
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OpenGrey Repository

https://core.ac.uk/display/40054322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

An Incremental Process for the

Development of Multi-Agent Systems in

Event-B

by

Elisabeth Ball

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

August 2008

http://www.soton.ac.uk
mailto:ejb04r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Elisabeth Ball

A multi-agent system is a group of software or hardware agents that cooperate or com-
pete to achieve individual or shared goals. A method for developing a multi-agent
system must be capable of modelling the concepts that are central to multi-agent sys-
tems. These concepts are identified in a review of Agent Oriented Software Engineering
methodologies.

The rigorous development of complex systems using formal methods can reduce the
number of design faults. Event-B is a formal method for modelling and reasoning about
reactive and distributed systems. There is currently no method that guides the developer
specifically in the modelling of agent-based concepts in Event-B. The use of formal
methods is seen by some developers as inaccessible.

This thesis presents an Incremental Development Process for the development of multi-
agent systems in Event-B. Development following the Incremental Development Process
begins with the construction of informal models, based on agent concepts. The informal
models relate system goals using a set of relationships. The developer is provided with
guidance to construct formal Event-B models based on the informal design. The concepts
that are central to multi-agent systems are captured in the Event-B models through the
translation from the goal models. The Event-B models are refined and decomposed into
specifications of roles that will be performed by the agents of the system. Two case
studies illustrate how the Incremental Development Process can be applied to multi-
agent systems. An additional aid to the developer presented in this thesis is a set
of modelling patterns that provide fault-tolerance for Event-B models of interacting
agents.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ejb04r@ecs.soton.ac.uk

Contents

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contribution Overview . 3
1.4 Thesis Organisation . 4

2 Event-B 7
2.1 Introduction . 7
2.2 Event-B . 8

2.2.1 Safety and Liveness of the Event-B models 12
2.2.2 Refinement . 13
2.2.3 Decomposition . 14
2.2.4 Tools . 15
2.2.5 Specifying Event-Based Decomposition 16

2.3 Related Methods . 17
2.4 Temporal Logic . 19
2.5 Process Algebra . 19
2.6 Summary . 20

3 Agent-Oriented Software Engineering 21
3.1 Multi-Agent Systems . 21
3.2 Survey of Agent-Oriented Software Engineering Methodologies 23
3.3 Evaluation of AOSE Methodologies . 27

3.3.1 Multi-Agent System Concepts . 28
3.3.2 Complexity Management . 28
3.3.3 Formality . 29

3.4 Modelling Techniques for Multi-Agent System Concepts 30
3.4.1 Agent Interaction and Coordination 30
3.4.2 Agent Goals . 32
3.4.3 Agent Roles . 34

3.5 The Use of the B-Method and Event-B in AOSE 35
3.6 Summary . 36

4 Incremental Development Process: Stage One - Goal Elaboration 39

ii

CONTENTS iii

4.1 Using the Multi-Agent System Concepts 40
4.2 Stage One . 41

4.2.1 The Goal Diagram . 42
4.2.2 Goal Elaboration . 43
4.2.3 Constructing and Refining the Event-B Models 45
4.2.4 Endpoint Goals . 56
4.2.5 One-to-Many Interactions . 59

4.3 Summary . 61

5 Incremental Development Process: Stage Two - Distributed Coordi-
nation 63
5.1 Communicating Goals . 64
5.2 Broadcast Communication . 64
5.3 Role Allocation . 65
5.4 Allocating Resources . 66
5.5 Refining the Event-B Models . 67

5.5.1 Broadcast Communication . 68
5.5.2 Role Allocation . 69
5.5.3 Resource Allocation . 72

5.6 System Decomposition . 78
5.7 Discussion on Patterns . 81
5.8 Summary . 82

6 Case Study : Query-If 85
6.1 Case Study . 85
6.2 Stage One . 86
6.3 Stage Two: Introducing Send and Receive 90
6.4 Stage Two: Introducing the Messaging Medium 92

7 Case Study : Contract Net 99
7.1 Case Study . 99
7.2 Stage One . 100
7.3 Stage Two . 107

8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 115
8.1 Fault-Tolerance in Agent Interaction . 116
8.2 Fault-Tolerance Patterns for Event-B Models of Multi-Agent Systems . . 117
8.3 Applying the Patterns . 118
8.4 Initial Development Chain for the Contract Net 120
8.5 Timeout Pattern . 124
8.6 Refuse Pattern . 127
8.7 Cancel Pattern . 130
8.8 Failure Pattern . 132
8.9 Not-Understood Pattern . 135
8.10 Related Work . 138
8.11 Summary . 139

9 Conclusion 141

CONTENTS iv

9.1 Limitations . 143
9.2 Contributions . 143
9.3 Comparison of the Process to the Gaia and Tropos Methodologies 145
9.4 Comparison of Goal Diagrams . 147
9.5 Comparison of Informal to Formal Model Translation 149
9.6 Future Work . 151

A Query-If Case Study Event-B Models 153
A.1 Context . 153
A.2 m0 - Abstract Machine . 154
A.3 m1 - First Refinement . 156
A.4 m2 - Second Refinement . 159
A.5 Context 2 . 164
A.6 m3 - Third Refinement . 165
A.7 Context 3 . 172
A.8 m4 - Fourth Refinement . 174
A.9 m5 - Fifth Refinement . 181
A.10 Initiator - Component Model . 184
A.11 Participant - Component Model . 188
A.12 Middleware - Component Model . 191

B Contract Net Case Study Event-B Models 193
B.1 Context . 193
B.2 m0 - Abstract Machine . 194
B.3 m1 - First Refinement . 196
B.4 m2 - Second Refinement . 202
B.5 Context 2 . 213
B.6 m3 - Third Refinement . 213
B.7 Context 3 . 227
B.8 m4 - Fourth Refinement . 229
B.9 m5 - Fifth Refinement . 243
B.10 Initiator - Component Model . 250
B.11 Participant - Component Model . 258
B.12 Middleware - Component Model . 264
B.13 Example Proof Obligation . 266

C Fault-Tolerant Contract Net Case Study Event-B Models 275
C.1 Context . 275
C.2 m0 - Abstract Machine . 275
C.3 Context2 . 278
C.4 m1 - First Refinement . 279

Bibliography 293

List of Figures

2.1 Example Event-B Machine Structure . 10
2.2 Notation Used to Represent Events . 11
2.3 Event-B Context Structure . 11
2.4 Comparing Event-Based and State-Based Decomposition 15
2.5 Model Relationships for Decomposition 17

4.1 A THEN Elaboration . 44
4.2 An AND Elaboration . 44
4.3 An XOR Elaboration . 44
4.4 An OR Elaboration . 44
4.5 How Goal Elaboration Can Relate to Event-B Refinement 46
4.6 Event-B Model for a Goal . 47
4.7 Event-B Model for a THEN Elaboration 49
4.8 Alternative Representation of Goals in Event-B 50
4.9 AND-THEN Goal Elaboration . 51
4.10 Event-B Model for an AND-THEN Elaboration 52
4.11 Event-B Model for an XOR Elaboration 53
4.12 OR-THEN Goal Elaboration . 54
4.13 Event-B Model for an OR-THEN Elaboration 55
4.14 Goal Elaboration With an Endpoint Goal 56
4.15 Goal Elaboration Without an Endpoint Goal 56
4.16 Event-B Model for an XOR-THEN Elaboration with an Endpoint Goal . 58
4.17 Event-B Model for a Goal That Uses Broadcast Communication 59
4.18 Event-B Model for a Refinement That Uses Broadcast Communication . . 60

5.1 Goal Elaboration With Communicating Goals 64
5.2 Goal Elaboration With Broadcasting Goals 65
5.3 A Broadcast Goals Elaboration With a Reply 65
5.4 A THEN Elaboration With Role Allocation 66
5.5 Goal Diagram With Resource Allocation 66
5.6 Event-B Model for the Communicating Goals Elaboration 67
5.7 Event-B Model for Broadcast Goals Elaboration 69
5.8 Event-B Model With Role Allocation . 71
5.9 Event-B Model for Directory Service Resource Refinement 73
5.10 Extended Context for Step One . 74
5.11 State of the First Event-B Refinement for the Messaging Medium 74
5.12 Events of the First Event-B Refinement for the Messaging Medium 76
5.13 Further Extended Context for the Messaging Medium 77

v

LIST OF FIGURES vi

5.14 Events From the Second Event-B Refinement for the Messaging Medium . 77
5.15 Synchronising the Refinement Model and the Abstract Component Models 79
5.16 Synchronising the Refinement Model and the Abstract Component Models 80

6.1 First Level of Goal Elaboration for Query-If 86
6.2 Query-If: Abstract Machine . 87
6.3 Second Level of Goal Elaboration for Query-If 87
6.4 Query-If: First Refinement . 89
6.5 Goal Model for Query-If . 90
6.6 Query-If: Invariants of the Second Refinement 91
6.7 Query-If: Events of the Second Refinement (Part 1) 92
6.8 Query-If: Events of the Second Refinement (Part 2) 93
6.9 Query-If: State of the Third Refinement 93
6.10 Query-If: Example Events from the Third Refinement 94
6.11 Query-If: Extended Context for the Fourth Refinement 95
6.12 Query-If: State of the Fourth Refinement 96
6.13 Query-If: Example Events of the Fourth Refinement 96
6.14 Query-If: Synchronising of the Fifth Refinement and the Abstract Com-

ponent Models . 97

7.1 The First Level of Goal Elaboration for the Contract Net 100
7.2 Contract Net: Abstract Machine . 102
7.3 The Second Level of Goal Elaboration for the Contract Net 103
7.4 Contract Net: Invariants of the First Refinement 104
7.5 Contract Net: Events of the First Refinement 106
7.6 Goal Model for Contract Net . 107
7.7 Contract Net: State of the Second Refinement 108
7.8 Contract Net: Selected Events From the Second Refinement 109
7.9 Contract Net: Extract From the State of the Third Refinement 110
7.10 Contract Net: Example Events of the Fourth Refinement 111
7.11 Contract Net: Extended Context for the Fifth Refinement 111
7.12 Contract Net: State of the Fifth Refinement 112
7.13 Contract Net: Example Events of the Fifth Refinement 112
7.14 Contract Net: Synchronising the Sixth Refinement Model and the Ab-

stract Component Models . 113

8.1 Applying the Patterns to an Existing Model 118
8.2 Effect of Applying Patterns . 119
8.3 Abstract Machine of the Initial Chain . 121
8.4 Invariants of the Refinement of the Initial Chain 122
8.5 Events of the Refinement of the Initial Chain 123
8.6 Interaction Diagram for Timeout Pattern 125
8.7 Abstract Events for the Timeout Pattern in the Contract Net 125
8.8 Invariants for the Refinement of the Timeout Pattern in the Contract Net 126
8.9 Concrete Events for the Timeout Pattern in the Contract Net 127
8.10 Interaction Diagram for Refuse Pattern 128
8.11 Concrete Invariants for the Refuse Pattern in the Contract Net 129
8.12 Concrete Events for the Refuse Pattern in the Contract Net 129

LIST OF FIGURES vii

8.13 Interaction Diagram for Cancel Pattern 130
8.14 Abstract Events for the Cancel Pattern in the Contract Net 131
8.15 Invariants for the Refinement of the Cancel Pattern in the Contract Net . 131
8.16 Concrete Events for the Cancel Pattern in the Contract Net 133
8.17 Interaction Diagram for Failure Pattern 134
8.18 Abstract Events for the Failure Pattern in the Contract Net 134
8.19 Invariants for the Refinement of the Failure Pattern in the Contract Net . 134
8.20 Concrete Events for the Failure Pattern in the Contract Net 135
8.21 Interaction Diagram for Not-Understood Pattern 136
8.22 Abstract Events for the Not-Understood Pattern in the Contract Net . . . 137
8.23 Concrete Invariants and Events for the Refinement of the Not-Understood

Pattern in the Contract Net . 137

B.1 Proof Obligation . 267
B.2 Proof Information . 268
B.3 Adding Hypotheses . 269
B.4 Updated Goal . 270
B.5 Running Prover . 271
B.6 Discharged Proof Obligation . 272

DECLARATION OF AUTHORSHIP

I, Elisabeth Ball, declare that the thesis entitled ‘An Incremental Process for the De-
velopment of Multi-Agent Systems in Event-B’ and the work presented in the thesis are
both my own, and have been generated by me as the result of my own original research.
I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of the thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as:

1. Ball, E. and Butler, M. (2006) Using Decomposition to Model Multi-agent
Interaction Protocols in Event-B. In Proceedings of FM’06 Doctoral Sym-
posium, Available From: http://fm06.mcmaster.ca/11ElisabethBall.pdf, Mc-
Master University, Hamilton, Canada.

2. Ball, E. and Butler, M. (2007) Event-B Patterns for Specifying Fault-Tolerance
in Multi-Agent Interaction. In Proceedings of MeMoT 2007 Methods, Models
and Tools for Fault-Tolerance, Available From: http://homepages.cs.ncl.ac.uk/
alexander.romanovsky/home.formal/full-proceedings-final.pdf, Oxford, UK.

Signed:...

Date: ...

viii

Acknowledgements

I would like to thank my supervisor Professor Michael Butler for his expertise and
insight. Without his guidance I would not have been able to complete this thesis.

I would like to thank members of the DSSE research group for their support and advice.
I am particularly grateful to my fellow students for their friendship and support.

I would like to thank those that have reviewed my work during my PhD as their feedback
has been influential in the course of my work.

I have many things in my life to be grateful for, but perhaps the most important is Peter
and the patience and understanding that he has shown me whilst I pursue my dreams.
Without the support of my mother and my brother it would not have been possible for
me to complete, or in fact begin, this work. Each member of my family and friends are
an inspiration to me and have all helped to motivate and support me over the last few
years. For that, and for everything else, I would like to thank them.

ix

To my Father, who got me here

x

Chapter 1

Introduction

Computer systems are increasingly being required to solve distributed problems that
exist in dynamic environments. Grid systems (De Roure et al. (2003)) are required to
decompose submitted tasks to be able to make use of available computing power. Mobile
communications devices are required to switch between heterogeneous networks. The
software systems that are used to solve distributed problems need to be able to respond
dynamically to change in both the problem and the environment.

Multi-agent systems are systems of distributed software entities that cooperate or com-
pete to achieve individual or shared goals (Ferber (1999)). Agents encapsulate their
behaviour and are motivated by their internal goals. The agents can individually re-
spond, pro-actively and reactively, to changes in their environment (Jennings (2000)).
The agent metaphor is one approach to creating software systems that are capable of
solving distributed problems.

Multi-agent systems are complex (Cilliers (1998)). They need to be complex to be able to
solve complex problems. Each agent acts autonomously according to their motivations.
The agent’s interactions are non-linear and can have a feedback affect on themselves. The
system is capable of changing over time and each component does not have a complete
awareness of the rest of the system. The development of multi-agent systems requires
specialised software engineering methodologies for the application of such systems to
become successful (Fisher and Wooldridge (1996)).

1.1 Motivation

The engineering of software systems can involve several phases of development (Pressman
(2000)). Requirements analysis creates models of the problem domain and results in a
specification of the tasks that the system must perform. The design phase takes the
results of the analysis and models a system that will fulfill the requirements. The

1

Chapter 1 Introduction 2

implementation phase is when the software is written that complies with the design of
the system. The software can then be tested against the requirements of the system to
ensure that it performs as it was intended.

Engineering software is a difficult task with many problems that can arise, due to fac-
tors such as the complexity of the system and the change-ability of system require-
ments (Brooks (1987)). An ambiguous requirements specification can lead to the incor-
rect implementation of the system (Berry and Kamsties (2004)). Software designs can
be inadequate and contain conceptual mistakes and subtle flaws that will lead to system
failure (Jackson (2006)).

Testing software is not always adequate for discovering faults in system design (Jackson
(2006)). The more complex a system becomes and the greater the number of possible
interactions, the more susceptible it is to design faults (Rushby (1995)). The non-linear
interactions that feedback into the system make it difficult to trace the source of any
errors. Therefore, the complexity of the system will affect the amount of testing required.
The more unpredictable the interactions of the system the greater the number of tests
that will be required to provide adequate coverage. Relying on testing alone could lead
to the execution of interactions that have not been performed by testing. This makes
the use of rigorous design methods more important in the design of complex systems,
including multi-agent systems.

Formal methods are the application of mathematics to model and verify software or
hardware systems (Storey (1996)). The use of formal methods in software engineering
can lead to a specification of a system that is unambiguous and can be formally verified
to ensure it is consistent. Using a formal method to design systems has been found to
reduce the number of design faults introduced into a software system and reduce the
amount of testing the system requires (Hall (1996)). The design can be analysed for
flaws before it is turned into programming code (Jackson (2006)).

Software engineering methods for developing multi-agent systems use agent concepts,
such as organisations, agents, knowledge and motivation, as primary entities in models
for analysis and design (Bordini et al. (2006)). Formal methods use mathematical no-
tations to model software systems. This allows the models to be proven to be correct
through formal verification. To be able to engineer multi-agent system using formal
methods the agent concepts need to be expressed in the formal models.

Event-B is a mathematical approach for developing formal models of distributed systems
that can be used to analyse and reason about the system (Abrial and Mussat (1998)). It
is a methodology built on the theory of action systems (Back and Sere (1991)) that can
be used to create models of reactive and parallel distributed systems. This makes it an
appropriate formalism for modelling systems of distributed agents. Because of this, the
focus of the work presented in this thesis is multi-agent systems rather than individual
agents. Event-B has been used to model multi-agent systems with a focus on concepts

Chapter 1 Introduction 3

such as mobility and trust (Iliasov et al. (2006)), but there is currently no method that
guides the developer specifically in the modelling of agent-based concepts using Event-B.

The mathematical basis of formal methods is seen as giving developers the percep-
tion that formal methods are inaccessible and require a large amount of training (Heit-
meyer (1998); Hinchey and Bowen (1996); Hall (1990)). Improved tools and the use of
‘lightweight’ formal methods are considered to be two ways to make formal methods
more accessible (Jones et al. (1996)). Another possible solution is to provide novice
developers with expert advice (Hinchey and Bowen (1996)).

1.2 Objectives

The work presented in this thesis aims to create a method for developing multi-agent
systems using Event-B. The method must allow fundamental aspects of agents to be
captured. Creating an approach that can be seen as accessible would make the method
useful to a greater number of developers.

This overall aim can be broken down into the following three objectives:

1. Identify agent concepts. There is currently no clear, widely accepted definition
of what a software agent is and what the qualities are that it possesses. There
are several concepts that can be used compose an agent and a multi-agent system.
To be able to construct models of multi-agent systems the concepts that must be
modelled need to be identified.

2. Construct a method for modelling agent concepts in Event-B. Event-
B is a method for modelling reactive and distributed systems. This provides a
useful basis for constructing models of multi-agent systems. This suitability can
be increased by an additional method for modelling the identified agent concepts
within the Event-B method.

3. Make the method accessible. There are advantages to using formal methods
when developing software. When developing complex systems, like multi-agent
systems, using rigorous methods can prevent errors that would be difficult to test
for. The mathematical basis of formal methods can make them seem inaccessible to
a developer. There are methods used in both formal methods and Agent-Oriented
Software Engineering (AOSE) for managing the complexity of developing models.
It is also possible to use informal techniques alongside the formal methods.

1.3 Contribution Overview

To achieve the objectives described above this thesis makes several contributions.

Chapter 1 Introduction 4

The key contribution of this thesis is the Incremental Development Process. The In-
cremental Development Process uses informal techniques to capture the system require-
ments using agent-based concepts and make modelling decisions about the functioning
of the system. It describes how these informal models can be translated into Event-B
models, integrating the agent concepts into the Event-B models.

Further contributions that have been made in the course of this work can be summarised
as follows:

• The key concepts used in a selection of current AOSE methodologies have been
identified. Methods used to manage the complexity of developing models of multi-
agent systems have also been evaluated.

• The further contributions that can be identified separately of the Incremental
Development Process include:

– Guidelines for translating goal diagrams into Event-B models.

– The use of the events and variables in Event-B to model the agents fulfilling
their goals.

– The use of decomposition for modelling agent roles in Event-B.

• This thesis includes two case study models that have the potential for re-use.

• The construction of the case study models led to the identification of patterns for
fault-tolerance in multi-agent systems. Alongside the patterns further contribu-
tions are.

– The identification of how the interactions of multi-agent systems can use
fault-tolerance to increase the dependability of the agents.

– An examination of how patterns can be applied in Event-B.

1.4 Thesis Organisation

This thesis describes the contributions outlined above and how they have been achieved.
The remainder of this thesis is structured as follows:

Chapter 2 introduces Event-B. The notation and method used to develop formal models
of systems using Event-B are described. The use of refinement in Event-B, that takes
a model of an abstract interpretation of requirements to a more detailed model of the
system, is described. There is a discussion of the decomposition methods that can
be applied to Event-B models. The RODIN tool set that can be used in Event-B
development is also described.

Chapter 1 Introduction 5

Chapter 3 provides more detail on multi-agent systems. A definition of individual agents
is included and from that multi-agent systems are described. The chapter includes a
survey of a selection of AOSE methods. Each of the methods is described and then they
are all evaluated to find the common concepts required to model multi-agent systems,
how the complexity of agent systems can be managed during the design process and how
formal methods can be used to model multi-agent systems. The main outcome of the
evaluation is the identification of the concepts that are needed in a method for modelling
multi-agent systems using Event-B.

Chapters 4 and 5 describe the Incremental Development Process that is the main contri-
bution of this thesis. Chapter 4 introduces Stage One of the Incremental Development
Process. The chapter describes how goal models of a system can be constructed by refin-
ing abstract goals with a set of relationships. Guidance is then given for translating the
goals and their relationships into the elements of an Event-B model. The translations
can be applied as refinement steps to create an Event-B refinement tree that corresponds
with the refinement of the goals.

Chapter 5 describes how the models of system goals constructed in Stage One can
be developed using Stage Two of the Incremental Development Process to model the
coordination of the agents in the system. The Incremental Development Process then
continues by refining and then decomposing the system model into abstract component
models of the agent roles required by the system.

Chapters 6 and 7 contain two case studies that have been developed using the Incre-
mental Development Process. The case studies are based on multi-agent interaction
protocols. The first case study provides an example of a three stage interaction between
two agents. The second case study is of a multi-stage interaction between multiple
agents.

Chapter 8 presents a further contribution of this thesis. A set of modelling patterns that
extend Event-B models to include fault-tolerance for the interactions of a multi-agent
system are described. One of the case studies developed in the previous chapters is used
to show how the patterns can be applied.

Chapter 9 concludes this thesis. The contributions of the thesis are discussed. Lim-
itations of the work, including the Incremental Development Process, are examined.
Comparisons are provided between the Incremental Development Process and two of
the surveyed AOSE methodologies, related work using goal diagrams and related work
translating between informal and formal models. Possible directions for future work are
described.

Chapter 2

Event-B

This chapter provides background knowledge on the Event-B formal method. The Event-
B method is introduced with a description of the philosophy behind the method followed
by an introduction to the constructs used for modelling systems in Event-B. How liveness
and safety properties can be modelled and proven in Event-B is described. More detail is
given on the refinement method used to develop Event-B models and the decomposition
methods that can be applied to Event-B models. The tools that are used to develop the
Event-B models used in this thesis are introduced followed by a description of how the
tools have been used to apply event-based decomposition to the models. Further back-
ground is provided with a description and comparison of some related formal methods
and an overview of temporal logics.

2.1 Introduction

Formal methods are the application of mathematics to model and verify software or
hardware systems (Storey (1996)). Mathematically based languages can be used to write
specifications of systems using precise rules. The specification can be interpreted unam-
biguously and can be formally verified to ensure consistency and correctness. Formal
methods have been used to develop applications such as air traffic control (Hall (1996)),
railway signaling (Behm et al. (1999)) and transaction processing systems (Houstan and
King (1991)).

Formal verification involves the application of mathematical proofs to every possible
behaviour allowed by a specification (Abrial (1996)). In a state-based specification the
behaviour is a transformation of the system moving from one state to another. Proof
obligations are generated using the specification and the language rules. These proof
obligations then need to be discharged using properties of the specification in order to
prove the correctness of the specification. The generation of proof obligations, and to
some degree the discharging of proof obligations, can be automated.

6

Chapter 2 Event-B 7

Model Checking is another verification technique available for formal specifications
(Clarke Jr. et al. (2000)). Model checking tools will take a specification and auto-
matically construct a state-transition graph for the specification. The state-transition
graph represents the set of states, the transitions between the states and the properties
that are true in each state. The state-transition graph can then be searched to find states
that are inconsistent with the specification and to ensure that the states in the graph
are reachable. If no inconsistent states are found then the specification is considered to
be consistent. This technique is only possible for finite state systems and requires a lot
of computing resources.

2.2 Event-B

Event-B is a mathematical approach for developing formal models of systems (Abrial
and Hallerstede (2006)). An Event-B model is constructed from a collection of modelling
elements. These elements include invariants, events, guards and actions. The modelling
elements have attributes that can be based on set theory and predicate logic. Set theory
is used to represent data types and the manipulation of data. Logic is used to apply
conditions on the data. The development of an Event-B model goes through two stages;
abstraction and refinement. The abstract machine specifies the initial requirements of
the system. Refinement is carried out in several steps with each step adding more detail
to the system, generally, but not exclusively, in a top-down manner.

Reactive systems (Harel and Pnueli (1985)) are systems that continually respond to
changes in their environment. The focus on atomic events in Event-B creates a repre-
sentation of a reactive system (Jones (2005)). The model transitions are triggered by
changes in the state of the model, which can represent the system’s environment. The
guard of an event represents the necessary conditions on the state of the system for the
event to be triggered. When the guard is true the actions of the event may be executed,
possibly changing the state and allowing another event to be triggered. The guard on
an event will allow or prevent an event from occurring depending on the state of the
model. When none of the guards are true the system is deadlocked. When more than
one guard is true one of the events is chosen non-deterministically and executed.

Event-B is designed for modelling distributed systems (Abrial and Hallerstede (2006)).
It implements the theory of discrete transition systems. Discrete transition systems, or
action systems, model atomic actions that can be performed in parallel providing the
actions do not affect the same state variables. Similarly to Event-B, action systems are
state-based with each action, guarded by a set of conditions, performing updates on the
state. Action systems also use stepwise refinement to refine an abstract model of system
behaviour to a more concrete model (Back and Sere (1991)).

Chapter 2 Event-B 8

The model of atomic events in Event-B assumes that the same part of the state is not up-
dated concurrently by separate events that could belong to separate processes. Without
modelling concurrent execution Event-B models cannot model solutions to the problems
that may arise due to concurrency. One method for specifying concurrency in Event-B
is to model each update as a group of potentially interleaving atomic events (Edmunds
and Butler (2008)). This allows the model to specify how concurrent execution can be
dealt with by the system being modelled.

The difficulties in modelling concurrency in Event-B means that it is not always suit-
able for modelling all reactive distributed systems. Reactive systems, as with other
system paradigms, can have concurrently executing components. In distributed systems
the concurrent execution of processes is the norm (Coulouris et al. (2000)). Multi-
agent systems normally include potentially concurrent processes. The Event-B models
of multi-agent system will model system that is protected from the potential problems
of concurrency. This is useful when modelling at a high level of abstraction where the
mechanisms for coping with concurrency would not be modelled. The models created
in this thesis model systems at a high level of abstraction. When refining the models to
a more concrete level using Event-B the mechanisms for coping with concurrency could
be modelled using interleaving events, as described above, or a different formal method
that models concurrency, such as a process algebra, could be used. Reactive systems
can also terminate and liveness properties in the Event-B method, which is discussed in
detail below, are aimed at non-terminating systems. This problem can be overcome by
not generating the proof obligations for the liveness properties.

Specifying a distributed system in Event-B takes a global approach. Rather than creating
a specification for each component of the system it is modelled as a whole along with
its environment. The model is closed in that it reacts only to changes in its internal
state. Initially states are modelled abstractly with the events that describes the main
goal of the system. Detail is added through refinement to describe the final distributed
system. The ability to add new events and refine single events into multiple concrete
events allows the functionality of the system to expand beyond that modelled in the
abstract machine. Refinement ensures that the refined models are consistent with the
abstract machine.

Event-B is intended to be extensible. The approach is designed so new modelling ele-
ments can be added without affecting the underlying method. Figure 2.1 shows how the
basic modelling elements can be structured to form an Event-B machine. This first ele-
ment is the context for the model. The context is an Event-B component that contains
the static properties of the model. The model is a refinement and this is shown by the
next modelling element that indicates the abstract machine m0. The third modelling
element is a variable, num, that models the state of the machine. The type of the vari-
able, num ∈ N, is defined by the invariant modelling element that follows the variable
modelling element. Most machines will have multiple variable and invariant elements.

Chapter 2 Event-B 9

Figure 2.1: Example Event-B Machine Structure

Invariants are used to define necessary properties on a model. The modelling elements
so far have specified the state of the system. The event modelling elements specify the
actions that can be taken on the state. The first event is the INITIALISATION event
that is present in all Event-B models. This event initialises the variables of the model.
Because the model only has one variable there is only one action modelling element for
the INITIALISATION event. The action contains a generalised substitution that non-
deterministically assigns an element of the set of natural numbers to the state variable
num. The next event has a refines clause, event variable, guard and action modelling
elements. The refines clause states the name of the event in the abstract model that
this event refines. The content of the guard is a predicate that restricts the value of the
event variable, n, to an element of the set of natural numbers, n ∈ N. The content of
the action is a generalised substitution that assigns to the state variable num the value
of the event variable n.

Notation can be used to construct models that present the modelling elements in a
textual format. In this thesis the events of the Event-B models will be presented using
the keywords ANY, WHERE, THEN and END to delimit the elements used. The event variables
of an event will be written between ANY and WHERE. The guards of the event will be
written between WHERE and THEN and the actions of the event will be written between
THEN and END. Figure 2.2 shows the event taken from the machine in Figure 2.1 using
this notation. It is intended that this notation will make the models more readable.

The static data properties of the model are specified in a context model and the prop-
erties that model the behaviour of the system are specified in the abstract model and
refinements. Separating the constant properties of a model means that they can easily
be replaced with a different set of constant properties and the model can be instanti-
ated in a different context. This provides an opportunity for generic instantiation. An
example would be a model of a sorting algorithm that can either sort a set of records or
a set of integers. Reusing the model in this way prevents the need to re-prove the proof

Chapter 2 Event-B 10

ANY n WHERE
n ∈ N

THEN
num := n

END

Figure 2.2: Notation Used to Represent Events

Figure 2.3: Event-B Context Structure

obligations for the model. Contexts can be extended by another context. The extension
of contexts does not have to match the refinement chain of a development (Méteyer et al.
(2005)). An example context model is shown in Figure 2.3. The first modelling element
of the context specifies the name of the context that this context extends, context0. The
next element is a carrier set that is labelled OBJECT. Carrier sets can either be deferred
sets or they can be enumerated by constants. The context also contains a constant mod-
elling element labelled objectId. The axiom modelling element contains a predicate that
defines the constant objectId as a total function between the carrier set OBJECT and
the set of natural numbers. This specifies that each object has an objectId.

Event-B models are verified by formal verification. The proof obligations generated for
an Event-B model require it to be proven that the invariant conditions for the model
are preserved by the events (Méteyer et al. (2005)). For the invariant conditions to be
preserved the actions of the events cannot affect the state variables of the model in a
way that will transform the model into a state where an invariant condition is false.
The proof obligations generated can help the developer to understand the properties of
a model. They can help to identify inconsistencies in the model. If a proof obligation
cannot be discharged then there may be an inconsistency in the model between the
invariant and the event that generated the proof obligation. Complex proof obligations
can highlight complex properties in a model. Simplifying the properties will simplify
the proof obligation and make the model more comprehensible. Model checking can be
used to automatically check Event-B models for consistency and violation of invariant
conditions (Leuschel and Butler (2003)).

Chapter 2 Event-B 11

The Event-B method begins with the specification of an abstract machine that describes
the abstract requirements of a system. The model is refined to describe more of the re-
quirements. The process of refinement ensures consistency with the initial abstraction
whilst allowing the model to become complex enough to represent real systems. Refine-
ment in Event-B will be described later in this chapter.

2.2.1 Safety and Liveness of the Event-B models

Safety and liveness are properties of a formal model that ensure the correct and con-
tinuous processing of the model. A safety property specifies that something bad will
not happen and a liveness property specifies that something desirable will eventually
happen (Lamport (1977)).

Safety in Event-B is specified through events and invariant conditions. For example, an
event can be added to a model that will move the state of the model into a fail state
when failure has occurred. Invariant conditions can be added to the model specifying
that the model cannot be in a functioning state at the same time as a failure state. The
proof of this invariant will ensure that the functioning events of the system cannot occur
when the model is in the failure state.

Liveness in an Event-B model is based on the model being free from deadlock and
divergence. Deadlock-freeness in an Event-B abstract machine can be ascertained by
proving that the invariant of the model implies that at least one of the events is enabled.

When specifying a system it may be that the developer of a system would wish it to
deadlock, for example, in a safety critical situation. A developer can ensure themselves
of the enableness of desired events by animating the model and stepping through the
model transitions. Once the desired liveness is ensured in the abstract machine it is
important that any refinement does not impede the liveness property of the abstract
machine.

The refinement of an abstract model in Event-B allows new events to be introduced. To
be able to prove that the liveness property of the abstract model is upheld two properties
of a refinement need to be proven: non-divergence and enableness.

The non-divergence property is required to prove that new events, once enabled, do not
take control of the processing and prevent events that were enabled in the abstract model
from occurring. To be able to prove this a variant is added to the model. The variant
must be proven to decrease each time the new events occur and that it does not decrease
below a base. This will prove that the new events will eventually be prevented from
occurring as the variant cannot continue being decreased forever. Where non-divergence
proves that the new events will eventually stop occurring enableness will prove that
when the events in the abstract model were enabled in the abstract model they will also

Chapter 2 Event-B 12

be enabled in the refinement. To be able to prove enableness it must be proven that the
guard of the abstract event implies the guard of the refined event or the guards of new
events in the model: grd(A)⇒ grd(A′) ∨ grd(H) where H = all new events.

2.2.2 Refinement

The refinement of a model is the process of adding more detail, in a stepwise manner, to
a model. The refinement of an Event-B abstract machine can be carried out in several
steps. More detail is added to the model at each step. Classic stepwise refinement
proceeds in a top-down fashion (Back et al. (1998)). In large developments this is not
always the case and refinement can be an iterative process.

The advantage of using refinement is that it allows the model to be analysed at an
abstract level where the complexity is reduced (Abrial and Hallerstede (2006)). The
detail of the model can be introduced over several steps with each step being available
for separate analysis. A refinement model can be proven to be consistent with the
abstract model using formal verification.

An Event-B model can be refined in several ways. The state variables of an Event-B
model can be refined into a more concrete representation. New state variables can be
introduced to the model to increase the detail of the system that can be modelled. The
guards of the event can be strengthened to place further conditions on the event and
state variables.

In Event-B the relationship between the variables in the abstract model and the more
concrete variables in the refinement is described as a set of invariant conditions for
the refinement. This set of invariant conditions is known as the gluing invariant (Abrial
(1996)). The events in a refinement model must be proven to have the same affect as the
events of the abstract model on the variables of the abstract model. The gluing invariant
can be used to prove the correctness of the refinement with regard to the abstract model
by specifying the relationship between the abstract variables and any refinements of the
abstract variables. As with the other invariant conditions, the conditions specified in
the gluing invariant have to be proven to be preserved for each event.

New events can be added to an Event-B refinement (Méteyer et al. (2005)). New events
can only modify the variables new to the refinement model, otherwise, the refinement
may become inconsistent with the abstract model.

A single event can be refined into more than one concrete event (Méteyer et al. (2005)).
The guards and actions of the concrete events must be, as with single event refinement,
a refinement of the guard and actions of the single abstract event. The guards of the
concrete events can be stronger than the guard of the abstract event.

Chapter 2 Event-B 13

Refinement helps to reduce the burden on the developer by allowing an abstract model
of the system to be analysed and the detail of the system to be introduced in a stepwise
manner. The more detailed refinement models can become complex and difficult to
analyse. This problem can be solved by decomposing the model into more manageable
components.

2.2.3 Decomposition

Decomposition makes it possible to manage the complexity of the models that increases
through the refinement process. Decomposition splits the model into separate com-
ponents that model individual parts of the system. The developer can then further
develop the components concentrating on each component separately. A further moti-
vation when specifying distributed systems is to mimic the eventual physical distribution
of the separate components. Decomposition is especially useful when modelling systems
that contain complex subsystems, such as agents, as it can be re-applied at the different
levels of the system hierarchy (Jennings (1993)). Another advantage of decomposition
is that the components can be re-used (Pressman (2000)). If components are modelled
to encapsulate a functionality and that functionality is separable from the development
context then it is possible to re-use the component. Two forms of decomposition may
be used in Event-B, event-based and state-based.

Event-based decomposition separates the model on its events. The variables are encap-
sulated in the separate components and the events or parts of the events that affect
the variables are specified in that component model. The events that have been split
will then need to be synchronised in order to recreate the functionality of the original
system model. This can be achieved by exchanging inputs and outputs between the
synchronised component events.

Event-based decomposition is based on a parallel composition method developed for
action systems (Butler (1996)). In this method the different components contain shared
events that can be hidden after composition. The components are able to synchronise
on the events with one component taking as an input an output of the event in the syn-
chronising component. This technique for event-based decomposition has been applied
to Event-B in Jones (2006).

A different method for decomposition that can be used with Event-B is state-based
decomposition (Abrial and Hallerstede (2006)). The variables are split between the
different components with some variables being shared by the events in the different
components. Events are added to components to simulate how the shared variables are
used in the other components. The shared variables and events must be kept synchro-
nised between the components during refinements. The system can be rebuilt into a
single model later in refinement.

Chapter 2 Event-B 14

E1 E2 E3 E4

����
V1 ����

V2 ����
V3

A
A
A
AU

Q
Q

Q
Q

QQs

�
�

�
��

A
A
A
AU

�
�

�
�

��+

�
�

�
��

E3 E2

E1 E2a E2b E3a E3b E4

����
V1 ����

V2 ����
V3

A
A
A
AU

A
A
A
AU

�
�

�
��

A
A
A
AU

�
�

�
��

�
�

�
��

State-Based Decomposition

Event-Based Decomposition

Events

Variables

Events

Variables

Figure 2.4: Comparing Event-Based and State-Based Decomposition

Figure 2.4 gives a diagrammatic comparison of the effect of using state-based and event-
based decomposition. The state-based decomposition shows that variable V2 has been
split between the two components and the action of event E3 that affects V2 has been
added to the first component and the action of event E2 that affects V2 has been added
to the second component. The event-based decomposition shows that each variable has
been placed in a separate component and the events that affect the components e.g. E2

have been split into the parts that affect the different variables, e.g. E2a and E2b, and
placed in the component that contains the affected variable.

