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Abstract 

Single Gimbal Control Moment Gyroscopes (CMGs) are thought to be efficient actua

tors for the attitude control of the new generation of small and agile satellites. CMGs 

belong to a class of actuators known as momentum exchange devices. This thesis 

presents a detailed formulation of three-axis attitude dynamics and control of a satellite 

equipped with a cluster of n momentum exchange devices (which include CMGs and 

reaction wheels). The exact steering problem is formulated for a simple twin CMG 

system employed for single axis control. An analytical approach is developed which 

enables us to find values of feedback gains such that exact steering can use the full mo

mentum capacity of the CMG system while just avoiding singularity. Incorporation of 

an explicit gimbal rate constraint in the proposed analytic approach of the exact steer

ing problem is shown to yield near time-optimal control. A variable feedback gains 

approach for twin CMGs' exact steering is also developed. The exact steering problem 

is also formulated for the four CMG pyramid system employed for three-axis control of 

satellites. The satellite-CMG model is reduced to a nonlinear damped pendulum model 

for an eigenaxis rest-rest manoeuvre. This simplified model is then used to find the val

ues of the feedback gains which correspond to using the full momentum capability of 

the CMG cluster. We propose an exact steering law based on using generalised-inverses 

(not the Moore-Penrose inverse) of a Jacobian matrix. This can avoid elliptic singulari

ties and thus is able to use almost the full momentum capacity of the CMG cluster. The 

proposed steering logic brings the gimbal angles back to the initial zero state. We also 

propose a new singularity escaping steering law by selectively introducing robustness 

to the generalised-inverse based steering law in singular direction only. This steering 

law escapes elliptic singularities with high pointing accuracy and it is shown to out

perform the Generalised Singularity Robust Steering Law both in speed of singularity 

escape and pointing accuracy. Finally, we propose and develop a generic form of in

verse free steering law, which is derived using the Liapunov method. Special case of 

this proposed steering law can escape elliptic singularities. But it is not able to bring 

gimbal angles back to the initial zero state after completion of the manoeuvre. It also 

produces small tumbling motions during reorientation manoeuvres. 
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Chapter 1 

Introduction 

1.1 Background 

The common devices used in spacecraft attitude control systems as actuators (or torque 

producing devices) can be divided into two distinct groups: 

1. Inertial control devices; 

2. Non-inertial control devices or momentum exchange devices. 

The inertial control devices change the overall angular momentum of the satellite. This 

group includes magnetic attitude control, reaction jets or thrusters and solar radiation 

based attitude control. The magnetic attitude control uses magnetic-dipole to provide 

a continuous and smooth control. However, the level of torque is generally very low 

(1 - 10mNm) and insufficient to produce fast attitude manoeuvres. Also, it generates 

a control torque perpendicular to the local geomagnetic field vector which varies with 

altitude and inclination of the orbit. Due to this limitation, it is not suitable for three

axis control and is mainly used in momentum de-saturation. 

Reaction jets/thrusters provide torques of constant amplitude and modulated time du

ration. Their output is neither smooth nor linear. They can also excite structural vibra

tions. Thrusters are mainly used for fast/course attitude control. 

Torque obtained from solar pressure is not sufficient for using it in attitude manoeu

vring since the level of torques that can be produced are of the order of 10 - 20J.LNm. 
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Solar torques are sometimes used in geostationary satellite to counteract the parasitic 

solar disturbances acting on the spacecraft and provide active nutation damping to mo

mentum bias-controlled satellites. Solar control is feasible for satellite in which solar 

panel can be rotated with respect to spacecraft body, as in the case of geostationary 

satellites. 

Contrary to these actuators, momentum exchange devices transfer angular momentum 

to satellites without changing the angular momentum of overall system. The examples 

of this class of the actuators are reaction and momentum wheels, single and double 

gimbal Control Moment Gyros (CMGs) and variable speed CMGs. All these devices 

contain a rotating flywheels. Reaction wheels are the simplest and least expensive mo

mentum exchange actuators. Typically a reaction wheel system consists of a spin rotor, 

whose axis is fixed to spacecraft. To generate a torque about spin axis, the speed of 

the wheel is either increased or decreased, which is nominally held at zero. Reac

tion wheels provide continuous and smooth control with the lowest possible parasitic 

torques. The level of torque of reaction wheel is the order of 0.05 - 2Nm. Due to small 

torque capability of reaction wheels, they are not suitable for fast attitude maneuvers. 

Moreover, varying wheel speed can excite structural vibrations. 

Single Gimbal Control Moment Gyros (SGCMGs) are torque efficient actuators. They 

have been used in attitude control systems of spacecrafts and satellites. A SGCMG con

tains a spinning wheel with large angular momentum. The wheel is gimballed about 

an axis known as the gimbal axis. And this axis is perpendicular to the spin axis of 

the wheel and fixed with respect to spacecraft body. Directional change in angular 

momentum of the wheel produces a control torque orthogonal to both rotor spin and 

gimbal axes. Single gimbal CMG can achieve torque level of 200Nm due to torque 

amplification property. Due to this property of single gimbal CMGs, they can provide 

greater agility than reaction or momentum wheels. As a result CMGs are thought to 

be ideal actuators for missions with rapid slew rates and high pointing accuracy re

quirements. The main disadvantage of single gimbal CMG clusters is the existence of 

associated singular gimbal states or non-torque producing gimbal states referred to as 

singularities. CMGs are also used in momentum management of large spacecrafts. The 

single gimbal CMGs were used in spacecrafts like High Energy Astronomical Observa-
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tory (HEAO) and the Large Space Telescope (LST). Similarly, in large spacecrafts like 

Skylab and MIR space station, CMGs were used for attitude control and momentum 

management. Now miniature CMGs are replacing reactions wheels in new generation 

of low altitude Earth-imaging small satellites with significantly high agility and point

ing accuracy requirements. 

The Double Gimbal CMG (DGCMG) consists of a rotor suspended inside two gimbals 

able to be oriented on sphere along any direction. Double gimbal CMGs are mechani

cally complex and do not have torque amplification property. However, gimbal steering 

problem is simpler for DGCMG. The double gimbal CMG are now being used in space 

shuttle and International Space Station. 

A variable speed CMG is the single gimbal CMG where variation in wheel speed is al

lowed to improve the singularity avoidance property of the CMG cluster and to achieve 

the power control. In power management case, CMG wheels are spun up to store the 

energy and are then spun down to release the stored energy as per requirement. The use 

of variable speed CMG clusters has been studied for both attitude control case and for 

simultaneous control of attitude and power case. This simutaneous control case is also 

known as Combined Energy and Attitude Control (CEAC). 

Here we shall focus our study on SGCMG systems and it will be referred as CMG in 

rest of the discussion. The attitude control system using a CMG cluster requires a gim

bal steering law to generate gimbal angle trajectories corresponding to the commanded 

torque. We know that singular states of a cluster of CMGs are those sets of gimbal 

angles for which it does not produce any torque. Therefore, a steering law must have 

ability to avoid or pass or escape the singularity while minimally affecting the overall 

performance of closed-loop system. Usually for a full three-axis control cluster of four 

identical CMGs is used. A four CMGs cluster provides an extra degree of freedom, 

which can be used to produce null motion in order to avoid singularity. Null motion 

is the motion of gimbals which produces no torque. An optimal arrangement of four 

CMGs is pyramid with skew angle 54.73°, as it has almost spherical momentum enve

lope. In four CMG systems internal singularities pose a serious problem by restricting 

the available momentum space. In the development of steering laws researchers have 
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used different strategies for coping with internal singularities. These strategies mainly 

include avoiding, passing, escaping and excluding the singularities. However, develop

ment of an efficient steering law for a CMG cluster is still a major area of the research. 

In the literature available on the study of CMG systems, various steering laws have been 

proposed. All of them have their own advantages and disadvantages. Most of these 

steering methods are based on tangent approach which computes some inverse of the 

Jacobian matrix relating gimbal rate command to commanded torque. The most com

mon steering methods include Moore-Penrose steering law, Singularity robust steering 

law, Generalised singularity robust steering law, Exact steering law operating in con

straint work space and Singular direction avoiding steering law. Similarly steering laws 

using the variable speed CMGs are also proposed for attitude control only. 

We summarize some important shortcomings of these steering methods in order to 

make the scope of our research work clear. It is noticed that there is no exact steer

ing law which is able to use full momentum envelope. There is no singularity escaping 

law which can ensure high pointing accuracy. There are no inverse free steering law 

which is simple but effective and able to escape elliptic singularity. These questions 

provided prime motivation for this research. 

1.2 Motivation 

With the advent of small or so-called mini-CMGs, a new generation of small agile 

satellites are now thought to be viable option for Earth observation and space explo

ration missions. For their torque amplification property, CMGs are considered to be 

ideal actuators for missions where fast slew rate is required. However, singularities 

associated with single gimbal CMG clusters can have serious consequences for over

all performance of attitude control system if the steering law is not efficient enough. 

The motivation of this research is to study the problem of CMG steering in the face 

of singularity for the simplest case of twin CMG system and a complex case of four 

CMG pyramid systems. The focus of this research is to develop novel CMG steering 

techniques which are able to overcome some of the performance related limitations of 

existing steering laws. 
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The prime reason of understanding a twin CMG system is that it has been used in BIL

SAT (see in Fig. (1.1)) a 120kg Turkish mini-satellite built by Surrey Space Centre. 

BILSAT is in sun synchronous low earth orbit at 686 km and its miss ion includes full 

imaging of Turkey, stereoscopic imaging of selected targets and developing a digital 

elevation map of Turkey. It has four reaction wheels for attitude control and a twin 

CMG system as experimental payload to control pitch axis. Attitude control system 

of BILSAT is capable of full three axis control, off-nadir pointing to reduce the revisit 

time and pitch manoeuvre of ±30 deg for stereoscopic imaging. The mini-CMG unit 

designed and developed at Surrey Satellite Technology Limited (SSTL) for BILSAT 

application can be seen in Fig. (1.2). 

Figure 1.1: Computer image ofBILSAT (courtesy of SSTL). 

We consider the simplest form of twin type system made up of two single gimbal CMGs 

driven in opposite directions. Such system does not require matrix inversion for gimbal 

steering. Therefore, exact steering problem becomes a lot simpler and easier to under

stand. The study of such simple twin CMG system is thought to be helpful in finding 

some simple conditions on selection of feedback gains such that an exact steering law 

can exploit full momentum capacity of the CMG cluster. A four CMG pyramid type 

system employed for three-axis control of a satellite forms a highly nonlinear system. It 

has to be explored that how one can use full momentum capacity of a four CMG pyra

mid cluster through proper choice of feedback gains in some f01111 of exact \teering 
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Figure 1.2: Photograph of BILSAT's mini-CMG unit (courtesy of SSTL). 

law. The four CMG pyramid system is minimally redundant system. And the existence 

of internal singularities (elliptic) in pyramid systems can restrict the available momen

tum space for a number of existing steering laws. Although the six CMG system can 

provide a larger momentum space including no internal singularities (elliptic), but this 

system is too heavy and complicated as compared to a four CMG system. Therefore, 

it was deemed necessary to develop a new exact steering law which can avoid elliptic 

singularity in order to use full momentum space. By definition an Exact Steering Law 

is not singularity robust, so it can not escape an initial elliptic singUlarity. The existing 

singularity escaping steering law namely Generalised Singularity Robust (GSR) pro

duces pointing error while escaping elliptic singUlarity. Therefore, there is need for a 

steering method which can escape elliptic singularity with high pointing accuracy. The 

concept of inverse free steering has attracted attention of many researchers while they 

were attempting a singularity free solution. However, the results of such attempts were 

not always simple e.g. one of such approach required training of neural networks in 

somewhat cumbersome framework. Therefore, a quest for simpler but effective inverse 

free steering approach remained there. 

1.3 Aims and Objectives 

The aim of this research is to develop new exact steering laws for a cluster of CMGs 

which can effectively avoid and/or escape singularitie in order to use full extent of 
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momentum capability of a cluster. To achieve this aim the following objectives were 

setout. 

• To study and explore the selection of feedback gains such that an exact steering 

law can use full momentum capacity of a CMG cluster under various constraints 

like slew rate limit, gimbal rate limit and singularity avoidance. 

• Existing steering laws based on inversion of Jacobian matrix generally have prob

lem in exploiting full momentum capability of a CMG cluster due to internal 

singularity (elliptic). Our second objective is to develop a new exact steering 

technique which can avoid elliptic singularity in order to use full momentum ca

pacity. 

• To develop a new singularity escaping steering law with high pointing accuracy. 

• A singularity-free steering can be stated as the ultimate goal of CMG steering 

problem. Our final objective is to develop some simple but effective inverse-free 

steering law in order to achieve singularity-free steering. 

1.4 Achievements 

In this thesis following achievements are made: 

• An analytical formulation is developed to calculate feedback gains to be used 

in the exact steering law for twin CMG systems such that singUlarity is avoided 

while using the full momentum capability. This formulation has been developed 

for both free and constrained gimbal rates. 

• We have also developed a simple but effective variable feedback gains steering 

technique for twin CMG systems. 

• The idea of feedback gains' formulation has been extended to a three-axis control 

problem of a satellite equipped with a four CMG pyramid system such that the 

exact steering law (proposed by us) can use full momentum capability of the 

CMG cluster by avoiding elliptic singUlarity. 
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• An exact steering law based on generalised-inverse is proposed and developed for 

a cluster of CMGs which can avoid elliptic singularity to be able to use almost 

full momentum capability. Another important feature of proposed steering is 

that it can bring gimbal configuration back to initial zero state at the end of a 

manoeuvre. 

• A new singularity escaping steering law is proposed and developed which has 

been shown to escape the elliptic singularity far too quickly and has much higher 

pointing accuracy as compared to Generalised Singularity Robust Law. There

fore, this proposed law is suitable for fast-tracking manoeuvres. 

• A new Inverse-free steering law is proposed and developed. The proposed steer

ing law is much simpler and effective. Stability proof of the proposed steering 

law using Liapunov stability theory is also presented. Its modified form has been 

shown to escape elliptic singularity. 

The steering laws developed in this thesis have novelty at their heart and potential to 

tackle the singularity in one way or the other. 

1.5 Novelty of Research 

Given the scope of the mini-CMG clusters as the attitude actuator in new generation of 

Earth-imaging small agile satellites, the research work presented in this thesis has the 

following novel contributions to the research area of the CMG steering laws: 

• The proposed feedback gains formulation for twin CMG system based on phase

portrait analysis improves the understanding of the selection of feedback gains 

to be used in exact steering law subjected to various constraints namely slew rate 

limit, gimbal rate limit and singularity avoidance. 

• The proposed variable gains exact steering law contributes in the area of adaptive 

steering law for twin CMG systems. For this case a new feedback formulation 

based on phase-portrait analysis is developed and a simple form of singularity 

index is used to vary the gains. 
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• A three-axis control problem using four CMG system is reduced to a non-linear 

damped pendulum problem by applying Euler's eigenaxis theorem. Then exten

sion of proposed feedback gains' formulation to this problem is made possible 

by introducing a new angular variable representing angular momentum. 

• The concept of steering law based on generalised-inverse rather than pseudo

inverse of Jacobian matrix is novel and it is first time proposed and successfully 

used by the author. 

• We have proposed and developed a novel singularity robust steering law which is 

also based on generalised-inverse of Jacobian matrix. In order to make generalised

inverse singUlarity robust, this method introduces a minimal perturbation only in 

singular direction. This steering law can escape elliptic singularity very quickly 

with high pointing accuracy. 

• The form of inverse-free steering law developed in this thesis is new and it is 

much simpler but effective. 

1.6 Overview of this Thesis 

In this section, an overview of this thesis is presented. In chapter 2, literature regarding 

attitude control of satellites using CMG systems is reviewed with special emphasis on 

CMG steering laws. 

In chapter 3, mathematical model of a spacecraft using momentum exchange devices is 

derived. A quatemion feedback law for such system is also derived for a general class 

of manoeuvre using Liapunov approach. This elaborate attitude dynamic and control 

formulation is then simplified to discuss special cases of momentum wheel, constant 

speed CMGs and variable speed CMGs. 

In chapter 4, we have discussed a single axis rest-to-rest manoeuvre for a satellite 

equipped with twin CMG system. The proposed formulation of feedback gains based 

on a simple analysis makes exact steering possible such that full momentum capacity 

of a twin CMG system is used by just avoiding singUlarity. When some explicit gim

bal rate limit is incorporated in the proposed feedback gain formulation then reSUlting 
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manoeuvre has shown to become near-time-optimal. This chapter also includes the 

discussion on a new proposed idea of variable gains for single axis control of satellite 

using twin CMG systems. 

In chapter 5, we discuss the exact steering in four CMG pyramid systems. Proposed 

feedback gains' formulation developed in chapter 4 is extended to a three-axis control 

problem. For four CMGs steering a new generalised-inverse based steering law is pro

posed in order to avoid elliptic singUlarity. This law gives exact steering while using 

almost full momentum capacity of the CMG cluster. 

In chapter 6, we have discussed singUlarity robustness of generalised-inverse based 

steering law. In simulation results proposed method has been shown to outperform the 

Generalised Singularity Robust (GSR) method. 

In chapter 7, a new inverse free steering law is proposed. This chapter includes a Lia

punov proof of stability of proposed steering law and simulation results demonstrating 

the effectiveness of this method for a reorienting manoeuvre of the satellite. 
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Chapter 2 

Literature Review 

2.1 Reorientation of Satellites 

In some satellite applications the primary mission tasks involve performing attitude 

manoeuvres during their life-span. The most common examples of such satellites are 

earth observation satellites and space telescope. The attitude or reorientation manoeu

vre of a satellite requires a feedback control law to generate a commanded torque. The 

attitude control problem of satellites has been studied extensively. In this section, we 

shall review various attitude control laws developed for reorientation manoeuvres of 

satellites. 

2.1.1 Nonlinear Attitude Control 

The rotational motion of a rigid satellite is governed by Euler equations. Due to non

linear nature of Euler equations, attitude kinematic equations and external torques, the 

attitude control problem is nonlinear for general large angle manoeuvres of satellites. 

Attitude dynamics can be linearized for small angle single axis manoeuvres and then 

a linear control law can be obtained by using linear control theory. In this subsection, 

however, we discuss a set of papers presenting nonlinear attitude control techniques. 

Many researchers have attempted to find an approximate solution to attitude dynam

ics/control problem. For example, Longuski [82] presented an approximate solution 

to Euler's equations and Euler angles for a near-symmetric satellite. One step further, 
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Chowdhry et al [25,26] studied the open-loop control of angular velocity by assuming 

that there was no direct control over one of the angular velocity components. Then a 

perturbation approach was used to vary control availability and parametric dependence 

of the solution was found. 

A polynomial form of feedback law to perform a nonlinear slew manoeuvre was pro

posed by Carrington and Junkins [22]. The coefficients of polynomial were determined 

by iteratively solving successive increasingly nonlinear systems. Dwyer [35] used the 

nonlinear rigid-body model for an asymmetric spacecraft to study the feedback con

trol under minimum energy constraint for large angle manoeuvre. In Ref. [36], Dwyer 

considers a nonlinear coordinate transformation for large angle reorientation problem 

of spacecraft to obtain a transformed equivalent linear system. Linear closed-loop con

trol methods are used to solve the transformed system, and the resulting solution is put 

through the inverse transformation to obtain a solution of the nonlinear system. It was 

shown that optimal command can be carried out exactly in the transformed system. 

In another class of nonlinear attitude control, a three-axes feedback law uses quaternion 

error vector and angular velocity vector with suitable gain matrices. Wie et al. [136] de

veloped a quaternion feedback regulator to perform eigenaxis rotations. That regulator 

included gyroscopic coupling term to cancel it from closed-loop system's equation. The 

quaternion feedback law for three-axis control has been used in this thesis to perform an 

eigenaxis manoeuvre. In an earlier work, Wie and Barba [132] proposed three distinct 

forms of quaternion error feedback laws for three axis reorientation manoeuvres. The 

stability proof of quaternion feedback control has been provided in Ref. [128]. Cristi 

et al. [32] provided a quaternion feedback control which is globally stable and needs 

no knowledge of the spacecraft inertia matrix. This is an excellent property for con

trol of a modular space station. Most of these papers discuss nonlinear attitude control 

techniques for large angle manoeuvre of rigid satellites without mentioning or model

ing means of control actuation. In principle, these control strategies can be considered 

valid for any type of actuators but in practice the type of the actuator puts some ex

tra constraints on dynamic variables (slew rate and control torque) and/or on feedback 

gains to be used in a feedback law. For example, Wie and Lu [135] incorporated the 

slew rate and control torque constraints in the quaternion feedback control. Wie et 
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al. [131] developed a nonlinear feedback attitude controller for an agile spacecraft that 

required a rapid re-targeting and fast transient settling. This feedback law uses variable 

limiter on quaternion error and it is subjected to various physical constraint like actu

ator saturation, slew rate limit and bandwidth limit. This technique was tested for an 

agile imaging satellite equipped with four CMG system in low Earth orbit. It appeared 

to have worked successfully in pointing the line of sight toward mUltiple targets on the 

ground, which shows a rapid multi-target acquisition and pointing capability of this 

control law. However, we think that there can be an alternative approach of incorporat

ing the actuator's capability in the feedback law. This alternative approach constrains 

the feedback gains rather than constraining the control torque or putting variable limiter 

on quaternion error for a CMG based attitude control. 

2.1.2 Optimal Control 

The time-optimal attitude manoeuvre seeks to minimize the time required to rotate the 

satellite from some initial to final orientation. Maximum principle of the optimal con

trol theory is used to formulate an optimal control problem. In the formulation, total 

manoeuvre time is used as performance index to be minimized subjected to the dy

namic constraints given by nonlinear attitude model (Euler equations and quaternion 

kinematic equations) of a rigid satellite. The resulting formulation forms a two-point 

boundary value problem. In general, this problem has no known analytical or numerical 

solution unless solved for specific examples. For a single axis rotation about a princi

pal axis a time-optimal control results in a bang-bang solution. Control command for 

the bang-bang solution remains saturated in either direction for the entire manoeuvre 

with at most one switch. And the switching time of the control command is determined 

by computing a mathematically defined switching function in order to find the instant 

when it changes its sign. That instant is the required switching time for bang-bang 

control command. A three-axis time-optimal attitude control has at least three indepen

dent control inputs. Therefore, in multi-input time-optimal control at least one input 

remains saturated all the time and the task of the optimization scheme is to compute the 

switching times of these inputs. 

The problem of time-optimal manoeuvre has been studied by many researchers. Scrivener 
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and Thompson [103] presented a survey of the major contributions in this area. The 

early work on optimal control was only able to generate suboptimal solutions due to 

various assumptions to simplify the complexity and avoid the impracticality of control 

implementation [57]. In formulation of the time-optimal attitude manoeuvre problem, 

Vadali et al [121] have shown that the quaternion constraint leads to transversality con

dition requiring the co-state to be orthogonal to the quaternion vector. In a further 

development, Vadali [119] has shown that in time-optimal control, the control profile is 

independent of constraint multiplier. Vadali and Junkins [122] used an optimal control 

technique to achieve optimal momentum transfer. Then in Ref. [123] they analyzed the 

Liapunov stability of a simple spacecraft configuration for the closed-loop control of 

rest-to-rest and tracking manoeuvres. 

Iwens [49] developed a quasi-time-optimal control for a reorientation manoeuvre of 

spacecraft equipped with a CMG system. This work had considered the eigenaxis 

manoeuvre as a time-optimal manoeuvre. A bang-bang control was used to gener

ate angular velocity profile and a feedback controller was used to track these open-loop 

profiles. Li and Bainum [75, 76] assumed that the time-optimal solution lies close 

to eigenaxis rotation for developing a near-time optimal iterative technique of finding 

control profile and minimum time for the manoeuvre. Etter [38] presented a technique 

of achieving a time-optimal rotation about an eigenaxis of an asymmetric spacecraft. 

