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Abstract

Although it is generally recognised that formal modelling is crucial for ensuring

the correctness of software systems, some obstacles to its wider adoption in soft-

ware engineering persist. One of these is that its productivity is low; another that

for modelling techniques and tools to be used efficiently, a broad range of specific

skills is required. With the gap between computer performance and engineers’

productivity growing, there is a need to raise the level of abstraction at which de-

velopment is carried out and off-load much of the routine work done manually to-

day to computers. Formal modelling has all the characteristics required to replace

programming and offer higher productivity. Nonetheless, as a branch of software

engineering it has yet to be generally accepted. While there is substantial research

accumulated in systems analysis and verification, not much has been done to foster

higher productivity and efficiency of modelling activity.

This study puts forward an approach that allows the modeller to encapsulate

design ideas and experience in a reusable package. This package, called a design

component, can be used in different ways. While a design component is generally in-

tended for constructing a new design using an existing one, we base our approach

on a refinement technique. The design encapsulated in the design component is

injected into a formal development by formally refining an abstract model. This

process is completely automated: the design component is integrated by a tool,

with the corresponding correctness proofs also handled automatically.

To help us construct design components we consider a number of techniques

of transforming models and describing reusable designs. We then introduce the

concept of model transformation to encapsulate syntactic rewrite rules used to pro-

duce new models. To capture high-level design we introduce the pattern language

allowing us to build abstraction and refinement patterns from model transforma-

tions. Patterns automate the formal development process and reduce the number

of proofs. To help the modeller plan and execute refinement steps, we introduce

the concept of the modelling pattern. A modelling pattern combines refinement (or

abstraction) patterns with modelling guidelines to form a complete design compo-

nent.
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Our approach is both formal and pragmatic. A design component is presented

in a consistently formal fashion, which allows it to be analysed and verified. At the

same time, it is executable: it can be interpreted and manipulated using software

tools.

The thesis is divided into threemajor parts. The first one discussesmodel trans-

formations, i.e. simple rules relating formal models. The second part introduces

the concept of the pattern as a complexmodel transformation rule producing an ab-

straction or a refinement of the input model. The final part develops an approach to

guiding the modeller through a development using high-level tactics called mod-

elling patterns. The thesis is concluded with an evaluation chapter illustrating the

introduced concepts from the practical viewpoint.
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Chapter 1

Introduction

1.1 Formal Modelling

Finding solutions to complex problems requires careful analysis and validation.

Thus, an engineer constructing a bridge uses a mathematical model to predict pos-

sible stresses on different bridge parts and to select suitable materials and support-

ing structures. Not until such analysis has been carefully carried out and thor-

oughly validated may any construction works start. When constructing a new

ship, engineers start with a detailed mathematical model that accurately predicts

essential characteristics of the new ship, such aswater resistance duringmovement,

maximum load, turn radius and operating costs.

Program construction has so far stood apart. It is not uncommon to build a

complex software system by starting directly with some form of implementation

and then trying to shape it into a working product through extensive testing. The

reason this has worked for many software projects is that the cost of testing and

changes can be relatively low for software. There are, nevertheless, several prob-

lems with this: exhaustive testing is impossible for most programs; for mission-

critical systems the cost of a mistake can be very high; software typically operates

in a complex environment which is not always possible to reproduce accurately

during testing; in the absence of any analysis or design stage it is impossible to

predict how long it may take to construct a satisfactory implementation.

In the context of software engineering, a formal specification is a mathematical

description of the system to be constructed. Specification expresses system proper-

ties in such a way that it is possible to deduce useful facts about the behaviour of

system parts and the system as whole. An important property of a formal speci-

fication is that, unlike natural language or semi-formal notations, it is precise and

has a formally defined, objective and unique interpretation.

Unlike a program, which provides a concrete implementation of a system, a
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specification is an abstract design and as such is not executable. This helps to de-

couple implementation concerns from design decisions. For example, a specifica-

tion of array sorting is concerned with the properties of a sorted array, while the

corresponding implementation deals with the characteristics of the algorithm that

constructs a sorted array. Formal modelling presents a number of advantages:

• unambiguous interpretation and documentation;

• an abstract model is much cheaper to construct than a complete implementa-

tion, yet the former alone can reveal design flaws and requirements inconsis-

tencies;

• correct-by-construction, formal modelling guarantees that the system be-

haves correctly provided none of the modelling assumptions is violated dur-

ing system operation;

• formal verification makes much of the normally required testing redundant.

The benefits of formal modelling come at a cost. It is easier to understand

and construct descriptions in a natural language, and many software engineers

are not comfortable with the mathematical notation essential to formal modelling.

A widespread application of formal methods would therefore require considerable

investments into education and training.

The modelling stage delays the moment when there is an executable software

version available. There are two reasons for this. Firstly, modelling is not concerned

with implementation details and thus executable software appears only as the very

last stage of a development. The other reason is the arguably low productivity of

formal modelling. The delay, however, is often more than compensated for by a

better software quality and correspondingly less time and effort needed for testing.

1.1.1 Classes of Formal Methods

Formal methods rely on differing modelling concepts and principles and thus offer

different viewpoints of a system. A formal method is constructed according to a

certain paradigm that tries to emphasise particular systems aspects while attempt-

ing to hide or play down others. There are several major kinds of formal methods.

A transition-based model describes a system by listing possible transitions. A

transition execution is triggered by an event associated with the transition. In most

cases, a transition is a state-mapping function which computes a new system state



3

from the given current state. This modelling style is a natural choice for develop-

ing reactive systems. In transition model, there is no need to explicitly formulate

preconditions on events. A transition precondition is dissolved in the conditions

leading to the occurrence of an event which triggers the transition. Event post-

conditions are not normally used either which means a specification can be con-

structed entirely from event-guarded state-mappings. The more notable examples

of transition-based modelling methods are Statecharts [1], a formalism which ex-

tends finite state diagrams, and PROMELA [2], a specification language for valida-

tion of communication protocols.

A history-based model describes all possible execution histories of a system.

Such description characterises the system behaviour over a period of time. One

important application of this model class is the reasoning about properties of real-

time systems, such as absence of race-conditions, deadlock-freeness and liveness.

Such properties are normally expressing using temporal logic expressions [3]. Such

expressions impose conditions on the past, present and future system behaviour.

Likewise, a model of a system specified by formulating all the necessary condi-

tions restricting the model (for example, a system of temporal logic equations) or

by explicitly listing all the system histories (e.g., a trace model constructed by an-

imating a CSP [4] process). Pnueli [5] introduced linear temporal logic to reason

about properties of concurrent systems. Extensions followed to account for non-

linear [6] and continuous [7] time. Lamport [8] developed a modelling method

based on a combining a discrete state system and temporal logic.

A process-based model formulates a simple abstract process which is amenable

to interpretation and analysis that help to understand the properties of the system

under analysis. To verify a system, a modeller can construct an interpretation ma-

chine looking for violations of specific properties. Usually this done with a tool

called model-checker. Petri-nets [9] and process algebras, such as the CSP [4], CSS

[10] and π-calculus [11], are examples of formalisms based on this approach.

A state-based specification describes the state of a system at any given mo-

ment. Usually, a state-based model describes a system evolution by means of state-

mapping functions. Such functions are defined as relations expressed on the new

and old system states but can also have preconditions which describe the states

in which applying the function is allowed, and post-conditions which characterise

states achievable on applying it [12]. In addition, system states can be constrained

with invariants, i.e. properties that must be maintained throughout the system
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lifetime. State-based specifications may contain redundant elements to allow for

interesting consistency verification conditions. Popular state-based formalisms in-

clude the Z specification language [13], the Action Systems [14, 15], the B-Method

[16] and the Vienna DevelopmentMethod [17]. The B-Method has recently evolved

into a new version called Event-B [18–20].

1.1.2 Practical Formal Methods

For a long time, the focus of formal modelling research was in tackling interesting

scientific problems such as constructing novel methods and analysis techniques,

while the engineering part received little attention. Formal modelling tool devel-

opers were mainly academics not particularly interested in applying their tools to

industrial-scale examples. As a result, many such tools suffer from usability and

scalability problems, although scalability limitations may be inherent to some ap-

proaches. The situation is changing, and the importance of tool support is now

universally recognided, with several industrial-strengths tools available and com-

mercially supported [21–25].

Natural languages are very expressive and flexible due to their inherent am-

biguity. Such ambiguity, however, may be dangerous when describing a system

design and this is why engineers, including software developers, should use re-

stricted, precise and formal languages. Formality makes it possible to conduct ob-

jective, impartial design analysis. Texts in formal languages may be harder to write

but, unlike natural language texts, they are easier to analyse and manipulate using

automated tools.

There are a number of diverse tools and techniques available to assist an engi-

neer constructing a formal model.

Amodel can be animated to allow amodeller to interactively discover the struc-

ture and the underlying algorithms of the model [26]. Animation demonstrates

that the formal model matches its informal description and adequately describes

the modelled system [27, 28].

A model checker tool can automatically analyse the properties of a formal

model. Such tool explores the states or histories of the model, looking for violations

of model properties or undesirable situations. Model checking is completely auto-

mated and as such requires little effort from a modeller. Input can be just a model

itself, and a problem can be reported in the form of a counter-example [29–31]. The

availability of powerful model-checking tools has greatly contributed towards the

popularity of related formal methods.

An abstract model can be used to generate test cases to confirm the correctness
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of an implementation derived from the model. This make the testing process more

rigorous and possibly cheaper as well [32, 33].

The power of mathematical abstraction makes formal methods applicable to a

wide range of problems. Often the interesting properties of a system, even a com-

plex one, can be captured with a succinct abstract model. However, it is not the ab-

straction of a system that is the final product of a development, but an executable

set of instructions, such as a program in a programming language. To retain all

the benefits of formal modelling, this must be constructed directly from a model

by formally transforming an abstraction into an executable program. The ability

to construct a more detailed system model from an abstract model preserving the

properties embodied in the abstract model is the cornerstone of formal modelling

[16, 34]. A modeller can be offered a toolkit that helping to construct model re-

finement. For example, refinement calculus defines a set of small-step refinement

laws [35]. Specware framework uses category theory to realise powerful model

composition strategies and construct refinements from small simple models [36].

1.2 Related Works

1.2.1 Design Patterns

Design patterns enable developers to capture and reuse successful solutions appli-

cable in a range of contexts. The idea of reusable design patterns was originally in-

troduced by an architect Christopher Alexander [37] in mid-seventies. The concept

has proved exceptionally successful and over the years it was picked up in other

disciplines, including software development. In 1987 Cunningham and Beck [38]

proposed an adaptation of the Alexander’s pattern language for object-oriented

programming. In 1994 Erich Gamma et al. [39] publish a famous collection of de-

sign patterns for object-oriented software development. Shortly afterwards the use

of these patterns becomes as a fairly standard practice in software development.

Software design patterns, as they are presented by [39], are generic and abstract

solutions described in a structured but informal way. Patterns help to communi-

cate important ideas accumulated during the many years of software engineering

practice. New patterns can be created along the lines of the existing patterns and

complex designs can be communicated by describing them in the terms of widely-

known design patterns.
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1.2.2 Refinement Calculus

The refinement calculus is a formal framework for constructing executable pro-

grams from abstract, possibly non-executable specifications [35, 40, 41]. It is aimed

at state-based, imperative style of describing program functionality. The founda-

tional theory is the Dijkstra’s weakest precondition semantics [12]. Specifications

in refinement calculus are given in the form of predicates linking the previous and

the next program states. Such predicate is usually called before-after predicate. A

deterministic before-after predicate is a program statement. Before-after predicates

come together with preconditions, characterising the valid initial states; and post-

conditions, describing the desired after-states. The weakest precondition charac-

terises themost general (i.e., weakest) initial state fromwhich application of a given

before-after predicates results in states satisfying a given post-condition. Formally,

the weakest precondition can be defined as a function wp on two arguments - a

before-after predicate S and post-condition P : wp(S,P ). According to Dijkstra, the

semantics of a statement described by a before-after predicate S is given by value

of wp(S,P ).

In the refinement calculus, theweakest precondition semantics is extendedwith

the notion of refinement relation between statements (or before-after predicates).

The refinement between two statements S and S′ is denoted as S ⊑ S′ and is de-

fined as follows:

∀p.wp(S, p) ⇒ wp(S′, p)

that is, whenever S establishes a postcondition, so does its refinement coun-

terpart S′. The refinement relation is transitive, antisymmetric and reflexive. The

transitivity property makes it possible to organise program construction as a se-

quence of refinement steps. Thus, to construct a final implementation Sk for an

abstraction S, one constructs a sequence S1, S2, . . . , Sk−1, such that

S ⊑ S1 ⊑ S2 ⊑ . . . ⊑ Sk−1 ⊑ Sk

The refinement calculus also defines a set of refinement laws. These are fine-

grained refinement steps calculating a refined model version from an abstraction.

They are applied in two different ways: to construct a new refinement, applying

one law after another; and to verify a refinement instance by demonstrating a chain

of refinement laws transforming an abstraction into its refinement.
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1.2.3 UML-B

The UML-B approach, proposed by Butler and Snook [42], unites informal, intu-

ition guided modelling of UML with the rigorous modelling approach of the B

method (and Event-B for the later versions). Visual UML editor is used as a fa-

cade hiding complexities of B models and providing a modelling environment that

many software engineers are comfortable with. A tool, called U2B [43], automat-

ically converts a UML model, manipulated by a modeller, into a corresponding

B model, which can be analysed with a theorem prover. UML classes are repre-

sented as mappings from object instances into individual class properties. Thus, a

class with five member variables is modelled using five different functions. Object

creation is modelled by adding new mappings to all these functions. A language

derived from the B mathematical notation is used to express constrains and actions

in UML diagrams.

UML-B is a perfect starting point for translating existing semi-formal designs

into formal mathematical models (see, for example [44]). The tool opens the way

to reuse of the results of the research on application of design patterns in UML

modelling process [45, 46].

The approach has its limitations. The resulting B model is often far from being

simple and legible and any attempt at interactive proofs requires careful examina-

tion of the generated model. Thus, to do any real modelling a user has to be fairly

confident in both UML and Event-B. UML model is always translated into a sin-

gle Event-B model. While the human eye is very at good dealing with complex

structures arranged visually, the textual representation of the same information is

much more difficult to comprehend. Since much of the UML underlining ideas

come from object-oriented software design, certain concepts are not easily mapped

into B. For example, although method is translated as a B event, there is no way

to ”call” such method from another method in a B specification. Such limitations

are inevitable for a combination of two distinct formalism. In the case of UML-B,

the Event-B part clearly takes the precedence and the UML concepts are adapted to

suit the B modelling style.

1.2.4 B to B0 Generator

Siemens/MATRA, working on specifications of a fully automated train system,

have developed a tool for automatically refining B specifications [47]. The tool

tries to mechanically produce an implementable model in B0 language (a variant

of implementable B) by applying rewrite rules. A large library of such rules were

created specifically to handle the specifications of train systems. To make this tool
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efficient, the use of the B Method is restricted in such a way that the accumulated

rule set covers is complete. In other words, for any non-deterministic rule of a

model there is a suitable refinement rule. The transformation tool is essentially a

code generator with the ability for users to intervene when the tool finds several

possible transformations. The bulk of the rewrite rules are concerned with elimi-

nation of non-deterministic actions and provision of suitable implementations for

abstract data types. The tool was successfully applied in large specification projects

(apparently train systems) but is proprietary and is used privately by the company.

1.2.5 Pattern Formalisation and Reuse

There are a number of works investigating the possibility of reuse of design (e.g. in

the form of design pattern) in formal developments.

Blazy et al. [48] proposed a mechanism to integrate design patterns into B-

Method developments. They also outline guidelines for specifying such design pat-

tern using the B-Method. The pattern instantiation mechanism relies on the model

structuring capabilities of the B-Method: inclusion and extensions of machines. A

design in this approach is a single B machine. To use it in a development, a mod-

eller has a choice of three different instantiation mechanisms. First mechanism is

based on the B EXTENDS statement. One or more B machines can be extended by

another machine and the operations of the extended become accessible to the par-

ent machine. The idea is that extension of commonly used design solution would

help to construct new refinement steps. The second mechanism relies on yet an-

other B structuring statement: INCLUDES. Included machines export their variable

and invariants but their operations are not visible in further refinement steps. This

way, an included pattern is hidden from external observer. In both extension and

inclusion instantiation mechanisms, different design patterns are completely dis-

joint and normally a further effort is needed to integrate them into a development,

e.g., by adding new invariants, variables and events. The last instantiation mech-

anism is simply the conjoining of a pattern with a parent machine. This results in

larger models but there are less obstacles in integrating different patterns.

Chan et al. [49] discuss a similar approach but with a emphasise on object-

orientation. The work discusses how to model object-oriented development con-

cepts using the B method and, consequently, how to reuse object-oriented design

patterns in B. The work present and interesting and practical method for mod-

elling design patterns. The results of such modelling, however, cannot be easily

integrated into a development process.

The RAISE Specification Language [50] was used to formalise UML pattern di-
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agrams using a flavour of VDM [17] specification language. A pattern in RSL is

a combination of descriptions in a natural language, formally presented pattern

structure and a collaboration protocol constraining different parties referenced in

the pattern. A pattern is instantiated by first conjoining it with a parent model and

then integrating it by renaming its parts.

The LePUS formal framework [51, 52] was developed to formalise the Gang

of Four design patterns. Patterns are formalised by expressing their properties as

predicates on methods, class properties, class instances and classes. Predicate con-

junction is used to construct complex patterns from a collection of simple proper-

ties. To our knowledge, the framework has not been used in modelling and soft-

ware development. This is mainly due to the difficulty of instantiating patterns

specified in LePUS.

In [53] Eden et al. describe the design of a tool transforming programming

language texts by automatically applying transformations loosely based on design

patterns. To use the tool, a programmer first implements a pattern in a special

language understood by the tool. Then the tool can use the pattern definition to

rewrite a part of a program. Since the tool works at the semantic level of a program,

the transformations are done at the level of a programming language structuring

units which precludes formulation of high-level, abstract patterns. In addition, not

much can be done to ensure correctness of the resulting model or a pattern.

Dwyer at al. [54] proposed to use specification patterns to describe require-

ments and constraints for models and programs analysed using automated model

checkers. Such specification patterns are presented in a way not dissimilar to de-

sign patterns [39] and are, essentially, expression templates. An informal pattern

description helps a modeller to pick a correct pattern.

The reusability aspect of patterns implies the ability to share and exchange pat-

terns. One possible approach is to describe patterns using some common language

that can be connected to a common ontology [55]. Such patterns can be automati-

cally retrieved and matched by tools and an on-line pattern libary can be set-up to

foster pattern dissemination [56].

1.2.6 Verifying Compiler

The verifying compiler challenge is a part of the Dependable Systems Evolution

Grand Challenge [57]. Such compiler is expected to be able to automatically anal-

yse an input program and prove its correctness. It is understood that such tool

will work on a complete program implementations decorated with assertions stat-

ing the facts about the intended functionality of the program code. The compiler
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will try to demonstrate that the assertions are always satisfied and thus the code

is indeed safe and correct. This challenge exemplifies the approach when a poste-

riori analysis is used to demonstrate a system correctness. In this work we follow

a different path and rely on a step-wise development procedure that guarantees

correctness by construction.

1.3 Motivation and Goals

1.3.1 Guidance during Development

Formal development is essentially a human activity and is known to be time con-

suming and laborious. To tackle this, a modelling environment must assist a mod-

eller with a constant get feedback on the current development state with an advice

on how to proceed next.

There is an extensive body of research on domain-specific software engineer-

ing methods. Integration of such methods into the formal development process is

essential for constructing large-scale systems.

The larger a system is, the more important it is for us to be able to measure the

development progress. Such measure would show how far the development has

advanced and what is still left to do.

1.3.2 Design and Modelling Reuse

Formal modelling can only be cost-effective if there is a way to reuse modelling re-

sults. A company may be much more willing to invest into a large-scale modelling

phase if the solutions discovered at the formal modelling stage can contribute to

later related projects.

Just like a large program cannot be created without relying on third-party soft-

ware, large-scale modelling has to rely on third-party designs. To make this pos-

sible, there should be a way to decouple low-level design activity from high-level

modelling decisions. Ideally, a company developing a large-scale model of a sys-

tem should be able to sub-contract or buy the required design parts. Currently, a

formal model of a software system is treated as a form of source code and thus has

a rather short lifespan. A good design, however, is perhaps more valuable than its

concrete implementation. Design reuse could make it commercially viable to create

high-quality reusable design products.
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1.3.3 Evolution Support

It is hard to obtain a complete and consistent requirements document for a realistic

system prior to the design stage. Thus, it is important to be able to adapt formal

development to requirements evolution. With their simple semantics and better

decoupling of concerns, formal models are bound to be easier to refactor than pro-

gramming language texts.

1.3.4 Quality-by-Construction

Formal modelling makes it easier to build high-quality products but it does not

automatically rule out poor designs. Specification is just a formal translation of an

informal systemdescription. The quality of such translation greatly depends on the

background and experience of a modeller: no two models constructed according

to the very same requirements document would be quite the same. We believe

that the ability to extract, package and offer for reuse high-quality formal design

procedures will contribute towards the costs and quality of formal developments.

This principle is long known in programming - software code libraries are created

and maintained by domain experts to be used by mainstream programmers.

1.4 Proposal Overview

In this section we briefly outlay the general rationale behind the thesis. We use the

well-known concept of software component to give the intuition on the essence of

our proposal: the design component concept.

1.4.1 Software Component

The early history of the computer science is a story of rapid evolution from the pro-

gramming in low-level machine code to the application of high-level, domain spe-

cific programming languages. One of the more important events that shaped the

modern software industry was the invention of a software component [58]. A soft-

ware component can be summarised as a system part providing some predefined

services to other components. To implement its services, a component may rely on

services provided by other components. An essential property of a component is

the hiding of implementation details. An architecture of a component-based sys-

tem can be understood as an interconnection of a variety of software components.

Unlike a program, a software component is created with reusability in mind.

Well-defined interface describes the functionality offered by a component. Inter-
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Figure 1.1: A software component is a black box accepting some input and produc-
ing some output. Component input and output may be routed to the inputs and
outputs of other components.

face of a component is typically general enough to allow developers to use the

component in different contexts and different system types. Software component

is a black-box - it accepts some input and produces some output without expos-

ing details of internal computations (Figure 1.1). Normally, a programmer cannot

look inside and change the component logic. This done not only to conceal imple-

mentation details but also to ensure that an overall system can be understood as

a composition of components with known properties. The quality of components

constituting a systemmay serve as an indication of the overall system quality.

The same component interface can be implemented by different components in

different ways. Implementation diversity is important for a number of reasons: a

component implementation may evolve without violating interface to other com-

ponents, an abstract interface may permit a large number of different implementa-

tions; each adapted to particular conditions and requirements; the ability to replace

a component for a different component with the same interface facilitates healthy

competition in the software market.

1.4.2 Design Component

Mathematical modelling has the powerful tool of abstraction: it is always possible

to find a level of abstraction at which a system description is simple enough to be

amenable to formal analysis and yet comprehensive enough to states interesting

facts about the system. To construct the whole system and to ensure that result

is error-free, an abstraction is gradually developed up to the stage when a model

becomes a program and can be unambiguously interpreted by a computer. Such

detalisation is a difficult and laborious process. It achieves everything a program-

ming would achieve but in the process a developer also constructs the proofs of

the design correctness and presents many intermediate steps that can be used for

mathematical analysis of the systemproperties and validation of the systemdesign.

In this work we investigate a mechanism which introduces structuring and

reuse into formal developments. By analogy with the concept of software com-

ponent, we call this structuring unit a design component. The ultimate ambition of
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the design component mechanism is to bring the advantages of componentrised

development into formal modelling.

Figure 1.2: A design component accepts a design and produces a new design. Input
and output may be routed to other design components.

A design component accepts some design (which may be called a specification

or a model) and produces a new design (Figure 1.2). Like a software component, a

design component is reusable for a class of problem domains. Design components

can be composed together - an output of a component can be routed to the input

of another component. Design component is also a black box - a modeller can

only investigate a component interface but the examination of component internal

workings is not needed to apply the component.

1.5 Problem Statement

The process of construction of large-scale formal models has not been widely re-

searched so far. Formal modelling experts are more interested in identifying and

solving fundamental problems in the area of modelling and analysis of information

systems. Industrial uses perceive formal modelling as too difficult and expensive

and prefer to rely on semi-formal techniques, such as UML [59], or completely au-

tomated tools [60], that can be used by untrained programmers.

We would like to be able to present a modeller with a collection of mod-

elling strategies - problem-specific guidelines on model construction - and auto-

mated model transformations. We understand a modelling strategy as an active

model assistant guiding a modeller through a development. Unlike a paper-based

method, such modelling strategy would be interpretable by a machine and a mod-

eller would be presented the results of the strategy interpretation in the context of

a current development. We believe that many existing domain-specific software

engineering methods can be converted into modelling strategies.

To make the modelling process easier, we should be able to automate parts of it.

Formal models of large system are bound to reuse many well-known design ideas,

such design and architectural patterns (e.g., Triple-Modular Redundancy), and in-

formation processing solutions (e.g., a sorting algorithm, a communication buffer

model). Despite being well-known, with the current state-of-the-art, they still have

to be redesigned every time a new. This is a waste of time and an indication of a
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poor organisation of the modelling process. Once a design is constructed it should

be reusable in different developments.

The necessity to conduct a substantial number of interactive proofs is one of the

major impediments to the.wide adoption proof-based verification methods. The

possibility of combining proof reuse with design reuse would make formal mod-

elling more attractive and accessible to non-experts.

We believe the problems we consider are highly relevant to the formal meth-

ods and software engineering communities. The Roadmap for Enhanced Languages

and Methods to Aid Verification [61] lists refinement patterns as one of the long-term

research goals. Another long-term goal is Evolution + Refinement, which argues for

the need to support development restructuring. We demonstrate in the thesis that

these two goals are closely related and can be addressed with a common solution.

1.6 Thesis Overview

In the thesis we introduce several design reuse mechanisms, ranging from simple

model rewrite rules to high-level modelling tactics. These are used to build com-

plex design reuse units which are amenable to mathematical analysis and auto-

matic interpretation and application. Such units are used to assemble design com-

ponents - the ultimate goal of our research - that assist a modeller in construction

of formal developments.

The first of the design reuse mechanisms, called model transformation, de-

scribes simple model rewrite rules. The principal application of model transfor-

mations is the construction of a library of basic transformations that can be used

to change formal models. In addition, we are able to define model transformations

that abstract from the peculiarities of a given formalism and address a whole family

of related formalisms. Chapter 3 is devoted to the discussion of model transforma-

tions. It introduces model transformations for the Event-B method (we overview

the Event-B method in the next chapter).

We continue with the discussion of abstraction and refinement patterns. We

introduce the pattern language to describe complex model transformations. The

language is independent of any formalism; the language constructs compose

formalism-specific model transformations to describe how one model is trans-

formed into another model. An abstraction pattern always constructs an abstrac-

tion of a given concrete model whereas a refinement pattern always delivers a re-

finement of a given abstract model. We use a proof theory to generate proof obliga-

tions that would statically demonstrate that an abstraction pattern indeed succeeds

in construction of a model abstraction and application of a refinement pattern al-
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ways yields a correct model refinement. The pattern language and the related top-

ics are discussed in Chapter 4. We illustrate the use of the patterns mechanismwith

the Recovery Block refinement pattern, based on the Recovery Block mechanism

[62].

We believe that it is not enough to provide mechanised refinement steps. A

modeller should be given an advice when to apply a specific refinement pattern

and how to instantiate it. More importantly, at any given point during a develop-

ment process, a modeller should be able to get an advice from a tool on how to

proceed next with the development. We introduce the concept of a modelling pat-

tern - a high-level modelling strategy describing a succession of steps leading to

the satisfaction of development goal. Some such steps are handled by refinement

or abstraction patterns while others simply restrict the way a manual refinement

step is conducted. Modelling patterns are discussed in Chapter 5. We use a code

generation case study to illustrate the modelling pattern development process.

The evaluation chapter6 discusses several examples of refinement patterns and

our tool prototype for the RODIN Event-B Platform [63].

Finally, in Chapter 7, we give a high-level overview of our approach and com-

pare it to some related works.
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Chapter 2

Background

2.1 Event-B Method

This section presents an overview of the Event-B method [20]: the syntax and the

structure of an Event-B machine, well-formedness conditions and refinement proof

obligations.

An Event-B development is a collection of models. Each such model is rep-

resented using programming language-like notation called Abstract Machine. An

abstract machine has some local state, characterised by its variables and a number

of state updating operations. In Event-B such operations are called events. Unlike

programming language procedures or classical B [16] operations, Event-B events

cannot be invoked explicitly by some other part of a model. An event may be exe-

cuted only when its guard (a form of a precondition) is enabled.

An Event-B development is a chain of Event-B models. The first model in a

development is called an abstract machine. An abstract machine defines some local

variables and provides events for the state evolution. An abstract machine has the

following general form:

SYSTEM SendRecv

SEES context

VARIABLES v

INVARIANT I

INITIALISATION RI

EVENTS

e1 = . . .

. . .

en = . . .

Note the distinguished event which provides initial states for model variables.
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A machine declaration starts with clause define a machine name. Carrier sets and

constants are defined in separate modules, called contexts. Contexts can be made

visible to a machine but are otherwise independent (the same context can be seen

by unrelated models). Model variables is simply a list of variable names. Typing

predicates for variables are incorporated into a model invariant. An invariant may

also define additional constraints on the reachable model states. The initialisation

event contains action initialising model variables.

Model events are atomic. Once a model event starts execution no other event

may start. An event with a guard G and a collection of actions R has the following

syntax

e = WHEN

G
THEN

R
END

Often it is convenient to use local variables (parameters) to compute a new

model state. Such extended form of an event has the following syntax

e = ANY p WHERE
G
THEN

R
END

where p are the event parameters. Parameters play dual role. They can be used

to simplify event actions by splitting computation of an state into two stages: the

assignment to local variables and then the assignment to machine variables. The

other role is to use parameters to distinguish between different variants of the same

event. For example, an event removing an arbitrary item from a set can be declared

like this

e = WHEN

set 6= ⊘ ∧ finite(set)
THEN

set : |card(set′) = card(set) − 1
END

or, using a local variable, like this
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e = ANY i WHERE
i ∈ set
THEN

set := set \ {i}
END

The use of local variable makes the event declaration more readable and has the

additional benefit of of identifying the item removed when animating the model.

Event-B uses the theory of generalised substitutions [64] to describe how an action

transforms a model state. The table below lists the substitution styles that are used

to describe an action

notation relationpredicate

v := F (c, s, v, l) v′ = F (c, s, v, l) assignment

skip v′ = v no-effect assignment

v :∈ F (c, s, v, l) v′ ∈ F (c, s, v, l) set choice

V :| F (c, s, V0, V1, l) F (c, s, V0, V1, l) generalised substitution

where v is a variable, F is an expression, V is a vector of variables and V0 and V1

are the new and old values of V . Expression F may refer constants c, sets s, system

variables v and local variables l.