Decomposition has currently not been implemented in the tool support that is available
for Event-B. The tools available for the B-Method can be used to simulate event-based
decomposition in Event-B by using parameters and the structuring mechanisms from
the B-Method.

2.2.4 Tools

The RODIN platform is a tool environment that supports modelling using the Event-B
method (Abrial et al. (2006)). The platform is built on the Eclipse platform, which
allows it to be extended by plug-ins (Eclipse (2007)). Event-B machines and contexts
can be created within projects. The models can be refined and the contexts can be ex-
tended. The proof obligations for the models are automatically generated. The theorem
provers can be used to automatically discharge proof obligations and an interactive proof
environment is provided for proof obligations that cannot be discharged automatically.

ProB is a model checker for B that has been made available as a plug-in for RODIN.
It examines the reachable states of a model for consistency with the specification. The
specification can also be animated using ProB (Leuschel and Butler (2005)). This allows

Chapter 2 Event-B 15

a user to step through the state space of the specification triggering the events and
displaying the state of the model. This is useful for testing the specification for expected
behaviour.

The RODIN platform has been used to develop the models presented as case studies in
this thesis. Most of the models in this thesis were verified using the RODIN platform,
some automatically and others interactively. An example of a proof obligation being
discharged interactively using the RODIN platform can be found in Appendix B. The
RODIN platform does not currently support decomposition. To be able to model and
verify the event-based decomposition used in the case studies other software tools were
used.

2.2.5 Specifying Event-Based Decomposition

Event-B is an evolution of the B-Method (Abrial (1996)) and most of the semantic rules
for Event-B are already part of the B-Method. This means it is possible to use the tools
developed for the B-Method to specify Event-B models, but care has to be taken that
the specification remains within the Event-B rules as these are not enforced by the tools.

Several software tools are available to aid development using the B-Method (Butler
et al. (2005)). The tools used to specify and verify the event-based decomposition, in
this work, are B4Free project manager and logic solver (ClearSy (2005)) with the Click
’n’ Prove interface (Abrial and Cansell (2003)). B4Free is a set of tools to help with
the formal verification of a B project. The tools generate proof obligations and prove
them either automatically or, when this is not possible, provide an environment for the
developer to prove them interactively. The Click ’n’ Prove interface makes B4Free more
usable as a graphical interface that guides the user through specification and interactive
proofs.

The main differences for Event-B are the use of guarded events over operations in the
B-Method, the ability to introduce new events in refinement models, refining events into
more than one event and the use of a context to specify the constant properties of a
development. Guards for operations are available in the B-Method and so these can be
used when specifying events. A context could be used in the same way as it would be
in tools for Event-B. The sees structuring relationship is part of the B-Method and can
be used to access the properties in the context machine. For the decomposition no new
events are introduced and no events are refined into more than one event. Hallerstede
(2007) provides a further discussion on the differences between Event-B and the B-
Method.

To model event-based decomposition each component has to be modelled as a separate
Event-B abstract machine. Each component model encapsulates the required variables
and the events that affect them. The variables of the models have to be encapsulated

Chapter 2 Event-B 16

component component component

refinement

abstract model

?

!!!!!!!!!!!!!!!!!

aaaaaaaaaaaaaaaa

Figure 2.5: Model Relationships for Decomposition

within the separate components, which requires the variables to be refined to a point
where they could be separated where necessary.

To be able to generate and discharge the proof obligations, that will prove that the
components refine the abstract model, the components need to be synchronised. The
B-Method has a structuring mechanism called includes that allows abstract machines
to be included in another model. The events and variables of the included model can be
accessed by the events of the including model. To model the decomposition a refinement
can be produced that includes the component models and refines the abstract system
model. The events of the component models can then be synchronised within the refining
events of the synchronising refinement and parameters, used in the B-Method, can be
used to pass values between the component events. The synchronised events can then
be proven to refine the abstract model. B4Free and Click ’n’ Prove can be used to
perform this decomposition and prove that the synchronised components are a correct
refinement.

Figure 2.5 show how the abstract component models are related to the refinement chain.
The notation used is taken from Back (2005) with the filled arrowhead indicating re-
finement and the open arrowhead indicating dependency. The dashed lines used in
the dependency relationships between the components indicates an implied dependency.
The includes structuring relationship is used in the synchronising refinement model to
create the dependencies.

2.3 Related Methods

There are several formal methods based on structured specifications using a notation of
set theory and predicate logic. Below we summarise three of these methods and provide

Chapter 2 Event-B 17

a brief comparison to Event-B.

Z is a formal language for specifying software systems (Diller (1994)). A Z specification is
modelled in a schema that contains declarations and formulas. The declarations specify
variables and their types. The formulas specify both predicates on the variables and
actions on the variables. The predicates and formulas are constructed using set theory
and predicate logic.

Schemas in Z can be structured through schema inclusion where the name of one schema
is included in the declarations of another. This allows large specifications to be incre-
mentally constructed from component schemas. Schema inclusion can also be used to
relate an abstract specification to a refinement with the formulas of the inclusion schema
specifying the gluing invariant.

The Vienna Development Method (VDM) (Jones (1990)) is a method that creates mod-
ules that include declarations of variables, other state constructs and operations with
pre and post conditions. Refinement of the modules is theoretically separated into data
reification and operation decomposition. Data reification refines the abstract specifi-
cation of data types into more structured representations. Operation decomposition
occurs at the later stages of the refinement process and refines the abstract operations
into a more algorithmic representation. The specification language used to construct
VDM models includes programming constructs, such as while loops. The specification
language is based on a 3-valued logic that allows a predicate to be true, false or unde-
fined. Modules, or parts of modules, can be imported into other modules to construct a
system model.

Event-B is an evolution of the B-Method. The B-Method is a formal method for spec-
ifying software programs (Abrial (1996)). Machines include declarations of variables,
invariants, other state constructs and operations. Operations in the B-Method have
pre and post conditions, which make their execution different from the guarded atomic
events of Event-B. Refinement in the B-Method is carried out in the same way as with
Event-B. Instead of decomposition, machines and refinements can be related using struc-
turing mechanisms. The final refinement model, known as the implementation model,
can include programming constructs, similarly to VDM modules.

VDM, the B-Method and Event-B are development methods that apply formal specifi-
cation languages, whereas Z is a formal specification language that can be applied by
following a development method. The use of modelling elements in Event-B allows the
method to be extended to use other specification languages. Z, the B-Method and VDM
do not offer extensibility in the same manner. The modelling elements used in Event-B
also provide a structure within the model. Z schemas are separated into two parts. This
provides a lot of flexibility, but at the cost of readability of the specifications. VDM and
the B-Method provide more structure than that of Z with types, state and operations
clauses in the specification and the operations include their pre and post conditions. Z,

Chapter 2 Event-B 18

VDM and the B-Method compose together models of components into a system model.
Event-B abstractly models the entire system and decomposes it into components as it
is refined. This approach should ensure that all aspects of the system are modelled.
Event-B does not include programming constructs. This is because Event-B is devel-
oped for creating formal models of systems and then reasoning about them rather than
creating formal models of software programs.

2.4 Temporal Logic

This section provides a brief overview of temporal logic, which is discussed later in this
thesis.

Modal logic extends first-order logic with modal operators. Temporal logic is modal logic
that uses temporal operators such as 2(always), 3(eventually), N (next) and U (until)
to make statements about model states (Fagin et al. (2003)).

Temporal logics model several states and formulas that can be true or false in those
states. There are several different temporal logics (Huth and Ryan (2004)). Two ex-
amples of temporal logics are Linear Time Temporal Logic (LTL) and Computational
Tree Logic (CTL). LTL models paths in the future that can represent different possible
futures. CTL is a Branching Time Logic that models the future as a tree-like structure
and allows quantification over the different paths. CTL allows the different possible
future paths to be analysed in more detail than LTL.

2.5 Process Algebra

This section provides an overview of process algebras, which are an example of a formal
method that can be used to model multi-agent systems.

Process algebras model concurrent processes that interact through communication. A
process algebra generally consists of two specifications, one that captures the design
of the system and one that describes the high-level behaviour of the system. These
specifications should be proven to be either equivalent or that the design refines the
behaviour (Bergstra et al. (2001)).

CSP (Hoare (1985)) is an example of a process algebra. It consists of processes and
events that are used to describe the behaviour of a system. For example, a specification
of a process called LIFT that will recursively execute the events up and down could
be specified as: LIFT : up → down → LIFT , where up must occur before down. This
specification models a lift that will continually move between two floors.

Chapter 2 Event-B 19

The π− calculus (Sangiorgi and Walker (2001)) is another example of a process algebra.
It models mobile systems where the structure of the system can change over time. The
processes interact through shared names. Names can be passed to processes allowing
them to communicate with previously unknown processes and new names can be created.

Process algebras do not provide a record of state, as Event-B and other state transition
systems do, as they mainly concentrate on communicating processes not shared variables.

Process algebras allow concurrent distributed systems, such as multi-agent systems, to
be modelled succinctly. A multi-agent interaction protocol could be modelled in CSP
as a few processes and events. However, the information state of an agent, e.g. its
motivations and beliefs, would not be modelled as easily as with a state transition
system.

Because of the strength of process algebras on modelling concurrent processes and state
transition systems on modelling state there are several examples of work to combine
both formalisms (Treharne and Schneider (1999); Butler and Leuschel (2005)). Using
a combination of process algebra and Event-B would complicate the guidance given for
translating the goal models in the Incremental Development Process.

2.6 Summary

Event-B is a formal method that allows formal verification of model properties through
the discharge of proof obligations. Event-B is based on action systems and is suitable
for modelling distributed systems.

Refinement and decomposition can be used to manage the complexity of modelling
systems using formal methods. Refinement allows the detail of the models to be added
in a stepwise manner. This refinement can then be formally verified. The decomposition
techniques available for Event-B allow the model to be separated into component models
reducing the complexity from that of a single model.

Event-B has the advantage of having tool support. Tools that support the B-Method
can be used to verify event-based decomposition for Event-B models.

Chapter 3

Agent-Oriented Software

Engineering

This chapter provides background on the field of Agent-Oriented Software Engineering
(AOSE). The chapter begins with a description of agents and multi-agent systems. A
survey of AOSE methodologies describes and evaluates a selection of methodologies that
can be used to develop multi-agent systems. Following the survey, modelling techniques
for the the concepts that are evaluated as the most common for multi-agent systems
from the survey are examined. Related work on using Event-B to model multi-agent
systems is also described.

3.1 Multi-Agent Systems

The way that software is designed has had to reflect the change from structured pro-
gramming techniques to the object-oriented style of modern programming languages.
The agent paradigm takes the modelling of software systems to a higher level of abstrac-
tion than object-orientation. The methods used to model multi-agent systems need to
be capable of modelling their main concepts. To find the best approach for modelling
multi-agent systems in Event-B, current approaches, using both formal and informal
methods, need to be reviewed.

There is currently no clear, widely accepted definition of what a software agent is and
what the qualities are that it possesses. The level of abstraction at which the agent
model is based is one that can be ascribed intentional properties (Wooldridge and Jen-
nings (1995)). For this reason software agents are often seen as intelligent agents. These
intelligent agents are given properties that represent beliefs, desires and other inten-
tional states. These states can be represented using logical notations. Some suggest
that it is necessary for an agent to have an intentional system (Franklin and Graesser

20

Chapter 3 Agent-Oriented Software Engineering 21

(1996),Wooldridge and Jennings (1995)). Other definitions suggest that an agent need
not be autonomous nor possess any form of intelligence before they can be described as
agents (Luck and d’Inverno (1995a)). Attributes, such as autonomy and intention, are
seen as increasing the degree of agency that the software exhibits.

To be able to model multi-agent systems there is a need to define the qualities that an
individual agent will be considered to possess. For this purpose a definition of these
properties has been taken from Wooldridge and Jennings (1995).

• autonomy: agents operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state;

• social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;

• reactivity: agents perceive their environment, (which may be the physical world,
a user via a graphical user interface, a collection of other agents, the Internet, or
perhaps all of these combined), and respond in a timely fashion to changes that
occur in it;

• pro-activeness: agents do not simply act in response to their environment, they
are able to exhibit goal-directed behaviour by taking the initiative.

A multi-agent system is a grouping of agents that either cooperate or compete in or-
der to fulfill individual or collective goals. The agents communicate with one another
by passing messages that allow them to coordinate their actions (Ferber (1999)). Be-
cause agents are autonomous and reactive their behaviour within the system cannot be
predicted and therefore the overall behaviour of the system cannot be predicted. This
emergent behaviour is what makes multi-agent systems ideal for solving dynamic, unpre-
dictable problems. But, some of this behaviour can be undesirable and lead to system
failures (Greaves et al. (2004)).

Jennings (2000) argues that all complex systems are distributed and that using the
agent paradigm is ideal for engineering complex systems. This is because multi-agent
systems can be modelled as a series of hierarchical organisational relationships that can
be decomposed at different levels of abstraction into distributed, interacting, autonomous
agents. This makes it possible for the organisation to be modelled and reasoned about at
both the individual agent level and at the organisational level. Agents also retain their
own thread of control. Removing the need for central control and replacing it with the
distributed control of agents can reduce the complexity of the system. Having agents in
control of their own interactions means that the low-level interactions that take place
do not have to be predicted at design time. The agents can manage the coordination of
their knowledge and actions.

Chapter 3 Agent-Oriented Software Engineering 22

An example of a multi-agent system being used to solve a complex problem is described
in Neagu et al. (2006). The system must find the most efficient way to transport goods
from storage to different delivery addresses using several vehicles. Each of the vehicles
is modelled as an agent and allowed to negotiate with one another based on the cost of
each agent to make each delivery. This allows the agents to plan their routes and the
system to dynamically adapt to changes in the environment or customer needs.

Multi-agent systems are ideal for building complex systems because of the flexibility
of their interactions (Jennings (2000)). The properties of multi-agent systems that
make them ideal for complex problem solving also make the actions of the system un-
predictable. This unpredictability is undesirable when the system has critical objec-
tives (Perraju (1999)). Zambonelli and Omicini (2004) argue that because of the possible
unpredictability multi-agent systems have to be engineered using rigorous methodologies
in order to direct their behaviour. The complexity of verifying agent behaviour, that an
agent will satisfy its task, is also recognised by Wooldridge and Dunne (2001), amongst
others, who consider formal verification and model checking as techniques that need to
be applied to multi-agent systems to overcome this complexity.

To be able to model and verify multi-agent systems using Event-B the concepts that
need to be modelled must be identified. For this purpose the following section surveys
a selection of AOSE methodologies.

3.2 Survey of Agent-Oriented Software Engineering Method-

ologies

Software engineering methodologies cover several phases of software development. Three
of these phases are requirements analysis, design and implementation. Requirements
analysis creates models of the problem domain and results in the specification of the tasks
that the system must perform in order to solve the problem. The design phase takes
the results of the analysis and models a system that will fulfill the requirements. The
implementation phase is when the software is written that complies with the design of the
system. Other software engineering phases include testing and maintenance (Pressman
(2000)).

AOSE is the practise of constructing software systems using the agent metaphor. For
agent technology to be used and used successfully the agent-oriented abstractions need
to be engineered in the same way that traditional software is engineered (Zambonelli and
Omicini (2004)). AOSE design methodologies range from those that offer full coverage
of the software development process to those that only provide a high-level design. Most
extend existing design methodologies (Sudeikat et al. (2004)). The methodologies re-
viewed below include some informal as well as formal methodologies and are intended to

Chapter 3 Agent-Oriented Software Engineering 23

provide a sample of those available. Some knowledge of the Unified Modelling Language
(UML) is assumed.

The purpose of this literature review is to learn from the experience of methodologies
that have been developed for AOSE. Several methodologies have been reviewed. The
main concentration is on methodologies that use formal methods. Informal method-
ologies have been included to create a balanced view. An evaluation of the literature
reviewed will examine the concepts that are needed to model multi-agent systems, how
the complexity of modelling multi-agent systems can be overcome and how formal meth-
ods can be used in AOSE.

This review is structured as follows: First the methodologies are described. Then the
evaluation will be introduced and the methodologies compared for each part of the
evaluation. Finally the results will be discussed in terms of the current research.

Gaia

Gaia (Wooldridge et al. (2000)) is a methodology specifically designed for AOSE. It
starts with an analysis of the system to be developed. The system is modelled as an
organisation and broken down into agent roles and interactions. The roles are then
assigned their responsibilities and the permissions needed to perform each particular
role. The interactions are assigned protocols that allow the agents to perform the in-
teractions. The design phase follows on from the analysis phase and produces three
models. The agent model defines the agent types used in the system. These types are
built from one or more of the roles identified during the analysis phase. The services
model is derived from the responsibilities and protocols identified for each role during
the analysis phase. The services are described abstractly as their inputs, output and pre-
and post-conditions. The acquaintance model models the communication links between
the agent types. The final models produced by the design phase are intended to be fur-
ther developed into an implementable design using traditional design methods,including
object-oriented techniques. Gaia has been extended to make it suitable for the design of
open multi-agent systems using the coordination of communications to enforce the social
laws of the system on heterogeneous agents (Zambonelli et al. (2000)). Other additions
to the methodology include the introduction of organisational rules to the analysis stage
and the organisational structure to the design phase (Zambonelli et al. (2003)).

AUML

AUML (Bauer (2001); Bauer et al. (2001)) extends the UML notation used for the
design of object-oriented systems. It takes some parts of the UML and adapts them to
the design of agent systems as well as adding new concepts. The specification of the

Chapter 3 Agent-Oriented Software Engineering 24

UML2.0 standard includes changes that are useful in the design of agent systems (Bauer
and Odell (2005)). Use case diagrams provide a tool for analysis of the system and
agents can be modelled as actors internal or external to the system. The design phase
in AUML is centred on the agent class. Agent class diagrams show the dependencies
between agents as associations between the classes. Abstractly the agent class models
the roles required in the system and in the more concrete models the agent class models
the agents that perform the roles. An agent class is composed of the agents head, body
and communicator. The head models the state of the agent and its goals, the body
models the actions of the agent and the communicator models the messages that the
agent can send and receive. The agent is controlled by the agent head, which creates
and responds to communications by triggering actions. The behaviour of an agent is
modelled using either sequence or collaboration diagrams showing actions triggered pro-
actively, in response to state changes, or reactively, in response to communications from
other agents. Plans are modelled using activity diagrams. The organisation structure
of multi-agent systems can be modelled using UML2.0 Composite Structure diagrams.

MAS-CommonKADS

MAS-CommonKADS (Iglesias et al. (1997)) is a methodology for the development of
multi-agent systems derived from the CommonKADS methodology for the development
of knowledge-based systems. This makes it particularly appropriate for modelling agent
reasoning. The main adaptation is the introduction of inter-agent coordination into the
design. The first phase of the methodology is called the conceptualisation phase. The
result of this phase is a set of use case diagrams outlining the functions of the system
and message sequence charts showing high level coordination of the identified system
components. The analysis phase of the methodology is used to determine the more
detailed requirements of the system. The agents identified in the use cases are assembled
as an agent model. The tasks that the agents will carry out are modelled in the task
model. The static relationships between the agents and between the agents and other
objects in the system are modelled in the organisation model. The interactions between
the agents, along with their required capabilities and the protocols used, are modelled
in the coordination model. The message sequence charts from the conceptualisation
phase are expanded into agent sequence diagrams. The expertise model models both
the knowledge of the agents and the methods used to apply the knowledge to the agent’s
tasks. The design phase refines the models to represent the parts of the system dependent
on the development platform. The architecture of the identified agents is modelled and
decomposed into modules that support the required functions. The infrastructure of
the system is modelled to include the agent relationships and the required supporting
infrastructure for the system, such as directory and naming services. The design is
refined so it can be implemented on the required hardware and software systems.

Chapter 3 Agent-Oriented Software Engineering 25

SMART

The Z formal language has been used to create the SMART framework (Luck and
d’Inverno (1995a,b)). The framework is intended to formally define agent concepts and
can be used as a starting point for the design of a multi-agent system using Z. It is built
from specifications from a taxonomy of agent definitions. The specifications begin with
the definition of an object and, through schema inclusion, builds definitions for agents
and autonomous agents. Objects are entities in an environment that are capable of
actions on the environment. Agents are objects that perceive the environment and have
a purpose. This purpose is modelled as goals that the agent can have or be attributed
by another agent. Autonomous agents are agents that have motivations that drive them
to achieve, create or destroy goals. The SMART framework has been further extended
to define interaction between agents in a multi-agent system. It has been used to create
a formal specification of the AgentSpeak(L) language to provide a formal model of an
implementable language (d’Inverno et al. (1998)). The SMART framework has been ex-
tended to provide a more detailed definition of autonomy (Luck and d’Inverno (1997)),
goal generation and inter-agent relationships (Luck and d’Inverno (2006)).

Concurrent METATEM

Concurrent METATEM (Fisher (1993)) is an executable formal language based on tem-
poral logic. It extends the programming language METATEM (Fisher (2006)) to allow
the specification of concurrent multi-agent systems. Agents are modelled as a specifica-
tion of their inputs and outputs and a set of rules. The rules consist of a pre-condition
that models a state of the agent, this can be a belief, and a goal or action. The pre-
condition implies the goal e.g. complete project ⇒ receive bonus. An operational model
specifies how the concurrently executing agents communicate. The specification is di-
rectly executable. This allows the models to be reasoned about and then executed.
The specifications can be verified through model checking or formal verification. The
agent specifications can be refined and single agents can be refined into groups of agents.
Extensions to Concurrent METATEM allow more complex multi-agent systems to be
specified (Fisher (2005)). The temporal logic specifications can be extended to include
the logics of belief or knowledge to specify the information that the agents will reason
about. The specifications of multi-agent systems can be structured by grouping the
agents in the system.

Chapter 3 Agent-Oriented Software Engineering 26

DESIRE

DESIRE is a method originally developed for formally specifying knowledge-based com-
plex reasoning systems that has been extended for the development of multi-agent sys-
tems (Brazier et al. (1995, 1997, 1998)). The method focuses on the reasoning capa-
bilities of the agents. The analysis phase results in a requirements specification for the
system. There are two design strategies available. The tasks that the system is required
to perform can be modelled and then delegated to agents, or the agents can be identified
followed by their processes. The tasks, processes and agent knowledge are modelled as
components connected by their inputs and outputs. The design is modelled, using the
same modelling elements, at differing levels of abstraction. From the perspective of the
overall system down to the components that construct the system’s agents. The mod-
elling is done both informally, using diagrams, and formally, using temporal logic-based
specifications. The formal models can be verified for correctness and the components
can be re-used.

Tropos

Tropos (Bresciani et al. (2004)) is a methodology that covers the development life cy-
cle from requirements engineering to system implementation. The requirements of the
system are informally modelled using a notation taken from agent-based requirements
analysis. The current system, or the real world, is modelled and then the interaction
between the ‘system-to-be’ and the real world is modelled. Formal models are used along-
side the informal during the requirements phase as a way to verify the models (Perini
et al. (2004)). Formal Tropos, a temporal logic-based formal language (Fuxman et al.
(2003)), is used to model check and animate the requirements models. In the design
phase the architectural design takes the idea of the ‘system-to-be’ and models that in
terms of actors, goals, resources, tasks and plans. The detailed design models the sys-
tem considering the details of the implementation platform. An example of development
with Tropos uses AUML to model agent interactions, capabilities and plans in the design
phase (Bresciani et al. (2004)).

3.3 Evaluation of AOSE Methodologies

Exploring and analysing current AOSE methodologies will show not only how agent
theories have been applied to the area of software engineering, but also the techniques
used to overcome the difficulties of creating a practical design method based on agent
theories.

Chapter 3 Agent-Oriented Software Engineering 27

The evaluation below examines the significance the methodologies place on the different
agent concepts, the methods used for dealing with the complexity of modelling multi-
agent systems, and the formality of the method used. The agent concepts will show
what needs to be modelled. The complexity management and the formality will show
how they should be modelled.

3.3.1 Multi-Agent System Concepts

Identifying the concepts that are central to current AOSE methodologies will show what
elements need to be used to develop a multi-agent system in Event-B. It will also show
how they can be modelled by examining how each concept has been modelled in the
different methodologies. The selection of the concepts is based on the modelling elements
of the evaluated methodologies that we consider to be fundamental to the construction
of the models. Other concepts are present in the methodologies, but these either hold
less importance in the models or can be categorised under the selected concepts.

The reviewed AOSE methodologies can highlight the concepts that are required to de-
velop multi-agent systems (Zambonelli and Omicini (2004)). The concepts that have
been identified as fundamental to the methodologies are: organisations, goals, roles,
interaction protocols, tasks and plans. The organisation of a multi-agent system is its
structure (Jennings (1993)). Goals describe the motivations of an agent (Ferber (1999)).
A role is a set of activities that an agent can carry out as part of the multi-agent organi-
sation (Ferber (1999)). Interaction protocols are rules that define the messages that are
used for agent coordination and the order in which they are communicated (Huget and
Koning (2003)). Tasks are small functional units of work allocated to a role that are un-
dertaken in order to complete an activity that can achieve a goal (Iglesias et al. (1997)).
A plan is an order of tasks or activities that can be used to achieve a goal (Ferber
(1999)).

The most common of these concepts and the techniques used to model them will be
examined in more detail later in this chapter. These concepts will be considered for use
in a methodology for the development of multi-agent systems in Event-B. To be able to
model multi-agent systems in Event-B methods must be used to manage the complexity
of the models.

3.3.2 Complexity Management

Two well known methods for dealing with complexity in software development are de-
composition and abstraction (Booch (1991)). Decomposition is when a system is divided
into smaller parts that can then be refined independently of the system. This allows
the developer to understand how the system works as a whole and then concentrate

Chapter 3 Agent-Oriented Software Engineering 28

on the detailed workings of individual components. Abstraction is the act of viewing
only the characteristics of a system that are considered essential for the context ap-
propriate to the observer. This allows the developer to reason about the behaviour of
a system without having to worry about the implementation details. Abstraction and
decomposition work well together. Systems can be decomposed at different levels of
abstraction. The evaluation below looks at the specific use of these techniques in the
AOSE methodologies.

Gaia, MAS-CommonKADS and Tropos all provide abstract models for the first stages
of development and have clear relationships between the abstract models and their more
concrete counterparts. MAS-CommonKADS and Tropos models develop to quite con-
crete final designs. AUML offers a reasonable level of abstraction with UML use case
diagrams and moves to quite a concrete design. Combining Gaia with AUML can create
a methodology with a good level of abstraction for multi-agent systems and a con-
crete, object-oriented, final design. DESIRE and Concurrent METATEM both allow
the developer to choose the level of abstraction at which to design their models. The
compositional approach of DESIRE means that a clear relationship can be built between
abstract models and the more concrete models of components. The formal syntax of
Concurrent METATEM allows a formal refinement relationship to be built between ab-
stract and concrete models. The SMART framework chooses a low level of abstraction
for the starting point of the framework and moves toward a higher level of abstraction.
The existence of the framework allows the developer to start a slightly higher level. The
use of schema inclusion does reduce the complexity of the specification by hiding the
details of the lower levels of the system in the included schemas. The schema inclusion
relationship in Z is well defined (Diller (1994)).

In multi-agent system development decomposition can be used to decompose the sys-
tem into a group of interacting agents, as well as individual agents. Gaia and AUML
decompose the system into roles that can then be assigned to agents. Tropos uses de-
composition during the requirements phase to decompose the system into actors, goals
and plans that are later assigned to agents. DESIRE composes a multi-agent system
from the tasks or processes and knowledge of the system. Concurrent METATEM uses
decomposition to decompose a multi-agent system into agents. The SMART Framework
uses schema inclusion to compose the system. Each component must be modelled with
the intention to compose it into the system. Decomposition is used on the individual
agents as well as the system. In AUML each agent is composed of a communicator, head
and body.

3.3.3 Formality

All of the reviewed methodologies that use formal methods do so in different ways.
DESIRE uses formal methods for their traditional purpose of verifying the correctness

Chapter 3 Agent-Oriented Software Engineering 29

Table 3.1: Central Concept Comparison
methodology goal role task organisation interaction protocol plan
gaia X X X
AUML X X X X
MAS Com-
monKADS

X X X

SMART X X
Concurrent
METATEM

X

DESIRE X
Tropos X X X

of the formal models and then feeds the results of this analysis back into the informal
models. Tropos limits their use to the requirements phase of the development to en-
sure that the requirements are consistent and unambiguous. Concurrent METATEM
exploits the executable nature of the temporal logics used to create directly executable
specifications. SMART uses the Z formal language to ensure that the agents developed
are consistent with its underlying agent theory. Tropos and DESIRE both use formal
methods alongside informal diagrams in order to make the models more accessible to
those who do not have formal method experience.

3.4 Modelling Techniques for Multi-Agent System Con-

cepts

Table 3.1 shows that of the concepts used in the reviewed methodologies goals, roles and
interaction protocols are the most common, alongside that of agent. The methodologies
that have their roots in knowledge-based systems use the concept of tasks. Whereas,
those based directly on agent theories focus more on goals. The techniques used to
represent the three concepts in the AOSE methodologies are examined in detail below.
The knowledge gained from this examination will help to find a technique for modelling
the different concepts.

3.4.1 Agent Interaction and Coordination

Multi-agent systems are a way of breaking down a complex and distributed problem into
smaller problems that can be solved by distributed software agents. For agents to be
able to cooperate to solve a problem they must be able to coordinate their knowledge
and actions (Jennings (1993)). Coordination is also needed when agents compete for
resources.

Chapter 3 Agent-Oriented Software Engineering 30

Agents can coordinate their knowledge by informing one another of their beliefs and
knowledge. Actions can be coordinated either through instruction or negotiation. This
coordination can be achieved by communicating with messages (Ferber (1999)).

Agent interaction protocols are a method of describing the messages that can be sent
between agents and the ordering of those messages. They can be considered to be
a convention of a system that governs the social interactions of the agents (Jennings
(1993)).

The Foundation for Intelligent Physical Agents (FIPA) have published specifications
for several interaction protocols. These include request (FIPA (2002e)), query (FIPA
(2002d)), brokering (FIPA (2002b)), and contract net (FIPA (2002c)). The protocols
are informally specified using UML interaction sequence diagrams as the notation. This
informal specification is ambiguous (Paurobally et al. (2005)) and this could lead to
agents complying with the protocol, but unable to coordinate.

Agent Communication Languages (ACL) allow agents to coordinate their actions and
knowledge through a shared language that can be passed between agents in messages.
Programming languages, such as Prolog, can be used for this purpose (Papadopoulos
(2000)). However, the languages specifically designed for inter-agent communication
provide a more tailored approach. A standardised ACL, like FIPA ACL (FIPA (2002a)),
offer an expressive syntax for interoperability between heterogeneous agents.

Interaction protocols are a concept used in four of the reviewed methodologies. In the
analysis phase of Gaia interactions are modelled between roles (Wooldridge et al. (2000)).
Protocols for interaction are defined abstractly based on the purpose of the interaction,
the participants in the interaction and the information passed between the participants.
In the design phase the interactions between agents are expressed by their relationships
in an acquaintance model. Gaia does not produce designs at the level of detail that will
prescribe the messages that are sent between the agents.

Interaction protocols are modelled in AUML using an interaction protocol diagram that
is an extension of a UML sequence diagram (Bauer et al. (2001)). The order and
content of the messages passed between the participating agent roles is defined as part
of the protocol. The lifelines of the agent roles can be split using AND, OR and XOR
relationships to show the different possible reactions to the receipt of messages.

The interaction between agents in the conceptualisation phase of MAS-CommonKADS
is modelled using message sequence charts (Iglesias et al. (1997)). These models are
then refined in the coordination model to include the information passed between the
agents and the performatives of the messages by introducing models of the states and
events of the interaction. Interaction protocols can then be identified for the interaction.
Interaction protocols are modelled using message sequence charts and can be re-used.

Chapter 3 Agent-Oriented Software Engineering 31

The SMART framework specifies a set of Z schemas that model the interactions between
agents in a multi-agent system (d’Inverno and Luck (1997)). For agents to interact there
must be a goal that needs to be fulfilled. Agents are engaged by, or cooperate with, the
agent that generated the goal. The engaged, or cooperating, agent can then adopt
the goal. The framework includes specifications of the different possible relationships
between agents. The structure of the framework can then be used to construct specifi-
cations of interaction protocols.

Gaia and AUML base the possible interactions between the agents on the roles that the
agents play in the system. SMART bases the interactions on the shared goals of the
agents. The information exchanged by the messages is modelled by the methodologies
and MAS-CommonKADS designs include the changes in state caused by the interac-
tion. None of the methodologies prescribe an ACL for the message content. All of the
methodologies intend that the interaction protocols can be re-used.

3.4.2 Agent Goals

A goal for an agent can be described as a desire that an agent believes to be achiev-
able (Rao and Georgeff (1991)). The evaluation of the AOSE methods identified that
agent goals are key concepts in AUML, the SMART framework, Tropos and Concurrent
METATEM. Other methodologies implicitly use goals as a concept. For example, Gaia
models how societies of agents cooperate to fulfill system-level goals (Wooldridge et al.
(2000)). As a key concept the use of goals in the identified AOSE methodologies needs
to be further examined.

The goals of an agent in AUML are defined for individual agent roles (Bauer (2001)).
The state description field in the agent head can be used to define a logical description
of states. These states can be beliefs or goals or other instance variables. How the agent
behaves is defined by these states. The agent’s reactive and pro-active behaviours are
specified using UML diagrams, e.g. sequence and state diagrams. Using these diagrams
the receipt of a message can change the beliefs of an agent, that can lead to a new goal
and that, in turn, can lead to a message being sent in reply. Goals at a system level are
implicit in AUML and can be modelled as the final activity of an activity diagram that
models the agent roles or the services provided by the agents (Bauer and Odell (2005)).

In Concurrent METATEM the goals of the agents are expressed as predicates in temporal
logic e.g. 3rich. Agents are specified with a set of rules where the state of an agent, its
belief or knowledge, will imply the satisfaction of the goal e.g. 3win lottery ⇒ 3rich.

In the SMART framework goals are described as a desirable state of affairs (Luck and
d’Inverno (2006)). A distinction is made between goals and motivations. Motivations
are desires that lead to the generation or adoption of goals. Tasks are also defined as a
state of affairs to be achieved and are therefore the same as goals (Luck and d’Inverno

Chapter 3 Agent-Oriented Software Engineering 32

(1997)). Agents are specified as objects with a non-empty set of goal attributes and
autonomous agents are agents with motivations. The agent behaviour is defined by a
function that that specifies the actions taken according to the agents motivations, goals
and the state of the environment. Shared goals are used to create inter-agent cooperative
relationships.

Goals are concepts used in all phases of software development using the Tropos method-
ology (Bresciani et al. (2004)). They are defined in the Tropos meta model and are
described as an actor’s, or agent’s, strategic interests. Goals are first introduced in
early-phase requirements engineering using the i* method to produce relationships be-
tween actors and goals. This can create dependencies with other actors. The goals and
dependencies shared by actors are decomposed to construct the architecture of the sys-
tem. The agents identified in this architecture have their goals specified in detail during
the detailed design phase.

The Tropos methodology uses the i* method for Goal Oriented Requirements Engineer-
ing. There are several other methods that use goals as a key concept for analysing
system requirements. Goal Oriented Requirements Engineering and Agent Oriented
Requirements Engineering use goals to describe a system in a way that can be under-
stood by stakeholders (Lamsweerde (2001)). The remainder of this section will review
methods for Goal Oriented Requirements Engineering. This review will provide further
information about how goals can be used in software engineering.

The methods described below distinguish between soft and hard goals (Bresciani and
Donzelli (2003)). A soft goal is a goal whose fulfillment is difficult to define. It may be
that the agent who originates the goal decides that it has been fulfilled. Hard goals are
goals whose fulfillment is easily defined.

In the KAOS method of Goal Oriented Requirements Engineering goals are statements
of intent (Letier and van Lamsweerde (2002)). The method specifies agents and goals.
The agents of the system need to be able to cooperate to achieve the goals. The goals
and agents are decomposed until the goals can be assigned to individual agents. The
goals that are assigned to the agents in the system become the requirements for the
system. Agents are considered to be state transition systems and the operations of the
agents operationalise the agent’s goals and move the agent between states.

i* (Yu (2002)) is a requirements engineering method used in the Tropos methodology.
Goals are used to model dependencies between agents. This models the social aspects
of multi-agent systems as well as the intentional aspects. The goals and agents are
decomposed until the goals can be assigned to individual agents. This creates an archi-
tecture of the system, in terms of agents, that can be described by the reasons for the
architecture, in terms of goals.

Chapter 3 Agent-Oriented Software Engineering 33

REF is intended to be a simpler modelling framework than i* (Bresciani and Donzelli
(2003)). Agents are used to model the organisation of the system and the goals define
the relationships between the agents. Tasks, resources and constraints are included in
the goal diagrams to provide more detail about the system architecture.

The methods examined above treat goals as states that the system moves between
that define an agent’s behaviour and trigger actions. The goals create dependency
relationships between agents and this can be used to create a system architecture.

3.4.3 Agent Roles

The role of an agent defines their capabilities and behaviour within a system and is the
basis on which an agent interacts with a group of agents. An agent in an auction will
interact with the other agents by taking the role of buyer or seller. The role of an agent
is a label for its recurring dependencies and interactions (Parunak and Odell (2002)).

An agent’s role is also a way of grouping agents. An agent’s role can describe a set of
distinguished properties or behaviour that are common to the agents performing that
role (Bauer (2001)).

Agents can perform several different roles and a system can contain several agents per-
forming the same role. In an agent marketplace an agent may be buying goods from one
agent and then selling them on to another, and so must be capable of performing both
the role of buyer and of seller.

In the Gaia methodology roles are abstract concepts that are used to analyse the sys-
tem (Wooldridge et al. (2000)). The analysis phase of Gaia begins with the identification
of the roles of the system and the organisation of the system is viewed as the roles and
their relationships. A role has the four attributes of responsibilities, permissions, activ-
ities and protocols. The responsibilities describe the functionality required by the role
in terms of liveness and safety properties. The permissions describe the role’s access
to resources. The activities are the private internal actions that need to be carried out
to perform the role. The protocols attribute identifies the interactions protocols that
the role can use to communicate. During the design phase the agents of the system are
identified as a set of one or more roles.

In AUML roles are described by single agent classes, with attributes and operations, at
the conceptual level of modelling (Bauer (2001)). At the specification level a collection
of one or more roles is assigned to an agent class. The roles can then be carried out by
agents that are instances of the agent class.

