
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40054326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Extending and Relating Semantic

Models of Compensating CSP

by

Shamim H Ripon

Thesis for the degree of Doctor of Philosophy

August 2008



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

EXTENDING AND RELATING SEMANTIC MODELS OF COMPENSATING CSP

by Shamim H Ripon

Business transactions involve multiple partners coordinating and interacting with each

other. These transactions have hierarchies of activities which need to be orchestrated.

Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults

in a long running transaction due to interaction with multiple partners. The compensa-

tion mechanism [54] handles faults that can arise in a long running transaction. Based

on the framework of Hoare’s CSP process algebra [59], Butler et al [27], introduced

Compensating CSP (cCSP), a language to model long-running transactions. The lan-

guage introduces a method to declare a transaction as a process and it has constructs

for orchestration of compensation. Butler et al also defines a trace semantics for cCSP.

In this thesis, the semantic models of compensating CSP are extended by defining an

operational semantics, describing how the state of a program changes during its execu-

tion. The semantics is encoded into Prolog to animate the specification. The semantic

models are further extended to define the synchronisation of processes. The notion

of partial behaviour is defined to model the behaviour of deadlock that arises during

process synchronisation. A correspondence relationship is then defined between the se-

mantic models and proved by using structural induction. Proving the correspondence

means that any of the presentation can be accepted as a primary definition of the mean-

ing of the language and each definition can be used correctly at different times, and for

different purposes.

The semantic models and their relationships are mechanised by using the theorem prover

PVS [89]. The semantic models are embedded in PVS by using Shallow embedding [100].

The relationships between semantic models are proved by mutual structural induction.

The mechanisation overcomes the problems in hand proofs and improves the scalability

of the approach.

Several case studies are carried out to model web services by using cCSP constructs

that shows the expressiveness of cCSP. It is shown how cCSP can be used to model the

coordination of several web services along with defining synchronisation between and

within transaction blocks.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Business transactions typically involve coordination and interaction between multiple

partners. These transactions involve hierarchies of activities and these activities need

to be orchestrated. Business transactions need to deal with faults that can arise in

any stage of the transactions. In usual database transactions, a rollback mechanism is

used to handle faults in order to provide atomicity to a transaction [54]. However, for

transactions that require long periods of time to complete, also called Long Running

Transactions(LRT), rollback is not always possible. LRTs are usually interactive (com-

munication with several agents). Handling faults where multiple partners are involved

are both difficult and critical. Due to their interactive nature, LRTs are not able to

be check-pointed, e.g. a sent message cannot be ‘unsent’. In such cases, a separate

mechanism is required to handle faults. A possible solution of the problem would be

that the system designer can provide a mechanism to compensate the actions that can

not be undone automatically.

Compensation is defined in [54] as an action taken to recover from error in business

transactions or cope with a change of plan. Consider the example: a customer buys

some items from an on-line store. The store debits the customer’s account for the

payment of the items. Later the store realises that one or more items are not available

at that time. So, to compensate the customer, the store can credit the already debited

amount and at the same time notify the customer their apology, or the store can take

alternate actions, such as, arranging items from an alternative source or asking the

customer whether they want a later delivery, etc. The scenario shows that the concept

of compensation is more general than traditional database rollback. Compensations

are very important for handling failures in long running transactions. Compensations

are installed for every committed activity in a long-running transaction. The idea of

compensation was introduced in [49] to define the concept of sagas. A saga partitions

1
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a long running transaction into a sequence of sub-transactions. Each sub-transaction

has an associated compensation. If one sub-transaction fails, then compensations of the

committed sub-transactions in the sequence are executed in reverse order.

Web services technology provides a platform on which we can develop distributed ser-

vices. The interoperability among these services is achieved by the standard protocols

(WSDL [32], UDDI [88], SOAP [36]) that provide the ways to describe services, to

look for particular services and to access services. With the emergence of web services,

business transactions are conducted using these services [67]. Web services provided

by various organisations can be inter-connected to implement business collaborations,

leading to composite web services.

Business collaborations require interactions driven by explicit process models. Web ser-

vices are distributed, independent processes which communicate with each other through

the exchange of messages. The coordination between business processes are particularly

crucial as it includes the logic that makes a set of different software components become

a whole system. Hence it is not surprising that these coordination models and languages

have been the subject of thorough formal study, with the goal of precisely describing

their semantics, proving their properties and deriving the development of correct and

effective implementations.

Process calculi are models or languages for concurrent and distributed interactive sys-

tems. It has been advocated in [72, 103] that process algebras provide a complete and

satisfactory assistance to the whole process of web services development. Being sim-

ple, abstract, and formally defined, process algebras make it easier to formally specify

the message exchange between web services and to reason about the specified systems.

Transactions and calculi have met in recent years both for formalising protocols as well

as adding transaction features to process calculi [13, 15, 16, 20].

Several research issues, both theoretical and practical, are raised by web services. Some

of the issues are to specify web services by a formally defined expressive language, to

compose them, and to ensure their correctness; formal methods provide an adequate

support to address these issues [41]. Recently, many XML-based process modelling lan-

guages (also known as choreography and orchestration [95] languages) such as WSCI [2],

BPML [1], BPEL4WS [35], WSFL [66], XLANG [113] have emerged that capture the

logic of composite web services. These languages also provide primitives for the defini-

tion of business transactions.

Several proposals have been made in recent years to give a formal definition to com-

pensable processes by using process calculi. These proposals can be roughly divided

into two categories. In one category, suitable process algebras are designed from scratch

in the spirit of orchestration languages, e.g., BPEL4WS. Some of them can be found

in [21, 24, 27]. In another category, process calculi like the π-calculus [79, 93] and the

join-calculus [46] are extended to describe the interaction patterns of the services where,
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each service declares the ways to be engaged in a larger process. Some of them are

available in [16, 20, 63, 69]. In this thesis, we are particularly interested in the former

category. Developing an algebra requires to develop semantic models for that algebra.

This thesis is aimed at contributing to the development of the formal semantics of an al-

gebra in the former category, where an algebra is defined to model business transactions

with orchestration of compensations.

A formal semantics offers a complete and rigorous definition of a language. There are

three main approaches to defining the semantics of a language, namely, operational,

denotational and axiomatic semantics. Operational semantics [56, 96] specifies the way

in which programs run by means of abstract execution rules. A denotational seman-

tics [50, 104] description of a programming language defines the meaning of the language

in terms of mathematics objects. Axiomatic semantics [43, 57] defines a language by

providing assertions and inference rules for reasoning about programs. No single se-

mantic framework is ideal with regard to all pragmatic aspects, and it is also suggested

in [82] that two or more complementary semantic descriptions should be provided for a

language.

Several proposals have been made in recent years where process algebras are defined to

model business transactions. We have already discussed that while defining a language,

two or more complementary semantic descriptions should be provided for it in order to

establish a formal foundation for the language. As mentioned earlier, this thesis will

focus on the formalism of a process algebra which is designed by the sprit of orchestra-

tion language. Among the algebras in this category, both StAC [24, 42] and Sagas [21]

are defined by giving their operational semantics. On the other hand, compensating

CSP [27] is defined by giving its denotational (trace) semantics. cCSP has been defined

with inspiration from the standard CSP [59] process algebra and transaction processing

features to model long running transactions, combined with orchestration of compen-

sations. StAC, which is a predecessor of cCSP, provides a large number of operators

and the operational semantics is defined in terms of an intermediate language, called

StACi [25]. The complex semantic definition of StACi prevents the definition of a sim-

ple compositional semantics. Comparing to that, the trace semantics of cCSP provides

a compositional semantic definition resulting in a neater semantic model than StAC.

Unlike StAC, in cCSP the invocation of compensation for a transaction block is auto-

matic in the case of an exception in the block, while compensations are discarded for

a successful termination of a block. It is apparent from the discussion that cCSP is a

good candidate for our experiment in the modelling of business transactions. Having a

trace semantics of the language also gives us a good starting point to understand the

algebra as well as to extend it further.

Inspired by the growing interest of transaction processing features, and having the inten-

tion to provide process algebraic support to model business transactions, our goal in this

thesis is to provide a formal foundation to the modelling of long running transactions,
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and we carry on our experiments by using cCSP. Our main objectives in this thesis are:

• Extend the existing semantic models of compensating CSP.

• Define and prove a formal relationship between the semantic models, which will

strengthen the formal foundation of the language.

• Contribute to the language design by adopting a systematic approach to having

multiple semantic models and mechanising their relationship.

1.2 Main Contributions

Keeping in mind the objectives defined in the previous section, the main contributions

of our work lie in the extension of semantic models of cCSP and then establishing a

formal relationship between the two defined semantic models. In particular, we define

an operational semantics for cCSP and then define and prove a relationship between

the denotational and the operational semantics of cCSP. Added to this, we mechanise

the semantic models and the proofs of their relationship by using a theorem prover

(PVS [89]). The two semantic models and their relationship establish a strong formal

foundation for cCSP. In the rest of the section, we detail the main contribution of this

thesis.

• We extend the existing semantic model by defining an operational semantics of

Compensating CSP. The semantics is defined by using labelled transition systems

following the approach shown by Plotkin [96]. The operational semantics defines

how the states of a program change during execution. We then encode the op-

erational semantic by using the tool XTL [8], which allows the animation of the

specification in cCSP.

• After defining the operational semantics, we have two semantic models of cCSP.

Having these two semantic models, it is natural to see how these two semantic

models are related to each other. We define and prove a formal relationship be-

tween the denotational and the operational semantics. We adopt a systematic

approach where we extract traces from the transition rules defined in the opera-

tional semantics, and then prove by structural induction that the derived traces

correspond to the originally-defined traces. The important aspect of showing the

correspondence between the semantic models is that it gives consistency to the

language and shows that both the definitions are significant in their own areas of

applications.

• At the initial stage of the cCSP development, we avoided defining the semantics

of synchronisation for concurrent processes. Synchronisation is a well understood
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and significant feature for distributed processes. We extend the semantic models

further to define the semantics of a synchronisation of processes, where processes

synchronise over a set of synchronising events, and non-synchronising processes in-

terleave with each other. As we mechanise the cCSP semantics in a later chapter,

we do not perform the detailed proofs by hand, instead we only outline the rela-

tionship between the operational and trace semantics for synchronous processes.

We consider the cases where synchronisation leads to deadlock and we show how

to extract partial behaviour from the processes that lead to deadlock.

• The proofs showing the correspondence between the semantic models are carried

out completely by hand, which is an error prone and tedious task, and it is diffi-

cult to handle large number of steps. In order to overcome these problems in hand

proofs and at the same time to find a feasible mechanisation for the semantic mod-

els and their properties, we mechanise the semantic models and the relationship

showing their correspondence. First, both semantic models are embedded in the

theorem prover PVS [89] and we use a shallow embedding [100] for this purpose.

We then define the theorems and supporting lemmas that prove the relationship

between the models. The proofs are carried out by using mutual structural in-

duction. At the initial stage of mechanical proofs we followed a similar level of

steps as our hand proofs. In later stages, the proofs were carried out without

any support from the hand proofs. In particular, the semantic correspondence

for synchronisation of concurrent processes, which is extended in a later stage of

cCSP development, was carried out without any corresponding hand proofs. For

synchronous processes, we considered all the cases where processes synchronise,

interleave and even the cases when processes deadlock.

• We perform case studies by modelling web services in order to investigate the

expressiveness of cCSP constructs, especially the orchestration of compensation

and synchronisation between synchronising processes. We model two separate ver-

sions of the same web service, which allows us to experiment with synchronisation

between and within transactions blocks as well as handling of compensations.

1.3 Thesis Structure

In the rest of the thesis, we survey the existing literature related to our work and describe

in detail how we have made the contribution outlined in the previous section. The is

achieved through the course of the remaining chapters which are structured as follows:

• Chapter 2 introduces the technical background and concepts that are essential for

the notations and formal contents of this thesis. In doing so, we briefly describe

the basic process algebraic concepts and notation on which our algebraic approach
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is built. The chapter describes the notion of long running transactions in web

services and identifies the relevant existing literature on applying formal methods

to describe them. Considering our objectives mentioned earlier, we identify the

limitations of existing works and use these to motivate the work described in the

subsequent chapters.

• Chapter 3 defines the operational semantics for compensating CSP. The opera-

tional semantics is defined by using labelled transition systems. Semantics are

defined for both standard and compensable processes (processes with attached

compensations). The operational semantics is defined by small step semantics so

that it is possible to observe each step of the execution and how each process ter-

minates. The semantics are encoded in Prolog in order to animate the specification

in XTL. A brief outline of the Prolog encoding is also described in the chapter.

• Chapter 4 shows the relationship between the operational and the trace semantics.

The relationship is derived for both standard and compensable processes. After

stating the theorems that define the correspondence between the semantic models,

the supporting lemmas are derived from the definition of traces and transition rules

of each process term. Induction is applied over traces to prove the correspondence

for each process term. The semantic correspondence is then proved by structural

induction over process terms.

• Chapter 5 further extends the semantic models by defining the operational rules

for synchronisation of concurrent processes. The parallel operator was defined

in [27] as interleaving where processes interleave with each other and synchronise

only on termination. The semantics is extended to define the synchronisation of

processes on observable events. Deadlock arises when the synchronising events do

not synchronise with each other. The semantic correspondence of the synchronous

processes is also proved by following similar approaches to those shown in the

previous chapter. A special terminal event is introduced to represent the partial

behaviour of processes that do not synchronise over synchronising events.

• Chapter 6 describes the mechanisation of the semantic models and their relation-

ship for both standard and compensable processes, by using the theorem prover

PVS. First, both semantic models are mechanised in PVS using a shallow embed-

ding. The theorems and the supporting lemmas are then defined following the

same approach as in the hand proofs. The proofs are carried out by following

similar steps as in the hand proofs, while in a later stage the proofs are carried out

without any support from the hand proofs. The chapter shows how the mechani-

sation helps to identify some theorems that are ignored in the hand proofs, and

how the semantic models are improved during the mechanisation.

• Chapter 7 describes the case studies performed to model two separate versions of

a Car Broker web service by using cCSP constructs. The Car Broker web service
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has two associated web services. The chapter also shows the modelling of these

two web services and how all these web services are composed together to model

the whole system. The case study particularly highlights the interactions between

process synchronisation and compensations.

• Finally, Chapter 8 summarises the conclusions drawn throughout the thesis and

in particular the contributions and limitations of our works. We also describe and

motivate our plans for future work.



Chapter 2

Background

In this chapter we present a review of the literature relevant to understanding and

evaluating our work. The chapter is divided into three main parts. First, Section 2.1

puts our motivation in context by giving an overview of relevant process algebras. Then,

Section 2.2 gives a brief overview of Web services covering to the use of process algebra

in formalising business transactions in web services. Next, we outline the concept of

transaction processing using process algebra, and then describe the idea of modelling

long running transactions and show some of the recent work on applying process algebra

in modelling long running transactions.

2.1 Process Algebra

The term ‘Process Algebra’ can be used with different meanings. Before describing

process algebra let us start with the term ‘process’. A process can be referred to as the

behaviour of a system. The behaviour of the system can be in particular the execution

of a software system, the action of a machine or even the actions of a human being. The

word ‘algebra’ refers to an algebraic/axiomatic approach in talking about the behaviour.

We can say that process algebra refers to mathematical formulation and reasoning rules

for defining processes, made up of events where we focus on communication events which

occur between processes. Details of process algebra and it history can be found in [9, 14].

Several notions and formalisms have been defined for process algebra. Some of the basic

formalisms are CCS [77], CSP [59], ACP [10]. Some of the extensions are the π-calculus

[93], Timed CSP [106]. Although all these process algebras are syntactically different,

they share a set of basic constructs: actions, sequential and parallel composition, syn-

chronised actions, choice and some other basic activities. In this description, our main

focus will be on CSP, and this will be followed by a glimpse of some of the other widely

used process algebras.

8
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CSP

CSP, developed by C. A. R. Hoare [59], is a language for describing concurrent

systems, whose component processes interact with each other by communication.

In CSP, systems are modelled as processes. Each process can communicate with

other processes and the environment through events. The set of events associated

with each process is called the alphabet of that process. The behaviour of a process

is described by an algebraic expression involving CSP operators.

The CSP language includes several basic processes. The simplest CSP processes

are STOP and SKIP. STOP does nothing and never communicates, and SKIP is

successful termination of a process. The prefix operator (−→) is used for sequenc-

ing of events, and the expression a → P describes a process that engages in the

event a and then behaves as P . External choice is described by the choice oper-

ator 2: P 2 Q describes a process that can behave either as P or as Q , and the

choice is resolved by environment. The internal choice operator is designated by

⊓ and the expression P ⊓ Q describes a process that behaves like either P or Q

where the choice is resolved internally, not by the environment.

The parallel composition of two processes is represented as P ‖ Q . P interacts

with Q by synchronisation over shared events that are common to both P and

Q . However, this can lead to deadlock when no process can make any progress

as they do not have any common next event. Interleaving is written as P ||| Q

where P and Q are executed independently of each other. Sequential composition

is represented as P ;Q where Q will execute only after P is completed.

Processes can be defined recursively. The recursive expression µP .F (P) behaves

as F (P) where F (P) is a guarded expression containing P . The hiding operator

is used to hide events from the environment. The expression P\X behaves like P

and the events in X are hidden.

The CSP trace model [59] represents the behaviour of processes as sequences of

observable events. The internal and external choice cannot be distinguished by

their traces. They can be distinguished by their refusals. A refusal is a set of

events that a process fails to accept. A finer distinction between the processes

than the one made by refusals can be made by using failures. A refusal tells what

a process can refuse after an empty trace, whereas a failure tells what a process

can refuse after any of its trace. A failure of a process is a pair (s,X ), where

s ∈ traces(P) and X ∈ refusals(P/s) (refusals of P after trace s). failure(P) is

the set of failures of P . The failure model does not allow us to detect livelock (i.e.,

an infinite sequence of internal actions). The failure-divergences model can detect

it by adding the concept of divergence. The divergences of a process are the set of

traces after which the process may livelock. Refinement relations can be defined

for systems described in CSP for traces, failures and failure-divergences.

The ProBE [45] tool can be used to animate arbitrary CSP process descriptions,
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and the FDR [44] tool supports automated refinement checking of CSP processes.

CCS

The Calculus of Communicating Systems (CCS), the process algebraic language,

was developed by Robin Milner [77]. Like CSP, it can describe the structures and

behaviours of concurrent systems. In CCS a system is viewed as a collection of

interacting processes where the behaviour of each process is defined by using an

expression in CCS. The composition of all individual processes defines the whole

system. Although CCS has similar constructs to CSP, there are significant differ-

ences in the interpretation of some operators. CCS has some basic operators for

composition of processes, which are: prefix to express sequential actions, summa-

tion to express both deterministic and non-deterministic selections, composition

for concurrency, renaming for syntactic variants and restriction for internal actions.

Communication is the exchange of a message between processes and in CCS the

only interaction among the processes is communication and communication is

atomic and synchronous. The CCS semantics is defined by a set of transition

rules. Whenever a process engages in an event it makes a transition. Each process

operator has some associated transition rules that define the meaning of the oper-

ator. The notion ‘Bisimulation’ defines the behavioural equivalence over processes

by using their transition sequences.

As mentioned in [58], the divergence between CSP and CSS is on purpose as they

were developed for their own purposes. A detailed description of their differences

is beyond the scope of this thesis. Detailed comparisons of these two calculi can

be found in [119].

π-calculus

The π-calculus is a mathematical model of processes whose interconnections change

as they interact. Communication links are transferred between two processes and

the recipient can use the link for further interaction with other parties. This kind

of communication provides the facility to model systems whose accessible resources

vary over time. The π-calculus was first presented in [79] to model concurrent com-

municating systems and it is an extension of the CCS process algebra. π-calculus

is the foundation of two of the main Process Markup Languages: BPML from the

BPMI consortium and XLANG [113] (now BPEL4WS)[35] from Microsoft.

2.2 Web Services

The term ‘web services’ describes a standardised way of integrating web-based appli-

cations using open standards (e.g., XML, SOAP and UDDI) over an internet protocol

backbone. Used primarily as a means for businesses to communicate with each other
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and with clients, web services allow organisations to communicate data without intimate

knowledge of each others IT system behind the firewall. Instead of providing GUIs to

users, web services share business logic, data and processes through a programmable

interface across the network.

In order to create a cross-organisational component in web services, flexible methods are

needed to handle web service interfaces. To describe the composition of web services as

well as the process flow, two terms are widely used: Orchestration and Choreography.

How executable business processes interact with each other is described by orchestration.

It also describes the business logic, execution order and all the interactions are at the

message level. These interactions can span applications and organisations and result in

a long-running, transactional and multi-step process model.

In terms of web services where multiple parties are involved, orchestration represents

control from one party’s perspective. Choreography, on the other hand, tracks massages

among multiple parties and sources, which is typically between multiple web services.

This is the basic distinction between orchestration and choreography. Orchestration

describes the executable business processes, which interact with both internal and ex-

ternal web services, and the control of the processes is always from the perspective of

one of the business parties. Choreography is more collaborative in nature and describes

the interactions from the perspective of all parties involved in the process. A detailed

description and the differences between the two can be found in [95]. There have been

several proposals for describing web services for business processes presented in the re-

cent years including BPML [1] by BPMI, XLANG [113] and BizTalk [73] by Microsoft,

WSFL [66] by IBM, BPEL4WS [35] by OASIS (draft standard).

2.2.1 Long running transactions in web services

Web services evolved as a means to integrate processes and applications at an inter-

enterprise level. Instead of having traditional transactions, we need a transaction mech-

anism for web services that supports long-running transactions to describe the loosely

coupled activities in web services. Most of the proposals mentioned above use long

running transactions to describe the activities.

In the context of web services, business transactions involve interaction and coordination

between several services which may belong to different companies. Business transactions

need to deal with faults that can arise in any stage of such an environment and this is

both difficult and critical. In a long running transaction the usual database approaches,

e.g., rollback, are not possible to handle faults. Cancellation of an air plane, or hotel

booking, for instance, may lead to a situation which requires the involvement of non-

transactional activities with other resources where absolute rollback is not an option.

Usually, a long-running transaction interacts with the real world which makes it difficult
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to undo the transaction.

In order to recover from faults in long-running transactions, the concept of compensation

was introduced. Compensation is defined in [54] as a mechanism to recover from error or

change in business plan. Compensation is the act of making amendments, or making up

of previously completed task. If a long running transaction fails, appropriate compensa-

tions are to be run to compensate for completed parts of the transaction. The concept

of transaction was described in [53] where compensation is associated with transactions

that correct errors of an already committed transaction. Later the concept of sagas

was defined in [49] using compensation to describe long running transactions. Sagas

partition a transaction into a sequence of sub-transactions. Each sub-transaction has an

associated compensation. Failure of a sub-transaction in the sequence will execute the

associated compensations of the committed sub-transactions.

2.2.2 Formal methods for web services

Several proposals have already been made to describe the composition of web services

and some of them are widely used for web services. However, these standards say little or

almost nothing about the correct functioning of web services. Formal methods provide

a framework, in particular for specification languages and tool support, to address the

issues raised by web services (correctness, composition, description). It has already been

argued that web services and their interaction can be best described by using process

algebras [72]. Recently a few researchers have proposed to use process algebras in web

services. A framework has been presented in [41] for the design and verification of web

services using process algebra and their tools. The work is based on LOTOS [17] and a

two-way mapping is shown between BPEL and the process algebra LOTOS.

Among several business process modelling languages, BPEL4WS is the most common.

One of its distinct features is its ability to program fault and compensation handling

mechanisms. Recently several researchers have worked on giving a formal semantics to

BPELWS. In [99] Qiu et al. defined the operational semantics for a subset of BPEL4WS

which they called BPEL, focusing especially on the fault and compensation handling.

Having a similar goal to address the error handling mechanism of web services, a formal

semantics has also been defined in [69] using the popular π-calculus, and extended

the calculus to include the transactional facilities. cCSP has mechanisms for process

coordination as well as for handling compensations and it can be a good candidate to

provide a formal framework to model web services. Later, we will model a business

transaction to investigate the expressiveness of cCSP. Formalisation of choreography

and orchestration of web services by using other methods can be found in [18, 22, 120].

A brief description on the use of process algebra supporting the formalisation of web

services can be found in [103]. A survey of several proposals for web service composition

can be found in [75].
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Atomicity Change to the state by a transaction is atomic, i.e., either all transaction
succeeds or none of it happens.

Consistency The state will be consistent after the operation of the transaction. The
actions taken for the transaction do not violate any of the integrity constraints of
the state.

Isolation Transactions are executed as of no other transaction is executed at the same
time. Even though several transaction execute concurrently, it appears to each
transaction, T , that other transaction take place either before or after T .

Durability Once a transaction completes successfully (commits), all of its effect will
survive any system failure.

Figure 2.1: ACID properties of a transaction

2.3 Transaction Processing

Transactional mechanisms have been studied by several communities in computer sci-

ence. The term transaction is meant to designate a sequence of operations/actions that

preserve database consistency. In order to deal with consistency and failure of trans-

actions, ACID (acronym for atomicity, consistency, isolation and durability, details are

in Figure 2.1) transactions are introduced [53]. ACID transactions are often based on

locking mechanisms and usual database approaches such as rollback, checkpoint are used

to handle faults to provide atomicity to the transaction.

The introduction of web services has led to a new interest in web transactions, in par-

ticular long running transaction. The distinctive feature of long running transactions is

that the usual transaction properties, i.e., ACID properties are relaxed and instead of

performing rollback, the concept of compensation is introduced in case of failure in the

transaction. In spite of having a lot of interest in web transactions, researchers have not

yet reached a common agreement on a unique notion of long running transaction.

Many researchers are now focusing on connecting formal methods with web transac-

tions. For example, a small set of operators and their operational semantics are pre-

sented in [117] to model the transactional behaviour using process algebra. Traditional

ACID properties are kept while modelling transaction, however the important concept

of long running transaction is not considered. Several other attempts have already been

made by many researchers. By using the Join calculus [46], transactional behaviour

is described in [20]. Considering Microsoft BizTalk, Bocchi et al. define a language

πt-calculus [16], an extension of the asynchronous π-calculus [79], and formally spec-

ify the transactional behaviour. The πt-calculus includes a transaction construct that

contains a compensation handler and a fault manager. In this approach a transaction

process remains active as long as its compensation might be required. This doesn’t al-

low for the sequential composition of compensable transactions in which compensations
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are composed in reverse order. M.Mazzara et al. [69] extended π-calculus to include

transactional facilities, and suggested to merge the fault and compensation handling

into a general framework of error handling, and defined an operational semantics for

the language. They also explained how to program manually the processes of exception

handling and nested transactions with compensation handlers in the defined language.

Recently, Laneve and Zavattaro [63] defined a calculus for web transactions called ‘webπ’

which is an extension of the asynchronous π-calculus with a timed transaction construct.

The major aspects considered in webπ are that the processes are interruptible, failure

handlers are activated when main processes are interrupted, and time, which is consid-

ered in order to deal with latency of web activities or with message losses. A transaction

executes either until its termination or until it fails and upon failure the compensa-

tion is activated. However, it has a problem similar to that of πt-calculus [16], where

compensations of sequentially composed transactions are not preserved in reverse order

and it is not possible to get the compensation of a successfully completed process after

the failure of a process composed sequentially with the previous one. Using RCCS, a

variant of CCS, [37] proposed a formalisation of transactions that distinguishes between

reversible and irreversible actions and at the same time incorporates a distributed back-

tracking mechanism. A brief description of some of the languages developed to model

long running transactions for web services will be presented in Section 2.5.

2.4 Formal Semantics

The formal semantics of a programming language is concerned with building mathe-

matical models for the language to serve as a basis for understanding and reasoning

about how programs behave. The semantics models the computational meaning of each

program. It provides the abstract entities that represent the relevant features of all

possible executions and ignores the details that have no relevance to the correctness of

implementations.

In order to describe the semantics of a language, here we only focus on the dynamic

semantics. The other type of semantics is called static semantics, which concerns check-

ing for well-formedness. Dynamic semantics is concerned with the run-time behaviour

of a program. A survey of different frameworks for describing the dynamic semantics

of programming languages can be found in [123]. Mosses provided an overview with a

brief description of different dynamic semantics [83, 86].

There are three main approaches to dynamic semantics:

• Operational Semantics - computations are modelled explicitly.

• Denotational Semantics - the meaning of a program phrase is modelled by its

denotation.
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• Axiomatic Semantics - describes properties of programs as sets of constraints, and

programs as transforming assertions.

2.4.1 Operational Semantics

In an operational framework, the semantics of a program is specified as an abstract

machine or transition system, whose computation represents the possible executions of

the program. In operational semantics the main concern is how the states are modified

during the execution of the statements. Various approaches have been taken for the

operational semantics starting from the early 60’s [70]. Here our main focus will be on

the Structural Operational Semantics (SOS).

Operational semantics are close to intuition and mathematically simple and provide

guidelines for language implementation. Operational semantics describe the behaviour of

programs in terms of transitions between computation steps, also called configurations.

The configurations consists of programs and the associated data which represent the

store of data on which the program works. A transition indicates the move from one

configuration to another. Behaviours may be represented by means of transition systems.

In order to obtain a reasonable notion of semantic equivalence in operational semantics,

the popular notion of bisimulation is introduced [76, 78].

The Structural Operational Semantics (SOS) framework was proposed by Plotkin in

1981 [96] in order to provide a simple and direct approach to the semantic description

and since then has been exploited in many research works including [6, 77, 87, 121]

and lots more. In SOS, computations are modelled as sequences of transitions between

states. The transitions for a process depend only on the transitions for its sub processes.

The transition relations are defined by a set of axioms and inference rules. As a com-

putation proceeds, phrases of the program are replaced by the values that they have

computed. So in the initial state, the program is purely syntactic and in the final state

it has been replaced by its computed values. Plotkin’s novelty in defining structural

operational semantics is the way in which transitions are deduced inductively on the

syntactic structure of the language itself. Inductive definitions are given by sets of rules

of the form:

Premises

Conclusion
(Side Condition)

which intuitively tells that the conclusion is derived only when the premises are satisfied.

In operational semantics definition, the premises are transitions and the conclusion is a

transition.

SOS is also referred to as small-step semantics. The alternative approach is called

Natural semantics (big-step semantics) [62]. It is actually a special case of SOS, in-

volving initial and finals states but no intermediate states. The purpose of natural
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semantics is to describe how the overall results of executions are obtained, whereas in

SOS the purpose is to describe how the individual steps of the computations take place.

Mosses extended conventional SOS to introduce modularity in SOS which is called Mod-

ular SOS (MSOS) [81, 84, 85].

2.4.1.1 Labelled Transition System

The operational semantics of many languages are defined by using the labelled transition

systems defined by Plotkin.

Definition 2.1. A labelled transition system (LTS) is a quadruple 〈S ,S0,Act , {
a

−→ |

a ∈ Act} 〉 such that:

• S is a set of states,

• S0 is a set of initial states,

• Act is a set of actions,

•
a

−→ ⊆ S × S is a transition relation for every a ∈ Act

The operational semantics of a language can be expressed by using an LTS where the

LTS states correspond to the states of programs, the transition relations in the LTS

correspond to atomic evolution steps of states of the corresponding programs, and the

LTS actions describe the activities of the transitions.

Actions are used as the labels of the transitions. Following the standard notation we

write a transition as s1
a

−→ s2, specifying that there is a transition from state s1 to

state s2 by the action labelled by a.

2.4.2 Denotational Semantics

The framework of denotational semantics was developed by Scott and Strachey [80, 109].

The aim was to provide a mathematics foundation for reasoning about programs and for

understanding the fundamental concepts of programming languages. It has then been

used in several research including [87, 104, 121].

In the denotational framework the meaning of a program phrase also called denotation

is defined abstractly as an element of some suitable mathematical structure, which re-

flects the contribution of the phrase to the overall program behaviour. A mathematical

structure M constitutes the answer to the question “What does that program phrase

actually mean?” A mapping is then defined which associates each program phrase P

an element [[P ]] of M, called the meaning or denotation of P . The intended behaviour

of a program can be easily read from its denotation. The denotational semantics are

defined as compositional, in the sense that the denotation of a program is completely

determined by the denotation of its constituent subprograms.
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2.4.3 Axiomatic Semantics

Axiomatic semantics describe properties of programs as a set of assertions, and pro-

grams as transforming assertions. It is particularly suited to proving properties about

programs. Axiomatic semantics for sequential programs was developed by Hoare [57]

and called Hoare logics. A Hoare logic gives the rules for the relation between assertions

about values of variables before and after the execution of each program construct. The

constructs concerned are statements S . Suppose that P and Q are assertions about val-

ues of particular variables; then P{S}Q is the partial correctness formula which states

that if P holds at the beginning of the execution of S and the execution of S terminates

and Q holds at the end of the execution of S . In partial correctness, the statement S

might not terminate. If the execution of S from a state which satisfies P terminates then

it is called total correctness. If P does not hold at the beginning then neither S requires

to terminate nor does Q need to hold after S . This notion allows us to move from

expressions written in programming languages to expressions in logic. The relations

P{S}Q are specified inductively by rules similar to the transition rules of operational

semantics.

2.5 Modelling long running transactions

In this section we put our attention towards formalising long running transactions using

process algebras. Some of the recent works on modelling long running transactions are

presented here.

StAC

The basic idea of compensation of our current work came from a previous work [24]

where StAC (Structured Activity Compensation) was introduced as a business pro-

cess modelling language. The authors believe that compensation gives more flexi-

bility than that of other approaches like rollback. In StAC the system description

determines the way to connect the components of a system to create a complete

system. In this system StAC describes the execution order of operations and a B [3]

specification is used to describe the states of the system and its basic operations

as well. As there are commercial and academic tools (ProB [65]) available for B,

the specification in B can be animated and at the same time proof obligations can

be obtained. The concept of compensation is extended in StACi , where a process

can have several independent compensation threads identified by index.

The work on StAC was inspired from the CSP process algebra. StAC allows se-

quential and parallel composition of processes and all these operators with com-

pensations operation. StAC has early termination that might arise if an exception

occurs where the executing process terminates and the remaining tasks may be
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abandoned. Attempt blocks are used in early termination. An attempt block

P{Q}R first executes Q, and if Q terminates successfully it then continues with

P . If an early termination operation is executed in Q , the block continues with

R. Early termination is a useful feature in business processing with the possibility

of terminating processes before concluding their main task. Compensations are

expressed as pairs of the form P ÷ Q where Q is the compensation of the pro-

cess P . Accept and reverse are other two operators of StAC, where accept is

used to accept a processing clearing its accumulated compensation, and reverse

is the operator that causes the accumulated compensation to execute. The oper-

ational semantics of StAC is presented by using LTS, where transition rules are

defined between configurations. The operational semantics of StAC can be found

in [25, 42].

In [31] an extension of compensation is presented in the context of BPBeans.

BPBeans framework allows customers to build Java objects that represent their

business processes. The framework also provides for acceptance of tasks and for

reversal of tasks. The authors described how StAC extends BPBeans by allowing

nested compensation.