The first of substitution type - := - is a simple assignment. The assigned variable

becomes equal to the value of expression F . Substitution v :∈ F selects a new value

for v such that it belongs to set F . The most general substitution operator :| uses a

predicate to link the new and old model states. Several substitutions (actions) can

be combined into a complex action using the parallel composition operator

s1‖s2‖...‖sk

2.1.1 Consistency Checking

An Event-B model is specified in such manner that it contains redundant infor-

mation which helps to verify that different model parts agree with each other. In

particular, consistency checking is concerned with demonstrating that each model

event established the model invariant provided it is invoked in a state satisfying

the invariant and the event guard. This condition is expressed as follows:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′) ⇒ I(s, c, v′)

where s and c are sets and constants imported from contexts, v and v′ are vari-

ables describing the previous and the new model states, P are the known con-
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straints on constants and sets, I is the model invariant, G is the guard of the current

event and R is a before-after predicate computed from the event actions.

An action of an event must be able to compute a new system state once it is en-

abled by the event guard. This is expressed as the feasibility condition and defined

as follows:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃v′ · R(s, c, v, v′)

These two rules take different forms for different styles of event declaration

[20]. An important special case is the initialisation event which. This event cannot

assume any previous state and thus does not have a guard. The corresponding

condition are

P (s, c) ∧ RI(s, c, v
′) ⇒ I(s, c, v′)

P (s, c) ⇒ ∃v′ · RI(s, c, v
′)

Also note the absence of v in RI initialisation before-after predicate: an action

computing an initial variable state has no previous state to refer to.

Sometimes it is important to ensure that a model cannot deadlock. This can be

done by stating that the disjunction of all the guard of all the model events is never

false, that is, there is always at least one enabled event

P (s, c) ∧ I(s, c, v) ⇒
∧

i∈1..n

Gi(s, c, v)

2.1.2 Event-B Refinement

Event-B is based on step-wise development which detalises a system through a

number of correctness preserving steps, called refinements. The refinement pro-

cess with the creating of an abstract model and finishes with construction of a de-

tailed and deterministic from which an executable code can be generated. The re-

finement process aims to reduce nondeterminism of the abstract specification and

replace abstract mathematical data structures by data structures implementable on

a computer, and, hence, gradually introduce implementation decisions.

The structure of an Event-B refinement machine is essentially identical to the

structure of an abstract machine. The only addition is the clause pointing at the

abstraction of a current model
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· 7→ · a 7→ b {1 7→ 2}(1) = 2 mapping or a pair
· ⊳ · d ⊳ f {1} ⊳ F = {1 7→ 2} domain restriction
· ⊳− · d ⊳− f {1} ⊳− F = {2 7→ 3} domain subtraction
· ⊲ · f ⊲ r F ⊲ {2} = {1 7→ 2} range restriction
· ⊲− · f ⊲− r F ⊲− {2} = {2 7→ 3} range subtraction
·[·] f [s] F [1..2] = {2, 3} image of a relation or a function
·−1 f−1 F−1(3) = {2} inverse of a relation or a function
·; · f ; g F ;F−1(2) = 2 relational composition
· ⊳− · f ⊳− g F ⊳− F−1(2) = 3 relational override
· × · A × B Z × {1} cartesian product
· → · A → B Z → N total function
· 7→ · A 7→ B partial function
· 7 · A 7 B partial injection
·  · A  B total injection
· 7։ · A 7։ B partial surjection
· ։ · A ։ B total surjection
· ։ · A ։ B bijection

where F = {1 7→ 2, 2 7→ 3}

Figure 2.1: An overview of the mathematical notation specific to the Event-B
method.

REFINEMENT m1

REFINES m

SEES context

VARIABLES u

INVARIANT J

INITIALISATION SI

EVENTS

e1 = . . .

. . .

en = . . .

The refinement relation between two Event-Bmodels is demonstrated by check-

ing a number of conditions on the events of the concrete model. The first such con-

ditions requires for an event inherited from the abstract machine that its action is a

correct refinement of the abstract action

P (s, c)∧I(s, c, v)∧J(s, c, v, u)∧H(s, c, u)∧S(s, c, u, u′) ⇒ v′·(R(s, c, v, v′)∧J(s, c, v′, u′))

where J is the invariant of the concrete model. This invariant constraints con-

crete model variables u and may also refer to the abstract model variables v. The
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part of the invariant linking abstract and concrete variables is called a gluing in-

variant. H is the concrete event guard and S is the concrete before-after predicate.

The feasibility condition requires that a concrete action is computable when

both abstract and concrete invariants and the event guard are enabled

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u) ⇒ u′ · S(s, c, u, u′)

The guard of the concrete version of an event must be stronger that its abstract

counterpart

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u) ⇒ G(s, c, v)

Model refinements may also introduce new events. New event of a model is

allowed to modify only the new variables, introduced in the concrete model. For

such event the refinement conditions are as follows:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, u) ∧ H(s, c, u) ∧ S(s, c, u, u′) ⇒ J(s, c, v, u′)

and

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ⇒ u′ · S(s, c, u, u′)

Event-Bmathematical language is mostly within the boundaries of the standard

set-theoretical notation. Event-B defines few extentions and fixes the syntax for

some operators that do not have a single widely used notation 2.1.

2.2 Goal-Oriented Requirements Engineering

A high-quality requirement document is a prerequisite to construction of an ade-

quate formal model and, consequently, executable implementation. Formulation

of requirements is far from trivial exercise. The use of inconsistent, incomplete and

ambiguous requirements is bound to result in poor quality software. The require-

ments collection and analysis stage helps developers to distinguish between the re-

quirements to a system to be realised and assumptions about the operational envi-

ronment of the system. A late discovery of a problem with requirements would of-

ten result in costly changes to a current faulty implementation and often the whole

development has to be abandoned as the result [65].

The importance of requirements engineering and analysis stage has been recog-

nised as soon as software engineering began prevailing over hardware engineering
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[66]. As a result, a number of requirements engineering methods emerged to assist

a developer in collecting, structuring and validating requirements. On of the more

notable examples of such methods is the goal-oriented requirements engineering

[67, 68].

Goal-oriented requirements engineering served as an inspiration for an ap-

proach to formulate reusable development strategies (modelling patterns). Further

in this section we briefly present the foundational principles of goal-oriented re-

quirements engineering.

In goal-oriented requirements engineering, a goal is understood as an objec-

tive to be achieved during a system development. The initial set of goals covers

high-level system properties. Such goals are formulated from the viewpoint of a

prospective system user. A high-level goal is the departure point for identifying

more technical, low-level goals and also more general, architectural goals. The

transition to lower-level goals is called goal refinement [67]. With the goal refine-

ment, an abstract goal is mapped into a set of new goals that help to understand

how the abstract goal in question is to be reached. A goal is abstracted by finding a

more general goal that explains why a given is to be achieved. Ultimately, the goal

abstraction process leads to a single goal from which all other goals are derived

through the refinement process. Refinement and abstraction are the two main goal

elaboration mechanism. They can be applied with a varying degree of formality

depending upon the style of goal representation. Formal constraints on goal help

to identify inconsistencies in requirements. Through a formal analysis it is possible

to discover missing goals, and also identify and resolve goal conflicts.

Prior to a formal analysis, one has to find a way to formally represent goals.

The approach formulated in [69] advocates formalisation of a goal as a predicate

expressing the goal satisfaction conditions in the terms of constraints on objects

relevant to the analysed system. Formal goals open many opportunities, most im-

portantly it makes possible to off-load some goal analysis to an automated tool.

The predicate-based formalisation approach has its limitations. Some goal kinds,

for example, safety and performance goals, do not lend themselves to a tractable

presentation in the predicate calculus. One solution is to clearly separate the re-

quirements of different kinds and apply specific formalism to each requirement

kind.

In this work, when we come to the discussion of modelling patterns, we show

that a goal can be understood as a meta-model - a description of a class of models

satisfying a given criterion. With this viewpoint the refinement-based development

fits naturally the idea of satisfying a goal during model construction. Individual

requirements are linked to form a path that a modeller follows working on a model



23

development.

Writing out goals, a modeller uses a special notation. Besides a name, a goal

can be decorated with attributes, such as priority (qualitative or quantitative) and

perceived goal feasibility. The abstraction and refinement relation between goals

are fundamental to requirements analysis and elaboration. Goal links are used

to express the relation between goals. The and-refinement link connects a goal to

a set of sub-goals and satisfaction of all the sub-goals automatically implies the

satisfaction of the parent goal. The or-refinement link is used to demonstrate that a

goal can be satisfied by satisfying either of its sub-goal. Sometimes, an exclusive

or-refinement is used to explicitly that sub-goals are conflicting and only one can

be satisfied. A more general conflict can be used to relate mutually exclusive goal.

One of such goal must be eliminated to produce the final requirements. Conflict

links are often used to describe product line requirements where they play the role

of a variation point. The two kinds of refinement links define the two main goal

refinement techniques - and decomposition and or decomposition. Specificmethods

built around the goal-orientation concept introduce additional types of links. The

i∗ framework [70] assigns goal to agents and additional dependency links can be

used to model cases when an agent depends on another agents to fulfil a goal.

KAOS [67, 71] permits operationalisation links mapping goals into operations of

the implemented system.
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Chapter 3

Model Transformation

3.1 Introduction

For anything but a toy example it is hard to construct a formal model without the

step-wise development procedure (here we understand step-wise refinement as it

is introduced in [72]). Refinement helps to structure a large development into a

succession of design decisions, each concerned with a particular aspect of a system

functionality. Although, in a general case, a refined model may have very little in

common with its abstraction, in practice, this does not happen often as such refine-

ment steps are hard to construct, understand and verify. A refinement introducing

many changes requires a high level of confidence in the introduced design decision

and thus is costly to change or discard. This is why smaller refinement steps should

be preferred.

Small refinement steps come naturally in the form of the transformational ap-

proach to the refinement. Instead of writing a new specification from a scratch and

then proving the refinement relation, a new refinement can be produced by modi-

fying a small model part, leaving most of the model intact.

Model transformations are conveniently described as model rewriting rules. A

model transformation produces a new model by rewriting a model part according

to a simple rule. Some transformations may accept parameters which are provided

externally during the application of a model transformation.

In this chapter we discuss the concept of model transformation and define a

collection of model transformations for the Event-B method. We show how to com-

pose transformations to construct a complex transformation and how to describe

refinement steps with a composition of model transformations.
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3.2 Model Transformation

A formal model is normally understood as a mathematical description of a system

and is interpreted according to the semantics of the applied method. Model trans-

formation is the process of obtaining one model from another. It can be described

as a mapping of a model into another model:

T : M → M

whereM is a universe of models and T is a model transformation. A concrete

model is obtained by applying some T to an abstract model:

m′ = T (m)

This definition requires that a model transformation accepts any model. It is

more convenient to have T defined as a partial function:

T : M 7→ M

Now, a model can be transformed only when it is in the domain of the transfor-

mation:

m ∈ dom(T ) ⇒ m′ = T (m)

An important class of model transformations are transformations that always

construct a refinement of an input model. To show that a model transformation

constructs a refinement, one has to demonstrate that for any acceptable input ab-

stract model, the result produced by the transformation rule is a valid refinement:

m ∈ dom(T ) ∧ m′ = T (m) ⇒ m ⊑ m′

A practical way to define the domain of a model transformation is to provide a

characteristic function, called model template. Such template - a predicate on model

properties - describes a class of models:

Mµ = {m | µ(m)}

whereMµ is a set of models satisfying template µ. An input model acceptable

by a transformation is one satisfying the template predicate of the transformation.

There are two important classes of models: an input model class and an output

model class. The input model class of a transformation characterises model ac-
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cepted by the transformation while the output model class describes the possible

the results of a transformation. These two classes are defined as follows:

dom(T ) = {m | incl(T )(m)}

ran(T ) = {m | outcl(T )(m)}

A model transformation may be parametrized. Instead of accepting just an in-

put model, a transformation can also accept a vector of parameters. This can be

described as a family of model transformations:

T : P 7→ M 7→ M

The following syntax is used to specify model transformations:

name(p, s) ≡ requirements
c(s, p)

effect
s′ = r(s, p)

ref
ref

where p is a vector of parameters, s is an input model, c(s, p) is an applicability

condition and r(s, p) is a rule computing the refined version s′ of an abstract model

s. The ref ∈ BOOL flag states whether a given model transformation produces a

valid model refinement (abstraction). This is a constant property of a model trans-

formation and the way it is computed is dictated by the refinement/abstraction

conditions of a specific method. A modeller instantiates a model transformation

by supplying parameters and an abstract model to be transformed. The result, a

new model s′, is constructed by computing the model transformation rule r(s, p).

The applicability condition of a model transformation also defines the input model

class of the transformation, thus c(s, p) = incl(name)(s, p)where name is the name

of the transformation. The output model class is not specified explicitly but is easy

to derive from the rule r(s, p) computing a new model:

outcl(name) = c(s, p)[r(s, p)/s]

To summarise, a model transformation is rule producing a newmodel by trans-

forming some input model. A model transformation is associated with two model

classes: the input model class that describes the set of all models accepted by the

transformation and the outputmodel, characterising the set of possible transforma-

tion results. The input and output models of a model transformation must belong
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Figure 3.1: The relations between the major concepts of model transformations.

to, correspondingly, the input and output model classes (Figure 3.1).

3.3 Inverse Transformation

It is interesting to see if the effect of a model transformation can be undone by

another model transformation. In particular, for a given model transformation md

we want to be able to compute its inversemd−1:

md ◦ md−1 = idM

where md−1 is both the left and right inverse ofmd. Unfortunately, in the gen-

eral case, model transformations are not injective and an inverse form cannot be

computed for an arbitrary transformation. To construct inverse transformation we

first have to extract the class of injective (information-preserving) transformations.

Such transformations add new model elements without removing or changing ab-

stract models elements and thus can be unambiguously undone:

Ta : P 7→ Mi ։ Mo, whereMi ⊆ M ∧ Mo ⊆ M

where Ta is a part of T with the doamin restricted to inversible model trans-

formations: Ta ⊆ T . The inverse of a model transformation is then an inverse of

model mappings:

T−1
a : P 7→ M 7→ M ∧ ∀p · (p ∈ P ⇒ Ta(p) ◦ T−1

a (p) = idM )

For a model transformation

n(p) ≡ requirements
c(s, p)

effect
s′ = r(s, p)

ref
r
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the inverse transformation is defined as

n−1(p) ≡ requirements
c(s, p)[s0/s] ∧ s = r(s0, p)

effect
s′ = r−1(s, p)

ref
r

provided that inverse form of r, r−1 exists.

3.3.1 Composing Model Transformations

A method equipped with a set of model transformations is a step towards guided

model construction. With a palette of transformations, model refinements can be

constructed as series of model transformation steps.

To conduct complex refinement steps with a set of predefined model transfor-

mations we need a way to combine several model transformations into a complex

one which would produce the desired refinement step. With the sequential compo-

sition, model transformations are applied one after another

t1; t2; . . . ; tn

The sequential composition of two model transformations results a new model

transformation. For two generic model transformations -

t1(p1) ≡ requirements
g1(p1,m)

effect
m′ = a1(p1,m)

ref
r1

and

t2(p2) ≡ requirements
g2(p2,m)

effect
m′ = a2(p2,m)

ref
r2

- the sequential composition is computed as follows:
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t1; t2(p1, p2) ≡ requirements
g1(p1,m) ∧ m0 = a1(p1,m) ∧ g2(p2,m0)

effect
m′ = a2(p2,m0)

ref
r1 ∧ r2

where g1(p1,m) ∧ m0 = a1(p1,m) ∧ g2(p2,m0) is the well-formedness condition

for the composition of transformations: transformations may be composed only if

the result of the first one (a1(p1,m)) belongs to the class of input models accepted

by the second one (g2(p2,m0)). Rule r1 ∧ r2 states that a composition of refine-

ment (abstraction) model transformations results in a new refinement (abstraction)

model transformation whereas a composition of non-refinement or a refinement

and a non-refinement is not automatically a refinement model transformation.

The above also defines the rule for computing an input model class for a com-

position of model transformations. Inverse of a composition is the reversed com-

position of the inverse transformations:

(t1; t2 . . . tn)−1 = t−1
n ; t−1

n−1; . . . ; t
−1
1

provided that inverse forms t−1
i , i ∈ 1..n exist. This rule is a direct consequqnce

of the inverse of a function composition.

3.4 Model Annotations

Formal models, strictly speaking, are not completely formal. A formal model con-

tains such informal elements as names, comments and literal constants. These are

not given any interpretation in a formal method although the information con-

tained in those elements is essential to understanding a model. An obfuscated

model, just like an obfuscated program, is virtually useless. The description of a

model purpose, its application domain and the expected behaviour are normally

done in a natural language. Thus, to completely validate a model, one also has to

consider such informal descriptions. Verification tools are only concerned with the

part of a model semantics relevant to verification. Automated model transforma-

tion, however, is one of the cases when a software tool is interested in knowing

model purpose, problem domain and the roles of its parts. This information helps

to reason about transformation in the terms of the model problem problem, iden-

tify a class of suitable transformations, and rule out the class of transformations

that should not be applied.
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We cannot hope to be able to interpret annotations written in a natural language

and thus have to restrict ourselves to some form of a machine-readable notation.

One way to do this to use a formal ontology [73]. An ontology provides an objec-

tive and unambiguous description of phenomena from the problem domain of a

modelled system.

Our proposal is to extend model with annotations. An annotation is a formal

text written using some (shared) ontology. Such annotations have two main appli-

cations: they provide additional information about model elements and, thus, help

to construct more elaborate patterns; they describe the purpose and the application

domain of a transformation.

A model annotation is also used to characterise a model part. A variable can

be said to play a role of a temperature sensor or a program counter or an actua-

tor. Information like this cannot be deduced from a model alone. Such high-level,

domain-specific descriptions may be essential to construct interesting model trans-

formations and to allow a modeller to reason about development parts in domain-

specific terms, as opposed to manipulating low-level model elements.

It is important to give annotations in a context. Annotation characterising, for

example, an event of model is attached directly to that event. A model element can

have any number of annotations. The simplest form of annotation is an attribute

attached to a model element. For example, a variable recording pressure can have

the ”barometer” attribute. This attribute helps to realise the role of the variable in

a model in cases when the information contained in a model itself is not enough.

To avoid possible mismatch of measurement units, the variable may also carry an

additional attribute stating the fact that the pressure is measured in Pascals. This

can be expressed by attaching a new annotation containing pair ”unit=pascal”.

More complex annotations can be constructed using a knowledge representa-

tion language, such as KIF [74]. In KIF, one can construct layered descriptions,

going from very low-level statements about model elements up to the high-level

properties, expressed in terms of the problem domain of a modelled system. For

example, an aircraft control system could be described as a composition of an alti-

tude and landing controls. The altitude control may comprise measurement, pre-

diction and actuation components. With a knowledge representation language we

are able to map the concepts characterising various system components into model

annotations and syntactic constrains.

Knowledge representation languages, such as KIF, are expressive and flexible.

In addition to a simple taxonomy, an ontology can also include relations and pred-

icates. For example, the updates relation, given below in the KIF syntax, states that

a given event updates some given variable
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(forall (?V ?E) (=> (and

(instance ?V variable) (instance ?E event)

(exists ?A (and (instance ?A action)

(member ?A ?E) (member ?V ?A))))

(updates ?E ?V)))
This expressions defines a new predicate updates. It assumed that classes event,

action, variable are defined elseweher. The rest elements are the standard features

of the KIF language.

Formal ontology and knowledge representation are supported by a number of

tools and open databases available for reuse and integration. For example, there is

a free implementation of the KIF language [75] which can be used to enhance our

design components tool.

We assume that any syntactic model element can be decorated with an unlim-

ited number of annotations. Formally, this is expressed by adding function annot

to all the elements of a model. Then the following two model transformations can

be defined. Model transformation annotate adds a new annotation with a given tag

to a syntactic unit of a model

annotate(e, t, a) ≡ requirements
true

effect
annot′e = annote ⊳− {t 7→ a}

ref
true

Transformation deannotate removes an existing annotation or does nothing if

there is no matching annotation

deannotate(e, t) ≡ requirements
true

effect
annot′e = {t} ⊳− annote

ref
true

These model transformations are formulated without any assumptions about

the structure and semantics of a modelling method and thus they are method-

neutral. We could even formulate some method-independent patterns using these

transformations.
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3.5 Event-B Model Transformations

This section defines a collection of model transformations for the Event-B method.

First we describe the structure of Event-B models and the way to represent them as

a syntactic tree.

At the top level, an Event-Bmodel is characterised by its name, a link to a parent

model, a set of variables, an invariant and a set of events.

SYSTEM nom (machine name)

REFINES par (machine parent)

VARIABLES

var (set of variables)

INVARIANT

inv (set of model invariants)

INITIALISATION

(variable initialisations)

EVENTS

evt (set of model events)

We ignore name and parent parts as they do not play any role in a model trans-

formation description and are only needed to define the ordering on models of a

development. An Event-B model is described by a tuple of variables, invariants

and events (also Figure 3.2):

var ⊂ VAR set of variables
inv ⊂ INVAR collection of model invariants
evt ⊂ EVENT event collection

The general form of an Event-B event is

nom ref par = ANY arg WHERE
grd
THEN

act
END

An Event-B event declaration comprises a list of parameters, a guard and an

action. It is convenient to represent an event guard as a conjunction of predicates

and an event action as a parallel composition of actions. An event may also carry

the refines attribute which lists the set of abstract events refined by the event. We

represent an event as an object with the following attributes:
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nom ∈ LABEL event name
par ∈ P(LABEL) names of refined events
arg ⊂ PARAM event parameters
grd ⊂ GUARD event guards
act ⊂ ACTION event actions

An Event-B model description, introduced above, references only event iden-

tifiers, not event descriptions. Description of an event is provided by the mevt

function:

mevt : EVENT 7→ LABEL × P(PARAM) × P(GUARD) × P(ACTION)

where evt
df
= dom(mevt).

Event-B action is a tuple of variables, a substitution style and an expression

computing new variable states:

var assigned variables
sty assigment style
exp assigment expression

Action descriptions are provided by the following function:

mact : act 7→ P(VAR) × STYLE × EXPR

The act attribute of an event must be contained in the domain of themact func-

tion. It is possible, however, that some actions described by the function are not

used anywhere in a model.

An Event-B variable declaration is split into three model parts. The variables

section declares the names of variables. The typing predicates for model variables

are provided by the invariant section. Finally, all system variables must be ini-

tialised by the initialisation event:

...

VARIABLES

..., lbl (identifier), ...

INVARIANT

... ∧ typ (typing predicate) ∧ ...

INITIALISATION

...‖act (initialisation action)‖...

...
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Figure 3.2: Event-B Model syntactic elements.

We find it more convenient to combine different parts of a variable description

into a single object with a variable name, a typing invariant and an initialisation

action. Because of this, there is no need for an initialisation event although its

equivalent can be computed from variable descriptions. A variable is described by

a label (the variable name), an initialisation action and a typing predicate:

nom nom ∈ LABEL identifier
act act ∈ ACTION initialisation action
typ type ∈ TYPE typing predicate

Initialisation action of a variable must update the variable it initialises:

v = (n, a, t) ∧ a = (av, as, ae) ⇒ v ∈ av

Several variables may share an initialisation action. This happens when an ac-

tion is a non-deterministic substitution mentioning several variable. For instance,

action

a, b : |a > b

is a shared initialisation action for variables a and b. Variable descriptions are

stored in themvar function:

mvar : VAR 7→ LABEL × ACTION × TYPE

and var
df
= dom(mvar).
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An event parameter is characterised by a name and a typing predicate;

nom label (identifier)
typ typing predicate

Descriptions of event parameters are provided by functionmarg:

marg : arg 7→ LABEL × TYPE

An attribute arg of an event tuple must be in the domain ofmarg.

3.5.1 Useful Definitions

To simplify the formulation of the Event-B model transformations, we introduce

a number of notational shortcuts. An abstract model is referred to as m0 =

(var0, inv0, evt0) (and mvar0, mevt0 for variable and event descriptions) while the

current model is described bym = (var, inv, evt).

An abstract model is an input of amodel transformation, that is themodel trans-

formed by the model transformation. Current model is the result of an application

of a model transformation to some abstract model. Hence, for the two models m0

andm, there is some model transformationmd, such thatm = md(m0).

Individual elements of a tuple, characterising a model element, can be referred

to by their names using the following notation:

e.prop

For example, a name of event e is e.nom. The same, but for the elements of an

abstract model, is written as

ê.prop

Tuple (Lv, Av , Tv) describes some arbitrary variable and tuple (Lp, Tp) is some

arbitrary parameter. Label Le is used as a default event name.

Fresh labels for events and variables are computed by removing the two pre-

defined constant labels, names of all the events, variables and arguments from the

labels carrier set:

FreshNames
df
= LABEL \ ({Lv, Le} ∪ (

⋃

v∈var{v.nom})∪
⋃

e∈evt(e.nom ∪ (
⋃

a∈e.arg{a.nom})))

An argument name has only to be unique within the scope of a given event:
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FreshArgNames(e)
df
= LABEL \ ({nom, par} ∪ (

⋃

v∈var{v.nom})∪
{e.nom} ∪ (

⋃

a∈e.arg{a.nom}))

The following shortcuts are used to find whether a variable or an event is inher-

ited from an abstract model:

isAbstrVar(v)
df
= v ∈ dom(mvar0)

isAbstrEvt(e)
df
= e ∈ dom(mevt0)

The non-trivial Event-B model transformation requirements are the conditions

derived from the Event-B well-formedness and refinement proof obligations. For

more compact model transformation definitions we declare such conditions as a

list of parametrised predicates.

For each declaration of a variable it is required to demonstrate that the variable

initialisation action satisfies the feasibility and invariant preservation properties of

Event-B:

PAT FIS INI(s) ∃w′ · s(w′)
PAT INV INI(s, j) s(w′) =⇒ j(v,w′)
PAT RIN INV(s, r, j) I(v) ∧ j(v,w) ∧ s(w′) =⇒ ∃v′ · (r(v′) ∧ j(v,w′))

where s(w′) is a before-after initialisation predicate providing a value for con-

crete model variables w, j(v,w) (supplied as a parameter here) is a concrete model

invariant which includes a gluing invariant linking abstract variables v and con-

crete variables w. I(v) is an abstract invariant and RI(v) is an abstract before-after

initialisation predicate. Note, that we do rely on the fact that the abstract input

specification is well-formed (in the sense of Event-B model well-formedness). The

consistency properties of an abstract model can be used as hypothesis to discharge

the current model consistency and refinement proof obligations. A change in an

event inherited from an abstract model gives rise to the following conditions:

PAT REF FIS(s) I(v) ∧ J(v,w) ∧ H(w) ⇒ ∃w′ · s(w,w′)
PAT REF GRD(g, h) I(v) ∧ J(v,w) ∧ h(w) ⇒ g(v)
PAT REF INV(s, a) I(v) ∧ J(v,w) ∧ H(w) ∧ s(w,w′) ⇒

∃v′ · (a(v, v′) ∧ J(v′, w′))
provided I(v) ∧ G(v) ∧ R(v, v′) =⇒ I(v′)

where g,G and h,H are the abstract and concrete guards and s(w,w′) and

R(v, v′) are the abstract and concrete before-after predicates. The first condition is a

form of the Event-B proof obligation requiring an action to be able to provide some

result under the given invariant and guard. The guard refinement PAT REF GRD

states that a guard of a refined event strengthens the guard of the corresponding
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abstract event. Finally, the invariant preservation condition requires an action to

satisfy a model invariant while refining the abstract action.

Actions of new events must preserve the concrete model invariant:

PAT NEW INV(s) I(v) ∧ J(v,w) ∧ H(w) ∧ s(w,w′) ⇒ J(v,w′)

The non-divergence must be demonstrated for all the new events. For this, one

has to demonstrate that there exists an expression V , called variant, decrement by

all the new events:

PAT NEW DIV I(v) ∧ J(v,w) ∧ H(w) ∧ S(w,w′) ⇒
V (w) ∈ N ∧ V (w′) < V (w)

where S is a concrete before-after predicate.

A concrete model invariant is the conjunction of invariant predicates and vari-

able typing predicates:

J(v,w)
df
= (

∧

i∈inv i) ∧ (
∧

v.nom∈dom(mvar) v.typ)

Guard of an event e is the conjunction of individual events guards and typing

predicates of event parameters:

H(w)
df
= (

∧

g∈e.grd g) ∧ (
∧

a∈e.arg(a.nom ∈ a.typ))

Sometimes we need to construct a new invariant where a variable typing predi-

cate replaced with some new predicate. For variable rv and a new typing predicate

rt this is expressed as

J vt(rv, rt)
df
= (

∧

i∈inv i) ∧ (
∧

v∈dom(mvar)∧v 6=rv (v.nom ∈ v.typ)) ∧ (rv ∈ rt)

and a similar condition, but for an event guard, is

G vt(rv, rt)
df
= (

∧

g∈e.grd g) ∧ (
∧

a∈e.arg∧a6=rv(a.nom ∈ a.typ)) ∧ rv ∈ rt

3.5.2 Event-B Model Facets

In the context of Event-B, some predicates describing model input and output

classes can be presented in a more legible notation, resembling the syntax of Event-

B models. We call such descriptions facets. A facet uses Event-B syntax to describe

a model by listing the required model elements and their properties.

Any facet can be mapped into a predicate describing a model class. Some pred-

icates, however, cannot be represented using facets. For example, facets cannot be

used to express removal of a syntactic element (e.g., removal of an operation from

a model). The following examples demonstrate the syntax of Event-B facets and

their mappings into the predicate form (here ≡ denotes equivalence):
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• a model must declare at least one variable

v ∈ var ≡

(

FACET t0
VARIABLES ?v

)

• the above, and the variable must be a natural

v ∈ var ∧ v.typ = NAT ≡





FACET t1
VARIABLES ?v
INVARIANT ?v ∈ N





• the above, and there must be an event which increments the variable





v ∈ var ∧ v.typ = NAT
e ∈ evt ∧ a ∈ e.act
a = ({v}, (:=), (v + 1))



 ≡

























FACET t2
VARIABLES ?v
INVARIANT ?v ∈ N

INITIALISATION ?v :∈ N

EVENTS

?e = BEGIN

?v :=?v + 1
END

























Facets are conjunctions of positive statements, a facet cannot express a require-

ment that something is not present.

3.5.3 Transformation Definitions

In this section we overview Event-B model transformations. The list does not in-

clude derivative transformations that can be obtained by reversing a direct trans-

formations. The list with the definitions for Event-B model transformations can be

found in Appendix A.

• addvar(v) - adds a new system variable. The new variable has some arbitrary

label, type and initialisation. Addition of a new variable always results in a

valid model refinement; reversible.

addvar(v) ≡ requirements
v ∈ (VAR \ dom(mvar))

effect
mvar′ = mvar ∪ {v 7→ (Lv , Av, Tv)}

scope
v, Lv

ref
true
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The inverse of this transformation removes an existing variable from a model

addvar−1(v) ≡ requirements
v ∈ dom(mvar)

effect
mvar′ = {v} ⊲− mvar

scope
⋆v

ref
false

• varlabel(v, nl) - changes name of a system variable; reversible.

• newvaraction(v, na) - provides a new initialisation action for a systemvariable.

• newvartype(v, nt) - changes the typing predicate of a variable.

• addpar(a) - adds a new event parameter; reversible.

• parlabel(a, nl) - changes event parameter name.

• newpartype(a, nt) - changes event parameter type.

• addevent(e, l) - adds a new event with no parameters, empty guard and no

actions; reversible.

• refines(e, nr) - adds an abstract event to the refines list of a concrete event;

reversible.

• newevtlabel(e, nl) - renames an event.

