1mplementatwn of the method, rather than for the effic1ency test of the method. 

The second strategy ut11ises the Hybnd technique for the conversion of Simplified 

non-coherent fault trees to SFBDDs and then the ZBDD method is also applied 

for the qualitative analys1s. The Advanced Hybrid method is used in the analys1s 

smce 1t was more efficient than the Basic Hybnd method for the coherent fault 

trees 

The library of 13 large non-coherent fault trees is used in the analys1s Their 

complexity 1s shown in Table A 62 These are the same fault trees that were used 

m the analysis of non-coherent fault trees usmg the four different methods for the 
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qualitative analysiS 

The number of nodes m the resulting SFBDDs 1s the same using the ite technique 

and the Hybrid method. The Hybrid method expresses the structure functiOn of a 

fault tree in terms of a BDD in the same way as 1t does the ite techmque. There­

fore, the final result of both methods was the same and was shown in Table A 91 

The processmg t1me and the maximum reqmred s1ze of array were also analysed 

as was done in the efficiency analysis of the Hybnd method in the coherent case. 

The results for the ite method are shown in Tables A 96 and A 108, and for the 

Hybrid method- in Tables A 107 and A 109. The companson of the two techniques 

accordmg to the processing time and the maximum reqmred size of array IS shown 

in Table 6.18 

Scheme 1 2 3 4 5 6 7 8 

Ita method 9 96 1544 13 89 8 78 1048 8 54 10 77 14 78 
m 
E 

"' Hybrid method 9 97 15 1 13 47 9 08 10 55 85 10 89 14 88 

E lie method 12488 10505 10176 8280 11940 7868 8825 10667 
" ,.. m 
~ ~ N 
~ ~ Cii 

Hybrid method 12330 10221 9891 8027 11780 7604 8682 10488 :;; 

Table 6 18· Comparison of the two techmques 

This table shows that the processing t1me IS very Similar usmg the ite technique 

and the Hybnd method while bmlding SFBDDs However, the maximum required 

size of array decreases 1f the Hybnd method is used instead of the ite techmque 

This comparison for non-coherent fault trees matches the results m the coherent 

case qmte well. The Hybrid method appears to be a good alternative technique to 

the ite method for convertmg non-coherent fault trees to SFBDDs 

The ranking of the e1ght ordermg schemes was also performed. The results ac­

cordmg to the number of nodes, the processmg t1me and the max1mum required 

s1ze are shown in Tables 6 19 - 6 21 Ranking results are sim1lar between the two 

methods. The best performance was obtained by the dynam1c top-down scheme 

(6) for almost all effic1ency measures and rankmg methods. The mod1fied top-down 

scheme (1) gave poor results The rankings are sim1lar to the ones obtamed m the 
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Scheme 1 2 3 4 5 6 7 B 

otaJ Number of nodes 13432 10302 9370 8026 12967 8312 8730 11744 
uantrty 
ankmci Rank 8 5 4 1 7 2 3 6 

E Number of FTs 

~ Highest w1th the highest 0 3 1 2 1 2 4 0 
cheme rank E ankmg 

~ Rank 7-8 2 5-6 3-4 5-6 3-4 1 7-8 
dded Added rankmg 86 57 57 39 67 45 43 59 
cheme 
an king Rank 8 4-5 4-5 1 7 3 2 6 

otaJ Number of nodes 13432 10302 9370 8026 12967 8312 8730 11744 
uantrty 

E ank1nci Rank 8 5 4 1 7 2 3 6 

= Highest 
Number of FTs 

"' w1th the highest 0 3 1 2 1 2 4 0 E cheme rank "0 ankmg 
_§ Rank 7-8 2 5-6 3-4 5-6 3-4 1 7-8 
>-

'""" :I: Added rank1ng 86 57 57 39 67 45 43 59 
cheme 

Rank 8 4·5 4-5 1 7 3 2 6 

Table 6 19 ite and Hybnd method, ranking accordmg to the number of nodes 

coherent case for 'large' fault trees 

6.6 Summary 

The BDD method for the analysis of non-coherent fault trees can be more effi­

cient and accurate than the conventional techmques of non-coherent FTA The 

qualitative analysis can be performed fully usmg the BDD method and the system 

unavailability can be calculated without knowing pnme 1mplicant sets. Therefore, 

there are no long series expansions to perform that can be very ineffic1ent The 

importance measures can also be calculated usmg the BDDs 

In some situatwns the pnme implicant sets can be valuable, especially while plan­

ning repair schedules and des1gning the incorporatiOn of safety systems The SF­

BDD is only smtable for the quantitative analysis. It IS not suitable for the qualita­

tive analysis because m the SFBDD structure there is no d1stinctwn of component 

fa1lure relevance, repa1r relevance or irrelevance. 

A new method, the Ternary DecJsJOn D1agram method, was presented in this chap­

ter for the calculatwn of pnme implicant sets. This method produced a TDD where 

all pnme implicants were obtained after the minimisation. In the second method, 

1mt1ally a SFBDD was produced and then 1t was converted to a Meta-products 

BDD, contammg all pnme implicant sets. The third method resulted in a Zero-

189 



Scheme 1 2 3 4 5 6 7 8 

ota! Time 996 1544 1389 878 1048 854 1077 1478 
uantrty F-:::------t---"~-t-"'-!"-'--t---""-:"''--i----'7'-r"':""-t-='---t-'-"-:'"-t-""":::"'--U 
ankmORank 3 8 6 2 4 1 5 7 

'2 Number of FTs 
£ Highest With the highest 
ID cheme rank 
E ankmg 

0 3 3 4 5 5 2 4 

~ ~R~an~k----t--~8-+-~5~-6~+-~~~6~-~3-~4-r--'~1-~2~+-~1~-2~+-~7-+-~~~4~~~ 
dded Added rank1ng 59 54 57 39 47 34 63 39 
cheme 
ankmo Rank 6 8 5 2-3 4 1 7 2·3 

0~ ~T~Im~•----t-~9~97~t-~1~5~1-f---"13~4~7~____,9~0~8~r1~0~55"-t-~8~5'-t-1~0~8~9-t~14=8~8~~ 
,uamrty '-

ganklnQRank 3 8 6 2 4 1 5 7 
6 Number of FTs 
CD Highest w1th the highest 0 2 2 1 4 4 2 6 

E cheme , .. ra,n,k ____ t---,--+-~~+---:--:-+----:~+~~+----:~+----:~-t-..,-~1 "'Q ankmg r: 
J5 Rank 8 4·6 4-6 7 2·3 2·3 4-6 1 
>-
J: dded Added rankmg 54 59 54 44 40 31 59 30 

cheme 
aoklng Rank ~6 7·8 ~6 4 3 2 7·8 1 

Table 6 20 ite and Hybrid method, ranking accordmg to the processmg time 

Scheme 1 2 3 4 5 6 7 8 
otal Max1mum array SIZe 12488 10505 10176 8280 11940 7868 8825 10667 
uant1ty 

Rank 2 6 cMk'"g 8 5 4 7 1 3 , 
Number of FTs 0 

5 1ghest rlth the highest 0 1 1 3 2 4 2 0 
<D eh erne 
E ankmg rank 

~ Rank 7-8 5·6 ~6 2 ~· 1 ~4 1·8 
dd<>d Added ranking 85 65 64 43 62 32 55 54 
eh erne 
anktng Rank 8 7 6 2 5 1 4 3 

otal Max1mum array s1ze 12330 10221 9891 8027 11780 7604 8682 10488 
uantlty 

Rank 15 anklnQ 8 5 4 2 7 1 3 6 
5 Number of FTs 
<D 1ghest [w1th the h1ghest 0 1 1 3 2 4 2 a E cheme 
1:1 ""''"• 

rank 

.c Rank 7-8 ~6 ~6 2 ~4 1 ~4 7-8 
>-

dd<>d ~dded rank1ng :I: 85 64 63 43 63 31 55 54 
eh erne 
an king Rank 8 7 ~6 2 5-6 1 4 3 

Table 6.21: ite and Hybnd method, rankmg accordmg to the maximum array s1ze 

suppressed BDD that enabled an efficient quahtative process to be ach1eved. The 

fourth method computed a Labelled Binary Decision D~agram, where all variables 

were labelled and pnme 1mplicant sets were obtamed after the minim1satwn The 

efficiency of the new method was estimated companng 1t to the conventwnal ap­

proaches. 

A comparison of the four methods revealed that the TDD method and the ZBDD 

method performed well for both measurements, 1 e the number of nodes and the 

conversiOn t1me The TDD method was shghtly faster than the ZBDD method. 
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That possibly was due to the fact that one structure (a TDD) was required m th1s 

method, which presented a SFBDD as well as it was smtable for the qualitative 

analys1s In the ZBDD method a SFBDD was constructed and then an add1tional 

ZBDD was bmlt that resulted in a longer conversion process However, the ZBDD 

structure was mmimal, therefore the number of nodes was smaller than in the 

TDD method where each TDD was m1mm1sed before obtaimng pnme imphcant 

sets. Both methods gave close results and prov1ded the efficient means for the 

analysis of non-coherent fault trees 

The Meta-products BDD algonthm produced a lot larger final BDDs than m any 

other methods that were used for the calculatiOn of pnme 1mphcant sets. Process­

mg t1me was also greater This was due to the fact that after the converswn of 

fault tree to a SFBDD another BDD, called the Meta-products BDD, was reqmred, 

where all components were descnbed by two vanables Th1s increased the size of 

the BDD and the processmg t1me unavoidably. 

During the 1-BDD method labelled variables were introduced, usmg three dif­

ferent types of bas1c events (&x < x < $x). In order to get all pnme 1mplicant sets 

the conjunction of the 1 branch and the 0 branch was performed for nodes that 

represent dual state basic events, as it was done in the TDD method However, the 

mcrease in number of vanables and the introduction of some extra connectiOn and 

mimm1sation rules made this method not as effic1ent as the TDD or ZBDD method. 

Overall, as expected, the efficiency of the four methods was marginal when small 

fault trees were considered Wh1le analysmg 'large' fault trees the advantages 

and disadvantages of the d1fferent techmques were more considerable. The TDD 

method and the ZBDD method performed a lot better than the two other tech­

mques and should be used for the BDD analysis of non-coherent fault trees The 

meta-products BDD method performed a lot worse than the 1-BDD method. The 

d1fference between the two advantageous methods, the TDD method and the ZBDD 

method, was still marginal. Therefore, any of the two methods used for a different 

library of example fault trees should prov1de an effic1ent analys1s 

The e1ght ordenng schemes were ranked for the four conversion methods There 

are some clear conclusions about the efficiency of the schemes Using the example 

fault tree hbrary provided the dynamic top-down we1ghted scheme (6) performed 

191 



well for all the methods and both measurements. The depth-first, w1th number 

of leaves scheme (4) was also ranked h1ghly. The modified top-down scheme (1) 

gave average or poor results, especially according to the number of nodes The two 

depth-first schemes, (2) and (3), also performed poorly. Summarismg the rankmg, 

for the maJonty of the methods the weighted ordering schemes, (5)-(8), performed 

better than the neighbourhood ordenng schemes, (1)-( 4) 

In some cases the fault tree to BDD conversiOn was 1mpossJble in a reasonable 

time, therefore, example fault trees were Simplified prior to the BDD conversion 

process. In that case some complex and modular events appeared in the BDDs. 

Wh1le performing the qualitative and quantitative analyses these events were ex­

panded back to the level of bas1c events m order to be able to obtain the results 

in terms of origmal components. Overall, this strategy prov1ded is an efficient tool 

for the analysis of non-coherent fault trees. 

The application of the Hybnd method in the analys1s of non-coherent fault trees 

was also performed. The Hybrid method was used for buildmg SFBDDs. This 

approach resulted m some further improvement on the efficiency of the method in 

terms of the processmg time and maximum size of array reqmred. 
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Chapter 7 

Application of Proposed Methods in 

Phased Mission Analysis 

7.1 Introduction 

Many types of system operate for misswns that are made up of several phases. For 

example, an aircraft mJsswn could be considered m the followmg phases taxnng to 

the runway, take-off, chmbmg to a certain altitude, cruising, descendmg, landing 

and taxnng back to the termmal The system must operate successfully durmg 

each phase so that the m1ssion would be completed successfully. Components can 

fail at any point during the miSSIOn but it can be cntJcal only for one particular 

phase Therefore, 1t may be that the transition from one phase to another is the 

cntical event causing mission failure and the component fa1lures may have occurred 

previously 

FTA can be used as a means for analysing the rehab1hty of non-repairable sys­

tems that undergo phased missions The reqmred results are the system fa1lure 

modes and failure probab1hty of each phase, followed by the total mission unrelia­

bility. The complexity of fault trees might make the analys1s impossible, therefore, 

some alternative methods w1ll be incorporated in the calculatwn process First of 

all, non-coherent fault trees representmg phase failures will be s1mphfied. Then the 

BDD method w1ll be employed to calculate the unrehabihty of each phase This 

will allow a more efficient and accurate Phased Mission Analys1s. 
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7.2 Fault Tree Method for Phased Mission Analy-
. 

SlS 

A very simple phased m1sswn problem consisting of non-repauable components 

A, B, C, D and E representmg component fa1lures in each of the phases is used 

to demonstrate the approach Example is shown in F1gure 71 During phase 1, 

to ------+r, t, ----+t, 

F1gure 7.1 Example of a s1mple phased misswn system 

which lasts until time ft, the success of the mission depends on the success of the 

two components, A, B. After the successful completion of phase 1 the system then 

enters phase 2, which reqmres component C to function between times ft and t2 

along w1th at least one of the two remaimng components D and E. In the final 

phase only one of the two components D and E IS reqmred to function between 

times t2 and ta m order to accomplish the mtsswn successfully. 

Considering the phases as separate systems mdtvtdual phase failures are presented 

by fault trees in Figure 7.2. Component failure m phase z is A., B., C., D, and E, 

F1gure 7 2 Fault trees of individual phase failures 

for components A, B, C, D and E respectively. 
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The reliabJhty of a phased mission cannot be obtained s1mply by the multipli­

catiOn of the reliabilities of each of the individual phases because it would mvolve 

assumptiOns that the phases are independent and all components are workmg at 

the beginmng of each phase. One of the methods proposed m [38] contains the 

transformation of a mission to that of an equivalent smgle-phase mission. This 

method involves three stages and is only concerned with the failure of the misswn, 

1.e it does not take into account failures of the individual phases. It is impossible 

to calculate mdividual phase fmlure probabilities. 

An alternat1ve method was proposed by La Band and Andrews m [39] that en­

hances the fault tree approach but also enables the probability of failure in each 

phase to be determmed in add1t10n to the whole missiOn rehab1hty. For every phase 

the method combines the causes of success in prevwus phases w1th the causes of 

failure for the phase being ronsidered This allows both quahtative and quantita­

tive analyses of both phase failure and mission fmlure 

System failure in phase z is presented by the AND of the success of phases 1 

to z - 1 and the fmlure durmg the phase z, as shown m Figure 7.3. The m1ssion 

unreliability, Qm.,., is then obtained as a sum of fa1lure probabihties in phase z, 

Q.-
N 

Qmoss = 2::;Q., 
t=l 

here N 1s the total number of phases 

(71) 

For the example shown m F1gure 7.1 the fault tree to show the 1mtial phase failure 

remains identical to the fault tree representatiOn of the mdividual phase fmlure of 

phase I in Figure 7 2. Phase II failure can then be shown as the combination of 

phase I success and fa1lure in phase II, as shown m F1gure 7 4 Also, every basic 

event m the phase II fault tree IS replaced by an OR combmation of the failure 

events for that and all precedmg phases In the same way phase III fmlure can 

be represented as the combination of phase I and phase II successes and failure in 

phase III, presented in Figure 7.5. 

To determme the mmimal cut sets of a phase or a mission a top-down or a bottom­

up approach IS applied to the relevant fault tree The notatiOn used to represent 
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Failure m 
phasez 

Success m 
preVIOUS 
phases 

Fazlure m 
phase 1 

Fazlure 
conditions 
in phase 1 

Phase 1 fault tree With each 
bas1c event replaced With an 
OR combmauon of 
component frulure m any 
preVIOUS phase 

Figure 7.3· Phase failure fault tree in a general case 

the fmlure of component A in phase t IS A,; A, represents the functwmng of compo­

nent A throughout phase t. The notation used to md1cate the fmlure of component 

m phase t to J is A,,3 , i e. the component fails at some point from the start of phase 

t to the end of phase J. Th1s notatwn defines an algebra over the phases to ma­

mpulate the logic equations 

A,· A, - A., 

A. A3 0, 

A,· A,,3 - A., 

A, A, 0, 

A, · A,,3 - A,+l,J, 

A,A,+l A3 A,,3 , 

A, + A,+l A3 - A,,3 

(7 2) 

(7 3) 

(7 4) 

(7.5) 

(7 6) 

(7.7) 

(7 8) 

Therefore, 1f two implicant sets contain exactly the same components, where all 

but one occur over the same time mtervals and the other is a fa1lure m contiguous 

phases, the two imphcant sets may be combmed w1th the penod of failure for 

the component with t1me discrepancy adjusted, e g two 1mphcant sets A1B 1 and 

A1B2 can be replaced by A1B1,2 This simphficatwn approach allows the prime 
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Figure 7.4. Phase II fa1lure fault tree 

F1gure 7.5: Phase Ill fa1lure fault tree 

1mphcants for the s1mple example given in F1gure 7 1 to be expressed as follows: 

Phase I: (7.9) 

Tt - At +Et 
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This gives two mimmal cut sets {A1} and {B1} 

Phase II: 

n 

Finally, 

AIBI(CI + C2 + (D1 + D2)(E1 + E2)) 

- AIBICI,2 + A!B!D!,2E1,2· 

(7.10) 

Phase Ill: 

T3 

(7.11) 

A!B!C!C2(DJD2 + E1E2)(D1 + D2 + D3)(E1 + E2 + E3) 

- AIBICIC2D3E1,3 + AIBICIC2E3DI,3· 

Having established the prime implicant sets for each phase, they may now be 

used to quantify the probability of phase and mission failure. Usmg the mcluswn­

exclusion expansiOn in Equation 2.41 the event of phase failure for this simple 

three-phase miSSIOn is expressed as· 

Q2 - (1- qA1 )(1- qsJqc,,, + (1- qA,)(1- qsJqv,,,qE,,2 -

(1- qA,)(1- qs,)qc,,,qv,,,qE,,, 

Qa - (1- qA,)(1- qs,)(1- qc, - qc,)qv,qE,,3 + 
(1- qA,)(1- qs,)(1- qc, - qc,)qE,qv,,,­

(1- qA,)(1- qs,)(1- qc, - qc,)qv,qE, 

(7.12) 

(713) 

(714) 

As the failure of each of the phases produces mutually exclusive causes, the prob­

ability of mission failure may be expressed as the sum of the unreliab1lity of the 

individual phases· 

N 

QMISS = LQ• 
t=l 

7.3 Phase FT simplification 

(7.15) 

Fault tree simplification techniques are helpful to reduce the Size of a fault tree to 

enable pnme 1mphcant sets to be found more efficiently. They were presented m 
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Chapter 2 for coherent fault trees and m Chapter 5 for non-coherent fault trees 

These techmques reduce both memory and time reqmrements The factonsation 

of phase fault trees is a part of th1s research and w1ll be explained more m detail. 

Fault trees of every individual phase are cons1dered 

Rule. If there !S a pazr of baszc events that always occur together and under 

the same gate type, throughout the set of fault trees of every mdzvzdual phase, that 

pazr can be replaced by a smgle complex event. 

Introduce a phased mission w1th N phases as shown in F1gure 7 6. Since A AND B 

Figure 7 6: N-phase m1ssion 

always occur together they can be factorised, i e. A AND B =2000. This example 

contams a set of AND gates, however, the process of Simplification to OR gates 

can be applied in the same way. The factonsed fault trees are shown m Figure 7.7. 

F1gure 7 7 Factorised fault trees 

Following the method, presented in the prevwus section, OR combinatwns of event 

fmlures m each phase replace every basic event in a FT. Also, the success of ev­

ery preceding phase IS mcluded m the phase fa1lure logic Fault trees representing 

fa1lures for phase I, phase II and phase Ill are shown in Figure 7.8. After the ab­

sorption has been applied on the fault trees, pnme 1mplicant sets can be calculated 

from fault trees m F1gure 7 9 
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Figure 7.8: Phase I, phase 11 and phase Ill fmlure fault trees 

Figure 7 9 Fault trees after the absorption 

Phase I· T1 - 20001, 

Phase 11 T2 - 2000120002, 

Phase N: TN - 20001 2000N 

This gives pnme implicant sets· 

Phase I 

Phase II 

Phase N 

(7.16) 

(7.17) 

While extracting prime 1mphcant sets m terms of basic events, two types of gate 

are considered For an AND gate, 1 e. 2000 = A · B 

Phase I 

Phase 11 

Phase N 

AIEl, (718) 

A2B1,2 + B2A1,2, 
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For an OR gate, i e 2000 = A+ B: 

Phase I 

Phase II 

Phase N 

A1 + B1, 

B1Az + A1Bz, 

(719) 

Also, while calculatmg the unrehab1lity of each phase two types of gate will be 

considered. For an AND gate. 

Q1 - qzoool = qA1 qB" 

Qz - qzooo, = qA,qB1,2 + qB,qA1,2 - qA,qB, 

For an OR gate: 

QN q2000N = (1- qB1 - oo- qBN-l)qAN + 
(1 - qA1 - oo• - qAN_JqBN - qANqBN' 

Remark. 

For an AND gate: 

2000IN - 20001 + 20002 + . + 2000N 

For an OR gate: 

20001N 

A1B1+ .+ANB1N+BNA1N=AINBIN ' , , 

20001 + 20002 + oo + 2000N 

- A1 + BI + .. + B1,NAN + AI,NBN· 

(7 20) 

(7 21) 

(7.22) 

(7.23) 

This simplification technique will be applied usmg the example misswn m Fig­

ure 71 

First of all, the factorisatwn of fault trees shown m Figure 7.2 is performed re­

sulting in the fault trees shown in Figure 7.10 Events D AND E are replaced by 
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Figure 7.10: Factonsed example fault trees 

a complex event 2000. 

Now fault trees for every phase are constructed usmg the method explamed before. 

Phase I fault tree remains identical to the fault tree representation of the individ­

ual phase fa1lure of phase I m F1gure 7.10 Phase II and phase III fault trees are 

presented m F1gure 7 11 and F1gure 7.12 respectively. 

F1gure 7 11 Phase II fmlure fault tree from the example 

Now prime imphcant sets can be calculated Phase I failure fault tree IS Identical 

to the individual phase failure fault tree, therefore: 

Phase I: 

Tl = AI +El 

Now for phase II the rules for an AND gate in Equatwn 7 18 are followed. 

Phase II: 

T2 = AIBI(Cl+C2+20001+20002) 

= AIBI(C1,2 + 20001,2) 

AIBI(C1,2 + D1,2El,2) 
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Frgure 7.12: Phase Ill farlure fault tree from the example 

Therefore, the two pnme rmplicant sets obtamed are A1B1Cr,2 and A1BrDr,2Er,2· 

For phase Ill Equation 7.18 is used once agam. 

Phase III 

n - A1B 1CrC22000r20002(2000r + 2000z + 20003) 

- ArBrCrC22000a 

- ArBrCrC2(DaEr,a + EaDr,3) 

(7 26) 

Two pnme rmplicant sets obtained are ArBrCrC2D3E1,3 and ArBrCrCzEaDr,3· 

Prime rmphcant sets match the ones obtained from the origmal fault trees, there­

fore, the unrcliabrlity of each phase wrll also have the same expression. 

For phase I: 

For phase II · 

Qz - (1- qAJ(1- qsJqc,,2 

+(1- qA,)(1- qs,)q2ooo1,2 

-(1- qA,)(1- qs,)qc,,2q2ooo,,2 

= (1- qA,)(1- qs,)qc,,2 

+(1- qA,)(1- qs,)qD,,2qE,,2 

-(1- qA,)(1- qs,)qc,,2qD,,2qE,,2 

203 

(7 27) 

(7.28) 



For phase IlL 

Q3 - (1- qA1)(1- qB1)(1- qcl- qc,)q2ooo3 

- (1- qA1)(1- qB1)(1- qcl- qc,) 

(qD3qE1,3 + qE3qD1,3- qE3qD3). 

(7 29) 

This concludes the calculation of m1ssion unreliability using the simplified phase 

failure fault trees. 

7.4 Binary Decision Diagram Analysis for Phased 

Missions 

A fault tree represents system fa1lure logic effic1ently but 1s not ideal for mathemat­

ical analysis. Therefore, the BDD method can be applied that prov1des an accurate 

and effic1ent analysis Especially this w1ll be particularly useful for complex fault 

trees or fault trees that are non-coherent, such as the phase fa1lure fault trees 

The representation of the BDD method is explained in Chapter 3. This method 

w1ll be applied to the simple three-phase m1ssion illustrated in Figure 7 2, where 

each phase can be represented by a SFBDD and then the unreliab1lity of each 

phase can be calculated The SFBDD represents the structure functiOn of the non­

coherent fault tree, as 1t was explained in Chapter 6, and it can be applied for the 

quantitative analysis but not for the qualitative analys1s. So, the fault trees for 

phase I, phase II and phase Ill in Figure 7 10, 7.11 and 7.12 are first converted to 

SFBDDs. These SFBDDs are shown m Figures 7 13 and 7 14 Now their quanti­

tative analysis can be performed. 

F1gure 7 13· SFBDD representing phase I fa1lure 
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Figure 7.14: SFBDDs representmg phase II and phase III failures 

For phase I, the ite structure represented by the SFBDD in Figure 7 13 IS. 

ite(Al> 1, ite(Bl> 1, 0)) (7 30) 

There are two disJomt paths to terminal 1, AI and AIBI. Therefore 

(7 31) 

The quantificatiOn process is eqmvalent to the method, presented in Chapter 3 

The SFBDD for failure during phase II is given by the followmg ite structure 

ite(A1, 0, ite(B1, 0, ite( Cl> 1, ite( C2 , 1, ite(20001> 1, ite(20002 , 1, 0)))))) (7.32) 

There are four paths to termmal 1· 

A1B1C1, 

A1B1C1Cz, 

A1B1C1Cz20001> 

A1B1 C1 Cz200012000z. 

(7 33) 

During quantllicatwn the fact, that the events representmg the same component 

failure in different phases, hke C1 and C2 , are mutually exclusive, needs to be taken 
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mto account. If component C fails in phase II it must have survived phase I This 

rule IS covered by Equation 7 6. Therefore, phase II fa~lure probab1hty is calculated 

as 

Q2 - (1- qA,)(1- qB,)(qc, + qc,) + (7 34) 

(1- qA,)(1- qB,)(1- qc, - qc,)(q2ooo1 + q2ooo,). 

Smce 20001 + 20002 = D1,2E1,2 according to Equation 7.22 1t gives 

(1- qA,)(1- qB,)(qc,,, + (1- qc,,,)qv,,,qE,,,) (7 35) 

= (1- qA,)(1- qB,)(qc,,, + qv,,,qE,,,- qc,,,qv,,,qE,,,). 

Fmally, the SFBDD representation for the fault tree of the failure during phase Ill 

IS 

ite(A~, 0, ite( B~, 0, ite( C~, 0, ite( C2 , 0, t)))), 

where 

t = ite(2000~, 0, ite(20002 , 0, ite(20003, 1, 0))). 

The only path is 

The failure probability of phase Ill IS expressed as 

Followmg the expressiOn m Equation 7.20 gives 

Q3 = (1- qA,)(1- qB,)(1- qc, - qc,) 

(qv3qE,,3 + qE3qv,,3- qE3qv3) 

(7 36) 

(7 37) 

(7.38) 

(7.39) 

Therefore, 1t can be seen that the unre1Iab11Ity of each of the phases found by the 

BDD method is Identical to that obtained using the fault tree analysis of onginal 

or Simplified fault trees. 

The quantitative analysis of the phase failure probability using BDDs IS efficient, 

because the paths to termmal vertices are disJoint and the phase failure probability 

can be calculated by summmg the probabilities of each path. This approach also 

shows that the size of phase fault trees can be reduced by applying the simplifica­

tion process Therefore, the analysis becomes even more efficient because the s1ze 

of BDDs is also reduced since a smaller number of vanables appears m the fault 

tree after the simplification. 
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7.5 Summary 

The accurate assessment of mission unreliability for systems w1th non-repairable 

components operating over a sequence of phases can be performed usmg non­

coherent fault tree structures Th1s provides a full description of the performance 

of the system and allows the calculatiOn of not only the fa1lure probability for the 

whole misswn but also for every phase. Applying algebraic rules the pnme impli­

cant sets are obtained and used m the incluswn-excluswn expresswn for the phase 

failure probability. 

Since the direct quant1ficatwn of the fault trees is frequently problematic even 

for moderately s1zed problems, fault trees can be reduced before calculatmg prime 

implicants. Fault trees for md1vidual phases can be reduced and then fault trees 

of every phase fa1lure are bmlt. New rules for expressing prime implicant sets and 

calculatmg phase failure probability were considered m this chapter when fault 

trees were factorised beforehand 

As a further extenswn, the use of the BDD method to calculate the fa1lure prob­

ability of each phase in the m1ssion provides an effic1ent and accurate means of 

evaluatmg miSSIOn unreliab1lity The pnme 1mplicant sets are not reqmred for 

the quantitative analysis and this property makes the BDD method effiCient Th1s 

method mcorporates bmldmg BDDs for both coherent and non-coherent fault trees, 

tracing all disJoint paths and estimatmg phase fa1lure probab1lity followed by mis­

sion fa1lure probability. 
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Chapter 8 

Computer Implementation of BDD 

Method 

8.1 Introduction 

A system fa1lure modelling and analysis tool based on the Binary Decision Dia­

gram analysis is developed. This program integrates the fault tree SimplificatiOn 

process, presented in Chapter 2, and the BDD conversion techniques, explained in 

Chapters 3, 4, 5, prior to the qualitative and quantitative analyses. The system 

fmlure analysis software runs on personal computers running Microsoft's Windows 

95, 98 and NT operating systems. The tool enables users to ed1t and display fault 

trees m textual form The type of the analys1s can be selected from menu options. 

8.2 Overview 

Th1s tool is a procedure for performmg system failure analysis based on the Binary 

Decision Diagram method The facility includes: 

1. System data input in a fault tree format 

2. Component failure data input 

3. ConversiOn of fault tree to a numencal form 

4. Simplification pre-processing of fault trees 

5 Fault tree conversion to a bmary deciswn diagram 

6 IdentificatiOn of m1mmal cut sets/prime 1mphcant sets usmg the BDD 
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7. Calculation of probability and frequency of top event occurrence from the 

BDD 

8. Importance measures fac1lity 

9. Tabular presentation of results 

The process begms w1th a part1cular fmlure mode of an industrial system wh1ch is 

represent{'d by a fault tree. The fault tree 1s then converted to its numerical form 

and then simplified, 1f requested, 1dentlfymg mdependent modules and simpilfying 

the log1c function. After that the fault tree is converted to a BDD and the re­

quired analysis performed, 1dent1fying m1mmal cut sets or pnme implicant sets of 

component cond1tlons that cause system failure. The probab1lity of the top event 

occurrence 1s calculated together with the frequency of the top event. Importance 

measures wh1ch rank the contribution of every component are also calculated If 

the system being analysed is subdivided into modules the program assesses each 

module in turn and then combines the module mformation to obtam results for 

the overall system. The flowchart of the program 1s shown in Figure 8 1. 

' 
8.3 Established Modules 

The m am modules of the program are presented in the followmg sections explaming 

the data format and h1ghlighting the important parts of the algorithm 

8.3.1 Data Input Module 

A fault tree provides a structured descnpt10n of causes of a particular system 

fmlure mode. Data describing the fault tree structure is spec1fied such that each 

!me m the data file provides detmls for each gate The !me starts with the name 

and the type of a gate, followed by the number of gate inputs, the number of event 

inputs and concludes w1th a hst of its gate and event mputs The top gate can 

appear on any line of the data file. Dunng the m put the data is converted to a 

numencal representatwn for ease of manipulation. Every gate 1s assigned a unique 

number from 10000 upwards (not more than 19999) and every event 1s assigued 

a unique number from 1 upwards (not more than 9999). An 'OR' gate is coded 

by 1 and an 'AND' gate 1s coded by 2 Complex events that are created during 

the reduction process are described starting w1th a number from 20000 upwards. 

Modular events that are created dunng the modularisation process are assigned a 
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F1gure 8.1: Flowchart of the developed program 
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number 20000 + namenum3 upwards, here namenum3 is the number of complex 

events in the fault tree. Arrays are used to represent a fault tree Figure 8 2 

shows the way the data input scheme works On the left there 1s an example fault 

tree with 1ts equivalent data file on the top right, followed by the list of events. 

The numencal representation of the fault tree is shown on the bottom right. This 

numencal data is mampulated further dunng the analysis 

hne 

Top OR 2 0 Gl G2 
Gl ANDO 2ab 
G2AND02bc 

l 
gate val 

number number gate 
I 10000 I 
2 10001 2 
3 10002 2 

num nu m 
~ates events 

2 0 
0 2 
0 2 

F1gure 8.2 Data mput scheme 

8.3.2 Simplification Module 

Event ltst 
I a 
2 b 
3 c 

mputevent[] 

{ 1000 I, 10002 I 
{1,2} 
{2,3} 

Th1s part of the program provides the fault tree simplificatiOn tool applying both 

the reduction and the linear modularisation, presented m Chapter 2 

First of all, the numerical array that represents the input fault tree is scanned 

from the beginning and all the four reductiOn phases are applied by factonsing 

pairs of events that always occur together and removing redundancies of repeated 

events by performing extraction and absorptiOn procedures The numencal fault 

tree IS scanned until there are no more changes possible A reduced numerical 

fault tree 1s obtained together w1th an array that describes the complex events 

constructed. 

The lmear modulansation algonthm is applied by traversing the fault tree twice -

the first time every bas1c event and gate are ass1gned a VISit number, the second 

time mdependent modules are identified accordmg to the VISit numbers that were 

ass1gned The set of modules IS stored m a numerical format together with the m-
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formatiOn 1dentifymg the top event of every module This data is used performmg 

the analyses later m the process 

8.3.3 BDD Conversion Module 

A fault tree (or a set of fault trees 1f mdependent modules were obtained) IS con­

verted to a BDD A two-dimenswnal array IS used to store the BDD representation. 

Every node m a BDD IS presented by a line of three entnes m a BDD array The 

first element represents the numerical code for the bas1c event assoc1ated with the 

node. The second entry contains a pointer to the number of the !me where the 

BDD structure on the 1 branch of the node starts. Consequently, the third entry 

of every line in the BDD array identifies a pointer to the number of the !me that 

marks the start of the BDD structure on the 0 branch. 

Applymg the conventwnal ite method the fault tree is traversed and bas1c ele­

ments are ordered accordmg to a selected variable ordering scheme from the ones 

presented m Chapter 4. Then the fault tree needs to under go pre-processing tasks 

where every gate is reconstructed allowing only two inputs. In th1s manner new 

gates are created. Then all bas1c events are replaced by the1r number of the posJ­

twn m the vanable ordering. This allows the connection rules of the ite techmque 

to be used m a more convenient way An example fault tree IS shown m F1gure 8 3. 

The vanable ordering IS ass1gned b < a < c, in the numencal format 1t IS descnbed 

Figure 8.3: Example fault tree for the ite method 

as 2 < 1 < 3. F1rst of all, every basic event is assigned a line in the BDD array 

with two terminal vertices, i e. -1 for the second entry (1 branch) and 0 for the 

th1rd entry ( 0 branch) -1 1s used to represent the termmal 1 vertex so that the 

ambigmty between the reference to line 1 m the array and the termmal 1 vertex is 
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avoided. This representation is shown m Table 8 1. Then the numerical fault tree 

Lme 
Node I branch Obranch 

number 
I I -I 0 
2 2 -I 0 
3 3 -I 0 
4 I 2 0 
5 I 3 0 
6 I 7 0 
7 2 -I 3 

Table 8.1: ite array 

JS traversed convertmg every gate to 1ts representing BDD and recordmg the fact 

that the conversion process of the gate has been completed 

Gates w1th event inputs only are cons1dered first. Cons1dermg gate G1 wh1ch 

has two basic events as its inputs, new !me 4 in the ite array is created It en­

codes an ite structure for gate Gl, ite(l, ite(2,-1,0),0). Therefore, !me 4 contains 

1 as the first entry, since 1 < 2 in the vanable ordering The second entry is 2, 

1 e pomting to the second !me m the ite array that represents basic event 2, and 

the th1rd entry IS 0 because it pomts to terminal vertex 0 The sub-node sharmg 

property is applied using the existing !me 2 in the ite array for the ite(2,-1,0). 

At the same t1me a computational table 1s generated where every line represents 

the first and the second m put of the gate together w1th the type of the gate and the 

resultmg !me of the root node in the ite array, presented in Table 8.2. Therefore, 

Lme Type Frrst Second Resultmg 
number of gate m put m put hne 

1 2 2 1 4 
2 2 1 3 5 
3 1 4 5 6 

Table 8 2 Computatwnal table in the ite method 

for gate G1 the first entry m the computational table 1s constructed the gate type 

is 2, the first input is from line 2, the second input is from !me 1 and resultmg ite 

structure IS placed in line 4 of the ite array This entry can be used further in the 
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conversion process, i e 1fthe same two inputs, 1 e. input 2 and m put 1, appear else­

where in the fault tree agam as inputs to a gate of type 2 the resultmg conversion 

of the gate can be referenced Immediately reusing the ite structure obtamed earlier 

New line 5 m the BDD IS created for gate G2, ite(1, ite(3,-1,0),0) Consider­

ing the top gate two new lines 6 and 7 are created that represent the ite for the 

top event, ite(1, ite(2,-1,ite(3,-1,0)),0). 1\vo more entnes are made in the com­

putational table The number of the line representing the root node of the BDD 

is returned and the conversion process is concluded by replacmg numbers in nodes 

with the basic events if required. Therefore, the BDD for this example IS expressed 

as ite(b, ite(a, 1, ite(c, 1, 0)), 0). This resultmg BDD can be used to perform the 

qualitative and quantitative analyses descnbed m the next sections 

The BDD module IS used in the research mvestigating the conversiOn techniques 

of FTs to BDDs considenng different methods and ordering schemes. In the BDD 

module eight alternative ordermg schemes for basic events can be used. An effi­

ciency measure facility is also incorporated in the module that allows the calcula­

tion of the number of repeated and non-repeated nodes in the ite array. 

8.3.4 Quantitative Analysis Module 

This part of the program performs the quantificatiOn of the system where the 

failure mode is represented by the BDD. This module performs the calculatiOn of 

the probability and the frequency of top event occurrence and the computation 

of B1rnbaum's measure of importance for every basic event in the system The 

detmled explanation of the applicatiOn is presented m Chapter 3. The probability 

of occurrence of the top event is expressed as the sum of the probabilities of the 

d!SJO!llt paths through the BDD. All the diSJoint paths can be found by tracing 

all paths from the root vertex to termmal 1 vertices. This calculatiOn process is 

performed in a bottom-up manner Nodes with terminal vertices on both their 

branches are considered first Once the probability of a particular part of the BDD 

is calculated the process does not need to be repeated agam. The cnt1cality of 

every basic event IS calculated dunng the same traversal of the BDD by recordmg 

path probabilities 
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8.3.5 Qualitative Analysis Module 

This module cons1sts of the m1mmisat10n algorithm of the BDD and the procedures 

to calculate the mimmal cut sets (or prime 1mphcant sets). 

8.3.5.1 Minimisation module 

In the applicatiOn of the mmim1satwn algonthm every path IS analysed m a bottom­

up manner Nodes w1th termmal vertices on both of the1r branches are cons1dered 

first. First of all, the structure beneath the 1 branch of the node IS m1mmised 

Then the 'w1thout' operator is applied removing the paths from the structure on 

the 1 branch that are repeated in the structure on the 0 branch. Finally, the struc­

ture beneath the 0 branch 1s mimmised. Each of those three steps can produce 

new entnes m the BDD array that replace ex1stent hnes. The minim1satwn result 

of every node, i e a new line that will replace the structure after the minimisation, 

is stored m the array of minimal solutions and can be reused 1f reqmred. Also, 

the information generated when applying the 'without' operator is stored in the 

'without' array and can be reused dunng the application of the 'w1thout' operator. 

For example, cons1der the ite structure ite(1, ite(2, ite(3,1,0), ite( 4,1,0)), ite(3,1,0)) 

as shown in Figure 8 4 The BDD IS traversed m a bottom-up way The mmimi-

F1gure 8.4: Example BDD before and after the minimisation 

satwn process is explained in F1gure 8 5 where every step of the algorithm and the 

resulting line in the ite array are traced recursively 

I step - The m1mmal solutwn of ite(3,1,0) is obtamed and stored in the array 

of mmimal solutions, !me 3 m the Table 8.3. 
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IXS 
mmsol(6) ==> 

r::---:::::-~~ 3 
K=mmsol(3) 
U=without(K,4) c:;===:> 3 

r;;:----;-;:::-;::~N~ 5 V=mmsol(4) 
K-rmn,ol(S) ~VII 7 
U=without(K,3) [Uu~wrtithhco~u~t(3,3,~3))"";;~V~> 0 
V=mmsol(3) c:--l_viii V-Without(4,3) c::1- VI 

~3 ........,.4 

F1gure 8 5: Apphcatwn of the minimisation process 

Lme Mm 
number solution 

1 -
2 -
3 3 
4 4 
5 5 
6 8 

Table 8 3· Minimal solutwns table 

II step - The 'without(3, 4)' operator is apphed. Since there are no paths in the 

structure descnbed by !me 3 (ite(3,1,0)) that are repeated m the structure de­

scnbed by line 4 (ite(4,1,0) ), the 'Without' operator returns the value 3 (ite(3,1,0)). 

The first line IS assigned in the 'w1thout' array, 1 e the first entry IS 3 (the first 

parameter of 'without' operator), the second entry is 4 (the second parameter of 

'w1thout' operator) and the third entry IS 3 (the returned value), shown m Ta­

ble 8 4 

Lme F G "without" 
number solution 

1 3 4 3 
2 4 3 4 
3 5 3 7 

Table 8.4: 'without' solutions table 

III step- After that the mimmal solutwn of ite(4,1,0) is obtained and stored in 

the array of mmimal solutions, line 4 m the Table 8 3. 

IV step- Since the ite structure ite(2, ite(3,1,0), ite(4,1,0)) is minimal, the solu­

tion 1s kept m the array of mimmal solutions, line 5 m the Table 8.3 
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V step - The 'wJthout(3, 3)' operator removes the repeated path, 1.e. !me 3, from 

the structure replacmg 1t by 0 

VI step - The 'without(4, 3)' operator is applied. Since there are no repeated 

paths, the 'without' operator returns the value 4 (ite(4,1,0)). The second !me 1s 

assigned in the 'without' array, shown in Table 8 4 

VII step - Wh1le applying the 'wJthout(5, 3)' operator, a new entry m the BDD 

array is created, line 7, shown m Table 8.5. Also a new entry, !me 3, 1s created m 

the 'without' array as shown in Table 8 4. 

Lme 
Node I branch Obranch 

number 
I I -I 0 
2 2 -I 0 
3 3 -I 0 
4 4 -I 0 
5 2 3 4 
6 I 5 3 
7 2 0 4 
8 1 7 3 

Table 8.5: ite table for minimisatwn 

VIII step- During the mmim1satwn of ite(3,1,0) the value 3 (line 3) 1s reused from 

the array of mmimal solutions 

IX step - Finally, the last line in the BDD array 1s created that represents the 

root node of the minimised BDD Also, the last entry in the array of mimmal 

solutwns is produced as it is shown m Table 8 3 

8.3.5.2 Calculation of minimal cut sets 

During the calculation of minimal cut sets every path to a terminal! vertex in the 

mmim1sed BDD IS passed to collect bas1c events on 1 branches in a bottom-up way. 

Consider the minim1sed BDD on the right in F1gure 8 4. The process of obtaining 

minimal cut sets is shown m F1gure 8.6 

I step - The process starts from the root vertex traversmg the first path to the 

termmal vertex 1. In th1s way the node ite(4,1,0) that contains a terminal vertex 
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F1gure 8 6 Applicatwn of minimal cut sets computation 

is reached, therefore, the first mimmal cut set contaimng one element is created 

and basic event 4 is included in it as shown m Table 8 6. 

II step - Then following the path back up basic event 1 IS also mcluded m the 

first mmimal cut set before analysing the 0 branch of the root vertex. 

Ill step - The final minimal cut set IS conducted, creatmg a new entry m the 

mimmal cut sets array and allocating basic event 3 as shown in Table 8.6. 

Row\ 
I 2 

Column 
I 4 I 
2 3 

Table 8 6 Mmimal cut sets array 

In the event that a fault tree has been simplified before the qualitative analysis 

the resulting mimmal cut sets will contam complex and/or modular events. It 

IS essential to be able to analyse the system m terms of Its ongmal components, 

therefore, the next stage of the qualitative analys1s IS to extract the combinations 

of component failures from every complex and modular event A key pomt of the 

expansiOn algorithm, wh1ch is the same as the MOCUS method [3] for calculat­

mg minimal cut sets from fault trees, IS that an AND gate mcreases the number 

of basic events in each minimal cut set (or pnme implicant set) and an OR gate 

mcreases the number of mimmal cut sets (or prime 1mplicant sets) in the system 

The array 1s repeatedly scanned replacmg 

1. Each complex event which IS an OR gate by a vertical expansion including 
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the input events to the gate (duplicating all other events in thts row) 

2 Each complex event which ts an AND gate by a horizontal expanswn mclud­

ing the input events to the gate 

3. Each modular event by a verttcal and/ or horizontal expansiOn mcludmg the 

minimal cut sets obtained from the BDD, which represents the modular event. 

The process ts over when only basic events appear in the array 

8.3.6 Component Connection Method 

When the Component Connectwn Method is used for converting fault trees to 

BDDs, an alternative data structure of a bmary tree IS used to store the BDD A 

bmary tree is an effictent form of data representatiOn because the memory for a 

new node m the binary tree is asstgned when it is reqmred not all m advance A 

binary tree has a root node, a left bmary tree and a right binary tree The root 

node contains numencal data of the node vanable, the left tree corresponds to the 

BDD structure beneath the 1 branch of the node and the right tree corresponds to 

the BDD structure beneath the 0 branch of the node. No pre-processing time is 

reqmred to prepare fault trees for the conversion to BDDs process if an ordermg 

scheme ts not used 

In the Component Connectwn Method two alternative approaches of traverse are 

used- the top-down method and the bottom-up method In the top-down method 

BDDs are created for every gate startmg from the top event. Then every node 

that represents a gate is replaced by tts BDD. In the bottom-up way the gates of 

the fault tree are traversed constructmg BDDs for gates WJth event mputs only. 

Then m a bottom-up way the BDDs are constructed for every gate unttl the top 

event ts reached. A detmled explanatiOn of the bottom-up method ts provtded in 

thts section. 

Imttally every gate that has as inputs only basic events are put in a binary tree 

accordmg to the type of the gate. If the gate IS an 'AND' gate the baste events are 

connected on the left branch (the 1 branch) of the tree, tf the gate is an 'OR' gate 

the baste events are connected on the right branch (the 0 branch) of the tree. If 

a baste event ordering scheme IS used the set of event inputs IS ordered before the 

connection process For any gate with gate mputs a selection rule is implemented 
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m order to ascertam wh1ch is selected to be the main BDD durmg the conversiOn 

process. Then the process of connectwn starts merging two chosen BDDs The 

main bmary tree IS traversed searching for terminal vertices, i e terminal vert1ces 

1 for an 'AND' gate and terminal vertices 0 for an 'OR' gate. A new copy of the 

secondary BDD is then created and connected to the main BDD at every appro­

priate termmal vertex After the connectiOn process the new, combined, BDD is 

scanned. If there are some repeated events on any path through the BDD the 

simplification process is applied. The resultmg BDD IS then set to be the main 

BDD for the next connection step for the gate unt1l all BDDs representing gate 

mputs are merged 

In order to determine when sub-node sharing can be used during the connec­

tion process, paths in the main BDD to where the second BDD w1ll be attached 

are checked for the occurrence of the repeated events Those termmal vert1ces 

that are reached traversing the same branches of the nodes with repeated bas1c 

events can be replaced by the same copy of the secondary BDD. In other cases a 

new copy of the secondary BDD is created. BDDs for repeated gates can be reused 

For example cons1der the fault tree shown in Figure 8.3. Let the fault tree con­

version to BDD technique be the bottom-up method, w1th no variable ordering 

reqmred and the left-most BDD always chosen to be the mam BDD. F1rst of all, 

two binary trees are created for gates 10001 and 10002, shown in Figure 8. 7. Note: 

NULL is the null-pmnter value used w1th the pointer operation. An informatiOn 

left 

NULL NULL NULL 

+--address I 
nght 

nght 

NULL 

left 

NULL NULL NULL NULL NULL 

F1gure 8 7· Binary trees for gates 10001 and 10002 

nght 

array 1s also created, shown in Table 8 7. The first entry 1s the address of the root 

of each binary tree, the second entry IS the label of the gate represented by the 
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Lme top gate number members[] used 
number 

I addre" I 10001 2 I 1,2} 0 
2 addre;s 2 10002 2 {2,3} 0 

Table 8 7: References table 

binary tree, the th1rd entry is the number of d1fferent events m the tree, the fourth 

entry is the array of those events and the last entry identifies 1f the binary tree has 

been used while mergmg BDDs of a parent gate. 

Then the left-most BDD (of gate 10001} is chosen to be the main BDD. Since 

gate 10000 IS an 'OR' gate every node with value 0 IS replaced by the secondary 

BDD F1rst of all, the vertex 0 1s reached on the nght branch of the node WJth 

bas1c event 2. It is replaced by the secondary BDD. Then the second vertex 0 IS 

found on the nght branch of root node 1 and 1t IS replaced by a new copy of the 

secondary BDD The result is shown in F1gure 8 8 and Table 8 8 

left 

nght 

NUll NUlL NUU~ NUlL 
NULL NULL NULL NULl 

F1gure 8 8 Bmary tree for gate 10000, before the Simplification 

Lme to ate number used 
I addre'' I 10001 2 1 
2 address 2 10002 2 1 
3 address 3 10000 3 0 

Table 8 8 References table after connectiOn 
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The two arrays of events of the binary trees with 'address 1' and 'address 2' are 

scanned and a repeated event 2 ts found Therefore, the simphfication process 

is apphed m the resulting binary tree removmg repeated events from every path. 

The only repet1t10n ts on the right branch of the first node with basic event 2, 

the second appearance of baste event 2 ts replaced by the binary tree on its right 

branch, i e node with terminal vertex 0. The hst of events for the resulting BDD 

of gate 10000 is created mergmg baste events of the two BDDs Sometimes, af­

ter the simplification process thts array needs to be adjusted because some events 

might not appear in the tree anymore. This new entry is added to the reference 

table shown m Table 8 8. 

In the sub-node sharmg version of the Component Connection Method a record 

of every vtstted repeated event is stored before the connection process, therefore, 

it can be dectded tf the same copy of the secondary BDD can be reused or a new 

copy needs to be made. Constdering the two bmary trees for gates 10001 and 10002 

in Ftgure 8. 7, for the first terminal vertex on the nght branch of the node (gate 

10001) with baste event 2 the state of the repeated event 2, which is 0, is recorded. 

An ongmal secondary BDD can be used The stmphficatwns are made before 

the connection process smce all the required information about repeated events 

ts known. A stmphfied BDD ts connected replacing the termmal vertex 0 The 

address of the stmplified BDD is recorded and ts reused for the termmal verttces 

wtth the same record of repeated events For the second occurrence of a termmal 

0 vertex (nght branch of node 1) and the record of the repeated event is recorded 

as -1, because repeated event 2 ts not encountered on thts path A new copy of a 

secondary BDD ts obtamed and the connectwn performed. No stmphfications are 

performed because no repeated events were passed The final tree and the changes 

m the record array are shown m Ftgure 8 9 and Table 8.9. 

Lme 
number 

1 

element record root 

2 0 address 4 

Lme 
number 

element record root 

1 2 -1 address 5 
~~--~~~~~~~ 

Table 8 9: Record of vistts of repeated events 
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left 

NULL NULL NULL NULL 

F1gure 8 9 Binary tree for gate 10000, sub-node sharing 

8.3. 7 Hybrid Method 

The core of the algorithm for the Hybnd method is based on the ite techmque. 

Parts of the fault tree where the Component Connection Method can be introduced 

are Identified before the conversion process These parts are gates that cons1st of 

event inputs only and gates whose descendants do not have any repeated events. 

They are not pre-processed to create gates w1th two events only. 

For example cons1der the left-hand fault tree in Figure 8 10. In the pre-processing 

Figure 8 10: Example fault tree for the Hybrid method 

stage, havmg converted 1t to a numerical format (centre fault tree), gate 100011s 

not altered because 1t has event inputs only When considering the ite method, 

the vanable ordering is ass1gned, m this case, c < a < b < d and every basic 

event IS ass1gned a position in the BDD array with two termmal vertices Then 

gates 10001 and 10002 are cons1dered and the1r bas1c events are linked m a cham 
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accordmg to the specified order, entry 5 for gate 10001 and entry 7 for gate 10002 

m the BDD array. The final connection IS performed using the ite techmque, smce 

there 1s event 1 (c) repeated, and the BDD for gate 10000 starts at entry 8. The 

complete BDD array IS shown m Table 8 10 

10001--• 

10002--+ 
10000--• 

Lme 
number 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Node 

I 
2 
3 
4 
I 
2 
I 
I 
2 
3 

I branch 0 branch 

-I 0 
-I 0 
-I 0 
-I 0 
6 0 
3 0 
4 0 
9 0 
10 4 
-1 4 

Table 8.10: ite array of the Hybnd method 

8.3.8 Non-coherent FT Input Format and Conversion to SF­

BDD 

Non-coherent fault trees contain some bas1c events that can appear m both, failed 

and working, states In the data file every negated bas1c event or gate is presented 

starting With a '-' sign, i.e. a IS eqmvalent to -a and G1 1s eqmvalent to -G1 

Durmg the data input two states of a bas1c event are assigned two separate num­

bers and the information IS kept m the array of negated variables After the data 

input all negatwns of gates are pushed down to the level of basic events adjust­

ing their bas1c events and the content of the array of negative values according to it 

During the conversion of a fault tree to a SFBDD the ite technique is apphed 

m the same way as 1t was in the coherent case. The only add1tional rule is that the 

negated basic events (that appear m their workmg states) are assigned an entry m 

the ite array m a different way The first entry is a numerical value of 1ts fa~led 

state 1f bas1c event appears m both states or a numerical value of its workmg state 

1f bas1c event appears only in its working state. The second entry is a terminal 

vertex 0 and the third entry is a terminal vertex 1, coded by -1. Then the con­

versiOn process IS carried out in the same way as was describe4 m the ite module. 

Consider the example fault tree shown m F1gure 8 11. The array of negative values 
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is presented in Table 8 11. After the conversion process the final BDD is shown in 

Table 8 12. 

Figure 8.11· Example non-coherent fault tree 

10001 
10002 
10000 

Lme element element element 
number char mt _pos 

1 -a 1 3 

Table 8.11: Array of negatrve values 

Lme 
Node 1 branch 0 branch 

number 

1 1 -1 0 
2 1 0 -1 
3 3 -1 0 
4 4 -1 0 
5 1 3 0 
6 1 0 4 
7 1 3 4 

Table 8 12: ite array for non-coherent fault tree 

8.3.9 Non-coherent Fault Tree Conversion to BDDs for the 

Qualitative Analysis 

The followmg modules represent four different algonthms to perform qualitative 

analysrs of non-coherent fault trees. 
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The TDD module converts a fault tree to a TDD. In this case the ite array 

has an additional fourth column that represents the 'C' branch The bas1c ite 

technique is followed when creating a TDD with the addition that 1t has an entry 

in the fourth column in every row which 1s the consensus of the entry of the second 

column and the entry of the th1rd column. The 'C' branch is only required for those 

nodes that represent fa1lure and repair relevant components. For the other entries, 

i.e. where nodes represent failure or repmr relevant components the value m the 

fourth column 1s assigned -1000, which 1s just a number chosen to ident1fy the fact 

that the 'C' branch is not required. During the m1mmisat10n of the TDD and the 

calculation of pnme implicant sets updated versions of the mmimisation module 

and mmimal cut sets calculation module from the coherent case are used While 

minimising a TDD repeated paths that appear on the 'C' branch are removed not 

only from the 1 branch (as it was m the conventiOnal minimisatiOn module) but 

also from the 0 branch. Durmg the identification of prime implicant sets every 

path from the root vertex to a termmal vertex 1 1s traversed. Basic events on the 

1 branch of the path enter the prime 1mplicant set m the1r fa1led state (as 1t was 

in the conventwnal mimmal cut sets calculatiOn module) and bas1c events on the 

0 branch of the path enter the pnme 1mplicant set m their working state. Bas1c 

events passed on the 'C' branch are not included m a set. If the 'C' branch does 

not exist the mimm1sation and the calculatiOn of minimal cut sets is equivalent to 

the processes in the coherent case. 