Billimoria and Wie [14] made a significant contribution by demonstrating that for a 

three axis constraint control eigenaxis manoeuvre in general is not time-optimal. The 

time-optimal control is bang-bang in all three axes and results in a significant nutational 

component. The task of optimization is to find switching times from switching func

tions for each axis. These ideas were applied by Byers and Vadali [21] to formulate 

a method to compute solutions for the time-optimal control switch times in the reori

entation manoeuvres. In Ref. [20] a near-time-optimal manoeuvre was considered and 

different optimization methods for computing switching times were discussed. Junkins 

and Turner [53] presented methods for optimizing reorientation manoeuvres based on 

several different objective functions. In Ref. [117] stability analysis of attitude control 

problem was performed and optimality results were also discussed. Vadali and Krish

nan [125] developed a control strategy which involved an open-loop control law using 
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a parametric optimization scheme for reorientation of ground based test article. The 

gimbal angle commands generated by feed-forward control were then tracked by feed

back controller. They have compared the theoretical and experimental results, which 

are in agreement apparently. In Ref. [120] a near-time-optimal manoeuvre for large 

spacecrafts was discussed and experimental results were also presented. Skaar and 

Kraige [108] developed a near-optimal control algorithm for a general three-axes ma

noeuvre which used an open-loop optimal power criteria. 

2.1.3 Attitude Control: Other Related Issues 

The control law formulation for attitude control of satellites discussed above does not 

assume any specific actuation system but some of those use general features of the ac

tuation systems. In this thesis the attitude control problem has been formulated specific 

to single gimbal CMG systems. The feedback law assumes a fully actuated satellite. 

However, a nonlinear tracking controller for an under-actuated spacecraft can be found 

in Ref. [13]. Similarly, attitude stabilization of a satellite using only two momentum 

wheels was considered in Ref. [58]. Generally, attitude dynamics/control formulation 

assumes its decoupling from orbital motion unless stated otherwise. For example, one 

can see Lian et al [77] which discussed coupling of attitude and orbital motions of 

satellites through gravity gradient torque. They have shown the controllability of or

bital motion by controlling the attitude with reaction wheels or gas jets. 

2.2 Control Moment Gyros 

Research on CMG systems started in mid 1960s for their potential use in large space

crafts such as "Skylab". At that time, computational power of available on-board com

puter did not allow matrix inversion calculations. So a twin CMG system was a candi

date with their gimbals driven in the opposite directions [63]. However, a double gimbal 

CMG system consisting of three units was used in the Skylab with an approximated in

verse calculation involving only a transposed Jacobian [27, 29]. Liska [80] discussed 

the use of double gimbal CMGs for high accuracy attitude control. Ground test facili

ties for double gimbal CMGs, such as a platform supported by a spherical air bearing, 

were developed [54]. Since then study of double gimbal CMG has matured and they 
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are now being used in space shuttle and International Space Station. The use of single 

gimbal CMGs in spacecrafts like High Energy Astronomical Observatory (BEAO) and 

the Large Space Telescope (LST) has brought extensive study of such systems. For 

HEAO a roof type configuration was also a candidate for its simpler mathematical for

mulation. 

The use of single gimbal CMGs in the attitude control of spacecrafts was first pro

posed by Jacot and Liska [50]. In their treatment they omitted inertia of gimbal axis 

and used conservation of angular momentum approach. Colburn and White [28] dis

cussed the computational aspects of using CMGs in attitude control of spacecrafts. The 

early work on CMG based control of satellites can be found in Ref. [3, 31, 79]. They 

had discussed basic issues like CMG selection, design criteria and precision pointing 

control using CMGs. In large spacecrafts like Skylab and MIR space station, CMGs 

were used for attitude control and momentum management. The use of CMGs in space 

station applications has been studied in Singh and Bossart [107] and Bishop et al. [15]. 

They had separately developed highly linearized and axis decoupled feedback laws for 

CMG based control. However, these laws are not suitable for large angle reorientations 

or high angular rates. Another study was done for applications to space station, which 

combined CMGs and RWs for integration of attitude control and power storage. 

2.3 Applications of CMGs in Small Satellites 

Single gimbal CMGs are generally used in spacecraft missions with high agility re

quirement. But these devices were never used in small commercial satellites until re

cently. With the advent of small and inexpensive mini-CMGs, a new generation of 

small satellites can have significantly improved capability in terms of agility and point

ing accuracy, which was not possible with reaction wheels. Therefore, the low altitude 

imaging satellites can have high image acquisition rate. Hence, mini-CMGs provide a 

low cost and power-efficient solution to attitude control problem of small agile satel

lites, see Ref. [19, 23, 33,45, 68, 69, 70, 71, 95, 97]. 

Blondin [16] discussed the use of small CMGs in space missions. Roser and Sghe

doni [95] gave their proposal for designing mini-CMGs for future missions of ESA and 
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CNES. They presented a comparison of CMG systems with reaction wheel systems. 

Defendini [33] presented usage of mini-CMGs for agile satellite missions of Astrium 

France. Busseuil et al. [19] described the mini-CMG being developed in Alcatel, as 

well as development of their new steering law. Their proposed steering law is based on 

off-line calculations of gimbal angles necessary to perform a commanded manoeuvre. 

The resolution of mini-CMGs improves with the speed of rotor. But exiting mechanical 

bearing technology can not support very high speed of rotors as it allows physical con

tact which causes wear and prevents high rotational speed. On the other hand, magnetic 

bearings support the rotor without physical contact and therefore, are suitable for new 

generation of mini-CMGs with high accuracy requirement. Magnetic bearing improves 

the resolution of a CMG by a factor of 5. With this technology momentum wheels can 

be designed to operate at a high speed of 12000rpm. Salenc and Roser [97] also de

veloped mini-CMGs for small satellite applications. They proposed a combination of 

three existing steering techniques to avoid singularities. 

Surrey Satellite Technology Limited (SSTL) has been investigating and testing the 

mini-CMGs as an alternative to reaction/momentum wheels in advanced Attitude De

termination and Control Subsystems (ADCS) for its missions [68, 69, 70, 71]. SSTL 

has developed a Turkish micro-satellite BILSAT-l, for Earth imaging, which is equipped 

with a twin CMG system as an experimental payload [18]. In orbit performance of this 

system has also been checked. 

2.4 Other Applications 

Theory of a redundant CMG system has a direct application in the control of a redun

dant manipulator and vice versa. For example, in Ref. [9, 10] singularity analysis of 

the redundant manipulator have been studied. This is very similar to CMG singularity 

problem. In Ref. [11], they presented a comparison of a CMG system and a manipula

tor in terms of inverse kinematic problem and existence of singular states. Therefore, 

many aspects of the CMG based control are analogous to the control of multi-joint ma

nipulator. 

Recently, in Ref. [113], the CMG system has been used for the first time in attitude 
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control of autonomous underwater vehicle (AUV). A CMG system is employed for 

an active three-axis attitude control and stabilization in a zero-G class underwater ro

bot. The effectiveness of this control strategy has been demonstrated through series of 

experiments. In another development, Lim and Moerder [78] have studied the use of 

CMGs for attitude control of fixed-wing aircraft. They have also explored the interplay 

between conventional aerodynamic and CMG based attitude control. 

2.5 The Singularity Problem 

Despite many advantages of using a CMG system, associated singularities pose a se

rious problem for attitude control system. In a singular state, gimbal configuration is 

such that Jacobian matrix loses its rank and spacecraft loses control authority in a par

ticular direction, which is clearly undesirable. It was observed through various simula

tions that singularity problem can not be ignored and some sort of singUlarity avoiding 

control was required for this type of system. To visualize the singularities of a CMG 

cluster in all possible directions corresponding singular momentum surfaces are drawn 

in three-dimensional angular momentum space. These convoluted momentum surfaces 

constitute a momentum envelope. The outer surface of momentum envelope repre

sents the maximum momentum capability of CMG cluster in all directions, which also 

corresponds to saturation singularities. The inner convoluted surfaces in the momen

tum envelope represent the internal singUlarities. In a redundant CMG system gimbal 

configuration can be changed without changing the angular momentum of the CMG 

cluster. Such gimbal motion does not produce any torque, therefore, it is called null 

motion. Singularity avoidance by adding null motion has been studied. It was found 

that saturation singularities could not be avoided by adding null motion. Based on sin

gUlarity avoidance by null motion criterion, internal singularities were categorized as 

hyperbolic (escapable) and elliptic (inescapable) singularities. The singular surfaces 

which correspond to hyperbolic singularities are passable, whereas those which corre

spond to elliptic or saturation singularities are not passable. Thus the passibility of a 

singular surface determines the nature of the singUlarity. The convoluted nature of these 

singular surfaces prevents their simple anticipation and avoidance in steering laws. El

liptic singularities are especially problematic as they significantly reduce the available 
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angular momentum. Therefore, an effective steering law is needed such that elliptic 

singularities are avoided where it is possible, or rapidly escaped while minimizing their 

effect on attitude control. 

Singularity problem has been studied extensively by many researchers. Here we present 

a brief review of some important contributions regarding different aspects of singular

ity problem. Margulies and Aubrun [83] presented an elegant geometric representation 

and analysis of singularities associated with a CMG cluster. For a cluster of n CMGs, 

they had shown, there exist 2n singular gimbal states for any direction. The geomet

ric description of singular surfaces was used to explain the nature and passibility of 

singularities in a CMG system. They had analyzed the Moore-Penrose pseudo-inverse 

solution as a candidate for torque producing gimbal motion and null motion with view 

of avoiding singularity. There exist n - 3 parameters family of null motion for a clus

ter of n CMGs. Classification of singularities based on null motion is also discussed. 

Moreover, it is also discussed that null motion can be added to torque-producing mo

tion for achieving singularity avoidance. Bedrossian [9, 10] studied the singularities 

associated with redundant manipulators. His work involved classification of singular

ities. Tokar [115] gave description of the singular surfaces in terms of shapes, sizes 

and the workspace (useful region of the momentum envelope). In another work, he 

discussed the consideration of incorporating gimbal angle limits [114]. Then in a next 

paper, he discussed passibility of singular surfaces [116]. His conclusion was that a sys

tem with no less than six units would provide an adequately large workspace including 

no impassable surfaces. After this work, a six units symmetric system was designed 

for Russian space station MIR [37]. Kurokawa [66] formulated passibility of singular 

surfaces in terms of the geometric theory given by Margulies and Aubrun [83]. Then, 

Kurokawa and Yajima [65] clarified the existence of impassable surfaces in the roof

type system. In Ref. [34, 60, 130, 133] different aspects of singularity problem have 

been discussed, which include nature of singularities, singular momentum surfaces and 

null motion. Surface theory of differential geometry was employed to re-examine geo

metric properties of singular surfaces. The problem was illustrated for different CMG 

arrangement examples. Meffe and Stocking [84] presented topological mapping of 

singular surfaces for typical single gimbal CMG configurations. This study explains 
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construction, superposition and intersection of multiple singular surfaces. They have 

demonstrated the use of these concepts in CMG sizing and selection of the geometry of 

aCMG array. 

2.6 A Survey of Existing Steering Laws 

In this section, we present a survey of various steering laws and issues related to CMG 

based attitude control. Intensive efforts have been made to develop some efficient CMG 

steering technique. One may find a wide variety of steering techniques in the literature 

on CMGs. The main issues discussed in the papers are steering problem, singularity 

avoidance/escape, null motion, singularity robust steering, optimal steering, effect of 

disturbances on CMG steering and variable speed CMG steering for combined atti

tude/power control. It is worth mentioning that the steering methods obtained for CMG 

are applicable to robot manipulator control. In the following subsection, these issues 

will be tackled one by one. 

2.6.1 The Steering Problem and Singularity Avoidance 

Different aspects of CMG steering problem have been discussed by many researchers. 

O'Conner and Morine [87] proposed for the first time that gimbal rates rather than 

torque should be used as command input. They argued that friction on gimbal bear

ing was large enough to dismiss the torque as candidate input command. Perhaps the 

most important aspect of the steering problem is singularity avoidance/escape, as ex

actness and effectiveness of a steering method depend on its effective singularity avoid

ance/passing. However, a steering method avoiding/transiting one type of singularity, 

in general, may not be able to avoid/transit other type of singularity. The reason for 

this is the usage of gradient approach for deriving these steering laws, which considers 

the passibility problem as a local problem [30, 44]. The common example of gradient 

approach is Moore-Penrose inverse steering law. But, Baker and Wampler [6] have 

shown that local techniques do not guarantee singularity avoidance. A global steer

ing method was proposed in Ref. [90]. This method used global optimization which 

considered passibility as a global problem. But such optimization techniques are com

putationally intensive and can not be used in real-time applications. Kurokawa [61] 
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stated that no steering law can follow an arbitrary command inside certain wide re

gion of the workspace. And workspace must be reduced to obtain an exact control to 

exclude singularities. He achieved this exact control by applying a gimbal motion con

straint to exclude elliptic singularities from the workspace [62]. But, such attempts of 

excluding singularity results in significantly reduced the available momentum space. It 

would mean over-sizing of the CMG system or in other words wastage of resources. 

However, Wu [138] has proved the existence of nonsingular gimbal angle paths for re

dundant CMG systems. 

Cornick [30] has analyzed CMG steering for six CMG cluster. Two steering logics were 

proposed, one was direct method and other was called indirect method. Both methods 

computed location of singular states and used null motion to avoid these singularities. 

Although, Tokar [116] suggested that a system needs at least six units in order to pro

vide adequately large momentum space including no impassable surfaces. Even then 

the use of gradient method in roof type system may result in discontinuity [141]. There

fore, most of the steering laws were studied for pyramid type system containing four 

units (see Fig. 5.3), as six units system was considered too large and too complicated. 

Recently, Kurokawa [64] has used geometric view and analysis to survey singularity 

avoiding aspect of different steering laws. He concluded that no perfect steering law 

exists, especially for pyramid-type systems. 

In summary, CMG steering has mainly two common strategies to cope with problem 

of singularity. In first case, CMGs are over-designed to exclude singularities from 

workspace which is a wastage of resources. Whereas in second case approximate sin

gularity avoiding/passing algorithms are used at the expense of control accuracy. 

2.6.2 Singularity Robust Steering and Null Motions 

In a singularity robust steering, system can pass through singularity with some com

promise on performance of attitude control system. Singularity Robust (SR) Steering 

Law is a common example of this class of steering laws. The SR steering law was orig

inally developed for control of manipulator [85] and later it was used in CMG steering 

problem [11]. The SR solution is obtained by suitably changing the Moore-Penrose 
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solution in the vicinity of singularities. As a result SR technique computes an approx

imate finite solution of gimbal rates in the vicinity of singularities by allowing torque 

errors. However, this technique minimizes both gimbal rates and torque errors. The 

singularity robust (SR) steering law does not avoid singularity but it transit through 

singularity, therefore, this steering law is not able to use full momentum capability of 

CMG systems. The main disadvantages of SR technique can be summarised as: it has 

tendency of driving the CMG system to an elliptic singularity; it may cause a gimbal 

lock while passing through the singularity for excessive control effort; it restricts the 

available momentum space due to transit through elliptic singularity. 

Bedrossian et al. [8, 11, 12] presented a method of addition of null motion to torque pro

ducing motion in order to avoid singularity. In Ref. [11] a non-directional null motion 

is added to SR inverse and compared with Moore-Penrose inverse solutions. Addition 

of null motion locally increases the CMG gain, a measure of farness from the singular

ity. This results in avoidance of elliptic singularity with penalty of large gimbal rates 

and torque errors. 

The SR steering law was modified by Wie et al [128, 134] to form a Generalised Singu

larity Robust (GSR) steering law which was capable of escaping elliptic singularities. 

The modification is done by adding deterministic dither signal in off-diagonal terms of 

SR logic. Although this modified law is capable of using larger momentum space but 

it generates a pointing error. Therefore, this logic is not intended for missions in which 

exact attitude tracking is required. Wie [129] has further generalised the GSR steering 

law by including a weight matrix. It has been shown that a de-saturation manoeuvre 

is possible with this steering law provided weight matrix is chosen properly. However, 

the selection of the weight matrix, which makes de-saturation possible, is not obvious. 

The GSR steering law can not bring gimbal angles configuration back to initial state 

at the end of the manoeuvre rather null motion is added to it to perform this task. The 

performance of GSR steering law has also been tested for a CMG system with gimbal 

angle constraint of ±180deg in Ref. [67]. Here null motion is added to GSR steering 

law to prevent gimbal angles from going to the ±180deg. 

Ford and Hall [41,42] presented a steering law which avoids singular direction. In this 
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law, the pseudo-inverse of Jacobian matrix is computed from its singular value decom

position (SVD). And pseudo-inverse is made singularity robust by modifying inverse 

of the smallest singular value. Wu and Chou [137] proposed a method of detecting the 

avoidable singularities. This method computes the eigenvalues of a matrix which is 

Jacobian of null vector. If real part of even one eigenvalue is positive then singularity 

is avoidable. 

Oh and Vadali [88] formulated the complete equations of motion for large angle rota

tional motion of spacecraft equipped with a CMG cluster. The formulation included 

moment of inertias of spinning wheels and gimbal axes of the CMG units. They also 

presented some candidate feedback laws based on Liapunov stability approach. In one 

approach, they used variable gain matrix in order to avoid singularity. They proposed 

gimbal acceleration steering logic for the case where gimbal inertias are included. 

2.6.3 Optimal and Feed-Forward Steering Methods 

This class of steering law, generally, uses some optimization techniques for generat

ing gimbal angle commands corresponding to a specified manoeuvre with a clearly 

defined objective function and constraints. The optimization is performed off-line and 

a feedback law is used to track these commands. Paradiso [90] developed a method 

for global avoidance of singularities in a feed-forward steering law. This technique 

involves a gimbal path planing using global optimization to achieve singularity avoid

ance. Hoelcher and Vadali [47] proposed open-loop and feedback control laws which 

minimize control effort and maneuver time and also avoid singular states of the CMG 

clusters. Vadali and Krishnan [125] narrowed the focus exclusively to avoiding sin

gularities by parameterizing the gimbal rates as polynomial functions of time and op

timizing the parameters with respect to a singularity avoidance objective function. A 

feed-forward law is used to generate suboptimal gimbal angle commands, which are 

then tracked by a feedback controller. But due to off-line computation this steering 

technique may not be suitable for on-board applications. Going one step further, Vadali 

et al. [124] developed a method for determining a family of initial or preferred gimbal 

angles which would avoid singularities during the manoeuvre. These preferred angles 

are found by back integration of the gyro torque equation from a desired final condition. 
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A null motion based scheme is also developed to position gimbals at preferred angles 

at end of the manoeuvre. Avazini [5] developed a control strategy which involved a 

feed-forward command generation by an inverse simulation method that uses local op

timization to detennine a singularity avoiding steering law. Then a feedback controller 

is developed and used to track the generated trajectories. Fleming and Ross [40] used 

the time-optimal control strategy for a reorientation manoeuvre of spacecraft equipped 

with four CMG pyramid system. This is a computationally intensive strategy which 

results in apparent singularity avoidance because of generating preferred initial gimbal 

state as a result of optimization. It does not require an explicit computation of inverse 

of Jacobian matrix. 

2.6.4 Inverse-Free Steering Methods 

Krishnan and Vadali [59] introduced an inverse-free technique to steer a CMG cluster, 

which uses transpose of Jacobian matrix. It uses radial basis function to parameterize 

nonlinear terms in attitude controller. They have discussed validity of this law using 

Liapunov's stability argument. This law generates finite gimbal rates while passing 

through singularity. But this steering law can not use full momentum capability as slew 

rate or momentum saturates at elliptic singularity. In another approach of inverse free 

steering, Avazini [4] formulated gimbal angle commands for a desired manoeuvre. This 

approach uses static inversion of kinematic relation between gimbal angles and angular 

velocity of spacecraft. Then formulated gimbal commands are tracked. The resulting 

steering technique does not avoid elliptic singularity, therefore, available momentum 

capability can not be fully utilized. Suzuki [111, 112] developed robust attitude control 

for a ground test facility using CMG system. Recently, Pechev [91] has developed a 

control strategy for attitude control using CMGs. This method detennines the gimbal 

rate commands which minimizes H-infinity norm of torque errors in all three directions. 

Results show that it escapes elliptic singularity with some pointing error. 

2.6.5 Effects of Disturbances 

In some studies, external disturbance torques were also considered to analyze more 

realistic situations. Heilberg [45] gave description of disturbance sources for space-
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crafts using single gimbal CMGs for pointing control. They have designed a filter to 

mitigate these disturbances. Furthermore, Heilberg et al. [46] developed mathematical 

model for spacecraft equipped with CMG cluster, which includes unbalanced forces 

on the momentum wheel and unbalance moment caused by other sources. Rokui and 

Kalaycioglu [94] used feedback linearization technique to control satellites equipped 

with single gimbal CMGs. Skelton [109] developed mixed control strategies based on 

Liapunov and feedback linearization. It uses single gimbal CMGs for course large an

gle slew manoeuvre and momentum wheels for precise control and reduction of error 

caused by initial conditions. One source of pointing error is the limit cycle caused by 

friction in gimbal motor [104]. Researchers have tried to resolve this issue by improv

ing the motor control and canceling the disturbance torque by employing the reaction 

wheels [96]. Paradiso [89] has presented a study which combines CMGs and reaction 

wheels for an effective control. However, this problem has not been yet fully resolved. 

The attitude control of a flexible spacecraft using CMG system has been studied in 

Ref. [56]. The issue of singUlarity avoidance in the presence flexible modes has been 

discussed. The issues related to different disturbances, briefly discussed in this subsec

tion, are beyond the scope of this thesis. 

2.6.6 Variable-Speed CMG Steering Laws 

Optimal control of a spacecraft equipped with a cluster of variable speed CMGs was 

developed by Liu et al [81] in one of the earliest work. The singularity avoidance by 

using variable speed CMG was considered by Schaub and Junkins [98, 100, 101, 102]. 

They developed a variable speed CMG steering law and null motion for attitude con

trol. However, their method generates excessive variations in the wheel speed which 

is beyond the torque capability of available wheel motors. In Ref. [72] we have pro

posed a variable speed CMG steering technique for passing through singularities with 

good pointing accuracy as well as small wheel speed variations. This technique uses 

Generalised Singularity Robust (GSR) law for CMG mode and reaction wheel mode 

of VSCMGs is only used for compensating attitude drift caused by GSR method. In 

Ref. [74] a game theoretic approach is used to minimize gimbal rates under an in

equality constraint condition for singularity avoidance. In simulation results they have 

used preferred initial gimbal angles so effectiveness of singularity avoidance of their 
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method can not be judged. Ref. [73] has developed an optimal steering strategy for 

CMGsNSCMGs which avoids singularity by varying the wheel speed. 

2.6.7 Combined Power and Attitude Control 

Fly-wheel based system providing both energy and attitude control was proposed in 

Ref. [39, 43, 118]. Variable speed CMGs can also be used for combined attitude and 

power tracking [93, 126, 139, 140]. Varatharajoo and Fasoulas [126] discussed the fea

sibility of combined attitude and power control strategy on small satellites using mo

mentum wheels. Whereas, Yoon and Tsiotras [139] presented an integrated approach 

of attitude and power control for spacecrafts using VSCMGs. They also presented in

direct adaptive control for spacecrafts with uncertain inertia properties. They further 

studied the singularity problem of VSCMG clusters used for attitude tracking with and 

without power tracking requirement in Ref. [140]. They managed to develop a crite

rion to determine usable momentum workspace for this method. This workspace can 

be used in CMG sizing for specific mission requirements. Ref. [92] has presented the 

optimal sizing of miniature variable speed CMGs for combined power and attitude con

trol. The optimization of design uses nonlinear programming technique. The variable 

speed CMG steering is beyond the scope of this thesis and this discussion is included 

only for the sack of completeness. 

2.7 Summary 

In this chapter, we have reviewed some major issues related to CMG based attitude 

control problem. We have discussed the development of quatemion error feedback law 

and time-optimal control law for rigid body's rotational motion. Different applications 

of CMGs are also discussed. A brief review and explanation of singularity problem 

has been presented. Then we have discussed merits and demerits of various existing 

steering laws and strategies. 

In next chapter, we shall develop mathematical model of rotational motion of a satellite 

equipped with CMGs (or momentum exchange devices). The attitude feedback law 

will also be developed. Issues related to CMG based control will be further explained. 
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Chapter 3 

Rigid Body DynaDlics with MODlentuDl 

Exchange Devices 

3.1 Introduction 

In this chapter, we have formulated the attitude dynamics and control of a rigid space

craft equipped with momentum exchange devices. The detailed discussion of the atti

tude dynamics and control problem can be found in many references [24, 48, 51, 52, 

55, 86, 106, 128]. The formulation of attitude control problem involves definition of 

attitude variables of spacecraft body with respect to a suitable reference frame, attitude 

kinematic equations, dynamic equations and attitude control law. A detailed descrip

tion of different attitude representations and their respective kinematic relations can be 

found in Ref. [99, 105]. Here we have described Euler angles and quaternion based 

attitude kinematics. 