• addguard(e, h) - adds a new guard predicate; reversible.

• addparam(e, par) - adds an event parameter; reversible.

• addaction(e, act) - adds a new action; reversible.

addaction(e, act) ≡ requirements
e ∈ dom(mevt) ∧ e = (l, p, ga) ∧ act ∈ dom(mact)∧
PAT REF FIS([{act}])∧
isAbstrEvt(e) ⇒ PAT REF INV([a ∪ {act}], [ê.act])∧
¬isAbstrEvt(e) ⇒ PAT NEW INV([act])

effect
mevt′ = mevt ⊳− {e 7→ (l, p, g, a ∪ {act})}

scope
e, act.var

ref
true
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• addinv(i) - adds a new model invariant; reversible.

• delinv(i) - removes part of a model invariant.

• newaction(a, v, s, e) - constructs a new action with the given variable, style and

expression; reversible.

• newactionvar(a, nv) - adds a new variable to an action; reversible.

• newactionsty(a, ns) - changes substitution style of an action.

• newactionexp(a, ne) - changes action expression.

3.5.4 Example

In this example we use a composition of model transformations to construct a sim-

ple refinement step. The refinement introduces a new integer variable and adds an

action to an existing event to increment the new variable. The event is constrained

with a predicate limiting the number of increments to 10.

The complex model transformation achieving this is defined as follows

addinc
df
=





















addvar(v); varlabel(v, u);
newaction(a, v, (:∈), (0 . . . 5));

newvaraction(v, a);
newvartype(v, Z);

newaction(a1, v, (:=), (u + 1));
addaction(e, a1);

addguard(e, (u < 10))





















Note the use of variable label and variable object. v is a variable object and name

v is only known within the scope of the transformation composition. Label u is the

name by which the variable v is known in the refined model. Thus, the increment

of v is done by assigning expression u + 1. Further we may ignore this distinction,

especially in cases when there is a completely formal, tool-based description.

Below is an example of an acceptable input specification along with a result of

the application of the model transformation to this model:
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SYSTEM m0
VARIABLES

s
INVARIANT

s ∈ N

INITIALISATION

s := 0
EVENTS

a = BEGIN

s := s + 1
END

b = BEGIN

s := s + 2
END

SYSTEM m0 addinc
REFINES m0
VARIABLES

s, q
INVARIANT

s ∈ N

q ∈ Z

INITIALISATION

s := 0
q :∈ 0..5

EVENTS

a = WHEN

q < 10
THEN

s := s + 1
q := q + 1
END

b = BEGIN

s := s + 2
END

Note that the variable name q is not defined by the transformation: it is some

arbitrary fresh name provided as a value for label u.

3.6 Summary

In this chapter we have discussed the concept of model transformation, showed

how to describe transformations and defined a set of model transformations for

the Event-B method. We have discussed how to construct inverse transformations

and how to compose transformations.

Model transformations is an active research area in the context of model driven

software development [76] where a large number of model types (mainly informal)

are used to specify different system aspects, from high-level organisational prop-

erties of a business process up to the intricacies of a physical level communication

protocol. To keep different models in agreement it is important to be able to do con-

version from one model type into another. The importance of well-established and

generally accepted model transformation steps is also widely recognised [77, 78].

A complex refinement step is likely to require a large number of model trans-

formations. In the next section we discuss a more general mechanism of patterns -

compositions of model transformations that always produce correct refinement or

abstraction steps. While model transformations are concerned with basic transfor-

mation rules, refinement patterns are suitable for description of reoccurring design
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decisions. In addition, unlike a model transformation, that, in a general case, only

changes a model, a refinement pattern always constructs a complete model refine-

ment. By separating definition of model transformations from formulation of re-

finement patterns we are able to construct a method-neutral patterns framework.
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Chapter 4

Refinement Patterns

4.1 Introduction

Model transformations, discussed in the previous chapter, are too low-level to be

of a major assistance to a modeller. In this chapter, we introduce a language to

combine model transformations into patterns. A pattern describes a reusable and

practically important case of refinement or abstraction. For many patterns, we are

able to statically demonstrate correctness in the sense that the produced model is

always a valid abstraction or a refinement. There are two major pattern kinds. Pat-

terns converting abstract models into concrete models are called refinement patterns

[79–81]. An abstraction pattern computes an abstract model from its concrete coun-

terpart.

One of the obstacles to the wide adoption of formal methods is that while there

are plenty of programmers capable of writing complex software using program-

ming languages, there are few modelling experts capable of handling the mathe-

matical notation used in formal models. Patterns give a psychological advantage -

low-level details and mathematics are hidden by an easy to comprehend high-level

pattern description. A pattern instantiation requires no proofs at all: to guaran-

tee the correctness of a constructed refinement or an abstraction, it is enough to

demonstrate the pattern applicability conditions, required to instantiate a pattern.

With a high-level programming language and a collection of code libraries, pro-

grammers can relatively quickly construct large programs through the reuse of a

vast amount of high-quality third-party code. Formal methods and supporting

tools are focused on the act of verification and thus do not offer much support for

model construction. A pattern can be seen as an analogue of a reusable procedure

imported from a third-party code library.

This chapter describes the pattern language, discusses the benefits of applying

such patterns in formal developments, formally describes the patterns instantia-



44

tion mechanism and the proof theory used to establish pattern correctness. In the

development of the pattern language we tried to struck a balance between expres-

siveness and verifiability. We would like to able to proof pattern correctness once

and for all possible pattern instantiations but we also require that a pattern instan-

tiation is handled automatically by a tool. The chapter includes the continuation

of the tree model example which is extended with the definitions of refinement

patterns.

4.2 Motivation

Modelling is often seen as an accessory to programming, where a model is used to

construct a system and then is discarded. Although modelling is one of the more

expensive stages of a system construction (provided it relies on formal modelling),

models are rarely reused and adapting a legacy formal development to a new sys-

tem design is nearly impossible. We propose taking a different view on the mod-

elling process. We see a formal development not only as a way to arrive to a final

model but also as a process creating important, reusable artifacts. In our approach,

the model creation process is understood as a chain of design decisions. Many such

decisions are specific to a problem being solved, but there are often some general

ones that could be reused within the same or a different development. In meth-

ods supporting refinement, such as the Refinement Calculus [35], Z [13] and the B

Method [16], a formal development is a chain (or, in a more general case, a tree) of

models, linked by the refinement relation. The development process focuses on the

construction of individual models. Once a model is ready, a modeller must prove

the refinement relation in respect to the model abstraction. The whole process is

repeated as long as needed, e.g. until an executable code can be generated (Figure

4.1).

Figure 4.1: In a chain of refinements, each successive model is a detalisation of its
abstraction.

In our approach the focus is shifted from the construction of a model refinement

to the formulation of steps that lead to a refined model. We introduce a new en-

tity in the formal development processwhich sole purpose is to describe refinement

steps leading from an abstract model to a refinedmodel. We call such entity a refine-

ment pattern (first introduced in [79]) and understand it as a function which, when
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applied to an abstract model, yields a concrete model. The name pattern empha-

sizes the fact that such function is a reusable design solution applicable in a range

of contexts, much like design patterns developed for object-oriented programming

[39]. We also study the correlative of a refinement pattern - an abstraction pattern -

that can be used to reverse engineer a formal development, or possibly, help to con-

struct refinement patterns in cases where an abstraction pattern is easier to specify.

We believe that the patterns mechanism offers a number of advantages:

• shift of perspective - normally a modeller sees and works with a whole model

corresponding to the current refinement step. In our approach we let a mod-

eller to focus on the description of a particular refinement transformation and,

thus, focus on a specific part of a system design;

• better scalability - a realistic system model is inevitably large. Our approach

addresses the scalability problem by representing detailed and complex de-

velopment as a succession of loosely coupled or completely independent pat-

terns;

• reusability - patterns can be used in more than one context within the same

development and can be applied in completely unrelated developments;

• better structuring - a pattern deals with a specific aspect of a system function-

ality. In many cases, patterns can be developed independently and simulta-

neously and this does not require model decomposition;

• less proofs - proofs done for a refinement pattern are automatically reused

each time a pattern is included into a development. In a large development,

this results in a considerable proofs economy.

In addition, being completely self-sufficient, the pattern mechanism facilitates the

exchange of ideas between designers. A pattern can be transferred, purchased or

sold. A development can be, at least partially, constructed from ready-made third-

party refinement or abstraction patterns, which, ultimately, means reduced mod-

elling costs and a wider adoption of formal modelling.

4.3 A Definition of Refinement Patterns

The fact that specification s is refined by s′ is denoted as s ⊑ s′. The⊑ relation is re-

flexive, transitive and antisymmetric. To simplify the discussion, we often omit the

mentioning of abstraction patterns when their properties mirror the corresponding

properties of refinement patterns.
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Definition A refinement pattern is a function producing a refinement for some

input model and a pattern configuration:

rpatt : S × C 7→ S

where S is a universe of models and C are pattern configurations.

The addition of a configuration helps to abstract away from the specifics of a

particular input model and reuse patterns in different developments. Pattern con-

figuration also allows a modeller to adjust pattern to specific needs when a pattern

is added to a development. The ability to provide a pattern configuration also helps

to resolve a non-deterministic choice during a pattern application.

A refinement pattern is expected to produce a valid model refinement. For-

mally this is stated as pattern correctness requirement. Correctness of a pattern is

demonstrated by proving that it always produces valid refinement or abstraction

models.

Definition A refinement pattern is correct if it produces a valid refinement for any

accepted combination of an input model and pattern configuration:

∀s, c · ((s, c) ∈ dom(rpatt) ⇒ s ⊑ rpatt(s, c))

In its current form, the correctness definition does not lead to any practical

means of pattern verification. Later in this chapter we, having defined a simple

pattern language, we able to generate a list of more tractable conditions.

An example of a trivial refinement pattern is pattern mapping a model into

itself: idS . This pattern also doubles as an abstraction pattern and it is an example

of a pattern that does not use configuration.

4.4 Language of Refinement Patterns

Pattern is a named entity. A pattern declaration starts with a construct declaring

the pattern name:

pattern p

where p is the name of the declared pattern.

The body of a pattern is a combination of model transformations glued together

using a number of control structures. The simplest form of a pattern is a single

model transformation rule:
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mdr(p)

where p is a pattern configuration and an input model formdr is assumed as an

implicit parameter.

The two main operations used in a pattern declaration are the sequential and

parallel compositions. In a pattern specification we use indentations to denote

blocks of rules and the style of composition operator used to connect the rules. The

sequential composition requires the next rule to be written below and indented to

the right. Rule

r1

r2

prescribes application of rule r2 after r1. If r1 cannot be applied then r2 is not

used as well. The sequential composition is normally used to put together rules

that depend on each other. More precisely, the second of two rules, is applied to

the model constructed by applied the first rule. Elements with the same inden-

tation level are said to be parallel. The parallel composition is denoted by equal

indentation of the composed rules:

r1

r2

The rule above has two independent rules, r1 and r2, which are supposed to

work on disjoint model parts and, thus, can be applied in any order. It is the re-

quirement that the parallel composition Is only used to connect rules operating on

strictly disjoint model parts. A pattern rule constructed using the sequential or the

parallel compositions can be nested in another rule:

r1

ra

rb

Here the parallel composition of two rules is sequentially composed with an-

other rule. In this pattern, rules ra and rb can be applied in any order but only

after rule r1. The sequential composition binds stronger than the parallel composi-

tion and brackets are used when an instance of the parallel composition must take

precedence
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(

ra

rb

)

r1

6=

ra

rb

r1

=

ra
(

rb

r1

)

The role of the parallel composition is the simplification of the pattern correct-

ness analysis. Later we show that to prove that a given instance of the parallel

composition is correct it is enough to independently show the correctness of each

constituent rule.

With the parallel composition, one has to make sure that the composed rules

transform non-overlapping model parts and the order of the rule applications does

not affect the overall pattern result. It is possible to deduce this property directly

from model transformation rules but we prefer to construct the list of model ele-

ments a model transformation updates or depends on when the transformation is

formulated. The results in the following extended syntax for model transforma-

tions:

name(p) ≡ requirements
c(s, p)

effect
s′ = r(s, p)

scope
e

ref
r

To be able to construct practically important patterns we have to provide a

mechanism for matching and selecting model parts that need to be transformed.

This is achieved with the following construct:

forall a with p where
P (a, p)

do
r(a, p)

end

where a is a vector of local variables bound by the constraining predicateP (a, p)

(the predicate also depends on an implicit input model parameter), p is a vector of

local parameters and r is a nested rule. The rule r is applied to every possible value

(a, p), as defined by the predicate P . Local variables a are selected automatically

during a pattern instantiation while the values for p are provided by a modeller,

once for each forall construct. In other words, a contained rule r is applied to all



49

possible values of a but each times uses the same vector p. The collection of all

such parameters is the configuration of a pattern.

The forall construct essentially describes a generalised version of parallel com-

position. Thus, where we would have to write a long list of similar transformations

-

md(1)
md(2)
. . .
md(32)
md(33)

- we can use a single forall statement:

forall i where
i ∈ 1..33

do
md(i)

end

There are several shortcut forms accounting for the cases when some of the

statement parts are omitted. The first such shortcut has no local variables but uses

parameters:

with p where
P (p)

do
r(p)

end

With no parameters and free variables, forall degrades into a simple when con-

struct:

when
P

do
r

end

Being one of the possible forms of a pattern rule, forall can be nested in another

forall construct. It is often convinient to use the with shortcut form to declare pa-

rameters shared by several rules:
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with p where
P (p)

do
r1(p)
r2(p)
...

end

To make patterns more readable, this case has its own shortcut form. This con-

struct is normally placed immediately after the pattern declaration clause:

pattern p

req name P

Here P is a predicate. The free variables of this predicate are the declared pa-

rameters and the name part is a short description of the declaration. The equivalent

with declaration is

with freevar(P ) where
P

do
...

end

where freevar(P ) are the free variables of P .

The nesting of rules controls the visibility of names. Children of a rule can

see all the parameters and local variables available to their parent. This relation is

transitive - a rule sees all the parameters available to its parent rule. Parameters

declared with req are seen by all the rules of a pattern.

The pattern language we have discussed is method-neutral. We believe that

the framework can be used to describe transformation patterns for a wide range of

specification methods. To relate the framework to a specific formalism (or a family

of formalisms) we have to import a library of model transformations. Symmeri-

cally, to bring the support for the pattern mechanism into a formal method it is

enough to construct a library of model transformations that can be used to describe

interesting refinement (or abstraction) cases.

If a model transformation library is specific to a given formalism, the corre-

sponding patterns are applicable only to that particular formalism. A library, how-

ever, can be made generic so that the patterns based on this library are applicable

to models of several formalisms. Such library would use abstract model trans-

formation definitions and provide mappings into actual model transformations of
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concrete formalisms. This could help decouple the discussion of a modelling for-

malism transformations from specification of high-level patterns. As an example,

we can declare an abstract transformation rule adding an event to a model and

provide mappings into concrete realisations of this transformation for a range of

formalisms that use the event concept.

4.4.1 Applying Patterns

A pattern is applied to a model to produce a new model. A refinement pattern

takes an abstract model and produces its concrete version. An abstraction pattern

works in the other direction. Interpretation of a pattern is provided by a function

of the following form:

eff : MODEL × RULE → MODEL

In this definition we choose to omit the pattern configuration which provides

pattern instantiation parameters. We assume that we have a complete configura-

tion before applying a pattern and, for legibility reasons, assume pattern configu-

ration as an implicit parameter of eff .

The effect of the sequential composition of two rules is computed by applying

the the second rule to the result of the first rule:

eff

(

s,
a

b

)

= eff(eff(s, a), b)

For the parallel composition the effect is computed in the same manner but the

order of the rule applications should not affect the overall result:

eff

(

s,
a
b

)

= eff(eff(s, a), b) = eff(eff(s, b), a)

The forall construct applies the body rule to all the possible values of local vari-

ables:

eff













s,

forall a with p where
P (a, p)

do
r(a, p)

end













= eff

















s,

r(q, p)
forall a with p where

P (a, p) ∧ a 6= q
do

r(a, p)
end
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where P (a, p) holds for a = q. Note that at each iteration the constraining pred-

icate is further restricted by a conjunction eliminating one of the ”old” values. This

ensures termination and complete coverage of the parameter space for P (a, p) char-

acterising finite sets.

The effect of a model transformation is computed by applying the model trans-

formation to an input model:

eff (s,mdr(p)) = mdr(p)

where transformation rule mdr(p) also takes input model s as an implicit pa-

rameter.

4.4.2 Pattern Correctness

A pattern correctness can be demonstrated in a number of ways [82]. The simplest

approach is to rely on the normal means of proving the refinement (abstraction)

relation between twomodels and to not try to analyse correctness of a pattern itself.

In otherwords, each time a pattern is applied, the result must be shown to be a valid

refinement using the refinement relation conditions of the applied formalism.

We are not going to demonstrate formally that the given set of rules is enough

to establish pattern correctness. We believe such a rigorous justification is outside

of the scope of this work and is one directions for the future work on the patterns

mechanism.

The second approach is to statically demonstrate that a pattern result is correct

in the sense of the pattern correctness definition above. Sometimes this is not pos-

sible. For this we introduce the mechanism of assertions and rely on a combination

of static pattern analysis and theorems generated per each pattern instantiation.

A pattern is correct if, for all the constituent rules, the following conditions are

satisfied.

Computability Apatterns is a procedure that should be processable by a software

tool. Thus, we need to make sure that a pattern is executable. A problem can arise

when a constraining predicate of the forall construct describes an infinitely large set

of parameters. Such pattern, although possibly useful, makes no sense to a tool.

We express this by stating that a constraining predicate is a characteristic function

of a finite set:

finite({(a) | P (a)})
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Conflict-freeness The effect of application of a parallel composition of rules

should not dependent on the order of rule applications. This property holds when

the rules are applied to disjoint model parts. We formulate this condition by stating

that the scopes of all the nested model transformations are non-overlapping. For

any parallel rule composition:

r1

r2

. . .
rk

the following condition must be satisfied

∀i, j · (i ∈ 1..k ∧ j ∈ 1..k ∧ i 6= j ⇒ inter(scope(ri), scope(rj)) = ⊘)

where the inter predicate computes the intersection of two scopes (see the def-

inition in Appendix A) and the scope function computes the scope of a rule by

aggregating scopes of its constituent rules, as follows

scope

(

a
b

)

= scope(a) ∪ scope(b)

scope

(

a
b

)

= scope(a) ∪ scope(b)

scope (mdr(p)) = scope(mdr)

scope













forall a with p where
P (a, p)

do
r(a, p)

end













= scope(r)

where scope(mdr) returns the scope of a model transformation. The union of

scopes is defined as

scope((r1, w1)) ∪ scope((r2, w2)) = (r1 ∪ r2, w1 ∪ w2)

Well-formedness A pattern rule may call its child rule only when the child rule

precondition is satisfied. For each model transformation used in a pattern body

it is required to demonstrate that the transformation requirement is satisfied for

all the contexts in which the model transformation may be invoked. We state this

by requiring that the context of a parent rule implies the requirement of a model

transformation under analysis. Thus, for a rule
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q
forall a with p where

P (a, p)
do

mdr(a, p)
end

we have to demonstrate that

∀s, a · (incl(q)(s) ∧ eff(s, q) ∧ P (a, p) ⇒ req(mdr)(a, p))

Here in(q)(s) states that model s is in the input model class of the parent rule q;

eff(s, q) computes the result of the application of q to s; req(mdr)(a, p) is the input

model class of the mdr model transformation with the parameters instantiated to

values of p and a. Note that s is an implicit parameter ofmdr.

We know that for any s the effect of pattern rule computation satisfies the output

model class predicate

outcl(q)(eff(s, q)) ≡ true

The condition above can be replaced with a stronger condition requiring that

output model class of the parent rule, combined with the constraining predicate, is

stronger than the model transformation requirement

outcl(q) ∧ P (a, p) ⇒ req(mdr)(a, p)

The former version is more suitable for generating proof obligations during a

pattern instantiation. The latter imposes a stronger condition but has to be demon-

strated only once for a pattern instance.

For the case when there is no forall statement for the analysed model transfor-

mation, the condition above is simplified to

∀s · (incl(q)(s) ∧ eff(s, q) ⇒ req(mdr)(c))

or

outcl(q) ⇒ req(mdr)(c))



55

where c are some constant parameters. In absence of any parent rule, the con-

straining predicate alone must ensure that a model transformation requirement is

satisfied

P (a, p) ⇒ req(mdr)(a, p)

Refinement or Abstraction For a model transformation that does not construct a

valid model refinement or abstraction, we have to demonstrate that a combination

of the transformation with other patterns rules results in a valid model refinement

rule. This can be done by finding a containing subset of pattern rules that, together

with the model transformation being examined, results in a valid refinement or

abstraction step.

To prove that the refinement condition is satisfied in respect to some model

transformationmdr, we analyse the rule together with its neighbour rules -

pattern patt

q
mdr(p)

r

- and try to demonstrate that the combined effect of these rules yields a valid

model refinement pattern:

∀s · (in(q)(s) ⇒ s ⊑ eff(eff(eff(s, q),mdr(p)), r))

where s is an abstract model transformed by the pattern; q and r are the pattern

rule sequentially composedwith the analysedmodel transformation. An expanded

form of the condition above, more suitable for doing once-for-all proofs , is





incl(q)(s) ∧ s′ = eff(q)(s)
req(mdr)(s′) ∧ s′′ = eff(s′,mdr(p))
incl(r)(s′′) ∧ s′′′ = eff(r)(s′′)



⇒ s ⊑ s′′′

From our experience with several large-scale refinement patterns (see Chpater

6), an instantiation of these conditions results in many redundant hypothesis on the

left-hand side and usually the rule can be reduced to a compact and manageable

form. In few cases, when this was not true and we had to analyse a long chain of

model transformations, it should be possible to rearrange pattern rules to make the



56

condition simple enough to understand and discharge. As a side effect, the inability

to discharge or demonstrate the falsity of this condition indicates that the pattern is

too complex. The poblem can be rectified by redesigning pattern with an empha-

size on the use of parallel composition in the place of sequential composition, or by

decomposing a pattern into sub-pattern.

Assertions There may be situations when to prove a pattern we have to assert

some non-computable property of an abstract machine. For example, a pattern im-

plementing an array sorting algorithmmay need to assert that some abstract action

specifies array sorting. In other words, the before-after predicate of the abstract

action must be a non-deterministic statement that an array becomes sorted. There

are many ways to state that an array becomes sorted and the only general solution

is to prove that the action indeed does what it is expected to do. Such property

is unlikely to be computable due to the size of the involved statespace, potentially

infinite. Thus, we have to rely on theorem proving. For this, however, we need

to know the exact input model and hence we can generate a theorem only after a

pattern is instantiated.

An assertion is a simply a distinguished part of a constraining predicate. We

use the following syntax to declare an assertion:

assert n(p) Q(p)

where n is the assertion name, p is a vector of parameters and Q(p) is the prop-

erty asserted. To use an assertion, onewrites n(u)where u is a vector of parameters.

For the example above, we assert that an action before after predicate is equiv-

alent to our definition of a sorted array

assert issorted (arr, expr) expr ≡ ∀i · (i ∈ 2..max(dom(arr)) ⇒ arr(i) ≥ arr(i− 1))

Now we can use the assertion to construct a pattern rule

forall a where
{v} = a.var ∧ issorted(v, [a])

do
bubblesort(a)

end

where [a] is the before-after predicate of action a. For the purpose of pattern

instantiation, the above is understood as
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forall a where
{v} = a.var ∧ true

do
bubblesort(a)

end

However, for each application of bubblesort(a)we get a theorem to prove: for an

input model with two events each containing a single action, we get two theorems

constructed from issorted(v, a.exp) with a and v replaced by a concrete action and

a concrete variable. For example, the application of the rule above to the following

Event-B model

SYSTEM array

SEES consts

VARIABLES ar, pos

INVARIANT ar : 1..n → Z ∧ pos ∈ 1..n

INITIALISATION ar := 1..n × {0}‖pos := 1

EVENTS

add = ANY e WHERE

e ∈ Z ∧ pos < n

THEN

ar := ar ⊳− {pos 7→ n}

pos := pos + 1

END

sort = ANY e WHERE

pos = n

THEN

ar : |∀i · (i ∈ 1..n − 1 ⇒ ar′(i) ≤ ar′(i + 1))

END

results in the following two theorems

ar ⊳− {pos 7→ n} ≡ ∀i · (i ∈ 1..max(dom(arr)) ⇒ arr(i) ≥ arr(i − 1))

∀i · (i ∈ 1..n − 1 ⇒ ar(i) ≤ ar(i + 1)) ≡
∀i · (i ∈ 2..max(dom(arr)) ⇒ arr(i) ≥ arr(i − 1))

Only the second theorem holds. Thus, the result of the instantiation of a pattern

containing this rule is not, in a general case, a valid refinement . A more practical

version of this pattern rule would ask a modeller to select an action to be refined. A
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modeller can make a mistake and the theorems generated from assertions should

rule out the possibility of having a broken development.

The case of abstraction patterns is symmetric, with the direction of the refine-

ment relation reversed.

We do not define what the refinement relation is and we cannot do it without

narrowing the discussion to a particular formalism. The conditions and the means

for demonstrating the refinement relations must be borrowed from a formalism for

which the patterns mechanism is implemented.

4.5 Pattern Inverse Form

An inverse form of a pattern may be useful for a number of reasons. Firstly, many

newpatterns can be derivedwith a little effort from a collection of existing patterns.

Secondly, abstraction patterns, derived from refinement patterns, may be used to

redesign legacy developments by reconstructing the lost intermediate refinement

steps. Thirdly, many patterns are more naturally specified as either abstraction or

refinement patterns. The ability to derivemechanically the inverse of a patternmay

influence the way a pattern is specified.

The inverse form of a refinement pattern is an abstraction pattern and the in-

verse of an abstraction pattern is a refinement pattern. While, depending on a

viewpoint, the same pattern may be an inverse or direct, a pattern always remains

abstraction or refinement pattern.

A pattern derived by reversing another pattern and is distinguishedwith the −1

marh next to its name. An inverse of a pattern is computed by reversing its body

rule:

pattern p

q

−1

=
pattern p−1

q−1

The inverse of a rule based on a model transformation is the inverse form of the

model transformation, if it exists:

(mdr(p))−1 = mdr−1(p)

Since we know that for many model transformations the inverse form does not

exist, the ability to compute inverse forms of all the model transformation is the

main limitation for deriving inverse patterns.



59

Inverse of a sequential composition is computed by applying the inverse ver-

sion of the original rules in the reverse order:

(

q
r

)−1

=

(

r−1

q−1

)−1

Parallel composition is reversed by reversing its individual rules:

(

q
r

)−1

=

(

q−1

r−1

)−1

The inverse of a rule wrapped into the forall statement is the same statement but

with the contained rule reversed:













forall a with p where
P (a, p)

do
r(a, p)

end













−1

=

forall a with p where
P (a, p)

do
r−1(a, p)

end

There is a complication here. We cannot inverse forall statementswith constrain-

ing predicates referencing model parts updated by the contained rule. Hence, for

example, a rule removing all variables from a model -

forall v where
v ∈ Vars

do
delvar(v)

end

-, where transformation delvar(v) removes v from the set Vars , cannot be in-

verted since its inverse form, -

forall v where
v ∈ Vars

do
addvar(v)

end
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- attempts to add elements from the now empty set Vars and therefore does

not, in a general case, undo the effect of the first rule. The condition for forall re-

versibility requires that the constraining predicate does not depend on the model

parts updated by the contained rule

∀s, a, p · P (s, a, p) = P (eff(r(a, p)), a, p)

where the usually implicit parameter s denotes the current model, P (a, p) =

P (s, a, p) and eff(s, r(a, p) is a model obtained by applying rule r to the current

model s.

4.6 Constructing a Pattern

Many standardised design solutions (e.g. design patterns) can be used as a basis for

constructing refinement and, in less extent, abstraction patterns. It is not necessarily

a one-to-one mapping and there are design solutions that are so abstract that they

may be not very useful when transformed into a pattern. Let us consider, as an

example, the proxy design pattern ([39]) which is an abstract structuring concept

for a complex system. A naive, straightforward translation of this design pattern

would result in a simplistic refinement pattern for which the use of patterns and

the associated proof reuse simply does not pay off. However, there can be any

number of specialised versions of this design pattern formulated for particular kind

of systems or specific cases. The same problem has been discovered in [83] when

attempting to convert design patterns into software components.

A legacy or a current formal development is an important source of ideas for

refinement automation. In many cases, concrete refinement steps are an imple-

mentation of a more general concept. Application of the concept to a whole range

of possible abstract systems might result in a reusable refinement pattern. A side

effect - a deeper understanding of the concept used in development through it for-

malisation - is important by itself.

A pattern designer is likely to have a choice of a level of a pattern presenta-

tion. A refinement pattern can be more abstract and thus be applicable to a wider

range of input specifications or more specific and restricted to a narrower domain.

More abstract patterns are generally easier to apply as they put less restrictions on

the form of an input specification. One of the objectives during a pattern develop-

ment is to find a balance between pattern generality and details in describing its

functionality.
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The first step of a pattern design is the identification of the possible pattern pa-

rameters, their types and restrictions. This stage defines a set of possible abstract

specifications that can be transformed by this pattern and this loosely corresponds

to the notion of the problem domain of a design pattern (solution). For complex

patterns it is a non-trivial task to identify the weakest set of patterns requirements.

The strategy is to start with a minimal set of requirements and use proof obliga-

tions as a guide to add the additional restrictions required to demonstrate pattern

correctness.

It is important to carefully identify major building blocks of a pattern: new vari-

ables and events declared by the pattern, top-level matching blocks, refinements of

abstract variables and events. These serve as a skeleton around which further de-

tails are added. Proofs will help to identify missing or wrong rules.

Once there is a sufficiently detailed description of a refinement pattern, proof

obligations for pattern correctness can be generated. With a theorem prover, many

proof obligations are discharged automatically. A proof obligation not discharged

automatically may indicate a mistake in pattern but this is also a part of the pattern

design routine. The structure of a proof obligation might provide valuable infor-

mation on how to rectify a problem in the patterns. Typically, several iterations are

needed to produce a correct pattern.

4.7 Event-B Refinement Patterns

To make pattern specifications more readable, we first introduce notational short-

cuts for Event-B model transformations. Many transformations related to some

model element get the element as a parameter. To avoid repetitive parameter use,

a model transformation may omit a parameter implied by the transformation con-

text.

Notational shortcuts are grouped by the context in which they are used. The

same syntactic element may have different meaning in a different context. The

following rules are used in the top-level context - the model context.

variable v newvar(v)

event e addevent(e)

invariant i addinv(i)

Here v, e and i are constants. The rules sequentially composed with variable v

are intepreted in the context of variable v. The same principle is applied to the

event creation rule event e. The event scope rules have the following definition
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event e

refines r refines(e, r)

label l newevtlabel(e, l)

guard g addguard(e, g)

param p

(

addpar(p)

addparam(e, p)

)

action vsexp

(

newaction(a, v, s, exp)

addaction(e, a)

)

Action, variable and parameter scope rules are simply renamedmodel transfor-

mations with the context element parameter omitted

action v

variable v newactionvar(a, v)

style s newactionsty(a, s)

expression e newactionexp(a, e)

variable v

label l varlabel(v, l)

action a newvaraction(v, a)

invariant t newvartype(v, t)

param v

label l parlabel(a, l)

invariant t newpartype(a, t)

In case there is no explicit declaration of a context, suffix for b is used to point

at a context element. Thus, action a for somevar is understood as

newvaraction(somevar, a)

The additional benefit of rule context is that many well-formedness conditions

are eliminated. For example, the fact that style s appears in a context of an action,

makes it redundant to prove (when analysing a pattern correctness) that parameter

a of newactionsty(a, s) is an existing action. The absence of any rules removing

model elements means that the conflict-freeness conditions can be relaxed.