The Meta-products BDD module traverses the SFBDD m a top-down way 

and converts 1t to a Meta-products BDD. The result of the process is stored in the 

same ite array together with the SFBDD. Then the meta-products are obtained 

ut1lismg the module wh1ch calculates minimal cut sets. Fmally, the decodmg of 

prime implicant sets from the meta-products IS applied resulting in the prime Jm­

plicant sets. 

The ZBDD module like the Meta-products BDD module handles the SFBDD 

developed in the BDD module The SFBDD 1s traversed in a bottom-up way 

The rules of decompos1t10n are applied and a new two-dimensional array IS ob­

tained that contams the resulting ZBDD. During the process the consensus of two 

branches 1s calculated for certam parts of the SFBDD (as was presented m the 

TDD method) The 'without' operator from the minimisation module is also used 
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The L-BDD module calculates a BDD structure, called an 1-BDD, that can 

be used for both, quahtat1ve and quantitative analyses. An additiOnal vanable IS 

introduced for every bas1c event that appears in both workmg and fa1led states. 

The composition of the 1-BDD depends on the type of the bas1c events encoun­

tered Thus the rules of the main BDD constructiOn module are augmented w1th 

some additiOnal laws for those cases. During the mimmJsation procedure some ad­

ditwnal rules of operator 'without' are used. Smce the consensus of two branches 

1s reqmred for some nodes the information 1s saved in a reference array. This data 

is used while identifying pnme 1mphcant sets and it incorporates the minimal cut 

sets calculatiOn module. 

In all four methods the computational table is kept so that the ite entries (or 

the ifre entries in the TDD method) can be reused Mimmal solutwns and values 

of 'without' operator are also stored and can be used agam later in the process 
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Chapter 9 

Conclusions and Future Work 

9.1 Summary of Work 

The four main areas of the BDD method development were 

• The simplification techmques offault trees prior to their conversiOn to BDDs 

and their qualitative analysis; 

• The alternatiVe Component ConnectiOn Method for conversion of fault trees 

to BDDs; 

• The new Ternary Deciswn Diagram method and the efficiency analysis of the 

other established methods for the conversion and the qualitative analysis of 

non-coherent fault trees, 

• The system reliability assessment of Phased MISSIOn Systems usmg the BDD 

method and simplificatiOn methods for fault trees. 

The summary of each part of the research IS explamed in the following sectwns 

9.1.1 Qualitative Analysis of Coherent Systems 

The qualitative analysis of coherent fault trees usmg BDDs was extended to the 

method, where fault trees were simplified and modulansed pnor to conversiOn of 

fault trees to BDDs The Simplification of fault trees can mmimise the size of 

the problem remarkably which is very Important for memory management and 

performance of analysis. After the fault tree simplificatiOn, BDDs were obtamed 

Their qualitative analysis resulted m mimmal cut sets that contamed modular and 

complex events that were not easy to understand and might not have had a clear 
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reliability meaning behmd them. Therefore, the qualitative analysis was extended 

by proposing an algorithm to extract basic events from modular and complex 

events Th1s method allowed system failure combinatiOns to be obtamed m terms 

of its original basic events that could be analysed. 

9.1.2 Component Connection Method 

The ite techmque for convertmg fault trees to BDDs involves applying the if-then­

else (ite) technique to each of the gates m the fault tree. Before the process takes 

place every gate is broken down to two m puts A vanable ordenng for basic events 

1s mtroduced and applied in every step of the process. Once the BDD is con­

structed, the quantitative and qualitative analyses are performed. An advantage 

of the ite method for constructing the BDD is that the algorithm automatically 

makes use of sub-node shanng. Th1s not only reduces the computer memory re­

quirements, as each ite structure is only stored once, but it also mcreases the 

efficiency, since once an ite structure has been calculated the process does not 

need to be repeated However, m the ite method the ordering scheme needs to be 

mtroduced and it can have a crucml effect on the size of the BDD 

An alternative techmque was developed as part of the research reported m this 

thes1s. The Component Connectwn Method is applied for any logic gate in a fault 

tree BDDs are built for every gate and then recurs1vely combmed until the BDD 

for the top gate IS obtamed If there are some repeated events in the fault tree, 

s1mplificatwn rules are applied that remove repeated nodes from every path in the 

BDD The advantages of the Component Connection Method are that no ordenng 

scheme of vanables is required because basic events can be connected m the order 

that they appear in the fault tree. Also, gates do not need to be broken down to 

two m puts, smce the connectwn process can deal with all the m puts of the gate 

D1fferent connection techmques were mvestigated. SelectiOn schemes for the tra­

verse approach (top-down or bottom-up), for the order of basic events selectwn, 

for the order of m puts selection (for the top-down technique) and for the order of 

BDDs selectiOn (for the bottom-up technique) were ass1gned. The efficiency of the 

algorithm and proposed different techniques was measured by the computational 

time taken to convert a fault tree to a BDD, together w1th the s1ze of the final BDD 

and the mrunmum reqmred s1ze of the dynamic memory data structure dunng the 

229 



process. 

The traverse approach, the top-down or the bottom-up method, was chosen to 

build a BDD Both strategies gave the same final BDD as long as the ordering 

parameters selected remain consistent. However, the big advantage of the bottom­

up technique against the top-down was that a smaller memory resource was re­

qmred Th1s was because in the bottom-up method the fault tree was investigated 

'in portiOns', i e. buildmg a BDD for the left-most gate mput was finished and 

simplifications applied before the mvestigation of other inputs In the top-down 

techmque the whole set of mputs for the top event was connected and then ev­

ery gate node was replaced, st1ll tra1ling the rest of the structure until the last 

gate node was replaced Therefore, for the further analysis the top-down traverse 

approach was discarded Also, eght ordering schemes for selectmg bas1c events 

were ass1gned and analysed together with the 'order as listed' scheme, where bas1c 

events were put m a BDD according to the order that they appeared in a fault tree 

The bottom-up approach was mvestigated usmg three BDD selectiOn schemes, 

i.e. three d1fferent ways that BDDs representmg gate m puts of a parent gate can 

be connected In the first tnal, basic events were ordered accordmg to the one out 

of the 8 ordenng schemes or 'order as listed'. BDDs were selected as listed, i e a 

BDD wh1ch represented the first mput of a gate m a list of mputs was chosen to 

be the mam BDD In the second tnal the ordermg schemes were used not only to 

order basic events but also to chose the order that BDDs were considered m the 

connection process The pnority was g1ven to the BDD whose top event was the 

highest in the ordering scheme. Finally, m the th1rd tnal BDDs were merged ac­

cordmg to the number of points at wh1ch the BDDs were combined. The ordering 

schemes were applied for the selection of basic events but not for the selection of 

BDDs The companson of the three techmques was performed using the example 

fault tree library with different complexity of fault trees. 

The ordenng schemes were ranked using the three rankmg methods - the to­

tal quant1ty rankmg, the highest scheme rankmg and the added scheme ranking 

Firstly, the sum of each characteristic measure was calculated over the whole set of 

test fault trees, for example, the time taken to bmld BDDs for the whole set of fault 

trees was obtained Secondly, the number of times that each scheme produced the 

h1ghest (best) rankmg was assessed. Fmally, the average rankmg of each scheme 
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across the set of fault trees was considered These measures gave an indicatiOn of 

the overall performance of the ordermg scheme The ordering schemes were ranked 

for all the efficiency measures accordmg to the1r performance on small fault trees, 

'large' fault trees and the whole set of fault trees This was done m order to be 

able to 1dent1fy the 'optimum' ordering scheme for every method m each complex­

ity category 1f one ex1sts. 

The third tnal of the bottom-up strategy approach gave the best result. The 

total number of nodes m BD Ds usmg the third trial was smaller than the total 

number of BDDs from the first tnal or the second tnal. The total processing time 

was shorter for the third trial than for the first or the second tnal using different 

ordering schemes The third trial that uses the selectiOn of BDDs accordmg to the 

number of connectiOn points available and the selectwn of bas1c events accordmg 

to one of the nme ordering schemes, was the most efficient method out of the all 

proposed bottom-up approaches. 

The Component ConnectiOn Method could not convert some fault trees to BDDs 

m reasonable t1mes, whereas the ite technique was glVIng good results. The main 

disadvantage of the method was ident1fied The strongest property of the ite tech­

mque 1s the sub-node sharing method, which is the property that the Component 

Connection Method lacks The Component Connection Method produced sigmfi­

cantly bigger BDDs than the ite method. This approach had a h1gh demand for 

memory space smce the identical parts m the BDD structure were repeated but not 

shared. Therefore, the sub-node sharing was mtroduced m the proposed method 

This property was mtroduced wh1le combmmg two gates, 1 e all ava1lable branches 

would point to the same structure, mstead of making a separate copy for each of 

them Th1s rule has increased the efficiency of the techmque However, since after 

the connectiOn process the s1m plifications were applied 1f repeated events appeared 

m the structure, there were some hm1tatwns on the descnbed rule. Therefore, 

overall the Component Connection Method could not g1ve as good efficiency as the 

ite method. 

Finally, the Hybrid method was proposed that combined the best features of the 

two construction methods of BDDs, the ite method and the Component Con­

nection Method. The new method incorporated the most efficient parts of both 

algonthms By using the gate constructs for bas1c events and branches w1thout 
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repeated events BDDs were immediately formed without any of the processing 

reqmred by the ite method For the rest of the fault tree the sub-node sharing 

feature of the ite method was employed which prov1ded a more effic1ent repre­

sentatiOn of the logic function. The results of the Hybnd method that combmed 

the two techniques were comparable with the ite method, because an improve­

ment, albeit slight, in all efficiency measures was observed. Two types of the 

Hybrid method were proposed- the Bas1c Hybnd method and the Advanced Hy­

bnd method Wh1le companng the two types of the Hybrid method, the Advanced 

Hybrid method, which allowed the node swap, gave a slightly better performance 

than the Basic Hybrid method accordmg to the number of nodes but not according 

to the processing time. 

Analysing the ranking of the ordering schemes it was clear that the two top-down 

wmghted schemes, (5) and (6), were favounte m many cases The two mod1fied 

depth-first schemes, (2) and (3), performed poorly for the majonty of examples 

As 1t was expected, some orderings performed better on certain fault trees. How­

ever, there was a tendency that the weighted ordering schemes (5-8), that order 

events according to the1r 1mportance in the fault tree, performed better than the 

neighbourhood ordering schemes (1-4), that order events accordmg to the1r posi­

twn m the fault tree Also, choosing any of the proposed ordering schemes was 

better than usmg 'ordered as listed' method. Therefore, an ordered approach for 

the Component Connection Method was adv1sable even when 1t was not required. 

Th1s was due to the fact that the ordering schemes brought the repeated events 

'closer' and there were fewer parts in a BDD that were repeated 

9.1.3 Qualitative Analysis of Non-coherent Systems 

Qualitative analysis using BDDs was expanded on non-coherent systems, because 

the BDD method 1s more efficient and accurate than conventwnal FTA methods. 

Every fault tree is converted to a BDD from which exact quantitative analysis IS 

performed. However, it 1s not possible to identify the pnme 1mplicant sets d1rectly 

from the BDD In non-coherent fault trees components can be fa1lure or/and repair 

relevant, and it is impossible to distinguish between the two cases from the BDD 

wh1le performmg the qualitative analysis. Therefore, alternative methods are re­

qmred. 
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A new Ternary Decision Diagram Method has been proposed m th1s work A 

TDD has three branches leaving every node. It encodes all prime implicant sets, 

smce the consensus branch for every node is calculated by the conjunctwn of the 

1 and the 0 branches for every node. The TDD is non-minimal, therefore, the 

minim1satwn process needs to be performed in order to be able to obtain prime 

1mplicant sets The TDD can be used for the quant1tative analysis 1f required. The 

efficiency of the new approach was analysed comparing it with the three established 

methods for the analys1s of non-coherent fault trees, ident1fymg the advantages and 

disadvantages of the different techniques, wh1le testmg them on a range of fault 

trees. 

In 1998 Rauzy and Dutmt developed a techmque for computmg pnme implicant 

sets using the Meta-products BDD. The produced Meta-products BDD IS min­

Imised, therefore, prime 1mplicant sets can be obtained without the minimisation 

operation However, usmg th1s method 1t 1s necessary to compute two BDDs to 

perform the qualitat1ve analysis Also, all components are descnbed by two vari­

ables. Wh1le converting example fault trees to BDDs the size of the structure and 

the processmg time increased unavoidably 

The second established method is called the Zero-suppressed BDD method The 

conception of a ZBDD was introduced by Mmato [34] and later it was accommo­

dated by Rauzy [33] for a compact representation to express pnme 1mplicant sets. 

Like in the Meta-products BDD method, the techmque involves computmg an ad­

ditiOnal BDD, where nodes are labelled w1th failed and/or working states of basic 

events. Then pnme implicant sets are decomposed according to the presence of a 

given state of a bas1c event. The resulting ZBDD IS m 1ts m1mmal form and prime 

1mplicant sets can be obtamed ZBDDs automat1cally suppress basic events that 

do not appear m prime implicant sets. It is very efficient when calculating sets with 

basic events that are far apart in the vanable ordermg scheme. The ZBDD method 

resulted in an efficient process, where all prime implicant sets were descnbed by a 

compact and easy handling structure The efficiency of the ZBDD method was very 

close to the performance of the TDD method in both measurements Th1s made the 

two methods most smtable for the analysis of the non-coherent example fault trees 

The Labelled Binary Decision Diagram (L-BDD) was developed by Contim m [35], 

where every bas1c event 1s labelled accordmg to 1ts type. The add1tional mfor-
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matwn about the occurrence of every bas1c event is considered at an early stage 

of the algorithm. An 1-BDD has two branches, therefore, 1t does not provide all 

prime implicant sets. The 1-BDD obtained from the fault tree is Simplified and 

then the determmation of prime 1mplicant sets is performed, where the rules of the 

calculation depend on the type of a basic event. The 1dea of the 1-BDD method is 

similar to the TDD method, i.e. the conJunction of the 1 branch and the 0 branch 

is only carried out for nodes that represent dual state bas1c events However, there 

are some differences that make the 1-BDD method perform less efficiently than 

the TDD method. In the 1-BDD method the number of basic events is mcreased 

by introducmg three different types of bas1c events accordmg to their occurrence 

Also, some extra connection rules are used in the conversiOn process and in the 

calculation of pnme 1mplicant sets Wh1le converting example fault trees, the 1-

BDD performed better than the Meta-products BDD method, but not as well as 

the TDD method or the ZBDD method, which provided efficient methods for the 

calculatiOn of prime implicant sets For 'large' fault trees the difference in efficiency 

between the techniques was larger than for small fault trees. 

In summary, a companson of the four methods revealed that the TDD method 

and the ZBDD method performed well for both measurements, 1 e the number 

of nodes and the conversion time. The TDD method was slightly faster than the 

ZBDD method. Th1s was because of the fact that one structure (a TDD) was 

reqmred m this method, which presented a SFBDD as well as 1t was smtable for 

the quahtat1ve analysis In the ZBDD method a SFBDD was constructed and then 

an additiOnal ZBDD was bmlt that resulted in a longer conversiOn process How­

ever, the ZBDD structure was mimmal, therefore the number of nodes was smaller 

than m the TDD method, where each TDD was mimm1sed before obtammg prime 

1mplicant sets Both methods gave close results and provided the efficient means 

for the analysis of non-coherent fault trees 

The Advanced Hybnd method was also introduced for non-coherent systems One 

of the best chosen methods, the ZBDD method, was combined w1th the Advanced 

Hybnd method. The SFBDD, that was used for the quantitative analysis and the 

construction of the background for the ZBDD, was bmlt usmg the Hybrid method, 

i e. the combmatwn of the ite techmque and the Component Connection Method 

The overall result was slightly better than the result obtamed using the ite tech­

nique Therefore, the Advanced Hybrid method in a non-coherent case provided 
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an efficient technique for convertmg fault trees to BDDs. 

The eight ordenng schemes were ranked for the four conversion methods. Usmg 

the example fault tree library prov1ded the dynamic top-down weighted scheme 

(6) performed well for all the methods and both measurements The depth-first, 

w1th number of leaves scheme ( 4) was also ranked highly. The mod1fied top-down 

scheme (1) gave average or poor results, especially according to the number of 

nodes The two depth-first schemes, (2) and (3), also performed poorly Sum­

marising the rankmg, the we1ghted ordering schemes, (5)-(8), performed better 

than the ne1ghbourhood ordenng schemes, (1)-(4). Those results are based on ex­

ample fault trees For a d1fferent set of examples the ordering schemes Will perform 

differently, however, the main effiCiency pattern should be the same 

9.1.4 Application of Proposed Methods m Phased Mission 

Analysis 

Many types of system operate for missions that are made up of severalyhases 

FTA can be used as a means for analysmg the reliability of non-repairable sys­

tems that undergo phased m1ssions The reqmred results are the system failure 

modes and failure probability of each phase, followed by the total mission unrelia­

bJlity. The complex1ty of fault trees m1ght make the analys1s impossible, therefore, 

some alternat1ve methods were incorporated in the analysis process. The accurate 

assessment of mission unreliab1lity for systems w1th non-repairable components 

operating over a sequence of phases can be performed using non-coherent fault 

tree structures Therefore, at the start non-coherent fault trees representmg phase 

failures were simplified. Then the BDD method was employed to calculate the un­

reliabJlity of each phase. New rules for expressing diSJOint path sets and calculatwn 

of phase failure probability were considered Th1s method allowed a more effic1ent 

and accurate Phased Mission Analysis. 

9.2 Conclusions 

• The BDD method can be used to perform the efficient qualitative analys1s 

and accurate quant1tat1ve analysis of system reliability. When analysing large 

industrial systems, fault trees can be s1mphfied and modularised pnor to 

the conversion to BDDs. Then during the qualitative analys1s modular and 
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complex events m mimmal cut sets need to be extracted so that system fmlure 

combinatwns could be analysed m terms of bas1c events. An algorithm was 

presented m order to able to obtam mmimal cut sets in terms of the ongmal 

components of the system 

• An alternative method to the ite technique was developed for convertmg 

fault trees to BDDs, which mvolves computmg the BDDs m the Component 

Connectwn manner Whilst this method has some advantages over the con­

ventional ite technique, only the Hybnd method, that combines the efficiency 

of the two conversion techmques, gives comparable results. 

• A new approach, the Ternary Deciswn Dmgram method, has been proposed 

and developed for the conversiOn and analys1s of non-coherent fault trees. Its 

efficiency was analysed comparmg 1t w1th the established methods. The TDD 

method and the ZBDD method were 1dentlfied to be efficient for calculatmg 

pnme implicant sets of non-coherent fault trees. Application of the Hybrid 

method provided a good extension and additional effic1ency in the qualitative 

analys1s of non-coherent systems 

• The SimplificatiOn of phase fmlure fault trees and the application of the BDD 

method for obtaining miSSIOn fmlure probability is an efficient applicatiOn of 

the proposed methods m the Phased Misswn Analys1s 

9.3 Future Work 

9.3.1 Component Connection Method 

The efficiency of the Component Connection Method IS not comparable with the 

effic1ency of the ite techmque. Only the Hybnd method, that combines the Com­

ponent Connectwn Method and the ite method, gives better results. However, the 

improvement in the effic1ency is margmal. Therefore, more work could be done 

on researching new ways that BDDs are considered in the connection process, or 

new ways of connecting nodes in the BDD structure. Also, trymg to increase the 

. sub-node sharing capac1ty and improving the algorithm proposed m the Compo­

nent Connection Method, the sub-node sharmg could be applied to all the available 

nodes and then the 'unsharmg' process could be performed if needed. 

For the currently proposed Component Connectwn Method there were some fault 
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trees where calculatwns were not finished in reasonable times Alternative pro­

gramming methods could be used to obtam a better effic1ency of techmques, in­

corporating parallel programmmg optwn. 

9.3.2 Application of Proposed Methods in Phased Mission 

Analysis 

Application of the fault tree s1mphfication and the BDD techmque for Phased 

Mission Analys1s could be apphed to other system rehability tools. For example, 

a Cause Consequence D1agram could be bmlt using the s1mplified fault trees and 

then quantified using the BDD method 

W1th increasing demand of the real-time modellmg, the Phased M1ssion Analys1s 

mcorporating the effic1ent tool of the Binary Decision D1agram method could be 

used to model real systems One of the examples could be a model for a Unmanned 

Autonomous Vehicle, where the flight could be descnbed usmg the Phased M1sswn 

Analysis. The effic1ent pred1ction of future capab1hty would enable the analysis to 

be performed m real-t1me and make decisions about the future of the mission. 
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IN,mher of Number of ""'"uor ot 
I'""'UOO Number of Number of FT name 

bas1c events modules gates events 
events cut sets 

lastolfo gsq 19 16 2 8 1 2~ 

I IQSQ 15 11 7 0 1 4' 
I dat 20 63 0 62 1 871E 

i dat 17 61 0 60 1 7471 

bofla05 dat 17 60 0 59 1 705E 

bpf0105 dat 14 40 0 39 1 41E 

~ gsq 21 40 4 32 2 8442, 

dre1019 dat 4 19 1 18 1 6' 
! dat 4 21 1 20 1 7! 

'dat 7 32 1 31 1 210C 

~~:: 
13 41 21 31 3 1193~ 

17 57 21 40 1 3699( 

1 dat 17 57 21 40 3 1193~ 

hplsf02 dat 19 72 8 57 1 25! 

hplsf03 dat 7 31 2 24 1 7' 

hplsf21 gsq 15 61 57 52 1 777~ 

hp1sf36 gsq 8 30 4 23 1 61 

idtree3 asa 11 21 0 20 1 3E 

idtree4 gsq 11 20 1 18 1 3( 

ldtree5 asa 11 20 1 19 1 1( 

kh1ctre dat 19 22 16 14 3 21 

I 9SQ 21 16 11 0 1 2( 

tnals1 asa 27 16 8 2 1 3S 

tnals4 gsq 39 21 14 0 1 4S 

•3 asal 24 49 12 27 1 23, 

) gsq 45 49 41 13 1 9: 

l gsq 7 15 6 13. 1 

•asa 32 68 22 35 1 6E 

lgsq 46 56 44 16 1 73 

;asa 31 46 25 17 4 76 

lgsq 62 85 58 29 1 24 

lgsq 19 39 16 26 1 9 

iasa 14 16 11 10 1 6 

'gsq 45 46 37 16 1 100 

1 asa 17 35 14 7 1 
I gsq 25 38 18 14 1 22 

lgsq 17 41 4 25 1 195 

wando31 asa 47 36 33 10 1 5 
lgsq 17 32 19 14 2 1 

wando34 asa 24 36 17 17 1 35 
igsq 19 24 17 9 4 8 

igsq 15 29 7 21 1 10 

'asa 27 30 25 9 1 29 

I gsq 11 21 5 _15 1 g 

1 asa 27 26 22 3 1 51 

I gsq 8 17 5 6 2 g 

'gsq g 17 7 6 1 2 

I gsq 10 27 3 

* 
1 22 

lgsq 27 59 9 1 436 
; gsq 22 28 19 8 2 16 

i asa 22 41 18 23 1 10 

'gsq 20 42 17 22 1 15 

I asa 16 21 14 9 1 16 

'gsq 33 34 24 13 4 41 

Table A 1: Complextty of test fault trees, small trees, 1 

243 



Number of Number of 
Number of 

Number of comple Number of Number of FT name repeated 
gates bas1c events events events modules cut sets 

rando53 gsq 13 21 11 7 1 

ando54gsq_ 13 34 5 21 5 26f 

ando55 gsq 15 23 14 11 3 f 

ando5B gsq 10 17 10 9 1 : 
ando59 gsq 23 42 12 17 1 9f 

ando60 gsq 36 70 16 39 4 2 

ando61 gsq 19 20 15 B 1 H 
ando62 gsq 13 18 12 10 1 

ando63 asa 15 23 14 11 3 f 

ando64 gsq 19 35 10 18 3 31 

ando65 gsq 11 15 6 4 1 1: 

ando66 gsq 17 26 14 9 2 E 

ando70 gsq 12 24 4 12 1 2 
ando73 aso 22 34 22 24 1 BC 

ando75 gsq 12 17 B 12 1 ' 
ando76 gsq 15 32 10 21 3 2 
ando77 gsq 31 37 24 7 1 2 

ando7B gsq 17 30 7 16 1 

andoBO aso 9 26 3 19 2 2 

rando83 gsq 14 21 B 10 1 3 

ando84 aso 19 39 B 20 2 5 

rando85 gsq 13 26 11 19 1 

ando87 gsq 11 22 5 17 1 15 

andoBB aso 11 22 3 13 1 29 

ando89 gsq 24 41 15 32 1 21 

rando91 gsq 32 58 29 19 1 106 

rando92 aso 41 64 46 22 2 58 

rando93 gsq 19 40 12 25 4 16 

rando95 aso 11 22 B B 3 31 

rando9B gsq 22 52 12 26 1 28 

rando99 gsq 26 40 26 13 1 28 

rand100 gsq 19 27 15 10 1 B 

rand103 gsq 13 23 5 12 2 13 

and104 asa 16 22 13 14 1 9 

rand105 gsq 15 33 4 21 1 96 

and106 gsq 31 37 23 12 1 B 

and10B gsq 32 35 26 5 1 35 

and109 gsq 27 56 11 29 1 203 

and110 aso 24 30 18 10 1 8 
and111 gsq 19 22 15 8 1 22 

and115 gsq 21 29 13 13 1 46 

and116gsq 24 33 23 9 2 15 

and117gsq 10 17 5 9 1 11 

and118 gsq 19 39 8 20 2 5 

rand119 gsq 14 30 6 28 1 84 

and120 gsq 20 39 7 20 1 58 

and121 gsq 18 37 13 18 1 80 

and123 gsq 9 17 4 12 1 12 

and124 aso 12 24 5 21 1 2 
and125 gsq 6 14 5 9 1 1 

rand126 gsq 25 37 14 22 1 59 
and127 gsq 12 28 3 27 1 4 

rand12B gsq 24 35 22 13 1 52 

rand129 aso B 20 6 9 1 1 

Table A.2. Complexity of test fault trees, small trees, 2 
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Number of Number of 
Number of 

Number of comple Number of Number of FT name repeated 
gates bas1c events events 

events modules cut sets 

and130 gsq 13 23 13 6 1 5 
and132 gsq 31 39 26 4 1 6 

and134 gsq 34 56 27 22 1 6 

and135 asa 24 33 23 7 1 2 

and137 gsq 10 21 5 9 1 1 

and138 gsq 10 18 9 4 1 

rand139 asa 21 29 16 9 1 s: 
and141 gsq 24 30 18 10 1 1 
and142 asa 32 46 29 8 2 41( 

and143 asa 17 28 10 18 1 
rand144 gsq 29 48 26 22 1 41 

rand145 asa 11 33 1 27 2 4 

and146 gSQ 10 21 5 9 1 1 

and147 asa 36 43 29 8 2 3 

rand148 asa 12 27 3 20 1 
and149 gsq 22 57 6 44 1 1 

and150 asa 29 44 24 11 1 11 

and151 gsq 10 28 4 25 1 36 

and153 asa 16 21 13 9 1 3 
rand154 gsq 11 21 7 8 1 1 

rand155 gsq 20 33 10 10 1 52 

rand156 gsa 10 22 6 21 1 20 

and158 gsa 49 71 34 29 1 9 

1saba1 asa 27 68 8 47 4 1054 

1Saba3 gsq 40 84 18 46 1 5396 

llsaba4 gsq 26 44 15 16 2 82 

llsaba5 asa 29 57 19 34 1 228 

llsaba6 gsq 22 56 6 39 1 990 

llsaba7 asa 27 68 8 47 4 1054 

llsaba9 gsq 17 41 5 31 2 85 

llsab10 gsq 27 48 22 13 1 940 

l1sab1 1 asa 13 21 11 7 1 2 

llsab13 gsq 24 31 18 10 1 8 

llsab17 asa 27 68 8 47 4 1054 

p,sab19 gsq 37 112 0 1 1 1 1 15420 

~'sab20 gsq 41 128 0 127 1 7899 

llsab24 asa 15 41 0 40 1 88 

llsab25 gsq 15 26 10 11 1 35 

llsab27 asa 26 62 14 37 5 292 

llsab28 gsq 9 22 0 21 1 66 

llsab30 gsq 19 32 12 16 4 1 

llsab31 asa 31 47 32 13 1 164 

llsab34 gsq 8 14 7 3 3 14 

lsab35 asa 19 40 12 16 1 136 

1Sab36 gsq 46 39 36 5 2 52 

'sab37 gsq 10 30 3 24 3 64 

llsab42 asa 7 21 2 19 1 10 

llsab44 asa 10 20 11 8 3 1 

llsab46 asa 50 152 0 151 1 14669 

llsab47 asa 10 12 8 5 1 

llsab48 gsq 8 17 10 6 1 4 

llsab49 asa 22 60 0 59 1 890 

llsab50 asa 10 14 8 8 1 
llsab51 gsq_ 8 19 2 1 1 1 11 

Table A 3. Complex1ty of test fault trees, small trees, 3 
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Number of Number of 
Number of [Number of complex Number of Number of 

FT name repeated 
gates bas1c events events events modules cut sets 

1Sab52 QSQ 31 38 32 7 1 13 
1Sab53 gsq 5 9 1 8 1 1E 

lsab54 QSQ 6 15 4 6 1 14 

1Sab56 gsq 11 17 9 6 1 

1Sab57 OSQ 18 28 16 7 1 17C 

lsab59 QSQ 16 49 0 48 1 309€ 
1sab60 gsq 7 16 5 6 1 1 

1sab61 asq 22 40 14 19 1 1 

1sab62 gsq 17 39 4 30 1 7 

1Sab63 gsq 8 18 5 12 1 

lsab64 QSQ 21 40 21 16 1 
1Sab65 gsq 7 19 2 18 1 
1sab66 asq 31 40 27 9 1 3 
lsab67 gsq 38 77 13 49 1 111 

1sab68 gsq 9 25 0 24 1 18 

lsab69 QSO 14 30 3 20 1 2 

lsab70 gsq 19 48 5 31 1 8 
lsab71 asq 8 14 8 9 1 
1Sab72 gsq 34 51 25 22 1 3 
lsab73 asq 7 23 0 22 1 4 

lsab74 gsq 46 122 13 83 1 6812 

1Sab75 gsq 14 29 10 9 1 1 

llsab77 asa 29 59 13 36 1 13 
1Sab78 gsq 16 39 9 17 1 50 

1sab81 asa 6 15 0 14 1 11 

1sab82 asa 31 85 9 59 1 3354 

1Sab83 gsq 19 33 13 14 1 61 

lsab84 asq 19 33 13 14 1 61 
1sab86 gsq 21 40 10 14 1 38 

1sab88 gsq_ 25 49 16 29 1 2 

1sab88 gsq 32 61 13 38 1 8 

lsab91 gsq 32 62 14 35 1 759 

1sabSS asq 7 18 6 8 1 1 

1Sab97 gsq 11 26 3 23 1 1 

1sab88 asa 7 16 2 13 1 
1sa100 gsq 31 63 13 32 1 31 

lsa103 gsq 5 9 1 8 1 1 

1sa104 asa 10 20 7 15 1 
1sa107 gsq 6 11 3 7 1 
1sa109 asq 21 20 19 3 1 2 
1sa110gsq 36 52 24 15 1 3 

1sa111 gsq 17 50 4 48 1 4 

1sa112asa 32 81 9 56 1 476 

1Sa113gsq 25 60 14 33 2 121 

1sa115 asa 12 25 8 13 1 3 
1Sa116 gsq 10 14 7 6 1 

1sa119 gsq 7 14 2 9 1 1 

1sa120 gsq 10 24 0 23 1 12 
1sa121 gsq 21 41 5 33 3 7 

1sa122 gsq 12 23 10 10 1 1 

1sa123 asq 15 27 9 10 1 3 
1Sa124 gsq 28 65 15 31 1 111 

and159 gsq 25 34 20 11 1 1 

and161 gsa 22 38 19 12 1 11 

Table A.4. Complex1ty of test fault trees, small trees, 4 
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Number of Number of 
Number of Number of complex Number of Number of 

FT name repeated 
gates bas1c events events events modules cut sets 

and163 Qsc 37 58 28 21 2 71E 

and164 9SC 32 58 16 28 1 437 

and165 asc 40 98 10 66 2 207< 
and166 gsc 31 55 21 15 1 26 

Table A 5 Complex1ty of test fault trees, small trees, 5 
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Number of Number of 
Number of Number of complex Number of Number of 

FT name repeated 
gates bas1c events events events modules cut sets 

rando11 gsq 48 94 38 33 1 6391 

rando19 gsq 51 53 44 2 1 76 

rando20 gsq 52 47 41 8 1 12 

rando22 gsa 46 64 39 12 1 42 

rand160 gsq 95 150 80 56 1 2621 

1saba2 gsq 48 114 27 64 1 66083 

1saba8 gsq 45 100 21 52 1 3344 

1Sab14 gsq 46 84 40 25 1 1633 

ilsab15 gsq 49 98 21 44 1 811 

l1sab22 gsq 48 72 43 14 1 49 

lisab29 gsa 56 146 0 145 1 220275: 

lisab76 gsq 38 58 26 15 1 B9e 

lisab87 asa 54 96 34 32 1 9372€ 

llsab92 asa 88 228 0 227 1 >450000C 

lisa1 02 a sa 54 110 26 56 1 20006 

lisa117 asa 80 147 47 65 1 23952S 

lisa118 asa 37 77 17 38 2 4550E 

baobab1 txt 119 60 7 0 1 4337S 
baobab2 txt 64 31 3 0 1 480E 
ch1nese txt 35 24 24 14 1 39< 
das9201 txt 81 121 11 104 1 1421 
das9202 txt 35 48 1 47 1 2777E 
das9203 txt 29 50 1 43 3 1620( 
das9204 txt 29 52 13 41 1 16704 
das9205 txt 19 50 1 49 1 1728( 
das9206 txt 111 120 34 80 1 1951E 
das9208 txt 144 102 43 40 1 806( 

'das9209 txt 72 108 1 107 1 >500000( 

edf9201 txt 130 182 87 137 1 57972( 
edf9202 txt 433 457 137 385 1 13011 
edf9205 txt 141 164 44 123 1 213QE 
edf9206 txt 359 239 6 229 1 >400000( 
edfpa15o txt 137 282 26 195 1 >1 oooooc 
edfpa15q txt 157 282 23 195 1 2635 
edfpa15r txt 109 87 57 1 1 2654S 
elf9601 txt 241 144 81 57 2 16574E 

'ftr1 0 txt 93 174 47 147 1 30! 
1Sp9601 txt 107 142 8 117 1 27678: 
1Sp9602 txt 121 115 14 86 2 >100000( 

'isp9603 txt 94 90 23 49 1 343 
'isp9604 txt 131 214 11 195 1 42880E 
1Sp96Q5 txt 64 31 3 0 1 563C 
1Sp9606 txt 40 88 14 71 1 177E 

'isp9607 txt 64 73 9 48 1 15043E 

Table A 6: Complexity of test fault trees, 'large' trees 
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FT name 0 scheme 1 scheme 2scheme 3 scheme 4 schem 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
astotfo QSQ 23 19 19 19 19 19 19 19 19 19 
ben]oam gsq 102 71 71 71 75 71 71 71 71 71 
bQ!eg03 dat 1 1 1 1 1 1 1 1 1 1 

bQ!enOS dat 1 1 1 1 1 1 1 1 1 1 
bpfloOS dat 1 1 1 1 1 1 1 1 1 1 
bpfln05 dat 1 1 1 1 1 1 1 1 1 1 
bpfsw02 gsq 26 20 20 20 20 20 20 20 20 20 
dre1 019 dat 1 1 1 1 1 1 1 1 1 1 
dre1 032 dat 1 1 1 1 1 1 1 1 1 1 
dre1 057 dat 1 1 1 1 1 1 1 1 1 1 
dre1 058 dat 33 27 27 2 27 27 27 27 27 2 
dre1 059 dat 256 220 220 220 220 220 220 220 220 220 
dresden dat 41 35 35 35 35 35 35 35 35 35 
hpost02 dat 115 115 115 115 115 115 115 115 115 115 
h!Jis!03 dat 15 14 14 14 14 14 14 14 14 14 
hpos!21 qsq 29 2 27 2 27 2 27 27 26 26 
hposf36 qsq 15 13 13 13 13 13 13 13 13 13 
dtree3 gsq 1 1 1 1 1 1 1 1 1 1 
dtree4 asa 1 1 1 1 1 1 1 1 1 1 
dtree5 gsq 1 1 1 1 1 1 1 1 1 1 
khoctre dat 19 19 19 19 19 19 19 19 19 19 
nakashogsq 162 162 162 162 168 162 168 162 162 162 
nals1 qsq 164 172 173 173 173 172 172 173 162 16 

tnals4 gsq 169 149 149 149 149 148 153 147 149 14 
random3 gsq 63 59 59 59 59 59 59 59 59 59 
random6 gsq 3158 1607 1627 162] 1582 1625 1625 1625 1625 1582 
random8 qsq 1 1 1 1 1 1 1 1 1 1 
rando12 gsq 468 446 433 433 446 433 485 446 433 433 

rando13 qsq 100 95 95 95 95 94 94 94 94 94 
rando16 gsq 76 59 59 59 59 56 56 56 53 53 
rando18 gsq 103 69 69 69 69 53 53 53 53 53 
rando23 qsq 1 1 1 1 1 1 1 1 1 1 
ando25QSQ 1 1 1 1 1 1 1 1 1 1 

rando27 gsq 22 17 17 17 17 13 13 17 13 13 
rando28 asq 1 1 1 1 1 1 1 1 1 1 
rando29 gsq 87 87 87 88 87 87 87 88 87 8 
rando30 gsq 91 84 84 84 84 84 84 84 84 84 
rando31 gsq 1 1 1 1 1 1 1 1 1 1 
rando33 gsq 8 8 8 8 8 8 8 8 8 8 
rando34 asa 47 22 22 22 22 22 22 22 22 22 
rando35 gsq 22 18 18 18 18 18 18 18 18 18 
rando36 gsq 1 1 1 1 1 1 1 1 1 1 
rando37 qsq 49 39 39 39 39 38 38 39 38 38 
rando38 gsq 1 1 1 1 1 1 1 1 1 1 
rando39 gsq 193 162 172 172 162 167 162 185 162 162 
rando40 gsq 21 21 21 21 21 21 21 21 21 21 
rando42 qsq 1 1 1 1 1 1 1 1 1 1 
rando43 gsq 1 1 1 1 1 1 1 1 1 1 
rando44 gsq 345 338 338 338 338 338 338 338 338 338 
rando45 gsq 41 30 30 30 30 30 30 30 30 30 
rando46 qsq 1 1 1 1 1 1 1 1 1 1 
rando47 gsq 40 38 38 38 38 38 38 38 38 38 
rando48 asa 14 13 14 14 13 13 13 13 13 13 
rando52 gsq 44 42 42 42 42 42 42 44 42 4 

Table A. 7. Top-down, number of nodes, small trees, 1 
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FT name 0 scheme 1 scheme 12 scheme 3 scheme f4 scheme 5 scheme 6 scheme ?scheme 8 scheme Mm1mum 

rando53 asa 1 1 1 1 1 1 1 1 1 1 

rando54 gsq 29 2: 25 25 25 25 25 25 25 2: 

rando55 gsq 15 1~ 1~ 1~ 14 1 14 14 1~ 1~ 

rando58 asa I 1 1 1 1 1 1 1 1 1 1 

rando59 asa 1233 60 722 722 672 588 672 658 579 57S 

rando60 gsq 1 1 17 1 17 17 17 17 17 1 

rando61 gsq 25 19 19 19 19 19 19 19 19 19 

rando62 a sa I 1 1 1 1 1 1 1 1 1 1 

rando63 asa 15 1~ 14 14 14 1~ 14 14 14 14 

rando64 gsq 102 71 71 71 71 71 71 71 71 71 

rando65 asa 23 23 23 23 23 23 23 23 23 23 

rando66 asa I 22 22 22 22 22 22 22 22 22 2 

rando70 asal 40 33 33 33 33 33 33 33 33 33 

rand a 73 gsq I 1 1 1 1 1 1 1 1 1 1 

rand a 75 a sa I 1 1 1 1 1 1 1 1 1 1 

rando76 asa 14 14 14 14 14 14 14 14 14 14 

rando77 gsq 41 41 41 41 41 41 41 41 41 41 

rando78 gsq 1 1 1 1 1 1 1 1 1 1 

rando80 asa 9 9 9 9 9 9 9 9 9 9 

rando83 gsa 23 23 23 23 23 23 23 23 23 2 

rando84 gsq 141 82 82 82 82 82 82 82 82 8 

rando85 gsq 1 1 1 1 1 1 1 1 1 1 

rando87 asa 1 1 1 1 1 1 1 1 1 1 

rando88 gsa 23 23 23 23 23 20 23 20 20 20 

rando89 gsq 1 1 1 1 1 1 1 1 1 1 

rando91 gsq 1211 93 943 943 943 916 906 943 906 906 

rando92 a sa I 392 281 281 281 281 281 281 281 281 281 

rando93 asa 15 15 15 15 15 15 15 15 15 15 

rando95 asa 41 35 33 35 33 35 35 35 35 33 

rando98 gsq 167 136 164 164 164 16 164 164 164 136 

rando99 a sa I 69 58 58 58 58 58 58 58 58 58 

rand100 asal 1 1 1 1 1 1 1 1 1 1 

rand103 asa 31 22 22 22 22 22 22 22 22 22 

rand104 gsq 1 1 1 1 1 1 1 1 1 1 

rand105 asa 26 25 25 25 25 25 25 26 25 25 

rand106 gsq 1 1 1 1 1 1 1 1 1 1 

rand108 asa 124 103 105 111 103 103 103 111 103 103 

rand109 gsq 252 171 171 171 171 171 171 171 171 171 

rand110 asa 6 6 6 6 6 6 6 6 6 6 

rand111 asa 59 39 39 39 39 3 37 36 3 36 

rand115 gsq 123 101 102 102 101 101 102 102 101 101 

rand116 gsq 70 70 70 70 70 70 70 70 70 70 

rand117 asa 10 10 10 10 10 10 10 10 10 10 

rand118 asa 141 82 82 82 82 82 82 82 82 8 

rand119 gsq 1 1 1 1 1 1 1 1 1 1 

rand120 gsq 172 158 168 158 158 158 158 168 158 158 

rand121 asa 23 23 23 23 23 23 23 23 23 23 

rand123 asa 7 5 5 5 5 5 5 5 5 5 

rand124 gsq 1 1 1 1 1 1 1 1 1 1 

rand125 asa 6 6 6 6 6 6 6 6 6 6 

rand126 asa 76 56 56 56 56 60 55 61 60 55 

rand127 asa 1 1 1 1 1 1 1 1 1 1 

rand128 gsq 73 64 67 64 64 64 64 64 67 6 

rand129 gsq 1 1 1 1 1 1 1 1 1 1 

Table A 8 Top-down, number of nodes, small trees, 2 
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FT name 0 scheme 1 scheme ~scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme Mlmmum 
rand130 qsq 1 1 1 1 1 1 1 1 1 1 

rand132 gsq 904 704 768 768 719 746 671 704 713 671 

rand134 gsq 53 50 50 50 50 50 50 50 50 50 
rand135 gsq 60 54 54 54 54 5 54 54 54 54 

rand137 asol 60 35 35 35 35 36 36 35 36 35 

rand138 qsq 1 1 1 1 1 1 1 1 1 1 

rand139 gsq 144 11 11 117 117 11 117 117 117 11 

rand141 gsq 6 6 6 6 6 6 6 6 6 6 
rand142 qsq 5885 2875 2801 2801 2488 252 2498 3548 2814 2488 

rand143 gsq 1 1 1 1 1 1 1 1 1 1 

rand144 gsq 64 63 63 63 63 62 62 63 62 62 

rand145 gsq 11 9 9 9 9 f 9 9 9 9 
rand146 qsq 60 35 35 35 35 36 36 35 36 35 
rand147 gsq 584 40 460 442 442 35 42 370 355 355 
rand148 gsq 1 1 1 1 1 1 1 1 1 1 
rand149 qsq 1 1 1 1 1 1 1 1 1 1 

rand150 qsq 4796 255 2623 255 2551 2521 2521 2718 2635 2521 

rand151 gsq 1 1 1 1 1 1 1 1 1 1 
rand153 qsq 1 1 1 1 1 1 1 1 1 1 
rand154 gsq 1 1 1 1 1 1 1 1 1 1 

rand155 gsq 367 226 242 226 226 226 226 226 226 226 

rand156 gsq 1 1 1 1 1 1 1 1 1 1 
rand158 qsq 1 1 1 1 1 1 1 1 1 1 

l1saba1 qsq 49 45 45 45 45 45 45 45 45 45 
llsaba3 gsq 1738 706 739 739 706 70€ 706 706 739 706 
llsaba4 gsq 971 606 618 613 625 625 637 596 625 596 

llsaba5 aso 124 106 103 103 106 103 103 106 103 103 
l1saba6 gsq 116 85 85 85 85 85 85 80 85 80 

llsaba7 qsq 49 45 45 45 45 45 45 45 45 45 
l1saba8 gsq 16 14 14 14 14 1 14 14 14 14 

l1sab10 gsq 1961 1375 2019 1858 1363 139 1395 1375 1516 1363 

llsab11 aso 1 1 1 1 1 1 1 1 1 1 

llsab13 qsq 6 6 6 6 6 E 6 6 6 6 
llsab17 gsq 49 45 45 45 45 45 45 45 45 45 
llsab19 gsq 1 1 1 1 1 1 1 1 1 1 
l1sab20 qsq 1 1 1 1 1 1 1 1 1 1 

llsab24 qsq 1 1 1 1 1 1 1 1 1 1 
llsab25 gsq 74 51 52 51 51 51 51 52 51 51 
llsab27 qsq 27 225 229 229 229 22 225 225 225 225 
llsab28 gsq 1 1 1 1 1 1 1 1 1 1 

llsab30 gsq 29 25 25 25 25 2 25 25 25 20 

hsab31 gsq 731 50 50 507 507 50 507 507 507 50 
llsab34 gsq 25 23 25 23 25 2 23 23 23 23 
llsab35 gsq 40 452 388 452 452 391 458 388 400 38E 

hsab36 gsq 312 186 186 186 186 178 186 206 160 160 

llsab37 gsq 13 11 11 11 11 11 11 11 11 11 

lisab42 aso 1 1 1 1 1 1 1 1 1 1 
hsab44 qsq 23 19 19 19 19 H 19 19 19 19 
llsab46 gsq 1 1 1 1 1 1 1 1 1 1 

lisab47 gsq 7 7 7 7 7 7 7 
11Sab48 QSQ 1 1 1 1 1 1 1 1 1 1 
llsab49 qsq 1 1 1 1 1 1 1 1 1 1 

llsab50 aso 1 1 1 1 1 1 1 1 1 1 
l1sabs1 gsq 18 16 16 16 16 16 16 16 16 1€ 

Table A.9 Top-down, number of nodes, small trees, 3 
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I FT name 0 scheme 1 scheme 2scheme 3 scheme 4 scheme 5 scheme 6 scheme ?scheme 8 scheme M1mmum 
llsab52 asa 1109 712 717 717 712 689 685 712 689 68o 
llsab53 asa 1 1 1 1 1 1 1 1 1 1 
lisab54 gsq 20 19 19 19 19 19 19 18 19 11 
llsab56 gsq 1 1 1 1 1 1 1 1 1 1 

llsab57 asa 396 332 364 340 35 356 356 357 356 332 
llsab59 gsq 1 1 1 1 1 1 1 1 1 1 
l1sab60 gsq 25 21 21 21 21 21 21 21 21 21 
l1sab61 gsq 25 25 25 25 25 25 25 25 25 25 

l1sab62 asa 14 14 14 1 14 14 14 14 14 14 

llsab63 asa 9 8 8 8 8 8 8 8 8 8 
lisab64 gsq 1 1 1 1 1 1 1 1 1 1 
llsab65 gsq 1 1 1 1 1 1 1 1 1 1 

l1sab66 asa 3 3 37 3 3 3 3 37 37 3 
l1sab61 asa 328 278 278 278 278 278 278 278 278 278 
l1sab68 gsq 1 1 1 1 1 1 1 1 1 1 

hsab69 gsq 23 21 21 21 21 21 21 21 21 21 
llsab70 asa 157 143 143 143 143 14 143 143 143 143 
hsab71 gsq 1 1 1 1 1 1 1 1 1 1 
hsab72 gsq 140 131 131 131 131 130 131 131 130 130 
hsab73 asa 1 1 1 1 1 1 1 1 1 1 

hsab74 asa 3527 23209 23209 23209 23209 23209 23209 24777 23915 23209 
hsab75 gsq 1 1 1 1 1 1 1 1 1 1 
hsab77 gsq 232 210 205 205 205 210 210 210 210 205 
hsab78 asa 30 241 245 241 241 212 241 245 241 21 

hsab81 asa 1 1 1 1 1 1 1 1 1 1 
hsab82 gsq 1107 880 880 880 880 880 880 880 880 88( 

hsab83 gsq 84 80 80 80 80 60 60 64 73 60 
hsab84 gsq 84 80 80 80 80 60 60 64 73 6( 

ll1sab86 asa 2343 681 982 974 982 752 677 974 752 67 
hsab88 gsq 13 11 11 11 11 11 11 11 11 11 
hsab89 gsq 100 92 92 92 92 92 92 92 92 9 
hsab91 asa 297 224 224 224 224 224 224 224 224 22 

hsab95 asa 1 1 1 1 1 1 1 1 1 1 
hsab97 gsq 1 1 1 1 1 1 1 1 1 1 
l1sab88 gsq 1 1 1 1 1 1 1 1 1 1 
hsa100 asa 2507 1462 1524 1524 1399 1462 1505 1524 1462 1399 

ll1sa103 asa 1 1 1 1 1 1 1 1 1 1 
llsa104 gsq 1 1 1 1 1 1 1 1 1 1 
hsa107 asa 1 1 1 1 1 1 1 1 1 1 
ll1sa109 asa 39 38 38 38 38 38 38 38 38 38 
l1sa110 asa 792 482 530 530 530 482 482 562 468 468 
l1sa111 gsq 1 1 1 1 1 1 1 1 1 1 
l1sa112 asa 485 313 392 392 392 313 313 313 313 313 
l1sa113 asa 295 189 210 210 210 189 189 187 18 18 
l1sa115 gsq 15 12 12 12 12 12 12 12 1 12 
l1sa116 gsq 6 6 6 6 6 6 6 6 6 6 
l1sa118 gsq 6 6 6 6 6 6 6 6 6 6 
l1sa120 gsq 1 1 1 1 1 1 1 1 1 1 
l1sa121 asa 12 12 12 12 12 12 12 12 12 12 
l1sa122 gsq 41 28 28 28 28 28 28 28 28 28 
l1sa123 gsq 148 145 145 145 145 133 133 133 133 133 
hsa124 gsq 358 1505 1943 1943 1532 1439 1385 1783 1385 1385 
lrand159 asa 42 41 41 41 41 41 41 41 41 41 
lrand161 gsq 228 220 243 223 220 220 220 220 220 220 

Table A 10 Top-down, number of nodes, small trees, 4 
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FT name o scheme 1 scheme 2 scheme 13 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1nrmum 
rando11 gsq 294803 178598 203126 203126 21051 167418 184239 173963 179261 167418 

rando19 gsq 3916 3311 3261 3261 321€ 3320 3214 3437 3430 3214 

rando20 gsq 1283 941 1083 1063 1015 872 940 1083 872 872 

rando22 gsq 2212 1931 1952 1952 2040 1774 2040 2059 1798 1774 

rand160 asa 1647432 427504 435379 433293 412969 362422 350797 427016 373863 350797 

l1saba2 asc 400351 250962 328032 328032 266526 267463 267483 287221 267483 250962 

ilsaba8 asc 288549 117248 137956 137956 126202 119548 117120 130120 124730 117120 

ilsab14 gsq 16333 10078 13337 13337 9163 9609 9163 9163 8224 8224 

llsab15 gsq 8761 6054 655£ 6559 6559 5858 5858 6559 5858 5858 

ilsab22 gsq 8214 4416 5509 5509 5851 4173 528 3855 4495 3855 

lisab29 gsq 1 1 1 1 1 1 1 1 1 1 

ilsab76 gsq 5399 5022 524< 5248 5035 5033 5035 5522 5282 5022 

ilsab87 gsq 921517 405965 407181 407181 422473 354915 372275 417433 394065 354915 

ilsab92 gsq 1 1 1 1 1 1 1 1 1 1 

ilsa1 02 gsq 146804 1 02181 1 02181 102181 100604 98942 98602 100649 97694 97694 

llsa117 gsq 6446409 3888036 3927624 4107065 3885836 3700777 3886170 3718517 3906491 3700777 

llsa118 gsq 11397 8990 10374 10374 10374 8990 9400 9772 8990 8990 

baobab1 txt - - - - - - - - - -
aobab2 txt - - - - - - - - - -
h1nese txt 45 45 45 45 45 45 45 45 45 45 

das9201 txt 261 204 210 210 204 204 204 210 204 204 

das9202 txt 1 1 1 1 1 1 1 1 1 1 

das9203 txt 12 11 11 11 11 11 11 11 11 11 

das9204 txt 12 12 12 12 12 12 12 12 12 12 

das9205 txt 1 1 1 1 1 1 1 1 1 1 

das9206 txt 106986 53309 52569 52569 54701 54701 54701 53596 52766 52569 

das9208 txt - - - - - - - - - -
das9209 txt 1 1 1 1 1 1 1 1 1 1 

edf9201 txt 6456 4306 4509 4526 4418 4283 428 4526 7999 4282 

edf9202 txt - - - - - - - - - -
edf9205 txt 14417 1 0119 10119 10119 10119 10119 10105 10073 1011 9 10073 

edf9206 txt 68 68 6E 68 68 68 68 68 6S 68 

edfpa 15o txt - - - - - - - - - -
edfpa 15q txt - - - - - - - - - -
edfpa 15r txt - - - - - - - - - -
elf9601 txt - - - - - - - - - -
ftr1 0 txt 612 584 584 584 584 564 584 564 584 584 

ISP9601 txt 2134 1237 1237 1237 1237 1237 1237 1237 123 1237 

1Sp9602 txt 1955 1803 1837 1837 1826 1858 1648 1794 1875 1794 

1Sp9603 txt 290275 168160 163490 163490 171798 177212 162083 159272 179040 159272 

l,sp9604 txt 283 251 276 276 260 248 273 254 24S 248 

1Sp9605 txt - - - - - - - - - -
1Sp9606 txt 188 163 163 163 163 163 163 163 163 163 