We have formulated a detailed mathematical model of rigid body dynamics of a satel

lite equipped with momentum exchange devices. Our formulation attempts to gener

alise the mathematical model developed by Oh and Vadali [88]. They have presented 

attitude dynamic model for a rigid spacecraft equipped with a cluster of constant-speed 

CMGs with diagonal inertia matrices. Whereas we have developed a model for rigid 

spacecraft equipped with momentum exchange devices which include reaction wheels, 

momentum wheels, constant speed CMGs and variable speed CMGs. Moreover, ini

tially we have not assumed that inertia matrix of each device is diagonal rather we 
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have introduced this assumption later in the derivation after developing generalised re

lations. Then Liapunov stability theory is used to find a stabilizing attitude control law 

for a generic attitude model. Finally, special features of attitude dynamics and control 

of using reaction/momentum wheels, constant speed CMOs and variable speed CMOs 

are discussed. 

3.2 Attitude Representation 

The attitude of a rigid spacecraft is the orientation of the body fixed frame FB with 

respect to a reference frame FA. The choice of axis system FA depends on the tasks 

of a satellite. In earth-orbiting satellites, orbit reference frame is chosen as a reference 

system to determine the attitude. The origin of this frame moves with c. g. of satel

lite. The X-axis points toward direction of motion of satellite in the orbital plane. The 

Z-axis points toward center of the earth in the orbital plane. And the Y-axis completes 

the right-handed axis system. Therefore, the attitude of satellites in Earth orbits is, in 

general, measured with respect to this orbit reference frame. 

The attitude of a rigid body can be described in various ways namely Euler angles, 

Rodrigues parameters, modified Rodrigues parameters and the quatemion parametriza

tion. Euler angles and Rodrigues parameters are three parameters representations where

as quatemion is a four parameters representation. The three parameters representations 

always exhibit singular orientations whereas the four parameters representation is sin

gularity free. In this chapter, we shall present some necessary details of Euler angles 

and quatemion representation and more details can be found in number of books on 

attitude dynamics [24, 48, 52, 55, 98, 106, 127, 128]. 

3.2.1 Euler Angles 

Three Euler angles are used to represent the attitude of a rigid body in space. A general 

rotation in terms of Euler angles is defined as successive angular rotations about three 

different axes of rotated intermediate frames. For a set of Euler angles () = [Bx) By) Bz]T 

the sequence of three successive rotations can be written as 

F (}Z F (}Y F (}x F 
A ----+ A' ----+ A" ----+ B 
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Here FA' and FA" are intennediate frames. The basic rotation matrices are defined as 

follows: Rotation about z-axis of reference frame FA is 

cos Bz sin Bz 0 

C z (B z) = - sin B z cos B z 0 (3.2.1) 

o o 1 

Rotation about y-axis of reference frame FA' is 

cosBy 0 - sin By 

C y (By) = 0 1 0 (3.2.2) 

sin By 0 cosBz 

Rotation about x-axis of reference frame FA" is 

1 0 0 

C x (Bx) = 0 cos Bx sinBx (3.2.3) 

0 - sin Bx cos Bx 

The overall transfonnation matrix or direction cosine matrix from FA to FB is 

After using the basic rotation matrices given in Eq. (3.2.1,3.2.2,3.2.3) we get 

cos By cos Bz cos By sin Bz - sin By 

C sin Bx sin By cos Bz - cos Bx sin Bz sin Bx sin By sin Bz + cos Bx cos Bz sin Bx cos By 

cos Bx sin By cos Bz + sin Bx sin Bz cos Bx sin By sin Bz - sin Bx cos Bz cos Bx cos By 

There are two distinct types of Euler angle rotations. In first type successive rotations 

are about each of three axes whereas in second type first and third rotations are about 

same axis with the second rotation about one of the two remaining axes. The first 

type of rotation has six possible orders of successive rotations each corresponding to 

a distinct set of Euler angles: X-ty-tZ, X-tZ-tY, Y-tX-tZ, Y-tZ-tX, Z-tX-ty and 

z-ty-tx. Similarly second type of rotation also has six possible orders of successive 

rotations: X-ty-tX, X-tZ-tX, Y-tX-tY, Y-tZ-tY, Z-tX-tZ and z-ty-tz. Therefore, 

there are in total twelve distinct sets of Euler angles. Each set fonns a distinct trans

fonnation matrix C. The choice of a set of Euler angles depends on the application. 

One can find a detailed description of attitude transfonnation using these distinct sets 
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of Euler angles in text books like one by Hughes [48]. 

We shall see later that attitude kinematics based on Euler angles can become singular 

for certain orientations. The four parameters attitude representation or quatemion can 

solve this problem of singularity. 

3.2.2 Quaternion 

The quatemion representation of attitude of a rigid body is based on Euler's eigenaxis 

theorem, which states that a general rotation in space is a rotation about some fixed 

axis. This fixed axis is also called eigenaxis as it is an eigenvector of direction cosine 

matrix C with eigenvalue of unity. Therefore, to represent attitude by quatemion we 

need to know a rotation angle f) and direction cosines of the fixed axis or eigenaxis e. 

We have 

Ce=e. 

If ex, ey and ez are direction cosines of the eigenaxis e then these direction cosines are 

identical both in inertial frame FA = {aX) ay) az} and in body frame FB = {bx) by) bz} 

1.e. 

e exax + eyay + ezaz 

exbx + eyby + ezbz. 

The quatemion or Euler parameters for a rotation angle f) about the Euler axis e can be 

defined as 

f) 
qo cos -

2 
f) 

ql ex SIll 2 
f) 

q2 ey SIll 2 
f) 

(3.2.4) q3 ez SIll 2· 

The four elements of quatemion satisfy a simple normalization constraint 
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This equation defines a four dimensional unit sphere. The quatemion trajectories on this 

sphere completely describe any possible rotational motion without any singularity. The 

transformation or direction cosine matrix in terms of quatemion can be parameterized 

as 

1 - 2(q~ + q~) 2(qlq2 + q3qO) 2(qlq3 - q2qO) 

c= 2( ql q2 - q3qO) 1 - 2(qi + q~) 2(q2q3 + qlqO) 

2(qlq3 + Q2qO) 2(Q3Q2 + QlQO) 1 - 2(Qi + Q~) 

3.3 Rotational Kinematics 

In this section, we present the formulation of rotational kinematics of spacecraft. The 

kinematic equation relates the angular velocity of the rigid body to the attitude variable 

rates. In general for a given direction cosine matrix C transforming vectors from frame 

FA to frame FB and angular velocity w expressed in frame F B, we have 

(3.3.5) 

In the following subsections, we shall present the kinematic equation specific to Euler 

angles and quatemion representations. 

3.3.1 Euler Angles 

Euler angular rates iJ = [Bx By Bz] T are related to angular velocity w expressed in 

frame F B through a kinematic equation. In order to derive this equation for z~y~x 

order of successive rotations, we write vector sum of angular velocity vectors of each 

rotation expressed in frame FB as 

w = Bxi + C x (Bx) By] + C x (Bx) C y (By) Bzk 

1 0 0 
A A A 

where i = 0 
. 

1 k= 0 ,J = , are standard unit vectors of the rotation axes 

0 0 1 
expressed in respective frames. Then the required kinematic equation is 

iJ = S (6) w, (3.3.6) 
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where 

1 tan ey sin ex tan ey cos ex 
8 (0) = 0 cos ex - sin ex 

o sin ex sec ey cos ex sec ey 

for ey =I ±~. For any particular application the order of successive Euler rotation is 

chosen such that this singularity of matrix 8 does not appear in the operating range of 

angles. 

In attitude control problem the orbital motion is usually ignored as both motions can 

easily be decoupled. However, in momentum management, inclusion of orbital motion 

becomes necessary. In more realistic cases, spacecraft's orientation is measured with 

respect to orbital reference frame. This is a non-inertial frame orbiting about earth with 

mean orbital rate 1]. Then angular velocity vector of body with respect to inertial frame 

IS 

w = 8-1 (0) iJ - C (0) no] 

where no is mean orbital motion. Therefore, the kinematic equation incorporating the 

orbital motion of orbital reference frame is given by 

iJ = 8(0) (w + C (0) no]) . 

3.3.2 Quaternion 

The kinematic equation for a rigid spacecraft in terms of quatemion can be expressed 

as 

q 

1 T --w q 
2 

1 
- (qow - w x q) . 
2 

(3.3.7) 

where q = [q1 q2 q3] T is the vector part and qo is the scalar part of the quatemion. 

The attitude error or relative orientation in terms of quatemion (qoel qe) is defined as 

(3.3.8) 
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Here qif (for i = 0, ... ,3) are commanded quatemion parameters representing the de

sired orientation of spacecraft. If W f is desired angular velocity vector then quatemion 

error rate is defined as 

(3.3.9) 

3.4 Spacecraft Attitude Dynamics 

In this section, we shall develop the equation of attitude motion of a rigid spacecraft 

equipped with an array of n momentum exchange devices. These devices are used 

as control actuators for manoeuvring spacecrafts. Momentum exchange devices in

clude variable Speed CMOs, fixed speed CMOs, momentum wheels (MW), and gim

balled momentum wheels (OMW). Such equations have been formulated by Dh and 

Vadali [88], Schaub and Junkins [101] and by many other researchers. They have 

discussed attitude dynamics/control of spacecraft equipped with CMOs. Some other 

researchers have used mixed CMOs and RW for development of attitude dynamic equa

tion [109]. We shall generalise the work of Dh and Vadali [88] which presents math

ematical model for fixed speed CMO clusters to a generic formulation for momentum 

exchange devices. 

In the development of the equation of motion we shall consider three frames of ref

erence. First is inertial frame FA, the angular velocity of the body is measured with 

respect to this frame. Second is body frame F B , fixed to body of the vehicle. And 

third is a reference frame F Ci associated to ith device in the cluster. For a general case 

FCi is oriented with x-axis along wheel's spin axis, y-axis along gimbal axis and z-axis 

completes a right-handed axis system as shown in Fig. (3.1). It should be noted that 

this frame is fixed with respect to body frame for MWs but it can rotate about gimbal 

axis for gimballed devices. Now we shall discuss the kinematics involved in transform

ing device frame FCi to body frame F B. Let {Yxi'Yyi,Yzi} be the unit basis of FCi 

expressed in FB then we can define a transformation matrix from FCi to FB as 

C T [A A A] 
i = 9 xi 9 yi 9 zi . (3.4.10) 
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The orientation of FCi in body is detennined by two angles the gimbal angle Oi (in case 

of MWs it will be a fixed orientation angle) and a fixed configuration angle {3i. Then 

transformation matrix relating frame FB to the frame FCi is defined as 

The matrix C ci depends on particular configuration, whereas 

cos Oi 0 - sin Oi 

Cgi(Oi) = 0 1 0 

sin Oi 0 cos Oi 

In the frame FCi 

0 

8i = Oi =8d 
0 

and 

[2i 
A 

Oi= 0 = [2ii 

0 

for i = 1,··· ,n, where [2i is spin rate of the ith wheel. Here {i,j, k} are standard 

unit basis of the frame FCi expressed in itself. The matrix C i exhibits the following 

properties: 

·T 
C· t 

where u and v are two arbitrary vectors. 

(3.4.11) 

(3.4.12) 

(3.4.13) 

Now we shall develop the dynamic equation. The Euler equation of the rigid body 

motion is 

iI + w x H = Text. (3.4.14) 

where H is the total angular momentum, w is angular velocity of the body and Text is 

external torque all expressed in the F B. The total angular momentum of the spacecraft 
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· 8. 
1 

Figure 3.1: A single gimbal momentum exchange device. 

equipped with a cluster of n momentum exchange devices expressed in F B is 

n 

H = I w + L ( cT J i8i + cT J in i) . (3.4. 15) 
i=l 

Here J i is the inertia matrix of the ith device expressed in F Ci and I is total inertia 

matrix of the spacecraft expressed in F B . If I s is inertia matrix of spacecraft without 

rotating devices then total inertia matrix of spacecraft is given by 

n 

I = I s + L cT J iC i· (3.4.16) 
i=l 

We can re-write total angular momentum equation (3.4.15) in a compact matrix form 

as 

Here n = andb= 

Dn 

D o 

B 

are n-dimensional vectors and 

5n 

T A 

[C I J I i 
T A 

C 2 J 2 i 
T A 

C nJ nij. 
T A 

[C I J Ij 
T A 

C2 J~ 
T ' 

C nJ nj j . 
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are matrices of order 3 x n. Substituting Eq. (3.4.17) in Eq. (3.4.14) we get 

Iw+iw+B8+B8+Don 
+Don + wX(Iw + B6 + Don) = Text. (3.4.20) 

In this equation some terms need further simplification and compactness. We shall 

explain the terms one by one and reduce them to some compact form. 

1. Term W X Don 

Total angular momentum vector due to spinning wheels of momentum exchange 

devices is 
n n 

i=l i=l 

where hi is angular momentum of ith device. Rotation of the vehicle causes a 

rotation of the vector h with respect to inertial frame. It generates the torque 

wXh. 

2. Termw x B6 

It is torque due to directional change of gimbal angular momentum caused by 

angular motion of vehicle. We define 

to simplify the term. 

3. Term Don 

It is torque due to directional change of angular momentum. We take 

n 

Don = L 6~ Jini 
i=l 

i=l 

t (en) x eT J,n,8, 
i=l 

n 

LY;ihiJi 
i=l 

D 16, 
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where 

4. Term B8 

This torque will only be generated when inertia matrix of devices J i is not diag

onal in FCi. For a generic formulation we keep this term. We start with 

where 

5. Termlw 

n 

B8 = L6~ J i8i 

i=l 

i=l 

t (en)' eT JJci; 
i=l 

n 

LiJ;ibi8; 
i=l 

It is torque due to variation of total inertia of spacecraft caused by internal moving 

parts. This term is given by 

n 

i=l 

where J~ is inertia matrix of ith device expressed in F Band 

D [ AX Jb bX A x Jb bX 
A x Jb bX

] 
3= 9

Y
l lW- lW, 9 y2 2W - 2 W , ". 9 yn n W - nW' 
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After substituting new forms of these terms in Eq. (3.4.20) we get 

Iw = -BJ - (Dl + D2 + D 3 ) 8 - Don - wX(Iw + h) 

-D4diag(51 ) 52)'" 5n )8 + Text. (3.4.21) 

So far we have derived a generic dynamic equation of a spacecraft equipped with n 

momentum exchange devices. However, it is quite reasonable to assume that inertia 

matrix associated to each device is diagonal in respective FGi i.e. 

This would simplify the expressions for matrices B, Do, D 1, D 2 , D 3,and D4 involved 

in Eq. (3.4.21). We explain this simplification in the following steps. 

1. Matrix B 

The ith column vector of matrix is 

Therefore, 

2. Matrix Do 

The ith column vector of matrix is 

Therefore, 

3. Matrix Dl 

The ith column vector of matrix is 

Therefore, 
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4. Matrix D2 

The ith column vector of matrix is 

w x b,; J ( A + A A ) X A • yi wxigxi Wyigyi + wzigzi gyi 

-Jyiw zi9xi + JyiwxifJzi 

Here (WXi) Wyi) Wzi) are components of w expressed in FCi. Therefore, 

5. Matrix D3 

The ith column vector of matrix is 

A x Jb bX 
gyl IW - I W 

Therefore, 

D3 = [(JzI - J yl )Wzl9xl + (Jyl - J xl )Wxl9zI (Jz2 - J y2 )Wz29x2 + (Jy2 - J x2 )Wx2 

'" (Jzn - J yn )Wzn9xn + (Jyn - J xn )Wxn9zn] 

6. Matrix D4 

The ith column vector of matrix is 

o 

Therefore, matrix D4 vanishes for diagonal inertia matrices J i . 

In next section, we shall derive a feedback law for three-axis control of a spacecraft 

equipped with n momentum exchange devices. 

3.5 Three-axis Feedback Control 

In this section a state-feedback law is formulated for the attitude control of spacecraft 

with a cluster of n momentum exchange devices. Oh and Vadali [88] have used Li

apunov stability theory in order to derive attitude feedback law for fixed speed CMG 
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clusters. Here we shall generalise their formulation for a cluster of momentum ex

change devices. A detailed description of Liapunov theory can be found in Ref.[110]. 

If (qaf, q f) is the desired quatemion and W f is desired angular velocity then a candidate 

Liapunov function can be written as 

Where [ :: ] = lie is error quatemion defined by Eq. (3.3.8) and KI' I> O. 

The time derivative of Liapunov function is 

(3.5.22) 

v = 2q~ iJe + 2 (qoe -l)qoe + (w -Wf)T Kl1 J(w - wf) + ~(w - Wf)T Kl1 j(w - wf)· 

(3.5.23) 

We take 

By substituting qe' qae from Equations (3.3.9) and W from Eq. (3.4.21) and after sim

plifying we get 

v = -(w - wf)TK1
1(-K 1qe + Don + B8 + D8 +wX(Iw + h) - Text + IWf)· 

(3.5.24) 

where 

For V to be negative semi-definite we choose 

where K 2 > O. Therefore, 

After rearranging Eq. (3.5.25) we get 
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The terms on right-hand-side of Eq. (3.5.26) constitute control torque T c or required 

torque whereas terms on left-hand-side are output torque of exchange devices. Thus 

the equation 
. .. . 

Don+B8 +D8 = Tc 

is a general form of steering equation. If the gimbal commands 8, 8 and rotor command 

n are such that the output torque and required torque satisfy the equation (3.5.26) then 

closed-loop system equation can be written as 

I(w - wf) = -K1qe - K 2 (w - wf) - ~(D3 - D5)8. 
2 

(3.5.27) 

The V is apparently semi-negative definite as it is zero on trajectory defined by W = W f. 

However, if we investigate using equation (3.5.27) W = W f results in qe = 0, which 

means V is negative definite. The key to this conclusion is the fact D3 = D5 and w -
W f = 0 for W = W f. Therefore, closed loop system is globally asymptotically stable 

if gimbal commands 8, 8 and rotor command n satisfy the equation (3.5.26) properly. 

Otherwise, asymptotic stability of closed loop system is not guaranteed. There are 

many possible choices for controller's gain guaranteeing the asymptotic stability of 

closed loop system but we choose gains of the form K 1 = klI and K 2 = k21 where 

kl > 0 and k2 > o. 

3.6 Momentum Wheels 

The momentum/reaction wheels are the simplest form of momentum exchange devices. 

The direction of angular momentum of individual momentum wheel is fixed with re

spect to spacecraft body frame. Therefore, Do is a fixed matrix. Obviously, there is no 

gimbal motion in this case i.e. 8 = 8 = O. After eliminating the gimbal motion from 

Eq. (3.4.21) it simplifies to the following form. 

Iw = -w x (Iw + h) - Don + Text (3.6.28) 

In this case Don is the output torque and h is the angular momentum of the wheels 

expressed in F B. In the previous section, we have derived a feedback law for a general 

three axis manoeuvre. For the momentum wheel based attitude control the general 

steering equation becomes 
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The wheel acceleration command n corresponding to a given commanded torque Ie 

can be generated by inverting the matrix Do. Three reaction wheels, with each one's 

spin axis aligned to one of the satellite's body axis, makes up a simplest configuration 

for a three-axis control. The matrix Do for this configuration is square and diagonal 

In this case control design can be carried out independently for each axis. In general 

more than three wheels are used in three-axis control for the purpose of redundancy. 

In that case the matrix Do no longer remains square and its pseudo-inverse is used for 

generating wheel acceleration commands from torque command. 

3.7 Control Moment Gyros 

For a conventional single gimbal control moment gyro the spin rates of the wheels are 

kept constant i.e. n = O. Usually wheel speed Oi of a CMG is much higher than slew 

rate so the term D 18 dominates the output torque of CMOs and other terms involving 

matrices B o, D2 and D3 are comparatively negligible. To establish this fact we do 

a simple calculation of order of the magnitude of these terms for BILSAT-l example. 

BILSAT-l is a small earth-observation satellite equipped with a experimental payload 

of twin CMO system to control pitch axis attitude motion. The inertia matrix of satellite 

IS 

Is = diag (10,10,10) kgm2
. 

The inertia matrix of ith CMG is 

i = 1,2. The angular momentum of ith CMO is hi = 0.28Nms for i = 1,2. Maximum 

slew rate capability in pitch direction is 

w;;ax 2hd Iy 

0.056 rad/s 

In the Table (3.1) we compare the magnitudes of mUltiplying factors involved in the 

torque matrices. Therefore, it is clear that matrices B, D2 and D3 are ignorable as 
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Table 3.1: Comparative magnitudes of matrices involved in Eq. (3.4.21). 

I Matrix I Multiplying factor I Magnitude I 
Dl hi 0.28 

B J yi 1.2 X 10-4 

D2 JyiWmax 6.72 X 10-6 

D3 (Jyi - Jzi)Wmax 2.24 x 10-6 

compared to Dl . Here we have shown this comparison for a specific example. But this 

result is valid in general as hi is much larger than JyiWmax for any CMO configuration. 

Therefore, after this simplification Eq. (3.4.17) and Eq. (3.4.21) can be re-written as 

H=Iw+h, (3.7.29) 

(3.7.30) 

For a cluster of fixed speed CMOs the output torque is given by 

(3.7.31) 

In the absence of external torques Text = 0 and after using Eq. (3.7.29) and Eq. (3.7.31) 

in Eq. (3.7.30) we get 

Iw=-wXH-h. (3.7.32) 

The steering equation for a cluster of fixed speed CMOs is of the form 

(3.7.33) 

3.7.1 The Steering Problem 

In general, steering problem seeks the solution of steering equation (3.7.33) by formu

lating a suitable steering law. Steering problem is an inverse kinematic problem. One 

may write a general form of steering law as 

(3.7.34) 

Where matrix G (<5) is supposed to be an inverse of matrix D 1· If a steering law (3.7.34) 

exactly satisfy the steering equation (3.7.33) then Eq. (3.7.34) is termed as exact steer

ing law. As a result of an exact gimbal steering the output torque exactly follows the 
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commanded torque. But we know that matrix Dl may become singular for certain 

gimbal angles, so in that case the inverse matrix G is not defined. Therefore, singu

larity is a major issue in gimbal steering problem. There are a number of situations 

where exact gimbal steering is not possible. For example, if gimbal angle trajectories 

generated by steering law (3.7.34) pass through singularity or vicinity of singularity 

then gimbal rate commands generated by the steering law have large excursions. If the 

torque requirement to follow these gimbal rate commands exceeds the torque capabil

ity of gimbal motors then exact steering is not possible. Alternatively, higher values of 

feedback gains may result in large value of commanded torque which may exceed the 

torque capability of CMO cluster. In that case also exact steering is not possible. In rest 

of the thesis, we have developed the methods for using exact steering in CMO clusters. 

3.7.2 The Singularity Problem 

The inverse kinematics of steering equation (3.7.33) for a cluster of n-CMOs involve 

the so-called singularity problem. The matrix Dl becomes singular for certain gimbal 

states for which output torque vectors (or matrix Dl'S column vectors) d i associated 

with i = 1,2, ... ,n CMOs become co-planer. The normal to that plane gives singular 

direction vector s as shown in Fig (3.2). Therefore, condition for singularity of matrix 

D1 is 

Dis = 0, 

or 

d i (on .s = 0, 

for i = 1 2 ... n where o~ is ith singular gimbal angle. As the vector di (of) is 
'" t 

orthogonal to both gimbal axis Yyi and singular direction vector s so it can be written 

as 

provided s =I ±Yyi and O"i = ±1 for i = 1,2",' ,n. Since hi 

singUlarity condition for an ith angular momentum vector is given by 

s h 1 A "1-1 
(A ") A hi = O"i i gyi X S gyi X S X gyi' 
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The total singular momentum is the vector sum of the individual momenta hf placed 

end-to-end in arbitrary order 

n 

h S = L ((J i h i 1 9 yi X S 1- 1 (g yi X s) x 9 Yi) . 
i=l 

(3.7.37) 

The projection of an ith angular momentum vector on singular direction is given by 

(3.7.38) 

Singular Vector s 

Figure 3.2: Singular direction vector. 