If an element is declared using the shortcut notation but is not given a name, we

assume that a suitable fresh name is provided during pattern instantiation. Other-

wise, the labels for all the new named elements must be declared as rule or pattern

parameters.
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For example, the following snippet of a refinement rule

newvar(v)
varlabel(v, l)

newvaraction(v, a)
newvartype(v, t)

with the shortcut notation is represented as

variable v
label l
action a
invariant t

Unless l is substituted with a constant label, the above can be written as

variable v
action a
invariant t

4.8 Messaging Pattern

This section illustrates the patterns mechanism with an example of an Event-B re-

finement pattern. The presented pattern transforms an input model by refining an

action of an abstract event into a simple communication mechanism. The complete

pattern specification is given in Figure 4.2.

The pattern is applicable to models with at least one event that contains an

action assigning to a single variable (in a general case, an Event-B action updates

a vector of variables). This condition is expressed using the with construct which

also defines the parameters destevt (some abstract event) and copyact (some action

of destevt) (replacing with with forall we could make the pattern transform all the

suitable pairs of events and actions in an input model). The pattern body is made

of five major blocks: the construction of a variable representing a communication

channel (block ch in Figure 4.2); the construction of a channel state variable (block

rd); the defintion of a new event responsible for writing in the channel (send); the

refinement rules updating the abstract event destevt; the invariant relating the state

of the channel variable ch with the abstract model state (the last rule in Figure

4.2). Notation [var style expr] used in the invariant rule stands for a before-after

predicate corresponding to the Event-B action var style expr.
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pattern messaging

forall vv with destevt, copyact where
destevt ∈ evt ∧ copyact ∈ destevt.actions ∧ copyact.var = {vv}

do

ch :





variable ch
invariant ch ∈ vv.type
action ch :∈ vv.type

rd :









variable rd
label ch rd

invariant rd ∈ B

action rd := false

send :

















event send
param destevt.arg
guard destevt.guard
guard rd = false

action ch := copyact.expression
action rd := true

recv :





guard rd = true for destevt
action rd := false for destevt

expression ch for copyact
invariant rd = true ⇒ [ch copyact.style copyact.expression]

end

Figure 4.2: The messaging refinement pattern specification.

4.8.1 Correctness

To demonstrate the pattern correctness, we routinely apply the conditions from

Section 4.4.2 to obtain the list of the pattern proof obligations. Instantiating the

computability proof obligation, we get the following condition:

finite({(d, c) | d ∈ evt ∧ c ∈ d.actions ∧ card(c.var) = 1})

The above trivially holds noticing that an Event-B model has a finite number of

events - finite(evt) - and an event has a finite number of actions: finite(d.actions).

The conflict-freeness condition is demonstrated by writing out scopes of the

pattern rules. For example, for the pattern subset declaring new variable ch the

scopes are computed as follows

variable ch var, ⋆ch

invariant ch ∈ copyact.type ⋆ch : typ

action ch :∈ copyact.type ⋆ch :act

variable rd var, ⋆rd

For all the pairs of parallel rules we have to demonstrate the absence of scope

conflicts. Although this results in a large number of proof obligations, all such

obligations are computed automatically by a tool. Moreover, in the new version of

the tool it is impossible to construct patterns with scope conflicts: the editor simply
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does not allow parallel composition of conflicting rules.

Well-formedness of a pattern is analysed by generating corresponding proof

obligations for all the pattern rules. For our example, there are 17 such proof obli-

gation. The declaration of new variable ch results in the following proof obligations

invariant preservation: ch′ ∈ vv.type ⇒ ch′ ∈ vv.type

feasibility: I(v) ⇒ ∃ch′ · ch′ ∈ vv.type

The names on the left-hand side indicate the Event-B refinement conditions [20]

from which the proof obligations are derived. Note that vv.type is some unknown

predicate. While the first proof obligation is trivially true, to discharge the second

one we have to rely on the properties of the abstract model being transformed by

the pattern. This properties are summarised in predicate I(v), introduced later in

this section. For brevity, we present only few interesting proof obligations.

The guard rd = true for destevt rule leads to a proof obligation requiring that

the overall guard of concrete event destevt is stronger than the guard of its ab-

straction. This condition trivially holds since the new guard is stronger due to the

conjunction with an additional condition:

guard strengthening: destevt.guard(v) ∧ rd = true ⇒ destevt.guard(v)

The update of the expression of the copyact (rule expression ch for copyact)

leads to two proof obligations. The first requires us to show that the new action is

feasible: always delivers a result under the given assumptions. The second states

that new action must be a refinement of the corresponding action of abstract event

destevt:
feasibility: I(v) ∧ J(v, u) ∧ destevt.guard(v) ∧ rd = true ⇒

∃u′ · [copyact.var := ch](u, u′)

refinement: I(v) ∧ J(v, u) ∧ destevt.guard(v) ∧ rd = true∧

[copyact.var := ch](u, u′) ⇒

∃v′ · ([copyact](v, v′) ∧ J(v′, u′))

where v is a vector of abstract model variables. This vector contains at least one

variable vv, {vv} = copyact.var. Vector u denotes concrete model variables, which,

among the variables inherited from an abstract model (v ⊂ u), contains variables

ch and rd.

Predicate I(v), used in several proof obligations above, is a collection of known

facts about the abstract model. For the messaging pattern, we know that a suitable

abstract model contains at least one event which must have at least one action as-

signing to a variable. We also assume that an abstract model transformed by the

pattern is well-formed (in sense of Event-B well-formedness [20]). Thus we may

state that the abstract action copyact has a solution when its guard is enabled (the

feasibility condition). This condition helps us to discharge the feasibility proof obli-
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gation above. The complete I(v) definition is

I(v) = I(v) ∧ ∃e · (e ∈ evt ∧ ∃a · (a ∈ e.act ∧ card(a.var) = 1))∧

(I(v) ∧ destevt.guard(v) ⇒ ∃v′ · ([copyact](v, v′) ∧ J(v′, u′)))

where I(v) is an arbitrary predicate corresponding to the abstract model invari-

ant.

Predicate J(v, u) is a concrete invariant. In addition to constraints on concrete

variables, a concrete invariant in Event-B also has a gluing invariant linking the

states of concrete and abstract model. In our case, such gluing invarint is the in-

variant produced by the rule invariant rd = . . . . This invariant links the abstract

action expression with the value of concrete variable ch. The complete definition of

J(v, u) is as follows:

J(v, u) = ch :∈ copyact.type(v) ∧ rd ∈ B∧

rd = true ⇒ [ch copyact.style copyact.expression](u)

The feasibility and refinement conditions are discharged in a number of simple

steps by writing out I(v) and J(v, u) and then demonstrating that

[copyact.var := ch](u, u′)

is equivalent to [copyact](v, v′) provided rd = true .

Several model transformations require further analysis to ensure that the

pattern construct a model refinement. These rules are invariant rd = . . . ,

variable destevt.arg and event send. The former two cases are rather trivial and

we only consider the condition generated for the event send rule. This condition

requires us to prove that new event send terminates in a finite number of steps and

passes the control to some other event. For this we have to find a variant which is

a finite natural number decremented by the new event:

non-divergence: I(v) ∧ J(v, u) ∧ destevt.guard(v) ∧ rd = false∧

[{ch} copyact.style copyact.expression](ch, ch′)∧

rd′ = true ⇒ ∃V · (V (u) ∈ N ∧ V (u′) < V (u))

One possible witness for V is V (rd), V : B→{0, 1} = {true 7→ 1}∪{false 7→ 0}.

Event send decreases V : in the before-state state of send, V must be 1 and in the

after-state it is always 0.

Figure 4.3 demonstrates an example of the pattern instantiation. The input

model contains a single event with two actions. Any of these actions can be se-

lected as a value for the copyact parameter and it is assumed that the parameter

selection is handled externally (e.g., by a modeller). In this example the pattern

is instantiated with copyact = (n := (m + 1) mod 6). In Figure 4.3, model m0 is

the input model and model m1mes is the the model produced by the messaging

refinement pattern (Figure 4.2).
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SYSTEM m0
VARIABLES n,m
INVARIANT n ∈ 0 .. 5 ∧ m ∈ {1, 2, 3}
INITIALISATION n := 0‖m := 1
EVENTS

work = BEGIN n := (m + 1) mod 6‖m :∈ {1, 2} END

SYSTEM m1mes
REFINES m0
VARIABLES n,m, ch, ch rd
INVARIANT

n ∈ 0 .. 5 ∧ m ∈ {1, 2, 3} ∧ ch ∈ 0 .. 5 ∧ ch rd ∈ B

ch rd = true ⇒ ch = (m + 1) mod 6
INITIALISATION n := 0‖m := 1‖ch :∈ 0 .. 5‖ch rd := false

EVENTS

send = WHEN ch rd = false THEN ch := (m + 1) mod 6‖ch rd := true END

work = WHEN ch rd = true THEN n := ch‖m :∈ {1, 2}‖ch rd := false END

Figure 4.3: Instantiation example for the messaging refinement pattern.

The messaging pattern is applicable to a wide range of models. One example is

a combination with the recovery block [81], parity bit [63] and hamming code [63]

patterns to produce a fault-tolerant communication protocol. The protocol starts

with a communication loop with a single parity check bit. Upon detection of an

error, the protocol switches to a communication loop using the hamming code. The

described development can be constructed entirely from the currently available

refinement patterns.

4.9 Recovery Block Pattern

This pattern helps to develop software capable of tolerating software faults by in-

troducing N alternatives designed diversely following the ideas from [62]. Check-

pointing is used to save the state before executing an alternative so that results

of unsuccessful execution can be discarded. An alternative execution is followed

by checking an acceptance test. If the test is passed then the result of the current

alternative is used as the final result. Otherwise, the state is rolled back and an-

other alternative is activated (Figure 4.4). If no alternate is available, an exception

is propagated.

The pattern takes as input a model with two events. One of the events is the

specification of a desired behaviour. The other event is the connection to some

external recovery or abortion mechanism. During instantiation, the pattern also
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asks for the number N of behaviour block instances.

Further refinements should diversify designs of behaviour alternatives (e.g. by

enforcing the use of different solutions and by involving different developers) and

adapt test conditions. A good starting point for applying this pattern is a specifica-

tion with non-deterministic before-after predicates. The conjunction of all before-

after predicates of an abstract behaviour event is used by the pattern as the accep-

tance test. The pattern has two parameters - an abstract event and a value repre-

senting the number of blocks in the refined model:

pattern recblock

req typing b ∈ evt ∧ n ∈ finite(N)
req notempty card(b.act) > 0
req notzero n > 0

Here b is an abstract event specifying the desired system behaviour and n is a

number of recovery blocks. The pattern requirements state the typing of the pa-

rameters and the fact that the behaviour event contains at least one action andthe

number of blocks is not zero.

This pattern can be applied to any specification with at least one event which

must be not empty (contain actions). The pattern makes no additional assumptions

about event bodies, guards and parameters as the pattern is general enough to

handle all the possible cases.

The pattern introduces two new variables (these variables appear in the output

specification) to model control flow for the new events. Variable br defines the

currently active behaviour block. When its value goes beyond the allowed block

index, it indicates failure of all the blocks. Variable st indicates the current stage:

checkpoint (st = 0), block (st = 1) or acceptance test (st = 2):

ctrvar =

















variable br
invariant br ∈ 0..(n + 1)
action br := 0

variable st
invariant st ∈ 0..2
action st := 0

















The pattern models checkpointing by extending system state with new vari-

ables used to hold intermediate results produced by the alternatives. If the result

of an alternative fails the acceptance test, the state extension is disregarded. When

test succeeds, the state is used as the final result. This approach allows us to intro-
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Figure 4.4: The Recovery Block pattern. The checkpoint and alternatives are mod-
elled as new events, the Test block refines the behaviour abstract event.

duce checkpoints without knowing the whole system state. The following pattern

fragment creates a copy of each variable assigned in the event b:

shdvar =

























forall a, av where
a ∈ b.act ∧ a.var = {av}

do
variable cpvar

label cp av.nom
invariant cpvar ∈ av.typ
action cpvar av.act.sty av.act.exp

end

























This pattern rule creates a new variables for each variables assigned in the ab-

stract event b. Local variable a is used to iterate over the actions of event bwhile av

binds to a variable assigned by action a. The body of the loop construct is a typical

rule set for a new variable declaration.

The pattern fragment below creates a checkpoint event which saves the current

values of the variables updated in the event b. This event is enabled when st = 0:

chkptevt =





























event chkpt
label b chkpt

guard st = 0
forall a, av where

a ∈ b.act ∧ a.var = {av}
do

action cp av.nom := av.nom
end
action st := 1





























The event advances the stage variable st so that a currently selected alternative

is enabled. An alternative contains the same set of actions as the abstract event b.
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These actions assign to the copies of the abstract variables updated in b. Although,

an alternative is formally not a refinement of b, it is related through the actions.

A designer has the choice of changing alternatives behaviour just after applying

the pattern or keeping them intact and using refinement to gradually introduce

specialisation. In the latter case, the actions derived from the actions of b serve as an

abstract specification for further refinements. To allow for meaningful refinements

these actions must be non-deterministic. The next pattern fragment produces n

events representing recovery block alternatives:

altevt =







































forall i where
i ∈ 1..n

do
event alti

label b alt i
guard st = 1
guard br = i − 1
guard b.grd
variable b.var
actions action st := 2

end







































where rule actions is defined as

forall a, av where
a ∈ b.act ∧ a.var = {av}

do
action cp av.nom a.sty a.exp

end

Note the guard br = i − 1 selecting the current alternative and action st := 2

enabling the acceptance test. The acceptance test event checks if the alternative

has succeeded and, if it is so, uses its result as the final result. The acceptance test

must refine b since it is the only event which is allowed to update inherited abstract

variables which the abstract version of b used to produce the result. In other words,

an input specification is transformed in such a way that parts which the pattern is

not aware about are not effected.

The acceptance test is computed automatically by the pattern from the abstract

event b. In English, the acceptance can be informally formulated as ”any result

that agrees with the specification of the abstract event b is acceptable”. To give the ex-

act meaning to the ”agrees with” phrase we use the before-after predicates of the

abstract event b:
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accgrd =





















guard st = 2 for b
forall a, av where

a ∈ b.actions ∧ a.var = {av}
do

guard [cp av.nom av.sty av.exp] for b
action av.nom := cp av.nom for b

end





















where [var style exp] is a before-after predicate correcponding to the substitu-

tion var style exp.

We also have to address the case when the acceptance test fails. For this we

declare a new event and use a guard which is the opposite of the acceptance test

rule. One of the responsibilities of this event is to advance the br variable so that a

new alternative is used next time:

testevt =

















event test fail
label b test fail

guard st = 2
guard

∨

a∈b.act∧a.var={av} ¬ [cp av.nom a.sty a.exp]

action br := br + 1
action st := 0

















Since we have only n alternatives with indices 0..n − 1, a state where br = n

indicates that all the alternatives have failed to produce an acceptable result. To

cover the case of br = n the pattern produces a new events which simply uses the

abstract event b behaviour to produce some ”safe” result:

failevt =





















event fail
label b fail

refines b
guard br = n
guard b.grd
param b.var
action b.act





















Finally, the complete pattern is



72

pattern recblock

req typing b ∈ Event ∧ n ∈ finite(N)
req notempty card(b.act) > 0
req notzero n > 0

ctrvar

shdvar

chkptevt

altevt

testevt

failevt

accgrd

In Appendix B, this pattern is given in the notation accepted by a tool working

with Event-B patterns. We discuss the tool in Section 6.6. The pattern as it is given

in Appendix B can be used as it is by anyone interested in modelling recovery

block with the Event-B method. The pattern instantiation process is interactive and

self-explanatory. Also, a modeller would not normally have to look into a pattern

source to apply it.

We continue the pattern discussion with the analysis of the pattern correctnes.

For this pattern we are able to demonstrate the once-for-all correctness.

4.9.1 Recovery Block Pattern Correctness

In this section we demonstrate that the recovery block pattern indeed produces

valid refinements for any input specification to which it can be applied. Here we

write out and analyse proof obligations manually. Most of this can be handled by

a tool and we are working on adding support for generating proof obligations and

automatically discharging them with the platform theorem prover.

Computability Computability is trivially satisfied since an Event-B model has a

finite number of elements and parameter n is finite by declaration:

∀e · (e ∈ EVENT ⇒ finite(e.act)) ∧ finite(n)

Conflict-freeness We have to demonstrate for the following pattern rule, based

on the parallel composition, that there are no rules with overlapping scopes:
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chkptevt

altevt

testevt

failevt

accgrd

The individual rule scopes are

scope(chkptevt) = ⋆chkpt, ⋆chkpt :act, ⋆chkpt :nom, chkpt :grd

scope(altevt) = ⋆alti, ⋆alt :act, ⋆alt :nom, alt :grd

scope(accgrd) = b :grd, ⋆b :act

scope(test event) = ⋆test fail, ⋆test fail :nom, ⋆test fail :act, test fail :grd

scope(failevt) = ⋆failevt, ⋆failevt :nom, ⋆failevt : ref , ⋆failevt :act, failevt :grd

where i ∈ 1..n. The rule scopes are clearly disjoint.

Well-formedness Most of the proofs fall into the well-formedness category.

Declarations of br and st result in the following proof obligations:

PAT FIS INIbr ∃br′ · (br ∈ 0..(n + 1) ∧ br′ = 0)

PAT INV INIbr br ∈ 0..(n + 1) ∧ br′ = 0) ⇒ br′ ∈ 0..(n + 1)

PAT FIS INIst ∃st′ · (st ∈ 0..2 ∧ st′ = 0)

PAT INV INIst st ∈ 0..2 ∧ st′ = 0 ⇒ st′ ∈ 0..2

which are trivially true. Note that this conditions are devised by instantiat-

ing the pattern correctness conditions defined in Section 4.4.2 with Event-B model

transformations.

The pattern introduces new system variables supporting checkpointing. For

each variable updated in the event b a new variable is created with the same type

and initial state. To express this, the pattern uses the forall construct. Conse-

quently, resulting proof obligations use the universal quantifier

PAT FIS INIcpvar ∀a · (SimpleAct(a, b) ⇒ ∃c′ · (c′ ∈ Tp(a) ∧ [c′ St(a) In(a)]))

PAT INV INIcpvar ∀a · (SimpleAct(a, b) ⇒ [c St(a) In(a)] ⇒ c′ ∈ Tp(a))

where [vse] is a before-after predicate of an action made from variable v, ac-

tion style s (:=, :∈ and | ∈) and expression s. Also, the following shortcuts are

used: SimpleAct(a, b)
df
= a ∈ b.act ∧ a.var = {av}, c = cpvar, St(a) = av.act.sty,

Tp(a) = av.typ and In(a) = av.init.exp. The proof obligations above are simpli-

fied by removing quantifier ∀a. To do the proof we use the information about the

abstract variables from which the copied variables are derived:
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PAT FIS INIcpvar SimpleAct(a, b) ⇒ ∃v′ · (v ∈ Tp(a) ∧ [v′ St(a) In(a)]) ⊢

SimpleAct(a, b) ⇒ ∃c′ · (c′ ∈ Tp(a) ∧ [c′ St(a) In(a)])

PAT INV INIcpvar SimpleAct(a, b) ⇒ [v St(a) In(a)] ⇒ v′ ∈ Tp(a)) ⊢

SimpleAct(a, b) ⇒ [c St(a) In(a)] ⇒ c′ ∈ Tp(a))

These conditions are trivially correct as the left and right parts differ only in

the names of free variables. Note, that the proof covers the general case of creating

variable copies.

The checkpoint event initialises sub-states used by the recovery blocks. The

action updating st gives rise to the following trivial proof obligations:

PAT REF FISchkpt2 I(v) ∧ st ∈ 0..2 ∧ st = 0 ⇒ ∃st′ · (st ∈ 0..2 ∧ st′ = 1)

PAT NEW INVchkpt2 I(v) ∧ st ∈ 0..2 ∧ st = 0 ∧ st′ = 1 ⇒ st′ ∈ 0..2

Initialisation of checkpoint variables uses the forall statement and hence the uni-

versal quantifier appears in the proof obligations:

PAT REF FISchkpt1 ∀a · (SimpleAct(a, b) ⇒

(I(v) ∧ c(a) ∈ Tp(a) ∧ v(a) ∈ Tp(a) ∧ st = 0 ⇒

∃c(a)′ · (c(a) ∈ Tp(a) ∧ c′(a) = var(a))))

PAT NEW INVchkpt1 ∀a · (SimpleAct(a, b) ⇒

(I(v) ∧ c(a) ∈ Tp(a) ∧ v(a) ∈ Tp(a) ∧ st = 0∧

c′(a) = var(a) ⇒ c′(a) ∈ Tp(a)))

where c(a) = cp av.name, v(a) = av.name and St(a), In(a) and Tp(a) as de-

fined above and name av is bound by predicate SimpleAct. The quantifier can be

dropped and with the addition properties of the original variables as hypothesis

these conditions are demonstrated in a manner similar to the above.

The pattern fragment creating the recovery blocks employs two forall state-

ments. The outer one runs through all the recovery block indices and the inner one

creates a new action for each action in the abstract event b. The proof obligations

are as follows:

PAT REF FISalt ∀i · (i ∈ 1..n ⇒ ∀a · (SimpleAct(a, b) ⇒

(I(v) ∧ c ∈ Tp(a) ∧ st = 1 ∧ br = i − 1 ⇒

∃c′ · (c′ ∈ Tp(a) ∧ [c′ St(a) Ex(a)]))))

PAT NEW INValt ∀i · (i ∈ 1..n ⇒ ∀a · (SimpleAct(a, b) ⇒

(I(v) ∧ c ∈ Tp(a) ∧ st = 1 ∧ br = i − 1 ∧ [c St(a) Ex(a)] ⇒

c′ ∈ Tp(a))))
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These are easy to demonstrate for a case of some index i and some action a. It is

also known that the abstract actions are well-formed and this is used as a hypothe-

sis. The case for the action assigning to st is trivial.

The acceptance test defines actions replacing the abstract actions of event b. We

have to prove that under the given conditions each such action refines its abstract

counterpart:

PAT REF FIS ∀a · (SimpleAct(a, b) ⇒

(Tp(a) ⇒ ∃v′(a) · (c(a) ∈ Tp(a) ∧ v′(a) = c(a))))

PAT REF INV ∀a · (SimpleAct(a, b) ⇒

(I(v) ∧ [c(a) St(a) Ex(a)] ∧ v(a) = c(a) ⇒

∃v′(a) · ([v′(a) St(a) Ex(a)] ∧ va(a) ∈ Tp(a))))

These conditions are trivially correct. For concrete version of event b we have

to demonstrate that the new guard is stronger than its abstract counterpart. It is

indeed so, as the pattern fragment strengthens the guard with the additional con-

ditions. For the new event test we have several trivial proof obligations due to the

actions br := br + 1 and st := 0.

Refinement Omitting a multitude of trivial refinement conditions from non-

refinement model transformations, the only non-trivial refinement condition is the

non-divergence of new events constructed by the pattern.

To prove the non-divergence, we have to demonstrate that there exists such

V ∈ N that it is decreased by all the new events:

PAT NEW DIV I(v) ∧ J(v,w) ∧ H(w) ∧ S(w,w′) ⇒

V (w) ∈ N ∧ V (w′) < V (w)

Let V = (n+1)∗3+2−(br∗3+st) and T = st ∈ 0..2∧br ∈ 0..(n+1)∧n ∈ N∧n > 0

Condition T ⇒ V (w) ∈ N holds sincemax(br ∗3+st) = (n+1)∗3+2. To prove

that all the events decrease V we have to demonstrate that the following conditions

hold

PAT NEW DIVchkpt T ∧ st = 0 ∧ st′ = 1 ∧ br′ = br ⇒

V (st′, br′) < V (st, br)

PAT NEW DIValt ∀i · (i ∈ 1..n ⇒

(T ∧ st = 1 ∧ st′ = 2 ∧ br′ = br ⇒ V (st′, br′) < V (st, br)))

PAT NEW DIVtest T ∧ st = 2 ∧ st′ = 0 ∧ br′ = br + 1 ⇒ V (st′, br′) < V (st, br)

The first two expressions increment st leaving br unchanged and hence decrease

the variant expression since V is a monotonously decreasing function. The test

event resets st to zero but this is compensated for by the increment of br.
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This pattern and the related N-versioning programming pattern (Section 6.2)

have been applied in the development of the Ambient Campus case study within

the ICT RODIN Project [84]. In this case study we have developed several applica-

tion scenarios for PDAs and smartdust devices in which fault tolerance is essential

just to achieve a reasonable usability level. In particular, we have used the Re-

covery Block pattern to alternate between different positioning services: GPS (fails

indoors), motes (fails when there are not enough motes in proximity) and the WiFi

base-station association.

4.10 Using Patterns

Our experience suggests that the refinement patternmechanism canmake a consid-

erable impact on the development process andmake a formal development process

more economical.

One of the attractive features of the refinement patterns is that pattern appli-

cation supported by the right tool is almost instantaneous and straightforward.

Different refinement paths can be investigated without investing considerable time

and modelling efforts by just selecting different patterns. This presents a consider-

able advantage over the manual refinement where a developer could be reluctant

to redo modelling steps once committed to a particular solution.

Reading and applying refinement patterns is much easier than writing them.

Hence, the mechanism of patterns makes it possible to differentiate between the

roles of a formal method expert, designing high-quality reusable patterns, and an

engineer, using patterns to design a system model. The fact that application of

patterns does not require a high level of expertise in formal methods can contribute

to the wider adoption of formal modelling as a cost-effective software engineering

technique for safety-critical and dependable systems.

The effect the pattern mechanism can have on the development process de-

pends on the number and the quality of available patterns. We consider pattern

correctness as an important aspect of pattern quality: though patterns not produc-

ing any useful transformations are correct, there can be no patterns constructing

invalid refinements.

Unlike concrete refinement steps, patterns are designed to be reusable. An im-

portant part of the pattern mechanism is a facility to look for a pattern implement-

ing some specific transformations.

A refinement pattern is a complete, self-sufficient unit that can be communi-

cated between developers to support reuse and experience sharing. With an ex-

tensive pattern library, a whole system design can be realised as a composition of
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third-party patterns with some custom logic filled in places.

4.11 Pattern Classes

In a general case, by a refinement or abstraction pattern we understand a collection

of rules that comprise all kinds of model transformation rules: deletion, replace-

ment of model elements and addition of new elements. For many patterns, how-

ever, it is sufficient to use a limited subset of available model transformations. Such

patterns may be easier to construct, analyse and apply.

4.11.1 Superposition Pattern

A superposition pattern neither changes nor removes existing model elements and

only adds newmodel elements, in other words, superimposes new behaviour onto

the abstract behaviour [35, 85]. A more notable example of an approach working

with this class of patterns is the CIP project transformational language, CIP-S [86].

The Recovery Block pattern discussed in Section 4.9 is an example of a super-

position refinement pattern.

An attractive property of a superposition pattern is the ability to unambigu-

ously describe such pattern using only input and output model classes. Hence,

if we know that the pattern in question is a superposition refinement pattern it is

enough to exhibit its input and output model classes and the pattern itself can be

trivially derived.

For example, a simple pattern, adding a new a new empty empty at a specific

point of a model, is fully characterised by its input and output model classes and

can be defined as follows

pattern seq

FACET incl(seq)
EVENTS

?e = WHEN ?g THEN skip END

FACET outcl(seq)
REFINES incl(seq)
VARIABLES ?v
INVARIANT ?v ∈ B

INITIALISATION ?v := false

EVENTS

?ne = WHEN ?g∧?v = false THEN ?v := true END

?e = WHEN ?g∧?v = true THEN ?v := false END
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4.11.2 Mapping Pattern

The class of mapping patterns is a subclass of superposition patterns. These pat-

terns only insert new top-level model elements. A pattern from this class, for ex-

ample, can add a new event but cannot add a new action or a guard to an existing

event.

The TLA [8] pattern integration mechanism [87] uses this kind of patterns.

4.11.3 (De-)Integration Pattern

An integration pattern is a special case of a mapping pattern. Patterns of this class

put no restrictions on the input model class. This pattern type can be understood

as a composition of two models - the input model and the model contained in

a pattern. This kind of patterns were used (with a manual instantiation) in the

classical B Method case study - the Mechanical Press Controller [88]. Since this

pattern class does not restrict the input model class, an integration pattern can be

described by the output model class alone.

The abstraction case of this pattern class is called de-integration pattern.

4.11.4 Presentation Pattern

A presentation pattern constructs a refinement (or abstraction) that can be refined

(abstracted) again to the initial model. The simplest case of such pattern is a pattern

renaming a model element (and consistently updating all other model elements).

A more interesting case is a data refinement that can be undone without losing

any details on the behaviour of the modelled system. In Section 6.4 we describe in

details a pattern from this class which transforms a set variable into a characteristic

function of a set.

4.12 Summary

The pattern mechanism is a step towards making formal methods more accessible

and less expensive. Pattern is a program rewriting a formal model to construct

a new model. Unlike conventional programs, created with mainstream program-

ming languages, the patterns are designed to make it possible to demonstrate pat-

tern correctness mechanically, using automated theorem provers, e.g. [89, 90]. Cor-

rectness proofs, once constructed for a pattern, automatically guarantee correctness

of any possible pattern instantiation.
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Patterns are of a great assistance in modelling and, we believe, can be effectively

used by non-experts. Pattern instantiation process is interactive: the existing tool

prototype dynamically creates a pattern instantiation wizard which guades a mod-

eller through the process of pattern application. The example we have considered

in this chapter was developed using the tool and is available for download from

the tool web-page [63].

In the next chapter we discuss how to describe a whole development as a com-

position of refinement patterns or, which is the same, a single refinement pattern.



80

Chapter 5

Modelling with Patterns

5.1 Introduction

A model is a mathematical description of a system to be constructed. A detailed

system description is made in several steps by formally transforming an initial

model until the result becomes sufficiently detailed (e.g., can be translated into a

programming language). Modelling is a complex activity. While, from the math-

ematical viewpoint, formal step-wise development is a sequence of formal modi-

fications to an initial abstract model, for a modeller it is a mental elaboration of a

system design; the mathematical notation and proofs assist in this process. Simi-

larly, a model has two interpretations - one is given by the semantics of the chosen

formal method and another, probably more important one, exists in a modeller’s

head and, possibly, is described somewhere informally. At some point, mental

and formal models become close enough so that a modeller sees no difference and

states that the formal model is an accurate reproduction of the informal mental

model. If a modeller’s concept of the modelled system is hazy, it is very unlikely

that the resulting formal model is accurate and adequate despite being mathemat-

ically correct. Requirements engineering [91] helps to elaborate informal system

model prior to the formal modelling stage. Ideally, given a formal model and its

requirements one should be able to state whether the model is a satisfactory imple-

mentation of the requirements. Evenwith a perfect requirements document there is

still a problem of capturing all the system details in a formal model. Intuitively, to

construct a formal model with a step-wise refinement procedure, each refinement

step should be taking the model closer to the modelling goal corresponding to the

system requirements. The refinement method makes no claims to be able do that.