In the Tropos methodology the actors identified in the early requirements analysis can
be roles, positions or agents (Bresciani et al. (2004)). The abstract actor is a role where
the agent playing the role does not need to be identified in the model. Positions are sets

Chapter 3 Agent-Oriented Software Engineering 34

of roles that can be assigned to agents at a more concrete level. An actor is an agent
when the model is concrete enough to identify an individual that will fulfill the abstract
position (Yu and Mylopoulos (1994)).

In all three of these methodologies roles are used as abstract concepts for agents. Roles
are modelled as a collection of states and actions. The more concrete models of agents
can perform one or more of the roles identified at the abstract level.

3.5 The Use of the B-Method and Event-B in AOSE

AOSE methodologies have been examined to show the different possible approaches
to modelling multi-agent systems. The evaluation highlighted the techniques used. A
further review of literature on modelling multi-agent systems in the B-Method and
Event-B should show how some of these techniques have been used and other techniques
that may be useful.

Fadil and Koning (2005) use the B-Method to model a multi-agent system. There is a
specification of the system as a whole, at a single level of abstraction, with operations to
add and remove agents. This is the specification of a platform not of an actual problem
and can, therefore, be generic. The agents are specified individually and interact through
their roles. The agent machine includes the role machine. The role machine, in turn,
includes a machine that models the interaction protocol being used. The agent machine
starts the interaction by calling the operations in the role machine and then the role
machine will call the operations in the protocol machine. The protocol machine is
responsible for making sure that the protocol is complied with. This architecture is
presented in a practical case study of a travel system. There does not appear to be a
relationship between the multi-agent system and the agents that construct it. This is
perhaps necessary as the use of B and the operation style would imply a centralised
thread of control where the operations will be called by the system. The authors intend
to refine the specifications further.

Event-B has been used to model a contract net case study in Gao et al. (2007). The
system is an abstract machine based on agents and their roles. The protocol machine
models the exchange of messages by events that are triggered by states controlled by the
agent roles. The contract net machine is adapted for a system for designing automobiles.
The ‘includes’ clause from the B-Method is used to compose the agent machine into the
role machine, the role machine into the protocol machine and the protocol machine into
system machine. The authors have refined the model, but offer no examples or method
for refinement in the paper.

Event-B has been used to model heterogeneous mobile agents at different locations on a
network (Iliasov et al. (2005, 2006)). The purpose of this is to provide abstract models

Chapter 3 Agent-Oriented Software Engineering 35

where the interoperability of the mobile agents is ensured. The abstract specification
models the agents in a system called a location. The location provides the services that
allow mobile agents to leave and join the location. During several refinements the model
is enhanced to provide fault-tolerance mechanisms and to allow agents to coordinate with
the other agents that are present at the location. One of the main concepts used in the
models is that of scope. The scope is an abstraction that formalises how interactions can
take place. An agent must join or create a scope to coordinate with other agents. The
agents in a scope communicate through a private tuple space. In order to join a scope an
agent must be capable of performing a required role. Any agents that are incompatible
with the requirements of that role need not be considered. The overall system can,
therefore, operate as an open system, whilst ignoring inter-agent compatibility issues.
This method puts the responsibility for the services needed for coordination onto the
platform rather than the individual agents. The specification concentrates on modelling
the agent platform. A focus of the research is to provide fault-tolerance as part of the
agent platform.

3.6 Summary

The literature review in this chapter describes and evaluates a selection of AOSE method-
ologies that use both formal and informal methods. The techniques used to create models
of multi-agent systems have been examined in more detail. The evaluation shows the
concepts that are used in the models of multi-agent systems, how formal methods are
used and how the complexity of the models are managed.

When it comes to modelling multi-agent systems agent interactions are an important
concept to model. Without interaction between the agents they will be unable to co-
ordinate their information and actions, and function as a system. Interaction protocols
model the messages and the order that messages are exchanged to fulfill an activity
within a multi-agent system. Interaction protocols are modelled in the reviewed AOSE
methodologies as sequence diagrams that show the order for the exchange of messages.
They are modelled as part of the roles that are assigned to agents.

Goals represent the motivations of the agents in the system. The agents will collaborate
to perform shared goals. Without goals the agents would not act autonomously or pro-
actively. Goals are modelled in the AOSE methodologies as the link between the state
of the agents and the actions that they perform.

Roles are an abstract representation of agents. Agents can perform one or more roles.
Roles are modelled in the reviewed AOSE methodologies as a set of states and actions.

Abstraction and decomposition are two appropriate techniques for coping with the com-
plexity of modelling multi-agent systems. Decomposition allows models of systems to be

Chapter 3 Agent-Oriented Software Engineering 36

broken down into their components whilst maintaining a relationship with the original
model.

Several methodologies for the development of multi-agent systems use formal methods in
their approach. The reasons for their use range from creating consistent and unambigu-
ous requirements to being able to execute the models. Developing informal diagrams
alongside formal ones can make formal development more accessible.

The reviewed uses of the B-Method and Event-B in modelling multi-agent systems show
how the concepts that are needed in a multi-agent system can be modelled at an abstract
level. Roles are used to specify the activities of the agents and the interactions of the
agents are controlled by the role. The interactions of agents are modelled abstractly
and refinement can be used to create detailed models of agents that will perform the
interactions as specified in the abstract models.

Chapter 4

Incremental Development

Process: Stage One - Goal

Elaboration

This chapter describes Stage One of the Incremental Development Process. The chap-
ter begins with a description of how the concepts identified in the evaluation of AOSE
methodologies have been used in the Incremental Development Process. The goal di-
agrams and goal relationships used in the Incremental Development Process are in-
troduced. Guidance is given for translating the diagrams for Stage One into Event-B
models.

The development of a model in Event-B can be described as a process that begins with
the abstraction of the system being modelled and continues through several refinements
that add detail to the abstract model. The developer will iterate the process as more is
learnt about the model through its development. This thesis presents a process for the
development of multi-agent systems in Event-B that has been captured as two stages.
The first stage models the system requirements from the system perspective as goals
and refines these goals to model the interactions of the system. The goal model guides
the development of associated Event-B models that formally specify the required system
functionality. The second stage takes the goal model developed in the first stage and
adds communications that are required for the system to be modelled as the interactions
of agents and allocates the communications to the agent roles that can be identified for
the system. This model is then used to guide the further refinement of the Event-B
system model into component models of the system’s agent roles.

For conciseness the Incremental Development Process will be referred to as the Process.

The Process is general and has been applied to two case studies of increasing complex-
ity. The Process begins with the high-level requirements of a multi-agent system and

37

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 38

finishes by producing abstract Event-B models of the system components. Each of these
components can be refined and are open to possible re-use.

This chapter begins by explaining the rationale behind the choices made when creating
the Process. Stage One of the Process is then described.

4.1 Using the Multi-Agent System Concepts

The Process has been developed to use the three most prevalent agent concepts iden-
tified in Chapter 3 as the basis for the conceptualisation of multi-agent systems. This
creates a method for developing multi-agent systems that is centred on fundamental
agent properties.

Several of the AOSE methodologies described in Chapter 3 construct different models
of the system based on the different agent concepts. Integrating all of the aspects into
one model makes it possible to reason about all of the aspects of the system and how
they affect one another rather than considering each separately and assuming that they
will not conflict. Producing three different formal models and verifying them separately
would also create a greater burden for the developer. Therefore, the three main concepts
of agent goals, agent interaction and agent roles need to be combined in the one formal
model. At the system level the goals of an agent are only visible by the actions that
they take. In an Event-B model the actions of the system are modelled as events. The
fulfillment of each goal can be modelled as an event in the Event-B model. An Event-B
model is a state transition system and can model the interaction of a distributed system
as the transition between states with the triggering of each event moving the interaction
to the next state. The role of each agent defines their goals and the actions available to
them. A role in an Event-B model can be defined by the decomposition of the model
into groups of states and events.

The Process needs a starting point and the system can be modelled from the perspective
of any of the agent concepts. However, to start the process from the system require-
ments requires the first conceptualisation of the system to use an appropriate model.
Goals are modelled in software development as part of the early phases of requirements
engineering. The goals can be modelled alongside agents that at this abstract level of
system development could be implemented by hardware, software or human interven-
tion (Yu (1997)). The goal diagram from Goal-Oriented Requirements Engineering can
be used as a starting point for the model of the system. This allows the system to be
modelled informally and the other concepts can then be constructed from the identi-
fied goals. Goal diagrams are considered to be accessible to the different stakeholders
because they capture the rationale behind the model (Lamsweerde (2001)). Using a
model that can be integrated with models from early-phase requirements engineering
will help to address the transition between later phases of requirements engineering and

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 39

the translation of the requirements into formal models of multi-agent systems. Having
models of the requirements based on an intentional perspective allows this perspective
to be captured in the translation to the formal models. The formal models can then be
analysed and the results can be fed back into the requirements analysis as well as refined
to a verified concrete design of the system.

The goals of the agents are introduced by the Process by firstly modelling the system as
a set of goals and then refining the goals so they can be allocated to the different agent
roles required for the system. These goals are then related to events and variables in an
Event-B specification of the system. This approach ensures that the individual agent
goals conform with the overall system goals and that the combined functioning of each
agent will embody the overall functionality of the system.

The relationships used in the goal model can be used to describe the interaction required
to fulfill the goals of the system and fit a state transition system that can be used to
form an Event-B model. Each transition will occur as agents take actions to fulfill their
goals. The system level behaviour is modelled before the individual agent behaviour to
ensure that the individual agents will work together as a multi-agent system.

The Process models the shared behaviour of the system and then decomposes the system
into the agent roles and the system environment. The Process is also designed to model
each agent with an individual thread of control by encapsulating the state and actions
of each agent. The guarded events of the Event-B method model each action as being
executed atomically. The actions of an agent will not interfere with the actions of the
other agents in the system. The final decomposition of the system makes concrete this
separation of processing in the model.

Using Event-B as the modelling language creates models of reactive systems that in-
clude their environment that influences, and is influenced by, the agent behaviour. The
guarded events in Event-B can be triggered when the state of the system changes, due
to the action of another event.

4.2 Stage One

The Incremental Development Process is separated into two stages. In this section Stage
One will be described. The purpose of Stage One is to model the system as a set of goals
that describe the interactions of the system. Event-B models are created by analysing
the goals and relationships used to construct models of the system goals. The perspective
of the Event-B models in Stage One are of a single system of interacting agents that
changes state as the agents interact.

Stage Two continues the elaboration of the goal diagram and the refinement of the Event-
B model. The perspective of the model changes as communications are introduced to

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 40

model the interacting agents as separate entities. Stage Two results in specifications of
the roles of the agents in the system.

Modelling of systems in Event-B begins with the specification of the abstract require-
ments of the system that can then be refined by adding more detail to reflect the func-
tioning system. Specifying the abstract requirements of a system in an Event-B model
is not an easy task. Having additional models to help the developer discover a useful
level of abstraction at which to express the system requirements will make the task
more accessible. Refining the system requirements to a model of a functioning system
requires many modelling decisions and several iterations of those decisions. Capturing
the decisions and then elaborating those decisions independently of the formal models
in a uniform manner should ease the burden on the developer, especially a developer
with limited experience of formal methods.

The rest of this section describes how the goal diagrams are constructed and how these
informal models of multi-agent systems can be captured in formal system models in
Event-B.

4.2.1 The Goal Diagram

A single goal is chosen as the starting point for the goal model. This is because it is the
elaboration relationships that describe the interactions of the system. A single Event-
B model will be constructed from these elaboration relationships to model the system
interactions.

The root goal can be ascertained from the name of the system or the highest level
requirement of the system. The fulfillment of this goal will solve the problem that the
system is being designed to solve. This goal can be elaborated by deciding what lower
level goals need to be fulfilled in order to fulfill the higher level goal. The goals are then
elaborated until the discerned goals can be allocated to the individual agent roles that
can be identified for the system.

For simplicity, only one model has been chosen to be translated into Event-B, the goal
model. A developer may wish to use other informal models, including other agent and
goal models that model the early-phase requirements of the system, that correspond to
the goal model.

The elaboration of the goal diagram will create a tree structure with the goals related by
four possible relationships. The relationships that are used will create either an order to,
or a choice between, the goals. The ordering of the goals means that the goal diagram
can be seen as the interactions of the system goals when read from left to right. This
gives an abstract view of the state transitions of the system that can then be translated
into an Event-B model.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 41

The goal diagram gives a visual abstraction of the Event-B models that can then be refer-
enced alongside the Event-B models to aid understanding as an informal representation
of the formal models.

4.2.2 Goal Elaboration

The purpose of the goal elaboration is to refine the system goals into goals that can
be assigned to individual agents. The refinement of goals will be referred to as goal
elaboration to distinguish it from the refinement of the Event-B models. The goals are
elaborated into one or more sub-goals. The fulfillment of a set of refining sub-goals
will result in the fulfillment of the parent goal. An elaboration with a single sub-goal
renames the parent goal. There are four different elaboration relationships available for
Stage One of the Process. Each set of sub-goals will be related to one another with
either a THEN, AND, or one of two different OR relationships.

The relationships used to refine the goals in the goal diagram help to construct a model
of a system of interacting agents. Having the order also focuses the model on the concept
of interaction between the agents in the system as each stage can be separated into the
goals and the order in which they can occur. Having the OR relationships models the
choices that the agents will make. Having the AND and THEN relationships models the
dependencies between the goals and the different agents that are eventually allocated
the goals.

The use of four relationships differs from other notations that use mainly AND and
OR decomposition relationships (Bresciani and Donzelli (2003); Lamsweerde (2001)) or
decomposition and dependency relationships (Yu (1997)). This is partly due to the
translation between the goal diagram and the Event-B models. The Event-B model
is a state transition model and having an order in the goal model, as provided by a
THEN relationship, makes the translation more straightforward. The specification of
the relationships in the formal model offers more precision and there is a significant
difference in the behaviour of the model between the specification of an inclusive and
exclusive OR relationship.

The THEN relationship between goals establishes an order in which the goals must be
fulfilled. The left-hand goal must be fulfilled prior to the right-hand goal. The right-
hand goal can only be fulfilled if the left-hand goal has previously been fulfilled. Both
sub-goals must be fulfilled in order for the parent goal to be fulfilled. An example of a
THEN goal elaboration is shown in Figure 4.1. In the goal diagram the abstract goal1
will be fulfilled if goal1a is fulfilled followed by goal1b.

The AND relationship specifies that all of the related goals are required to be fulfilled for
the parent goal to be fulfilled. The AND relationship does not specify an order for the
fulfillment of the goals. An example of an AND goal elaboration is shown in Figure 4.2.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 42�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

Figure 4.1: A THEN Elaboration�� ��goal1

AND

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

Figure 4.2: An AND Elaboration�� ��goal1

XOR

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

Figure 4.3: An XOR Elaboration�� ��goal1

OR

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

Figure 4.4: An OR Elaboration

In the goal diagram the abstract goal1 will be fulfilled if both goal1a and goal1b are
fulfilled.

The XOR relationship creates an exclusive choice between the related goals. Either of
the sub-goals can be fulfilled for the parent goal to be fulfilled and only one of them
must be fulfilled in each interaction. Figure 4.3 shows a goal diagram with an XOR
elaboration. In this goal diagram goal1 will be fulfilled if goal1a is fulfilled or if goal1b
is fulfilled, but not both.

The OR relationship differs from the XOR relationship because it is not an exclusive
choice. The OR relationship means that the fulfillment of either of the related goals is
independent of the other. Figure 4.4 shows a goal diagram with an OR relationship:
goal1a OR goal1b. Either goal1a or goal1b can be fulfilled and the fulfillment of one
or both goals will lead to the fulfillment of the parent goal. The OR relationship is
useful for keeping the relationships abstract at higher levels of goal elaboration. Using
an XOR or THEN relationship may be too restrictive to describe how the sub-goals that
are elaborated later in the goal model will interact.

An important concept for the goal model is that of a completion condition. The com-
pletion condition for a goal is the set of conditions that need to be satisfied for the
goal to be fulfilled. The starting condition for a goal is of less importance in the goal

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 43

models. It is often the completion condition of a THEN-related goal. The completion
and starting conditions for goals are similar to the concepts of preconditions and post-
conditions on operations. The postcondition of an operation will be satisfied as long as
the precondition is upheld on the execution of the operation (Hoare (1969)).

The completion conditions of a set of goals can be used to distinguish the function of
the different relationships. The THEN relationship, e.g. Figure 4.1, requires that the
completion condition for any goals to the left of the THEN relationship, goal1a, to be
the same as the starting condition for the goals to the right of the THEN relationship,
goal1b. The set of goals will be fulfilled when the completion condition for the goals to
the right of the THEN relationship, goal1b, has been reached. The AND relationship
requires that the starting condition for each goal to be the same and the completion
condition for the relationship is a conjunction of the completion conditions for the AND-
related goals. An XOR relationship requires that the completion condition for each goal
is disjoint from the starting condition for each goal. An OR relationship requires that
the starting condition for each goal is the same and the completion condition for the
relationship to be a disjunction of the completion conditions for the OR-related goals.

All of the goals in the goal diagram are linked through their relationships. Using goal
elaboration does allow you to elaborate each goal in isolation and then examine how
adding this detail can then affect the system. The system as whole cannot be understood
by analysing a single goal and its elaboration tree.

Using Event-B as the specification language to model the goal elaboration has the ad-
vantage of being able to refine one event into multiple events and add new events to a
refinement model. This allows the goal elaboration relationships from the goal diagrams
to be directly translated to events in the formal models.

4.2.3 Constructing and Refining the Event-B Models

The goal diagram that has been constructed using the elaboration relationships de-
scribed above can be used to help construct an Event-B refinement chain that creates
an Event-B representation of the system. To keep the goal model simple the graphical
notation used has been limited. This means that the guidance given for translation be-
tween the informal and formal models cannot be particularly systematic. Adding further
notation may enable a more systematic translation, but this will limit the flexibility of
the conceptual informal model.

Preserving the intentional perspective in Event-B can be achieved by having the events
and state variables of the system based on the goals in the goal diagram. The translation
between the goal model and Event-B model specifies that a change in the state variable
changes which events can occur. This models a change in the motivational state of the
system triggering an action.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 44�� ��
���������

PPPPPPPPP

�� ��
�

���
H

HHH�� �� �� ��

�� ��
�

���
H

HHH�� �� �� ��
���

�

���
HH

HHH
H�
 �	 �
 �	 �
 �	

�
�

�
��

�
�
�

�

 �

	
�
�

�
�

Abstract Machine

1st Refinement

2nd Refinement

Figure 4.5: How Goal Elaboration Can Relate to Event-B Refinement

An Event-B abstract machine can be constructed using the first level of goal elaboration
in the goal diagram. Each of the subsequent levels of goal elaboration can be used to
help construct an Event-B refinement of the abstract machine. For each refinement the
lowest nodes for each branch of the goal tree are included in the specification. Figure 4.5
shows how a goal tree can be related to an Event-B refinement chain.

The goal elaboration relationships in the goal diagram affect how the Event-B models are
constructed. These elaboration relationships in the goal diagram cannot be analysed in
isolation when constructing the Event-B models. The relationships at the higher levels
of the goal tree will have an affect on how the relationships between the goals in the
Event-B models from the lower levels of the goal tree are modelled. These relationships
are preserved through the Event-B refinement relationship.

When using the goal diagram as a guide to construct the Event-B model each of the goals
are modelled in two ways. They are modelled as events of the system that represent the
goal being fulfilled. They are also modelled as states that the system moves into when
the event occurs. Modelling the goals as states, as well as events, allows the order that
is defined by the goal elaboration relationships to be enforced in the Event-B model.

The Event-B models represent a state transition system model of the interaction with
the fulfillment of the goals, or triggering of the events, moving the system through the
states of the interaction. Each interaction between a group of agents can be seen as
a conversation. The conversation is the fundamental concept of each of the Event-B
models constructed in the Process. The concept of a conversation comes from the FIPA
ACL Message Structure Specification (FIPA (2002a)). It specifies that a conversation-
id field should be used in each message to allow agents to distinguish between each
set of interactions. It is a useful concept when modelling a state transition system
of agent interaction as it allows each agent to be involved in more than one set of
interactions concurrently, whilst controlling the progress of the individual conversations
by their state. Each development should include a context that specifies deferred sets
CONVERSATION and AGENT.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 45

An example of how an Event-B model can be constructed from a single goal is shown
in Figure 4.6. Variables and events are specified to represent the goals. The state vari-
ables for the goals are specified as relationships between conversations and agents. The
relationship is modelled as a partial function, 7→, so that each conversation will be with
one agent, goalstate ∈ CONVERSATION 7→ AGENT . How this relationship changes
for systems with interactions between several agents will be described below. The goal
states are initialised as empty. The events representing the goals are parameterised by
a conversation, c, and an agent, a, where the conversation is not in the goal state for
that event, c /∈ dom(goalstate). The action of the event will add a relationship between
the conversation and agent to the goal state, goalstate := goalstate ∪ {c 7→ a}.

VARIABLES goalstate
INVARIANTS

goalstate ∈ CONVERSATION 7→ AGENT

EVENTS
INITIALISATION

BEGIN
goalstate := ∅

END
goalevent

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate)

THEN
goalstate := goalstate ∪ {c 7→ a}

END
END

Figure 4.6: Event-B Model for a Goal

The Event-B abstract machine is constructed from the first level of goal elaboration.
The refinement of the abstract machine will continue through each further level of goal
elaboration in the goal diagram. The goal relationships used to refine the goal model
will direct how the refinement relationships in the Event-B models are specified. Event-
B refinement will require that the relationships specified in the abstract machine are
upheld in the refinement models. Using the goal models to guide the refinement will
guide the construction of the refinement models that contain the gluing invariants and
event guards to discharge the proof obligations generated by the Event-B refinement.

Fisher et al. (2007) identify properties that leading agent theories and formal methods
used for the development of agent systems share. These are:

• an informational component, so as to be able to represent the agent’s
beliefs or knowledge;

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 46

• a motivational component, to represent the agent’s desires or goals; and

• a dynamic component, allowing the representation of the agents activity.

These properties are modelled by the Process. The state of the Event-B models captures
the informational component with each state representing the agent’s knowledge about
its place in a conversation. The events of the model capture the dynamic component
through the actions that the agent is capable of performing. The motivational component
is captured by the goal models. This abstraction is then translated into the Event-B
models as part of its state.

Representing Goal Relationships in Event-B

The rest of this section will show how the goal elaboration relationships can be used to
guide the development of both abstract machines and refinement models. How the use
of Event-B restricts the use of some of the relationships will also be described.

A THEN elaboration relationship between two sub-goals creates an order in which the
goals must be fulfilled. The Event-B model can reflect this by enforcing an order in
which the events for the goals can be triggered. This can be achieved using the guards
for the event and enforced by adding an invariant condition to the model.

When a goal in an abstract model is elaborated by two goals that form a THEN relation-
ship the events and variables that are introduced for the goals must refine the abstract
events and variables for the abstract goal. The refinement relationship will be between
the state and event for the abstract goal and the state and event for the right-hand
sub-goal. The event for the left-hand sub-goal will be introduced in the refinement as a
new event.

Figure 4.7 shows an Event-B refinement model that models a THEN goal elaboration
relationship as shown in Figure 4.1. This goal elaboration relationship can be syntacti-
cally described as goal1 v goal1a THEN goal1b, or goal1 ’is refined by’ goal1a THEN
goal1b. The two state variables that represent each of the goals, goalstate1a, goalstate1b,
model the THEN relationship with one goal specified as a subset of the other, goalstate1b ⊆
goalstate1a. The events of the model, goalevent1a and goalevent1b, uphold the THEN
relationship. The first event, goalevent1a, is only enabled when the conversation is not
in the state for goal1a. The action of the event adds a relationship between the conver-
sation and agent to the state goalstate1a. The subset relationships between the states
in the model mean that the relationship must be the same as the relationship added to
the first state in the first event. Therefore, the agent in the relationship represents the
agent with the goal that is fulfilled by the first event. The second event can only occur
when the relationship is in the goalstate1a state and not in the goalstate1b state. The
action of the event then adds the relationship to the goalstate1b state.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 47

The Event-B specification of the THEN relationship models the causal relationship
between the goals in the THEN relationship. The guard, c 7→ a ∈ goalstate1a, for
goalevent1b means that the event can only occur if goalevent1a has already occurred
and the model has moved the conversation into goalstate1a. This also ensures that if
the state of the model were to be affected in a way that removed the conversation from
goalstate1a before goalevent1b were to occur then goalevent1b would be prevented
from occurring.

To refine a goal in the Event-B model with a THEN elaboration a gluing invariant is
added to the model. The gluing invariant specifies that the variable goalstate1b is equal
to the state for the parent goal, goalstate1 = goalstate1b. The variable goalstate1a is
specified as a subset of CONVERSATION as it is not related to another goal in Figure 4.1.
The goalevent1b is specified as a refining event and goalevent1a is specified as a new
event.

VARIABLES goalstate1a, goalstate1b
INVARIANTS

goalstate1a ∈ CONVERSATION 7→ AGENT
goalstate1b ⊆ goalstate1a
goalstate1 = goalstate1b

EVENTS
INITIALISATION

BEGIN
goalstate1a, goalstate1b := ∅

END
goalevent1a

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1a)

THEN
goalstate1a := goalstate1a ∪ {c 7→ a}

END
goalevent1b REFINES goalevent1

ANY c, a WHERE
c 7→ a ∈ goalstate1a
c 7→ a /∈ goalstate1b

THEN
goalstate1b := goalstate1b ∪ {c 7→ a}

END
END

Figure 4.7: Event-B Model for a THEN Elaboration

The use of the subset relationship for controlling the states of the model is convenient
for the THEN relationship. An alternative is to use disjoint sets and to remove the con-
versation from one state before it can move into its next state. The use of disjoint sets is

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 48

more reflective of an OR relationship. Figure 4.8 shows an Event-B model that uses dis-
joint sets to model a THEN relationship. The variables goalState1a and goalState1b are
modelled as disjoint, goalState1a ∩ goalState1b = ∅. The THEN relationship is upheld
by the guards and actions of the events. The event goalEvent1a takes a conversation
that is in neither of the states and adds it to goalState1a. The event goalEvent1b takes
a conversation that is in the variable goalState1a, removes it and adds it to goalState1b.

The advantage of using the subset relationship in the Event-B models is that the rela-
tionships between the states that represent the different goals of the model are specified
in the invariants of the model. This ensures that the abstract goal elaboration relation-
ships are upheld in the refinement of the Event-B models more strongly than if specified
only in the event guards. This also makes the discharge of some of the refinement
proof obligations easier as the invariant conditions can be used in the proof. Because
the THEN elaboration creates the order of the events it is the relationship that will
be used most often, especially at the higher levels of abstraction. Therefore, another
advantage of using the subset relationship between the states is that it reflects the main
relationships in the model.

VARIABLES
goalState1a, goalState1b

INVARIANTS
goalState1a, goalState1b ∈ CONVERSATION 7→ AGENT
goalState1a ∩ goalState1b = ∅

EVENTS
INITIALISATION

BEGIN
goalState1a, goalState1b := ∅

END
goalEvent1a

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalState1a)
c /∈ dom(goalState1b)

THEN
goalState1a := goalState1a ∪ {c 7→ a}

END
goalEvent1b

ANY c, a WHERE
c 7→ a ∈ goalState1a

THEN
goalState1a := goalState1a \ {c 7→ a}
goalState1b := goalState1b ∪ {c 7→ a}

END
END

Figure 4.8: Alternative Representation of Goals in Event-B

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 49�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

PPP
AND �� ��goal1c

Figure 4.9: AND-THEN Goal Elaboration

An AND relationship cannot be modelled in isolation in Event-B using the specification
style employed by the Process. This is because the completion condition for the whole
AND relationship cannot be described by the completion conditions for the individual
events. Instead, a separate event must be included in the Event-B model that will occur
when all of the AND-related events have occurred. This can be modelled in the goal
diagram by combining the AND relationship with a THEN relationship, as shown in
Figure 4.9.

The AND relationship between the goals goal1a and goal1b must be fulfilled before the
THEN-related goal, goal1c. There is no order for the fulfillment of the AND-related
goals. goal1c has a starting condition that all of the AND-related events have occurred.
An invariant condition can be added to the Event-B model to specify that the state
variable for goal1c is a subset of an intersection of the state variables for the AND-
related goals: goal1c ⊆ goal1a ∩goal1b. The guard for each of the events for goal1a and
goal1b specifies that the selected conversation is not in the state variable for the goal
and the action adds the conversation to that state variable. The guard of the event for
goal1c should specify that the selected conversation is in each of the state variables for
the AND-related goals, c ∈ dom(goalstate1a) and c ∈ dom(goalstate1b).

Figure 4.10 shows how an AND-THEN goal elaboration relationship can be used to guide
the development of an Event-B refinement. The refinement relationship is specified sim-
ilarly to the THEN elaboration model. The goal diagram in Figure 4.9 can be described
as goal1 v (goal1a AND goal1b) THEN goal1c. Because of the THEN relationship the
events for the AND-related goals, goalevent1a and goalevent1b are new events in the
model and the event goalevent1c refines the abstract event. The gluing invariant relates
the abstract state variable goalstate1 to the concrete variable goalstate1c.

The XOR relationship between two sub-goals creates an exclusive choice of which of
the goals must be fulfilled. Exclusive events in an Event-B model would have disjoint
guards. However, to model the XOR relationship between two goals the Event-B model
requires two events that can be triggered from the same state. To model this in the
specification style used in the Process the guards for the events must be the same and
the action of each event must disable both guards. An invariant condition is added
to the model to specify the state variables as disjoint: goalstate1a ∩ goalstate1b = ∅.
This means that each conversation can be in only one of the states. A guard is added
to each of the events that specifies that the event can only be triggered if the selected

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 50

VARIABLES goalstate1a, goalstate1b, goalstate1c
INVARIANTS

goalstate1a, goalstate1b ∈ CONVERSATION 7→ AGENT
goalstate1c ⊆ goalstate1a ∩ goalstate1b
goalstate1 = goalstate1c

EVENTS
INITIALISATION

BEGIN
goalstate1a, goalstate1b, goalstate1c := ∅

END
goalevent1a

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1a)

THEN
goalstate1a := goalstate1a ∪ {c 7→ a}

END
goalevent1b

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1b)

THEN
goalstate1b := goalstate1b ∪ {c 7→ a}

END
goalevent1c REFINES goalevent1

ANY c, a WHERE
c 7→ a ∈ goalstate1a
c 7→ a ∈ goalstate1b
c 7→ a /∈ goalstate1c

THEN
goalstate1c := goalstate1c ∪ {c 7→ a}

END
END

Figure 4.10: Event-B Model for an AND-THEN Elaboration

conversation is not in the state of the opposing goal in the relationship as well as the state
for the event goal, c /∈ goalstate1a and c /∈ goalstate1b. The goal relationships can be
specified in the models by only using the event guards to enforce the conditions in which
the events can be triggered. Including the invariant condition makes the relationship a
necessary property of the model. This property can then be used in later refinements
to discharge proof obligations. The goal diagram in Figure 4.3 can be described as
goal1 v goal1a XOR goal1b. Figure 4.11 shows how an XOR elaboration can be used
to create choice in an Event-B refinement.

The refinement in Event-B using an XOR elaboration allows the abstract event to be

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 51

refined by either of the refining events. The completion condition for the abstract event
is equivalent to either of the completion conditions for the sub-goals. A gluing invariant
is added that specifies that the state for the abstract goal is equal to a conjunction of
the states for the sub-goals, goalstate1 = goalstate1a ∪ goalstate1b. Both of the events
for the sub-goals are specified as refining the abstract event.
VARIABLES goalstate1a, goalstate1b
INVARIANTS

goalstate1a, goalstate1b ∈ CONVERSATION 7→ AGENT
goalstate1a ∩ goalstate1b = ∅
goalstate1 = goalstate1a ∪ goalstate1b

EVENTS
INITIALISATION

BEGIN
goalstate1a, goalstate1b := ∅

END
goalevent1a REFINES goalevent1

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1a)
c /∈ dom(goalstate1b)

THEN
goalstate1a := goalstate1a ∪ {c 7→ a}

END
goalevent1b REFINES goalevent1

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1b)
c /∈ dom(goalstate1a)

THEN
goalstate1b := goalstate1b ∪ {c 7→ a}

END
END

Figure 4.11: Event-B Model for an XOR Elaboration

The OR relationship creates an inclusive choice between the goals. Each of the events in
the Event-B model can be triggered from the same state whether or not the conversation
is in the state for an OR-related goal.

It is not possible to directly refine an Event-B event using an OR relationship. The
OR relationship is specified in Event-B in a way that will allow the events that are
linked by an OR relationship to both occur. There is also no restriction on how many
times they can occur, though the effect of the action will not affect the state of the
model on a second occurrence. When refining an event into multiple events in Event-
B the behaviour of the model should not diverge from the behaviour of the abstract
model. A variable that is affected once by an abstract event should only be affected

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 52�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

PPP
OR �� ��goal1c

Figure 4.12: OR-THEN Goal Elaboration

once in a combination of the refining events. The specification of events for goals in an
OR relationship does not guarantee that the behaviour does not diverge and cannot be
proven to refine a single abstract event. This is possible with an XOR relationship as
only one of the related events can occur once. An OR relationship can be specified in an
abstract machine because it is not restricted by the need for a refinement relationship.

An OR elaboration can be included in a refinement model with an extra event that
specifies the when the interaction will move on. This means that the OR relationship
in the goal model, that is below the first level of goal elaboration, must always be on
the left of a THEN relationship. A goal diagram of an OR-THEN elaboration is shown
in Figure 4.12. The THEN relationship is seen as a causal relationship in this case as
the occurrence any of the OR-related events will cause the event for goal1c to occur.
The events for goal1a and goal1b can still continue to occur after this, but this will not
affect the rest of the model.

A refinement model that uses an OR-THEN elaboration relationship is shown in Fig-
ure 4.13. As with the AND-THEN relationship the refinement is similar to the THEN
relationship refinement. The gluing invariant specifies that the abstract goalState1 vari-
able is refined by the concrete goalsState1c variable. goalEvent1c refines the abstract
event goalEvent1 and goalEvent1a and goalEvent1b are new events.

The translation between the goal model and the Event-B model can be assisted by
writing the goal model as a statement, e.g. goal1 THEN (goal2 XOR goal3), using
brackets to confirm the order of the evaluation for the relationships.. This tactic will
place the focus on the relationships that need to be described in the Event-B specification
and may help to highlight any mistakes in the formation of the relationships.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 53

VARIABLES
goalState1a, goalState1b, goalState1c

INVARIANTS
goalState1a, goalState1b ∈ CONVERSATION 7→ AGENT
goalState1c ⊆ goalState1a ∪ goalState1b
goalState1 = goalState1c

EVENTS
INITIALISATION

BEGIN
goalState1a, goalState1b, goalState1c := ∅

END
goalEvent1a

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalState1a)

THEN
goalState1a := goalState1a ∪ {c 7→ a}

END
goalEvent1b

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalState1b)

THEN
goalState1b := goalState1b ∪ {c 7→ a}

END
goalEvent1c REFINES goalEvent1

ANY c, a WHERE
c 7→ a /∈ goalState1c
c 7→ a ∈ goalState1a ∪ goalState1b

THEN
goalState1c := goalState1c ∪ {c 7→ a}

END
END

Figure 4.13: Event-B Model for an OR-THEN Elaboration

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 54�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
it �� ��goal1b

PPP
XOR �� ��goal1c

Figure 4.14: Goal Elaboration With an Endpoint Goal�� ��goal1

XOR

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

����
THEN�� ��goal1c

Figure 4.15: Goal Elaboration Without an Endpoint Goal

4.2.4 Endpoint Goals

In a multi-agent system it is possible for the interaction to end before it has been
completed. An example of this behaviour in a multi-agent interaction is when a refuse
goal is fulfilled because an agent has no intention of completing the requested action.
The goals that represent these endpoints can be should be highlighted in the goal model
with a circle that represents a stop, as shown in Figure 4.14. The fulfillment of the
endpoint goal, goal1a, in Figure 4.14 will end the interaction. The fulfillment of goal1b
will lead to the fulfillment of goal1c and the interaction will be completed.

Without endpoint goals any goal diagrams that include several stages of agent interaction
could become quite complex. To avoid using endpoint goals the first goal elaboration
relationship would split the first goal into an XOR relationship between Success and
Failure goals. All of the goals that end the interaction prematurely could then be
elaborated from the Failure goal. The XOR relationship would require the common
goals in the interaction to be repeated on both sides of the relationship. This may then
lead to multiple events in the Event-B model for the same goal for the interaction to be
modelled.

In some cases the same affect as an endpoint goal could be achieved by nesting the goals
differently. For example Figure 4.15 describes the same relationships as Figure 4.14.
The goal diagram in Figure 4.14 makes the ordering of the interaction of the relation-
ships clearer. The fact that there is meant to be a choice between goal1a and goal1b
is shown in Figure 4.14, whereas Figure 4.15 describes a choice between goal1a and
goal1b THEN goal1c. Both diagrams have the same affect, but the emphasis is on
the choice between goal1a and goal1b in Figure 4.14 and this may describe the desired
interaction better depending on the system being modelled.

The use of an endpoint goal that elaborates an XOR-related goal will end the conver-
sation as the other related goals will not be able to be fulfilled. The main use of an

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 55

endpoint goal is in an XOR-THEN elaboration relationship, as shown in Figure 4.14. If
there is no THEN relationship after the XOR then the conversation will end following
the fulfillment of either goal1a or goal1b regardless of one of them being an endpoint
goal. The use of an endpoint goal to elaborate an OR-related goal will not end the
conversation as the other related goals may still be fulfilled and the conversation may
then continue. This may be useful in a system that uses one-to-many interactions.

The use of an endpoint goal to elaborate an AND-related goal is not recommended as it
may lead to an undesirable affect. For example, if an agent needs to respond with three
messages(m1, m2, m3) in any order before the conversation can continue this can be
modelled using the relationships m1 AND m2 AND m3 THEN Continue. If one of the
AND-related goals were to be modelled as an endpoint goal and it were to be fulfilled
before one of the other AND-related goals then the Continue goal would be prevented
from being fulfilled. This would mean that the order of execution of the AND-related
goals would affect the subsequent behaviour, which is not the intended characteristic of
the AND relationship.