If angular momentum vector associated with a cluster of CMGs is maximally (for all 

(Ji > 0) or minimally (for all (Ji < 0) projected along the singular direction then 

the singularity is called saturation singularity. It forms a saturation singular surface 

in momentum space or momentum envelope as shown in Fig . (3.3 ), representing the 

maximum momentum capability in a given direction. If the total angular momentum 

conesponding to a singular sUlface is ins ide the momentum enve lope (with mixed sign 
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combinations of O"i) then the singularity is called internal singularity. These singular 

surfaces of angular momentum are constructed by varying the unit vector 8 in three

dimensional space with different combinations of signs of O"i. For a cluster of n CMGs, 

there are 2n possible combinations of signs of O"i but there are only 2n - 1 different sin

gular surfaces. When 8 = ±9y i then vector hi rotates about gimbal direction 9
Y

i and 

which appears as a circular hole on the momentum envelope. There are 2n holes on the 

momentum envelope of a cluster of n CMGs. These holes can be seen in Fig. (3.3) for 

a four CMG cluster example. 

Gimbal lock at a singular configuration may occur when the direction of required or 

commanded torque Tc is along singular direction 8 of matrix Dl and no net torque is 

available in the required direction. In this case vector T c lies in the null-space of matrix 

Dl and thus a CMG cluster is unable to produce any torque in desired direction. 

In a redundant CMG cluster it is possible to change the gimbal configuration without 

changing the total angular momentum of the cluster. This motion of gimbals is called 

null motion as it produces no torque on spacecraft. In the redundant CMG clusters 

(with n > 3) there exist n - 3 degrees of null motion. Mathematically, it is the solution 

of homogeneous steering equation 

The saturation singularities can not be escaped by null motion, whereas internal sin

gularities are further classified as elliptic and hyperbolic singularities for being not es

capable and escapable by null motion respectively. A detailed geometric description of 

the singularity problem of a CMG cluster can be found in the classic work by Margulies 

and Aubrun [83]. 

3.7.3 Overview of Some Pseudo-Inverse Based Steering Laws 

The well-known steering law for obtaining the gimbal rates from Eq. (3.7.33) is based 

on pseudo-inverse of matrix Dl and it is also known as Moore-Penrose (MP) steering 

law. This steering law is given by 

(3.7.39) 
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Figure 3.3: Momentum envelope of four CMG pyramid system. 

This steering law minimizes the norm 11811 and it gives exact gimbal steering with ac

ceptable gimbal rates provided DIDI is not singular or rank (D d = 3. However, 

it generates excessively large gimbal rates 8 in the vicinity of singularity and also it 

drives CMG cluster towards elliptic singularity. 

The singularity robust (SR) inverse is obtained by minimizing a mixed norm of gimbal 

rate 11811 and torque error IID18 - Tell with respect to 8 [12,88] 

(3.7 AO) 

where A is weighting factor and robustness measure of the solution. And 1 is a 3 x 3 

identity matrix. It can be noted that SR inverse becomes the MP inverse for A = O. 

By introducing A the solution becomes singularity robust but no longer remains exact. 

Thus A can be chosen as 

(3.7 AI ) 

to provide a smooth transition from MP inverse (A = 0) to SR inverse as system ap

proaches to singularity (det(D 1D I) ~ 0). Therefore, in the vicinity of singularity. 

output torque produced by SR inverse deviates from commanded torque. When the 

commanded torque happens to lie in null-space i.e. D I T c = 0 then the gimbal rates 

generated by SR inverse become zero and gimbals are locked in singular configura

tion until commanded torque changes its direction. The SR logic often unnecessari ly 
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constraint the operational envelope of CMG system by driving it to elliptic singularity. 

However, the Generalized SingUlarity Robust (GSR) logic proposed by Wie [134] can 

utilize the larger momentum envelope of a CMG cluster by introducing a pointing error. 

The GSR logic is 

(3.7.42) 

with 

1 E3 E2 

E = E3 1 El > 0 

E2 El 1 

with Ei = EO sin(vt + cPi). And A is defined as in Eq. (3.7.41). Here A and Ei are 

chosen properly such that Dt 'T c i= 0 for any non-zero value of 'T c. The GSR steering 

logic passes the internal singularity quit rapidly but fail to pass saturation singUlarities 

for any choice of A and Ei' Therefore, Wie [134] developed a weighted GSR steering 

which was claimed to escape/pass saturation singularities for a proper choice of weight 

matrix. 

(3.7.43) 

where W > 0 is a weight matrix but its choice is not obvious. 

3.8 Variable Speed CMGs 

The variable speed CMGs have capability of operating in dual mode i.e MW and CMG 

mode simultaneously. Extra degrees of freedom available in this case are useful not 

only in attitude control but can also be used in power storage. A cluster of the variable 

speed CMGs is governed by the following dynamic equation 

. . 
Iw = -wX(Iw + h) - Don - Dl~ + Text. 

Thus the steering equation for a variable speed CMG cluster is 

Don + D 18 = 'Tc· 

(3.8.44) 

This steering equation is solved to find the gimbal rate command and wheel acceleration 

commands from commanded torque. This equation can also be written in more compact 

form as 
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where r = [ ~ ] and Q = [Do D,]. 
Schaub and Junkins [98, 100, 101, 102] developed singularity avoiding steering laws 

for attitude control of spacecraft using variable speed CMG cluster. 

(3.8.45) 

where W is a 2n x 2n diagonal weight matrix and it is defined as 

W = [ W~exp (-JL det (DIDf)) 0]. 

° W8 

Here W 8 and W~ are weight matrices of conventional CMG mode and RW mode 

respectively. The RW mode is used only when CMG mode approaches singularity. 

It is interesting to note that there is no modification in pseudo-inverse because the 

square matrix QWQT is non-singular as long as the gimbal axes of at-least two or 

more CMGs are not parallel (or linearly independent). In this case CMGs are work

ing in dual mode (RW and CMG) to avoid singularities, however, RW mode is used 

only when conventional CMG mode approaches singularity. They also developed null 

motion for variable speed CMG cluster to avoid wheel speed excursions generated by 

steering law (3.8.45)in Ref. [101]. 

We have attempted in Ref. [72] a combination of GSR steering law operating in CMG 

mode with MW mode of variable speed CMGs to get good pointing accuracy by com

pensating the attitude drift caused by GSR steering MW mode. If we allow the vari

ation in wheel speed of CMGs in the Generalized Singularity Robust (GSR) law then 

the modified steering law termed as Generalized Variable Speed Singularity Robust 

(GVSSR) Steering law can be written as 

(3.8.46) 

where 
1 h l2 

A=A l3 1 lr > 0, 

l2 lr 1 

and 

A = Aoexp (-JL det (DIDf)) , 
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'T er is error torque vector, WI and W 2 are suitably chosen weight matrices. These 

matrices are chosen such that CMO mode dominates in part one containing WI and 

RW dominates in part two containing W 2 of Eq. (3.8.46). The drift in attitude of 

satellite caused by OSR steering law of CMO mode is now corrected by RW mode 

against the error torque. Simulation results of this steering can be found in Ref. [72]. 

Combined attitude and power tracking using variable speed CMOs is studied by many 

researchers [93, 126, 139, 140]. Yoon and Tsiotras [139] have presented a combined 

steering approach of attitude and power control for spacecrafts using VSCMOs. They 

used an indirect adaptive control to account for uncertain inertia properties of a modular 

spacecraft. A systematic study of singularities associated with the VSCMO clusters 

employed for combined attitude and power tracking is presented in Ref. [140]. They 

managed to develop a criterion to determine usable momentum workspace based on 

singular surface argument. 

The main focus of this thesis is to study the steering problem of fixed speed CMOs 

for attitude control only and this brief overview of variable speed CMOs is included to 

complete the discussion on momentum exchange devices. 
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Chapter 4 

Exact Steering Law for Twin CMG 

SysteDls 

4.1 Introduction 

This chapter presents a detailed analysis of an exact steering problem for twin CMG 

systems for the case of single-axis rest-to-rest manoeuvre of a satellite. The analysis 

of twin CMG systems' exact steering is relatively simpler and provides deeper insights 

into a general CMG steering problem. Exact steering is possible when commanded 

torque matches the torque capability of a CMG cluster and also gimbal trajectories 

avoid singularities. Therefore, we can determine feedback gains for control law such 

that output torque exactly follows the commanded torque while avoiding the singularity 

and using the full momentum capability. In our approach analytical solutions of exact 

steering problem are used to determine the feedback gains. Various forms of Singular

ity Robust (SR) Steering Laws (Eq. (3.7.40), Eq. (3.7.42), Eq. (3.7.43)) have capability 

of passing or escaping the singularity at the cost of inaccuracy, but it has not been dis

cussed that how one can avoid a singularity at first place (see Ref. [12, 88, 134]). As we 

know from experience singularities potentially degrade the performance of closed-loop 

system whether or not SR laws are used (see Fig. (4.9)). So first line of defence against 

singularity ought to be 'avoidance'. And in this chapter we have attempted to address 

singularity avoidance issue using exact CMG steering by selecting suitable feedback 

gains. Different features of singularity avoiding solution curves of exact steering prob-
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lem have been studied for both with and without explicit gimbal rate constraint cases. 

The exact singularity avoiding solutions are near-optimal for the manoeuvres for which 

twin CMG systems have been designed. It is found that for the fixed values of sin

gularity avoiding gains satellite's attitude phase-plane can be divided by a separatrix 

into two regions, one where singularity avoidance is possible and the other where it is 

not possible. It is observed that by gradually decreasing feedback gains the singularity 

avoiding region grows larger. This fact is used to develop variable gains for singular

ity avoidance using Exact Steering Law so that any manoeuvre could avoid singularity 

with faster rate. Finally, these techniques of finding singularity avoiding gains for Exact 

Steering Law are simulated for BILSAT-1 example. It has been shown to be an effec

tive way of avoiding singularities while achieving the faster slew manoeuvres for twin 

CMG systems. 

4.2 Twin CMG Systems 

4.2.1 Mathematical Formulation 

We consider a satellite equipped with two identical CMGs placed symmetrically with 

skew angle f3 as shown in Fig. (4.1). As CMGs are inertial actuators, so total angular 

momentum of satellite is conserved in absence of external torque. We can re-write 

Eq. (3.7.29) as 

Iw+h=Ho· 

Where I is inertia matrix of the satellite, w is the angular velocity vector of the satellite, 

h is the angular momentum vector of the CMGs and H 0 is the momentum bias or 

total angular momentum expressed in satellite body co-ordinates. The dynamics of this 

system is governed by Eq. (3.7.32) 

Ie;; = -h - w x Ho· 

The vector h for the twin CMG system is given by 

- cos 61 + cos 62 

h = hcmg cos f3 (- sin 61 + sin (2) 

sin f3 (sin 61 + sin ( 2 ) 
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where 6i , i = 1, 2 is gimbal angle of the ith CMO and hcmg is the angular momentum 

associated with each CMO. The output torque of the CMOs is governed by Eq. (3.7.31) 

where Dl is the Jacobian matrix 1/5, that is 

sin 61 - sin 62 

Dl = hcmg - cos (3 cos 61 cos (3 cos 62 (4.2.3) 

sin (3 cos 61 sin (3 cos 62 

Single axis manoeuvres can be achieved by moving the two gimbals symmetrically or 

anti-symmetrically. A pitch manoeuvre is achieved if we choose 81 = -82 (and so 

61 = -62, provided the gimbal angles are initially at zero). Similarly a yaw manoeuvre 
. . 

is achieved by 61 = 62. As the direction of the torque is always perpendicular to the 

x-axis for symmetric (anti-symmetric) gimbal motion, so single axis roll manoeuvres 

can not be achieved in this configuration of two CMOs. 

In this chapter, we consider a rest-to-rest pitch axis manoeuvre. Thus we choose 61 = 

-62, in Eq. (4.2.2) and Eq. (4.2.3) to get simplified forms for hand Dl respectively, 

and then substitute in Eq. (4.2.1). Moreover, for a rest-to-rest manoeuvre, w(O) = 0 

and 8(0) = 0, so we get H 0 = O. Hence Eq. (4.2.1) is simplified to a set of component 

equations as 

(4.2.4) 

Thus motion is purely about y-axis and the configuration of two CMOs locked in anti

symmetric motion can be represented by a single gimbal angle variable 6 in Eq. (4.2.4). 

We can ignore the x and z components and omit the subscripts y. As a result the 

equation for single axis attitude dynamics of a satellite with twin CMOs takes the form 

I w = -2hcmg cos (3 cos 68. (4.2.5) 

The right hand side of Eq. (4.2.5) is the output torque generated by the CMOs and is 

governed by the gimbal steering law. The satellite attitude kinematics is represented by 
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an angle variable 8 with 

8 = w. (4.2.6) 

Z (Yaw) 

X (Roll) 

Figure 4.1: Twin CMG arrangement. 

4.2.2 Feedback Law and CMG Steering 

A steering law detennines the gimbal dynamics from the control torque. A Liapunov 

approach is used to detennine the control torque needed to stabilize the equilibrium 

point (0,0) in the (8, w) plane asymptotically. The Liapunov function V can be chosen 

to be 
1 ? 1 2 

V = - keI8- + -Iw , 
2 2 

(4.2.7) 

where ke is a positive constant. The time derivative of the Liapunov function is 

. . 
l ' = keI 88 + I W'~'. 
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Using Eq. (4.2.5) and Eq. (4.2.6) gives 

11 = W (keIB - 2hcmg cos (3 cos oJ) . 

Now, if 

2hcmgcos(3cosoJ = keIB + kw1w, (4.2.8) 

then 
. 2 

V = -kw1w < 0, 

where kw is a positive constant. Thus the feedback control torque required to manoeuvre 

the satellite comes out to be a PD controller in Eq. (4.2.8), and then the steering law is 

where 

J = keB + kww 
wmcoso ' 

2hcmg cos (3 
wm = I . 

(4.2.9) 

If we integrate Eq. (4.2.5) for initial conditions w(O) = 0 and 0(0) = 0 then we get 

w = -Wm sinO, (4.2.10) 

so Wm is the maximum slew rate of the satellite. 

Moreover, the output torque (the LHS of Eq. (4.2.8)) follows the control torque pro

vided the CMG system is away from the singularity at 0 = ±~ and its odd multiples. 

4.2.3 Harmonic Oscillator Equations 

The variables wand 0 depend on each other through Eq. (4.2.10)and only two indepen

dent state variables are needed to represent the system i.e. either (B, w) or, equivalently, 

(0, B). 

The equations in the (0, B) plane are obtained by eliminating the w in Eq. (4.2.9) and 

Eq. (4.2.10) 

o 
B 

klB - kw sin 0 
cos 0 

-Wm sinO. 
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Here kl = ke / Wm is a positive constant. This model is nonlinear and also it is singular 

for 8 = ±~. 

On the other hand the equations in the (f), w) plane are linear 

W -kef) - k W w , 

f) W. (4.2.12) 

These are equations for a damped harmonic oscillator and have a well-known closed

form solution. Note however that w must satisfy the constraint Iwl < wm . Since the 

satellite-CMG dynamic interaction and singular states are more explicit in the (8, f)) 

plane (or nonlinear model (4.2.11», the singularity avoiding trajectories are designed 

in this plane. These trajectories are then transformed to the (f), w) plane to study the 

closed-loop response of the satellite. 

4.2.4 Incorporating the Gimbal Rate Constraint 

In practice a gimbal motor has a gimbal rate saturation limit and so the gimbal rate 

requested by a steering law is not always executable. This fact is incorporated in the 

model to get more realistic solutions. Assume 151 < 0:, where (}: is a positive constant. 

Then the model (4.2.11) can be replaced by 

0: 8>0: 

151< 0: 

-0: 8 <-(}: 

f) -wm sin 8. (4.2.13) 

In the (f), w) plane the gimbal rate constraint is transformed into an angular acceleration 

constraint by using the relation 

The modified closed-loop model is 

w -kef) - kww 

-(}:Jw~ -w2 

f) w 
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w > o:Jw2 -w2 
- m 

Iwl < o:Jw~ - w2 

w < -o:Jw~ -w2 

(4.2.14) 



We shall discuss in detail the effect of this gimbal rate saturation on solutions in the 

following sections. 

4.3 Study of the Exact Steering Law 

4.3.1 Phase Plane Representation 

In this subsection, we will discuss the qualitative features of the nonlinear system (4.2.11) 

in the (b, e) plane. The system (4.2.11) has equilibrium points at (±n7r,O), where 

n = 0, 1,2, .. '. It can be shown that these are all stable equilibria. The gimbal dynam

ics is singular at b = (2n~1)7T, defining singularity manifolds (with undefined 8) in the 

phase plane represented by the solid vertical lines in Fig. (4.2). The nullcline defined 

by b = 0 is a curve 

e kw. ~ 
= k:; SIn u, 

which is represented by the dashed sinusoidal curve in Fig. (4.2). The null cline inter

sects the singularity manifolds at points A( (4n~I)7T, ~~) and A'( (4n;1)7T, - ~~), which are 

termed as critical points because of their special significance as 8 has a finite value at 

these points. In Fig. (4.2) the phase plane is divided into several regions by the nullcline 

and singUlarity manifolds. The control torque and cos b, change sign at the boundaries 

of these regions. In region RI (and RD the cos b term in the denominator of the steering 

law in Eq. (4.2.11) has the opposite sign to that of the control torque (numerator), so 

the singularity behaves like an attractor and as a result traps the dynamics in its neigh

bourhood. On the other hand, the singularity behaves like a repeller in region R2 ( 

and R~) where the numerator and the denominator of the steering law have the same 

signs. Therefore, the singUlarity can only be avoided if a trajectory starting in region 

RI enters region R2 before hitting the singUlarity manifold. Otherwise a trajectory hits 

the singularity attractor in region RI and remains bounded in its neighbourhood until 

the critical point A is approached. Here trajectory enters region R2 and is repelled by 

the singUlarity. The trajectory passing through the critical point A defines a separatrix 

between the inner trajectories (entering region R2 without hitting the singularity) and 

the outer trajectories (hitting the singularity). The intercept of the separatrix trajectory 

with the b = 0 axis defines a critical value for the initial attitude angle eo such that 
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Figure 4.2: The singularity and nullc1ine in the (0, (}) plane. 

any trajectory starting above this limit is bound to hit the singularity. The separatrix 

trajectory is used to determine the feedback gains ke and kw needed to obtain a required 

agility while avoiding the singularity. Figure (4.3) shows a complete (0, B) phase por

trait of the Eq. (4.2.11). One can see that a separatrix trajectory passes through the 

critical point A. The trajectories inside separatrix are singularity avoiding ones while 

those outside it hit the singularity. One can see jittering on the singularity attractor be

cause 0 is undefined at 0 = ~. 

In the next subsection, we will solve the system in the (B, w) plane to obtain the exact 

analytic solutions which will then be used to calculate singularity avoiding feedback 

gams. 

4.3.2 Time-Domain Behaviour 

The closed-loop system (4.2.12) is a standard linear damped harmonic oscillator with 

bounded slew rate. However, for singularity avoiding trajectories the slew rate does not 

saturate at its maximum value during the course of manoeuvre. Therefore, the problem 
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Figure 4.3: Phase portrait of the satellite-CMG system with the exact steering law in the (15,8) 

plane. 
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remains linear. We write system (4.2.12) in the form of the second order equation 

(4.3.15) 

with Iwi < Wm · The feedback gains ke and kw can be expressed in terms of a desired 

damping ratio ( and the natural frequency Wn of the closed-loop system as 

ke 

(4.3.16) 

The resulting characteristic equation 

has roots 

s = ( -( ± iJl - (2) wn . 

For an under-damped system (( < 1) the solution with initial conditions 8(0) = 80 and 

8(0) = 0 is 

8 
8 e-(wnt 

o. ¢ sin(wntsin ¢+ ¢), 
SIn 

8 W e-(wnt 
W = - 0 ~ ¢ sin(wntsin¢). 

sm 
(4.3.17) 

where ¢ = cos-1 (and Iwi < Wm . These equations always give a solution ofEq. (4.2.12), 

however, they are a solution ofEq. (4.2.11) provided it avoids the singularity. This solu

tion can also be used to determine a number of interesting quantities like the maximum 

slew angle, maximum output torque, gimbal angle and gimbal rate profiles, and maxi

mum gimbal rate etc. corresponding to the separatrix trajectory. Note that the critical 

point in the (8, w) plane is A(kwk~m, -wm ). 

4.3.3 Feedback Gains 

At the critical point A the output torque is zero i.e. W = O. We differentiate Eq. (4.3.17) 

w.r.t time t and then set its derivative to zero to find the time taken to get to the critical 

Point from the initial condition, which is tA = ~ 1/>' Substituting W = -Wm and wnsm 

t = tA in Eq. (4.3.17) yields the initial condition for the separatrix trajectory as 

Wm (¢) 80 = - exp ---+. . 
Wn tan '-P 
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Therefore Wn for separatrix trajectory is 

Wn = Wm exp (_¢_) . 
(}o tan ¢ (4.3.18) 

This value of Wn is used for calculating the corresponding feedback gains given in 

Eq. (4.3.16). Conversely, this relation determines a maximum possible slew angle for a 

given set of gains and CMG capability without hitting the singularity. 

4.3.4 Torque and Gimbal Dynamics 

The advantage of exact steering formulation for twin CMG system presented in this 

chapter is that we can write explicit expressions for some useful dynamic variables 

such as output torque, gimbal angle and gimbal rate. We can also find maximum gimbal 

rate. 

Output Torque Profile. The output torque profile for a twin CMG cluster can be 

derived by using the solution for () and W from Eq. (4.3.17) in Eq. (4.2.12) and after 

simplification we get 

(4.3.19) 

This expression of torque corresponds to the separatrix trajectory. As the torque has a 

damped harmonic profile so it is interesting to find the value of maximum overshoot 

and its time. The overshoot time is found by setting w = 0 and it results in 

t= _2_¢_ 
Wn sin¢ 

By substituting this expression for time in torque equation we get value of maximum 

overshoot in torque to be 

To = Iwmwn exp ( - ta!4» . 

For this reorientation manoeuvre case the output torque has its maximum value at t = 0 

which is 
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Gimbal Angle Profile. Gimbal angle profile as a function of time is derived for sepa

ratrix trajectory. Comparing Eq. (4.2.13) with Eq. (4.3.17) yields 

• 5: (wnt sin ¢ - ¢) sin (wnt sin ¢) sm u = exp - -----
tan¢ sin¢· 

It can be checked that the function on the RHS of above equation has a value less than 

or equal to one for all times t. The function is equal to zero at t = 0 and for large 

values of t (i.e at the end of the manoeuvre) whereas its value is one at critical point 

·ht - if> WI t A - Wn sin if> • 

Gimbal Rate Profile. The gimbal rate profile can be computed by using the following 

equation 

After substituting expressions for wand w from Eq. (4.3.17) and Eq. (4.3.19) respec

tively we get 

wn exp ( - wntt~: :-p) sin( wnt sin ¢ - ¢) 
J = ---;:================= 

sin2 ¢ - exp ( _ 2Wn\:::-2if» sin2(wn t sin ¢) 

It can be noted that gimbal rate is positive for t < tA and negative for t > tA and 

sign change occurs at t = t A where 8 is indeterminate. However, indeterminate forms 

generally have finite value, which in this case is found to be zero. Gimbal rate has its 

maximum value at t = 0 which is given by 

. ¢ 
8 = Wn exp(--A,). 

tanYJ 
(4.3.20) 

Therefore, we are able to solve the single axis manoeuvre with twin CMGs analytically 

while avoiding the singularity. This approach determines the feedback gains needed 

to obtain the separatrix trajectory which optimizes the performance of the closed-loop 

system. However, there are some other factors which could also affect the performance 

of closed loop system adversely if not addressed properly. This includes hardware 

limits on gimbal rate and time-optimality for a rapid slew. In next section, we shall deal 

with these issues in detail. 
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4.4 Incorporating the Gimbal Rate Constraint 

Here we shall study the effect of gimbal rate saturation on feedback gain synthesis and 

the time-optimality of Exact Steering Laws. 

4.4.1 Phase Plane Representation 

The (8, e) phase portrait of the system (4.2.14) is shown in Fig. (4.4) to Fig. (4.6). It 

contains the singularity manifold (solid vertical lines at 8 = ±~) and nullcline (dashed 

sinusoidal curve) as in Fig. (4.3). The additional features in this phase portrait are the 

family of gimbal rate saturation curves (J = ±a) given by 

(4.4.21) 

corresponding to different values of the initial attitude angle eo. These are solution of 

bang-bang control problem. The feedback region around the nullcline is bounded by 

the switching curves 

or 

e 

I J I = kl e - kw sin 8 

cos8 

kw . ~ ± a ~ k; sm u kl cos U 

=a, 

vk 2 + a 2 

w
k1 

sin(8 ± arctan(a/kw )). 