Business transactions are very prone to failure in many ways, so any business speci-

fication language needs to check the correctness of its specification. The automatic

verification of StAC specifications using XTL is presented in [8]. Specifications in

StAC are translated to Prolog equations that can be fed into the XTL model

checker. Later we will describe how we use XTL to model check our operational

semantics.

Saga Calculus

Bruni et al [21] have developed a formal semantics for long running transactions

which has compensation handling mechanisms. In the spirit of process description

languages (π-calculus or CCS) one of the main goals of this language is to make the

distinction between compensation and exception handling. The semantic definition

starts with defining sequential activities called sequential saga which is a sequence

of atomic activities. A sequential saga consists of a process P where each step in

P is either a basic activity A or a compensated activity of the form A÷B , where

A is the normal flow of activity and B is its compensation. Processes which are

sequential are represented as (P ; Q).

The Saga calculus is extended to parallel sagas to support the parallel composition

of processes. Initially, only independent parallel branches are defined (Näıve def-

inition) and then extended to full parallel definition. To localise the transactions

nesting is introduced in sagas, where a nested transaction is decomposed into a

hierarchy of activities called sub-transactions. The invocation of compensation in

saga is automatic. The operational semantics of the saga calculus is presented by

using big-step semantics.
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A comparison has been made in [19] between cCSP and sagas, where the com-

parison highlights how compensations are handled in concurrent processes when a

sibling process in the parallel composition aborts. In cCSP, interruption in parallel

processes is coordinated, i.e., when one process throws an interrupt another process

catches that interrupt by yielding an interrupt. The compensation procedure is to

be activated after the executing processes are stopped. Whereas, in Näıve sagas,

all processes in parallel, execute until completion but, if needed they compensate

without waiting for processes to complete. On the other hand, in revised sagas,

when one parallel process aborts, the other processes execute, but if needed they

are interrupted and then their compensations can be executed independently from

the rest of the processes. For a detailed discussion please refer to [19].

2.6 Compensating CSP

Compensating CSP (cCSP) is a language used to model long running transactions. The

development of the language was inspired by two main ideas: transaction processing

features and process algebra, especially, CSP. In this section, we briefly introduce the

cCSP language. We describe how compensation constructs are orchestrated to model a

long running transaction within the framework of the CSP process algebra.

As in CSP, processes in compensating CSP are modelled in terms of atomic events they

can engage in and the operators provided by the language support sequencing, choice,

parallel composition of processes. In order to support failed transactions, compensation

operators are introduced. The processes are categorised into standard and compensable

processes, where a compensable process has its attached compensation that will exe-

cute to compensate the committed actions when required. We use P ,Q , . . . to identify

standard processes and PP ,QQ , . . . to identify compensable processes. The syntax of

compensating CSP is summarised in Figure 2.2.

The basic unit of a standard process is an atomic event. Standard processes are con-

structed with the usual CSP operators for choice, sequencing and parallel composition.

The process SKIP terminates immediately successfully. The language also provides in-

terrupts and interrupt handling. The primitive process THROW throws an interrupt

immediately. In a purely sequential process, the exception causes an immediate dis-

ruption to the flow of control. An interrupt handler may be used to catch interrupts:

in P � Q , an interrupt raised by P triggers execution of the handler Q . In paral-

lel processes, the whole group of parallel processes may fail when one of the processes

throws an exception and all the other processes are willing to disrupt their flow of con-

trol and yield to the exception. A process that is ready to terminate is also willing to

yield to an interrupt. A process may also yield at mid points in its execution. Yield

points are inserted into a process though the primitive YIELD process. For example,
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Standard Processes:

P ,Q ::= A (atomic action)
| P ;Q (sequential composition)
| P 2Q (choice)
| P ‖ Q (parallel composition)
| SKIP (normal termination)
| THROW (throw an interrupt)
| YIELD (yield to an interrupt)
| P � Q (interrupt handler)
| [PP ] (transaction block)

Compensable Processes:

PP ,QQ ::= P ÷ Q (compensation pair)
| PP ;QQ
| PP 2QQ
| PP ‖ QQ
| SKIPP
| THROWW
| YIELDD
| PP ⊠ QQ (speculative choice)

Figure 2.2: Syntax of compensating CSP

(P ; YIELD ; Q) is willing to yield to an interrupt between execution of P and Q . Par-

allel composition is defined so that throwing of an interrupt in one process synchronises

with yielding in another process. The cCSP semantics presented in this chapter does

not include synchronised communication between parallel processes. Parallel process

groups synchronise only on joint execution of compensation, joint termination and joint

interruption. Later in Chapter 5, we define the semantics for synchronisation between

processes.

A compensable process is one which has compensation actions attached to it. A com-

pensable process consists of a forward behaviour and a compensation behaviour. In

the case of an exception, the compensation will be executed to compensate the forward

behaviour. Both the forward and the compensation behaviour are standard processes.

The basic way of constructing a compensable process is through the compensation pair

construct P÷Q , where P is the forward behaviour and Q is its associated compensation.

Q should be designed to compensate for the effect of P and may be run long after P

has completed. For example, for the atomic events A,A′,B and B ′

– (A ÷ A′) ; (B ÷ B ′) – behaves as (A ;B) and has the compensation (B ′ ;A′), stored

for future use.

– (A÷A′) ; (B÷B ′) ;THROWW – behaves as A ;B ;B ′ ;A′. As there is a THROWW

at the end, after behaving as before, in this case the compensations are also executed

(Here, THROWW is the compensable counterpart of standard basic process THROW ,
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the definition is given later in this section).

The parallel and sequential composition operators for compensable processes are rede-

fined in such a way which ensures that after the failure of a transaction the necessary

atomic transactions are performed in an appropriate order to compensate the effect of

already performed actions. Sequential composition of compensable processes is defined

so that the compensations for all performed actions will be accumulated in the reverse

order to their original performance. Parallel composition of compensable processes is

defined so that compensations for performed actions will be accumulated in parallel. For

example,

(A ÷ A′) ‖ (B ÷ B ′) ;THROWW = (A ‖ B) ; (A′ ‖ B ′)

By enclosing a compensable process PP in a transaction block [PP ] we get a complete

transaction which converts the compensable process PP into a standard process. The

standard behaviours of the transaction block are defined in terms of the compensable

behaviour of PP . Successfully completed PP represents successful completion of the

whole transaction block and compensations are no longer needed, and they are discarded.

The failed behaviour of PP needs to involve the actual execution of compensations. For

example, the following laws shows that compensation will run in the case of exception

and discarded for successful termination.

[A ÷ A′ ;THROWW ] = A ;A′

[A ÷ A′ ] = A

The intention of forming a complete transaction from a compensable process is that,

in the case of failure, the attached compensations cancel the forward actions and no

trace of actions is observable from outside of the transaction block. This satisfies the

fundamental principle for a process algebra to model long-running transaction, stating

that a transaction either does nothing, because its forward actions will be cancelled, or

completes successfully.

A standard process can also be transformed into a compensable process by adding to it

a compensation process, which actually does nothing (SKIP). The compensable basic

processes are defined follows:

SKIPP = SKIP ÷ SKIP

THROWW = THROW ÷ SKIP

YIELDD = YIELD ÷ SKIP

A goal of a transaction can be achieved in different ways and these means can be run

in parallel in order to improve responsiveness. The is achieved in speculative choice. In



Chapter 2 Background 22

speculative choice (PP ⊠ QQ), both processes are allowed to run in parallel. When one

attempt succeeds the other attempt can be abandoned and compensations can be used

to cancel the effect of the abandoned attempts.

Example:(Order Fulfilment)

To illustrate the use of cCSP, we present an example of a transaction for processing cus-

tomer orders in a warehouse. When the warehouse receives an order from a customer,

the first step is to verify whether the stock is available. If not available the customer is

informed that the order cannot be accepted. Otherwise, the warehouse starts preparing

the order for shipment, and a courier is booked to deliver the goods to the customer.

While preparing the order, the warehouse also does a credit check on the customer to

verify that the customer can pay for the order. The credit check is performed simulta-

neously with other tasks because it normally succeeds and the warehouse does not wish

to delay the order. If the credit check is failed the processing of the order is stopped.

The example is presented in Figure 2.3 in the cCSP language. We present a simple

representation of the order acceptance and focus on the order fulfilment part in more

detail.

OrderTransaction = [ ProcessOrder ]

ProcessOrder = (AcceptOrder ÷ RestockOrder ) ; FulfillOrder

FulfillOrder = BookCourier ÷ CancelCourier ‖

PackOrder ‖

CreditCheck ; (Ok ; SKIPP
2NotOk ; THROWW )

PackOrder = ‖
i∈Items

• (PackItem(i) ÷ UnpackItem(i))

Figure 2.3: Order transaction example

The first step in the transaction is a compensation pair. The primary action of this

pair is to accept the order and deduct the order quantity from the inventory database.

The compensation action simply adds the order quantity back to the total in the in-

ventory database. After an order is received from a customer, the order is packed for

shipment, and a courier is booked to deliver the goods to the customer. The PackOrder

process packs each of the items in the order in parallel. Each PackItem activity can

be compensated by a corresponding UnpackItem . Simultaneously with the packing of

the order, a credit check is performed on the customer. The credit check is performed

in parallel because it normally succeeds, and in this normal case the company does not

wish to delay the order unnecessarily. In the case that a credit check fails, an interrupt

is thrown causing the transaction to stop its execution, with the courier possibly having

been booked and possibly some of the items having being packed. In case of failure,
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the semantics of the transaction block will ensure that the appropriate compensation

activities will be invoked for those activities that did take place.

2.6.1 Trace Semantics

A trace records the behaviour of a process up to some moment in time. The interactive

behaviour of a process can be recorded as a set of traces of all its observable behaviour

followed by a special internal terminal action, indicating the way of termination of the

process. The traces of composite processes are defined in terms of their constituent

processes. In a trace model, each action is considered as atomic. We only present a brief

overview of the trace model of cCSP. For a detailed discussion, please refer to [27].

Standard Processes

A process is assumed to have an alphabet of actions Σ which does not include the special

terminal events Ω = {X, !, ?}. Standard processes are defined as non-empty set of traces

of the form s〈ω〉 where s ∈ Σ∗ and ω ∈ Ω. All the traces of standard processes are of

one of the following forms:

– s〈X〉 trace leading to normal termination

– s〈 ! 〉 trace leading to interrupt throw

– s〈 ? 〉 trace leading to interrupt yield

A standard process is modelled as a set of such traces. A process yields to catch the

interrupt thrown by another communicating process. For traces s and t , we write st as

their concatenation. Only completed traces are included in the traces and the nature

of a trace is indicated by its final symbol. We first define the operators on traces and

then lift them to processes. In the following sections the trace semantics of standard

processes are defined as T (P) for standard processes P .

Atomic Action: An atomic event performs an atomic action and terminates success-

fully.

For A ∈ Σ T (A) = {〈A,X 〉}

Basic Processes: Basic processes only have terminal events.

– SKIP terminates immediately successfully: T (SKIP) = {〈X〉}

– THROW throws an interrupt: T (THROW ) = {〈 ! 〉}



Chapter 2 Background 24

– YIELD yields an interrupt or terminates: T (YIELD) = {〈 ? 〉, 〈X〉}

Choice: The traces of a choice between two processes are determined by the union of

their traces.

T (P 2 Q) = T (P) ∪ T (Q)

Sequential Composition: In sequential composition (P ;Q), the traces of Q is will

be augmented with the traces of P for a successfully completed P , otherwise the traces

of Q is discarded. For processes P and Q , and their traces p and q :

p〈X〉 ; q = pq

p〈ω〉 ; q = p〈ω〉 where ω 6= X

T (P ;Q) = {p ; q | p ∈ T (P) ∧ q ∈ T (Q)}

Interrupt Handler: For processes P and Q , P � Q behaves as P until an interrupt

is raised by P .

p〈 ! 〉 � q = pq

p〈ω〉 � q = p where ω 6= !

T (P � Q) = {p � q | p ∈ T (P) ∧ q ∈ T (Q)}

Parallel Composition: Parallel composition defined in [27] does not consider the

synchronisation of observable events. Processes are considered to synchronise on joint

termination or interruption. The synchronisation of terminal events is denoted by

defining a synchronisation operator on terminal events from the set Ω. If ω and ω′

are terminal events from distinct parallel processes, the joint terminal event by their

concurrent execution is denoted by ω&ω′. Table 2.1 enumerates the evaluation of the

operator. The first three rows of the table show that synchronization of any terminal

event with an interrupt throw results in an interrupt throw. The next two rows state

that synchronization between a yield with either a yield or a successful termination re-

sults a yield. The last row of the table shows that composition of two parallel processes

will terminate successfully when both processes terminate successfully.

Table 2.1: Synchronisation of terminal events
ω ω′ ω&ω′

! ! !
! ? !
! X !
? ? ?
? X ?
X X X

The execution of actions in separate processes occurs in an interleaving fashion. Asyn-
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chronous execution can lead to different interleavings: A ‖ B can execute A followed

by B or B followed by A. For traces p, q we write p ||| q to denote their interleaving:

〈x 〉p ||| 〈y〉q = {〈x 〉r | r ∈ (p ||| 〈y〉q} ∪ {〈y〉r | r ∈ (〈x 〉p ||| q)}

The parallel composition of traces is defined to be the set of interleavings of their

observable events followed by the synchronisation of their terminal events.

p〈ω〉 ‖ q〈ω′〉 = {r〈ω & ω′〉 | r ∈ (p ||| q)}

T (P ‖ Q) = {r | r ∈ (p ‖ q) ∧ p ∈ T (P) ∧ q ∈ t(Q)}

Compensable Processes

A compensable process has both forward and compensation behaviour. The compensable

behaviour is modelled by a pair of traces of the form (p〈ω〉, p′〈ω′〉) where p〈ω〉 is for

forward behaviour and p′〈ω′〉 is for the compensation.

Choice: The choice of compensable processes are same as standard processes which is

determined by the union of their traces.

T (PP 2 QQ) = T (PP) ∪ T (QQ)

Sequential Composition: The trace semantics are defined in such a way that com-

pensations are accumulated in reverse to the forward processes.

(p〈X〉, p′) ; (q , q ′) = (pq , q ′; p′)

(p〈ω〉, p′) ; (q , q ′) = (p〈ω〉, p′), where ω 6= X

T (PP ;QQ) = { pp ; qq | pp ∈ T (PP) ∧ qq ∈ T (QQ) }

Parallel Composition: The trace semantics of compensable parallel composition is

similar to the standard case.

(p, p′) ‖ (q , q ′) = { (r , r ′) | r ∈ (p ‖ q) ∧ r ′ ∈ (p′ ‖ q ′) }

T (PP ‖ QQ) = { rr | rr ∈ (pp ‖ qq) ∧ pp ∈ T (PP) ∧ qq ∈ T (QQ) }

Compensation Pair: The pairing operator is first defined on traces and then lifted
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to processes.

p〈X〉 ÷ q = (p〈X〉, q)

p〈ω〉 ÷ q = (p〈ω〉, 〈X〉), where ω 6= X

T (P ÷ Q) = { p ÷ q | p ∈ T (P) ∧ q ∈ T (Q) }

The trace semantics defined in [27] has an extra behaviour that allows the compensation

pair to yield immediately with empty compensation. In this thesis we only use the

simplified version of the pair operator presented above. We can get the same behaviour

as in the original definition by adding a yield to the pair operator as follows:

P ÷′ Q = YIELD ; P ÷ Q

Speculative Choice: In speculative choice (PP ⊠ QQ), the forward behaviour of

either processes can terminate successfully, or the forward behaviour of both processes

can terminate successfully, or neither of them terminate successfully. The trace seman-

tics of this operator is defined as follows:

(p〈X〉, p′) ⊠ (q〈ω〉, q ′) = { (rq ′, p′) | r ∈ (p ||| q) } (ω 6= X)

(p〈ω〉, p′) ⊠ (q〈X〉, q ′) = { (rp′, q ′) | r ∈ (p ||| q) } (ω 6= X)

(p〈X〉, p′) ⊠ (q〈X〉, q ′) = { (rq ′, p′) | r ∈ (p ||| q) } ∪

{ (rp′, q ′) | r ∈ (p ||| q) }

(p〈ω〉, p′) ⊠ (q〈ω′〉, q ′) = { (rr ′), 〈X〉 | r ∈ (p ||| q) ∧ r ′ ∈ (p′ ‖ q ′) } (ω, ω′ 6= X)

T (PP ⊠ QQ) = { pp ⊠ qq | pp ∈ T (PP) ∧ qq ∈ T (QQ) }

Transaction Block: A transaction block runs the compensation for an interrupted

forward behaviour and discards the compensation for successfully terminating forward

behaviour and removes the traces whose forward behaviour is yielding.

[ p〈 ! 〉, p′ ] = (pp′)

[ p〈X〉, p′ ] = p〈X〉

T ([PP ]) = {[ p, p′ ] | (p, p′) ∈ T (PP)}

If PP is empty, then the transaction block will be empty. The healthiness condition that

ensures that the set of traces of a transaction block is non-empty is denoted by stating

that all processes P and PP consist of some terminating behaviour:

– p〈X〉 ∈ T (P) or p〈 ! 〉 ∈ T (P), for some p

– (p〈X〉, p′) ∈ T (PP) or (p〈 ! 〉, p′) ∈ T (PP), for some p, p′
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2.7 Prototype Verification System (PVS)

PVS (Prototype Verification System) [89] is a general purpose proof tool that provides an

interactive environment for writing formal specifications and checking formal proofs. It

consists of an expressive specification language that comes with a type checker, theorem

prover and other related tools. Details of PVS can be found in the PVS system guide [91].

Several research have been carried out to mechanise the trace semantics of standard CSP

by using the theorem prover PVS, e.g., [38, 40], which give us a good starting point to

use PVS in our experiments to model the semantic models of cCSP. We also use PVS

to mechanise the relationship between the semantic models.

2.7.1 PVS Specification Language

PVS has an expressive specification language augmented with classical higher order logic.

A typical specification consists of a collection of modular units called theories. Theories

are imported to other theories making a hierarchy of theories. The definitions and

theories in the imported theories become available to the importing theories. Theories

are identified by their names and can be parameterised by a list of identifiers.

Types

The PVS specification language has a very sophisticated type system. Simple types are

constructed from available base types, such as, boolean (bool), natural (nat) etc. by

using function [· · · ->· · · ], tuple [· · · ,· · · ]. Constructor, such as sets and predicates,

are represented as boolean functions, where functions return boolean values. The term

‘set’, ‘predicate’ and ‘boolean function’ are used interchangeably in this context. There

is also support for records, sequences, lists and trees, etc.

The type system in PVS is even enriched by supporting uninterpreted type declarations,

predicate subtypes, dependent types, enumerated types, and a mechanism for defining

abstract datatypes such as lists, trees. Subtyping makes type checking more powerful.

However, this introduces undecidability in type checking: if PVS is unable to check the

type of an expression then it generates one or more ‘type correctness condition’s (TCC).

These must be proved to consider that the expression is type checked. Many TCCs

are discharged automatically, whereas more involved ones require to use the interactive

prover.

2.7.2 PVS Theorem Prover

The PVS prover provides the primitives to perform inductive reasoning, rewriting and

model checking. The prover is interactive and uses sequent style presentation. The
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prover provides powerful basic commands and a mechanism for building reusable strate-

gies based on these. The prover maintains a proof tree and to prove the tree the nodes

of the tree have to be proved using the proof commands provided by PVS. A node in

the tree is proved if its leaves are proved. The nodes of the proof tree are called proof

goals. Each proof goal is a sequent consisting of a list of antecedent formulae followed by

a list of consequent formulae separated by ‘|----’. Each of the proof goals are tackled

separately and a single proof goal is displayed with the Rule? prompt. A typical goal

can be as follows:

example_theorem.x:

[-1] A

[-2] B

[-3] C

|-------

[1] S

{2} T

Rule?

where example_theorem is the formula name and x identifies the current goal. A, B, C

are the antecedent formula and S,T are the consequent. Intuitively, the above sequent

can be interpreted as the conjunction of the antecedents implies the disjunction of the

consequents, i.e., A ∧ B ∧ C ⇒ S ∨ T . The proof tree starts with a single root node

consisting of the theorem to be proved. A proof tree is built by adding subtrees to

leaf nodes directed by the proof commands. Each formula is uniquely numbered where

antecedents are labelled with a negative number and consequents are labelled by positive

numbers. The formula numbers in braces indicate those formula that are either new or

different from those in parent sequent whereas the formula numbers in square brackets

indicate formulas that are unchanged in a subgoal from the parent goal.

The prover accepts commands in Emacs via a Lisp-like interface. The commands con-

sist of high level commands called strategies and more specific commands called rules.

Strategies are used to tackle a broad range of problems and can finish proofs automat-

ically. The user gets much control over the proofs using the rules. The PVS prover

guide [90] gives a detailed description of the theorem prover as well as the available

proof commands. In order to be able to use the PVS theorem prover it is necessary to

understand the available proof commands. We will use the theorem prover in order to

prove the theorems and lemmas that will be defined to show the correspondence between

the semantic models of cCSP.
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Operational Semantics for cCSP

According to the objectives laid down in Chapter 1, we wish to extend the existing

semantic models of compensating CSP. In this chapter we define an operational semantics

for cCSP. We also show the encoding of the operational semantics for both standard and

compensable processes into Prolog.

3.1 Introduction

Compensating CSP (cCSP) is a language, introduced by Butler et al [27], for modelling

long running business transactions . The language is a variant of standard CSP process

algebra [59] with constructs for orchestration of compensations. With the introduction of

the language, its formal semantics is defined by giving the denotational semantics (trace)

semantics. Although the denotational semantics has its own advantages, e.g., inherently

compositional, the operational semantics has been widely accepted amongst language

developers and practitioners as it is easy to understand and close to implementations.

Operational semantics describes the behaviour of programs in terms of transitions be-

tween program states or configurations. The overall state of the program is divided into

a number of components. The transition shows the move of the program from one con-

figuration to another. In labelled transition systems (LTS), the transitions are labelled

by the information on the activity performed by the transition. An operational seman-

tics is given by a set of rules which specify how the states of a program change during

execution. Each rule specifies a certain precondition on the content of some component

and their new content after the application of the rule.

Structural operational semantics (SOS) [87, 97, 98] was introduced by Plotkin [96] as a

logical means to define operational semantics. The basic idea behind SOS is to define

the behaviour of a program in terms of the behaviour of its parts, thus providing a

29
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structural view on operational semantics. Due to its intuitive look and easy to follow

structure, SOS has become widely popular in defining operational semantics.

3.1.1 Chapter Contribution

This chapter presents the operational semantics of cCSP. The semantics is presented by

using a labelled transition system following the approach of Plotkin [96]. The operational

semantics gives a precise understanding of the execution of the language. The semantics

gives a one-state-at-a-time recipe for computing the transition system of any process.

Operational semantics for standard CSP is defined in [47] and later in [102] and having

similarity with CSP, our work builds on that.

We make the operational semantics executable by directly encoding the rules in Prolog.

Our hope is that this can serve as a useful basis for model checking cCSP processes.

XTL [8] is a model checker which allows a wide range of system specifications. It

accepts specifications written using high-level Prolog predicates describing the transition

between different states of the system. Given a Prolog encoding of the operational

semantics, the XTL package provides us with an experimental animator and model

checker for cCSP.

3.1.2 Chapter Structure

This chapter is organised as follows. Section 3.2 presents the operational semantics of

cCSP. The encoding of operational semantics in XTL is presented in Section 3.3. After

giving some related works in Section 3.4 we draw the conclusions in Section 3.5.

3.2 Operational Semantics

The operational semantics is a way of defining the behaviour of processes by specifying

atomic transitions on process terms. It describes how the individual steps of the com-

putation take place and therefore offers a direct intuition of how program constructs are

intended to behave. Inference rules are presented which define the transitions that a

process may perform, which for composite programs are given in terms of the possible

transition of the constituents. Side conditions are used in the inference rules which state

that the deduction is valid only under the stated restriction. Labelled transition systems

(LTS) [96] are used to define the transitions of process terms. Separate rules are defined

for each operator.

It is mentioned earlier that the alphabet of events is separated into observable (normal)

and terminal events. The set of observable events is represented by Σ. Normal events
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result in the transition of a process from one state to another. For example, the normal

event a makes the transition of a standard process from P to P ′ and a compensable

process from PP to PP ′.

P
a

−→ P ′ (P ′ is a standard process)

PP
a

−→ PP ′ (PP ′ is a compensable process)

The terminal events Ω = {X, !, ?} represent the different ways in which a process can

terminate: successful termination is represented by the X event, termination by throwing

an interrupt is represented by ! and yielding an interrupt is denoted by ?. In order to

define the operational semantics, the language terms are extended with a null process (0)

that cannot perform any event. The terminal events act differently on standard and

compensable processes. When a standard process performs a terminal event ω (ω ∈ Ω)

the process terminates either normally or abnormally and no further operation occurs.

P
ω

−→ 0 (ω ∈ Ω)

When a compensable process PP executes a terminal event, instead of evolving to the

null process (0), it evolves to a standard process P representing its compensation.

PP
ω

−→ P (ω ∈ Ω)

In Section 3.2.2 we will see how these resulting compensations are treated by the various

operators for compensable processes.

3.2.1 Semantics of Standard Processes

This section presents the operational semantics of standard processes of compensating

CSP. Transition rules are defined for observable and terminal events. Recall that tran-

sition rules are different for these two kind of events. In order to represent the labels in

the transition rules, variable a is used to range over the set Σ of observable transitions,

and ω to range over Ω for terminal transitions. There are some transition rules which

are common to both observable and terminal events and the variable α ranges over the

combined set Σ ∪ Ω.

Atomic Action

A process A performs an atomic action A and then terminates successfully:

A
A

−→ SKIP (A ∈ Σ) (3.1)
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Basic Processes

SKIP ,THROW and YIELD are the primitive processes of cCSP. These processes have

only terminal events and the effect of terminal events on these basic processes are pre-

sented here:

SKIP
X
−→ 0

THROW
!

−→ 0

YIELD
?

−→ 0

YIELD
X
−→ 0

(3.2)

Choice

Occurrence of an event, observable or terminal, in either process, in a choice operation,

resolves the choice:

P
α

−→ P ′

P 2 Q
α

−→ P ′

Q
α

−→ Q ′

P 2 Q
α

−→ Q ′
(α ∈ Σ ∪ Ω) (3.3)

Sequential Composition

In a sequential composition (P ; Q), P may perform any non-terminal event and Q

remains as it is:

P
a

−→ P ′

(P ; Q)
a

−→ (P ′ ; Q)
(a ∈ Σ) (3.4)

When P terminates successfully with a X then Q can start to execute and the X from

P is hidden. Here the resulting event is α which can be either a normal or a terminal

event and the resultant process is dependant on α.

P
X
−→ 0 ∧ Q

α
−→ Q ′

(P ; Q)
α

−→ Q ′
(α ∈ Σ ∪ Ω) (3.5)

When P terminates by throwing or yielding an interrupt the whole sequential composi-

tion is terminated:

P
ω

−→ 0

(P ; Q)
ω

−→ 0
(ω ∈ {!, ?}) (3.6)
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Interrupt Handler

The interrupt handler is similar to sequential composition, except that the flow of control

from the first to the second process is caused by the throw event rather than the X event.

For processes P and Q , P � Q represents a process that behaves as P until an interrupt

is raised by P , at which point it behaves as Q .

The process P in P � Q can evolve to another state by any normal event:

P
a

−→ P ′

P � Q
a

−→ P ′ � Q
(a ∈ Σ) (3.7)

When an interrupt is raised by P , the interrupt handler Q starts to execute:

P
!

−→ 0 ∧ Q
α

−→ Q ′

P � Q
α

−→ Q ′
(α ∈ Σ ∪ Ω) (3.8)

The interrupt handler terminates by a terminal event, except !:

P
ω

−→ 0

P � Q
ω

−→ 0
(ω ∈ {X, ?}) (3.9)

Parallel Composition

Processes in parallel will synchronise on joint interruption or joint termination. For

observable events, processes interleave with each other. We extend this definition in

Chapter 5 where the processes synchronise over a set of observable events.

Asynchronous execution of the parallel composition (P ‖ Q) occurs in an interleaved

way, where the execution of P ‖ Q can be either P followed by Q or Q followed by P :

P
a

−→ P ′

P ‖ Q
a

−→ P ′ ‖ Q

Q
a

−→ Q ′

P ‖ Q
a

−→ P ‖ Q ′
(a ∈ Σ) (3.10)

Synchronisation of standard processes for terminal events is defined as follows:

P
ω

−→ 0 ∧ Q
ω
′

−→ 0

P ‖ Q
ω&ω′

−−−→ 0
(ω, ω′ ∈ Ω) (3.11)

Although the transaction block is a standard process, its transition rules need a descrip-

tion of the compensable process. Hence the transition rules are presented later with the

transition rules of compensable processes.
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3.2.2 Semantics of Compensable Processes

In this section, we present the semantics of the operators for compensable processes.

Recall that a compensable process consists of forward behaviour and compensation be-

haviour. The compensation can be executed to compensate for the forward action, if

necessary.

Choice

In a choice operation (PP 2 QQ), an observable event in either PP or QQ resolves the

choice as in standard processes:

PP
a

−→ PP ′

PP 2 QQ
a

−→ PP ′

QQ
a

−→ QQ ′

PP 2 QQ
a

−→ QQ ′
(a ∈ Σ) (3.12)

Terminal events (ω ∈ {X, ! , ?}) also resolve the choice but result in the corresponding

compensation:

PP
ω

−→ P

PP 2QQ
ω

−→ P

QQ
ω

−→ Q

PP 2QQ
ω

−→ Q
(ω ∈ Ω) (3.13)

Sequential Composition

The sequential operator is defined in such a way that the compensation of the first

process will accumulate after the compensation of the second one.

In a sequential composition of compensable processes (PP ; QQ), as for the standard

case, PP may perform non-terminal events while QQ is preserved:

PP
a

−→ PP ′

PP ; QQ
a

−→ PP ′ ; QQ
(a ∈ Σ) (3.14)

If PP throws or yields an interrupt, the whole process terminates leaving the compen-

sation from PP :

PP
ω

−→ P

PP ; QQ
ω

−→ P
(ω ∈ Ω ∧ ω 6= X) (3.15)

If PP terminates normally, QQ commences and the compensation from PP should be

maintained to be composed with the compensation from QQ at a later stage. In order

to deal with this, we introduce a new auxiliary construct to the language of the form

〈QQ ,P〉. The effect of 〈QQ ,P〉 is to execute the forward behaviour of QQ and then
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compose the compensation from QQ with P . This is used to define the transfer of

control in a sequential composition:

PP
X
−→ P ∧ QQ

a
−→ QQ ′

PP ; QQ
a

−→ 〈QQ ′,P〉
(a ∈ Σ) (3.16)

However, if QQ can execute a terminal event after PP terminates normally, then in-

stead of introducing the new auxiliary construct, the maintained compensations of both

processes are composed in reverse order:

PP
X
−→ P ∧ QQ

ω
−→ Q

PP ; QQ
ω

−→ Q ; P
(ω ∈ Ω) (3.17)

The process QQ in the construct 〈QQ ,P〉 can perform non-terminating events:

QQ
a

−→ QQ ′

〈QQ ,P〉
a

−→ 〈QQ ′,P〉
(a ∈ Σ) (3.18)

When QQ terminates then its compensation is composed in front of the existing com-

pensation, which ensures that the compensations are accumulated in reverse order to

their original sequential operation:

QQ
ω

−→ Q

〈QQ ,P〉
ω

−→ Q ; P
(ω ∈ Ω) (3.19)

Parallel Composition

Parallel processes interleave with each other for observable events:

PP
a

−→ PP ′

PP ‖ QQ
a

−→ PP ′ ‖ QQ

QQ
a

−→ QQ ′

PP ‖ QQ
a

−→ PP ‖ QQ ′
(a ∈ Σ) (3.20)

However, as the processes are compensable, when they synchronise over any terminal

events, the forward processes are terminated and the composition is defined in such a

way that the corresponding compensation processes will be accumulated in parallel:

PP
ω

−→ P ∧ QQ
ω
′

−→ Q

PP ‖ QQ
ω&ω′

−−−→ P ‖ Q
(ω, ω′ ∈ Ω) (3.21)

Compensation Pair

The compensation pair (P ÷ Q) is constructed from two standard processes. The first

one (P) is called the forward process which is executed during normal execution and
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the second one (Q) is called the compensation of the forward process which is stored

for future use upon successful completion of the forward behaviour. Interrupted forward

behaviour results in empty compensations. The rationale of this definition is that com-

pensation is intended to be used at a later stage to compensate a successfully completed

forward behaviour and not an interrupted behaviour.

If the forward process can perform a non-terminal event, then so can the pair:

P
a

−→ P ′

(P ÷ Q)
a

−→ (P ′ ÷ Q)
(a ∈ Σ) (3.22)

If the forward process terminates normally, then the pair terminates with Q as the

resulting compensation:

P
X
−→ 0

(P ÷ Q)
X
−→ Q

(3.23)

If the forward process terminates abnormally, then so does the pair, resulting in an

empty compensation process:

P
ω

−→ 0

(P ÷ Q)
ω

−→ SKIP
(ω 6= X) (3.24)

The definition of the compensation pair defined in the traces model of cCSP [27] has

a subtle difference to that presented here. An extra behaviour for the compensation

pair was included in the traces model definition which allows the compensation pair to

yield immediately with an empty compensation. This forces an automatic yield at the

beginning of the compensation pair. The same behaviour can be obtained using the

definition presented here by adding a yield sequentially followed by the forward process.

P ÷′ Q =̂ (YIELD ;P) ÷ Q

YIELD can either yield or terminate with a X. When it yields, the above definition gives

us the extra behaviour of yield with an empty compensation and when it terminates by

a X we get the same behaviour presented here.

Compensable Basic Processes

Compensable basic processes are made from standard basic processes by pairing them

with SKIP , which does nothing. We do not include the operational semantics of these



Chapter 3 Operational Semantics for cCSP 37

basic processes here as the semantics can be derived easily by using the pairing operator.

SKIPP = SKIP ÷ SKIP

THROWW = THROW ÷ SKIP (3.25)

YIELDD = YIELD ÷ SKIP

The operators on compensable processes are defined in such a way that ensures that

the correct compensations will accumulate in the case of an interruption. For example,

assume that A and B are atomic and non-yielding, and A′ and B ′ are the attached

respective compensations. The following derivation shows how compensation is accu-

mulated:

A ÷ A′ ; B ÷ B ′

A
−→ SKIP ÷ A′ ; B ÷ B ′ (rule 3.1)

X
−→ 〈B ÷ B ′,A′〉

B
−→ 〈SKIP ÷ B ′,A′〉 (rule 3.16)
X
−→ B ′ ; A′ (rule 3.19)

Transaction Block

Although a transaction block is a standard process rather than a compensable process,

we describe its semantics in this section since it requires an understanding of the se-

mantics of compensable processes. A transaction block is formed from a compensable

process PP by enclosing PP in a transaction block [PP ]. A transaction block converts

a compensable process into a standard process.