The addition of an endpoint goal will often be used to introduce a safety property to the
Event-B model. This means that the safety of the model is strengthened by the use of
endpoint goals. The use of endpoint goals in the Event-B models can lead to an event
that was previously enabled at one point in the abstract model being disabled in the
refinement model. This is a disadvantage of using endpoint goals, but using them allows
the models to specify the system with one version of the interaction. An endpoint event
that is in an abstract machine will not affect the enableness as it is part of the behaviour
of the abstract machine.

A similar mechanism can be found in the StAC business processing language based
on process algebra (Butler and Ferreira (2004)). An early termination ends a business
process before the main tasks have been concluded. The presence of an early termination,
�, in a block of tasks can cause the following tasks to be skipped. The scope of an early
termination is determined by braces e.g. {A; �; B}‖S allows S to continue processing
when the early termination is executed within the block.

The intended scope of the endpoint goal in the goal diagram is within each conversation.
In a system with one-to-one interactions the fulfillment of the endpoint goal will end
the entire conversation. In a system with one-to-many interactions the fulfillment of the
endpoint goal will end the particular agents participation in the conversation, but the
conversation may continue with other participants. If the agent is the initiator of the
conversation this may end the entire conversation. If all of the participants fulfill the
endpoint goal this would have the same affect as in the one-to-one interaction.

The specification of an endpoint goal in an Event-B model will alter the invariants and
guards of the model. The Event-B model shown in Figure 4.16 is a specification of

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 56

the goal model shown in Figure 4.14. Because goal1a is an endpoint goal the invari-
ant specifies goalstate1c as a subset of goalstate1b, but not goalstate1a. The guard of
goalevent1c allows it to occur only if the conversation is in the domain of goalstate1b:
c ∈ dom(goalstate1b). If the XOR relationship was replaced with an OR relationship
then the goalevent1b could still occur after goalevent1a and goalevent1c would then be
enabled.

VARIABLES goalstate1a, goalstate1b, goalstate1c
INVARIANTS

goalstate1a, goalstate1b ∈ CONVERSATION 7→ AGENT
goalstate1a ∩ goalstate1b = ∅
goalstate1c ⊆ goalstate1b
goalstate1 = goalstate1c

EVENTS
INITIALISATION

BEGIN
goalstate1a, goalstate1b, goalstate1c := ∅

END
goalevent1a

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1a)
c /∈ dom(goalstate1b)

THEN
goalstate1a := goalstate1a ∪ {c 7→ a}

END
goalevent1b

ANY c, a WHERE
c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(goalstate1b)
c /∈ dom(goalstate1a)

THEN
goalstate1b := goalstate1b ∪ {c 7→ a}

END
goalevent1c REFINES goalevent1

ANY c, a WHERE
c 7→ a ∈ goalstate1b

THEN
goalstate1c := goalstate1c ∪ {c 7→ a}

END
END

Figure 4.16: Event-B Model for an XOR-THEN Elaboration with an Endpoint Goal

The use of endpoint goals and the non-guarantee provided by their use resembles the
autonomy of a multi-agent system. An agent in a system will not guarantee to complete
a task and so there is no guarantee that an interaction will be concluded as expected.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 57

4.2.5 One-to-Many Interactions

Multi-agent systems often involve interactions between several agents. An agent may
begin a conversation with a group of agents within the system. The Event-B models must
reflect this by modelling sets of agents fulfilling their goals. Stage Two of the Process will
refine the models to show how individual agent’s actions lead to the collective actions.

In the Event-B models the state variables that represent sets of agents will be specified
as many-to-many relationship, ↔, between conversations and agents. With one-to-one
communication the state variables record the conversation and the agent that has the
goal related to the first event of the interaction. With one-to-many interaction it is the
many agents whose state needs to be recorded.

Figure 4.17 shows an abstract Event-B model of a goal that involves multiple agents.
The variable for the goal is specified as a many-to-many relationship between the conver-
sations and the agents, goalstate ∈ CONVERSATION ↔ AGENT . The event goalevent
is parameterised by a conversation and a relationship that has the conversation as its
domain and a subset of the AGENT set as its range. This relationship is added to the
state variable by the action of the event.

VARIABLES goalstate
INVARIANTS

goalstate ∈ CONVERSATION ↔ AGENT
EVENTS

INITIALISATION
BEGIN

goalstate := ∅
END

goalevent
ANY c, as WHERE

c ∈ CONVERSATION
as ∈ CONVERSATION ↔ AGENT
c /∈ dom(goalstate)
dom(as) = {c}
ran(as) ⊆ AGENT

THEN
goalstate := goalstate ∪ as

END
END

Figure 4.17: Event-B Model for a Goal That Uses Broadcast Communication

The modelling of one-to-many interactions does not affect how the goal elaboration
relationships are used to guide the refinement of the Event-B models. The multiplicity
of the parameters of the events are preserved through the refinement, but the refinement
is carried out in the same manner as with the single agent communication. For example,
Figure 4.18 shows a THEN refinement of a goal that uses multiple agents.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 58

VARIABLES goalstate1a, goalstate1b
INVARIANTS

goalstate1a ∈ CONVERSATION ↔ AGENT
goalstate1b ⊆ goalstate1a
goalstate = goalstate1b

EVENTS
INITIALISATION

BEGIN
goalstate1a, goalstate1b := ∅

END
goalevent1a

ANY c, as WHERE
c ∈ CONVERSATION
as ∈ CONVERSATION ↔ AGENT
c /∈ dom(goalstate1a)
dom(as) = {c}
ran(as) ⊆ AGENT

THEN
goalstate1a := goalstate1a ∪ as

END
goalevent1b REFINES goalevent

ANY c, as WHERE
c ∈ dom(goalstate1a)
c /∈ dom(goalstate1b)
as ⊆ {c} � goalstate1a

THEN
goalstate1b := goalstate1b ∪ as

END
END

Figure 4.18: Event-B Model for a Refinement That Uses Broadcast Communication

The variables for the refinement are specified in the same manner as the variables in
the THEN refinement shown in Figure 4.7. The events follow the same pattern as
the THEN refinement above with the new event adding a many-to-many relationship
to the new variable for the goal goal1a. The event for goal1b refines the abstract
event. The guard c ∈ dom(goalstate1a) ensures that goalevent1a has occurred. The
action of the event adds a relationship that is a subset of the one added to goalstate1a,
as ⊆ {c}�goalstate1a, to the variable goalstate1b. The � operator restricts the domain
of goalstate1a to the contents of the set {c}.

The specification in Figure 4.18 models a set of agents first reaching goalstate1a and
then reaching goalstate1b. This is different from a set of agents where the individual
agents first reach goalstate1a and then reach goalstate1b, which would be a more realistic
model of the behaviour of a distributed system. The refinement of the models through
Stage Two of the Process will introduce more detail and model how the actions of the
individual agents contribute to combined behaviour such as that modelled in Figure 4.18.

Chapter 4 Incremental Development Process: Stage One - Goal Elaboration 59

4.3 Summary

Stage One of the Incremental Development Process refines the goal-based requirements
of a multi-agent system through the construction of a goal diagram that models the
goals of the system. The goal diagram can be used to guide the development of Event-B
formal models of the interacting system. This separates the modelling decisions from
the Event-B modelling.

The goal diagram captures the motivational aspects of a multi-agent system and the
relationships used help to create a state transition model of interaction based on the goals
and modelled in Event-B. The goal diagram was chosen as the informal model, initially,
because it is based on agent motivations, but also because it is a model that is accessible
to different stakeholder and it can be integrated with early-phase requirements analysis.
The goal elaboration relationships used in the goal diagram were chosen because they
are an intuitive way to decompose the goals and they can be represented in Event-B.

The following chapter will describe how Stage Two of the Process will use the goal
diagram constructed for Stage One to create Event-B models by adding distributed
coordination to the model.

Chapter 5

Incremental Development

Process: Stage Two - Distributed

Coordination

This chapter describes Stage Two of the Incremental Development Process. The goal
diagrams from Stage One are developed to include the distributed coordination mecha-
nisms required for a multi-agent system. The different steps required to complete Stage
Two are described.

Stage Two of the Incremental Development Process builds on the models developed
during Stage One. The agent perspective is introduced by refining the goal diagram
developed in Stage One to introduce the goals needed for the agents to coordinate
through communication, adding the required agent roles and then allocating the goals
to the different agent roles. The Event-B models created in Stage One can then be
refined to include the agent roles as specified in the goal model and then decomposed
into the components that represent the agent roles and their required resources. The
state of the system model becomes separated into, and encapsulated by, the individual
agent roles that construct the system. The components are specified as Event-B abstract
machines that can be further refined.

The change from the system perspective to the agent perspective should change the way
that the developer views the goal diagram to an interaction between separated entities.
When the interactions are between one-to-many or many-to-many agents the change of
view is more marked, as the communicating goals added to the diagram may be fulfilled
multiple times for each agent that is involved in the interaction.

60

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 61�� ��goal1a

COMM

���������

PPPPPPPPP

�� ��sendgoal1a
�� ��receive

goal1a

Figure 5.1: Goal Elaboration With Communicating Goals

5.1 Communicating Goals

The first step in the Process for Stage Two is to refine the goal diagram to add commu-
nicating goals. The agents in the system need to be able to coordinate their individual
goals to be able to fulfill the goals of the system. Refining the goals into sub-goals
whose fulfillment requires communication will allow the abstract goals to be coordi-
nated between the separate agents in the system. This strengthens the representation
of interaction in the models.

Pairs of communicating goals are used to elaborate the goals in the goal diagram that
was developed in Stage One of the Process. These goals represent the sending and the
receiving of a communication. The goals are linked by a COMM relationship. The
COMM relationship is similar to the THEN relationship as the communication has to
be sent before it can be received. The COMM relationship differs from the THEN
relationship when it is being specified in the Event-B models. Figure 5.1 shows a goal
that has been elaborated by communicating goals.

5.2 Broadcast Communication

Agents that are involved in a one-to-many interaction may need to communicate by
broadcast, or multi-cast, communication. The models need to be able to represent
communications that are sent by and received by more than one agent. To indicate
broadcast communicating goals in a goal diagram the COMM relationship is changed
to a BCOMM relationship as shown in Figure 5.2. When a send goal is changed to
represent a broadcast communication it occurs once, but its corresponding receive goal
will need to be able to occur multiple times for each message that is sent.

Any communicating goals that are replies to the original broadcast may also need to
be changed to show their multiplicity if they are to be fulfilled by multiple agents.
Communicating goals that are on the right-hand side of a THEN relationship with a
pair of broadcast goals may be replies that need to be highlighted in the goal diagram
as occurring multiple times. For each reply to a broadcast message an agent will send a
message that will then be received. This multiplicity for a set of sub-goals is indicated
using a *COMM relationship as shown in Figure 5.3.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 62�� ��goal1a

BCOMM

���������

PPPPPPPPP

�� ��sendgoal1a
�� ��receive

goal1a

*

Figure 5.2: Goal Elaboration With Broadcasting Goals�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

�� ��sendgoal1a
�� ��receive

goal1a

*�����

PPPPP
BCOMM �� ��sendgoal1b

�� ��receive
goal1b

complete = received all

�����

PPPPP
*COMM

Figure 5.3: A Broadcast Goals Elaboration With a Reply

Table 5.1: Available Completion Conditions
Annotation Description Example Guard Condition

receive all Responses received from all agents {c}� informR = {c}� proposeS
receive 1+ At least one response received c ∈ dom(proposeR)
receive X Received specified number(X) of responses card({c}� informR) = X

after deadline The deadline for responses has passed c ∈ afterTimeout
selection A selected group of agents have responded {c}� informR = {c}� selected

The multiplicity introduced by the broadcast communications changes the completion
condition for the goals. The completion condition for a goal to the left of a BCOMM
relationship remains the same as it only happens once. The completion conditions for
a goal to the right of a BCOMM relationship and for goals in a *COMM relationship
will change. Because each goal can occur multiple times the completion condition for
a goal will be relevant only for a single agent. Therefore, the completion condition for
all agents, or for the whole system, will have to be specified separately. An annotation
can be made to the goal diagram to indicate a system-wide completion condition for
a goal that is to the right of a BCOMM or in a *COMM relationship. The available
system completion conditions can be found in Table 5.1 along with examples of guard
conditions that can be used to specify the completion conditions in the Event-B models.

5.3 Role Allocation

The next part of Stage Two of the Process is to identify the roles of the agents that will be
involved in the interaction and allocate the communicating goals to the individual agent
roles. At the end of the Process the system model will be decomposed into components

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 63�� ��goal1

THEN

���������

PPPPPPPPP

�� ��goal1a
�� ��goal1b

�� ��sendgoal1a

agent1

�� ��receive
goal1a
agent2

�����

PPPPP
COMM �� ��sendgoal1b

agent1

�� ��receive
goal1b
agent2

�����

PPPPP
COMM

Figure 5.4: A THEN Elaboration With Role Allocation�� ��goal1a

COMM

���������

PPPPPPPPP

�� ��sendgoal1a
agent1

Directory
Service
agent1

�� ��receive
goal1a
agent2

Figure 5.5: Goal Diagram With Resource Allocation

that include the agent roles identified in this step. The goal diagrams can be updated
to show the allocation of the agent roles to the goals by writing an identifier for the
agent role beneath the goal. When the role that the goal is being allocated will be
performed by multiple agents in an interaction a subscript will be added to the role
identifier to show this multiplicity e.g. agent1n . Figure 5.4 shows a goal diagram for a
THEN elaboration that has been given communicating goals and the roles for the agents
have been identified and allocated.

Allocating the roles changes the view of the model from the system to the individual
agents. Each agent will encapsulate their own state and only be aware of the state of
the system when they receive a communication that informs them of a change in state.
When allocating agent roles to the communication goals the developer must consider
the information about the interaction that is available to the agents that are performing
the roles.

5.4 Allocating Resources

The resources that the agents need to perform their actions need to be added to the goal
diagram. Resources are modelled using a box that names the resource. The resource
should be placed to one side of the goal diagram. The names of the agent roles that use
the resource can be listed as attributes of the resource. Figure 5.5 shows a goal diagram
with a resource added. The resource is a directory service and it is to be used by the
agent1 role to find names of agents in the system that can perform specific roles. The
resource may become one of the component models when the system is decomposed.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 64

All changes have been made to the goal diagram and the Event-B models can now be
refined to reflect the changes that have been made.

5.5 Refining the Event-B Models

The changes made to the goal diagram in Stage Two can be added as a single refinement
step to the Event-B model that resulted from Stage One. The COMM relationship
used to create the communicating goals is similar to the THEN relationship with the
send event being specified to occur before the receive event. One difference is that new
variables are introduced to represent the communicating goals and variables for the goals
from the previous refinements remain, rather than being refined by the new variables.
Another difference is how the new events and state variables for the communicating
goals refine the events in the abstract model. This is dependent on the how the goals
have been allocated to the agent roles. Using broadcast communicating goals in the goal
diagram changes how the state variables are specified. The role allocation introduces
new variables to the Event-B model. These new variables are used to identify the agents
that have particular roles in a conversation and restrict which events can be triggered
by these agents.

Figure 5.6 shows an Event-B refinement with just the communicating goals added. The
goals are not broadcast goals. Other changes will need to be made to the model in
this refinement step to include all of the information added to the goal diagram. These
changes, including the role allocation, are introduced later in this section.

VARIABLES goalstate1a, goalstate1aS, goalstate1aR

INVARIANTS

goalstate1aS ⊆ goalstate1a
goalstate1aR ⊆ goalstate1aS

EVENTS

INITIALISATION

BEGIN

goalstate1a, goalstate1aS , goalstate1aR := ∅
END

sendgoalevent1a REFINES goalevent1a receivegoalgoal1a

ANY c, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c ∈ CONVERSATION
a ∈ AGENT a ∈ AGENT
c 7→ a /∈ goalstate1aS c 7→ a ∈ goalstate1aS
c /∈ dom(goalstate1a) c 7→ a /∈ goalstate1aR

THEN THEN

goalstate1aS := goalstate1aS ∪ {c 7→ a} goalstate1aR := goalstate1aR ∪ {c 7→ a}
goalstate1a := goalstate1a ∪ {c 7→ a} END

END

END

Figure 5.6: Event-B Model for the Communicating Goals Elaboration

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 65

Variables are introduced to the model for each of the communicating goals. The variables
for the send goal represent a communication being generated and have been suffixed with
a ‘S ’. The variables for the receive goals represent a communication being received and
have been suffixed with an ‘R’. The variables are all defined as a partial function from
the set of conversations to the set of agents. This allows one of each communication to
be made to one agent in a conversation. The agent in the relationship represents the
agent that will receive the message. The COMM relationship between the sending and
receiving goals requires that the send goal is fulfilled before the receive goal. This is
modelled in the Event-B refinement similarly to the THEN relationship with the receive
goal state specified as a subset of the send goal state, goalstate1aR ⊆ goalstate1aS .
Because there is no agent role allocation included in the model shown in Figure 5.6 the
Event-B event refinement is specified between the abstract goal and the send goal. This
is the default approach because the agent that makes the decision to fulfill the abstract
goal is usually the agent that sends the communication. The allocation of the agent
roles can require the refinement relationship to change and this will be described later
in this section. The state for the send communicating goal is specified as a subset of the
variable that represents the abstract goal as the action of fulfilling the abstract goal will
lead to the fulfillment of the send goal, goalstate1aS ⊆ goalstate1a. The state for the
abstract goal, e.g. goalstate1a, remains in the model to represent the state of the agent’s
reasoning. This variable has the potential to be refined further to represent other aspects
of the agent’s reasoning. The send event, sendgoalevent1a in the model in Figure 5.6,
refines the abstract event for the elaborated goal. The action of the event adds the
relationship between the conversation and agent to the states for the communicating
send goal and the abstract goal. The event for the receive goal is specified as a new
event. The action of the event adds the relationship to the state for the receive goal,
goalstate1aR.

Goals that have not been elaborated with communicating goals may not need to be
refined any further. Data refinement may still need to be applied. For example, if an
abstract event, event1, whose goal has not been elaborated has the guard c ∈ state1 and
in the refinement model the variable state1 is refined by a conjunction of the variables
state1a and state1b then the guard for event1 in the refinement model will refer to either
a conjunction of the variables, state1a ∪ state1b, or, in some cases, to just one of them
e.g. c ∈ state1a.

5.5.1 Broadcast Communication

Using broadcast communications will restrict which of the events for the communicating
goals can refine the abstract event. The sending of a broadcast message from a single
agent to multiple agents in the system will occur only once and the send communicating
goal can refine the abstract goal. The receive goal will need to be able to occur multiple

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 66

times and this event must be introduced as a new event. In the Event-B model the
refinement of an abstract event to a pair of broadcast communicating goals that send a
broadcast message to be received by multiple agents should always be to the send event.

VARIABLES goalstate1a, goalstate1aS, goalstate1aR

INVARIANTS

goalstate1aS ⊆ goalstate1a
goalstate1aR ⊆ goalstate1aS

EVENTS

INITIALISATION

BEGIN

goalstate1a, goalstate1aS , goalstate1aR := ∅
END

sendgoalevent1a REFINES goalevent1a receivegoalevent1a

ANY c, as WHERE ANY c, a WHERE

c ∈ CONVERSATION c ∈ CONVERSATION
as ∈ CONVERSATION ↔ AGENT a ∈ AGENT
c /∈ dom(goalstate1a) c 7→ a ∈ goalstate1aS
dom(as) = {c} c 7→ a /∈ goalstate1aR
ran(as) ⊆ AGENT THEN

THEN goalstate1aR := goalstate1aR ∪ {c 7→ a}
goalstate1aS := goalstate1aS ∪ as END

goalstate1a := goalstate1a ∪ as
END

END

Figure 5.7: Event-B Model for Broadcast Goals Elaboration

Figure 5.7 shows how an Event-B model can be refined when modelling broadcast com-
munication. This refinement differs from the refinement shown in Figure 5.6 that has
no broadcast goals. The state variables for the broadcast goals have been specified as
a subset of the parent goal, goalstate1a, which was specified as a many-to-many rela-
tionship between the set of conversations and the set of agents in the abstract model.
This is because there can be several agents involved in each communication in a con-
versation. The rest of the invariants in the model remain as specified in Figure 5.6 that
has no broadcast goals. The receive event is a new event that models each individual
communication being received.

5.5.2 Role Allocation

A description of agent roles is given in Chapter 3 Section 3.4.3. When allocating agent
roles in the Process a role can be seen as the type of agent that is responsible for fulfilling
one or more of the goals that have been modelled in the goal diagram. Using roles rather
than agents at this level of abstraction allows a concrete specification of an agent to be
specified as capable of more than one of the roles developed in the Process.

For each pair of communicating goals there should be two different roles. One of the
roles will be allocated the send goal and the other will be allocated the receive goal.
Which of the roles is responsible for the fulfillment of the abstract goal will determine

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 67

which of the events in the Event-B model will refine the abstract event. Often the agent
role that is allocated the send goal will be responsible for the abstract goal. The agent
will act to send a message because it has a goal that can be fulfilled by sending the
message.

The allocation of roles requires new variables to be added to the refinement that will
specify the roles of the agents involved in the interaction. Guards are added to the events
to specify the role that is required for the agent to be involved in a particular event.
At this stage in the Event-B refinement chain the role variables are specified as global
variables. This is because the information being communicated between the agents by
the state variables is restricted to the conversation and one agent, or in the case of one-
to-many interactions the set of agents. When the information is extended to include all
the agents involved in the interaction it will be possible for the agents to encapsulate
their own record of the different roles of the agents involved in the interaction. This will
be possible later in the Process when resources for communication between the agents
are modelled.

The variable that specifies an agent’s role will be a relationship between the set of
conversations and the set of agents. The domain of the relationship is the domain of
the state for the send goal that is the left-most goal in the diagram that the role has
been allocated. This is because the roles are decided when the agents are selected for
the first communication that is sent. The relationship is specified as a total function,
→, which specifies a many-to-one relationship between the conversation and the agent.
This variable should be specified as a many-to-many relationship, ↔, if the role is at
the receiving end of a broadcast communication.

The events of the model will be updated to specify the identity of each agent in each
role being recorded on the left-most send events. This means that when a message is
sent by an agent to another agent both of their roles in the interaction are specified.
The guards of the remaining events in the model are updated to include a specification
of the role for the agents that are involved in the communication.

Figure 5.8 shows how the Event-B refinement from Figure 5.6 can been updated to
include the agent role specification. The variables required to specify the agent role
allocation have been added to a model with communicating goals. The role variables,
agent1 and agent2, have been specified as a total function between the state variable
for the first send goal and the set of agents, agent1, agent2 ∈ dom(goalstate1aS) →
AGENT . sendgoalevent1a now includes a variable to represent the sending agent that
is distinct from the variable that represents the receiving agent, a 6= a2. The action
of the event adds a relationship between the conversation and the sending agent, a, to
the variable for the agent role that has been allocated the event, agent1. A relationship
between the conversation and the receiving agent, a2, is added to the variable for the
role that has been allocated the receive goal, agent2. For each of the remaining events

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 68

a guard has been added that ensures that the communication is for, or to, the correct
agent e.g c 7→ a ∈ agent2.

VARIABLES

goalstate1a, goalstate1aS, goalstate1aR, agent1, agent2

INVARIANTS

goalstate1aS ⊆ goalstate1a
goalstate1aR ⊆ goalstate1aS
agent1, agent2 ∈ dom(goalstate1aS) → AGENT

EVENTS

INITIALISATION

BEGIN

goalstate1aS , goalstate1aR, agent1, agent2 := ∅
END

sendgoalevent1a REFINES goalevent1a receivegoalevent1a

ANY c, a, a2 WHERE ANY c, a WHERE

c ∈ CONVERSATION c ∈ CONVERSATION
a ∈ AGENT a ∈ AGENT
a1 ∈ AGENT c 7→ a ∈ agent1
a 6= a2 c 7→ a ∈ goalstate1aS
c 7→ a /∈ goalstate1aS c 7→ a /∈ goalstate1aR
c /∈ dom(goalstate1a) THEN

THEN goalstate1aR := goalstate1aR ∪ {c 7→ a}
goalstate1aS := goalstate1aS ∪ {c 7→ a} END

goalstate1a := goalstate1a ∪ {c 7→ a}
agent1 := agent1 ∪ {c 7→ a}
agent2 := agent2 ∪ {c 7→ a2}

END

END

Figure 5.8: Event-B Model With Role Allocation

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 69

5.5.3 Resource Allocation

All of the information added to the goal diagram for Stage Two has been added as a
single refinement step. The resources that have been added to the goal diagram can
either be added in the same refinement step as the communicating goals and roles, or
to reduce the complexity of the refinement it may be preferable to add them as a single
new refinement step. If there are several resources it may be preferable to have one
refinement for each resource.

For each resource that is included in the model a variable that abstractly models its
behaviour needs to be added to the Event-B model. For a directory service, like the one
added to the goal diagram in Figure 5.5, a variable can be added that relates roles to
agents. Every multi-agent system in which the agents communicate by message passing
will require a messaging medium resource. This can be modelled as a set of messages.

Some shared resources that are added to the model will refine variables that are already
in the Event-B model. The messaging medium resource will be used to replace the state
variables for the send communicating goals in the events for the receive communicating
goals. This will allow the state variables to be encapsulated and the messaging medium
variable will be used to communicate changes in state. Other resources will be added
as a superposition refinement to the model. A directory service resource can be used as
a global variable. A guard can be added to events that will use the directory service to
select an agent that can perform a particular role.

The decision for exactly how to model a resource is left to the developer as there are
many different types of resources that could be added. The rest of this section provides
a couple of examples of how resources can be modelled. Some resources may best be
implemented as an agent role in the system rather than as a resource. A developer
should consider this option when designing the system.

Adding a Directory Service Resource

A directory service resource will be used by agents to find the names of other agents in
the system that can perform a particular role. An agent can use this knowledge to make
specific requests from agents that it knows are capable of fulfilling the request.

Adding a directory service resource to the model can be done in a single refinement
step. The context is extended to include a set that contains the different roles available
for the system. A variable is added to the model that relates the roles to agents:
directory ∈ ROLE ↔ AGENT . A guard is then added to the appropriate events to
use the directory variable to restrict the event variable that represents the agent or
agents that are involved in the interaction. Figure 5.9 shows an extract of an Event-B
refinement that adds a directory service. The event shown is the same as one of the

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 70

events shown in Figure 5.8, but with an additional guard. This new guard has been
underlined to highlight that it has been added to previous versions of this event. The
ROLE set defined in the context includes two roles, {agent1role, agent2role}.
INVARIANTS

directory ∈ ROLE ↔ AGENT
EVENTS

sendgoalevent1a REFINES sendgoalevent1a

ANY c, a, a1 WHERE

c ∈ CONVERSATION
a ∈ AGENT
a1 ∈ AGENT
a 6= a1
c 7→ a /∈ goalstate1aS
c /∈ dom(goalstate1a)
agent2role 7→ a ∈ directory

THEN

goalstate1aS := goalstate1aS ∪ {c 7→ a}
agent1 := agent1 ∪ {c 7→ a1}
agent2 := agent2 ∪ {c 7→ a}

END

Figure 5.9: Event-B Model for Directory Service Resource Refinement

The directory service can be added to the Event-B model as a superposition refinement
as it has not been added as a shared resource and does not affect the interactions of the
agents in the system. A shared resource can be a more challenging refinement, as will
be shown in the next section.

Adding and Refining a Messaging Medium Resource

A messaging medium resource will be used by the agents to send messages to one another
to enable them to coordinate their actions. To be able to send the messages they must
be added to the model along with the variables that model the messaging medium to
carry the messages. Adding the messages allows more information to be passed between
the agents and the state of each agent role can be hidden from the other agent roles.
The variables that communicate the messages can then be further refined to model a
generic messaging medium.

The Event-B context is extended to include a message record type. The specification of
the message creates a record with fields for the sender, receiver and conversation. The
specification of the context in Figure 5.10 uses the syntax proposed in Evans and But-
ler (2006). The syntax implicitly specifies a set of messages and types the sender and
receiver fields as: sender , receiver ∈ MESSAGE → AGENT and the messageConver-
sation field as: messageConversation ∈ MESSAGE → CONVERSATION . The record
can be extended to include further fields in refinement.

For the agents to be able to pass messages coordination variables are added to the
system model. The variables are specified as a subset of the message record set. There

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 71

MESSAGE :: sender ∈ AGENT ,
receiver ∈ AGENT ,
messageConversation ∈ CONVERSATION

Figure 5.10: Extended Context for Step One

is one coordination variable for each of the sending and receiving goal pairs to make the
refinement step easier. A further refinement will specify a single messaging medium for
the system. The coordination variables are used to replace the state variables for the
send goals in the guards of the receive events. The relationships between the agents and
the conversations can be ascertained from the fields of the message so the send variables
can be encapsulated. Figures 5.11 and 5.12 show the first refinement model for the
messaging medium.

goalstate1aM ⊆ MESSAGE
goalstate1aS = ((goalstate1aM � messageConversation)-1; sender)
agent2agent1, agent2agent2 ∈ dom(goalstate1aR) → AGENT
agent2agent1 ⊆ agent1
agent2agent2 ⊆ agent2
agent1 = (goalstate1aM � messageConversation)-1; sender
agent2 = (goalstate1aM � messageConversation)-1; receiver

Figure 5.11: State of the First Event-B Refinement for the Messaging Medium

The invariants shown in Figure 5.11 include a condition that relates the variables that
record a message being sent to the related fields of the message record, goalstate1aS =
((goalstate1aM � messageConversation)-1; sender). This allows the send variables to
be encapsulated for each agent role and the coordination variables to replace any access
to them in the guards of events that belong to other agent roles. The send variable,
goalstate1aS , is a set of relationships between CONVERSATION and AGENT. The
gluing invariant specifies this relationship as equal to a composition of the messageCon-
versation, MESSAGE→CONVERSATION , and sender, MESSAGE→AGENT , fields
of the message record.

Suppose

m ∈ goalstate1aM ,

sender(m) = s,
receiver(m) = r and
messageConversation(m) = c

then

c 7→ r ∈ (goalstate1aM � messageConversation)-1; receiver
and c 7→ s ∈ (goalstate1aM � messageConversation)-1; sender .

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 72

The � operator restricts the domain of messageConversation to the messages that are in
goalstate1aM . The result of this restriction is then inverted using the inverse operator,
-1. The composition relation, ; , composes the fields on the shared MESSAGE element
of the record field relationship.

Given

m 7→ c ∈ messageConversation and
m 7→ a ∈ sender

then the composition

{m 7→ c}-1; {m 7→ a}

produces

{c 7→ a}

This style of invariant will be referred to as a ‘join’ operator. It uses the record variable,
e.g. m, to join the fields of the record, e.g. a and c, in a relationship. The join operator
could be used to relate the fields of any record variable.

For the agents to be autonomous they need to be able to encapsulate their state and
behaviour. The previous refinement model includes variables that record the agents
performing the different roles in the conversation. This state information needs to be
encapsulated within each agent role. With the addition of messages to the model more
information is being communicated between the agents. Previously, only the identity
of one agent and the conversation was passed in place of messages. Now the message
record can identify both the sender and receiver of the message. An agent that receives
a message can record information about the agent that sent the message as well as their
own role in the interaction. The last five invariants in Figure 5.11 are used to specify
new variables that record role information. The role variables from the abstract model,
agent1 and agent2, can be considered to be encapsulated by the agent1 role. Two new
variables, agent2agent1 and agent2agent2, are specified. agent2agent1 is agent2’s local
encapsulation of the agent1 role information. The invariants specify the new variables
as relationships between the domain of the variable for the receive goal and the set of
agents, agent2agent1 ∈ dom(goalstate1aR) → AGENT . This is because the roles will
first be recorded by the agent2 role when the first message is received. The variables
are also specified as subsets of the existing role variables so the information they record
can be proven consistent. The final invariants use the join operator to describe the
relationship between the existing role variables and the message fields. This is specified
in the same way as the relationship between the send goal variables and the messages.
The difference is that the agent1 role is related to the sender of the message and the

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 73

agent2 role is related to the receiver of the message. The new role variables can then be
proven to replace the existing ones in the guards of the events that have been allocated
to the agent2 role.

sendgoalevent1a REFINES sendgoalevent1a receivegoalevent1a

ANY c, a, a2, m WHERE REFINES receivegoalevent1a

c ∈ CONVERSATION ANY c, a, m WHERE

a ∈ AGENT c ∈ CONVERSATION
a1 ∈ AGENT a ∈ AGENT
c 7→ a /∈ goalstate1aS c /∈ dom(goalstate1aR)
c /∈ dom(goalstate1a) m ∈ goalstate1aM
a 6= a2 sender(m) = a
m ∈ MESSAGE messageConversation(m) = c
sender(m) = a THEN

receiver(m) = a2 goalstate1aR := goalstate1aR ∪ {c 7→ a}
messageConversation(m) = c agent2agent1 := agent2agent1 ∪ {c 7→ a}

THEN agent2agent2 := agent2agent2 ∪
goalstate1aS := goalstate1aS ∪ {c 7→ a} {c 7→ receiver(m)}
agent1 := agent1 ∪ {c 7→ a} END

agent2 := agent2 ∪ {c 7→ a2}
goalstate1aM := goalstate1aM ∪ {m}

END

Figure 5.12: Events of the First Event-B Refinement for the Messaging Medium

Figure 5.12 show the events of this refinement where the separate messaging medium
variables are used to communicate between the events and the role variables are only
accessed in the events for the roles that will encapsulate them. Each of the events in the
refinement model is parameterised by an element of the message set. The event guards
restrict the fields of the message so they can be related to the other variables used in
the event, e.g. sender(m) = a. The action of the send event adds the message event
variable to the coordination variable, goalstate1aM := goalstate1aM ∪{m}. The receive
event restricts the message event variable to be an element of the coordination variable.
The role variables that are encapsulated by the receiving agent role, agent2agent1 and
agent2agent2, are updated by the action of the event to the sender and receiver of the
message. The receive event only needs to access the coordination variable and the fields
of the message record.

The specification of the coordination variables creates a different set of messages for each
communicating goals pair. To create a more realistic model of a generic communication
medium the separate sets must be combined in a further refinement. To be able to
model a single medium the type of message being sent must be distinguishable. The
context could been extended to add a type field to the message record. Because of the
possibly large number of different message types for an interaction it is recommended
that the definition of the field uses a technique suggested in Butler and Yadav (2007).
The message types are specified as disjoint sets. The disjoint sets are simpler for the
provers to distinguish and lead to a larger amount of automatic proof than when using
the record fields to distinguish the types. Figure 5.13 shows the extended context with
the definition of the message types.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 74

PROPERTIES

GOAL1A, GOAL1B ⊆ MESSAGE
disjoint(GOAL1A, GOAL1B)

Figure 5.13: Further Extended Context for the Messaging Medium

The second refinement of the messaging medium refines the multiple coordination vari-
ables into a single set of messages to which each message is added. The type of the
message being sent is added to the guard of each event, m ∈ GOAL1A. The gluing
invariants describe each of the abstract sets as an intersection between the single set
and the set for the corresponding message type e.g. goalstate1aM = msgset ∩GOAL1A.
Figure 5.14 shows a sending and receiving event that have been refined to use the single
set of messages as the coordination medium.

INVARIANTS

msgset ⊆ MESSAGE
goalstate1aM = msgset ∩ GOAL1A
goalstate1bM = msgset ∩ GOAL1B

EVENTS

sendgoalevent1a REFINES sendgoalevent1a receivegoalevent1a REFINES receivegoalevent1a

ANY c, a, a2, m WHERE ANY c, a, m WHERE

c ∈ CONVERSATION c ∈ CONVERSATION
a ∈ AGENT a ∈ AGENT
a2 ∈ AGENT c /∈ dom(goalstate1aR)
c 7→ a /∈ goalstate1aS m ∈ msgset
c /∈ dom(goalstate1a) sender(m) = a
a 6= a2 messageConversation(m) = c
m ∈ MESSAGE m ∈ GOAL1A
sender(m) = a THEN

receiver(m) = a2 goalstate1aR := goalstate1aR ∪ {c 7→ a}
messageConversation(m) = c agent2agent1 := agent2agent1 ∪ {c 7→ a}
m ∈ GOAL1A agent2agent2 := agent2agent2 ∪

THEN {c 7→ receiver(m)}
goalstate1aS := goalstate1aS ∪ {c 7→ a} END

agent1 := agent1 ∪ {c 7→ a}
agent2 := agent2 ∪ {c 7→ a2}
msgset := msgset ∪ {m}

END

Figure 5.14: Events From the Second Event-B Refinement for the Messaging Medium

The goals of the system have been allocated to the individual agent roles and the be-
haviour of the system has been fully encapsulated within the agent roles and resources.
No more changes need to be made to the goal diagram. The decisions required to sep-
arate the system into its individual components have been made and the Incremental
Development Process continues by decomposing the Event-B model.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 75

5.6 System Decomposition

Decomposing the Event-B model into the different component models will allow them
to be further developed individually into more concrete models. The models developed
to this stage can be quite large with a potentially large number of variables and events.
Developing the component models individually will allow the developer to concentrate
on each component. The decomposition will also reflect the distributed nature of the
components.

The system model is to be decomposed into abstract machines that specify the com-
ponents of the system. With the introduction of any required resources, such as the
messaging medium, the shared behaviour of the system has been modelled. The only
behaviour of the individual agents that is relevant to the system model is their ability
to perform the interaction events. These are the events that have been introduced by
the elaboration of the goal diagram with communicating goals. The reasoning behind
the actions of the agents is not circumscribed by the system models. This preserves the
autonomy of the agents and can be specified in refinements of the component models
after decomposition.

To decompose the system the states and events for the goals are specified in an abstract
machine for the agent role to which they have been allocated. The resources are specified
as a variable in an abstract machine that has events for interacting with the resource.
This creates agent role component models and component models of the environment.

The diagram in Figure 5.15 provides an overview how the decomposed model is syn-
chronised. The components agent1 and agent2 both have access to the middleware

component. The agent1 component has the event sendgoalevent1a. The output of
the event is a message and this can be synchronised with the input of the send event
in the middleware. The receive event in the middleware has an output that is a
message and this can be synchronised with the input of the receivegoalevent1a event
of the agent2 component.

The method of decomposition used in the Incremental Development Process is the event-
based decomposition described in Chapter 2 Section 2.2.5. This allows the variables of
the model to be separated into the different components and the components can then
be refined individually. Figure 5.16 shows how the refinement model, Synch, synchro-
nises the events of the component models, agent1component , agent2component and
middleware, to complete the behaviour specified in the abstract model, System. Each
event of the refinement model accesses the associated event in the agent role component
models. The events of the component for a messaging medium resource are used to trans-
fer the messages between the components. In the model extract shown in Figure 5.16
the sendgoalevent1a event in the refinement model declares a local variable, m, and
then instantiates it with the message that is output from the sendgoalevent1a event in

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 76

Agent1 Agent2

Middleware

?