(4.4.22) 

These switching curves are sinusoidal with phase lead or lag with respect to the null-

cline. A state-trajectory starting from an initial point (0, eo) outside the feedback region 

follows the corresponding saturation curve until it enters the feedback region and then 

follows the harmonic oscillator solution. The separatrix trajectory (marked with a bold 

line in Fig. (4.6) starting from eo > 0 ( or eo < 0) is on the a (or -a) saturation curve 

before it switches to the -a (or a ) saturation curve at the critical point A (or A') and 

finally switches to the feedback region. It is worth noting that the singularity is not 

passable even in this case as feedback function becomes singular. 

4.4.2 Feedback Gains 

Here we calculate the feedback gains corresponding to the separatrix trajectory, which 

is the desired closed-loop trajectory. This trajectory passes through the critical point 
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Figure 4.6: Phase portrait of satellite-CMG system with gimbal rate saturation (6, fJ ) plane. 

A(-~ , ~) and follows the gimbal rate saturation or open-loop curve (4.4.21) outside the 

feedback region. The open-loop curve starting from eo reaches point A at (1r /2, eo -
~). Thus 

But 
kw 2(wm 

kl Wn 

Therefore, the natural frequency corresponding to the separatrix trajectory is 

(4.4.23 ) 

where eo > w;; .. The damping ratio ( is calculated from the overshoot requirement of 

the output response. The feedback gains ke and kw are then calculated from W n and 

(. In the next section, we derive the closed-form solution for separatrix trajectory and 

discuss its time-optimality. 
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4.4.3 Time Optimality 

Time optimal single-axis manoeuvres with gimbal rate constraints can be obtained by 

bang-bang control. However, this classical solution is not preferred in practice because 

of the chattering problem. It can be observed in Fig. (4.6) that the separatrix trajectory 

follows the bang-bang solution or gimbal rate saturation curves outside the feedback 

region and a damped harmonic solution inside the feedback region in the vicinity of 

equilibrium point. So it can be a good candidate for a practical near-time-optimal solu

tion. However, the choice of feedback gains affects the switching time and performance 

in the feedback region. So here we discuss time-optimality of the separatrix trajectory. 

As we know that the separatrix trajectory starting from an initial point (0,80 ) follows 

the +a-saturation curve and then switches to the -a-saturation curve at the critical 

point A (i, 80 - ~) at time instant t = 2: before eventually switching to the feed

back region at time instant t = Tl with 8(Tl) = 81 and B(T1 ) = B1. The damped 

harmonic solution inside the feedback region is 

8 M(t) cos(N (t - L)), (4.4.24) 

W -wnM(t) cos(N (t - L) - ¢), (4.4.25) 

where 

B ( (0 01
) 1+-

J1- (2 (Wn ' 

Mo JB2 + 81
2

, 

M(t) Moexp(-(wn(t - Tl))' 

N sin¢wn , 

1 B 
L - arctan e + T1 , 

N 1 
¢ cos-1 (. 

The damping ratio ( can be calculated from the maximum overshoot and settling time 

requirements using the explicit solution given in Eq. (4.4.24) and Eq. (4.4.25). We 

can find the explicit expression for switching time Tl using the following open-loop 
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expressions at the boundary of feedback region: 

Wm 
()o - - (1- cosaTl) ' 

a 

-Wm sinaT1 , 

By substituting these expressions in the damped harmonic Eq. (4.3.15), we can get the 

following expression for T1 : 

1. arcsin (wn Boo.-wm cos <p ) + 1.<p 
0. 2( wmo. 2 0. 2, 

2!:. - 1. arcsin (~Boo.-wm cos <p ) + l<p 
0. 0. 2( wmo. 2 0. 2, 

(4.4.26) 

where 

<P2 = arctan (wn 2 
- (

2

) . 
2(awn 

These two switching times correspond to the intersection points of separatrix trajectory 

with the boundary of feedback region. One of these points corresponds to the critical 

point A and the other point corresponds to switching point of the feedback region. We 

can simplify these expressions for Tl by using 

and 

() _ 2wm 
0-

a 

for the seperatrix trajectory in Eq. (4.4.26) to get 

{ 

7r 

T - 20.' 
1 - 37r 2 1 - - - arctan (1 - -) 20. 0. 4(2 , 

(4.4.27) 

Thus for a separatrix trajectory the given choice of Wn is optimal one and switching time 

depends only on tunable parameter ( as rest of the parameters are design parameters. 

The manoeuvre time tf is defined by the requirement that 1()(t)1 < f for all t > tf. 

where f is a small positive number. An approximate formula for t f can be obtained by 

ignoring the cos-term in the solution ()(t) presented in Eq. (4.4.24). This gives 

(4.4.28) 
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We find extremum points of the function tj(T1 ) as 

But 

After simplifying we get 

dt j = 1 + 1 dMo = 0 
dT1 (wnM dT1 . 

. . 
dMo BB + ()1()1 

dT1 Mo 

This leads to two conditions for the switching time Tl 

iiI + 2(wn Bl + Wn 2()1 

()1 
()1+

(wn 

0, 

o. 

(4.4.29) 

(4.4.30) 

The switching condition in Eq. (4.4.29) satisfies the damped harmonic solution at the 

boundary of feedback region. We have already found an explicit expression for such 

switching time Tl in Eq. (4.4.26). However, the second condition (4.4.30) does not 

satisfy damped harmonic solution which means that it switches to feedback control at 

the following instances. 

where 

and 

1. arcsin ((Joa-wm sin <I> ) + 1.<1> a Wm 1 a 1, 

~ - 1. arcsin ((Joa-wm sin <I> ) + 1. <I> 
a a Wm 1 a 1, 

(Wn 
<1>1 = arctan -, 

ex 

For separatrix trajectory with 

and 

we get 
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In this case final switching time of feedback control happened to be bang-bang manoeu

vre time ~. This solution demands that switching is not made to feedback control before 

origin. It means that this solution brings us to classical bang-bang control, which does 

not require feedback control. Therefore, we drop this condition (4.4.30)and choose the 

condition (4.4.29), which uses the feedback control near origin. 

4.5 Singularity Robust Steering Law Revisited 

The singularity robust (SR) steering law given in Eq. (3.7.40) can be simplified for twin 

CMG system with anti-symmetric gimbal motion as 

J = Tc cos 15 
Wm (cos2 15 + Ao exp ( - cos2 b)) , (4.5.33) 

where 

In this case feedback gains ke and kw are chosen using linear control system the

ory. The denominator in this case is never zero due to singularity robustness term 

Ao exp ( - cos2 b) for positive values of Ao. As system approaches to singularity the sin

gUlarity robustness term grows larger. Therefore, faster gains in feedback law appear 

to have no problem. We have used this simplified form of SR logic in our simulations. 

4.6 Variable Gains Steering Law 

In this section, we study the Exact Steering Law with variable gains controller for a 

twin CMG system. The Exact Steering Law with fixed controller gains developed in 

previous sections gives near-optimal control for singularity avoiding trajectories with 

initial attitude (}o < wm (1/o: + 2(/wn ), where Wn is defined in Eq. (4.4.23). Any 

trajectory starting from () 0 > Wm (1/0: + 2( / wn ) is bound to hit singularity and therefore 

is not permissible in that scheme. This may be deemed limitation of exact steering 

because we have to lower Wn if (}o happens to be outside separatrix which would result 

in slower response. We use the fact that singularity avoidance region grows larger as ~'n 

is lowered to propose the use of variable gains instead of fixed ones in Exact Steering 

Law. In this scheme feedback gains are made to vary along the trajectory such that 
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gains are zero at singUlarity, thus making the torque zero, and continuously vary along 

the trajectory. This can be done by introducing a singularity index vi cos 81 in the 

gains. In the following subsections, we shall define variable feedback gains and shall 

also represent this system in (8, 0) and (0, w) phase-planes for further analysis. 

4.6.1 Variable Gains 

The overall structure of Exact Steering Law (4.2.9) is kept unchanged, however, the 

feedback gains are re-defined as 

2(wn vi cos 81· (4.6.34) 

To justify the choice of the gains in Eq. (4.6.34) we rewrite Eq. (4.2.11) in matrix form 

Here determinant of the matrix involved is 

_~ ke 
coso WmCOSO ke 

cos8' 

(4.6.35) 

Therefore, the choice of gains made in Eq. (4.6.34) makes determinant of the matrix 

w~sgn(cosb),wheresgn(x) = lifx > Oandsgn(x) = -lifx < O. This choice 

of gains makes the matrix invertible to a non-singular matrix. The properties of the 

solution trajectories of such a system are studied in the next subsection. 

4.6.2 Phase Plane Representation 

In this subsection, we represent the Exact Steering Law with variable gains defined in 

Eq. (4.6.34) in phase-plane. The phase-portrait of this system in (b, 0) plane is shown in 

Fig. (4.7). The key features in this phase-portrait are singularity manifold (b = ±7r/2), 

gimbal rate saturation curves (8 = ±a), nullc1ine (8 = 0), feedback region 181 < Q 

and phase-plane trajectories (or solution curves). Many features in this phase-portrait 

are similar to those of Exact Steering with fixed gains in Fig. (4.6), like singularity 

manifolds are represented by solid vertical lines at (b = ±~) and gimbal rate saturation 
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trajectories defined in Eq. (4.4.21) are represented by dashed lines. However, nullcline 

in this case is very different from the fixed gains case. Here it is defined by an equation 

() = kwwm . ~ 
k8 Slllu 

2(wm sin 5 

Wn vi cos51 
(4.6.36) 

In 5 E (-7r /2, 7r /2) we have cos 5 > ° and it is nearly a tangent curve. A solution 

curve or trajectory initiated at point (0, ()o) is bound to follow the gimbal rate saturation 

curve until it switches to feedback region around nullcline. The nullcline would never 

intersect the singularity manifold for the finite value of () but has asymptotic behaviour 

near singularity as shown in Fig. (4.7). In fixed gain case controller's bandwidth Wn 

is calculated by using the phase-portrait to find the critical point which is defined as 

the intersection point of singularity manifold and nullcline. However, in variable gain 

case such a point does not exist in the finite range of (). Moreover, the boundary of 

feedback region merges with nullcline as 5 ~ 7r /2. To get a fastest possible maneuver 

we synthesis Wn such that a trajectory starting from ()o would switch to feedback region 

and crosses nullcline in close proximity of the singularity to get maximum possible 

slew rate. 

The wn's calculation for variable gains case uses the fact that a trajectory starting from 

an initial condition 

)
Wm 

()o = (m + I -, 
a 

(4.6.37) 

where m is a real number, crosses the nullcline at some 5 58 before settling to 

the origin of (5, ()) plane. For a given ()o, 58 is made as closer as possible to ~ by 

properly choosing Wn . One may notice in the phase-portraits Fig. (4.7) and Fig. (4.8) 

that the boundaries of feedback region merge in null cline with the increasing value of 5. 

Therefore, if the switching point (58' ()( 58)) is closer to singularity then the gimbal rate 

saturation curves Eq. (4.4.21) directly intersect the nullcline Eq. (4.6.36). Therefore, 

Wm 2(wm JI - cos2 58 
()o--(I-cos58)= vi 51· 

a ~ oos 8 

Using the definition of ()o given in Eq. (4.6.37) and after simplifying we get 

Wn = 2n(a, 
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where n is a real number defined as 

(4.6.38) 

The choice of n could be further simplified if cos 88 « 1 and cos 8
8 
« m then 

1 
n = -m-yr.l=c=os===8::=7

8 
I' 

Typically for cos 88 < 0.25 a satellite can achieve more than 0.968wm slew rate which 

is reasonably close to Wm and this corresponds to n > 2 for m = 1 i.e. eo = 2wm / Q. 

However, shifting 88 closer to singularity increases n excessively which may result in 

large overshoot in closed-loop response. So there has to be a trade-off in choice of n to 

achieve an optimal performance of the closed-loop system. A criterion for choosing a 

near-optimal value of n shall be discussed later. 

The issue of stability of closed-loop system is also clearly evident in phase-portraits as 

all the trajectories starting in the given region converge to origin as t ---+ 00. Another 

point to be noticed is that all trajectories with finite value of eo avoid singUlarity. The 

reason for this is that the nullcline asymptotically approaches the singularity line so a 

trajectory hits the nullcline and gimbal rate becomes 8 < O. It means that after passing 

nullcline 8 starts decreasing and trajectory never hits singularity. It is important for 

good performance of the closed-loop system that the desired trajectory finally switches 

to gimbal rate saturation curve which passes through the origin. This can be ensured by 

proper choice of nor W n . So with the proper choice of variable gains the Exact Steering 

Law guarantees singUlarity avoidance. 

4.7 Simulations and Results 

In this section, we shall demonstrate the effectiveness of the Exact Steering Law to

gether with the proposed singularity avoiding gains calculation technique. We consider 

a pitch axis manoeuvre of BILSAT. The BILSAT is equipped with a twin CMG sys

tem which is capable of performing 400 manoeuvre in 20 seconds. The satellite and 

CMG data is summarized in Table (4.1). The damping ratio ( is based on perfor

mance requirement such as desired maximum overshoot « 2%). For exact steering 
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Table 4.1: Satellite and CMG Data. 

Parameter I Symbol I Value 

CMG momentum hcmg 0.28Nms 

Moment of Inertia [Ix, Iy , Iz] [10,10,10] kgm2 

Skew angle (3 Odeg 

Maximum gimbal rate a 9deg/s 

Maximum slew rate Wm 3.2deg/s 

Table 4.2: Feedback gains for the Exact Steering Law without Gimbal Rate Constraint (Ex

act without GRC), Exact Steering Law with Gimbal Rate Constraint (Exact with GRC) and 

Singularity Robust Steering Law (SR) for cases A and B 

Gains Exact without GRC Exact with GRC SR in Case A SR in Case B 

( 0.8 0.8 0.8 0.8 

Wn 0.1887rad/s 0.2608 rad/s 0.8 rad/s 0.5 rad/s 

ke 0.0356 0.068 0.64 0.25 

kw 0.3019 0.4173 1.28 0.8 

Ao - - 0.01 0.01 

law without gimbal rate constraint case, the natural frequency Wn is calculated by using 

Eq. (4.3.18), whereas for the exact steering with gimbal rate constraint case the Wn is 

calculated by using Eq. (4.4.23). The calculation of feedback gains ke and kw is done 

by using Eq. (4.3.16). Here we consider a 40° pitch manoeuvre i.e. eo = 40° and 

summarize the calculated gain parameters for exact steering law without and with gim

bal rate constraint cases in Table (4.2). Similarly, we also list the feedback gains for 

SR logic based on some performance criterion but independent of singularity avoiding 

consideration. The simulation results presented in next two subsections use feedback 

gains listed in Table (4.2). 

4.7.1 Case A- Exact Steering Law 

The Exact Steering Law is simulated for 40° pitch manoeuvre corresponding to separa

trix trajectory case. In this case no explicit gimbal rate limit is considered. So we use 
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feedback gain values from the column of Table (4.2) labeled as 'Exact without ORC' . 

The simulation results are shown in Fig. (4.9), which include plots of slew angle, slew 

rate, gimbal angle and gimbal rate all against time. In these results performance of Ex

act Steering law is compared with that of Singularity Robust (SR) steering logic. And 

feedback gains for SR steering logic are used from the column of Table (4.2) labeled 

as 'SR in Case A'. The choice of these gains is independent of the steering law which 

is a normal practice. Relatively large values of the feedback gains in case of SR logic 

drive the CMO system to the singular configuration where gimbal angles are locked 

for certain time and slew rate saturates at its maximum value in Fig. (4.9). However, 

this saturation causes an overshoot in the response. In this case slew rate saturates at 

its maximum value for quite a while but it does not help in reducing the manoeuvre 

time. It means that one has to consider slew rate saturation while choosing the values 

for feedback gains where as this slew rate saturation is directly related to singularity of 

the CMO cluster. Therefore, it seems prudent to consider slew rate saturation or gimbal 

lock at singularity while choosing feedback gains for SR logic to ensure good perfor

mance. One may use feedback gains calculated for exact steering in SR steering logic 

to obtain a better performance. Exact steering law with proper choice of feedback gains 

avoids singularity at first place and from results it is clear that settling time is almost 

the same for both cases. The maximum gimbal rate corresponding to the separatrix 

trajectory is calculated to be 25° /sec by using Eq. (4.3.20). 

4.7.2 Case B- Exact Steering Law with Gimbal Rate Constraint 

BILSAT has a hardware gimbal rate saturation limit of ±9deg/s. Here we use the feed

back gains from the column of Table (4.2) labeled as 'Exact with ORC' in simulation of 

40° pitch manoeuvre. These gains correspond to the separatrix trajectory of Fig. (4.6). 

We compare response of the Exact Steering Law with the response of bang-bang con

trol in Fig. (4.10). The results show that the response of proposed method follows the 

bang-bang solution during most of the time and switches to closed-loop solution near 

the target point thus avoiding the chattering problem. Thus we see that this closed-loop 

solution with the chosen gains is near-optimal. In Fig. (4.11) we compare results of 

Exact Steering Law with results of SR logic with gimbal rate constraint. The feedback 

gains for SR logic are used from the column of Table (4.2) labeled as 'SR in Case B'. 
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One can note that in this case gains for SR logic are lowered from previous values in 

order to reduce possible overshoot. Even then SR logic suffers from gimbal lock at the 

singularity and its performance is deteriorated. The reason for this excessive overshoot 

in the response of SR is the combined effect of slew rate and gimbal rate saturation. 

As we have mentioned earlier the choice of higher gains for SR example is a deliberate 

attempt to emphasis a need for suitably selected feedback gains by considering the slew 

rate and gimbal rate saturation. 

4.7.3 Case C- Exact Steering with Variable Gains 

In this subsection, we find the near-optimal value of n defined in Eq. (4.6.38) for a pitch 

manoeuvre with an initial condition eo = 2~m and then perform the manoeuvre using 

proposed Exact Steering Law with variable gains. Then we will show that a manoeuvre 

with eo > 2~m by using the variable gains calculated for eo = ~m is not only possible 

but has a faster response than fixed gains case. 

First we study the effect of variation of n on nullc1ine in (6, e) plane to find the optimal 
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value of n. In Fig. (4.12) null cline is plotted for different values of n. It can be seen 

in Fig. (4.12) that the slope of the curve near origin decreases as n varies from 1 to 

3. The gimbal rate saturation curve passing through the origin is also plotted. For 

minimal overshoot and smooth settling at origin a trajectory has to switch to this curve 

after passing through nullcline when gimbal rate saturates, and it is a desired switching 

curve. If a trajectory switches to a neighbouring saturation curve then this would result 

in overshoot or undershoot and a deteriorated performance. The equation of this desired 

switching curve passing through origin is 

e (<5) = Wm (1 - cos <5) . 
0: 

(4.7.39) 

It is clear from Fig. (4.12) and its close-up view in Fig. (4.13) that higher values of n 

bring nullcline below this desired switching curve. So if nullcline is dropped below this 

curve then a trajectory can not switch to it after passing the nullcline. In Fig. (4.13) one 

can see that the critical value of n is around 2 where nullcline just avoids intersection 

with this curve. To further prove the point we have plotted the (<5, e) trajectories all 

starting from eo = 2~m with different values of n in Fig. (4.14). It is evident that only 

those trajectories which do not intersect nullcline have good performance i.e. minimal 

overshoot. On the other hand, small values of n < 2 would have slow response. Thus 

n = 2 gives fastest possible response with minimal overshoot. Generally speaking for 

a system with saturation limits higher values of gains result in large overshoots as we 

have already seen in Fig. (4.11). 

In Fig. (4.15) we have compared a pitch manoeuvre for Exact Steering Law with vari

able gains and fixed gains. In both cases response time is almost the same but variable 

gain case have smoother response. Although in case of variable gains gimbal rate re

mained saturated for lesser amount of time. But in feedback region near origin gains are 

higher than the fixed gains case which results in faster and smoother response. Vari

ation in gains along the trajectory are plotted in Fig. (4.16). The gains drop to their 

lowest values near singularity. Fixed gains are also plotted in the same figure. We have 

also plotted a trial Liapunov function for the system of the form given in Eq. (4.2.7) 

and its rate for both cases. System is stable with variable gains. 

In the next experiment, we have simulated a 600 pitch manoeuvre to highlight the ad-
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vantage of variable gains over fixed gains in exact steering. In fixed gains case there 

is a separatrix trajectory starting from eo = 2wn and all traJ·ectories with eo > 2wn are a a 

bound to hit singularity. Should we need a manoeuvre with eo > 2wn then we need to 
a 

update the gains using Eq. (4.4.23) to make that trajectory avoid singularity. For larger 

values of eo gains are slower. On the other hand, for variable gains Exact Steering the 

gains once calculated for eo = 2~n can be used for a trajectory with eo > ~n. To 

demonstrate this we perform a simulation for eo = 3~n i.e.(m = 2). In Fig. (4.17) 

results show a faster and smoother response for variable gains (solid lines) as compared 

to fixed gains (dashed lines) case of Exact Steering Law. Interestingly gimbal angle 8 

in this case approaches to singularity and slew rate w saturates near to its maximum 

value. But as trajectory switches to desired switching curve so there is no overshoot in 

the response. In Fig. (4.18) we have presented the variation in gains, Liapunov function 

and its rate. In Fig. (4.19) the (8, e) trajectories for both cases have been plotted. It ex

plains reason for the fast response of variable gain case. Initially both trajectories start 

from eo = 3~n along the saturation curve to (~, ~n) which is critical point for fixed 

gains case. Beyond that point the fixed gains trajectory can not follow a gimbal rate 

saturation curve as that will bring it to (0, ~) rather than (0,0). On the other hand, in 
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variable gain's case trajectory stays near singularity and then come back to origin along 

the desired switching curve. 

4.8 Summary 

We have proposed an exact steering for twin CMG system and developed some tech

niques to calculate feedback gains such that exact solutions are possible without en

countering any singularity. We have studied the feedback gains' calculation problem 

subjected to different restrictions imposed namely exactness, singularity avoidance, 

time-optimality and rate constraints like gimbal rate constraint and slew rate constraint. 

We have derived an exact expression for feedback gains in terms of constraints and 

have found a separatrix trajectory for singularity avoidance. Time-optimality of these 

solutions has been checked and it has shown to be very close to bang-bang solution. 

It has also been shown that SR solutions are not only not exact but can also exhibit 

performance degradation in form of large overshoots if we choose higher gains with no 

regard to saturation limits. However, the gains calculated for Exact Steering can also 

be used SR to get good performance. We have also proposed variable gains for Exact 
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Steering Law. A near-optimal choice of Wn of variable gains case has been discussed. 

Variable gain steering has been shown to perform better than fixed gains steering. 

In next chapter, this idea of exact steering with proper choice of gains will be extended 

to a four CMG pyramid system for three axis control. 
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Chapter 5 

Exact Steering in PyraDlid Type Four 

CMG SysteDls 

5.1 Introduction 

In this chapter, we shall develop an exact steering approach for four CMG pyramid 

systems. This new approach achieves an exact steering while using almost full mo

mentum capability of CMG cluster by avoiding elliptic singularity. Moreover, this 

approach combines an extended version of feedback gains calculation technique pro

posed in Chapter 4 with a new steering law based on generalised inverse. 

An exact steering law can use full momentum capability of a CMG cluster if it can 

effectively avoid elliptic singularity. Moore-Penrose steering law can not avoid elliptic 

singularity on its own, rather one has to add null motion to avoid internal singulari

ties [8, 11, 12]. Steering laws with added null motion produce larger value of torque 

in order to avoid internal singularities. However, Margulies [83] has shown that mere 

existence of null motion does not guarantee the singularity avoidance. Similarly singu

larity robust (SR) steering law can not avoid elliptic singularity but it transits through 

singularity, therefore, this steering law is not able to use full momentum capability of 

CMG systems [11]. Generalised Singularity Robust (GSR) steering law is capable of 

escaping elliptic singularity and using larger angular momentum capability by caus

ing pointing errors [128, 134]. Moreover, singularity robust techniques are not exact. 

Another approach to avoid elliptic singularity and using larger momentum envelope is 
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using preferred initial gimbal angles in MP or SR steering laws [124]. Preferred initial 

gimbal angles have non-zero values and they correspond to zero initial angular momen

tum of CMG cluster. Kurokawa [62] proposed an exact steering law which uses only a 

constrained momentum space. 

The exact steering technique proposed in this chapter involves solving a three-axis atti

tude problem to generate an angular momentum path which uses full capability of the 

CMG cluster and then calculate corresponding feedback gains. This ensures a rapid 

slew rate matching the on-board CMGs capability. However, to realize this desired 

momentum path we need a steering law generating gimbal motion avoiding internal 

singularities. We have proposed a Generalised Inverse (GI) steering law to generate 

gimbal motion. GI steering law gives exact steering which avoids elliptic singUlarity, 

uses nearly full momentum capability of CMG cluster and returns gimbals to initial 

zero gimbal angle state. 