An observable event changes the state of the process inside the block:

PP
a

−→ PP ′

[PP ]
a

−→ [PP ′]
(a ∈ Σ) (3.26)

Successful completion of the forward behaviour of the compensable process of a trans-

action block represents successful completion of the whole block and compensation is no

longer needed and it is discarded:

PP
X
−→ P

[PP ]
X
−→ 0

(3.27)

When the forward behaviour throws an exception, then the resulting compensation is
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run:

PP
!

−→ P ∧ P
α

−→ P ′

[PP ]
α

−→ P ′
(α ∈ Σ ∪ Ω) (3.28)

Since a transaction block is a standard process, P ′ in this rule is not a compensation

that is stored for later execution, rather it describes the behaviour of [PP ] after the

execution of event α.

Note that there is no rule for a yield transition (?) in a transaction block. This is

because a transaction block does not yield to interrupts from the outside. Yields by a

sub-process of PP will synchronise with interrupts from some other sub-process resulting

in the ! event making yields within PP non-observable.

The following derivation shows how the transition rules can be applied to a transaction

block:

[A ÷ A′ ; THROWW ]

A
−→ [SKIP ÷ A′ ; THROWW ] (Rule 3.26)

SKIP ÷ A′ ;THROWW

!
−→ SKIP ;A′ (Rule 3.23, 3.4)

SKIP ;A′

A′

−→ SKIP (Rule 3.5)

SKIP

X
−→ 0 (Rule 3.1)

3.2.3 Speculative Choice

Apart from the operators, for which we have defined operational semantics in this section,

the trace semantics for speculative choice is defined in [27]. The speculative choice

of processes PP and QQ is written as PP ⊠ QQ . In speculative choice, the forward

behaviour of PP and QQ run in parallel until one of them terminates successfully. If

one process terminates successfully, the compensation from the other process is to be run

and preserve the compensation of the successfully completed process. Here, we outline

the operational semantics for the speculative choice operator.

In the speculative choice PP⊠QQ , either process can make a transition by an observable
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(normal) event, similar to processes in a parallel composition:

PP
a

−→ PP ′

PP ⊠ QQ
a

−→ PP ′ ⊠ QQ
(a ∈ Σ)

QQ
a

−→ QQ ′

PP ⊠ QQ
a

−→ PP ⊠ QQ ′
(a ∈ Σ)

When one process terminates successfully, the compensation of the other process is to

be run preserving the compensation of the successfully terminating process:

PP
X
−→ P ∧ QQ

ω
−→ Q

PP ⊠ QQ
X
−→ 〈Q ,P〉

(ω 6= X)
QQ

X
−→ Q ∧ PP

ω
−→ P

PP ⊠ QQ
X
−→ 〈P ,Q〉

(ω 6= X)

We introduce an auxiliary construct (〈Q ,P〉, or 〈P ,Q〉) here in order to represent the

scenario when one process terminates with a X, and the other process terminates im-

mediately and its compensation is to be run. For example, in the above rule, when the

process PP terminates successfully then the process QQ terminates and its compensa-

tion Q is to be run whereas the compensation P from PP is to be preserved for future

reference. We represent this scenario by using the construct 〈Q ,P〉.

The auxiliary construct can make a transition by an observable event:

P
a

−→ P ′

〈P ,Q〉
a

−→ 〈P ′,Q〉
(a ∈ Σ)

When the auxiliary construct makes a terminal transition, the compensation of the

successfully terminated process is preserved:

P
ω

−→ 0

〈P ,Q〉
ω

−→ Q
(ω ∈ Ω)

When both processes, PP and QQ terminate successfully, the compensation from one

of the processes will run and the compensation from the other process will be preserved.

This arises a choice between the auxiliary constructs, as shown below:

PP
X
−→ P ∧ QQ

X
−→ Q

PP ⊠ QQ
X
−→ 〈Q ,P〉 2 〈P ,Q〉

When neither process terminates successfully, compensations from both processes run

in parallel and no compensation will be preserved:

PP
ω

−→ P ∧ QQ
ω
′

−→ Q

PP ⊠ QQ
ω &ω′

−→ 〈(P ‖ Q),SKIP〉
(ω, ω 6= X)

In the rest of the thesis, we take a subset of the original cCSP operators, leaving specula-

tive choice operator for our future work. The experiment for speculative choice requires

a substantial time and having successfully completed experiment for other operators, we
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will be in a better position to carry our experiment with speculative choice.

3.3 Prolog Implementation

In this section we outline a Prolog implementation of the operational semantics presented

in Section 3.2. We encode the operational rules as Prolog clauses and we use a tool which

can animate this encoded semantics. XTL [8] is a model checker which allows a wide

range of system specification. It accepts specifications written by using high level Prolog

predicates describing the transitions between different states of the system. The XTL

animator supports step by step animation showing transitions between different states

of the specification and also supports backtracking.

The input language for XTL is very simple. The predicate that is used in XTL is:

trans/3

trans(A,S1,S2): A transition from state S1 to state S2 by the action A.

Consider the following sample specification:

trans(a1,p,q). trans(a2,q,p). trans(a3,r,r).

The above line specifies that by the action a1, there is a transition from p to q, that

action a2 causes the reverse transition and action a3 causes r to r.

As the operational semantics of compensating CSP is described by using operational

rules, they are easily transferable to corresponding trans/3 predicates. We reproduce

some operational rules and their corresponding Prolog predicates. For example, consider

one of the rules for sequential composition of standard processes:

P
a

−→ P ′

P ;Q
a

−→ P ′ ;Q
(a ∈ Σ)

The Prolog representation of this is:

trans(seq(P,Q),A,seq(P1,Q)):-

NOT(terminal(A)),

trans(P,A,P1).

If we consider a transition by a terminal event then

P
ω

−→ 0

P ;Q
ω

−→ 0
(ω 6= X)

the above rule can be represented as follows:
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trans(seq(P,Q),A,0):-

terminal(A), NOT(A = tick),

trans(P,A,0).

Compensable processes are encoded in a similar way with the compensable operators

being differentiated from the standard ones. For example, consider the following rule

for compensable sequential composition:

PP
a

−→ PP ′

PP ;QQ
a

−→ PP ′ ;QQ
(a ∈ Σ)

This is represented in Prolog as:

trans(cseq(PP,QQ),A,cseq(PP1,QQ)):-

NOT(terminal(A)),

trans(PP,A,PP1).

The XTL package provides us with an experimental animator for cCSP specifications.

The tool has the facility to observe step by step animation of the specifications. It

allows to see how the rules of the operational semantics have derived each action of a

compound process from the action of its parts. The animation helps to check the syntax

of the specifications and at the same time gives a flavour of step by step execution of

the specifications.

By the time when we have used XTL, it was an ongoing research project and we did not

carry any extensive experiment with it by using cCSP. Although some experiments have

been carried out in XTL by using StAC, which are shown in [8], where some case studies

were modelled in XTL and some simple CTL [33, 34] properties were verified by using

the tool, we have used the tool only as an animator for the transition rules of cCSP. The

encoding of the transition rules was simple. The animation is the representation of the

encoded rules. The animation shows whether the animated transitions are according

to our expectation. If there is any transition that is not as expected then it is either

because of wrong encoding of the transition rules or there is an error in the transition

rule. In our simple experiments, we have found both types of errors where there were

mistakes in the transition rules as well as there were errors in the encoding. We find

that it is a very useful tool to help to understand the operational semantics and can be

used as a supporting tool to teaching cCSP. The encodings of all the operators in XTL

are available in Appendix A.
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3.4 Related Work

The semantics of StAC is given by defining the operational semantics of a variant of

StAC, called StACi (StAC with indexes). Several simultaneous compensations can be

associated with a process in StACi . A process decides which task to attach to the com-

pensation activities. Indexes are used to distinguish different compensation tasks. The

operators that deal with compensations are indexed by the compensation task index

to which they apply. The compensation information of a process is maintained by a

compensation function that maps each compensation task index to a compensation pro-

cess. The operational semantics is defined by using transitions between configurations.

A configuration is defined as a tuple:

(P , C , σ) ∈ Process × (I → Process) × Σ

where C is a compensation function for the process P that returns the compensation

process C (i) for each compensation index i . Data states are included in StAC and

represented by Σ. A labelled transition is defined as follows:

(P , C , σ)
A

−→ (P ′, C ′, σ′)

The above transition denotes that activity A may cause a configuration transition from

(P , C , σ) to (P ′, C ′, σ′). Transition rules are defined for the primitives: Reverse and

Accept , where the reverse operator causes the compensation task to be executed and

the accept operator clears the compensation task. Both operators can be indexed. The

semantics of compensation is defined by adding an index to each compensation operator

in a term corresponding to the scope in which it appears. Unlike cCSP, transition rules

are defined for silent transitions, labelled by τ , where the operation is not visible to the

external environment. Consider the following rule for a compensation pair, where the

compensation Q is added to the compensation function C when the primary process of

the pair terminates successfully:

(skip ÷i Q , C , σ)
τ

−→ (skip,C [i := (Q ; C (i)) ], σ)

Here the compensation task i is set to Q in sequence with the previous compensation,

denoted by C [i := (Q ; C (i)) ].

Comparing to cCSP, StAC provides a large number of operators. The operational se-

mantics are defined by using the indexed version StACi , which is somewhat complicated.

cCSP provides a neater operational semantics definition than StAC.

Bruni et al [21] have developed an operational semantics for a language with similar

operators to cCSP, including compensation pairs and transaction blocks (or sagas as

they call them). As in cCSP, and unlike StAC, the invocation of compensation in a
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saga is automatic depending on failure or success, which leads to a neater operational

semantics. However, unlike cCSP, the operational semantics in [21] is defined by using

big-step semantics. Big-step semantics describe how the overall results of the execution

are obtained. The big step semantics are closer to the trace semantics while our small-

step semantics describes how compensating processes should be executed. A comparison

of the operators of cCSP and the language described in [21] may be found in [19].

3.5 Conclusion

This chapter illustrates the operational semantics of cCSP by using labelled transition

systems. Semantics are given for both standard as well as compensable processes. One

of the advantages of the availability of an operational semantics of a language is the

increasing understanding and the possibility of formal reasoning that this brings. Oper-

ational semantics describes the individual steps of the computation that take place and

it is very close to the actual implementation. A Prolog implementation of the semantics

is also defined in XTL showing animation of the semantics. It is our future plan to

develop tool support for animating and model checking cCSP specifications. Details are

placed in Future Work section Section 8.2.



Chapter 4

Relating Semantic Models

4.1 Introduction

Operational and denotational semantics are two well-known methods of assigning mean-

ing to programming languages and both semantics play a significant role for a full de-

scription of the language. Since both semantics have valuable applications, we want to

use them both. The key question is- “how they are related”?

Different semantic models are not in competition, but are mutually complementary and

serve different purposes. Regarding defining semantic models, Mosses [82] advocated

that,

a) Two or more complementary semantic descriptions should be provided for each lan-

guage, in different styles and

b) Prove that the semantic descriptions are equivalent.

Having defined both operational and denotational semantic models for cCSP [27, 29],

we have already fulfilled the first requirement. In this chapter, we are interested in the

second point to define and prove a relationship between the semantic models.

4.1.1 Chapter Contribution

This chapter draws the correspondence of two different semantic representations of com-

pensating CSP. We define and prove a formal relationship between the two semantic

models of cCSP. The correspondence is derived by applying a systematic approach.

Traces are extracted from the transition rules and by structural induction over the pro-

cess terms, it is shown that the derived traces correspond to the originally defined traces.

The correspondence proofs are carried out for both standard and compensable processes.

44
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Showing the correspondence establishes a strong foundation for the language. Proving

the correspondence means that any of the presentation can be accepted as a primary

definition of the meaning of the language and each definition can be used correctly at

different times, and for different purposes.

4.1.2 Chapter Structure

The remainder of the chapter is organised as follows. In Section 4.2, first we describe

how to derive traces from the operational rules and then we define the theorems that

show the correspondence between the two semantic models. In the following subsections,

we define and prove lemmas for each operator that support the proof of the theorems.

For each operator, lemmas are defined for both standard and compensable processes. In

Section 4.3 we compare our work with some similar research work. Finally, in Section 4.4

we draw the conclusion of the chapter.

4.2 Semantic Correspondence

In this section, we show how we define and prove a formal relationship between the

two semantic models of cCSP. We have adopted a systematic approach to derive the

correspondence between the semantic models. The correspondence is derived in two

steps:

– Traces are extracted from the operational rules, and

– The correspondence is derived between the extracted traces with the original semantic

definition.

The steps that we follow are depicted in Figure 4.1.

The operational semantics leads to lifted transition relations labelled by sequences of

events. This is defined recursively. For a standard process P :

P
〈ω〉
−→ Q = P

ω
−→ Q

P
〈a〉t
−→ Q = ∃P ′ · P

a
−→ P ′ ∧ P ′ t

−→ Q

Then for a standard process P , we define the derived trace DT (P) as follows:

Definition 4.1 (Derived trace: standard process). For a trace t

t ∈ DT (P) = P
t

−→ 0
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Figure 4.1: Steps to establish relationship between semantic models

The trace t consists of a sequence of events (Σ∗), followed by a terminal event ω where,

ω ∈ {X, !, ?}.

Compensable processes have both forward and compensation behaviour. A compensable

process is defined as a pair of traces of the form: (p〈ω〉, p′〈ω′〉), where p〈ω〉 is the forward

behaviour and p′〈ω′〉 is the compensation. Hence, it is required to extract traces from

both forward and compensation behaviour. The forward behaviour of a compensable

process PP is defined as follows:

PP
t

−→ R (t ends with ω)

where t is the trace of the forward behaviour. Note that the trace t ends with a terminal

event ω. R is the attached compensation. The behaviour of compensation is similar to

standard processes and by reusing that we get the following definition:

PP
(t ,t ′)
−→ 0 = ∃R · PP

t
−→ R ∧ R

t ′
−→ 0

where t ′ is the trace of the compensation. By using this definition we get the trace

derivation rule for a compensable process PP , which is defined as follows:

Definition 4.2 (Derived trace: compensable process). For traces t and t ′

(t , t ′) ∈ DT (PP) = PP
(t ,t ′)
−→ 0
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Consider the trace semantics of P and PP , defined in Section 2.6.1 as T (P) and T (PP)

respectively. The correspondence between the semantic models is then defined by the

following theorem:

Theorem 4.3. For any standard process term P, where P 6= 0

DT (P) = T (P)

For any compensable process terms PP, where PP 6= 0 and does not contain the term

〈PP ,P〉,

DT (PP) = T (PP)

The auxiliary construct 〈PP ,P〉 was introduced in Chapter 3 in order to define the

operational semantics for compensable sequential composition. Theorem 4.3 is proved

by using mutual structural induction. We outline the structural cases for the proof of

the theorem in the following sections.

In order to derive the correspondence, traces are extracted for each term of the language,

and its correspondence is shown with the corresponding traces in the trace semantics.

Assume P and Q are standard process terms, then for all the operators, we prove that

t ∈ DT (P ⊗Q) = t ∈ T (P ⊗ Q) (4.1)

For each such operator ⊗, the proof is performed by induction over traces. In the proof

we assume that,

DT (P) = T (P)

DT (Q) = T (Q)

Like standard processes, we derive traces for all the operators for compensable processes

and show that

(t , t ′) ∈ DT (PP ⊗QQ) = (t , t ′) ∈ T (PP ⊗ QQ) (4.2)

In order to carry on proving the correspondence, we prove the following theorem con-

cerning the evolution of a standard process term to a null process.

Theorem 4.4. For any process term P, where P 6= 0, there exists a trace t of P. That

is:

∀P · P 6= 0 ⇒ ∃ t · P
t

−→ 0
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A similar theorem is also defined for compensable process terms.

Theorem 4.5. For any process term PP, where PP 6= 0, there exists a forward trace t

of PP. That is:

∀PP · PP 6= 0 ⇒ ∃P , t · PP
t

−→ P

Both theorems 4.4 and 4.5 can be proved by using structural induction over process

terms.

The correspondence proofs for the process terms are shown in the following sections.

4.2.1 Sequential Composition

In this section, we demonstrate the correspondence between the semantic models for

sequential composition of both standard and compensable processes.

Standard Processes

For standard processes P and Q , the correspondence between the semantic models are

derived by showing that

t ∈ DT (P ;Q) = t ∈ T (P ;Q)

By Definition 4.1, the derived traces for the sequential composition are as follows:

t ∈ DT (P ;Q) = (P ;Q)
t

−→ 0

We also expand the definition of trace semantic of the sequential composition as follows:

t ∈ T (P ;Q)

= ∃ p, q · t = (p ; q) ∧ p ∈ T (P) ∧ q ∈ T (Q) [Trace definition]

= ∃ p, q · t = (p ; q) ∧ p ∈ DT (P) ∧ q ∈ DT (Q) [Induction assumption]

= ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0 [Derived trace definition]

Finally, from the above definitions of traces, the following lemma is derived to prove the

correspondence between them:

Lemma 4.6. (P ;Q)
t

−→ 0 = ∃ p, q · t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

The lemma is proved by using induction over traces. The induction is based on the

following two cases:
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– basic step: the lemma is proved for trace 〈ω〉.

– inductive step: the lemma is proved for trace a〈t〉 assuming it true for trace t .

In order to support the inductive proof of the lemma, we have derived the following

equations from the transition rules of sequential composition. The equations are derived

based on the events by which the transition rules are defined. From rules 3.5 and 3.6 in

page 32, we derive the following equation:

(P ; Q)
ω

−→ 0 = P
X
−→ 0 ∧ Q

ω
−→ 0

∨ P
ω

−→ 0 ∧ ω 6= X (4.3)

Similarly the following equation is derived from the rules 3.4 and 3.5 in page 32:

(P ; Q)
a

−→ R = ∃P ′ · P
a

−→ P ′ ∧ R = (P ′ ; Q)

∨ P
X
−→ 0 ∧ Q

a
−→ R (4.4)

Equation 4.3 is used in the base case of the inductive proof and equation 4.4 is used in

inductive case of the proof.

Proof:

Basic Step: Case - 〈ω〉

(P ;Q)
〈ω〉
−→ 0

= (P ;Q)
ω

−→ 0

= “From derived Equation 4.3”

P
X
−→ 0 ∧ Q

ω
−→ 0 (4.5)

∨ P
ω

−→ 0 ∧ ω 6= X (4.6)

From Equation 4.5

P
X
−→ 0 ∧ Q

ω
−→ 0

= ∃ p, q · p = 〈X〉 ∧ q = 〈ω〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: (p ; q) = (〈X〉 ; 〈ω〉) = 〈ω〉”

∃ p, q · 〈ω〉 = (p ; q) ∧ p = 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0
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From Equation 4.6

P
ω

−→ 0 ∧ ω 6= X

= “By using Theorem 4.4”

∃ p · p = 〈ω〉 ∧ ω 6= X ∧ P
p

−→ 0 ∧ ∃ q · Q
q

−→ 0

= “By using trace rule: 〈ω〉 ; q = 〈ω〉 where ω 6= X”

∃ p, q · p = 〈ω〉 ∧ ω 6= X ∧ 〈ω〉 = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈ω〉 = (p ; q) ∧ p 6= 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Therefore, for 〈ω〉, combining the above two derivations:

∃ p, q · 〈ω〉 = (p ; q) ∧ p = 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q · 〈ω〉 = (p ; q) ∧ p 6= 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈ω〉 = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Inductive Step: Case - 〈a〉t

(P ;Q)
〈a〉t
−→ 0

= ∃R · (P ; Q)
a

−→ R ∧ R
t

−→ 0

= “From derived Equation 4.4”

∃P ′ · P
a

−→ P ′ ∧ (P ′ ; Q)
t

−→ 0 (4.7)

∨ ∃R · P
X
−→ 0 ∧ Q

a
−→ R ∧ R

t
−→ 0 (4.8)

From Equation 4.7

∃P ′ · P
a

−→ P ′ ∧ (P ′ ; Q)
t

−→ 0

= “Inductive hypothesis”

∃P ′ · P
a

−→ P ′ ∧ ∃ p′, q · t = (p′ ; q) ∧ P ′ p′

−→ 0 ∧ Q
q

−→ 0

= “Removing P ′ ”

∃ p′, q · t = (p′ ; q) ∧ P
〈a〉p′

−→ 0 ∧ Q
q

−→ 0

= “Using trace rule 〈a〉t = 〈a〉(p′ ; q) = (〈a〉p′) ; q ”

∃ p′, q · 〈a〉t = (〈a〉p′ ; q) ∧ P
〈a〉p′

−→ 0 ∧ Q
q

−→ 0

= ∃ p, p′, q · p = 〈a〉p′ ∧ 〈a〉t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0
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From Equation 4.8

∃R · P
X
−→ 0 ∧ Q

a
−→ R ∧ R

t
−→ 0

= P
X
−→ 0 ∧ Q

〈a〉t
−→ 0

= ∃ p, q · p = 〈X〉 ∧ q = 〈a〉t ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: 〈X〉 ; q = q”

∃ p, q · 〈a〉t = (p ; q) ∧ p = 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Therefore, for 〈a〉t , from (4.7) ∨ (4.8)

∃ p, p′, q · p = 〈a〉p′ ∧ 〈a〉t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q · p = 〈X〉 ∧ 〈a〉t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “Combining existential quantifications”

∃ p, p′, q · (p = 〈X〉 ∨ p = 〈a〉p′) ∧ 〈a〉t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “p ; q = 〈a〉t ⇒ p 6= 〈!〉 ∧ p 6= 〈?〉”

∃ p, q · 〈a〉t = (p ; q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Compensable Processes

For sequential composition of compensable processes PP and QQ , the correspondence

between the semantic models is given by,

(t , t ′) ∈ DT (PP ; QQ) = (t , t ′) ∈ T (PP ; QQ) (4.9)

For a compensable process, it is required to derive traces from both forward and compen-

sation behaviour. The behaviour of compensation is similar to that of standard process

and the proofs from standard processes can be reused. Let (t , t ′) ∈ DT (PP ; QQ).

According to the definition of derived traces we can define,

(t , t ′) ∈ DT (PP ; QQ)

= (PP ; QQ)
(t ,t ′)
−→ 0

= ∃R · (PP ; QQ)
t

−→ R ∧ R
t ′

−→ 0

For compensable processes, we only define the lifted forward behaviour and reuse the

proof from the standard processes for the compensations. The sequential composition

of compensable processes is defined in such a way that when the first process terminates

successfully, the next process starts to execute and after its termination the compensa-

tions from both processes are accumulated in reverse order. However, if the first process

terminates unsuccessfully, then the next process will not execute and only the compen-
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sations of the first process will be stored. The following lemma is defined to derive the

lifted forward traces from compensable sequential composition:

Lemma 4.7. (PP ; QQ)
t

−→ R = ∃P ,Q , p, q · t = (p ; q) ∧ PP
p

−→ P ∧

QQ
q

−→ Q ∧ R = COND (last(p) = X, (Q ; P), P)

Here COND is a conditional expression and it is defined as follows:

COND(true, e1, e2) = e1

COND(false, e1, e2) = e2

We use an operator on traces: last(p), which returns the terminal event of the trace

p. The lemma considers the cases where the first process PP terminates with or with-

out 〈X〉. The conditional expression COND evaluates the accumulated compensations.

When the first process of the composition terminates successfully (last(p) = X) COND

returns the accumulated compensation from both the processes (P ,Q). In the other case

where the first process terminates with an interrupt (by throw or yield), COND returns

only the compensation from the first process (P) as in this case the second process QQ

will not execute.

In order to support the inductive proof of Lemma 4.7, equations are derived from op-

erational rules. The following equation is derived from rules 3.15 and 3.17 in page 34:

derive

(PP ;QQ)
ω

−→ R = PP
X
−→ P ∧ QQ

ω
−→ Q ∧ R = (Q ;P)

∨ PP
ω

−→ P ∧ ω 6= X ∧ R = P (4.10)

The following equation is derived from rules 3.14 and 3.16:

(PP ;QQ)
a

−→ RR = PP
a

−→ PP ′ ∧ RR = (PP ′ ;QQ)

∨ PP
X
−→ P ∧ QQ

a
−→ QQ ′ ∧ RR = 〈QQ ′,P〉 (4.11)

Supported by the above two equations, we prove the lemma by induction. Detailed

proof steps are placed in Appendix B. However, in the inductive step of the proof, the

auxiliary construct 〈QQ ,P〉 is involved:

PP ;QQ
〈a〉t
−→ R = ∃RR · PP ;QQ

a
−→ RR ∧ RR

t
−→ R

= “From equation 4.11”

∃PP ′ · PP
a

−→ PP ′ ∧ PP ′ ;QQ
t

−→ R

∨ ∃P ,QQ ′ · PP
X
−→ P ∧ QQ

a
−→ QQ ′ ∧ 〈QQ ′,P〉

t
−→ R

(4.12)
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To deal with this, we need another lemma which will support the removal of the auxiliary

construct in equation 4.12. We know that the auxiliary construct is introduced in the

situation where the forward behaviour of the first process of the sequential composition

is terminated with X and its compensation is stored and the second process of the

composition has started. The lemma is defined as follows:

Lemma 4.8. 〈QQ ,P〉
t

−→ R = ∃Q · QQ
t

−→ Q ∧ R = (Q ;P)

Similarly to other lemmas, this lemma is also proved by induction over the traces.

Proof:

Basic step: t = 〈ω〉

〈QQ ,P〉
〈ω〉
−→ R

= 〈QQ ,P〉
ω

−→ R

= “From operational rule 3.19 ”

∃Q · QQ
ω

−→ Q ∧ R = (Q ;P)

Inductive step: t = 〈a〉t

〈QQ ,P〉
〈a〉t
−→ R

= ∃RR · 〈QQ ,P〉
a

−→ RR ∧ RR
t

−→ R

= “From operational rule 3.18 ”

∃QQ ′ · QQ
a

−→ QQ ′ ∧ 〈QQ ′,P〉
t

−→ R

= “Inductive hypothesis”

∃QQ ′ · QQ
a

−→ QQ ′ ∧ ∃Q · QQ ′ t
−→ Q ∧ R = (Q ;P)

= “Removing QQ ′ ”

∃Q · QQ
〈a〉t
−→ Q ∧ R = (Q ;P)

Now it is possible to continue the proof of the lemma 4.7. Completing the proof derives

the traces from the forward behaviour of the composition. By reusing the proofs from

the standard processes for compensation, now prove the initially defined equation 4.9,

which is:

(t , t ′) ∈ DT (PP ; QQ) = (t , t ′) ∈ T (PP ; QQ)
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Proof of Equation 4.9:

(t , t ′) ∈ DT (PP ; QQ)

= (PP ; QQ)
(t ,t ′)
−→ 0

= ∃R · (PP ;QQ)
t

−→ R ∧ R
t ′

−→ 0

= “By using Lemma 4.7”

∃P ,Q ,R, p, q · t = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P), P) ∧ R
t ′

−→ 0

We now consider both the cases where p ends with and without X and we separate these

two conditions. The sequential operator is defined in such a way that when last(p) 6= X,

the traces of QQ are discarded. We continue the proof where p is replaced by p〈X〉

(R = Q ; P) and by p〈ω〉 (R = P).

= ∃P ,Q , p, q · t = (p〈X〉 ; q) ∧ PP
p〈X〉
−→ P ∧ QQ

q
−→ Q ∧ (Q ; P)

t ′
−→ 0

∨ ∃P , p · t = p〈ω〉 ∧ ω 6= X ∧ PP
t

−→ P ∧ P
t ′

−→ 0

= “By using Lemma 4.6”

∃P ,Q , p, q · (t = (p〈X〉 ; q) ∧ PP
p〈X〉
−→ P ∧ QQ

q
−→ Q

∧ ∃ p′, q ′ · t ′ = (q ′ ; p′) ∧ Q
q ′

−→ 0 ∧ P
p′

−→ 0)

∨ ∃P , p, p′ · t = p〈ω〉 ∧ ω 6= X ∧ t ′ = p′ ∧ PP
p〈ω〉
−→ P ∧ P

p′

−→ 0

= “Removing P ,Q”

∃ p, p′, q , q ′ · t = (p〈X〉 ; q) ∧ t ′ = (q ′ ; p′) ∧ PP
p〈X〉,p′

−→ 0 ∧ QQ
q ,q ′

−→ 0

∨ ∃ p, p′ · t = p〈ω〉 ∧ t ′ = p′ ∧ PP
p〈ω〉,p′

−−−−→ 0 ∧ ω 6= X

= “By definition of derived traces”

∃ p, p′, q , q ′ · t = (p〈X〉 ; q) ∧ t ′ = (q ′ ; p′)

∧ (p〈X〉, p′) ∈ DT (PP) ∧ (q , q ′) ∈ DT (QQ)

∨ ∃ p, p′ · t = p〈ω〉 ∧ ω 6= X ∧ t ′ = p′ ∧ (p〈ω〉, p′) ∈ DT (PP)

= “Structural induction assumption”

∃ p, p′, q , q ′ · t = (p〈X〉 ; q) ∧ t ′ = (q ′ ; p′)

∧ (p〈X〉, p′) ∈ T (PP) ∧ (q , q ′) ∈ T (QQ)

∨ ∃ p, p′ · t = p〈ω〉 ∧ ω 6= X ∧ t ′ = p′ ∧ (p〈ω〉, p′) ∈ T (PP)

We have (t , t ′) = ((p〈X〉 ; q), (q ′ ; p′)) or (t , t ′) = (p〈ω〉, p′)

Using trace rules we can write that:

(t , t ′) = (p〈X〉 ; q), (q ′ ; p′) = (p〈X〉, p′) ; (q , q ′)

Similarly,
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(t , t ′) = (p〈ω〉, p′) = (p〈ω〉, p′) ; (q , q ′) where ω 6= X

= “By using the definition of sequential composition over traces”

∃ p, p′, q , q ′ · (t , t ′) = (p, p′) ; (q , q ′) ∧ (p, p′) ∈ T (PP) ∧ (q , q ′) ∈ T (QQ)

= “By trace rule”

(t , t ′) ∈ T (PP ; QQ)

4.2.2 Interrupt Handler

For standard processes P and Q , and following the equation 4.1, for the interrupt handler

operator we prove that,

t ∈ DT (P � Q) = t ∈ T (P � Q) (4.13)

In order to prove the above equation, we extend the definition of both traces and derived

traces and define the following lemma:

Lemma 4.9. (P � Q)
t

−→ 0 = ∃ p, q · t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

We derive the following supporting equations in order to support the inductive proof of

the above lemma:

(P � Q)
ω

−→ 0 = P
!

−→ 0 ∧ Q
ω

−→ 0

∨ P
ω

−→ 0 ∧ ω 6= ! (4.14)

(P � Q)
a

−→ R = ∃P ′ · P
a

−→ P ′ ∧ R = (P ′
� Q)

∨ P
!

−→ 0 ∧ Q
a

−→ R (4.15)

We know that the interrupt handler operator is dual to the sequential composition

operator. In sequential composition, control passes from one process to another by

a X, whereas in interrupt handler, control passes from one process to another by an

interrupt !. Hence, the inductive proof steps of the above lemma is similar to that of

standard sequential composition. The proof steps are omitted from here and placed in

the Appendix B.

4.2.3 Parallel Composition

The parallel composition of two traces is defined as the interleaving of the observable

events of the traces, followed by the synchronisation of their terminal events. For exam-

ple, consider A and B are asynchronous events. The the execution of A ‖ B is either A

followed by B or vice versa. For traces p and q ,(not including terminal events) we write
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p ||| q to denote the set of interleaving of p and q . The interleaving of these two traces

has the following definition:

〈〉 ∈ (p ||| q) = p = 〈〉 ∧ q = 〈〉

〈a〉t ∈ (p ||| q) = ∃ p′ · p = 〈a〉p′ ∧ t ∈ (p′ ||| q)

∨ ∃ q ′ · q = 〈a〉q ′ ∧ t ∈ (p ||| q ′)

Standard Processes

Following equation 4.1, for standard processes P and Q , in this section we prove that,

t ∈ DT (P ‖ Q) = t ∈ T (P ‖ Q) (4.16)

The equation is proved by using structural induction. In order to prove the equation,

we follow the same approach as for sequential composition and extend the definitions of

trace as well as derived traces and define the following lemma:

Lemma 4.10. (P ‖ Q)
t

−→ 0 = ∃ p, q · t ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

The lemma is proved by applying induction over traces, where traces 〈ω〉 and 〈a〉t are

considered as basic and inductive cases respectively. To support the inductive proof of

the lemma, we derive the following two equations from the transition rules 3.10 and 3.11

(page 33) of the operational semantics of parallel composition. As mentioned earlier,

the equations are categorised according to the events by which the transition rules are

defined.

P ‖ Q
ω

−→ 0 = P
ω1
−→ 0 ∧ Q

ω2
−→ 0 ∧ ω = ω1& ω2 (4.17)

P ‖ Q
a

−→ R = ∃P ′ · P
a

−→ P ′ ∧ R = (P ′ ‖ Q)

∨ ∃Q ′ · Q
a

−→ Q ′ ∧ R = (P ‖ Q ′) (4.18)

By using the above two equations, one for the base case and the other for the inductive

case, we can prove the lemma. The proof of the basic step is simple and placed in

Appendix B. The inductive step of the proof is shown here.
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Inductive step: Case - 〈a〉t

(P ‖ Q)
〈a〉t
−→ 0

= ∃R · (P ‖ Q)
〈a〉
−→ R ∧ R

t
−→ 0

= ∃R · (P ‖ Q)
a

−→ R ∧ R
t

−→ 0

= “By using derived equation 4.18”

∃P ′ · P
a

−→ P ′ ∧ (P ′ ‖ Q)
t

−→ 0

∨ ∃Q ′ · Q
a

−→ Q ′ ∧ (P ‖ Q ′)
t

−→ 0

= “Inductive hypothesis”

∃ P ′ · P
a

−→ P ′ ∧ ∃ p′, q · t ∈ (p′ ‖ q) ∧ P ′ p′

−→ 0 ∧ Q
q

−→ 0

∨ ∃ Q ′ · Q
a

−→ Q ′ ∧ ∃ p, q ′ · t ∈ (p ‖ q ′) ∧ P
p

−→ 0 ∧ Q ′ q ′

−→ 0

= “Removing P ′ and Q ′ ”

∃ p′, q · t ∈ (p′ ‖ q) ∧ P
〈a〉p′

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q ′ · t ∈ (p ‖ q ′) ∧ P
p

−→ 0 ∧ Q
〈a〉q ′

−→ 0

= ∃ p, p′, q · p = 〈a〉p′ ∧ t ∈ (p′ ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q , q ′ · q = 〈a〉q ′ ∧ t ∈ (p ‖ q ′) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: t ∈ (p′ ‖ q) ⇒ 〈a〉t ∈ (〈a〉p′ ‖ q)

Similarly, t ∈ (p ‖ q ′) ⇒ 〈a〉t ∈ (〈a〉p ‖ q ′)”

∃ p, p′, q · p = 〈a〉p′ ∧ 〈a〉t ∈ (〈a〉p′ ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q , q ′ · q = 〈a〉q ′ ∧ 〈a〉t ∈ (p ‖ 〈a〉q ′) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By the definition of traces”

∃ p, q · 〈a〉t ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Compensable Process

For compensable processes PP and QQ , we prove the following equation for parallel

composition:

(t , t ′) ∈ DT (PP ‖ QQ) = (t , t ′) ∈ T (PP ‖ QQ) (4.19)

It has already been discussed that we only define the derived traces for the lifted forward

behaviour. The lemma for lifted forward traces is defined as follows:

Lemma 4.11. (PP ‖ QQ)
t

−→ R =

∃P ,Q , p, q · t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

The following equations are derived from the operational rules (3.20, 3.21) to support
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the inductive proof of the above lemma.