ISP9607 txt 1304 488 477 477 477 47 477 477 47 477 

Table A-12: Top-down, number of nodes, 'large' trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
astolfo gsq 0 016 0 015 0 0 016 0 0 015 0 015 0 0 0 

ben11amgsq 0 016 0 015 0 015 0 015 0 016 0 016 0 015 0 0 016 0 

bpfeg03 dat 0 016 0 0 015 0 016 0 0 0 015 0 0 0 

bofen05 dat 0 0 0 0 0 0 0 015 0 0 016 0 
bpflg05 dat 0 0 0 0 0 0 0 015 0 0 015 0 
bpfm05 dat 0 016 0 0 0 0 0 0 0 0 0 

bofsw02 aso 0 016 0 016 0 016 0 015 0 016 0 015 0 0 016 0 0 
dre1019 dat 0 0 0 015 0 0 016 0 015 0 0 0 0 

dre1032 dat 0 015 0 0 0 0 0 0 015 0 0 0 
dre1057 dat 0 0 0 0 0 0 0 016 0 0 0 
dre1058 dat 0 016 0 015 0 016 0 0 016 0 016 0 016 0 015 0 016 0 

dre1059 dat 0 031 0 016 0 015 0 016 0 016 0 016 0 015 0 016 0 015 0 015 

dresden dat 0 016 0 016 0 016 0 016 0 016 0 031 0 016 0 016 0 015 0 015 

hp1st02 dat 0 015 0 0 016 0 016 0 015 0 016 0 015 0 016 0 0 

hPISf03 dat 0 0 016 0 0 0 0 016 0 0 016 0 0 
hp1st21 gsq 0 015 0 0 016 0 015 0 016 0 016 0 0 0 016 0 

hplsf36 gsq 0 0 015 0 0 0 0 0 015 0 016 0 0 
dtree3gsq 0 0 0 0 0 0 0 0 0 015 0 

dtree4 aso 0 0 016 0 0 0 0 016 0 0 016 0 0 
dtree5 gsq 0 0 0 0 016 0 016 0 0 015 0 0 015 0 

kh1ctre dat 0 016 0 016 0 015 0 016 0 016 0 016 0 016 0 015 0 016 0 015 

nakash1aso 0 015 0 016 0 016 0 015 0 016 0 031 0 016 0 015 0 015 0 015 
nals1 gsq 0 016 0 016 0 015 0 015 0 016 0 015 0 016 0 016 0 016 0 015 

tnals4 gsq 0047 0 047 0 031 0 032 0 031 0 031 0 047 0 047 0047 0 031 

random3gsq 0015 0 015 0 0 0 0 015 0 016 0 016 0 016 0 

random6 asol 0344 0 328 0 313 0 328 0 312 0344 0 344 0 328 0375 0 312 

random8 asa 0 0 0 0 0 0 0 015 0 0 0 
rando12 gsq 0 281 0266 0 266 0 266 025 0266 025 0234 0265 0 234 

rando13 gsq 0 0 016 0 016 0 0 0 0 016 0 0 016 0 
rando16 asa 0 015 0 015 0 015 0 032 0 031 0 016 0 031 0 016 0 015 0 015 
rando18 gsq 0 016 0 015 0 0 0 016 0 0 016 0 016 0 016 0 

rando23 gsq 0 0 0 0 0 0 016 0 015 0 0 0 

rando25 gsq 0 016 0 0 0 0 016 0 0 015 0 015 0 016 0 
rando27 aso 0 015 0 0 016 0 0 0 0 0 015 0 015 0 
rando28 gsq 0 0 0 016 0 0 0 0 0 0 c 
rando29 gsq 0 015 0 0 016 0 016 0 016 0 031 0 016 0 0 015 0 

rando30 gsq 0 0 016 0 016 0 0 016 0 016 0 0 015 0 016 c 
rando31 asa 0 0 015 0 016 0 015 0 015 0 016 0 015 0 0 0 
rando33 gsq 0 015 0 016 0 016 0 016 0 016 0 015 0 015 0 015 0 016 0 01~ 
rando34 gsq 0 015 0 016 0 0 016 0 0 016 0 016 0 016 0 016 _C 
rando35gsq 0 016 0 016 0 015 0 015 0 0 016 0 016 0 016 0 015 c 
rando36 aso 0 0 0 0 0 0 016 0 0 016 0 0 
rando37 gsq 0 0 0 015 0 015 0 015 0 016 0 015 0 016 0 c 
rando38 gsq 0 015 0 015 0 0 0 0 0 015 0 0 016 _<: 
rando39 asa 0 016 0 015 0 0 016 0 015 0 015 0 016 0 015 0 015 0 

rando40 asa 0 016 0 016 0 0 0 0 016 0 016 0 016 0 016 0 
rando42 gsq 0 015 0 0 0 0 016 0 0 0 0 0 
rando43 gsq 0 0 016 0 0 0 0 0 0 015 0 0 

rando44 gsq 0 031 0 031 0 031 0 016 0 031 0 031 0047 0 015 0 031 0 015 
rando45 gsq 0 016 0 016 0 015 0 0 016 0 015 0 016 0 0 015 0 
rando46 gsq 0 0 0 0 0 0 0 0 0 015 c 
rando47 gsq 0 016 0 016 0 0 015 0 0 015 0 0 0 015 0 
rando48 asa 0 0 0 0 0 0 0 0 0 015 0 

rando52 asa 0032 0 016 0 032 0 016 0 032 0 032 0 031 0 015 0 015 0 015 

Table A.13: Top-down, t1me, small trees, 1 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mtntmum 

rando53 asa 0 0 0 0 0 0 0 0 0 016 ( 

rando54 asa 0 031 0 016 0 031 0 015 0 031 0 032 0 04 0 031 0 016 0 015 

rando55 gsa 0 015 0 016 0 015 0 015 0 015 0 016 0 015 0 016 0 0 

rando58 QSQ 0 016 0 016 0 0 016 0 0 015 0 015 0 0 ( 

rando59 asa 0 047 0 04 0047 0 031 0 047 0032 0 031 0 031 0 031 0 031 

rando60 gsa 0 016 0 016 0 016 0 032 0 016 0 031 0 016 0 015 0 016 0 015 

rando61 QSQ 0 016 0 016 0 0 0 0 015 0 0 015 0 016 ( 

rando62 gsq 0 015 0 0 0 016 0 0 016 0 0 0 0 

rando63 asa 0 015 0 0 016 0 016 0 015 0 016 0 031 0 0 016 0 

rando64 asa 0 016 0 016 0 016 0 016 0 016 0 016 0 016 0 015 0 016 0 01E 

rando65 QSQ 0 0 0 0 015 0 016 0 016 0 0 0 c 
rando66 QSQ 0 015 0 016 0 016 0 016 0 016 0 015 0 0 0 0 

rando70 asa 0 015 0 016 0 016 0 0 0 015 0 0 0 0 

rando73 asa 0 0 0 0 015 0 0 0 0 0 015 c 
rando75 gsq 0 001€ 0 016 0 0 0 0 016 0 0 0 

rando76 gsq 0 015 0 016 0 016 0 016 0 015 0 015 0 031 0 016 0 0 

rando77 asa 0 016 0 01 0 016 0 016 0 015 0 016 0 016 0 015 0 016 0 015 

rando78 asa 0 015 ( 0 0 0 0 0 0 016 0 015 0 

rando80 QSQ 0 016 ( 0 0 015 0 015 0 016 0 015 0 016 0 015 0 
rando83 gsq 0 0 01 0 0 0 015 0 016 0 0 0 0 

rando84 asa 0 016 0 016 0 016 0 016 0 016 0 016 0 015 0 015 0 016 0 015 

rando85 gsq 0 0 0 0 0 016 0 016 0 0 0 0 
rando87 gsq 0 0 0 016 0 0 0 0 016 0 0 016 0 

rando88 gsq 0 0 0 0 0 0 0 0 0 

rando89 asa 0 015 0 0 0 015 0 0 0 0 016 0 c 
rando91 gsq 0 203 018 0 141 0 157 0 141 0 109 0 124 0 141 0 125 0 109 

rando92 gsq 0 031 0 032 0 032 0 031 0 031 0 031 0 032 0 032 0 047 0 031 

rando93 gsq 0 016 0 016 0 015 0 016 0 015 0 015 0 015 0 016 0 015 0 015 

rando95 a sa I 0 016 0 016 0 016 0 0 015 0 015 0 015 0 016 0 015 0 

rando98 QSQ I 0 016 0 016 0 016 0 015 0 016 0 016 0 031 0 032 0 015 0 015 

rando99 gsq I 0 016 0 016 0 015 0 0 016 0 0 0 016 0 ( 

rand100 asal 0 0 0 0 015 0 0 0 0 0 0 

rand103 QSQ 0 0 016 0 0 016 0 0 015 0 016 0 016 0 016 0 

rand104 gsq 0 0 0 0 0 0 016 0 0 0 0 
rand105 gsq 0 0 015 0 0 016 0 016 0 0 0 016 0 0 
rand106 gsq 0 016 0 0 015 0 0 0 031 0 0 0 015 0 

rand108 asa 0 016 0 031 0 015 0 015 0 016 0 016 0 016 0 016 0 015 0 015 

rand109 gsq 0 031 0 015 0 016 0 015 0 016 0 016 0032 0 016 0 016 0 015 

rand110gsq 0 0 0 0 015 0 016 0 016 0 0 0 0 
rand111 QSQ 0 016 0 0 0 0 0 016 0 015 0 015 0 016 0 

rand115 gsa 0 015 0 016 0 016 0 016 0 016 0 016 0047 0 0 015 0 
rand116 gsq 0 016 0 016 0 016 0 016 0 016 0 031 0 031 0 016 0 016 0 016 

rand117 asa 0 015 0 0 0 0 0 0 0 0 0 

rand118 asa 0 015 0 015 0 0 016 0 016 0 016 0 031 0 015 0 015 c 
rand119 gsa 0 0 0 0 016 0 0 016 0 0 015 0 c 
rand120 gsq 0 015 0 016 0 015 0 016 0 015 0 016 0 015 0 0 015 0 

rand121 gsq 0 0 016 0 0 016 0 0 016 0 0 016 0 (j 

rand123 gsq 0 0 0 0 0 0 0 0 0 (j 

rand124 asa 0 0 0 0 016 0 016 0 016 0 016 0 0 0 

rand125 gsa 0 0 0 0 0 0 0 0 0 0 
rand126 gsq 0 0 015 0 015 0 0 0 015 0 0 016 0016 0 
rand127 gsq 0 0 015 0 0 016 0 0 0 015 0 0 0 
rand128 asa 0 0 0 016 0 015 0 015 0 015 0 015 0 0016 0 

rand129 gsa 0 0 015 0 016 0 0 015 0 016 0 015 0 0 016 0 

Table A 14· Top-down, time, small trees, 2 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rand130 gsq 0 015 0 0 0 015 0 0 016 0 016 0 0 0 
rand132 asc 0 265 0 2: 0203 0 219 0 219 0 219 0 219 0203 0 203 0203 

rand134 asc 0 0 01: 0 016 0 016 0 016 0 016 0 016 0 016 0 016 0 
rand135 gsq 0 c 0 0 016 0 0 0 0 016 0 0 

rand137 gsq 0 0 016 0 015 0 0 0 0 0 015 0 015 0 

rand13B asci 0 015 0 0 0 0 0 016 0 0 0 0 

rand139 asc 0 015 0 0 016 0 016 0 0 016 0 015 0 016 0 016 0 

rand141 gsq 0 015 0 01E 0 0 0 0 0 0 0 0 

rand142 asc 0 68 0 578 0359 0 359 0359 0 375 039 0 469 0 375 0 359 

rand143 asc 0 0 0 0 0 0 0 015 0 0 0 
rand144 gsq 0 016 0 015 0 016 0 015 0062 0 016 0 016 0 0 016 0 
rand145 gsq 0 016 0 01E 0 016 0 0 015 0 015 0 016 0 016 0 0 

rand146 asc 0 c 0 0 0 04 0 016 0 015 0 0 0 
rand147 asc 0 078 0078 0063 0 062 0 11 0047 0 063 0047 0 063 004 

rand148 gsq 0 0 0 0 0 0 0 0 0 0 

rand149 gsq 0 0 0 0 0 0 016 0 0 0 0 

rand150 asc 0 344 0328 0235 0 235 0 281 029 0 281 0 313 0 29 0235 

rand151 asc 0 0 0 0 0 016 0 0 016 0 0 0 

rand153 gsq 0 0 0 0 0 016 0 0 0 016 0 016 0 
rand154 gsq 0 0 0 016 0 0 0 016 0 0 0 0 

rand155 aso 0 015 0 016 0 016 0 016 0 016 0 016 0 016 0 031 0 016 0 01~ 

rand156 gso 0 0 0 0 0 0 0 016 0 0 ( 

rand158 gsq 0 0 0 0 0 015 0 016 0 0 0 ( 

hsaba1 gsq 0 015 0 031 0 015 0 016 0 047 0 032 0 031 0 015 0 016 0 015 

hsaba3 asa 0328 0 313 0 313 0 312 0 297 0 29 0 297 0 313 0 312 0 29 

hsaba4 gsq 0063 0 04 0 031 0 04 0 032 0 04E 004 0 031 0 047 0 031 

llsaba5 gsq 0 016 ( 0 016 0 016 0063 0 01: 0 0 016 0 0 
l1saba6 gsq 0 016 ( 0 0 015 0 0 01: 0 0 015 0 016 0 

l1saba1 asa 0 031 0 016 0 015 0 015 0 016 0 032 0 032 0 015 0 016 0 015 
llsaba9 gsq 0 0 015 0 016 0 0 0 016 0 015 0 015 0 0 
!1sab10 gsq 0 391 0359 0 422 0 438 0235 0 20 0203 0203 0 265 0 203 

l1sab11 gsq 0 0 016 0 0 0 c 0 0 0 0 

llsab13 asc 0 0 016 0 0 0 016 c 0 0 0 0 
llsab17 gsa 0 016 0 016 0 015 0 015 0032 0032 0 031 0 016 0 031 0 015 
llsab19 gsq 0 016 0 0 0 016 0 0 0 016 0 016 0 015 0 

llsab20 gsc 0 0 0 0 0 0 015 0 0 0 0 

lisab24asc 0 0 0 015 0 015 0 016 0 0 0 0 0 
l1sab25 gsq 0 0 0 016 0 0 016 0 016 0 0 016 0 016 0 
llsab27 gsq 0 031 0 031 0 031 0 031 0 032 004 0 031 0 032 0 031 0 031 

hsab28 aso 0 0 015 0 0 0 0 016 0 015 0 016 0 016 0 

llsab30 aso 0 031 0 016 0 016 0 016 0 015 0 015 0 031 0 031 0 031 0 015 

llsab31 gsq 0 078 0062 0062 0 063 0 078 0063 0 078 0 078 0 062 0 06 

hsab34 gsq 0 015 0 016 0 016 0 015 0 015 0 016 0 016 0 015 0 016 0 015 

hsab35 aso 0 047 0 031 0 031 0 047 0 032 0047 0047 0 031 0 047 0 031 

hsab36 aso 0 031 0 016 0 031 0 031 0 031 0032 0 031 0 015 0 031 0 015 

hsab37 gsq 0 016 0 016 0 015 0 015 0 016 0 016 0 015 0 015 0 015 0 015 

hsab42 gsq 0 0 0 016 0 0 0 016 0 0 0 016 0 

hsab44 aso 0 0 0 016 0 015 0 015 0 016 0 016 0 016 0 016 0 

hsab46 gso 0 0 0 016 0 0 015 0 016 0 016 0 0 0 
hsab47 gsq 0 016 0 0 0 0 0 0 0 0 0 

hsab48 asc 0 0 0 016 0 0 015 0 0 015 0 016 0 016 0 

lisab49 aso 0 0 0 0 0 0 0 0 016 0 016 0 

hsab50 aso 0 0 0 015 0 015 0 016 0 015 0 016 0 0 0 
hsab51 gsq 0 016 0 0 0 0 0 0 015 0 0 0 

Table A.l5 Top-down, time, small trees, 3 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mtntmum 
llsab52 gsq 0 125 0 094 0078 0 078 0 078 0062 0079 0078 0078 0 06 
llsab53 asa 0 0 0 0 0 016 0 016 0 016 0 0 015 ( 

llsab54 asa 0 016 0 0 016 0 0 0 016 0 016 0 0 0 
llsab56 gsq 0 0 0 0 016 0 016 0 0 015 0 015 0 0 
hsab57 gsq 0 016 0 016 0 016 0 016 0 031 0 031 0 031 0 016 0 015 0 015 
llsab59 asa 0 ( 0 0 016 0 0 0 0 0 016 0 
l1sab60 gsq 0 015 0 0 0 0 o 01: 0 0 0 ( 

llsab61 gsq 0 0 016 0 016 0 0 c 0 016 0 0 0 
hsab62 asa 0 0 0 015 0 0 0 0 0 0 ( 

hsab63 asa 0 016 0 016 0 0 016 0 0 0 0 0 016 ( 

hsab64 asa 0 0 0 0 0 c 0 016 0 016 0 0 
hsab65 gsq 0 015 0 01' 0 015 0 0 015 0 0 015 0 0 016 0 
hsab66 gsq 0 ( 0 015 0 016 0 0 015 0 016 0 015 0 015 0 
llsab67 asa 0 015 OOH 0 016 0 016 0 016 0 01€ 0 016 0 016 0 016 0 015 
l1sab68 asa 0 0 0 0 016 0 016 0 015 0 0 0 015 0 
l1sab68 gsq 0 0 0 0 016 0 015 0 01€ 0 0 0 ( 

I1Sab70 gsq 0 0 015 0 0 0 0 015 0 0 016 0 0 
llsab71 asa 0 0 0 0 0 016 0 0 0016 0 0 
hsab72 gsa 0 0 015 0 016 0 015 0 016 0 016 0 0 016 0 016 ( 

hsab73 gsq 0 0 015 0 016 0 0 0 016 0 015 0 0 016 ( 

hsab74 gsq_ 2 921 2 266 1 078 1125 1 094 1109 1 093 1 125 1 141 1 07 
hsab75 asa 0 016 0 0 0 0 0 0 0 0 016 ( 

hsab77 gsq 0 031 0 031 0 016 0 032 0 0 016 0 015 0 016 0 016 0 
llsab78 gsq 0 032 0 016 0 015 0 016 0 031 0 016 0 031 0 016 0 015 0 015 
l1sab81 asa 0 016 0 0 0 0 0 016 0 0 016 0 0 
l1sab82 asa 0 04 0 04 0047 0 031 0047 0 04 0 032 0 032 0 031 0 031 
lisab83 gsq 0 016 0 015 0 016 0 016 0 0 015 0 0 0 016 0 
hsab84 gsq 0 016 0 016 0 015 0 0 0 015 0 0 0 015 0 
hsab86 asa 0 078 0 078 0 031 0 04 0 032 0 04 004 0 031 0 047 0 031 
l1sab88 QSQ 0 0 0 0 016 0 0 016 0 0 0 0 
11Sab89 gsq 0 016 0 0 016 0 0 0 015 0 016 0 016 0 016 0 
llsab91 gsq 0 016 0 016 0 015 0 015 0 016 0 031 0 016 0 015 0 015 0 015 
llsab95 asa 0 016 0 0 0 0 015 0 0 0 0 0 
llsab97 asa 0 0 0 015 0 0 0 016 0016 0 0 0 
hsab98 gsq 0 0 0 0 015 0 0 0 016 0 0 0 
hsa100 gsq 0 75 0 81 0 172 0188 0 172 0 171 0172 0 171 0 15 0 15 
llsa103 asa 0 0 015 0 0 0 0 0 0 0 0 
llsa104 asa 0 016 0 0 016 0 0 0 015 0 016 0 016 0 0 
hsa107 gsq 0 0 016 0 0 0 0 016 0 0 015 0 0 
hsa109 gsq 0 0 015 0 015 0 015 0 016 0 0 0 015 0 0 
l1sa110 asa 0 11 0 11 0 063 0 063 0 047 0 063 0063 0 062 0 062 0 04 
llsa111 asa 0 0 0 0 0 015 0 015 0 016 0 0 0 
hsa112 gsq 0 031 0 031 0 032 0 016 0 031 0 031 0032 0 016 0 031 0 016 
hsa113 gsq 0 032 0 016 0 031 0 015 0 016 0 016 0 031 0 031 0 016 0 015 
llsa115 asa 0 016 0 0 0 015 0 016 0 0 0 015 0 () 
hsa116gsa 0 0 015 0 0 0 016 0 015 0 0 0093 0 
hsa119gsq 0 015 0 0 0 0 015 0 016 0 0 0 0 
hsa120 gsq 0 0 0 0 016 0 016 0 016 0 015 0 015 0 0 
hsa121 gsq 0 015 0 016 0 016 0 016 0 016 0 03 0 015 0 016 0 015 0 015 
l1sa122 asa 0 016 0 015 0 0 016 0 0 016 0 016 0 0 0 
l1sa123 gsq 0 032 0 015 0 031 0 015 0 015 0 016 0 016 0 015 0 016 0 015 
hsa124 gsq 0 703 0 141 0125 0 125 0 14 0 14 014 0 125 0 11 0 11 
rand159 gsq 0 016 0 015 0 016 0 015 0 016 0 01 0 015 0 015 0 0 
rand161 asa 0 031 0 016 0 015 0 016 0 016 0 01€ 0 016 0 015 0 016 0 015 

Table A 16 Top-down, time, small trees, 4 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme ?scheme 8 scheme M1mmum 
rand163 gsq 0078 0078 0063 0062 0 047 0078 0062 0 063 0 063 0 04 

rand164 gsq 0 031 004 0 031 0 218 0 063 0 032 0032 0 031 0 031 0 031 

rand165 asa 2 781 2 625 2297 2265 2 25 1 656 1 297 1 875 1 328 1 29 

rand166 gsq 5 23 4 312 3 969 2 969 1 594 2 719 2 078 2 985 2 031 1 594 

rand167 gsq 0 031 0 016 0 031 0 015 0 015 0 031 0 016 0 032 0 031 0 015 

Table A 17: Top-down, time, small trees, 5 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando11 qsq 22 21 1517 15 04 14 72 15 9 13 49 14 62 14 36 14 65 13 49 

rando19 qsq 018 018 015 015 01€ 0 17 014 017 03 014 

rando20 qsq 006 013 005 0 66 0 04 007 007 004 00 004 

rando22 qsq 083 04 039 027 0 58 038 028 0 34 023 023 

rand160 gsq 58 21 10 92 11 6 11 51 12 26 1219 12 24 11 48 11 13 10 92 

l1saba2 gsq 3 59 2 228 228 24 239 239 2 27 245 2 

l1saba8 gsq 2 01 1 04 1 2S 1 2S 1 16 1 os 1 09 1 2 1 1 ~ 1 04 

llsab14 gsq ass 0 26 037 038 027 026 0 26 0 27 02 024 

l1sab1S gsq 1 2 065 0 66 0 66 067 0 66 0 65 0 67 0 66 0 65 

lisab22 gsq 1 06 037 0 0 41 OS5 034 04 0 27 03 0 27 

ilsab29 gsq 0 0 0 0 0 0 0 0 ( 0 

ilsab76 qsq 034 0 21 0 24 022 0 21 022 0 22 0 23 022 0 21 

ilsab87 qsq 101 3 7867 73 26 75 72 72 06 504 5212 7224 S623 504 

ilsab92 qsq 0 0 0 0 0 0 0 0 0 0 

ilsa1 02 qsq 1 06 0 68 076 07 0 7~ 069 0 0 75 0 71 068 

ilsa117 qsq 2003 948 95 23 100 47 12914 74 48 133 11 8323 7S 08 7448 

ilsa118 qsq 01 0 09 0 1 0 1 01 0 09 0 09 0 08 008 0 08 

baobab1 txt - - - - - - - - - 0 

baobab2 txt - - - - - - - - - 0 

ch1nese txt 0 0 0 0 0 0 0 0 0 0 

[das9201 txt 0 0 0 01 0 c 0 0 0 0 01 0 

das9202 txt 0 0 0 0 0 0 0 0 01 0 0 

das9203 txt 0 0 0 0 01 0 01 0 c 0 0 01 0 

[das9204 txt 0 0 0 0 c 0 0 0 01 0 0 

[das920S txt 0 0 01 0 0 0 0 0 0 0 0 

as9206 txt 091 0 62 0 6S 0 66 07 0 68 06 064 043 043 

as9208 txt - - - - - - - - - 0 

das9209 txt 0 0 0 0 0 0 01 0 0 01 0 0 

edf9201 txt 527 2 71 263 262 26 2 91 2 E 2 62 7 34 262 

edf9202 txt - - - - - - - - - 0 

edf920S txt 14 69 6 86 6 7S 6 86 677 6 63 69 7 28 619 619 

edf9206 txt 0 0 0 01 0 0 0 01 0 0 01 0 0 

edfpa 15o txt - - - - - - - - - 0 

edfpa 15q txt - - - - - - - - - 0 

edfoa 15r txt - - - - - - - - - 0 

elf9601 txt - - - - - - - - - 0 

tr1 0 txt 007 0 08 00 0 06 0 OE 0 05 00 0 09 006 0 os 
ISP9601 txt 0 09 0 08 007 0 06 00 0 07 008 0 06 004 0 04 

ISP9602 txt 0 11 009 008 009 0 09 01 0 1 01 0 01 0 01 

ISP9603 txt 11 01 567 547 5 45 55 5 72 S83 563 2 82 2 82 

ISP9604 txt 003 002 002 003 002 0 02 003 0 01 002 0 01 
1Sp9605 txt - - - - - - - - - 0 

1Sp9606 txt 0 0 0 0 01 0 0 c 0 0 01 0 

ISP9607 txt 003 0 02 002 002 002 0 02 0 02 0 03 0 01 0 01 

Table A_l8: Top-down, t1me, 'large' trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
astolfo QSQ 23 19 19 19 19 19 19 19 19 19 

ben11am gsq 102 71 71 71 75 71 71 71 71 71 

bpfeg03 dat 1 1 1 1 1 1 1 1 1 1 

bofen05 dat 1 1 1 1 1 1 1 1 1 1 

bpftQ05 dat 1 1 1 1 1 1 1 1 1 1 

bpftn05 dat 1 1 1 1 1 1 1 1 1 1 

bpfsw02gsq 26 20 20 20 20 20 20 20 20 20 

dre1019 dat 1 1 1 1 1 1 1 1 1 1 

dre1032 dat 1 1 1 1 1 1 1 1 1 1 

dre1057 dat 1 1 1 1 1 1 1 1 1 1 

dre1058 dat 33 27 27 2 27 2 27 27 27 2 

dre1059 dat 256 220 220 220 220 220 220 220 220 22( 

dresden dat 41 35 35 35 35 35 35 35 35 3~ 

hptsf02 dat 115 115 115 115 115 115 115 115 115 11 ~ 

hotsf03 dat 15 14 14 14 14 14 14 14 14 1< 

hptsf21 QSQ 29 27 27 27 27 27 27 27 26 26 

hptsf36 gsq 15 13 13 13 13 13 13 13 13 13 

dtree3 gsq 1 1 1 1 1 1 1 1 1 1 

dtree4 QSQ 1 1 1 1 1 1 1 1 1 1 

dtree5 gsq 1 1 1 1 1 1 1 1 1 1 

khtctre dat 19 19 19 19 19 19 19 19 19 19 

nakasht OSQ 162 162 162 162 168 162 168 162 162 162 

tnals1 QSQ 164 172 173 173 173 172 172 173 162 16~ 

tnals4 gsq 169 149 149 149 149 148 153 14 149 14 

random3 gsq 63 59 59 59 59 59 59 59 59 59 

random6 OSQI 3158 1607 1627 162 1582 1625 1625 1625 1625 1582 

random8 QSQ 1 1 1 1 1 1 1 1 1 1 

rando12 gsq 468 446 433 433 446 433 485 446 433 433 

rando13 gsq 100 95 95 95 95 94 94 94 94 94 

rando16 QSQ 76 59 59 59 59 56 56 56 53 53 

rando18 QSQ 103 69 69 69 69 53 53 53 53 53 

rando23 gsq 1 1 1 1 1 1 1 1 1 1 

rando25 gsq 1 1 1 1 1 1 1 1 1 1 

rando27 aso 22 1 17 17 17 13 13 17 13 13 

rando28 QSQ 1 1 1 1 1 1 1 1 1 1 

rando29 gsq 87 8 87 88 87 87 87 88 87 8 

rando30 gsq 91 84 84 84 84 84 84 84 84 84 

rando31 QSQ 1 1 1 1 1 1 1 1 1 1 

rando33 QSQ 8 8 8 8 8 8 8 8 8 8 

rando34 gsq 47 22 22 22 22 22 22 22 22 22 

rando35 gsq 22 18 18 18 18 18 18 18 18 18 

rando36 QSQ . 1 1 1 1 1 1 1 1 1 1 

rando37 QSQ 49 39 39 39 39 38 38 39 38 38 
rando38 gsq 1 1 1 1 1 1 1 1 1 1 

rando39 QSQ 193 162 172 172 162 167 162 185 162 162 

rando40 QSQ 21 21 21 21 21 21 21 21 21 21 

rando42 gsq 1 1 1 1 1 1 1 1 1 1 

rando43 gsq 1 1 1 1 1 1 1 1 1 1 

rando44 gsq 345 338 338 338 338 338 338 338 338 338 

rando45 QSQ 41 30 30 30 30 30 30 30 30 30 

rando46 gsq 1 1 1 1 1 1 1 1 1 1 

rando47 gsq 40 38 38 38 38 38 38 38 38 38 

rando48 CSQ 14 13 14 14 13 13 13 13 13 13 

rando52 QSQ 44 42 42 42 42 42 42 44 42 42 

Table A 19 Bottom-up, number of nodes, small trees, 1 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rando53 gsq 1 1 1 1 1 1 1 1 1 1 

rando54 asa 29 25 25 25 25 2: 25 25 25 25 

rando55 gsq 15 14 14 14 14 14 14 14 14 14 

rando58 gsq 1 1 1 1 1 1 1 1 1 1 

rando59 gsq 1233 60 722 722 672 58E 672 658 579 579 

rando60 a sa I 1 1 1 17 1 1 17 17 1 1 

rando61 gsq 25 19 19 19 19 19 19 19 19 19 

rando62 gsq 1 1 1 1 1 1 1 1 1 1 

rando63 gsq 15 14 14 14 14 14 14 14 14 1 

rando64 asa 102 71 71 71 71 71 71 71 71 71 

rando65 gsq 23 23 23 23 23 23 23 23 23 23 

rando66 gsq 22 22 22 22 22 22 22 22 22 2 

rando 70 a sa I 40 3 33 33 33 33 33 33 33 3 

rando73 asa 1 1 1 1 1 1 1 1 1 1 

rando75 gsq 1 1 1 1 1 1 1 1 1 1 

rando76 gsq 14 14 14 14 14 14 14 14 14 1 

rando 77 a sa I 41 41 41 41 41 41 41 41 41 41 

rando78 asa 1 1 1 1 1 1 1 1 1 1 

rando80 gsq 9 9 9 9 9 9 9 9 9 9 
rando83 gsq 23 23 23 23 23 23 23 23 23 23 

rando84 osa I 141 82 82 82 82 82 82 82 82 8< 

rando85 asa 1 1 1 1 1 1 1 1 1 1 

rando87 gsq 1 1 1 1 1 1 1 1 1 1 

rando88 gsq 23 23 23 23 23 2C 23 20 20 2( 

rando89 a sa I 1 1 1 1 1 1 1 1 1 1 

rando91 gsq 1211 932 943 943 943 916 906 943 906 906 

rando92 gsq 392 281 281 281 281 281 281 281 281 281 

rando93 gsq 15 15 15 15 15 15 15 15 15 1 

rando95 asa 41 35 33 35 33 35 35 35 35 33 
rando98 gsq 167 136 164 164 164 164 164 164 164 136 

rando99 gsq 69 58 58 58 58 58 58 58 58 58 

rand100 gsa 1 1 1 1 1 1 1 1 1 1 

rand103 asa 31 22 22 22 22 22 22 22 22 22 

rand104 asa 1 1 1 1 1 1 1 1 1 1 

rand105 gsq 26 25 25 25 25 25 25 26 25 25 

rand106 asa 1 1 1 1 1 1 1 1 1 1 

rand108 osa 124 103 105 1 11 103 103 103 1 1 1 103 10 

rand109 gsq 252 171 171 171 171 171 171 171 171 171 

rand110 gsq 6 6 6 6 6 6 6 6 6 
rand1 11 asa 59 39 39 39 39 3 37 36 37 36 

rand1 15 asa 123 101 102 102 101 101 102 102 101 101 

rand1 16 gsq 70 70 70 70 70 70 70 70 70 70 

rand1 17 gsq 10 10 10 10 10 10 10 10 10 10 

rand1 18 asa 141 8 82 82 82 82 82 82 82 82 

rand1 19 asa 1 1 1 1 1 1 1 1 1 1 

rand120 gsq 172 158 168 158 158 158 158 168 158 158 

rand121 asa 23 23 23 23 23 23 23 23 23 23 

rand123 asa 7 5 5 5 5 5 5 5 5 5 

rand124 asa 1 1 1 1 1 1 1 1 1 1 

rand125 gsq 6 6 6 6 6 6 6 6 6 6 
rand126 asa 76 56 56 56 56 60 55 61 60 55 

rand127 asa 1 1 1 1 1 1 1 1 1 1 

rand128 asa 73 6 67 64 64 6 64 64 67 64 

rand129 gsq 1 1 1 1 1 1 1 1 1 1 

Table A 20 Bottom-up, number of nodes, small trees, 2 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rand130 gsql 1 1 1 1 1 1 1 1 1 1 

rand132 asol 904 704 768 768 719 746 671 70 713 671 

rand134 QSQ 53 50 50 50 50 50 50 50 50 50 

rand135 gsq 60 54 54 54 54 54 54 54 54 54 

rand137 aso 60 35 35 35 35 36 36 35 36 35 

rand138 asol 1 1 1 1 1 1 1 1 1 1 

rand139 gsq 144 11 117 117 11 11 117 11 117 11 

rand141 gsq 6 6 6 6 6 6 6 6 6 6 

rand142 gsq 5885 2875 2801 2801 2488 2523 2498 3548 2814 2488 

rand143 qsq I 1 1 1 1 1 1 1 1 1 1 

rand144 asa 64 63 63 63 63 62 62 63 62 62 

rand145 gsq 11 9 9 9 9 9 9 9 9 9 

rand146 gsq 60 35 35 35 35 36 36 35 36 35 
rand147 qsq 584 407 460 442 442 35 42 370 355 355 
rand148 asa 1 1 1 1 1 1 1 1 1 1 

rand149 gsq 1 1 1 1 1 1 1 1 1 1 

rand150 gsq 4796 2557 2623 2557 2551 2521 2521 2718 2635 2521 

rand151 asal 1 1 1 1 1 1 1 1 1 1 

rand153 qsq 1 1 1 1 1 1 1 1 1 1 

rand154 gsq 1 1 1 1 1 1 1 1 1 1 

rand155 qsq 367 226 242 226 226 226 226 226 226 226 

rand156 asa 1 1 1 1 1 1 1 1 1 1 

rand158 gsq 1 1 1 1 1 1 1 1 1 1 

lisaba1 gsq 49 45 45 45 45 45 45 45 45 45 

llsaba3 asq 1738 706 739 739 706 706 706 706 739 706 

l1saba4 gsq 971 606 618 613 625 625 637 596 625 596 
llsaba5 gsq 124 106 103 103 106 10 103 106 103 10 

lisaba6 gsq 116 85 85 85 85 85 85 85 85 85 

lisaba7 gsq 49 45 45 45 45 45 45 45 45 45 

lisaba9 asa 16 14 14 1 14 14 14 14 14 14 

lisab10 gsq 1961 1375 2019 1858 1363 1395 1395 1375 1516 1363 

lisab11 gsq 1 1 1 1 1 1 1 1 1 1 

lisab13 gsa 6 6 6 6 6 6 6 6 6 6 
llsab17 qsq 49 45 45 45 45 45 45 45 45 45 

llsab19 gsq 1 1 1 1 1 1 1 1 1 1 

lisab20 gsq 1 1 1 1 1 1 1 1 1 1 

lisab24 asa 1 1 1 1 1 1 1 1 1 1 

lisab25 asa 74 51 52 51 51 51 51 52 51 51 

lisab27 gsq 277 225 229 229 229 225 225 225 225 225 

lisab28 gsq 1 1 1 1 1 1 1 1 1 1 

lisab30 aso 29 25 25 25 25 25 25 25 25 25 
llsab31 gsq 731 50 50 50 507 50 50 507 507 50 
lisab34 gsq 25 23 25 23 25 2 23 23 23 23 

llsab35 gsq 407 452 388 452 452 391 458 388 400 388 

llsab36 asa 312 186 186 186 186 178 186 206 160 160 
lisab37 gsq 13 11 11 11 11 11 11 11 11 11 

lisab42 gsq 1 1 1 1 1 1 1 1 1 1 

lisab44 gsq 23 19 19 19 19 19 19 19 19 19 

lisab46 gsq 1 1 1 1 1 1 1 1 1 1 

lisab47 aso 7 7 7 7 
lisab48 gsq 1 1 1 1 1 1 1 1 1 1 

lisab49 gsq 1 1 1 1 1 1 1 1 1 1 

lisab50 aso 1 1 1 1 1 1 1 1 1 1 

lisab51 aso 18 16 16 16 16 16 16 16 16 16 

Table A.21· Bottom-up, number of nodes, small trees, 3 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme scheme 5 scheme 6 scheme 7scheme B scheme Mm1mum 
hsab52 gsq 1109 712 717 71 712 6B9 6B5 712 6B9 6B 

hsab53 gsq 1 1 1 1 1 1 1 1 1 1 

hsab54 asq 20 19 19 19 19 19 19 1B 19 1B 

hsab56 gsq 1 1 1 1 1 1 1 1 1 1 

hsab57 gsq 396 332 364 340 357 356 356 357 356 33 

hsab59 gsq 1 1 1 1 1 1 1 1 1 1 

hsab60 asq 25 21 21 21 21 21 21 21 21 21 

hsab61 gsq 25 25 25 25 25 25 25 25 25 2 

hsab62 gsq 14 14 14 14 14 14 14 14 14 1 

hsab63 asq 9 B B B B B B B B 

hsab64 gsq 1 1 1 1 1 1 1 1 1 1 

hsab65 gsq 1 1 1 1 1 1 1 1 1 1 

hsab66 gsq 37 3 3 37 37 3 3 37 37 3 

hsab67 gsq 32B 27B 27B 27B 27B 27B 27B 27B 27B 27 

l1sab6B gsq 1 1 1 1 1 1 1 1 1 1 

l1sab68 gsq 23 21 21 21 21 21 21 21 21 21 

hsab70 gsq 157 143 143 143 143 143 143 143 143 143 

hsab71 asq 1 1 1 1 1 1 1 1 1 1 

hsab72 gsq 140 131 131 131 131 130 131 131 130 130 

ilsab73 gsq 1 1 1 1 1 1 1 1 1 1 

llsab74 gsq 35277 23209 23209 23209 23209 23209 23209 24777 23915 23209 

lisab75 OSQ 1 1 1 1 1 1 1 1 1 1 

l1sab?? gsq 232 210 205 205 205 21( 210 210 210 205 

hsab7B gsq 30 241 245 241 241 21~ 241 245 241 212 

hsabB1 gsq 1 1 1 1 1 1 1 1 1 1 

hsabB2 gsq 110 BBO BBO BBO BBO BBC BBO BBO BBO BBO 

hsabB3 gsq B BO BO BO BO se 60 64 73 60 

hsabB4 gsq B4 BO BO BO BO 60 60 64 73 60 

hsabB6 gsq 2343 6B1 9B2 974 9B2 752 677 974 752 67 

hsabBB OSQ 13 11 11 11 11 11 11 11 11 11 

hsabB9 gsq 100 92 92 92 92 9 92 92 92 92 

hsab91 gsq 29 224 224 224 224 224 224 224 224 224 

hsab95 gsq 1 1 1 1 1 1 1 1 1 1 

hsab97 asq 1 1 1 1 1 1 1 1 1 1 

hsab98 gsq 1 1 1 1 1 1 1 1 1 1 

hsa100 gsq 2507 146~ 1524 1524 1399 1462 1505 1524 1462 1399 

hsa103 gsq 1 1 1 1 1 1 1 1 1 1 

l1sa104 asa 1 1 1 1 1 1 1 1 1 1 

hsa107 gsq 1 1 1 1 1 1 1 1 1 1 

l•sa109 gsq 39 38 38 38 38 38 38 38 38 38 

llsa110gsq 792 482 530 530 530 4B2 4B2 562 46B 46B 

l1sa111 asa 1 1 1 1 1 1 1 1 1 1 

hsa112 gsq 4B5 313 392 392 392 313 313 313 313 313 

llsa113gsq 295 1B9 210 210 210 1B9 1B9 187 1B7 1B 

l1sa115 gsq 15 12 12 12 12 12 12 12 12 12 

llsa116 OSQ 6 6 6 6 6 6 6 6 6 6 

llsa119 gsq 6 6 6 6 6 6 6 6 6 6 

l1sa120 gsq 1 1 1 1 1 1 1 1 1 1 

l1sa121 gsq 12 12 12 12 12 12 12 12 12 1 

l1sa122 OSQ 41 2B 2B 2B 2B 2B 2B 2B 2B 2B 

l1sa123 gsq 14B 145 145 145 145 133 133 133 133 133 

hsa124 gsq 35B7 1505 1943 1943 1532 1439 13B5 1783 13B5 13B5 

rand159 gsq 42 41 41 41 41 41 41 41 41 41 

rand161 asql 22B 220 243 223 220 22C 220 220 220 220 

Table A 22 Bottom-up, number of nodes, small trees, 4 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rand163 gsq 982 881 901 901 901 875 894 880 862 862 
rand164 gsq 841 693 767 76 723 723 723 767 723 693 
rand165 asq 8181 4130 4130 4130 4130 3578 3578 3578 3578 3578 
rand166 asq 8911 4839 6735 6751 4741 4945 4741 6735 5725 4741 
rand167 gsq 264 221 221 221 221 219 219 221 219 219 

Table A 23 Bottom-up, number of nodes, small trees, 5 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando1 1 gsq 294803 178598 203126 203126 210517 167418 184239 173963 179261 167418 
rando1 9 gsq 3916 3311 3261 3261 3216 3320 3214 3437 3430 3214 
rando20 qsq 1283 941 1083 1083 1015 872 94C 1083 872 872 
rando22 qsq 2212 1931 195 1952 2040 1774 2040 2059 179 1774 
rand1 60 qsq 1647432 427504 435379 433293 412969 362422 350797 427016 373863 350797 
llsaba2 asa 400351 250962 328032 328032 266526 267483 267483 287221 267483 250962 
llsaba8 gsq 288549 117248 137956 137956 12620 119548 117120 130120 124730 117120 
llsab14 gsq 18333 10078 13337 13337 9163 9609 9163 9183 8224 8224 
llsab15 gsq 8761 6054 655~ 6559 655S 5858 5858 6559 5858 5858 
llsab22 gsq 8214 4416 550 5509 5851 4173 5287 3855 4495 3855 
llsab29 gsq 1 1 1 1 1 1 1 1 1 1 
llsab76 gsq 5399 5022 524 5248 503E 5033 5035 5522 5282 5022 
llsab87 gsq 921517 405965 407181 407181 422473 354915 372275 417433 394065 354915 
llsab92 gsq 1 1 1 1 1 1 1 1 1 1 
l1sa1 02 gsq 146804 102181 102181 1021 81 100604 98942 98602 100649 97694 97694 
l1sa1 17 gsq 6446409 3888036 3927624 4107065 3885836 3700777 3886170 3718517 3906491 3700777 
llsa1 18 gsq 11397 8990 10374 10374 10374 8990 940C 9772 8990 8990 
I;Jaobab1 txt . . . . . . . . . . 
l:>aobab2 txt . . . . . . . . . . 
lch1nese txt 45 45 45 45 45 45 45 45 45 45 
klas9201 txt 261 204 21C 210 204 204 204 210 204 204 
klas9202 txt 1 1 1 1 1 1 1 1 1 1 
kJas9203 txt 12 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 
klas9204 txt 12 12 12 12 12 12 12 12 12 12 
~as9205 txt 1 1 1 1 1 1 1 1 1 1 
~as9206 txt 106986 53309 52569 52569 54701 54701 54701 53596 52766 52569 
klas9208 txt . . . . . . . . . . 

das9209 txt 1 1 1 1 1 1 1 1 1 1 
edf9201 txt 6456 4306 4509 4526 4418 4283 4282 4526 7999 4282 
edf9202 txt . . . . . . . . . . 

edf9205 txt 14417 10119 10119 10119 101H 10119 101 o: 10073 10119 10073 
edf9206 txt 68 68 68 68 68 68 68 68 68 68 
edfpa 1 5o txt . . . . . . . . . . 
edfpa 1 5q txt . . . . . . . . . . 
edfpa 1 5r txt . . . . . . . . . . 
elf9601 txt . . . . . . . . . . 
ftr1 0 txt 612 584 584 564 584 584 584 584 584 584 
ISP9601 txt 2134 1237 1237 1237 1237 1237 1237 1237 1237 1237 
ISP9602 txt 1955 1803 183 1837 1826 1858 1848 1794 1875 1794 
1Sp9603 txt 290275 168160 163490 163490 171798 177212 162083 159272 179040 159272 
1Sp9604 txt 283 251 276 276 260 248 273 254 248 248 
lsp9605 txt . . . . . . . . . . 

1sp9606 txt 188 163 163 183 163 183 163 163 163 163 
ISP9607 txt 1304 488 477 477 47 477 47 477 477 477 

Table A.24: Bottom-up, number of nodes, 'large' trees 
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FT name 0 scheme 1 scheme 2scheme 3 scheme 4scheme 5 scheme 6 scheme ?scheme 8 scheme M1n1mum 
astolfo gsq 0 016 0 015 0 016 0 0 016 0 0 016 0 016 0 015 0 
ben)Jam gsq 0 016 0 015 0 016 0 016 0 015 0 015 0 016 0 016 0 015 0 015 
bofea03 dat 0 0 0 016 0 0 0 0 015 0 0 016 0 
bpfen05 dat 0 0 0 0 0 0 0 016 0 0 0 
bpflg05 dat 0 0 016 0 0 0 015 0 0 0 016 0 0 
bPfln05 dat 0 016 0 0 015 0 016 0 0 016 0 0 0 0 
bpfsw02 QSQ 0 016 0 015 0 015 0 015 0 015 0 016 0 016 0 0 0 
dre1019 dat 0 0 016 0 0 0 016 0 015 0 016 0 016 0 0 
ldre1032 dat 0 0 0 015 0 0 0 0 015 0 0 016 _0 
dre1057 dat 0 016 0 016 0 0 0 0 0 0 0 0 
dre1058 dat 0 016 0 016 0 016 0 016 0 016 0 031 0 016 0 015 0 016 0 015 
dre1059 dat 0 016 0 016 0 016 0 016 0 016 0 015 0 016 0 0 016 0 
dresden dat 0 015 0 016 0 031 0 016 0 016 0 031 0 016 0 015 0 016 0 015 
hp1st02 dat 0 015 0 015 0 0 016 0 0 0 0 016 0 0 
hpJsf03 dat 0 015 0 0 0 0 015 0 0 0 0 015 0 
hpisf21 gsq 0 0 0 0 0 016 0 0 0 016 0 016 0 
hpiSf36 gsq 0 0 0 015 0 0 0 0 0 015 0 016 0 
dtree3 aso 0 0 016 0 0 015 0 0 015 0 0 0 0 
dtree4 asa 0 0 0 0 0 016 0 016 0 015 0 0 016 0 
dtree5 gsq 0 0 0 0 015 0 0 0 0 0 0 
kh1clre dat 0 015 0 016 0 016 0 016 0 016 0 015 0 016 0 016 0 015 0 015 
nakash1aSO 0 015 0 016 0 016 0 016 0 015 0 015 0 016 0 016 0 016 0 015 
nals1 aso 0 015 0 015 0 015 0 016 0 016 0 015 0 016 0 015 0 016 0 015 
nals4 gsq 0 016 0 031 0 031 0 016 0 016 0 031 0 016 0 016 0 016 0 016 

random3 gsq 0 016 0 015 0 015 0 015 0 016 0 015 0 0 015 0 0 
random6 aso 0094 0 094 0078 0094 0078 0094 0094 0 078 0 078 0078 
random8 gsq 0 0 0 0 0 0 016 0 0 0 0 
rando12 gsq 0078 0062 0062 0 063 0 063 0078 0 062 0 078 0062 0 062 
rando13 gsq 0 0 0 0 0 0 016 0 0 016 0 0 
rando16 aso 0 015 0 015 0 015 0 016 0 016 0 031 0 031 0 015 0 015 0 015 
rando18 gsq 0 016 0 0 015 0 0 016 0 016 0 015 0 016 0 016 0 
rando23 gsq 0 0 016 0 016 0 0 015 0 0 016 0 0 016 0 
rando25 gsq 0 016 0 0 0 0 0 0 0 016 0 0 
rando27 aso 0 0 0 0 0 016 0 016 0 0 0 016 0 
rando28 gsq 0 015 0 0 016 0 0 0 016 0 0 0 016 0 
rando29 gsq 0 016 0 016 0 016 0 016 0 0 015 0 0 016 0 015 0 
rando30 gsq 0 016 0 015 0 015 0 0 0 016 0 0 015 0 016 0 
rando31 aso 0 015 0 0 016 0 015 0 0 016 0 016 0 016 0 0 
rando33 gsq 0 0 0 016 0 016 0 016 0 016 0 015 0 016 0 0 
rando34 gsq 0 016 0 0 0 016 0 016 0 015 0 016 0 0 0 
rando35 aso 0 016 0 015 0 015 0 015 0 015 0 031 0 031 0 015 0 016 0 015 
rando36 gsq 0 0 0 0 015 0 015 0 015 0 0 0 0 
rando37 gsq 0 0 0 0 0 016 0 016 0 016 0 016 0 0 
rando38 gsq 0 0 015 0 0 0 0 0 015 0 0 016 0 
rando39 asa 0 016 0 016 0 016 0 016 0 0 0 015 0 0 016 0 
rando40 gsq 0 016 0 016 0 016 0 016 0 0 015 0 016 0 016 0 015 0 
rando42 gsq 0 016 0 0 0 016 0 0 0 016 0 0 0 
rando43 gsq 0 0 0 0 0 0 0 0 015 0 0 
rando44 gsq 0062 0 016 0 016 0 016 0 016 0 016 0 015 0 016 0 015 0 015 
rando45 aso 0 016 0 0 0 016 0 016 0 016 0 016 0 0 0 
rando46 gsq 0 0 0 0 0 016 0 0 0 0 0 
rando47 gsq 0 016 0 016 0 016 0 0 015 0 0 015 0 015 0 016 0 
rando48 gsq 0 0 016 0 016 0 0 0 0 015 0 016 0 015 0 
rando52 gsq 0 016 0 015 0 015 0 031 0 016 0 032 0 031 0 016 0 015 0 015 

Table A 25. Bottom-up, t1me, small trees, 1 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7scheme 8 scheme M1mmum 
rando53 Qsc 0 015 0 0 015 0 0 016 0 016 0 016 0 0 0 
rando54 asc 0 015 0 031 0 031 0 031 0 015 0 031 0 031 0 031 0 032 0 015 
rando55 gsc 0 015 0 016 0 016 0 016 0 0 016 0 031 0 015 0 016 0 
rando58 Qsc 0 0 0 0 016 0 0 016 0 0 0 0 
rando59 asc 0 031 0 016 0 016 0 016 0032 0 016 0 016 0 016 0 015 0 015 
rando60 asc 0 016 0 031 0 015 0 016 0 016 0 031 0 032 0 016 0 031 0 015 
rando61 Qsc 0 0 0 0 015 0 015 0 016 0 016 0 0 0 
rando62 Qsc 0 0 0 0 0 0 0 015 0 0 ( 

rando63 asc 0 015 0 0 016 0 016 0 016 0 016 0 031 0 016 0 015 0 
rando64 asa 0 016 0 016 0 015 0 016 0 016 0 031 0 031 0 016 0 015 0 015 
rando65 gsq 0 0 015 0 0 015 0 015 0 015 0 015 0 016 0 015 0 
rando66 Qsc 0 0 015 0 0 015 0 015 0 015 0 015 0 015 0 016 ( 

rando70 Qsc 0 0 016 0 0 0 016 c 0 016 0 031 0 016 ( 

rando73 asc 0 0 0 0 0 0 0 016 0 0 ( 

rando75 Qsc 0 0 0 0 0 015 0 015 0 0 0 0 
rando76 Qsc 0 015 0 016 0 016 0 0 015 0 015 0 015 0 015 0 016 0 
rando77 Qsc 0 015 0 016 0 016 0 015 0 016 0 01~ 0 016 0 015 0 0 
rando78 asc 0 0 015 0 0 0 016 0 031 0 016 0 016 0 0 
randoBO 9sc 0 016 0 016 0 0 015 0 0 016 0 015 0 016 0 015 0 
rando83 Qsc 0 015 0 0 0 015 0 0 0 015 0 015 0 0 
rando84 asa 0 015 0 016 0 015 0 016 0 0 01E 0 016 0 015 0 016 0 
rando85 asc 0 0 0 0 0 0 01E 0 0 0 015 0 
rando87 Qsc 0 016 0 0 0 0 c 0 015 0 0 0 
rando88 Qsc 0 015 0 015 0 0 016 0 0 0 0 0 0 
rando89 ascI 0 0 0 016 0 0 015 0 015 0 0 0 015 0 
rando91 gsc 0 04 0 031 0 047 0 031 0 031 0 031 0 062 0 047 0 031 0 031 
rando92 Qsc 0 031 0 015 0 016 0 015 0 016 0 016 0 031 0 016 0 031 0 015 
rando93 Qsc 0 015 0 015 0 015 0 016 0 015 0 016 0 031 0 031 0 015 0 015 
rando95 asa 0 015 0 016 0 031 0 015 0 015 0 016 0 015 0 032 0 031 0 015 
rando98 qsq 0 015 0 016 0 016 0 031 0 015 0 0 015 0 015 0 047 0 
rando99 Qsc 0 016 0 0 0 0 032 c 0 016 0 016 0 015 0 
rand100 Qsc 0 0 0 015 0 0 0 0 0 016 0 015 0 
rand103 asci 0 015 0 016 0 016 0 015 0 016 0 01~ 0 016 0 015 0 016 0 015 
rand104 qsq 0 015 0 016 0 0 0 0 0 0 0 0 
rand105 gsq 0 016 0 0 0 0 016 c 0 0 0 0 
rand106 Qsc 0 016 0 0 0 015 0 c 0 015 0 0 0 
rand108 asci 0 015 0 016 0 016 0 016 0 015 0 01E 0 015 0 016 0 016 0 015 
rand109 gscl 0 016 0 016 0 015 0 016 0 016 0 016 0 016 0 0 0 
rand110 9scl 0 016 0 0 0 016 0 0 0 0 0 0 
rand111 asci 0 015 0 0 016 0 015 0 0 016 0 015 0 0 016 0 
rand115 asc 0 015 0 0 016 0 016 0 0 015 0 015 0 0 0 
rand116 Qsc 0 015 0 0 015 0 016 0 016 0 0 016 0 015 0 016 0 
rand117 Qsc 0 016 0 0 015 0 016 0 0 016 0 0 0 015 0 
rand118 Qsc 0 016 0 015 0 016 0 015 0 016 0 016 0 016 0 016 0 015 0 015 
rand119 asc 0 0 016 0 0 016 0 016 0 0 0 0 0 
rand120 Qsc 0 015 0 031 0 016 0 016 0 016 0 016 0 015 0 0 0 
rand121 Qsc 0 0 016 0 016 0 016 0 0 016 0 016 0 016 0 0 
rand123 Qsc 0 016 0 016 0 0 0 0 016 0 016 0 016 0 0 
rand124 Qsc 0 0 0 0 016 0 015 0 0 0 0 0 
rand125 QSC 0 0 0 016 0 0 0 0 0 0 0 
rand126 Qsc 0 016 0 016 0 016 0 0 0 015 0 016 0 016 0 016 0 
rand127 gsq 0 015 0 015 0 0 0 015 0 015 0 015 0 0 015 0 
rand128 asa 0 016 0 016 0 016 0 015 0 016 0 016 0 015 0 0 015 0 
rand129 asc 0 016 0 0 0 0 0 0 0 0 0 