5.2 Three-axis manoeuvres 

In this section, a rest-rest three-axis manoeuvre of a satellite equipped with CMG clus

ter is described. The dynamic equation of such system is derived in Chapter 3 and it 

results in Eq. (3.7.32) which can be re-written as 

Iw = -h - w x (Iw + h), (5.2.1) 

where I is inertia matrix of satellite, w is angular velocity vector of satellite, h is 

angular momentum vector associated with CMG cluster. A generalised three-axis ma

noeuvre of satellite equipped with four CMGs can be described as a single axis ma

noeuvre with angle () about the eigen-axis e. The quaternion representation of at

titude of a satellite has been discussed in Chapter 3. A four parameter quaternion 

ij = (qOl qI, q2l q3) has a scalar part qo and a vector part q = [qIl q2l q3]T. Quaternion ij 

defined in Eq. (3.2.4) can be written in compact form as 

ij = cos (n + e sin (n . 
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The quaternion kinematic equation (3.3.7) is also rewritten for the purpose of clarity 

q 
1 
"2 (qow - W x q) , 

1 T --w q. 
2 (5.2.2) 

We consider a rest-to-rest eigen-axis manoeuvre about a given direction e = [el' e2, e3]T 

with initial conditions w(O) = 0, h(O) = 0 and 0(0) = 00 , Final conditions for the 

manoeuvre are w(tf) = 0, h(tf) = 0 and O(tf) = 0, where tf is the final time. Then 

the final condition for quaternion becomes q(tf) = (1,0,0,0) for O(tJ) = 0. There

fore, the error quaternion qe defined in Eq. (3.3.8) reduces to quaternion q at current 

time. The quaternion feedback control law is derived in Chapter 3 and it is given in 

Eq. (3.5.26). We assume that there is no external torque. Then the given control law 

reduces to the following form for rest-rest eigen-axis manoeuvre 

it = Kqq + Kww - w x (Iw + h), (5.2.3) 

where K q = kqI and K w = kwI are feedback gain matrices with kq and kw as positive 

constants. For a manoeuvre about e-axis we can write 

w 

q 

where 0 is slew rate of the body. 

Oe, 
. 0 

SIn "2e, 

(5.2.4) 

(5.2.5) 

In the absence of external torque total angular momentum of the system remains con

served. Moreover with the given initial conditions w(O) = 0, h(O) = 0 the total 

angular momentum remains zero 

Iw+h=O. 

Therefore, angular velocity of the vehicle is related to angular momentum of the CMG 

cluster as 
(5.2.6) 

Vector h is parallel to vector w if later is about one of the principal axes of the vehicle 

or all three moment of inertia terms are equal i.e. vehicle has spherical symmetry. In 
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general for a given direction e = [el' e2, e3]T of vector w there exist a direction e] of 

vector h such that 

(5.2.7) 

Where lee is effective moment of inertia in e direction and is defined as lee = vieT IT I e. 

Thus if manoeuvre is about e axis then h will vary about e I axis. 

A new variable TJ E [-7r /2, 7r /2] is defined as a normalised measure of projection of 

vector h on direction e I. Thus we have 

(5.2.8) 

Here h,,:ax is saturation value of angular momentum along e I direction on momentum 

envelope. We also define the maximum slew rate capability about e-axis as 

We substitute Eq. (5.2.8) and Eq. (5.2.4) in Eq. (5.2.3) and simplify it to get 

k . () k . 
. 1 sm 2" - w sm TJ 

TJ= , 
cos TJ 

(5.2.9) 

where kl = kq/wr:ax . Similarly, by using Eq. (5.2.8), Eq. (5.2.4) and Eq. (5.2.7) in 

Eq. (5.2.6) and after simplifying it we get 

e = _w~ax sin TJ. (5.2.10) 

These equations generate desired profile of normalised angular momentum variable TJ 

and vehicle's attitude e. Thus we have reduced the problem to (TJ, e) plane. The phase 

portrait in (TJ, e) plane is similar to that of twin CMOs given in Chapter 4. Now we 

design feedback gains kl and kw such that momentum envelope is fully used (i. e. 

approach TJ = 7r /2) while avoiding singularity. 

5.2.1 Feedback Gains 

The Eq. (5.2.9) and Eq. (5.2.10) are reduced to the following form after eliminating TJ 

variable. 
.., e 
e + kwe + kq sin "2 = O. (5.2.11) 
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Figure 5.1: Phase portrait of damped non-linear pendulum model with ( = 0.8. 

This is a damped pendulum equation. Feedback gains can be chosen as kq = 2w~ 

and kw = 2(wn' where Wn is natural frequency and ( is damping ratio of closed-loop 

system. The factor of 2 is used in expression for kq because here it is sin ~ rather than 

sine. The phase portrait of this nonlinear system is shown in Fig. (5.1). The natural 

frequency of linear closed-loop system calculated in Chapter 4 is given by 

wmax exp (~) e tan <p 

WnL = eo ' (5.2.12) 

where ¢ = arccos (. If this frequency is used in the nonlinear system given by Eq. (5.2.11) 

then the corresponding trajectory starting from (eo, 0) does not pass through the critical 

point (2 arcsin( (w;:ax), _w~ax) as shown in Fig. (5.2). On the other hand, the nonlinear 

system (5.2.11) can not be solved analytically to calculate Wn . However, we can find an 

approximate solution of Eq. (5.2.11) by using the fact that the trajectory of nonlinear 

system lies in the neighborhood of linear system's trajectory. The approximate solu

tion will help to find the value of Wn for which the desired trajectory passes through 

the critical point. We use the variational method to find an approximate solution of the 
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nonlinear equation. Eq. (5.2.11) is set up in the variational fonn as follows 

(5.2.13) 

where eL is the solution of linear system and it is given by 

The Eq.(5.2.13) can be re-arranged in the matrix fonn as 

(5.2.14) 

where Zl = e(t) and Z2 = 8(t). The solution of this equation for the initial condition 

[eo, Of is given by 

[ :: ] eo exp( -(wnt) [ sin(wnt sin ¢ + ¢) ] 

sin ¢ -Wn sin(wnt sin ¢) 

+ rtw~exp(-.(Wn(t-S)) [ sin(wn(t-s)sin¢)/wn ] 

io sln¢ -sin(wn(t-s)sin¢-¢) 

x (OL(S) - 2 sin OL~S)) ds. (5.2.15) 

A trajectory starting from [eo, o]T will pass through the critical point if 

By differentiating Eq. (5.2.15) we get 

[ :: ] 
Thus Z2 = 0 implies that 

sin ( Wn t sin ¢ - ¢) = 0 

and this follows to the time at critical point 

t* = ¢ 
Wn sin ¢ 

90 

[ 

- sin(wnt sin ¢ )/wn ] . 

sin(wnt sin 1> - 1» 



We substitute t* in Zl = _w~ax to get 

(5.2.16) 

where 

a = 1 - :0 (OL(t*) - 2 sin OLg*)) . (5.2.17) 

Now Eq. (5.2.16) and Eq. (5.2.17) are solved numerically to find Wn and cx. We use 

Newton-Raphson method for numerical solution. Eq. (5.2.16) and Eq. (5.2.17) are re

arranged in the following form 

F(wn, a) = [ aOo _ 0
0 
:;;(t*)wn\ sin OLr) J = o. (5.2.18) 

The Jacobian of F is 

(5.2.19) 

where 

Now if 

Y= [ ~ J 
then the Newton-Raphson formula for the ith iteration is 

y[i + 1] = y[i] - [\7 F(y[i])]-l F(y[i]) 

with 

y[O] = [ W~L J . 
This method gives us an approximate value of Wn corresponding to trajectory which 

nearly passes through critical point. The difference is only 0.05% of maximum slew 

rate. In Table (5.1) we compare the natural frequencies for linear and nonlinear systems 

for different slew angles. It can be seen that for small angles the difference between 

linear and nonlinear frequencies is quite small and it grows with increasing slew angle. 
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Table 5.1: Comparison of natural frequencies W Land w for linear and [' n n non- mear systems 

respectively with different slew angles. 

rFll e=o (=de=g)~I~W~nL~(r=ad=/S=) r=1 W=n (=ra=d/=s)=rl = a= 11 

10 1.1940 1.1945 0 .9996 

20 0.5970 0.5979 0 .9984 

30 0.3980 0 .3994 0 .9964 

40 0.2985 0.3004 0.9936 

50 0.2388 0.2412 0.9899 

60 0.1990 0.2019 0.9854 

70 0.1706 0.1741 0.9800 

80 0.1492 0.1533 0.9736 
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Figure 5.2: Nullcline for linear (dashed) and nonlinear (solid) systems; uJ n L used in linear 

system made trajectory to pass through critical point; Wn L used in nonlinear system made tra

jectory to turn before critical point; Wn used in nonlinear system made trajec tory to pass through 

critical point. 
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5.3 Four CMG Pyramid Systems 

In this section, mathematical model for CMO systems is used to define singularities 

and maximum slew capability in a particular direction. We consider a cluster of four 

identical CMOs placed symmetrically in a pyramid configuration with skew angle {3 as 

shown in Fig. (5.3). Here hi is the angular momentum vector associated for ith CMG , 

9yi is fixed gimbal direction and d i is torque vector as explained in Chapter 3. The 

vector h for four CMOs pyramid system is defined as 

-c{3 sin 01 - cos 02 + c{3 sin 03 + cos 04 

h = hemg cos 01 - c{3 sin 02 - cos 03 + c{3 sin 04 (5.3.20) 

s{3 sin 01 + s{3 sin 02 + s{3 sin 03 + s{3 sin 04 

where Oi, i = 1,2,3,4 is gimbal angle of ith CMO, (hemg ) is magnitude of angular 

momentum and c{3 = cos {3 and s{3 = sin {3. The output torque of CMOs is 

where Dl is Jacobian matrix defined as ~ or 

-c{3 cos 01 

(5.3.21) 

We have defined the singularity of a CMO cluster in Chapter 3. A CMO cluster is said 

to be singular in a given direction eI if torque vectors di (ith column of matrix D 1) 

associated with all four CMOs become co-planner. Mathematically e'J di = 0 for all 

i. Where eI is a unit vector normal to that plane. Note that the direction eI is related 

to the direction of required manoeuvre e through relation (5.2.7). A singular torque 

vector dt is defined in Eq. (3.7.35) which can be rewritten for singular direction e[ as 

where (Ji = ±l. Similarly a singular angular momentum vector can be defined by using 

Eq. (3.7.37) as 
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Figure 5.3: Four CMG pyramid system. 

The projection of angular momentum vector on direction e I is given by 

4 T( A ) A 

h """' . e I 9 yi X e I x 9 yi 
cmg 6 at I A 

i= l gyi X el l 
4 

h cmg L ai l9Yi x el l· (5.3.22) 
i=l 

For saturation singularity we choose ai = + 1 for all CMGs. Therefore, full momentum 

capacity in a given direction e I is found to be 

4 

h r;ax = h cmg L 19yi x el l· (5.3.23 ) 

i= l 

The maximum slew rate capability of the vehicle about e-axis w~ax can be defined as 

wmax 
e 

h max 
e 

l ee 
4 

h
cm g 

"""' I A I -1- 6 gyi X e I . 
ee i=l 

5.4 Generalised Inverse Steering Law 

(5.3.24 ) 

In previous sections, we have formulated an approach to compute feedback ga ins for a 

three-axis reorientation manoeuvre such that fu ll momentum capacity of CMG clu-;tcr 
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could be used. And we can also generate a desired momentum profile for a given 

manoeuvre as 

It can be noted that angular momentum of CMOs is nonlinear function of gimbal angles 

as given in Eqn. (5.3.20). Because of non-linearity of angular momentum function it 

is not easy to solve for gimbal angles directly from a given angular momentum profile. 

However, it can be noted that the differential dh is a linear function of differential d8. 

Therefore, pseudo-inverse based approach and its singularity robust variants are used to 

find gimbal rates and then gimbal angles. However, the internal singularities associated 

with pseudo-inverse can affect the ability of CMOs to follow the desired momentum 

profile. To overcome this problem we introduce a new approach based on generalised 

inverse rather than pseudo-inverse in order to avoid encounter with elliptic singularity 

and to be able to follow desired momentum profile as close as possible. Margulies [83] 

has defined the three rows of Dl as basis of torque producing gimbal rate space to 

obtain Moore-Penrose inverse. We can define a new 3 x 4 matrix A( 8) such that 

(5.4.25) 

Here three rows of matrix A are defined as basis of gimbal rate space with v 

[vx, vy, vz]T be the components in these basis. We know that 

If Dl AT is not singular then 

(5.4.26) 

This leads to a generalised inverse steering law 

(5.4.27) 

One can note that Moore-Penrose inverse is just a special case of this generalised in

verse when A = D 1 . The detailed discussion about generalised inverse of matrices 

can be found in Ref. [7, 17]. The fundamental properties of generalised matrices, such 
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that two matrices X and Y are generalised inverse of each other, can be defined as 

YXY Y, 

XYX X, 

(Xy)T XY, 

(YX)T YX. 

The proposed generalised inverse based on matrix A satisfy all except third property 

whereas Moore-Penrose inverse uniquely satisfy all four properties. Now we need to 

find the matrix A such that elliptic singularity could be avoided. Moreover, in this case 

singularities of the matrix DIAT are also very important. Therefore, we try to choose 

matrix A such that its singularities are not encountered in the momentum workspace 

of the CMG cluster. If singularity of matrix A is encountered inside the momentum 

workspace defined by feedback (which were designed to maximise the workspace) then 

we need to reduce feedback gains to exclude the singularity of matrix A. The choice 

of matrix A is explained in next section. 

5.5 Elliptic Singularity Avoidance through Choice of 

the Matrix A 

There are many possible choices of matrix A. But the choice of A is made such that the 

elliptic singularity could be avoided and momentum capability of CMG cluster could 

fully be used. We have made the following choice 

(5.5.28) 

Here matrix Do for four identical CMG system is given by 

Do = hcmg -c{3 sin <52 - cos <53 c{3 sin <54 
(5.5.29) 

s{3 sin <52 s{3 sin <53 s{3 sin <54 

For this choice of matrix A the gimbal rate command 8 will be different from those of 

Moore-Penrose case or its singularity robust variants. As a result gimbal angles will fol

Iowa different path and hence a different angular momentum profile. Ideally we should 
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be able to find a matrix A which could enable us to use full momentum envelope or 

workspace by avoiding elliptic singularity. For example in pyramid type CMG system 

with four units the elliptic singularity in roll direction is [-7r /2,0, 7r /2,0]. MP-inverse 

solution and its singularity robust variant uses only two CMGs (1 and 3 in this case) 

for roll direction control if initial gimbal angles are set at zero. That is why gimbal 

angle trajectories hit elliptic singularity. In this situation elliptic singularity can only 

be avoided by using all four CMOs which is achieved by given choice of matrix A as 

shown in Fig. (5.8). In this figure generalised singularity robust (OSR) steering law 

initially uses only two CMOs as it is based on a modified MP inverse and then hit ellip

tic singularity and start using all four CMOs to escape singularity. On the other hand, 

proposed steering law uses all four CMOs from start and avoids elliptic singularity. 

Therefore, for the given choice of matrix A we can avoid elliptic singularity of matrix 

Dl which enables us to use much larger percentage of the momentum workspace (see 

Fig. (5.11». In the roll direction singularity of matrix A is encountered near the bound

ary of workspace. To exclude this singularity we need to slightly reduce the workspace 

by reducing the feedback gains. Here we explain how to reduce the feedback gains 

to reduce the workspace. We calculate the det (DIAT) as function of variable TJ and 

plot it as shown in Fig. (5.4). It can be seen that matrix DIAT becomes singular at 

TJs = 74°. As generalised-inverse steering law is not singularity robust so we need 

to avoid this singularity by reducing feedback gains. To exclude this singularity from 

workspace we need to reduce the natural frequency Wn by factor sin TJs 

S • S 
wn = Wn SIn TJ . 

The reduction in feedback gains will shift the turning point of the trajectory in (TJ, 8) 

phase-plane from (7r /2,2 arcsin( (w~ax /wn )) to a new point (TJs, 2 arcsin( (w~ax /w~)). 

The reduced work space is sin TJs x 100 percent of the maximum available momentum 

space h;:ax. For example when TJs = 74° then available work space is 96 percent of full 

momentum space. 

Another feature of generalised-inverse steering law is return of gimbal angles to zero at 

the end of the manoeuvre provided singUlarity has not been encountered (see Fig. (5.8». 

This is a very useful feature. 
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This choice of matrix A has a disadvantage of being not able to start at preferred gim

bal angles. These are non-zero initial gimbal angles corresponding to zero initial angu

lar momentum. The advantage of using preferred gimbal angles in MP-inverse based 

steering laws is that they help in avoiding elliptic singularity. A detailed discussion on 

preferred gimbal angles can be found in Ref. [124]. The preferred gimbal angles for roll 

manoeuvre are [7r / 4, -7r / 4, 7r / 4, -7r / 4]. The matrix A is singular for these preferred 

gimbal angles. 

-cj3 -1 cj3 1 

A = V2hcmg ° ° ° ° 
sj3 ° sj3 ° 

Thus proposed steering law cannot start from this singularity. The preferred gimbal 

angles are good initial conditions for MP-inverse based steering laws whereas for the 

proposed steering law [0,0,0,0] can be considered preferred gimbal initial condition. 

In this thesis, we do not study the singularities of matrix A. We have seen that for 

roll manoeuvre with initial gimbal angles at zero the singularity is encountered near the 

outer envelope of the momentum. 

In next subsection, we introduce a variant of proposed steering law which uses a mod

ified form of matrix A. This steering law will be able to use even larger momentum 

space. Moreover, modified law will also be able to start from preferred gimbal angles. 

5.5.1 A Modified Form of the Matrix A 

We introduce a modified form of matrix A as 

(5.5.30) 

Here choice of parameter A is crucial in extending the workspace to its maximum limit. 

We choose 

where Ao and f.L are the constants to be fixed. The value of A increases as system 

approaches towards singularity. The matrix A causes all four CMGs to move to avoid 

elliptic singularity. In Fig. (5.5) we plot det (DIAT) with variable 7]. The singularity of 
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Figure 5.4: Plot of det (DIAT) vs. 7] ; this plot is used to reduce the workspace. 

matrix A is now encountered at rJs = 800 which corresponds to 98 percent of maximum 

envelope. Therefore, feedback gains are slightly reduced to exclude this singularity. 

If matrix A does not encounter singularity within the workspace then gimbal angle 

profiles return back to zero (see Fig. (5.15». This is an advantage of using this GI 

approach with prescribed choice of matrix A. Moreover, with this modified form of A 

the generalised inverse based steering law can start from preferred gimbal angles (see 

Fig. (5.16». 

5.5.2 Matrix A for an Arbitrary Direction of Manoeuvre 

Here we generalise the procedure of finding a suitable matrix A for an arbitrary di

rection of manoeuvre. A search for an optimal choice of Ao and f-L is performed such 

that 7]s (singularity of matrix A ) is as close to 900 (saturation singularity) as poss ible . 

This can be achieved by maximizing the minimum value of det (D 1AT
) with respect 

to Ao and f-L. As we need to search these parameters over TJ space. so it is cOIl\'enient 

to re-arrange the Generalised Inverse steering law (5.4.27) in order to make '1 a~ all 
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Figure 5.5: Plot of det (DIAT) vs. r; for modified A . 

independent variable rather than time. Differentiating Eq. (5.2.8) yields 

Now we can replace eI and h,,:ax by using Eq. (5.2.7) and 

hmax = wmax I e e ee ' 

Therefore, 

it = w;"ax cos Tli]I e. 

By substituting it from this equation in Eq. (5.4.27) we get 

Now this equation can be re-arranged to get the following form 

(5.5.3 1) 

This equation can be used to determine the workspace excluding the singularity of 

matrix A characterized by variable TIs in all directions. Then feedback gains are found 
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Table 5 2' Simulation Data .. 
Parameter Value 

hcmg 0.28Nms 

[Ix, Iy , Iz] [10,10,10] kgm2 

( 0.8 

wmax 5.06 deg/s 

(3 54.7 deg 

for reduced workspace by reducing Wn by the factor of sin TJs. The constants Ao and J-l 

are tuned to maximize the value of TJs for a given direction e. This procedure is used 

to find Ao = 1.2 and J-l = 5.0 with TJs = 800 in roll direction e = [1,0, Of. These 

values of Ao and f.L are used while simulating modified GI steering law in examples 2 

and 3 of the next section, where we shall present and discuss the simulation result of 

the proposed steering techniques for roll manoeuvre examples. 

5.6 Simulation and Results 

In this section, we shall simulate the Generalized Inverse Steering Law (GISL) for dif

ferent rest-to-rest manoeuvre examples. The satellite and CMGs data used in these 

simulations is summarized in Table (5.2). Here BILSAT-l data values (satellite/CMG 

sizes) are used except it uses four CMGs pyramid system. To test the performance 

of GISL for the given two choices of matrix A we have selected the roll manoeuvre 

example with initial values of gimbal angles to be zero. We know that in pyramid 

arrangement of four CMG systems roll and pitch directions have elliptic singularity 

problem. For this reason we have chosen the roll manoeuvre example. We have com

pared the performance of the proposed method with Generalised Singularity Robust 

(GSR) method given in Eq. (3.7.42), which is known to be best to pass/escape elliptic 

singUlarity by introducing a small de-tour in angular momentum direction. In another 

example proposed method is tested for a roll manoeuvre with a set of preferred initial 

gimbal angles. 

In example 1 we perform a 40 deg roll manoeuvre to demonstrate that the proposed 
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logic can exploit almost full momentum envelope. We know that the Singularity Ro

bust logic can access only a restricted momentum space due to elliptic singularity and 

this issue of larger momentum usage by avoiding elliptic singularity has been addressed 

in GSR to large extent. However, issues like exactness of control action, attitude error 

and return of gimbal angles at the end of the manoeuvre are better addressed in pro

posed steering law than GSR while exploiting almost full momentum capability. We 

compare the performance of proposed method with GSR while choosing same feed

back gains for both methods. Figure (5.6) shows that proposed law generates angular 

rate only in roll direction whereas GSR causes small motions in other two directions 

also. Moreover, roll rate, in the case of GSR, saturates at elliptic singUlarity for some 

time then it increases as system escapes the singUlarity. As a result roll angle, in the 

case of proposed law, settles in shorter time and has no attitude errors in pitch and yaw 

directions as shown in Fig. (5.7). To explain the reason for this improved performance 

we plot gimbal angle profiles in Fig. (5.8). Pseudo-inverse based steering laws ( which 

include GSR ) lead CMG system towards elliptic singularity [-7f /0,0, 7f /2,0] due to 

symmetric motion of only two gimbals (1 and 3). The GSR escapes singularity by 

then moving all four gimbals and breaking the symmetric motion of gimbals 1 and 3. 

This leaves gimbals in non-zero gimbal state at the completion of manoeuvre. Whereas 

proposed steering law uses motion of all four gimbals from the start of the manoeuvre 

and becomes able to avoid elliptic singUlarity at first place. Moreover, it brings back 

gimbals to initial zero state at the end of manoeuvre. In Fig. (5.9) we have compared 

the gimbal rate profiles. For proposed steering law the gimbal rates are not significantly 

larger than those of GSR law. In Fig. (5.10) we have plotted the singularity indices and 

norm of angular momentum vector. For the same feedback gains and control structure 

GI exploits larger angular momentum than GSR. The same fact can be seen in Fig. 

(5.11). However, due to singularity of matrix A we can not exploit momentum to full 

extent. 

In example 2 we compare the modified GI steering law with GSR steering law. The 

constants '\0 = 1.2 and J.1 = 5.0 are used in modified GI simulation. The results are 

shown in Fig. (5.12), Fig. (5.13), Fig. (5.14) and Fig. (5.15). The improvement of using 

modified form can only be seen in phase-portrait where it exploits even larger momen-
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Figure 5.6: Roll manoeuvre example 1: angular velocity components of satellite in body coor

dinates for proposed Generalised-Inverse (GI) steering law and GSR steering law. 

tum. 