The problem can be related to finding a path between two points. If from the first

point the other can be seen, it is possible just to walk straight towards the second

point. But if the second point cannot be seen, a lot of effort may be wasted trying
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to find it and it may be never reached at all. To construct a refinement path from an

abstraction towards and an implementation, a modeller must gets some guidance

from a tool. Such guidance would assist a modeller in constructing intermediate

models and enusre that the modelling goal is eventually achieved.

Construction of a complex system is aided by one or more problem-specific

methods, such as software engineering methods. For example, a space probe con-

troller would follow methods elaborated for development of space probe software.

Such methods are informal or semi-formal and rely on a modeller’s ability and

desire to properly apply the method. In this chapter we discuss the modelling pat-

tern concept enabling formal description of various development methodologies in

such away that the result can be used to assist a modeller in a formal development.

5.2 Modelling Patterns

A software engineering method helps an engineer to decide how to proceed next

at any given stage of a system design. The modelling pattern does the same for

a formal development. The set of properties and requirements of a system form

the initial top-level goal of the development. The goal is matched against known

modelling patterns to find a pattern which leads from the abstract to the a model

satisfying the system requirements. The modelling pattern mechanism is based on

the divide-and-conquer principle. To construct a refinement chain towards some

goal we introduce an intermediate goal and try to achieve that goal first. New in-

termediate goals are introduced until the refinement chain becomes simple enough

to be constructed manually or with a combination of refinement patterns.

The role of a modelling pattern is to assist modeller by giving hints on how to

constructmodel refinements. The hints are given in the form of goals stating the de-

sired system properties. A trivial modelling pattern corresponds to an unassisted

refinement process where only a global goal is given. A very detailed modelling

pattern supported by a collection of refinement patterns automates all or most of a

development. Amore practical case, however, is an abstract modelling pattern sup-

ported by several refinement patterns. Such pattern controls modeller’s focus by

setting current goals and ensuring that modeller satisfies them while constructing

model refinement. An interactive formal development tool can be used to highlight

the current goal and the relevant model parts.

A modelling pattern, just like a refinement or abstraction pattern, is concerned

with model refinement (abstraction). But unlike refinement pattern, which is an

executable procedure computing a new model, modelling patterns is an abstract

description of refinement chain. This difference implies different means of descrip-
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tions. Modelling pattern is defined by pair of an assumption and goal. The assump-

tion part is what the kind ofmodels a modelling pattern requires as a starting point.

Goal is the kind models the pattern helps to constructs. Goals and assumptions are

predicates; they define model classes, just requirements of model transformations

and refinement patterns. A simple modelling pattern has the following form

from A achieve G

where A is assumption and G is goal. The goal and the assumption predicate

take the current model of development as an implicit parameter. Assumption and

goal are of the same nature as refinement pattern input and output model classes.

However, unlike refinement pattern, a modelling pattern presents no rule for con-

structing a concrete model. For example, a modelling pattern for the development

of a vending machine could have the following form:

from true achieve V M

The pattern simply states that goal V M (vending macine construction) is

achieved without any assumptions.

Observing that input and output model classes of refinement pattern have the

same nature as the assumption and goal of a modelling pattern, it is easy to con-

struct a modelling pattern from a refinement pattern. For refinement pattern p we

have modelling pattern from incl(p) achieve outcl(p), where incl(p) and outcl(p)

are the input and output model classes of the pattern. There is, however, no

straightforward procedure for producing a refinement or abstraction pattern from

a modelling pattern. Moreover, for some modelling patterns there may be no cor-

responding refinement/abstraction pattern at all1.

Several trivial modelling patterns can be formed using Boolean constants for

goal and assumption. Pattern from false achieve true cannot accept any model but

produces all possible models. This pattern serves as a starting point for construct-

ing modelling patterns. Pattern from false achieve false also does not accept any

model and its goal describes impossible model. Pattern from true achieve true is

a ”magic” pattern that is able to construct any model from any model. This pat-

tern is not implementable and any pattern that can be refined to this pattern is also

not implementable. The final trivial pattern is from true achieve false . This pattern

accepts any model but fails to produce anything.

1This reallymeans that a modelling has conflicting assumption and goal. In the scope of this work
we do not attempt to give a complete formal treatment to this problem.
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Complex modelling patterns are constructed using several forms of pattern

composition. Sequential composition -

from A1 achieve G1 then from A2 achieve G2

- describes a modelling pattern which first tries to achieve goal G1 assuming

that a current model satisfies A1 and then it switches to a new goal G2 with the

assumption condition A2. Goal G1 must be stronger than the assumed condition

A2, otherwise the development will stuck after achieving G1. For our vending

machine example, we can use the rule to state that a vendimg machine should be

constructed as a modification of a simpler distribution machine:

from true achieve DM then from DM achieve V M

Modelling pattern from true achieve DM address constructing of a distribution

machine. Pattern from DM achieve V M adds payment collection functionality

converting a distribution machine into a vending machine.

Parallel composition describes twomodelling patternswhich goals can satisfied

independently:

from A1 achieve G1 and from A2 achieve G2

For legibility, when there more than two parallel rules, we use the following

notation:

parallel
from A1 achieve G1

from A2 achieve G2

Such modelling pattern describes a refinement chain leading to model satisfy-

ing both G1 and G2.

The distribution machine from the vending machine example can be decom-

posed into a combination of a mechanism for delivering goods to a customer and a

loading facility, adding new goods into the machine. Then, the previous modelling

pattern for the example can be refiend into
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parallel
from true achieve Delivery
from true achieve Loading

then
from DM achieve V M

provided thatDelivery ∧Loading ⇒ DM , i.e., the combination of delivery and

loading machine is a possible realisation of a distribution machine.

In the case when a modelling pattern describes identical transformation for an

array of model elements, it may be convenient to express the pattern as a parallel

composition of parametrized patterns:

parallel
from A(p1) achieve G(p1)
. . .
from A(pk) achieve G(pk)

=
parallel forall p where C(p)

from A(p) achieve G(p)

where p1, . . . pk = {p | C(p)}.

The choice construct permits construction of a branching pattern that lets a

modeller to adapt the pattern to the specifics of a given development. Pattern

choice is resolved by matching assumptions of alternatives against the current

model:

from A1 achieve G1 or from A2 achieve G2

The alternative syntax for this construct is

choice
from A1 achieve G1

from A2 achieve G2

The pattern above is equivalent to from A1 achieve G1 when only assumption

A1 is satisfied and to from A2 achieve G2 when only A2 is satisfied. When both

assumptions are satisfied the choice is resolved by a modeller.

For the vending machine example, we can use the choice construct to define

several alternatives for the payment collection service.
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parallel
from true achieve Delivery
from true achieve Loading

then
choice

from DM achieve CoinsV M
from DM achieve CardV M
from DM achieve FreeV M

where each of ∗V M goals implies the V M goal.

A simple modelling pattern can be implemented as a refinement pattern. In

a place of a modelling pattern from A achieve G we can always use a refinement

pattern p, such that A ⇒ incl(p) and outcl(p) ⇒ G. In other word, a modelling

pattern can be refined into a suitable refinement pattern. This principle is used to

automate some of the refinement steps described by a of a modelling pattern so

that the pattern is easier to apply in a development.

It is often required to ensure that a certain property is maintained for a number

of refinement steps. For this we use a modelling pattern with a property to be

maintained as both the assumption and the goal of the pattern:

from P achieve P

This modelling pattern describes a succession of refinement steps preserving

property P . For better readability, we use the following syntax for this type of

modelling patterns:

maintain P

A typical use for this construct is to require that some property is maintained

during a development. For example, the following pattern:

maintain P and from Q achieve R

is applicable to a model satisfying both P and Q and describes a development

working towards R while maintianing P . The pattern is equivalent to from Q ∧

P achieve R∧P but has the benefit of explicit separation of a property preservation

from a development goal.

One possible application of the maintain p construct is to allow several mod-

ellers to work on parts of the same development. A development part i is charac-

terised by a property pi (for Event-B developments, it is convinient to use a facet
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(Section 3.5.2) to express a property to be maintained). A modeller working on the

i − th part of a development is only allowed to change that part. This condition is

formulated as follows

parallel forall i where i ∈ 1..n
maintain

∧

j∈1..n∧j 6=i pj

and each modeller k is assigned part maintain
∧

j∈1..n∧j 6=k pj . It may be more

useful to include specific goals for each modeller:

parallel forall i where i ∈ 1..n
maintain

∧

j∈1..n∧j 6=i pj and achieve Gi

where Gi is the development goal for the i-th part a development. This is not

quite the same as Event-B model decomposition [20, 92], but it is sufficient to sup-

port distributed development process, provided a development tool enforces the

compliance with modelling pattern goals.

Modelling patterns are constructed independently of the developments in

which they are applied and, like refinement patterns, they can be reused in many

different developments. This is why we relate them to software engineering meth-

ods. Like a method that can be applied to a broad range of problems within some

problem domain, modelling patterns are applicable to a class of developments.

Several modelling patterns may be combined to produce a complex modelling pat-

tern.

While, in principle, any formal development can be constructed as a sequence of

refinement patterns, in practice, it is very unlikely that for any realistic system there

will be enough pre-fabricated refinement patterns to construct a development en-

tirely from refinement patterns. Manual refinement steps cannot be avoided. Still,

we would like to have many steps of a development automated with refinement

patterns. For this we should be able to identify what are the possible refinement

steps in a given class of developments and decide which of them can be converted

into refinement patterns.

5.2.1 Developing Modelling Patterns

A natural way to construct a modelling pattern is to start with a simple pattern

and then detalise it in a gradual manner. The first step of a pattern development

is the definition of the global assumptions and goals. Since it is likely that writing

detailed assumptions and goals for an abstract pattern is hard, we propose to refine
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Figure 5.1: Lattice constructed from trivial modelling patterns ordered by the re-
finement relation.

assumptions and goals along with pattern detalisation by refining the ontology

used to express them. Abstract assumptions and goals are specified using In the

terms of the problem domain. A pattern is refined until all the phenomena specific

to the modelled method are captured. During this process the pattern ontology is

extended as needed. Finally, the method-specific taxonomy of themodelled pattern

is mapped into terms of the model elements of the chosen formalisation method.

Modelling patterns are constructed using a step-wise refinement procedure.

Each step makes pattern more specific. In a general case, an abstract pattern can

replaced by another pattern with a weaker assumption or a stronger goal or both:

(

A ⇒ A′

G′ ⇒ G

)

⇒ from A achieve G ⊑ from A′ achieve G′

The from false achieve true pattern is refined by any other:

from false achieve true ⊑ from A achieve G

The from true achieve false is a refinement of any modelling pattern:

from A achieve G ⊑ from true achieve false

Patterns ”from false achieve true” and ”from true achieve false” are the least

and the greatest elements of the partial order generated by the modelling pattern

refinement (Figure 5.1).

Using the definition of modelling pattern refinement, we introduce several

decomposition-based pattern refinement rules. The first such rule decomposes a



88

pattern into a parallel composition of two new patterns. Assumptions of the new

patterns must be the same or weaker than the abstract pattern assumption and the

conjunction of the new pattern goals must be at least as strong as the abstract goal:

from A achieve G ⊑
from A1 achieve G1 and from A2 achieve G2,

where





A ⇒ A1

A ⇒ A2

G1 ∧ G2 ⇒ G





Informally, such refinement is interpreted as splitting the abstract pattern into

two sub-goals which must be satisfied by the same refinement chain. A more gen-

eral case is the refinement into the
parallel forall p where C(p)

r
construct

from A achieve G ⊑
parallel forall p where C(p)

from A(p) achieve G(p)
,

where

(

∀p · (C(p) ∧ A(p) ⇒ A)
∧

C(p) G(p) ⇒ G

)

Sometimes, a modelling pattern can be simplified by applying the opposite of

this transformation. Parallel composition of two patterns can be replaced with a

single pattern:

from A1 achieve G1 and from A2 achieve G2 ⊑
from A achieve G,

where





A1 ⇒ A
A2 ⇒ A
G ⇒ G1 ∧ G2





A related form of refinement is the decomposition of a pattern into a sequence

of patterns. The goal of the last part must be at least as strong as the abstract pattern

goal and the assumption of the first pattern in a sequent must be weaker than the

abstract assumption. Patterns in a sequent must connect properly, that is, we must

ensure that the assumption of the second pattern is satisfied by the goal of the first

pattern:
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from A achieve G ⊑
from A1 achieve G1 then from A2 achieve G2,

where





G2 ⇒ G
G1 ⇒ A2

A ⇒ A1





This refinement style introduces milestones that help to arrive to the global goal

by adressing a sequence of simpler goals.

An abstract pattern can be decomposed into a choice between alternative pat-

terns

from A achieve G ⊑
from A1 achieve G1 or from A2 achieve G2,

where









A1 ∨ A2

A ⇒ A1 ∨ A2

G1 ⇒ G
G2 ⇒ G









Such refinement makes modelling patterns more flexible. When one tactics can-

not be applied, a pattern automatically switches to an alternative tactics. In case

when both alternatives are possible, the choice must be resolved externally, e.g. by

consulting a modeller.

5.3 Code Generation Case Study

To illustrate the mechanism of modelling patterns we construct a modelling pat-

tern for a simple code generator. First we discuss the method for code generation

that we are going to formalise. Then we construct the modelling pattern using the

step-wise development procedure we have discussed. Finally, we built a complete

design component by adding a number of refinement patterns to automate parts of

the modelling pattern. We are able to indetify a subset of the pattern that describes

a completely automated code generator.

From formal modelling viewpoint, code generation is a sequence of refinement

steps leading to an executable model. A traditionl code generation tool [24] con-

structs a program in a single step. This makes it difficult to analyse correctness of

the produced programs and valide code generators.

In this case study we explore a method construct model implementation in a

gradual manner using the refinement technique. We address the following issues

• language-neutral approach - no need to extend a formal method notation

with constructs from programming languages;
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• support for real-life languages - the target language can be any programming

language;

• flexibility - instead of defining a single black box transforming a model into a

program, we definemany simple transformations that can changed, extended

and reused;

• refinement-based - conversion of a model into a program is a sequent of re-

finement steps.

5.3.1 Event-Basic

We define a programming language called Event-Basic that acts as the target lan-

guage for our code generation method. Event-Basic 2 is a toy language based on

the traditional Basic programming language. It is a very simple language with few

constructs
GOTO (label) unconditional jump

(label) : label

INPUT (variable) console input into a variable

(variable) = (expression) assignment

IF (predicate) THEN (statement) conditional execution

In the tradition of Basic, Event-Basic is a dynamically typed language. A vari-

able can be used without an explicit prior declaration and the appropriate type is

determined automatically. This saves us from dealing with variable declarations

required by strongly typed languages.

To avoid interference with programming language structuring constructs (such

as the distinction between local and global variables), we use only the simplest con-

trol flow statement - unconditional jump. The notable feature of Event-Basic is the

assumed support for the complete mathematical language of Event-B. As most im-

perative programming languages, Event-Basic does not support non-determinism

and the only way to update a program variable is to explicitly assign it a new value.

5.3.2 Constructing Model Implementation

Traditional code generator takes a model and produces a program:

2Event-Basic is a subset of a real programming language Lemick[93].
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p : S 7→ P

An intermediate modelling language can be used as a bridge between a mod-

elling language and a programming language. For example, language B0 of the

B Method adds a number of programming language constructs and additional re-

strictions to ensure that a model is executable. Construction of an implemenation

with such intermediate language is represented as:

i ◦ p,where i : S 7→ I and p : I 7→ P

The approach can generalised so that code generation is done in a number of

steps:

p = p1 ◦ p2 ◦ · · · ◦ pn,where













p1 : S 7→ A

p2 : A 7→ A

. . .

pn : A 7→ P













whereA is an abstract implementation and P is the final, executable implemen-

tation.

The notion of implementation refinement is based the replacement of abstract

parts with more detailed parts, which may also contain abstract elements. This can

be related to writing a pseudo-code rendering of a program and then gradually

revealing details until all pseudo-code elements are removed.

To simplify reasoning about an Event-Basic program, we convert it into an

equivalent Lisp expression (including pseudo-code elements). Then, implementa-

tion a is said to be refined by b if for each element of a there is an equal or sub-typed

element from b at the same position

pref(a, b)
df
= (car(a) = car(b) ∨ car(b) impl car(a) ∧ pref(cdr(a), cdr(b))

and

pref(a, b) ⇒ a ⊑ b

Predicate car(b) impl car(a) states that program part car(b) is a valid imple-

mentation of another program part car(a). For example
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input a

b = b + a

may be refined into

INPUT a
b = b + a

assuming that we know somehow that INPUT a impl INPUT a holds. To sim-

plify the discussion, we do not give formal interpretation to the impl relation (this

would require use to formally define the language semantics first). Instead, we

record the cases of impl as assumptions which a modeller has to review, validate

and accept prior to applying the developed pattern. Each time a pseudo-code pro-

gram part is replaced with a concrete one, the corresponding assumption is added

as an annotation to the modelling pattern. For the example above, we would add

the following annotation

( impl (INPUT a) input a)

5.3.3 Modelling Pattern

The initial modelling pattern for constructing model implementations has the fol-

lowing definition

P0 = from true achieve defines(Impl)

which reads as ”take an arbitrary model and construct and an Event-Basic implemen-

tation”where the phrase ”Event-Basic implementation” is our informal interpretation

of goal EventBasicImpl. To formulate this goal precisely we investigate what does

it means to construct an Event-Basic implementation for an Event-B model. For

brevity, defines is omitted in goals and assumptions:

P0 = from true achieve Impl

An Event-B system is an endless loop executing model events [20, pages 3,4].

System operates as long as there is an enabled event and stops when no event can

be executed due to guard restrictions. An event to be executed is randomly selected

among the enabled events of a system. Further, event parameters are selected ran-

domly from the set of possible parameter values, as defined by an event guard. In
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Event-Basic the global system loop is implemented using the GOTO statement re-

turning control to the beginning of a program at the end of each execution cycle.

When no event is enabled, a program constructed with this method deadlocks by

endlessly executing the GOTO statement 3:

GotoImpl =









Init

: .start
Events

GOTO .start









Here Events is a program block implementing all the system events and Init is a

block initialising program variables. The above formulates one of the possible top-

level architectures for Event-Basic implementations. An important fact about this

particular architecture is that we make an assumption that an endless execution of

jump is a suitable implementation of deadlock. This architecture is a detalisation

of the Impl goal:

GotoImpl impl Impl

GotoImpl is a stronger goal, hence the initial pattern definition can changed to

P1 = from true achieve GotoImpl

P0 ⊑ P1

The definition of GotoImpl refers to the initialisation block Init and event block

Events. In other words, for the GotoImpl goal to be reached, the Init and Events

goals must be reached first. These two goals can be satisfied independentl using

the parallel composition. The new modelling patten is

P2 =

parallel
from true achieve Init

from true achieve Events

then
from Init ∧ Events achieve GotoImpl

P1 ⊑ P2

3Strictly speaking, this is another assumption that should be added to the modelling pattern as
annotation.
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To keep modelling pattern expressions legible, we focus on important sub-

patterns and refine them independently. These sub-patterns are the initialisation

pattern I0 = (true, Init) and the event block E0 = (true ,Events):

P2 = I0

E0 and then from Init ∧ Events achieve GotoImpl

Also, by Ei, i > 0we mean modelling pattern refining Ei−1 and, by transitivity,

E0. The same applies to notation Ii.

Two major parts of an implementation are the event selection block and event

body implementations. The event selection block inputs event parameters, evalu-

ates event guards and passes control to the currently enabled event. Event body

code updates program variables corresponding to the variables of the model:

EventsImpl =





EventSelection

GOTO start

EventBodies



 ,where EventsImpl impl Events

and

E1 =

parallel
from true achieve EventSelection

from true achieve EventBodies

then
from EventSelection ∧ EventBodies achieve EventsImpl

The event selection block passes control to an enabled event. This is imple-

mented as a sequential composition of selectors for all the individual system events:

EventSelectionImpl =





EventSel(e1)
. . .

EventSel(en)



 ∧ EventSelectionImpl impl EventSelection

The new modelling pattern is

E2 =

parallel
from true achieve EventSelectionImpl

from true achieve EventBodies

then
from EventSelection ∧ EventBodies achieve EventsImpl
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We know that the EventSelectionImpl goal can reached by producing selection

block for all the model events, except the initialisation event. This is expressed

with the following new pattern:

E3 =

parallel
parallel forall e where e ∈ evtn do from true achieve EventSel(e)
from true achieve EventBodies

then
from EventSelection ∧ EventBodies achieve EventsImpl

where set evtn = evt \ {ini} is the set of all model events excluding the initial-

isation event. The block of event bodies is made of implementations of individual

event bodies:

EventBodiesImpl =





EventBody(e1)
. . .

EventBody(en)



 ∧ EventBodiesImpl impl EventBodies

The goal EventBodies is reached by implementing the body of each event:

E4 =

parallel
parallel forall e where e ∈ evtn do from true achieve EventSel(e)
parallel forall e where e ∈ evtn do from true achieve EventBody(e)
then

from EventBodiesImpl achieve EventBodies

then
from EventSelection ∧ EventBodies achieve EventsImpl

Further we focus on the event body and event selector parts. Let

Sel0 = parallel forall e where evtn do from true achieve EventSel(e)

Bod0 = parallel forall e where evtn do from true achieve EventBody(e)

then the modelling pattern above becomes

E4 =

parallel
Sel0
Bod0 then from EventBodiesImpl achieve EventBodies

then
from EventSelection ∧ EventBodies achieve EventsImpl
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To implement event selector we first some values for the event parameters and

then evaluate the event guard to determine whether to execute event or not. A

more detailed version of an event selector is

EvtSelImpl(e) =

[

ParInput(e)
BlockSelection(e)

]

∧ EvtSelImpl impl EvtSel

The EventSelImpl goal is reached by first addressing goals ParamInput and then

BlockSelection. These goals, in their turn, must be reachable for any model:

from true achieve EventSel(e) ⊑ SL0(e)

where SL0(e) is defined as

SL0(e) =

parallel
from true achieve ParInput(e)
from true achieve BlockSelection(e)

then
from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

Sub-pattern Sel0 is now refined into

Sel1 = parallel forall e where evtn do from true achieve SL0(e)

For parameter initialisation we rely on the INPUT statement. The statement

reads values into variables from some external information source such as a file,

keyboard or another program. The statement is unable to control the range of in-

putted values so we rely on the event guard to filter out inappropriate parameters.

We hypothesize that INPUT is fair. That is, any given set of event parameters is

generated after sufficiently many attempts. In addition, we require that event pa-

rameters are defined on implementable domains.

ParInputImpl(e) =





INPUT pe
1

. . .
INPUT pe

m



 ∧ ParInputImpl impl ParInput

where {pe
1, ..., p

e
m} = e.arg. Implementable event parameter is characterised by

the following predicate
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ImDom(u)
df
= ∃m, t · (u ∈ t ∧ m : t  0..cmax)

where cmax > 0 is the maximum natural implementable value for a given tar-

get implementation platform (e.g. 232). An event can be transformed by the pattern

if all the event parameters are implementable

GdPar(e)
df
= ∀p · (p ∈ e.arg ⇒ ImDom(p))

And the new event selection sub-pattern is

SL1(e) =

parallel
parallel

from GdPar achieve ParInputImpl(e)
from ¬GdPar achieve ParInput(e)

from true achieve BlockSelection(e)
then

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

Note that though we are unable not address the case of non-implementable

parameters in Event-Basic we still have to include a modeling pattern to cover this

case. Pattern (¬GdPar,ParInput(e)) transforms non-implementable parameters into

a parameter initialisation block.

Control to an enabled event is passed using the IF statement. The statement

evaluates the guard of a corresponding event and, if the guard is true, jumps to

the block implementing the event body. An event guard, being an expression, is

always computable.

Body of an even is made of assignments to the variables updated in the event.

The block of assignments is precededwith a label that is used by the corresponding

IF statement.

BlockSelectionImpl(e) =
[

IF e.guard THEN GOTO e.nom
]

∧
BlockSelectionImpl impl BlockSelection

EventBodyImpl(e) =









: e.nom
Assignment(a1)

. . .
Assignment(ak)









∧ EventBodyImpl impl EventBody

Here {a1, ...ak} = e.act. Note that we have to assume that no model event can

have name .start as this name is reserved for the label pointing at the program be-

ginning. This is true at least for the current version of Event-B. In the event selection

sub-pattern the old BlockSelection goal is replaced with the BlockSelectionImpl goal
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SL2(e) =

parallel
parallel

from GdPar achieve ParInputImpl(e)
from ¬GdPar achieve ParInput(e)

from true achieve BlockSelectionImpl(e)
then

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

Pattern (true,EventBody(e)) is refined to show that an implementation of an

event body is made of individual assignments to variables

from true achieve EventBody(e) ⊑
from true achieve EventBodyImpl(e) ⊑

parallel forall a where a ∈ a.act do from true achieve Assignment(a)

Finally, a variable assignment is constructed for implementable event actions

AssignmentImpl(a) =
[

var(a) = a.exp
]

∧ AssignmentImpl impl Assignment

Here var(a) is defined by the relation {var(a)} = a.var. An action is imple-

mentable if it is a deterministic substitution assigning to a single variable (for sim-

plicity we choose not to deal with multiple variable substitution)

GdSubst(a)
df
= a.sty = (:=) ∧ a.sty = {v} ∧ ImDom(v)

Pattern (true,Assignment(e)) is refined as follows

from true achieve Assignment(a) ⊑
parallel

from GdSubst(a) achieve AssignmentImpl(a)
from ¬GdSubst(a) achieve Assignment(a)

where pattern (¬GdSubst(a),Assignment(a)) caters for non-deterministic actions

and multiple variable actions.

The initialisation event is a special model event which has no guard and which

sole purpose is to compute initial values for all the system variables. The body of

such event is no different from the body of a normal event, hence we can reuse the

modelling patterns constructed for normal model events. Let ini be the name of

the initialisation event. Then
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I1 =
from true achieve EventBody(ini) then

from EventBody(ini) achieve Init

I2 =
from true achieve EventBodyImpl(ini) then

from EventBody(ini) achieve Init

I3 =
parallel forall a where a ∈ ini .act do from true achieve Assignment(a) then

from EventBody(ini) achieve Init

I4 =

parallel forall a where a ∈ ini .act

parallel

from GdSubst(a) achieve AssignmentImpl(a)

from ¬GdSubst(a) achieve Assignment(a)

then

from EventBody(ini achieve Init

The complete modelling pattern is the result of the refinement of different sub-

patterns
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Pf =

parallel

parallel forall e where e ∈ evtn

parallel

from GdPar(e) achieve ParInputImpl(e)

from ¬GdPar(e) achieve ParInput(e)

from true achieve BlockSelectionImpl(e)

then

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

parallel forall e, a where e ∈ evtn ∧ a ∈ e.act

parallel

from GdSubst(a) achieve AssignmentImpl(a)

from ¬GdSubst(a) achieve Assignment(a)

then

from EventBodiesImpl achieve EventBodies

parallel forall a where a ∈ ini .act

parallel

from GdSubst(a) achieve AssignmentImpl(a)

from ¬GdSubst(a) achieve Assignment(a)

then

from EventBody(ini) achieve Init

then

from EventSelection ∧ EventBodies achieve EventsImpl

then

from Init ∧ Events achieve GotoImpl

The pattern can be simplified by noticing that



101














































parallel
parallel forall e, a where e ∈ evtn ∧ a ∈ e.act

parallel
from GdSubst(a) achieve AssignmentImpl(a)
from ¬GdSubst(a) achieve Assignment(a)

then
from EventBodiesImpl achieve EventBodies

parallel forall a where a ∈ ini .act
parallel

from GdSubst(a) achieve AssignmentImpl(a)
from ¬GdSubst(a) achieve Assignment(a)

then
from EventBody(ini) achieve Init
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parallel forall e, a where e ∈ evt ∧ a ∈ e.act
parallel

from GdSubst(a) achieve AssignmentImpl(a)
from ¬GdSubst(a) achieve Assignment(a)

then
from EventBodiesImpl achieve EventBodies

















And the overall pattern is

Pf =

parallel

parallel forall e where e ∈ evtn

parallel

from GdPar(e) achieve ParInputImpl(e)

from ¬GdPar(e) achieve ParInput(e)

from true achieve BlockSelectionImpl(e)

then

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

parallel forall e, a where e ∈ evt ∧ a ∈ e.act

parallel

from GdSubst(a) achieve AssignmentImpl(a)

from ¬GdSubst(a) achieve Assignment(a)

then

from EventBodiesImpl achieve EventBodies

then

from EventSelection ∧ EventBodies achieve EventsImpl

then

from Init ∧ Events achieve GotoImpl

The pattern relies on the following set of assumptions
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GotoImpl impl Impl

EventsImpl impl Events

EventSelectionImpl impl EventSelection

EventBodiesImpl impl EventBodies

EvtSelImpl impl EvtSel

ParInputImpl impl ParInput

BlockSelectionImpl impl BlockSelection

EventBodyImpl impl EventBody

AssignmentImpl impl Assignment

The assumptions express our informal notion of pseudo-code and program re-

finement. Further we automate the refinement steps described by the pattern with

a set of refinement patterns.