(PP ‖ QQ)
ω

−→ R = PP
ω1
−→ P1 ∧ QQ

ω2
−→ Q ∧ ω = ω1&ω2

∧ R = (P ‖ Q)
(4.20)

(PP ‖ QQ)
a

−→ RR = PP
a

−→ PP ′ ∧ R = (PP ′ ‖ QQ)

∨ QQ
a

−→ QQ ′ ∧ R = (PP ‖ QQ ′)
(4.21)

The inductive proof of Lemma 4.11 can be found in the Appendix B. While the lemma

is proved, it is now possible to prove the Equation 4.19. To prove the equation, we need

the derived traces for both forward and compensation behaviour. Lemma 4.11 gives the

lifted forward behaviour and we use Lemma 4.10 from standard processes to get the

derived behaviour for the compensation.

Proof of Equation 4.19:

(t , t ′) ∈ DT (PP ‖ QQ)

= (PP ‖ QQ)
(t ,t ′)
−→ 0

= ∃R · (PP ‖ QQ)
t

−→ R ∧ R
t ′

−→ 0

= “By Lemma 4.11”

∃P ,Q , p, q · t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ (P ‖ Q)
t ′

−→ 0

= “By Lemma 4.10”

∃P ,Q , p, q · (t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ ∃ p′, q ′ · t ′ ∈ (p′ ‖ q ′) ∧ P
p′

−→ 0 ∧ Q
q ′

−→ 0)

= “Remove P ,Q”

∃ p, p′, q , q ′ · t ∈ (p ‖ q) ∧ t ′ ∈ (p′ ‖ q ′) ∧ PP
p,p′

−→ 0 ∧ QQ
q ,q ′

−→ 0

= “Trace derivation rule”

∃ p, p′, q , q ′ · t ∈ (p ‖ q) ∧ t ′ ∈ (p′ ‖ q ′) ∧ (p, p′) ∈ DT (PP) ∧ (q , q ′) ∈ DT (QQ)

= “Induction assumption”

∃ p, p′, q , q ′ · t ∈ (p ‖ q) ∧ t ′ ∈ (p′ ‖ q ′) ∧ (p, p′) ∈ T (PP) ∧ (q , q ′) ∈ T (QQ)

= “By trace rules of parallel composition”

(t , t ′) ∈ T (PP ‖ QQ)

4.2.4 Compensation Pair

A compensation pair (P ÷ Q) consists of two standard processes: a forward behaviour

(P) and its compensation (Q). The semantics of compensation pair is defined in such

a way that the behaviour of the compensation Q is augmented only with successfully

completed forward behaviour of P , otherwise, the compensation is empty.
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In order to show the correspondence between the two semantic models, in this section

we show that,

(t , t ′) ∈ DT (P ÷ Q) = (t , t ′) ∈ T (P ÷ Q)

In the proof we assume that

DT (P) = T (P)

DT (Q) = T (Q)

The correspondence is proved by proving the following lemma, which is derived in the

same way as the other operators from the definition of derived traces and the originally

defined traces.

Lemma 4.12. (P ÷Q)
(t ,t ′)
−−−→ 0 = ∃ p, q · (t , t ′) = (p ÷ q) ∧ P

p
−→ 0 ∧ Q

q
−→ 0

We prove the lemma by using induction over traces. To support the inductive proof,

we derived the following equations from the transition rules (3.23, 3.24, and 3.22) of

operational semantics.

P ÷ Q
ω

−→ R = P
X
−→ 0 ∧ R = Q

∨ P
ω

−→ 0 ∧ ω 6= X ∧ R = SKIP
(4.22)

P ÷ Q
a

−→ RR = P
a

−→ P ′ ∧ RR = P ′ ÷ Q (4.23)

Note that, unlike the other lemmas defined earlier for compensable processes, the lemma

for the compensation pair is defined considering the traces of both forward and com-

pensation behaviour. Consider the trace rules for the compensation pair, defined as

follows:

when p = p′〈X〉 then (t , t ′) = (p′〈X〉 ÷ q) = (p, q)

when p = p′〈ω〉 ∧ ω 6= X then (t , t ′) = (p′〈ω〉 ÷ q) = (p, 〈X〉)

Supported by these trace rules and the above two equations, we prove the lemma for

the compensation pair. The complete proof steps are placed in the Appendix B.

4.2.5 Transaction Block

A transaction block ([PP ]) is a standard process where a compensable process (PP) is

placed inside the block that converts it to a standard process. Hence, instead of having

a pair of traces for the compensable process, we get a trace from a transaction block.

Let t be the trace derived from a transaction block. Assuming DT (PP) = T (PP), in
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this section we show that,

t ∈ DT ([PP ]) = t ∈ T ([PP ])

From the definitions of derived and original traces, we state the following lemma to

prove the semantic correspondence for the transaction block:

Lemma 4.13. [PP ]
t

−→ 0 = ∃ p, p′ · t = [p, p′] ∧ PP
p,p′

−→ 0

In order to support the proof of Lemma 4.13 by using induction over traces, we derive

the following equations from operational semantics. From rules 3.27, 3.28 (page 37) for

terminal transition we drive the following equation:

[PP ]
ω

−→ 0 = PP
ω

−→ P ∧ ω = X

∨ PP
!

−→ P ∧ P
ω

−→ 0
(4.24)

From transition rules 3.26 and 3.28 we derive the following equation:

[PP ]
a

−→ R = PP
a

−→ PP ′ ∧ R = [PP ′]

∨ PP
!

−→ P ∧ P
a

−→ R
(4.25)

We describe the inductive proof steps of the lemma as follows:

Proof:

Basic step: Case- 〈ω〉

[PP ]
ω

−→ 0

= “From derived equation 4.24”

∃P · PP
ω

−→ P ∧ ω = X (4.26)

∨ ∃P · PP
!

−→ P ∧ P
ω

−→ 0 (4.27)
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From equation (4.26)

∃P · PP
ω

−→ P ∧ ω = X

= “By using Theorem 4.4”

∃P · PP
ω

−→ P ∧ ω = X ∧ ∃ p′ · P
p′

−→ 0

= ∃P , p, p′ · p = 〈ω〉 ∧ ω = X ∧ PP
p

−→ P ∧ P
p′

−→ 0

= “By trace rule: [ 〈ω〉, p′ ] = 〈ω〉whenω = X”

∃P , p, p′ · p = 〈ω〉 ∧ ω = X ∧ 〈ω〉 = [ p, p′ ] ∧ PP
p

−→ P ∧ P
p′

−→ 0

= “Removing P”

∃ p, p′ · 〈ω〉 = [ p, p′ ] ∧ PP
p,p′

−→ 0 ∧ p = 〈ω〉 ∧ ω = X

From equation (4.27)

∃P · PP
!

−→ P ∧ P
ω

−→ 0

= ∃P , p, p′ · p = 〈!〉 ∧ p′ = 〈ω〉 ∧ PP
p

−→ P ∧ P
p′

−→ 0

= “By trace rule: [ 〈!〉, 〈ω〉 ] = 〈ω〉”

∃P , p, p′ · 〈ω〉 = [ 〈!〉, 〈ω〉 ] ∧ p = 〈!〉 ∧ p′ = 〈ω〉 ∧ PP
p

−→ P ∧ P
p′

−→ 0

= “Removing P ”

∃ p, p′ · 〈ω〉 = [ p, p′ ] ∧ p = 〈!〉 ∧ p′ = 〈ω〉 ∧ PP
p,p′

−→ 0

Inductive step: Case - 〈a〉t

[PP ]
〈a〉t
−→ 0

= ∃R · [PP ]
a

−→ R ∧ R
t

−→ 0

= “By using derived equation (4.25)”

∃PP ′ · PP
a

−→ PP ′ ∧ [PP ′]
t

−→ 0 (4.28)

∨ ∃P ′ · PP
!

−→ P ∧ P
〈a〉t
−→ 0 (4.29)
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From equation (4.28)

∃PP ′ · PP
a

−→ PP ′ ∧ [PP ′ ]
t

−→ 0

= “Inductive hypothesis”

∃PP ′ · PP
a

−→ PP ′ ∧ ∃ p′, p′′ · t = [ p′′, p′ ] ∧ PP ′ p′′
,p′

−→ 0

= “Removing PP ′”

∃ p′, p′′ · t = [ p′′, p′ ] ∧ PP
〈a〉p′′

,p′

−→ 0

= ∃ p, p′, p′′ · p = 〈a〉p′′ ∧ t = [ p′′, p′ ] ∧ PP
p,p′

−→ 0

= “By trace rule: t = [ p′′, p′ ] ⇒ 〈a〉t = [ 〈a〉p′′, p′ ]”

∃ p, p′, p′′ · p = 〈a〉p′′ ∧ 〈a〉t = [ 〈a〉p′′, p′ ] ∧ PP
p,p′

−→ 0

= ∃ p, p′, p′′ · p = 〈a〉p′′ ∧ 〈a〉t = [ p, p′ ] ∧ PP
p,p′

−→ 0

= ∃ p, p′ · 〈a〉t = [ p, p′ ] ∧ p 6= 〈 〉 ∧ PP
p,p′

−→ 0

From equation (4.29)

∃P · PP
!

−→ P ∧ P
〈a〉t
−→ 0

= ∃P , p, p′ · p = 〈 〉 ∧ p′ = 〈a〉t ∧ PP
p〈!〉
−→ P ∧ P

p′

−→ 0

= “Removing P ”

∃ p, p′ · p = 〈 〉 ∧ p′ = 〈a〉t ∧ PP
p〈!〉,p′

−→ 0

= “By trace rule: [ p〈!〉, p′ ] = p, p′ ”

∃ p, p′ · 〈a〉t = [ p〈!〉, p′ ] ∧ p = 〈 〉 ∧ p′ = 〈a〉t ∧ PP
p〈!〉,p′

−→ 0

= ∃ p, p′ · 〈a〉t = [ p〈!〉, p′ ] ∧ p = 〈 〉 ∧ PP
p〈!〉,p′

−→ 0

4.2.6 Choice

Standard Processes

For standard processes P and Q , we show the correspondence between the semantic

models by showing that,

t ∈ DT (P 2 Q) = t ∈ T (P 2 Q)

Following similar approach to other operators, we define the following lemma in order

to prove the correspondence:

Lemma 4.14. (P 2 Q)
t

−→ 0 = ∃ p, q · t = (p 2 q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0
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Following equations are derived from operational semantics of the choice operator for

standard processes to support the inductive proof of the above lemma:

(P 2 Q)
ω

−→ 0 = P
ω

−→ 0

∨ Q
ω

−→ 0 (4.30)

(P 2 Q)
a

−→ R = P
a

−→ P ′ ∧ R = P ′

∨ Q
a

−→ Q ′ ∧ R = Q ′ (4.31)

The inductive proof of the choice operator is very trivial. By using the above two derived

equations and Theorem 4.4, we can prove both basic and inductive step of the lemma.

The proofs are omitted from the description here.

Compensable Processes

For compensable processes PP and QQ , we prove the following equation:

(t , t ′) ∈ DT (PP 2 QQ) = (t , t ′) ∈ T (PP 2 QQ)

We only derive traces for the lifted forward behaviour and define the following lemma

for the lifted forward traces:

Lemma 4.15. (PP 2 QQ)
t

−→ R =

∃ p, q · t = (p 2 q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P 2 Q)

To support the inductive proof of the lemma we derive the following equations from the

operational semantics:

(PP 2 QQ)
ω

−→ R = PP
ω

−→ P ∧ R = P

∨ QQ
ω

−→ Q ∧ R = Q (4.32)

(PP 2 QQ)
a

−→ RR = PP
a

−→ PP ′ ∧ RR = PP ′

∨ QQ
a

−→ QQ ′ ∧ RR = QQ ′ (4.33)

As the inductive proof is trivial, it is omitted from the presentation here.

SKIP ,THROW and YIELD are the primitive processes of cCSP. The compensable

counterparts of the primitive processes are SKIPP ,THROWW and YIELDD respec-

tively and they are defined by using the pairing operator. The correspondence proofs of

these primitive processes are also omitted from here.
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4.2.7 Role of Trace operator

The trace operators play a significant role in defining the lemmas as well as in the

correspondence proofs. The operators are used both at the trace levels and the process

levels. All the lemmas defined in this chapter have a common pattern applicable to both

standard and compensable processes. For example, for standard processes P and Q ,

and their traces p and q , the lemmas for all the operators are defined as follows:

(P ⊗ Q)
t

−→ 0 = ∃ p, q · t = (p ⊗ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

(for parallel operator use t ∈ (p ⊗ q) instead of t = (p ⊗ q))

Similar definitions are also given for the forward behaviour of compensable processes.

The use of operators at both trace and process levels allow us to apply appropriate rules

for the operators (rules for terminal and observable events from operational and trace

semantics).

Such application of trace operators simplifies the proof steps considerably in our induc-

tive proofs. For example, at the early stage of our proofs, by following the approach

given in [59] for sequential composition, we defined the Lemma 4.6 as follows:

(P ; Q)
t〈ω〉
−→ 0 = ∃ p, q · P

p〈X〉
−→ 0 ∧ Q

q
−→ 0 ∧ t = p.q

∨ P
t〈ω〉
−→ 0 ∧ ω 6= X

While proving by applying induction over traces, the above definition led us to an

explosion of several sub-cases and deriving the proofs became complicated. Similar

conditions also apply to other operators. The present definition not only simplifies the

definition of lemmas, but also minimises the explosion of sub-cases in the inductive

proofs.

4.3 Related Work

The semantic correspondence presented here is based on the technique of applying struc-

tural induction. A similar approach is also applied by S. Schneider [105], where an equiv-

alence relation was established between the operational and denotational semantics of

timed CSP [101, 106]. Operational rules are defined for timed CSP and then timed traces

and refusals are extracted from the transition rules of a program, and it is shown that

the pertinent information corresponds to the semantics obtained from the denotational

semantic function. By applying structural induction over the terms of timed CSP, it

was proved that the behaviour of the transition system is identical to those provided by

the denotational semantics.
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A similar problem was also investigated in [118], where a metric structure was employed

to relate the operational and denotational models of a given language. In order to relate

the semantic models it was proved that the two models coincide. The denotational mod-

els were extended and structural induction was applied over the terms of the language

to relate the semantic models.

Other than using induction, Hoare and He [60] presented the idea of unifying different

programming paradigms and showed how to derive operational semantics from its de-

notational presentation of a sequential language. They derive algebraic laws from the

denotational definition and then derive the operational semantics from the algebraic

laws. Similar to our work, Huibiao et al. [125] derived denotational semantics from

operational semantics for a subset of Verilog [51]. However the derivation was done in

a different way than our method where the authors defined transitional condition and

phase semantics from the operational semantics. The denotational semantics are de-

rived from the sequential composition of the phase semantics. The authors also derived

operational semantics from denotational semantics [124].

Unlike our approach, the unification between the two semantics was shown in [111] by

extending the operational semantics to incorporate the denotational properties. The

equivalence was shown for a language having simple models without any support for

concurrency. Similar problem was also investigated in [74] for a simple sequential lan-

guage, which support recursion and synchronisation in the form of interleaving. The

relation between operational and denotational semantics is obtained via an intermediate

semantics.

4.4 Discussion

Two key factors play a vital role in deriving the correspondence proofs. One is the use

of operators at the trace level (discussed in Section 4.2.7) and another is the derivation

of rules from the transition rules of the operators. For each operator, two equations are

derived from the operational rules: one is used in the base case and the other is used in

the inductive case of the proofs.

We have adopted a systematic approach to show the correspondence between the two

semantic models. We defined how to derive traces from the transition rules in the

operational semantics. For each term of the language, separate lemmas are defined to

show the correspondence between the derived traces with the originally defined traces.

The lemmas are proved by applying induction over individual traces. The lemmas form

a common pattern for all the terms of the language. The semantic correspondence is

established by applying structural induction over the process terms.

The traces of a process are represented by a sequence of observable events followed by
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a terminal event. The nature of the traces is determined by the final terminal events

(X, !, ?). There are also two types of transition rules defined in operational semantics

labelled by normal and terminal events. Having separate symbols as labels allow us to

extract traces for both normal and terminal events that helps to carry out the corre-

spondence proofs shown in this section.

Two levels of induction have been applied in the correspondence proofs. At one level

induction is applied over traces and at another level induction is applied on process

terms. For example, Lemma 4.6 was for sequential operator for individual traces. It was

then lifted to the set of traces to prove the correspondence.

The correspondence proofs presented in this chapter are completely performed by hand

which has a strong possibility to introduce several errors in the proofs as well as to

overlook some important features. Chapter 6 is devoted to showing the mechanisation

of the semantic models as well as their relationship by using the theorem prover PVS.

In the semantic description of cCSP, presented so far, we have avoided the synchronous

communication of processes on observable events. Synchronised communication is an

important and well understood feature of process algebras for distributed and concurrent

systems. The semantics of the synchronised parallel processes are presented in Chapter 5

along with the correspondence proofs.



Chapter 5

Extending the Semantics to

Synchronisation

Synchronisation is an important feature for concurrent and distributed processes. In the

semantic definition given in earlier chapters, processes in parallel composition do not

synchronise over observable events. In this chapter, we extend the semantic models to

support synchronisation between processes over observable events.

5.1 Introduction

We extend the operational semantics and define the semantics for synchronisation. While

defining synchronisation we introduce a new terminal event that supports the semantic

definition of synchronisation. In this chapter we define an operational semantics for the

synchronised parallel operator.

The synchronisation between processes can lead to a deadlock situation, where no fur-

ther execution of events is possible. From a synchronous composition that leads to

deadlock, it is not possible to get a complete behaviour, instead we get partial traces

of behaviour. Before defining the semantics of synchronous composition, we define the

notion of partial behaviour. We show how the notion of partial behaviour is added to

the existing semantic definitions and how it allows us to define the correspondence for

the synchronous semantic models.

In the rest of the chapter, first we define the notion of partial behaviour in Section 5.2. In

Section 5.3 we briefly outline the trace semantics for the synchronised parallel operator

(see details in [26]). We define the transition rules for the synchronous composition of

both standard and compensable processes in Section 5.4. The correspondence proofs are

then outlined in Section 5.5. Finally, Section 5.6 summarises the results of the chapter.

67
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5.2 Partial behaviour

We assume a special terminal symbol ⊥ ∈ Ω which indicates a partial trace. Partial

traces are analogous to prefixes in standard CSP. Partial traces with respect to a set of

traces of a process have the following property:

p〈x 〉q ∈ T (P) ⇒ p〈⊥〉 ∈ T (P)

We assume that ⊥ acts as a cut for trace concatenation:

p〈⊥〉q = p〈⊥〉

Processes now have at least a trace of the form:

〈⊥〉 ∈ T (P)

In parallel composition of processes, some events will synchronise and others will be

interleaved. We assume a set of events X over which processes will synchronise. To

model synchronisation between processes we define a synchronisation operator on events

writing A&A′ for the synchronisation of events A and A′. Consider two processes

synchronise over events a and a ′, the synchronisation is defined as follows:

a & a = a

a & a ′ = ⊥ (a 6= a ′)

Here we are assuming that although both a and a ′ are synchronising events, they do

not synchronise with each other.

In cCSP, the process P ‖X Q represents the parallel composition of two processes P

and Q synchronising over the set of events X . Operationally, P and Q interact by

synchronising over the events from X , while events not in X can occur independently.

An event where both processes synchronise becomes a single event in P ‖X Q , which is

defined above by the synchronising operator. We show the effect of ⊥ on the behaviour

of synchronising processes in the following sections.

The synchronisation between a ⊥ and a terminal event ω results in a ⊥, defined as

follows:

⊥& ω = ⊥

Based on the definition given above for partial behaviour and the synchronising operator,

in the rest of the chapter, we first give the definition of trace semantics for concurrency

operator of synchronising processes (see details in [26]). The main contribution of this



Chapter 5 Extending the Semantics to Synchronisation 69

chapter starts by defining the transition relation to define the operational semantics for

the concurrency operator. Following the definition of transition relations for both stan-

dard and compensable processes, we first define the correspondence relationship between

the semantic models and then outline the way to prove the correspondence between the

two semantic models for synchronising concurrency operator. The detailed steps of the

proofs are not shown here. Later in Chapter 6, we will show the mechanisation of the

correspondence proof.

5.3 Trace Semantics

With the introduction of ⊥, processes can have two types of traces: completed trace and

partial trace. A completed trace ends with a terminal event other than a ⊥ (X, !, ?) and

a partial trace ends with a ⊥.

5.3.1 Standard Processes

After the introduction of partial behaviour, the traces of a standard process P have one

of the following forms:

Completed trace: p〈ω〉 =






p〈X〉 successful termination

p〈 ! 〉 termination with interrupt throw

p〈 ? 〉 termination with interrupt yield

Partial trace: p〈⊥〉 = Partial behaviour

Standard processes are defined as a non-empty set of such traces. Standard processes

now have at least a trace of the form: 〈⊥〉 ∈ T (P).

We define the trace semantics by defining the synchronising operator on traces and then

lift it to processes.

Definition 5.1 (Parallel composition of traces). Parallel composition of two traces

with respect to the synchronisation set X is a set of traces. Assume a, a ′ ∈ X , i.e., a

and a ′ are in the synchronisation set and b, b ′ 6∈ X . The parallel composition of traces
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is defined as follows:

〈ω〉 ‖X 〈ω′〉 = { 〈ω & ω′〉 } where

ω ! ! ! ? ? X ⊥

ω′ ! ?X ?X X ω

ω & ω′ ! ! ! ? ? X ⊥

〈a〉p ‖X 〈ω〉 = { 〈⊥〉 }

〈ω〉 ‖X 〈a〉q = { 〈⊥〉 }

〈a〉p ‖X 〈a ′〉q = { 〈a ′′〉r | a ′′ ∈ (a & a ′) ∧ r ∈ (p ‖X q) }

〈b〉p ‖X 〈ω〉 = { 〈b〉r | r ∈ (p ‖X 〈ω〉) }

〈ω〉 ‖X 〈b〉q = { 〈b〉r | r ∈ (〈ω〉 ‖X q) }

〈b〉p ‖X 〈a〉q = { 〈b〉r | r ∈ (p ‖X 〈a〉q) }

〈a〉p ‖X 〈b〉q = { 〈b〉r | r ∈ (〈a〉p ‖X q) }

〈b〉p ‖X 〈b ′〉q = { 〈b〉r | r ∈ (p ‖X 〈b ′〉q) } ∪ { 〈b ′〉r | r ∈ (〈b〉p ‖X q) }

Traces of a parallel composition of processes are defined in terms of this trace definition.

Definition 5.2 (Parallel composition of processes). The trace semantics of a syn-

chronous parallel composition is defined as a set of traces of the form,

T (P ‖X Q) = { r | r ∈ (p ‖X q) ∧ p ∈ T (P) ∧ q ∈ T (Q) }

5.3.2 Compensable Processes

Traces of a compensable processes consist of a set of pairs of traces of the form (p〈ω〉, p′〈ω′〉),

where p〈ω〉 represents the forward behaviour and p′〈ω′〉 represents the compensation.

With the definition of partial behaviour (⊥), the pair of traces follow the following rules:

• ω = ⊥ ⇒ p′〈ω′〉 = 〈⊥〉

• (p〈x 〉q , p′) ∈ T (PP) ⇒ (p〈⊥〉, 〈⊥〉) ∈ T (PP)

Taking into account the above rules for pairs of traces, we define the parallel composition

of pairs of traces as follows:

Definition 5.3 (Compensable parallel composition of traces).

(p, p′) ‖X (q , q ′) = { (r , r ′) | r ∈ (p ‖X q) ∧ r ′ ∈ (p′ ‖X q ′) ∧ last(r) 6= ⊥ }

∪ { (r , 〈⊥〉) | r ∈ (p ‖X q) ∧ last(r) = ⊥}

We use an operator over traces: last(t), which returns the terminal symbol from a

trace t . The above definition consists of two parts; the first part does not contain any



Chapter 5 Extending the Semantics to Synchronisation 71

partial behaviour in the forward traces (last(r) 6= ⊥), and the second part is considering

partial behaviour in the forward traces (last(r) = ⊥).

Traces of compensable processes are defined as a set of such pairs of traces, defined as

follows:

Definition 5.4 (Compensable parallel composition).

T (PP ‖X QQ) = { rr | rr ∈ (pp ‖X qq) ∧ pp ∈ T (PP) ∧ qq ∈ T (QQ) }

In the next section, we define the operational semantics of the synchronised parallel

operator for both standard and compensable processes.

5.4 Operational semantics

The transition relations defined in Chapter 3 are extended by adding the transition of

process terms with the newly defined ⊥ event. When the synchronising events from

separate parallel processes do not synchronise with each other, we represent it by the

bottom event, ⊥. In this case, we define the transitions for both standard and compens-

able processes, where both processes terminate to a null process. For example, consider

two events A and A′, where A synchronises over a, and A′ synchronises on a ′, and a

and a ′ do not synchronise with each other. Then the parallel composition of A and A′

is defined as,

(A ‖{a,a′} A′)
⊥

−→ 0

In the following sections, we present the operational semantics of synchronised parallel

composition for both standard and compensable processes. For both types of processes,

we will describe the effect of the ⊥ event in transition rules.

5.4.1 Standard Processes

The transition relation for standard processes is extended by adding the transition of a

process term by a ⊥, as follows:

P
⊥

−→ 0 (5.1)

We define the transitions of a standard process term by synchronising observable events.

We also define the transitions where events from separate concurrent processes introduce

a ⊥ and this results in a transition by a ⊥. Although ⊥ is not operationally meaningful,

it is a useful semantic device that helps us in solving the semantic correspondence.
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Hence, we define the transition rules that introduce a ⊥ in their transitions. We define

the transition rules for both synchronous and asynchronous events.

– Concurrently executing processes synchronises over terminal events. The synchroni-

sation of two terminal events (ω & ω′) is defined in the previous section and any of

the terminal events can be the ⊥ event.

P
ω

−→ 0 ∧ Q
ω
′

−→ 0

P ‖X Q
ω&ω′

−−−→ 0
(ω, ω′ ∈ Ω) (5.2)

– The synchronisation between a terminal event and a synchronising event results in a

⊥ event and the composition terminates with a null process. The bottom event here

indicates the partial behaviour of the composition.

P
a

−→ P ′ ∧ Q
ω

−→ 0

P ‖X Q
⊥

−→ 0

P
ω

−→ 0 ∧ Q
a

−→ Q ′

P ‖X Q
⊥

−→ 0
(a ∈ X , ω ∈ Ω) (5.3)

– Parallel processes synchronise over events from the set of synchronising events X and

the transition is labelled by the synchronisation of the events. When the processes

fail to synchronise then it results the transition to a null process.

p
a

−→ P ′ ∧ Q
a′

−→ Q ′

P ‖X Q
a&a′

−−−→ P ′ ‖X Q ′
(a, a ′ ∈ X ) (5.4)

– For non synchronising events, processes interleave with each other.

P
b

−→ P ′

P ‖X Q
b

−→ P ′ ‖X Q

Q
b

−→ Q ′

P ‖X Q
b

−→ P ‖X Q ′
(b 6∈ X ) (5.5)

5.4.2 Compensable Processes

We show the effect of the ⊥ (bottom) event on compensable processes and show how

it affects the compensations. We extend the transition rules of compensable processes

in order to define the transitions by the ⊥ event. Unlike the usual terminal transitions

(by X, !, ?), where a compensable process terminates and the attached compensations

are accumulated, no compensation is accumulated from the transition by a ⊥. The

transition by a ⊥ for a compensable process PP is defined as follows:

PP
⊥

−→ 0

Like for standard processes, we also define the transition rules for those cases where

events from separate concurrent processes introduce the ⊥ and then transitions of process

terms are defined according to the transition rule defined above.
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– In a synchronous composition, processes synchronise on terminal events but as the

processes are compensable, instead of terminating with a null process, corresponding

compensations from the processes will be accumulated in parallel. Note that ⊥ is

excluded in this rule.

PP
ω

−→ P ∧ QQ
ω
′

−→ Q

PP ‖X QQ
ω &ω′

−−−−→ P ‖X Q
(ω & ω′ 6= ⊥) (5.6)

– If the synchronisation of the terminal events results in a ⊥, then unlike with the

usual terminal events where the forward behaviour of compensable processes termi-

nate leaving the compensation to be stored for future reference, the concurrently

executing processes terminate to a null process. The ⊥ event here indicates the

partial behaviour of the composition.

PP
ω

−→ P ∧ QQ
ω
′

−→ Q

PP ‖X QQ
ω & ω′

−−−−→ 0
(ω & ω′ = ⊥) (5.7)

– The synchronisation between a terminal event and events from the synchronisation

set X also introduce the ⊥ event and the compensable processes terminate to a null

process representing the partial behaviour of the composition.

PP
a

−→ PP ′ ∧ QQ
ω

−→ Q

PP ‖X QQ
⊥

−→ 0

PP
ω

−→ P ∧ QQ
a

−→ QQ ′

PP ‖X QQ
⊥

−→ 0
(a ∈ X , ω ∈ Ω)(5.8)

– Processes synchronise on events in set X and the synchronised events cause the

transition of both processes from one state to another and the transition is labelled

by the synchronisation of the events. Failure to synchronise over the events from the

set X introduce the ⊥ and it results the transition to a null process.

PP
a

−→ PP ′ ∧ QQ
a′

−→ QQ ′

PP ‖X QQ
a&a′

−−−→ PP ′ ‖X QQ ′
(a, a ′ ∈ X ) (5.9)

– For non-synchronising events, processes interleave with each other.

PP
b

−→ PP ′

PP ‖X QQ
b

−→ PP ′ ‖X QQ

QQ
b

−→ QQ ′

PP ‖X QQ
b

−→ PP ‖X QQ ′
(b 6∈ X ) (5.10)

After defining the trace and operational semantics of synchronising parallel processes

for cCSP, in the next section, we define the relationship between the semantic models

and then outline the correspondence proofs. The outline for the proofs is presented for

both standard and compensable processes. For both processes, theorems and supporting

lemmas are drawn. We have already mentioned that we do not show the proof steps as

we prove the correspondence by using the theorem prover PVS instead in Section 6.
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5.5 Semantic Correspondence

In this section, we show the correspondence between the operational and trace semantics

of synchronous parallel composition. The approach taken here to prove the correspon-

dence is the same as that in the previous chapter with the newly defined bottom (⊥)

event added.

In Chapter 4, we showed the definition of derived traces for both standard and com-

pensable processes. With the introduction of partial behaviour, the definition of derived

traces remains the same except for the compensable processes.

Compensable processes consist of forward and compensation behaviour and the be-

haviour of compensation is similar to standard processes. Consider a compensable pro-

cess PP , and t and t ′ are the forward and compensation traces, then

PP
(t ,t ′)
−→ 0 =





∃R · PP

t
−→ R ∧ R

t ′
−→ 0 last(t) 6= ⊥

PP
t

−→ 0 ∧ t ′ = 〈⊥〉 last(t) = ⊥

The operator last(t) returns the terminal symbol from the trace t .

By using this definition we get the trace derivation rule of a compensable process PP ,

defined as follows:

Definition 5.5 (Derived trace: Compensable process). For traces t and t ′,

(t , t ′) ∈ DT (PP) = PP
(t ,t ′)
−→ 0

Considering the theorem (Theorem 4.3) defined in Chapter 4, in page 47, in this section

we prove the theorem only for the synchronising operator, defined as follows:

Theorem 5.6. For standard non-null process terms P and Q, assuming DT (P) = T (P)

and DT (Q) = T (Q),

DT (P ‖X Q) = T (P ‖X Q)

For non-null compensable process terms PP and QQ, assuming DT (PP) = T (PP) and

DT (QQ) = T (QQ),

DT (PP ‖X QQ) = T (PP ‖X QQ)

The theorems 4.4 and 4.5 defined in Chapter 4 are also applicable to the synchronised

parallel operator.
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5.5.1 Standard Processes

Following the same approach as for asynchronous parallel composition, we derive the

following lemma in order to establish the required correspondence:

Lemma 5.7. (P ‖X Q)
t

−→ 0 = ∃ p, q · t ∈ (p ‖X q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

The lemma is proved by using induction over traces. To support the induction scheme,

the following equations are derived from the operational rules, categorised according to

the events by which the transition rules are defined.

i) (P ‖X Q)
a

−→ R (from rule 5.4)

= ∃ a1, a2,P ′,Q ′ · a = a1&a2 ∧ P
a1
−→ P ′ ∧ Q

a2
−→ Q ′ ∧ R = (P ′ ‖X Q ′)

ii) (P ‖X Q)
b

−→ R (from rule 5.3)

= ∃ b,P ′ · P
b

−→ P ′ ∧ R = (P ′ ‖X Q)

∨ ∃ b,Q ′ · Q
b

−→ Q ′ ∧ R = (P ‖X Q ′)

iii) (P ‖X Q)
ω

−→ 0 (ω 6= ⊥) (from rule 5.2)

= ∃ω1, ω2 · ω = ω1& ω2 ∧ P
ω1
−→ 0 ∧ Q

ω2
−→ 0

iv) (P ‖X Q)
⊥

−→ 0 (from ules 5.3, 5.4)

= ∃ a,P ′, ω′ · P
a

−→ P ′ ∧ Q
ω
′

−→ 0

∨ ∃ a,Q ′, ω′ · Q
a

−→ Q ′ ∧ P
ω
′

−→ 0

∨ ∃ a1, a2,P ′,Q ′ · P
a1
−→ P ′ ∧ Q

a2
−→ Q ′ ∧ a1& a2 = ⊥

Proof: A sketch of the proof is given here

Basic Step:

In the basic step, we prove the lemma for the case:

(P ‖X Q)
〈ω〉
−→ 0

In order to prove the basic case, the derived equations (iii) and (iv) are to be considered.