In example 3 we have simulated a roll manoeuvre with initial preferred gimbal an

gles [7r / 4, -7r / 4, 7r / 4, -7r /4]. Pseudo-inverse based steering methods use motion of all 

four gimbal to avoid elliptic singularity if they start from preferred gimbal angles. We 

have compared the proposed 01 with OSR. In both cases gimbal angles follow sim

ilar path and return back to initial condition of gimbal angles whereas for GSR case 

they do not come back as shown in Fig. (5.16). This close following of the gimbal 

angles by two methods could be explained on the following basis. GSR law is based on 

pseudo-inverse for which given gimbal condition is preferred initial condition. There

fore, gimbal angles remain well away from singularity as seen in Fig. (5.18). Similarly 

proposed OI method with modified matrix A will have a very small value of parame

ter A = Ao exp( -{ldet(D1Di)) as system remains away from singularity for preferred 

initial gimbal angles. Therefore it generates solution close to pseudo-inverse. However, 

a small difference in gimbal angle trajectories generated by two methods is captured in 

Fig. (5.17). As OSR has not encounter singularity in this example, therefore, induced 
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Figure 5.7: Roll manoeuvre example 1: attitude angles of satellite for proposed Generalised

Inverse (GI) steering law and GSR steering law. 
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(GI) steering law and GSR steering law. 
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steering law. 

attitude error is negligible. It can be seen in Fig. (5.19). 

5.7 Summary 

A three axis reorientation manoeuvre of a satellite equipped with four CMGs pyramid 

cluster has been studied. The proposed Generalised-Inverse Steering Law gives an 

exact control, uses almost full momentum capability and avoids elliptic singularity. The 

commanded torque in the proposed steering law uses calculated feedback gains which 

together with generalised-inverse make system to use almost full momentum capability. 

Numerical simulations demonstrated that the proposed method gives exact control with 

higher agility as compared to Generalised Singularity Robust Law as former avoids 

elliptic singularity altogether. The proposed steering law brings the gimbal angles to 

zero on completion of manoeuvre provided initial condition of gimbal angles was zero. 

Whereas this is not the case in Generalised Singularity Robust Law. However, the 

proposed law is not suitable for a manoeuvre started from a singular configuration. In 

next chapter, we shall propose a singularity escaping steering law. 
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Chapter 6 

Singularity Escaping Steering Law 

6.1 Introduction 

In this chapter, we propose and analyze a new singularity escaping steering law. The so

called impassable elliptic singularities (see Section 3.7.2) can potentially degrade the 

performance of attitude control system of a satellite in number of ways e.g. gimbal lock 

and inability to attain full momentum capability. Generalised Singularity Robust (GSR) 

method can escape elliptic singularity by introducing a deterministic dither which in 

tum causes a tumble [128, 134]. This attitude error makes it not suitable for tracking 

manoeuvre. Therefore, there is a need for a steering law which could avoid or escape 

or transit elliptic singularity to use full momentum capability without causing attitude 

error. The Generalised-Inverse (GI) steering law (5.4.27) introduced in previous chapter 

can avoid elliptic singularity while using almost full momentum envelope. But it can 

not escape (or start from) elliptic singularity because the matrix DIAT in Eq. (5.4.27) 

is not invertible at singularity. Therefore, singularity robustness in this steering law is 

needed to make it able to start from singularity. So here we proposed a new singularity 

escaping steering law which is obtained by introducing singularity robustness in GI

inverse steering law. Singularity robustness is achieved by minimal addition of error 

term in singular direction only. It will be seen later in simulation results that proposed 

steering law has many advantages over GSR steering law like proposed method gives 

quicker escape from singularity, produces no pointing errors and brings back the gimbal 

angles to their zero initial condition at the end of a rest-rest manoeuvre. In the rest of 
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the chapter this new singularity escaping law will be formally presented and developed. 

Finally it is compared with GSR steering law. 

6.2 The Proposed Singularity Escaping Steering Law 

In this section, we present the proposed Singularity Escaping (SE) steering law. A SE 

law can be obtained by making Generalised-Inverse (GI) steering law (Eq. 5.4.27), pro

posed in previous chapter, singularity robust. Moore-Penrose steering law was made 

singularity robust in Ref. [12] which tackled numerical aspect of the CMG steering by 

making matrix inversion possible on encounter with singularity. However, numerical 

robustness of an inverse based steering law is not sufficient to guarantee the closed-loop 

performance in the face of singularity. In the case of singularity robust (SR) steering 

law gimbal lock at elliptic singularity can potentially degrade the performance of atti

tude control system. Moreover, it is not able to use full momentum capability of CMOs 

and can not escape elliptic singularity. These shortcomings of singularity robust were 

address by generalised singularity robust law (GSR) which adds deterministic dither to 

escape singularity and can use larger momentum of CMGs if and when faced with sin

gUlarity. On the other hand, the price paid is attitude tumbling (see Fig. 6.18) and error 

torques (see Fig. 6.20). Moreover, a single-axis manoeuvre starting with zero gimbal 

angles does not end up at zero gimbal angle state in case of GSR (see Fig. 6.19), which 

may cause momentum build up in CMG devices and it is not good if a repeatability of 

manoeuvre is required. Similarly tumbling effect or pointing inaccuracy as a result of 

singularity escape makes it not a good candidate for attitude tracking as well. 

In proposing new singularity escaping steering law we have tried to address aforemen

tioned problems associated with simple SR and GSR. The GI steering law is made 

singularity robust by adding an minimal matrix spanning the complementary sub-space 

of the singular matrix to make matrix as a full rank matrix. For a singular direction 

vector e the outer product matrix 
(6.2.1 ) 
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is defined on the complementary sub-space of the singular matrix DDT'f TD 
1 lIe 1 = 

O. Therefore, the proposed steering law is 

(6.2.2) 

Where As is singularity escaping parameter (SEP) defined as 

A, = K, exp ( - :;) , 

here K,s and (J s are positive constants and 

m = Vdet (DIDf)/hcmg . 

Tc is commanded torque. Here the matrix A has same definition as in Eq. (5.5.30) 

A = Dl + ADo, 

where A is singularity avoiding parameter (SAP) defined as 

A = Kexp ( - ::) , 

where K, and (J are positive constants. The parameters involved in SAP and SEP are 

selected such that the performance of the closed-loop system is enhanced, and it is 

dealt in detail in the next section. It is important to note that this particular choice 

of matrix E defined in Eq. (6.2.1) is not sufficient in singularity escape unless the 

generalised inverse (i. e. with matrix A) is used. For example in the case of SR 

steering law (Eq. 3.7.40) the matrix (DIDf + AI) to be inverted has a full rank even 

then it is not able to escape elliptic singularity. It means that a combined effect of using 

matrices A and E helps proposed steering law in escaping from the elliptic singUlarity. 

6.3 SAP and SEP 

This section is about optimising singUlarity avoiding parameter (SAP) A(K" (J, m) and 

singUlarity escaping parameter (SEP) As(K,s, (Js, m). This section will also help in un

derstanding the competing effect of SAP and SEP on control accuracy and gimbal rates. 

Strategy used here is simple and very clear. We change the values of four parameters (J, 

K" K,s and (Js one by one and see the effect on output torque and maximum gimbal rate. 
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We apply a constant command torque in roll direction it = [1,0, oV and also we take 

hcmg = 1Nms. It should be noted that in roll and pitch axes the elliptic singularity is 

more pronounced and troublesome. In an exact steering/control output torque closely 

follows the commanded torque. However, when system passes nearby the singUlarity 

the output torque deviates from commanded torque profile, whereas maximum gimbal 

rate value rises. Now the optimal values of those four parameters are selected such 

that the torque error is minimum possible with gimbal rate not exceeding a preset limit 

which in this case is chosen to be 3rad/ s. 

6.3.1 Effect of a 

It measures spread of SAP A over singularity index m. The value of m varies between 

o and 1.5 for a pyramid system with skew angle f3 = 54.7deg. We vary the value of (J' 

from.6 to 1.2 while keeping the other parameters fixed at I'\, = 1,l'\,s = 0.5 and (J's = 0.4. 

The larger value of 0" means wide spread of SAP over singUlarity index. As a result ,\ 

would have larger values even when system is away from singularity configuration. 

Therefore, it means less torque error but higher gimbal rates as larger value of SAP 

not only helps system avoid singularity but it take system away from Moore-Penrose 

solution which is a least gimbal rate solution (see section 3.7.3). The Fig.(6.1) shows 

the output torque for different values of 0". It can be seen that torque error (a dip below 

1) reduces (becomes narrower and shallower) with increasing value of 0". On the other 

hand, gimbal rate rises as seen in Fig.(6.2). 

6.3.2 Effect of K, 

The parameter K, is value of SAP A at singularity (m = 0). So larger value of I'\, means 

strong singUlarity avoidance, smaller torque error as seen in Fig. (6.3) and higher gim

bal rate as seen in Fig. (6.4). Although increasing both I'\, and 0" have similar effect on 

torque error and gimbal rate but there is a key difference which is increasing (J' raises 

the value of A at far points whereas increasing I'\, raises A overall especially near sin

gUlarity. So torque error reduces more rapidly by increasing I'\, than by (J' at the cost of 

higher gimbal rates. 
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6.3.3 Effect of as 

The SEP provides both singularity robustness and singularity escaping properties to the 

steering law. On the other hand, SEP also causes torque error so it is highly desirable 

that SEP has small amplitude and small spread. The effect of as on torque error can be 

seen in Fig. (6.5). With the decreasing values of as the error torque decreases both in 

magnitude and in spread and gimbal rate increases as seen in Fig. (6.6). 

6.3.4 Effect of ""s 

The variation in K,s has direct effect on torque error. By reducing K,s one can reduce the 

magnitude of the error torque significantly, however, at the price of higher gimbal rates 

as seen in Fig. (6.7) and (6.8). It can be noted that A is significant for larger values of m 

when system is away from singularity whereas As is more significant near singularity. 

6.3.5 Selection of Parameters 

After studying the effect of these parameters we select the suitable values based on 

certain criterion. The maximum gimbal rate is thought to be useful criterion as it is 

constraint by a hardware limit. The 3rad/ s limit is usually found in the literature which 

is achievable by current technology. We choose a = 1 although for a = 1.2 gimbal 

rate is less than 2.5 but we have to have margin for adjustment of K,s and as for which 

gimbal rate is more sensitive. Then we choose K, to be 1.2 as it is maximum value for 

which gimbal rate is just 2.5rad/s. Then come the selection of as. Again choice is 

simple because for as = 0.4 the gimbal rate remains below the 2.5rad/s. Finally with 

choice of K,s = 0.4 we can get gimbal rate less than 3rad/s. In the beginning we kept 

margin for K,s because magnitude of torque error can be drastically controlled by K,s 

so by reducing the K,s we can reduce the torque significantly. We have not used any 

advanced search method to find these parameters. But the advantage of technique used 

by us is its clarity which helps in understanding the sensitivities of gimbal rate with 

respect to these parameters. 
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6.4 Simulation Tests 

In this section, we shall compare the perfonnance of our SE steering law with that of 

GSR in a non-dimensional simulation to preserve the generality. In these cases com

manded torque [1,0, O]T is applied over a four CMG pyramid system. The angular 

momentum of each CMG is suppose to be 1Nms. Here we study two cases one start

ing from zero gimbal angles, other starting from elliptic singularity [-90°,00,90°,0°]. 

In Fig. (6.9) to Fig. (6.16) solid line represents simulation results of SE steering law 

whereas dashed line represents the results of GSR steering law. 

6.4.1 Case I: Starting from Zero Gimbal Condition 

In Fig. (6.9) a comparison of gimbal angle profiles generated by SE and GSR steering 

laws is presented. In case of GSR only two CMGs odd pair (1 and 3) operates for first 

few seconds until the system reaches the singular configuration whereupon even pair 

(2 and 4) starts moving to break the symmetry of pseudo-inverse based logic. Whereas 

SE logic uses all four CMGs from the beginning. It chooses such gimbal angles path 

for which manoeuvre remains single axis. The Fig. (6.10(a),(b),(c» show the output 

torque components. The proposed method produces torque only in the desired direction 

and there is virtually no torque in other two directions. Whereas in GSR case output 

torque is not unidirectional due to the effect of elliptic singularity. As a matter of 

fact the GSR method uses these torque errors in order to escape from singUlarity. The 

maximum gimbal rate is plotted in Fig. (6.10(d». The gimbal rate generated by SE 

steering law is reasonably smooth and within limits whereas gimbal rate generated by 

GSR has very high value. Although it can be corrected by adjusting the parameters 

involved in GSR but at the cost of increased errors in the output torque. We compare 

the angular momentum profiles generated by two methods in Fig. (6.11). The error 

generated by GSR to escape elliptic singularity can also be seen in angular momentum 

plots. Whereas SE steering law gives purely a single axis manoeuvre and escapes 

elliptic singularity. However, for the given choice of matrix A the x-component of 

angUlar momentum saturates at slightly different value than the saturation value. The 

singularity index in Fig. (6.11(d» shows SE law encounters no singularity of Dl but it 

encounters a saturation singularity of matrix A as shown in Fig. (6.12(a». The profile 
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Figure 6.9: Simulation Test Case I: comparison of gimbal angles profile. 

of SAP and SEP are given in Fig. (6.12(c),(d)). 

6.4.2 Case II: Starting from Elliptic Singularity 

Elliptic singularity is most troublesome singularity as it restricts the available momen

tum. This singularity can not be escaped with null motion or singularity robust law. 

However, the GSR can escape it with some error torques and pointing inaccuracy. The 

following simulation experiment shows that the proposed logic can escape the ellip

tic singularity with high pointing accuracy. In Fig. (6.13) gimbal angles are plotted to 

compare the results of the GSR and SE steering law. It is clear in this figure that pro

posed method very quickly escapes the singularity quicker than GSR. All four CMGs 

are used in this escape mechanism. In case of GSR gimbal finally settles at satura

tion singularity whereas in proposed method it settles at singularity of matrix A. In 

Fig. (6.14(a)) it can be observed that x-component of torque generated by GSR logic 

remains zero for lsec and GSR logic generates other two components of torque (see 

in Fig. (6. 14(b),(c))) in order to escape singularity. On the other hand, x-component 

of torque generated by SE logic has a very small negative value for a small fraction 
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of a second (see in Fig. (6. 14(a») whereas other two components in Fig. (6.14(b),(c» 

remain zero. Therefore, SE logic can escape singularity much faster than GSR logic. 

Maximum gimbal rate remains within the limit of 2.5rad/s as shown in Fig. (6.14(d». 

The higher gimbal rate of GSR could be reduced by changing the parameters involved 

in it but that would result in higher torque error and pointing inaccuracy. The proposed 

method gives strictly single axis manoeuvre so angular momentum develops only in 

roll axis for proposed logic contrary to GSR as shown in Fig. (6.15(a),(b),(c». We have 

plotted different singularity indices in Fig. (6.15(d» and Fig. (6.16(a),(b». The singu

larity index in Fig. (6.16(b» has reasonable value throughout the manoeuvre. Beyond 

2.5sec the matrix A nearly becomes singular as det(D1AT
) ~ 0 but det(D1Di) "I- O. 

The SAP A reduces in its value as the system moves away from singularity but rises 

again as system moves toward saturation singularity as shown in Fig. (6.16(c». The 

SEP As has highest value at elliptic singularity and it quickly falls to zero and after 2sec 

when syste~ reaches near saturation singularity it rises again as shown in Fig. (6.16(d». 

We have seen in these simulation tests that the proposed method gives effective, faster 

and accurate way of escaping the so-called elliptic singularity. In next sections, we shall 

123 



Figure 6.13: Simulation Test Case II: comparison of gimbal angles profile. 

simulate this method for reorientation manoeuvre for a particular satellite example. 

6.5 Reorientation Manoeuvre Examples 

In this section, we shall simulate the proposed method for a rest-rest roll manoeuvre. 

The satellite data is given in Table (6.1). In these simulations we shall compare the 

performance of proposed method with the GSR method. A 40deg roll manoeuvre is 

performed for two sets of initial gimbal condition. In case-I initial gimbal angles are as

sumed to be at zero. The advantages of the proposed law over GSR are demonstrated in 

the following results. The singularity avoiding aspect of proposed steering law via ma

trix A prevent system from the effect of elliptic singularity so it can use larger momen

tum envelope. Figure (6.17) gives a comparison of angular velocity profiles generated 

by GSR and proposed logic. It can clearly be seen that proposed method makes system 

attain larger slew rates without being affected by elliptic singUlarity. And manoeuvre 

is purely single axis unlike GSR case. The higher angular rate gives the advantage of 

faster manoeuvre which can be seen by plotting attitude profiles in Fig. (6.18). Clearly 

GSR generates pointing error. The gimbal angle profile given in Fig. (6.19) shows that 
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Figure 6.14: Simulation Test Case II: comparison of output torque components (a), (b), (c) 

and maximum gimbal rate (d). 

a b 
4 0.04 

1\ 
- - - ~ " ------ ...... - --3 I 0.02 

)( I '" .s::; I 
.s::; 

I 
2 I 0 

I 
I 

-0.02 
2 4 6 0 2 4 6 
Time(sec) Time(sec) 

c d 
0.1 1.5 

0.05 
I-~~ 
0 

N 0 B .s::; -- ~ '\ -a; 
\ '0 0.5 

-0.05 
/' 

\ / 

I 
- - --

-0.1 
0 2 4 6 2 4 6 

Time(sec) Time(sec) 

Figure 6.15: Simulation Test Case II: comparison of angular momentum components (a), (b). 

(c) and singularity index (d). 
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Figure 6.16: Simulation Test Case II: Singularity measures (a), (b), SAP (c) and SEP (d). 

the proposed method uses all four CMOs from the beginning which helps in avoiding 

the elliptic singularity. And at the end of the manoeuvre all four CMOs are brought 

back to zero. Whereas the OSR initially uses only two CMOs until it hits the singu

larity. It passes through it by using gimbal motion of all four CMOs. But it can not 

bring all four CMOs back to zero. Figure. (6.20(a), (b), (c)) show the plots of output 

torque components. It is clear that output torque for proposed steering law is strictly in 

desired direction with no errors in the other directions unlike the OSR case. However, 

singularity slightly affects the output torque because of restricted gimbal rate limit. The 

maximum gimbal rates in Fig. (6.21(d)) are comparable for both logics. Again in an

gular momentum profiles shown in Fig. (6.21 (a), (b), (c)) the proposed method has 

generated manoeuvre in the desired direction. Whereas OSR produces momentum in 

other directions to escape elliptic singularity thus reducing the momentum capability in 

desired direction. The singularity index in Fig. (6.21(d)) shows that proposed method 

has avoided elliptic singularity unlike OSR. In Fig. (6.22(a),(b)) we have plotted singu

larity measures of generalised inverse and singularity robust generalised inverse, both 

are far from singularity. The SAP and SEP are plotted in Fig. (6.22(c),(d)). The SEP is 

very small throughout except near singUlarity. 
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Figure 6.17: Reorientation Manoeuvre Case I: comparison of angular velocity components of 

satellite. 

50 

~ -- ---Ci 
CI> 
~ 0 

)( 
CD 

-50 o 5 10 

--SE 

- - - GSA 

15 20 25 30 35 
Time(sec) 

!~ : I </ -- -: -- -' : ' : 1 

-1 0 5 1 0 15 20 25 30 35 
Time(sec) 

!" :1 <, --- -:-- ---:-
-1 o 5 10 15 20 25 30 35 

Time(sec) 

Figure 6.18: Reorientation Manoeuvre Case I: comparison of attitude angles. 
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Figure 6.19: Reorientation Manoeuvre Case I: comparison of gimbal angle profiles. 
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Figure 6.20: Reorientation Manoeuvre Case I: comparison of output torque components (a), 
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Figure 6.21: Reorientation Manoeuvre Case I: comparison of angular momentum components 

(a), (b), (c) and singUlarity index (d). 
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Table 6.1: Simulation Parameters 

Parameter Value 

hcmg 0.28Nms 

[Ix, Iy, Iz] [10,10,10] kgm2 

{3 54.7 deg 

wmax 
e 5 deg/s 

kl 1Nm/rad 

K2 2yfk1I 

[ex, ey, ez]o [40°,0,0] 

[ex, ey, ez]f [0,0,0] 

In case-II the system start from elliptic singularity. As expected the GSR produces atti

tude errors, whereas proposed method can perform an attitude manoeuvre without any 

error as shown in Fig. (6.23) and Fig. (6.24). It can be observed in Fig. (6.25) that all 

four CMGs start moving quickly to escape elliptic singularity and singularity escape 

for the proposed method is much faster than GSR method. Gimbal angle profiles gen

erated by GSR method escape elliptic singularity and then pass through a saturation 

singularity before settling to some final condition. In Fig. (6.27(a)) x-component of an

gular momentum generated by GSR logic saturates at some value for which singularity 

index in Fig. (6.27(d)) is zero so it is saturation singularity. On the other hand, gimbal 

angle profiles generated by proposed logic escapes elliptic singularity and then pass 

through a different saturation singularity for which singularity index in Fig. (6.27(d)) is 

not zero but singularity index of generalised inverse in Fig. (6.28(a)) is zero. So clearly 

it is singularity of matrix A. Again one can see that torque in Fig. (6.26(a),(b),(c)) and 

angular momentum in Fig. (6.27(a),(b),(c)) generated by proposed logic are strictly in 

desired direction contrary to GSR case. Maximum gimbal rate is almost same for both 

cases (see Fig. (6.26(d))). Variation in SAP and SEP during the course of manoeuvre 

are plotted in Fig. (6.28(c),(d)). SEP has large values at singularity escape points. 
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Figure 6.24: Reorientation Manoeuvre Case II: comparison of attitude angle profiles. 
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Figure 6.25: Reorientation Manoeuvre Case IT: comparison of gimbal angle profiles. 
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6.6 Summary 

The Generalised-Inverse based steering law proposed in Chapter 5 is made singularity 

robust in order to make it able to escape elliptic singularity. This is done by adding 

singular matrix defined in the complementary space to make sum matrix of the full rank. 

The singularity avoiding (SAP) and singularity escaping parameters (SEP) are chosen 

such that the overall performance is enhanced. Typically SAP has a broad spread and 

SEP has a narrow spread around singularity. The performance of the proposed method 

is tested and compared with GSR. It has been shown that the proposed method is much 

quicker to escape elliptic singularity, it produces no pointing errors. The proposed 

method has been shown to outperform the GSR method in a reorientation manoeuvre. 
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Chapter 7 

Inverse-Free Steering Law 

7.1 Introduction 

In last two chapters, we have developed a novel technique to steer the four CMG cluster 

which is based on generalised-inverse of Jacobian matrix. We have shown in Chapter 6 

that generalised-inverse based singularity robust law can effectively escape elliptic sin

gUlarity with high pointing accuracy. However, we still need to compute the inverse of 

the Jacobian matrix. In present chapter, we shall develop a technique for CMG steering 

which does not involve the computation of inverse of Jacobian matrix. We have termed 

this steering technique as inverse-free steering law. There is no concern of singularity 

in inverse-free steering. Therefore, an inverse-free steering can be thought as a sin

gularity free steering but strictly in computational sense. However, the physical effect 

of singularity like slew rate saturation can be seen even in some forms of inverse-free 

steering law. This effect will be explained later in this chapter. The idea of inverse

free steering law was originally proposed by Krishnan et. al [59]. Their steering law 

uses transpose of the Jacobian matrix rather than its inverse. And it also uses the radial 

basis function networks to parameterize the nonlinear controller. However, its obvious 

disadvantage is that it requires learning of networks which can be computationally bur

densome. Avanzini [4] has proposed a steering law that uses gimbal angle commands 

rather than gimbal rate commands to derive the CMG cluster. In this sense it becomes 

an inverse free steering law. Gimbal angle commands are computed by static inversion 

of the kinematic relation between gimbal angles and angular velocity of satellite. This 
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kinematic relation is given in Eq. (5.2.6) as I-I h( 8) = -w. In static inversion of 

Eq. (5.2.6) an approximate linear solution for gimbal angles is found in the neighbor

hood of the static position 8 = O. Such solution is valid only for small values of gimbal 

angles which means slow manoeuvres. They have also found approximate nonlinear 

solution to allow fast manoeuvres. In this technique the issue of singUlarity is said to 

be removed apparently but there are issues of exactness and its ability to use larger mo

mentum space. 