5.3.4 Refinement Patterns

The first pattern decorates all implementable actions with equivalent variable as-

signments. It implements the following modelling pattern

parallel forall e, a where e ∈ evt ∧ a ∈ e.act
from GdSubst(a) achieve AssignmentImpl(a)

pattern DoAssignment

forall e, a, va where
e ∈ evt ∧ a.var = {va} ∧ GdSubst(a)

do
annotate(a, assignment, Jva = a.expK)

end

To prove that the refinement pattern properly implements the original mod-

elling pattern, we have to demonstrate that the modelling pattern assumption im-

plies the refinement pattern requirements and models constructed by the refine-

ment pattern satisfy themodelling pattern goal. For the former the proof obligation

is

GdSubst(a) ⇒ in(DoAssignment)
⊢ GdSubst(a) ⇒ a.var = {va} ∧ GdSubst(a)

which is demonstrated by expanding GdSubst and noticing that v and va are the

same variable. The second proof obligation is
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out(DoAssignment) ⇒ ∀e, a · (e ∈ evt ∧ a ∈ e.act ⇒ AssignmentImpl(a))
⊢ ∀e, a, va · (a.var = {va} ∧ GdSubst(a) ⇒ defines(a, Jva = a.expK)) ⇒

∀e, a · (e ∈ evt ∧ a ∈ e.act ⇒ AssignmentImpl(a))
⊢ pref(AssignmentImpl(a),defines(a, Jva = a.expK))

⊢ pref(Jvar(a) = a.expK , Jva = a.expK)
⊢ pref(‘(= var(a) a.exp), ‘(= va a.exp))

⊢ {var(a)} = a.var ∧ a.var = {va} ∧ (var(a) = va) ∧ (a.exp = a.exp)
⊢ (va = va) ∧ (a.exp = a.exp)

Pattern from GdPar(e) achieve ParInputImpl(e) automates the parameter input

refinement step.

pattern DoParInput

with e, p where
e ∈ evtn ∧ p ∈ e.arg ∧ GdPar(e)

do
annotate(e, input, JINPUT pK)

end

Pattern from true achieve BlockSelectionImpl(e) constructs the refinement step

for the selection of a block implementing an event body.

pattern DoBlockSelection

with e where
e ∈ evtn

do
annotate(e, dispatcher, JIF e.grd THEN GOTO e.namK)

end

The two refinement patterns above are combined to implement the following

modelling pattern:

parallel forall e where e ∈ evtn
parallel

from GdPar(e) achieve ParInputImpl(e)
from true achieve BlockSelectionImpl(e)

The resulting refinement pattern is
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pattern Dispatcher

forall e, p where
e ∈ evtn ∧ p ∈ e.arg ∧ GdPar(e)

do
annotate(e, input, JINPUT pK)

end
forall e where

e ∈ evtn
do

annotate(e, dispatcher, JIF e.grd THEN GOTO e.namK)
end

Pattern

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

glues together parameter input and if statement code generated for all the model

events. The pattern constructs a new event and annotates it with event selection

code.

pattern DoEventSel

with n where
n ∈ Event∧

do
newevent(n)

forall e where
e ∈ evtn ∧ defines(e, dispatcher)

do
deannotate(e, dispatcher)

annotate(n, eventsselector,

s
e.input
e.dispatcher

{
)

end
end

Pattern from EventBodiesImpl achieve EventBodies assembles assignments im-

plementing individual event actions into blocks of assignments, one per each event.

pattern DoEvents

forall e, a where
e ∈ evt ∧ a ∈ ini .action ∧ defines(a, assignment)

do
deannotate(a, assignment)
annotate(e, assignblock, Je.assignmentK)

end
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Pattern from EventSelection ∧ EventBodies achieve EventsImpl combines imple-

mentation of event selection and event bodies.

pattern Assemble

forall e where
e ∈ evt n ∧ defines(e, eventsselector)

do
deannotate(e, eventsselector)
annotate(e, programbody,

q
e.eventsselector

y
)

annotate(e, programbody, JGOTO .startK)
forall ev where

ev ∈ Event ∧ defines(ev, assignblock)
do

deannotate(ev, assignblock)

annotate(e, programbody,

u
v

:e.nam
e.assignblock
GOTO .start

}
~)

end
end

Pattern from Init ∧ Events achieve GotoImpl produces the final program by

putting together initialisation and model implementation.

pattern Link

with e where
e ∈ evtn ∧ defines(e, programbody)

do
deannotate(e, programbody)
deannotate(ini , assignblock)

annotate(e, program,

u
v

ini .assignblock
: .start
e.programbody

}
~)

end

5.3.5 Automated Code Generator

Not all the steps of modelling pattern Pf are implemented with the refinement pat-

terns. There are two steps that cannot be easily translated into refinement patters:

the initialisation of parameters defined on non-implementable domains and the

translation of non-implementable actions into assignments. These cases must be

handled with manual refinement steps.

We can also choose to ignore such cases and only provide code generation for

a subset of input models accepted by Pi. For this we split the modelling pattern
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into two cases - one dealing with models that can be translated automatically and

the other addressing models that require manual refinement steps. Pattern Pf is

refined as follows

Pc =
choice

from ¬GdModel achieve ¬GdModel then Pf

from GdModel achieve GdModel then Pf

where assumption GdModel describes a model with implementable actions and

initialisable parameters

GdModel
df
= ∀e · (e ∈ evt ⇒ ∀a · (a ∈ e.act ⇒ GdSubst(a)) ∧ GdPar(e))

Writing out pattern ((¬GdModel,¬GdModel);Pf ), we get the following pattern

Pi =

parallel

parallel forall e where e ∈ evtn

parallel

from GdPar(e) achieve ParInputImpl(e)

from true achieve BlockSelectionImpl(e)

then

from ParInput(e) ∧ BlockSelection(e) achieve EventSelImpl(e)

parallel forall e, a where e ∈ evt ∧ a ∈ e.act

from GdSubst(a) achieve AssignmentImpl(a)

then

from EventBodiesImpl achieve EventBodies

then

from EventSelection ∧ EventBodies achieve EventsImpl

then

from Init ∧ Events achieve GotoImpl

Unlike the more general Pf pattern, Pi is completely automatic.

Pi =

parallel

Dispatcher then DoEventSel

parallel forall e, a where e ∈ evt ∧ a ∈ e.act do DoAssignment(a)

then

DoEvents

then

Assemble

then

Link
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5.3.6 Sample Development

In this section we take a simple Event-B model and refine it with the Pi modelling

pattern and the related refinement patterns. The result is a sucession of refinement

steps leading to a model annotated with an Event-Basic program.

The initial model is the Euclid’s algorithm for computing the greatest common

divisor of two natural numbers.

SYSTEM gcd

VARIABLES a, b

INVARIANT a ∈ N ∧ b ∈ N

INITIALISATION a := 0‖b := 0

EVENTS

input = ANY f, s WHERE

a + b = 0 ∧ f + s > 0

THEN

a := f

b := s

END

eucgcd = WHEN

b 6= 0

THEN

b := a mod b

a := b

END

The first refinement annotates event actions with the equivalent assignments in

the Event-Basic syntax. It is produced by applying patternDoAssignment.
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SYSTEM gcd1

REFINES gcd

. . .

INITIALISATION

a := 0

ANNOT assignment

a = 0

END

b := 0

ANNOT assignment

b = 0

END

EVENTS

input = ANY f, s WHERE

a + b = 0 ∧ f + s > 0

THEN

a := f

ANNOT assignment

a = f

END

b := s

ANNOT assignment

b = s

END

END

eucgcd = WHEN

b 6= 0

THEN

b := a mod b

ANNOT assignment

b = a mod b

END

a := b

ANNOT assignment

a = b

END

END
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The second refinement introduces code which chooses between program parts

implementing different model events. This refinement step is the result of the Dis-

patcher pattern.

SYSTEM gcd2

REFINES gcd1

. . .

EVENTS

input = ANY f, s WHERE a + b = 0 ∧ f + s > 0 THEN . . . END

ANNOT dispatcher

IF a + b = 0 ∧ f + s > 0 THEN GOTO input

END

ANNOT input

INPUT f

INPUT s

END

eucgcd = WHEN b 6= 0 THEN . . . END

ANNOT dispatcher

IF b 6= 0 THEN GOTO eucgcd

END

The third refinement is constructed with pattern DoEventSel by putting together

the event selection code for all the model events into a single block of code.

SYSTEM gcd3

REFINES gcd2

. . .

EVENTS

impl = SKIP

ANNOT eventsselector

INPUT f

INPUT s

IF a + b = 0 ∧ f + s > 0 THEN GOTO input

IF b 6= 0 THEN GOTO eucgcd

END

input = ANY f, s WHERE a + b = 0 ∧ f + s > 0 THEN . . . END

eucgcd = WHEN b 6= 0 THEN . . . END
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The fourth refinement combines assignments into code blocks corresponding to

event bodies. This step is produced with the DoEvents refinement pattern.

SYSTEM gcd4

REFINES gcd3

. . .

INITIALISATION

a := 0

b := 0

ANNOT assignblock

a = 0

b = 0

END

EVENTS

impl = SKIP

ANNOT eventsselector

. . .

END

input = ANY f, s WHERE

a + b = 0 ∧ f + s > 0

THEN

a := f

b := s

END

ANNOT assignblock

a = f

b = s

END

eucgcd = WHEN

b 6= 0

THEN

b := a mod b

a := b

END

ANNOT assignblock

b = a mod b

a = b

END
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The fifths refinement puts different program parts together and removes the in-

termediate annotations. The initialisation event is not affected.

SYSTEM gcd5

REFINES gcd4

. . .

INITIALISATION

a := 0

b := 0

ANNOT assignblock

a = 0

b = 0

END

EVENTS

impl = SKIP

ANNOT programbody

INPUT f

INPUT s

IF a + b = 0 ∧ f + s > 0 THEN GOTO input

IF b 6= 0 THEN GOTO eucgcd

GOTO .start: input

a = f

tb = s

GOTO .start

: eucgcd

b = a mod b

a = b

GOTO .start

END

input = ANY f, s WHERE a + b = 0 ∧ f + s > 0 THEN . . . END

eucgcd = WHEN b 6= 0 THEN . . . END

The last refinement step constructs the complete program by adding the initiali-

sation part.
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SYSTEM gcd6

REFINES gcd5

. . .

EVENTS

impl = SKIP

ANNOT program

a = 0

b = 0

: .start

INPUT f

INPUT s

IF a + b = 0 ∧ f + s > 0 THEN GOTO input

IF b 6= 0 THEN GOTO eucgcd

GOTO .start

: input

a = f

b = s

GOTO start

: eucgcd

b = a mod b

a = b

GOTO .start

END

. . .

5.4 Summary

Just like a complex software system is constructed with a help of software en-

gineered methods, a complex development should be constructed using a set of

domain-specific modelling tactics. Such tactics, called a modelling pattern, guides

a modeller by setting context-specific development goals. A goal is simply a model

class or a predicate describing model properties. An essential property of a mod-

elling pattern is that it is machine intepretable. We believe there is a substantial

benefit in having a tool to impose a modelling tactics over expecting a modeller to

follow informal guidelines.

In this chapter we have discussed a way to define modelling patterns using a

set of decomposition rules. The approach we presented was inspired by the goal-

driven requirements engineering [69, 94]. However, while requirements engineer-
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ing is concerned with the construction of a system, development of a modelling

pattern leads to a reusable modelling tactics.

We have demonstrated the applicability of the modelling pattern approach by

developing a fairly detailed modelling pattern describing a step-wise code genera-

tion method. The method advices a modeller on how to convert an Event-B model

into a program in the Event-Basic programming language.
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Chapter 6

Evaluation

6.1 Introduction

In this chapter we discuss several examples illustrating our approach. The first ex-

ample is the N-versioning refinement pattern which helps to correctly apply the

N-versioning mechanism in formal developments. The pattern is able to automati-

cally construct a refinement working with an arbitrary number of versions.

We continue with the discussion of parity check bit and hamming coding pat-

terns. These two patterns are related and we demonstrate how a simpler patterns

can be transformed into a more complex one.

All these three patterns were realised in the tool and are available from [63].

The next example discusses a simple refinement pattern for data refinement.

We discuss some limitations of our approach in relation to handling expression

rewriting.

We also present a procedure for constructing design component integrating

third-party, off-the-shelf software components into formal developments. This ex-

ample opens a number of questions for further research in this area.

The chapter is concluded with a summary of the tool for working with refine-

ment patterns in the RODIN Event-B Platform.

6.2 N-version Programming

N-Version Programming is a software engineering method for tolerating mistakes

in software implementation by using a number of functionally-equivalent ver-

sions developed independently according to common requirements or specifica-

tions [95]. The method is based on selecting the majority result from the outputs of

all the versions (Figure 6.1).
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Figure 6.1: The NVP pattern. Versions are modelled as new events and the adjudi-
cator refines the abstract behaviour event.

Our NVP pattern takes two arguments - an event b and number of blocks (i.e.

versions) n. The result of the pattern application is a set of n behaviour blocks and

the adjudicator which refines b.

pattern nvp

req typing b ∈ evt ∧ n ∈ N

req grtone n > 1

Variable st defines the major state evolution stage of a system produced by the

pattern: 0 is for collecting results from individual version, 1 for voting and 2 when

the final result is available. The pattern introduces a Boolean variable fl indicating

inability to find a majority.

variable st variable fl

invariant st ∈ 0..2 invariant fl ∈ B

action st := 0 action fl := FALSE

All the n versions produce their results independently and thus they must op-

erate on disjoint state spaces. A simple solution is to introduce a function from a

block id into a state associated with the block and let each block modify its own

state using the function. Such approach, however, results in several unattractive

properties of the pattern. Firstly, it introduces a variable shared by all the blocks -

the state function variable - and there is nothing preventing an unadvised designer

from accidentally mixing block states, both in a model and in implementation. It

also prohibits an automated refinement into an efficient, concurrent implementa-

tion. Secondly, and more importantly, a refinement produced by such pattern may

not easily legible. State of a block is likely to be a complex data type. Dealing

with such involved structures is much more than with individual variables: proof

obligations and pattern rules become rather bulky. Hence, we need to introduce
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a separate set of variables for each behaviour block. This complicates the pattern

definition and makes the pattern correctness proofs slightly more difficult but the

result is a refinement pattern which easy to use. After applying it, a designer gets n

new events which are similar to the abstract event to which the refinement pattern

is applied.

Each behaviour block has a Boolean variable attached indicating that the block

has finished and the voter event can use the current result. This variable can also

be used to disable permanently faulty blocks, although we do not do this in the

current version to keep the pattern general.

The body of a behaviour block is almost an exact copy of event b with an addi-

tion of the actions assigning values to copies of the original abstract variables. Each

behaviour block has its own set of copied variables.

forall i where
i ∈ 1..n

do
variable rd

label rd i
invariant rd ∈ B

action rd := FALSE

event alt
label alt i
guard st = 0
guard rd = FALSE

forall a where
a ∈ b.actions

do
variable cp
label a.variable.name i
invariant cp ∈ a.variable.type
action cp a.variable.init.style a.variable.init.expr
action cp a.stylea.expr

end
action rd := TRUE

end

When the results from all the blocks are available, the voter can compute the fi-

nal result. To produce a scalable solution we have to aggregate individual variables

used in different blocks into a single variable, which is a function from a block id

into the block state. We do not expect designers to change this part of the specifica-

tion thus we are free to use the most suitable approach here.
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variable rs for nvp
label b result

invariant rs : N →֒ ("a∈b.actions a.variable.type)
action rs := ⊘

where ("a∈b.actions a.variable.type) is the type of a tuple (v1, v2, . . . vn) used to

store all the variable assigned in event b.

The following event constructs the function of results from the result of the

individual blocks

event accum
label b collect

guard st = 0
guard

∧

i∈1..n rd i = TRUE

action rs :=
⋃

i∈1..n{i 7→ (7→a∈b.actions var i)}
action st := 1

where var i = a.variable.name i.

The adjudicator event refines abstract event b. The pattern adds new guards,

parameters and actions and also changes the abstract action. The parameters are

used as local variables which help to select the final majority result. The event

guard describes a simple voting protocol and there is an action indicating if the

winning result has got the majority of votes.

Parameter k is the index of the winning result, parameters a.variable.name t are

used to extract solution from function rs.

variable k for b
invariant k ∈ dom(rs)

forall a where
a ∈ b.actions

do

variable t for b
a.variable.name t

invariant t ∈ a.variable.type
end

The first guard makes the event enabled at stage 1, the next one selects k such

that k is an index of a winning solution (k is the index of a winning solution if

for all j different from k the number of indices pointing at the same solution as k

is greater or equal to the number of solutions pointed to by j) and the last guard

binds parameters to the values of the solution.
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guard st = 1 for b
guard ∀j · (j ∈ dom(rs) ∧ j 6= k ⇒

card(rs−1[{rs(k)}]) ≥ card(rs−1[{rs(j)}])) for b
guard (7→a∈b.actions a.variable.name t) = rs(k) for b

In the event body an abstract action is replaced with an action copying values

from the parameters used to extract the solution. The stage variable is advanced to

indicate that the final result is available and for all the blocks the status variable is

to false to prepare for a possible next iteration.

forall a where
a ∈ b.actions

do

action a.variable.name := a.variable.name t for b
end
action st := 2 for b
forall i where

i ∈ 1..n
do

action rd i := FALSE for b
end
action fl := bool(card(rs−1[{rs(k)}]) < (n/2 + 1)) for b

Here fl is a Boolean flag indicating whether the solution has got the majority of

votes or not.

6.2.1 NVP Pattern Correctness

Most proof obligations for this pattern are trivially discharged and the techniques

employed are the same as those used for the Recovery Block pattern.

The only non-trivial part is to demonstrate that the voting event refines the ab-

stract behaviour event. In otherwords, a solution selected by the voting event must

satisfy the specification of the abstract event b. However, since the pattern does not

itself produce diverse version blocks and further refinements of version blocks sat-

isfy the abstract event b specification by definition of refinement, the voting mech-

anism has no effect on the selection of the result. It is enough to demonstrate that

the values carried through the rs function are the results collected from version

blocks. It is obviously so, since the function is only assigned in the event accum,

which copies version results.
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6.3 Parity and Hamming Patterns

In this section we consider a design of a distributed system with a large number

of not completely reliable interconnections. We produce a reusable pattern that

uses the parity check bit algorithm to detect possible transmission errors. Then

we review the solution to produce a refined version of the pattern implementing a

single error correcting algorithm. With this example we demonstrate that the pat-

tern approach can comfortably handle complex design solutions and the patterns

produced during the development are valuable and reusable.

6.3.1 Abstract Model

In its simplest, a communication loop is modelled by allocating a shared variable

for a communication channel. To indicate that a channel has data to be read, the

sender raises a ready flag. In its turn, the receiver, after reading from the channel,

resets the flag to allow the sender to send new data. The process is repeated until

the sender does not have any data to send or the receiver does not want to read

the incoming data anymore. All this functionality is described by the following

abstract model:

SYSTEM SendRecv

VARIABLES

ch, outv, rd

INVARIANT

ch ∈ 0 .. 15

outv ∈ 0 .. 15

rd ∈ B

rd = false ⇒ outv = ch

INITIALISATION

ch := 0

outv := 0

rd := false

send = ANY v WHERE

rd = false ∧ v ∈ 0 .. 15

THEN

ch := v

rd := true

END

receive = WHEN

rd = true

THEN

outv := ch

rd := false

END

We assume that themodel is a part of a larger model and there can be additional

conditions for the event guards and a more interesting way of generating output

data on the sender side. Variable rd is channel status flag. It is set to truth when

the channel contains fresh data. The outv is used to here to indicate that the value

of the channel variable ch is accessed by the receiver.
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6.3.2 Parity Check Pattern

To copewith unreliable communication channels we add redundant information to

each communication message. The simplest form of this approach is to add a parity

bit that is set in such a way that the sum of all bits is even (or odd, but this must be

agreed upon beforehand). Single parity bit can detect single error in transmission

(Figure 6.2). It is likely to give false negatives if more than one error occurs.

Figure 6.2: Communication loop with error detection.

The refinement pattern introduces three new variables: phase variable, control-

ling the order of the new events, error flag raised when parity check fails at the

receiver side and the new representation of the abstract channel variable.

The table below describes how the state of the phase variables translates into

system stages. In addition, the error flag variable selects between normal receiver

event and an error handler. The tables below illustrate themajor stages of the parity

check bit algorithm and demonstrate the binary encoding with the parity check bit.

send ch ph = 0

code ch ph = 1

noise ch ph = 2

decode ch ph = 3

receive or ch error ch ph = 4

decimal binary with parity bit

0 0 0 0 0 0

1 1 0 0 0 1

2 0 1 0 0 1

3 1 1 0 0 0

15 1 1 1 1 0

The new channel variable is a bit-wise representation of the abstract channel.

It is defined in such a way that it has enough bits to encode any value that can be

stored by the abstract channel and also the parity check bit. The pattern has three

parameters - abstract channel variable, abstract sender and abstract receiver:

pattern parity

req typing ch ∈ var ∧ snd ∈ evt ∧ rcv ∈ evt
req channel ch.typ ⊆ finite(Z) ∧ ch.typ 6= ⊘
req attr ch.class = channel ∧ snd.sender = ch ∧ rcv.receiver = ch

The req typing requirement types the parameters, in requirement req channel

we state that a channel variable has an integer type and can accept at least one
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value. Finally, we use model annotations to make sure that the selected events and

the channel variable have the same interpretation in the model and in the pattern.

To simplify pattern definition, several constants are defined. Constantmxx is a

zero-adjusted maximum integer number that can be placed in the abstract channel,

zdj is the low boundary for the channel type, it is used to convert zero-adjusted

binary encoding back into decimal integer. The minimal number of bits required

to encode a number is calculated as lg(n) + 1, this value is stored in constant dbt.

Finally, nch is the number of check bits, always 1 for the parity bit pattern, and tbt

is the total number of bits:

mxx = max(ch.type) − min(ch.type)

zdj = min(ch.type)

dbt = ⌊lg(mxx)⌋ + 1

nch = 1

tbt = dbt + nch

The channel variable is a sequence of bits. It is initialised to be all zeroes which

corresponds to zero in the decimal integer notation. Here we rely on knowledge

that the abstract model also uses zero to initialise the channel variable:

variable b
invariant b ∈ 1..tbt →{0, 1}
action b := 1..tbt × {0}

Phase and error flags are new model variables. The ph variable represents the

stages of the algorithm:

variable ph
invariant ph ∈ 0..4
action ph := 0

The err variable is a flag indicating a failed transmission:

variable err
invariant err ∈ B

action err := false

Before we start defining the main part of the pattern, it is convenient to for-

mulate the desired pattern properties. In this case we state that just before a bit is

flipped during transmission, the new channel variable is exactly the same as the old
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one. By this we check that the encoding pattern is correct. The other property states

that if the parity check was successful, then the received value is the one that was

sent. We assume here that the hamming distance between channel values before

bit-flip and after is at most one, i.e. at most one bit is changed:

invariant icod
expression ph = 2 ⇒ ch = zdj +

∑

i∈1..dbt 2i−1 ∗ b(i)
invariant idec

expression ph = 4 ∧ err = false ⇒ ch = zdj +
∑

i∈1..dbt 2i−1 ∗ b(i)

The coding event computes a binary representation of a value to be sent through

the channel and adds a parity check bit as well. This is done by declaring event

parameters, one per each bit, in the concrete channel variable and stating that they

are such that when converted into decimal form yield the value of the abstract

channel. The parity bit value is the sum of all bits modulo 2:

event code
parami∈1..dbtbiti ∈ {0, 1}
param p ∈ {0, 1}
guard ph = 1
guard ch = zdj +

∑

i∈1..dbt 2i−1 ∗ biti
guard p =

∑

i∈1..dbt biti mod 2
action b :=

⋃

i∈1..dbt{i 7→ biti}∪
{dbt + 1 7→ p}

action ph := 2

The decoding event checks that the transmitted value is correct and sets the

error flag accordingly:

event decode
param par ∈ {0, 1}
guard ph = 3
guard par =

∑

i∈1..tbt b(i) mod 2
action err := par 6= 0
action ph := 4

The noise event random a bit of value in the communication channel. In some

cases this changes the channel value, in other it does not:
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event noise
param bit ∈ 1..tbt
param val ∈ {0, 1}
guard ph = 2
action b := b ⊳− {bit 7→ val}
action ph := 3

The error event refines the abstract receiver event by extending it with the new

guards and action. An error handling mechanism can be introduced by refining

this event:

event error
refines rcv
variable rcv.variables
guard ph = 4
guard err = true

guard rcv.guard
action ph := 0
action rcv.actions

The pattern adds new guards and actions to the sender and receiver events to

enforce the ordering of new events. The sender event initiates the chain of events.

This event is activated at the phase zero and passes control to the next event by

incrementing the phase variable:

guard ph = 0 for snd
action ph := 1 for snd

The receiver event concludes the event chain. It is responsible for passing con-

trol back to the sender event:

guard ph = 4 for rcv
guard err = false for rcv
action ph := 0 for rcv

Most correctness conditions for the pattern are very simple. The only really non-

trivial condition requests us to show that when the parity check claims undistorted

transmission the decoded value is indeed the original value sent by the sender:

par = 0 ∧ par =
∑

i∈1..tbt b(i) mod 2 ⇒ ch = zdj +
∑

i∈1..dbt 2i−1 ∗ b(i)
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The core of the proof is the deduction of the fact that the hamming distance

between channel values before and after the noise event is at most one. This can

be done by analysing the specification of the noise event. Also, it is not hard to see

that the pattern is monotonic as it only adds new elements and only refers to the

abstract elements in the invariant.

An example of a model produced by this pattern can be found in Appendix C.5.

6.3.3 Hamming Coding Pattern

In this section we discuss a refinement of the parity pattern which automatically

corrects transmission errors.

Since our noise event flips only one bit, we can do much better than simply

adding a parity check. A single error correcting code, such as the Hamming code-

word [96], can tolerate change in a single bit of a transmitted word by adding sev-

eral check bits (Figure 6.3). The general idea behind the Hamming coding algo-

rithm is placing enough check bits in such manner that it is possible to find which

bit was flipped. The table below contains examples of hamming code words with

the check bits underlined.

decimal hamming coding (7, 4)

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

2 1 0 0 1 1 0 0

3 1 1 1 1 1 0 0

15 1 1 1 1 1 1 1

Figure 6.3: Communication loop with error correction.

There must be enough check bits to encode position of any data bit. Hence, for

a channel transmitting a value made of hdbt bits, the required number of check bits

is

hnch = ⌊lg(hdbt)⌋ + 1

For other constants, we reuse the definitions from the parity check bit pattern,

adding prefix h to the name of each constant. To simplify further discussion we
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introduce two helper functions. The first one maps a serial position of data bit code

into its position in a hamming codeword:

dsq ∈ 1..tbt ։ 1..tbt \ {2k−1 | k ∈ 1..nch}
∀i · (i ∈ 2..tbt ⇒ dsq(i) > dsq(i − 1))

The few initial values of dsq are dsq(1) = 3; dsq(2) = 5; dsq(3) = 6; dsq(4) =

7; dsq(5) = 9. Hence, the first data bit can be found in position 3, the second in

position 5 and so on. The second constant maps a serial of a check bit code into a

set of codeword bits it checks (check bit checks other check bits):

cst ∈ 1..nch ։ P(1..tbt)
cst = {{i 7→ s} | i ∈ 1..nch ∧ s = {k | k ∈ i + 1...tbt ∧ k ⊗ 2i−1 6= 0}}

The sample values of the function are cst(1) = 〈1, 3, 5, 7, 9, 11, 13, 15, 17 . . . 〉,

cst(2) = 〈2, 3, 6, 7, 10, 11, 14, 15 . . . 〉, cst(3) = 〈4, 5, 6, 7, 12, 13, 14, 15 . . . 〉.

The essential property of a hamming codeword is that if parity check fails for

some check bit then number
∑

i∈1..nch 2i−1 ∗ ((
∑

j∈cst(i) bj) mod 2) (which is always

non-zero when a check fails) indicates the bit position which was flipped in transi-

tion. Here (
∑

j∈cst(i) bj) mod 2 is checksum for parity bit i and the outer summation

converts from binary representation of a bit position encoded in values of parity

checksums. This works due to the way check bits are arranged in a codeword. The

set cst(n) is made of numbers that binary representation contains 1 in n-th posi-

tion. If a bit from set cst(k) is flipped then k-th checksum fails indicating that one

of these bits is bad. But other checksums will fail too, and the intersection of all

such sets would result in exactly one number which evaluates to the position of the

bit which was changed. We calculate the intersection with the outer summation in

the first formula.

The new pattern has the same set of parameters. In the pattern declaration we

also state the pattern refines pattern parity:

pattern hamming

req typing hch ∈ V ar ∧ hsnd ∈ evt ∧ hrcv ∈ evt
req channel hch.typ ⊆ finite(Z) ∧ hch.typ 6= ⊘
req attr hch.class = channel ∧ hsnd.sender = hch ∧ hrcv.receiver = hch

The gluing invariants, needed to demonstrate the refinement relation between

the patterns, link variables of the hamming pattern with variables the parity pat-

tern:
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hph = ph
hch = ch
ph = 2 =⇒ zdj +

∑

i∈1..dbt 2i−1 ∗ b(i) =
hzdj +

∑

i∈1..hdbt 2i−1 ∗ hb(dsq(i))
ph = 4 ∧ err = false =⇒ zdj +

∑

i∈1..dbt 2i−1 ∗ b(i) =
hzdj +

∑

i∈1..hdbt 2i−1 ∗ b(dsq(i))

The first invariant says that hp and hph are the same variables, the second

equates the channel variables. The coding invariant states how the states of the

patterns are linked after the code event. The decoding event relates states after error

detection and error correction. It says that if there were no errors detected in the

parity pattern the result is the same as in the hamming. The invariant underlines

the value of the new pattern - it always produces a correct result while the parity

pattern only occasionally.

The invariants are similar to those of the parity pattern. After decoding, the

data bits of a codeword must be the same as the value of the abstract channel.

After decoding, the value must be same as in the perfect abstract channel. The

major difference here is that we are able to state that a transmission error can never

occur. Strictly speaking, these invariants are not needed to demonstrate the pattern

correctness as they can be deduced from the gluing invariants:

invariant icod
expression ph = 2 ⇒ ch = zdj +

∑

i∈1..dbt 2i−1 ∗ b(dsq(i))
invariant idec

expression ph = 4 ⇒ ch = zdj +
∑

i∈1..dbt 2i−1 ∗ b(dsq(i))

The coding event computes a binary representation of a value sent over the

channel and also computes the values of check bits. The result is a channel value

which is a hamming code word for a given input value:

event code
guard ph = 1
parami∈ran(dsq) biti ∈ {0, 1}

guard ch = zdj +
∑

i∈1..dbt 2i−1 ∗ bitdsq(i)

action b :=
⋃

i∈1..dbt{dsq(i) 7→ bitdsq(i)} ∪
⋃

i∈1..nch{2
i−1 7→

∑

j∈cst(i) bitj}

action ph := 2

The decoding event models the error correction part of the hamming coding

algorithm. This event detects whether any parity check bit has failed and recon-

structs the original codeword:
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event decode
guard ph = 3
variable i∈1..nch pari ∈ {0, 1}
guard i∈1..nch pari =

∑

j∈cst(i) bj mod 2

guard i∈1..nch pari 6= 0
action b := b ⊳− {

∑

i∈1..nch 2i−1 ∗ pari 7→ (b(
∑

i∈1..nch 2i−1 ∗ pari) + 1) mod 2}
action ph := 4

The pass-through event handles the case when correction is needed. It advances

the phase variable without changing the channel variable:

event passthru
guard ph = 3
variable i∈1..nchpari ∈ {0, 1}
guard i∈1..nchpari =

∑

j∈cst(i) bj mod 2

guard i∈1..nchpari = 0
action ph := 4

The refinement of the abstract sender and receiver events are exactly the same

as in the parity pattern.

The pattern has one non-trivial proof obligation. It is needed to show that after

decoding the resulting value is exactly the same as the value sent initially by the

sender. The proof essentially requires a careful analysis of the whole algorithm. For

this we have relied on the original algorithm description [96]. It is out of question

that such can be automatically handled by the theorem prover. We still believe that

construction of such proof using Event-B interactive prover might be possible but

is bound to be very difficult.

A sample for this pattern is presented in Appendix C.6.

6.4 Characteristic Function Pattern

Transformation of an abstract variable type into a more efficient concrete type is an

important case of data refinement. This step is almost universally required when

an abstract model is detalised to produce an implementation. In this section we

consider one example of such refinement where an abstract set variable is trans-

formed into a characteristic function variable, that is, instead of an abstract vari-

able set ∈ P(X), a refined model uses new concrete chf : X 7→ B and the gluing

invariant is set = chf−1[{true}].

This example also serves as a demonstration of the limitations of the pattern

language. While other examples were mainly concerned with incremental, struc-

tural changes, this one requires rather fine level of changes in the existing model
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elements. The main difficulty is in developing patterns transforming expressions

to realise a data refinement.