6

sendGoalEvent1a receiveGoalEvent1a

send receive

m m

Figure 5.15: Synchronising the Refinement Model and the Abstract Component Mod-
els

the agent1 component, m ← ag1.sendgoalevent1a. The message is then used as a pa-
rameter for the send event for the middleware component. The receivegoalevent1a

in the refinement model is parameterised by an agent and a local variable, m, is de-
clared. The receive event from the middleware component outputs a message for that
agent, m ← mw .receive(a). The receivegoalevent1a event in the agent2 component
is parameterised with the message m, ag2.receivegoalevent1a(m). The refinement rela-
tionship for the synchronising model, Synch, ensures that the combined behaviour of
the component models can be proven to be consistent with the behaviour of the system
model, System.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 77

MACHINE Synch REFINES System

SEES context

INCLUDES ag1.agent1component,

ag2.agent2component, mw.middleware

EVENTS

sendgoalevent1a =

VAR m IN

m ← ag1.sendgoalevent1a;
mw .send(m)

END

receivegoalevent1a =

ANY a WHERE

a ∈ AGENT
THEN

VAR m IN

m ← mw .receive(a);
ag2.receivegoalevent1a(m)

END

END

MACHINE agent1component SEES context

m0 <-- sendgoalevent1a =

ANY c, a, a2, m WHERE

c ∈ CONVERSATION
a ∈ AGENT MACHINE middleware

a2 ∈ AGENT SEES context

c 7→ a /∈ goalstate1aS send (m) =

c /∈ dom(goalstate1a) WHEN

a 6= a2 m ∈ MESSAGE
m ∈ MESSAGE THEN

sender(m) = a msgset := msgset ∪ {m}
receiver(m) = a2 END

messageConversation(m) = c m <--receive (a) =

m ∈ goal1a PRE a ∈ AGENT THEN

THEN ANY m0 WHERE

goalstate1aS := goalstate1aS ∪ {c 7→ a} m0 ∈ msgset
agent1 := agent1 ∪ {c 7→ a} receiver(m0) = a
agent2 := agent2 ∪ {c 7→ a2} THEN

m0 := m m := m0
END END

MACHINE agent2component SEES context END

receivegoalevent1a (m) =

PRE m ∈ MESSAGE THEN

ANY c, a WHERE

c ∈ CONVERSATION
a ∈ AGENT
m ∈ GOAL1A
c /∈ dom(goalstate1aR)
sender(m) = a
messageConversation(m) = c
THEN

goalstate1aR := goalstate1aR ∪ {c 7→ a}
agent2agent1 := agent2agent1 ∪ {c 7→ a}
agent2agent2 := agent2agent2 ∪ {c 7→ receiver(m)}

END

END

Figure 5.16: Synchronising the Refinement Model and the Abstract Component Mod-
els

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 78

5.7 Discussion on Patterns

There are similarities between the Incremental Development Process and the use of de-
sign patterns in software engineering. Design patterns are intended to make software
engineering easier by capturing the expertise of experienced software developers and
making it available in a manner that can be re-applied in other developments (Gamma
et al. (1995)). The purpose of a design pattern is to capture structures and decisions
within a design that are common to similar modelling and analysis tasks. They can
be re-applied when undertaking similar tasks in order to reduce the duplication of ef-
fort. Design patterns originate in architecture as designs that could be combined to
create buildings, suburbs and towns (Alexander et al. (1977)). Design patterns were
made popular in software engineering as a development aid for object-oriented software
engineering by Gamma et al. (1995).

There are several definitions of software design patterns and their required elements.
Gamma et al. (1995) define a pattern as ‘the solution to a recurring problem in a par-
ticular context’. Riehle and Zuellighoven (1996) describe a pattern as ‘the abstraction
from a concrete form which keeps recurring in specific non-arbitrary contexts’ and a
design pattern as ‘a pattern whose form is described by means of software design con-
structs’. Coad (1992) defines a pattern in a more specific way as ‘a fully realized form,
original, or model accepted or proposed for imitation’.

Collections of design patterns in software engineering can be presented in different forms.
The patterns in Gamma et al. (1995) are presented as a catalogue with each pattern
solving a different design problem and being applicable at a single level of abstraction. A
pattern language is an interwoven set of patterns that can be combined to solve different
modelling problems with alternative patterns that can be applied for different types of
problems (Price (1999)).

Refinement patterns are a type of design pattern that capture the design decisions
required to refine a model for a particular purpose (Moriconi et al. (1995)). This can
be to add new elements to the model or to perform a common data refinement step.
Refinement patterns for formal models should help to discharge the proof obligations
generated by the refinement step (Leavens et al. (2006)).

Alexander suggests that each pattern should describe a recurring problem and then
describe a re-usable solution (Alexander et al. (1977)). Design patterns in software are
constructed from different elements. The patterns catalogued by Gamma et al. (1995)
consist of elements such as name, problem, motivation and structure. The format for
patterns in Beck and Johnson (1994) involves pre-conditions, problem, constraints and
solution.

The Incremental Development Process is intended to make the development of multi-
agent systems in Event-B easier by allowing agent concepts to be captured in Event-B

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 79

models. In the Process the same modelling steps are re-applied for each set of goals and
relationships. There are three parts of the process that could be identified as patterns.

A THEN relationship between two goals will be translated into Event-B by following
the guidelines. The translation of a THEN relationship into Event-B follows a pattern.
This translation pattern is not a design pattern.

The goal relationships capture patterns used in Event-B, such as state transition and
choice. These patterns have been abstracted as relationships for the goal diagrams
and re-applied when following the Process to model the interactions of a multi-agent
system. These are more like design patterns, but they are not as well defined. The XOR
relationship can solve the problem ‘how do I model an agent having a choice between
two goals?’, but it is also abstract enough to solve the problem ‘how do I model a system
having a choice in Event-B?’. Examples of design patterns in software engineering are
generally similar to those in Gamma et al. (1995) that solve more specific problems
e.g. composing objects and selecting algorithms at runtime. The use of these goal
relationship patterns is specific to the specification style used in the Process.

The final refinement steps of the Process could be described as refinement patterns. They
describe a way of refining the model to incorporate features and change the structuring.
In doing so encapsulate the entire refinement step, but currently, the proof obligations
must be discharged each time the patterns are applied.

The problem that the Process is intended to solve is to guide the translation between the
goal diagrams and the formal model in a way that captures the motivations of agents
as the basis for their interactions. The different parts of the Process discussed above
do not offer a core solution to this problem. They must be combined in the Process to
solve this problem.

Chapter 8 presents a set of Event-B modelling patterns for modelling fault-tolerance
in multi-agent systems. These patterns are closer to the definitions of design patterns.
They address a specific problem and offer an abstract solution along with an Event-B
example that can be re-used. The context for the problem is multi-agent systems and
the problems are modelling the different behaviours required to provide a model of a
fault-tolerant multi-agent system. The problem of modelling for fault-tolerance is one
that will be found in many multi-agent systems.

5.8 Summary

Stage Two of the Incremental Development Process takes the goal diagram and Event-
B models of the system created as part of Stage One and refines them to model the
interacting agents and environment that embody the system. As with Stage One the
goal diagram is used to separate the modelling decisions from the formal models.

Chapter 5 Incremental Development Process: Stage Two - Distributed Coordination 80

The goal diagram is first elaborated to model the communications of the agents by the
agent roles that are identified for the system. The Event-B models are then refined to
incorporate the agent roles and communications. The Event-B models are then further
refined to introduce the resources for the system and then the system model is decom-
posed into synchronised agent role and resource component models. These refinement
steps are achieved by using a standard approach to refining the variables and events
following the Process.

Chapter 6

Case Study : Query-If

This chapter presents the development of a system that uses a FIPA interaction protocol
to show that the Incremental Development Process can be used to model a multi-agent
system. The case study is based on the FIPA Query Interaction Protocol. The informal
specification of the protocol can be found in FIPA (2002d). The informal specification
contains two possible interactions; Query-Ref and Query-If. The Query-Ref interaction
allows the interaction initiator to refer to an object as part of their query. The Query-
If interaction allows the initiator to query whether a proposition is true or false. To
provide a simple case study only one of the interactions has been developed. The Query-
If interaction protocol was chosen as the first case study as it is a simple, three stage,
interaction between no more than two agents. A further case study of a more complex
interaction is presented later in the next chapter.

6.1 Case Study

The Query-If interaction begins with an agent that initiates the interaction by sending
a query message to another agent in the system. The agent that receives the message
will respond with either an accept or a refuse message. The accept message indicates
that the participating agent intends to provide a response to the query. The refuse
message informs the initiator that the participating agent does not intend to provide a
response to the query. If the participant has accepted the query, the accept message will
be followed by either an inform or a failure message. The inform message will provide
a response to the query of either true or false. A failure message will let the initiator
know that the participant was prevented from responding to the query.

81

Chapter 6 Case Study : Query-If 82�� ��Complete
Query-If

THEN

�� ��Complete
����

XOR �� ��Refuse
PPPP���������

PPPPPPPP

�� ��Query

Figure 6.1: First Level of Goal Elaboration for Query-If

6.2 Stage One

To show the translation between the goal model and Event-B the first level of goal
elaboration has been extracted from the goal diagram in Figure 6.1. The diagram shows
that the overall goal for the system is first elaborated by three goals. The Query goal
represents a query being made, the Complete goal represents the response to the query
being completed and the Refuse goal represents the failure of the system to complete the
query. The relationships in the goal diagram form an interaction that begins with the
Query goal and is followed by either the Complete goal or the Refuse goal. Modelling
the Refuse goal creates a system model that can cope with a negative result from a
query request.

The abstract machine, shown in Figure 6.2, has three states and three events that
correspond to the goals in the first level of goal elaboration in the goal diagram. The
context for the model specifies a set of conversations. The left-most goal is the Query
goal and so the query event is parameterised by a relationship between a conversation
and agent that it adds to the queried state. The agent in the relationship represents
the agent that has the goal that is fulfilled by the query event. The THEN relationship
between the Query goal and the Complete and Refuse goals means that the states for
the Complete and Refuse goals are specified as subsets of the queried state. The events
for the Complete and Refuse goals also have a guard to ensure that they can only be
triggered when the selected conversation is already in the queried state. The XOR
relationship between the Complete and Refuse goals adds a further invariant to the
model that specifies the completed and refused states as disjoint. The events for the
Complete and Refuse goals have a further guard that prevents them from being triggered
by a conversation that is in the opposing state.

Figure 6.3 shows the second level of goal elaboration. The first refinement of the Event-B
abstract machine can be constructed by analysing this extract from the goal diagram.

The Complete goal has been further elaborated by three sub-goals. The first goal is
the Accept goal and this represents an agent of the system having the goal to agree to
the query request. The Inform goal represents the agent answering the query after they
have accepted the query request. The Failure goal represents the agent being unable to
answer the query after they have accepted the query request. The Inform and Failure
goals are associated with an XOR relationship indicating that only one of them may

Chapter 6 Case Study : Query-If 83

MACHINE m0

SEES context

VARIABLES queried, completed, refused

INVARIANTS

queried ∈ CONVERSATION 7→ AGENT
completed , refused ⊆ queried
refused ∩ completed = ∅

EVENTS

INITIALISATION

BEGIN

queried , completed , refused := ∅
END

query

ANY c, a WHERE

c ∈ CONVERSATION
a ∈ AGENT
c /∈ dom(queried)

THEN

queried := queried ∪ {c 7→ a}
END

complete

ANY c, a WHERE

c 7→ a ∈ queried
c 7→ a /∈ completed
c 7→ a /∈ refused

THEN

completed := completed ∪ {c 7→ a}
END

refuse

ANY c WHERE

c 7→ a ∈ queried
c 7→ a /∈ refused
c 7→ a /∈ completed

THEN

refused := refused ∪ {c 7→ a}
END

END

Figure 6.2: Query-If: Abstract Machine

occur in an interaction. They are linked to the Accept goal by a THEN relationship.
The Accept goal is on the left of the THEN relationship and must occur before either the
Inform or Failure goals can occur. The XOR relationship between the abstract Complete
and Refuse goals means that the system will either fulfill the Refuse goal or fulfill the
Accept goal followed by either the Inform goal or the Failure goal.�� ��Complete

Query-If
THEN

�� ��Complete
����

XOR �� ��Refuse
PPPP���������

PPPPPPPP

�� ��Query

�
 �	Accept
���

THEN PPPP�
 �	Inform

��� �
 �	Failure

PPP
XOR

Figure 6.3: Second Level of Goal Elaboration for Query-If

Chapter 6 Case Study : Query-If 84

The first refinement of the Event-B abstract machine can be constructed by analysing
the second level of goal elaboration in the goal diagram. The Query and Refuse goals
are not elaborated, so in the Event-B refinement model the events query and refuse

are the same as the abstract events query and refuse and the specification of the state
variables for the goals remains the same. The Event-B refinement model is shown in
Figure 6.4.

The Complete goal from the first level of goal elaboration in the goal diagram is elabo-
rated by three goals that are joined by two relationships. The goals and their relation-
ships can be described as Accept THEN (Inform XOR Failure). The Event-B refinement
is constructed by replacing the state and event for the Complete goal with this new set of
goals and relationships. The gluing invariant is a conjunction of the states for the goals
in the XOR relationship: completed = informed ∪ failed . The informed and failed events
are specified as refining the abstract complete event and the event for the Accept goal,
accept , is introduced as a new event. The THEN relationship also creates an invariant
that specifies the state for the Inform and Failure goals as a subset of the state for the
Accept goal: (informed ∪ failed) ⊆ accepted . The pattern for the XOR relationship adds
an invariant that specifies the states for the goals as disjoint: failed ∩ informed = ∅.
The XOR relationship from the abstract model is now upheld using the accepted state:
accepted ∩ refused = ∅.

Chapter 6 Case Study : Query-If 85

MACHINE m1 REFINES m0 SEES context

VARIABLES

queried, accepted, refused, informed, failed

INVARIANTS

accepted ⊆ queried
informed , failed ⊆ accepted
accepted ∩ refused = ∅
failed ∩ informed = ∅
completed = informed ∪ failed

EVENTS

INITIALISATION

BEGIN

queried , accepted , refused , informed , failed := ∅
END

query REFINES query accept

ANY c, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ queried
a ∈ AGENT c 7→ a /∈ accepted
c /∈ dom(queried) c 7→ a /∈ refused

THEN THEN

queried := queried ∪ {c 7→ a} accepted := accepted ∪ {c 7→ a}
END END

refuse REFINES refuse inform REFINES complete

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ queried c 7→ a ∈ accepted
c 7→ a /∈ refused c 7→ a /∈ informed
c 7→ a /∈ accepted c 7→ a /∈ failed

THEN THEN

refused := refused ∪ {c 7→ a} informed := informed ∪ {c 7→ a}
END END

failure REFINES complete

ANY c, a WHERE

c 7→ a ∈ accepted
c 7→ a /∈ failed
c 7→ a /∈ informed

THEN

failed := failed ∪ {c 7→ a}
END

END

Figure 6.4: Query-If: First Refinement

Chapter 6 Case Study : Query-If 86

�� ��Complete
Query-If

THEN

�� ��Complete
����

XOR �� ��Refuse
PPPP���������

PPPPPPPP

�� ��Query

�
 �	Accept
���

THEN PPPP�
 �	Inform

��� �
 �	Failure

PPP
XOR

�
 �	send
query

��

I

comm�
 �	receive
query

HH

P �
 �	send
accept

��

P

comm�
 �	receive
accept

HH

I�
 �	send
inform

��

P

comm�
 �	receive
inform

HH

I

�
 �	send
refuse

��

P

comm �
 �	receive
refuse

HH

I

�
 �	send
failure

��

P

comm�
 �	receive
failure

HH

I

I = Initiator Role
P = Participant Role

Messaging
Medium
All Roles

Figure 6.5: Goal Model for Query-If

6.3 Stage Two: Introducing Send and Receive

All of the goals in the goal diagrams involve interaction and have been be elaborated
to communicating goals. The roles that can be identified for the Query-If case study
are the initiator of the query and the participant that responds to the query. Each of
the interactions in the system will be between two agents and there will be only one
agent for each role in each conversation. A messaging medium resource is required for
the agents to communicate. There are no broadcast goals required for this case study.

Figure 6.5 shows how the goals have been elaborated and the roles that have been
assigned to each of the communicating goals. The allocation of the goals to the agent
roles does not alternate for each of the communicating goals. Only the first send goal
is allocated to the initiator agent who will then wait for a series of responses from the
participant agent before the conversation is completed.

Because of the introduction of the events to model the communicating goals the Event-B
models will be split into more than one figure or have only an extract shown in the rest
of this section. The full specification of the models can be found in Appendix A.

Figure 6.6 shows the specification of the invariants of the communicating goals refine-
ment. It specifies variables for each of the communicating goals in the goal diagram.
The state variables for the send goals are suffixed with an ‘S’ and the state variables for
the receive goals are suffixed with an ‘R’. The COMM relationship between each of the
send and receive goals means that the state variables for the receive goals are specified
as subsets of the state variables for the send goals. The send communicating goals have
been allocated to the agent roles that are responsible for the abstract goals. This means
that the refinement relationship for the abstract events and variables can be with the
events and variables for the send communicating goals e.g. queryS ⊆ queried . The role

Chapter 6 Case Study : Query-If 87

queryS ⊆ queried
queryR ⊆ queryS
refuseS ⊆ queryR
refuseR ⊆ refuseS
acceptS ⊆ queryR
acceptR ⊆ acceptS
informS ⊆ acceptS
informR ⊆ informS
failS ⊆ acceptS
failR ⊆ failS
initiator , participant ∈ dom(queryS) → AGENT
refuseS ⊆ refused
acceptS ⊆ accepted
informS ⊆ informed
failS ⊆ failed

Figure 6.6: Query-If: Invariants of the Second Refinement

variables are modelled as total functions between the domain of the state variable for
the first send goal and the set of agents: dom(queryS)→AGENT .

Figures 6.7 and 6.8 show the events for the refinement. The initialisation event is not
shown. All of the variables of the model are initialised as empty. The first event is
the sendQuery event that is parameterised by conversation that is not in the domain
of the queried state and two different agents. This event refines the queried event
from the abstract model. The action of the event adds a relationship between the
conversation and one of the agents to the queryS, initiator and queried variables.
The other agent represents the agent that is receiving the message and is related to the
conversation in the participant variable. The receiveQuery event can be triggered
when there is a relationship between a conversation and the initiator of the conversation
in the queryS state and the action of the event adds the relationship to the queryR state.
When there is a relationship in the queryR state either the sendAccept or sendRefuse
event can be triggered. These events refine the accept and refuse events from the
abstract model, respectively. Each of the events has an action that adds a relationship
to their associated state. The XOR relationship between the abstract goals requires
that the states are specified as disjoint and the guards of the events prevent them from
occurring if the relationship is already in the opposing state e.g. c 7→ a /∈ refused . The
guards of the events also specify that the agent that is selected for the event to receive
the message must be the agent that has the initiator role for the conversation. The
receiveAccept and receiveRefuse events are both new events that can occur when
there is a relationship in the appropriate send state and the action of the events will add
the relationship to the receive state for the event. The agent that is selected for these
events to receive the message must be the initiator of the conversation.

The events shown in Figure 6.8 continue the interaction after an accept message has been
sent. Either the sendInform or the sendFailure event can be triggered when there is a
relationship in the accepted state, c 7→ a ∈ accepted . Similarly to the sendAccept and

Chapter 6 Case Study : Query-If 88

sendQuery REFINES query receiveQuery

ANY c, a, ar WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ queryS
a ∈ AGENT c 7→ a /∈ queryR
ar ∈ AGENT c 7→ a ∈ initiator
c /∈ queried THEN

a 6= ar queryR := queryR ∪ {c 7→ a}
THEN END

queryS := queryS ∪ {c 7→ a}
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ {c 7→ ar}
queried := queried ∪ {c 7→ a}

END

sendAccept REFINES accept receiveAccept

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ queryR c 7→ a ∈ acceptS
c 7→ a /∈ accepted c 7→ a /∈ acceptR
c 7→ a /∈ refused c 7→ a ∈ initiator
c 7→ a ∈ initiator THEN

THEN acceptR := acceptR ∪ {c 7→ a}
acceptS := acceptS ∪ {c 7→ a} END

accepted := accepted ∪ {c 7→ a}
END

sendRefuse REFINES refuse receiveRefuse

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ queryR c 7→ a ∈ refuseS
c 7→ a /∈ refused c 7→ a /∈ refuseR
c 7→ a /∈ accepted c 7→ a ∈ initiator
c 7→ a ∈ initiator THEN

THEN refuseR := refuseR ∪ {c 7→ a}
refuseS := refuseS ∪ {c 7→ a} END

refused := refused ∪ {c 7→ a}
END

Figure 6.7: Query-If: Events of the Second Refinement (Part 1)

sendRefuse events the abstract events for the sendInform and sendFailure events
are in an XOR relationship and so must occur exclusively from one another for each
conversation. The receiveInform and receiveFailure events are new events that can
be triggered when there is a relationship between the conversation and the initiator of
the conversation in the informS and failureS states, respectively. The actions of the
events add the relationship to the state for their respective receive goal.

6.4 Stage Two: Introducing the Messaging Medium

The next Event-B refinement model introduces the messaging medium resource. The
refinement model adds the messages that are sent between the agents and the medium
through which they are sent. Adding the messages and the messaging medium allows
the agents to fully encapsulate their own state information as they will be able to ex-
change more information through the message fields. They will communicate through

Chapter 6 Case Study : Query-If 89

sendInform REFINES inform receiveInform

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ accepted c 7→ a ∈ informS
c 7→ a /∈ informed c 7→ a /∈ informR
c 7→ a /∈ failed c 7→ a ∈ initiator
c 7→ a ∈ initiator THEN

THEN informR := informR ∪ {c 7→ a}
informS := informS ∪ {c 7→ a} END

informed := informed ∪ {c 7→ a}
END

sendFailure REFINES failure receiveFailure

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ accepted c 7→ a ∈ failS
c 7→ a /∈ failed c 7→ a /∈ failR
c 7→ a /∈ informed c 7→ a ∈ initiator
c 7→ a ∈ initiator THEN

THEN failR := failR ∪ {c 7→ a}
failS := failS ∪ {c 7→ a} END

failed := failed ∪ {c 7→ a}
END

Figure 6.8: Query-If: Events of the Second Refinement (Part 2)

the variables that represent the messaging medium and these become the only variables
that are global to the agents in the system.

To model the messages the Event-B context is extended to include a message record
with sender, receiver and conversation fields. The specification of the extended context
for this development is the same as the specification shown in Figure 5.10.

INVARIANTS

queryM , acceptM , refuseM , informM , failureM ⊆ MESSAGE
queryS = (queryM � messageConversation)-1; sender
acceptS = (acceptM � messageConversation)-1; receiver
refuseS = (refuseM � messageConversation)-1; receiver
informS = (informM � messageConversation)-1; receiver
failureS = (failureM � messageConversation)-1; receiver
pInitiator , pParticipant ∈ dom(queryR) → AGENT
pInitiator ⊆ initiator
pParticipant ⊆ participant
initiator = (queryM � messageConversation)-1; sender
participant = (queryM � messageConversation)-1; receiver

Figure 6.9: Query-If: State of the Third Refinement

The state of the third refinement is shown in Figure 6.9. To model the messaging
medium a subset of the message record set is specified for each of the types of message
that are to be sent in the model e.g queryM . The specification still includes the send
and receive variables as these are to be used by each agent to keep track of their current
state within the interaction. There is a gluing invariant that relates each of the new
message sets to the send variables. The content of the message sets can be proven to
replace the send variables in the guards of the receive events and the send variables
can remain private within the state of the appropriate agent. The gluing invariant,

Chapter 6 Case Study : Query-If 90

e.g. queryS = (queryM � messageConversation)-1; sender , uses the join operator, as
described in Chapter 5 Section 5.5.3, to relate the information held in the receiver and
conversation fields of the messages to the information held in the send variables.

Because of the information that can be exchanged by the agents using the messages
the role variables can be encapsulated in this refinement. Two new role variables,
pInitiator and pParticipant, are specified as subsets of the original initiator and
participant role variables. A gluing invariant relates the sender, receiver and message
conversation fields of the message to the original role variables. This can be used to prove
that relationships added to the role variables in the receiveQuery event, by the partici-
pant, are a subset of the role variables encapsulated by the initiator. The invariant uses
the join operator with: initiator = (queryM � messageConversation)-1; sender relating
the initiator variable to the conversation and sender of the message and: participant =
(queryM � messageConversation)-1; receiver relating the conversation and receiver of
the message to the participant. The invariant condition requires that it is proven that
these are the values recorded in the action of the sendQuery event and enables the fields
of the message to replace the reference to the original role variables in the guards of
events that are allocated to the participant role.

The invariant conditions used to relate the content of the messages to the send and role
variables follow a pattern. They all use the join operator. The information that is now
contained in the model with the introduction of messages could allow the variables for
the send goals e.g. queryS to be removed. However the model is based on the goals of
the agents and when the roles are decomposed later in the Process the retention of these
variables will allow the individual models to keep a more detailed model of the agents
actions in relation to its goals. It may also be the case that a send goal is not directly
related to one of the earlier abstract goals and the variable would be the only record of
the send goal being fulfilled.

sendQuery REFINES sendQuery receiveQuery REFINES receiveQuery

ANY c, a, ar, m WHERE ANY c, a, m WHERE

c ∈ CONVERSATION m ∈ queryM
a ∈ AGENT c 7→ a /∈ queryR
ar ∈ AGENT sender(m) = a
c /∈ dom(queried) messageConversation(m) = c
a 6= ar THEN

m ∈ MESSAGE queryR := queryR ∪ {c 7→ a}
sender(m) = a pParticipant := pParticipant ∪ {c 7→ receiver(m)}
receiver(m) = ar pInitiator := pInitiator ∪ {c 7→ a}
messageConversation(m) = c END

THEN

queryS := queryS ∪ {c 7→ a}
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ {c 7→ ar}
queried := queried ∪ {c 7→ a}
queryM := queryM ∪ {m}

END

Figure 6.10: Query-If: Example Events from the Third Refinement

Chapter 6 Case Study : Query-If 91

Figure 6.10 shows the sendQuery and receiveQuery events from the third refinement
of the Event-B model. The refinement of the other events of the model are similar to
the refinement of these two events. The full refinement model can be found in Appendix
A. Both of the events are refined to include an extra event variable that represents
the message that is being exchanged. The additional guards of the events specify the
content of the message fields that are required for the message. An additional action
of the sendQuery event adds the message to the queryM message set. The guards of
the receiveQuery event no longer access the queryS variable and instead check that
the message is in the queryM message set. The guards no longer access the original role
variables. This refinement can be proven through the invariants that relate the original
role variables to the fields of the message. The action of the receiveQuery event adds
the information from the message fields to the new role variables.

The fourth refinement refines the multiple message sets into a single message set that
models a generic messaging medium. This has been achieved with the Query-If case
study by extending the context to include disjoint constant sets for each of the message
types and using these types to replace the message sets from the third refinement with
a single message set in the fourth refinement. Figure 6.11 shows the specification of
the extended context and Figure 6.12 shows the specification of the state of the fourth
refinement. The single message set is specified as a subset of the set of messages in the
same way as the multiple sets in the abstract model. The gluing invariants relate each
of the abstract message sets to an intersection of the single message set and the type
that has been specified in the context. A further set PROPOSITION and two constants,
question and answer, have been added to the context so the query and the response
to the query can be modelled. When a query message is sent in the case study it will
include the proposition that the initiator agent requires answering. When an inform
message is sent in the case study it will include a response of either true or false to the
original query. Because the fields of the messages are specific to the type of message
they have been introduced at the same stage as the message types.

SETS

PROPOSITION
PROPERTIES

QUERY , ACCEPT , REFUSE , INFORM , FAIL ⊆ MESSAGE
question ∈ QUERY → PROPOSITION
answer ∈ INFORM → BOOL
disjoint(QUERY , ACCEPT , REFUSE , INFORM , FAIL)

Figure 6.11: Query-If: Extended Context for the Fourth Refinement

The events of the fourth refinement have an additional guard specifying to which message
type the message event variable belongs. The action of the send events is refined to add
the message to the single message set rather than one of the multiple sets. Figure 6.13
shows how the sendQuery and receiveQuery events have been specified for the fourth
refinement.

Chapter 6 Case Study : Query-If 92

INVARIANTS

msgset ⊆ MESSAGE
queryM = msgset ∩ QUERY
acceptM = msgset ∩ ACCEPT
refuseM = msgset ∩ REFUSE
informM = msgset ∩ INFORM
failureM = msgset ∩ FAIL

Figure 6.12: Query-If: State of the Fourth Refinement

sendQuery REFINES sendQuery receiveQuery REFINES receiveQuery

ANY c, a, ar, m WHERE ANY c, a, m WHERE

c ∈ CONVERSATION m ∈ msgset
a ∈ AGENT c /∈ dom(queryR)
ar ∈ AGENT sender(m) = a
c /∈ dom(queryS) messageConversation(m) = c
a 6= ar m ∈ QUERY
m ∈ MESSAGE question(m) ∈ PROPOSITION
m ∈ QUERY THEN

sender(m) = a queryR := queryR ∪ {c 7→ a}
receiver(m) = ar pParticipant := pParticipant ∪
messageConversation(m) = c {c 7→ receiver(m)}
question(m) ∈ PROPOSITION pInitiator := pInitiator ∪ {c 7→ a}

THEN END

queryS := queryS ∪ {c 7→ a}
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ {c 7→ ar}
queried := queried ∪ {c 7→ a}
msgset := msgset ∪ {m}

END

Figure 6.13: Query-If: Example Events of the Fourth Refinement

The next step of the Process is to decompose the Event-B model into abstract component
models. The components for the Query-If case study are the initiator agent role, the
participant agent role and the messaging medium. The decomposition is possible because
the shared behaviour of the system has been modelled and each component can be refined
separately from the other components.

This refinement step creates the fifth refinement model that is used to synchronise the
components and the three abstract component models that have been decomposed from
the case study. This allows the synchronisation of the components to be proven a
refinement of the abstract model ensuring that the full functionality modelled by the
abstract model is fulfilled by the components.

Figure 6.14 shows how the fifth refinement synchronises the initiator and middleware
components to refine the abstract sendQuery event. The sendQuery event in the re-
finement model creates a new variable m. The output from the sendQuery event in
the initiator component is assigned to the variable m. The variable is then used as an
input parameter to the send event of the middleware component that encapsulates the
coordination medium. The abstract components are proven to fulfill the functionality

Chapter 6 Case Study : Query-If 93

REFINEMENT m5 REFINES m4

sendQuery =

VAR m IN

m ← initiator .sendQuery ;
mw .send(m)

END

MACHINE initiator0

mr <-- sendQuery = MACHINE middleware0

ANY a, c, ar, m WHERE send (m) =

a ∈ AGENT ∧ WHEN

c ∈ CONVERSATION ∧ m ∈ MESSAGE
c /∈ dom(queryS) ∧ THEN

ar ∈ AGENT ∧ msgset := msgset ∪ {m}
ar 6= a ∧ END

m ∈ MESSAGE ∧
sender(m) = a ∧
receiver(m) = ar ∧
messageConversation(m) = c ∧
m ∈ QUERY
question(m) ∈ PROPOSITION

THEN

initiator := initiator ∪ {c 7→ a} ||
queryS := queryS ∪ {c 7→ a} ||
participant := participant ∪ {c 7→ ar} ||
queried := queried ∪ {c 7→ a}
mr := m

END

Figure 6.14: Query-If: Synchronising of the Fifth Refinement and the Abstract Com-
ponent Models

of the system model through this synchronisation. The agent role components can now
be refined to model the internal reasoning of the agent.

Chapter 7

Case Study : Contract Net

The Query-If case study is an interaction between two agents. The Contract Net case
study, presented in this chapter, illustrates the application of the Incremental Devel-
opment Process to the complex communications that can be involved in interactions
between multiple agents. In the contract net interaction protocol the communications
are broadcast to multiple agents in the system that may all respond differently.

7.1 Case Study

The contract net interaction protocol has been chosen as a case study as it is commonly
used in work on multi-agent systems. This should make it easier for the reader to
understand and to compare with other work.

The contract net interaction protocol is a distributed negotiation process (Smith (1980)).
The initiator of the protocol advertises the existence of a task that it needs completing
by broadcasting a call for proposals to find an agent, or group of agents, that offer the
most advantageous proposal to carry out a required task. The agents that receive the call
for proposals can place a bid to complete the task by sending a proposal. Participants
in the protocol are committed to the bids that they propose. When the initiator selects
a bid or a group of bids the participants are informed of the decision and those selected
will complete the task. The contract is completed when the participants inform the
initiator of the protocol that the task is completed or that a failure has occurred. The
case study has been developed using the FIPA specification of the contract net (FIPA
(2002c)).

94

Chapter 7 Case Study : Contract Net 95�
�

�
�Complete

Contract Net

THEN

�� ��Call For
Proposals

!!!!!!!!!!!!!!!

THEN�� ��Respond
�����������

THEN�� ��Select
�

�
�

�
OR

�� ��Complete
HHH

HHH

�� ��Cancel
PPPPPPPPPPPPPPPPPP

Figure 7.1: The First Level of Goal Elaboration for the Contract Net

7.2 Stage One

The first level of goal elaboration for the Contract Net case study is shown in Figure 7.1.
To construct the Event-B abstract machine the first level of goal elaboration must be
analysed.

The main goal of the system is to complete the contract net interaction. This goal
has been elaborated into five goals. The Call For Proposals goal represents an agent
initiating the contract net protocol. The Respond goal represents the agents that receive
the call for proposals message making a response. The Select goal represents one or more
proposals being chosen and the Complete goal represents the agreement being fulfilled.
The Cancel goal is required for when the initiating agent changes its intentions and
cancels the contract at any point in the interaction. The interaction of the system, as
described by the goal elaboration relationships, begins with the Call For Proposals goal,
which is followed by the Respond goal, which is followed by the Select goal and finally
the Complete goal. The Cancel goal is related to the Respond, Select and Complete
goal by an OR relationship and can be fulfilled at any point after the Call For Proposals
goal has been fulfilled.

The abstract machine has five events and five state variables that correspond to the five
goals in the first level of elaboration of the goal diagram. The guards and invariant
conditions are constructed according to the goal elaboration relationships in the goal
diagram. The context for the model specifies a deferred set of conversations and a set
of agents.

The Contract Net case study involves one agent that interacts with multiple agents to
negotiate the contract. Because of this the events are parameterised by a conversation
and a relationship between that conversation and a subset of agents, as described in
Chapter 4 Section 4.2.5. When the interaction is between two agents the agent that
is being communicated to is recorded by the goal variables as there is only one agent
that can send or receive each message. Because their are multiple agents involved in
the contract net interaction the variables that record the fulfillment of each goal must
record the participants. Each participant that has sent or received a message is recorded

Chapter 7 Case Study : Contract Net 96

allowing more than one of each message to be sent or received by other participants.
The initiator will remain the same throughout the interaction and does not need to be
recorded at this point.

The cfp variable is a relationship between conversations and the agents in the system
and represents the goal of the system to make a call for proposals has been fulfilled.
The responded variable is a subset of the cfp variable and represents the state of each
agent fulfilling the goal to respond to the call for proposals. The select variable is a
subset of the responded variable and represents the group of responses that have been
selected by the initiator of the conversation. The completed variable represents the
state of the system when the agents that have been selected have fulfilled their commit-
ment. The cancelled variable models the initiator changing its goal and cancelling the
conversation.

The first event in the interaction of the system is the callForProposals event that
takes a conversation and relationship between the conversation and agents and moves it
into the cfp state. The guards dom(as) = {c} and ran(as) ⊆ AGENT specify that the
domain of the relationship as is the conversation c and that the range is a subset of the
AGENT set. The action of the event adds the relationship to the cfp state variable,
cfp := cfp ∪ as. The Call For Proposals goal is related to the Respond goal by a
THEN relationship. The respond event takes a relationship that is in the cfp state
and not in the responded state. The action of the event adds the relationship to the
responded state. The Respond goal in the goal diagram is related to the Select goal
by a THEN relationship. The select event takes a subset of the relationships that are
in the responded state and adds it to the selected state. This models the initiator of
the conversation making a selection from the responses that it has received. The guard
as ⊆ {c} � responded specifies the relationship as as a subset of the responded variable
that has its domain restricted to the contents of the set {c}. The next goal in the goal
diagram is the Complete goal that is to the right of a THEN relationship with the Select
goal. The complete event takes a subset of relationships that are in the selected state,
as ⊆ {c}� selected , and not in the completed state, c /∈ dom(completed). The action of
the event adds the relationships to the completed state. The final goal in the diagram is
the Cancel goal. The Cancel goal is to the right of the THEN relationship that originates
with the Call For Proposals goal and is related to the other goals in the diagram by an
OR relationship. The cancel event takes a set of relationships that are in the cfp state
and not in the cancelled state and the action of the event adds the relationship to the
cancelled state.

The guards of the select event have been weakened following an iteration of the de-
sign. Because the interaction is between multiple agents and how the select goal has
been elaborated in the next level of goal elaboration the guard that was originally
c /∈ dom(selected) was changed to as ∩ selected = ∅. This means that the select

Chapter 7 Case Study : Contract Net 97

event in the abstract machine would be able to occur more than once. The next level of
goal elaboration introduces a new event that prevents this in the refinement model.

MACHINE m0 SEES context

VARIABLES

cfp, responded, selected, completed, cancelled

INVARIANTS

cfp ∈ CONVERSATION ↔ AGENT responded , cancelled ⊆ cfp
selected ⊆ responded completed ⊆ selected

EVENTS

INITIALISATION

BEGIN

cfp, responded , selected , completed , cancelled := ∅
END

callForProposals respond

ANY c, as WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ cfp
c /∈ dom(cfp) c 7→ a /∈ responded
as ∈ CONVERSATION ↔ AGENT THEN

dom(as) = {c} responded := responded ∪ {c 7→ a}
ran(as) ⊆ AGENT END

THEN

cfp := cfp ∪ {c}
END

select complete

ANY c, as WHERE ANY c, as WHERE

c ∈ dom(responded) c ∈ dom(selected)
as ⊆ responded c /∈ dom(completed)
as ∩ selected = ∅ as ⊆ {c} � selected

THEN THEN

selected := selected ∪ as completed := completed ∪ as
END END

cancel

ANY c, as WHERE

c ∈ dom(cfp)
c /∈ dom(cancelled)
as ⊆ {c} � cfp

THEN

cancelled := cancelled ∪ as
END

END

Figure 7.2: Contract Net: Abstract Machine

A more detailed model of the system can be obtained by refining the goal diagram.
Figure 7.3 shows how the goals have been further elaborated for this case study.