In this chapter, we shall develop a generic form of steering law which does not involve 

any matrix inversion, therefore, it is singularity free. Moreover, we have provided sta

bility proof of such steering law through Liapunov theorem. Here we have studied two 

forms of inverse free steering law one which involves the transpose of the Jacobian 

matrix and the other involves transpose of a generic matrix function of gimbal angles 

(matrix A introduced in Chapter 5). The first form of proposed steering law is not 

able to start from elliptic singUlarity while satellite is rotationally at rest. Although 

this law is inverse free still there is momentum saturation near a gimbal configuration 

corresponding to zero value of commanded torque for some interval of time. Then the 

steering law breaks the symmetry of gimbal motion to exploit the larger momentum of 

CMG system. The other form or modified form of steering law which involves trans

pose of matrix A rather than Jacobian matrix Dl is able to start from elliptic singularity 

and it can use the larger momentum space. The inverse-free steering law produces mo

tion of satellite in all three axes. Therefore, it is not suitable for tracking manoeuvre. 

Moreover, in this case gimbal angles do not return to zero gimbal condition on comple

tion of the manoeuvre. All these features of this steering law are demonstrated through 

simulations. 

7.2 Development of Inverse-Free Steering Law 

In this section, we shall develop an inverse-free approach to steer CMG cluster. We 

use the Liapunov's stability theorem to find a stablising control which then results in 

an inverse-free steering law. We take the following Liapunov function for rest-rest 
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reorientation manoeuvre 

(7.2.1) 

Wh 
[ 

qoe ] -. 
ere qe = qe IS error quatemion defined by Eq. (3.3.8), w is angular velocity 

vector, I is inertia matrix and M (is) is positive definite non-singular matrix function 

of gimbal angle vector. And kl is a positive feedback gain. 

By taking the time derivative of Liapunov function we get 

(7.2.2) 

But Eq. (3.7.32) can be rewritten as 

for rest-rest manoeuvre H = I w + h = O. We get 

Here we choose 

(7.2.3) 

such that V becomes negative semi-definite, where k2 > O. Therefore, after rearrange

ment we get 

v = _wT (k2M-l(iS) + M-3(iS)MI) w. 

Here V is negative semi-definite only if 

(7.2.4) 

This condition puts constraints on gimbal rates and gimbal path. We can formulate 

inverse-free steering law from the following steering equation. 

(7.2.5) 

Matrix M( is) is chosen such that constraint given in Eq. (7.2.4) is satisfied and inverse 

free steering is possible. One of the obvious choice is 

(7.2.6) 
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which gives the following inverse free steering law 

(7.2.7) 

This steering law clearly does not require an inversion of Jacobian matrix rather it needs 

transpose of the said matrix. The nonlinear control function now has dependence on 

gimbal angles through much simpler relation than that of neural network based ap

proximation of nonlinear function given in Ref. [59]. Therefore, it offers a simpler but 

effective approach for inverse free steering. Its simplicity and effectiveness would be 

demonstrated through simulations. The choice discussed in this section can not steer 

a CMG cluster out of the elliptic singUlarity due to symmetric gimbal motion gener

ated by Dr matrix in the steering law. It may be noted that there can be many other 

choices for matrix M(8) subjected to Liapunov based condition. In next section, we 

shall study another choice of matrix M( 8) which will result in a modified singularity 

escaping inverse-free steering law. 

7.3 An Inverse-Free Singularity Escape 

The inverse-free steering law developed in previous section is not capable of escaping 

elliptic singularity while satellite is rotationally at rest. At elliptic singularity Jacobian 

matrix Dl is singular and direction of required torque lies in the null-space of the 

matrix D 1. Therefore, we choose a different matrix function M(8) in the steering 

equation (7.2.5) to develop a singularity escaping inverse-free law. One may choose 

(7.3.8) 

where 

and 

A = Ao exp (-J-ldet(D1Df)) 

with Ao and J-l as positive constants as defined in Eq. (5.5.30). The resulting steering 

law is 
(7.3.9) 
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This is clearly inverse-free steering law and it involves the transpose of matrix A 

rather than Jacobian matrix D 1 . We have seen the advantage of using the matrix A 

in generalised-inverse based steering laws in previous chapters. A CMG steering law 

using this matrix tends to use larger momentum space and avoid/escape singularities. 

We shall see, in next section, a similar advantage of using matrix A in inverse-free 

steering law. We shall simulate both forms of the proposed inverse-free steering law to 

demonstrate their effectiveness. 

7.4 Simulation Results and Discussion 

In this section, we shall simulate proposed steering laws to perform a 40° roll manoeu

vre of a small satellite using four CMG pyramid system. The satellite and CMG data is 

similar to that of used in Chapter 5 and 6 given in Table (5.2). We run simulations for 

three cases namely inverse-free steering law with initial gimbal angles at zero, exploit

ing larger momentum space and singularity escape with modified inverse-free steering 

law. 

7.4.1 Case-I: Simulating Inverse-Free Steering Law 

Here we simulate inverse-free steering law given in Eq. (7.2.7) for a 40° roll manoeuvre. 

Initial gimbal angles are considered to be zero. Results are given in the following fig

ures. It is clear from the Fig. (7.1) that the resulting motion of satellite is not constraint 

to purely roll direction but it also produces small motions in other two directions. For 

this reason such method is not suitable for tracking manoeuvres, however, we can use 

it for reorientation manoeuvre. One can see in Fig. (7.1(a)) that Wx saturates at some 

smaller value for more than 5 seconds of the time. During this time other two compo

nents of angular velocity vector are zero. This means that satellite manoeuvres purely 

about roll axis for some time and then roll speed increases and motion in other two di

rections is started. This can be explained through gimbal motion given in Fig. (7.3) and 

Fig. (7.4), where 61 and 63 move symmetrically whereas 62 and 64 remain at zero for first 

few seconds of manoeuvre. This pure roll manoeuvre was possible due to matrix Dl 

and direction of commanded torque. As commanded torque is function of gimbal con

figuration through M (8), so there are some configurations of the gimbal angles where 
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Figure 7.1: Roll manoeuvre case I: angular velocity components of satellite in body coordi

nates for proposed Inverse-Free steering law. 

commanded torque is zero without achieving the control objective. In this example pro

posed steering law leads to a gimbal configuration where commanded torque becomes 

zero for sometime. During this time Wx is constant and qex decreases with a constant 

rate. The decreasing value of qex will make torque slightly negative which will result 

in making 83 < 0 and 81 = -83 . When 1831 exceeds Iwxl this makes torque positive 

again and breaks the symmetry of 61 and 63. Therefore, all four gimbals start moving 

to access a higher value in momentum space, which can be seen in Fig. (7.6(a». Final 

condition of gimbal angles is not zero in this case as shown in Fig. (7.3). But this final 

condition of gimbal angles corresponds to a zero angular momentum state as shown in 

Fig. (7.6(a),(b),(c». The output torque follows the commanded torque except where 

gimbal rates saturate as shown in Fig. (7.5(a),(b),(c». The Liapunov function rate is 

negative as it can be seen in Fig. (7.5(d» which ensures the stability of the system with 

proposed steering law. The attitude angles in pitch and yaw directions remain less than 

2° as shown in Fig. (7.2(b),(c». Singularity index in Fig. (7.6(d» shows that CMG 

system remains far from singularity during the course of the manoeuvre. 
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7.4.2 Case-II: Simulating Modified Inverse-Free Steering Law 

Now we shall simulate the modified form of the Inverse-Free Steering Law to perform a 

400 roll manoeuvre. It will be seen that by changing the matrix M we can improve the 

performance of attitude control system in terms of maximum utilization of available re

sources. In this case we simulate the steering law given in Eq. (7.3.9). The use of matrix 

A in steering law has improved the speed of manoeuvre. It can be noticed in Fig. (7.7) 

that angular rate in roll direction can reach larger value from start. This in turn shortens 

the time to complete the manoeuvre. However, this law also generates small motions 

in pitch and yaw directions as seen in Fig. (7.7(b),(c». Attitude angles of satellite are 

given in Fig. (7.8). The pointing error is less than 2 degrees. The gimbal angles follow 

a different path and all four CMGs start moving from the very beginning (see Fig. (7.9) 

which makes system to use larger momentum space as seen in Fig. (7. 12(a),(b),(c». 

Moreover, final condition of gimbal angles is non-zero but it corresponds to zero angu

lar momentum as shown in Fig. (7.12(a),(b),(c». This law generates higher gimbal rate 

commands initially in all four CMGs as shown in Fig. (7.10). The output torque fol

lows the commanded torque with exception of gimbal rate saturation regions as shown 

in Figures (7.11(a), (b), (c». The Liapunov rate plot given in Fig. (7. 11 (d» is negative 

definite which manifests the stability of the method. In this method system remains 

well away from singularity as it can be seen in Fig. (7. 12(d». 

7.4.3 Case-III: Escaping Elliptic Singularity with Inverse-Free Steer

ing Law 

In inverse-free steering, escape from the elliptic singUlarity is not possible for the choice 

M = DIDf as in this case commanded torque lies in the null space of matrix D 1· 

However, with modified inverse-free steering law we can escape elliptic singUlarity. 

In this example we again consider a 400 roll manoeuvre with gimbals held at elliptic 

singularity [-90 0 ,0,900 ,0] initially. Simulation results are shown in the following fig

ures. Angular velocity components given in Fig. (7.13) show that the proposed method 

is able to escape the elliptic singularity. The maximum angular speed achieved in this 

case is smaller as initial angular momentum of CMGs in this case is not zero. Therefore, 

momentum imparted by CMG cluster to satellite in this case is smaller. Manoeuvre is 
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completed quickly as shown in Fig. (7.14) and attitude angles in other two directions 

remain within 3°. Gimbal angle profile is given in Fig. (7.15). Gimbal angles have 

escaped singularity very quickly. Finally gimbal angles settle to a state whose angular 

momentum is equal to initial angular momentum (corresponding to elliptic singularity). 

But this final gimbal configuration is not singular as final value of singularity index in 

Fig. (7.18(d)) is far from zero. Output torque follows the input torque except in the 

case when gimbal rate command saturates as shown in Fig. (7.17(a), (b), (c)). The plot 

of Liapunov rate in Fig. (7. 17(d)) shows the stability of steering logic. Finally angular 

momentum profile is given in Fig. (7.18(a), (b), (c)) and singularity index is given in 

Fig. (7 .18( d)). This shows that system remains away from singularity during the course 

of manoeuvre. 

7.5 Summary 

In this chapter, we have presented a new technique of CMG steering which does not 

involve inverse of Jacobian matrix. We have termed resulting steering law as Inverse

Free Steering Law. Proposed steering law just uses the transpose of the Jacobian matrix 

or another matrix A. Liapunov's stability theorem is used to derive the control law in 

some generic settings which then yields a generic form of inverse free steering law. 

The proposed steering logic is a good candidate for situations where tracking is not 

required as it can produce motion in other directions. In this case singularity is not of 

particular concern as even at singularity gimbal rate commands are finite due to exclu

sion of inverse from the logic. Steering law with transpose of Jacobian matrix cannot 

escape elliptic singularity, however, its generic form with matrix A has ability to escape 

the elliptic singularity. The effectiveness of Inverse-Free steering law is demonstrated 

through simulations. It has advantage of using higher momentum capacity of CMG 

cluster, escaping elliptic singularity and manoeuvring satellite efficiently. The obvious 

disadvantage is a slight tumbling of satellite and settling of gimbal angles to a non-zero 

condition. 
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Figure 7.2: Roll manoeuvre case I: attitude angles of satellite for proposed Inverse-Free steer

ing law. 
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Figure 7.3: Roll manoeuvre case I: gimbal angle profiles for proposed Inverse-Free steering 

law. 
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Figure 7.4: Roll manoeuvre case I: gimbal rate profiles for proposed Inverse-Free steering law. 
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indexed) for proposed Inverse-Free steering law. 
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rate(d)for proposed Modified Inverse-Free steering law. 
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Figure 7.17: Roll manoeuvre case III: output and commanded torques (a),(b),(c)and Liapunov 

rate(d)for proposed Modified Inverse-Free steering law. 
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Chapter 8 

Conclusion and Further Work 

This chapter summarizes the main conclusions drawn from this thesis and points out 

some areas of further research. 

8.1 Conclusions 

With advent of new mini CMGs for modem attitude control systems of new generation 

of small agile satellites with high Earth observation capability the need for new accu

rate and efficient CMG steering laws has been felt more than ever. In spite of torque 

amplification property of CMGs, dealing with singularities is the most difficult part of 

the CMG steering problem. Singularities can deteriorate the performance of overall 

system if the implemented steering law is not efficient enough. Some designers over

design the CMG cluster to counter the possible effects of the internal singularities. But 

an efficient use of onboard resources for new generation of satellites will rule out such 

oversizing. Variant fonns of Singularity Robust Steering Laws based on pseudo-inverse 

are usually used, but they lead toward elliptic singularity and as a result either restrict 

the available momentum space or cause the pointing error. We have carried out this 

study in the quest of accurate and efficient steering laws for CMG clusters. Here we 

shall present key conclusions drawn from core chapters of this thesis. 
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8.1.1 Mathematical Model of a Satellite Equipped with Momentum 

Exchange Devices 

Chapter 3 presents the development of mathematical model of attitude dynamics and 

control of a satellite equipped with momentum exchange devices. These devices in

clude reaction wheels, momentum wheels, single gimbal CMGs and variable speed 

CMGs. This chapter also presents a brief review of mathematical formulation of CMG 

singularity problem and some of the existing steering laws. The following conclusions 

can be drawn from this chapter: 

• Development of a generic mathematical model for attitude dynamics and con

trol of satellites without specifying the type or inertia properties of momentum 

exchange devices is proved to be very useful. It provides a framework for deduc

tion of equations for particular type or inertia properties of devices. 

• In the deduction and further simplification of the dynamic equation for satellite 

equipped with CMG systems certain terms are ignored for being comparatively 

very small. It has been shown to be a valid assumption by comparing the magni

tudes of these terms for a typical example. 

• The exact steering problem has been defined. Exact steering in the CMG systems 

is possible if the systems remain well away from the singularity and feedback 

gains are chosen such that commanded torque can match the torque capability of 

the CMG systems. 

8.1.2 Exact Steering in Twin CMG Systems 

In Chapter 4 new exact steering techniques are developed for twin CMG systems em

ployed for single axis control. These techniques use phase-plane analysis to find an

alytical expressions for feedback gains such that exact steering can use full momen

tum capacity of CMG cluster without hitting the singularity. We have developed three 

techniques of achieving exact steering in twin CMG systems: exact steering with no 

knowledge of explicit Gimbal Rate Constraint (Exact without GRC); exact steering 

with explicit Gimbal Rate Constraint (Exact with GRC); exact steering with explicit 
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Gimbal Rate Constraint and Variable Gains structure (Exact with GRC and VO). Ta

ble (8.1) summarizes the key features of these steering laws. We have demonstrated 

the effectiveness of these proposed exact steering laws through computer simulations 

developed in MATLAB/SIMULINK for BILSAT-1 example. A part of this work has 

been published as a conference paper [1]. The outcomes of this chapter are as follows: 

• The phase-plane analysis of the twin CMG system has established that the sepa

ratrix trajectory, separating the singularity avoiding trajectories from those which 

encounter singularity, is the desired trajectory for the closed-loop system's out

put. This trajectory uses full momentum capacity without hitting the singularity. 

The feedback gains corresponding to this trajectory are formulated analytically. 

• Exact steering problem with no gimbal rate constraint reduces to damped har

monic oscillator equation with well-known solution. Therefore, this problem is 

solved analytically to find expressions for feedback gains, slew angle, slew rate, 

gimbal angle, gimbal rate and output torque for a given pitch manoeuvre. 

• Incorporation of gimbal rate limit in exact steering scheme of twin CMO systems 

produces near-optimal solutions. Phase-plane analysis shows that the separatrix 

trajectory for rest-rest single axis manoeuvre follows the bang-bang trajectory 

before entering the feedback region (where gimbal rate is not saturated) near 

equilibrium point (which in this case is origin). Feedback gains are calculated 

analytically for this choice of trajectory. 

• We have shown that exact steering is also possible with variable or adaptive feed

back gains. In this logic gains are gradually decreased as system approaches 

toward singularity and they are increased as system moves away form the sin

gularity. The main advantage of variable gain method over fixed gains method 

is that rapid large angle slew manoeuvres can be performed relatively easily and 

effectively. 

• The formulation developed here for twin CMGs can be used to design a twin 

CMG cluster for the given mission requirements. 
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Table 8.1: Comparison of Proposed Exact Steering Laws for Twin CMG Sy t s ems 

Exact without GRC Exact with GRC Exact with GRC and VO 

Fixed feedback gains Fixed feedback gains Variable feedback gains 

Phase-plane analysis Phase-plane analysis Phase-plane analysis 

Separatrix trajectory Separatrix trajectory No separatrix trajectory 

Avoids singularity Avoids singularity Avoids singularity 

Optimality is not shown Near time-optimal Near time-optimal 

Small gains for large slew Small gains for large slew Large gains for large slew 

8.1.3 Exact Steering in Four CMG Systems 

In Chapter 5, the exact steering treatment of twin CMOs used for single axis control is 

generalised for four CMG cluster employed for three axis control. We use the quater

nion feedback law which holds the direction of manoeuvre fixed in the inertial space. 

As the Exact Steering Law based on Moore-Penrose inverse of Jacobian matrix can not 

avoid elliptic singularity so it can not use full extent of momentum capacity. Therefore, 

we have proposed an Exact Steering Law based on generalised inverse. We have pub

lished a conference paper [2] proposing the use of generalised-inverse for exact steering 

of the four CMG pyramid system. The outcomes of this chapter are as follows: 

• Angular momentum vector of the CMO cluster has a fixed direction during the 

eigen-axis manoeuvre. So a new angle variable can be defined to represent norm 

of the momentum vector. Therefore, this new angle variable and slew angle are 

then used for phase-plane analysis of four CMO system employed for three-axis 

manoeuvre. 

• For large slew angles the equation of closed-loop system reduces to equation of 

damped pendulum. 

• Due to non-linearity of problem, numerical method such as Newton-Raphson 

method can be used to determine the feedback gains corresponding to desired 

trajectory using full momentum capability of CMO cluster. 

• Singularity structure is much more complex in four CMO systems due to pres-
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ence of internal singularities. Therefore, knowing gains does not solve the prob

lem completely unless an exact steering law is developed which can avoid elliptic 

singularity in order to use full extent of angular momentum. 

• We have shown that the proposed Generalised-Inverse (GI) steering law can avoid 

elliptic singularity and can use 95 percent of full momentum capacity of CMG 

cluster for the given choice of feedback gains. 

• Simulation results show that GI steering law outperforms the Generalised Singu

larity Robust (GSR) steering law in number of ways. GI avoids elliptic singularity 

by moving all four gimbals from start whereas GSR encounters elliptic singular

ity due to symmetric motion of only two (odd) gimbals and then escapes singu

larity by moving all four gimbals. Thus GSR causes a pointing error whereas 

GI causes no pointing error. For the same choice of feedback gains GI exploits 

larger momentum space than GSR, therefore, GI causes a faster slew manoeuvre 

than GSR. GI brings gimbals back to initial zero state after the completion of 

manoeuvre whereas GSR can not bring gimbals back to initial zero state. 

• The singularity of GI lies at 95 percent of outer envelope of the CMG cluster for 

roll axis. It has been shown that by using a modified form of proposed GI steer

ing law this singularity can move out from 95 to 99 percent of full momentum 

capability. A method of obtaining the modified form of GI steering law is also 

discussed. 

• Modified form of GI steering law can start from preferred initial gimbal angles 

whereas GI can not start from this set of gimbal angles. 

• Simulation results for modified GI also outperform the GSR as GI's results did 

except modified GI exploits even larger momentum space. 

• Exact steering methods for CMG systems based on GI or modified GI can avoid 

elliptic singularity but they can not escape this singUlarity. 
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8.1.4 Singularity Escaping Steering 

In Chapter 6, we have shown that exact steering law based on generalised inverse can be 

made singularity robust by adding a disturbance in the singular direction only. We have 

tested this scheme in open-loop analysis and compared with GSR method. We have 

also tested this scheme for some reorientation manoeuvre examples. Main conclusions 

drawn from this chapter are as follows: 

• Proposed GI steering law can be made singularity robust by adding a small dither 

in singular direction only. The reSUlting steering law can escape elliptic singular

ity in a very effective way. This new steering law is called Singularity Escaping 

(SE) steering law. 

• In SE steering law the choice of two parameters namely Singularity Avoiding 

Parameter (SAP) and Singularity Escaping Parameter (SEP) affects the output 

torque profile and maximum gimbal rate excursions. A careful study reveals 

that by increasing the value SAP and its spread over singularity index improves 

the singularity avoidance property of SE steering law, which means that output 

torque accuracy is improved at the cost of increased gimbal rates. On the other 

hand, increase in the value and spread of SEP improves the singularity escap

ing property of SE steering law but it degrades the output torque accuracy with 

decreased gimbal rates. Therefore, SAP and SEP are selected on the basis of a 

criterion of maximum allowable gimbal rate limit taken to be 2.5rad/s . 

• Open-loop simulation tests comparing the performance of SE steering law and 

GSR law show some interesting results. Two tests are performed. In first test, 

simulation starts from initial zero gimbal angles. Results shown that SE moves 

all four gimbals from start whereas GSR moves only two gimbals initially and 

encounter elliptic singularity. GSR stays in elliptic singularity for lsec before 

it recovers from singularity by causing pointing error. SE has a very brief en

counter with an internal singUlarity (but not elliptic one) but output torque recov

ers quickly and no pointing error is caused. In second test, simulation starts from 

elliptic singularity. SE moves all four gimbals immediately and recovers from 

singUlarity within 1/4sec whereas GSR still takes lsec and causes pointing error. 
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SE has caused a very small negative torque in order to escape the singularity with 

no pointing error. 

• In a reorientation manoeuvre example SE steering law exhibits the following 

merits over GSR: it has no pointing error; it has faster escape from singularity; 

and it brings gimbal angles back to initial zero state at the end of the manoeuvre. 

• The SE steering law is suitable fast tracking manoeuvres. 

8.1.5 Inverse Free Steering 

In Chapter 7, an Inverse Free (IF) steering law has been proposed to generate another 

class of exact steering which does not involve inverse of Jacobian matrix. It involves 

transpose of Jacobian matrix. We have derived a generic fonn of inverse free law from 

Liapunov stability theory. The following conclusions can be drawn from this chapter: 

• We have seen that inverse free steering law does not mean singularity free steering 

law. 

• The inverse free steering law which involves transpose of Jacobian matrix passes/transit 

through a gimbal angle state corresponding to zero commanded torque. This gim-

bal state manifests itself through the saturation of angular momentum at nearly 

one-third of maximum available value. 

• Although IF steering is numerically robust as it does not involve inverse of a 

matrix. But it involves transpose of Jacobian matrix so it can not escape elliptic 

singularity. 

• In modified IF steering law, Jacobian matrix is replaced by another suitably cho

sen matrix A such that modified IF can escape elliptic singularity and can also 

avoid zero commanded toque gimbal state of IF steering law. 

• The main disadvantages of this scheme are as follows: it produces small mo

tions in other directions; gimbal angles do not return to initial zero state after 

completion of the manoeuvre. 

• IF steering law or its modified form are not suitable tracking manoeuvres. But 

they are quite effective and simple for reorientation manoeuvres. 
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Table 8.2: Comparison of Proposed Steering Laws for Four CMG Systems 

GI Steering Law SE Steering Law IF Steering Law 

Exact steering Singularity robust steering Exact steering 

Avoids elliptic singularity Avoids elliptic singularity Avoids elliptic singularity 

No escape Escapes elliptic singularity Escapes elliptic singularity 

High pointing accuracy High pointing accuracy No pointing accuracy 

Gimbals return back to zero Gimbals return back to zero No return back 

Computes inverse of matrix Computes inverse of matrix Inverse-free computation 

In Table (8.2), we have summarized different features of our newly proposed steering 

laws. 

8.2 Further Work 

We have proposed and developed novel ideas about Exact Steering in twin and four 

CMG systems, Singularity Escaping Steering and Inverse Free Steering in this thesis. 

The following ideas can be taken as new streams of further research work. 

1. Some optimization scheme has to be developed to find matrix A which can ex

tend the available momentum to its full capacity. Geometric view of steering law 

based on this matrix A has not yet been developed so any further work on this 

exact steering law should address its geometric features. 

2. Some optimum search method can be developed to find parameters involved in 

Singularity Escaping Steering Law which minimizes output torque error sub-

jected to gimbal rate constraint. 

3. Inverse free steering law can be improved to reduce the motion in undesired di

rection or pointing error. 

4. One may study the application of proposed generalised-inverse steering law and 

inverse-free steering law to combined power and attitude control problem for 

variable-speed CMG systems. 
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