Table A.26 Bottom-up, t1me, small trees, 2 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mtntmum 
rand130 gsq 0 015 0 0 0 016 0 015 0 0 0 0 015 0 

rand132 osc 0079 0 078 0 063 0 062 0 063 0 062 0062 0 062 0 062 0 062 

rand134 gsq 0 0 015 0 0 015 0 016 0 016 0 015 0 016 0 016 c 
rand135 gsq 0 0 016 0 0 016 0 016 OOH 0 016 0 0 016 0 
rand137 asci 0 016 0 016 0 016 0 016 0 015 ( 0 016 0 0 015 0 

rand138 osc 0 0 015 0 0 0 0 0 0 016 0 0 
rand139 gsq 0 0 015 0 0 016 0 0 016 0 0 016 0 0 

rand141 gsq 0 0 0 016 0 016 0 OOH 0 0 0 015 0 

rand142 asc 0 141 0 11 0094 0 093 0 094 0 10> 0 094 0 109 0094 0093 
rand143 gsq 0 0 0 0 0 ( 0 0 0 0 

rand144 gsq 0 016 0 015 0 016 0 016 0 015 ( 0 015 0 016 0 0 
rand145 gsq 0 016 0 015 0 016 0 015 0 016 OOH 0 016 0 016 0 015 0 015 

rand146 asc 0 0 016 0 0 015 0 016 ( 0 0 0 016 c 
rand147 asc 0 031 0 032 0 015 0 031 0032 0 031 0 016 0 016 0 032 0 015 
rand148 gsq 0 015 0 016 0 0 0 0 015 0 0 0 c 
rand149 gsq 0 0 0 0 0 0 0 0 016 0 c 
rand150 asc 0078 0 062 0 062 0 062 0 063 0 063 0078 0 062 0 078 0 06< 

rand151 osc 0 0 0 0 0 016 0 016 0 0 0 015 c 
rand153 gsq 0 015 0 0 0 016 0 ( 0 0 0 c 
rand154 gsq 0 0 015 0 015 0 0 0 0 016 0 0 015 0 

rand155 asa 0 015 0 016 0 015 0 0 016 OOH 0 016 0 016 0 016 0 
rand156 gsq 0 015 0 01€ 0 0 0 015 0 01 0 015 0 016 0 0 
rand158 gsq 0 0 0 0 015 0 0 01 0 0 0 0 

hsaba1 gsq 0 016 0 031 0 031 0 015 0 031 0 031 0 031 0 015 0 031 0 015 
hsaba3 qsq 0 078 0 125 0 078 0 078 0078 0 078 0 078 0 078 0 078 0 071 
llsaba4 gsq 0 032 0 031 0 016 0 016 0 015 0 016 0 016 0 016 0 016 0 015 
lisaba5 gsq 0 016 0 016 0 016 0 016 0 0 0 015 0 0 0 
l1saba6 gsq 0 015 0 0 015 0 015 0 ( 0 015 0 015 0 0 

ilsaba7 asc 0 015 0 016 0 031 0 031 0 016 0 031 0 031 0 031 0 031 0 015 
l1saba8 gsq 0 0 016 0 0 015 0 016 0 015 0 016 0 016 0 016 0 
ilsab10 gsq 0 093 004 0109 0 125 0 04 0 06 0062 0 063 0078 004 

ilsab11 gsq 0 0 01~ 0 0 015 0 OOH 0 0 016 0 016 0 

hsab13 asc 0 015 0 0 016 0 0 0 016 0 0 0 0 

hsab17 gsq 0 015 0 016 0 015 0 016 0 016 0 032 0 04 0 015 0 016 0 015 
hsab19 gsq 0 0 0 0 0 0 016 0 016 0 016 0 015 0 
hsab20 gsq 0 0 015 0 0 0 015 0 015 0 016 0 0 0 
hsab24 qsq 0 0 015 0 0 016 0 0 0 0 0 015 c 
llsab25 gsq 0 015 0 016 0 016 0 016 0 0 0 0 016 0 015 0 
hsab27 gsq 0 031 0 047 0 031 0 031 0 015 0 047 0 031 0 032 0 031 0 015 
l1sab28 asc 0 015 0 0 0 0 015 0 0 0 0 0 

ilsab30 gsq 0 015 0 078 0 016 0 015 0 016 0 016 0 031 0 031 0 016 0 015 

ilsab31 gsq 0 016 0141 0032 0 031 0 016 0 031 0 015 0 016 0032 0 015 

llsab34 gsq 0 015 0 063 0 016 0 016 0 016 0 015 0 016 0 015 0 016 0 015 

hsab35 asc 0 015 0 031 0 016 0 015 0 0 015 0 016 0 016 0 016 0 
llsab36 gsq 0 016 0 031 0 016 0 016 0 016 OOH 0 016 0 015 0 016 0 015 

hsab37 gsq 0 016 003 0 015 0 016 0 015 0 01 0 032 0 016 0 015 0 015 

hsab42 gsq 0 0 016 0 016 0 015 0 0 016 0 0 0 0 
hsab44 gsq 0 015 0 031 0 016 0 015 0 016 0 016 0 015 0 0 016 0 

hsab46 asc 0 0 0 0 016 0 0 0 0 0 016 0 

hsab47 asc 0 0 015 0 0 0 016 0 015 0 016 0 0 0 
hsab48 gsq 0 0 015 0 016 0 0 0 016 0 016 0 015 0 0 

hsab49 gsq 0 0 0 0 0 0 0 015 0 0 016 0 

hsab50 asc 0 0 0 016 0 0 0 015 0 0 015 0 0 

hsab51 asc 0 015 0 015 0 0 016 0 0 015 0 016 0 0 016 c 

Table A.27: Bottom-up, t1me, small trees, 3 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8scheme Mm1mum 
lrsab52 asa 0 015 0 031 0 015 0 032 0 031 0 016 0032 0 016 0 031 o o1e 

lrsab53 gsq 0 0 016 0 016 0 0 c 0 016 0 0 ( 

lrsab54 asq 0 016 0 0 0 0 c 0 0 0 ( 

lrsab56 gsq 0 0 0 0 0 015 o o1e 0 0 0 016 ( 

lrsab57 gsq 0 015 0 015 0 016 0 016 0 031 0 01€ 0 016 0 0 015 0 

lrsab59 gsq 0 0 0 016 0 015 0 0 01€ 0 0 0 015 ( 

lrsab60 asq 0 0 0 0 0 016 0 015 0 016 0 016 0 0 

lrsab61 gsq 0 016 0 0 0 0 016 o o1e 0 015 0 0 ( 

lrsab62 gsq 0 015 0 0 0 0 0 016 0 016 0 0 0 

hsab63 gsq 0 0 0 015 0 031 0 016 0 016 0 0 016 0 016 0 

lrsab64 asq 0 ( 0 0 0 0 0 0 0 0 
hsab65 gsq 0 015 0 0 015 0 0 0 0 0 016 0 016 0 

hsab66 gsq 0 016 o o1e 0 015 0032 0 016 0 0 016 0 016 0 016 0 

hsab67 gsq 0 016 0 016 0 016 0 031 0 015 0 016 0 016 0 016 0 015 0 015 

hsab68 asq 0 ( 0 0 015 0 016 0 015 0 0 0 0 

hsab69 asa 0 015 0 0 0 0 0 015 0 0 016 0 016 0 

hsab70 gsq 0 ( 0 016 0 0 0 016 0 0 015 0 016 ( 

hsab71 gsq 0 016 0 0 016 0 015 0 0 0 0 0 0 

hsab72 asq 0 016 0 015 0 015 0 016 0 016 0 015 0 0 016 0 0 
hsab73 gsq 0 0 0 0 0 0 0 0 015 0 016 0 

hsab74 gsq 0 297 0 23~ 0 203 0 218 0 219 0 219 0 218 0 219 0 219 0203 

lrsab75 gsq 0 016 0 0 0 016 0 0 01€ 0 0 0 0 

lrsab77 asa 0 016 0 016 0 016 0 047 0 016 0 015 0 0 0 016 0 

hsab78 gsq 0 016 0 0 016 0 016 0 015 0 016 0 016 0 015 0 016 ( 

hsab81 gsq 0 0 0 0 0 0 016 0 0 0 016 0 

hsab82 gsq 0 016 0 031 0 016 0 015 0 016 0 016 0 015 0 0 015 c 
hsab83 asa 0 016 0 016 0 016 0 016 0 016 0 0 015 0 0 016 0 
hsab84 gsq 0 0 01€ 0 016 0 0 015 0 016 0 016 0 0 016 c 
hsab86 gsq 0 031 0 03 0 015 0 016 0 016 0 031 0 032 0 016 0 016 0 015 

hsab88 gsq_ 0 0 0 016 0 0 016 0 0 0 0 0 
hsab89 gsq 0 015 0 016 0 016 0 0 016 0 015 0 0 0 0 

hsab91 gsq 0 016 0 015 0 016 0 0 015 0 016 0 015 0 0 016 0 

lrsab95 gsq 0 0 016 0 0 0 0 0 0 0 016 0 

lrsab97 gsq 0 0 0 016 0 016 0 0 016 0 0 0 0 
lrsab98 gsq 0 015 0 0 0 0 015 0 0 015 0 0 ( 

lrsa100 gsq 0 062 0 04 0 031 0 047 0 031 0 031 0047 0047 0 046 0 031 

lrsa103 gsq 0 0 015 0 015 0 0 015 0 0 015 0 0 016 ( 

lrsa104 asq 0 0 0 0 015 0 0 0 0 0 0 

hsa107 asq 0 016 0 016 0 015 0 0 0 016 0 0 015 0 016 ( 

hsa109 gsq 0 016 0 015 0 015 0 0 015 0 015 0 015 0 0 016 0 

hsa110 gsq 0 032 0 031 0 016 0 016 0 016 0 031 0 031 0 016 0 016 0 016 

hsa111 asq 0 0 0 0 0 0 015 0 016 0 015 0 0 
hsa112 gsq 0 016 0 016 0 015 0 0 016 0 016 0 015 0 015 0 015 0 

hsa113 gsq 0 016 0 016 0 015 0 016 0 016 0 031 0 016 0 016 0 015 0 015 

hsa115 gsq 0 015 0 0 0 016 0 0 0 0 016 0 016 0 

hsa116 asq 0 0 015 0 016 0 0 0 0 0 0 0 

hsa119 asa 0 0 016 0 0 0 016 0 0 015 0 0 016 0 
hsa120 gsq 0 016 0 0 0 015 0 0 016 0 016 0 016 0 0 

hsa121 gsq 0 0 016 0 016 0 015 0 016 0 016 0 016 0 015 0 016 0 

hsa122 gsq 0 0 0 015 0 0 0 0 0 0 0 

hsa123 asa 0 0 0 016 0 0 015 0 016 0 016 0 0 0 
hsa124 gsq 0 031 0 032 0 031 0 015 0 031 0 031 004 0 016 0 016 0 015 

rand159 gsq 0 016 0 0 0 0 0 015 0 016 0 0 0 

rand161 gsq 0 015 0 016 0 0 0 0 016 0 016 0 0 0 

Table A 28 Bottom-up, t1me, small trees, 4 
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FT name 0 scheme 1 scheme 2scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mrmmu111 
rancl163 asa 0 016 0 03 0 016 0 016 0 016 0 031 0 032 0 015 0 015 0 015 
rancl164 asa 0 016 0 01 0 016 0 015 0 0 015 0 032 0 015 0 016 0 
rancl165 gsq 0 109 012 0 11 0 125 0 125 0 125 0 109 0 109 0 109 0 109 
rancl166 gsq 0 187 0 109 0141 0 156 0 094 0 11 0 109 0 156 0 125 0 094 
rancl167 gsq 0 0125 0 015 0 016 0 015 0 015 0 016 0 0 016 0 

Table A 29 Bottom-up, t1me, small trees, 5 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mln1mum 
rando11 gsq 595 3 32 3 7E 3 76 4 318 3 6~ 3 38 346 318 

rando19 gsq 0 11 0 06 007 007 0 0~ 007 0 06 0 07 0 07 0 04 

rando20 qsq 006 0 03 003 004 001 004 0 03 0 03 0 03 0 01 

rando22 qsq 025 012 013 0 13 011 0 11 013 0 16 0 11 0 11 

rand160 asa 2846 5 02 595 18 85 531 14 29 16 48 5 27 14 64 5 02 

l1sab,.Zgsa 265 1 22 1 39 1 39 1 28 1 37 1 39 1 32 1 38 1 22 

l1saba8 gsq 1 59 064 0 81 0 86 066 067 0 71 0 77 072 0 64 

llsab14 gsq 034 02 025 025 0 0 21 021 02 018 018 

llsab15 gsq 088 0 48 048 0 59 045 045 043 0 49 0 45 043 

!1sab22 gsq 057 026 029 03 038 027 033 022 03 022 

llsab29 gsq 0 0 0 0 0 0 c 0 0 0 

lisab76 gsq 027 0 17 017 016 407 017 017 0 18 01 016 

llsab87 gsq 4293 1816 18 99 19 04 23 31 1516 14 73 17 9 16 08 14 73 

llsab92 qsq 0 0 0 0 ( 0 0 0 0 0 

llsa1 02 qsq 0 51 054 0 56 0 56 0 33 054 055 0 62 054 033 

llsa117 qsq 16416 774 81 73 80 56 130 1 74 77 8527 75 26 73 3 7332 

llsa1 18 qsq 0 04 012 015 0 03 30 61 0 1 013 02 0 11 003 

baobab1 lxt - - - - - - - - - -
baobab2 txt - - - - - - - - - -
lch1nese txt 0 0 0 0 0 0 c 0 0 0 

k:las9201 txt 0 0 0 0 ( 0 0 0 0 0 

k:las9202 txt 0 0 0 0 ( 0 0 0 0 0 

das9203 txt 0 0 0 0 0 c 0 0 01 0 

das9204 lxt 0 0 0 0 0 0 0 0 0 

das9205 txt 0 0 0 0 0 0 0 01 0 0 0 

fjas9206 txt 038 026 026 0 28 026 0 29 026 0 29 027 026 

f:las9208 txt - - - - - - - - - -
klas9209 txt 0 0 0 0 0 01 0 0 0 0 0 

edf9201 txt 345 1 99 1 94 1 95 2 01 209 206 1 95 506 1 94 

edf9202 txt - - - - - - - - - -
edf9205 txt 12 24 6 03 613 606 622 6 09 5 99 6 46 599 599 

edf9206 txt 0 0 01 0 0 0 0 0 0 01 0 0 

edfpa 15o txt - - - - - - - - - -
edfpa 15q txt - - - - - - - - - -
edfpa 15r txt - - - - - - - - - -
elf9601 txt - - - - - - - - - -
ftr1 0 txt 0 0 001 0 0 01 0 0 0 0 0 

IS09601 txt 0 01 0 01 0 0 01 0 0 01 0 01 0 0 01 0 

ISP9602 txt 004 004 005 0 02 003 004 003 0 03 0 04 0 02 
1Sp9603 txt 4 87 2 76 276 2 67 273 278 2 68 2 74 279 2 67 

1Sp9604 txt 002 0 0 01 0 02 002 0 01 00 0 02 0 01 0 
1Sp9605 txt - - - - - - - - - -
1Sp9606 txt 0 0 0 01 0 0 0 0 0 0 

ISP9607 txt 0 01 0 0 0 0 0 01 0 01 0 01 0 0 

Table A.30· Bottom-up, time, 'large' trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme scheme 5scheme Sscheme 7 scheme 8 scheme Mm1mum 
rando11 qsq N/A 260410 194716 194716 187646 108709 119892 15033 116436 108709 
rando19 qsq N/A 3427 3126 3126 2684 3272 2802 2705 2166 2166 
rando20 qsc N/A 872 931 824 840 1020 1153 1445 800 800 
rando22 oso N/A 2768 2013 2459 360( 1880 2182 307~ 1804 1804 
rand160 gsq N/A 609288 74858~ 714034 566814 457203 733413 1250643 319294 319294 

hsaba2 oso N/A 87581 140448 140448 11613< 104573 104573 172835 73706 73706 
l1saba8 gsq N/A 217737 141500 125162 159120 196168 154012 209606 51728 51728 
hsab14 gsq N/A 14534 10794 10794 12022 7395 8168 13499 6753 6753 
hsab15 gsq N/A 6252 6283 6406 640E 5972 5972 6087 5896 5896 
hsab22 gsq NIA 3871 4070 4070 3430 3133 3363 5401 2986 2986 
hsab29 gsq N/A 1 1 1 1 1 1 1 1 1 
hsab76 gsq N/A 4952 5666 5666 10148 10382 11175 10824 4227 4227 
lisab87 gsq N/A 305526 399635 412341 286072 252098 261666 314619 237445 237445 
llsab92 qsq N/A 1 1 1 1 1 1 1 1 1 
l1sa1 02 qsq N/A 112893 121228 113574 99281 61004 63147 89476 62639 61004 
llsa117 qsq N/A 6471346 18547556 16219213 4305738 2259346 4178651 4322810 2472955 2259346 
hsa118 qsq N/A 8773 10419 10419 10419 7915 8953 1332( 7915 7915 

baobab1 txt N/A - - - - - - - - -
baobab2 txt N/A - - - - - - - - -
Ch1nese txt N/A 45 45 45 45 45 45 52 45 45 

das9201 txt N/A 16 210 210 167 167 167 210 167 167 
~as9202 txt N/A 1 1 1 1 1 1 1 1 1 
das9203 txt N/A 11 11 11 11 11 11 11 11 11 
das9204 txt N/A 14 12 12 14 12 12 14 12 12 
flas9205 txt N/A 1 1 1 1 1 1 1 1 1 

flas9206 txt N/A 27313 44809 44809 55975 38718 41094 51653 25222 25222 
das9208 txt N/A - - - - - - - - -
das9209 txt N/A 1 1 1 1 1 1 1 1 1 
ed19201 txt N/A 4444 462 4913 5157 4311 4256 4913 12660 4256 
edl9202 txt NIA - - - - - - - - 0 
edl9205 txt N/A 10617 12615 12161 12021 8351 7610 19470 9111 7610 
edl9206 txt N/A 58 62 62 34 58 30 62 30 30 
edfpa 15o txt N/A - - - - - - - - -
edlpa 15q txt N/A - - - - - - - - -
edfpa 15r txt N/A - - - - - - - - -
ell9601 txt N/A - - - - - - - - -
tr1 0 txt N/A 1060 584 584 1197 408 247 293 302 247 

1509601 txt N/A 691 691 691 536 678 668 508 829 508 
ISP9602 txt N/A 1538 1860 1860 1241 1578 1590 149 2033 1241 
1Sp9603 txt N/A 57416 74152 74152 76518 42482 67679 1 0919( 31380 31380 
ISP9604 txt N/A 196 276 196 213 184 214 319 196 184 
1Sp9605 txt N/A - - - - - - - - -
1Sp9606 txt N/A 287 163 287 223 287 287 28 163 163 
ISP9607 txt N/A 376 435 347 543 531 685 748 435 347 

Table A.31 Bottom-up, second trial, number of nodes, 'large' fault trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
rando11 gsq N/A 9 82 4 01 3 95 528 1 76 1 96 532 1 67 1 67 

rando19 qsq N/A 0 04 004 0 03 004 0 os 0 02 004 0 02 002 

rando20 qsq N/A 0 01 0 01 0 0 0 02 004 0 02 0 01 0 

rando22 qsq N/A 02 012 0 13 027 0 07 01€ 0 11 005 005 

rand160 qsq N/A 16 46 892 8 73 16 29 7 47 18 3€ 2807 416 416 

l1saba2 asa N/A 0 41 045 046 049 049 0 49 0 59 03 03 

llsaba8 asa N/A 0 75 0 41 042 052 0 68 063 0 67 013 013 

llsab14 gsq N/A 0 1 008 0 08 008 016 015 0 09 01 008 

llsab15 gsq N/A 02 023 0 24 0 21 0 22 0 22 015 02 015 

llsab22 gsq N/A 0 02 012 014 0 01 0 01 003 0 13 0 06 0 01 

llsab29 gsq N/A 0 0 0 0 0 c 0 0 0 

llsab76 gsq N/A 0 04 004 0 os 009 015 01E 0 1 004 004 

llsab87 gsq N/A 10 73 12 37 1462 11 4 51 5 21 13 83 382 3 82 

llsab92 gsq N/A 0 0 0 0 0 c 0 a 0 

l1sa1 02 gsq N/A 0 23 048 046 033 022 023 019 0 21 019 

llsa117 gsq N/A 128 95 225 4 9827 72 41 3228 647 83 35 237 05 3228 

llsa118 gsq N/A 004 013 014 003 004 0 0€ 006 0 os 003 

aobab1 txt N/A - - - - - - - - -
baobab2 txt N/A - - - - - - - - -
h1nese txt N/A 0 0 0 0 0 0 0 0 0 

as9201 txt N/A 0 a 0 0 0 c 0 0 0 

das9202 txt N/A 0 0 0 0 0 c 0 0 0 

das9203 txt N/A 0 0 0 0 0 0 0 0 0 

das9204 txt N/A 0 0 0 0 0 0 0 a 0 

das9205 txt N/A 0 0 0 0 0 0 0 0 0 

das9206 txt N/A 015 023 024 036 027 028 037 016 015 

das9208 txt N/A - - - - - - - - -
das9209 txt N/A 0 0 0 0 0 c 0 0 0 

edf9201 txt N/A 1 55 25 294 1 77 2 75 273 2 93 1213 1 55 

edf9202 txt N/A - - - - - - - - -
edf9205 txt N/A 10 35 10 33 9 73 10 os 7 12 78 2378 633 633 

edf9206 txt N/A 0 0 0 0 0 c 0 0 0 

edfpa 15o txt N/A - - - - - - - - -
edfpa 15q txt N/A - - - - - - - - -
edfpa 15r txt N/A - - - - - - - - -
elf9601 txt N/A - - - - - - - - -
ftr1 0 txt N/A 0 0 0 0 0 01 0 0 0 01 0 
ISP9601 txt N/A 0 01 0 0 01 0 01 0 0 01 0 0 01 0 
1Sp9602 txt N/A 0 04 004 0 03 002 0 03 0 05 003 0 03 0 02 
1Sp9603 txt N/A 0 86 1 2 1 24 1 22 0 24 029 061 0 21 0 21 

1Sp9604 txt N/A 0 01 0 01 0 01 0 0 0 0 01 0 01 0 
1Sp9605 txt N/A - - - - - - - - -
1Sp9606 txt N/A 0 0 0 0 0 0 a 0 0 
ISP9607 txt N/A 0 0 0 02 0 0 01 a 0 0 0 

Table A 32: Bottom-up, second tnal, time, 'large' fault trees 
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FT name 0 scheme 1 scheme 2 scheme 13 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 

rando11 gsq 196915 104214 152052 152052 153784 102286 146688 109658 13938( 102286 

rando19 gsq 3153 2105 2146 2148 2107 2115 2116 2106 2149 2105 

rando20 gsa 1114 975 1062 1040 1036 975 992 1065 981 975 

rando22 gsq 3876 2614 2443 2443 2614 2427 2427 2641 245 2427 

rand160 gsq 5779369 590785 1099803 1082687 1276538 903819 572526 540373 903819 540373 

hsaba2 gsq 207800 95650 105643 105643 121636 109396 121636 103503 109396 95650 

hsaba8 gsq 544421 141588 13888€ 138886 138886 160870 144958 162526 16142 138886 

hsab14 gsq 11362 6650 7014 7014 7295 6650 7295 7295 6654 6650 

llsab15 qsq 8177 3850 4591 4591 4591 3619 3619 4591 3619 3619 

l1sab22 gsq 4085 2921 320 3207 2802 2921 2921 3119 2921 2802 

lisab29 qsq 1 1 1 1 1 1 1 1 1 1 

llsab76 qsq 13339 11751 10868 10868 1226C 12208 12200 10343 10370 10343 

lisab87 qsq 633529 262813 31971t 319715 267699 242977 255213 267699 240793 240793 

hsab92 qsq 1 1 1 1 1 1 1 1 1 1 

hsa1 02 qsq 89466 72254 72254 72254 70607 69771 69807 70540 68801 68801 

hsa117 qsq 4889999 3570701 3491158 3459450 3483425 3425044 3545389 3481266 3610554 3425044 

hsa118 qsq 11729 8629 10156 10156 10156 8629 9217 8442 8629 8629 

baobab1 txt - - - - - - - - - -
aobab2 txt - - - - - - - - - -

ch1nese txt 45 45 4t 45 4t 45 45 45 4 45 

das9201 txt 189 136 13€ 136 136 136 136 136 136 136 

das9202 txt 1 1 1 1 1 1 1 1 1 1 

das9203 txt 12 11 11 11 11 11 11 11 11 11 

das9204 txt 12 12 12 12 12 12 12 12 12 12 

das9205 txt 1 1 1 1 1 1 1 1 1 1 

das9206 txt 56754 44279 44279 44279 44739 44739 44739 44279 44283 44279 

das9208 txt - - - - - - - - - -
das9209 txt 1 1 1 1 1 1 1 1 1 1 

edf9201 txt 12564 7241 7203 7331 738 7130 7202 7331 14926 7130 

edf9202 txt - - - - - - - - - 0 

edf9205 txt 12157 9793 9793 9793 9793 9793 9707 9665 9793 9665 

edf9206 txt 32 32 32 32 3 32 32 32 32 32 

edfpa 1 5o txt - - - - - - - - - -
edfpa15q txt - - - - - - - - - -
edfoa 15r txt - - - - - - - - - -
elf9601 txt - - - - - - - - - -
tr1 0 txt 1018 1018 1018 1018 1018 1018 1018 1018 1018 1018 

1Sp9601 txt 1587 769 769 769 769 769 769 769 769 769 

ISP9602 txt 1364 1274 1301 1301 128 1318 1305 1267 1324 1267 

ISP9603 lXI 32438 29156 29156 29156 29156 29156 29156 29268 30540 29156 

1Sp9604 txt 214 188 18 188 188 188 188 188 188 188 

1Sp9605 txt - - - - - - - - - -
1Sp9606 txt 431 223 262 223 223 223 223 223 262 223 

ISP9607 txt 1488 472 45cl 450 450 450 450 450 450 450 

Table A.33. Bottom-up, third trial, number of nodes, 'large' fault trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6scheme 7 scheme 8 scheme M1n1mum 
rando1 1 gsq 225 1 05 1 74 1 7 1 74 1 06 1 49 1 03 1 41 1 03 
rando1 9 gsq 002 002 003 0 02 002 002 0 02 0 03 002 002 
rando20 qsq 0 01 002 0 01 0 02 0 01 0 03 00 0 01 002 0 01 
rando22 qsq 016 0 1 1 0 1 012 0 1 0 09 0 1 1 0 14 01 009 
rand1 60 qsq 2041 15 28 33 71 3509 38 01 3526 19 38 15 67 35 53 15 28 

llsaba2 _g_sq_ 058 032 034 035 044 0 39 04 0 41 0 3E 032 
llsaba8 gsq 1 47 0 51 039 045 053 0 52 0! 0 55 053 039 

llsab14 gsq 015 012 015 013 013 01 0 1; 013 0 11 0 1 
lisab15 gsq 018 01 01 0 1 1 012 0 09 00 0 1 1 0 OB 0 OB 
llsab22 gsq 0 11 0 06 006 0 06 006 0 05 006 0 06 0 05 0 05 

llsab29 gsq 0 0 c 0 0 0 0 0 c 0 
hsab76 gsq 0 11 0 1 007 008 0 1 0 09 009 0 08 0 08 0 07 
hsab87 gsq 25 7 8 99 92 93 943 8 82 894 946 89 8 82 
hsab92 qsq 0 0 c 0 0 0 0 0 0 0 
l1sa1 02 gsq 0 31 024 02> 022 021 0 21 0 21 0 23 022 0 21 
l1sa1 17 gsq 4646 4647 36 95 3827 4625 43 36 44 41 4749 41 19 36 95 
l1sa1 18 qsq 005 003 003 004 003 0 02 0 03 0 05 003 002 

baobab1 txt - - - - - - - - -
baobab2 txt - - - - - - - - - -
ch1nese txt 0 0 0 0 0 0 0 0 0 0 

das9201 txt 0 0 c 0 0 0 0 0 0 0 
das9202 txt 0 0 0 0 0 0 0 0 0 0 
das9203 txt 0 0 c 0 0 0 0 0 0 0 
das9204 txt 0 0 0 0 0 0 0 0 0 0 
das9205 txt 0 0 c 0 0 0 0 0 0 0 
das9206 txt 036 025 027 025 027 0 28 027 0 27 026 025 

das9208 txt - - - - - - - - - -
das9209 txt 0 0 0 0 0 0 0 0 0 0 
edf9201 txt 538 277 2 83 2 97 292 2 75 278 294 89 275 

edf9202 txt - - - - - - - - -
edf9205 txt 10 49 4 51 448 435 459 431 417 464 418 417 

edf9206 txt 0 0 0 0 01 0 0 0 0 0 0 
edfpa 1 So txt - - - - - - - - - -
edfpa 1 5q txt - - - - - - - - - -
edfpa 1 Sr txt - - - - - - - - - -
elf9601 txt - - - - - - - - - -
ftr1 o txt 0 01 0 c 0 0 0 0 01 0 01 0 0 
ISP9601 txt 0 01 002 0 0 01 0 01 0 01 c 0 0 0 
ISP9602 txt 003 001 002 003 002 0 02 003 0 02 0 02 0 01 
1Sp9603 txt 026 0 21 0 21 025 02 0 21 0 21 0 24 0 21 02 
1Sp9604 txt 0 0 0 0 0 0 0 0 01 c 0 
1Sp9605 txt - - - - - - - - - -
1Sp9606 txt 0 0 0 0 0 01 0 0 0 0 01 0 
ISP9607 txt 0 01 0 0 0 01 001 0 01 0 01 0 0 0 

Table A 34 Bottom-up, third tnal, processmg time, 'large' fault trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando11 gsq NIA 13308 15006 15006 7141 7489 5694 5137 13670 5137 

rando19 gsq NIA 860 825 833 119 767 1092 1082 624 624 

rando20 gsq NIA 377 473 408 39 367 296 556 347 296 

rando22 gsq NIA 1556 1225 1155 227 899 1374 2359 754 754 

rand160 gsq NIA 15450 13315 10311 29304 13194 17888 12313 9371 9371 

llsaba2 gsq NIA 21380 5606 5606 5613 14549 9455 5343 1542E 5343 

llsaba8 gsq NIA 19774 2303 2377 1325 5280 2140 2666 398 1325 

llsab14 gsq NIA 1820 1930 1914 2337 1449 2213 3025 1174 1174 

llsab15 gsq NIA 2317 2132 2152 2530 795 946 3686 553 553 

llsab22 gsq NIA 1681 1494 1494 1296 1475 108< 3182 1570 1082 

llsab29 gsq NIA 1 1 1 1 1 1 1 1 1 

ilsab76 gsq NIA 1764 2679 2679 853 1479 1096 889 925 853 

llsab87 qsq NIA 16973 40518 42567 10139 6282 374C 12282 4666 3740 

llsab92 qsq NIA 1 1 1 1 1 1 1 1 1 

llsa1 02 qsq NIA 8985 1094 1073 1505 3025 144 2395 2076 1073 

llsa117 qsq NIA 77479 15911 14620 23537 13651 19699 58105 22017 13651 

llsa118 qsq NIA 1123 1695 1342 1302 880 803 1860 959 803 

baobab1 txt NIA - 25013 25013 31638 5240 22965 21501 24911 21501 

baobab2 txt NIA 175858 11415 11415 10384 170874 1774 21705 9936 9936 

h1nese txt NIA 89 125 125 12e 89 106 100 89 89 

as9201 txt NIA 332 243 243 236 276 224 261 27 224 

das9202 txt NIA 1 1 1 1 1 1 1 1 1 

das9203 txt NIA 29 29 29 29 29 29 29 28 28 

das9204 txt NIA 43 37 37 4E 38 36 48 3 36 

das9205 txt NIA 1 1 1 1 1 1 1 1 1 

das9206 txt NIA 6760 1568 1568 1161 5073 1211 2438 3483 1161 

das9208 txt NIA 24531 38370 38370 959 18357 920 17882 1960< 9207 

das9209 txt NIA 1 1 1 1 1 1 1 1 1 

edf9201 txt NIA 4098 2036 3196 3560 3544 1923 3185 11086 1923 

edf9202 txt NIA 69258 987 987 1052 162514 1323 256340 54228 987 

edf9205 txt NIA 1791 2757 2723 2843 1608 1634 5598 2051 1608 

edf9206 txt NIA 126 74 73 93 86 81 73 11 0 73 

edfpa 1 5o txt NIA 584086 132522 132522 270374 426733 115759 74481 424173 74481 

edfpa 15q txt NIA 339878 195494 195494 47017 574081 200057 47774 22633? 47017 

edfpa 15r txt NIA 340532 149575 148002 48447 592435 199072 45943 176908 45943 

elf9601 txt NIA 35027 61286 61286 6885: 27933 31787 95026 34272 27933 

tr1 0 txt NIA 2107 181 181 28C 729 318 440 613 181 

1Sp9601 txt NIA 419 315 315 311 540 406 262 466 262 

lsp9602 txt NIA 1807 972 972 1133 1581 686 1016 2024 686 

/1sp9603 txt NIA 5852 443: 4131 3256 4618 1773 2790 2227 1773 

IS09604 txt NIA 247 413 238 416 239 23 453 290 232 

IS09605 txt NIA 397677 1244e 12445 11859 400846 21993 23986 572149 11859 

l,sp9606 txt NIA 171 12C 89 132 161 132 108 155 89 

1Sp9607 txt NIA 891 493 394 462 710 462 502 638 394 

Table A 35: The 1te method, number of nodes, 'large' fault trees 
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FT name o scheme 1 scheme 2 scheme ~scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
rando11 qsq N/A 3 73 6 04 622 1 33 1 48 1 OB 1 39 3 61 1 08 

rando19 qsq N/A 0 22 024 024 025 023 025 0 24 023 022 

rando20 oso NIA 022 023 023 021 022 022 0 23 0 22 0 21 

rando22 oso N/A 027 02 026 043 024 0 28 0 43 023 022 

rand160 gsq N/A 10 83 8 50 444 53 05 6 97 26 11 14 08 3 21 3 28 

llsaba2 gsq N/A 1014 1 9 1 92 088 4 85 20 1 30 55 0 88 

llsaba8 gsq N/A 9 41 0 4C 038 031 0 87 043 0 48 0 51 0 31 

llsab14 gsq N/A 0 20 037 0 33 033 027 034 0 42 02 020 

l1sab1S gsq N/A 0 32 03 038 043 025 026 065 023 023 

llsab22 gsq N/A 0 32 0 32 028 0 28 028 027 0 51 025 025 

llsab29 gsq N/A 0 00 0 00 0 00 000 0 00 000 000 000 0 00 

llsab76 qsq N/A 0 29 038 037 025 026 026 024 022 022 

hsab87 gsq N/A 6 86 33 61 3885 3 15 1 16 057 4 02 06 057 

llsab92 qsq N/A 0 00 0 00 0 00 0 00 0 OD 000 0 00 000 0 00 

l1sa1 02 qsq N/A 1 92 0 3C 0 28 029 043 029 045 030 028 

llsa117 qsq N/A 156 81 13 4E 10 85 3660 634 2020 8697 14 00 634 

hsa118 qsq N/A 047 0 51 053 050 045 045 0 56 0 51 045 

aobab1 txt N/A - 261 41 233 21 35514 466 04 75 46 140 10 360 42 75 46 

baobab2 txt N/A 628 97 2 71 272 232 611 52 659 9 82 219 219 

h1nese txt N/A 0 21 0 21 0 20 021 023 0 2? 023 0 21 020 

das9201 txt N/A 0 21 0 21 022 02 020 020 022 0 21 020 

das9202 tx1 N/A 0 00 0 OC 0 00 0 00 0 00 000 0 OD 000 0 00 

das9203 txt N/A 063 063 063 0 61 0 65 06 063 0 64 0 61 

das9204 txt N/A 0 20 022 0 21 0 21 022 0 21 0 21 020 020 

das9205 txt N/A 000 0 DC 0 00 000 0 00 000 0 00 0 01 0 00 

das9206 txt N/A 1 12 o 2: 0 24 0 23 0 72 024 036 043 023 

das9208 txt N/A 11 93 31 73 31 97 1 76 6 79 1 70 636 7 37 1 70 

das9209 txt N/A 000 000 0 00 000 001 0 00 0 00 0 00 0 00 

edf9201 txt N/A 054 028 0 38 045 046 029 0 40 2 70 028 

edf9202 txt N/A 91 82 028 027 027 519 06 0 31 1306 66 5914 0 27 

edf9205 txt N/A 0 27 0 31 0 31 032 025 0 30 0 76 0 29 0 25 

edf9206 txt N/A 0 21 0 21 0 21 021 0 21 021 0 21 0 21 0 21 

edfpa 15o txt N/A 6785 02 354 47 354 65 1533 SE 3726 86 26542 118 94 2990 56 118 94 

edfpa 15q txt N/A 2342 00 794 80 79553 443C 6479 81 810 65 47 41 999 43 44 30 

edfpa 15r txt N/A 2450 89 442 69 43153 49 41 7176 os 822 83 4443 634 7 44 43 
elf9601 txt N/A 19 40 75 3E 75 21 961? 12 89 18 70 17817 18 74 12 89 
ftr1 0 txt N/A 0 31 0 21 0 21 023 023 021 0 21 02 0 21 

1Sp9601 txt N/A 0 22 022 0 21 0 21 0 21 020 0 21 02 020 

ISP9602 txt N/A 047 044 043 044 046 043 045 049 043 

ISP9603 txt N/A 0 90 0 60 055 038 063 029 038 062 029 

ISP9604 txt N/A 0 20 0 21 0 22 0 21 0 21 022 0 21 058 020 
1Sp9605 txt N/A 3064 85 310 3 11 258 3148 44 918 11 07 6341 83 258 
1Sp9606 txt N/A 022 0 21 0 21 0 21 0 23 0 21 022 058 0 21 

ISP9607 txt N/A 022 0 21 0 21 0 21 022 0 21 0 21 044 0 21 

Table A 36: The 1te method, processing time, 'large' fault trees 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando11 osa 173804 102869 149072 149072 150868 101025 144076 107857 137572 101025 
rando19 gsq 3153 2105 2146 2148 2107 2115 2116 2106 2149 2105 
rando20 gsq 1114 951 1062 1040 1036 951 992 1065 959 951 
rando22 osq 3825 2614 2443 2443 2614 2427 2427 2641 245 2427 
rand160 gsq 370215€ 440250 85985! 842739 959612 695087 440789 417665 695087 417665 
lisaba2 oso 158222 81862 83505 83505 103734 99571 103734 93664 99571 81862 
l1saba8 gsq 450927 100069 97999 97999 97999 109731 102553 110973 110145 97999 
lisab14 gsa 1130€ 6650 6906 6906 7295 6650 7295 7295 6654 6650 
11Sab15 QSQ 5657 3316 4057 4057 4057 3166 3166 4057 3166 3166 
l1sab22 gsq 4085 2921 3207 3207 2802 2921 2921 3119 2921 2802 
lisab29 osa 1 1 1 1 1 1 1 1 1 1 
lisab76 gsq 13324 11751 10856 10856 12260 12200 12200 10337 10370 10337 
lisab87 osa 567101 260089 316991 316991 264975 240253 252489 264975 238069 238069 
lisab92 osa 1 1 1 1 1 1 1 1 1 1 

lisa1 02 gsa 43157 42191 42191 42191 41146 40649 40542 40713 39536 39536 
l1sa117 gsq 3737589 2665767 2880204 2829224 2544463 2640323 2640323 2838366 2624344 2624344 
llsa118 gsq 9697 7986 9370 9370 9370 7986 8530 8700 7986 7986 
baobab1 txt - - - - - - - - - -
baobab2 txt - - . - - - - - - -
ch1nese txt 4! 45 4! 4! 45 45 4! 45 4 45 
das9201 txt 189 136 136 136 136 136 136 136 136 136 
das9202 txt 1 1 1 1 1 1 1 1 1 1 
cJ_as9203 txt 1~ 1 1 11 11 11 11 11 11 1 1 11 
das9204 txt 12 12 12 12 12 12 12 12 12 12 
das9205 txt 1 1 1 1 1 1 1 1 1 1 

das9206 txt 15876 13968 13968 13968 15876 15876 15876 13968 13972 13968 
das9208 txt - - - - . - - . - -
das9209 txt 1 1 1 1 1 1 1 1 1 1 

edf9201 txt 12542 7241 7203 7331 7388 7130 7202 7331 14850 7130 
edf9202 txt - - - - - - - - - -
edf9205 txt 11953 9793 9793 9793 9793 9793 9707 9665 9793 9665 
edf9206 txt 32 32 32 32 32 32 32 32 32 32 
edfpa 15o txt - - - - - - - - - -
edfpa15a txt - - - - - - - - . -
edfpa 15r txt - - . - - - - - - -
elf9601 txt - - - . - - - - . -
tr1 0 txt 596 596 596 596 596 596 596 596 596 596 

1Sp9601 txl 1157 752 752 752 752 752 752 752 752 752 
lsp9602 txt 1364 1274 1301 1301 1287 1318 1305 1267 1324 1267 
ISP9603 txl 27770 21804 21804 21804 21804 21804 24122 24290 22832 21804 
1Sp9604 txt 214 188 188 188 188 188 188 188 188 188 
lsp9605 txt - - - - - - - - - -
1Sp9606 txl 423 223 262 223 223 223 223 223 262 223 
1§1'9607 txt 1488 472 450 450 450 450 450 450 450 450 

Table A.37· The Component ConnectiOn method wtth sub-node sharmg, number 

of nodes, 'large' fault trees 
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FT name Oscheme 1 scheme 2 scheme 3 scheme 4 scheme 5scheme 6scheme 7 scheme Sscheme M1mmum 
rando11 qsq 9 46 5 85 8 59 872 865 5 87 8 71 588 862 
rando19 gsq 0 1 009 0 08 0 08 009 0 1 0 09 009 012 

rando20 gso 002 008 004 0 05 003 0 07 012 002 OP 
rando22 qsq 066 059 0 65 0 66 059 0 59 0 63 076 0 73 
rand160 gsq 101 15 711 16 95 13 86 18 65 17 78 1015 7 38 17 88 
hsaba2 qsq 10 01 1 21 1 53 1 55 1 76 122 1 77 1 06 1 27 

hsaba8 qsq 1 42 716 499 5 699 6 62 7 1 6 71 6 75 
hsab14 gsq 488 322 389 3 87 3 87 324 3 88 3 87 3 24 
hsab15 qsq 16 24 757 7 56 7 65 758 755 757 7 58 7 55 
hsab22 gsq 10 4 262 247 248 255 242 243 3 04 246 

hsab29 oso 0 0 0 0 0 0 0 0 0 
hsab76 qsq 034 0 31 027 026 032 032 032 03 02 
hsab87 gsq 1977 4 7359 696 99 698 97 735 21 77267 781 25 736 99 77263 

lisab92 osq 0 0 0 0 0 0 0 0 0 
hsa1 02 gsq 0 95 083 0 82 085 083 09 0 79 0 91 085 
llsa117 qsq 44 24 43 76 43 94 5279 40 21 40 15 36 19 53 03 4493 
l1sa118 gsq 037 028 0 34 0 32 0 32 028 0 32 029 03 

baobab1 txt - - - - - - - - -
baobab2 txt - - - - - - - - -

hmese txt 0 0 01 0 0 0 0 0 0 0 

das9201 txt 0 0 0 0 0 1 0 0 0 0 

das9202 txt 0 0 0 0 0 0 0 0 0 

das9203 txt c 0 0 0 0 0 0 0 0 

das9204 txt 0 0 0 0 0 0 0 0 0 
das9205 txt 0 0 0 0 0 0 0 0 0 

das9206 txt 7 84 3 31 3 27 3 33 615 604 6 05 3 33 3 32 
das9208 txt - - - - - - - - -
das9209 txt 0 0 0 0 0 0 0 0 0 

edf9201 txt 96 21 402 37 41 40 01 40 14 426 44 09 40 59 187 68 

edf9202 txt - - - - - - - - -
edf9205 txt 921 87 244 21 25012 250 61 251 03 253 41 251 27 24542 252 29 
edf9206 txt 0 0 0 0 0 0 01 0 0 0 

edfpa 15o txt - - - - - - - - -
edfpa 15q txt - - - - - - - - -
edfpa 15r txt - - - - - - - - -
elf9601 txt - - - - - - - - -
tr1 0 txt 0 01 0 0 01 0 01 0 01 0 01 0 0 0 01 

1Sp9601 !xt 0 21 0 1 0 09 009 0 09 009 0 08 0 1 012 
lsp9602 txt 006 0 05 0 06 005 0 05 005 0 os 0 04 007 
1Sp9603 !xt 1 4 1 14 1 21 1 14 1 14 1 26 1 28 1 28 1 19 

lsp9604 txt 0 01 0 01 0 01 0 0 01 0 01 0 01 0 02 0 
lsp9605 txt - - - - - - - - -
lsp9606 txt 0 0 0 0 01 0 01 0 0 0 0 
1sp9607 txt 0 01 0 03 0 01 0 01 0 002 0 0 01 0 01 

Table A.38. The Component Connectwn method wtth sub-node shanng, time, 

'large' fault trees 

280 

585 
008 
002 

059 
7 11 

1 06 
1 42 

3 22 
755 

242 
0 

026 

696 99 
0 

0 79 
3619 

028 

-
-

0 

0 
0 

0 
0 
0 

3 27 

-
0 

37 41 

-
244 21 

0 

-
-
-
-

0 
0 08 
004 
1 14 

0 

-
0 
0 



FT name 0 scheme 1 scheme 2 scheme 1:3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 

rando11 osq N/A 3 70 5 90 5 86 1 33 1 45 0 99 1 38 3 58 0 99 

rando19 gsq N/A 023 02 0 26 0 25 022 0 24 0 25 023 0 22 

rando20 osq N/A 022 02 0 24 0 22 022 0 21 0 24 025 0 21 

rando22 gsa N/A 0 27 02 0 24 0 42 023 0 26 043 017 0 1 

rand160 asa N/A 10 96 8 43 483 52 72 6 92 2544 14 09 3 01 3 01 

lrsaba2 gsq N/A 10 31 1 99 1 89 0 86 5 06 216 1 25 542 0 86 

lrsabaB asa N/A 9 62 04 0 45 0 37 094 041 044 0 64 0 37 

lrsab14 gsq N/A 0 29 03 0 36 03 0 30 0 32 043 0 26 0 26 

lisab15 asa N/A 0 33 0 37 0 37 0 44 0 26 0 26 0 68 0 24 024 
llsab22 gsq N/A 0 30 0 28 0 28 0 31 0 28 0 25 0 51 0 29 025 

llsab29 asa N/A 0 QC 0 00 000 00 000 0 00 0 00 000 000 

lisab76 gsq N/A 0 3C 0 36 0 36 02 029 0 25 0 25 023 023 

llsab87 asa N/A 7 1 33 37 37 30 2 83 1 16 0 57 418 079 057 

lrsab92 osq N/A 0 00 0 00 000 0 00 000 0 00 0 00 000 000 

11sa1 02 asa N/A 1 9 0 28 0 27 0 31 0 45 029 0 36 034 02 
lrsa117 gsq N/A 157 0 13 64 10 88 32 8 6 93 19 90 8643 13 n 6 93 

lrsa118 asa N/A 04 0 56 0 49 047 0 48 045 0 56 045 045 

baobab1 txt N/A - 233 38 257 84 354 26 431 18 73 82 139 88 365 53 73 82 

baobab2 txt N/A 62020 267 2 68 2 29 610 79 626 9 32 21 2 1C 

lch1nese txt N/A 022 02 0 21 0 22 021 0 22 0 21 020 0 2C 

das9201 txt N/A 0 21 02 022 021 0 21 0 21 0 22 0 20 0 20 

das9202 txt N/A 0 00 00 0 00 0 00 000 0 01 0 00 0 00 0 QC 

~as9203 txt N/A 064 0 64 083 0 63 064 0 63 0 64 0 64 063 

ldas9204 txt N/A 0 21 0 22 0 21 0 22 0 21 0 20 022 021 02C 
das9205 txt N/A 0 00 0 00 0 00 0 00 0 01 0 00 0 00 0 01 ooc 

as9206 txt N/A 1 11 0 25 0 25 0 23 0 70 0 23 034 045 023 

as9208txt N/A 11 85 31 41 31 45 1 88 6 74 1 76 6 70 7 99 1 7E 

as9209 txt N/A 0 00 0 00 0 00 0 00 000 0 00 0 01 000 000 

edf9201 txt N/A 0 50 0 27 038 0 41 0 43 0 27 037 256 02 

edf9202 txt N/A 91 53 0 26 0 27 0 26 517 49 028 1311 76 58 65 026 
edf9205 txt N/A 0 26 0 33 0 33 0 34 025 025 0 81 029 025 

edf9206 txt N/A 022 0 22 0 21 0 20 021 022 0 21 02 020 

edfpa15o txt N/A 6948 50 347 04 347 86 1515 73 3701 29 260 33 116 63 3687 14 116 63 

edfoa15a txt NIA 2377 8! BOO 91 800 85 44 99 6536 92 800 82 4815 1014 1 44 99 

edfpa15r txt N/A 2442 74 441 75 431 28 46 46 718417 813 10 44 92 629 8 44 92 
elf9601 txt N/A 19 11 75 04 74 88 95 72 12 85 18 45 175 83 18 3 12 85 
ftr1 0 txt N/A 0 30 0 21 022 021 0 23 021 0 22 022 021 
ISD9601 txt N/A 022 022 0 20 021 023 021 021 02: 0 2C 
1Sp9602 txt N/A 0 49 0 44 0 45 043 0 47 043 0 43 0 51 043 

ISP9603 txt N/A 089 058 0 55 039 0 64 02 0 37 0 61 02 
ISD9604 txt N/A 0 21 022 0 21 0 21 0 23 021 0 21 0 57 0 21 

IS~9605 txt N/A 3062 9 310 310 2 83 3159 50 912 11 07 8342 98 2 83 

1Sp9606 txt N/A 0 23 021 0 21 02C 021 0 21 021 os 0 20 

ISP9607 txt N/A 022 021 0 20 022 0 22 0 21 0 22 044 0 20 

Table A.39 Time taken to convert large fault trees to BDDs using the Baste Hybrid 

method 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme a scheme Mm1mum 

rando11 oso N/A 13544 15718 15718 7720 7759 6136 7166 1397C 6136 
rando19 qsq N/A 1138 1220 1227 1509 981 1363 1441 841 841 
rando20 asa N/A 593 841 716 704 534 496 951 496 496 
rando22 0sq N/A 1876 1718 1626 3382 1220 1646 3279 1056 1056 
rand160 gsq N/A 22147 16385 12510 50931 17716 35729 18891 11856 11856 
hsaba2 oso N/A 21569 7833 7833 6032 14703 9740 6181 15563 6032 
hsaba8 gsq N/A 20154 2981 3087 2045 5516 2661 3280 4356 2045 
hsab14 asa N/A 2050 2637 2621 2821 1632 2451 3527 1376 1376 
hsab15 qsq N/A 2530 3036 3058 3447 969 1137 4822 72 727 
hsab22 qsq N/A 2026 1932 1932 1848 1841 1533 3646 1979 1533 
hsab29 gsq N/A 1 1 1 1 1 1 1 1 1 
hsab76 oso N/A 2024 3057 3057 1266 1696 1314 1115 1126 1115 
hsab87 gsq N/A 17306 42256 44410 11822 6584 4050 14007 5012 4050 
hsab92 oso N/A 1 1 1 1 1 1 1 1 1 
hsa1 02 gsq N/A 78192 1413 1403 1876 3188 1632 3346 2241 1403 
hsa117 qsq N/A 9175 17283 16077 24886 14029 20181 61810 22317 9175 
hsa118 gsq N/A 1276 2046 1674 1631 1009 966 2438 1066 966 

aobabl txt N/A - 25015 25015 31047 52307 22919 21461 24912 21461 
aobab2 txt N/A 176627 1150C 11500 1047 171023 17999 21839 10114 10114 
h1nese txt NIA 89 125 125 125 89 106 100 89 89 
as9201 txt N/A 351 262 262 255 295 243 280 293 243 

das9202 brt N/A 1 1 1 1 1 1 1 1 1 
das9203 brt N/A 29 29 29 29 29 29 29 28 28 
das9204 brt N/A 48 41 41 53 43 41 53 41 41 
das9205 txt N/A 1 1 1 1 1 1 1 1 1 
das9206 brt N/A 6769 1573 1573 1175 5086 1226 2447 3485 1175 
das9208 brt N/A 24333 38535 38535 9287 18323 8742 17255 19900 8742 
das9209 brt N/A 1 1 1 1 1 1 1 1 1 
edf920l txt N/A 4281 2126 3289 3773 3707 2070 3271 11297 2070 
edf9202 txt N/A 69349 1078 1078 1143 162605 1414 256369 54319 1078 
edf9205 txt N/A 1825 2459 2425 2529 1646 1856 5411 2049 1646 
edl9206 txt N/A 123 74 73 93 86 81 73 110 73 
edfoa 15o txt N/A 576731 133893 133893 271134 427951 121088 75036 381055 75036 
edfpa15q txt N/A 336520 194806 194806 46707 569879 201399 47328 224208 46707 
edfoa 15r txt N/A 339925 149925 148353 49951 596150 200137 45682 177209 45682 
elf9601 txt N/A 35169 61504 61504 6900 28091 31949 95161 34422 28091 
tr1 0 txt N/A 2261 19 199 29 747 337 459 63C 199 

1Sp9601 txt N/A 441 337 337 333 562 428 284 488 284 
1Sp9602 txt N/A 1837 1006 1006 117 1592 722 1052 1984 722 
1509603 txt N/A 5864 444 4142 326 4629 1785 2801 2239 1785 
1Sp9604 txt NIA 278 440 267 431 266 250 470 327 250 
1Sp9605 txt N/A 397685 12451 12451 11275 400852 21999 23994 570743 11275 
ISP9606 !xt N/A 164 134 102 145 174 145 119 171 102 
1Sp9607 txt N/A 902 504 405 47 720 47 512 648 405 

Table A 40- Maximum reqmred size for the conversiOn of large fault trees to BDDs 

usmg the 1te method 
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FT name 0 scheme 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 

rando11 gsq N/A 13521 15696 15696 7703 7735 6115 7142 13948 6115 

rando19_gsa N/A 1121 1201 1207 1492 961 1346 1424 821 821 
ando20qs N/A 571 81S 69e 681 513 473 930 47 473 

rando22 gsq N/A 1847 1687 1595 3357 1191 1615 3257 1027 1027 
rand160 qsq N/A 22115 16354 12478 50899 17680 35693 18858 11820 11820 

llsaba2 asa N/A 21554 7818 7818 6016 14686 9723 6165 15546 6016 
ilsaba8 qsq N/A 20131 2958 3064 2022 5492 2637 3258 4333 2022 

ilsab14 gsq N/A 2027 2614 2598 2796 1608 2426 3501 1351 1351 
ilsab15 qsq N/A 251 3019 3041 3430 951 1119 4806 709 709 
llsab22 gsq N/A 2002 190 1907 1823 1815 1507 3626 1952 1507 

ilsab29 qsq N/A 1 1 1 1 1 1 1 1 1 

ilsab76 gsq NIA 2000 3029 3029 1238 1665 1283 1087 1093 1087 

ilsab87 a so N/A 17286 42239 44393 1180 6562 4028 13990 4989 402 

ilsab92 gsq N/A 1 1 1 1 1 1 1 1 1 
llsa1 02 qsq N/A 9166 1404 1394 1866 3177 1621 3337 2230 1394 

ilsa117 gsq N/A 7817C 17264 16057 24857 14000 20150 61783 22291 14000 
ilsa118 qsq N/A 1259 2032 1660 1617 992 95C 2422 1048 950 

baobab1 txt N/A - 25013 25013 31638 52407 22965 21501 24911 21501 

baobab2 txt N/A 17585€ 11415 11415 10384 170874 17747 21705 9936 9936 
~hmese txt N/A 89 12 12 12 89 10 100 89 89 

das9201 txt N/A 332 243 243 236 276 224 261 274 224 
das9202 txt N/A 1 1 1 1 1 1 1 1 1 

~as9203 tx1 N/A 29 29 29 29 29 29 29 28 28 

~as9204 txt N/A 43 37 37 48 38 36 48 36 36 
~as9205 txt N/A 1 1 1 1 1 1 1 1 1 
~as9206 tx1 N/A 676C 1568 1568 1161 5073 1211 2438 3483 1161 