The first refinement of the abstract machine can be constructed by analysing the second
level of goal elaboration in the goal diagram. The Respond goal has been elaborated
by two sub-goals, Propose and Refuse, that are related with an XOR relationship that
creates an exclusive choice between the fulfillment of the goals. The Refuse goal is an
endpoint goal. The Select goal has been elaborated by three sub-goals; Select THEN
Accept XOR Reject. The Select goal represents the system choosing one or more of the
proposals. The Accept goal represents the system accepting proposals that have been
selected. The Reject goal represents the system rejecting the proposals that have not

Chapter 7 Case Study : Contract Net 98�
�

�
�Complete

Contract Net

THEN

�� ��Call For
Proposals

!!!!!!!!!!!!!!!

THEN

�� ��Respond
������������

THEN

�
 �	Propose

�
�

�
�

XOR�
 �	Refuse

@
@@ it

�� ��Select
�

�
�

�
OR

�
 �	Select

������
THEN

�
 �	Accept

�
�

��
XOR �
 �	Reject

@
@@ it

�� ��Complete
@

@
@

@

�
 �	Inform

�
��XOR �
 �	Fail

@
@@ �
 �	Complete

XXXXX
THEN

�� ��Cancel
PPPPPPPPPPPPPPPPPP

THEN

�
 �	Cancel

%
%

%%

�
 �	Inform
Cancel

�
��

XOR �
 �	Fail
Cancel

b
b

b
b

bb �� �Complete
Cancel

hhhhhhh
THEN

Figure 7.3: The Second Level of Goal Elaboration for the Contract Net

been selected. The Reject goal is also an endpoint goal. The Complete goal has been
elaborated by the three sub-goals; (Inform XOR Fail) THEN Complete. The Inform
and Fail goals represent the different agents reporting the success or failure of their
accepted tasks. The Complete goal represents the system deciding that the interaction
has been completed either successfully or unsuccessfully. The Cancel goal has been
elaborated by a set of four sub-goals. The Cancel sub-goal represents the decision to
cancel the interaction. This is followed in a THEN relationship by the two sub-goals
Inform Cancel and Fail Cancel that are related by an XOR relationship. The Inform
Cancel and Fail Cancel goals represent the agents responding to the request to cancel the
conversation. The Cancel Complete goal models the conversation being successfully or
unsuccessfully cancelled. The relationships between the elaborated goals create a more
detailed model of the system interaction. The interaction is started, as before, with the
Call For Proposals goal being fulfilled. This is followed, through the THEN relationship
from the first level of goal elaboration, by either the Propose or Refuse goal for each
of the agents involved in the conversation. The Propose goal will be followed by the
Select goal. The Select goal will be followed by the Accept and Reject goal with each
agent that proposed being either accepted or rejected. The fulfillment of the Accept
goal will be followed by either the Inform or Fail goal. The interaction is completed at
this point with the Complete goal, unless the Cancel goal has been fulfilled at any point
after the Call For Proposal goal. In this case either the Inform Cancel or the Fail Cancel
goal need to be fulfilled followed by the Cancel Complete goal before the interaction is
finished.

The introduction of the endpoint goals at this level of refinement restricts the behaviour
of the model from the abstract machine. The refinement model will be able to finish an
interaction before the abstract machine.

The second level of goal elaboration in the goal diagram can be used to construct

Chapter 7 Case Study : Contract Net 99

refused , proposed ⊆ cfp refused ∩ proposed = ∅
selected1 ⊆ proposed
accepted , rejected ⊆ selected1 accepted ∩ rejected = ∅
informed , failed ⊆ accepted informed ∩ failed = ∅
cancelledStarted ⊆ cfp
informCancelled , failCancelled ⊆ cancelledStarted
informCancelled ∩ failCancelled = ∅
responded = refused ∪ proposed
selected = accepted ∪ rejected

Figure 7.4: Contract Net: Invariants of the First Refinement

an Event-B refinement of the abstract machine. This refinement is shown in Fig-
ure 7.4 and Figure 7.5. The Call For Proposals goal has not been elaborated so the
callForProposals event and cfp variable remain the same as in the abstract machine.
The abstract responded variable and respond event have been refined by the variables
and events for the Propose and Refuse goals. The variables are specified as subsets of
the cfp variable. The events are parameterised by a relationship between a conversa-
tion and agent that are in the cfp variable and not in either the proposed or refused
variables. The action of the events adds the relationship to the appropriate variable
e.g. proposed := proposed ∪ {c 7→ a}. The Accept and Reject goals refine the ab-
stract Select goal. Because of this the event and variable for the Select sub-goal are
new variables and have been named select1 and selected1, respectively, to prevent
any naming clashes in the tools. Because Refuse and Reject are both endpoint goals the
selected1 variable is specified as a subset of the proposed variable and the informed

and failed variables are specified as subsets of the accepted variable. The select1

event is parameterised by a conversation and a subset of the proposed variable for that
conversation, as ⊆ {c} � proposed . The action of the event adds as to the selected1

variable. The select1 event is a new event and the selection by the initiator is now
modelled as occurring once because of the guard c /∈ dom(selected1). The accept and
reject events refine the abstract select event because they are to the right of the
THEN relationship. The accept event takes the relationships that were added to the
selected1 variable in the select1 event, as = {c} � selected1, and adds them to the
accepted variable. The reject event takes the relationships that are in the proposed

variable, but not in the selected1 variable, as = ({c}� proposed) \ ({c}� selected1).
Both the accept and reject events can occur because the guard of the abstract select
event was weakened in the abstract machine. The inform and fail events both take a
relationship that is in the accepted variable and not in either the informed or failed
variables. The action of the events add the relationship to the appropriate variable. The
complete event refines the abstract complete event by adding a subset of the inform

and failed variables to the completed variable, as ⊆ {c} � (informed ∪ failed). The
Cancel goal has been elaborated by four sub-goals that can be described by their relation-
ships as Cancel THEN ((Inform Cancel XOR Fail Cancel) THEN Cancel Complete).
The first THEN relationship means that a new event and variable are introduced for the

Chapter 7 Case Study : Contract Net 100

Cancel sub-goal. The second THEN relationship means that new events and variables
are introduced for the Inform Cancel and Fail Cancel sub-goals that are linked by the
XOR relationship. The event for the Cancel Complete goal refines the abstract cancel
event. The variable for the Cancel sub-goal is specified as a subset of the cfp variable
because of the THEN relationship between the abstract goals. The new event, cancel1,
for the Cancel sub-goal selects a relationship between a conversation and agents that
is in the cfp variable and not in the new cancelStarted variable and adds it to the
cancelStarted variable. The variables for the Inform Cancel and Fail Cancel sub-goals
are specified as subsets of the cancelStarted variable because of the THEN relation-
ship. The XOR relationship between the Inform Cancel and the Fail Cancel sub-goals
requires them to be specified as disjoint. The events for the Inform Cancel and Fail
Cancel sub-goals select a relationship that is in the cancelStarted variable and not in
the state variable for the opposing sub-goal and adds it to the state variable for the sub-
goal. The cancelled event adds a subset of the relationships from the informCancelled
variable to the cancelled variable, as ⊆ {c}� (informCancelled ∪ failCancelled).

Chapter 7 Case Study : Contract Net 101

callForProposals REFINES callForProposals refuse REFINES respond

ANY c, as WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ cfp
c /∈ dom(cfp) c 7→ a /∈ refused
as ∈ CONVERSATION ↔ AGENT c 7→ a /∈ proposed
dom(as) = {c} THEN

ran(as) ⊆ AGENT refused := refused ∪ {c 7→ a}
THEN END

cfp := cfp ∪ as
END

propose REFINES respond select1

ANY c, a WHERE ANY c, as WHERE

c 7→ a ∈ cfp c ∈ dom(proposed)
c 7→ a /∈ proposed c /∈ dom(selected1)
c 7→ a /∈ refused as ⊆ {c} � proposed

THEN c /∈ cancelled1
proposed := proposed ∪ {c 7→ a} THEN

END selected1 := selected1 ∪ as
END

accept REFINES select reject REFINES select

ANY c, as WHERE ANY c, as WHERE

c ∈ dom(selected1) c ∈ dom(selected1)
c /∈ dom(accepted) c /∈ dom(rejected)
as = {c} � selected1 as = ({c} � proposed) \ ({c} � selected1)
as ∩ rejected = ∅ as ∩ accepted = ∅

THEN THEN

accepted := accepted ∪ as rejected := rejected ∪ as
END END

inform fail

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ accepted c 7→ a ∈ accepted
c 7→ a /∈ informed c 7→ a /∈ failed
c 7→ a /∈ failed c 7→ a /∈ informed

THEN THEN

informed := informed ∪ {c 7→ a} failed := failed ∪ {c 7→ a}
END END

complete REFINES complete cancel1

ANY c, as WHERE ANY c, as WHERE

c ∈ dom(informed ∪ failed) c ∈ dom(cfp)
as ⊆ {c} � (informed ∪ failed) c /∈ dom(cancelStarted)
c /∈ dom(completed) as ⊆ {c} � cfp

THEN THEN

completed := completed ∪ as cancelStarted := cancelStarted ∪ as
END END

informCancel failCancel

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cancelled1 c 7→ a ∈ cancelled1
c 7→ a /∈ informCancelled c 7→ a /∈ failCancelled
c 7→ a /∈ failCancelled c 7→ a /∈ informCancelled

THEN THEN

informCancelled := informCancelled ∪ {c 7→ a} failCancelled := failCancelled ∪ {c 7→ a}
END END

cancelled REFINES cancel

ANY c, as WHERE

c ∈ (informCancelled ∪ failCancelled)
as ⊆ {c} (informCancelled ∪ failCancelled)
c /∈ dom(cancelled)

THEN

cancelled := cancelled ∪ as
END

Figure 7.5: Contract Net: Events of the First Refinement

Chapter 7 Case Study : Contract Net 102�
�

�
�Complete

Contract Net

THEN

�� ��Call For
Proposals

!!!!!!!!!!!!!!!

THEN

�
�	S
��

I

B
comm�
�	R

@@

Pn

�� ��Respond
������������

THEN

�
 �	Propose

�
�

�
�

�
�	S
��*comm

Pn

�
�	R
@@

I
complete =
receive 1+

XOR�
 �	Refuse

@
@@ it

�
�	S
��

Pn

*comm�
�	R
@@

I

�� ��Select
�

�
�

�
OR

�
 �	Select

������
THEN

�
 �	Accept

�
�

��

�
�	S
��

I

*comm�
�	R
@@

Pn

XOR �
 �	Reject

@
@@ it
�
�	S
��

I

*comm�
�	R
@@

Pn

�� ��Complete
@

@
@

@

�
 �	Inform

�
��

�
�	S
��

Pn

*comm�
�	R
@@

I
complete =
receive 1+

XOR �
 �	Fail

@
@@

�
�	S
��

Pn

*comm�
�	R
@@

I

�
 �	Complete

XXXXX
THEN

�� ��Cancel
PPPPPPPPPPPPPPPPPP

THEN

�
 �	Cancel

%
%

%%

�
�	S
��

I

B
comm�
�	R

@@

Pn

�
 �	Inform
Cancel

�
��

�
�	S
��

Pn

*comm�
�	R
@@

I
complete =
receive 1+

XOR �
 �	Fail
Cancel

b
b

b
b

bb

�
�	S
��

Pn

*comm�
�	R
I

�� �Complete
Cancel

hhhhhhh
THEN

@@

I = Initiator Role
P = Participant Role

Messaging
Medium
All Roles

Figure 7.6: Goal Model for Contract Net

The next section describes Stage Two of the Process that models the agent roles and
their communications as refinements of the system models.

7.3 Stage Two

The second stage of the Process elaborates the goal diagram with communicating goals.
The Contract Net case study is an interaction protocol that involves multiple agents
at all of the stages of the interaction. The communicating goals elaborated in the goal
diagram are broadcast goals. The roles that can be identified for the case study are the
initiator of the contract net and the participants. There will be one agent that takes
the initiator role for each interaction and multiple agents will take the participant role.
A messaging medium resource is required for the agents to communicate.

Figure 7.6 shows the goal diagram that includes the elaboration to the communicating
goals. Because of space restrictions the send and receive goals shown in Figure 7.6 have
been labelled S for the send goals and R for the receive goals. Some of the sets of sub-
goals can occur multiple times and some have been given completion conditions. The
completion condition complete = receive 1+ means that the sub-goals can be considered
completed if they have been fulfilled at least once.

The communication goals all involve broadcast relationships and those that are related
with a *COMM relationship will require both the send and receive goals to be able to

Chapter 7 Case Study : Contract Net 103

occur multiple times. Part of the specification of the third refinement is shown below
to describe how the elaboration of the goal diagram can be translated into the Event-B
model. The full specification of this refinement model can be found in Appendix B.

Figure 7.7 shows the invariant conditions for the first three sets of communicating goals
and the role variables. The variables for the communicating goals are suffixed with an
‘S’ for the send goals and an ‘R’ for the receive goals. The communicating goals for the
Contract Net are all broadcast goals and are specified as many-to-many relationships
between CONVERSATION and AGENT. The COMM relationship requires that the receive
goals are all specified as subsets of the send goals. The BCOMM relationship between
the communicating goals for the abstract Call For Proposals goal allows the send goal to
occur once and the receive goal to occur multiple times. This means that the refinement
relationship with the abstract event should be with the send event. The abstract goals
can all be allocated to the agent responsible for the send goals. In addition to the
specification of the communicating goals for this refinement the agent roles need to be
modelled. The roles identified in the goal diagram are the initiator and the participants.
The agents that will perform the roles are identified when the call for proposals is
first made. The domain of the role variables is specified as the domain of the cfpS

variable. There is one initiator for each conversation and this is specified as a total
function between the domain of cfpS and AGENT. There can be multiple participants in
a conversation and the role variable for participant is specified as a relationship between
the domain of cfpS and AGENT.

cfpS ⊆ cfp
cfpR ⊆ cfpS
proposeS ⊆ proposed
proposeR ⊆ proposeS
refuseS ⊆ refused
refuseR ⊆ refuseS
initiator ∈ dom(cfpS) → AGENT
participant ∈ dom(cfpS) ↔ AGENT
proposeS , refuseS ⊆ cfpR

Figure 7.7: Contract Net: State of the Second Refinement

The events shown in Figure 7.8 model the Contract Net case study up to the point where
proposals and refusals have been received. The events for the communicating goals have
additional variables that represent the agent involved in the stage of the conversation.
The role variables are updated in the sendCfp event because it represents the left-most
set of communicating goals in which both roles are involved. The required role for the
agent involved in the event is specified as part of the guards for the remaining events.
The receiveCfp event can occur multiple times and is introduced as a new event.
The send events for the Propose and Refuse communicating goals have a guard that
upholds the abstract XOR relationship e.g. c 7→ a /∈ refused . The completion conditions
specified in the goal diagram for several of the communicating goals require at least one
relationship to be present in the variables for the receive goals. This condition for the

Chapter 7 Case Study : Contract Net 104

Propose communicating goals is shown in the guard for the select event that specifies
c ∈ dom(proposeR), ensuring that there is at least one relationship in the proposeR

variable with the conversation in the domain.

sendCfp REFINES callForProposals receiveCfp

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ cfpS
c /∈ dom(cfpS) c 7→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT c 7→ a ∈ participant
a ∈ AGENT THEN

dom(as) = {c} cfpR := cfpR ∪ {c 7→ a}
ran(as) ⊆ AGENT \ {a} END

THEN

cfp := cfp ∪ as
cfpS := cfpS ∪ as
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ as

END

sendRefusal REFINES refuse sendProposal REFINES propose

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cfpR c 7→ a ∈ cfpR
c 7→ a /∈ refused c 7→ a /∈ proposed
c 7→ a /∈ proposed c 7→ a /∈ refused
c 7→ a ∈ participant c 7→ a ∈ participant

THEN THEN

refused := refused ∪ {c 7→ a } proposed := proposed ∪ {c 7→ a}
refuseS := refuseS ∪ {c 7→ a} proposeS := proposeS ∪ {c 7→ a}

END END

receiveProposal receiveRefusal

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ proposeS c 7→ a ∈ refuseS
c 7→ a /∈ proposeR c 7→ a /∈ refuseR
c 7→ a ∈ participant c 7→ a ∈ participant

THEN THEN

proposeR := proposeR ∪ {c 7→ a} refuseR := refuseR ∪ {c 7→ a}
END END

select REFINES select1

ANY c, as WHERE

c ∈ dom(proposeR)
as ⊆ {c} � proposeR
c /∈ dom(selected1)

THEN

selected1 := selected1 ∪ as
END

Figure 7.8: Contract Net: Selected Events From the Second Refinement

All of the events for this stage of the Process have been introduced to the model. The
resources identified for the system need to be introduced and then the model needs to
be decomposed into the individual component models.

The introduction of the messaging medium resource adds a message record to the context
of the model along with fields for the sender, receiver and conversation for the message
record. The fourth refinement of the Contract Net case study introduces variables for
each type of message being sent that can be used to pass the messages between the
events. The information that is accessible as part of each message record allows the

Chapter 7 Case Study : Contract Net 105

shared variables to be encapsulated by the agent roles that have been allocated the
events. Two further role variables can be introduced so each of the agent role components
will have a record of the different roles of the agents that they are interacting with.

An extract from the state of the third refinement is shown in Figure 7.9. It shows the
specification of the first refinement of the messaging medium for the exchange of call for
proposals messages. A variable, cfpM, is specified as a subset of MESSAGE. Another
invariant uses the join operator to allow the cfpS variable to be encapsulated by the
agent role that sends the message and the messaging medium variable to be used for
coordination.

cfpM ⊆ MESSAGE
cfpS = ((cfpM � messageConversation)-1 ; receiver)
pInitiator ∈ dom(cfpR) ∪ dom(cancelR) → AGENT
pParticipant ∈ dom(cfpR) ∪ dom(cancelR) ↔ AGENT
pInitiator ⊆ initiator
initiator = ((cfpM ∪ cancelM) � messageConversation)-1; sender
pParticipant ⊆ participant
participant = ((cfpM ∪ cancelM) � messageConversation)-1; receiver)

Figure 7.9: Contract Net: Extract From the State of the Third Refinement

Because messages are now being sent and more information is available to each agent
the information about the roles of each agent can be encapsulated within each agent.
Two more variables that record the role information need to be specified so each role
has a record of their role and the agents that perform the opposing roles. In the
case study the original role records are encapsulated in the initiator role. The two
new variables, pInitiator and pParticipant, are encapsulated in the participant role.
The invariant conditions specify the new role variables as a subset of the original role
variables. The roles can be recorded by the participant on the receipt of a call for
proposals message. A further invariant for each new role variable, using the join op-
erator, relates the original role variable to the fields of a message e.g. participant =
((cfpM ∪ cancelM) � messageConversation)-1; receiver). Because it would be possible
for a cancel message to be received before the call for proposals message the cancelM

variable is included in the domain restriction for the invariant conditions. It can then
be proven that the information added to the new role variable on the receipt of a call for
proposals message is already held in the original role variable and the subset relationship
is upheld.

Figure 7.10 shows the sendCfp and receiveCfp events from the fourth refinement.
Event variables have been added to represent the messages being sent and received.
When a message is broadcast the guards of the events use a relational image of the mes-
sage fields to restrict the values of a group of messages e.g. messageConversation[ms] =
{c}. The relational image of a relationship, e.g. r = {{x , y}, {x , z}}, produces the range
of the relationship where the domain is the given set, e.g. r [{x}] = {y , z}. The cfpM

variable is used to pass messages between the events and the cfpS variable is no longer

Chapter 7 Case Study : Contract Net 106

accessed in the receiveCfp event. The original role variables are no longer accessed by
the receiveCfp event and the new role variables, pInitiator and pParticipant, are
updated by the information in the message record by the action of the event.

sendCfp REFINES sendCfp receiveCfp REFINES receiveCfp

ANY c, as, a, ms WHERE ANY c, a, m WHERE

c ∈ CONVERSATION m ∈ cfpM
c /∈ dom(cfp) c 7→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT receiver(m) = a
dom(as) = {c} messageConversation(m) = c
a ∈ AGENT THEN

ran(as) ⊆ AGENT \ {a} cfpR := cfpR ∪ {c 7→ a}
ms ⊆ MESSAGE pParticipant := pParticipant ∪ {c 7→ a}
sender [ms] = {a} pInitiator := pInitiator ∪ {c 7→ sender(m)}
receiver [ms] = ran(as) END

messageConversation[ms] = {c}
THEN

cfp := cfp ∪ as
cfpS := cfpS ∪ as
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ as
cfpM := cfpM ∪ ms

END

Figure 7.10: Contract Net: Example Events of the Fourth Refinement

The fifth refinement model requires the context for the model to be extended to in-
clude a specification of the message type. As with the Query-If case study the different
types of messages have been declared as disjoint constant subsets of the message record.
Figure 7.11 shows the extended context.

CONSTANTS

CFP, PROPOSE, REFUSE, ACCEPT, REJECT, INFORM, FAIL, CANCEL, INFORMCANCEL, FAILCANCEL

AXIOMS

CFP , PROPOSE , REFUSE , ACCEPT , REJECT , INFORM , FAIL, CANCEL,
INFORMCANCEL, FAILCANCEL ⊆ MESSAGE
disjoint(CFP , PROPOSE , REFUSE , ACCEPT , REJECT , INFORM , FAIL, CANCEL,
INFORMCANCEL, FAILCANCEL)

Figure 7.11: Contract Net: Extended Context for the Fifth Refinement

An extract from the state of the fifth refinement is shown in Figure 7.12. A single
variable, msgset, is specified to replace the individual messaging mediums from the
abstract model. The gluing invariant relates the abstract cfpM variable to all of the
messages in msgset that are also in the type CFP.

The events of the refinement have an additional guard that specifies the type of message
and the action of the events are refined to add the messages to the single messaging
medium. The sendCfp and receiveCfp events from the fifth refinement are shown in
Figure 7.13.

The variables for the roles have been encapsulated and the messaging medium resource
has been specified. The system model can now be decomposed into the components

Chapter 7 Case Study : Contract Net 107

VARIABLES

cfpS, cfpR, msgset

INVARIANTS

msgset ⊆ MESSAGE
cfpM = CFP ∩ msgset = ∅

Figure 7.12: Contract Net: State of the Fifth Refinement

sendCfp REFINES sendCfp receiveCfp REFINES receiveCfp

ANY c, as, a, ms WHERE ANY c, a, m WHERE

c ∈ CONVERSATION m ∈ msgset
c /∈ dom(cfp) c 7→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT receiver(m) = a
a ∈ AGENT messageConversation(m) = c
dom(as) = {c} m ∈ CFP
ran(as) ⊆ AGENT \ {a} THEN

ms ⊆ MESSAGE cfpR := cfpR ∪ {c 7→ a}
sender [ms] = {a} pParticipant := pParticipant ∪ {c 7→ a}
receiver [ms] = ran(as) pInitiator := pInitiator ∪ {c 7→ sender(m)}
ms ⊆ CFP END

messageConversation[ms] = {c}
THEN

cfp := cfp ∪ as
cfpS := cfpS ∪ as
initiator := initiator ∪ {c 7→ a}
participant := participant ∪ as
msgset := msgset ∪ ms

END

Figure 7.13: Contract Net: Example Events of the Fifth Refinement

for the agent roles and the messaging medium. The decomposition creates abstract
machines of the components and a refinement of the system model that synchronises the
events of the components to model the system functionality.

Figure 7.14 shows the sendCfp event from the refinement model and the events from
the initiator role abstract machine and messaging medium abstract machine components
that are used to fulfill the event functionality.

The component for the messaging medium differs for this case study by including an
extra event for broadcasting that adds a subset of messages to the messaging medium.

The sendCfp event from the sixth refinement declares a variable m that is assigned the
output from the sendCfp event in the initiator component model and then sent as a
parameter to the bcast event in the middleware component model.

Chapter 7 Case Study : Contract Net 108

REFINEMENT m6 REFINES m5

sendCfp =

VAR m IN

m ← initiator .sendCfp;
mw .bcast(m)

END

MACHINE initiator0

ms1 <-- sendCfp = MACHINE middleware0

ANY c, as, a, ms WHERE bcast (ms) =

c ∈ CONVERSATION ∧ WHEN

as ∈ CONVERSATION ↔ AGENT ∧ ms ⊆ MESSAGE
dom(as) = {c} ∧ THEN

a ∈ AGENT ∧ msgset := msgset ∪ ms
ran(as) = AGENT \ {a} ∧ END

c /∈ dom(cfp) ∧
ms ⊆ MESSAGE ∧
sender [ms] = {a} ∧
receiver [ms] = ran(as) ∧
messageConversation[ms] = {c} ∧
m ⊆ CFP

THEN

cfp := cfp ∪ as ||
cfpS := cfpS ∪ as ||
initiator := initiator ∪ {c 7→ a} ||
participant := participant ∪ as ||
ms1 := ms

END

Figure 7.14: Contract Net: Synchronising the Sixth Refinement Model and the Ab-
stract Component Models

Chapter 8

Fault-Tolerance Modelling

Patterns for Multi-Agent Systems

This chapter introduces a set of patterns for modelling fault-tolerance in Event-B models
of multi-agent systems. How fault-tolerance can be modelled in multi-agents systems
is discussed followed by how modelling patterns can be used in Event-B. A modified
version of the Contract Net case study is introduced. Each of the patterns are described
and provide an example pattern based on the Contract Net case study. Related work
on the use of patterns in Event-B and in multi-agent system development is discussed.

Design patterns are a method of capturing and communicating design expertise that can
be re-used in further designs. The fault-tolerance of a system is its ability to manage
faults that will enable it to continue to function as it was designed. A set of fault-
tolerance patterns have been developed to help specify fault-tolerance in Event-B models
of multi-agent systems. The Contract Net case study will be used to illustrate the
application of the patterns. The FIPA specification that was used as inspiration for
the design of the Contract Net case study includes stages of the interaction that are
designed to cope with faults that arise during multi-agent negotiation. This means
that some of the identified patterns are already part of the case study specification. The
specification of these fault-tolerance techniques was used as the starting point for several
of the identified patterns.

The fault-tolerance patterns consist of three elements. Each of the elements can be used
separately. Their separation should make it possible to apply the patterns to other event-
based formal specification methods. The formal elements make the pattern more specific
to the Event-B method. An Event-B extract from the Contract Net case study provides
a detailed example of how the pattern can be applied to an Event-B development.
The extract specifications have the potential to be re-used in other developments. The
patterns model an abstraction of fault-tolerance and are intended to ensure that the

109

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 110

faults and the methods for coping with the faults are included in the specification of a
multi-agent system.

8.1 Fault-Tolerance in Agent Interaction

A fault-tolerant system is one that can continue to function as it was designed in the pres-
ence of faults (Anderson and Lee (1981)). A multi-agent system has to be able to cope
with the faults that can occur in any distributed system. Alongside the fault-tolerance
requirements of a distributed system the complexity of agent interactions raises further
requirements. A multi-agent system needs to be able to manage the communications
required for the agents to coordinate their knowledge and actions. A multi-agent system
also needs to be able to cope with the complex behaviour of autonomous agents.

Fault-tolerance in distributed systems requires that the system can cope with faults in
communication and faults in the behaviour of the distributed components. The system
must be able to continue to function if there is a failure in communication between nodes
or if a node fails and ceases to communicate. The system must also be able to cope if a
node in the system is prevented from completing a task it has been delegated.

Fault-tolerance in multi-agent systems also requires that the system can cope with the
rational and autonomous behaviour of agents, which can make their behaviour unpre-
dictable, and the many dynamic interactions required for the system to function. Ra-
tional agents will stop pursuing a goal if they believe that the goal has already been
achieved or that it cannot be achieved. An agent that is autonomous is not required to
complete any tasks requested by other agents. The task may conflict with its existing
goals and, therefore, not be desirable for the agent to complete. The heterogeneity and
dynamic interactions of a multi-agent system may lead to agents receiving messages that
they do not understand or that are out of expected order. The agents must be able to
handle such faults in interactions and communicate their reactions to these faults.

The fault-tolerance described above ensures that an agent will continue to be able to
provide a service regardless of any failures in a particular interaction. A conversation
between two agents may lead to the failure of an agent to fulfill a goal, but that agent
will still be able to perform its role in another conversation. Patterns for fault-tolerance
at the conversation level, e.g. having a replicated agent that will continue to operate in
place of a failed agent, is a possible subject for future work.

Types of patterns and collections of patterns are described in Chapter 5 Section 5.7. The
patterns presented in this chapter are not a catalogue because they offer solutions to
one aspect of design rather than a selection of aspects. They are not a pattern language
because they cannot be combined independently from a development model and offer no
alternative solutions. The patterns are most similar to refinement patterns. They are

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 111

different in that they provide an abstract pattern that needs to be applied to, or already
present in, the abstract machine of the development and are not intended to be applied
solely as a refinement step, but integrated into the refinement chain.

8.2 Fault-Tolerance Patterns for Event-B Models of Multi-

Agent Systems

There is an issue that arises when developing patterns for a refinement-based devel-
opment method. For the pattern to be applied in a refinement there must be some
abstraction of its function in the abstract model of the system. Without this the mecha-
nism introduced by the pattern it will be difficult to integrate into the basic functioning
of the system model. An alternative is to create patterns that can be applied only at
the abstract machine level.

Fault-tolerance is not necessarily a feature of a system that is appropriate to model in
detail at the most abstract level. It is often a part of the communication infrastructure
or a component of individual nodes and, therefore, will be modelled in refinement. The
patterns presented in this chapter include an example Event-B specification from a
refinement model.

Removing the concept of refinement in an Event-B modelling pattern will limit the use-
fulness of the pattern for providing a complete solution. Including a complete refinement
chain as part of the pattern would predefine the possible refinement steps required for
the pattern to be applied. A developer may not be able to then apply the pattern to a
development with a dissimilar refinement chain. Providing an example specification of a
refinement and not providing support for modelling an abstraction will leave the devel-
oper with the task of finding an abstraction, and then refining it to the refinement level
at which the pattern has been applied. This approach would only provide an incomplete
solution of the pattern and may lead to the incorrect application of the pattern.

Each pattern includes a description, interaction diagram and Event-B extracts from
the Contract Net case study. The description for each of the patterns includes a name,
problem statement and solution statement. The description can be applied to any event-
based specification. The problem statement outlines the issues that are present in a
multi-agent system for which the application of the pattern will model a solution. The
solution describes that steps that can be taken to solve the problem in an event-based
specification. The interaction diagrams show how the different agent roles in the system
interact to perform the fault-tolerant behaviour. Several of the patterns are accompanied
by diagrams that show the variations required for one-to-many interaction. The Event-
B extracts include an abstraction of the pattern and a more concrete pattern that
are examples taken from the Contract Net case study. The abstraction of the pattern

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 112

will need to be present in the Event-B abstract machine. The developer may need to
make intermediate refinement steps between the abstract pattern and the more concrete
pattern. The pattern is an extract from a refinement model and the refinement chain of
the model may need to be adapted to integrate the application of the pattern.

8.3 Applying the Patterns

Figure 8.1 shows how the patterns can be applied to the refinement chain of an existing
Event-B model. The extends relationship shown is similar to those found in Back (2005),
but has not been formally defined. The extends relationship requires the addition to, or
modification of, the events and variables in the model for the interaction specified in the
pattern to be included in the extended model. If the events and variables required for the
pattern already exist in the extended model no additions or modifications are necessary.
The Event-B examples include gluing invariants that relate the abstract variables to the
concrete variables. These can potentially be re-used in the extended refinement chain
to help the developer specify the refines relationship.

66

�

� Abstract
Example

Abstract
Machine

Refinement Concrete
Example

Refines

Matches / Extends

Matches / Extends

Figure 8.1: Applying the Patterns to an Existing Model

The patterns have each been applied in separate developments to the initial chain. This
ensures that there is no dependency between the patterns and, therefore, the order in
which they are applied has no importance. All of the patterns have also been applied
sequentially to the initial chain. This is to provide assurance that there are no conflicts
between the patterns. Figure 8.2 illustrates how a collection of patterns can be applied
to an Event-B refinement chain. Applying Patterni to the initial chain produces Chain2
and applying Patternj to Chain2 produces Chain3. Patternj could be applied before
Patterni to produce the same result (Chain3). A possible direction for future work
would be to find a method to prove the orthogonality of the patterns.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 113

N1

M1 M2 M3

N2 N3

6 6 6
- - -

Initial Chain Chain 2 Chain 3

Patterni Patternj
Refines

Figure 8.2: Effect of Applying Patterns

The selection of patterns provided in this chapter have been chosen because they suffi-
cient and necessary to provide a basic level of fault-tolerance for each interaction in a
multi-agent system. This fault-tolerance will allow an agent to continue to function de-
spite any faults that may arise in a particular conversation. The patterns were selected
by reviewing the interaction protocols provided by FIPA and analysing the potential
faults in the different stages of the interactions. The potential faults found from the
analysis are:

1. The agent controlling the conversation changes its goals and requires the conver-
sation to be cancelled.

2. A participating agent stops responding.

3. A participating agent refuses to participate.

4. There are no available participants.

5. A participating agent cannot complete a task that it has committed to.

6. Arbitrary messages / Protocol error.

Fault-tolerance for the first fault is provided by the Cancel pattern. Applying the Cancel
pattern to a model of a multi-agent system adds an interaction to the model that allows
the agent that controls the conversation to cancel an interaction. The fault-tolerance for
the second and fourth fault is provided by the Timeout pattern. Applying the Timeout
pattern will add a deadline to the model and events to allow the dealine to be enforced.
This pattern may be required to be applied several times in a complex interaction. The
third fault is provided for by the Refuse pattern. This pattern allows an agent to refuse
a request by adding to the model the events required for the agent to make the refusal.
The fifth potential fault is dealt with by the Failure pattern. Applying the Failure
pattern provides events in the model to allow the participant to inform the requesting
agent of a failure allowing the agent to then take steps to recover from that failure.
Fault-tolerance for the final fault can be provided by the Not-Understood pattern. The
pattern provides an interaction that informs both parties of the fault that has occurred.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 114

The set of patterns described in this chapter cover all of the potential faults in multi-
agent interaction as found in the analysis described above. Each pattern does not
influence the application of the other patterns and this allows a pattern to be applied
several times, if required, to a model of an interaction. All of the patterns may not be
needed in all interactions. They can be applied individually and each pattern does not
require the application of the other patterns. This allows the developer to apply only
the patterns that are sufficient for the particular development.

8.4 Initial Development Chain for the Contract Net

To present the fault-tolerance patterns a simplified version of the Contract Net case
study is used as an initial chain. The patterns will each be applied to the model in the
following sections.

The development presented here includes an abstract model and one refinement model.
The abstract model models conversations between agents and the refinement introduces
the agents involved in the conversation to the model. Initially only successful conversa-
tions of the contract net interaction protocol are modelled. The abstract model shown in
Figure 8.3 includes four variables that represent states that the conversation will move
through. The variables are not modelled as disjoint sets. Instead, the order of the con-
versation is enforced by specifying the variable for each state as a subset of the previous
state. The cfp variable represents the state after a call for proposals has been initiated
by an agent. The responded variable represents the participating agents responding to
the call for proposals. The selected variable represents the initiator choosing one or
more proposals to accept. The informed variable models the state where the selected
agents have informed the initiator of the successful completion of the task.

The events of the abstract machine move the conversation through the different states
as the conversation progresses. The callForProposals event adds a conversation to the
cfp state. The respond event takes a conversation that is in the cfp state and puts it in
the responded state. The select event takes a conversation that is in the responded

state and adds it the the selected state. The inform event takes a conversation that is
in the selected state and adds it to the informed state to complete the conversation.

The refinement of the abstract model incorporates the interaction between the agents
that are involved in the conversation. The invariants for the refinement model are shown
in Figure 8.4. The variables of the model represent messages being sent and received
by the agents in the system. The variables that represent a message being sent are
suffixed with an ‘S’ and those that represent a message being received are suffixed with
an ‘R’. The conversation is between multiple agents and so the variables are specified as
relationships between a set of conversations and a set of agents. For example, c 7→ a ∈
cfpS means that agent a has been sent a call for proposals message within conversation

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 115

INVARIANTS

cfp ⊆ CONVERSATION
responded ⊆ cfp
selected ⊆ responded
informed ⊆ selected

EVENTS

callForProposals

ANY c WHERE

c ∈ CONVERSATION
c /∈ cfp

THEN

cfp := cfp ∪ {c}
END

respond

ANY c WHERE

c ∈ cfp
c /∈ responded

THEN

responded := responded ∪ {c}
END

select

ANY c WHERE

c ∈ responded
c /∈ selected

THEN

selected := selected ∪ {c}
END

inform

ANY c WHERE

c ∈ selected
c /∈ informed

THEN

informed := informed ∪ {c}
END

Figure 8.3: Abstract Machine of the Initial Chain

c and c 7→ a ∈ cfpR means that agent a has received a call for proposals message within
conversation c. A message must be sent before it can be received and this is modelled
by specifying a subset relationship between the sent variables and the received variables,
e.g. cfpR ⊆ cfpS . Some of the variables from the abstract machine are replaced by the
message variables in the refinement. The last two invariants are the gluing invariant
and specify the refinement relationships between the abstract variables that represent
the state of the conversation and the concrete variables that model messages being
broadcast.

The events of the refinement are shown in Figure 8.5. The sendCfp event refines the ab-
stract callForProposals event. It models the broadcast of a call for proposals message
from agent a to all other agents (AGENT \ {a}) by a set of relationships, as, between a
conversation and the agents in the system and adds it to the cfpS state. The receiveCfp
event models a message being received by an agent by selecting a relationship, c 7→ a,
that is in the cfpS state and adding it to the cfpR state. The sendProposal event
can occur when there is a relationship in the cfpR state and the proposal is sent when

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 116

cfpS , proposeS , acceptS , rejectS , informS ∈ CONVERSATION ↔ AGENT
cfpR ⊆ cfpS
proposeR ⊆ proposeS
acceptR ⊆ acceptS
rejectR ⊆ rejectS
informR ⊆ informS
proposeS ⊆ cfpR
acceptS ⊆ proposeR
informS ⊆ acceptR
cfp = dom(cfpS)
selected = dom(acceptS)

Figure 8.4: Invariants of the Refinement of the Initial Chain

the relationship is added to the proposeS state. The receiveProposal event adds a
relationship that is in the proposeS state to the proposeR state. The responded event
is a refinement of the abstract respond event and represents the initiator receiving the
required responses. The select event broadcasts two different messages. One group of
agents, as, will receive an accept message in response to their proposal and another group
of agents, ar , will receive a reject message. The receiveAccept and receiveReject

events represent those messages being received by the participants. The sendInform

event models an agent that has received an accept message sending an inform message
following the successful completion of their task. The receiveInform event represents
this message being received. The final informed event refines the abstract inform event
and models the initiator concluding that the contract has been successfully completed
following the receipt of at least one inform message.