Inductive Step:

In the inductive step, two cases are to be considered:

• synchronous(〈a〉t): (P ‖X Q)
〈a〉t
−→ 0

• asynchronous (〈b〉t): (P ‖X Q)
〈b〉t
−→ 0

In order to prove the inductive case, the derived equation

(i) is considered for the synchronous case and

(ii) is considered for the asynchronous cases.
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5.5.2 Compensable Processes

The compensation behaviour of a compensable process is similar to a standard process

and we can reuse the above proof for the compensation behaviour. When the concurrent

compensable processes do not synchronise on some synchronising events, we get a partial

behaviour from the composition and no attached compensation is returned from the

composition. Considering this scenario, we state two separate lemmas.

First, we state a lemma assuming that there is no failure during the synchronisation of

processes:

Lemma 5.8. (PP ‖X QQ)
t

−→ R = ∃ p, q ,P ,Q · t ∈ (p ‖X q) ∧ last(t) 6= ⊥

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖X Q)

The following lemma is defined for the cases when the synchronising processes fail to

synchronise during their composition:

Lemma 5.9. (PP ‖X QQ)
t

−→ 0 = ∃ p, q · t ∈ (p ‖X q) ∧ last(t) = ⊥

∧ p ∈ T (PP) ∧ q ∈ T (QQ)

Both lemmas are proved by using induction. In order to support the proofs of the

lemmas, we derive equations from the operational semantics as for the previous lemmas.

The derived equations are defined as follows:

i) (PP ‖X QQ)
a

−→ RR (from rule 5.9)

= ∃PP ′,QQ ′, a1, a2 · a = a1& a2 ∧ PP
a1
−→ PP ′ ∧ QQ

a2
−→ QQ ′

∧ RR = (PP ′ ‖X QQ ′)

ii) (PP ‖X QQ)
b

−→ RR (from rule 5.10)

= ∃PP ′ · PP
b

−→ PP ′ ∧ RR = (PP ′ ‖X QQ)

∨ ∃QQ ′ · QQ
b

−→ QQ ′ ∧ RR = (PP ‖X QQ ′)

iii) (PP ‖X QQ)
ω

−→ R (ω 6= ⊥) (from rule 5.6)

= ∃P ,Q , ω1, ω2 · ω = ω1& ω2 ∧ ω1& ω2 6= ⊥

∧ PP
ω1
−→ P ∧ QQ

ω2
−→ Q ∧ R = (P ‖X Q)

iv) (PP ‖X QQ)
⊥
−→ 0 (from rules 5.7, 5.8, 5.9)

= ∃PP ′,Q , ω · PP
a

−→ PP ′ ∧ QQ
ω

−→ Q

∨ ∃QQ ′,P , ω · QQ
a

−→ QQ ′ ∧ PP
ω

−→ P

∨ ∃PP ′,QQ ′, a1, a2 · PP
a1
−→ PP ′ ∧ QQ

a2
−→ QQ ′ ∧ a1&a2 = ⊥

∨ ∃P ,Q , ω1, ω2 · PP
ω1
−→ P ∧ QQ

ω2
−→ Q ∧ ω1& ω2 = ⊥
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Proof: A sketch of the proof is given here

Basic Step:

– For Lemma 5.8, we consider the following case,

(PP ‖X QQ)
ω

−→ R (ω 6= ⊥)

Derived equation (iii) is to be considered for this case.

– For Lemma 5.9, we consider

(PP ‖X QQ)
⊥

−→ 0

We use the derived equation (iv) for this case.

Inductive Step: In the inductive steps of the proofs, we need to consider two separate

cases for each lemma:

– Asynchronous: In the asynchronous case, the derived equation (ii) is to be used for

both of the above lemmas.

– Synchronous: In the case where processes synchronise with each other and the derived

equation (i) is taken into account in the inductive proofs of the above two lemmas.

5.6 Summary

In this chapter, we have extended the semantic models of cCSP by defining the opera-

tional semantics for synchronising processes. During synchronisation some synchronising

events might fail to synchronise with each other and its semantics is defined by using

the notion of partial behaviour (⊥) which is analogous to prefixes in standard CSP. The

⊥ acts as a final terminal symbol of the traces of a deadlocked process. It allows partial

behaviour to be extracted from a synchronous composition that lead to deadlock.

We have also outlined how to derive the correspondence between the trace and oper-

ational semantics. In contrast to our earlier approach (Chapter 4), we have avoided

describing the proof steps in detail. Next chapter shows the mechanisation of the se-

mantic models and their relationship by using the theorem prover PVS.



Chapter 6

Mechanising Semantic Models

and their Relationships

6.1 Introduction

A way to combine the strength of general purpose theorem provers with formal notations

is the semantic embedding of the formal notations within the logic of a verification

system. PVS [89] is an automated framework for specification and verification. In this

chapter, we investigate how the semantic models of the cCSP process algebra can be

incorporated in the framework of the PVS tool. The intention is to use PVS to prove

semantic properties, especially the relationship between the semantic models of cCSP,

with similar level of granularity of or even more precisely than, the hand proofs.

In Chapter 4, we have shown how to derive the correspondence between the two se-

mantic models of cCSP. The proofs establishing the relationship have been carried out

completely by hand. However, while doing the proofs by hand it is a difficult and te-

dious task to manage a large number steps and subtle mistakes or omissions can easily

occur in any stage of the proof. A tool allowing one to mechanise the semantic mod-

els and to mechanically prove the correspondence can overcome the problem. Such a

proof assistant gives confidence in the formulation of the semantics, and alleviates the

burden of spelling out each of the intermediate steps, for human beings a tedious and

extremely error-prone task. For this reason, we aim at the mechanisation of the semantic

relationships of cCSP. An interactive/automatic theorem prover which can successfully

mechanise our proofs, will demonstrate the correctness of the manual proofs and conse-

quently, feasible mechanisation allows us to follow the same mechanical proof technique

to apply to larger proofs.

The capabilities of general theorem provers to support formal reasoning have been in-

creased in recent years. To address our problem, presently there are several systems such

78



Chapter 6 Mechanising Semantic Models and their Relationships 79

as PVS [89], HOL [52], Isabelle [94] and Coq [11], having a rich specification language

and automated support for decision procedures and proof strategies to their logic. One

of our goals is to follow the style of proofs performed by hand. Some of the benefits of

human-style proof are reported in [7]. PVS provides both a highly expressive language

and automation of proof steps. PVS supports high-order logic, allows abstract datatypes

to model process terms and has strong inductive support as well, which are the building

blocks of our definitions. Existing research works such as [12, 38, 40] have been carried

out to mechanise process algebra. The trace semantics of CSP have been mechanised

in [38, 40]. The cCSP semantic models are closely related to that of CSP and given the

positive experience described in [38, 40] we decided to use PVS to address our problems.

Properties of a process algebra can be proved in PVS by means of an interactive proof

checker. The user applies proof commands to simplify the goals that must be proven,

until it can be proved automatically by the powerful decision procedures of the tool.

We define process terms by means of the abstract datatype mechanism of PVS, which

generates a useful induction scheme allowing induction on the structure of the terms.

6.1.1 Chapter Contribution

The contribution of this chapter is mechanising the correspondence relationship between

the operational and trace semantics of cCSP process algebra by using the theorem prover

PVS. We are not aware of any similar mechanisation of the relationship between a

denotational and operational semantics. Both [38] and [40] are only concerned with

properties of the traces models. We mechanise the trace semantics and recursively define

the transition rules of the operational semantics in PVS. The theorems and lemmas to

derive the correspondence are mechanised and proved in PVS by following similar proof

steps as the proof by hand where induction is applied not only over traces but also

over process terms. We also show how the mechanisation of the relationship helps us

to identify some of the important issues that are ignored in the hand proofs. Future

extensions of the language could also benefit from such mechanisation where semantic

relationships can be verified in a similar fashion without any hand proof.

6.1.2 Chapter Structure

The rest of the chapter is structured as follows. We give a brief overview of PVS

datatypes that are being used in our specification in Section 6.2. Section 6.3 describes

the embedding of syntax and process terms of cCSP. The mechanisation of the trace

semantics is described in Section 6.4 and the mechanisation of the operational semantics

is described in the following section. Section 6.6 shows how we performed the proofs of

the semantic relation in PVS. The mechanisation of synchronous parallel composition
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is described in Section 6.7. A brief discussion of our mechanisation is presented in

Section 6.9 which is then followed by a brief overview of related work.

6.2 PVS Datatypes

PVS has an expressive specification language augmented with classical higher order

logic. The PVS specification language has a very sophisticated type system. The type

system in PVS is even enriched by supporting uninterpreted type declarations, predicate

subtypes, dependant types, enumerated types, and mechanisms for defining abstract

datatypes such as lists, trees. Subtyping makes type checking more powerful. We briefly

outline some datatypes that are used in mechanising the cCSP semantic models. Details

of dataypes can be found in [91].

Uninterpreted Types

Uninterpreted type declarations introduce new types without specifying the elements of

the type. The new type must be disjoint from all other types in the declaration. For

example:

T : TYPE

declares an uninterpreted type T. The keyword NONEMPTY_TYPE declares an uninterpreted

type with at least one element.

Predicated Subtypes

Subtype is a collection of elements from a given type. The elements in the subtype are

characterised by a predicate on the given type which is called supertype. Given a type

T and a predicate p on elements of T, a predicated subtype of T can be specified as

S : TYPE = {x: T | p(x) }

PVS recognises that any element of type S satisfies the predicates p. An equivalent, but

compact declaration is:

S : TYPE = (p)

The parentheses surrounding p convert it to the corresponding subtype of T. An unin-

terpreted subtype of T can also be defined without explicitly expressing the predicated,

as:

S : TYPEFROM T

Dependant Types

In dependant types, one type of component is dependant on other type. Function and

tuples are permitted to contain dependant type components. For example,
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T : TYPE = [x: nat, {y: nat | y <= x }]

declares a type T, whose elements are pair of natural numbers and second component is

smaller than or equal to the first component.

Enumerated Types

Enumerated types are declared by listing explicitly the elements of the type. For exam-

ple:

DAY : TYPE = { mon, tues, wed, thur, fri, sat, sun }

Constant Declarations

Constants can be declared for all objects that are declared in a PVS theory. Each

constant has a specific type and as with types, they can be interpreted or uninterpreted.

Declaring constants for uninterpreted types will generate a TCC which demands to prove

its existence.

Recursive Definitions

PVS also supports recursive definitions. It is similar to constant declaration. A recursive

definition has an explicit measure function, which ensures that the recursive definition

terminates for its arguments. For example, consider

sum(n : nat) : RECURSIVE nat =

IF n = 0 THEN 0 ELSE n + sum(n-1) ENDIF

MEASURE (LAMBDA n: n)

The value of the argument n is used as the measure and it must be decreased with

each recursive call. A TCC will be generated to ensure this condition and PVS usually

discharges the TCCs automatically.

Along with the above declarations, PVS also has variable and formula declarations.

Formulas are constructed by using logical connectives such as OR, AND, NOT, IMPLIES

etc and variables. The variables are bound by the quantifiers. The declaration of a

formula associates a formula name with the logical formula by some keyword: AXIOM,

ASSUMPTION, LEMMA or THEOREM. An AXIOM is not expected to have an associated proof

whereas an ASSUMPTION is expected to be proved only by an importing theory. LEMMA

or THEOREM always need to be proved.

Abstract Datatypes

One of the powerful features of the PVS specification language is its support for user-

defined datatypes. The class of datatypes that can be defined in PVS is constrained

[92] to ensure the resulting definitions and axioms are valid. A user defined datatype
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is defined by using the keyword DATATYPE and PVS will generate valid axioms and

definitions with respect to the given definition. Consider the definition of the list dataype

below:

list[t : TYPE] : DATATYPE

BEGIN

null : null?

cons(car : t, cdr : list) : cons?

END list

Here list is declared as a type parameterised by t with two constructors null and cons.

null takes no arguments and cons has two arguments where the first one is of type t

and second argument is a list type. null? and cons? are recognisers (functions of type

[list -> bool]) that are true for the empty list and the non-empty list respectively.

The PVS typechecker enforces the following rules on the datatype declarations:

i) The constructors must be pairwise distinct.

ii) The recognisers must be pairwise distinct.

iii) The recursive occurrences of the datatype name must be positive to avoid cardinality

contradictions.

Among the axioms generated automatically by PVS when the list datatype is type-

checked, we are particulary interested in the following induction axiom:

list_induction : AXIOM

FORALL (p : [list -> bool]) :

p(null) AND

FORALL (cons1_var : t), (cons2_var : list) :

p(cons2_var) => p(cons(cons1_var, cons2_var))

IMPLIES

FORALL (list_var : list) : p(list_var)

The axiom is for a structural induction scheme which is applied automatically whenever

an INDUCT command is applied to the theorem prover for a variable of list datatype.

Among the constant declarations generated by PVS, the definition that is significant for

us is the subterm. It is defined on datatype objects and checks whether one objects

occurs as a (not necessarily proper) subterm of another object. The proper subterm

relation is defined by <<. The proper subterm relation is useful as a well-founded termi-

nation relation that can be given as the measure for a recursively defined function, for

example, for the list datatype defined above the following definition can be generated:
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<<(l1,l2 : list) : bool =

CASES l2 OF

null : FALSE,

cons(cons1_var, cons2_var) : l1 = cons2_var OR

l1 << cons2_var

ENDCASES

The expression CASES...ENDCASES is a pattern matching constant declaration for ab-

stract datatypes. In the above definition for << the list argument l2 is compared with the

empty list pattern (null) or non-empty list pattern (cons(cons1_var, cons2_var)).

6.3 Embedding of cCSP in PVS

An embedding is a semantic encoding of one specification language into another, es-

pecially, to reuse the existing tools of the target language. It is possible to combine

the complementary strengths of general-purpose verification systems and of the more

methodical formal notations by a semantic embedding of the formal notation within the

logic of the verification system. There are two main variants for the semantic embedding:

deep and shallow embeddings [100]. In a deep embedding, the language and semantics

of the method are fully formalised as an object in the logic of the specification language.

In a shallow embedding, there is a syntactic translation of the objects of the method

into semantically equivalent objects of the verification system. Shallow embedding con-

centrates on the semantic embedding of the guest logic into the host logic and it is easy

to set up. We use PVS to embed the semantic models and their relationship and for our

purpose we use shallow embedding in order to embed cCSP syntax and semantics into

PVS.

The trace semantics of standard CSP has been mechanised in [30] and in [38, 40], where

each follows a separate approach. In [30] Camilleri defined a dialect of CSP processes

where each process has two components: a set of traces and an alphabet of events,

whereas in [38, 40] processes are defined as sets of traces and traces are defined as

lists of events. cCSP has a different semantic definitions than CSP and hence, our

semantic definitions in PVS are different from their definitions. Besides, we not only

define the trace semantics but also define the operational semantics of cCSP in PVS.

The embedding of cCSP syntax along with its semantic models and the corresponding

relationships are described in the following sections.

6.3.1 cCSP Syntax

First, we define the process terms to define the syntax of cCSP. PVS has its fixed

syntax and it is not possible to use cCSP notations in PVS. Separate syntax is used
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to define the standard and compensable processes. PVS supports overloading, hence

the same notation can be used for both the operational and the trace semantics. In the

operational semantics, process terms are used as processes. On the other hand, processes

are denoted as a set of traces in the trace semantics.

Table 6.1: Syntax of standard process expressions

PVS
Operations cCSP

(operational) (trace)

SKIP SKIP Skip SKIP

THROW THROW Throw THROW

YIELD YIELD Yield YIELD

Atomic Action A act(a) act(a)

Choice P 2Q choice(P,Q) choice(P,Q)

Sequential Composition P ;Q seq(P,Q) seq(P,Q)

Interrupt Handler P � Q P |> Q intr(P,Q)

Parallel Composition P ‖Q para(P,Q) parallel(P,Q)

Block operator [PP ] blk(PP) block(PP)

Table 6.1 denotes the notation that is used for standard processes.

The notations used for compensable processes are shown in Table 6.2. Operators are

defined for both the operational and the trace semantics.

Table 6.2: Syntax of compensable process expressions

PVS
Operations cCSP

(operational) (trace)

SKIPP SKIPP Skipp SKIPP

THROWW THROWW Throww THROWW

YIELDD YIELDD Yieldd YIELDD

Choice PP 2QQQ cchoice(PP,QQ) cchoice(PP,QQ)

Sequential Composition PP ; QQ cseq(PP,QQ) cseq(PP,QQ)

Compensation Pair P ÷ Q cpair(P,Q) cpair(P,Q)

Parallel Composition PP ‖QQ cpara(PP,QQ) parallel(PP,QQ)

When mechanising a language in a theorem prover, one must ensure that any additional

notation required in writing specifications is also mechanised along with its intended

semantics. The PVS theorem prover has predefined libraries for various mathematical

and logical theories which support most of the theoretical concepts that we need to

mechanise cCSP. So we begin our account of mechanising cCSP using these built-in

facilities to define the notion of process terms, events, processes and traces.



Chapter 6 Mechanising Semantic Models and their Relationships 85

6.3.2 Events, Traces and Processes

There are two types of events in cCSP: observable (normal)1 and terminal. Observable

events cause the transition of a process from one state to another whereas terminal

events cause the termination of a process. These two types of events are defined in PVS

and then the terminal events are defined as constants of terminal type as follows:

normal : TYPE

terminal : TYPE+

tick, yield, throw, bottom : terminal

The keyword TYPE+ indicates that terminal is a non-empty type, that allows to define

constants of that type.

The traces of cCSP, defined in an earlier chapter, have a sequence of observable events

(Σ∗) followed by a terminal event (ω ∈ Ω). Following this definition of traces, we define

traces of standard processes in PVS as a pair consisting of a list of normal events and

a terminal event. This definition ensures that traces are non-empty (at least there is a

terminal event). As compensable processes have forward and compensation traces, these

traces are defined as a pair of standard traces.

trace : TYPE = [list[normal],terminal]

comp_trace : TYPE = [trace, trace]

We define a property for traces to add an event to a trace. Adding an event to a trace is

adding it in front of the trace. Later, we use this property in the inductive proofs for each

term of the language: add2trace(a:normal,t:trace) : trace = (cons(a,t‘1),t‘2)

Processes are defined as a set of traces and all the general rules about sets immediately

apply to processes. Standard processes are defined as sets of traces and compensable

processes are defined as sets of compensable traces (can also be defined as sets of pair

of traces).

process : TYPE = setof[trace]

comp_process : TYPE = setof[comp_trace]

6.3.3 Process-Algebra terms

The proofs about properties of process algebra often use induction on the structure

of terms of the algebra. We also apply induction on process terms for the correspon-

dence proofs of the semantic models. PVS generates an induction scheme for abstract

1we use observable and normal interchangeably
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datatypes and hence, it is convenient to model process terms as an abstract datatype.

PVS has a mechanism for user-defined (recursive) datatypes. PVS provides mechanism

to define abstract datatypes of certain class which includes all of the tree-like recursive

data structures that are freely generated by a number of constructor operations. For

example, the abstract datatype of lists is generated by the constructor null and cons

and similarly, the abstract datatype of stack is generated by the constructors empty

and push. PVS excludes datatypes such as unordered list, bags etc. that are not freely

generated. For example, two different sequence of insertions of elements into a bag can

yield equivalent bags. A detailed discussion of PVS abstract datatypes can be found

in [92].

In cCSP, we have terms for standard and compensable processes. An important point is

that the terms are mutually dependant on each other. The process term inside a block

operator is a compensable process, but the block operator represents a standard process

and the proofs concerned with the block operator depend on the proofs of compensable

processes. Similarly, the compensation pair operator represents a compensable process,

but consists of two standard processes and proofs are dependent on the proofs for stan-

dard processes. Therefore, we have to use mutually recursive datatypes to define the

process terms.

Although mutually recursive datatypes arise quite frequently in language and specifi-

cations, they are not directly admissible by PVS. However, with the extended support

of sub-datatype [92, 110], we can use the two mutually recursive datatypes as a single

datatype. A sub-datatype collects together groups of constructors of a dataype that

form one part of a mutually recursive datatype definition. The process algebra terms

with two sub-datatypes are defined in PVS as follows:

pa_terms : DATATYPE WITH SUBTYPES stand, comp

BEGIN

Skip : skip? : stand

Throw : throw? : stand

Yield : yield? : stand

Skipp : skipp? : comp

Throww : throww? : comp

Yieldd : yieldd? : comp

act(a:normal) : act? : stand

seq(P1:stand, Q1:stand) : seq? : stand

cseq(P : comp, Q : comp) : c_seq? : comp

para(P1:stand, Q1:stand) : para? : stand

cpara(P : comp, Q :comp) : c_para : comp

choice(P1: stand, Q1: stand) : choice? : stand

cchoice(P : comp, Q : comp) : c_choice? : comp

|>(P1: stand, Q1: stand) : inthnd? : stand

cpair(P1: stand, Q1 : stand) : cpair? : comp

blk(P : comp) : blk? : stand

ax(P:comp,P1:stand) : ax? : comp

nul : nul? : stand

END pa_terms
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We define a single datatype pa_terms which consists of two sub-datatypes: ‘stand’ for

standard processes and ‘comp’ for compensable processes. We can now define process

terms of type stand and comp. We define the process term nul to denote the null (0)

process that we have used in defining the operational semantics of the process terms.

The process term ax is defined here to denote the auxiliary construct which is introduced

during defining the operational semantics of sequential composition of compensable pro-

cesses (discussed in Chapter 3) and it is used in the inductive case in the proof of the

lemma for compensable sequential composition.

When this definition is type checked in PVS, a new file is generated containing a large

number of useful definitions and properties of the datatype. An induction scheme is

also generated expressing that a property p on terms can be proved by showing that it

holds for all atoms and by proving that it holds for all the operators if it holds for the

subterms.

The semantic models of cCSP are defined in the following sections. The operators are

defined in terms of their semantic models and laws of these operators can be proved

from these semantic definitions. We avoided the approach of directly encoding laws as

axioms as it would allow us to introduce inconsistencies in the logic.

6.4 Mechanising the Trace Semantics

In PVS, keeping the same fashion as in the original semantic definitions, operators

are defined initially at trace level and then lifted to sets of traces to define processes.

Each operator is defined separately. The trace semantics for standard and compensable

processes are defined in the following sections.

6.4.1 Standard Processes

Atomic Action

The atomic action can perform an atomic event and the terminates. The trace semantics

is defined as follows:

act(a:normal) : process = {t:trace | t = (cons(a,null),tick)}

Basic Processes

The standard basic processes of cCSP only have terminal events in their traces. The

traces of basic processes are defined as follows:
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SKIP : process = {t: trace | t = (null,tick)}

THROW : process = {t: trace | t = (null,throw)}

YIELD : process = {t: trace | t = (null, yield)

OR t = (null, tick)}

Choice

The traces of the process in the choice operator is the union of traces from the individual

processes from the choice:

choice(P,Q:process): process = union(P,Q)

Sequential composition

For traces p and q , their sequential composition (p ; q) is defined in such a way that if

trace p ends with a X, the trace q will be augmented with the observable events of p

and X will be hidden from the environment. If p ends with a terminal event other than

a X then the sequential composition of the two traces only returns the events of p and

the events of q are discarded. The trace definition in PVS is given as follows:

seq(p,q:trace) : trace =

IF PROJ_2(p) = tick THEN

(append(PROJ_1(p),PROJ_1(q)),PROJ_2(q))

ELSE p

ENDIF

PROJ−i is the ith element of a tuple. The ith element from a tuple t can also be

represented by t‘i. We use these notations interchangeably. The sequential composition

of processes is defined as follows:

seq(P,Q): process = {t: trace | EXISTS(p:(P),q:(Q)): t = seq(p,q)}

Interrupt Handler

The trace definition of the interrupt handler is dual to the definition of sequential com-

position where the traces of the second process are augmented when the first process

terminates with a throw rather than a tick. The definition is given below:
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intr(p,q:trace) : trace =

IF PROJ_2(p) = throw THEN

(append(PROJ_1(p),PROJ_1(q)),PROJ_2(q))

ELSE p

ENDIF

intr(P,Q:process) : process =

{t : trace | EXISTS (p:(P),q:(Q)): t = intr(p,q) }

Parallel Composition

We first define the asynchronous composition of concurrent processes, where processes

interleave over observable events and synchronise over terminal events. Later, we will

extend the asynchronous definitions in order to define synchronous processes.

The interleaving of the list of observable events is defined in PVS as follows:

interleave(t1,t2,t:list[normal]): RECURSIVE bool =

CASES t OF

null: null?(t1) AND null?(t2),

cons(x,y):

(cons?(t1) AND car(t1)= x AND interleave(cdr(t1),t2,y))

OR (cons?(t2) AND car(t2)= x AND interleave(t1,cdr(t2),y))

ENDCASES

MEASURE length(t)

interleave(t1,t2,t) holds when t is a valid interleaving of t1 and t2.

PVS allows a restrictive form of recursive definition. Mutual recursion is not allowed

and the function must be total, so that the function is defined for every value of its

domain. In order to ensure this, a MEASURE function is required. The function has the

same domain as the definition, but its range is nat (in the above case) or ordinals (will

be used later). The MEASURE function is defined to show that the definition terminates,

by generating an obligation that the MEASURE decreases with each call ensuring that the

definition is well-founded.

In the asynchronous version of the parallel operator, we do not need to consider the

bottom event. The synchronisation of the terminal events is defined as follows:

w,w1,w2: VAR terminal

parallel(w)(w1,w2): bool =

IF w = throw THEN

w1 = throw AND w2 = throw
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OR w1 = throw AND w2 = yield

OR w1 = throw AND w2 = tick

OR w1 = yield AND w2 = throw

OR w1 = tick AND w2 = throw

ELSIF w = yield THEN

w1 = yield AND w2 = yield

OR w1 = yield AND w2 = tick

OR w1 = tick AND w2 = yield

ELSE w1 = tick AND w2 = tick

ENDIF

Finally, the parallel composition of traces is defined by combining the interleaving of list

of event and synchronisation of the terminal events. In PVS, the definition is given as

follows:

parallel(r:trace)(p,q: trace): bool =

interleave(proj_1(p),proj_1(q),proj_1(r))

AND parallel(proj_2(r))(proj_2(p),proj_2(q))

After defining parallel composition at the trace level, we can then define the parallel

composition of two processes.

parallel(P,Q: process): process =

{t:trace | EXISTS (p:(P),q:(Q)): parallel(t)(p,q)}

6.4.2 Compensable Processes

Compensable processes have both forward as well as compensation behaviour. While

mechanising compensable processes we mechanise both forward and compensation traces.

Traces for compensable processes are defined in such a way that the compensations at-

tached to the processes will be augmented in the proper order after termination of the

forward behaviour.

Choice

The choice operator for compensable processes is defined in the same way as for standard

processes:

cchoice(PP,QQ:comp_process): comp_process = union(PP,QQ)
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Sequential Composition

The sequential composition for compensable processes is defined in such a way that af-

ter termination of the forward behaviour of the composition, the attached compensation

will be augmented in reverse order to that of the forward behaviour. For traces pp

and qq , their sequential composition (pp ; qq) is defined in such a way that when the

forward behaviour of pp terminates with a X, the forward behaviour of qq is augmented

with the observable forward behaviour of pp and the compensations from pp and qq

(p and q) will be composed in reverse order. But if pp terminates with a terminal

event other than a X, the traces qq will not be considered at all and only compensa-

tion from pp is kept for future reference. The mechanisation in PVS is defined as follows:

seq(pp,qq:comp_trace) : comp_trace =

IF (proj_2(proj_1(pp)) = tick ) THEN

(seq(proj_1(pp),proj_1(qq)),seq(proj_2(qq),proj_2(pp)))

ELSE pp

ENDIF

The composition of process is defined by lifting the sequential composition on traces to

sets of traces as follows:

seq(PP,QQ : comp_process) : comp_process =

{tt:comp_trace | EXISTS (pp:(PP),qq:(QQ)): tt = seq(pp,qq)}

Compensation Pair

The compensation pair is defined from two standard processes: one is a forward process

and another is the compensation. The trace semantics is defined in such a way that if

the terminal event of the forward trace is a tick event then the compensation trace is

augmented to the forward traces. For other terminal events traces of the compensation

are discarded. The definition of traces and processes in PVS is given as follows:

pair(p,q:trace): comp_trace =

IF proj_2(p) = tick THEN

(p,q)

ELSE

(p,(null,tick))

ENDIF

pair(P,Q:process): comp_process =

{tt: comp_trace | EXISTS (p:(P),q:(Q)):

tt = pair(p,q)}
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Parallel Composition

The traces of a parallel composition of compensable processes are defined in a similar

way to standard processes, the only difference is that after the termination of the forward

processes, the corresponding compensations are accumulated in parallel. So, by using

the parallel composition defined for standard processes, the traces here are defined as the

parallel composition of forward behaviour, which then follows the parallel composition

of the compensations. Both the trace and process definition of compensable parallel

composition are defined in PVS as follows:

parallel(rr:comp_trace)(pp,qq : comp_trace): bool =

interleave(proj_1(proj_1(pp)),proj_1(proj_1(qq)),proj_1(proj_1(rr))) AND

parallel(proj_2(proj_1(rr)))(proj_2(proj_1(pp)),proj_2(proj_1(qq))) AND

interleave(proj_1(proj_2(pp)),proj_1(proj_2(qq)),proj_1(proj_2(rr))) AND

parallel(proj_2(proj_2(rr)))(proj_2(proj_2(pp)),proj_2(proj_2(qq)))

parallel(PP,QQ : comp_process): comp_process =

{ tt : comp_trace | EXISTS (pp:(PP),qq:(QQ)) :

parallel(tt)(pp,qq) }

Transaction Block

A transaction block is a standard process, but its semantics requires an understanding

of the semantics of compensable processes. So, the definition is placed here with com-

pensable processes. Recall that, a transaction block will be represented by traces instead

of pairs of traces. The semantics of the block specifies that if the forward part of the

process inside the block terminates with a X, then the trace of the block is the trace of

the forward behaviour and if the terminal event is a throw (!), then the behaviour of the

compensation is augmented to the observable behaviour of the forward behaviour.

block(pp:comp_trace) : trace =

IF (pp‘1)‘2 = throw THEN

(append((pp‘1)‘1,(pp‘2)‘1),(pp‘2)‘2)

ELSE pp‘1

ENDIF

block(PP:comp_process): process =

{ t: trace | EXISTS (pp:(PP)): t = block(pp) }

In the next section, we describe the mechanisation of the operational semantics of stan-

dard and compensable processes.
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6.5 Mechanising the Operational Semantics

The operational semantics is defined by using labelled transitions of the form P
e

−→ P ′

where the event e makes the transition of a process from state P to P ′ and the transition

is labelled by e. We have discussed in Chapter 3 that there are two types of transitions

in our semantic definition: transitions by normal events and transitions by terminal

events. For example, these two transitions are defined for standard processes as follows:

P
a

−→ P ′ (a ∈ Σ)

P
ω

−→ 0 (ω ∈ Ω)

While defining the transition relations in PVS, we follow the same approach and define

the normal and terminal transitions separately. The transition relations are defined in

such a way that they return a boolean value determining whether there is a transition

between two states of a process. We define two types of transitions in PVS for each

operator.

Recall that in Chapter 4, separate equations are derived for normal and terminal tran-

sition relations from the transition rules of each operator in order to support the corre-

spondence proofs. We use those derived equations (e.g. equations 4.3, 4.4, page 49) to

define the normal and terminal transitions for process terms in PVS.

First, we define the terminal transitions for process terms. Recall that the terminal

transitions for standard processes are different from those of compensable processes

(Chapter 3). We define the terminal transitions for both standard and compensable

processes together in PVS. The null process was introduced in Chapter 3 to define the

transition rules. We define a standard process term nul to represent the null process

in the definition of process algebra terms. This definition allows us to combine the

definition of terminal transitions of both standard and compensable processes. The

terminal transition for the process terms are defined in PVS as follows:

wtrans(w: terminal)(P:pa_terms,P1:stand): RECURSIVE bool =

CASES P OF

Skip : w = tick AND P1 = nul,

Throw : w = throw AND P1 = nul,

Yield : w = yield AND P1 = nul

OR w = tick AND P1 = nul,

choice(Q,R): wtrans(w)(Q,nul) AND P1 = nul

OR wtrans(w)(R,nul) AND P1 = nul,

seq(Q,R) : wtrans(tick)(Q,nul) AND wtrans(w)(R,nul) AND P1 = nul

OR

w /= tick AND wtrans(w)(Q,nul) AND P1 = nul,
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|>(Q,R) : wtrans(throw)(Q,nul) AND wtrans(w)(R,nul) AND P1 = nul

OR

w /= throw AND wtrans(w)(Q,nul) AND P1 = nul,

para(Q,R) : EXISTS (w1,w2) :

wtrans(w1)(Q,nul) AND wtrans(w2)(R,nul) AND

parallel(w)(w1,w2) AND P1 = nul,

cchoice(QQ,RR): EXISTS (Q:stand): wtrans(w)(QQ,Q) AND P1 = Q

OR

EXISTS (R:stand):wtrans(w)(RR,R) AND P1 = R,

cseq(QQ,RR): EXISTS (Q,R : stand):

wtrans(tick)(QQ,Q) AND wtrans(w)(RR,R) AND

P1 = seq(R,Q)

OR

wtrans(w)(QQ,P1) AND w /= tick,

cpara(QQ,RR): EXISTS (w1,w2:terminal,Q1,R1:stand):

wtrans(w1)(QQ,Q1) AND wtrans(w2)(RR,R1) AND

parallel(w)(w1,w2) AND P1 = para(Q1,R1),

cpair(Q,R): wtrans(tick)(Q,nul) AND P1= R

OR

wtrans(w)(Q,nul) AND

w/= tick AND P1 = Skip,

blk(QQ): (EXISTS (Q1:stand) :

wtrans(throw)(QQ,Q1) AND

wtrans(w)(Q1,nul) AND P1 = nul)

OR

(EXISTS (Q:stand):

w = tick AND wtrans(w)(QQ,Q) AND P1 = nul),

ax(QQ,R): EXISTS Q: wtrans(w)(QQ,Q) AND

P1 = seq(R,Q)

ELSE FALSE

ENDCASES

MEASURE P BY <<

Note that the PVS MEASURE keyword introduces the measure used to prove the well-

foundedness of the recursion and thus termination of the function. Here the termination

of wtrans is guaranteed since P is decreasing w.r.t. the recursive subterm ordering <<

in the recursive calls.