~as9208 tx1 N/A 24531 38370 38370 959 18357 920 17882 19602 9207 

das9209 txt N/A 1 1 1 1 1 1 1 1 1 

edf9201 txt N/A 409€ 2036 3196 3560 3544 1923 3185 11086 1923 

edf9202 txt N/A 6925€ 98 987 105 162514 1323 256340 54228 987 

edf9205 txt N/A 1791 2757 2723 2843 1608 1634 5598 2051 1608 

edf9206 txt N/A 126 74 73 93 86 81 73 110 73 
edfpa15o txt N/A 58408E 13252 132522 270374 426733 115759 74481 424173 74481 

edfoa15a txt N/A 33987E 19549 195494 4701 574081 20005 47774 226332 4701 
edfpa 1 Sr txt N/A 34053 149575 148002 48447 592435 19907 45943 17690 45943 
elf9601 txt NIA 3502 61286 61286 68855 27933 31787 95026 34272 27933 
tr10 txt N/A 210 181 181 280 729 31E 440 613 181 

ISP9601 txt N/A 41S 315 315 311 540 406 262 466 262 
tsp9602 txt N/A 1807 972 972 1133 1581 686 1016 2024 686 
1509603 txt N/A 585 4435 4131 3256 4618 1773 2790 2227 1773 
1$09604 txt N/A 24 413 238 416 239 232 453 29C 232 
tsp9605 txt N/A 397677 12445 12445 11859 400846 21993 23986 572149 11859 
1Sp9606 txt N/A 171 120 89 132 161 132 108 155 89 
tsp9607 txt N/A 891 493 394 462 710 462 502 638 394 

Table A.41: Maximum required size for the conversiOn of large fault trees to BDDs 

usmg the Basic Hybnd method 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
astolto asa 40 26 26 25 40 2 25 48 25 
ben11am asa 4 34 34 32 47 39 32 4 32 
bpfea03 dat 101 63 63 63 93 63 63 70 63 
bpfen05 dat 90 61 61 61 82 61 61 85 61 
bpfro05 dat 88 60 60 60 81 60 60 63 60 
bpfrn05 dat 45 40 40 40 40 40 40 42 40 
bpfsw02 gsq 150 61 61 61 150 150 62 150 61 
dre1019 dat 19 19 19 19 19 19 19 19 19 
dre1032 dat 21 21 21 21 21 21 21 21 21 
dre1057 dat 43 32 32 32 43 43 32 32 32 
dre1058 dat 164 186 90 80 190 103 70 72 70 
dre1059 dat 232 385 404 403 282 16 333 152 152 
dresden dat 32 273 8 80 378 103 430 164 80 
horsf02 dat 414 96 96 98 361 35 134 398 96 
hprsf03 dat 45 42 42 42 45 45 42 46 42 
hprsf21 asa 220 196 196 239 44 424 210 832 196 
hprsf36 asa 42 44 40 40 40 40 40 42 40 
dtree3 asa 37 21 21 21 37 35 21 37 21 
dtree4 gsq 31 19 19 19 31 31 19 31 19 
dtree5 gsq 35 2C 20 20 35 32 20 35 20 
khrctre dat 30 30 30 30 30 30 30 30 30 
nakashrgsq 14 4 65 80 118 71 49 111 4 
trrals1 gsq 12 95 125 82 139 66 76 108 66 
trrals4 gsq 122 171 151 145 124 111 138 101 101 
random3 asa 133 12 130 136 135 132 80 146 80 
random6 asa 1086 481 4817 506 1594 1341 5684 1485 1086 
random8 asa 18 1 14 14 18 14 14 18 14 
rando12 asa 413 29E 310 31 295 26 361 226 226 
rando13 asa 219 76 76 149 113 129 346 123 76 
rando16 asa 136 75 75 225 122 131 62 131 62 
rando18 gsa 303 73 737 64 259 113 64 233 64 
rando23 asa 38 31 31 31 37 3 31 35 31 
rando25 gsa 16 13 13 28 17 21 18 12 12 
rando27 gsq 109 18 187 270 90 99 217 94 90 
rando28 gsq 1 1 1 1 1 1 1 1 1 
rando29 gsq 124 183 174 172 124 96 115 108 96 
rando30 gsq 295 86 93 94 272 185 90 249 86 
rando31 gsq 11 11 11 145 1 25 11 25 11 
rando33 gsq 18 31 31 48 16 13 19 15 13 
rando34 asa 6 6 58 5 5 66 44 48 44 

rando35 asa 45 51 54 55 26 2 30 29 26 
rando36 asa 28 1 17 16 20 16 16 18 16 
rando37 asa 71 17S 179 203 73 226 70 9 70 
rando38 a sa 2 19 19 16 32 22 17 22 16 
rando39 aso 140 170 170 34 135 259 361 237 135 
rando40 aso 2 19 19 24 25 19 24 19 19 
rando42 asa 5 5 5 5 5 5 5 5 5 
rando43 asa 31 28 28 22 35 30 22 31 22 
rando44 gsq 734 245 239 385 470 236 461 476 236 
rando45 gsq 54 50 50 52 47 35 60 40 35 
rando46 gsq 20 16 16 H 23 21 29 30 16 
rando47 gsq 128 154 154 81 77 64 86 70 64 
rando48 gsq 34 25 23 25 28 26 38 2 23 
rando52 gsq 106 55 124 130 115 129 86 112 55 

Table A 42: Number of nodes for small fault trees m the Bas1c/ Advanced Hybnd 

method, 1 
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FT name 1 scheme 2 scheme 3scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
rando53 gsq 5 5 5 5 5 5 5 5 5 
rando54 gsq 68 45 68 68 70 68 69 61 45 
rando55 gsq 24 25 25 21 25 25 24 26 21 
rando58 gsq 9 9 9 9 9 9 9 9 9 
rando59 gsa 557 239 239 182 452 293 126 235 126 

rando60 asa 98 3 37 34 73 59 42 5 34 
rando61 asa 41 3 33 5 35 44 53 30 30 

rando62 asa 13 12 11 11 11 11 12 11 11 

rando63 asa 24 25 25 21 25 25 24 26 21 

rando64 asa 172 91 101 93 198 104 56 102 56 

rando65 asa 35 33 21 29 33 38 32 38 21 

rando66 asa 59 32 32 4 54 46 56 53 32 

rando70 asa 42 35 35 35 43 3 33 48 33 
rando73 asa 136 114 127 12 108 105 240 64 64 

rando75 asa 13 13 13 13 11 13 13 11 11 

rando76 asa 71 30 39 39 39 45 39 40 30 

rando77 asa 72 82 82 60 48 48 132 41 41 

rando78 qsq 5 5 8 8 5 5 5 5 5 
rando80 gsq 31 26 26 29 31 29 36 29 26 
rando83 gsq 62 54 58 34 46 34 58 4 34 

rando84 gsq 179 91 93 84 121 83 70 96 70 

rando85 gsq 15 15 15 1 15 15 15 22 15 
rando87 gsq 19 20 20 16 15 15 15 ,, 15 

rando88 gsq 64 31 49 3 41 38 52 45 31 
rando89 gsq 34 28 30 34 33 33 39 32 28 

rando91 gsq 490 1353 1341 696 432 458 1381 338 338 
rando92 gsq 326 444 492 484 313 30 303 291 291 

rando93 gsq 43 4 46 29 3 31 45 31 29 
rando95 gsq 45 35 43 43 45 45 43 40 35 
rando98 asa 301 192 192 250 290 24C 184 145 145 

rando99 asa 151 343 342 290 153 17€ 216 13c 135 

rand1 00 asa 13 13 13 13 15 15 11 15 11 
rand1 03 asa 52 3 34 42 51 46 38 49 34 

rand1 04 asa 35 31 31 32 40 3 19 3 19 

rand1 05 gsq 103 60 61 52 74 55 49 95 49 

rand1 06 asa 14 87 877 13 13 1 13 16 13 

rand1 08 asa 95 219 199 14 80 92 216 86 80 
rand1 09 qsq 239 12 137 12 254 16 220 240 12 
rand110 gsq 27 28 28 29 29 29 13 30 13 

rand111 gsq 79 99 91 66 74 71 4 62 47 
rand115 gsq 176 111 111 168 161 112 111 94 94 
rand116 gsq 98 112 142 158 82 188 172 63 63 
rand117 gsq 27 29 27 29 2 2 25 30 25 
rand118 gsq 179 91 93 84 121 83 70 96 70 
rand119 gsq 47 30 52 29 34 32 30 3 29 

rand120 gsq 395 82 84 150 373 198 95 372 82 

rand121 gsq 56 44 44 47 47 39 135 43 39 
rand123 gsq 18 1 17 19 1 1 17 1 17 
rand124 gsq 29 21 23 23 2 31 21 2 21 
rand125 gsq 18 20 22 1 1 1 22 1 1 
rand126 gsq 109 117 110 138 121 115 100 115 100 

rand127 gsq 66 29 29 31 63 33 31 50 29 
rand128 gsq 157 70 71 93 154 126 85 91 70 

rand129 asa 4 4 4 

Table A.43· Number of nodes for small fault trees in the Basic/ Advanced Hybnd 

method, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rand130 asa 5 5 < 5 5 5 5 5 5 
rand132 qsq 46 58 58 108 376 845 1062 561 376 
rand134 asa 122 330 33< 61 118 315 453 109 109 
rand135 qsq 64 108 10~ 13 7C 57 120 88 57 
rand137 gsq 4C 3< 3< 32 3< 32 32 49 32 
rand138 gsq 2 ; < 2 2 2 2 2 2 
rand139 gsq 12< 7E 7 191 121 190 113 146 76 

rand141 gsq 2 28 28 29 29 29 13 30 13 
rand143 gsq 33 38 2C 1 26 26 19 30 1 

rand144 gsq 188 402 334 28 17 214 37 211 17 

rand145 gsq 46 3 3 3 43 34 3 43 34 
rand146 gsq 40 32 3< 3 35 32 32 49 32 
rand147 gsq 234 147 175( 351 24 531 485 239 234 
rand148 gsq 24 20 14 1 21 15 15 15 14 
rand149 gsq 33 21 21 21 36 24 21 36 21 

rand150 gsq 785 1896 1418 1634 99 960 1348 992 785 
rand151 gsq 34 2< 25 25 34 34 25 34 25 
rand153 gsq 8 E 8 8 8 8 8 8 8 
rand154 gsq 1 1 1 1 1 1 1 1 1 

rand155 asa 226 146 115 9 158 106 172 174 9 
rand156 asa 29 22 2 2 2 22 28 22 22 

rand158 asa 2 18 1t 21 2C 21 21 18 18 

hsaba1 asa 1003 15 18: 12 478 142 152 364 127 

hsaba3 asa 804 821 760 659 649 503 881 76 503 
ilsaba4 asa 420 278 29 246 276 273 148 203 148 
ilsaba5 asa 197 146 13C 128 158 227 205 153 128 
11saba6 osa 192 13 131 125 15 124 148 165 124 

hsaba7 gsq 1003 152 185 12 478 142 152 364 127 
hsaba9 asa 167 59 59 57 12 56 55 10 55 
hsab1 o asa 820 53 400 302 372 277 476 243 243 

hsab11 asa 5 5 5 5 5 5 5 5 5 

hsab13 asa 27 2 28 29 29 29 13 30 13 

hsab17 asa 1003 15 185 12 478 142 152 364 127 
ilsab24 asa 10 41 41 41 81 71 41 7 41 

IIS8b25 QSQ 65 6 69 5 6 56 49 66 49 

hsab26 asa 7 7 
hsab27 asa 282 313 26E 141 27C 144 9 200 94 

hsab28 asa 38 2 2 22 3C 2 22 30 22 

hsab30 asa 44 3 3 34 40 34 36 33 33 

hsab31 asa 332 506 506 245 362 176 422 330 176 
ilsab34 asa 22 20 20 20 23 20 28 23 20 
ilsab35 asa 645 449 449 369 546 592 596 342 342 

i1Sab36 QSQ 134 11 110 32 162 267 79 98 79 
ilsab37 qsq 74 36 36 38 59 38 31 46 31 

hsab42 asa 19 1 1 1 1 17 18 p 17 

hsab44 asa 32 32 32 41 33 41 32 41 32 

hsab47 asa 11 11 11 11 12 11 11 16 11 

ilsab48 asa 4 4 4 4 4 

hsab49 asa 146 60 6C 6( 160 92 60 178 60 

hsab50 asa 11 E 8 E 10 10 11 10 8 
hsab51 gsq 33 2 2 3( 42 36 24 36 24 

hsab52 asa 598 778 778 659 42~ 52 623 350 350 

hsab53 asa 11 11 11 9 11 11 9 9 9 
ilsab54 gsq 25 22 20 2( 20 20 20 22 20 

Table A.44: Number of nodes for small fault trees m the Bas1c/ Advanced Hybnd 

method, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
l!sab55 gsa 5 5 5 5 0 5 5 5 5 

l!sab56 gsa 3 3 3 3 3 3 3 3 

l!sab57 gsa 137 1H 110 110 131 125 151 175 110 

llsab59 asa 133 49 49 49 172 81 49 144 49 

l1sab60 asa 34 2~ 29 25 3o 25 25 30 25 

l1sab61 asa 51 3 33 33 4E 52 42 66 33 

l1sab62 asa 88 69 53 8< 8< 111 69 97 53 

llsab63 asa 35 26 26 23 29 23 23 30 23 

l1sab64 asa 12 1~ 12 12 12 12 13 12 12 

11sab6S asa 24 H 19 19 24 24 19 24 19 

l1sab66 asa 64 181 181 54 42 43 20 38 38 

llsab67 asa 378 22 222 163 204 197 340 178 163 

11sab68 asa 30 25 25 25 30 30 25 30 25 

l!sab69 asa 66 52 50 44 56 6 56 53 44 

llsab70 asa 191 162 162 78 156 9 10 134 78 

l!sab71 asa 8 8 8 8 8 8 8 8 8 

l!sab72 asa 210 225 204 165 16 132 448 150 132 

llsab73 asa 23 23 23 23 33 23 23 23 23 

l!sab75 asa 4 4 4 4 4 4 4 

l!sab77 asa 632 47 442 406 604 316 358 53 316 

l!sab78 asa 313 111 149 1 1 1 196 140 195 16 1 1 1 

llsab81 gsq 15 15 15 15 15 15 15 15 15 

l!sab82 gsq 1687 43~ 439 77 1015 934 476 904 439 

l!sab83 asa 153 83 13o 106 12 105 52 106 52 

llsab84 gsq 153 83 135 106 123 105 52 106 52 

l1sab86 gsq 202 230 199 160 20 198 261 195 160 

l1sab88 gsq 107 45 45 51 76 72 165 63 45 

l!sab89 gsq 579 180 335 156 559 373 6 462 6 

l!sab91 gsq 595 134 133 131 37 223 128 315 128 

l!sab95 gsq_ 3 3 3 3 3 3 3 3 3 

llsab97 gsq 29 2 22 22 29 31 22 22 22 

l!sab98 gsq. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

11sa1 oo gsq 1519 523 530 600 1158 845 66 705 523 

11sa1 03 asa 1 1 1 1 1 1 9 1 1 1 1 9 9 9 

l!sa1 04 asa 13 13 13 13 13 13 13 13 13 

hsa1 07 asa 8 8 8 8 8 8 8 8 8 

l!sa1 09 asa 55 79 48 49 44 3 115 54 37 

l!sa110asa 316 385 36 37 43 382 316 522 316 

11sa111 asa 134 4 4 4 10 74 4 106 4 

11sa112 asa 1623 234 239 505 1725 830 371 1202 234 

11sa113 asa 245 238 239 278 209 163 233 184 163 

11sa115 asa 53 46 36 36 39 33 30 3 30 

llsa116 asa 1 1 8 8 8 8 6 8 6 

11sa119 asa 25 15 15 15 1 17 16 1 15 

11sa120 asa 41 24 2 24 3 26 2 33 24 

11sa121 asa 168 41 41 5 136 71 44 10 41 

hsa122 asa 43 38 38 38 38 38 38 35 35 

l!sa123 asa 82 40 40 33 75 44 8 124 33 

l!sa1 24 a sa 1228 674 660 654 1293 503 77 1134 503 

rand1 59 asa 195 244 225 225 165 73 81 121 73 

rand1 61 asa 1 91 354 331 340 208 189 362 21 189 

rand1 62 a sa 1 1 1 1 1 1 1 1 1 

rand1 63 a sa 556 1196 890 889 490 398 3532 43 398 

rand1 64 a sa 1419 433 263 257 583 247 275 451 247 

Table A 45 Number of nodes for small fault trees in the Bas1c/ Advanced Hybrid 

method, 4 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mrnrmum 
astolfo a sa 03 042 0 41 0 36 045 0 41 045 0 41 036 
benuam asa 035 042 042 0 38 0 41 042 042 043 0 35 
bpfea03 dat 04 044 046 0 42 0 46 04 045 0 45 04 
bpfen05 dat 037 043 044 0 39 044 045 043 044 03 
bpfla05 dat 0 36 043 043 0 39 046 046 044 043 0 36 
bpfln05 dat 035 0 42 043 0 37 044 043 042 042 0 35 
bpfsw02 gsq 0 22 0 48 048 0 44 027 0 29 047 02 0 22 
dre1019 dat 0 35 04 043 03 043 042 0 41 04 0 35 
dre1032 dat 0 35 0 41 042 0 37 044 042 0 41 0 41 0 35 
dre1057 dat 0 35 04 043 0 39 04 043 04 04 0 35 
dre1058 dat 0 22 0 28 0 44 0 39 025 0 42 0 41 0 43 0 22 
dre1059 dat 0 22 0 28 0 28 0 25 026 0 25 028 0 28 0 22 
dresden dat 0 24 03 043 04 0 31 0 41 033 044 024 
hPISf02 dat 02 043 044 0 39 029 0 29 038 03 024 
hplsf03 dat 0 35 04 042 0 38 042 043 042 0 39 035 
hPISf21 QSQ 0 22 02 028 0 25 02 029 029 03 022 
hplsf36 asa 035 042 042 0 39 0 41 043 0 41 0 43 035 
dtree3 gsq 03 042 042 044 042 0 41 043 0 44 034 
dtree4 gsq 035 042 042 0 46 0 41 043 0 41 0 45 035 
dtree5 gsq 034 0 42 043 0 46 0 41 042 042 046 0 34 
kh1ctre dat 035 0 42 042 0 48 042 04 042 042 035 
nakash1gsq 0 21 043 042 03 0 26 0 41 044 01 01 
tnals1 gsq 0 22 0 26 028 0 31 0 26 0 43 026 0 38 022 
tnals4 gsa 0 21 0 28 028 03 02 0 26 029 03 0 21 
random3 asa 022 02 027 0 28 042 0 41 029 0 21 0 21 
random6 asa 028 1 09 1 1 1 18 04 0 34 1 49 0 46 028 
random8 asa 035 04 043 0 35 042 044 043 04 035 
rando12 asa 0 23 0 28 027 0 23 016 0 029 0 29 016 
rando13 asa 0 25 0 28 029 0 26 017 0 31 036 02 01 
rando16 asa 0 31 0 32 046 0 29 0 28 0 31 05 03 028 
rando18 asa 3 02 13 89 13 27 29 91 2 01 10 78 27 218 2 01 
rando23 asa 0 35 042 042 0 35 0 41 046 037 043 035 
rando25 a sa 034 0 42 04 0 41 0 41 0 51 039 042 034 
rando27 gsq 042 03 037 0 43 0 51 0 59 05 0 52 03 
rando28 gsq 0 35 0 42 043 0 36 0 41 0 46 042 0 43 035 
rando29 gsq 02 0 28 027 0 22 02 0 29 028 0 23 02 
rando30 gsq 022 043 042 035 026 0 28 044 0 23 022 
rando31 gsq 039 0 45 045 043 0 45 05 047 0 39 039 
rando33 asa 035 0 42 042 035 04 0 51 043 0 3E 035 
rando34 asa 035 043 043 0 35 042 04 044 03 035 
rando35 asa 036 0 41 042 0 34 042 03 045 0 41 03 
rando36 asa 035 042 043 0 34 042 0 34 04 0 41 034 
rando37 asa 034 0 28 027 0 22 0 41 026 0 46 035 022 
rando38 asa 035 042 044 0 35 042 044 0 43 03€ 035 
rando39 asa 0 21 043 041 0 23 02 0 28 033 0 2E 021 
rando40 gsq 0 35 042 042 0 36 04 04 044 0 39 035 
rando42 asa 036 0 42 043 0 34 0 41 026 044 035 026 
rando43 asa 036 0 42 042 0 36 0 41 03 043 0 3E 03 
rando44 gsq 0 25 0 28 028 0 22 03 018 033 0 25 018 
rando45 gsq 0 35 0 41 042 0 34 042 034 0 46 0 41 034 
rando46 gsq 036 0 42 043 0 35 042 04 044 043 035 
rando47 gsq 022 0 28 028 0 35 042 04 049 0 42 022 
rando48 gsq 03 0 42 042 0 34 0 41 043 047 0 42 034 
rando52 asa 036 044 046 03 043 045 048 0 41 036 

Table A 46: Processmg time for small fault trees m the Bas1c Hybrid method, 1 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme a scheme Mlmmum 
rando53 gsq 035 042 0 41 0 35 042 045 04 0~ 0 35 
rando54 gsq 035 043 044 0 35 0 41 042 049 0 42 035 
rando55 gsq 035 042 0 41 0 35 0 41 046 045 043 035 
rando58 asa 034 042 043 0 35 0 41 0 4: 044 04 03 
rando59 asa 024 0 28 026 0 22 027 03 0 29 02 0 22 
rando60 asa 035 0 42 043 0 34 044 04 044 044 03 
rando61 asa 034 0 42 043 0 34 044 0 4: 048 044 03 
rando62 asa 035 0 42 043 0 35 043 0 43 045 045 035 
rando63 asa 035 043 042 0 34 043 044 043 045 03 
rando64 asa 0 21 0 42 028 033 028 04 04 0 28 0 21 
rando65 asa 034 0 42 043 0 34 043 044 044 043 03 
rando66 asa 034 0 42 043 036 042 044 0 31 043 0 31 
rando70 asa 035 0 42 044 034 043 043 04 0 41 03 
rando73 asa 0 21 043 044 035 039 046 0 39 0 26 0 21 
rando75 gsq 035 0 42 043 034 043 045 043 0 29 0 29 
rando76 gsq 034 0 42 04 035 041 042 043 0 41 03 
rando77 gsq 034 043 043 0 36 043 048 044 0 03 
rando78 gsq 034 0 42 043 035 042 046 043 0 41 03 
rando80 gsq 035 043 043 034 0 41 044 043 0 4< 0 34 
rando83 gsq 033 042 044 0 35 0 41 045 043 0 41 033 
rando84 gsq 023 02 029 0 21 028 0 31 044 0 4< 0 21 
rando85 gsq 034 042 045 0 35 0 41 0 46 043 0 42 03 
rando87 gsq 035 043 043 0 35 038 0 49 043 042 035 
rando88 gsq 034 0 42 041 03 043 044 043 042 03 
rando89 asa 036 043 045 035 039 045 044 043 0 35 
rando91 asa 023 0 31 032 0 24 028 0 28 0 31 0 28 0 23 
rando92 asa 1 16 212 29 37 082 0 76 0 51 1 16 0 51 
rando93 asa 03 043 044 0 36 042 044 044 04 03 
rando95 asa 036 0 41 043 0 34 042 0 43 043 0 43 03 
rando98 asa 023 0 28 028 0 24 028 0 29 025 o 2c 023 
rando99 asa 035 03 028 0 23 02 0 29 0 26 02 023 
rand1 00 asa 035 042 043 0 34 042 0 43 042 0 42 03 
rand1 03 asa 035 042 043 0 34 042 0 31 043 0 42 0 31 
rand1 04 asa 0 31 043 042 0 34 042 0 29 042 039 0 29 
rand1 05 gsq 033 0 28 042 0 35 042 0 31 043 0 41 0 28 
rand1 06 gsq 035 049 049 0 36 042 0 4< 044 038 035 
rand1 08 gsq 036 0 28 028 0 22 043 043 028 042 0 22 
rand1 09 gsq 0 21 0 27 027 0 22 0 28 029 0 27 02 0 21 
rand110 gsq 035 043 043 0 35 042 044 043 0 39 0 35 
rand111 gsq 035 042 043 034 045 0 31 043 0 0 31 
rand115 gsq 0 21 042 042 0 21 028 02 02 0 36 0 21 
rand116 gsq 036 02 027 0 24 0 41 015 029 03 015 
rand117 gsq 034 043 0 41 035 039 0 34 042 0 41 0 34 
rand118 asa 022 02 029 0 21 02 02 043 0 41 0 21 
rand119 asa 034 042 042 034 043 03 043 0 41 03 
rand120 gsq 022 042 043 0 22 029 02 042 o 2c 022 
rand121 gsq 035 043 042 0 35 042 03 043 0 42 035 
rand123 gsq 035 042 042 0 34 043 04 042 04.: 034 
rand124 asa 035 042 043 035 0 41 0 45 043 o 3c 035 
rand125 asa 035 043 043 03 0 41 04 0 41 043 034 
rand126 asa 0 21 0 28 0 27 0 22 027 0 31 043 o 2c 0 21 
rand127 asa 035 043 043 0 3: 042 0 45 042 043 0 35 
rand128 asa 022 043 042 03 029 0 29 043 043 0 22 
rand129 asa 034 042 043 03 0 41 04 0 42 042 034 

Table A 47 Processing time for small fault trees m the Basic Hybrid method, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rand130 gsq 03 04 042 035 0 43 04 042 042 034 
rand132 gsq 0 22 0 28 029 024 0 26 033 0 31 029 022 
rand134 gsq 0 22 02 028 024 02 034 03 028 022 
rand135 asa 0 35 04 043 034 04 05 043 042 0 34 
rand137 asa 035 042 043 035 042 05 042 042 0 35 
rand138 asa 034 042 042 034 04 04 0 38 042 0 34 
rand139 asa 0 2< 043 043 0 21 044 033 02 043 0 21 
rand141 asa 0 35 043 04 036 044 045 0 41 0 41 035 
rand143 asa 0 35 043 04 036 043 042 0 41 042 035 
rand144 asa 0 22 0 29 029 023 02 02 03 02 022 
rand145 asa 0 34 042 043 035 042 043 043 043 034 
rand146 asa 0 35 042 043 035 043 042 042 0 41 035 
rand147 asa 0 22 0 044 022 02 03 0 28 02 022 
rand148 asa 0 35 0 43 047 034 0 41 045 0 41 032 032 
rand149 gsq 0 34 o 4c 044 03 043 043 0 27 036 027 

rand150 asa 0 24 036 034 02 0' 03 0 21 0 28 0 21 
rand151 asa 0 34 042 045 035 043 044 0 32 04 0 32 
rand153 gsq 0 35 042 045 035 0 4~ 043 043 036 035 
rand154 gsq 0 35 042 044 03 04 044 042 044 033 
rand155 gsq 0 21 027 02 022 02 043 028 0 28 0 21 
rand156 gsq 0 3E 043 044 035 042 042 043 03 035 
rand158 gsq 3 01 1 56 1 56 1 48 1 9 1 33 144 1 58 1 33 
l1saba1 gsq 0 25 0 31 033 038 03 038 046 032 0 25 
llsaba3 gsq 029 0 41 04 028 03 025 0 33 038 025 
llsaba4 gsa 023 028 028 02 02 03 028 02 022 
llsaba5 gsq 023 029 04 036 024 032 02 0 27 023 
hsaba6 gsq 022 02 029 034 015 0 29 043 0 28 0 15 
hsaba7 gsq 0 26 0 31 0 34 03 0 29 03 046 03 026 
11saba8 gsq 0 22 042 0 42 035 0 23 0 25 042 042 0 22 
l1sab1 0 gsq 0 22 03 0 2£ 0 21 02 0 23 0 29 02 0 21 
11sab11 gsq 035 042 04 035 042 041 043 042 035 
llsab13 gsq 036 044 044 03 043 036 0 43 043 036 
l1sab1? gsq 025 03 035 038 03 044 0 45 0 31 025 
llsab24 asa 035 043 042 035 042 028 043 03 028 
hsab25 asa 035 02 043 035 043 043 042 0 39 027 
llsab26 asa 035 042 042 03 044 04 0 41 04 034 
hsab27 gsq~ 0 22 02 0 28 023 029 0 29 043 029 022 
hsab28 asa 035 042 043 03 042 043 043 042 034 
hsab30 asa 03 043 04 035 043 043 0 41 043 0 34 
hsab31 asa 0 23 03 0 31 0 23 0 26 029 032 028 023 
llsab34 asa 0 35 043 043 034 0 37 043 042 04 034 
l1sab35 asa 0 22 028 028 0 22 0 29 028 0 28 0 22 022 
llsab36 asa 024 0 029 024 029 029 044 0 26 024 
llsab37 asa 034 042 042 035 043 042 0 42 043 034 
llsab42 asa 034 042 042 03E 0 41 042 042 042 034 
llsab44 asa 036 042 042 036 043 043 042 0 45 036 
hsab47 asa 034 042 042 035 043 043 0 41 0 38 034 
hsab48 asa 034 04 044 035 044 043 04' 0 41 034 
hsab49 asa 022 044 04 036 028 044 04 029 0 22 
hsab50 gsq 035 042 042 034 038 044 045 04 0 34 
hsab51 gsq 034 043 0 43 0 34 04 043 045 03 034 

hsab52 asa 0 22 03 03 023 028 029 03 02 022 
hsab53 gsq 0 34 042 0 43 035 043 044 043 038 034 
hsab54 gsq 035 042 0 43 034 0 41 044 046 045 034 

Table A 48. Processing time for small fault trees m the Bas1c Hybrid method, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
llsab55 gsq 034 0 41 043 035 043 043 043 0 41 0 34 
llsab56 gsq 035 042 043 0 3~ 043 043 043 036 035 
llsab57 gsq 022 02 02 0 21 02 028 028 025 0 21 
ilsab59 gsa 0 22 0 42 044 036 0 28 041 046 0 22 0 22 
11sab60 asa 035 042 042 036 043 043 043 0 41 0 35 
11sab61 asa 035 042 0 44 0 3~ 043 043 042 044 0 35 
l1sab62 asa 035 04: 042 035 043 042 042 035 0 35 
ilsab63 asa 035 0 42 043 035 041 043 046 0 28 0 28 
llsab64 asa 035 043 043 036 043 042 044 044 0 35 
11sab6S asa 036 04: 0 44 03 042 042 043 042 0 34 
11sab66 asa 035 043 044 0 35 044 042 046 039 035 
llsab67 asa 0 23 0 29 03 0 22 02 029 029 02 0 22 
11sab68 asa 035 04 043 035 045 039 033 042 033 
l1sab68 asa 0 35 04 043 035 044 042 032 0 42 032 
llsab70 asa 0 21 028 029 035 028 043 0 22 028 0 21 
llsab71 asa 0 35 043 043 035 044 0 38 043 036 035 
llsab72 asa 022 03 029 022 029 029 03 024 022 
llsab73 asa 034 043 0 42 035 045 043 043 039 034 
11Sab75 QSQ 0 34 042 043 035 042 041 043 04 034 
ilsab77 asa 022 0 28 0 2S 022 029 027 03 024 02? 

ilsab78 asa 0 22 02 02 03 029 028 029 022 022 
llsab81 gsq 034 043 043 035 044 042 043 03 0 34 
ilsab82 gsq 1 27 1 19 1 2 08 1 73 0 71 0 51 1 33 0 51 
ilsab83 gsq 0 22 0 28 029 035 02 042 044 042 0 22 
llsab84 gsq 0 21 0 28 02 035 029 043 043 0 36 0 21 
l1sab86 gsq 0 24 02 028 022 028 0 28 0 28 0 23 022 
l1sab88 gsq 0 38 043 0 44 034 042 042 02 044 02 
l1sab88 gsq 0 25 0 29 028 0 21 0 028 044 02 0 21 
llsab91 gsq 025 029 029 023 02 03 0 28 028 023 
ilsab95 gsq 035 043 04 034 03 042 043 042 03 
llsab97 gsq 035 0 41 042 035 0 3E 043 044 042 035 
ilsab98 gsq 033 042 043 034 04 043 0 44 0 41 033 
ilsa1 00 gsq 03 0 31 03 026 03 033 0 32 026 026 
ilsa1 03 asa 034 042 042 034 044 043 0 43 0 034 
llsa1 04 asa 034 0 42 04 034 045 042 043 0 41 034 
ilsa1 07 asa 034 0 42 043 035 045 042 043 038 034 
llsa1 09 gsa 034 042 043 035 045 042 044 042 034 
llsa110 asa 0 23 0 029 0 23 032 03 029 0 26 0 23 
11sa111 asa 0 21 0 43 04 036 04 043 043 0 26 0 21 
11sa112 asa 03 0 29 0 31 024 037 0 31 0 31 0 31 024 
11sa113 asa 02 03 0 31 0 22 029 0 28 0 29 0 28 022 
11sa115 asa 03 042 0 4~ 034 045 042 043 0 41 034 
11sa116 asa 0 35 0 42 042 035 042 043 044 0 41 035 
11Sa119 QSQ 03 0 43 043 036 044 042 043 0 36 034 
l1sa120 asa 03 043 043 035 042 04 045 044 034 
11sa121 asa 0 22 042 044 035 028 043 043 028 022 
ilsa122 asa 0 35 0 41 043 034 042 042 044 044 034 
ilsa123 asa 034 043 043 036 043 044 044 042 034 
ilsa124 asa 0 25 03 0 31 024 0 31 03 0 29 032 024 
rand159 asa 0 22 028 029 022 028 044 045 039 022 
rand161 asa 0 22 029 0 26 022 02 02 0 28 028 022 
rand162 asa 0 35 042 043 035 041 044 042 0 41 035 
rand163 asa 0 23 033 0 31 02 03 032 06 028 023 
rand164 asa 0 35 039 03 024 034 029 0 26 029 024 

Table A.49 Processing time for small fault trees m the Basic Hybnd method, 4 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
astolfo asa 72 75 72 58 74 63 76 83 58 

bennam asa 83 82 82 79 83 7~ 82 108 7~ 

bpfeo03 dat 28 331 270 25S 280 259 341 27( 259 

bpfen05 dat 263 313 255 242 259 24~ 320 26~ 242 

bpflo05 dat 258 308 251 23 254 23 314 242 23 

bpfln05 dat 160 215 143 143 143 14:: 207 14E 143 
bpfsw02 gsq 21 151 151 151 21 21 153 21 151 

dre1019 dat 45 45 45 45 45 45 49 45 45 
dre1032 dat 55 55 55 49 49 49 55 49 49 

dre1057 dat 92 100 90 8~ 86 8€ 103 8~ 84 

dre1058 dat 269 415 250 223 302 201 294 199 199 

dre1059 dat 345 644 677 676 379 276 586 29 276 

dresden dat 859 1818 806 739 1215 805 1816 77: 739 

hPISf02 dat 650 292 292 338 662 644 471 89" 292 
hPISf03 dat 113 108 108 108 113 113 111 11 108 

hp1st21 asa 829 683 683 900 976 871 803 2072 683 
hp,sf36 asa 13 136 128 122 126 122 136 142 122 

dtree3 asa 6 59 59 59 6 65 59 6 59 
dtree4 gsq 72 66 66 66 72 72 66 72 66 

dtree5 gsq 66 58 58 58 66 6 58 6E 58 

kh1ctre dat 199 17€ 199 196 196 196 176 19 176 

nakash1gsq 245 113 143 141 183 130 118 172 113 

tnals1 gsq 31~ 306 323 265 323 236 274 279 236 

tnals4 gsa 466 60 527 474 41 401 486 37 373 
random3 asa 640 735 643 671 612 569 492 633 492 

random6 asa 1979 6846 6845 7629 2788 2685 8040 3080 1979 

random8 asa 7 71 73 7 77 71 71 71 71 

rando12 asa 77 621 631 658 594 591 746 558 558 
rando13 asa 998 1103 1103 1660 889 1213 1735 93€ 889 

rando16 asa 1918 181 1577 1839 1893 1722 1509 1899 1509 

rando18 asa 1298 2671 25915 3869 9996 22673 36210 9830 9830 

rando23 asa 332 376 376 369 280 293 375 249 249 
rando25 gsq 92 80 80 132 94 113 98 82 80 
rando27 gsq 2283 2599 2597 2261 2590 2132 1972 229E 1972 
rando28 gsq 258 260 250 249 244 246 253 25~ 244 

rando29 gsq 467 60 468 466 446 390 430 40 390 
rando30 gsq 380 192 205 203 356 298 214 336 192 
rando31 gsq 1552 1431 1499 2209 1490 153 1437 166E 1431 

rando33 gsa 185 179 179 210 18 172 201 31 172 

rando34 asa 416 396 461 465 394 406 407 336 336 

rando35 asa 382 476 428 425 301 301 283 293 283 

rando36 asa 162 150 157 16 168 161 163 159 150 

rando37 asa 402 566 566 602 39 582 410 44 39 

rando38 asa 117 114 114 113 117 110 106 110 106 

rando39 asa 393 358 358 794 352 599 688 441 352 

rando40 asa 5 53 53 54 60 5 54 52 52 
rando42 gsq 58 59 63 62 63 62 59 6 58 

rando43 gsq 120 125 125 123 122 120 132 118 118 
rando44 gsq 1028 43 429 621 648 518 724 726 429 
rando45 gsq 260 251 251 306 240 221 254 228 221 

rando46 gsq 708 616 616 545 544 520 460 517 460 

rando47 gsq 268 309 309 269 224 228 268 220 220 
rando48 gsq 154 145 145 143 145 136 155 149 136 

rando52 asa 1148 1081 1162 1230 1119 1170 124 965 965 

Table A 50: Max1mum required s1ze for small fault trees m the Bas1c Hybrid 

method, 1 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando53 gsq 113 99 122 122 119 119 100 120 99 
rando54 gsq 158 152 156 156 158 15 156 16 152 

rando55 gsq 197 196 196 223 19 19 194 191 191 

rando58 gsq 114 11 117 116 102 102 113 102 102 
rando59 asa 842 516 516 46 71 571 430 539 430 

rando60 a sa 402 42 452 425 376 33 499 343 33 
rando61 asa 165 172 168 236 163 196 232 161 161 

rando62 asa 115 11 117 120 116 118 114 116 11 

rando63 asa 197 196 196 223 19 19 19 191 191 

rando64 asa 542 405 386 364 584 351 379 359 351 

rando65 asa 75 71 69 74 76 88 10 86 69 

rando66 asa 257 253 253 288 251 236 270 245 236 
rando?O asa 115 107 107 10 108 109 108 112 10 

rando73 asa 334 341 337 338 290 27 499 269 269 
rando75 asa 68 68 68 68 6 68 68 6 6 

rando76 asa 247 180 229 209 202 209 259 221 180 

rando77 asa 524 482 477 539 544 568 702 541 47 
rando78 gsq 131 133 144 139 131 131 136 13 131 
rando80 gsq 81 76 76 81 82 81 87 81 76 

rando83 gsq 113 128 121 89 98 89 127 96 89 
rando84 gsq 301 195 211 203 239 210 198 19 195 
rando85 gsq 229 221 221 213 206 206 22 213 206 
rando87 gsq 70 7 74 70 67 6 69 6 67 
rando88 gsq 115 93 114 94 90 9: 109 9 90 
rando89 gsq 1014 892 860 849 93 872 649 99 649 

rando91 asa 914 1789 1775 1024 84 871 1846 800 BOO 
rando92 asa 7088 9872 11810 13746 5408 5043 3670 6795 3670 

rando93 asa 411 352 312 410 358 362 341 326 312 

rando95 asa 143 104 133 133 142 128 133 122 104 
rando98 asa 787 644 644 747 682 672 685 482 482 

rando99 asa 51 1104 1047 934 552 676 877 59 51 

rand1 oo asa 196 199 199 197 181 182 190 181 181 

rand1 03 asa 151 132 132 145 14 139 138 153 132 

rand1 04 asa 290 334 338 326 272 28 177 280 17 
rand1 05 gsq 174 174 160 146 168 144 159 203 144 

rand1 06 a sa 698 2071 2071 813 642 572 980 548 548 
rand1 08 gsq 387 598 576 51 36 438 584 33 33 
rand1 09 gsq 569 384 390 502 576 462 590 705 384 
rand110 gsq 404 562 505 501 466 474 408 473 404 
rand111 gsq 336 382 338 293 324 282 285 296 282 
rand115 gsq 337 310 310 348 323 250 250 256 250 
rand116 gsq 525 388 437 805 479 748 764 360 360 
rand117 gsq 74 73 71 71 69 69 68 70 68 
rand118 asa 301 195 211 203 239 210 198 19 195 
rand119 gsq 143 148 153 126 132 130 151 129 126 
rand120 gsq 525 244 278 304 505 345 311 492 244 
rand121 gsq 236 223 223 21 219 21< 305 224 214 

rand123 gsq 65 71 71 67 65 61 71 66 61 
rand124 gsq 108 119 124 110 115 116 130 11 8 108 
rand125 asa 57 60 58 5 5 5 58 54 54 

rand126~ gsq 316 28 28 293 323 266 301 32 266 

rand127 asa 120 90 90 86 112 87 86 109 86 
rand128 asa 673 458 443 65 658 70: 634 446 443 
rand129 asa 64 64 64 63 63 63 63 61 61 

Table A 51 Maximum reqmred s1ze for small fault trees in the Basic Hybrid 

method, 2 

293 



FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
rand130 asa 210 1B1 1B1 174 179 175 211 179 174 

rand132 asa 76 820 B20 1558 611 1203 1532 893 611 

rand134 asa 571 740 760 1512 57 1053 1151 55 554 

rand135 asa 331 336 331 529 342 284 40 359 284 

rand137 asa 91 92 9 92 9 91 92 101 91 

rand13B asa 10 10 10 107 108 108 10 108 10 

rand139 asa 336 243 290 523 336 527 28 37 243 

rand141 asa 40 562 505 501 466 474 408 473 404 

rand143 asa 18 159 17( 162 171 166 161 176 159 

rand144 asa 570 1085 98 982 520 643 1104 588 520 

rand145 asa 11 0 11B 11B 102 111 106 122 11 102 

rand146 asa 98 92 9~ 92 9 91 92 101 91 

rand147 asa 635 2696 2963 770 631 1108 1035 66 631 

rand148 asa 103 B 86 93 98 93 97 94 B6 
rand149 asa 26< 292 279 269 27 246 292 290 246 

rand150 asa 121 235 1B3B 2076 1317 134 1700 1315 1214 

rand151 asa 10B 114 10 104 109 10B 115 112 104 

rand153 asa 17~ 16B 161 166 165 165 166 172 165 

rand154 gsq 131 BB 12 12 99 99 130 8 87 

rand155 gsq 33B 332 320 236 262 219 470 27 219 

rand156 gsq 189 149 149 149 149 143 19 149 143 

rand158 gsq 11421 7504 7504 7973 881B 6710 7158 7902 6710 

lrsaba1 gsq 1171 409 415 355 660 354 379 549 354 

lrsaba3 gsq 1608 2269 2101 143 149B 1263 1951 2138 1263 
lrsaba4 gsq 711 772 793 692 455 491 42 459 42 

lrsaba5 gsq 622 728 597 535 506 603 B26 523 506 

l1saba6 gsq 309 321 313 280 267 241 314 310 241 

llsaba7 gsq 1171 409 41 355 660 354 379 549 354 

l1saba8 gsq 29B 195 195 162 226 15B 163 233 158 

l1sab10 asa 1164 1059 902 702 6BO 701 103 583 5B3 

l1sab11 asa 113 99 122 122 119 119 100 120 99 

llsab13 asa 690 82 821 794 779 766 5B9 783 589 

llsab17 asa 1171 409 415 355 660 35 379 549 354 

lrsab24 asa 189 145 145 138 162 152 145 15B 138 

llsab25 asa 219 209 232 21 218 208 213 224 208 

llsab26 asa 34 3 34 34 34 3 34 38 34 

lrsab27 asa 621 B46 7B2 673 618 440 439 562 439 

lrsab28 asa 64 69 62 59 61 66 62 70 59 

lrsab30 asa 275 236 234 22 248 209 259 23 209 

lrsab31 asa 851 1299 1299 996 809 732 1205 72 727 

lrsab34 asa 63 6 64 64 66 65 73 65 63 

llsab35 asa 794 556 556 4BO 704 725 716 564 4BO 

llsab36 asa 1055 127 113B 1309 1120 125 1056 1015 1015 

lrsab37 asa 164 142 142 129 140 129 135 131 129 

lrsab42 asa 63 60 60 60 60 60 62 60 60 

lrsab44 asa 114 116 116 119 110 122 113 119 110 

lrsab47 asa 75 75 75 75 69 73 75 70 69 

lrsab48 asa 51 60 60 60 56 56 54 55 51 

lrsab49 asa 299 242 244 229 293 236 295 316 229 

lrsab50 asa 78 82 69 69 6 66 83 65 65 

lrsab51 asa 73 6 6 69 76 73 78 71 67 

lrsab52 asa 925 12B 12B4 1001 735 BOO 1161 654 654 

lrsab53 asa 23 23 23 23 24 2 23 23 23 
hsab54 gsq 71 63 66 66 66 66 6 65 63 

Table A 52. Maximum reqmred s1ze for small fault trees m the Bas1c Hybrid 
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I FTname 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
lisab55 osa 10 10 10 1( 1( 10 10 10 10 
lisab56 osa 72 73 73 74 71 69 75 73 69 
lisab57 osa 211 209 202 19 201 206 300 259 194 
11Sab59 QSQ 231 178 17< 18 272 213 17~ 265 174 
l1sab60 QSQ 71 6 6~ 63 68 62 63 62 62 
l1sab61 gsq 281 320 320 304 273 277 370 282 273 
l1sab62 gsq 189 182 16 229 19( 252 304 201 163 
11sab6S gsq 70 66 66 6~ 65 61 6< 69 61 
llsab64 gsq 739 862 76~ 763 67~ 622 654 666 622 
llsab65 gsq 54 59 5 52 54 5 59 56 52 
l1sab66 gsq 485 938 93< 562 465 502 958 525 465 
llsab67 gsq 658 636 598 492 473 474 826 456 456 
l1sab68 gsq 74 82 70 70 74 75 70 78 70 
llsab69 gsq 136 132 123 114 128 132 140 122 114 
llsab70 gsq 32 416 416 239 288 239 305 280 239 
l1sab71 gsq 57 61 61 61 51 5 61 57 51 
llsab72 gsq 779 1111 75 648 666 585 93 577 577 
llsab73 gsq 69 69 69 69 74 69 69 69 69 
lisab75 gsq 122 125 125 126 121 119 12 121 119 
lisab77 gsq 887 821 755 731 842 554 755 762 554 
lisab78 gsq 436 30 336 264 303 262 355 282 262 
lisab81 gsa 47 4 4 4 47 47 4 4 47 
lisab82 gsq 1913 842 842 1120 1226 1279 989 113 842 
lisab83 gsa 567 396 58 448 43 428 263 450 263 
lisab84 a sa 567 396 58 448 43 428 263 450 263 
l1sab86 osa 339 413 330 312 34 32 44 298 298 
l1sab88 QSQ 500 512 512 551 54 478 439 521 439 
llsab89 asa 1038 646 88 68 1016 783 581 83 581 
lisab91 asa 1470 931 752 750 1225 1042 713 111 0 713 
lisab95 osa 77 60 82 82 77 70 82 72 60 
lisab97 osa 112 11 0 110 104 112 111 101 109 101 
lisab98 osa 57 54 54 56 60 54 56 60 54 
l1sa1 00 QSQ 2024 964 882 1236 1642 1378 1248 1153 882 
l1sa1 03 QSQ 23 2 23 23 24 24 23 23 23 
11sa1o4 asa 167 159 159 15 148 148 164 148 148 
lisa1 07 osa 28 28 28 28 28 28 28 28 28 
lisa1 09 a sa 258 276 251 274 248 244 27 260 244 
lisa110asa 1023 1248 1193 1073 1309 1085 1056 1550 1023 
llsa111 gsq 287 224 224 224 262 230 25 258 224 
lisa112 gsq 1840 530 538 761 1922 1033 723 1391 530 
llsa113 gsq 1297 135 1375 692 888 718 602 709 602 
11sa115 gsq 110 11 105 105 92 91 94 89 89 
lisa116gsq 56 61 60 61 54 56 59 57 54 
11Sa119 QSQ 53 42 42 42 43 42 53 43 42 
11sa120 gsq 84 81 72 70 75 70 93 75 70 
l1sa121 QSQ 285 21 181 180 244 181 228 235 180 
llsa122 asa 127 122 122 122 122 121 122 120 120 
llsa123 asa 191 179 179 164 204 150 195 263 150 
llsa124 gsq 1394 932 926 919 1448 69 1152 1301 697 
rand159 gsq 730 881 693 693 574 362 405 494 362 
rand161 gsq 355 569 544 523 338 326 565 373 326 
rand162 gsq 8 8 8 8 8 8 8 8 8 
rand163 gsq 1305 194 1728 1716 1205 1304 3971 1618 1205 
rand164 gsq 2475 2372 1214 1202 1489 1010 1290 1335 1010 

Table A 53 Maximum required size for small fault trees in the Basic Hybnd 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
astolfo osa 03 0 41 045 0 41 0~ 0 45 0 42 o< 03 
benrram osa 0 34 042 043 042 043 043 0 42 04 0 34 
bpfeq03 dat 088 0 99 1 11 1 1 1 0 1 12 1 05 1 0 088 
bpfen05 dat 076 0 88 089 0 94 06 0 9~ 094 0 91 06 
bpfrg05 dat 076 0 B9 095 0 94 094 09 093 o Be 076 
bpfrn05 dat 0 66 OB OB5 0 BE 08 on 084 0 B1 066 
bpfsw02 gsq 03B 0 66 066 0 69 048 04 067 04 038 
dre1019 dat 034 043 042 043 038 043 043 04 034 
dre1032 dat 034 0 42 042 045 042 044 042 04< 034 
dre1057 dat 03B 0 46 04B 0 43 046 05 04 0 46 038 
dre105B dat 0 22 0 29 044 0 42 026 0 4B 044 0 42 022 
dre1059 dat 0 23 02 029 0 28 0 28 03 02B 02 0 23 
dresden dat 0 24 0 34 044 044 033 0 4B 04 0 41 0 24 
hprsf02 dat 02 0 48 048 0 46 03 0 35 05 0 39 0 27 
hprsf03 dat 034 042 043 04 038 043 0 42 0 42 0 34 
hprsf21 qsq 0 22 0 2B 028 0 25 028 0 29 0 28 0 34 022 
hprsf36 qsq 0 35 042 042 04 044 042 042 0 42 035 
dtree3 gsq 0 71 0 79 079 0 77 0 B1 OB 0 7B 0 75 0 71 
dtree4 gsq 046 05 057 0 56 053 0 5< 0 56 05 046 
dtree5 gsq 0 55 0 64 066 0 63 066 0 63 0 65 06 055 
khrctre dat 035 042 043 039 036 0 41 0 42 0 4< 035 
nakashrgsq 0 22 0 42 043 0 25 02 04 042 02 022 
trralst gsq 02 02 027 0 25 027 0 42 028 04 02 
trrals4 asa 0 22 0 2B 028 0 26 028 0 2B 029 0 41 0 22 
random3 osa 022 0 2B 029 02 045 04:: 027 02 0 22 
random6 asa 027 1 1 1 09 1 27 04 0 1 4 0 43 02 
randomB asa 035 043 043 0 42 039 04:: 042 04 035 
rando12 asa 022 02 028 02 022 0 29 0 28 o 2c 022 
rando13 asa 022 0 29 03 03 0 21 0 29 0 32 0 29 0 21 
rando16 osa 026 0 33 046. 033 026 0 33 0 45 0 3' 026 
rando18 asa 3 02 13 89 13 29 30 18 2 10 23 27 07 20 2 
rando23 asa 035 04 042 043 0 41 043 0 39 0 3B 035 
rando25 asa 035 0 42 043 0 43 0 41 043 043 0 41 035 
rando27 asa 041 0 3B 037 0 53 04B 05 049 o< 03 
rando28 gsq 036 043 042 0 46 0 41 043 027 0 42 02 
rando29 gsq 0 21 02 028 0 26 0 26 02 024 0 17 0 1 
rando30 gsq 026 046 048 0 4E 033 0 3< 044 02 02 
rando31 gsq 03B 046 045 0 51 046 046 038 0 41 03B 
rando33 gsq 035 043 044 0 42 042 043 0 41 0 32 032 
rando34 asa 035 042 042 0 43 043 04 044 0 39 035 
rando35_gsa 034 043 043 0 44 0 41 044 0 43 0 39 0 34 
rando36 asa 035 043 043 0 42 038 0 41 043 0 32 032 
rando37 asa 035 02 0 28 0 28 039 0 28 0 43 o 3< 02 
rando38 asa 034 042 0 42 0 43 048 038 0 43 03 032 
rando39 osa 022 042 0 42 0 25 026 02 0 29 0 022 
rando40 asa 034 0 41 0 43 042 043 0 41 0 41 0 4! 03 
rando42 asa 034 0 42 043 044 042 0 41 047 043 03 
rando43 asa 034 0 41 0 43 043 0 41 039 045 043 03 
rando44 osa 024 02 0 28 0 29 0 29 0 2B 0 31 0 2~ 02 
rando45 gsq 035 0 42 0 41 043 044 0 42 044 04<' 035 
rando46 gsq 035 043 0 43 0 44 043 043 046 0 46 035 
rando47 gsq 0 21 02 0 28 04 048 036 045 0 41 0 21 
rando4B gsq 0 34 0 36 043 045 043 035 039 0 42 03 
rando52 gsq 037 0 2B 0 44 046 045 0 3B 043 0 45 0 2B 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
rando53 asa 035 043 043 0 42 042 0 044 043 035 
rando54 asa 034 043 044 04' 042 0 38 04' 0 41 034 
rando55 asa 035 0 36 043 043 042 042 042 044 035 
rando58 asa 034 0 36 042 0 43 045 044 04' 0 41 034 
rando59 gsq 023 02 028 0 28 029 02 028 0 28 023 
rando60 gsq 035 043 042 043 04' 042 044 04' 035 
rando61 gsq 035 0 38 044 0 43 043 04' 043 04' 035 
rando62 gsq 033 0 38 042 0 43 043 042 044 0 45 033 
rando63 gsq 034 0 38 044 0 42 042 043 043 04' 034 
rando64 gsq 0 21 04 028 0 42 027 042 045 0 28 0 21 
rando65 gsq 035 0 38 042 043 042 043 043 0 36 035 
rando66 gsq 034 0 38 042 044 042 043 043 0 42 034 
rando70 asa 035 03 042 043 0 042 044 046 035 
rando73 asa 022 0 37 042 043 0 41 0 042 04 0 22 
rando75 asa 035 0 39 042 043 042 0 41 042 043 035 
rando76 asa 035 038 043 0 42 042 0 043 044 0 35 
rando77 asa 035 044 044 0 42 042 044 044 044 035 
rando78 asa 035 043 043 0 43 043 0 36 042 043 035 
rando80 asa 034 042 043 043 044 03 043 046 0 34 

rando83 asa 035 042 043 0 43 044 0 41 043 046 0 35 
rando84 asa 022 02 028 0 28 0 22 02 04' 0 38 0 22 
rando85 gsq 034 042 043 0 38 03 0 41 042 0 35 0 34 
rando87 gsq 035 0 41 043 03 043 0 41 039 0 25 025 
rando88 qsq 039 0 45 048 0 39 0 29 045 045 03 029 
rando89 gsq 036 043 042 0 36 025 043 042 03 0 25 
rando91 gsq 023 0 33 0 31 023 01 0 28 0 31 0 1 0 1 
rando92 gsq 1 16 213 294 372 082 0 69 047 1 13 04 

rando93 asa 035 044 042 0 35 042 0 36 0 35 043 0 35 
rando95 gsq 034 044 043 0 35 043 0 36 0 31 043 0 31 
rando98 gsq 023 03 028 0 22 028 0 22 026 0 27 0 22 
rando99 gsq 035 0 29 03 0 22 028 02 0 28 0 29 0 22 
rand1 00 gsq 034 0 38 043 035 042 038 044 046 03 
rand1 03 gsq 035 038 043 0 35 043 0 41 044 045 0 35 
rand1 04 gsq 034 043 043 036 042 042 043 0 42 0 34 
rand1 05gsa 039 0 32 032 039 048 048 0 52 05 032 
rand1 06 asa 036 05 05 038 042 043 04 043 036 
rand1 08 gsq 034 03 028 0 22 042 042 03 0 41 022 
rand1 09 asa 022 0 29 029 022 0 28 0 28 02 0 25 022 
rand110 asa 034 0 45 0 41 034 043 042 044 0 42 034 
rand111 asa 034 043 044 035 043 042 044 03 034 
rand115 asa 0 21 043 042 0 21 028 02 0 28 03 0 21 
rand116 asa 034 0 27 027 024 044 0 26 03 043 0 24 
rand117 gsq 035 043 042 034 043 039 04 0 42 034 
rand118 asa 022 0 28 0 28 0 21 028 0 26 038 03 0 21 
rand119 gsq 033 043 043 0 35 042 04 044 0 39 033 
rand120 gsq 028 0 52 0 52 033 0 41 04 0 58 0 33 0 28 
rand121 gsq 035 043 043 0 35 043 044 043 036 035 
rand123 asa 036 042 043 0 35 042 043 045 0 42 035 
rand124 gsq 038 047 048 039 047 0 47 048 0 45 038 
rand125 gsq 035 043 0 41 0 35 042 0 39 036 043 035 
rand126 gsq 025 032 032 0 25 032 0 31 044 0 33 0 25 
rand127 gsq 043 0 51 0 51 043 054 05 0 56 0 52 043 
rand128 gsq 022 043 044 0 36 028 0 26 045 0 42 0 22 
rand129 gsq 035 043 043 0 35 042 04 0 45 04 0 35 
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FT name 1 scheme 2scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
rand130 gsq 0 3~ 043 042 0~ 043 042 043 043 034 
rand132 gsq 0 22 028 0 28 0 25 0 28 029 03 0 28 0 22 
rand134 gsq 02 028 028 0 2~ 025 03 03 02 022 
rand135 gsq 0 35 043 043 036 042 044 043 044 0 35 
rand137 asa 0 35 043 0 41 036 042 042 043 044 035 
rand138 asa 03 042 043 03~ 042 042 044 045 034 
rand139 asa 0 21 044 043 0 21 043 028 02 039 0 21 
rand141 asa 0 35 044 043 036 046 039 039 039 0 35 
rand143 asa 03 043 04 035 043 0 41 0 0~ 034 
rand144 asa 0 21 0 03 023 02 028 029 025 0 21 
rand145 asa 0 43 0 52 0 52 042 052 0 53 053 04 042 
rand146 asa 0 3: 043 043 035 o 4c 043 043 038 0 35 
rand147 asa 023 04 042 022 02 0 24 03 026 0 22 
rand148 qsq 035 043 042 035 042 03 043 043 0 35 
rand149 gsq 042 0 53 0 52 046 0 5€ 0 52 0 53 0 53 0 42 
rand150 qsq 0 23 0 35 032 02 0 31 02 0 28 0 29 0 23 
rand151 gsq 0~ 0 48 0 48 039 04 0 34 0 41 042 0 34 
rand153 gsq 036 0 43 0 43 035 042 0 38 036 03 0 35 
rand154 gsq 0 36 0 43 042 035 04 041 0~ 039 0 35 
rand155 gsq 0 22 0 28 028 0 21 0 28 043 029 026 0 21 
rand156 gsq 0 36 042 04 0 35 042 044 048 042 035 
rand158 gsq 2 99 1 56 1 5€ 1 4 1 8 1 29 1 18 1 59 1 18 
ltsaba1 gsq 033 04 043 043 0 3: 046 0 4~ 03 033 
ltsaba3 gsq 035 049 048 036 03 042 045 04 0 34 
ltsaba4 gsq 0 21 0 29 02 02 02 02 022 028 0 21 
llsaba5 gsq 0 21 02 0 43 035 025 02 0 21 0 26 0 21 
ltsaba6 gsq 022 0 28 028 035 0 22 028 043 0 26 0 22 
ltsaba7 gsq 034 0~ 042 0 42 032 05 0 51 033 032 
llsaba9 gsq 022 044 043 0 35 0 28 0 41 039 042 022 
ltsab10 gsq 0 23 029 028 0 22 0 29 028 03 0 21 0 21 
11Sab11 gsq 036 043 04 0 35 0' 04 045 0 3~ 034 
ltsab13 gsq 036 043 04 0 36 04' 043 044 036 036 
ltsab17 gsq 032 0 41 043 0 41 034 05 052 0 3~ 032 
ltsab24 asa 0 58 0 71 0 71 075 0 71 079 076 07 0 58 
ltsab25 asa 035 029 043 o 3c 036 0 41 0 4~ 044 0 29 
ltsab26 asa 035 043 042 03~ 036 042 044 042 0 34 
ltsab27 gsq 023 0 29 0 29 02 028 0 29 044 028 0 23 
l1sab28 asa 042 0 53 0 56 0 4€ 052 0 52 0 59 0 53 0 42 
llsab30 asa 035 043 043 0 3€ 044 043 044 043 0 35 
llsab31 asa 023 03 0 31 02 028 028 0 31 02 023 
ltsab34 asa 034 0 43 043 035 043 042 0 45 036 034 
ltsab35 asa 022 0 28 028 0 21 0 28 028 0 29 0 23 0 21 
ltsab36 asa 023 0 0 0 2~ 03 0 31 04 028 023 
llsab37 asa 035 042 04 035 042 0 41 044 04 035 
ltsab42 asa 034 0 43 044 0 36 042 043 043 042 034 
llsab44 asa 035 042 042 0 3: 042 042 044 0 41 035 
llsab47 asa 035 043 042 0 3~ 042 042 044 044 034 
ltsab48 asa 034 043 042 0 35 043 042 0 41 0 41 0 3~ 
ltsab49 asa 0 59 09 085 0 82 0 71 08 098 064 0 59 
ltsab50 gsq 0 34 043 043 0 35 04; 042 044 043 0 3~ 
ltsab51 gsq 0 39 048 047 0 39 04 046 0 51 049 039 
ltsab52 asa 0 23 03 03 0 22 0 28 029 0 31 029 022 
ltsab53 gsq 037 043 044 0 3: 042 04 039 043 035 
ltsab54 gsq 036 044 042 0 3~ 043 041 038 0~ 034 