The set of fault-tolerance patterns presented in this chapter model solutions for faults
that arise in multi-agent systems. This includes faults that are found in ordinary dis-
tributed systems. The Timeout pattern prevents an agent from indefinitely waiting for
a communication. This allows the agent to cope with faults in either the communication
medium, or other nodes or agents in the system. The failure of a node to complete a
delegated task is modelled by the Failure pattern. A rational agent altering its goals is
modelled by the Cancel pattern. The Refuse pattern allows the system to cope with an
agent deciding not to participate in an interaction. The Not-Understood pattern models
the reaction of agents to unexpected communications. With the patterns specified in an
Event-B development the developer can then refine the models to include more detail
on how the system or individual agent will manage these faults.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 117

sendCfp REFINES callForProposals receiveCfp

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ cfpS
c /∈ dom(cfpS) c 7→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT THEN

a ∈ AGENT cfpR := cfpR ∪ {c 7→ a}
dom(as) = {c} END

ran(as) = AGENT \ {a}
THEN

cfpS := cfpS ∪ as
END

sendProposal receiveProposal

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cfpR c 7→ a ∈ proposeS
c 7→ a /∈ proposeS c 7→ a /∈ proposeR

THEN THEN

proposeS := proposeS ∪ {c 7→ a} proposeR := proposeR ∪ {c 7→ a}
END END

responded REFINES respond select REFINES select

ANY c WHERE ANY c, as, ar WHERE

c ∈ dom(proposeS) c ∈ dom(proposeR)
c /∈ responded c /∈ dom(acceptS)

THEN c /∈ dom(rejectS)
responded := responded ∪ {c} as ⊆ {c} � proposeR

END as 6= ∅
ar = {c} � proposeR \ as

receiveAccept c ∈ responded
ANY c, a WHERE THEN

c 7→ a ∈ acceptS acceptS := acceptS ∪ as
c 7→ a /∈ acceptR rejectS := rejectS ∪ ar

THEN END

acceptR := acceptR ∪ {c 7→ a} receiveReject

END ANY c, a WHERE

sendInform c 7→ a ∈ rejectS
ANY c, a WHERE c 7→ a /∈ rejectR

c 7→ a ∈ acceptR THEN

c 7→ a /∈ informS rejectR := rejectR ∪ {c 7→ a}
THEN END

informS := informS ∪ {c 7→ a} receiveInform

END ANY c , a WHERE

informed REFINES inform c 7→ a ∈ informS
ANY c WHERE c 7→ a /∈ informR

c ∈ dom(informR) THEN

c /∈ informed informR := informR ∪ {c 7→ a}
THEN END

informed := informed ∪ {c}
END

Figure 8.5: Events of the Refinement of the Initial Chain

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 118

8.5 Timeout Pattern

Name:Timeout
Problem: An agent may become deadlocked during a conversation whilst waiting
for replies. Specifying a deadline will allow the agent to continue the conversation
as if it were expecting no more replies.
Solution: Specify a state for the conversation that models a deadline passing. Add
an event to the specification that will change the state of the conversation from
before the deadline to after the deadline. Split the event for receiving the replies
into two. One event will have a guard that is true before the deadline and one will
have a guard that is true after the deadline. The event after the deadline will lead
to the rejection of any replies.

In the case of a communication failure, or the failure of another agent or node in the
system, an agent that continues to wait for a response to a communication may wait
an excessively long time or may never receive the reply. This is not practical for most
systems, especially a multi-agent system that may be expected to be able to adapt
under such circumstances. An agent should be able to decide to either continue the
conversation without waiting for a response or to resolve its goal in another way, when
it becomes likely that a response will not be forthcoming. An agent may be required to
make a decision on how long it should wait depending on its goals for the efficiency of
its current task.

The Timeout pattern prevents an agent from becoming deadlocked whilst waiting for
a reply. It does this by modelling a deadline after which the behaviour of the system
changes. The interaction diagrams in Figure 8.6 shows the messages that are exchanged
between the roles involved in the conversation. The Timeout pattern requires that any
replies received after the deadline will be automatically rejected. The agent that has the
role of initiating the request will be responsible for enforcing the deadline. Diagram A
shows a successful one-to-one interaction with the response to a request being received
by the initiator before the deadline. In this case the reply from the initiator will depend
on the initiator’s decision about the response. Diagram B shows the initiator’s deadline
occurring before the response is received and in this case the reply from the initiator is
a rejection of the response. Diagram C shows how a one-to-many interaction can affect
the Timeout pattern. Responses are received from different participating agents before
and after the deadline has passed. Those received before the deadline will elicit replies
that depend on a decision that is made by the initiating agent. Those received after will
result in a rejection.

Figure 8.7 shows the callForProposals, respond and failure events that are required
for the Timeout pattern to be applied in the abstract machine. The callForProposals

and respond events are already present in the initial chain. The failure event has
been added to model the system responding when no proposals are received before the

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 119

:Initiator :Initiator :Participant

:Initiator :Participant:Participant

:Participant

-

�

-

-

-

-
�

-

- -
�

- �

-

-

-
-

Diagram A Diagram B

Diagram C

decision

deadline

deadline

decision

deadline

request request

request

response

response

response

response

accept/reject

reject

accept/reject

reject

Figure 8.6: Interaction Diagram for Timeout Pattern

deadline. The pattern for the timeout could be more general than that taken from the
contract net case study. Any request by an agent that waits for a response could use
the Timeout pattern to ensure that the requesting agent does not wait indefinitely. The
abstract pattern in Figure 8.7 conforms to this general request-response pattern.

INVARIANTS

failed ⊆ cfp
EVENTS

callForProposals respond

ANY c WHERE ANY c WHERE

c ∈ CONVERSATION c ∈ cfp
c /∈ cfp c /∈ responded

THEN THEN

cfp := cfp ∪ {c} responded := responded ∪ {c}
END END

failure

ANY c WHERE

c ∈ cfp
c /∈ failed
c /∈ informed

THEN

failed := failed ∪ {c}
END

Figure 8.7: Abstract Events for the Timeout Pattern in the Contract Net

The invariant conditions for the refinement are shown in Figure 8.8. To create the

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 120

states for before and after the deadline two variables have been added to the model;
beforeTimeout and afterTimeout. The pattern could have been specified with just
the afterTimeout variable. Both variables were included to make the affect of the
deadline clear in the model. The beforeTimeout variable is specified as a subset of
the domain of the cfpS variable so the timeout cannot occur before the conversation
has begun. Variables have been added to the model to represent the proposals that are
received after the deadline, proposeRD, the reject messages sent in response to these
proposals, rejectSD, and then received, rejectRD. The failedCfp variable refines the
abstract failed variable to model the state when the deadline has passed, failedCfp ⊆
afterTimeout , and no proposals have been received, failedCfp ∩ dom(proposeR) = ∅.

beforeTimeout ⊆ dom(cfpS)
afterTimeout ⊆ beforeTimeout
proposeRD ⊆ proposeS
rejectSD ⊆ proposeRD
rejectRD ⊆ rejectSD
failedCfp ⊆ afterTimeout
failedCfp ∩ dom(proposeR) = ∅
failed = failedCfp

Figure 8.8: Invariants for the Refinement of the Timeout Pattern in the Contract Net

Events have been added to the initial chain and existing events have been modified
to apply the Timeout pattern. The new and modified events are shown in Figure 8.9
where the names of the new events, and the modifications to existing events, are under-
lined. The sendCfp event has an additional action that adds the conversation to the
beforeTimeout state. The guard of the receiveProposal event has been strengthened
so that it can only occur when the conversation is not in the afterTimeout state. The
new deadline event moves the conversation from the state beforeTimeout into the
state afterTimeout. The new receiveProposal2 event can only occur when the con-
versation is in the afterTimeout state. The action of the event adds the relationship
from the proposeS state to the new proposeRD state. The new sendReject event will
take a relationship that is in the proposeRD state and add it to the rejectSD state.
This models the initiator responding with a reject message to any proposals received
after the timeout. The new receiveReject2 event will take a relationship that is in the
rejectSD state and add it to rejectRD state. Instead of adding this as a new event a
developer could merge it with the existing receiveReject event from the initial chain.
The new failToPropose event refines the abstract failure event that was added to
the abstract model for the Timeout pattern. It can occur after the deadline has passed
and no proposals have been received.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 121

sendCfp REFINES callForProposals receiveProposal

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ proposeS
c /∈ dom(cfpS) c 7→ a /∈ proposeR
as ∈ CONVERSATION ↔ AGENT c /∈ afterTimeout
a ∈ AGENT THEN

dom(as) = {c} proposeR := proposeR
ran(as) = AGENT \ {a} ∪ {c 7→ a}

THEN END

cfpS := cfpS ∪ as receiveProposalD

beforeTimeout := beforeTimeout ∪ {c} ANY c, a WHERE

END c 7→ a ∈ proposeS
deadline c 7→ a /∈ proposeR

ANY c WHERE c 7→ a /∈ proposeRD
c ∈ beforeTimeout c ∈ afterTimeout
c /∈ afterTimeout THEN

THEN proposeRD := proposeRD
afterTimeout := afterTimeout ∪ {c} ∪ {c 7→ a}

END END

sendRejectD receiveRejectD

ANY c , a WHERE ANY c, a WHERE

c 7→ a ∈ proposeRD c 7→ a ∈ rejectSD
c 7→ a /∈ rejectSD c 7→ a /∈ rejectRD

THEN THEN

rejectSD := rejectSD ∪ {c 7→ a} rejectRD := rejectRD
END ∪ {c 7→ a}

END

failToPropose REFINES failure

ANY c WHERE

c /∈ dom(proposeR)
c ∈ afterTimeout
c /∈ failedCfp

THEN

failedCfp := failedCfp ∪ {c}
END

Figure 8.9: Concrete Events for the Timeout Pattern in the Contract Net

8.6 Refuse Pattern

Name: Refuse
Problem: An agent cannot support the action requested.
Solution: Add an event for an agent to send a refuse message in response to a
request and an event for an agent to receive a refuse message.

Not all agents that receive a request will be able to fulfill it. The request may be
in conflict with the agent’s own goals. This could be simply due to the agent being
overloaded and not wishing to take on any more tasks, or it could be that the agent is
competing against the requestor and it would not be in their interest to help. Software
design does not always implement the concept of a refusal. Object-based systems use
the term ‘design by contract’ to describe an obligation held by an object that it cannot
alter at runtime (Meyer (1997)). The autonomy of agents means that the obligations

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 122

between agents are weaker than in design by contract and a multi-agent system must
be designed to cope when an agent refuses to undertake a request.

The Refuse pattern differs from the Timeout pattern. In the Timeout pattern the agent
that sends the initial message, the initiator, makes the decision in specifying the deadline
that may lead to the failure of the conversation. The initiator then copes with the fault.
In the Refuse pattern it is the receiver of the initial message that makes the decision to
refuse the request and may trigger the failure of the conversation. The initiator must
then cope with the fault that has been triggered by the response from the participant.

The Refuse pattern allows an agent to respond to a request that it cannot support, that
is not correctly requested or that the requesting agent is not authorised to request. An
agent is allowed a choice when responding to a request. The agent can either agree to
fulfill the request or it can refuse.

:Initiator :Participant

-

:Initiator :Participant:Participant

- -

:Initiator :Participant:Participant

- -

�

�

-

�

�

-

�

�

-

Diagram A Diagram B

Diagram C

decision
/fail

decision
/fail

fail

request request

request

accept accept

refuse refuse

refuse

refuse

Figure 8.10: Interaction Diagram for Refuse Pattern

Figure 8.10 shows interaction diagrams for the Refuse pattern. Diagram A shows a
one-to-one interaction. The initiator agent sends a request to a participant agent. The
participant agent can respond with either an accept or refuse message. The initiator will
then make a decision and the interaction may fail if the accept message is not suitable or
a refuse message was sent. Diagrams B and C show one-to-many interaction. Diagram
B shows the case where a combination of accept and refuse messages are received in
response to the request. Diagram C shows the case where only refuse messages are
received and the only outcome is a failure of the interaction.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 123

The events that are required in the abstract machine for the Refuse pattern are the same
as those shown in Figure 8.7 for the Timeout pattern. To model the refuse pattern in the
refinement of the initial chain three variables and three events have been added. In the
contract net case study the refusals are modelled so they are equivalent to the proposals.
The invariants in Figure 8.11 specify variables that model sending and receiving refuse
messages. An additional invariant specifies that the proposals and refusals for a con-
versation cannot be from the same agent, refuseS ∩ proposeS = ∅. The failedCommit

variable models that state of the conversation when all of the replies are refusals. This
variable refines the abstract failed variable.

refuseS ⊆ cfpR
refuseR ⊆ refuseS
refuseS ∩ proposeS = ∅
failedCommit ⊆ dom(refuseR)
failedCommit ∩ dom(proposeR) = ∅
failed = failedCommit

Figure 8.11: Concrete Invariants for the Refuse Pattern in the Contract Net

The events for the pattern are shown in Figure 8.12. The guard of the sendProposal

event from the initial chain has been modified to prevent an agent that has made a
refusal for the conversation from also making a proposal. The sendRefusal event adds
a relationship that is in the cfpR variable to the refuseS variable. The receiveRefusal
event takes a relationship that is in the refuseS variable and adds it to the refuseR

variable. The failToCommit event models the case when all of the responses are refusals
and the conversation fails. This is a refinement of the abstract failure event.

sendProposal sendRefusal

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cfpR c 7→ a ∈ cfpR
c 7→ a /∈ proposeS c 7→ a /∈ proposeS
c 7→ a /∈ refuseS c 7→ a /∈ refuseS

THEN THEN

proposeS := proposeS ∪ {c 7→ a} refuseS := refuseS
END ∪ {c 7→ a}

END

receiveRefusal failToCommit REFINES failure

ANY c, a WHERE ANY c WHERE

c 7→ a ∈ refuseS c ∈ dom(refuseR)
c 7→ a /∈ refuseR c /∈ dom(proposeR)

THEN c /∈ failedCommit
refuseR := refuseR ∪ {c 7→ a} THEN

END failedCommit :=
failedCommit ∪ {c}

END

Figure 8.12: Concrete Events for the Refuse Pattern in the Contract Net

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 124

8.7 Cancel Pattern

Name: Cancel
Problem: The requesting agent no longer requires an action to be performed.
Solution: Add an event to the specification for an agent to send a cancel message
to an agent that has agreed to perform an action on its behalf. Add an event for
that agent to receive a cancel message. Further events need to be added to allow the
agent to reply with either an inform, if they have cancelled the action, or a failure,
if they have not, and for those messages to be received.

Once an agent has requested an action they can then request that it is cancelled. An
agent that exhibits rational behaviour may change its goals because the goal conflicts
with other goals, the agent no longer desires that the goal is fulfilled or the agent no
longer believes that the goal can be fulfilled (Ferber (1999)). For the initiating agent
to ensure that its beliefs about its environment are consistent it needs to know if the
agents to whom it has delegated tasks have managed to undo any actions that they
have performed. The responses of the agents may affect the actions that the initiating
agent takes in response to its change of goals. This potential remedial action by the
participating agents makes the Cancel pattern different from the Timeout pattern where
the participants do not have to take any action after the deadline has passed.

:Initiator :Participant

-

:Initiator :Participant:Participant

- -

:Initiator :Participant:Participant

- -

�

�

-

�

�

-

�

�

-

Diagram A Diagram B

Diagram C

cancelled
/fail

cancelled
/fail

fail

cancel cancel

cancel

inform inform

fail fail

fail

fail

Figure 8.13: Interaction Diagram for Cancel Pattern

The Cancel pattern allows the agent that initiated the conversation to cancel the con-
versation at any point. The Cancel pattern will cancel a single request in a one-to-one
conversation and will broadcast the cancellation in a one-to-many conversation to cancel

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 125

all of the requests. Figure 8.13 shows interaction diagrams for the Cancel pattern. Di-
agram A shows a one-to-one interaction. The initiator agent sends a cancel message to
a participant agent. The participant agent can respond with either an inform message
if they have successfully cancelled or a fail message if they have not. The initiator will
then act according to its knowledge about the state of the system. Diagrams B and C
show one-to-many interaction. Diagram B shows the case where a combination of inform
and fail messages are received in response to the cancel message. Diagram C shows the
case where only fail messages are received and the cancelling of the action fails.

The Cancel pattern requires a new variable and event to be added to the abstract
machine of the initial chain. The abstract pattern example in Figure 8.14 shows the
cancel event moving the conversation into the cancelled state.

INVARIANTS

cancelled ⊆ cfp
EVENTS

cancel

ANY c WHERE

c ∈ cfp
c /∈ cancelled

THEN

cancelled := cancelled ∪ {c}
END

Figure 8.14: Abstract Events for the Cancel Pattern in the Contract Net

The Cancel Pattern is modelled in the refinement as a collection of events that can occur
at any point in the conversation. Events model a cancel message being sent from the
initiating agent and received by the other agents involved. Events are also required to
model the participating agents responding to the cancel request to inform the initiating
agent whether they have managed to cancel their actions.

cancelS ⊆ cfpS
cancelR ⊆ cancelS
informCancelS ⊆ cancelR
informCancelR ⊆ informCancelS
failCancelS ⊆ cancelR
failCancelR ⊆ failCancelS
informCancelled ⊆ dom(informCancelR)
failCancelled ⊆ dom(failCancelR)
informCancelS ∩ failCancelS = ∅
informCancelled ∩ failCancelled = ∅
cancelled = informCancelled ∪ failCancelled

Figure 8.15: Invariants for the Refinement of the Cancel Pattern in the Contract Net

Figure 8.15 shows the invariant conditions from the Event-B example of the Cancel
pattern. The variables represent the states of the system as messages are sent and
received. The cancelS variable is a subset of the cfpS variable so a conversation cannot
be cancelled before it has begun. All of the other variables are specified as subsets
according to the order of the messages that they represent being sent and received.
InformCancelS and failCancelS are specified so the same agent cannot send an inform

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 126

and fail message in the same conversation, informCancelS ∩ failCancelS = ∅. The
informCancelled and failCancelled variables are specified so the conversation cannot
be in both states, informCancelled ∩ failCancelled = ∅. The final invariant condition
is the gluing invariant that relates the abstract cancel variable to a conjunction of the
informCancelled and failCancelled variables.

Figure 8.16 shows the events that have been added to the initial refinement model to
specify the Cancel pattern. The sendCancel event can be triggered by the initiating
agent at any point in the conversation. The cancel message is broadcast to every agent
involved in the conversation, as = {c}�cfpS . The receiveCancel event allows the par-
ticipants to receive the cancel message. The sendInformCancel and sendFailCancel

events model the participants sending a message to the initiator about the success or
failure of the cancellation. The receiveInformCancel and receiveFailCancel events
model the initiator receiving the message. The last two events, informCancelled

and failCancelled, refine the abstract cancel event and model the initiator evalu-
ating of the success of the cancellation. The guards for the two events specify that at
least one inform or fail cancel message has been received. The developer may want to
strengthen these guards. For example, the guard of the informCancelled event could
be strengthened to specify that all of the agents have replied with an inform message,
{c} � informCancelR = AGENT \ {a}, or that no fail messages have been received,
c /∈ dom(failCancelR).

8.8 Failure Pattern

Name: Failure
Problem: An agent is prevented from carrying out an agreed action.
Solution: Add an event for an agent to send a failure message after they have
committed to performing an action on behalf of another agent. Add an event for an
agent to receive a failure message after a commitment has been made and an event
for the system to respond to the failure.

An agent that makes a commitment to perform an action may be prevented from carrying
it out. The agent that requested the action should be informed of this failure so that its
beliefs do not become inconsistent.

Figure 8.17 shows interaction diagrams for the Failure pattern. Diagram A shows a
one-to-one interaction. The initiator agent sends a message that requests an action to
a participant agent. The participant agent can respond with either an inform message,
if they have successfully carried out the action, or a fail message, if they have not.
Diagrams B and C show one-to-many interaction. Diagram B shows the case where a
combination of inform and fail messages are received in response to the accept message.
The initiator will then be able to evaluate whether the task was carried out successfully.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 127

sendCancel receiveCancel

ANY c , as WHERE ANY c, a WHERE

c ∈ dom(cfpS) c 7→ a ∈ cancelS
as = {c} � cfpS c 7→ a /∈ cancelR
c /∈ dom(cancelS) THEN

THEN cancelR := cancelR ∪
cancelS := cancelS ∪ as {c 7→ a}

END END

sendInformCancel sendFailCancel

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cancelR c 7→ a ∈ cancelR
c 7→ a /∈ informCancelS c 7→ a /∈ failCancelS
c 7→ a /∈ failCancelS c 7→ a /∈ informCancelS

THEN THEN

informCancelS := informCancelS failCancelS := failCancelS
∪ {c 7→ a} ∪ {c 7→ a}

END END

receiveInformCancel receiveFailCancel

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ informCancelS c 7→ a ∈ failCancelS
c 7→ a /∈ informCancelR c 7→ a /∈ failCancelR

THEN THEN

informCancelR := informCancelR failCancelR := failCancelR
∪ {c 7→ a} ∪ {c 7→ a}

END END

informCancelled REFINES cancel failCancelled REFINES cancel

ANY c WHERE ANY c WHERE

c ∈ dom(informCancelR) c ∈ dom(failCancelR)
c /∈ informCancelled c /∈ failCancelled
c /∈ failCancelled c /∈ informCancelled

THEN THEN

informCancelled := informCancelled failCancelled := failCancelled
∪ {c} ∪ {c}

END END

Figure 8.16: Concrete Events for the Cancel Pattern in the Contract Net

Diagram C shows the case where only fail messages are received. The Failure pattern
is similar to the Refuse pattern where the responding agent has a choice of two replies
that affect the outcome of the interaction differently. It occurs at a different point in
the conversation. The Refuse pattern is used before a commitment is made and the
Failure pattern is required after a commitment has been made. The Failure pattern
differs from the Timeout pattern in the same way as the Refuse pattern. In the Failure
pattern the initiator may have to take action in response to a fault triggered by the
participant, whereas in the Timeout pattern the fault is triggered by the action of the
initiator setting the deadline.

Figure 8.18 shows the events from the abstract machine that are related to the Failure
pattern. The Failure pattern specifies the failure of the conversation after the selection
of the proposals has been made. Either the inform event or the failure event can
complete the conversation.

Figure 8.19 shows the invariants added for the Failure pattern. The Event-B models
the agents involved in the contract net interaction protocol sending failure messages
instead of inform messages after they have had their proposal accepted. The conversation

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 128

:Initiator :Participant

-

:Initiator :Participant:Participant

- -

:Initiator :Participant:Participant

- -

�

�

-

�

�

-

�

�

-

Diagram A Diagram B

Diagram C

success
/fail

success
/fail

fail

accept accept

accept

inform inform

fail fail

fail

fail

Figure 8.17: Interaction Diagram for Failure Pattern

select inform

ANY c WHERE ANY c WHERE

c ∈ responded c ∈ selected
c /∈ selected c /∈ informed
c /∈ failed c /∈ failed

THEN THEN

selected := selected ∪ {c} informed := informed ∪ {c}
END END

failure

ANY c WHERE

c ∈ cfp
c /∈ failed
c /∈ informed

THEN

failed := failed ∪ {c}
END

Figure 8.18: Abstract Events for the Failure Pattern in the Contract Net

cannot succeed and fail and this is modelled by an invariant condition that specifies the
intersection of the informed and failed variables as empty, informed ∩ failed1 = ∅.

failS ⊆ acceptR
failR ⊆ failS
failed1 ⊆ dom(failR)
informed ∩ failed1 = ∅
failed = failed1

Figure 8.19: Invariants for the Refinement of the Failure Pattern in the Contract Net

Figure 8.20 shows the three events that are added to the initial concrete model. The

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 129

sendFail event models a participant having received an accept message that instructs
it to carry out a task, c 7→ a ∈ acceptR, sending a failure message in response. The
receiveFail event models the initiator receiving the failure message. The failed

event refines the abstract failure event and can occur after a failure message has been
received.

sendFail receiveFail

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ acceptR c 7→ a ∈ failS
c 7→ a /∈ failS c 7→ a /∈ failR
c 7→ a /∈ informS THEN

THEN failR := failR ∪ {c 7→ a}
failS := failS ∪ {c 7→ a} END

END

failed REFINES failure

ANY c WHERE

c ∈ dom(failR)
c /∈ failed1
c /∈ informed

THEN

failed1 := failed1 ∪ {c}
END

Figure 8.20: Concrete Events for the Failure Pattern in the Contract Net

8.9 Not-Understood Pattern

Name:Not-Understood
Problem: An agent receives a message that it does not expect or does not recognise.
Solution: Specify an event for receiving a message with an unknown or unexpected
performative. Specify the action as replying with a not-understood message. Specify
an event for receiving a not-understood message.

The autonomy of the agents means that there is no guarantee of their behaviour and the
non-hierarchical nature of multi-agent systems often means that there is no single point
of control. For agents in a multi-agent system to maintain a correct understanding of
their environment they need to communicate with the other agents in the system to be
aware of the actions of the other agents. This can create a large number of messages
being passed between agents for them to be able to negotiate, query and inform. The
possible heterogeneity of the agents means that they may have a different understanding
of interaction protocols. The possibility of receiving arbitrary messages increases with
each of these factors and the system needs to be able to cope with such faults.

The concept of the not-understood message is described in FIPA (2002c). The not-
understood message communicates that the sending agent has received a message that
it does not understand. A not-understood message can be sent or received at any point
in the conversation.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 130

It is suggested in FIPA (2002c) that the action taken in response to a not-understood
message should be different when the conversation involves broadcast messages and sub-
protocols than that taken as part of a one-to-one conversation. It may be inappropriate
to cancel the conversation when there are multiple agents performing sub-protocols.
Each response to a not-understood message should be evaluated depending on the status
of the conversation and is not specified by the Not-Understood pattern.

The Not-Understood pattern involves agents receiving an arbitrary message, responding
with a not-understood message and agents receiving a not-understood message. The
action taken by the agent to cope with the potential fault is not modelled and is left for
the developer to treat.

Figure 8.21 shows an interaction diagram for the Not-Understood pattern. The inter-
action diagram shows an interaction between any two agent roles. One agent sends
another agent a message that the receiving agent does not understand. The response
from the receiving agent will be to reply with a not-understood message. The action
taken by the agent that receives the not-understood message depends on their role in
the conversation and the stage of the conversation.

:Any Role :Any Role

-

-

�

abitrary message

not-understood

action

Figure 8.21: Interaction Diagram for Not-Understood Pattern

To model the Not-Understood pattern two events have been added to the initial abstract
machine for the contract net case study. The events and variables are shown in Fig-
ure 8.22. The arbitraryComm event models the unrecognised message being received.
The receiveNotUnderstood event abstractly model an agent receiving a not-understood
message.

Figure 8.23 shows the extract from the Event-B refinement model that models the Not-
Understood pattern in the Contract Net case study. The unknownR variable represents
an arbitrary message being received and the notUnderstoodS variable represents a not-
understood message being sent in response to the receipt of an arbitrary message. The
notUnderstoodR variable represents a not-understood message being received.

The receiveArbitraryComm event models the receipt of a message that is not under-
stood by the receiving agent. The sendNotUnderstood event models a not-understood

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 131

INVARIANTS

recUnknown ⊆ CONVERSATION
recNotUnderstood ⊆ cfp

EVENTS

arbitraryComm receiveNotUnderstood

ANY c WHERE ANY c WHERE

c ∈ cfp c ∈ cfp
THEN THEN

recUnknown := recUnknown ∪ {c} recNotUnderstood :=
END recNotUnderstood ∪ {c}

END

Figure 8.22: Abstract Events for the Not-Understood Pattern in the Contract Net

message being sent in response to the receipt of this message. The receiveNotUnderstood
event models an agent receiving a not-understood message. Further refinements of the
example will model the agent’s reactions to receiving the not-understood message. An
initiator agent may decide to cancel the conversation or they may decide that the conver-
sation has failed. The decisions by the agents will depend on the stage of the conversation
when the not-understood message is received. This is left for the developer to decide
and model.

INVARIANTS

unknownR ⊆ cfpS
notUnderstoodS ⊆ unknownR
recUnknown = dom(notUnderstoodS)
notUnderstoodR ⊆ notUnderstoodS
recNotUnderstood = dom(notUnderstoodR)

EVENTS

receiveArbitraryComm

ANY c, a WHERE

c 7→ a ∈ cfpS
THEN

unknownR := unknownR ∪ {c 7→ a}
END

sendNotUnderstood REFINES arbitraryComm

ANY c, a WHERE

c 7→ a ∈ unknownR
c 7→ a /∈ notUnderstoodS

THEN

notUnderstoodS := notUnderstoodS ∪ {c 7→ a}
END

receiveNotUnderstood REFINES receiveNotUnderstood

ANY c, a WHERE

c 7→ a ∈ notUnderstoodS
c 7→ a /∈ notUnderstoodR

THEN

notUnderstoodR := notUnderstoodR ∪ {c 7→ a}
END

Figure 8.23: Concrete Invariants and Events for the Refinement of the Not-
Understood Pattern in the Contract Net

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 132

8.10 Related Work

This section describes work that is related to the ideas presented in this chapter. This
work outlines approaches for constructing patterns in the B-Method and Event-B. Other
work of interest are design patterns for multi-agent systems particularly patterns that
can be integrated with goal models that are used in multi-agent system design. Other
fault-tolerance techniques for multi-agent systems have been investigated and are sum-
marised in this section.

The B-Method is used in Blazy et al. (2003) to specify patterns, such as those identified
in Gamma et al. (1995), as abstract machines. The pattern machines are instantiated
by including another B model in the machine using the B-Method’s inclusion mecha-
nism. Pattern models can be composed to create a new pattern by using the inclusion
mechanism to construct a new machine from the separate patterns. These patterns are
specified at a single level of abstraction and are based on object-oriented development
methods.

A set of patterns that solve design problems that are common when using the B-Method
has been produced in Chan et al. (2007). The patterns they present include a pattern
to associate multiple B machines, a pattern to produce unique objects and patterns
for creating sub and super-types of B machines. The patterns are implemented as
either extracts of B machines or a description of how different mechanisms from the B-
Method can be used to solve a described problem alongside an example of the patterns
use. As with those described above, these patterns attempt to introduce some object-
oriented concepts into B machines, are at a single level of abstraction and mainly address
structural relationships between machines.

A refinement pattern for modelling time constraints in Event-B is presented in Cansell
and Méry (2007). They produce the pattern by constructing a generic Event-B model
that specifies the time constraints as a superposition refinement. This model can be
re-used to produce new refinements of the model to which the pattern is being applied.
The authors suggest that it would be possible to prove the pattern model and the proof
obligations generated by the pattern would not need to be discharged for the development
model.

There are several methods for the use of patterns in the development of multi-agent
systems. They are described and used with informal models. Coordination patterns,
including a pattern of the contract net protocol, are presented in Deugo et al. (2001), pat-
terns for mobile agent design are presented in Aridor and Lange (1998), and Schelfthout
et al. (2002) present patterns for implementing agents in object-oriented architectures.
A strategy for constructing and using design patterns for agent systems that uses goals
can be found in Weiss (2003). The patterns can be combined using a pattern language
to construct a multi-agent system design.

Chapter 8 Fault-Tolerance Modelling Patterns for Multi-Agent Systems 133

The patterns presented in this chapter provide fault-tolerance for the agents so they can
continue to provide a service. Further strategies for managing faults in agent conver-
sations include adapting general fault-tolerance techniques, such as replication Fedoruk
and Deters (2002), redundancy Kumar and Cohen (2000) and checkpoints Wang et al.
(2004), to multi-agent systems. Creating patterns for the specification of these fault-
tolerance strategies in multi-agent systems is a possible direction for future work.

The patterns presented in this chapter provide an abstraction of the pattern so the affects
of applying the pattern can be integrated into the Event-B refinement chain. The related
work described above use patterns either as a superposition refinement to an Event-B
model or as a component to a model. Integrating a pattern into the refinement chain
of a development offers the advantages of making the pattern a fundamental part of the
development. It is present in the abstraction of the model and can be analysed at all
levels of abstraction.

8.11 Summary

Event-B is a method that is suited to the specification of multi-agent systems as it has
been developed for modelling reactive and distributed systems. The patterns presented
above allow the developer to specify fault-tolerant behaviour in an Event-B model of a
multi-agent system.

The patterns are presented as three elements: a description, interaction diagrams and
Event-B examples. The Event-B examples make the patterns specific to Event-B de-
velopment. The other elements of the pattern are more generic and could be suitable
for other event-based formal methods. The inclusion of an abstraction of the pattern
creates a pattern that can be fully integrated into the refinement chain of a development.
The Event-B extracts included from the Contract Net case study show how the patterns
can be applied to the model of a complex multi-agent system. They also provide a re-
usable specification of the pattern at a single level of refinement. The full specification
of the simplified Contract Net case study, with all of the patterns applied, is provided
in Appendix C.

Chapter 9

Conclusion

The increase in complexity of distributed software systems requires that a method for
modelling such systems can model abstractions, such as agents, that are intended to
manage this complexity. Event-B is a method for modelling reactive and distributed
systems and should be capable of modelling agent-related concepts. The method pre-
sented in this thesis does not extend Event-B, but instead uses informal models and the
available modelling elements to capture the concepts required to construct models of
multi-agent systems.

The agent concepts used in the Incremental Development Process were taken from a
review of AOSE methodologies. The review found that the most common concepts,
besides agents, were goals, interaction and roles. The goals of the multi-agent system are
expressed as the events of an Event-B model, the interaction of the agents is specified by
the transitions between the events of the model and the roles of the agents are modelled
by the encapsulation and decomposition of state and events into components.

The Process aims to make the development of multi-agent systems in Event-B more
accessible by using informal models as a guide to the development of the formal models.
The goal diagram is one that is used in AOSE and should be a familiar tool to developers
of multi-agent systems. The guidance provided should make the transformation from
the goal diagrams to the formal models straightforward. The guidance is intended to
make the discharging of proof obligations easier and to exploit the automatic provers in
the RODIN toolkit.

The case studies presented in Chapter 6 and 7 are examples of the types of interactions
that will occur in a multi-agent system. The two case studies were chosen because they
offer two different levels of complexity in their interactions. The Query-If case study is an
interaction between two agents that requires only a few messages to reach a conclusion.
The Contract Net case study is an interaction that can involve many agents and several
stages. The Query-If case study provides an example that illustrates the application of

134

Chapter 9 Conclusion 135

the Process. The Contract Net case study shows that the Process can be successfully
applied to more complex interactions. The case study models were verified using the
RODIN platform and the B4Free project manager. An example of a proof obligation
being dicharged interactively using the RODIN platform can be found in Appendix B.

Decomposing the case study models results in the abstract models of the components
that are capable of fulfilling the two roles of the interaction. These components can
then be refined to include a specification of the internal design of the agent. The de-
composition of the system into components increases the possibility of re-using parts
of a development. The resource components are examples of components that can be
re-used between developments.

Event-B modelling elements are already defined. When translating between the goal
model and Event-B models events and state variables can be used to model goals. An
Event-B model is a model of a state transition system and can be used to model the
interaction. Variables can model resources and the decomposition of the system model
into components can model the agent roles. It was unnecessary to add new modelling
elements to Event-B to model these concepts. The translation can be carried out by
defining these relationships between the Event-B modelling elements and agent concepts
and providing guidance in the form of heuristics.

The style of specification used makes specifying an order to the events straightforward.
An event cannot move the model into a state that is defined as a subset of another state
unless the model is already in the parent state. Using subsets, in this way, also creates
a model of the order of the interaction in the specification of the variables. The order of
the interaction can be seen by analysing the invariant definitions of the state variables.

Refinement in Event-B relates well to goal elaboration because new events can be added
to an Event-B refinement and single events can be refined into multiple events. The XOR
relationship is a useful model for goal refinement in Event-B as it describes how a single
event can be refined into multiple events. The OR relationship where the behaviour of
the refinement is less restrictive than the abstract is more difficult to model in Event-B.

A restriction on the Event-B method was caused by the use of endpoint goals. A
refinement model that can be prevented from completing transitions that were possible
in the abstract model cannot be verified to satisfy liveness properties. The endpoint
goals are an introduction of a safety property. They ensure that the model can cope
with the interaction being ending prematurely. The liveness properties of the models
have not been covered in this work.

Chapter 9 Conclusion 136

9.1 Limitations

A limitation of the Process is that translating the goal diagrams into the Event-B models
requires a systematic approach from the developer especially when the system is large
with complex relationships between the goals.

A further limitation is that the Process does not model the full internal specification of
the agent components. The Process finishes with a specification of the roles required
to fulfill the interaction of the system, but not a specification of how the agent will
undertake the required tasks, including the reasoning required.

9.2 Contributions

The main contribution of this thesis is the Incremental Development Process. The
Process uses goal diagrams to capture the requirements of the system and to capture
the modelling decisions for the system through refinement of the goals. The relationships
structure the interactions of the agents. The use of the goal diagrams models the system
based on the concepts of goals and interactions that are fundamental to models of
agent-based systems. The guidelines for the translation of the informal models into
Event-B models allow the modelling decisions and the agent concepts to be specified
in the Event-B models using elements that are already part of the Event-B method.
The decomposition of the models into the roles and resource components of the system
capture another concept that is fundamental to multi-agent systems, that of agent roles.
The component specifications can then be further developed and have potential to be
re-used. The use of informal and formal models in the Process makes the use of a formal
method more accessible by separating the modelling decisions from the formal models.

Chapter 9 Conclusion 137

Further contributions include:

• The identification of the concepts that are fundamental to the modelling of multi-
agent systems. Goals represent the motivations of the individual agents that can
be shared by the system for the agents to cooperate as a system. Interaction
protocols are how the agents cooperate to fulfill their goals. Roles are the basis on
which each agent’s functioning as part of the system is defined.

• The evaluation of the methods for managing the complexity of developing multi-
agent systems showed how abstraction and refinement, and decomposition are
methods that are appropriate for this task.

• The Process includes a method for constructing an Event-B refinement chain from
models of the goals of a multi-agent system. This allows the modelling decisions
for the system to be analysed informally before they are translated into the formal
models. Separating the modelling decisions as an informal task should make the
formal modelling of multi-agent systems in Event-B more accessible to developers,
particularly those unfamiliar with formal methods. Goal models are a technique
that can be used to informally model the requirements of a system. Using goals
models as the basis for the formal models creates a method that integrates agent
motivations at the most abstract level.