The transitions by normal events for both standard and compensable processes are

defined as follows:
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ntrans(a:normal)(Pa:pa_terms,Pa1:pa_terms): RECURSIVE bool =

CASES Pa OF

act(a) : Pa1 = Skip,

choice(Q,R) : ntrans(a)(Q,Pa1) OR ntrans(a)(R,Pa1),

seq(Q,R) : EXISTS Q1 : ntrans(a)(Q,Q1) AND

Pa1 = seq(Q1,R)

OR wtrans(tick)(Q,nul) AND

ntrans(a)(R,Pa1),

|>(Q,R) : EXISTS Q1 : ntrans(a)(Q,Q1) AND

Pa1 = |>(Q1,R)

OR wtrans(throw)(Q,nul) AND

ntrans(a)(R,Pa1),

para(Q,R) : EXISTS Q1: ntrans(a)(Q,Q1) AND

Pa1 = para(Q1,R)

OR EXISTS R1: ntrans(a)(R,R1) AND

Pa1 = para(Q,R1),

cchoice(QQ,RR) : ntrans(a)(QQ,Pa1) OR ntrans(a)(RR,Pa1),

cpara(QQ,RR) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND

Pa1 = cpara(QQ1,RR)

OR

EXISTS (RR1:comp): ntrans(a)(RR,RR1) AND

Pa1 = cpara(QQ,RR1),

cseq(QQ,RR) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND

Pa1 = cseq(QQ1,RR)

OR EXISTS (RR1:comp,Q:stand):

wtrans(tick)(QQ,Q) AND

ntrans(a)(RR,RR1) AND

Pa1 = ax(RR1,Q),

cpair(Q,R) : EXISTS (Q1:stand): ntrans(a)(Q,Q1) AND

Pa1 = cpair(Q1,R),

ax(QQ,R) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND

Pa1 = ax(QQ1,R),

blk(QQ) : EXISTS (QQ1:comp): ntrans(a)(QQ,QQ1) AND

Pa1 = blk(QQ1)

OR

EXISTS (Q:stand): wtrans(throw)(QQ,Q) AND

ntrans(a)(Q,Pa1)

ELSE FALSE

ENDCASES

MEASURE Pa BY <<



Chapter 6 Mechanising Semantic Models and their Relationships 96

Standard and compensable processes have similar transitions for normal events. Recall

that the basic processes do not have any normal transitions.

6.6 Mechanising Semantic Relationships

Having the mechanisation of the semantic models, in this section, we outline in PVS

the proof of the relationships between the semantic models. We follow similar steps

in deriving the correspondence as in the hand proofs and hence provide the required

definitions.

Proving the lemmas defined in Chapter 4 for each operator is the key factor to proving the

correspondence between the semantic models. The section shows how we defined all the

lemmas and proved them by applying induction. These lemmas establish the relationship

by proving the correspondence between the derived traces from the operational semantics

and the originally defined traces. First, we define how to derive traces from operational

rules in PVS. A derived trace is defined as a transition of a process term by a trace.

It consists of a transition by a list of normal events followed by a terminal transition.

trans_list defines the transition by a list of normal events:

trans_list(s:list[normal])(P,P1): RECURSIVE bool =

CASES s OF

null : P = P1,

cons(h,tail): EXISTS (Q:stand): ntrans(h)(P,Q) AND

trans_list(tail)(Q,P1)

ENDCASES

MEASURE length(s)

Standard and compensable process terms have different types of transitions. We define

them separately in the following sections.

6.6.1 Standard Processes

For standard processes, the transition of a process term by a trace is defined by combin-

ing trans_list with the terminal transition wtrans. The transition of a process term

by a trace always ends with a null process (0). The transition of a process by a trace is

defined as follows:

trans_trace(t:trace)(P,N:stand) : bool =

EXISTS (Q:stand) :

trans_list(t‘1)(P,Q) AND wtrans(t‘2)(Q,N) AND N = nul
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In the basic steps of the inductive proofs of the lemmas defined in earlier chapters, there

is a transition which shows that a transition of a process term by a trace containing only

one terminal event is the same as a terminal transition, denoted as follows:

P
〈ω〉
−→ 0 = P

ω
−→ 0

In order to support the inductive proofs in PVS, we define it in PVS as a lemma, shown

as follows:

nul_eq : LEMMA

FORALL P : trans_trace((null,w))(P,nul) = wtrans(w)(P,nul)

We also embed the Theorem 4.4 (page 47) concerning the evolution of a standard process

term to a null process. This theorem is required in the inductive proofs of some lemmas:

th1 : LEMMA

FORALL P: EXISTS (s,w): trans_trace(s,w)(P,nul)

By using the definition of transition by a trace and from the original trace definitions

we state the required lemmas for each operator in the following sections.

Sequential Composition

The correspondence proof between the derived traces and the originally defined traces of

a sequential composition is performed by proving the Lemma 4.6 defined in Chapter 4.

The corresponding PVS definition is given as follows:

s,s1,s2 : VAR list[normal]

w,w1,w2 : VAR terminal

seq_lemma : LEMMA

trans_trace((s,w))(seq(P,Q),nul) =

EXISTS (s1,w1,s2,w2) :

(s,w) = seq((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND

trans_trace((s2,w2))(Q,nul)

In the lemma, traces are explicitly defined as pairs to make it easy to apply the induction

scheme. seq_lemma defined above has been proved by induction over s which gives the

required induction scheme that we want to use on traces. While proving the base case

of the induction there are two cases based on whether or not P terminates with a X.

Suitable instantiation will prove the first cases.
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Parallel Composition

The lemma for the asynchronous parallel composition (Lemma 4.10, page 56) is defined

in PVS in a similar fashion as sequential composition:

para_lemma : LEMMA

trans_trace((s,w))(para(P,Q),nul) =

EXISTS (s1,w1,s2,w2) :

parallel((s,w))((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND

trans_trace((s2,w2))(Q,nul)

Similar to sequential composition, we prove the lemma by applying induction over s.

6.6.2 Compensable Processes

Compensable processes have forward and compensation behaviour. The compensation

behaviour is the same as that of standard processes. We have shown in an earlier chapter

how to reuse the proofs from standard processes for compensation. Therefore, we only

need to derive traces from the forward behaviour and show their correspondence with

the original definition of forward traces.

As for standard processes, we define the transition of compensable process terms by a

list of normal events as ‘ctrans_list’. By combining it with the terminal transition,

we define the transition of a compensable process term by the forward traces as follows:

ftrans_trace(t:trace)(PP:comp,P:stand) : bool =

EXISTS QQ : ctrans_list(t‘1)(PP,QQ) AND wtrans(t‘2)(QQ,P)

We define the transition of a compensable process term by combining the transition by

the forward traces and the transition by the compensation traces (same as standard

trace transition) in PVS as follows:

ctrans_trace(tt:comp_trace)(PP:comp,N:stand): bool =

EXISTS P: ftrans_trace(tt‘1)(PP,P) AND

trans_trace(tt‘2)(P,N) AND N = nul

We also extend the definitions of ‘nul_eq’ and ‘th1’ to reflect the changes for compens-

able processes:
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c_null_eq: LEMMA

FORALL PP: ftrans_trace((null,w))(PP,P) = wtrans(w)(PP,P)

c_th1: LEMMA

FORALL PP: EXISTS P,s,w: ftrans_trace((s,w))(PP,P)

Sequential Composition

For sequential composition of compensable processes Lemma 4.7 (page 52) is defined for

the lifted forward behaviour:

(PP ;QQ)
t

−→ R = ∃P ,Q , p, q · t = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND (last(p) = X, (Q ; P), P)

Only the definition of the forward trace transition is taken into account to define the

above lemma. PVS has support for defining the COND expression in the lemma, which

has the same definition that we required here. The lemma is defined in PVS as follows:

cseq_lemma : LEMMA

ftrans_trace((s,w))(cseq(PP,QQ),R) =

EXISTS P,Q, s1,w1,s2,w2 :

(s,w) = seq((s1,w1),(s2,w2)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q) AND

R = COND

tick?(w1) -> seq(Q,P),

ELSE -> P

ENDCOND

Parallel Composition

For the lifted forward traces for parallel composition of compensable process terms,

Lemma 4.11 is defined in PVS as follows:
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cpara_lemma : LEMMA

ftrans_trace((s,w))(cpara(PP,QQ),R) =

EXISTS (P,Q,s1,s2,w1,w2) :

parallel((s,w))((s1,w1),(s2,w2)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q) AND

R = para(P,Q)

Compensation Pair

The compensation pair is the basic way of constructing a compensable process. A

compensation pair (P ÷ Q) consists of two standard processes: forward behaviour (P)

and compensation (Q). The Lemma 4.12 (page 59) is defined to show the correspondence

for a compensation pair:

(P ÷ Q)
(t ,t ′)
−→ 0 = ∃ p, q · (t , t ′) = (p ÷ q) ∧ P

p
−→ 0 ∧ Q

q
−→ 0

In order to define this lemma in PVS, we not only need the forward traces but also the

compensation traces. We define the lemma by using the definition ctrans_trace. The

PVS definition is given as follows:

pair_lema : LEMMA

ctrans_trace((s,w),(s3,w3))(cpair(P,Q),nul) =

EXISTS (s1,w1,s2,w2) :

((s,w),(s3,w3)) = pair((s1,w1),(s2,w2)) AND

trans_trace((s1,w1))(P,nul) AND

trans_trace((s2,w2))(Q,nul)

We apply induction over s. According to the semantics of the compensation pair, the

trace from the compensation can be either empty or a trace from Q. Unlike other oper-

ators, here we need to consider both forward and compensation behaviour. In order to

support the proof, it is also required to use both trace and transition rules. We need to

use a transition rule in the base case of the proof and in order to support the proof we

define as axiom from the derived equation 4.22 (page 59). As it is a direct consequence

of the transition rule, we define it as an axiom.
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nul_induct : AXIOM

ctrans_trace((null,w),(s3,w3))(cpair(P,Q),nul) =

(w = tick AND wtrans(tick)(P,nul) AND trans_trace(s3,w3)(Q,nul))

OR

w /= tick AND wtrans(w)(P,nul) AND Q = Skip AND

null?(s3) AND w3 = tick AND wtrans(tick)(Skip,nul)

In the inductive case of the proof, we use a supporting lemma ‘add2pair‘ which states

that adding an event to the traces of the pair is adding it in front of the forward trace

of the pair:

add2ctrace(a:normal,t3:comp_trace) :

comp_trace = ((cons(a,(t3‘1)‘1),(t3‘1)‘2),t3‘2)

add2pair : LEMMA

add2ctrace(a,pair(p,q)) = pair((cons(a,p‘1),p‘2),q)

6.6.3 Transaction Block

The important feature of the transaction block is that it returns the behaviour of a

standard process from the behaviour of the compensable process inside the block. The

rules for compensable processes are applied for the process inside the block.

Lemma 4.13 (page 60) is defined to derive the correspondence for the block operator:

[PP ]
t

−→ 0 = ∃ p, p′ · t = [p, p′] ∧ PP
p,p′

−→ 0

The lemma is defined in PVS as follows:

block_lemma : LEMMA

trans_trace((s,w))(blk(PP),nul) =

EXISTS (s1,w1,s2,w2):

(s,w) = block((s1,w1),(s2,w2)) AND

ctrans_trace((s1,w1),(s2,w2))(PP,nul)

6.7 Mechanising Synchronous Semantic Models

We have extended the semantic models to define the synchronisation between observable

events for the parallel operator in Chapter 5. We have already shown the mechanisation



Chapter 6 Mechanising Semantic Models and their Relationships 102

of the asynchronous version of the parallel processes. This section is devoted to the

mechanisation of the semantics and their relationships for the synchronous concurrency

operator.

Before mechanising the semantic models of the operator, first we define the syntax for

the operator for both the trace and the operational semantics. The syntax defined

in Table 6.1 and in Table 6.2 are extended with the synchronisation operator. To

denote the trace semantics, we write full_parallel(X)(P,Q) for standard processes

cfull_parallel(X)(PP,QQ) for compensable processes. Here X represents the synchro-

nisation set. The process algebra terms are also extended to include the synchronising

operator for both standard and compensable processes:

pa_terms : DATATYPE WITH SUBTYPES stand, comp

BEGIN

.....

synpara(X:setof[normal], P1:stand, Q1:stand) : synpara? :stand

csynpara(X:setof[normal], P:comp, Q:comp) : csynpara? :comp

.....

END pa_terms

6.7.1 Trace Semantics (Synchronous Parallel)

The trace semantics of the asynchronous processes is extended to support synchronisa-

tion. In the synchronisation of processes, some events will synchronise and others will

interleave. In the following sections, we define the trace semantics for both standard

and compensable processes.

Standard Processes

In order to define the synchronous composition of processes we need to define both

synchronising and interleaving events. So, we can extend the asynchronous definition

to consider all the scenarios of synchronised composition. Note that while mechanising

asynchronous semantics, the interleaving of observable events and synchronisation of

terminal events are defined separately in PVS and later they are put together in the

trace definition. However, this kind of separation is not possible in the synchronous

definition as there is now synchronisation between observable and terminal events which

will result in either interleaving of events or a bottom event, e.g., a &⊥ = ⊥. The

synchronisation of events, e.g., a & a = a, a & a ′ = ⊥, a &⊥ = ⊥ is encoded directly in

trace composition.

The synchronisation between terminal events is also extended to include the bottom

event in the definition. Instead of modifying the existing definition we define a new



Chapter 6 Mechanising Semantic Models and their Relationships 103

synchronisation where the previous definition is used in the appropriate case. The

extended definition is give below:

syn_parallel(w3:terminal)(w1,w2:terminal) : bool =

IF w3 = bottom THEN

w1 = bottom OR w2 = bottom

ELSE parallel(w3)(w1,w2) ENDIF

We let X be the set of synchronising normal events. The trace semantics of the synchro-

nised parallel operator (Definition 5.1, page 69) is defined in PVS as follows:

full_parallel(X)((s1,w1))((s2,w2))((s3,w3)) : RECURSIVE bool =

CASES s3 OF

null:

null?(s1) AND null?(s2) AND syn_parallel(w3)(w1,w2)

OR cons?(s1) AND X(car(s1)) AND null?(s2) AND w3 = bottom

OR cons?(s2) AND X(car(s2)) AND null?(s1) AND w3 = bottom

OR cons?(s1) AND X(car(s1)) AND cons?(s2) AND X(car(s2)) AND

car(s1) /= car(s2) AND w3 = bottom,

cons(a,tail):

IF X(a) THEN

cons?(s1) AND cons?(s2) AND

car(s1) = a AND car(s2) = a AND

full_parallel(X)((cdr(s1),w1))((cdr(s2),w2))((tail,w3))

ELSE

cons?(s1) AND car(s1) = a AND

full_parallel(X)((cdr(s1),w1))((s2,w2))((tail,w3))

OR cons?(s2) AND car(s2) = a AND

full_parallel(X)((s1,w1))((cdr(s2),w2))((tail,w3))

ENDIF

ENDCASES

MEASURE length(s3)

According to the PVS style for sets, here X acts as a boolean function on normal events.

The trace definition is lifted to the set of traces to define the synchronisation of processes.

Synchronisation of processes are defined as follows:

full_parallel(X)(P,Q : process): process =

{t : trace | EXISTS (p:(P),q:(Q),s1,w1,s2,w2,s3,w3):

p = (s1,w1) AND q = (s2,w2) AND t = (s3,w3) AND

full_parallel(X)((s1,w1))((s2,w2))((s3,w3))

}
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Compensable Processes

Compensable processes are defined in a similar way to standard processes with the

compensation behaviour added. The trace semantics of compensable processes (Defini-

tion 5.3 and 5.4, page 70) is defined in PVS as follows:

cfull_parallel(X)((p,p1))((q,q1))((r,r1)) : bool =

(full_parallel(X)(p)(q)(r) AND

full_parallel(X)(p1)(q1)(r1) AND

r‘2 /= bottom)

OR full_parallel(X)(p)(q)(r) AND

r‘2 = bottom AND null?(r1‘1) AND

r1‘2 = bottom

cfull_parallel(X)(PP,QQ:comp_process): comp_process =

{ tt:comp_trace | EXISTS (pp:(PP),qq:(QQ)) :

cfull_parallel(X)(pp)(qq)(tt)

}

6.7.2 Operational Semantics (Synchronous Parallel)

The transition rules for asynchronous composition are extended to define synchronous

composition.

In a normal transition, processes either synchronise or interleave with each other. We let

X be the set of synchronising events. By extending the asynchronous transition rules,

we define the synchronised transition rules as follows:

synpara(X,Q,R):

IF X(a) THEN

EXISTS Q1,R1 : ntrans(a)(Q,Q1) AND ntrans(a)(R,R1) AND

Pa1 = synpara(X,Q1,R1)

ELSE

EXISTS Q1 : ntrans(a)(Q,Q1) AND

Pa1 = synpara(X,Q1,R)

OR EXISTS R1 : ntrans(a)(R,R1) AND

Pa1 = synpara(X,Q,R1)

ENDIF

csynpara(X,QQ,RR) :

IF X(a) THEN

EXISTS QQ1,RR1 : ntrans(a)(QQ,QQ1) AND ntrans(a)(RR,RR1) AND

Pa1 = csynpara(X,QQ1,RR1)

ELSE
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EXISTS QQ1 : ntrans(a)(QQ,QQ1) AND

Pa1 = csynpara(X,QQ1,RR)

OR EXISTS RR1 : ntrans(a)(RR,RR1) AND

Pa1 = csynpara(X,QQ,RR1)

In Section 5.4.1, and 5.4.2, we have defined transition rules for both standard, and com-

pensable processes. We have defined rules for both cases, where synchronising processes

synchronise with each other, and synchronising processes introduce a bottom when they

fail to synchronise over synchronising events. All these transition rules are essential for

a case by case analysis for the lemmas of the synchronising processes. Those transition

rules are defined in PVS as follows:

synpara(X,Q,R):

EXISTS w1,w2: syn_wtrans(w1)(Q,nul) AND

syn_wtrans(w2)(R,nul) AND

syn_parallel(w)(w1,w2) AND P1 = nul

OR EXISTS (a:normal,w1,Q1): X(a) AND ntrans(a)(Q,Q1) AND

syn_wtrans(w1)(R,nul) AND

w = bottom AND P1 = nul

OR EXISTS (a:normal,w1,R1) : X(a) AND ntrans(a)(R,R1) AND

syn_wtrans(w1)(Q,nul) AND

w = bottom AND P1 = nul

OR EXISTS (a1,a2:normal,Q1,R1): X(a1) AND X(a2) AND a1 /= a2 AND

ntrans(a1)(Q,Q1) AND ntrans(a2)(R,R1) AND

w = bottom AND P1 = nul,

csynpara(X,QQ,RR):

EXISTS Q1,R1,w1,w2 : syn_wtrans(w1)(QQ,Q1) AND

syn_wtrans(w2)(RR,R1) AND syn_parallel(w)(w1,w2) AND

w /= bottom AND P1 = synpara(X,Q1,R1)

OR EXISTS (a:normal,w1,QQ1,R1): X(a) AND

ntrans(a)(QQ,QQ1) AND syn_wtrans(w1)(RR,R1) AND

w = bottom AND P1= nul

OR EXISTS (a:normal,w1,Q1,RR1): X(a) AND

syn_wtrans(w1)(QQ,Q1) AND ntrans(a)(RR,RR1) AND

w = bottom and P1 = nul

OR EXISTS (a1,a2:normal,QQ1,RR1):

X(a1) AND X(a2) AND a1 /= a2 AND

ntrans(a1)(QQ,QQ1) AND ntrans(a2)(RR,RR1) AND

w = bottom AND P1 = nul

With the introduction of the ⊥, we can extend the existing definitions of terminal transi-
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tions. The transition rules defined earlier assumed ω 6= ⊥. We can extend each transition

rule adding the term: ω 6= ⊥ ⇒ . . .. For example, the terminal transitions of standard

sequential composition can extended as follows:

seq(Q,R) : w /= bottom IMPLIES

(wtrans(tick)(Q,P1) AND wtrans(w)(R,nul)

OR

w /= tick AND wtrans(w)(Q,nul)),

6.7.3 Proving Synchronous Semantic Relationships

With the extended definitions of the semantic models, we can now define the lemmas

showing the correspondence between the semantic models.

Standard Processes

The lemma for standard processes (Lemma 5.7, page 75) is defined as follows:

synpara_lemma : LEMMA

trans_trace((s,w))(synpara(X,P,Q),nul) =

EXISTS (s1,w1,s2,w2) :

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

trans_trace((s1,w1))(P,nul) AND

trans_trace((s2,w2))(Q,nul)

It is mentioned in an earlier chapter that during synchronisation processes might dead-

lock and terminate with a bottom event representing the partial behaviour from the

composition. We also consider it in the proof of the above lemma.

Compensable Processes

We define two separate lemmas for the parallel operator for the compensable processes.

In one lemma, we consider those cases where processes will synchronise or interleave but

do not introduce a ⊥. In the other lemma, we consider those cases where processes fail

to synchronise and we get a partial behaviour from the composition.

First, we define the lemma considering that processes will not fail to synchronise and

hence, there is no bottom event in the derived trace:
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(PP ‖X QQ)
t

−→ R = ∃ p, q ,P ,Q · t ∈ (p ‖X q) ∧ last(t) 6= ⊥

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖X Q)

The corresponding definition in PVS is given as follows:

csynpara_lemma : LEMMA

ftrans_trace((s,w))(csynpara(X,PP,QQ),R) =

EXISTS (s1,w1,s2,w2,P,Q):

w /= bottom AND

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q) AND

R = synpara(X,P,Q)

Next, we define the lemma where compensable parallel processes fail to synchronise

during their synchronisation. We get partial behaviour from the composition and the

lemma for this situation is defined as follows:

(PP ‖X QQ)
t

−→ 0 = ∃ p, q ,P ,Q · t ∈ (p ‖X q) ∧ last(t) = ⊥

∧ p ∈ T (PP) ∧ q ∈ T (QQ)

We define the lemma in PVS in the same way as the previous lemma. The main difference

is that the derived trace now ends with a bottom representing the partial behaviour and

compensations are not accumulated after termination. The lemma is defined in PVS as

follows:

lema_bot : LEMMA

ftrans_trace((s,w))(csynpara(X,PP,QQ),nul) =

EXISTS (s1,w1,s2,w2,P,Q):

w = bottom AND

full_parallel(X)((s1,w1))((s2,w2))((s,w)) AND

ftrans_trace((s1,w1))(PP,P) AND

ftrans_trace((s2,w2))(QQ,Q)

6.8 Discussion

Our main purpose of this experiment of mechanisation was to find a feasible mecha-

nisation, where we can mechanise both semantic models, and prove their relationship

by following the steps as shown in the hand proofs, so in a later stage, the proof tech-

niques can be applied to proofs without any support from the hand proof. To meet
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this goal, after mechanising the semantic models, we have performed our experiments to

verify whether we can follow the proof steps as shown in the hand proofs to prove some

lemmas. After successfully mechansing the sequential, and the parallel composition of

standard processes, our next challenge was to mechanise the proofs for the compensation

pair, and the transaction block, because their proofs require the use of mutually defined

datatypes. One of our main challenges was to mechanise the synchronous composition

of processes, because no hand proof has been defined for them, and each proof consists

of several cases, which make the proofs difficult to handle.

Although defining process algebras in PVS is not new, our novelty in this experiment

is that, we have defined the cCSP process algebra, and the two semantic models, and

we have proved a relationship between these semantic models. We have followed similar

steps to mechanise the proofs as shown in the hand proofs, and it has given us the

confidence in our language definitions. In this section, we discuss our experiences in

PVS. We discuss the proof techniques that we have followed in this chapter. We also

discuss the limitations of the current techniques, and the difficulties while doing the

proofs. Finally, we mention the lessons that we have learned from the experiment.

We have defined the operators in terms of their semantic models, and laws of these

operators can be proved from these semantic definitions. We have defined the lemmas

by using a boolean equality between the derived trace, and the derived equation from the

definition of the original trace. During the proofs, for both the base, and the inductive

cases, this equality has been translated into double implication. For example, a lemma

defined of the form, A = B will have the form A ⇔ B . As a result, we have to prove

A ⇒ B as well as B ⇒ A.

For example, consider Lemma 4.6 for the sequential composition. First, we apply induc-

tion over s, and we get the base, and the inductive case. Only the base case is shown

here:

seq_lemma :

|-------

{1} FORALL (P, Q: stand, s: list[normal], w: terminal):

trans_trace(s, w)(seq(P, Q), nul) =

(EXISTS (s1, w1, s2, w2):

(s, w) = seq((s1, w1), (s2, w2)) AND

trans_trace(s1, w1)(P, nul) AND trans_trace(s2, w2)(Q, nul))

Rule? (induct "s")

Inducting on s on formula 1,

this yields 2 subgoals:

seq_lemma.1 :

|-------

{1} FORALL (P, Q: stand, w: terminal):
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trans_trace(null, w)(seq(P, Q), nul) =

(EXISTS (s1, w1, s2, w2):

(null, w) = seq((s1, w1), (s2, w2)) AND

trans_trace(s1, w1)(P, nul) AND trans_trace(s2, w2)(Q, nul))

In order to carry on the proof, the equations are then skolemized, and flattened, and

finally, iff, which converts the boolean equality into implication.

Rule? (iff)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

seq_lemma.1 :

|-------

{1} trans_trace(null, w!1)(seq(P!1, Q!1), nul) IFF

(EXISTS (s1, w1, s2, w2):

(null, w!1) = seq((s1, w1), (s2, w2)) AND

trans_trace(s1, w1)(P!1, nul) AND trans_trace(s2, w2)(Q!1, nul))

We then get two implications to be proved after splitting the subgoal.

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:

seq_lemma.1.1 :

|-------

{1} trans_trace(null, w!1)(seq(P!1, Q!1), nul) IMPLIES

(EXISTS (s1, w1, s2, w2):

(null, w!1) = seq((s1, w1), (s2, w2)) AND

trans_trace(s1, w1)(P!1, nul) AND trans_trace(s2, w2)(Q!1, nul))

seq_lemma.1.2 :

|-------

{1} (EXISTS (s1, w1, s2, w2):

(null, w!1) = seq((s1, w1), (s2, w2)) AND

trans_trace(s1, w1)(P!1, nul) AND trans_trace(s2, w2)(Q!1, nul))

IMPLIES trans_trace(null, w!1)(seq(P!1, Q!1), nul)

For the former case, we apply the same proof steps that we have already applied in hand

proofs. However, for the later case, the same proof steps cannot be applied directly. After

analysing the proof steps of the first case, and by using the trace, and the operational

rules, it is possible to prove the second case.
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The mechanisation of the proofs has helped us identifying some definitions that were not

explicitly defined in the hand proofs. Some supporting lemmas have also been discovered

in the inductive proofs that have helped to carry on the corresponding proofs. Some

of them are specific to particular lemmas, whereas two lemmas are applied in all the

proofs. The lemma nul_eq states that, a transition by a trace, where the trace has only

terminal event, is same as a terminal transition. The PVS ‘grind’ command can prove

this lemma. Another lemma is ‘th1’, which states that, all the process terms have a

trace. From the original definition of traces, we know that a trace of a process has at

least a terminal event, and it can be written as,

〈ω〉 ∈ T (P)

⇒ 〈ω〉 ∈ DT (P)

= P
〈ω〉
−→ 0

The lemma can be proved by following the above derivation. In the inductive case of

each lemma, we have used a rule, which has derived from the transition rules of the

corresponding operator. The general form of the rule can be defined as follows:

P
〈a〉t
−→ 0 = ∃P ′ · P

a
−→ P ′ ∧ P ′ t

−→ 0

We have discussed that, in mechanisation, we have to prove some steps, which were

not required in the hand proofs (B ⇒ A), and to support this step, we have defined

some supporting lemmas, and axioms. For example, consider Lemma 4.6 for sequential

composition of standard processes, a lemma has been defined from the following trace

rules:

(〈ω〉 = p ; q) = (p = 〈X〉 ∧ q = 〈ω〉

∨ p = 〈ω〉 ∧ ω 6= X)

The corresponding PVS definition is given as follows:

empty_trace : LEMMA

(null,w)= seq((s1,w1),(s2,w2)) =

(null?(s1) AND w1 = tick AND null?(s2) AND w = w2)

OR null?(s1) AND w1/= tick AND w = w1

For the inductive step, we have defined another lemma from the following trace rule:

(〈a〉t = p ; q) = (∃ p′ · p = 〈a〉p′ ∧ t = p′ ; q

∨ p = 〈X〉 ∧ q = 〈a〉t)

For the convenience of proof, we have defined the lemma in PVS as follows:
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eq3 : LEMMA

(cons(a,s),w) = seq((s1,w1),(s2,w2)) =

(NOT null?(s1) AND cons?(s1) AND

car(s1) = a AND (s,w) = seq((cdr(s1),w1),(s2,w2)))

OR (null?(s1) AND w1 = tick AND NOT null?(s2) AND cons?(s2) AND

car(s2) = a AND (s,w) = seq((s1,w1),(cdr(s2),w2)))

The proofs for the compensation pair, and the transaction block were crucial in our

experiments. Due to their behaviour, it was harder to prove them than the other lemmas.

Like other lemmas, we have defined some axioms for them to support their proofs. For

the compensation pair, we have used a rule derived from the trace semantics, defined as

follows:

((〈a〉t , t ′) = (p ÷ q)) = ∃ p′ · p = 〈a〉p′ ∧ (t , t ′) = (p′ ÷ q)

For the transaction block, we have used two rules derived from the trace semantics, as

follows:

• (〈a〉t = [ p, p′ ]) = ∃ p′′ · p = 〈a〉p′′ ∧ t = [ p′′, p′ ]

∨ p = 〈 ! 〉 ∧ ∃ p′′ · p′ = 〈a〉p′′ ∧ t = [ p, p′′ ]

• (〈ω〉 = [ω1, ω2 ]) = ω1 = ! ∧ ω = ω2

∨ ω1 = X ∧ ω = ω1

6.8.1 Limitations

Although we have successfully mechanised most of the operators of cCSP, and proved

several lemmas showing the relationship between the two semantic models, our mech-

anisation techniques have several limitations. There are also several difficulties that

we have faced during mechanisation. In this section, we describe the limitations, and

difficulties in our mechanisation techniques, and we outline their impacts in the proofs.

In the typechecking of the operational rules, two TCCs are not discharged automatically,

which are generated to verify the subterm relation of the block operator. Although by

adding Q1<<P, and Q<<P in wtrans, and ntrans respectively, can remove those TCCs,

it will introduce inconsistencies in the definitions as well as in the proofs, and it will not

allow the definition of block inside a block. We were unable to find a proper solution of

this problem. As we know that the current definition allows block inside block, we have

proved the lemma leaving those TCCs unfinished.

We have defined the terminal transitions of all the process terms in a single definition,

wtrans. We have first defined the terminal transitions, and then the normal transitions,

where the terminal transitions have been used in the definitions of normal transitions.
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Unlike the terminal transitions of other process terms, the terminal transitions of the

synchronised processes have both normal, and terminal transitions. Hence, it is not

possible to included these transition rules in the existing definitions, and a separate

definition has been given for them. This definition does not have any observable effect in

the current proofs, where our main concern is to prove the lemma showing a relationship

between the two semantic models. But, in this definition, the synchronised terminal

transition is considered only at the outermost level of a composition, which is not suitable

for a general case. An extensive investigation is required to find a solution, which can

be applied to the general case.

In the proof of the lemma ‘csynpara_lemma’, only those transitions are considered,

where the synchronisation does not introduce a bottom. The terminal transitions for

the synchronised compensable processes have four possible transitions, and three of

them introduce bottom. When this definition is expanded in the proof of the lemma,

those three transitions contradict the definition of the lemma, and it is not possible to

continue the proofs for those cases. As those three cases are not considered in the proofs,

a possible solution of the problem that we have taken is by removing those transitions

while proving this particular lemma.

We have mentioned that, for each lemma of the form A = B , in PVS, we have to

prove A ⇒ B , and B ⇒ A, where the proofs of the former case follow the steps in

the hand proofs, and for the later case, the proof steps follow the opposite direction

of the former case. If we check any proof tree shown in the Appendix C, we can see

that each tree has two subtrees: one for the base case, and another for the inductive

case. For each case, there are also two subtrees. The left part represents the proof

steps in the hand proofs, and the right part represents the proof steps that have not

done in the hand proofs (B ⇒ A). For all the lemmas, especially, those for synchronous

composition, the mechanical proofs require several times more steps than that of hand

proofs. The mechanical proofs overcome several limitations in the hand proofs, and able

to handle complex cases, like, synchronisation, and it might be a trade-off between these

advantages, and the number of proof steps.

Although we have successfully mechanised both asynchronous, and synchronous compo-

sition of processes, we are at an early stage in mechanising the synchronous composition

of compensable processes. With some limitations, we have mechanised the proofs of the

lemmas for the synchronous composition of compensable process, but to make the proofs

applicable for a general case, it is required to pursue further research in this direction.

6.8.2 Lessons Learned

We started mechanising the semantic models and their relationship in order to inves-

tigate the feasibility of the mechanisation process. Feasible mechanisation will allow
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us to perform the proofs for the future extensions of the language without performing

any proof by hand. Considering this, while deriving the proofs for the synchronous

composition of processes, we have avoided describing the proof steps in the hand proofs

(Chapter 5). In this chapter, the proofs for the sequential and the asynchronous com-

positions have been mechanised by following the steps as in the hand proofs. The proof

steps of the lemmas are similar. After being familiar with the proof steps of the asyn-

chronous composition, the proofs for the synchronous composition have been carried out

in PVS, without any support from the proofs by hand.

It is not necessary to master all the proof commands in order to use the PVS prover

for a particular purpose. All of our lemmas have similar proof steps, and same proof

commands have been used in many proofs. Some proof commands are the induction

scheme, the case analysis, the quantifier instantiation, the skolemization, the proposi-

tional simplification rules (flatten, split). The PVS prelude theories provide a good

source of background mathematics, and a rich source of examples.

In an earlier stage, we had defined separate transition rules for standard, and compens-

able processes, which did not allow us to prove some lemmas. Adding the null process

in the definition of the process terms, allowed us to combine the transition rules for both

standard and compensable processes, and prove the lemmas. The user defined recur-

sive datatype definition of PVS is a very useful mechanism to define mutually recursive

datatype, which permitted us to define the cCSP process terms in PVS.

In the hand proofs, it is easy to be imprecise about recursion, and typing of the rules.

The mechanisation forces to be strict about datatypes, and recursion. This helped us to

define the theorems, and the lemmas in a systematic way, and to prove all the lemmas

by following a similar fashion. The mechanisation also helped us identifying some lem-

mas which were not explored in the hand proofs, e.g., nul_eq, c_nul_eq, add2trace

etc. The mechanisation of the semantic models and their relationships also deepen our

understanding of the semantic models for both standard and compensable processes.

6.9 Related Work

A lot of existing work has been devoted to mechanisation by using the generic theorem

prover PVS. However, most of them are aimed at concrete applications and very few of

those had their focus in theoretical issues, especially on mechanising process algebras or

their semantics. This is the first attempt at mechanising the cCSP process algebra by

using PVS and to the best of our knowledge this is also the first attempt at mechanising

both operational and denotational models of an algebra as well as their relationships by

using PVS.

One of the contributions most related to our work is by Basten and Hooman in [12],
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where the focus is on the use of a general purpose proof checker, e.g., tool support

for the proof of theoretical properties of an ACP-style process algebra [10] . The idea

is to apply equational reasoning. Mechanical support for both verification of concrete

applications and proving theoretical properties of the process algebra are investigated.