Table A 56 Processmg time for small fault trees m the Advanced Hybrid method, 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
l!sab55 asa 0 41 04 048 03 04 04 043 046 037 
l!sab56 asa 035 043 043 034 043 0 042 045 034 

l!sab57 asa 022 02 026 022 0 26 02 028 028 022 

l!sab59 asa 0 52 07 0 81 0 7~ 0 69 086 0 96 066 052 
l!sab60 asa 036 043 043 0 34 042 042 045 042 03 
l!sab61 asa 036 044 043 036 044 042 046 045 036 
l!sab62 asa 0 41 0 49 047 039 04 045 048 04 039 
l!sab63 asa 035 0 4~ 043 03 042 043 044 0 41 03 
l!sab64 asa 037 045 044 0 35 043 0 41 044 043 035 
l!sab65 asa 036 0 42 043 03~ 042 042 046 04' 035 
l!sab66 asa 036 04 044 036 043 043 046 042 036 
l!sab67 asa 027 0 34 033 02 032 033 036 032 02 
l1sab68 asa 048 05 0 61 052 05 05 066 062 048 

llsab69 asa 036 o 4c 043 03~ 043 043 035 042 0 3~ 
1Jsab70 asa 0 28 033 032 0 033 04 034 03 028 

1Jsab71 asa 036 043 043 0 36 043 04 042 04' 036 
11sab12 asa 0 24 03 0 28 0 21 02 029 028 029 0 21 
1Jsab73 asa 0 52 063 0 61 04 0 56 05 0 66 055 04 

1Jsab75 asa 036 0 41 043 036 044 043 042 04' 036 
11Sab77 gsq 0 24 0 28 0 29 0 22 0 28 0 28 0 28 029 022 
1Jsab78 gsq 0 23 0 2E 028 0 3< 02 0 28 0 28 026 023 
11sab81 gsq 044 0 51 053 042 052 05 05 044 042 
l!sab82 gsq 1 3 1 26 1 27 088 1 74 0 75 05 1 42 05 
llsab83 gsq 024 02 028 036 028 043 043 045 024 
l!sab84 gsq 022 02 028 0 3~ 028 0 42 042 044 022 
l!sab86 gsq 024 028 027 022 028 027 028 02 022 
l!sab88 gsq 037 044 039 035 042 044 02 043 027 
l!sab89 gsq 024 028 028 02 029 029 042 028 022 
1Jsab91 gsq 03 03 033 025 036 03 034 036 025 
1Jsab95 asa 036 04 04 035 043 043 042 042 035 
l!sab97 asa 042 04 044 042 0 52 052 04 05 042 

1Jsab98 asa 039 048 045 039 048 04 04 0 41 039 
l!sa1 oo asa 036 035 034 028 03 03 035 03 028 
l1sa1 O&asa 037 043 042 035 043 043 042 043 035 
11sa1 04 a sa 037 042 042 036 04 045 042 043 036 
11sa1 07 asa 038 042 0 41 036 04 043 042 045 036 
l1sa1 09 asa 038 043 042 03 043 042 042 044 037 
11sa110 asa 0 25 03 029 0 24 0 029 029 032 024 
11sa111 asa 033 0 51 0 51 0 45 0 53 0 51 0 58 038 033 
11sa112 asa 034 0 33 0 29 027 0 41 035 035 038 027 
11sa113 asa 0 26 0 31 02 0 23 03 028 029 03 023 
l1sa115 asa 039 042 03€ 0 37 044 04' 044 046 036 
l1sa116 asa 0 38 043 044 0 37 044 044 042 045 037 
11sa119 asa 042 046 049 04 049 04 048 04 04 
l1sa120 qsq 058 0 65 079 0 61 069 0 68 06 073 0 58 

l1sa121 asa 0 31 0 52 0 51 0 44 036 0 51 0 53 03 0 31 
l1sa122 asa 0 37 042 045 0 36 043 042 043 0 41 036 
11sa123 asa 038 043 043 03 042 042 043 042 037 
11sa124 asa 027 03 03 0 25 0 31 029 0 31 029 0 25 
rand159 asa 0 24 0 28 029 0 24 0 28 045 043 03 0 24 
rand161 qsq 0 24 0 28 026 0 23 0 31 02 028 02 0 23 
rand162 asq 038 042 035 0 36 04c 042 044 0 41 0 35 
rand163 asa 0 26 0 33 0 31 0 27 0 31 0 31 0 58 0 31 0 26 
rand164 gsq 0 42 043 034 0 27 036 03 036 035 0 27 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme Sscheme 6 scheme 7 scheme 8 scheme M1n1mum 
astolfo osa 72 75 72 58 74 63 76 8 58 
ben 1am asa 83 82 82 79 83 7 82 10< 7 

bpfea03 dat 211 202 194 15 204 15 17 18; 15 

bofen05 dat 201 184 193 156 197 156 156 20 156 
bpfiq05 dat 197 181 190 153 193 153 153 16( 153 
bpfln05 dat 118 125 97 9 97 9 97 10: 9 
bpfsw02 gsq 205 139 139 139 205 205 141 20; 139 

dre1019 dat 45 45 45 45 45 45 49 45 45 
dre1032 dat 55 55 55 49 49 49 55 49 49 
dre1057 dat 89 9 87 81 83 83 97 81 81 

dre1058 dat 269 415 250 223 302 201 294 19> 199 

dre1059 dat 345 644 677 676 379 276 586 29 276 

dresden dat 859 1818 806 739 1215 eo; 1816 77; 739 
hp1sf02 dat 646 288 288 335 659 641 467 1076 288 
hplsf03 dat 113 108 108 108 113 113 111 11 108 

hPISf21 asa 829 683 683 90C 976 871 803 207 683 
hPISf36 osa 134 136 128 12 126 122 136 14 122 

dtree3 osa 59 51 51 51 59 5 51 5> 51 

dtree4 asa 69 6 63 6 69 69 63 69 63 
dtree5 asa 61 53 53 5 61 59 53 61 53 
kh1ctre dat 199 176 199 196 196 196 176 192 176 
nakash1 gsq 245 113 143 141 183 13C 118 17; 113 
tnalst gsq 314 306 323 265 323 236 274 279 236 
tnals4 qsq 466 603 52 47 41 401 486 37: 373 
random3 gsq 640 735 643 671 612 569 492 63 492 
random6 gsq 1979 6846 6845 7629 2788 2685 8040 308C 1979 
random8 gsq 7 71 73 73 7 71 71 71 71 
rando12 gsq 774 621 631 658 594 591 746 558 558 
rando13 gsq 998 1103 1103 1660 889 1213 1735 936 889 
rando16 asa 1918 181 1577 1839 1893 1722 1509 1899 1509 

rando18 asa 1298 2671 25915 3869 9996 2267 36210 9830 9830 

rando23 asa 332 376 376 369 280 293 375 249 249 
rando25 asa 92 BC 80 13 9 113 98 82 80 
rando27 asa 2283 2599 2597 2261 2590 2132 1972 2298 1972 
rando28 gsq 258 26C 250 249 244 246 253 25 244 

rando29 asa 467 606 468 466 446 390 430 403 390 

rando30 asa 376 188 201 199 352 29 210 33; 188 
rando31 gsq 1552 1431 1499 2209 1490 153 1437 1668 1431 
rando33 gsq 185 179 179 210 18 172 201 31; 172 

rando34 gsq 416 396 461 465 394 406 407 336 336 
rando35 gsq 382 476 428 425 301 301 283 29 283 
rando36 gsq 162 150 157 16 168 161 163 159 150 
rando37 gsq 402 566 566 602 39 582 410 447 39 
rando38 aso 11 11 114 113 11 110 106 110 106 

rando39 oso 393 358 358 79 352 599 688 441 352 

randa40 gsq 5 53 53 54 60 5 54 52 52 

rando42 gsq 58 59 63 62 63 62 59 67 58 
rando43 gsq 120 12; 125 123 122 12C 132 118 118 
rando44 asa 1028 43 429 621 648 518 724 726 429 
rando45 osa 260 251 251 306 240 221 254 228 221 

rando46 osa 708 616 616 545 544 520 460 517 460 

rando47 asa 268 309 309 269 22 228 268 22( 220 
rando48 asa 154 145 145 143 145 136 155 149 136 

rando52 osa 1148 1081 1162 1230 111 9 117( 1247 96 965 

Table A 58 Maximum required size for small fault trees in the Advanced Hybrid 

method, 1 

300 



FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mlmmum 
rando53 gsq 113 99 122 122 119 119 100 120 99 
rando54 asa 158 152 156 156 158 15 156 16 152 
rando55 asa 197 196 196 223 19 19 194 191 191 
rando58 asa 114 11 117 116 102 10 113 102 102 
rando59 a sa 842 516 516 467 71 571 430 539 430 
rando60 a sa 402 42 452 425 376 33 499 343 337 
rando61 asa 165 172 168 236 163 196 232 161 161 
rando62 a sa 115 114 117 120 116 118 114 116 114 
rando63 asa 197 196 196 223 19 19 19 191 191 
rando64 gsq 542 405 386 364 584 351 379 359 351 
rando65 asa 75 77 69 74 76 88 10 SE 69 
rando66 asa 257 253 253 288 251 23E 270 245 236 
rando70 asa 115 10 107 10 108 109 108 112 10 
rando73 asa 334 341 337 338 290 27 499 269 269 
rando75 gsq 68 68 68 68 6 68 68 6 6 
rando76 gsq 247 180 229 209 202 209 259 221 180 
rando77 gsq 524 482 477 539 544 568 702 541 477 
rando78 gsq 131 133 144 139 131 131 136 13 131 
randoBO gsq 81 76 76 81 82 81 87 81 76 
rando83 gsq 113 128 121 89 98 89 12 9 89 
rando84 gsa 301 195 211 203 239 210 198 19 195 
rando85 asa 229 221 221 213 206 206 22 213 206 
rando87 gsa 70 74 74 70 6 6 69 6 6 
rando88 asa 113 91 112 92 88 93 10 90 88 
rando89 a sa 1014 892 860 849 937 872 649 99 649 
rando91 asa 914 1789 1775 102 84 871 1846 800 800 
rando92 asa 7088 9872 11810 13746 5408 5043 3670 6795 3670 
rando93 asa 411 352 312 410 358 362 341 326 312 
rando95 asa 143 104 133 133 142 128 133 122 104 
rando98 asa 787 644 644 74 682 672 685 482 482 
rando99 asa 51 1104 1047 93 552 676 87 59 51 
rand1 00 a sa 196 199 199 19 181 182 190 181 181 
rand1 03 a sa 151 132 132 145 147 139 138 153 132 
rand1 04 qsq 290 334 338 326 272 284 177 280 17 
rand1 05 gsq 200 196 192 168 204 164 153 229 153 
rand1 06 gsq 698 2071 2071 813 642 572 980 548 548 
rand1 08 gsq 387 598 576 51 36 438 584 33 33 
rand1 09 gsq 569 384 390 502 576 462 590 705 384 
rand110 gsq 404 562 505 501 466 474 408 473 40 
rand111_ gsa 336 382 338 293 324 28 285 296 282 
rand115 gsa 337 310 310 348 323 250 250 256 250 
rand116 gsa 525 388 437 805 479 748 764 360 360 
rand117 gsa 74 73 71 71 69 69 68 70 68 
rand118 asa 301 195 211 203 239 210 198 19 195 
rand119 osa 143 148 153 126 132 130 151 129 126 
rand120 gsq 523 242 276 299 500 340 306 48 242 
rand121 gsa 236 223 223 21 219 214 305 22 21 
rand123 gsa 65 71 71 6 65 61 71 66 61 
rand1 24 asa 106 11 122 108 113 114 128 1 16 106 
rand125 osa 57 60 58 5<1 54 54 58 54 5 
rand126 asa 315 286 286 292 322 265 300 326 265 
rand1 27 asa 117 8 87 83 109 84 83 106 83 
rand1 28 asa 673 458 443 65 658 705 634 44E 443 
rand1 29 asa 64 64 64 63 63 63 63 61 61 

Table A 59: Max1mum required size for small fault trees in the Advanced Hybnd 

method, 2 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 
rand130 gsq 210 181 181 174 179 175 211 179 174 
rand132 gsq 76 82( 820 1558 611 1203 1532 893 611 
rand134 gsq 571 740 760 1512 57 1053 1151 554 554 
rand135 gsq 331 336 331 529 342 284 404 359 284 
rand137 gsq 98 9 9 9? 9 91 92 101 91 
rand138 asa 10 10 10 10 108 108 10 108 107 
rand139 asa 336 243 290 523 336 527 284 37 243 
rand141 asa 404 562 505 501 46€ 474 408 473 404 
rand143 asa 184 15£ 170 162 171 166 161 176 159 
rand144 asa 570 1085 98 982 520 643 1104 588 520 
rand145 asa 10 115 115 99 1 OE 103 119 114 99 
rand146 asa 98 92 92 92 9 91 92 101 91 
rand147 asa 635 2696 2963 770 631 1108 1035 66 631 
rand148 asa 103 8 86 9~ 98 93 9 94 86 
rand149 asa 261 29( 27 264 272 241 290 285 241 
rand150 asa 1214 235 1838 2076 1317 134 1700 1315 1214 
rand151 asa 10 113 103 103 108 107 114 111 103 
rand153 asa 175 16E 168 166 165 165 166 172 165 
rand154 asa 131 88 12 127 99 99 130 8 87 
rand155 asa 338 33; 320 236 262 219 470 274 219 
rand156 gsq 189 149 149 149 149 143 197 149 143 
rand158 gsq 11421 750 7504 7973 8818 6710 7158 7902 6710 
hsaba1 gsq 1167 405 411 354 659 353 378 548 353 
hsaba3 gsq 1605 2266 2098 1434 149: 1260 1948 2135 1260 
hsaba4 gsq 711 772 79 692 45: 491 42 459 42 
11Saba5 gsq 622 728 59 535 50€ 603 826 523 506 
l1saba6 gsq 309 321 31 280 26 241 314 310 241 
11saba? asa 1167 40 411 354 659 353 378 548 353 
l1sabaB asa 298 195 195 162 226 158 163 233 158 
IIS8b1 0 gsq 1164 1059 902 702 680 701 1037 583 583 
IIS8b11 gsq 113 99 122 122 11£ 119 100 120 99 
hsab13 gsq 690 82 821 794 779 766 589 783 589 
IIS8b17 gsq 1167 405 411 354 659 353 378 548 353 
hsab24 gsq 175 131 131 88 140 130 122 136 88 
llsab25 gsq 219 209 232 21 218 208 213 22 208 
hsab26 gsq 34 34 34 34 34 34 34 38 34 
hsab27 gsq 621 846 782 673 618 440 439 562 439 
llsab28 gsq 66 79 56 46 56 61 56 65 46 
hsab30 asa 275 236 234 22 248 209 259 23 209 
hsab31 asa 851 1299 1299 996 809 732 1205 72 727 
hsab34 asa 63 64 64 64 66 65 73 65 63 
llsab35 asa 794 556 556 480 704 725 716 564 480 
llsab36 asa 1055 1274 1138 1309 1120 1254 1056 1015 1015 
hsab37 asa 164 142 142 129 140 129 135 131 129 
hsab42 asa 63 60 60 60 60 60 62 60 60 
hsab44 asa 114 116 116 119 110 122 113 119 110 
hsab47 asa 75 75 75 75 69 73 75 70 69 
hsab48 asa 51 60 60 60 56 56 54 55 51 
llsab49 asa 268 185 213 164 26 202 172 282 164 
hsab50 asa 78 82 69 69 6 66 83 65 65 
hsab51 asa 70 64 64 66 73 70 75 68 64 
hsab52 asa 925 1284 1284 1001 735 800 1161 654 654 
hsab53 asa 23 23 23 23 2 24 23 23 23 
hsab54 asa 71 63 66 66 66 66 67 65 63 

Table A 60: Maximum reqmred s1ze for small fault trees m the Advanced Hybnd 

method, 3 
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I FTname 1 scheme 2 scheme 3 scheme 4 scheme Sscheme 6scheme 7 scheme 8 scheme M1n1mum 
ilsab55 gsq 9 9 9 9 9 9 9 9 9 
ilsab56 gsq 72 73 73 74 71 69 75 73 69 
ilsab57 gsq 211 209 202 194 201 206 300 259 194 
ilsab59 gsq 215 162 156 12 244 185 129 23 127 
11sab60 asa 71 64 6 63 68 62 63 62 62 
l1sab61 asa 281 320 32( 304 273 27 370 282 273 
llsab62 asa 188 181 16 228 189 251 303 200 162 
lisab63 asa 70 66 66 6 65 61 64 69 61 
ilsab64 asa 739 86 76 763 674 622 65 666 622 
ilsab65 asa 54 59 5 5 54 5 59 56 52 
11sab66 asa 485 938 935 562 465 502 958 525 465 
ilsab67 asa 657 63 59 491 47 473 825 455 455 
ilsab68 asa 68 7 5 5 68 69 5 68 5 
ilsab69 asa 136 132 123 11 128 132 140 122 114 
ilsab70 asa 324 41 413 23( 285 236 302 277 236 
ilsab71 asa 57 61 61 61 51 57 61 5 51 
ilsab72 asa 779 1111 75 648 666 585 93 57 577 
ilsab73 asa 57 5 5 6 6 62 45 50 45 
ilsab75 asa 122 125 125 126 121 119 12 121 119 
llsab77 asq 887 821 755 731 84< 554 755 762 554 
ilsab78 asq 436 302 336 264 303 262 355 282 262 
l1sab81 asq 41 41 41 41 41 41 41 41 41 
lisab82 gsq 1911 840 840 1118 1224 127 98 1135 840 
lisab83 asq 567 396 58 448 434 428 263 450 263 
ilsab84 gsq 567 396 58 448 434 428 263 450 263 
ilsab86 gsq 339 413 330 312 344 327 44 298 298 
ilsab88 gsq 500 512 512 551 54 478 439 521 439 
ilsab89 gsq 1038 646 88 687 1016 783 581 83 581 
ilsab91 gsq 1469 930 751 749 1224 1041 712 1109 712 
ilsab95 gsq 77 60 82 82 7 70 82 72 60 
ilsab97 gsq 110 108 1oc 98 106 105 99 103 98 
ilsab98 gsq 55 52 52 54 58 52 54 58 52 
ilsa1 00 gsq 2022 962 88( 1234 1640 1376 1246 1151 880 
ilsa1 03 gsa 23 2 21 23 2 24 23 23 23 
ilsa1 04gsa 167 159 159 15 148 148 164 148 148 
ilsa1 07 gsq 28 28 28 28 28 28 28 28 28 
ilsa1 09 gsq 258 276 251 274 248 2~ 27 260 244 
ilsa110 asa 1023 1248 1193 1073 1309 1085 1056 1550 1023 
l1sa111 asa 285 222 222 222 260 228 249 256 222 
l1sa112 asa 1839 529 53 760 1921 1032 722 1390 529 
11sa113 asa 1297 135 1375 692 888 718 602 709 602 
11sa115 asa 110 113 105 105 92 91 9 89 89 
ilsa116 asa 56 61 6( 61 54 56 59 5 54 
11sa119 asa 49 38 38 38 39 38 49 39 38 
ilsa120 asa 72 69 5 57 62 57 66 62 57 
ilsa121 asa 296 248 192 196 251 197 221 242 192 
ilsa122 asa 127 122 122 122 122 121 122 120 120 
ilsa123 asa 191 179 179 164 20 150 195 263 150 
ilsa124 asa 1394 932 926 919 1448 697 1152 1301 697 
rand159 asa 730 881 693 693 574 362 405 494 362 
rand161 asa 355 569 54 523 338 326 565 373 326 
rand162 asa 8 8 c 8 8 8 8 8 8 
rand163 asa 1305 194 1728 1716 1205 1304 3971 1618 1205 
rand164 asa 247 2371 1213 1201 1488 1009 1289 1334 1009 

Table A.61: Maximum reqmred Size for small fault trees m the Advanced Hybrid 

method, 4 
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Number of 
Number of Number of Number of 

Number of 
Number of 

Frname bas1c repeated complex 
modules 

pnme 
gates events events events 1mphcants 

andom61 g'q 45 59 35 9 1 107 
andol21 ~sq 32 70 21 30 1 2128 
ando591 gsq 23 44 11 13 1 119 

randl321 gsq 31 46 25 3 1 339 
~andl501 gsq 29 45 23 10 1 114 
andl581 gsq 49 78 33 22 3 853 

1Isab521 gsq 31 45 31 4 1 227 
hsab741 gsq 46 126 9 75 1 78158 
Isab891 ~sq 32 63 11 23 1 1044 

li•alOOl gsq 31 66 11 28 1 1254 
andl641 gsq 32 63 12 18 1 13092 
andl651 gsq 40 99 10 61 2 2072 
andl661 gsq 31 60 16 10 1 1276 

Table A.62: Complexity of test non-coherent fault trees, 'large' trees, overall anal­

ysis 
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Number of Number of Number of Number of 
Number of 

Number of 
FT name 

gates 
baSIC repeated complex 

modules 
pnme 

events events events 1mpl1cants 

astolfo1 asa 19 17 2 8 1 34 

ben11am1 asa 15 14 4 0 1 47 

bpfeg031 gsq 20 63 0 62 1 8716 

bpfen051 gsq 17 61 0 60 1 7471 

bpfrg051 gsa 17 60 0 59 1 7056 

bofrn051 asa 14 40 0 39 1 416 

bofsw021 asa 21 42 2 30 2 104382 

dre1 01 91 osa 4 19 1 18 1 63 

dret 0321 asa 4 21 1 20 1 75 

dret 0571 gsq 7 32 1 31 1 2100 

dret 0581 gsq 13 46 16 22 5 41310 

dret 0591 a sa 17 58 20 39 1 42318 

dresdent asa 17 63 17 34 1 53217 

hprsf021 gsq 19 74 6 54 1 339 

hprsf031 gsq 7 32 1 24 1 82 

hprsf211 gsq 15 69 49 38 1 1357 

horsf361 asa 8 30 4 23 1 61 

dtree31 asa 11 21 0 20 1 36 

dtree41 asa 11 20 1 18 1 30 

dtree51 asa 11 20 1 19 1 10 

khrctre 1 gsq 19 26 14 11 3 21 

nakashrt asa 21 16 11 1 1 20 

tnalstt asa 27 20 9 2 1 38 

tnals41 asa 39 27 15 1 1 105 

random31 gsq 24 52 9 21 1 435 

random81 osa 7 19 2 4 3 5 

rando131 gsq 46 63 43 12 1 73 

rando161 gsq 31 52 21 12 3 8 

rando231 asa 19 43 13 19 1 13 

rando251 asa 14 17 11 11 1 6 

rando271 osa 45 57 32 12 2 120 

rando281 gsq 17 38 12 4 1 1 

rando291 gsq 25 43 17 9 1 43 

rando301 gsq 17 42 3 20 1 193 

rando311 asa 47 45 35 3 1 2 

rando331 asa 17 37 16 7 2 51 
rando341 gsq 24 40 15 10 1 5 

rando351 gsq 19 26 16 6 5 8 

rando361 gsq 15 29 7 19 1 10 

rando371 asa 27 34 23 6 1 30 

rando381 asa 11 21 5 15 1 9 

rando391 gsa 27 31 21 1 1 44 

rando401 asa 8 18 4 4 2 11 

rando421 asa 9 18 6 3 2 2 

rando431 gsq 10 29 2 16 1 28 

rando441 gsq 27 61 7 28 1 373 

rando451 asa 22 30 19 5 2 16 

rando461 asa I 22 44 16 17 3 10 

rando471 asa I 20 48 14 10 5 20 

rando481 gsq ' 16 25 12 9 2 5 

rando521 gsq I 33 38 21 10 3 46 

rando531 ~gsa ' 13 24 9 5 2 2 

rando541 asa • 13 35 4 18 3 317 

rando551 asa 1 15 26 11 8 3 9 

Table A 63· Complex1ty of test non-coherent fault trees, small trees, 1 
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Number of 
Number of Number of Number of 

Number of 
Number of 

FT name 
gates 

baSIC repeated complex 
modules 

pnme 
events events events tmphcants 

rando581 gsq 10 19 8 7 2 3 

rando601 gsq 36 72 14 32 4 22 

rando611 asa 19 27 13 2 1 26 

rando621 asa 13 21 10 4 4 7 

rando631 asa 15 24 14 9 3 9 
rando641 gsq 19 35 10 17 3 31 

rando651 gsq 11 18 4 4 1 10 

rando661 gsq 17 33 14 6 2 3 
rando701 gsq 12 25 3 10 1 41 

rando731 asa 22 42 18 13 3 144 

ran do 751 a sa 12 19 6 12 1 4 

ran do 761 a sa 15 34 8 18 3 24 
rando771 gsq 31 43 20 8 1 25 
rando781 gsq 17 30 7 15 1 2 

rando801 gsq 9 26 3 19 2 22 

rando831 asa 14 23 7 8 1 39 
rando841 asa 19 41 6 19 2 198 

rando851 asa 13 28 9 17 1 7 

rando871 gsq 11 22 5 17 1 15 

rando881 gsq 11 23 2 12 1 35 
rando891 gsq 24 45 11 18 6 27 

rando911 asa 32 66 23 11 1 67 

rando921 asa 41 74 43 12 2 35 

rando931 asa 19 42 11 19 4 13 
rando951 gsq 11 23 7 7 3 31 
rando981 gsq 22 55 10 25 1 339 
rando991 gsq 26 48 22 8 1 47 

rand1 001 asa 19 31 13 7 3 8 
rand1 031 asa 13 25 4 9 2 32 

rand1 041 asa 16 24 13 7 4 9 
rand1 051 a sa 15 33 4 21 1 96 
rand1 061 gsq 31 43 19 6 6 8 
rand1 081 gsq 32 38 23 2 1 50 

rand1091 gsg 27 57 10 25 1 203 

rand 11 01 a sa 24 34 17 8 1 8 
rand1111 asa 19 24 14 6 1 22 
rand1151 gsq 21 29 13 13 1 46 

rand1161 gsq 24 41 22 10 2 9 
rand1171 gsq 10 17 5 9 1 11 
rand1181 asa 19 39 8 19 2 52 

rand1191 asa 14 31 5 24 2 24 
rand1201 asa 20 41 5 17 1 74 

rand1211 asa 18 38 12 15 1 80 

rand1231 gsq 9 17 4 11 1 12 
rand 1241 gsq 12 24 5 20 1 27 

rand1251 gsq 6 17 2 7 1 7 
rand1261 gsq 25 41 10 14 1 74 

rand 1271 a sa 12 28 3 27 1 43 
rand1281 asa 24 38 21 12 1 52 

rand1291 asa 8 21 5 8 1 1 
rand1301 qsq 13 27 10 4 1 5 
rand1341 gsq 34 64 23 14 1 152 
rand 1351 gsq 24 39 19 2 2 22 

rand 1371 gsq 10 21 5 8 1 15 

Table A 64: Complexity of test non-coherent fault trees, small trees, 2 
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Number of 
Number of Number of Number of 

Number of 
Number of 

FT name 
gates 

baSIC repeated complex 
modules 

pnme 
events events events 1mpl1cants 

randt 381 osa 10 21 9 7 4 ,, 
randt 391 gsq 21 32 15 4 , 69 

rand\ 41 1 gsq 24 34 17 10 , 8 

randt 421 _gsa 32 47 29 6 2 155 

randt 431 asa 17 30 8 12 5 8 

rand\ 441 osa 29 50 26 16 , 83 

rand1451 osq ,, 33 , 26 2 47 

randt 461 osa 10 22 4 8 , 20 

rand1471 gsq 36 49 28 5 2 24 

rand1481 gsq 12 28 2 18 2 8 

rand 1 491 gsq 22 59 5 40 , 18 

rand1511 asa 10 28 4 25 , 36 

randt 531 osa 16 26 12 6 2 3 

rand 1 541 osq , , 22 7 4 , , 
rand\ 551 gsq 20 35 8 4 , 64 

rand 1 561 gsq 10 22 6 21 , 20 

lisabat 1 asa 27 70 6 43 4 , 141 

llsaba31 osa 40 86 16 38 , 5447 

lisaba41 osa 26 50 9 , , , 1001 

lisaba51 gsq 29 61 17 26 3 231 

lisaba61 gsq 22 58 4 33 , 1230 

lisaba71 gsq 27 69 7 41 4 1054 

lisaba91 asa 17 44 2 27 2 187 

lisabt 01 asa 27 55 19 17 , 220 

I!Sab1 1 1 QSQ 13 22 10 7 , 2 

lisabt 31 osa 24 32 17 10 , 8 

lisab1 71 gsq 27 72 4 42 4 1201 

11sabt 91 gsq 37 112 0 , , , , 15420 

lisab201 gsa 41 128 0 127 , 7899 

lisab241 asa 15 41 0 40 , 887 

llsab25 1 a sa 15 30 6 7 , 17 

11sab211 asa 26 63 13 34 5 301 

lisab281 gsq 9 22 0 21 , 66 

l1sab301 gsq 19 35 9 9 4 16 

lisab31 1 gsq 31 53 32 5 , 61, 

l!sab34 1 asa 8 16 6 3 2 19 

lisab351 osa 19 42 , , 14 , 152 

lisab361 gsq 46 44 35 4 , 66 

l!sab371 gsq 10 30 3 24 3 64 

l!sab421 gsq 7 21 2 19 , 10 

llsab441 gsq 10 20 , , 8 3 12 

lisab461 asa 50 152 0 , 51 , 14669 

lisab471 asa 10 12 8 5 , 3 

hsab481 asa 8 19 9 4 1 5 

lhsab491 asa 22 60 0 59 , 890 

11isab501 gsq 10 18 4 3 1 , 
lisab51 1 gsq 8 21 0 10 , 16 

hsab531 gsq 5 9 , 8 , 15 

lisab541 asa 6 16 3 3 1 7 

hsab561 asa , , 18 9 5 , 3 

hsab571 asa 18 33 , , 6 1 162 

lisab591 osq 16 49 0 48 , 3096 

hsab601 gsq 7 16 5 5 1 19 

hsab61 1 gsq 22 44 , , 15 1 15 

Table A 65· Complex1ty of test non-coherent fault trees, small trees, 3 
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Number of 
Number of Number of Number of 

Number of 
Number of 

FT name 
gates 

baSIC repeated complex 
modules 

pnme 
events events events 1mphcants 

hsab621 qsa 17 40 3 27 3 74 

hsab631 gsq 8 18 5 12 1 6 

hsab641 gsq 21 46 18 14 5 26 

hsab651 gsq 7 19 2 18 1 5 
hsab661_ gsa 31 43 26 6 1 77 

hsab671 asa 38 81 9 51 1 1718 

hsab681 asa 9 25 0 24 1 180 

hsab691 qsq 14 31 2 19 1 59 
llsab701 gsq 19 49 4 28 1 40 

IISBb 711 gsq 8 15 7 6 2 3 

hsab721 gsq 34 57 21 13 1 71 

llsab731 asa 7 23 0 22 1 40 

hsab751 asa 14 29 10 6 1 1 
llsab771 gsq 29 63 9 31 1 7433 

hsab781 gsq 16 39 9 15 1 503 

hsab811 gsq 6 15 0 14 1 11 

llsab821 gsq 31 88 6 56 1 41388 

hsab831 asa 19 36 10 14 1 75 

llsab841 asa 19 39 8 10 1 71 

hsab861 asa 21 42 8 12 1 289 
hsab881 gsq 25 53 13 22 1 44 
hsab911 gsq 32 63 13 30 1 5798 

hsab951 gsq 7 20 4 5 1 1 

hsab971 asa 11 28 1 20 1 4 

hsab981 asa 7 16 2 13 1 7 

hsa1 031 gsq 5 9 1 8 1 15 

11sa 1 041 gsa 10 20 7 14 1 4 

hsa1 071 gsq 6 12 3 3 3 7 
hsa1 091 gsq_ 21 24 16 0 1 21 

hsa11 01 asa 36 55 22 14 1 15 

hsa1111 asa 17 53 2 34 2 63 

hsa1121 asa 32 83 7 47 1 4979 

hsa1131 gsq 25 63 11 29 2 85 
hsa1151 gsq 12 26 8 8 1 59 

hsa1161_gsa 10 16 5 5 1 8 
11sa1191 asa 7 15 1 9 1 20 

11sa1201 asa 10 24 0 23 1 126 

l1sa1211 QSQ 21 41 5 31 3 72 
hsa1221 gsq 12 27 8 9 1 8 
hsa1231 gsq 15 29 8 6 1 41 

hsa1241 gsq 28 69 12 21 1 1186 

rand1591 gsq 25 39 18 9 1 15 

rand1611 gsq 22 43 17 7 1 153 
rand1631 asa 37 61 28 15 2 704 

rand1671 asa 19 39 5 14 2 301 

Table A 66 Complexity of test non-coherent fault trees, small trees, 4 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 

astolfo1 asa 38 40 4 3 3 3 39 3 3e 

ben11am1 asa 71 87 8 6 71 71 6 9 6 

lbofeg031 gsq 1 1 1 1 1 1 1 1 1 

lbofen051 asa 1 1 1 1 1 1 1 1 1 

lbof<a051 asa 1 1 1 1 1 1 1 1 1 

lbpfln051 QSQ 1 1 1 1 1 1 1 1 1 
lbpfsw021 gsq 55 33 4 41 5 3 5 4 3 

ret0191 asa 1 1 1 1 1 1 1 1 1 

dre10321 QSQ 1 1 1 1 1 1 1 1 1 

re10571 osq 1 1 1 1 1 1 1 1 1 
re10581 gsq 140 128 12 12 12 12 123 10 10 

re10591 gsq 184 233 235 25 13 121 225 111 111 
dresdent asa 363 154 15 14 33 18 285 12 12S 

ho1sf021 asa 281 102 102 8 9 6 119 12 6S 

hPISf031 QSQ 16 16 16 1 16 1 1 1 1€ 

hPISf211 gsq 388 1076 645 41 47 55 1089 38 38 
hplsf361 asa 16 16 16 1 1 1 16 1 1 

dtree31 asa 1 1 1 1 1 1 1 1 1 

dtree41 QSQ 1 1 1 1 1 1 1 1 1 
dtree51 gsq 1 1 1 1 1 1 1 1 1 

khrctret gsq__ 30 4 35 3 3 3 36 4 3 
nakashl1 asa 183 6 105 13 16 9 68 16 6 
tnals11 QSQ 254 209 209 20 27 14 25 "" 13 
tnals41 gsq 706 1412 91 127 74 137 1619 61 61 

random31 osa 119 122 11 10 11 12 10 13 10 

randomat osa 19 19 1 1 1 " 19 1 1 

rando131 QSQ 100 82 80 8 91 9€ 118 9 8 
randot61 gsq 22 22 22 2 2 2 25 2 2 
rando231 asa 63 58 58 5 61 5 58 6 5 
rando251 asa 1 1 1 1 1 1 1 1 1 
rando271 asa 41 41 41 40 3 3 40 3 3 
rando281 gsq 1 1 1 1 1 1 1 1 1 
rando291 gsq 73 599 58 60 52 40 493 35 35 
rando301 asa 137 102 120 12 15 7 69 131 6 
rando311 osa 6 6 6 6 

rando33t osa 114 12 12 11 10 110 56 8 5 
rando34t gsq 18 15 15 1 1 1 15 1 1 

rando351 osa 46 46 46 4 41 4 34 3 3 

rando361 osa 1 1 1 1 1 1 1 1 1 

rando371 asa 82 76 76 76 8 7 45 7 4 

rando381 gsq 1 1 1 1 1 1 1 1 1 

rando391 asa 139 65 65 10 10 10 161 14 6 
rando401 asa 42 32 38 3 4 4 45 4 3 
rando421 aso 7 
rando431 gsq 22 21 21 2 21 21 26 21 21 
rando441 asa 288 259 249 291 32 28 260 26 24 
rando45t asa 67 70 7 6 5 7 70 5 5 
rando461 osa 12 12 1 1 1 1 1 1 1 
rando471 gsq 115 96 131 17 14 9 113 13 9 
rando481 gsq 10 10 1 1 1 1 10 1 1 

rando521 asa 157 7 14 14 1~ 141 81 14 n 
rando531 QSQ 6 6 6 6 
rando541 gsQ 73 4 71 71 7 6 71 76 4 

ranao551 QSQ 28 28 2 2 2 2 28 2 2 

Table A 67 TDD method, number of nodes, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme Sscheme 6 scheme 7 scheme a scheme Mrnrmum 

rando581 asa 6 6 6 
rando601 osa 3 31 3 31 3 3 34 3 3C 

rando611 gsq 10 30 14 16 10 8 303 10 8 

rando621 osa 18 1 18 1 1 1 18 1 1 

rando631 osa 23 23 23 2 2 2 23 2 2 

rando641 osa 90 81 81 7 8 7 5 8 5A 
rando651 gsq 28 42 2 3 2 3 2 2 2 

rando661 osa 18 18 18 1 1 1 18 1 1 

rando701 asa 3 35 31 3 4 3 43 61 31 

rando731 OSQ 64 64 6 64 6 6 54 "' 5A 
rando751 gsq 1 1 1 1 1 1 1 1 1 

rando761 gsq 2 2 2 2 2 2 2 2 2 

rando771 osa 56 15 15 1 4 1 20 1 1 

rando781 qsa 1 1 1 1 1 1 1 1 1 

rando801 qsq 1 13 13 1 1 1 16 1 1 

rando831 gsq 43 31 3 3 "' 3 35 3 31 

rando841 osa 35 13 159 17 26 164 126 141 12 

rando851 osa 1 1 1 1 1 1 1 1 1 

rando871 gsq 1 1 1 1 1 1 1 1 1 

rando881 gsq 41 26 3 3 3 3 2 3 2 

rando891 asa 69 6 6 6 6 6 59 6 5 

rando911 asa 106 941 941 70 73 61 1068 77 61 

rando921 QSQ 396 475 460 45 34 33 31 30 30 

rando931 gsq 30 33 33 3 3 3 3 3 3 

rando951 asa 6 54 66 6 5 5 66 5 5 

rando981 asa 313 253 253 27 24 25 185 201 18 

rando991 oso 340 350 290 27 27 20 272 21 20 

rand1 001 gsq 10 1 1 1 1 1 1 1 1 

rand1031 gsq 78 50 7 7 7 7 50 7 5 

rand1 041 a sa 17 1 1 1 1 1 1 1 1 

rand1051 asa 2 3 3 3 2 3 29 30 2 

rand1 061 osa 22 2 2 2 2 2 22 2 2 

rand1081 QSQ 166 19 165 19 15 15 152 171 152 

rand1 091 gsq 217 13 142 191 21 22 159 20 13 

rand11 01 osa 15 15 1 11 11 11 11 11 11 

rand1111 asa 65 56 56 5 61 5 5 50 5 

rand1151 gsq 129 7 7 11 9 8 8 7 7 

rand1161 gsq 36 3 2 2 3 3 2 3 2 

rand1171 asa 1 15 15 1 1 1 1 1 1 

rand1181 asa 129 98 8 9 110 9 68 111 6 
rand1191 oso 10 10 1 1 10 1 1 1 1 

rand1201 gsq 19 10 90 15 20 17 15 20 9 

rand1211 aso 3 36 36 3 3 3 34 3 3 

rand1231 aso 6 6 6 

rand1241 QSQ 1 1 1 1 1 1 1 1 1 

rand1251 gsq 9 11 9 11 
rand1261 asa 170 181 181 17 16 161 250 16 161 

rand1271 osa 1 1 1 1 1 1 1 1 1 

rand1281 oso 70 66 58 7 69 7 61 6 5 
rand1291 gsq 1 1 1 1 1 1 1 1 1 

rand1301 gsq. 3 3 
rand1341 asa 12 8 8 14 12 11 141 12 8 

rand1351 QSQ 121 142 11 111 118 111 191 111 111 

rand1371 gsq 33 33 33 3 3 3 31 3 31 

Table A 68: TDD method, number of nodes, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scneme 7 scheme 8 scheme M1n1mum 

rand1381 aso 24 2 2 2 2 2 24 2 2 
rand1391 QSQ 222 183 220 27 22 20 209 23 183 
rand1411 gsq 6 6 6 ' 9 
rand1421 osa 324 35 365 51 33 31 24 37 24 
rand1431 osa 19 19 19 1 1 1 19 1 1 
rand1441 asa 106 82 83 81 14 11 132 11 81 
rand1451 gsq 15 15 15 1 1 1 1~ 1E 1 
rand1461 osa 33 33 33 3 3 3 35 3 3 
rand1471 osa 413 48 465 50 35 34 416 45 34 
rand1481 osa 6 
rand1491 gsq 1 1 1 1 1 1 1 1 1 
rand1511 gsq 1 1 1 1 1 1 1 1 1 
rand1531 aso 7 
rand1541 asa 1 1 1 1 1 1 1 1 1 
rand1551 osa 275 212 146 22 22 181 213 211 14 
rand1561 gsQ 1 1 1 1 1 1 1 1 1 
hsaba11 asa 84 B 91 7 7 6 91 6 6 
hsaba31 osa 560 662 628 56 56 411 999 60 411 
I1Saba41 QSQ 581 494 461 37 37 65 612 34 34 
hsaba51 gsa 149 190 170 18 16 17 186 16 14 
hsaba61 gsa 127 27 27 12 10 11 9 9 9 
hsaba71 osa BD 91 86 81 7 B 86 9 79 
hsaba91 osa 35 38 38 2 3 2 41 3 2 
l1sab101 gsq 26 155 129 12 15 14 11 14( 11 
ltsab111 asa 1 1 1 1 1 1 1 1 1 
ltsab131 osa 6 6 6 
llsab171 osa 105 11 12 11 10 10 12 9 9 
hsab191 osa 1 1 1 1 1 1 1 1 1 
hsab201_gsa 1 1 1 1 1 1 1 1 1 
llsab241 asa 1 1 1 1 1 1 1 1 1 
ltsab251 asa 52 53 6 4 5 5 53 4 4 
ltsab271 osa 296 27 27 12 24 "" 14 24 12 
hsab281 gsq 1 1 1 1 1 1 1 1 1 
llsab301 asa 58 50 50 5 51 5 48 4 4 
hsab311 osa 1972 1240 1319 851 781 69 1137 69 69 
hsab341 QSQ 42 35 45 3 4 3 45 4 3 
hsab351 gsq 452 659 642 39 36 37 416 30 302 
1Jsab361 osa 157 16 149 9 13 9 146 18 9 
hsab371 oso 14 14 1 1 1 1 1 1 1 
hsab421 qsa 1 1 1 1 1 1 1 1 1 
hsab441 gsq 32 3 30 3 3 3 30 3 30 
hsab461_gsa 1 1 1 1 1 1 1 1 1 
hsab471 osa 6 
lrsab481 QSQ 6 6 6 
ltsab491 gsq 1 1 1 1 1 1 1 1 1 
l1sabS01 asa 1 1 1 1 1 1 1 1 1 
hsab511 osa 35 35 35 3 3 3 3 3 3 
hsab531 qsa 1 1 1 1 1 1 1 1 1 
hsab541 QSQ 23 1 22 2 21 2 22 1 1 
hsab561 gsq 2 2 2 
hsab571 asa 197 302 536 21 19 22 179 131 131 
hsab591 osa 1 1 1 1 1 1 1 1 1 
hsab601 gsq 25 2 2 2 25 2 2 2 2 

lisab611 oso 40 38 38 3 4 3 38 3 38 

Table A 69 TDD method, number of nodes, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme Sscheme 6 scheme 7 scheme 8 scheme M1n1mum 

hsab621 asa 30 2 25 2 2 2 2 2 2 
hsab631 gsq 13 13 13 1 1 1 12 1 1 

hsab641 gsq 51 49 49 4 51 51 49 51 4 

llsab651 asa 1 1 1 1 1 1 1 1 1 

hsab661 osa 225 16 160 22 21 22 105 13 10 

llsab671 qsa 149 125 125 12 17 12 16 13 12 
hsab681 gsq 1 1 1 1 1 1 1 1 1 
hsab691 asa 42 41 41 3 4 3 3 "' 3 

hsab701 asa 87 69 69 6 71 5 51 8 51 

hsab71 1 asa 8 8 8 E 
hsab721 gsq 258 171 171 16 241 19 359 18 16 

hsab731 asa 1 1 1 1 1 1 1 1 1 

hsab751 asa 1 1 1 1 1 1 1 1 1 
hsab771 gsq 984 1280 1050 48 73 42 518 775 42 

hsab781 gsq 284 122 173 22 23 22 17 12 12 
hsab811 oso 1 1 1 1 1 1 1 1 1 

hsabB21 asa 784 681 681 97 65 46 714 69 46 

hsab831 asa 117 9 9 91 11 9 198 9C 9 
hsabB41 gsq 104 108 8 81 9 81 335 8C 8 

l1sab861 asa 298 368 256 36' 31 36 383 301 25 

lrsab881 aso 59 50 5 "' 6 4 50 6 4 

lrsab911 asa 211 105 10 10 15 12 64 15 6 
hsab951 gsq 3 3 

llsab971 osa 5 5 
hsab981 gsq 1 1 1 1 1 1 1 1 1 

11581031 QSQ 1 1 1 1 1 1 1 1 1 

1tsa1 041 osa 1 1 1 1 1 1 1 1 1 
lrsa1 071 qsq 15 15 15 1 1 1 15 1 1 

1tsa1 091 gsq 59 65 65 6 6 5 65 6 5 

hsa1101 asa 31 35 3 3 31 2 66 3 2 
hsa1111 QSQ 32 32 3 3 3 3 3 3 3 
hsa1121 gsq 412 17 181 33 43 31 339 53 17 

hsa1131 gsq 245 248 248 34 18 15 358 17 158 

hsa1151 asa "' "' 4 4 3 "' 68 4 3 
hsa1161 asa 14 10 1 1 1 1 1 1 1 

hsa1191 aso 10 9 12 1 1 1 , 1 9 
llsa1201 gsq 1 1 1 1 1 1 1 1 1 
hsa1211 osa 18 20 2 2 2 2 2 2 1 

11sa1221 osa 25 25 2 2 2 2 2 2 2 

11sa1231 osa 98 66 66 5 9 6 125 8 50 
!1sa1241 gsq 1276 469 500 53 81 49 146 55 469 

rand1591 gsq 126 134 11 11 11 8 8 11 8 
rand1611 osa 557 656 61 57 42 34 605 51 34 

rand1631 osa 474 1023 878 43 341 32 486 43 320 

rand1671 !:JSQ 341 240 245 22 29 24 16 15 159 

Table A 70 TDD method, number of nodes, small trees, 4 
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FT name 1 scheme 2 scheme scheme scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 
random61 gs 73 73 8"' 40 93 71 79 84 403 
rando121 osa 141 1190 1162 63 90 741 108 64 638 
rando591 gsq 77 38 46 41 56C 41 298 48 29 
rand1321 osa 4351 5791 5791 333 2322 265 304 351 2322 
rand1501 gsq 100 142 116 58 116 56 503 94 503 
rand1581 asa 679 52 558 52 BB 67 486 861 486 
hsab521 gsq 1108 273 272 1531 97C 138 104 86 869 
hsab741 asa 4525 156 156 181 778 166 1466 981 1466 

hsab891 asa 90 62 1081 54 60 54 878 60 542 
hsa1001 asa 1735 76 75 135< 112 116 1893 75 750 
rand1641 gsq 169 188 1206 120 108 882 1709 95 882 
rand1651 asa 93 60 60 35 47 29 41 63 296 
rand1661 gsq 169 519 4478 215 1303 2445 4349 185< 1303 

Table A.71: TDD method, number of nodes, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5scheme 6 scheme ?scheme 8 scheme M1mmum 

astolfo1 QSQ 0 0 0 c 
ben]1am1 gsq 001 0 01 001 001 001 001 0 0 01 0 
lbpfeg031 osa 043 039 04 041 03 03 041 03 039 
lbofen051 asa 028 02 02 02 02 02 02 02 02 
lbPfl 051 QSQ 023 02 02 02 02 02 02 02 023 
lbphn051 gsq 002 001 001 001 001 0 01 001 0 01 001 

lbpfsw021 gsq 1 25 1 23 1 23 1 2 1 2 11 11 1 21 1 1 
[dre10191 asa 0 001 001 001 0 01 001 0 01 0 

re10321 asa 0 01 0 01 001 0 01 001 0 01 0 c 
re10571 asa 0 02 002 002 00 00 00 002 00 002 
re10581 gsq 0 23 023 021 021 0 21 02 021 02 021 
re10591 gsq 049 05 os 051 0 0 047 04 04 
resden1 csa 046 053 051 04 04 04 048 04 045 

hPISf021 QSQ 001 001 00 001 00 00 00 c 
hp,f031 gsq 001 0 001 001 001 001 001 
hp,f211 gsq 004 01 006 00 00 00 012 00< 00 
holsf361 asa 001 0 001 001 001 0 01 0 001 0 
dtree31 asa 001 001 001 0 01 001 001 001 c 
dtree41 gsq 001 002 001 0 01 
dtree51 gsq 0 0 001 001 001 0 001 0 
kh1ctre1 asa 013 01 012 01 0 1 01 014 01 0 1~ 
nakash1f aso 002 002 002 001 00 001 002 00 001 

nals11 osa 002 002 002 00 00 00 002 00 002 
nals41 gsq 0 06 019 01 01 00 01 016 00 003 
random31 asa 00 001 00 00 00 00 00 001 001 
random81 aso 015 016 02 01 01 015 016 0 16 015 
rando1~1 QSQ 001 001 001 001 001 00 001 0 
rando161 gsq 016 01 018 016 01 01 016 0 1 01 
rando231 gsa 002 001 001 00 00 00 002 00 0 01 
rando251 aso 001 001 001 001 001 001 
rando271 asa 017 01 016 01 01 01 016 0 1 01 
rando281 gsq 0 001 0 001 001 001 
rando291 asa 004 003 003 00 00 00 003 00 002 
rando301 asa 002 00 002 00 00 0 02 002 00 00 
rando311 osa 001 001 002 001 00 001 0 01 001 001 
rando331 gsq 016 016 016 0 15 01 01 016 0 1 015 
rando341 gsq_ 0 02 002 002 00 00 001 0 02 00 001 
rando351 asa 022 01 018 01 01 01 022 0 1 01 

rando361 asa 002 002 0 01 0 01 00 001 001 0 01 001 
rando371 aso 001 001 001 0 01 0 01 00 002 0 01 0 01 
rando381 gsq 0 0 001 0 01 001 001 0 01 
rando391 asa 002 001 001 00 00 001 00 0 
rando401 oso 018 015 015 01 01 01 016 01 015 
rando421 gsq 016 016 016 01 01 01 016 01 01 
rando431 gsq 002 00 0 01 001 001 00 001 00 001 
rando441 asa 002 00 002 00 00 00 00 00 00 
rando451 osa 018 016 015 01 01 01 021 01 015 

rando461 asa 016 01 01 01 01 01 015 01 0 1 
rando4 71 qsq 018 01 01 01 01 01 016 01 01 
rando481 gsq 016 015 015 01 01 01 016 01 014 
rando521 gsa 018 01 01 01 0 1 01 01 01 01 
rando531 aso 015 018 01 01 0 1 01 01 01 01 
rando541 osa 018 018 01 01 0 1 01 017 01 01 
rando551 gsq 0 0 