A refinement pattern implementing this data refinement step accepts a model

with a set variable and transforms it into a characteristic function, rewriting vari-

ous model elements. Model invariants and event guards are refined by replacing

all occurences of the abstract set variable with the expression relating to the char-

acteristic function

I(set, v) = I(chf, v)[chf−1[{true}]/set]

Deterministic actions are refined by first eliminating the abstract set variable

and then constructing a characteristic function by mapping the result (new set ele-

ments) into truth

set := F (set, v)
set := (F (chf, v)[chf−1[{true}]/set]) × {true}

A refinement rule constructing this transformation by substituting variable set

in the list of assigned variables with chf and rewriting the expression looks like

this:

newactionvar−1(a, set)
newactionvar(a, chf)
newactionexp(a, (a.exp[chf−1[{true}]/set]) × {true})

Non-deterministic ”belongs to” actions are refined in a similar way: a character-

istic function is selected among the elements of the cartesian product of the original

set and the power set of true

set :∈ F (set, v)
chf :∈ (F (chf, v)[chf−1[{true}]/set]) × P({true})

The corresponding pattern rule is

newactionvar−1(a, set)
newactionvar(a, chf)
newactionexp(a, (a.exp[chf−1[{true}]/set]) × P({true}))
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Finally, the general form of a non-deterministic action is refined by simply

rewriting the constraining predicate

set : |F (set, v)
chf : |F (chf, v)[chf−1[{true}]/set]

The same approach is used to refine non-deterministic actions constraining

multiple variables

set, u : |F (set, v, u)
chf, u : |F (chf, v, u)[chf−1[{true}]/set]

And the pattern rule for these two cases is

newactionvar−1(a, set)
newactionvar(a, chf)
newactionexp(a, a.exp[chf−1[{true}]/set]))

Now we can formulate a general rule rewriting a model action:

act(a, s, c) =























































































when
s ∈ a.var

do
newactionvar−1(a, s)

when
a.sty = (:=)

do
newactionvar(a, c)
newactionexp(a, (a.exp[c−1[{true}]/s]) × {true})

end
when

a.sty = (:∈)
do

newactionvar(a, c)
newactionexp(a, (a.exp[c−1[{true}]/s]) × P({true}))

end
when

a.sty = (: |)
do

newactionvar(a, c)
newactionexp(a, a.exp[c−1[{true}]/s]))

end
end
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This rule can applied to an action assigning to the abstract variable set. Nowwe

are able to formulate the complete refinement pattern. The pattern accepts a single

parameter which is a set variable

pattern set2chf

req setvar set ∈ var ∧ isset(set)

The set variable is not used in the concrete model and is removed from the list

of the system variables:

addvar−1(set)

New variable chf is defined as a function mapping elements of the abstract set

variable into booleans:

addvar(chf)
newvartype(chf, (basetype(set) → B))
newvaraction(v, set.act) act(set.act, set, chf)

The gluing invariant links the concrete chf variable with the abstract set vari-

able:

invariant set = chf−1[{true}]

Model invariants are rewritten by replacing set with chf−1[{true}]. For this

we first remove an abstract invariant and add the updated version of the same

invariant

forall i where
i ∈ inv

do
addinv−1(i)

addinv(e, i[chf−1[{true}]/set])
end

To refinemodel events, we have to rewrite event guards and refine the event ac-

tions. It is convenient to split this task into three sub-rules: rewriting event guards,

rewriting expressions of actions not assigning to set and rewriting actions updating

set
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forall e where
e ∈ evt

do
grd(e)expr(e)
subs(e)

end

Event guard is replaced with a new version which uses chf−1[{true}] every-

where instead of set:

grd(e) =

















forall g where
g ∈ e.grd

do
addguard−1(e, g)

addguard(e, g[chf−1[{true}]/set])
end

















Action expressions are treated in the same manner:

expr(e) =













forall a where
a ∈ e.act ∧ a.var 6= {set}

do
newactionexp(a, a.exp[chf−1[{true}]/set])

end













Finally, all the updates to the set variable are transformed using the act action

rewrite rule defined above:

subs(e) =













forall a where
a ∈ e.act ∧ a.var = {set}

do
act(a, set, chf)

end













The pattern is demonstrated on the following simple model. The model defines

a single variable, which is a set of natural numbers, and two events, each trans-

forming the variable in different ways

SYSTEM set

VARIABLES set

INVARIANT set ⊆ N

INITIALISATION set := ∅

EVENTS

add = ANY e WHERE e ∈ N \ set THEN set := set ∪ {e} END

del = ANY e WHERE e ∈ set THEN set := set \ {e} END
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Applying our refinement pattern we obtain the following refinement of the set

model

SYSTEM chf

REFINES set

VARIABLES chf

INVARIANT

chf : N 7→ B

set = chf−1[{true}]

INITIALISATION chf := ∅

EVENTS

add = ANY e WHERE

e ∈ N \ chf−1[{true}]

THEN

chf := (chf−1[{true}] ∪ {e}) × {true}

END

del = ANY e WHERE

e ∈ chf−1[{true}]

THEN

chf := (chf−1[{true}] \ {e}) × {true}

END

The result, however, is not completely satisfactory. Although technically the

use of the set is now avoided and the abstract set is described using a characteristic

function, the refined model provides only some of the intended benefits of the data

refinement and is far from being legible or efficient. Ideally, a pattern of this kind

should be able to construct something like the model below:

SYSTEM chf

REFINES set

VARIABLES chf

INVARIANT

chf : N 7→ B

set = chf−1[{true}]

INITIALISATION chf := ∅

EVENTS

add = ANY e WHERE chf(e) = false THEN chf := chf ⊳− {e 7→ true} END

del = ANY e WHERE chf(e) = true THEN chf := chf ⊳− {e 7→ false} END

This is not possible with the current pattern language since the means for trans-

forming expression are very rudimentary and there is no template matching mech-
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anism for expressions. Besides, we would have to define a much more elaborate

pattern caring for various use cases a set variable in different contexts. Such pat-

tern should be able to recognise the role of a set variable and select the most ap-

propriate characteristic function equivalent, e.g. chf(e) = true for e ∈ set, but

chf−1[{true}] ∪ a for set ∪ a. In additional, the same abstract expression should be

rewritten in different ways to provide the most efficient implementation for differ-

ent prospective implementation languages. To implement such transformation we

plan to extend the pattern language with a flexible rewriting mechanism similar to

those used in theorem provers.

6.5 Design Component and Software Components

This is a small example illustrating how off-the-shelf components can be integrated

into a formal development using the design component concept. We assume that

a software component is constructed formally and intermediate development re-

sults are available. We require that a component is constructed in a special manner.

At some point of development, the model of the component must specifies an ab-

straction of a component environment togetherwith an abstraction of a component

behaviour. At this stage, the model does not yet differentiate between the func-

tionality of environment and the services provided by the component. We call this

model an integration point and denote the class of such models as integpnt (the

model class here is used in a sense of input/output model class of transformation;

each component development would use its own definition of integpnt).

The development proceeds further until a model clearly differentiates between

the environment and the component parts. We denote correspondingmodel classes

as env and component and the model class for the combination of these two is env ∗

component. Here the ∗ operator requires that env and component hold at the same

time but are defined on disjoint model parts. In other words, the environment and

component parts of a model may not share model elements (the complete model,

however, may contain additional elements used to glue these two parts).

After this point of a development, we assume that an environment specification

and theway the component interacts with it are fixed and only the component func-

tionality is refined further. This process stopswhen a component implementation is

constructed. The final model of a component is referred to as cmp implementation.

The development tactics we have just described corresponds to a modelling

pattern of the following form
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from true achieve integpnt
then from integpnt achieve env ∗ component

then maintain env and from component achieve cmp implementation

Each component development defines different assumptions and goals al-

though the overall pattern structure remains the same. A development based on

this modelling pattern has the following structure

mk integpnt
then mk interface

then mk implementation

where refinement patternmk integpnt is an implementation of from true achieve integpnt,

and mk interface and mkimplementation are refinement patterns implementing

the corresponding parts of the modelling pattern. To integrate a component into

a development, a modeller uses the following design component

from true achieve integpnt
then mk interface

then maintain component
then mk implementation

The from true achieve integpnt states the integration requirements of a pat-

tern: in order to use a pattern the development must arrive to a model satisfying

the integpnt predicate. Once this is accomplished, the mk interface refinement

pattern is used to construct a refinement based on the env ∗ component. Then a

modeller is free do some arbitrary refinements steps (based on other modelling

patterns, of course). It is up to the modeller to decide when to stop and use the

mk implementation pattern incorporating the complete final model of the compo-

nent into the development.

We can also use a plain refinement chain as a basis for an integration design

component. A result of a component development is a refinement chain of the

following form

s0 ⊑ . . . ⊑ sn ⊑ . . . ⊑ si
1; s

c
1 ⊑ . . . ⊑ si

1; s
c
k

where a; b denotes a model composed of two parts and the following properties

hold
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integpnt(sn)∧
env(si

1) ∗ component(sc
1)∧

cmp implementation(sc
k)

Now, the design component is based on the calculation of model differences,

although the general structure remains the same:

from true achieve integpnt
then ∆(sn, si

1; s
c
1)

then maintain component
then ∆(s1; s

c
k)

To integrate a third-party component into a development, a modeller activates

the relatedmodelling pattern. The first part of such pattern - from true achieve integpnt

- requires the modeller to identify a component integration point by making the

development compatible with the integpnt model class. Once this is done, a full

component interface and a detalised version of a component environment are au-

tomatically added to the model with the help of refinement pattern mk interface

(or model difference ∆(sn, si
1; s

c
1)). After this point, a modeller may not change

the specification of the component interface. When the development is fin-

ished, a complete specification of a component is added using refinement pattern

mk implementation (or model difference ∆(s1; s
c
k)). This step constructs either a

complete specification of a component (i.e., its implementation) or a more detalised

version of the component interface needed to integrate the development with a

closed-source or a remote (e.g., web-service based) component implementation.

6.6 Tool Support

Tool support is central to the pattern mechanism. Automatic instantiation of pat-

tern is not only saving a modeller’s time but also ensures that no errors are intro-

duced and the pattern rules are strictly followed. An important effect of the tool

support is that a modeller does not have to know how a pattern works, only what

it does. A modeller browses through a list of available patterns, chooses a suitable

pattern, applies it and reviews the result. The proof-of-the-concept implementation

was constructed to validate the pattern mechanism.

The tool, called finer was realised as a plugin to the RODIN Event-B platform

[97]). The plugin implements a subset of the pattern language and relies on the

XML notation for pattern input and editing.
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Figure 6.4: The Event-B refinement patterns tool architecture.

6.6.1 The Tool Architecture

The overall tool architecture is presented in Figure 6.4. The core of the tool is the

pattern instantiation engine. The engine uses an input model, imported from the

Platform database, and a pattern, from the pattern library, to produce a model re-

finement. The engine implements only the core pattern language: the sequential

and parallel composition, and forall construct. Method-specific model transforma-

tions (in this case, Event-B model transformations) are imported from the model

transformation library.

The process of a pattern instantiation is controlled by the pattern instantiation

wizard. The wizard is an interactive tool which inputs pattern configuration from a

user. It validates user input and provides hints on selecting configuration values.

Pattern configuration is constructed in a succession of steps: the values entered at

a previous step influence the restrictions imposed on the values of a current step

configuration.

The tool provides basic means for pattern creation and instantiation. The main

functionality of the tool is construction of a model refinement by instantiating one

of the available refinement patterns. The instantiation process is made of a number

of steps, as show in Figure 6.5.

First, a tool user select a model to refine from the project explorer view. The

pop-up menu shows the refinement wizard option.

The plugin builds a list of patterns applicable to the current model. This is done

by evaluating pattern preconditions on the model. The result is used to query a

user for a desired pattern (see screen-shots in Figure 6.6).
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Figure 6.5: Pattern instantiation in the finer tool.

Once a pattern is selected, the model construction process starts. The first step

is to make a copy of a model to be transformed. Later this copy is used to produce

the refined model.

The selected pattern is applied to the model by evaluating the pattern rule.

When a user’s input is need, the wizard requests an input and then supplies the

inputted values to the pattern engine code.

The result of a pattern evaluation is a list of instantiated model transformation

rules. These rules are presented to a modeller for a review.

The last step is to apply all themodel transformations rules, one after another, to

the abstract model. The resulting model is saved and added to the parent Event-B

project.

The result of a successful pattern instantiation is a new model and, possibly, a

set of instantiation proof obligations - additional conditions that must be demon-

strated each time a pattern is applied. The output model is added to a current de-

velopment as a refinement of the inputmodel and is saved in the Platformdatabase.

The instantiation proof obligations are saved in an Event-B context file. The RODIN

platform builder automatically validates and passes them to the Platform prover.

6.6.2 Supported Pattern Language

The tool does not implement the full pattern language. The main restriction is a

simplified form of the forall statement which supports only one free variable of a

predefined type and no parameters.
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Figure 6.6: Step 3 (pattern selection) and step 5 (parameter input during pattern
instantiation).

There are several forms of the forall-like statements for events, variables, actions,

guards and so on. The corresponding XML notation is given below

〈event id=’e’〉
r(e)

〈/event〉
forall e where e ∈ evt do r(e) end

〈variable id=’v’〉
r(v)

〈/variable〉
forall v where v ∈ var do r(v) end

. . .

Another class of statements implements the with statement, also with a single

variable. This result in a query to a modeller to select a model element from a list

of possible elements:

〈select:event id=’e’〉
r(e)

〈/select:event〉
with e where e ∈ evt do r(e) end

〈select:variable id=’v’〉
r(v)

〈/select:variable〉
with v where v ∈ var do r(v) end

. . .

Finally, the tool language defines rules for nearly all the model transformations

defined for Event-B. Some examples are given below:
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〈define:event id=’e’ name=’n’〉
r(e)

〈/define:event〉

event e
label n

〈define:guard id=’g’〉
grdexpr

〈/define:variable〉

guard v
expression grdexpr

. . .

A rule can take the following arguments:

• id=’name’ - rule name. The name can be used to reference the rule from the

sub-rules;

• scope=’id’ - the scope of the rule, the ’id’ argument must be a name of an

enclosing rule. The scope attribute defines the immediate parent rule and is

used to avoid too deep nesting of patterns;

• :name=’value’ - requires that the rule contains the given annotation

name/value pair;

• predicate=’expr’ - a predicate restricting rule application conditions.

The following rule is an excerpt from the Hamming pattern:

<select:variable id=’ch’
:class=’channel’
predicate=’isint(me.type) and

typemax(me.type)-typemin(me.type) > 0’
hint=’Channel variable’>

...

The rule selects a variable object and names the object ch. Note, that this name

has nothing to do with the actual variable name. The variable must carry the class

attribute with the channel value. In addition, the variable must be an integer type

(subset or equal to Z) with the defined lower and upper limits which describe a

non-empty value range.

The tool uses a simple expression language to evaluate conditions and dynam-

ically construct expression. Thus, for example, i − 1 where i is a constant is evalu-

ated into a constant, otherwise it is an expression with i substituted with a name of

a variable it stands for:

< define : guard >branch=i-1< /define : guard > guard branch = i − 1
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The pattern language also features a number of predefined operations and func-

tions that can be used inside the $ brackets. In addition to the common arithmetic

operations, there are operations for testing equality of labels and expressions, the

belongs to operator, string concatenation, predicates for extracting and testing vari-

able types, string manipulations and few mathematical functions, such as power

and ceil.

Constructing a complex expression may be challenging. For example, the ex-

panded form of
∑

i∈1..nch 2i−1 ∗ pari (Event-B has no Σ) has to be constructed from

many pieces, all glued together by the summation operator

<define:formula id=’sum’ operator=’+’>
<index id=’i’ from=’1’ upto=’$nch$’>

<define:formula scope=’sum’>
$power(2, i-1)$*par$i$

</define:formula>
</index>

</define:formula>

The rule above works by constructing formula pieces and attaching them to

the parent summation formula. When printed as a string, the outer summation

could look like this: 1 *par1+2par2 (the exact expression produced by the pat-

tern rule).

The tool implementation is freely available from our web site [63]. Once in-

stalled into the RODIN platform, it provides an environment for working with re-

finement patterns, i.e. for selecting, editing and applying patterns in automatic or

semi-automatic manner. Thanks to the open architecture of the platform, the plugin

is seamlessly integrated into the platform and provides an intuitive user interface.

The current tool version is far from being simple to use and lacks some essential

functionality. In the future, the XML pattern notation will be replaced in future

versions with a dialogue-based input, similar to those used for Event-B models.

The notationwill be changed to strictly follow the presented pattern language. This

will result in a much more flexible and powerful tool. The tool will also provide

means for analysing pattern correctness. Proof obligations are to be automatically

generated from pattern definition andmany of them can be handled by the build-in

platform prover. To interface with the prover, the tool will output proof obligations

as context file theorems along with free variables as context file constants. Such

context file can be attached to all pattern-generatedmachines and the theorems can

be analysed by an automatic prover.
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Chapter 7

Conclusions

7.1 Summing Up

The purpose of a design component is to assist a modeller in integration of a

reusable design, packed in the component, into a development the modeller works

on. The inputs of a design component accept a model and a configuration. There

are two types of design components: components used to develop systems using

top-down refinement procedure are called refinement components; components used

to reverse engineer a legacy system are called abstraction components. Consequently,

the input of a refinement component is an abstract model while the input of an ab-

straction component is a concrete model.

Configuration is a set of parameters required to instantiate a pattern used by a

component. A modeller is requested to supply values for configuration parameters

just prior to a pattern instantiation.

The input and output of a design component are described by the predicates

characterising the input and output model classes of the component. These predi-

cates can be used to match two components to find whether they are composable

or analyse some third-party component to see whether it can be integrated into a

Figure 7.1: A design component is a black box with an input and output, accepting
and producing models, and an additional configuration input.
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Figure 7.2: A typical design component includes a modelling pattern, a collection
of a refinement patterns and a library of model transformation.

development.

Like a software component, a design component is reusable. A design com-

ponent can be assembled from various elements and given to other developers.

Hence, a design component is self-sufficient - it does not include links to the con-

text in which it was created. An important property of a design component is that

its application requires minimum effort from a modeller. To apply a design pat-

tern, a modeller has to teach himself the design pattern by read the explanations

and examining code example. Then this new knowledge can be transferred into

modelling activity. Application of a design component is completely automated

since all its parts are machine-interpretable. To use a design component, a modeller

simply loads the component into the design environment and then uses a visual in-

terface to show the step where the component should be used. From this moment,

the integration of a component, which is a complex and multi-stage process, is un-

der the control of the modelling environment.

A good design component is reusable in a wide range of contexts. For exam-

ple, we can imagine the use of the recovery block pattern in such diverse areas as

specification of an embedded control systems, high-level circuit designs and web-

services composition architectures. Even when a design component is highly spe-

cific to an application domain, the formulation of the design in a reusable form

makes it possible to refactor developments and reuse the same design components.

A design component is created to be interpreted by a computer (most likely a

development environment) and, therefore, there is no need for a modeller to in-

vestigate the internal details of design component. This prevents the possibility of

misinterpretation or incorrect adaptation of a design component to a development

and makes the use of components almost effortless since a modeller now does no

have to learn about the details of the applied design component. The black-box

property helps to ensure that components are not modified during use which is
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Figure 7.3: Creation of a design component.

important because any change is likely to violate the correctness conditions (Figure

7.1).

In our approach, a design component is made of three layers: the top layer is

a collection of modelling patterns, this layer is responsible for high-level guidance

during formal development; the midddle layer is a set of refinement or abstraction

patterns, they provide automation in the design process; the bottom layer consists

of model transformations connecting the two upper layers to a concrete formalism

(Figure 7.2).

A simple design component comprises a single modelling pattern and several

refinement patterns. We have seen an example of such component in Section 5.3

when we discussed a code generation modelling pattern and then constructed sev-

eral refinement patterns to support the application of the modelling pattern.

It is possible to have a design component made of a single modelling pattern.

We can think of such component as a way to package and distribute the modelling

pattern. The same principle works for refinement patterns. One or several refine-

ment patterns can be used to form a design component. From a user’s viewpoint,

however, such components may be not convenient to work with. A modelling

pattern without refinement patterns does not assist a modeller in constructing re-

finement steps that lead to intermediate modelling goals. A refinement packaged

as a design component is simply hard to integrate as a modeller gets no indication

at what stage of a development process the pattern should be used. Hence, the

adiditonal effort is required to learn the pattern purpose and remember to use it at

the right moment.

The construction procedure for a simple refinement design component (the case

of an abstraction component is symmetrical) has a number of distinct steps. First,

some domain-specific software engineering method is interpreted by a method ex-
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Figure 7.4: A design component assists a modeller by providing refinement au-
tomation and modelling tactics.

Figure 7.5: Global design component repository may be used to exchange reusable
components.

pert to construct a semi-formal abstract modelling pattern. The result is used by

a modelling expert who selects a suitable formalisation style, further detalises the

modelling pattern and, possibly, constructs some method-neutral refinements pat-

tern. Finally, a formalisation expert completes the development of the modelling

pattern by adding more refinement patterns and demonstrating their correctness

in the context of the chosen modelling method (Figure 7.3).

A design component actively participates in a development process. Whereas

in traditional, unassisted development, a modeller would translate a mental model

directly into a formal model, with design components a modeller manipulates a

model with the help of abstraction and refinement patterns and within the limits

imposed by a combination of active modelling patterns. A design component takes
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Figure 7.6: A formal development is a pipeline constructed from reusable and
development-specific design components.

Figure 7.7: Design components can be shared across developments.

care of reusable, generic parts of a development to let a modeller focus on design

decisions unique for the modelled system (Figure 7.4).

Reuse is central to software construction. Any software system, large or small,

relies on a vast number of third-part reusable components. For anything, but tiniest

programs, reuse is an absolute necessity. Design components have all the required

properties to facilitate design sharing: they hide internal details but the description

of their input and outputs is available. An online component library can be used to

automatically discover components providing required designs (Figure 7.4).

With design components, a formal development is realised as a number of com-

ponents connected together (Figure 7.6). Some of these components are specific to

the development and others are imported from a component library. Component

based view on development helps to break free from the inflexible refinement chain

developmentwhile preserving the refinement-based development itself. A pattern-
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Figure 7.8: A complex design component can be composed from other design com-
ponents.

based development has the pipeline architecture: there is a single input, where an

an abstract model is supplied and one or more outputs which produce modelling

results. In addition, each component of a development has a configuration input.

The traditional refinement chain corresponds to the sequential composition of

design components, that is, a straight pipeline accepting an input abstract model

and producing some concrete model. With our approach, development structur-

ing can be more flexible. Not only we are able to construct a development from

reusable bricks - design components - but we can also use parallel composition for

cases when different model parts are refined (abstracted) independently.

A component-based development is better structured and thus is easier to refac-

tor. Each component caters for a specific aspect of the development and there is no

problem of handling a large, unreadable specification which is often a result of de-

velopment process.

The same design component can be used in different developments. For ex-

ample, a new development can be constructed by reusing components A and G

from the development on Figure 7.7, adding new third-party component K, and

developing a new component Z.

A development constructed from design components can be itself seen as a de-

sign component in the context of a larger development (Figure 7.8). Complex com-

ponents can be constructed using the pipeline architecture from the existing com-

ponents and a large development can be decomposed into a set of independently

developed design components.

7.2 Taxonomy

In the work we have discussed a variety of ways to obtain one model from another.

The include
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model transformation a simple rule changing model at the syntactic level by

adding new elements, updating existing elements and removing existing ele-

ments

reversable model transformation an information-preserving model transforma-

tion, e.g. a transformation only adding new model elements

inverse model transformation an inverse form of a model transformation that un-

does effect of its counterpart; only reversible transformations have an inverse

form

pattern a composition of model transformations rules expressed using the pattern

language; any pattern must be either an abstraction pattern or a refinement

pattern

refinement pattern produces a valid refinement of any accepted input model

abtraction pattern produces a valid abstraction of any accepted input model

superposition pattern a pattern that only adds (removes) elements to construct a

refinement (abstraction)

mapping pattern a special case of the superposition pattern that adds only top-

level model elements

(de-)intergration pattern a superposition pattern that is applicable to any model

(the refinement pattern case) or accept models with a specific elements and

removes those elements (the abstraction pattern case)

presentation pattern renames a model element or implements a reversible data

refinement

model difference (delta) a pattern constructed mechanically by comparing two

models

modelling pattern a set of rules describing an overall model development strategy

abstract modelling pattern a modelling pattern containing informal or undefined

predicates in assumptions or goals

concrete modelling pattern a modelling patternwhich assumptions and goals can

be evaluated to truth or false for any given model

design component a combination of related modelling patterns, refinement pat-

terns, abstraction patterns and model transformation rules
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refinement design component a design component that helps to construct series

of refinement steps

abstraction design component a design component that helps to reverse-engineer

a model

reusable design component a design component made specifically to be reused in

different developments

specific design component a component relying on model differences or some

development-specific solutions

7.3 Related Works

The pattern reusemechanism proposed in [48] facilitates reuse of design patterns in

formal modelling. The proposal is based on somewhat arguable basis that design

patterns can be adequately expressed as B machines and treated as normal B ma-

chines. The authors discuss three pattern instantiation methods which are all based

on simple conjoining a pattern model with the main development model. A simi-

lar approach, although with the focus on object orientation, is described in [49]. We

believe that these two approaches are highly inflexible due to the limitations of the

employed instantiation mechanisms and the tendency to accumulate many details

in a single machine. Besides, we would argue that the B language is inadequate for

specifying reusable patterns as it oriented towards different kind of models.

Specification can also be used to facilitate component matching and valida-

tion of component composition. Zaremski and Wing [98, 99] present a method

for matching software components based on formal specifications of component

functionality. Compatibility conditions are stated in the form of theorems and a

theorem prover is used to discharge them. This is a bottom-up approach to soft-

ware constructions. In our proposal we expect a modeller to rely on the top-down

refinement procedure and import design rather than implementations.

Abrial’s Mechanical Press Controller [88] case study uses patterns to simplify

development and reuse proofs. The patterns are constructed independently from

the main development using the normal tools and techniques. Pattern instantia-

tion is manual but fairly straightforward: pattern elements are replaced with cor-

responding model elements. With our approach, this pattern type is covered by

the integration pattern class, presented in Section 4.11.3. The case study itself may

serve as a benchmark for our proposal and, once the new patterns tool is available,

we plan to redevelop the case study using refinement patterns andmodel differenc-
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ing. The Automatic Refinement [47] is a technique for producing implementable B

model (in B0 language). The approach is based on a collection of model rewrite

rules that try to eliminate non-determinism. A large number of such rules were

defined, although an individual rule is rather simple. An interesting aspect of the

technique is that it works in the context of a specific development method. The

method is narrowly oriented on modelling train system and, if followed correctly

by a developer, should guarantee that the resulting non-deterministic model can

be mechanically translated into an executable implementation. We believe that the

model transformations used by the approach can be implemented as refinement

patterns. The development method supporting the technique is interesting to us as

a possible case study. We believe that it should be possible to construct a number

of design components to cover the transformations and the method in an integral

manner.

Design patterns, while applicable to a wide range of applications, are not

reusable in the sense of component reusability: a developer cannot simply add

a design pattern into a program. Meyer and Arnout [83, 100] investigated the pos-

sibility of building a conventional software component implementing the idea be-

hind a design pattern. They have found that roughly a half of design pattern can

be ”componentized” - converted into software components. The idea is that such

component would provide all the functionality associated with a design pattern

without requiring the effort to implement the pattern. The benefit comes at a cost

of reduced flexibility - a developer has to use one particular design pattern imple-

mentation - and decreased performance. The spirit of the approach is close to our

proposal of design components although these two are applied at different levels

of abstraction: we believe it is more fruitful to capture and reuse design ideas and

patterns during the modelling stage. It is not surprising the authors could not con-

vert architectural design into components - an abstract rule prescribing an overall

system architecture has no place in a programming language. Many design pat-

tern from [39] cannot be handled by refinement patterns as well. However, we

are confident that they can be represented in one way or another using modelling

patterns.

7.4 Limitations

We have presented amethod for formal refinement automation. We believe that the

proposal is a step towards establishing formal modelling as a widely-accepted soft-

ware engineering technique. The mechanism makes formal modelling more acce-

sible to non-experts, it has the potential to make formal developments cheaper and
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quicker and makes it practical to construct large-scale developments with many

refinement steps. A large number of challenging problems have to be addressed

before all these goal can be trully achieved.

It is unclear if the critical mass of design components and patterns can ever be

accumulated to make affect the practice of formal modelling. Clearly, we cannot

hope that design components would emerge from somewhere in large quantities.

We can start, however, with a less ambitious goal of collecting refinement andmod-

elling patterns and offering them to developers.

Althougn the concept of refinement automation is very simple, the act of for-

mulating and describing patterns is quite different from what is normally done in

formal modelling. From our limited experience with Event-B refinement patterns,

creation of a pattern requires deep knowledge of both the formal method applied

and the problem domain of the pattern. We have found that it is easier to start with

an existing refinement steps and then construct a refinement pattern.

A related disadvantage, is that the use of design components requires new ex-

pertise and correspodingly additional training. On the other hand, this can be com-

pensated by the ease of modelling with ready-made components.

Powerfull pattern matching mechanism is absolutely essential to maintain a

pattern library. For now, we have to rely on pattern developers to supply accurate

pattern annotations and connect them to some global ontology. This may prove an

overly optimistic assumption.

The initial ideas of the pattern language and its proof theory were developed

during the work on various formalisation projects using the B and Event-B meth-

ods. As with any notational system, the pattern mechanism is very likely to be

biased towards the B style modellling and state-based formalisms in general. An

attempt was made to minimize the notational part to avoid this effect. It is, how-

ever, unlikely that the attemptwas completely successful. We expect that a different

style of pattern language and proof theorywill be needed to support different mod-

elling styles. For instances, process algebras represent models as plain expression.

The lack of structuring constructs makes it more difficult to reason about model

parts so that a completely different model rewriting mechanism is required.

Assembly of a development from design patterns is not a top-down procedure.

In principle, a modeller could first constructs a modelling pattern in the top-down

manner and then detalise it with third-party design components. This, however,

does not work. It is impossible to arrive to a modelling pattern that makes an

efficient use of pre-existing design componentswithout knowingwhat components

are available. Therefore, there is a danger that a system design could be skewed to

favour design decisions supported by the existing patterns.
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In this work we propose using design components to conduct large-scale for-

malisation projects. We are unable, however, at this moment, to support our claim

that design components are fit for the purpose with a success story based on a

large-scale case study. We are planning to work on such case study in future within

the DEPLOY project [101].

7.5 Future Work

The work described in the thesis can be extended in a number of ways. The first

goal is to provide a tool support for both refinement and modelling patterns. We

plan to realise such tool as a new version of the RODIN Platform finer plugin. The

tool will provide a visual enviornment for creation and verification of patterns and

a new Eclipse perspective supporting differencing-based Event-B developments.

There is a well-known collection of design patterns [39], and we have proposed

two mechanism to capture design decisions: refinement and abstraction patterns,

and modelling patterns. It is interesting to explore the mapping between design

patterns, refinement patterns and modelling patterns. In particular, it is important

to try to discover and address any problems that could undermine simple, faithful

and usable representation of known design patterns.

Currently, model transformations, refinement and abstraction patterns, and de-

sign components all have single input and output. It is interesting to explore design

components accepting more than one input or producing more than one output or

both. One possible application of a design component with multiple outputs is a

component realising model decomposition. Several models may be conjoined in

various ways using a design components with multiple inputs.