The significant similarity with our work is that the process terms are defined by means

of abstract datatypes of PVS which helps to use induction on the structure of the terms.

After defining the process terms, process equivalence has been drawn along with proving

some algebraic properties. A comparison had also been made between defining process

terms as an uninterpreted type with defining them using an abstract datatype. The main

difference with our work is that they used algebraic semantics to define the processes, and

process equivalence is drawn by axiomatic definition, whereas we use a different process

algebra and define both operational and denotation semantics and process equivalence

is defined by using trace equivalence.

It is already mentioned that PVS has been used in [38, 39, 40] to mechanise the trace

semantics of CSP. Their goal is to verify an authentication protocol specified in CSP

to overcome errors in the manual verification as well as improve the scalability of the

approach. The mechanisation is based on a semantic embedding of CSP. The traces are

defined by using a list of events and processes are defined by prefix-closed sets of traces.

The important distinction with the present work is that cCSP traces are non-empty

and completed and processes are defined accordingly. So the trace definition mentioned

above is not applicable in our definitions. Also our research focus is in proving the

theoretical properties, especially proving the relation between semantic models, not in

concrete applications.

Camilleri [30] showed how to mechanise a subset of the CSP operators by using the

theorem prover HOL [52]. The trace model for a subset of the CSP operators was

mechanised in HOL. Initially, events, alphabets and traces are defined and then CSP

operators are defined in terms of their trace semantic models. And later laws related

to the operators are proved from the sematic definition. In contrast to our approach

no syntax is defined at this stage and operators are defined directly in HOL. Syntax is

defined later and the semantics of the language is shown based on the already defined

semantics. A similar work for the π-calculus can be found in [71].

One of our main goals is to explore the ways of incorporating process algebra in a general

purpose theorem prover. In that respect, a closely related research on the tool support

for a process algebra shown in [55], where a CSP-like algebra, called DI-Algebra [61] is

formalised in HOL. The algebra is used to reason about synchronous circuits. Process

syntax and algebraic laws are defined, but no semantics are defined. Tactics are defined

for both syntactic and algebraic approach. In the syntactic approach operators in the

algebra are defined inductively whereas in the algebraic approach processes are defined

as functions and axioms are used to define their properties.
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Case Study

The cCSP language has been developed with the intention of modelling long running

business transactions. We have developed the semantic models along with establishing

their relationship in previous chapters. In this chapter, we present case studies by mod-

elling business transactions using cCSP constructs. Modelling these business processes

shows the expressiveness of cCSP constructs and shows how the compensations are or-

chestrated and at the same time allows us to identify the possible areas to improve the

language.

7.1 Introduction

While defining business processes in cCSP, a process is described in terms of its in-

teractions with its environment or other processes. The interactions are described by

using atomic actions via channels as in standard CSP [59]. In order to model business

processes using the cCSP constructs, we add some constructs to the language which are

considered as syntactic sugar to the language.

First, we define communication between processes. As defined in standard CSP, a com-

munication is an event described by a pair c.v where c is the name of the channel on

which communication takes place and v is the value of the message which passes.

A construct can be defined to allow an input on channel in of any item x in a set M

and the value x determines the subsequent behaviour:

in?x : M ;Q(x ) =̂ 2
x∈M

in.x ;Q(x )

The complement to the input construct is the output which has the form defined as

115
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follows:

out !x = out .x

All communications, both input and output, take place via channels. When drawing di-

agrams of processes, the channels are drawn by using arrows in the appropriate direction

to define them as input or output and labelled with names of the channels (Figure 7.1).

outin Process (P)

Figure 7.1: Channels of a process

Suppose P and Q are processes and c is an output channel of P and an input channel

of Q . When these processes are composed to execute concurrently (P ‖ Q), a commu-

nication c.v can occur only when both processes engage simultaneously in that event,

i.e., whenever P outputs a value v on the channel c, Q simultaneously inputs the same

value.

The cCSP choice operator is a binary operator. While modelling the business transac-

tions we use the indexed version of the operator, which is defined as: 2
x ∈S

Px , e.g.,

2
x ∈{S1,S2...Sn}

Px = PS1
2 PS2

. . . 2 PSn

In the composition P ‖ Q , processes P and Q interleave with each other and when three

processes are placed in parallel, it does not matter in which order they are put together.

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R

In the composition P ‖X Q , processes P and Q synchronise on events from the set X .

In the compensation pair, we also use I/O parameters. By following the definition of

standard CSP, a parameterised compensation pair can be defined as follows:

(A?x ÷ B .x ) ;P(x ) = 2
x∈S

(A.x ÷ B .x ) ;P(x )

Here S is finite.

When we define a transaction block, the process inside the block is a compensable

process. In the examples presented in this chapter, some processes inside a transaction

block are explicitly not defined as compensable processes where the definition is implicit

to the process definition (e.g., paired with a Skip).
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7.1.1 Chapter Structure

In the rest of the chapter, we first model an example of a car broker web service that

provides online support for customers to buy cars and to arrange loans for these. The

car broker web service uses two other web services: one for finding a better quote for the

ordered car and another for arranging loans. We specify their behaviour after describing

the behaviour of the car broker web service. We provide two versions of the car broker

web service. These examples differ from our earlier example using cCSP (Section 2.6)

because of the definition of synchronisation. Finally, we discuss our experiences while

modelling these case studies and conclude the chapter.

7.2 Car Broker Web service

A car broker web service negotiates car purchases for buyers and arranges loans for

these. The car broker uses two separate web services: a Supplier to find a suitable

quote for the requested car model and a Lender to arrange loans. Each web service

can operate separately and can be used in other web services. In the following sections,

first we describe the car broker web service and then describe the two other web ser-

vices. We show how these web services can be composed together for the car broker

web service. The original car broker example can be found in [115, 116]. In this case

study, we mainly consider how processes are communicating with each other and how

compensation is handled when an interruption is occurred. We abstract several details

from our description, e.g., how a supplier finds suitable quote for a car model, how a

broker selects a quote from several available quotes, how a lender decides to select a loan

request, the details a buyer request etc.

7.2.1 A Car Broker Web Service

We model a car broker web service Broker. It provides online support to customers

to negotiate car purchases and arranges loans for these. A buyer provides a need for a

car model. The broker first uses its business partner Supplier to find the best possible

quote for the requested model and then uses another business partner LoanStar to

arrange a loan for the buyer for the selected quote. The buyer is also notified about the

quote and the necessary arrangements for the loan. Both LoanStar and the Buyer

can cause an interrupt to be invoked. A loan can be refused due to a failure in the loan

assessment and a customer can reject the loan and quoted offer. In both cases, there is

a need to run the compensation, where the car might have already been ordered, or the

loan has already been offered. The behaviour of the Broker web service is depicted in

Figure 7.2.



Chapter 7 Case Study 118

RFQ

Ack

Reply

BrokerBuyer
Quote

Order

Quote

Order

Cancel

ReqLoan

LoanStar

Supplier

Figure 7.2: Architectural view of Car Broker web Services

A separate description of the other two web services will be given later in this chapter.

We also add the abstract behaviour of the buyer in order to show the interaction with

the Broker web service.

The first step of the transaction is a compensation pair, where the primary action is to

receive an order from the buyer and the compensation is to cancel the order. M is used

to represent the finite set of car models ranged over by m. After receiving the order, it

is then passed to the process ProcessOrder to perform the rest of the transaction.

Broker =̂ (Order?m : M ÷CancelOrder .m) ;ProcessOrder(m)

ProcessOrder(m) =̂ RFQ .m ;Quote?q : F Q ;

2
c∈q

•

(
(Sendorder(c) ‖ Loan(a)) ‖ SendQuote(c)

)

SendOrder(c) =̂ (Order .c ÷ Cancel .c)

Loan(a) =̂ (ReqLoan.a : Amt ÷CancelLoan.a) ;

(Reply?Accept ;SKIPP

2 Reply?Reject ;THROWW )

SendQuote(c) =̂ Quote.c ; (Ack?Accept ;SKIPP

2 Ack?Reject ;THROWW )

After receiving an order for a car from the Buyer, the Broker first requests the Sup-

plier for available quotes (RFQ) and then selects a quote from the received quotes

(Quote). We abstract away from the details of how decisions are made. The Broker

then arranges a loan for the quoted car by requesting a loan from LoanStar. The

amount of loan to be requested is decided from the selected quote and then passed to

the process Loan. It requests loan from LoanStar and it is either accepted or rejected.
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In reality, orders have unique reference and loans, etc are linked to that; here, we are

mainly considering how processes are communicating with each other abstracting other

details from the description. In the case where the loan is accepted, it is assumed that

the loan provider starts its processing to arrange the loan. If the loan cannot be provided

then an interrupt is thrown to cancel the actions that already took place. A compensa-

tion is added to ReqLoan (CancelLoan) so that in the case of a failure in a later stage

the compensation can be invoked to cancel the event.

The buyer is also notified of the quote for the selected car (SendQuote). The Broker

receives an acknowledgment (Ack) from the buyer that is either accepting the quote or

rejecting the quote. In the case of rejection, an interruption is thrown to cancel the

transaction and run the appropriate compensation. The processes SendQuote, Loan

and SendOrder do not have any synchronisation between them and they interleave with

each other. An interrupt thrown from either the buyer or the lender can occur before

or after ordering the car to the supplier. In either case, the compensation mechanism

takes care of it and the proper compensations will run.

We define only an abstract behaviour of the buyer where the buyer first sends an order

for a car to the broker. Then after receiving the selected quote from the broker, the

buyer either accepts or rejects the quote.

Buyer =̂ Order .m : M ;Quote?q : Q ; 2
r∈R

Ack .r

R = {Accept ,Reject}

The behaviour of the car broker web service is then defined by combining the behaviour

of Broker, Buyer, Supplier, and LoanStar.

System =̂

(
Buyer ‖A ([Broker ] ‖

B
Supplier)

)
‖
C

LoanStar

A = {Order ,Quote,Ack },

B = {RFQ ,Quote,Order ,Cancel }

C = {ReqLoan,Reply }

We describe the behaviour of the broker and only give abstract behaviour of the other

web services. The Broker is defined as a compensable process within a transaction

block where the compensations attached to the Broker are handled inside the block,

keeping the details hidden from outside the block. Supplier and LoanStar are standard

processes. Detailed descriptions of both LoanStar and Supplier are given later in the

chapter. Both of these web services are defined as separate web services and in this

example, they are composed together.
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7.2.2 A separate version Car Broker web service

In this section, we present a slightly different version of the earlier description of the car

broker web service. Giving two separate specifications of same web service allows us to

experiment with the expressiveness of the cCSP language. In particular, we show how

compensations are handled for concurrently executing compensable processes within a

transaction block instead of between transaction blocks as shown in the previous version.

RFQ

Quote

Reply

ReqLoan

OrderBroker

LoanStar

Order

Quote

Ack

Buyer Supplier

Figure 7.3: Another version of CarBroker web services

Figure 7.3 represents the alternative description of the Car Broker web services. The

main distinction from previous example is that both Broker and Supplier execute

concurrently within a transaction block. A box is drawn surrounding the Broker and

the Supplier to denote the scope of the transaction block. When an interrupt is thrown

in any process within a transaction block, the compensation will run inside the block.

In the present example, both Broker and Supplier are compensable processes and

they execute concurrently. When an interrupt is raised in any of the processes, the

forward execution of the concurrent processes will terminate and the corresponding

compensations will run. Here in the example, an interrupt can be raised either by the

Buyer by rejecting the quote sent by the Broker or by the LoanStar by rejecting the

loan request for the quoted car. In either case, the Supplier will terminate yielding an

interrupt thrown by the Broker and compensations from both Broker and Supplier

will run in parallel. Unlike in the previous example, there is no need for a separate cancel

message from Broker to Supplier as the interrupt will be yielded automatically by the

Supplier within the block. After getting a definite order from the Broker, the state

(e.g., Database) of the Supplier is updated to reflect the order and a compensation

can be attached to it, which will run whenever an interrupt is raised by any concurrent

process inside the transaction block to undo the effect.
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As both processes are within a block, we do not need a separate cancel message from

the Broker to the Supplier to cancel the transactions. As a result, we change the

SendOrder process for the current example, where cancel is removed from the com-

pensation.

SendOrder(c) =̂ (Order .c ÷ Skip)

By including both Broker and Supplier in a transaction block, the overall behaviour

of the car broker web service is defined as follows:

System =̂ (Buyer ‖A [Broker ‖B Supplier ]) ‖C LoanStar

A = {Order ,Quote,Ack }

B = {RFQ ,Quote,Order }

C = {ReqLoan,Reply }

7.2.3 A Lender Web Service

A loan service is a common example of a business process (please refer to [115] for a

full description). We assume a lender web service LoanStar, that offers loans to online

customers. A customer submits a request for an amount to be loaned along with other

required information. LoanStar first checks the loan amount and if the amount is

£10,000 or more, then LoanStar asks its business partner FirstRate to thoroughly

assess the loan. After a detailed assessment of the loan, FirstRate can either approve

the loan or reject the loan.

A full assessment is costly, so if the loan amount is less than £10,000, the loan is

evaluated more simply. LoanStar asks its business partner Assessor to evaluate the

risk for the loan. If the associated risk is low then loan is approved, otherwise LoanStar

asks FirstRate to perform a full assessment.

We are giving a simple specification of the lender and are not considering any attached

compensation. Therefore, the processes are defined as standard processes. At the top

level, the transaction is defined as a sequence of two processes. First, it receives a loan

order from the customer and then processes the loan.

LoanStar =̂ LoanOrder?a : Amt ;Process(a)

After the request is received from the customer, the requested amount is passed to the

process called Process to take the necessary steps before arranging the requested loan.

It first checks the loan amount in order to determine the type of evaluation that it needs

to perform before accepting the loan. We define a process ChkAmt which checks the
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loan amount in the order to determine whether the amount is over or below the given

limit, which is in this case £10,000. Here, ChkAmt , Blow and Over abstract away the

details of how the checking has been done.

Process(a) =̂ ChkAmt .a ; (Below .a ;Assessor(a)

2 Over .a ;FirstRate(a))

If the loan amount is less than £10,000, then the process Assessor will start. It first

checks the risk associated with the loan. If the risk is low the loan is approved. If the

risk is high then control is passed to FirstRate to perform a full assessment. On the

other hand, if the amount is higher than or equal to £10,000, then FirstRate will start

its assessment immediately. After performing a full assessment and depending on the

outcome, FirstRate either accepts or rejects the requested loan.

Assessor(a) =̂ ChkRisk .a ; (Low .a ;Reply .Accept

2 High.a ;FirstRate(a))

FirstRate(a) =̂ Assess.a ; (Ok ;Reply .Accept

2 NotOk ;Reply .Reject)

In the example, we abstract the details of the behaviour of Assessor and FirstRate.

Both of them can be modelled as a separate web service or as a part of the lender web

services.

7.2.4 Elaborating the Supplier Web Service

Here we present an elaborated description of the Supplier web service. An abstract

view of it was used in the previous examples.

A car supplier web service provides buyers a good deal on car orders. Supplier is a

supplier that takes orders for a car from buyers. It then sends requests for quotes to a

dealer to get available quotes for the requested car model. The dealer collects quotes

from all of its associated partners and then accumulates the received quotes and passes

them to the car supplier. The better offer is then selected by the car supplier based on

lowest price, or earliest delivery date, if price is equal. This offer is then sent to the

buyer and at the same time to the dealer as a definite order for the selected model as it

would be expected that the buyer will accept the offer. After receiving the quote from

the supplier, the buyer can either accept or reject the quote. In the case of rejection

from buyer, a compensation is invoked to cancel the order that is sent to the dealer.

Here, we give a simple representation of the order receipt and dealer activities and focus

on the behaviour of the car supplier in more detail.
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Order
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Ack

Quote

Cancel
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Figure 7.4: A car supplier web service

The first step in the transaction is a compensation pair where the primary action is to

receive an order from the buyer and then start processing the order. The compensation

is to reject the order which will be invoked if there is an interruption at a later stage of

the transaction. Here, M is the set of car models.

Supplier =̂
[

(Order?m : M ÷ CancelOrder .m) ;ProcessOrder(m)
]

where, M = Car Models

Following the compensation pair, the process ProcessOrder starts. It first sends a

request for a quote (RFQ) to the dealer for available quote for the car model. After

receiving a set of quotes from the dealer, one quote is selected by ProcessOrder. The

selected quote is then sent to buyer (SendQuote) and also to the dealer (Order) to

order the car. A compensation is augmented to the Order which might need at a later

stage to compensate the Order activity. Here, Q is used to represent the set of quotes.

ProcessOrder(m) =̂ RFQ .m ;RecQuote?q : P Q ;

2
c∈q

•

(
(Order .c ÷ Cancel .c) ‖ SendQuote(c)

)

where, Q = Available Quotes

The buyer acknowledges the receipt of a quote by either accepting it or rejecting it. In

the case of rejection, an interrupt is thrown, so that the appropriate compensations can

be invoked to compensate those activities that did take place. It has been discussed

earlier that as SendOrder and SendQuote interleave with each other, the interrupt

from the buyer can be thrown before sending the order to the dealer. The compensations

are stored dynamically during the execution of processes, which is in this case empty

and compensation mechanism can take care of it. The process SendQuote is defined

as follows where it first sends a quote and then receives an acknowledge which is either

Accept or Reject :

SendQuote(c) =̂ Quote.c ; (Ack?Accept ; SKIPP

2 Ack?Reject ;THROWW )
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The behaviour of Dealer and buyer is not fully specified here. Our main focus is on the

behaviour of the car supplier.

The behaviour of the supplier system can be defined by composing the behaviour of

Supplier, Dealer and Buyer.

System =̂

(
Buyer ‖A Supplier

)
‖B Dealer

A = {Order ,Quote,Ack}

B = {RFQ ,Quote,Order ,Cancel}

7.3 Discussion

In the case studies, we have shown how cCSP constructs can be used to model business

transactions. Importantly, we have shown how compensations are orchestrated to model

the business processes. The compensations are accumulated during the execution of the

processes. The compensations are defined in such a way that when an interrupt occurs

at any stage of the transaction, the appropriate compensations (which might be empty

when interruption occurs before occurring an event with attached compensation) are

executed for the actions that already did take place. For the case studies, we have made

the model simpler for ease of understanding.

Previously, we have shown how to model business transactions by using cCSP constructs

(Chapter 2). The significant improvement in the current examples is the use of synchro-

nisation to model communication between concurrent processes. We have shown the

synchronisation between compensable processes within a transaction block as well as

between standard processes and transaction blocks. For example, we modelled two dif-

ferent versions of the Broker web service where the distinction is made based on how the

synchronisation is defined between the processes. For concurrent compensable processes

within a block, we have shown how one process (Supplier) catches an interrupt thrown

by another concurrent processes (e.g.,Broker). The concurrent processes terminate and

their appropriate compensations are executed. On the other hand, when both Broker

and Supplier are considered as separate blocks, then an interrupt thrown inside the

block will run the attached compensation for that process within the block and it is not

observable to other processes outside of the block. Hence, a message (cancel) is sent

from Broker to Supplier to terminate the concurrent execution. The compensation

attached to the Supplier will then run within its own block. Although we only focus

on modelling the behaviour of Broker in this chapter, it would be a good exercise for

our future work to model the behaviour of other processes which we have abstracted in

this case study.

This kind of case study gives feedback support about the expressiveness of the language
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constructs to model business transactions. Such a case study also provides a better

understanding of the language constructs as well as provides direction towards further

improvement of the language.

While modelling the business transactions, we have faced several difficulties to represent

the real world actions or events in cCSP. We abstracted many real word behaviour from

in the case study. We realise that having the facility to model the states of the processes

would improve the modelling of the transactions where cCSP can be used to coordinate

the interaction of the processes and any state based approach can be used to represent

the states. Several research such as [28, 122], have been carried out in this direction and

could be a good starting point for our future work.
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Conclusions and Future Work

Process algebras are increasingly being used to provide a formal framework in the mod-

elling of business transactions. In recent years, several process algebras have been pro-

posed in this respect. In this thesis, we emphasise the formal foundation of such a

process algebra. Providing semantic definitions for such an algebra is very important for

its formal foundation. This thesis has extended the formal semantics of the process alge-

bra, compensating CSP and defined a formal relationship between the semantic models.

This concluding chapter summarises the work presented in this thesis and suggests some

future research directions.

8.1 Summary

The aim of this thesis has been to strengthen the formal foundations of the cCSP process

algebra. Our research contributes to the following improvements of the cCSP semantic

models:

• Extending Semantic Models: Compensating CSP was defined by giving its

trace semantics [27]. Starting from the trace semantics, we extend the semantic

model by defining an operational semantics (Chapter 3) for the algebra. The

operational semantics is defined by using labelled transition systems which give a

closer view of the executions of the states of a program. Transition rules are defined

for both standard and compensable processes. We show how compensations are

managed for compensable processes. Both sequential and parallel operators are

redefined so that attached compensations are accumulated in an appropriate order

after termination. We use small-step semantics to define the transition rules.

Small-step semantics describes how the individual steps of a computation take

place and it can describe the evaluation of both terminating and non-terminating

126
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behaviours. It can be regarded as one-state-at-a-time recipe for computing the

transition system of any process.

Initially, the parallel operator for cCSP was defined to interleave over observable

events and synchronise over terminal events. We extend the semantic models

further to define the transition rules for the parallel operator where processes can

synchronise over synchronising observable events (Chapter 5). We introduce the

notion of partial behaviour (Section 5.2) which is analogous to prefixes in standard

CSP, to model the behaviour of synchronised processes that lead to deadlock. How

the attached compensations of a compensable processes are affected by the partial

behaviour is also described for concurrent processes (Section 5.4.2).

Apart from defining the transition rules, the operational rules were encoded into

Prolog to make it executable and animate the specification by using XTL which

can later be used to support model checking (Section 3.3).

• Relating Semantic Models: Given two different semantic definitions for cCSP,

in this thesis, we have defined a relationship between the two semantic models

(Section 4.2). The relation shows that traces extracted from the transition rules

in the operational semantics correspond to the originally defined traces in the

trace semantics. We have defined how to extract traces from the transition rules.

Separate definitions are given for standard and compensable processes.

The correspondence between the derived and original traces is proved by using

structural induction. Two levels of induction are applied to prove the correspon-

dence. Supporting lemmas are defined for each operator of the algebra for standard

as well as compensable processes. We have shown how the trace operators are ap-

plied both at trace and at process level to define these lemmas and help to derive

the proofs (Section 4.2.7). The inductive proofs have been carried out completely

by hand.

With the extension of the semantic models to support synchronisation, we have also

shown the correspondence between the semantic models for concurrency operator

(Section 5.5). Instead of showing the detailed proof steps as for asynchronous

processes, we have only outlined how to carry out the proofs. We have defined

how to extract partial traces when synchronising processes introduce deadlock, and

outlined how to derive their correspondence with the original semantic definition.

• Mechanising Semantic Models: The relationship between the semantic models

has been mechanised by using the theorem prover PVS (Chapter 6). We used

shallow embedding for mechanising the semantic models and their relationships.

The process algebra terms are mechanised by using mutually dependant datatypes

(Section 6.3.3). The semantic models and the supporting lemmas are defined

following a similar approach as in hand proofs. The proofs have been carried

out by interacting with the prover. Proof through interaction has been shown to

be both fruitful and practical: the language cCSP and the formal environment
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provided by PVS enables the construction and reasoning of the semantic models

at a relatively high level. Besides, the feedback from the theorem prover is helpful

in improving the semantic models.

During mechanising the semantic models and the proofs of their relationship, we

follow similar levels of steps as in hand proof. The proofs of all the lemmas follow

similar patterns which ease the proof steps. The mechanisation also reveals some

of the lemmas that are not explicitly defined in hand proofs.

The mechanisation forces us to be very precise about the typing of rules and

applying recursion (mutual recursion). It helps improve structuring the steps in

the inductive proofs.

We have experimented with the expressiveness of the cCSP language by modelling web

services (Chapter 7). Several web services have been modelled by cCSP constructs and

it is shown how these web services can be combined together. Two separate versions of

the same web service have been modelled (Section 7.2.1, Section 7.2.2), which allowed

to investigate the synchronisation of processes within and between transaction blocks.

These case studies also give us the feedback for future improvements of the language.

8.2 Future Work

This thesis is mainly concerned with the development of formal models for an algebra

to model business transactions. Whilst some progress has been made in improving the

semantic models and proving their properties, there is much scope for further investi-

gation. In this section, we discuss some further research topics arising out from this

thesis.

• Integration with state oriented language: There has been interest for many

years in combining a state based approach (mainly Z [112] and B [3]) with a

process algebra (CSP, Timed CSP, CCS), see for instance, [23, 28, 48, 68, 107,

108, 114, 122]. We are particularly interested in the combination of cCSP with

the B method. We intend to use cCSP and B in a complementary way. Abstract

states and operations of a system can be specified by using the B method. cCSP,

on the other hand, can be used to specify the overall coordination of operations. To

combine these two approaches, an operation of a B machine can be considered as

an event in cCSP terms. Some closely related work is done in [28] to combine CSP

and B. Both CSP and B specifications are placed in parallel for their combined

meaning and both specifications must synchronise on common events. This work

could be the basis of our future work. The combination with a state based approach

could help to properly model the states of business transactions (Chapter 7). We
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can take advantage of existing tool support, such as the RODIN tool [4], Click’n

Prove [5], ProB [65], for the verification and refinement for the B machines.

• Tool support: Tool support for animating and model checking of the specifica-

tions would significantly improve applicability of the algebra. The CIA [64] (CSP

Interpreter and Animator) tool is a Prolog-based implementor for CSP. It was

later combined with the ProB [65] (a Prolog-based animator and model checker

for B) tool that allows the combined use of CSP and B. We have already encoded

the cCSP transition rules in Prolog for animating the specification (Section 3.3).

ProB can be easily extended to support cCSP specifications and can serve as a

tool for animating as well as model checking the cCSP specification. It can also be

extended to support the animation and model checking the specifications written

in a combination of cCSP and B.

• Cancellation semantics for synchronised processes: In the semantic defini-

tion of synchronising processes, we only describe the relative order of forward and

compensation behaviour and do not mention their relationship. A theory of can-

cellation is defined in [27] for compensable processes where the effect of a forward

action is cancelled by a compensation action. However, synchronisation was not

considered during the definition. It would be interesting to extend the cancellation

theory to synchronous processes and investigate the interplay between the forward

and compensation behaviour of synchronising processes.

• Extending language features: Having a firm grasp of the semantic models, we

are now in a better position to extend the language by defining some important

operators for a process algebra, such as event hiding, recursion, the distinction

between external and internal choice in combination with compensations. In stan-

dard CSP the distinction between the two choice operators is achieved by using

the Failure/Divergences model which can serve as the basis for our work on cCSP.
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Encoding of transition rules in

XTL

A.1 Standard Processes

Choice:

1. trans(choice(P,Q),A,P1):-

NOT(terminal(A)),

trans(P,A,P1).

2. trans(choice(P,Q),A,0):-

terminal(A),

trans(P,A,0).

Sequential Composition:

1. trans(seq(P,Q),A,seq(P1,Q):-

NOT(terminal(A)),

trans(P,A,P1).

2.trans(seq(P,Q),A,0):-

terminal(A), NOT(A=tick),

trans(P,A,0).

3.trans(seq(P,Q),A,Q1):-

trans(P,tick,0),

NOT(terminal(A)),

trans(Q,A,Q1).

4.trans(seq(P,Q),A,0):-

trans(P,tick,0),

130
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terminal(A),

trans(Q,A,0).

Parallel Composition:

1. trans(par(P,Q),A,par(P1,Q)):-

NOT(terminal(A)),

trans(P,A,P1).

2. trans(par(P,Q),A,par(P,Q1)):-

NOT(terminal(A)),

trans(Q,A,Q1).

3. trans(par(P,Q),W,0):-

terminal(W1), trans(P,W1,0),

terminal(W2), trans(Q,W2,0),

synch(W1,W2,W).

Interrupt Handler:

1. trans(inthnd(P,Q),A,inthnd(P1,Q)):-

NOT(terminal(A)),

trans(P,A,P1).

2. trans(inthnd(P,Q),A,0):-

terminal(A), NOT(A=throw),

trans(P,A,0).

3. trans(inthnd(P,Q),A,Q1):-

trans(P,throw,0),

NOT(termial(A)),

trans(Q,A,Q1).

4. trans(inthnd(P,Q),A,0):-

trans(P,throw,0),

terminal(A),

trans(Q,A,0).

Transaction block:

1. trans(block(PP),A,block(PP1)):-

NOT(terminal(A)),

trans(PP,A,PP1).

2. trans(block(PP),tick,0):-

trans(PP,tick,P).
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3. trans(block(PP),A,P1):-

trans(PP,throw,P),

NOT(terminal(A)),

trans(P,A,P1).

4. trans(block(PP),A,0):-

trans(PP,throw,P),

terminal(A),

trans(P,A,0).

Basic Processes:

1. trans(SKIP,A,0):-

A = tick.

2. trans(THROW,A,0):-

A = throw.

3. trans(YIELD,A,0):-

A = yield.

4. trans(YIELD,A,0):-

A = tick.

A.2 Compensable Processes

Compensable Choice:

1. trans(cchoice(PP,QQ),A,PP1):-

NOT(terminal(A)),

trans(PP,A,PP1).

2. trans(cchoice(PP,QQ),A,P):-

terminal(A),

trans(PP,A,P).

Compensation Pair:

1. trans(cpair(P,Q),A,cpair(P1,Q)):-

NOT(terminal(A)),

trans(P,A,P1).

2. trans(cpair(P,Q),tick,Q):-

trans(P,tick,0).

3. trans(cpair(P,Q),A,SKIP):-
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termina(A), NOT(A=tick),

trans(P,A,0).

Sequential Composition:

1. trans(cseq(PP,QQ),A,cseq(PP1,QQ)):-

NOT(terminal(A)),

trans(PP,A,PP1).

2. trans(cseq(PP,QQ),A,P):-

terminal(A),NOT(A=tick),

trans(PP,tick,P).

3. trans(cseq(PP,QQ),A,seq(P,Q)):-

trans(PP,tick,P),

terminal(A),

trans(QQ,A,Q).

4. trans(cseq(PP,QQ),A,axseq(QQ1,P)):-

trans(PP,tick,P),

NOT(terminal(A)),

trans(QQ,A,QQ’).

5. trans(axseq(PP,Q),A,axseq(PP1,Q)):-

NOT(terminal(A)),

trans(PP,A,PP1).

6. trans(axseq(PP,Q),A,seq(P,Q)):-

terminal(A),

trans(PP,A,P).

Parallel Composition:

1. trans(cpar(PP,QQ),A,cpar(PP1,QQ)):-

NOT(terminal(A)),

trans(PP,A,PP1).

2. trans(cpar(PP,QQ),A,cpar(PP,QQ1)):-

NOT(terminal(A)),

trans(QQ,A,QQ1).

3. trans(cpar(PP,QQ),W,par(P,Q)):-

terminal(W1), trans(PP,W1,P),

terminal(W2), trans(QQ,W2,Q),

synch(W1,W2,W).
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Correspondence Proof

Here we show the proof of the lemmas which are used in the proof of the theorem

presented in the main text in Chapter 4.

B.1 Proof of Lemma 4.7

(PP ; QQ)
t

−→ R = ∃P ,Q , p, q · t = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND (last(p) = X, (Q ; P), P)

Proof :

Basic step: t = 〈ω〉

PP ; QQ
〈ω〉
−→ R

= PP ; QQ
ω

−→ R

= “From derived equation 4.10”

∃P ,Q · PP
X
−→ P ∧ QQ

ω
−→ Q ∧ R = Q ; P (B.1)

∨ ∃P · PP
ω

−→ P ∧ ω 6= X ∧ R = P (B.2)

From (B.1)

∃P ,Q · PP
X
−→ P ∧ QQ

ω
−→ Q ∧ R = Q ; P

= ∃P ,Q , p, q · p = 〈X〉 ∧ q = 〈ω〉 ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = Q ; P

= ∃P ,Q , p, q · 〈ω〉 = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = Q ; P

134
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From (B.2)

∃P · PP
ω

−→ P ∧ ω 6= X ∧ R = P

= ∃P , p · p = 〈ω〉 ∧ ω 6= X ∧ PP
p

−→ P ∧ R = P

= ∃P , p · 〈ω〉 = p ∧ PP
p

−→ P ∧ R = P

Therefore, for t = 〈ω〉, from (B.1) ∨ (B.2)

∃P ,Q , p, q · 〈ω〉 = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = Q ; P

∨ ∃P , p · 〈ω〉 = p ∧ PP
p

−→ P ∧ R = P

The main difference between the two formula of the above disjunction is whether or not,

last(p) = X. The sequence operator handles this in such a way that when last(p) = X,

the behaviour of QQ is augmented with behaviour of PP , otherwise the behaviour of

QQ is discarded. The above two equations can be combined by the expression COND .

= ∃P ,Q , p, q · 〈ω〉 = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P),P)

Inductive step: t = 〈a〉t

PP ; QQ
〈a〉t
−→ R

= ∃RR · (PP ; QQ)
a

−→ RR ∧ RR
t

−→ R

= “From derived equation 4.11”

∃PP ′ · PP
a

−→ PP ′ ∧ (PP ′ ; QQ)
t

−→ R (B.3)

∨ ∃P ,QQ ′ · PP
X
−→ P ∧ QQ

a
−→ QQ ′ ∧ 〈QQ ′,P〉

t
−→ R (B.4)

From (B.3)

∃PP ′ · PP
a

−→ PP ′ ∧ (PP ′ ; QQ)
t

−→ R

= “Inductive hypothesis”

∃PP ′ · PP
a

−→ PP ′ ∧ ∃P ,Q , p′, q · t = (p′ ; q) ∧ PP ′ p′

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P),P)
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Here COND expression handles both the cases, whether or not last(p) = X.

= “Removing PP ′ ”

∃P ,Q , p′, q · t = (p′ ; q) ∧ PP
〈a〉p′

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P),P)

= ∃P ,Q , p, q · p = 〈a〉p′ ∧ t = (p′ ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P),P)

= “By trace rule: 〈a〉t = 〈a〉(p′ ; q) = (〈a〉p′) ; q = (p ; q)”

∃P ,Q , p, q · 〈a〉t = (p ; q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q

∧ R = COND(last(p) = X, (Q ; P),P)

From (B.4)

∃P ,QQ ′ · PP
X
−→ P ∧ QQ

a
−→ QQ ′ ∧ 〈QQ ′,P〉

t
−→ R

= “Using Lemma 4.8”

∃P ,QQ ′ · PP
X
−→ P ∧ QQ

a
−→ QQ ′ ∧ ∃Q · QQ ′ t

−→ Q ∧ R = (Q ; P)

= “Removing QQ ′ ”

∃P ,Q · PP
X
−→ P ∧ QQ

〈a〉t
−→ Q ∧ R = (Q ; P)

= ∃P ,Q , p, q · p = 〈X〉 ∧ q = 〈a〉t ∧ 〈a〉t = (p ; q)

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (Q ; P)

B.2 Proof of Lemma 4.9

(P � Q)
t

−→ 0 = ∃ p, q · t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Basic Step: Case: 〈ω〉

(P � Q)
〈ω〉
−→ 0

= (P � Q)
ω

−→ 0

= “From derived equation 4.14”

P
!