Table A 72. TDD method, time, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

rando581 osa 01 0 1 01 01 0 1 01 016 0 1 0 1 E 
rando601 gsq 01 01 01E 01 0 1 01E 015 01 01 
rando611 gsq 01 0 1 019 01 0 1 01 01 0 1 01 
rando621 asa 001 00 0 02 001 0 01 00 002 0 01 001 
rando631 osa 017 016 01 0 1 0 1 01 018 0 1 016 
rando641 osa 01 01 01 0 1E 0 1 01 016 0 1 01 
rando651 gsq 01 01 01€ 0 1 0 1 0 1 016 01 01 
rando661 aso 0 01 001 0 01 00 00 00 002 0 01 001 
rando701 asa 016 01 01 0 1 0 1 0 1E 016 0 1 015 
rando731 QSQ 0 02 0 01 0 01 00 0 01 001 002 00 001 
rando751 gsq 01 01 0 1€ 0 1E 01 01 015 0 1 013 
rando761 asa 0 01 0 01 001 001 001 001 0 0 01 
rando771 asa 016 016 01 0 1 01 0 1€ 01 01 016 
rando781 osa 0 01 001 001 00 001 0 01 001 00 001 
rando801 gsq 0 01 0 01 001 0 01 001 0 01 0 
rando831 asa 016 01 01 01 01 0 1 016 01 01 
rando841 asa 0 01 0 01 00 0 01 001 0 01 . c 
rando851 nsa 01 016 01 01 01 0 1E 013 01 013 
rando871 gsq 0 01 001 001 0 01 001 001 001 0 01 001 
rando881 asa 0 01 002 001 0 01 001 001 001 001 001 
rando891 asa 0 02 001 001 0 01 00 001 002 00 001 
rando911 OSQ 019 0 1 019 01 01 01 019 01 01 
rando921 gsq 008 00 00 011 00 01 0 06 01 00 
rando931 asa 018 0 1 0 1 01 0 1 01 016 0 1 016 
rando951 asa 01 01 01 01 0 1 01 016 0 1 015 
rando981 osa 016 01 0 1€ 01 01 01 016 0 1 016 
rando991 oso 0 03 0 01 001 00 00 00 00 00 001 
rand1 001 gsq 0 02 003 002 001 0 01 001 002 00 001 
rand1 031 gsq 016 016 016 0 1 01 0 1 015 0 1 015 
rand1041 aso 015 016 015 01 01 01 016 0 1 015 
rand1 051 asa 01 01 01 01 01 01 01 0 1 016 
rand1 061 gsq 0 01 00 0 01 00 00 00 002 00 001 
rand1 081 gsq 018 01 018 0 1 01 0 1 02 0 1 018 
rand1 091 asa 0 01 001 001 001 001 00 0 01 00 0 01 
rand1101 oso 0 01 001 001 00 001 00 001 00 0 01 
rand1111 gsq 0 01 002 001 001 001 0 01 0 0 01 0 
rand1151 gsq 0 01 001 002 001 001 001 001 0 01 001 
rand1161 asa 0 001 001 0 01 001 001 0 01 
rand1171 asa 014 013 013 01 01 01 013 01 012 
rand1181 QSQ 0 01 002 001 00 001 00 001 001 001 
rand1191 gsq 016 01 016 01 01 01 016 01 015 
rand1201 osa 015 01 016 01 01 01 016 01 01 
rand1211 osa 00 001 0 01 001 001 001 0 
rand1231 gsq 001 00 0 01 001 00 001 002 001 001 
rand1241 gsq 0 01 0 0 01 0 001 0 
rand1251_ gsq 0 0 001 001 00 
rand1261 asa 001 001 0 0 01 001 001 001 
rand1271 osa 001 00 0 01 001 001 001 0 01 001 001 
rand1281 gsq 001 001 0 001 0 01 001 0 
rand1291 gsq 001 001 0 02 0 01 001 001 0 01 001 001 
rand1301 asa 001 001 0 01 001 0 
rand1341 osa 0 01 001 001 0 01 001 
rand1351 gsq 001 0 01 0 01 001 001 001 0 
rand1371 gsq 01 01 012 01 0 1 01 013 01 012 

Table A 73: TDD method, time, small trees, 2 
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rand1381 osa 0 16 01 0 0 1 01 01 016 0 1€ 017 
rand1391 gsq 0 02 002 002 00 00 00 00 002 0 02 
rand141 !_gsa 0 01 0 01 001 001 001 0 01 001 0 01 
rand1421 oso 0 1 018 01 0 1 01 0 1 0 1 01 01 
rand1431 asa 0 1 01 01 0 1 01 0 1 01 01 01 
rand1441 gsq 0 01 0 01 0 02 00 0 01 00 0 01 001 0 01 
rand145l_gso 0 15 016 01 0 1 01 0 1 0 1 01 016 
rand1461 asa 0 01 0 01 00 0 01 001 0 01 0 01 001 001 
rand1471 gsq 0 14 01 013 0 1 01 0 1 0 1 01 01 
rand1481 gsq 0 15 016 015 01E 01 0 1 015 0 15 016 
rand1491 gsq 0 01 0 01 001 001 001 0 01 0 001 001 
rand1511 asa 0 01 0 001 0 01 001 00 001 0 
rand1531 QSQ 015 015 016 0 1 01 01 014 0 15 015 
rand1541 gsq 0 01 001 0 001 0 01 0 001 0 01 
rand1551 gsq 0 01 0 01 001 001 00 00 0 01 001 0 01 
rand1561 asa 001 002 001 001 0 01 001 00 
hsaba11 oso 0 14 013 013 0 1 01 0 1 013 01 01 
hsaba31 asa 0 18 018 01 0 1 0 0 1 016 0 18 018 
hsaba41 gsq 0 07 006 003 00 00 Oil< 00 00 00 
hsaba51 asa 016 01 01 01 01 01 01 01 01 
hsaba61 asa 004 003 00 00 00 0 003 00 0 03 
hsaba71 gsq 018 01 01 01 01 01 01 0 18 017 
hsaba91 gsq 016 015 0 1 01 0 1 01 01 0 16 015 
ltsab1 01 asa 0 01 001 002 00 0 01 00 0 01 001 0 01 
ltsab111 osa 0 01 0 0 01 0 01 001 0 0 01 0 
hsab131 asa 0 002 0 001 0 01 001 0 c 0 02 
ltsab171 gsq 014 01 01 01 01 0 1 013 01 013 
llsab191 gsq 225 226 2 23 22 2 31 2 31 222 22 22 
hsab201 gsq 077 or. 0 78 07 0 07 07 07 07 
hsab241 osa 003 003 0 03 00 00 00 003 00 003 
IIS8b251 QSQ 001 001 0 02 001 0 01 00 001 0 01 001 
hsab271 gsq 019 01 018 01 0 0 01 OtS 0 1 
hsab281_gsa 001 0 0 001 0 01 0 01 0 0 01 0 
hsab301 asa 016 017 015 01 01 0 1 015 01 0 1 
hsab311 osa 011 00 0 05 00 01 00 00 011 005 
hsab341 gsq 015 015 015 01 01 01 013 01 015 
hsab351 gsq 0 04 002 002 00 00 00 002 00 00 
hsab361 asa 0 01 002 0 01 001 0 01 001 001 0 01 002 
hsab371 asa 016 015 016 01 01 01 015 01 015 
hsab421 asa 0 01 001 001 001 001 001 001 0 01 001 
hsab441 gsq 014 015 015 0 1 01 01 0 1 01 015 
hsab461 asa 1 97 2 1 9 1 9 1 9 20 1 96 1 9 
hsab471 asa 0 01 0 01 003 00 00 001 001 0 01 001 
hsab461 gsq 0 02 001 001 00 00 001 001 00 001 
hsab491 gsq 0 03 003 003 00 00 00 00 00 003 
hsab5D1 asa 0 01 001 0 001 001 0 01 0 0 01 001 
llsab511 osa 0 01 0 001 001 001 001 0 01 0 
llsab531 osa 0 01 0 0 001 001 0 01 c 0 01 
hsab541 gsq 0 02 0 001 001 001 0 01 0 00 0 
hsab56Lgsq_ 0 001 001 001 0 01 0 01 0 01 
hsab571 asa 0 03 0 002 001 0 01 0 01 0 00 
IIS8b591 QSQ 0 07 00 00 00 011 00 00 00 00 
hsab601 gsq 0 001 001 001 c c 0 01 
hsab611 asa 0 02 001 001 00 0 01 00 001 00 001 

Table A 74· TDD method, time, small trees, 3 
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llsab621 QSQ 014 012 01 011 01 01 015 0 1 011 
hsab631 gsq 002 0 01 0 02 001 00 002 002 00 001 
l1sab641 asa 017 016 019 01 01 01 02 0 016 
llsab651 asa 002 0 01 001 001 001 0 01 
lrsab661 oso 001 0 02 002 001 001 001 002 0 01 001 
lrsab671 gsq 004 004 005 00 00 005 00 00 004 
lrsab681 asa 001 0 01 001 001 0 01 001 001 0 01 001 
hsab691 osa 0 0 0 01 001 0 01 0 01 0 
hsab701 oso 001 001 001 0 02 00 001 0 01 c 
hsab711 gsq 013 012 0 1 01 0 1 01 014 01 012 
hsab 721_gsa 0 02 001 003 00 00 00 003 00 0 01 
hsab731 asa 0 01 001 0 01 00 001 001 001 001 001 
hsab751 osa 0 01 0 0 01 001 c 001 0 01 0 
hsab771 gsq 02 022 0 01€ 01 01 015 01 015 
hsab781 asa 0 02 00 00 00 001 00 0 01 00 001 
llsab811 asa 001 0 0 001 0 01 001 
llsab821 asa 143 1 49 1 48 1 4 1 4 1 1 4 1 3 1 3 
lt<sab831 gsq 0 0 001 0 01 0 01 0 01 00 c 
lrrsab841 gsq 001 001 0 01 001 0 01 001 0 01 
hsab861 osa 0 01 002 002 001 0 01 00 002 00 0 01 
hsab881 osa 0 001 001 001 c 001 002 001 0 
hsab911 gsq 0 08 0 09 009 00 009 01 009 00 ooe 
hsab951 gsq 0 0 0 001 001 c 0 c 
hsab971 gsq 0 01 0 01 0 01 c 001 0 01 0 01 001 c 
llsab9B1 aso 0 01 0 0 001 001 0 01 0 0 01 0 
lisat 031 osa 0 01 0 01 001 001 0 01 
l1sa1 041 QSQ 001 0 01 001 c 001 0 01 001 
11sa1 071 gsq 013 013 01 01 01 0 1 0 1 01 01 
lrsa1 091 asa 002 001 001 00 001 0 01 0 01 0 01 0 01 
hsa11 01 osa 001 00 00 00 001 001 0 02 0 01 0 01 
hsa1111 QSCI 014 01 0 1 01 01 01 016 01 01 
11sa1121 gsq 017 016 016 01 01 0 1 016 01 016 
hsa1131_gsa 013 01 0 1€ 01 01 01 016 01 012 
hsa1151 asa 0 02 0 01 0 01 00 0 01 001 002 00 001 
11581161 QSQ 0 01 0 01 0 01 001 00 001 001 001 001 
11581191 QSQ 0 0 01 0 01 001 001 001 001 0 
llsa1201 asa 0 0 001 001 001 0 01 001 001 
rrsa1211 asa 0 14 013 013 01 01 0 1 0 1 01 0 1 
hsa1221 qsa 002 00 001 0 01 001 001 00 00 001 
lrsa1231 gsq 0 01 002 001 00 00 00 002 001 001 
hsa1241 gsq 009 00 0 0€ 0 0€ 00 00 014 00 004 
rand1591 asa 002 001 001 001 0 01 0 
rand1611 QSQ 004 005 00 00 00 00 004 00 0 02 
rand1631 gsq 015 01 016 0 1€ 0 1 01 01 01 01 
rand1671 gsq 016 015 016 01 01 01 015 01 015 

Table A 75: TDD method, time, small trees, 4 
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random61 os 003 00 00 002 00 00 0 08 00 002 
rando121 gsq 019 0 1 015 008 01 00~ 01 00 008 
rando591 asa 005 00 00 002 00 00 0 01 00 001 
rancl1321 qsq 1 01 29 30 068 026 03 05' 05< 026 
rand1501 gsq 00 0 016 0 04 008 00 003 00 003 
rand1581 asa 015 0 1 01 0 15 017 0 1 015 0 1 015 
hsab521 gsq 0 07 0 09 01 006 0 1 011 00 005 
hsab741 gsq 618 49 485 4 81 8 94 48 495 117 4 81 
hsab891 osa 0 07 00 01 0 04 0 04 00 011 00 004 
hsa1001 gsq 018 00 006 016 0 08 0 09 029 0 05 005 
rand1641 asa 0 39 05 02 0 29 023 02 06 0 1 018 
rand1651 gsq 0 22 0 0 018 0 21 0 019 0 21 018 
rand1661 osa 0 21 3 68 23 0 45 016 049 1 38 02 016 

Table A 76 TDD method, time, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mrnrmum 

astolfo1 gsq 89 90 9 91 8 91 91 8 8 

ben ram1 asa 209 19 19 13 20 20 13 24 135 

lbofeo031 oso 1 1 1 1 1 1 1 1 1 

lbofen051 oso 1 1 1 1 1 1 1 1 1 

~pfrg051 gsq 1 1 1 1 1 1 1 1 1 

ltmfrn051 asa 1 1 1 1 1 1 1 1 1 

lbpfsw021 osa 109 61 73 7 109 61 94 8 61 

~re10191 gsq 1 1 1 1 1 1 1 1 1 

~re10321 gsq 1 1 1 1 1 1 1 1 1 

re10571 asa 1 1 1 1 1 1 1 1 1 

re10581 osa 276 29 294 28 249 248 27 19< 19 

klre1 0591 QSO 783 86 859 840 458 42 849 30 30 

~resden1 gsq 1479 550 55C 51 124 72 721 34 34 

lhorsf021 asa 402 251 251 27 291 22 279 291 222 

lhorsf031 aso 45 45 4 4 4 4E 48 4 45 

lhorsf211 OSQ 1440 2646 2635 183 111C 1788 2298 107 1078 

lhorsf361 oso 54 52 52 5 5 5 5 5< 5 

dtree31 asa 1 1 1 1 1 1 1 1 1 

dtree41 osa 1 1 1 1 1 1 1 1 1 

dtree51 QSO 1 1 1 1 1 1 1 1 1 

khrctret gsq 79 81 7 7 7 7 78 81 7 

nakashr1 asa 326 242 243 26 30 26 242 30 24 

.als11 asa 322 26 26 26 34:' 281 27 281 26 

Jals41 osa 971 123 111< 121C 99 1129 1046 89 89 

random31 gsq 375 391 35 35 43 39 519 48 35 

random81 gsq 39 39 39 3 3 3 39 3 3 

randot31 asa 354 33 33 33 311 32 354 32 311 

rando161 asa 107 10 10 10 10 10 10 10 10 

rando23t osa 181 173 173 17 17 16 173 18 16 

rando251 gsq 1 1 1 1 1 1 1 1 1 

rando271 gsq 97 9 9 9 11 11 9 11 9 

rando281 asa 1 1 1 1 1 1 1 1 1 

rando291 asa 877 723 71 81 69 68 672 671 671 

rando301 OSQ 395 263 288 28 41 30 21 37 21 

rando311 gsq 25 25 25 2 2 2 2 2 2 

rando331 asa 257 239 239 22 25 221 140 20 14 

rando341 osa 121 11 11 11 11 11 118 11 11 

rando351 osa 82 82 82 8 7 8 71 7 71 

rando361 gsq 1 1 1 1 1 1 1 1 1 

rando371 aso 212 21 209 20 211 20 115 21 11 

rando381 asa 1 1 1 1 1 1 1 1 1 

rando391 osa 473 30 300 39 471 39 320 40' 30 
rando401 gsq 89 6 8 8 8 8 65 8 6 
rando421 asa 13 13 1 1 1 1 13 1 1 

rando431 aso 70 68 68 71 6 6 71 6 6 

rando441 QSO 834 796 786 76 94 80 751 84 751 
rando451 gsq 163 18 18 16 14 18 18 14 14 

rando461 osa 25 25 25 2 2 2 25 2 2 

rando471 aso 298 317 283 28 301 28 342 28 282 

rando481 qsa 18 18 1 1 1 1 18 1 1 

rando52t osa 286 222 26 26 27 28 195 29 19 

rando531 gsq 13 13 13 1 1 1 1 1 1 

rando541 asa 154 8 139 13 17 15 139 17 87 

rando55t osa 62 62 6 6 6 6 62 71 6 

Table A 77: MPPI method, number of nodes, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 

rando581 osa 1 13 1 1 1 1 13 1 1 

rando601 gsq 7 7 6C 7 7 7 6 7 6 

ranclo611 gsq 222 299 201 22 21 "'' 299 20 18 

rando621 aso 3 3 3 3 3 3 3 3 3 

ranclo631 aso 5 5 5' 5 5 5 5 5 5 

rando641 oso 19 181 181 17 18 17 153 19 15 

rando651 gsq 73 86 69 71 6 71 69 6 6 

rando661 aso 32 3 3 3 3 3 3 3 3 

rando701 aso 12 10 83 10 16 10 96 18 B 

rando731 asa 16 14 143 13 16 16( 11 16 11 

rando751 gsq 1 1 1 1 1 1 1 1 1 

rando761 osa "' .. .. .. .. .. 44 "' 4 
rando771 qsq 208 11 11 11 151 11 100 12 10 

rando781 qsq 1 1 1 1 1 1 1 1 1 

rando801 gsq 33 33 33 3 3 3 32 3 3 
rando831 asa 14 76 109 10 12 B 91 11 7 

rando841 qsq 54' 315 29 38 48 3n 28 36 28 

rando851 asa 1 1 1 1 1 1 1 1 1 

rando871 gsq 1 1 1 1 1 1 1 1 1 

rando881 coo 99 BB 95 9 9 91 B 9 B 

ranclo891 asa 141 141 141 141 141 141 136 141 13 

rando911 asa 744 679 679 74 74 70 896 76 679 

rando921 gsq 741 809 77 77 67 71 76 69 67 

rando931 aso B B B B 8 8 B B B 
rando951 qsq 12 11 111 111 14 14 111 13 11 

rando981 qsq 871 619 619 62 70 59 580 67 58 

rando991 gsq 633 51 488 471 521 48 471 51 471 

rand1 001 gsq 20 2 20 2 2 2 20 2 2 

rand1 031 gsq 140 131 141 141 13 13 131 13 131 

rand1 041 asa 36 36 36 3 3 3 36 3 3 

rand1 051 QSQ 99 99 93 9 9 9 95 9 9 

rand1 061 gsq 39 39 39 3 3 3 39 3 3 

rand1081.gsq 535 442 478 521 49 52 555 50 44 

rand1 091 asa 740 641 663 73 72 83 519 68 51 

rand1101 asa 41 41 41 3 3 3 38 3 3 
rand1111 qsq 18 166 166 16 17 16 14 160 14 

rand1151 gsq 310 222 22 29 27 261 24 231 22 

rand1161 asa 86 81 79 7 7 B 79 7 7 

rand1171 asa 43 49 4 4 4 "' 4 46 "' rand1181 osa 329 27 25 25 30 28 20 275 20 
rand1191 gsq 21 21 21 21 21 21 21 21 21 

rand1201 asa 53 271 26 48 501 45 45 51 26 

rand1211 asa 109 91 91 B 10 10 8 11 B 
rand1231 QSQ 22 2 22 2 2 2 22 25 2 

rand1241 gsq 1 1 1 1 1 1 1 1 1 

rand1251 asa 3 3 40 4 4 4 3 3 3 
rand1261 asa 53 51 51 45 56 ""' 43 558 43 

rand1271 asa 1 1 1 1 1 1 1 1 1 
rand1281 gsq 201 205 216 19 191 17 21 19 17 

rand1291 gsq 1 1 1 1 1 1 1 1 1 

rand1301 asa 1 12 1 1 1 1 1 1 1 

rand1341 asa 338 31 31 371 33 34 343 351 31 

rand1351 gsq 229 204 190 18 21 20 238 233 186 

rand1371 asa 111 111 111 111 9 9 102 10 9 

Table A 78 MPPI method, number of nodes, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme ?scheme 8 scheme Mtntmum 

rand1381 asa 43 43 43 4 "' 4 "" 4 4 

rand1391 asa 538 643 57 54 55 48 670 51 48 

rand1411 osa 27 2 2 2 2 2 26 2 2 
rand1421 gsq 1038 1602 1754 128 116 1071 754 110 76 
rand1431 asa 37 3 3 3 3 3 3 3 3 
rand1441 asa 308 37 36 36 34 341 410 28 28 
rand1451 gsq 31 31 31 31 31 31 31 3 31 
rand1461 gsq 121 121 121 121 12 8 82 10 8 

rand1471 asa 613 69 72 54 54' 53 579 59 53 

rand1481 asa 13 1 1 1 1 1 13 1 1 

rand1491 osa 1 1 1 1 1 1 1 1 1 
rand1511 gsq 1 1 1 1 1 1 1 1 1 
rand1531 asa 16 16 1 1 1 1 1 1 1 

rand1541 asa 1 1 1 1 1 1 1 1 1 

rand1551 asa 725 64' 67 59 601 63 642 54 549 

rand1561 gsq 1 1 1 1 1 1 1 1 1 

ltsaba11 osa 19 15 161 14 18 17 161 17 14 

llsaba31 asa 2189 234 232 213 210 180 2772 212 1802 

ltsaba41 osa 2692 344 1854 135 1471 201 1668 151 1355 

ltsaba51 gsq 465 45 406 39 45 41 381 47 381 

llsaba61_ gsq 431 39 393 31 30 35 30 311 30 

ilsaba71 osa 199 17 169 16' 19 20 169 18 154 
lisaba91 gsq 102 78 78 7 9 7 81 9 75 

hsab101 gsq 593 421 399 39 50 47 272 46 27 
ltsab111 asa 1 1 1 1 1 1 1 1 1 

lisab131 asa 27 2 2 2 2 2 2 2 2 

lisab171 asa 227 154 190 18 21 22 19 19 18 

hsab191 gsq 1 1 1 1 1 1 1 1 1 

hsab201_g~_ 1 1 1 1 1 1 1 1 1 

lisab241 osa 1 1 1 1 1 1 1 1 1 

ltsab251 asa 175 175 171 17 17 17 175 18 171 

ltsab271 QSQ 626 593 59 41 59 451 282 60 28 

lrsab281 aSCI 1 1 1 1 1 1 1 1 1 
hsab301 gsq 127 133 133 131 12 13 125 12 12; 
lrsab311 asa 3605 4280 4208 250 221 186 2413 186 1862 

ltsab341 asa 107 8 10 8 10 8 10 11 BC 
ltsab351 osa 1309 1159 120 131 105 121 102 84 841 
ltsab361 gsq 501 579 53 351 53 401 418 55 351 

hsab371 aso 30 3 3 3 3 3 30 3 3 

hsab421 osa 1 1 1 1 1 1 1 1 1 
hsab441 QSQ 62 7C 70 7 6 7 61 6 61 

ltsab461 gsq 1 1 1 1 1 1 1 1 1 
hsab471 __ gsq 24 21 21 21 2 2 21 2 21 

hsab481 osa 17 1 1 1 1 1 1 1 1 

hsab491 asa 1 1 1 1 1 1 1 1 1 

hsab501 gsq 1 1 1 1 1 1 1 1 1 
hsab511 asa 73 73 73 7 7 7 78 7 7 

hsab531 asa 1 1 1 1 1 1 1 1 1 

hsab541 QSQ 87 85 85 8 8 8 8 8 8 
ltsab561 gsq 

ltsab571 gsq 438 593 511 41 45 45 561 38 389 
hsab591 asa 1 1 1 1 1 1 1 1 1 

ltsab601 QSQ 87 61 61 61 BE 61 7 8 61 

ltsab611 gsq 145 158 158 15 16 15 158 15 14 

Table A.79 MPPI method, number of nodes, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 

hsab621 gsq 82 77 7 8 8 8 83 8 7 

hsab631 asa 34 3 3 3 3 3 33 3 3 

hsab641 asa 100 88 8 8 10 10C 88 10 8 

llsab651 asa 1 1 1 1 1 1 1 1 1 

hsab661 gsq 545 590 590 78€ 56 60 366 48 36 

hsab671 __ gsq _ 365 36 36 27 41 41 382 34 27 

lisab681 asa 1 1 1 1 1 1 1 1 1 
]1Sab691 QSQ 121 12 122 10( 12 10 122 12 10 

l1sab?01 gsq 261 241 237 22 24' 211 218 25 211 

ilsab711 gsq 16 16 16 1 1 1 16 1 1 

ilsab721 asa 816 581 581 56 75 691 74 67 56 

11Sab731 QSQ 1 1 1 1 1 1 1 1 1 

llsab751 gsq 1 1 1 1 1 1 1 1 1 
l1sab771 asa 1366 106' 1002 108 124 96 89 127 89 

hsab781 asa 926 47 641 73 90 74 51 66 47 

hsab811 QSQ 1 1 1 1 1 1 1 1 1 

hsab821 gsq 2207 242 242 3231 171 133 2956 183 1338 

hsab831 gsq _ 303 28< 28 27 30 281 29 27 27 

hsab841 asa 283 341 311 31 30 31 29 28 28 

llsab861 asq 880 821 79 73 86 80 710 81 71 

hsab881 gsq 169 113 113 10 17 13 113 17 10 

hsab911 gsq 814 421 421 38 64 47 24 58 24 

llsab951 asa 9 9 

llsab971 asa 18 18 18 1 1 1 1 18 1 

llsab981 asa 1 1 1 1 1 1 1 1 1 

11581031 QSQ 1 1 1 1 1 1 1 1 1 

l1sa1041 gsq 1 1 1 1 1 1 1 1 1 

hsa1 071 asa 31 31 31 31 31 31 31 31 31 

hsa1 091 asa 179 218 218 21 18 17 21 18 17 
hsa1101 asq 271 310 299 29 28 28< 31 29 271 
hsa1111 gsq 84 8 8 8 8 8 8 8 "' hsa1121 g~ 1854 61 626 961 1471 120 113 162 61 

hsa1131 asa 564 520 520 64 49 43 505 47 43 

hsa1151 asa 143 14 143 14C 11 13 12 12 11 

hsa1161 gsq 3 31 3 31 3 3 3 3 3 

hsa1191 gsq 24 20 23 2 2 2 23 2 2 
hsa1201 asa 1 1 1 1 1 1 1 1 1 

11sa1211 asa 52 54 5 5< 5 5 5< 5 5 

hsa1221 gsq 66 66 66 6 6 6 5 5 5 
hsa1231 gsq 346 289 289 23 30 29 474 28 23 

hsa1241 asa 3356 1593 158 191 232 181 333 199 158 

rand1591 asa 263 278 280 28 25 24 250 25 24 

rand1611 gsq 101 945 100 102 89 87 1061 124 87 

rand1631 gsq 1482 2415 213 148 116 102 131 128 1025 
rand1671 asa 696 579 648 57 59 47 463 60 463 

Table A 80· MPPI method, number of nodes, small trees, 4 
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FT name 1 scheme 2 scheme scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

lrandom61 gs 28672£ 33719 368010 6602 261841 83111 16294 14322 66026 

rando121 asa 276681 21248 212671 7170 14684 5058 22803 12943 50583 

rando591 qsq 56390 170421 225213 133171 52093 18283E 5437 94041 54376 

rand1321 gsq 75066.' 36171 19948 21155 30571 4896-7 19948 

rand1501 os 79296 464739 49589 28155 46856 281552 

rand1581 gsq 8937 65636 3363 8265 45901 2690 5311 2690 

hsab521__g$o 322744 48769 481472 14485 14329 8217 53347 9579 8217i 

lisab741 aso 626541 4221~ 46964 25700 257008 

llsab891 oso 12160 36731 40253 3277 72829 4245 317895 6633 32770 

11sa1 001 gsq 44523 47068 620601 35802 60904 358023 

rand1641 oso 20751 11487 84930 8493 10086 67441 19660 9276 67441 

ral'ld1651 QSQ 50660' 50660 33019 421818 55364 28334 283340 

rand1661 asa 

Table A 81 MPPI method, number of nodes, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 

astolfo1 gsq 0 01 002 002 00 001 0 01 00 0 D1 D 01 

en 1am1 asa 004 00 DD DO 00 00 00 00: D02 

lbofea031 asa 048 05' 051 0 05 D4 05 04 04 

lboten051 asa 037 03 038 03 0 3E D3E 036 03 036 
lbpfrg051 gsq 033 03 033 03 0 3E D3' 033 03 033 
lbofm051 asa 001 00 001 001 00 D 01 001 0 D1 0 01 

~ofsw021 osa 1 31 1 3 1 3 1 2 1 2 1 2 1 28 1 2 1 2 

~re10191 asa D 0 0 c c 
~re10321 gsq 0 0 

re10571 osa 002 00 003 00 OD DO DO 00 002 

re10581 osa 012 0 1 013 011 0 1 D1 D1 01 01 

re10591 osa 093 10.0 095 0 95 0 o6e 099 06 D66 

~resden1 gsq 3 01 1 06 1 06 D93 2D 1 0 113 08 D86 
lho1st021 asa 136 083 08 061 1 6 03 1 0 26 D33 

lholsf031 asa 0 03 002 002 001 00 0 01 D01 OD1 001 

lhorsf211 osq 341 184 29 13058 52 25 12 81 53 7 149 9 921 921 

lhprsf361 gsq 0 01 002 002 001 OD D 01 D01 DD1 D01 

dtree31 osa 0 01 0 0 001 

dtree41 asa 0 0 0 001 c c 0 
dtree51 gsq 0 0 0 c ( c 0 
khlctre1 gsq 004 00 00 0 05 00 00 DnA OD OOl 

nakash•1_gsa 0 66 039 0 04 05 06 0 41 02 0 

tnals11 asa 013 03< D3 03 01 00 06 OD D 03 
tnaiS41 qsq 9 16 153 1 169 5 948 72 49 81 7056 11 51 722 
random31 gsq D5 04 03 D 36 D9 0 234 D6 D36 

random81 gsq 0 D5 OD5 006 DD DD DO D06 DO D05 

rando131 osa D41 26 213 21 D1 D8 272 D3 D16 

rando161 asa 0 06 006 00 00 00 005 005 00 00 
rando231 asa 0 06 006 006 OD 00 00 004 00 00< 
rando251 QSQ 0 0 0 c 001 0 
rando271 gsq 003 00.0 OD DD 00 00 003 00 003 

rando281 asa 0 D 001 

rando291 asa 784 89 223 68 261 61 464 3 321 0 482 82 104 82 31 5 31 58 
rando301 QSQ 012 01 011 011 01 004 D05 D1 D04 

rando311 gsq 0 02 002 002 00 0 01 00 DO DO D01 

rando331 asa 0 06 01 D11 OD 00 00 D05 DO 00 
rando341 asa 0 01 D03 00 OD 00 00 D02 00 001 

rando351 osa 009 D09 01 OD 00 00 D08 00 00 
rando361 gsq 0 001 c 0 01 

rando371 oso 0 03 DO DO OD 00 OD D02 00 OD 

rando381 asa 0 
rando391 QSQ 0 28 DO DO 0 1 02 01 035 01 00 
rando401 gsq 0 D3 003 DO 004 00 D04 003 00 OD 
rand0421 asa 0 03 005 DO 00 00 00 OD3 00 OD:' 

rando431 asa 0 03 0 01 DO 00 001 DO DO 001 OD1 

rando441 OSQ 14 7 115 06 105 2 6 1 711 49 435 117 43 
rando451 gsq OD6 00 006 00 00 DO OD 00 00 

rando461 osa OD5 00 D03 00 00 DO OD5 00 OD 
rando471 osa 0 26 066 D3 05 031 D1 07 02 01 

rand0481 OSCI OD3 002 003 DO 00 D04 OD3 00 00 

rando521 asa OD8 008 008 00 00 00 OD6 00 OD6 
rando531 gsq OD4 003 DO 00 00 DO OD3 00 OD 
rando541 osa 005 005 003 00 00 DO OD5 OD DD 

rando551 asa DD5 004 006 DO OD DO OD6 OD OD 

Table A 82: MPPI method, t1me, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme Mtntmum 

rando581 osa 00 003 003 0 00 00 003 00 003 
rando601 gsq 006 006 00 00 00 00 00 00 006 
rando611 gsq 002 026 006 00 00 00 026 00 002 
rando621 asa 006 006 006 00 00 00 006 00 006 
rando631 osa 00 0 00 0 00 00 00 00 0 
rando641 QSQ 01 00 00 01 0 1 o oe 019 01 00 
rando651 gsq 00 001 00 00 00 00 00 00 001 
rando661 asa 0 03 Oil< 00 00 00 Oil< 00 00< 003 
rando701 asa 00 0 01 00 00 00 001 0 03 00 001 
rando731 asa 00 005 005 00 00 00~ 005 00 005 
rando751 gsq c 0 c c 0 
rando761 oso 00< 00< 005 00 00 00 00 00 00 
rando771 osa 00< 00 0 01 00 00 00 002 00 0 01 
rando781 gsq 0 
rando801 gsq 003 003 00 00 00 CO< 002 00 002 
rando831 aso 001 00 0 02 00 0 01 00 00 00 001 
randoB41 osa 294 042 051 04 25 04 03 021 021 
rando851 qsa 0 0 0 001 c ( 

rando871 gsq 0 0 0 c c 0 c 
rando881 osa 0 02 0 01 002 00 00 00 002 00 0 01 
rando891 osa 011 01 01 011 011 00 011 01 0 09 
rando911 asa 226 84 2646 26 36 345 3026 104 5 71 78 41 9 26 36 
rando921 gsq 1505 277 24 0 18 139 1311 14 5 47 4 79 
ran00931 asa 00 00 00 00 OD 00 00 OD 005 
rando951 asa 0 05 005 005 eo 00 00 0 05 00 005 
rando981 qsq 1 09 0 52 053 05 05 041 049 05 04B 

rando991 osa 2933 275 1 05 1 3' 36 1 1 3 20 1 05 
rand1 001 oso 005 00 0 05 00 00 0 OE 005 00 005 
rand1 031 gsq 003 003 0 03 00 00 00< 003 00 003 
rand1041 aso 007 00 0 OB 00 00 00 OOB 00 006 
rand1 051 osa 002 001 0 01 eo 0 01 00 0 02 00 001 
rand1 061 osa 009 01 01 01 011 0 1 01 01 009 
rand1 081 gsq 093 01 02 1 04 07 1 11 0 01 
rand1 091 a sa 1059 329 38 4BE 13 2 85 16 15 7 329 
rand11 01 osa 0 02 002 002 001 001 00 002 00 001 
rand1111 osa 00 002 002 00 00 00 003 00 0 02 
rand1151 gsq 1 0 01 013 1 5£ 05 0 022 00 0 OB 
rand1161 gsa 00 00< 0 03 00< 00 CO< Oil< 00 003 
rand1171 aso 001 001 0 01 0 01 00 001 002 00 001 
rand1181 asa 065 01 0 1 eo 0 00 021 00 COB 
rand1191 gsq eo 003 00 00 00 CO< CO< 00< 00 
rand1201 asa 02 00 00 01 01 01 033 011 00 
rand1211 asa 00 002 00 00 00 00 00 00: 00 
rand1231 qsq 00 0 01 0 01 00 0 01 00 00 001 0 01 
rand1241 gsq 0 c c c 0 
rand1251 gsq 00 00 00 001 00 001 0 01 00 0 01 
rand1 261 asa 07 44 445 1 6 or- 05 07 06 0 58 
rand1271 osa 0 
rand1281 gsq 006 012 0 05 eo 00 0 OE CO< 00 00 
rand1291 gsq c c c c 
rand1301 asa 00 00 0 02 00 00 001 002 001 001 
rand1341 asa 00 01 0 1 0 1 00 01 012 00 00 
rand1351 qsq COB OOB 0 09 0 1 00 00 02 00 OOB 
rand1371 gsq 003 003 00 00 00 00 0 01 00 001 

Table A 83· MPPI method, t1me, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mrnrmum 

rand1381 asa 007 006 006 00 00 00 00 00 006 
rand1391 QSQ 054 273 1 66 05 04 03S 15 61 0 039 
rand1411 gsq 0 01 001 002 00 00 00 001 00 001 
rand1421 gsq 6798 318 25 783 01 45543 259 3581 713 461 8 713 
rand1431 asa 009 009 01 00 00 011 008 00 007 
rand1441 osa 1 65 418 38 34C 07 0 35 05 02 02 
rand1451 gsq 005 003 00 OD< 00 OD< 00 00 003 
rand1461_ gsa 002 002 003 0 01 00 001 002 00 001 
rand1471 asa 47499 396 58 167 29 488 0 227 36 5 39 83 31 9 2274 
rand1481 oso 003 003 00 00 00 OD< 00 00 003 
rand1491 gsq 0 0 01 c c c 
rand1511 aso 0 01 0 
rand1531 asa 003 003 00 00 00 OD< 00 00 003 
rand1541 oso 0 0 0 c c 0 
rand1551 QSQ 14 61 28 32 22 93 29 5 11 13 3 121 781 781 
rand1561 gsq 0 0 
lrsaba11 asa 0 OB 00 0 08 00 00 00 00 00 006 

lrsaba31 asa 526 2 1635 82 1861 9 792 7 331 5 161 se 698 05 126 8 12689 

hsaba41 gsq 14054 15221 70 88 15"' 14 6 20 51 376 96 16 4 14 64 

hsaba51 gsq 011 22 059 03 01 01 025 01 011 
hsaba61 asa 028 29< 296 01 00 01 01 00 00 
hsaba71 asa 009 00 009 00 00 00 00 0 06 00 
hsaba91 gsa 003 00 005 OD' 00 00 003 0 05 003 
hsab1 01 gsq 303 076 074 07 05 04 007 041 007 
lrsab11 1 asa 0 0 0 01 
lrsab131 asa 002 00 002 00 0 01 0 01 001 00 001 

lrsab171 osa 0 09 008 009 0 1 00 00 008 00 00 
11Sab191 oso 3 03 30 3 05 30 30 30 309 30 302 
lrsab201 gsq 1 06 104 1 0 1 0 1 0 1 0 1 0 1 0 1 04 
hsab241 asa 002 003 00 OD< 00 00 003 00 002 
lrsab251 asa 0 06 004 00 0 00 00 005 00 00 
lrsab271 asa 046 053 056 01 03 01 03 03 01 
lrsab281 gsq 0 0 0 001 0 
hsab301 gsq 007 00 007 00 00 00 007 00 00 
hsab311 osa 728 01 1805 92 382 98 5350 604 122 3 22728 31 31 6 
hsab341 asa 005 00 00 00 00 00 OD< 00 003 
hsab351 gsq 15884 4434 141 7 1722 42 106 0 14 22 119 119 
hsab361 gsq 083 1 22 096 0 09 0"' 043 03 03 
hsab371 asa 005 005 005 00 00 00 006 00 00 
hsab421 asa 0 0 c 0 
hsab441 gsq 005 006 006 00 00 00 004 00 00 
lisab461 gsq 269 26 2 26 271 2 71 27 27 269 
hsab471 asa 002 001 0 01 00 00 00 001 00 0 01 
hsab481 osa 001 0 02 003 001 001 00 002 00 001 

hsab491 asa 004 00 003 00 00 00 003 00 003 
hsab501 gsq 0 0 0 
hsab511 asa 0 01 00 00 001 001 001 003 0 01 001 

hsab531 asa 0 0 
lrsab541 QSQ 0 02 002 002 00 00 00 001 00 001 
llsab561 gsq 0 02 001 001 0 01 001 001 001 00 001 
hsab571 gsq 021 2<11 289 03 02 07 1 33 01 012 
hsab591 asa 009 00 011 00 01 00 009 01 009 
hsab601 asa 0 02 001 001 00 001 001 00 0 01 001 

hsab611 osa 001 002 003 00 00 00 002 00 001 

Table A 84: MPPI method, t1me, small trees, 3 
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hsab621 asa 0 06 006 005 DO DO DO 006 OD 004 

hsab631 osa 0 01 OD 002 OD DO DO 001 OD 001 

llsab641 osa OOB OOB OOB OD 0 09 DO OOB DO OD 

llsab651 gsq. 0 ( ( _C 
llsab661 asa 043 04C 043 11 04 05 01 01 015 

l1sab671 osa 017 025 02 01 02 0 2B 02 014 
IIS8b681 QSQ 0 0 0 ( c 
llsab691 gsq_ 002 002 0 03 OD 001 OD 002 OD 0 01 
hsab701 aso 1 1 02 0 91 04 06 051 019 05 019 

hsab7t 1 asa 003 0 03 0 03 DO DO OD 005 OD 003 
11Sab721 QSQ 60 07 188 18 92 95 284e 2635 20924 BB 8 B5 
llsab731 gsq 0 0 0 ( ( c ( 

lisab751 asa 0 0 
IISBb771 QSQ 10530 99 11001 705 0 468 5 2016 7 373 1726 5< 417 0 3733 
11Sab781 QSQ 437 076 1 0 26 1 4 ., 09 04 04 
hsab811 gsq 0 0 0 01 ( 

hsab821 asa 48424 259 3 263 94 6 1482 569 11844 101 6< 5693 
hsab831 asa 0 23 0 21 0 21 01 02 01 1 22 01 01 

hsab841 asa 032 1 05 032 031 02 02 293 01 016 
I1Sab861 gsq 36 65 411 20 94 277 18 DE 27 25 86 91 27 

llsab881 asa 002 002 003 DO DO DO 002 OD OD 
hsab911 asa 047 0 019 01 03 02 015 02 015 
hsab951 QSQ 002 001 002 0 01 001 00 001 0 01 0 01 

hsab971 oso 002 001 002 0 0~ 00 0 0~ 00 DO 0 01 
hsab981 gsq 0 ( ( 

hsa1031 gsq_ 0 
11581041 aso 0 001 
IIS81 071 QSO 004 00 005 DO 00 OD 005 OD 0 04 
l1sa1 091 gsq 002 003 OD DO OD 00 003 OD 0 02 
hsa1101 gsq 004 013 01 0 11 00 OD 013 OD 00 
lisat111 aso 004 OD DO DO OD OD 003 OD OD 
hs81121 asa 50 78 1 2 1 23 3 1 B5 41 45 74 123 

hsa1131 osa 284 84 0 6726 36 7 17i 09 252 111 09B 
hsa1151 gsq 002 OD 003 001 DO DO 005 OD 001 
hsa1161 asa 002 001 003 00 DO DO 001 DO 001 

llsa1191 asa 002 003 0 001 001 OD 001 DO 0 
11581201 QSQ 0 0 001 001 001 c c 
11581211 QSQ 006 DO 006 OD DO OD 006 00 00 
11sa1221 asa 001 001 002 OD 0 01 001 001 OD 001 

hsa1231 asa 358 061 064 Oz.' 0 1 B 22 OB 023 
hsa1241 osq 1590 85 8021 8112 1289 203 0 270 1423 51 40 270 
rand1591 gsq 0 1 03' 015 01 OD 00 004 00 DO 
rand1611 asa B73 652 0 525 13 250 8 93 25 01 8 21 B 21 
rand1631 aso 5 55 351 39 591 40 27 20 86 81 38 20 
rand1671 osa 731 on 092 23 20 0 1 04 0 

Table A 85. MPPI method, time, small trees, 4 
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I FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6scheme 7 scheme 8 scheme M1n1mum 
lrandom61 QS 9603 34 198564 24544 118822 9406 072 1680 092 3573 924 7182441 118822 

rando121 os 6307 26 1159 585 1149173 1497 93 4775 987 608422 2318144 1074 78 608 422 

rando5'91 osa 32816 3 1052 616 1640 589 3552 425 3340018 7464 74 124 278 87705 12427 
rand1321 gsq 79188 72 1775112 2525 46 2945356 18349 6 114959 2525 46 

rand1501 asa 7822737 13761 19625 28 5079 594 191105 5079 594 

rand1581 QSQ 626 312 54602 88 8207 560 351 170189 81 4 20202 81 42 

hsab521 gsq_ 11414 7 40816 82 4586719 6143 983 3145 263 1894 98 43089 68 926 52 926 523 

11Sab741_gsa 5331642 3739788 47906 38 1831228 18312 28 

11sab881 asa 2092 689 19699 25 4384779 203 23 390 496 20548 8688 733 365B3 203 23 

l11sa1001 gsq • 23340 76 29815 53 54022 41 29581 02 44256 81 23340 76 

lrand1641 osa 3672 30 1153103 599 34 59579 874 238 347 473 2647 493 600481 34747 

rand1651 QSQ 40980 09 49485 72 15641 21 2373434 49824 23 18252 61 15641 21 

lrand1661 gsa 

Table A 86: MPPI method, time, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7scheme 8 scheme M1n1mum 

astolfo1 asa 39 33 33 3 3 3 33 3 3 
ben 1am1 gsq 76 76 76 6 7 7 62 98 7 

~pfeg031 gsq 1 1 1 1 1 1 1 1 1 

~ofen051 osa 1 1 1 1 1 1 1 1 1 

lboho051 osa 1 1 1 1 1 1 1 1 1 

ibPfln051 QSQ 1 1 1 1 1 1 1 1 1 

lbpfsw021 gsq 54 3 42 4 5 3 50 ... 5< 
re10191 asa 1 1 1 1 1 1 1 1 1 

re10321 asa 1 1 1 1 1 1 1 1 1 

re10571 asa 1 1 1 1 1 1 1 1 1 
re10581 gsq 129 12 120 11S 11 12( 10 9 12 

re10591 asa 204 256 252 25 14 121 26 10 20 

resden1 asa 404 23 233 241 37 258 27 19 40 

lho>Sf021 osa 146 6 60 7€ 8 6€ 7 11 14 

ltro>Sf031 gsq 19 19 19 2C 1S 2( 2 1 1 

lholsf211 asa 198 213 240 181 29 23 245 22 198 

lh01Sf361 QSQ 22 22 22 2 2 2 2 2 2 

dtree31 gsq 1 1 1 1 1 1 1 1 1 

dtree41 gsq 1 1 1 1 1 1 1 1 1 
dtree51 asa 1 1 1 1 1 1 1 1 1 

kh1ctre1 asa 40 41 36 3 4 3 39 41 4 

nakashl1 QSQ 171 72 100 121 16 9C 72 15' 17 
tnals11 gsq 143 150 150 15C 13 13 143 12 14 

trlals41 asa 337 461 35 37 361 371 392 36 33 

random31 asa 125 11 10 10 12 12 108 14 12 
random81 gsq 20 2 20 2 2 2 2 2 2 

rando131 gsq 122 92 87 8 10 11 13 10 122 

rando161 gsq 22 22 22 2 2 2 2 2 22 

ando231 asa 71 6 62 6 6 6 62 7 71 
rando251 qsq 1 1 1 1 1 1 1 1 1 

rando271 gsq 45 45 45 ... 4 41 ... ., 4 

rando281 gsq 1 1 1 1 1 1 1 1 1 

rando291 gsq 293 211 205 271 22 19 19 21 29 

rando301 asa 117 9 9 9 12 101 85 11S 11 
rando311 asa 10 1 10 1 1 1 10 1 1 

rando331 gsq 85 8 89 8 8 8 5 71 8 
rando341 gsq 18 16 16 1 1 1 18 1€ 1 

rando351 asa 43 43 43 4 3 4 36 3 4 

rando361 asa 1 1 1 1 1 1 1 1 1 

rando371 QSQ 82 7 71 7 81 8 5 8 8 
rando381 gsq 1 1 1 1 1 1 1 1 1 

rando391 asa 114 71 71 9 9 9 142 12 1H 
rando401 asa 40 32 36 3 4 4 3 41 4 
rando421 QSQ 8 8 8 

rando431 gsq 27 23 23 2 2 2 24 2 2 
rando441 asa 206 190 181 29 27 30 290 30 20 
rando451 osa 62 6 6 5 5 6 67 5 6 
rando461 QSQ 14 1 1 1 1 1 1 1 1 
rando4 71 gsq 110 8 101 10C 111 10 111 101 11 
rando48l_gsa 10 10 10 1C 1 1 10 1C 1 

rando521 asa 112 7 10 10 10 10 76 10 11 
rando531 QSQ 8 
rando541 gsq 74 46 7 7 7 7 72 BC 7 

rando551 osa 36 3 3 3€ 3 3 36 3E 3 

Table A 87. ZBDD method, number of nodes, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

rando581 osa 8 8 8 8 
rando601 gsq 35 3 33 34 3 3 33 3 3 
rando611 gsq 9 12 93 91 9 8 12 9 9 
rando621 asa 20 2 20 2 2 2 20 2 2 

rando631 asa 2 28 2 21 2 2 28 3 2 

rando641 osa BB 70 70 6 7~ 6 48 7 se 
rando651 gsq 30 33 26 2 2 2 26 2 3 
rando661 asa 19 19 19 1 1 1 19 1 19 

rando701 osa 60 48 50 4 6 4 61 81 6 
rando731 osa 7 72 72 7 7 7 66 7 7 
rando751 gsq 1 1 1 1 1 1 1 1 1 

rando761 asa 25 25 25 2 2 2 25 2 2 
rando771 osa 5 26 26 2 4 2E 2 3 5 

rando781 osa 1 1 1 1 1 1 1 1 1 

rando801 gsq 16 16 16 " 1E " 1 1 " randoB31 asa 61 42 46 4 5 3 46 5 61 

randoB41 asa 202 103 100 12 17 " 8 13 20 

rando851 osa 1 1 1 1 1 1 1 1 1 
rando871 gsq 1 1 1 1 1 1 1 1 1 
rando881 asa 41 29 3 34 3 3 30 3 41 

rando891 osa 6 56 59 5 5 5 52 6 6 
rando911 osa 289 279 279 27C 28 27 349 27 289 

rando921 gsq 21 25 244 24 19 18 238 20 21 

rando931 asa 3 3 3 3 3 3 3 3 3 
rando951 asa 61 52 59 5 6 6 5 6 61 
rando981 osa 254 178 178 19 24 18 16 22 25< 

rando991 oso 237 240 209 20 20 m 202 19 23 
rand1 001 qsq 12 12 12 1 1 1 12 1 1 

rand1 031 gsq 60 4E 58 5E 5 5 48 5 6 
rand1 041 asa 20 20 20 2 2 2 20 2 2 
rand1051 osa 41 3 36 3 41 3 30 3 41 
rand1 061 gsq 2 2 2 2 2 2 24 2 2 
rand10B1 gsq 176 180 163 19 16 17 167 16 17 

rand1091 asa 22 133 153 17 21 20 153 21 22 

rand11 01 asa 1 16 16 1 1 1 16 1 1 

rand1111 OSQ 71 58 58 5~ 6 5 58 5 71 
rand1151 gsq 120 82 82 " 10 9 89 81 12 

rand1161 osa 38 31 31 31 3 3 31 3 3 
rand1171 asa 20 2 24 2 2 2 2 2 2 
rand1181 qsq 123 86 80 8 10 8 68 9 12 
rand1191 gsq 10 10 10 1 1 1 10 1 1 

rand1201 osa 223 " 120 17 21 19 184 21 22 
rand1211 asa 50 40 40 4 5C 44 4 5 5 
rand1231 osa 12 12 12 1 1 1 12 1 1 

rand1241 gsq 1 1 1 1 1 1 1 1 1 
rand1251 gsa 1 1 1 1 1 1 14 1 1 
rand1261 asa 149 158 15 161 14 14 166 15< 149 

rand1271 osa 1 1 1 1 1 1 1 1 1 
rand12B1 gsq 72 7 61 7C 7 7 65 8 72 
rand1291 gsq 1 1 1 1 1 1 1 1 1 

rand1301 asa 6 6 6 
rand1341 asa " 70 70 " " 111 128 " 113 
rand1351 QSQ 10 86 90 9 9 9 103 10 10 
rand1371 gsq 38 38 38 3E 44 4 43 '" 38 

Table A 88 ZBDD method, number of nodes, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme Sscheme 6 scheme ?scheme 8 scheme M1mmum 

rand1381 gsq 24 2 2 2 2 2 2 2 2 
rand1391 aso 208 196 16 18 18 16 178 19 208 

rand1411 oso 12 12 12 1 1 1 12 1 1 
rand1421 oso 309 29 308 47 31 28 22 33 309 
rand1431 gsq 22 2 2 2 2 2 2 2 2 
rand1441 asa 94 7 71 7 11 "" 11 9 9 
rand1451 osa 18 1 18 1 1 1 18 1 1 

rand1461 QSQ 41 41 41 41 4 4 46 "' 41 

rand1471 gsq 283 35 37 28 23 22 24 26 28 

rand1481 asa 8 8 8 
rand1491 asa 1 1 1 1 1 1 1 1 1 
rand1511 QSQ 1 1 1 1 1 1 1 1 1 
rand1531 gsq 10 10 10 1 1 1 10 1 1C 
rand1541 aso 1 1 1 1 1 1 1 1 1 

rand1551 asa 277 22 198 171 23 191 220 21 27 
rand1561 osa 1 1 1 1 1 1 1 1 1 
llsaba11 gsq 83 76 8 T.' 81 7 80 7 8 
ilsaba31 asa 564 62 58 56 57 42 582 64 56 
llsaba41 asa 596 434 495 36 41 59 401 39 59 
11sabaS1 osa 178 14€ 15 16 171 16 16 17 178 

hsaba61 gsq 158 109 109 11 11 11 126 111 15E 
hsaba71 gsq 85 80 80 7 8 8 80 8 BE 
hsaba91 asa 44 35 35 3 3 3 39 4 "' hsab1 01 asa 195 10 10 10f 171 13 121 14 195 
hsab111 osa 1 1 1 1 1 1 1 1 1 

IIS8b131 QSQ 12 12 1 1 1 1 12 1 " 1Mb171 asa 100 92 96 9 9 9 96 8 10 

l1sab191 asa 1 1 1 1 1 1 1 1 1 

11sab201 osa 1 1 1 1 1 1 1 1 1 

hsab241 osa 1 1 1 1 1 1 1 1 1 
llsab251 gsq 59 SE 59 5 5 6 5 6 59 
hsab271 osa 262 208 208 131 24 15 113 23 26 
hsab281 asa 1 1 1 1 1 1 1 1 1 
hsab301 osa 47 44 4' 4 4 4 "' 41 4 
hsab311 gsq 1378 687 805 47 67 46 696 58 1378 
hsab341 aso 44 3 4 3 "' 3 4 4 "' hsab351 asa 493 50 53 42 43 42 445 34 49 
IIS8b361 QSQ 178 19 17 10 16 111 161 21 17 

hsab371 osa 18 18 18 1 1 1 18 1 18 

IIS8b421 QSQ 1 1 1 1 1 1 1 1 1 
1Mb441 osa 33 34 3 3 3 3 3 3 3 
IIS8b461 QSQ 1 1 1 1 1 1 1 1 1 
hsab471 gsq 1 12 1 1 1 1 12 1 1 
IIS8b481 gsq 8 8 8 E E 8 
llsab491 asa 1 1 1 1 1 1 1 1 1 

hsab501 asa 1 1 1 1 1 1 1 1 1 
hsab511 gsa 28 28 2 2 2 2 32 31 28 

hsab531 gsq 1 1 1 1 1 1 1 1 1 
hsab541 asa 27 22 25 2 2 2 25 2 2 
11sabS61 osa 4 
hsab571 osa 171 169 176 161 171 17 166 141 171 
hsab591 gsq 1 1 1 1 1 1 1 1 1 
hsab601 asa 38 30 30 3 3 3 34 3E 3Jl 
hsab611 asa 48 4 47 4 5 4 4 4 4 