The notation used to express refinement and abstraction patterns is essentially

a simple declarative programming language. Any part of a pattern is a function

producing a new model. Patterns do not use variables and thus there are no side-

effects. A possible approach to improve the language expressiviness is to base it

on an existing functional language, such as ML [102]. A promising approach is to

specify patterns directly in ML to benefit from the connections to theorem provers,

like HOL [89, 90].

We realise that our work can be taken further by developing a solid mathemat-

ical foundation. Much of the notation used now is ad-hoc and there is little in the

sense of a general framework relating model transformation, refinement patterns

and modelling patterns. As a future work, we plan to investigate the applicability

of the graph transformation approach [103], in particular graph grammars [104],

to represenation and analysis of model transformations. We also plan to use the
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category theory [105] to link together different parts of the proposal, and, possibly,

indentify some missing links and new interesting properties.
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Appendix A

Event-B Model Transformations

A.1 Model Transformation Scopes

Constructing refinement patterns it is beneficial to cluster pattern rules into groups

concerned with different model parts. This makes it possible to analyse pattern

correctness by independently analyzing correctness of each group. To facilitate

construction of refinement pattern with many independent rule clusters, model

transformation descriptions are extended with the scope attribute. This attribute

defines two sets: model parts on which the transformation depends upon but does

notmodify (setR) andmodel parts updated or created by themodel transformation

(setW ). Also

R ⊂ CFL W ⊂ CFL

Where set CFL is constructed from elements of the following two classes

• model elements, identified by name

• an attribute of a model element, identified by an attribute name and model

element

The latter is written as e : att. For example, a model transformation rule chang-

ing name of an event, would have For e : nom in W set, where e is the parameter

name by which the event is known to the transformation.

Two following two simple rules are used to construct scope of a transformation

• any model element mentioned in requirements or transformation rule makes

rule, must be included in the R set;

• a newly constructed model element is added to theW set;
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• change of an element attribute results in addition of e.attto theW set, where

e is the element and att is the updated attribute.

Two model transformation can be parallel only if their scopes do not intersect.

Intersection of transformation scopes is computed as intersection of elements up-

dated by the transformations and pair-wise intersection of elements updated by

one transformation and listed as dependencies of another

inter((R1,W1), (R2,W2)) = (W1 ∩ W2) ∪ (R1 ∩ W2) ∪ (R2 ∩ W1)

Set pair (R,W ) is defined by a list of elements. Elements prefixed with ⋆ are

elements ofW , the rest are elements of R.

A.2 Variable Transformations

The following transformation adds a new system variable. The new variable has

some arbitrary label, type and initialisation. Addition of a new variable always

results in a valid model refinement.

addvar(v) ≡ requirements
v ∈ (VAR \ dom(mvar))

effect
mvar′ = mvar ∪ {v 7→ (Lv, Av, Tv)}

scope
⋆v, Lv

ref
true

The next transformation changes the name of a system variable.

varlabel(v, nl) ≡ requirements
nl ∈ FreshVarNames∧
mvar(v) = (l, a, t)

effect
mvar′ = mvar ⊳− {v 7→ (nl, a, t)}

scope
v, ⋆v :nom

ref
false

The transformation below provides an initialisation action for a systemvariable.
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newvaraction(v, na) ≡ requirements
na ∈ dom(mact)∧
mvar(v) = (l, a, t)∧
PAT FIS INI(na)∧
PAT INV INI(na, J)∧
isAbstrVar(v) ⇒ PAT RIN INV([{na}], [{v̂.act}], J)

effect
mvar′ = mvar ⊳− {v 7→ (l, na, t)}

scope
v, ⋆v :act

ref
true

The following transformation changes the typing predicate of a variable.

newvartype(v, nt) ≡ requirements
nt ∈ TYPE∧
mvar(v) = (l, a, t)∧
PAT INV INI(a, J vt(v, nt))∧
isAbstrVar(v) ⇒

PAT RIN INV(na, v̂.act, J vt(v, nt))
effect
mvar′ = mvar ⊳− {v 7→ (l, n, nt)}

scope
v, ⋆v : typ

ref
true

A.3 Parameter Transformations

Model transformation addpar creates a new event parameter.

addpar(a) ≡ requirements
a ∈ (PARAM \ dom(marg))

effect
marg′ = mvar ∪ {v 7→ (Lp, Tp)}

scope
⋆a, Lp

ref
true

The following transformation changes event parameter name.
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parlabel(a, nl) ≡ requirements
nl ∈ FreshVarNames ∧ marg(v) = (l, t)

effect
marg′ = mvar ⊳− {a 7→ (nl, t)}

scope
a, ⋆a :nom

ref
false

The next transformation changes the type of an event parameter.

newpartype(a, nt) ≡ requirements
nt ∈ TYPE ∧ marg(v) = (l, t)

effect
marg′ = marg ⊳− {a 7→ (l, nt)}

scope
a, ⋆a : type

ref
false

A.4 Event Transformations

The transformation adds a new event with no parameters, empty guard (true) and

no actions (skip). Because of the the non-divergence requirement this transforma-

tion does not itself result in a valid refinement. The event guard must be replaced

with something that would guarantee the termination of all the new events.

addevent(e, l) ≡ requirements
e ∈ (EVENT \ dom(mevt)) ∧ PAT NEW DIV

effect
mevt′ = mevt ∪ {e 7→ (l,⊘,⊘,⊘,⊘)}

scope
⋆e, l

ref
false

The next transformation adds an abstract event to the refines list of a given con-

crete event.
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refines(e, nr) ≡ requirements
e ∈ dom(mevt) ∧ e = (n, r, p, g, a) ∧ nr ∈ LABEL∧
∃ee · (ee ∈ dom(mevt0) ∧ mevt0(ee) = (l, nr, pp, gg, aa))

effect
mevt′ = mevt ∪ {e 7→ (n, r ∪ {nr}, p, g, a)}

scope
e, ⋆e : ref

ref
false

The following model transformation renames an event. Since events are never

referenced by name from anywhere in a model, an event can be renamed although

the refines attribute may be needed to link with abstract model events.

newevtlabel(e, nl) ≡ requirements
e ∈ dom(mevt) ∧ e = (l, p, ga)∧
nl ∈ FreshNames

effect
mevt′ = mevt ⊳− {e 7→ (nl, p, g, a)}

scope
e, nl, ⋆e :nom

ref
false

Transformation addguard adds a new guard predicate. The resulting event

guard is the conjunction of the old an guard and the newly added part.

addguard(e, h) ≡ requirements
e ∈ dom(mevt) ∧ e = (l, p, ga)∧
h ∈ GUARD∧
isAbstrEvt(e) ⇒ PAT REF GRD(ê.guard, e.guard ∧ h)

effect
mevt′ = mevt ⊳− {e 7→ (l, p, g ∪ {h}, a)}

scope
e, e :grd

ref
true

The following transformation adds a parameter to an event descriptor.
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addparam(e, par) ≡ requirements
e ∈ dom(mevt) ∧ e = (l, p, ga)∧
par ∈ PARAM

effect
mevt′ = mevt ⊳− {e 7→ (l, p ∪ {par}, g, a)}

scope
e, e :par

ref
false

The following transformation constructs a new actions and adds it to an event.

addaction(e, act) ≡ requirements
e ∈ dom(mevt) ∧ e = (l, p, ga) ∧ act ∈ dom(mact)∧
PAT REF FIS([{act}])∧
isAbstrEvt(e) ⇒ PAT REF INV([a ∪ {act}], [ê.act])∧
¬isAbstrEvt(e) ⇒ PAT NEW INV([act])

effect
mevt′ = mevt ⊳− {e 7→ (l, p, g, a ∪ {act})}

scope
e, ⋆e :act

ref
true

A.5 Invariant Transformations

The next transformation adds a new model invariant.

addinv(i) ≡ requirements
i ∈ INVAR

effect
inv′ = inv ∪ {i}

scope
inv

ref
false

A.6 Action Transformations

The transformation below constructs a new action from the given variable, style

and expression.
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newaction(a, v, s, e) ≡ requirements
a ∈ ACTION∧
v ∈ dom(mvar) ∧ s ∈ STYLE ∧ e ∈ EXPR

effect
mact′ = mact ⊳− {a 7→ ({v}, s, e)}

scope
⋆a

ref
false

The next transformation adds a new variable to an action.

newactionvar(a, nv) ≡ requirements
a ∈ dom(mact) ∧ a = (v, s, e)∧
nv ∈ dom(mvar)

effect
mact′ = mact ⊳− {a 7→ (v ∪ {nv}, s, e)}

scope
a, ⋆a :var

ref
false

The following transformation changes the substitution style of an action.

newactionsty(a, ns) ≡ requirements
a ∈ dom(mact) ∧ a = (v, s, e)∧
ns ∈ STYLE

effect
mact′ = mact ⊳− {a 7→ (v, ns, e)}

scope
a, ⋆a : sty

ref
false

The next transformation changes the expression part of an action.

newactionexp(a, ne) ≡ requirements
a ∈ dom(mact) ∧ a = (v, s, e)∧
ne ∈ EXPR

effect
mact′ = mact ⊳− {a 7→ (v, s, ne)}

scope
a, ⋆a :exp

ref
false
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Appendix B

Recovery Block Pattern Source
Code

This Appendix shows a XML representation of the Recovery Block pattern we have

defined in Section 4.9, in the form accepted by the pattern tool. A pattern decla-

ration starts with a description sections which list the pattern categories, author,

version and the general description. All former three are used to locate and match

a pattern. The latter is available to a user when a pattern is selected.

1 <pat tern>

2 <preamble>

3 <name>RecoveryBlock</name>

4 <author>A. I l i a s ov</author>

5 <version major= ’ 0 ’ minor= ’ 4 ’ r ev i s ion= ’ 0 ’/>

6 <desc r ip t ion>

7 Introduces a recovery block

8 </desc r ip t ion>

9 <category>By Pro j e c t / t e s t</category>

10 <category>Fault−Tolerance</category>

11 < !−−

12 Th is p a t t e r n s h e l p s t o t o l e r a t e s o f t w a r e or hardware

13 f a i l u r e us ing N b l o c k s which imp l em en t a t i o n s d i f f e r

14 in s o f t w a r e or hardware or bo t h . Ch e c k p o i n t i n g i s used

15 t o s av e s t a t e b e f o r e e x e c u t i n g a b l o c k so t h a t r e s u l t s

16 o f u n s u c c e s s f u l b l o c k e x e c u t i o n can be d i s c a r d e d . A

17 b l o c k e x e c u t i o n i s f o l l o w e d by an a c c e p t a n c e t e s t . I f

18 t h e t e s t p a s s e s th en t h e r e s u l t o f t h e c u r r en t i s used

19 as t h e f i n a l r e s u l t s . Otherwise , s t a t e i s r o l l e d ba c k and

20 an o t h e r b l o c k i s a c t i v a t e d .

21

22 The p a t t e r n t a k e s a s inpu t a model with two ev en t s . One
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23 o f t h e e v en t s i s a s p e c i f i c a t i o n o f t h e d e s i r e d b e h a v i o u r .

24 The o t h e r e v en t i s t h e c onn e c t i o n t o some e x t e r n a l

25 r e c o v e r y or a b o r t i o n mechanism . During i n s t a n t i a t i o n , t h e

26 p a t t e r n a l s o a s k s f o r a number which t h e number o f

27 b e h a v i o u r b l o c k b l o c k s .

28

29 The f u r t h e r r e f i n em en t s sh ou ld d i v e r s i f y d e s i g n s o f

30 b e h a v i o u r b l o c k s and adap t t e s t c o n d i t i o n s . A good

31 s t a r t i n g p o i n t f o r app ly ing t h i s p a t t e r n i s a d e s i r e d

32 b e h a v i o u r e v en t with non−d e t e r m i n i s t i c b e f o r e−a f t e r

33 p r e d i c a t e s , e . g . a : 2 . . 5 5 . The c on j un c t i o n o f a l l

34 b e f o r e −a f t e r p r e d i c a t e s i s t h e a c c e p t a n c e t e s t used

35 by t h e p a t t e r n .

36 −−>

37 </preamble>

38

39 <system id= ’ sys ’>

40 <s e l e c t : e v e n t id= ’main ’>

41

42 <de f i ne : v a r i a b l e

43 scope= ’ sys ’

44 id= ’ branch ’

45 name= ’ $main$ branch ’

46 type= ’NAT’ i n i t = ’ 0 ’>

47 <comment>

48 This va r i a b l e s def ines the cur ren t ly a c t i v e

49 block . When goes beyond the blocks number

50 ind i c a t e s a f a i l u r e .

51 </comment>

52 <de f i ne : v a r i a b l e

53 scope= ’ sys ’

54 id= ’ s tage ’

55 name= ’ $main$ s tage ’

56 type= ’ 0 . . 2 ’ i n i t = ’ 0 ’>

57 <comment>

58 Def ines process s t a g e :

59 checkpoint ( 0 ) ,

60 execution ( 1 ) or

61 t e s t ( 2 )

62 </comment>

63 < !−− c r e a t e c h e c k p o i n t e v en t −−>

64 <de f ine : event id= ’ checkpoint ’ name= ’ $main$ chkp ’>

65 <comment>
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66 Saves the current s t a t e so tha t i t can be

67 ro l l ed back to l a t e r

68 </comment>

69 <def ine :guard>$ stage $ = 0</def ine :guard>

70 <ac t ion id= ’ ac ’ scope= ’main ’>

71 <de f i ne : v a r i a b l e scope= ’ sys ’ id= ’ cpvar ’

72 name= ’ $ac . va r i ab le . name$ chkp ’

73 type= ’ $ac . va r i ab le . type$ ’

74 f u l l i n i t = ’ $ac . va r i ab le . f u l l i n i t $ ’>

75 <comment>

76 Shadow var iab le for $ac . va r i ab le . name$ used

77 for intermedia te r e su l t s

78 </comment>

79 <de f i ne : a c t i on scope= ’ checkpoint ’ va r i ab le= ’ $ cpvar$ ’>

80 $ac . va r i ab le . name$

81 </de f i ne : a c t i on>

82 </de f i ne : v a r i a b l e>

83 </ac t ion>

84 <de f i ne : a c t i on va r iab le= ’ $ s tage $ ’>

85 <comment>Let the current block execute</comment>

86 1

87 </de f i ne : a c t i on>

88 </de f ine : event>

89 <index id= ’ i ’ g loba l id= ’ index ’ from= ’ 1 ’

90 hint= ’Number of a l t e r n a t i v e branches ’>

91

92 < !−− c r e a t e a l t e r n a t i v e b e h a v i o u r e v en t s −−>

93 <de f ine : event id= ’ a l t ’ name= ’ $main$ a l t $ i . name$ ’>

94 <comment>

95 Behaviour block $ i . name$ , i t i s

96 s e l e c t ed when $branch$ = $ i . name−1$

97 </comment>

98 <def ine :guard>$ stage $ = 1</def ine :guard>

99 <def ine :guard>$branch$ = $ i . name−1$</def ine :guard>

100 <def ine :guard scope= ’ a l t ’ copyfrom= ’ $main$ ’/>

101 <de f i ne : v a r i a b l e scope= ’ a l t ’ copyfrom= ’ $main$ ’/>

102 <ac t ion id= ’ ac ’ scope= ’main ’>

103 <de f i ne : a c t i on scope= ’ a l t ’

104 va r iab le= ’ $ac . va r i ab le . name$ chkp ’

105 s t y l e= ’ $ac . s t y l e $ ’>

106 $ac . express ion$

107 </de f i ne : a c t i on>

108 </ac t ion>
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109 <de f i ne : a c t i on va r iab le= ’ $ s tage $ ’>

110 <comment>Now go to t e s t i n g</comment>

111 2

112 </de f i ne : a c t i on>

113 </de f ine : event>

114

115 </index>

116

117 < !−− The t e s t s u c c e s s e v en t . Th i s e v en t i s a

118 mod i f i e d version o f t h e a b s t r a c t e v en t −−>

119 <def ine :guard scope= ’main ’>$ stage $ = 2</def ine :guard>

120 <comment scope= ’main ’>

121 Test fo r su c c e s s f u l block execution .

122 I t compares the block r e su l t s

123 with the expected behaviour

124 </comment>

125 <ac t ion id= ’ ac ’ scope= ’main ’>

126 <def ine :guard id= ’ okgrd ’>

127 <def ine : formula scope= ’ okgrd ’

128 type= ’ before−a f t e r−pred i ca t e ’

129 va r iab le= ’ $ac . va r i ab le . name$ chkp ’

130 express ion= ’ $ac . express ion$ ’

131 s t y l e= ’ $ac . s t y l e $ ’/>

132 (dummy)

133 </def ine :guard>

134 </ac t ion>

135 <ac t ion id= ’ ac ’ scope= ’main ’>

136 <de f i ne : a c t i on va r iab le= ’ $ac . va r i ab le . name$ ’>

137 $ac . va r i ab le . name$ chkp

138 </de f i ne : a c t i on>

139 </ac t ion>

140

141 < !−− The t e s t f a i l u r e e v en t . −−>

142 <de f ine : event id= ’ t e s t ’ name= ’ $main$ t e s t f a i l ’>

143 <comment>Block f a i l u r e t e s t</comment>

144 <def ine :guard>$ stage $ = 2</def ine :guard>

145 <def ine :guard id= ’ t s tguard ’ scope= ’ t e s t ’>

146 <def ine : formula scope= ’ t s tguard ’

147 id= ’ guard ’ operator= ’ or ’>

148 <ac t ion id= ’ ac ’ scope= ’main ’>

149 <def ine : formula scope= ’ guard ’

150 type= ’ before−a f t e r−pred i ca t e ’

151 va r iab le= ’ $ac . va r i ab le . name$ chkp ’
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152 express ion= ’ $ac . express ion$ ’

153 s t y l e= ’ $ac . s t y l e $ ’

154 negat ion= ’TRUE ’/>

155 </ac t ion>

156 </def ine : formula>

157 (dummy) < !−− Th is i s a dummy guard t h a t w i l l be

158 r e p l a c e d by a f o rmu l a . We need

159 i t h e r e t o a v o i d t h e t o o l a s k i ng a us e r

160 t o t yp e in a guard e x p r e s s i o n

161 −−>

162 </def ine :guard>

163 <de f i ne : a c t i on va r iab le= ’ $branch$ ’>

164 $branch$ + 1

165 <comment>Use d i f f e r e n t block next time</comment>

166 </de f i ne : a c t i on>

167 <de f i ne : a c t i on va r iab le= ’ $ s tage $ ’>

168 0

169 <comment>

170 Go to checkpoint to discard intermedia te

171 r e su l t s and s t a r t over again

172 </comment>

173 </de f i ne : a c t i on>

174 </de f ine : event>

175

176 <s e l e c t : e v e n t id= ’ f a i l ’ p red i ca t e= ’me. name!=main . name ’>

177 <comment scope= ’ f a i l ’>

178 This event i s used when a l l the blocks f a i l e d

179 </comment>

180 <def ine :guard>$branch$ = $ index . upto$</def ine :guard>

181 </ s e l e c t : e v en t>

182 </de f i ne : v a r i a b l e>

183 </de f i ne : v a r i a b l e>

184 </s e l e c t : e v en t>

185 </system>

186 </pat tern>
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Appendix C

Pattern-generated Event-B
Examples

C.1 Abstract Model 1

We use the following abstract model as an input for the N-versioning and Recovery

Block patterns. In this model, a memory can be updated with the store operation.

The read operation is implicit since it does not affect the model state.

SYSTEM memory

VARIABLES

mem

INVARIANT

mem ∈ 0 .. 255

INITIALISATION

mem :∈ 0 .. 255

EVENTS

store = BEGIN

mem :∈ 0 .. 255

END

reset = BEGIN

mem := 0

END
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C.2 Recovery Block

This model is constructed by applying the Recovery Block refinement pattern (Sec-

tion 4.9) to the memory model. The instantiation parameters are the transformed

event e = store and the number of alternatives n = 3. This refinement has 18 proof

obligations (all automatically discharged by the RODIN platform prover). Note

that the correctness proof we have done for the pattern make the proof obligations

redundant.

SYSTEM memory rb

REFINES memory

VARIABLES

mem, store branch, store stage, mem chkp

INVARIANT

mem ∈ 0 .. 255

store branch ∈ N

store stage ∈ 0 .. 2

mem chkp ∈ 0 .. 255

INITIALISATION

mem :∈ 0 .. 255

store branch := 0

store stage := 0

mem chkp :∈ 0 .. 255

EVENTS

store chkp = WHEN

(store stage = 0)

THEN

mem chkp := mem

store stage := 1

END

store alt 1 = WHEN

(store stage = 1) ∧ (store branch = 0)

THEN

mem chkp :∈ 0 .. 255

store stage := 2

END
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store alt 2 = WHEN

(store stage = 1) ∧ (store branch = 1)

THEN

mem chkp :∈ 0 .. 255

store stage := 2

END

store alt 3 = WHEN

(store stage = 1) ∧ (store branch = 2)

THEN

mem chkp :∈ 0 .. 255

store stage := 2

END

store test fail = WHEN

(store stage = 2) ∧ (mem chkp /∈ 0 .. 255)

THEN

store branch := store branch + 1

store stage := 0

END

store = WHEN

(store stage = 2)

THEN

mem := mem chkp

END

reset = WHEN

(store branch = 3)

THEN

mem := 0

END
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C.3 N-version Programming

The example demonstrates a sample output for the N-versioning refinement pat-

tern (Section 6.2). This model is constructed by applying the pattern to thememory

model. The instantiation parameters are the transformed event e = store and the

number of alternatives n = 3. The model has 24 proof obligations, all discharged

automatically.

SYSTEM memory nvp

REFINES memory

VARIABLES

mem, store stage, ready 1, mem 1,

ready 2, mem 2, ready 3, mem 3,

store result, store failure

INVARIANT

mem ∈ 0 .. 255 ∧ store stage ∈ 0 .. 2∧

ready 1 ∈ BOOL ∧ mem 1 ∈ 0 .. 255∧

ready 2 ∈ BOOL ∧ mem 2 ∈ 0 .. 255∧

ready 3 ∈ BOOL ∧ mem 3 ∈ 0 .. 255∧

store result ∈ N 7→ ((0 .. 255)) ∧ store failure ∈ BOOL

INITIALISATION

mem :∈ 0 .. 255 ‖ store stage := 0

ready 1 := FALSE ‖ mem 1 :∈ 0 .. 255

ready 2 := FALSE ‖ mem 2 :∈ 0 .. 255

ready 3 := FALSE ‖ mem 3 :∈ 0 .. 255

store result := {} ‖ store failure := FALSE

EVENTS

reset = BEGIN mem := 0 END

alt 1 = WHEN

store stage = 0 ∧ ready 1 = FALSE

THEN

mem 1 :∈ 0 .. 255

ready 1 := TRUE

END

alt 2 = WHEN

store stage = 0 ∧ ready 2 = FALSE

THEN

mem 2 :∈ 0 .. 255

ready 2 := TRUE

END
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alt 3 = WHEN

store stage = 0 ∧ ready 3 = FALSE

THEN

mem 3 :∈ 0 .. 255

ready 3 := TRUE

END

store collect = WHEN

store stage = 0)∧

ready 1 = TRUE ∧ ready 2 = TRUE∧

ready 3 = TRUE

THEN

store result :=({1 7→ (mem 1)})∪

({2 7→ (mem 2)})∪

({3 7→ (mem 3)})

store stage := 1

END

store = ANY store k, mem t WHERE

store stage = 1∧

(∀j ·(j ∈ dom(store result) ∧ j 6= store k⇒

card(store result−1[{store result(store k)}]) ≥

card(store result−1[{store result(j)}])))∧

((mem t) = store result(store k))∧

store k ∈ dom(store result)∧

mem t ∈ 0 .. 255

THEN

mem := mem t

store stage := 2

ready 1 := FALSE

ready 2 := FALSE

ready 3 := FALSE

store failure := bool(card(store result−1[

{store result(store k)}]) < 2)

END
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C.4 Abstract Model 2

We use the following abstract model as an example for the Parity and Hamming

refinement patterns. The model specifies a communication protocol based on a

shared buffer variable. The buffer ch is only large enough to accomodate a single

value. Flag rd is used to indicate the buffer state (empty (rd = FALSE) or full

(rd = TRUE)). The send event generates and writes data into the buffer. The

sender copies the values from the buffer into the outv variable.

SYSTEM SendRecv

VARIABLES

ch, outv, rd

INVARIANT

ch ∈ 0 .. 15

outv ∈ 0 .. 15

rd ∈ B

rd = false ⇒ outv = ch

INITIALISATION

ch := 0

outv := 0

rd := false

EVENTS

send = ANY v WHERE

rd = false ∧ v ∈ 0 .. 15

THEN

ch := v

rd := true

END

receive = WHEN

rd = true

THEN

outv := ch

rd := false

END
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C.5 Parity Check Bit

The appendix demonstrates the use of the Parity refinement pattern. The model

below is created by applying the Parity pattern (see Section 6.3) to the SendRecv

model (Section 6.3.1). The instantiation parameters are: ch (the channel variable);

send (the event writing into the channel); receive (the receiver event).

SYSTEM parity

REFINES SendRecv

VARIABLES

ch, outv, rd, ch ph, ch err, ch bits

INVARIANT

ch ∈ 0 .. 5 ∧ outv ∈ 0 .. 5∧

rd ∈ BOOL ∧ ch ph ∈ 0 .. 4∧

ch err ∈ BOOL ∧ ch bits ∈ 1 .. 4 → {0, 1}∧

rd = FALSE ⇒ outv = ch∧

ch ph = 2 ⇒ (ch = (0 + 1 ∗ ch bits(1) + 2 ∗ ch bits(2) + 4 ∗ ch bits(3)))∧

ch ph = 4 ∧ ch err = FALSE⇒

(ch = (0 + 1 ∗ ch bits(1) + 2 ∗ ch bits(2) + 4 ∗ ch bits(3)))

INITIALISATION

ch := 0 ‖ outv := 0

rd := FALSE ‖ ch ph := 0

ch err := FALSE ‖ ch bits := 1 .. 4 × {0}

EVENTS

receive = WHEN

rd = TRUE ∧ ch ph = 4∧

ch err = FALSE

THEN

outv := ch

rd := FALSE

ch ph := 0

END

ch error = WHEN

rd = TRUE ∧ ch ph = 4∧

ch err = TRUE

THEN

outv := ch

rd := FALSE

ch ph := 0

END
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send = ANY v WHERE

rd = FALSE∧

ch ph = 0∧

v ∈ 0 .. 5

THEN

ch := v

rd := TRUE

ch ph := 1

END

ch code = ANY p, bit1, bit2, bit3WHERE

ch ph = 1∧

ch = 1 ∗ bit1 + 2 ∗ bit2 + 4 ∗ bit3∧

p = (bit1 + bit2 + bit3)mod2∧

p ∈ {0, 1} ∧ bit1 ∈ {0, 1} ∧ bit2 ∈ {0, 1} ∧ bit3 ∈ {0, 1}

THEN

ch bits := ch bits⊳−({1 7→ bit1} ∪ {2 7→ bit2}∪

{3 7→ bit3} ∪ {4 7→ p})

ch ph := 2

END

ch noise = ANY bit, val WHERE

ch ph = 2∧

bit ∈ 1 .. 4 ∧ val ∈ {0, 1}

THEN

ch bits := ch bits ⊳− {bit 7→ val}

ch ph := 3

END

ch decode = ANY par WHERE

ch ph = 3∧

par = (ch bits(1) + ch bits(2) + ch bits(3) + ch bits(4))mod2)∧

par ∈ {0, 1}

THEN

ch err := bool(par 6= 0)

ch ph := 4

END

The model has 37 proof obligations of which 21 are discharged automatically

and the remaining 16 are handled with the interactive prover.
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C.6 Hamming Code

This is an example of a refinement step constructed using the Hamming pattern

(see Section 6.3). The model is created by applying the Hamming pattern to the

SendRecv model (Section 6.3.1). The instantiation parameters are: ch (the channel

variable); send (the event writing into the channel); receive (the receiver event).

SYSTEM hamming

REFINES SendRecv

VARIABLES

ch, outv, rd, ch ph, ch err, ch bits

INVARIANT

ch ∈ 0 .. 5 ∧ outv ∈ 0 .. 5∧

rd ∈ BOOL ∧ ch ph ∈ 0 .. 4∧

ch err ∈ BOOL ∧ ch bits ∈ 1 .. 5 →{0, 1}∧

rd = FALSE ⇒ outv = ch ∧ ch ph = 2⇒

(ch = (0 + 1 ∗ ch bits(3) + 2 ∗ ch bits(5)))∧

ch ph = 4 ∧ ch err = FALSE⇒

(ch = (0 + 1 ∗ ch bits(3) + 2 ∗ ch bits(5)))∧

ch err = FALSE

INITIALISATION

ch := 0 ‖ outv := 0

rd := FALSE ‖ ch ph := 0

ch err := FALSE ‖ ch bits := 1 .. 5 × {0}

EVENTS

receive = WHEN

rd = TRUE∧

ch ph = 4∧

ch err = FALSE

THEN

outv := ch

rd := FALSE

ch ph := 0

END
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ch error = WHEN

rd = TRUE∧

ch ph = 4∧

ch err = TRUE

THEN

outv := ch

rd := FALSE

ch ph := 0

END

send = ANY v WHERE

rd = FALSE∧

ch ph = 0∧

v ∈ 0 .. 5

THEN

ch := v

rd := TRUE

ch ph := 1

END

ch code = ANY bit3, bit5 WHERE

ch ph = 1)∧

ch = 1 ∗ bit3 + 2 ∗ bit5∧

bit3 ∈ {0, 1} ∧ bit5 ∈ {0, 1}

THEN

ch bits :={3 7→ bit3}∪

{5 7→ bit5}∪

({1 7→ ((bit3 + bit5)mod2)})∪

({2 7→ (bit3mod2)})∪

({4 7→ (bit5mod2)})

ch ph := 2

END
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ch noise = ANY bit, val WHERE

ch ph = 2∧

bit ∈ 1 .. 5∧

val ∈ {0, 1}

THEN

ch bits := ch bits ⊳− {bit 7→ val}

ch ph := 3

END

ch decode = ANY par1, par2, par3 WHERE

(ch ph = 3)∧

(par1 = ((ch bits(1) + ch bits(3) + ch bits(5))mod2))∧

(par2 = ((ch bits(2) + ch bits(3))mod2))∧

(par3 = ((ch bits(4) + ch bits(5))mod2))∧

(par1 6= 0 ∨ par2 6= 0)∧

par1 ∈ {0, 1} ∧ par2 ∈ {0, 1} ∧ par3 ∈ {0, 1}

THEN

ch bits :=ch bits ⊳− ({

1 ∗ par1 + 2 ∗ par2

7→

(((ch bits(1 ∗ par1 + 2 ∗ par2)) + 1)mod2)})

ch ph := 4

END

ch nodecode = ANY par1, par2, par3 WHERE

(ch ph = 3)∧

(par1 = ((ch bits(1) + ch bits(3) + ch bits(5))mod2))∧

(par2 = ((ch bits(2) + ch bits(3))mod2))∧

(par3 = ((ch bits(4) + ch bits(5))mod2))∧

(par1 = 0 ∧ par2 = 0)∧

par1 ∈ {0, 1} ∧ par2 ∈ {0, 1} ∧ par3 ∈ {0, 1}

THEN

ch ph := 4

END

The model has 48 proof obligations of which 22 are discharged automatically

and 20 more are easily discharged with the interactive prover. The remaining 2

theorems express the essential properties of the Hamming codewords.