−→ 0 ∧ Q
ω

−→ 0 (B.5)

∨ P
ω

−→ 0 ∧ ω 6= ! (B.6)

From (B.5)
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P
!

−→ 0 ∧ Q
ω

−→ 0

= ∃ p, q · p = 〈 ! 〉 ∧ q = 〈ω〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By using trace rule: (p � q) = (〈 ! 〉 � 〈ω〉) = 〈ω〉”

∃ p, q · p = 〈 ! 〉 ∧ 〈ω〉 = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

From (B.6)

P
ω

−→ 0 ∧ ω 6= !

= ∃ p · p = 〈ω〉 ∧ ω 6= ! ∧ P
p

−→ 0

= “By using theorem 4.4”

∃ p · p = 〈ω〉 ∧ ω 6= ! ∧ P
p

−→ 0 ∧ ∃ q · Q
q

−→ 0

= ∃ p, q · p = 〈ω〉 ∧ ω 6= ! ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By using trace rule: 〈ω〉 � q = 〈ω〉 where ω 6= ! ”

∃ p, q · p = 〈ω〉 ∧ ω 6= ! ∧ 〈ω〉 = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Combining the above two derivations

∃ p, q · p = 〈 ! 〉 ∧ 〈ω〉 = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

∨ ∃ p, q · p = 〈ω〉 ∧ ω 6= ! ∧ 〈ω〉 = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈ω〉 = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Inductive Step: Case: 〈a〉t

(P � Q)
〈a〉t
−→ 0

= ∃R · (P � Q)
a

−→ R ∧ R
t

−→ 0

= “From derived equation 4.15”

∃P ′ · P
a

−→ P ′ ∧ (P ′
� Q)

t
−→ 0 (B.7)

∨ P
!

−→ 0 ∧ Q
〈a〉t
−→ 0 (B.8)

From (B.7)
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∃P ′ · P
a

−→ P ′ ∧ (P ′
� Q)

t
−→ 0

= “Inductive hypothesis”

∃P ′ · P
a

−→ P ′ ∧ ∃ p′, q · t = (p′
� q) ∧ P ′ p′

−→ 0 ∧ Q
q

−→ 0

= “Removing P ′ ”

∃ p′, q · t = (p′
� q) ∧ P

〈a〉p′

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: 〈a〉t = 〈a〉(p′
� q) = (〈a〉p′

� q) ”

∃ p′q · 〈a〉t = (〈a〉p′
� q) ∧ P

〈a〉p′

−→ 0 ∧ Q
q

−→ 0

= ∃ p, p′, q · p = 〈a〉p′ ∧ 〈a〉t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈a〉t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

From (B.8)

P
!

−→ 0 ∧ Q
〈a〉t
−→ 0

= ∃ p, q · p = 〈 ! 〉 ∧ q = 〈a〉t ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: (〈 ! 〉 � q) = q ”

∃ p, q · p = 〈 ! 〉 ∧ 〈a〉t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈a〉t = (p � q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

B.3 Proof of Lemma 4.10

P ‖ Q
t

−→ 0 = ∃ p, q · t ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Basic step: t = 〈ω〉

P ‖ Q
〈ω〉
−→ 0

= P ‖ Q
ω

−→ 0

= “From operational rule 3.11”

∃ω1, ω2 · P
〈ω1〉
−→ 0 ∧ Q

〈ω2〉
−→ 0 ∧ ω = ω1&ω2 ∧ ω1&ω2 ∈ (〈ω1〉 ‖ 〈ω2〉)

= ∃ p, q · p = 〈ω1〉 ∧ q = 〈ω2〉 ∧ 〈ω〉 ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ∃ p, q · 〈ω〉 ∈ (p ‖ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

B.4 Proof of Lemma 4.11

PP ‖ QQ
t

−→ R

= ∃P ,Q , p, q · t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ P ∧ R = P ‖ Q
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Proof:

Basic step: t = 〈ω〉

PP ‖ QQ
〈ω〉
−→ R

= PP ‖ QQ
ω

−→ R

= “From derived equation 4.20”

∃P ,Q · ω = ω1&ω2 ∧ ω1&ω2 ∈ (〈ω1〉 ‖ 〈ω2〉)

∧ PP
ω1
−→ P ∧ QQ

ω2
−→ Q ∧ R = (P ‖ Q)

= ∃P ,Q , p, q · p = 〈ω1〉 ∧ q = 〈ω2〉 ∧ 〈ω〉 ∈ (p ‖ q)

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

= ∃P ,Q , p, q · 〈ω〉 ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

Inductive step: t = 〈a〉t

PP ‖ QQ
〈a〉t
−→ R

= ∃RR · PP ‖ QQ
a

−→ RR ∧ RR
t

−→ R

= “From derived equation 4.21”

∃PP ′ · PP
a

−→ PP ′ ∧ PP ′ ‖ QQ
t

−→ R

∨ ∃QQ ′ · QQ
a

−→ QQ ′ ∧ PP ‖ QQ ′ t
−→ R

= “Inductive hypothesis”

∃PP ′ · PP
a

−→ PP ′ ∧ ∃P ,Q , p′, q · t ∈ (p′ ‖ q)

∧ PP ′ p′

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

∨ ∃QQ ′ · QQ
a

−→ QQ ′ ∧ ∃P ,Q , p, q ′ · t ∈ (p ‖ q ′)

∧ PP
p

−→ P ∧ QQ
q ′

−→ Q ∧ R = (P ‖ Q)

= “Removing PP ′,QQ ′ ”

∃P ,Q , p′, q · t ∈ (p′ ‖ q) ∧ PP
〈a〉p′

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

∨ ∃P ,Q , p, q ′ · t ∈ (p ‖ q ′) ∧ PP
p

−→ P ∧ QQ
〈a〉q ′

−→ Q ∧ R = (P ‖ Q)

= ∃P ,Q , p, q · p = 〈a〉p′ ∧ t ∈ (p′ ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

∨ ∃P ,Q , p, q · q = 〈a〉q ′ ∧ t ∈ (p ‖ q ′) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

= “Combining existential quantifications”

∃P ,Q , p, q · (p = 〈a〉p′ ∧ t ∈ (p′ ‖ q) ∨ q = 〈a〉q ′ ∧ t ∈ (p ‖ q ′))

∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)

= “By the definition of traces”

∃P ,Q , p, q · 〈a〉t ∈ (p ‖ q) ∧ PP
p

−→ P ∧ QQ
q

−→ Q ∧ R = (P ‖ Q)
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B.5 Proof of Lemma 4.12

(P ÷Q)
(t ,t ′)
−→ 0 = ∃ p, q · (t , t ′) = (p ÷ q) ∧ P

p
−→ 0 ∧ Q

q
−→ 0

Proof:

Basic step: t = 〈ω〉

(P ÷ Q)
(ω,t ′)
−→ 0

= ∃R · (P ÷ Q)
ω

−→ R ∧ R
t ′

−→ 0

= “From derived equation 4.22”

P
X
−→ 0 ∧ Q

t ′
−→ 0 (B.9)

∨ ∃R · P
ω

−→ 0 ∧ ω 6= X ∧ R = SKIP ∧ SKIP
t ′

−→ 0 ∧ t ′ = 〈X〉 (B.10)

From equation B.9

P
X
−→ 0 ∧ Q

t ′
−→ 0

= ∃ p, q · p = 〈X〉 ∧ q = t ′ ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= ”By trace rule: (〈X〉, t ′) = (p ÷ q)”

∃ p, q · (〈ω〉, t ′) = (p ÷ q) ∧ ω = 〈X〉 ∧ P
p

−→ 0 ∧ Q
q

−→ 0

From equation B.10

∃R · P
ω

−→ 0 ∧ ω 6= X ∧ R = SKIP ∧ SKIP
t ′

−→ 0 ∧ t ′ = 〈X〉

= P
ω

−→ 0 ∧ ω 6= X ∧ SKIP
X
−→ 0

= ∃ p, q · p = 〈ω〉 ∧ ω 6= X ∧ q = 〈X〉 ∧ P
p

−→ 0 ∧ SKIP
q

−→ 0

= ∃Q , p, q · p = 〈ω〉 ∧ q = 〈X〉 ∧ Q = SKIP ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By using trace rule”

∃ p, q · (〈ω〉, 〈X〉) = (p ÷ q) ∧ ω 6= X ∧ P
p

−→ 0 ∧ Q
q

−→ 0
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Inductive step: t = 〈a〉t

(P ÷ Q)
〈a〉t ,t ′
−→ 0

= ∃RR · (P ÷ Q)
a

−→ RR ∧ RR
t ,t ′

−→ 0

= “From derived equation 4.23”

∃P ′ · P
a

−→ P ′ ∧ (P ′ ÷ Q)
t ,t ′

−→ 0

= “Inductive hypothesis”

∃P ′ · P
a

−→ P ′ ∧ ∃ p′, q · (t , t ′) = (p′ ÷ q) ∧ P ′ p′

−→ 0 ∧ Q
q

−→ 0

= “Removing P ′ ”

∃ p′, q · (t , t ′) = (p′ ÷ q) ∧ P
〈a〉p′

−→ 0 ∧ Q
q

−→ 0

= ∃ p, p′, q · p = 〈a〉p′ ∧ (t , t ′) = (p′ ÷ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace rule: (t , t ′) = (p′ ÷ q) ⇒ (〈a〉t , t ′) = (〈a〉p′ ÷ q) = (p ÷ q)”

∃ p, q · (〈a〉t , t ′) = (p ÷ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

Deriving correspondence:

(t , t ′) ∈ DT (P ÷ Q)

= (P ÷ Q)
(t ,t ′)
−→ 0

= “From Lemma 4.12”

∃ p, q · (t , t ′) = (p ÷ q) ∧ P
p

−→ 0 ∧ Q
q

−→ 0

= “By trace derivation rules”

∃ p, q · (t , t ′) = (p ÷ q) ∧ p ∈ DT (P) ∧ q ∈ DT (Q)

= “Structural induction”

∃ p, q · (t , t ′) = (p ÷ q) ∧ p ∈ T (P) ∧ q ∈ T (Q)

= “By trace rule”

= (t , t ′) ∈ T (P ÷ Q)



Appendix C

PVS Proof Trees

In this appendix we present proof trees of some lemmas defined in Chapter 6. Proof trees

give us a clear view of how the proofs have been carried out and show the commands

that have been used in the proofs. In PVS it is possible to explore each node of the proof

tree. The proof trees for the lemmas of the standard sequential and parallel composition,

the transaction block, and the compensation pair, and the lemmas for the synchronised

composition of both standard, and compensable processes are presented in the following

sections.

142



Appendix C PVS Proof Trees 143

C.1 Standard Sequential Composition

(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "nul_eq")

(expand "wtrans" -1)

(split)

(inst 1 "null" "tick" "null" "w!1")

(grind)

(lemma "th1")

(inst -1 "Q!1")

(skosimp -1)

(inst 2 "null" "w!1" "s!1" "w!2")

(grind)

(flatten)

(skosimp -1)

(use "empty_trace")

(expand "trans_trace" -3)

(skosimp -3)

(expand "trans_trace" -5)

(skosimp -5)

(rewrite "nul_eq")

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "trans_trace" -1)

(skosimp -1)

(expand "trans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(skosimp -1)

(split)

(flatten -1)

(inst -5 "Q1!1" "Q!1" "w!1")

(iff)

(flatten)

(replace -2 -5 :dir rl)

(split -5)

(skosimp)

(inst ...)

(use "add2seq")

(hide -9)

(split 1)

(grind) (expand "trans_trace" 1)

(expand "trans_trace" -3)

(skosimp -3)

(inst 1 "Q!4")

(assert)

(expand "trans_list" 1)

(inst 1 "Q1!1")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(flatten)

(inst ...)

(grind)

(skosimp*)

(use "eq3")

(replace -2 -1)

(split)

(flatten -1)

(hide -4)

(expand "trans_trace" -4)

(skosimp -4)

(expand "trans_list" -4)

(lift-if)

(split)

(assert) (flatten -1)

(skosimp -1)

(use "tr1")

(replace -1 3)

(hide -1)

(inst 3 "Q!3")

(flatten 3)

(split 3)

(assert) (inst -8 "Q!3" "Q!1" "w!1")

(replace -8 1)

(inst ...)

(split)

(propax) (expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(flatten -1)

(hide -6)

(expand "trans_trace" -7)

(skosimp -7)

(expand "trans_list" -7)

(lift-if)

(split -7)

(assert) (flatten -1)

(skosimp -1)

(use "tr1")

(replace -1 3)

(hide -1)

(inst 3 "P!1")

(flatten 3)

(inst 4 "Q!3")

(split 4)

(grind) (assert) (expand "trans_trace" 1)

(inst 1 "Q!2")

(grind)
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(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "nul_eq")

(expand "wtrans" -1)

(skosimp -1)

(inst ...)

(grind)

(skosimp*)

(rewrite "nul_eq")

(expand "wtrans" 1)

(inst 1 "w1!1" "w2!1")

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "trans_trace" -1)

(skosimp -1)

(expand "trans_list" -1)

(skosimp -1)

(expand " ntrans" -1)

(skosimp -1)

(split)

(flatten -1)

(inst -5 "Q1!1" "Q!1" "w!1")

(replace -2 -5 :dir rl)

(iff)

(flatten)

(hide -6)

(split -5)

(skosimp -1)

(inst ...)

(split)

(grind) (expand "trans_trace" 1)

(expand "trans_trace" -2)

(skosimp -2)

(inst 1 "Q!4")

(expand "trans_list" 1)

(assert)

(inst 1 "Q1!1")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(skosimp -1)

(inst -5 "P!1" "R1!1" "w!1")

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(split)

(grind) (expand "trans_trace" -3)

(skosimp -3)

(expand "trans_trace" 1)

(inst 1 "Q!4")

(assert)

(expand "trans_list" 1)

(inst 1 "R1!1")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(skosimp*)

(expand "parallel" -1)

(flatten -1)

(expand "interleave" -1)

(split)

(flatten)

(expand "trans_trace" -5)

(skosimp -5)

(expand "trans_list" -5)

(lift-if)

(split)

(flatten)

(inst -9 "Q!2" "Q!1" "w!1")

(iff)

(flatten)

(hide -10)

(split)

(skosimp -1)

(expand "trans_trace" 1)

(grind)

(assert)

(skosimp -1)

(skosimp -1)

(use "tr2")

(replace -1 2)

(hide -1)

(inst 2 "Q!3")

(flatten)

(split 2)

(assert) (inst -9 "Q!3" "Q!1" "w!1")

(replace -9 1)

(hide -9)

(inst ...)

(split 1)

(expand "parallel" 1)

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(flatten -1)

(expand "trans_trace" -6)

(skosimp -6)

(expand "trans_list" -6)

(lift-if)

(split)

(flatten -1)

(inst -9 "P!1" "Q!2" "w!1")

(iff)

(flatten)

(hide -10)

(split)

(skosimp -1)

(expand "trans_trace" 1)

(assert)

(assert)

(skosimp -1)

(skosimp -1)

(use "tr2")

(replace -1 2)

(hide -1)

(expand "trans_trace" -7)

(skosimp -7)

(inst 2 "Q!4")

(flatten 2)

(inst 3 "Q!3")

(split 3)

(assert) (inst -10 "P!1" "Q!3" "w!1")

(replace -10 1)

(hide -10)

(inst ...)

(split)

(expand "parallel" 1)

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!4")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)
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C.3 Transaction Block

(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "nul_eq")

(expand "wtrans" -1)

(split)

(inst ...)

(split)

(grind) (expand "ctrans_trace" 1)

(skosimp -1)

(inst 1 "Q1!1")

(grind)

(skosimp -1)

(lemma "th1")

(inst -1 "Q!1")

(skosimp -1)

(inst 1 "null" "tick" "s!1" "w!2")

(split)

(use "bemp")

(grind)

(expand "ctrans_trace" 1)

(inst 1 "Q!1")

(grind)

(flatten)

(skosimp -1)

(expand "ctrans_trace" -2)

(skosimp -2)

(expand "trans_trace" -3)

(skosimp -3)

(rewrite "nul_eq")

(use "bempty_trace")

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "trans_trace" -1)

(skosimp -1)

(expand "trans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(skosimp -1)

(split)

(flatten -1)

(inst -5 "QQ1!1" "w!1")

(iff)

(flatten)

(replace -2 -5 :dir rl)

(hide -6)

(split)

(skosimp)

(inst ...)

(use "add2blk")

(split)

(expand "ctrans_trace" -3)

(skosimp -3)

(grind)

(expand "ctrans_trace" 1)

(expand "ctrans_trace" -3)

(skosimp -3)

(inst 1 "P!1")

(split)

(expand "ftrans_trace" -3)

(skosimp -3)

(expand "ftrans_trace" 1)

(inst 1 "QQ!1")

(assert)

(expand "ctrans_list" 1)

(inst 1 "QQ1!1")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!1")

(assert)

(skosimp -1)

(inst ...)

(split)

(grind) (expand "ctrans_trace" 1)

(inst 1 "Q!3")

(split)

(grind) (expand "trans_trace" 1)

(inst 1 "Q!1")

(grind)

(skosimp*)

(use "induct_trace")

(replace -2 -1)

(hide -2)

(use "induct_ax")

(replace -1 1)

(hide -1)

(split)

(flatten -1)

(expand "ctrans_trace" -4)

(skosimp -4)

(expand "ftrans_trace" -4)

(skosimp -4)

(expand "ctrans_list" -4)

(lift-if)

(split)

(assert) (flatten -1)

(skosimp -1)

(inst 3 "QQ!2")

(flatten)

(hide 4)

(assert)

(inst -8 "QQ!2" "w!1")

(replace -8 3)

(hide -8)

(inst ...)

(assert)

(expand "ctrans_trace" 3)

(inst 3 "P!1")

(grind)

(flatten -1)

(expand "ctrans_trace" -6)

(skosimp -6)

(expand "ftrans_trace" -6)

(skosimp -6)

(expand "ctrans_list" -6)

(lift-if)

(inst 2 "QQ!1")

(flatten)

(hide 2)

(assert)

(inst 2 "P!1")

(grind)
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C.4 Compensation Pair

(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(use "nul_induct")

(replace -2 -1)

(hide -2)

(split)

(flatten)

(inst ...)

(grind)

(flatten)

(inst 2 "null" "w!1" "null" "tick")

(grind)

(skosimp*)

(use "nul_induct")

(use "cemp")

(expand "ctrans_trace" 1)

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "ctrans_trace" -1)

(skosimp -1)

(expand "ftrans_trace" -1)

(skosimp -1)

(expand "ctrans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(skosimp -1)

(inst ...)

(iff)

(flatten)

(replace -2 -6 :dir rl)

(hide -7)

(split -6)

(skosimp -1)

(inst ...)

(split)

(use "add2pair")

(grind)

(expand "trans_trace" 1)

(expand "trans_trace" -2)

(skosimp -2)

(inst 1 "Q!2")

(expand "trans_list" 1)

(assert)

(inst 1 "Q1!1")

(assert)

(expand "ctrans_trace" 1)

(inst 1 "P!2")

(assert)

(expand "ftrans_trace" 1)

(inst 1 "QQ!1")

(assert)

(skosimp*)

(use "tr_induct")

(replace -2 -1)

(hide -2)

(flatten)

(expand "trans_trace" -4)

(skosimp -4)

(expand "trans_list" -4)

(lift-if)

(split)

(assert) (flatten -1)

(skosimp -1)

(use "tran_induct")

(replace -1 3)

(hide -1)

(inst 3 "Q!3")

(inst ...)

(split)

(assert) (replace -8 1)

(inst ...)

(expand "trans_trace" 1)

(assert)

(grind)
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(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "nul_eq")

(expand "syn_wtrans" -1)

(skosimp -1)

(split)

(flatten -1)

(inst ...)

(grind)

(skosimp -1)

(split)

(flatten)

(lemma "th1")

(inst -1 "Q1!1")

(skosimp -1)

(inst ...)

(split)

(grind) (expand "trans_trace" -1)

(skosimp -1)

(expand "trans_trace" 1)

(grind)

(grind)

(skosimp -1)

(split)

(flatten -1)

(lemma "th1")

(inst -1 "R1!1")

(skosimp -1)

(expand "trans_trace" -1)

(skosimp -1)

(inst ...)

(grind)

(skosimp -1)

(lemma "th1")

(inst -1 "Q1!2")

(skosimp -1)

(lemma "th1")

(inst -1 "R1!2")

(skosimp -1)

(expand "trans_trace" -1)

(skosimp -1)

(expand "trans_trace" -3)

(skosimp -3)

(inst ...)

(grind)

(skosimp)

(skolem!)

(flatten)

(use "empty_trace")

(replace -2 -1)

(hide -2)

(rewrite "nul_eq")

(split -1)

(expand "syn_wtrans" 1)

(grind)

(expand "syn_wtrans" 1)

(inst 1 "w1!1" "w2!1")

(flatten 1)

(lemma "th1")

(expand "trans_trace" -3)

(skosimp -3)

(expand "trans_list" -6)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst 4 "car(s1!1)" "w2!1" "Q!3")

(flatten)

(grind)

(expand "syn_wtrans" 1)

(inst 1 "w1!1" "w2!1")

(flatten)

(inst 3 "car(s2!1)" "w1!1" "P!1")

(flatten)

(lemma "th1")

(expand "trans_trace" -7)

(skosimp -7)

(expand "trans_list" -7)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst 5 "car(s2!1)" "w1!1" "Q!3")

(grind)

(lemma "th1")

(lemma "th1")

(skosimp -1)

(expand "trans_trace" -8)

(skosimp -8)

(expand "trans_trace" -10)

(skosimp -10)

(expand "syn_wtrans" 4)

(inst 4 "w1!1" "w2!1")

(flatten)

(expand "trans_list" -8)

(lift-if)

(split)

(grind) (flatten)

(skosimp -1)

(inst 6 "car(s1!1)" "w2!1" "Q!4")

(flatten)

(expand "trans_list" -11)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst 8 "car(s2!1)" "w1!1" "Q!5")

(flatten)

(inst ...)

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "trans_trace" -1)

(skosimp -1)

(expand "trans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(split -1)

(flatten)

(skosimp)

(inst -7 "Q1!1" "R1!1" "X!1" "w!1")

(iff)

(flatten)

(replace -4 -7 :dir rl)

(hide -8)

(split)

(skosimp -1)

(inst ...)

(expand "trans_trace" -2)

(skosimp -2)

(expand "trans_trace" -4)

(skosimp -4)

(grind)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(flatten -1)

(skosimp -1)

(split -1)

(flatten -1)

(inst -5 "Q1!1" "Q!1" "X!1" "w!1")

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(assert)

(expand "trans_trace" -2)

(skosimp -2)

(grind)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(skosimp -1)

(inst -5 "P!1" "R1!1" "X!1" "w!1")

(iff)

(flatten -5)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(assert)

(expand "trans_trace" -3)

(skosimp -3)

(grind)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(skosimp*)

(expand "full_parallel" -1)

(split)

(flatten)

(expand "trans_trace" -7)

(skosimp -7)

(expand "trans_trace" -9)

(skosimp -9)

(expand "trans_list" -7)

(lift-if)

(split -7)

(flatten -1)

(inst -12 "Q!2" "Q!3" "X!1" "w!1")

(iff)

(flatten -12)

(hide -13)

(split -12)

(skosimp -1)

(expand "trans_trace" 1)

(grind)

(grind)

(expand "trans_list" -9)

(lift-if)

(split -9)

(flatten -1)

(inst -12 "Q!2" "Q!3" "X!1" "w!1")

(iff)

(flatten -12)

(hide -13)

(split -12)

(skosimp -1)

(grind)

(grind)

(skosimp*)

(use "tr2")

(replace -1 3)

(hide -1)

(inst 3 "Q!5" "Q!4")

(flatten 3)

(assert)

(inst -13 "Q!5" "Q!4" "X!1" "w!1")

(replace -13 3)

(hide -13)

(inst ...)

(assert)

(split 3)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!3")

(assert)

(skosimp -1)

(split -1)

(flatten -1)

(expand "trans_trace" -4)

(skosimp -4)

(expand "trans_list" -4)

(lift-if)

(split -4)

(inst -7 "Q!2" "Q!1" "X!1" "w!1")

(iff)

(flatten)

(hide -9)

(split -8)

(skosimp -1)

(expand "trans_trace" 2)

(grind)

(assert)

(flatten -1)

(skosimp -1)

(use "tr2")

(replace -1 3)

(hide -1)

(expand "trans_trace" -7)

(skosimp -7)

(inst 3 "Q!3" "Q!4")

(flatten 3)

(inst 4 "Q!3")

(flatten 4)

(split 4)

(propax) (assert) (inst -9 "Q!3" "Q!1" "X!1" "w!1")

(replace -9 1)

(hide -9)

(inst ...)

(assert)

(split 1)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!4")

(assert)

(flatten -1)

(expand "trans_trace" -5)

(skosimp -5)

(expand "trans_list" -5)

(lift-if)

(split)

(flatten)

(inst -8 "P!1" "Q!2" "X!1" "w!1")

(iff)

(flatten)

(split)

(skosimp -1)

(expand "trans_trace" 2)

(grind)

(assert)

(flatten -1)

(skosimp -1)

(use "tr2")

(replace -1 3)

(hide -1)

(expand "trans_trace" -6)

(skosimp -6)

(inst 3 "Q!4" "Q!3")

(flatten 3)

(inst 4 "Q!4")

(flatten)

(inst 5 "Q!3")

(hide 3 4)

(assert)

(inst -9 "P!1" "Q!3" "X!1" "w!1")

(replace -9 3)

(hide -9)

(inst ...)

(assert)

(split)

(expand "trans_trace" 1)

(inst 1 "Q!4")

(assert)

(expand "trans_trace" 1)

(inst 1 "Q!2")

(assert)
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(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "c_null_eq")

(expand "syn_wtrans" -1)

(skosimp -1)

(inst ...)

(grind)

(skosimp)

(skosimp -1)

(rewrite "c_null_eq")

(expand "syn_wtrans" 2)

(inst 2 "P!1" "Q!1" "w1!1" "w2!1")

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "ftrans_trace" -1)

(skosimp -1)

(expand "ctrans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(split)

(flatten)

(skosimp -2)

(inst ...)

(iff)

(flatten)

(replace -4 -7 :dir rl)

(hide -8)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -2)

(skosimp -2)

(expand "ftrans_trace" -4)

(skosimp -4)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(flatten -1)

(skosimp -1)

(split -1)

(flatten -1)

(inst ...)

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -2)

(skosimp -2)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(skosimp -1)

(inst ...)

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -3)

(skosimp -3)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(skosimp*)

(expand "full_parallel" -1)

(split)

(flatten)

(expand "ftrans_trace" -7)

(skosimp -7)

(expand "ftrans_trace" -9)

(skosimp -9)

(expand "ctrans_list" -7)

(lift-if)

(expand "ctrans_list" -9)

(lift-if)

(split -7)

(flatten -1)

(inst ...)

(iff)

(flatten -13)

(hide -14)

(split -13)

(skosimp -1)

(expand "ftrans_trace" -3)

(grind)

(grind)

(split -9)

(flatten -1)

(flatten -3)

(skosimp -3)

(inst ...)

(iff)

(flatten -14)

(hide -15)

(split -14)

(skosimp -1)

(expand "ftrans_trace" 4)

(grind)

(grind)

(skosimp*)

(use "ctr2")

(replace -1 4)

(hide -1)

(inst 4 "QQ!5" "QQ!4")

(flatten 4)

(assert)

(inst ...)

(replace -14 4)

(hide -14)

(inst ...)

(assert)

(split 4)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(expand "ftrans_trace" 1)

(inst 1 "QQ!3")

(assert)

(flatten -1)

(split)

(flatten -1)

(expand "ftrans_trace" -4)

(skosimp -4)

(expand "ctrans_list" -4)

(lift-if)

(split -4)

(flatten -1)

(expand "ftrans_trace" 3)

(grind)

(skosimp -1)

(skosimp -1)

(use "ctr2")

(replace -1 4)

(hide -1)

(expand "ftrans_trace" -7)

(skosimp -7)

(inst 4 "QQ!3" "QQ!4")

(flatten 4)

(inst 5 "QQ!3")

(flatten 5)

(assert)

(inst ...)

(replace -10 5)

(inst ...)

(hide -10)

(assert)

(expand "ftrans_trace" 5)

(grind)

(flatten -1)

(expand "ftrans_trace" -5)

(skosimp -5)

(expand "ctrans_list" -5)

(lift-if)

(split)

(flatten -1)

(expand "ftrans_trace" 3)

(grind)

(flatten -1)

(skosimp -1)

(use "ctr2")

(replace -1 4)

(hide -1)

(expand "ftrans_trace" -6)

(skosimp -6)

(inst 4 "QQ!4" "QQ!3")

(flatten 4)

(inst 5 "QQ!4")

(flatten 5)

(inst 6 "QQ!3")

(assert)

(inst ...)

(replace -10 6)

(hide -10)

(inst ...)

(assert)

(expand "ftrans_trace" 6)

(grind)
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(induct "s")

(skosimp*)

(iff)

(split)

(flatten)

(rewrite "c_null_eq")

(expand "syn_wtrans" -1)

(skosimp -1)

(skosimp -1)

(split)

(flatten)

(lemma "c_th1")

(inst -1 "QQ1!1")

(skosimp -1)

(inst ...)

(split)

(propax) (grind) (expand "ftrans_trace" -1)

(skosimp -1)

(grind)

(grind)

(skosimp -1)

(split)

(flatten -1)

(lemma "c_th1")

(inst -1 "RR1!1")

(skosimp -1)

(expand "ftrans_trace" -1)

(skosimp -1)

(inst ...)

(grind)

(skosimp -1)

(lemma "c_th1")

(inst -1 "QQ1!2")

(skosimp -1)

(lemma "c_th1")

(inst -1 "RR1!2")

(skosimp -1)

(expand "ftrans_trace" -1)

(skosimp -1)

(expand "ftrans_trace" -3)

(skosimp -3)

(inst ...)

(grind)

(skosimp)

(skolem!)

(flatten)

(use "empty_trace_bot")

(rewrite -3)

(rewrite "c_null_eq")

(split -1)

(expand "syn_wtrans" 1)

(inst 1 "P!1" "Q!1" "w1!1" "w2!1")

(expand "ftrans_trace" -3)

(skosimp -3)

(expand "ctrans_list" -6)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst ...)

(flatten)

(grind)

(expand "syn_wtrans" 1)

(inst 1 "P!1" "Q!1" "w1!1" "w2!1")

(flatten)

(inst ...)

(flatten)

(expand "ftrans_trace" -7)

(skosimp -7)

(expand "ctrans_list" -7)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst ...)

(grind)

(skosimp -1)

(expand "ftrans_trace" -7)

(skosimp -7)

(expand "ftrans_trace" -9)

(skosimp -9)

(expand "syn_wtrans" 4)

(inst 4 "P!1" "Q!1" "w1!1" "w2!1")

(expand "ctrans_list" -7)

(lift-if)

(split)

(grind) (flatten)

(skosimp -1)

(inst ...)

(flatten)

(expand "ctrans_list" -10)

(lift-if)

(split)

(grind) (flatten -1)

(skosimp -1)

(inst ...)

(flatten)

(inst ...)

(grind)

(skosimp*)

(iff)

(split)

(flatten)

(expand "ftrans_trace" -1)

(skosimp -1)

(expand "ctrans_list" -1)

(skosimp -1)

(expand "ntrans" -1)

(split -1)

(flatten)

(skosimp)

(inst ...)

(iff)

(flatten)

(replace -4 -7 :dir rl)

(hide -8)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -3)

(skosimp -3)

(expand "ftrans_trace" -5)

(skosimp -5)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(flatten -1)

(skosimp -1)

(split -1)

(flatten -1)

(inst ...)

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -3)

(skosimp -3)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(skosimp -1)

(inst ...)

(iff)

(flatten)

(hide -6)

(replace -2 -5 :dir rl)

(split)

(skosimp -1)

(inst ...)

(expand "ftrans_trace" -4)

(skosimp -4)

(grind)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(skosimp*)

(expand "full_parallel" -2)

(split)

(flatten)

(expand "ftrans_trace" -8)

(skosimp -8)

(expand "ftrans_trace" -10)

(skosimp -10)

(expand "ctrans_list" -8)

(lift-if)

(split -8)

(flatten -1)

(inst ...)

(iff)

(flatten -13)

(hide -14)

(split -13)

(skosimp -1)

(expand "ftrans_trace" -3)

(grind)

(grind)

(expand "ctrans_list" -10)

(lift-if)

(split)

(flatten -1)

(flatten -3)

(skosimp -3)

(inst ...)

(iff)

(flatten -14)

(hide -15)

(split -14)

(skosimp -1)

(expand "ftrans_trace" 2)

(grind)

(grind)

(skosimp*)

(use "ctr2")

(replace -1 3)

(hide -1)

(inst 3 "QQ!5" "QQ!4")

(flatten 3)

(assert)

(inst ...)

(replace -14 3)

(hide -14)

(inst ...)

(assert)

(split 3)

(expand "ftrans_trace" 1)

(inst 1 "QQ!2")

(assert)

(expand "ftrans_trace" 1)

(inst 1 "QQ!3")

(assert)

(skosimp -1)

(split -1)

(flatten -1)

(expand "ftrans_trace" -5)

(skosimp -5)

(expand "ctrans_list" -5)

(lift-if)

(split -5)

(flatten -1)

(expand "ftrans_trace" 2)

(grind)

(flatten -1)

(skosimp -1)

(use "ctr2")

(replace -1 3)

(hide -1)

(expand "ftrans_trace" -8)

(skosimp -8)

(inst 3 "QQ!3" "QQ!4")

(flatten 3)

(inst 4 "QQ!3")

(flatten 4)

(assert)

(inst ...)

(replace -10 4)

(inst ...)

(hide -10)

(assert)

(expand "ftrans_trace" 4)

(grind)

(flatten -1)

(expand "ftrans_trace" -6)

(skosimp -6)

(expand "ctrans_list" -6)

(lift-if)

(split)

(flatten -1)

(expand "ftrans_trace" 2)

(grind)

(flatten -1)

(skosimp -1)

(use "ctr2")

(replace -1 3)

(hide -1)

(expand "ftrans_trace" -7)

(skosimp -7)

(inst 3 "QQ!4" "QQ!3")

(flatten 3)

(inst 4 "QQ!4")

(flatten 4)

(inst 5 "QQ!3")

(assert)

(inst ...)

(replace -10 5)

(hide -10)

(inst ...)

(assert)

(expand "ftrans_trace" 5)

(grind)
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