Table A.89 ZBDD method, number of nodes, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

llsab621 oso 36 30 3 3 3 3 33 3 3 
llsab631 oso 15 15 15 1 1 1 14 1 1 

llsab641 gsa 56 5 5 " 5 5 52 5 5 
llsab651 gsq. 1 1 1 1 1 1 1 1 1 
llsab661 asa 183 126 126 18 17 16 12 11 18 

hsab671 asa 110 88 88 8 12 9 120 11 11 
hsab681 aso 1 1 1 1 1 1 1 1 1 
hsab691 gsa 48 38 38 3 4 3 45 ., 4 

hsab701 asa 93 6 6 6 8 5 53 8 9 
hsab711 asa 10 1 1 1 1 1 10 1 1 
11Sab721 QSQ 284 215 215 21 2n 259 149 22 28' 

llsab731 QSQ 1 1 1 1 1 1 1 1 1 
lisab751 asa 1 1 1 1 1 1 1 1 1 
hsab771 asa 427 396 362 27 41 27 331 44 42 
hsab7B1 gsa 300 122 181 21 25 21 166 144 30 
hsab811 gsq 1 1 1 1 1 1 1 1 1 
hsab821 asa 580 395 395 65 49 37 534 47 58 
11Sab831 asa 107 9 9 91 10 9 9 9 10 

llsab841 osa 94 10 81 81 8 8 BB 8 9 
lhsab861 gsq 223 295 243 21C 21 22 215 22C 22 
[11sab881 aso 71 56 56 5€ 7 6 56 7 71 
hsab911 asa 276 119 119 10 19 13 8 18 27 

hsab951 asa 6 6 6 

'"ab971 asa 6 6 6 E E 
llsab981 gsq 1 1 1 1 1 1 1 1 1 
l1sa1 031 asa 1 1 1 1 1 1 1 1 1 
llsa1041 asa 1 1 1 1 1 1 1 1 1 
11sa1 071 asa 16 16 1 1 1 1 1 1 1 
hsa1 091 gsq 73 7 79 7 7 7 78 7 7 
hsa11 01 gsq 40 3 3 3€ .., 3 6 4€ 4 
11sa1111 asa 30 30 30 3 3 3 32 3 3 
hsa1121 asa 496 220 224 26 47 331 291 541 49 

lisa1131 gsa 206 173 173 21 15 14 182 15 20 
11581151 gsq 47 4 43 4 4 4 45 5C 4 
hsa1161 asa 18 1 18 1 1 1 1€ 1 1 
llsa1191 asa 14 12 1 1 1 1 1 1 1 
hsa1201 gsq 1 1 1 1 1 1 1 1 1 
hsa1211 gsq 24 2 2 2 2 2 2 2 2 
11sa1221 asa 26 26 26 2€ 2 2 2 2 2 
hsa1231 osa 89 61 61 5 8 7 103 8 89 
11sa1241 osa 869 431 45 48 70 49 738 401 86 
rand1591 gsq 99 9 104 10 8 7 7 88 9 
rand1611 asa 39 288 289 431 32 32 441 53C 39 
rand1631 asa 500 936 817 47 36 34 345 48 50 
rand1671 asa 224 15 159 14 21 15 111 171 22 

Table A.90 ZBDD method, number of nodes, small trees, 4 
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FT name 1 scheme 2scheme scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
random6t gsq 60 449 579 361 601 48 491 56 361 

rando121 osa 83 731 721 55 69 51 47 53 47 

rando591 QSQ 53 31 32 27 518 32 19 34 19 
rand1321 g~ 144 124 124 96 97 104' 100 1301 96 

rand1501 osa 93 113 801 5r. 1046 55 49 95 49 
rand1581 gsq 541 258 28' 45 556 45 381 50< 25 

lisab521 osa 893 142 142 94 79 83 71 73 71 
llsab741 osa 2341 71 740 75 4384 97 72 3371 71 
llsab891 gsq 753 34 51 36 42 37 501 40 34 

llsa1 001 osa 1064 36 363 54< 781 64 71 58 36 
rand1641 gsq 1436 1591 839 83 86 66 1499 81 66 
rand1651 gsq 926 55 55 33 477 30 38 61 30 
rand1661 osa 1121 115 97 105 84 115 1144 99 84 

Table A 91: ZBDD method, number of nodes, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

astolfo 1 gsa 004 OD' 00 00< 00 00 00 00 00< 
ben 1am1 oso 004 00 005 00 00 00 00 00 0 
llofeo031 oso 0 53 04 05 04 05 05 051 05 048 
~pfen051 oso 037 03 03 03 03 03 03 03 03 
~pfrg051 gsq 033 03 03 03:' 03 03 03 03 03 
lbof1n0S1 asa 0 02 0 01 001 001 00 001 001 00 001 
lbpfswD21 qsq 1 51 1 48 1 5 1 1 61 1 49 1 58 1 4 1 4 
~re10191 gsq 0 0 c c OOf OOf OOf c 
~re10321 gsq 0 0 Of 001 OOf OOf OOf 

re10571 asa 003 0 02 003 00 00 00 003 00 00 
re10581 asa 033 0 39 036 03 03 035 039 03 033 

~ref0591 oso 066 0 67 073 0 6E 06 06 068 06 066 
~resdenf gsq 062 066 065 06 06 06 066 06 06 
holsf021 osa 004 005 003 00 00 00 004 00 003 
holsf031 asa 004 00 00 00 00 00 004 00 004 
hprsf211 OSQ 004 008 005 00 00 00 00 00 00< 
hprsf361 gsq 004 003 004 00 00 0 Q5 005 00 003 
dtree31 asa 0 01 0 001 001 0 0 01 
dtree41 oso 0 c 0 Of 0 Of 0 
dtree5f gsq 0 OOf c c c 
kh1ctre 1 gsq 023 026 02 02 02 02 02 0 25 023 
nakashl1 osa 004 004 00 0 00 00 00< 00 0 
nals11 asa 004 004 00 0 00 00 003 00 00 
lals41 QSQ 006 02 0 1 0 1 00 01 01 00 005 

random31 gsq 005 004 00 00 00 ooe 005 00 00< 
random81 asa 02 023 02 02 02 02 0 24 02 022 
rando131 aso 004 OD' 005 00 00 00 00 00 003 
rando161 osa 023 023 02 02 02 02 02 02 022 
rando231 osa 004 0 03 00 0 00 00 00< 00< 003 
rando251 gsq 0 0 001 OOf c 0 c 
rando271 gsq_ 019 02 0 Of 0 02f 02 02 019 
rando281 asa 0 0 0 OOf 
rando291 asa 0 05 0 05 00 0 00 00 005 00 00 
rando301 gsq 0 04 00 00 00 00 00 005 00< 00 
rando311 gsq 004 0 05 00 00 00 00 00 00< 00 
rando331 asa Of9 02 0 0 1 021 0 02 0 21 Of9 
rando341 asa 004 00 003 00 00 00 00< 00 003 
rando351 gsq 0 3f 031 03 03f 03 03 032 0 31 031 
rando361 gsq 0 01 0 0 001 c c 
rando371 osa 004 003 00 00 00 0 00 00< 003 
rando381 osa 0 001 001 0 01 
rando391 gsq 004 004 00 OD' 00 00 003 00 00 
rando401 gsq Of9 02 021 01 0 0 02 0 Of9 
rando421 osa 019 Of9 0 2f 01 0 02f 02 02 Of8 
rando431 osa 0 04 0 04 00 00 00 00 00 00 00 
rando441 asa 0 05 0 04 005 00 00 00 005 ooe 00 
rando451 gsq 019 02 0 02 02 02 02 0 019 
rando461 osa 023 02 025 02 02 02 02 02 0 23 
rando471 osa 03 0 33 03 03 03 03 03 03 03 
rando481 asa 019 02 Of9 02f 0 2f 0 02 0 2f 019 
rando521 gsq 023 0 23 02 02 02 02 023 02 023 
rando531 gsq Of9 0 2f 0 021 0 21 Of 02 0 Of9 
rando541 oso 023 0 23 02 02 02 02 024 02 023 
rando551 asa 023 023 023 02 02 02 02 02 022 

Table A 92: ZBDD method, time, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme ?scheme 8 scheme Mlmmum 

rando581 asa 02 02 02 0 021 01 02 0 21 019 
rando601 QSQ 02 02 028 02 0 02 028 02 027 
rando611 gsq 00< 006 004 00 00 00 00 00 004 
rando621 gsq 026 028 02 02 0 02 02 02 026 
rando631 osa 02 023 024 02 02 02 02 02 02 
rando641 osa 0 22 02 025 02 02 02 024 02 022 
rando651 gsq 0 004 00 00< 005 00< 003 00 00 
rando661 gsq 01 0 1S 02 01 0 21 0 0 21 0 01 
rando701 asa 00 004 004 00 00 00 004 00 004 
rando731 oso 02 02 025 02 02 02 025 02 02 
rando751 gsq 001 0 0 c 
rando761 gsq 02 02 02 02 025 02 02 02 02 
rando771 asa 00< 003 00 00 00 00 003 004 003 
rando781 osa 0 0 001 001 
rando801 gsq 0 02 0 21 0 19 022 0 21 02 0 019 
rando831 gsq 00 0 05 00 004 00 00< 00< 004 003 
rando841 asa 019 019 021 0 0 21 0 0 0 019 
rando851 asa 0 0 001 0 
rando871 gsq 0 01 0 c c 001 0 
rando881 gsq 00< 004 003 004 0 05 00< 00 00 003 
rando891 osa 03< 03 036 03 03 03 035 03 034 
rando911 asa 00 006 00 00 00 00 006 OD 0 05 
rando921 osa 0 21 02 021 0 1S 021 021 0 21 0 019 
rando931 gsq 02 02 02 0 25 0 02 028 02 025 
rando951 asa 0 23 0 23 02 02 02 02 02 02 023 
rando981 osa 0 05 00 00 00 00 00 003 00 003 
rando991 osa 00 005 0 05 00 00 00< 00 0 004 
rand1 001 gsq 023 023 02 02 02 02 02 02 023 
rand1 031 gsq 018 02 02 021 02 0 21 0 0 018 
rand1 041__gsq_ 026 02 02 02 02 02 028 02 026 
rand1 051 asa 00 003 00 00 00 00 00 00 003 
rand1061 QSO 03< 035 03 034 03 03 035 03 03 
rand1081 oso 00 00 005 00 0 0€ 00 00 00 004 
rand1091 gsq 00< 003 00 0 05 0 0€ 00 005 00 003 
rand1101 osa 00< 005 003 004 00 00 005 00< 00 
rand1111 osa 00 00 00 00 00 00 0 00 00 
rand1151 oso 0 03 003 0 03 00 00 0 05 00< 00 003 
rand1161 gsq 019 02 02 01E 0 02 02 0 018 
rand1171 asa DO 003 004 00 DO DO 004 00 OD 
rand1181 osa 0 02 0 21 0 1 0 21 0 0 02 01 
rand1191 osa 02 02 019 0 021 02 019 0 21 019 
rand1201 gsq 0 05 003 DO DO OD OD DO< 00 003 
rand1211 osa DO OD DO DO OD 00< 00< 00< 00 
rand1231 asa 003 OD OD OD DO DO 00 00 003 
rand1241 osa 0 0 01 0 01 0 01 c 001 c 
rand1251 gsq 002 004 004 OD 0 05 OD OD DO 002 
rand1261 osa 005 005 005 DO DO DO OD DO 0~ 

rand1271 asa 001 0 001 
rand1281 qsq DO 00 00 OD DO DO OD OD DO 
rand1291 gsq 0 0 001 001 c 0 01 0 c 
rand1301 gsq 004 003 003 00 DO DO 003 OD 003 
rand1341 osa Q(X 005 00 004 DO DO< 00< OD 0 03 
rand1351 osa 02 02 021 0 021 0 0 21 02 02 
rand1371 gsq 005 004 004 00 DO DO OD OD 0 04 

Table A 93: ZBDD method, time, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

rand1381 gsq 027 02 02 02 02 02 02 02 02 
rand1391 asa 004 DO OD DO DO DO 004 DO 003 
rand1411 asa 004 003 004 OD OD DO 005 DO 003 
rand1421 QSQ 02 021 0 021 02 0 02 02 0 

rand1431 QSQ 029 031 03 0 03 03 031 03 02 

rand1441 gsq 004 DO 0 04 00 DO DO 004 00 00 
rand1451 asa 019 0 0 21 01 02 0 021 0 019 
rand1461 asa 004 0 OD 00 00 00 OM DO< DO 
rand1471 oso 02 021 021 0 21 0 21 0 21 022 021 0 
rand1481 gsq 019 019 02 OH 0 21 0 21 02 0 019 
rand1491 gsq 001 0 01 
rand1511 asa 0 01 0 0 0 01 0 01 0 001 
rand1531 oso 019 019 02 0 21 021 01 019 0 019 
rand1541 gsq 0 0 001 ( 001 
rand1551 gsq_ 003 00.0 00 00 00 OM 00 00 00 
rand1561 asa 001 001 0 0 01 001 

hsaba11 asa 027 028 028 02 0 02 028 02 027 
hsaba31 gsq 022 02 023 02 02 02 024 02 022 
hsaba41 gsq . 006 006 005 00 DO DO DO 00 005 
hsaba51 asa 023 02 024 02 02 02 024 02 023 

hsaba61 asa 007 0 05 006 00 00 00 005 DO 005 
hsaba71 gsQ 027 02 028 02 02 02 028 02 02 
hsaba91 asa 021 019 023 0 021 021 02 021 019 
llsab101 osa 005 DO 0 05 00 DO DO DO DO 003 
IIS8b111 QSQ 0 001 001 0 c 
llsab131 gsq 003 003 00 00 00 DO 004 00 003 
hsab171 gsq_ 026 02 02 02 0 02 027 02 026 
hsab191 asa 3 301 303 301 311 30 315 30 3 
hsab201 osa 1 06 1 0 1 05 1 0 1 0 1 0 1 06 1 0 1 05 

hsab241 asa 003 0 03 003 00 00 OM 003 DO 003 
hsab251 gsq 004 003 OD 00 00 00 004 00 003 
hsab271 asa 032 032 0 31 0 03 03 031 03 03 

llsab281 asa 0 01 001 001 001 0 001 0 
llsab301 osa 027 02 02 02 02 02 02 02 02 
llsab311 gsq 038 029 022 DO 00 00 025 DO 0 05 
llsab341 gsq 019 021 0 0 02 01 021 021 01 
1Mb351 gsa 0 05 005 005 00 00 00 006 00 00 
llsab361 asa 0 04 00 00 OD OD DO 00 00 OD 
llsab371 osa 0 24 02 023 02 02 02 024 02 02 
hsab421 QSQ 0 0 0 0 0 01 
hsab441 gsq_ 023 023 023 02 02 02 02 02 023 
hsab461 asa 268 267 268 26 27 2 27 2 26 
hsab471 osa 004 005 DO OD' 0 05 OD' OD DO< DO< 
hsab481 QSQ 004 003 DO DO 0 05 OD' OD DO 003 
hsab491 gsq 004 0 04 005 DO DO DO 003 on.. 003 
hsab501 asa 0 0 0 0 01 0 
IIS8b511 QSQ 004 004 003 OD' 0 05 DD' 00.0 00 00 
llsab531 gsq 001 0 001 001 001 0 01 
llsab541 gsq 004 DO DO DO 00 OD< 004 DO 004 
l1sabS61 osa 0 03 DO DO 00 00 00 OM DO 00 
hsab571 asa 0 03 00 00 OD 005 00 005 00 00 
hsab591 aso 0 09 009 0 1 01 01 008 009 00 008 
11sab601 gsq 0 03 00 004 DO 00 004 004 00 003 
hsab611 osa 0 05 004 00 00 DO DO 002 00 00 

Table A 94: ZBDD method, time, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme ?scheme 8 scheme M1n1mum 

hsab621 gsq 024 02 02 02 02 02 02 02 02 
hsab631 asa 005 00 0 05 00 00 00 003 00< 003 
lisab641 oso 0 31 031 03 02 03 031 03 031 02 
hsab651 QSQ 0 01 0 c c 001 001 0 
hsab661 gsq 004 005 0 03 00 00 00< 00< 00< 003 
ltsab671 asa 009 009 009 00 01 00 009 01 009 
lisab681 oso 0 0 01 0 0 01 0 
lisab691 gsq 003 003 005 00 00 00< 00< 00 003 
I1Sab701 gsq 004 00< 005 00< 00 00< 00< 00 004 
hsab711 asa 019 019 02 021 021 01 019 0 21 019 
lisab721 oso 004 0 005 0 00 00 00< 00 003 
11Sab731 QSO 0 0 0 01 
ltsab751 gsq 0 01 0 c c 
lisab771 aso 024 02 024 021 02 02 022 02 021 
llsab781 oso 0 03 003 00 00 00 00 00< 00 003 
llsab811 osq 0 0 0 001 
lisab821 gsq 1 91 1 99 2 01 1 9 1 9 18< 19< " 1 8 
lisab831 asa 004 003 00 00 00 00< 00 00 003 
hsab841 aso 005 00 00 00 00' 0 00< 00< 00 
ltsab861 osa 004 005 00 00 00 0 00 00 003 
ltsab881 gsq 003 00< 005 00 00 00 003 00 003 
lisab911 gsq 014 016 01 01 0 1 01 01 01 014 
lisab951 aso 004 OD' 002 00 00 00< 00< 00 00 
l,sab971 osa 004 003 005 00 00 0 003 00 003 
lt5ab981 osa 0 0 0 0 01 0 
11581031 gsq 001 0 c c 
hsat 041 gsq 001 c 001 0 0 01 
h5a1 071 asa 023 0 23 023 02 02 02 023 02 02 
hsa1091 osa 004 0 03 00 00 00 00 005 00 003 
lisa1101 osa 005 00 0 03 0 00 00 00 00 00 
lisa1111gsq 019 02 01 0 0 0 0' 0 019 
hsa1121 asa 025 025 025 02 02 02 025 02 024 
hsa1131 asa 019 02 019 0 0 0 021 0 1 019 
hsa1151 Q5Q 004 00 00 00 00 00' 00< 00< 00 
llsa1161 gsq 005 005 003 00 00 00 00< 00< 003 
hsa1191 gsq_ 004 003 00 00 00 00 00 00 003 
hsa1201 osa 0 0 001 001 0 01 
11581211 QSQ 024 02 02 02 02 02 023 02 022 
hsa1221 gsq 003 00 00 00 00 00 003 00 003 
hsa1231 gsq 004 0 03 00 00 00 00 003 00 003 
ltsa1241 osa 0 1 008 008 00 00 00 013 00 00 
rand1591 osa 004 0 00 0 00 0 00 00 00 
rand1611 gsq 004 013 00 00 00 00 005 0 05 00 
rand1631 gsq 022 0 21 023 02 0 0 022 0 0 
rand1671 asa 02 02 021 02 01 0 02 0 21 019 

Table A 95: ZBDD method, time, small trees, 4 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme ?scheme 8 scheme Mrmmum 
random61 gs 00 00 00 0 08 0 11 011 0 1 DO OD 
rando121 aso 016 01 01 01 011 011 01 011 011 
rando591 asa 00 004 005 DO DO< OD 0 05 DO 00< 
rand1321 gsq 1 0 32 31 05 02 02 04S 03 02 
rand1501 asa DO 01 009 006 008 OD DO DO 005 
rand1581 gsq 02 02 025 0 25 02 02 0 25 02 025 
hsab521 qsq 01 1 0 09' 01 DO 01 0 1 DO 006 
llsab741 gsq 695 6 31 66 6 39 87 64 6 75 12 9 631 
llsab891 asa 007 01 019 OD 00 OD 0 00 005 
llsa1001 asa 015 00 00 0 1 01 0 1 02 00 007 
rand1641 gsq 05 03 0 22 022 02 0 1 21 0 02 
rand1651 osa 02 02 029 02 02 02 02 02 026 
rand1661 gsq 01 32 1 83 04 0 1 04 0 85 0 014 

Table A 96 ZBDD method, t1me, 'large' trees 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme ?scheme 8 scheme Mm1mum 

astolfo1 osa 53 56 56 5 51 5 5 51 51 

ben 1am1 OSQ 129 14 14 11 12 12 11 15 11 

bpfeo031 oso 1 1 1 1 1 1 1 1 1 

bpfen051 gso 1 1 1 1 1 1 1 1 1 
bpf,g051 gso 1 1 1 1 1 1 1 1 1 

bofln051 asa 1 1 1 1 1 1 1 1 1 

bpfsw021 oso 101 6 98 7 101 6 111 7 6 
dre10191 gsq 1 1 1 1 1 1 1 1 1 

dre1 0321 a sa 1 1 1 1 1 1 1 1 1 

re10571 asa 1 1 1 f 1 1 1 1 1 

dre1 0581 QSQ 249 256 256 25 23 24 265 21 21 

re10591 QSQ 486 662 563 54 40 35 658 36 35 
resden1 asa 3154 237 237 236 272 242 7602 207 207 

hOISf021 QSQ 480 10 10 12 14 10 12 25 10 

hOISf031 QSQ 15 15 15 1 1 1 19 1 1 
hp,sf211 gsq 1139 2069 1143 94 116 138 2076 86 86 

hplsf361 oso 20 2 2 2 2 2 2 2 2 

dtree31 asa 1 1 1 1 1 1 1 1 1 

dtree41 QSQ 1 1 1 1 1 1 1 1 1 
d1ree51 gsq 1 1 1 1 1 1 1 1 1 

kh1ctre1 aso 35 38 3 3' 3 3 36 3 3' 
nakashl1 asa 299 140 156 17 21 21 140 20 140 

tnals11 asa 215 295 295 29 21 21 332 18 18 

tnals41 gsq 836 1490 1421 104 70 113 1659 80 70 

random31 aso 193 136 128 12 15 15 418 19 12 

random81 asa 16 16 16 1 1 1 16 1 1 

rando131 OSQ 145 183 163 16 11 12 20 11 11 

rando161 QSQ 20 20 20 2 2 2 2 2 2 

rando231 osa 63 58 58 5 61 5 58 6 55 
rando251 gsq 1 1 1 1 1 f f 1 1 
rando271 asa 38 38 38 3 3 3 3 3 3 
rando281 qsa 1 1 1 1 1 1 1 1 1 

rando291 qsq 913 72 713 80 906 55 773 41 41 
rando301 gsq 240 23 216 21 25 9 126 244 95 
rando311 gs_q_ 5 5 
rando331 asa 159 173 173 18 16 17 88 13 8 

rando341 osa 20 15 15 1 1 1 15 1 1 
rando351 gsq 42 42 42 4 30 4 31 3 31 

rando361 osa 1 1 1 1 1 1 1 1 1 

rando371 asa 83 76 83 8 7: 7 76 7 7 

rando381 asa 1 1 1 1 1 1 1 1 1 
rando391 gsq 178 120 120 15 15 15 352 21 12, 

rando401 csa 40 4€ 3 31 4 4 3 4 3 
rando421 osa 6 6 6 6 

rando431 QSO 23 2 23 31 30 3 31 3 2 
rando441 qsq 612 52 51 37 90 46 45 48 372 

rando451 osa 61 6 6 6 5 6 6 5 5 
rando461 asa 12 12 12 1 1 1 12 1 1 

rando471 OSQ 141 159 15 15 m 10 176 11 106 

rando481 gsq 8 8 8 8 8 8 
rando521 gsq 183 165 175 175 17 17 89 17 §9 

rando531 asa 6 6 6 
rando541 QSQ 65 52 64 6 7 7 64 7 5 

rando551 osa 28 28 28 28 28 2 28 2 28 

Table A 97. L-BDD method, number of nodes, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme Sscheme 6 scheme 7 scheme 8 scheme Mm1mum 

rando581 asa 6 6 6 
rando601 asa 33 29 32 2 2 2E 32 2 2 
randc611 gsq 12 22 149 13€ 11 6E 22 11 6 
rando621 gsq 18 18 18 1 1 1 18 1 18 

rando631 asa 2 2 2 "" "" "' 2 2 2 

rando641 asa 88 7 72 7 7 7 100 8 7 

rando651 QSQ 34 42 33 4 3 4 33 31 31 
rando661 gsq 2 23 23 2 , 2 23 2 21 

rando701 asa 55 43 35 43 6 4 49 7 3 
rando731 asa 9 7 7 7 9 9 89 9 7 
rando751 QSQ 1 1 1 1 1 1 1 1 1 

rando761 gsq "' "' 22 2 2 2 22 2 2 
rando771 asa 70 1E 15 1 4 1 2 2 1 

rando781 asa 1 1 1 1 1 1 1 1 1 

rando801 asa 1 13 13 1 1 1 1 1 1 
rando831 gsq 6 36 49 4S 51 3€ 4 4 3 
randa841 gsq . 461 223 22 23 37 33 35 23 22 

rando851 asa 1 1 1 1 1 1 1 1 1 

randoB71 asa 1 1 1 1 1 1 1 1 1 
randoB81 gsq 41 35 44 44 3 3 30 3< 3 
rando891 asa 62 5< 61 61 61 61 5 6 54 
rando911 asa 2367 1376 1376 47 82 46 150 51 46 
rando921 QSQ 26' 36 34 34 22 2 .. 62 22 22 
randa931 gsq 2 2 2 2 2 2 28 2 2 
rando951 gsq_ 6 51 6C 6 5 5 60 5 51 
rando981 asa 561 343 343 33 49 31 31 43 31 

rando991 asa 488 712 649 59 43 43 599 37 37 

rand1 001 asa 10 10 10 1( 1 1( 10 1 1 

rand1 031 QSQ 113 69 112 11 111 111 69 10< 6 
rand1 041 gsq 1 1 1 1 1 1 1 1 1 
rand1 051 asa 39 39 33 3 3 3 36 3 3 
rand1 061 asa 2 2 2 2 2 2 22 2 2 

rand1 081 a sa 271 300 265 31 25 26 272 25 25 
rand1 091 gsq 342 20 226 28 29 30 281 28 20 
rand11 01 gsq 1 1 1 11 11 11 11 11 11 
rand1111 asa 102 81 81 7 9 7 53 6 5 
rand1151 asa 18 112 11 17 12 13 12 8 8 
rand1161 QSQ 36 2 30 3 2 31 30 28 2 
rand1171 gsq 15 19 18 1 1 1 18 1 1 
rand1181 asa 163 101 9 10 13 10 8 10 8 
rand1191 osa 8 8 8 
rand1201 gsq 240 289 278 19 22 19 451 221 19 

rand1211 gsq _ 39 51 51 3 3 3< 3 4 3< 
rand1231 asa 6 6 6 
rand1241 asa 1 1 1 1 1 1 1 1 1 
rand1251 QSQ 11 11 1 1 1 1 11 11 11 
rand1261 gsq 26 279 279 251 271 261 280 27€ 251 
rand1271 aso 1 1 1 1 1 1 1 1 1 
rand1281 asa T. 116 76 8 7 7 84 8 7 
rand1291 QSQ 1 1 1 1 1 1 1 1 1 

rand1301 gsq 3 3 
rand1341 gsq 21 210 210 26 21 22 272 22 21 
rand1351 asa 124 135 108 10 11 11 24 12 10 

rand1371 asa 38 38 38 3 4 4 31 41 31 

Table A.98 L-BDD method, number of nodes, small trees, 2 
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I FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme Mm1mum 

rand1381 asa 20 20 20 2 2 2 2 2 2 
rand1391 asa 299 369 31 37 27; 29 423 27 27 
randt411 osa 10 1 10 1 1 1 9 
rand1421 gsq 1000 1064 1138 318 109C 132 619 125 619 
rand1431 gsq 19 19 19 1 19 1 1 1 1 
randt44 t a so 208 222 212 22 19 14 14 151 14 

randt451 osa 15 15 15 1 1 1 1 1 1 

rand1461 QSQ 44 "' 4 "' 4 3 39 4 3 
rand1471 gsq 685 76 762 69 47; 48 548 52 47 
rand1481 gsq 6 6 
rand1491 asa 1 1 1 1 1 1 1 1 1 

randt511 asa 1 1 1 1 1 1 1 1 1 
randt 531 gsq 7 
rand1541 gsq 1 1 1 1 1 1 1 1 1 
rand155t osa 344 578 626 39 28 22 666 25 220 
randt56t asa 1 1 1 1 1 1 1 1 1 
hsabatt gsq 79 7 93 7 7 6 9 6 66 
hsaba3Lgsa 1704 2638 2628 275 175 158 338 173 1585 
llsaba41 asa 2223 2581 2288 223 186 216 422 190 186 

lrsaba5t asa 422 31 249 22 326 18 511 30 18 

llsaba61 osa 241 390 390 14 17C 14 231 16 14 
hsaba71 gsq 86 85 85 8 8~ 8 85 8 BC 
llsaba9t asa 43 60 6 33 3 3 6 3 3 
hsab101 osa 444 291 279 27 33 29 28 30 27 
lisabttt gsq 1 1 1 1 1 1 1 1 1 
IIS8b131 QSQ 10 10 10 1 10 1 9 9 
lrsab171 osa 140 165 181 16 13 14 181 11 11 
hsab191 asa 1 1 1 1 1 1 1 1 1 
hsab201 asa 1 1 1 1 1 1 1 1 1 
hsab241 gsq 1 1 1 1 1 1 1 1 1 
hsab251 asa 63 52 58 6 6 6 52 6 52 
hsab271 asa 563 529 529 38: 32 38 361 291 291 
hsab281 asa 1 1 1 1 1 1 1 1 1 
IIS8b301 QSQ 47 43 43 "' 4 4 42 3 3 
llsab311 gsq 4511 7640 6746 408 259 343 554' 260 2598 
llsab341 asa 45 39 4 3 4 3 49 4: 3 
llsab351 qsq 732 862 965 64 61 563 76 541 541 
hsab36t gsq 248 286 291 16 23' 166 236 26 16C 
hsab37t gsq 14 1 14 1 1 1 1 1 1 
hsab42t osa 1 1 1 1 1 1 1 1 1 
hsab44t asa 32 31 31 31 3 31 28 2 2 
hsab461 gsq 1 1 1 1 1 1 1 1 1 
hsab471 gsq 10 g 9 1( 1 1 ~ 

llsab481 asa 4 
l1sab491 asa 1 1 1 1 1 1 1 1 1 
llsab501 osa 1 1 1 1 1 1 1 1 1 
ltsab511 gsq 36 36 36 3 3e 3 41 3 36 
llsab531 asa 1 1 1 1 1 1 1 1 1 
lrsab541 osa 27 1 26 2 2 21 22 1 1 

11sabS61 asa 2 2 2 
hsab571 oso 273 551 59 30 26 28 683 22 22 
hsab591 QSQ 1 1 1 1 1 1 1 1 1 
hsab601 gsq_ 33 31 31 31 " 31 34 3 31 
hsab611 asa 43 46 46 4 5 4 46 4 43 

Table A 99· L-BDD method, number of nodes, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6 scheme 7 scheme 8 scheme M1mmum 

hsab621 asa 31 2 2 3 3 3 3 3 2 
hsab631 oso 13 1 1 1 1 1 1 1 1 
lisab641 gsq . 47 "' "' "' 4 4 "" 4 4 
llsab651 asa 1 1 1 1 1 1 1 1 1 
l1sab6S1 asa 355 359 359 461 33 35 23 24 237 
llsab671 QsQ 209 199 199 19 20 17 312 18 17 
hsab681 gsq 1 1 1 1 1 1 1 1 1 
hsab691 osa 55 5 5 3 5 3 53 6 3 
hsab701 asa 94 73 73 6 8 7 80 9 6 
llsab711 asa 8 8 
hsab721 gsq 708 32 323 31 sn 68 1408 52 31 
hsab731 asa 1 1 1 1 1 1 1 1 1 
hsab751 asa 1 1 1 1 1 1 1 1 1 
lisab771 QSQ 1231 157 1465 103 145 104 1175 150 1032 
llsab781 gsq 543 259 269 43 37 43 364 24 24 
ltsab811 asa 1 1 1 1 1 1 1 1 1 
hsab821 osa 2942 315 315 389 241 220 4348 224 2209 

hsab831 osa 163 143 143 13 16 14 22 1"' 13 
hsab841 gsq 152 14 12 12 12 12 20 13 123 
llsab861 aso 610 946 94 759 531 71 1215 54 531 
11sab88l asa 60 56 56 4 6 6 56 6 4 
llsab911 osa 419 18 182 16 33 19 35 32 16 

hsab951 osa 3 3 
hsab971 qsq 3 3 3 
llsab981 gsq 1 1 1 1 1 1 1 1 1 
hsa1 031 osa 1 1 1 1 1 1 1 1 1 
llsa1041 asa 1 1 1 1 1 1 1 1 1 
hsa1071 osa 13 1 1 1 1 1 1 1 1 
~<Sa1 091 gsq 70 98 98 9 7 6 98 7 6 
l1sa1101 asa 33 41 4 4 3 2 136 4 29 
11sa1111 asa 21 21 21 21 21 21 30 21 21 
11sa1121 osa 1874 27 28 153 163 135 1498 170 27 
hsa1131 gsq 329 38 38 48 28 24 271 26 24 
hsa1151 gsa 50 5 5 5 3 5 91 7 3 
llsa1161 asa 14 18 1 1 1 11 8 
hsa1191 asa 10 16 1 1 1 16 1 6 
hsa1201 gsq 1 1 1 1 1 1 1 1 1 
11sa1211 aso 18 1 21 21 1 1 18 1 1 
hsa1221 asa 25 25 25 2 2 2 1 1 1 
llsa1231 asa 160 201 201 13 15 13 212 14 13 
llsa1241 gsq 2991 1681 1700 177 190 185 4246 157 1576 
rand1591 gsq 136 159 13 13 11 6 63 " 6 
rand1611 asa 848 118 779 85 61 71 89 87 61 
rand1631 QSQ 1297 228' 180 170 117 103 312 131 103 
rand1671 gsq 594 669 676 69 47 66 486 28 28 

Table A. lOO: 1-BDD method, number of nodes, small trees, 4 
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FT name 1 scheme 2 scheme 3 scheme scheme 5 scheme scheme 7 scheme 8 scheme Mrmmum 
random61 as 768 1301 11275 5601 616 430 1082 690 430 
rando121 QSQ 428 514 511 6711 4081 553 317 456 317 
rando591 gsq 634 708' 7021 396 5076 5300 176 335 176 
rand1321 asa 993 14811 14811 1078 451 484 1130 652 451 
rand1501 gsq 15469 23831 25902 815 1344 825E 900 892 815 
rand1581 gsg_ 2520 964 616 350 2951 3884 556 318 252 
llsab521 osa 787 1748 1737 1362 417 826 1342 4091 4091 

11Sab741 oso 12822 15087 131026 14764 19682 10005( 23671 279618 10005( 
lrsab891 gsq 4408 10041 8856 699 509 4883 1044 5571 440 
llsat001 asa 6013 761 7405 1205 592 640 14871 474: 47"' 
rand1641 gsq 1538 2764 24191 24191 15219 2000 2088 1129 11298 

rand1651 gsq 1479 1076 1076 SW 898' 1252 10051 870 86<C 
rand1661 oso 2793 5401 4245 4911 1365 3488 6747 1662 13659 

Table A.lOl: L-BDD method, number of nodes, 'large' trees 
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FT name 1 scheme 2 scneme 3 scheme 4 scheme 5scheme 6 scheme 7 scheme 8 scheme M1mmum 

astolfo1 asa 004 004 00 00 00 004 004 00' 00 
ben 1am1 OSQ 0 1 01 011 011 01 011 01 01 01 
lbofeg031 gsq 048 05 05 051 05 0~ 046 04 0 4E 
lbpfen051 gsq 038 03 038 03 03 03 03 03 03 
kJofra051 asa 032 033 03 03 041 03 033 03 03 
lbPfln051 asa 0 01 001 002 0 01 DO DO 0 01 OD 0 01 
lbpfsw021 gsq 1 52 1 5 1 5 1 5 1 5 14 1 56 1 1 49 

~re10191 gsq 0 0 001 001 0 001 c 
dre10321 gsq 001 001 001 001 0 01 001 0 01 001 0 01 

re10571 osa 003 OD 003 DO DO DO 003 00' OD 
re10581 aso 029 03 03 031 0 031 03 0 029 

k:lre10591 QSQ 076 07 07 07 0 7E 07 07 07 07 
lctresden1 gsq 1 69 099 1 02 1 0 1 3 1 0 423 11 099 
lho1sto21 aso 012 01 012 0 1 0 1 01 01 01 01 
lhPISf031 QSQ 003 003 003 DO DO 003 DO DO DO 
lhorsf211 gsq 036 09 05 03 0 39 036 036 041 035 
lhprsf361 gsq 003 OD 002 DO DO OD 002 DO OD 
dtree31 aso 0 01 0 01 0 01 001 0 001 
dtree41 asa 0 01 0 01 001 001 001 0 01 002 001 001 
d1ree51 gsq 001 001 001 c c 0 01 0 001 0 
kh1ctre1 gsq 021 02 0 0 01 0 019 01 019 
nakash1t asa 01 009 01 0 1 DO 01 01 01 009 
tnals11 asa 016 021 021 02 0 1 01 022 01 015 

181541 QSQ 044 1 38 226 09 04' 0" 562 04' 0"' 
random31 gsq 023 0 21 022 021 02 021 02 02 021 
random81 asa 017 0 1 0 1 01 0 1 01 018 01 016 
rando131 asa 014 01 01 01 0 1 01 014 01 01 
rando161 asa 024 02 025 02 02 02 025 02 02 
rando231 gsq 009 008 011 0 08 0 1 0 08 009 00 008 
rando251 asa 001 001 001 001 001 0 01 0 01 001 001 
rando271 asa 022 02 026 021 02 021 023 02 021 
rando281 csa 0 001 0 02 001 001 0 01 0 01 001 0 
rando291 QSQ 0 74 041 041 03 051 04 061 03 033 
rando301 gsq 013 011 012 01 01 011 011 01 011 
rando311 osa 004 004 003 004 DO OD 003 00 003 
rando331 asa 022 022 023 02 021 0 22 02 02 021 
rando341 asa 019 0 1 019 018 0 1 018 019 01 01 
rando351 gsq 018 018 019 018 01 01 01 01 016 
rando361 asa 0 01 001 DO 001 DO 001 001 001 001 
rando371 asa 012 011 011 01 01 011 013 01 01 
rando381 gsq 001 002 001 c 001 001 DO 
rando391 gsq 017 01 015 01 01 01 019 01 015 
rando401 oso 0 19 019 018 01 01 01 019 01 01 
rando421 osa 0 16 01 016 01 01 01 015 01 015 
rando431 gsq 004 OD 0 04 004 00 OD 005 OD 0 04 
rando441 gsq 027 0 0 016 07 028 02 1 51 016 
rando451 osa 021 018 019 0 0 021 021 0 018 
rand0461 asa 017 01 015 0 1 01 01 01 01 015 
rando471 QSQ 032 031 03 031 02 0 03 02 029 
rando481 QSQ 015 016 01 0 1 01 01 015 01 01 
rando521 gsq 029 029 031 02 02 02 029 02 02 
rando531 gsq 015 01 018 01 01 01 015 0 1 01 
rando541 asa 023 02 02 02 02 02 023 02 022 
rando551 asa 018 019 019 01 0 1 01 019 0 1 0 1 

Table A.102: 1-BDD method, time, small trees, 1 
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FT name 1 scheme 2 scheme 3 scheme 4scheme Sscheme 6 scheme 7 scheme 8 scheme M1mmum 

rando581 gsq 015 015 015 0 1 01 01 015 01 015 
rando601 asa 019 0 0 21 0 1 01 01 02 01 018 
rando611 asa 0 11 012 01 011 011 011 012 01 011 
rando621 osa 019 01 01 01 01 01 01 0 01 
rando631 gsq 02 01€ 01 0 1 0 1 01 018 01 01 
rando641 asa 0 21 019 0 01 0 0 21 02 0 21 019 
rando651 osa 00 004 00 004 00 OD 005 00 004 

rando661 asa 018 01 01 01 0 1 0 1 019 0 1 01 

rando701 asa 0 08 00 00 OD 00 00 OD 00 00 
rando731 gsq 02 0 21 021 0 02 02 02 02 02 
rando751 gsq 0 01 0 01 0 01 0 01 001 001 00 
rando761 osa 018 01 01 01 01 01 018 0 1 01 
rando771 osa 012 011 011 0 1 01 011 011 0 1 01 
rando781 gsq 001 001 0 01 0 01 0 01 0 01 0 01 0 01 001 
rando801 gsq 017 01 01 01 01 01 016 0 1 01 
rando831 osa 00 00 OD OD 00 00 00 OD 00 
rando841 osa 026 02 025 02 02 02 025 02 02 
rando851 osa 001 0 01 001 001 001 00 0 01 c 0 
rando871 gsq 0 01 0 02 001 001 001 0 01 0 01 c _0 
rando881 asa 004 004 00 DO 00 0 004 OD 00 
rando891 osa 0 21 022 021 021 021 02 022 0 21 0 21 
rando911 OSQ 99 038 03 1 55 38 058 8" 0 38 
rando921 gsq 0 048 04 04 04 04 07 04 045 
rando931 asa 019 018 019 01 0 0 01 01 017 
rando951 asa 023 023 02 02 02 02 0 22 02 02 
rando981 osa 016 012 01 01 01 01 0 11 01E 011 

rando991 osa 026 025 02 02 02 02 02 02 022 
rand1 001 gsq 016 016 015 01 01 01 015 01E 0 1~ 
rand1 031 asa 02 021 02 01 021 0 021 0 019 
rand1 041 osa 015 015 01 01 01 01 01 01 01 
rand1 051 gsq 007 0 06 00 00 00 00 00 0 DE 006 
rand1 061 gsq 016 01 015 01 01 01 016 0 1 014 
randt 081 a sa 02 01 01 01 021 01 0 0 1 019 
randt 091 a sa 016 01 01 01 0 1 01 015 0 1 014 
rand11 01 gsq 003 00 DO OD DO OD 003 00 0 03 
rand11U gsq 009 0 09 OD 00 DO OD 009 OD 008 
rand1151 asa 009 OD 008 00 00 OD 0 08 DO 007 
rand1161 osa 018 01 018 0 1 0 1 01 019 0 1 016 
rand1171 asa 004 DO 003 00 DO OD 0 03 DO 003 
rand1181QSQ 023 02 022 02 021 021 023 02 021 
rand1191 asa 0 1 016 016 01 01 01 01 01 015 
rand1201 asa 016 0 1 0 1 01 01 01 01 01 015 
rand1211 QSQ DO DO 006 DO 00 OD 006 DO OD 
rand1231 gsq 002 0 02 002 DO 00 0 01 003 DO 002 
rand1241 aso 001 0 01 001 001 001 001 0 01 0 
rand1251 asa 00 003 003 DO DO OD 002 OD 002 
rand1261 gsq 0 1 01 0 1 01 01 01 01 01 014 
rand1271 gsq 001 001 001 001 001 0 01 001 0 01 001 
rand1281 osa 0 1 011 011 01 01 01 011 011 011 
rand1291 gsq 001 0 01 001 001 001 0 01 001 0 01 001 
rand1301 asa 002 0 001 001 001 001 001 00 0 
rand1341 osa 016 01 015 01 01 01 01 0 1 0 1 
rand1351 gsq 025 024 024 02 02 02 02 02 022 
rand1371 osa DO 006 0 06 0 DE 00 OD 006 00 006 

Table A.103: 1-BDD method, time, small trees, 2 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme Sscheme 6 scheme 7 scheme 8 scheme Mrnrmum 

rand1381 QSQ 0 1 016 018 01 0 1 01 01 0 1 016 
rand1391 gsq 016 01 01 01 0 1 01 018 0 1 01 

rand1411 asa 002 002 002 00 00 00 00 00 002 

rand1421 asa 0 68 10 41 10 5 07 09 1 2 1 92 06 068 
rand1431 osa 015 01 01 01 01 01 016 01 015 

rand1441 gsq 012 01 01 011 011 01 011 01 011 
rand1451 osa 016 016 01 0 1 01 01 018 01 016 

rancl1461 asa 007 008 00 00 00 00 00 00 00 
rand1471 osa 053 0 0 49 0 04 04 066 051 04 

rand1481 !:lSQ 015 01 01 01 01 01 015 01 01 
rand1491 gsq 001 001 0 01 001 0 01 001 0 01 001 0 01 

lrand1511 osa 001 001 001 001 00 00 0 01 001 001 
rand1531 asa 015 016 01 01 0 1 01 01 0 1 01 

lrand1541 oso 001 001 001 0 01 001 

rand1551 gsq 016 019 021 01 0 1 01 0 0 1 01 
[rand1561 asa 001 0 01 001 001 001 0 01 00 001 001 

hsaba11 asa 02 023 02 02: 02 02 02 02 022 
lrsaba31 qsa 21 85 81 648 7 181 80 682 92 648 
lrsaba41 gsq 902 386 1 1 11 42 14 9 53 11 
hsaba51 osa 037 033 03 03: 03 03 036 03 033 
lrsaba61 asa 015 01 01 0 1 01 01 016 01 013 
lrsaba71 QSQ 023 023 023 021 0 22 02 02 02 021 

lrsaba91 gsq 021 02 0 21 0 0 21 021 021 0 1 018 

lrsab101 oso 02 012 013 01 0 1 0 1 013 0 1 012 
hsab111 osa 002 001 002 001 001 0 01 0 01 0 01 001 
lrsab131 osa 002 002 00 00 00 00 003 00 002 
lrsab171 gsa 0 26 023 0 25 02 02 02 025 02 023 
lrsab191 gsq 315 302 3 01 30 30 30 301 30 3 01 
hsab201 asa 1 07 1 0 1 05 1 0 1 0 1 0 1 07 1 0 1 05 

llsab241 oso 004 00 00 00 00 00 004 00 00 
llsab251 gsq 011 01 0 1 00 01 00 01 01 0 09 
hsab271 gsq 029 028 0 02 02 02 036 02 02 

lrsab281 asa 002 001 001 001 001 0 01 00 
lrsab301 aso 021 02 021 01 02 0 0 21 02 019 
lrsab311 QSQ 10554 16726 99 81 19 39 68 74 96 61 1 7 1 78 
hsab341 gsq 02 02 02 0 02 0 022 021 02 
lrsab351 asa 048 111 062 0 0 03 077 02 028 

lrsab361 asa 01 011 011 011 011 01 011 01 01 

lrsab371 asa 017 01 018 01 01E 016 01 0 1 015 
lrsab421 gsq 0 01 001 0 01 001 001 0 01 001 c 
lrsab441 gsq 018 01 018 0 1 01E 018 018 01 016 
lrsab461 asa 271 273 268 2 71 271 26 269 26 2 68 
hsab471 osa 002 00 003 00 0" 00 003 00 00 
lrsab481 gsq 003 00 00 00 00 00 002 00 00 
lrsab491_ gsa 004 005 00 00 00 00< 0 04 004 0 04 
lrsab501 asa 0 001 001 001 0 01 001 0 001 
lrsab511 qso 005 00 00 00 00 00 0 06 00 00 
lrsab531 gsq 001 001 001 0 c 0 01 001 001 0 
lrsab541 gsq 005 006 005 0 05 0 05 00 00 00 005 

lrsab561 gsq 001 0 01 001 0 01 001 00 0 01 00 001 
lrsab571 asa 022 026 02 02 02 021 02 0 1 019 

hsab591 asa 01 011 009 01 01 00 0 1 011 009 
lrsab601 gsq 0 04 00 00 00 0 05 00 003 00 003 
lrsab611 gsq 006 00 00 00 00 0 08 00 00 006 

Table A.104 1-BDD method, time, small trees, 3 
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FT name 1 scheme 2 scheme 3 scheme 4scheme 5 scheme 6scheme ?scheme a scheme M1mmum 

llsab621 asa 02 0 018 01 0 01 01 01 0 1 
hsab631 asa 003 OD 00 00 00 OD 00 00 00 
hsab641 asa 018 019 0 019 0 0 018 01 018 
hsab651 gsq 0 0 01 001 001 001 001 001 0 01 
ll5ab661 osa 018 018 018 01 01 01 01 01 01 
h5ab671 asa 018 018 01 01 01 01 019 01 016 
11sab6Bl asa 001 001 001 001 00 00 c 
llsab691 Q5Q 005 006 006 ooe 00 00 005 00 00 
ll5ab701 osa 008 00 009 00 00 00 008 00 00 
h5ab711 asa 016 01 016 01 01 01 016 01 015 
h5ab721 osa 1 03 03 0 21 06 05 29 09 0 0 21 
h5ab731 g5q 001 001 001 001 001 001 001 
hsab751 a5a 0 001 0 01 001 0 01 00 001 00 
hsab771 osa 34 94 , 9 , 91 55 15 71 9 ,, , 21 7 , 21 

llsab781 osa 016 013 0, 01 0 1 01 013 0, 012 
115ab811 gsq 0 001 0 001 001 0 01 001 
ll5ab821 gsa 468 323 3, 40 3 81 47 50 40 3, 
h5ab831 a5a 009 01 0 ,, OD 0, 0, 01 OD 00 
hsab841 asa 012 0, 0 ,, 011 0 ,, 0, 01 0 ,, 0 ,, 

15ab861 gsq 022 0 41 03 02 02 02 039 02 02 
l1sab881 gsa 006 0 05 00 OD 00 00 00 00 0 04 
llsab911 osa 026 025 02 02 02 02 02 02 02 
hsab951 050 0 002 001 
11Sab971 osa 001 002 001 00 001 00 0 02 00 0 01 
hsab981 asa 0 001 001 0 01 0 0 01 
ll5a1031 g5q 0 0 0 001 0 01 001 
I1Sa1041 asa 0 
hsa1 071 aso 016 016 016 01 01 0, 01 01 01 
11sa1 091 aso 0, 011 011 01 011 00 0, 01 00 
11sa1101 gsq 0 25 025 02 02 02 02 0 25 02 024 
h5a1111 osa 02 021 021 0 01 0, 0 0 0, 
11sa1121 asa 1 03 0 041 04 1 4 06 052 1 21 04 
ll5a1131 Q50 0 51 03 031 0 31 031 02 02 031 02 
h5a1151 gsq 008 008 008 00 00 00 01 0, 00 
ll5a1161 gsa 0 03 OD 00 00 00 00 00 00 0 03 
hsa1191 asa 0 02 00 003 00 00 00 003 OD 00 
h5a1201 osa 001 OD 001 001 001 0 01 0 00 0 
11sa1211 gsq 018 0, 01 0, o 1 e 0 1 01 01 01 
1sa1221 asa 004 00 00 OD 00 00 004 OD 00 
11521231 osa 017 0, 0 1 0, 01 0, 016 01 0, 
11521241 Q5Q 26 1 6 02 606 29 1 7 33 56 7 1 8 1 79 
rand1591 gsq 012 012 0, 011 01 01 0, 01 01 
rand1 61 1 osa 099 318 , 83 03 02 02 03 03 0 26 
rand1631 asa 092 1 82 07 05 05 04 34 07 04 
rand1671 QSO 031 02 029 02 02 02 0 02 028 

Table A.105 1-BDD method, time, small trees, 4 

347 



FT name 1 scheme 2 scheme scheme scheme 5 scheme 6 scheme 7 scheme 8 scheme M1nrmum 
random61 osc 541 60 61 36< 05 05 41 49 0 55 
rando121 gsq 146 28 345 123 37 37 32 184 289 
rando591 osa 24 1 4 11 101 1 2 11 0 2 02 

rand1321 oso 119539 4808 91 4814 03 11 51 39 25 555 1581 401 11 51 
rand1501 gsq 9778 10732 12838 20 248 20 446 49 2 04 

rand1581 osa 1 0 27 272 1 0 07 0 11 1 4 0 
llsab521 gsq 55 222 234 1 0 90 83 74 27 1 08 

llsab741 asa 13294 04 102295 1238 29 649 2f 33664 83 3167 05 66053 05 53795 6 649 29 
11Sab891 QSQ 30 92 732 1 1 04 04 920 07 04 
hsa 1001 gsq 5 98 31 26 52 28E 38 66 25 25 
rand1641 aso 475 0 230 97 97 232 41 01 811 39 807 972 

rand1651 asa 10 28 1 9 2 05 37 408 411 26 64 1 99 

rand1661 gsq 723 02 4742 96 755 86 172 12 11744 371 59 10429 217 51 11744 

Table A.106: L-BDD method, t1me, 'large' trees 

FT name 1 scheme 2scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
random61 asc 0 09 0 08 0 1 0 09 0 14 0 11 0 11 00 0 07 

rando121 asa 0 1 0 1 0 14 0 13 0 14 0 12 015 0 11 0 11 

rando591 gsq 0 05 00 0 05 0 05 0 05 0 03 0 04 0 o: 003 

rand1321 asa 1 07 32 31 0 58 023 0 28 049 0 3E 023 

rand1501 asa 00 012 0 1 0 06 007 0 06 0 04 0 OE 0 04 

rand 1581 gsa 0 2E 02 0 26 0 26 02 0 2: 0 24 0 2E 0 24 

l•sab521 gsq 0 08 074 0 72 0 1 0 08 0 08 016 00 007 

ilsab741 qsq 6 91 6 3~ 6 32 6 61 8 74 6 42 674 13 02 632 

ilsab891 asa 009 OH 0 21 00 00 00 0 21 00 007 

11sa1 001 gsq 0 16 0 08 0 08 0 1 0 1 01 0 25 0 OE 008 

rand1641 asa 0 52 0 41 0 23 0 23 023 0 21 1 25 0 22 0 21 

rand1651 asa 0 31 034 0 31 03 029 0 29 032 0 2S 029 

rand1661 gsq 0 19 32 1 85 0 43 0 1 0 48 0 89 0 ~ 014 

Table A.107 Hybnd method for non-coherent fault trees, processmg t1me 

FT name 1 scheme 2 scheme 13 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 

random61 asa 623 486 601 402 630 52 573 6m 402 

rando121 asa 619 511 505 554 499 323 346 44S 323 

rando591 gsq 592 354 360 277 581 348 363 424 27 

rand1321 asa 1097 1100 1100 724 581 615 74 81( 581 

rand1501 asa 1064 1298 1046 75 112 723 574 98E 574 

rand1581 qsq 1198 1015 1091 949 1114 95 1000 1081 949 

ilsab521 asa 852 1505 1504 975 789 819 620 66£ 620 

J•sab741 gsq 1946 606 626 648 3816 808 660 270( 606 

ilsab891 qsq 761 448 729 413 436 405 575 42 405 

ilsa1 001 asa 955 415 409 62 692 600 710 54 409 

rand1641 gsq 960 103 634 634 544 485 1093 52E 485 

rand1651 asa 915 596 596 35 468 312 516 64E 312 

rand1661 asa 906 1134 975 963 666 949 1048 79E 666 

Table A 108 ZBDD method, max1mum required s1ze 
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FT name 1 scheme 2 scheme 3 scheme 4 scheme 5 scheme 6 scheme 7 scheme 8 scheme M1n1mum 
random61 qsq 610 475 590 390 61 512 561 59E 390 
rando121 asa 608 502 496 546 489 31 335 44C 31 
rando591 gsq 582 345 351 268 572 339 354 41 268 
rand1321 asa 1080 1080 1080 708 566 599 731 79C 566 
rand1501 asa 1053 1288 1035 746 1110 708 560 971 560 
rand1581 gsq 1186 1005 1081 93 1100 943 988 106 937 
llsab521 gsa 835 1346 1345 856 769 695 611 63 611 
ilsab741 gsq 1938 598 618 641 3808 800 651 269 598 
ilsab891 gsq 752 439 720 403 426 395 565 41E 395 
ilsa1 001 asa 940 404 398 610 679 587 697 53> 398 
rand1641_gsq 948 1029 626 626 533 475 1085 51 475 
rand1651 gsq 909 590 590 351 462 306 511 63f 306 
rand1661 asa 889 1120 961 945 649 931 1033 781 649 

Table A 109. Hybnd method for non-coherent fault trees, max1mum required size 
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