• The use of the events and variables in Event-B to model the agents fulfilling their
goals. This use shows how state transitions can be used to represent motivations
guiding an interaction.

• Using decomposition to model agent roles. The role, or roles, of an agent can
be determined by, and used to control, the agents function within the system.
Decomposing the system by the events that perform the function to fulfill each
identified role provides a specification of that role.

• The case studies used in this thesis are a useful method for explaining the Process
and showing its application to multi-agent systems. As models of interactions that
are used in multi-agent systems they also have the potential for re-use.

• Chapter 8 describes a set of patterns that capture the modelling decisions required
to provide different aspects of fault-tolerance into an Event-B model of a multi-
agent system.

• The work on the fault-tolerance patterns also provides an appraisal of how the
interactions of multi-agent systems can be used to provide fault-tolerance for the
agents in the system.

• The development of the patterns required an evaluation of how patterns can be
applied in Event-B. The method of integrating the patterns into the refinement

Chapter 9 Conclusion 138

tree of an Event-B development should make the application of the patterns easier.
This integration also makes the patterns a fundamental part of the system that is
being developed.

9.3 Comparison of the Process to the Gaia and Tropos

Methodologies

This section provides a comparison of the Process to two of the AOSE methodologies
evaluated in Chapter 3. This comparison is intended provide more detail on the simi-
larities and differences between the Process and these methodologies. These similarities
and differences show how the Process has been inspired by the methodologies. They
also show that there is room in the field of AOSE for using Event-B to model multi-
agent systems. The Gaia and Tropos methodologies were chosen because of their greater
influence on the development of the Process.

The analysis phase of Gaia models multi-agent systems as roles and their interactions.
The design phase models more concrete entities such as agents. This comparison of the
Process and Gaia will, therefore, cover the analysis phase of Gaia.

Gaia begins by identifying the roles of the system. The Process begins by identifying the
goals and then identifying the roles that will be allocated the goals. This makes Gaia
more focused on roles as the organisational structure of the system, whereas the Process
models the roles as performing the actions of the system and the organisational structure
is a by-product of the interactions of the roles. The use of goals as the primary entity
allows the integration of Goal Oriented Requirements Engineering techniques. The Gaia
methodology does not include requirements capture.

Similarly to the Process, Gaia starts from the system view and takes these abstract
models and makes them more concrete. The system is constructed from the roles and
their interactions. The Process includes goals, in addition to roles and interactions, in
the system view.

Gaia constructs several models of different views of the system e.g. role model and
interaction model. The Process uses one model of the system at different levels of
abstraction and formality. Gaia also has more detailed recording of the attributes of
each of the modelling elements e.g. roles include descriptions of their protocols and
permissions etc., whereas in the Process the roles are defined through the allocation
of goals and the decomposition of the variables and events for the role. There is a
need to balance the complexity of the models with the detail required to make the
models complete. This is particularly important with formal models because of the
effort required to verify them. Using several different formal models would require
formal rules to relate the different views to one another so that each of the models can

Chapter 9 Conclusion 139

be proven consistent. The models used in Gaia are informal and do not need to be
formally verifiable.

In Gaia the dependencies between roles are modelled by their interactions. The Process
models dependencies between goals and then allocates goals to roles. The interaction
required to fulfill the goals is modelled by the dependencies (elaboration relationships)
between the goals. This is because the Process primarily takes a goal based view of the
system.

The main inspiration taken from the Gaia methodology when developing the Process
is the use of roles as an abstraction for agents. The Gaia methodology particularly
highlights the need for such abstractions when modelling multi-agent systems.

The Process can be compared to the Tropos methodology as far as the architectural
design phase of Tropos. The further phases in the methodology refine the models to
include details of the implementation platform and this is beyond the scope of the
Process.

Tropos begins with modelling the requirements of the system using goal models. The
requirements phase begins with the system and the environment that influences the
system. Unlike the Process, Tropos distinguishes between soft and hard goals. The use
of the models to identify and analyse requirements makes this distinction useful because
of the high-level of abstraction required. Plans describe how the agent will act and can
be executed to fulfill the agent’s goals. These are modelled alongside goals, using the
same method, to provide a further view of the analysis. As with Gaia this can produce
models of multiple views of the system.

Tropos uses the term actor to model both agents and roles and does not distinguish
the two concepts at the same level of abstraction. Actors are identified with the goals
in the goal models and refined as the system requirements are analysed. The Process
introduces agent roles after the goals have been elaborated.

Tropos goal models use dependency relationships between the actors and goals, and other
actors as a way to structure the organisation of the system. The positive or negative
contribution of goals to one another are modelled. The THEN and XOR relationships
in the Process goal models can be seen as showing a positive contribution between goals,
with a THEN relationship, or a negative contribution, with an XOR relationship. This
difference is because the relationships in the goal diagrams for the Process are based on
the state transition system that will be modelled in the Event-B models.

The architectural design phase in Tropos builds the system organisation from the iden-
tified actors using their goals and dependencies to structure the actor relationships. The
actors can be decomposed and the system analysed from different levels of abstraction.
The actors can then be decomposed into sub-actors along with the decomposition of

Chapter 9 Conclusion 140

allocated goals. This is not a feature of the goal models of the Process, but re-applying
the Process to a component role should result in a similar effect.

The capabilities identified and assigned for the actor dependencies in the architectural
design phase of Tropos could be compared to the events that are decomposed for each
role during the decomposition of the system in the Process. The events of each of the
roles specify the actions that each of the role components is capable of at the modelled
level of abstraction.

Tropos uses formal models alongside the informal models of the system requirements.
These formal models can be model checked to ensure that the system will meet its
requirements and is not inconsistent. The formal analysis of the system is intended to
support the development and refinement of the informal models. The Process uses the
informal models to support the development of the formal models. The informal models
are used to make modelling decisions that can then be translated into the Event-B formal
models. These models can then be formally verified.

The Tropos methodology inspired an investigation into Goal Oriented Requirements
Engineering and, in turn, the use of goal models in the Process. It also demonstrates
how formal models can be constructed from informal representations of agent concepts.

9.4 Comparison of Goal Diagrams

The review of Goal Oriented Requirements Engineering in Chapter 3 Section 3.4.2 pro-
vides an overview of the methods described in this section. The intention of this section
is to compare the reviewed methods with the techniques used in the Process.

The KAOS method uses AND and OR relationships between goals. The AND rela-
tionship requires all of the sub-goals to be satisfied for the parent goal to be satisfied.
The OR relationship allows alternative sets of sub-goals to be satisfied in order for the
parent goal to be satisfied. The preliminary goal graph has soft goals that have links
that are modelled to contribute to, or conflict with, the linked goals. KAOS uses a
separate model to create responsibility links between agents and goals and to commit
the agent to satisfying a goal within the restrictions placed by conditions such as pre-
conditions (Lamsweerde (2001)). KAOS uses a meta-model to define the language used
to create the formal models (Letier (2001)). The meta-model includes concepts used in
the different diagrams such as goal, agent and the links between them. Concepts such
as pre- and post-conditions are also defined in the meta model. These concepts are then
assigned temporal logic predicates and the model can be formally verified.

i* uses dependency links to model relationships between agents, other agents and goals.
In the goal model, called the strategic rationale model, there are means-end links that
show the alternative ways for achieving a goal. This is similar to an OR relationship.

Chapter 9 Conclusion 141

There are also decomposition links that decompose a task into sub-tasks. This is similar
to an AND relationship. Tropos uses heuristics to translate between i* diagrams and the
two Formal Tropos models. The outer layer model specifies the agents and other entities
and the dependencies between them and their goals. The inner layer model specifies the
constraints on the entities as predicates that model properties such as invariant and
fulfillment.

REF uses dependency links and AND and OR refinement links in goal models (Donzelli
(2004)). The AND refinement requires all goals or tasks to be satisfied and the OR
refinement requires that at least one of the associated goals or tasks is satisfied. Currently
there is no work linking REF models to formal methods.

The goals in the goal diagram used in the Process are not distinguished as either hard or
soft goals as they can be in other frameworks (Yu (1997); Lamsweerde (2001); Bresciani
and Donzelli (2003)). This is because the abstract goals can be viewed as soft goals that
are eventually elaborated into more concrete or hard goals. Forcing an identification of
the point where soft goals turn into hard goals would complicate the construction of the
goal diagram. The goals that can be allocated to the agent roles must be hard goals, but
the distinction is not required for the Process. Tasks are not distinguished separately
from the goals in the goal model because the Event-B models that are constructed are
at a relatively high level of abstraction and tasks should be introduced later through
refinement of the component models.

To be able to use the goal diagrams as a guide for the construction of the Event-B
models a relationship between the formal and informal models had to be found. There
has to be enough information in the goal diagram to describe the Event-B model. This
affects the way the goal relationships are modelled.

The goal elaboration relationships used in the methods described above are AND and
OR relationships. Including the concept of interaction in the goal diagrams means that
the order in which the goals are executed is important. The relationship that defines an
order is the THEN relationship. Event-B is a model of a state transition system and can
be used to model ordered interactions. The THEN relationship is a non-commutative
AND relationship and is more useful for the Process than the AND relationship.

A further detail given to some goal relationships are links that express contributions or
conflicts between goals on the satisfaction of the parent goal. The endpoint goals in the
goal diagrams used in the Process provide a similar detail based on the goals not the
relationships.

Chapter 9 Conclusion 142

9.5 Comparison of Informal to Formal Model Translation

There are several examples of work that relate informal goal models to formal models
as well as examples of work that translate from an informal model to Event-B models.

There are two methods available to translate i* goal models into formal models as part
of the development process. The i* method of goal modelling forms the basis of the first
stage of the Tropos development method (Fuxman et al. (2004)). Translation guidelines
are provided that are intended to extract the information that is implicit in the i* goal
model and create a Formal Tropos model. The Formal Tropos model has an outer layer
that describes the actors, goals, tasks and resources and their relationships. The inner
layer uses temporal logic to provide invariant, creation and fulfillment conditions for
each of the elements. A tool is provided to translate the Formal Tropos model into a
language that can be animated and verified with model checking. The Formal Tropos
specification can then be refined. Krishna et al. (2004) have produced a methodology for
co-evolving i* goal models and Z schemas. The elements of an i* diagram, such as goal
and agent, are specified in a Z schema. Guidelines are provided to help the developer
then add the elements of their specific goal diagram to the schema model. The Z model
is then refined to model the system in greater detail. Guidelines are also provided to
add any changes made to the i* diagram into the abstract Z model and then propagate
these changes into the refinements. This makes it possible for the i* model and Z schema
models to be kept synchronised through iterations of the development process.

The KAOS method for goal-oriented requirements engineering (Lamsweerde (2001))
employs four sub-models. These model the goals, objects, agents and the operations that
are derived from the goals. The goal model specifies the hard and soft goals identified
for the system and they are related using AND and OR refinement relationships. The
relationships are also given different levels to signify how much each goal can contribute
or conflict with the related goal. The goals are characterised as either achieve, maintain,
cease or avoid goals. The domain elements identified in the models can then be formalised
by defining their behaviour using temporal logic. Agents are assigned the responsibility
of the goals using AND and OR relationships and from this assignment the variables
that can be assigned to the agents can be identified. The operations of the system can
then be specified that will satisfy the goals of the system.

Poppleton (2007) describes a method for constructing a specification in Event-B based on
informal requirements that are described as features of the system. Abstract machines
of each of the features modelled in a feature model are constructed, which are then
composed using rules that are intended to be implemented as tool support in future
work. The features can then be refined separately allowing re-use. It is suggested that
the presented rules for composing the features into a system model can be automated.

Chapter 9 Conclusion 143

UML-B (Snook and Butler (2006)) is one example of work to translate between the UML
and B. Annotated UML class and state models are developed and used to generate a B
model in a subset of the B syntax. The B model can provide semantics for the UML
model. Refinement of the B model is provided through specially adapted UML class
and packages entities. UML-B is intended to help developers use formal methods by
providing an accessible modelling notation that can be formally verified. UML-B has
tools for modelling and translating between the UML and B models. There is currently
ongoing work to create a plug-in for the RODIN tool-set that will translate UML2.0
models into Event-B (Butler (2006)).

The refinement diagrams described in Back (2005) allow component and refinement
models to be structured diagrammatically using dependency, refinement and extension
relationships. The diagrams are based on Lattice Theory and this allows them to be
reasoned about and proofs developed using additional diagrams. The resulting diagrams
model the architecture of a system and show how each development of the system has
refined the original architecture.

Compared to the related work that translates between informal goal models and formal
models the goal models used in the Process are simplified to make the Process both more
accessible and to make the translation to the Event-B models relatively systematic. The
verification of the models in the Process is not focused on the requirements as it is in
Tropos and KAOS.

The work presented in Poppleton (2007) does not translate between the feature model
and the abstract machines of the separate features. It does provide a set of rules that de-
scribe a method to compose the separate models of features. The Process provides rules
for translation between the informal goal model and the Event-B models and the devel-
opment method includes decomposition of the system model rather than composition of
separate requirement machines.

The work on UML-B is mature and has tool support that allows automatic translation
between the UML-B models and the B models. The UML entities have been adapted
to fit with the translation to B notation. The goal models of the Process have been
developed to be translated into the Event-B models, but the translation is not systematic
enough to be automated. Current work to integrate UML and Event-B in the RODIN
toolset (Snook and Butler (2008)) uses a meta-model to integrate the Event-B modelling
elements with a UML-style modelling language. This is more related to the guidance
given to translate the entities of the goal model to the Event-B models because the
modelling elements in the graphical notation have been developed to represent the formal
elements. Work is being carried out integrating refinement into UML-B. Each UML-B
class diagram models a single level of abstraction, whereas the goal models of the Process
model an Event-B refinement chain.

Chapter 9 Conclusion 144

The refinement diagrams in Back (2005) are used to develop architectural models of
systems. The Process develops behavioural models of multi-agent systems and refines
them. The purpose of the refinement diagrams is to help ensure the correctness of
changes to the architecture introduced by changing requirements. The purpose of the
Process is to capture agent concepts in Event-B models of multi-agent systems.

9.6 Future Work

There is potential for the Process to become more systematic in the translation between
the goal diagram and the Event-B models. A set of systematic transformations between
the informal and formal models could be automated by a software program. This would
further ease the burden on the developer by removing the need for them to apply the
transformations and by potentially allowing them to work without expert knowledge of
the formal models. It may be possible to capture the final steps of the Process as a
series of refinement patterns.

The Process produces Event-B abstract machines of the agent roles required by the
system. These abstract machines can be further refined to model how the internal
reasoning of the agent works to achieve the goals that it has been allocated. Extending
the Process to help the developer refine the agent components to include agent reasoning
will make the Process a more complete solution for the formal modelling of multi-agent
systems in Event-B. This may require additional modelling elements, that could have
attributes based on logics, that represent knowledge and belief, to be added to the
Event-B method to enable the internal representation of agents to be modelled.

The approach to developing the fault-tolerance patterns presented in this thesis can be
applied to other common aspects of multi-agent and distributed system development.
Standard platform agents or resources are examples of aspects of multi-agent systems
that could be constructed as patterns using the same method.

Another useful avenue for future work would be to gather feedback from developers and
experts in AOSE on using the Process in other case studies and developments. This
can be facilitated through publication of the work from this thesis in conferences and
workshops.

Appendix A

Query-If Case Study Event-B

Models

A.1 Context

CONTEXT context

SETS

CONVERSATION
AGENT

END

145

Appendix A Query-If Case Study Event-B Models 146

A.2 m0 - Abstract Machine

MACHINE m0

SEES context

VARIABLES

queried
completed
refused

INVARIANTS

inv1 : queried ∈ CONVERSATION 7→ AGENT
inv2 : completed ⊆ queried
inv3 : refused ⊆ queried
inv4 : completed ∩ refused = ∅

EVENTS

INITIALISATION

BEGIN

act1 : queried := ∅
act2 : completed := ∅
act3 : refused := ∅

END

EVENT query

ANY

c
a

WHERE

grd1 : c ∈ CONVERSATION
grd2 : a ∈ AGENT
grd3 : c /∈ dom(queried)

THEN

act1 : queried := queried ∪ {c 7→ a}
END

Appendix A Query-If Case Study Event-B Models 147

EVENT complete

ANY

c
a

WHERE

grd1 : c 7→ a ∈ queried
grd2 : c 7→ a /∈ completed
grd3 : c 7→ a /∈ refused

THEN

act1 : completed := completed ∪ {c 7→ a}
END

EVENT refuse

ANY

c
a

WHERE

grd1 : c 7→ a ∈ queried
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ completed

THEN

act1 : refused := refused ∪ {c 7→ a}
END

END

Appendix A Query-If Case Study Event-B Models 148

A.3 m1 - First Refinement

MACHINE m1

REFINES m0

SEES context

VARIABLES

queried
refused
accepted
informed
failed

INVARIANTS

inv1 : accepted ⊆ queried
inv2 : informed ⊆ accepted
inv3 : failed ⊆ accepted
inv4 : accepted ∩ refused = ∅
inv5 : completed = informed ∪ failed
inv6 : informed ∩ failed = ∅

EVENTS

INITIALISATION

BEGIN

act1 : queried := ∅
act3 : refused := ∅
act2 : accepted := ∅
act4 : informed := ∅
act5 : failed := ∅

END

EVENT query

REFINES query
ANY

c

Appendix A Query-If Case Study Event-B Models 149

a
WHERE

grd1 : c ∈ CONVERSATION
grd2 : a ∈ AGENT
grd3 : c /∈ dom(queried)

THEN

act1 : queried := queried ∪ {c 7→ a}
END

EVENT refuse

REFINES refuse
ANY

c
a

WHERE

grd1 : c 7→ a ∈ queried
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ accepted

THEN

act1 : refused := refused ∪ {c 7→ a}
END

EVENT accept

ANY

c
a

WHERE

grd1 : c 7→ a ∈ queried
grd2 : c 7→ a /∈ accepted
grd3 : c 7→ a /∈ refused

THEN

act1 : accepted := accepted ∪ {c 7→ a}
END

EVENT inform

REFINES complete
ANY

c
a

WHERE

grd1 : c 7→ a ∈ accepted

Appendix A Query-If Case Study Event-B Models 150

grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed

THEN

act1 : informed := informed ∪ {c 7→ a}
END

EVENT fail

REFINES complete
ANY

c
a

WHERE

grd1 : c 7→ a ∈ accepted
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed

THEN

act1 : failed := failed ∪ {c 7→ a}
END

END

Appendix A Query-If Case Study Event-B Models 151

A.4 m2 - Second Refinement

MACHINE m2

REFINES m1

SEES context

VARIABLES

queried
refused
accepted
informed
failed
queryS
queryR
refuseS
refuseR
acceptS
acceptR
informS
informR
failS
failR
initiator
participant

INVARIANTS

inv1 : queryS ⊆ queried
inv2 : queryR ⊆ queryS
inv3 : refuseS ⊆ queryR
inv4 : refuseR ⊆ refuseS
inv5 : acceptS ⊆ queryR
inv6 : acceptR ⊆ acceptS
inv7 : informS ⊆ acceptS
inv8 : informR ⊆ informS
inv9 : failS ⊆ acceptS
inv10 : failR ⊆ failS
inv12 : initiator ∈ dom(queryS)→AGENT

Appendix A Query-If Case Study Event-B Models 152

inv13 : participant ∈ dom(queryS)→AGENT
inv14 : refuseS ⊆ refused
inv15 : acceptS ⊆ accepted
inv16 : informS ⊆ informed
inv17 : failS ⊆ failed

EVENTS

INITIALISATION

BEGIN

act1 : queried := ∅
act3 : refused := ∅
act2 : accepted := ∅
act4 : informed := ∅
act5 : failed := ∅
act6 : queryS := ∅
act7 : queryR := ∅
act8 : refuseS := ∅
act9 : refuseR := ∅
act10 : acceptS := ∅
act11 : acceptR := ∅
act12 : informS := ∅
act13 : informR := ∅
act14 : failS := ∅
act15 : failR := ∅
act16 : initiator := ∅
act17 : participant := ∅

END

EVENT sendQuery

REFINES query
ANY

c
a
ar

WHERE

grd1 : c ∈ CONVERSATION
grd2 : a ∈ AGENT
grd5 : ar ∈ AGENT
grd4 : c /∈ dom(queried)

Appendix A Query-If Case Study Event-B Models 153

grd3 : a 6= ar
THEN

act2 : queryS := queryS ∪ {c 7→ a}
act1 : initiator := initiator ∪ {c 7→ a}
act3 : participant := participant ∪ {c 7→ ar}
act4 : queried := queried ∪ {c 7→ a}

END

EVENT receiveQuery

ANY

c
a

WHERE

grd1 : c 7→ a ∈ queryS
grd2 : c 7→ a /∈ queryR
grd4 : c 7→ a ∈ initiator

THEN

act1 : queryR := queryR ∪ {c 7→ a}
END

EVENT sendRefuse

REFINES refuse
ANY

c
a

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ accepted
grd4 : c 7→ a ∈ initiator

THEN

act1 : refuseS := refuseS ∪ {c 7→ a}
act2 : refused := refused ∪ {c 7→ a}

END

EVENT receiveRefuse

ANY

c
a

WHERE

grd1 : c 7→ a ∈ refuseS

Appendix A Query-If Case Study Event-B Models 154

grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ initiator

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

EVENT sendAccept

REFINES accept
ANY

c
a

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ accepted
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ initiator

THEN

act1 : acceptS := acceptS ∪ {c 7→ a}
act2 : accepted := accepted ∪ {c 7→ a}

END

EVENT receiveAccept

ANY

c
a

WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ initiator

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendInform

REFINES inform
ANY

c
a

WHERE

grd5 : c 7→ a ∈ accepted
grd2 : c 7→ a /∈ informed

Appendix A Query-If Case Study Event-B Models 155

grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ initiator

THEN

act1 : informS := informS ∪ {c 7→ a}
act2 : informed := informed ∪ {c 7→ a}

END

EVENT receiveInform

ANY

c
a

WHERE

grd1 : c 7→ a ∈ informS
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ initiator

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES fail
ANY

c
a

WHERE

grd5 : c 7→ a ∈ accepted
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ initiator

THEN

act1 : failS := failS ∪ {c 7→ a}
act2 : failed := failed ∪ {c 7→ a}

END

EVENT receiveFail

ANY

c
a

WHERE

grd1 : c 7→ a ∈ failS
grd2 : c 7→ a /∈ failR

Appendix A Query-If Case Study Event-B Models 156

grd3 : c 7→ a ∈ initiator
THEN

act1 : failR := failR ∪ {c 7→ a}
END

END

A.5 Context 2

CONTEXT context2

REFINES context

SETS

MESSAGE

CONSTANTS

sender
receiver
messageConversation

AXIOMS

axm1 : sender ∈ MESSAGE →AGENT
axm2 : receiver ∈ MESSAGE →AGENT
axm3 : messageConversation ∈ MESSAGE → CONVERSATION

END

Appendix A Query-If Case Study Event-B Models 157

A.6 m3 - Third Refinement

MACHINE m3

REFINES m2

SEES context2

VARIABLES

queried
refused
accepted
informed
failed
queryS
queryR
refuseS
refuseR
acceptS
acceptR
informS
informR
failS
failR
initiator
participant
queryM
refuseM
acceptM
informM
failM
pInitiator
pParticipant

INVARIANTS

inv1 : queryM ⊆ MESSAGE
inv2 : refuseM ⊆ MESSAGE
inv3 : acceptM ⊆ MESSAGE
inv4 : informM ⊆ MESSAGE

Appendix A Query-If Case Study Event-B Models 158

inv5 : failM ⊆ MESSAGE
inv6 : queryS = (queryM � messageConversation)−1; sender
inv7 : refuseS = (refuseM � messageConversation)−1; receiver
inv8 : acceptS = (acceptM � messageConversation)−1; receiver
inv9 : informS = (informM � messageConversation)−1; receiver
inv10 : failS = (failM � messageConversation)−1; receiver
inv11 : pInitiator ∈ dom(queryR)→AGENT
inv12 : pParticipant ∈ dom(queryR)→AGENT
inv13 : pInitiator ⊆ initiator
inv14 : pParticipant ⊆ participant
inv15 : initiator = (queryM � messageConversation)−1; sender
inv16 : participant = (queryM � messageConversation)−1; receiver

EVENTS

INITIALISATION

BEGIN

act1 : queried := ∅
act3 : refused := ∅
act2 : accepted := ∅
act4 : informed := ∅
act5 : failed := ∅
act6 : queryS := ∅
act7 : queryR := ∅
act8 : refuseS := ∅
act9 : refuseR := ∅
act10 : acceptS := ∅
act11 : acceptR := ∅
act12 : informS := ∅
act13 : informR := ∅
act14 : failS := ∅
act15 : failR := ∅
act16 : initiator := ∅
act17 : participant := ∅
act18 : queryM := ∅
act19 : refuseM := ∅
act20 : acceptM := ∅
act21 : informM := ∅
act22 : failM := ∅
act23 : pInitiator := ∅

Appendix A Query-If Case Study Event-B Models 159

act24 : pParticipant := ∅
END

EVENT sendQuery

REFINES sendQuery
ANY

c
a
ar
m

WHERE

grd1 : c ∈ CONVERSATION
grd2 : a ∈ AGENT
grd4 : c /∈ dom(queried)
grd3 : a 6= ar
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : receiver(m) = ar
grd8 : messageConversation(m) = c

THEN

act2 : queryS := queryS ∪ {c 7→ a}
act1 : initiator := initiator ∪ {c 7→ a}
act3 : participant := participant ∪ {c 7→ ar}
act4 : queried := queried ∪ {c 7→ a}
act5 : queryM := queryM ∪ {m}

END

EVENT receiveQuery

REFINES receiveQuery
ANY

c
a
m

WHERE

grd1 : m ∈ queryM
grd2 : c 7→ a /∈ queryR
grd3 : sender(m) = a
grd6 : messageConversation(m) = c

THEN

act1 : queryR := queryR ∪ {c 7→ a}
act2 : pInitiator := pInitiator ∪ {c 7→ a}

Appendix A Query-If Case Study Event-B Models 160

act3 : pParticipant := pParticipant ∪ {c 7→ receiver(m)}
END

EVENT sendRefuse

REFINES sendRefuse
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ accepted
grd4 : c 7→ a ∈ pInitiator
grd5 : m ∈ MESSAGE
grd6 : receiver(m) = a
grd7 : sender(m) = pParticipant(c)
grd8 : messageConversation(m) = c

THEN

act1 : refuseS := refuseS ∪ {c 7→ a}
act2 : refused := refused ∪ {c 7→ a}
act3 : refuseM := refuseM ∪ {m}

END

EVENT receiveRefuse

REFINES receiveRefuse
ANY

c
a
m

WHERE

grd1 : m ∈ refuseM
grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

Appendix A Query-If Case Study Event-B Models 161

EVENT sendAccept

REFINES sendAccept
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ accepted
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ pInitiator
grd5 : m ∈ MESSAGE
grd6 : sender(m) = pParticipant(c)
grd7 : receiver(m) = a
grd8 : messageConversation(m) = c

THEN

act1 : acceptS := acceptS ∪ {c 7→ a}
act2 : accepted := accepted ∪ {c 7→ a}
act3 : acceptM := acceptM ∪ {m}

END

EVENT receiveAccept

REFINES receiveAccept
ANY

c
a
m

WHERE

grd1 : m ∈ acceptM
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendInform

REFINES sendInform
ANY

Appendix A Query-If Case Study Event-B Models 162

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ pInitiator
grd5 : c 7→ a ∈ accepted
grd6 : m ∈ MESSAGE
grd7 : sender(m) = pParticipant(c)
grd8 : receiver(m) = a
grd9 : messageConversation(m) = c

THEN

act1 : informS := informS ∪ {c 7→ a}
act2 : informed := informed ∪ {c 7→ a}
act3 : informM := informM ∪ {m}

END

EVENT receiveInform

REFINES receiveInform
ANY

c
a
m

WHERE

grd1 : m ∈ informM
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES sendFail
ANY

c
a

Appendix A Query-If Case Study Event-B Models 163

m
WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ pInitiator
grd5 : c 7→ a ∈ accepted
grd6 : m ∈ MESSAGE
grd7 : sender(m) = pParticipant(c)
grd8 : receiver(m) = a
grd9 : messageConversation(m) = c

THEN

act1 : failS := failS ∪ {c 7→ a}
act2 : failed := failed ∪ {c 7→ a}
act3 : failM := failM ∪ {m}

END

EVENT receiveFail

REFINES receiveFail
ANY

c
a
m

WHERE

grd1 : m ∈ failM
grd2 : c 7→ a /∈ failR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c

THEN

act1 : failR := failR ∪ {c 7→ a}
END

END

Appendix A Query-If Case Study Event-B Models 164

A.7 Context 3

CONTEXT context3

REFINES context2

SETS

PROPOSITION

CONSTANTS

QUERY
ACCEPT
REFUSE
INFORM
FAIL
question
answer

AXIOMS

axm1 : QUERY ⊆ MESSAGE
axm2 : ACCEPT ⊆ MESSAGE
axm3 : REFUSE ⊆ MESSAGE
axm4 : INFORM ⊆ MESSAGE
axm5 : FAIL ⊆ MESSAGE
axm5 : question ∈ QUERY → PROPOSITION
axm5 : answer ∈ INFORM → BOOL
axm6 : QUERY ∩ ACCEPT = ∅
axm7 : QUERY ∩ REFUSE = ∅
axm8 : QUERY ∩ INFORM = ∅
axm9 : QUERY ∩ FAIL = ∅
axm10 : ACCEPT ∩ REFUSE = ∅
axm11 : ACCEPT ∩ INFORM = ∅
axm12 : ACCEPT ∩ FAIL = ∅
axm13 : REFUSE ∩ INFORM = ∅
axm14 : REFUSE ∩ FAIL = ∅
axm15 : INFORM ∩ FAIL = ∅

END

Appendix A Query-If Case Study Event-B Models 165

Appendix A Query-If Case Study Event-B Models 166

A.8 m4 - Fourth Refinement

MACHINE m4

REFINES m3

SEES context3

VARIABLES

queried
refused
accepted
informed
failed
queryS
queryR
refuseS
refuseR
acceptS
acceptR
informS
informR
failS
failR
initiator
participant
pInitiator
pParticipant
msgset

INVARIANTS

inv1 : msgset ⊆ MESSAGE
inv2 : queryM = msgset ∩ QUERY
inv3 : refuseM = msgset ∩ REFUSE
inv4 : acceptM = msgset ∩ ACCEPT
inv5 : informM = msgset ∩ INFORM
inv6 : failM = msgset ∩ FAIL

EVENTS

Appendix A Query-If Case Study Event-B Models 167

INITIALISATION

BEGIN

act1 : queried := ∅
act3 : refused := ∅
act2 : accepted := ∅
act4 : informed := ∅
act5 : failed := ∅
act6 : queryS := ∅
act7 : queryR := ∅
act8 : refuseS := ∅
act9 : refuseR := ∅
act10 : acceptS := ∅
act11 : acceptR := ∅
act12 : informS := ∅
act13 : informR := ∅
act14 : failS := ∅
act15 : failR := ∅
act16 : initiator := ∅
act17 : participant := ∅
act23 : pInitiator := ∅
act24 : pParticipant := ∅
act18 : msgset := ∅

END

EVENT sendQuery

REFINES sendQuery
ANY

c
a
ar
m

WHERE

grd1 : c ∈ CONVERSATION
grd2 : a ∈ AGENT
grd4 : c /∈ dom(queried)
grd3 : a 6= ar
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : receiver(m) = ar

Appendix A Query-If Case Study Event-B Models 168

grd8 : messageConversation(m) = c
grd9 : m ∈ QUERY
grd10 : question(m) ∈ PROPOSITION

THEN

act2 : queryS := queryS ∪ {c 7→ a}
act1 : initiator := initiator ∪ {c 7→ a}
act3 : participant := participant ∪ {c 7→ ar}
act4 : queried := queried ∪ {c 7→ a}
act5 : msgset := msgset ∪ {m}

END

EVENT receiveQuery

REFINES receiveQuery
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ queryR
grd3 : sender(m) = a
grd6 : messageConversation(m) = c
grd4 : m ∈ QUERY
grd5 : question(m) ∈ PROPOSITION

THEN

act1 : queryR := queryR ∪ {c 7→ a}
act2 : pInitiator := pInitiator ∪ {c 7→ a}
act3 : pParticipant := pParticipant ∪ {c 7→ receiver(m)}

END

EVENT sendRefuse

REFINES sendRefuse
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ accepted
grd4 : c 7→ a ∈ pInitiator

Appendix A Query-If Case Study Event-B Models 169

grd5 : m ∈ MESSAGE
grd6 : receiver(m) = a
grd7 : sender(m) = pParticipant(c)
grd8 : messageConversation(m) = c
grd9 : m ∈ REFUSE

THEN

act1 : refuseS := refuseS ∪ {c 7→ a}
act2 : refused := refused ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveRefuse

REFINES receiveRefuse
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c
grd7 : m ∈ REFUSE

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

EVENT sendAccept

REFINES sendAccept
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ queryR
grd2 : c 7→ a /∈ accepted
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ pInitiator
grd5 : m ∈ MESSAGE

Appendix A Query-If Case Study Event-B Models 170

grd6 : sender(m) = pParticipant(c)
grd7 : receiver(m) = a
grd8 : messageConversation(m) = c
grd9 : m ∈ ACCEPT

THEN

act1 : acceptS := acceptS ∪ {c 7→ a}
act2 : accepted := accepted ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveAccept

REFINES receiveAccept
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c
grd7 : m ∈ ACCEPT

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendInform

REFINES sendInform
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ pInitiator
grd5 : c 7→ a ∈ accepted
grd6 : m ∈ MESSAGE

Appendix A Query-If Case Study Event-B Models 171

grd7 : sender(m) = pParticipant(c)
grd8 : receiver(m) = a
grd9 : messageConversation(m) = c
grd10 : m ∈ INFORM
grd11 : answer(m) ∈ BOOL

THEN

act1 : informS := informS ∪ {c 7→ a}
act2 : informed := informed ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveInform

REFINES receiveInform
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c
grd7 : m ∈ INFORM
grd9 : answer(m) ∈ BOOL

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES sendFail
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ pInitiator

Appendix A Query-If Case Study Event-B Models 172

grd5 : c 7→ a ∈ accepted
grd6 : m ∈ MESSAGE
grd7 : sender(m) = pParticipant(c)
grd8 : receiver(m) = a
grd9 : messageConversation(m) = c
grd10 : m ∈ FAIL

THEN

act1 : failS := failS ∪ {c 7→ a}
act2 : failed := failed ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveFail

REFINES receiveFail
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ failR
grd3 : c 7→ a ∈ initiator
grd4 : sender(m) = participant(c)
grd5 : receiver(m) = a
grd6 : messageConversation(m) = c
grd7 : m ∈ FAIL

THEN

act1 : failR := failR ∪ {c 7→ a}
END

END

Appendix A Query-If Case Study Event-B Models 173

A.9 m5 - Fifth Refinement

REFINEMENT m5

REFINES m4

SEES context3

INCLUDES initiator.initiator0, participant.participant0, mw.middleware0

INVARIANT

queried = initiator .queried ∧
refused = participant .refused ∧
accepted = participant .accepted ∧
informed = participant .informed ∧
failed = participant .failed ∧
queryS = initiator .queryS ∧
acceptS = participant .acceptS ∧
refuseS = participant .refuseS ∧
informS = participant .informS ∧
failureS = participant .failureS ∧
queryR = participant .queryR ∧
acceptR = initiator .acceptR ∧
refuseR = initiator .refuseR ∧
informR = initiator .informR ∧
failureR = initiator .failureR ∧
initiator = initiator .initiator ∧
participant = initiator .participant ∧
pInitiator = participant .pInitiator ∧
pParticipant = participant .pParticipant ∧
msgset = mw .msgset

EVENTS

EVENT sendQuery =

VAR

m
IN

m ← initiator .sendQuery ;
mw .send(m)

Appendix A Query-If Case Study Event-B Models 174

END;

EVENT receiveQuery =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
participant .receiveQuery(m)

END

END;

EVENT sendAccept =

VAR

m
IN

m ← participant .sendAccept ;
mw .send(m)

END;

EVENT receiveAccept =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveAccept(m)

END

END;

Appendix A Query-If Case Study Event-B Models 175

EVENT sendRefuse =

VAR

m
IN

m ← participant .sendRefuse;
mw .send(m)

END;

EVENT receiveRefuse =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveRefuse(m)

END

END;

EVENT sendInform =

VAR

m
IN

m ← participant .sendInform;
mw .send(m)

END;

EVENT receiveInform =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

Appendix A Query-If Case Study Event-B Models 176

m IN

m ← mw .receive(a);
initiator .receiveInform(m)

END

END;

EVENT sendFail =

VAR

m
IN

m ← participant .sendFail ;
mw .send(m)

END;

EVENT receiveFail =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveFail(m)

END

END

END

A.10 Initiator - Component Model

MODEL initiator0

SEES context

VARIABLES queried, queryS, acceptR, refuseR, informR, failureR,
initiator, participant

Appendix A Query-If Case Study Event-B Models 177

INVARIANT

queried ∈ CONVERSATION 7→ AGENT ∧
queryS ∈ CONVERSATION 7→ AGENT ∧
acceptR ∈ CONVERSATION 7→ AGENT ∧
refuseR ∈ CONVERSATION 7→ AGENT ∧
informR ∈ CONVERSATION 7→ AGENT ∧
failureR ∈ CONVERSATION 7→ AGENT ∧
initiator ∈ dom(queryS)→ AGENT ∧
participant ∈ dom(queryS)→ AGENT

INITIALISATION

queried := ∅ ||
queryS := ∅ ||
acceptR := ∅ ||
refuseR := ∅ ||
informR := ∅ ||
failureR := ∅ ||
initiator := ∅ ||
participant := ∅

EVENTS

EVENT mr ← sendQuery =

ANY

c
a
ar
m

WHERE

c ∈ CONVERSATION ∧
a ∈ AGENT ∧
ar ∈ AGENT ∧
c /∈ dom(queried) ∧
a 6= ar ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
receiver(m) = ar ∧
messageConversation(m) = c ∧
m ∈ QUERY ∧
question(m) ∈ PROPOSITION

THEN

Appendix A Query-If Case Study Event-B Models 178

queryS := queryS ∪ {c 7→ a} ||
initiator := intiator ∪ {c 7→ a} ||
participant := participant ∪ {c 7→ ar} ||
queried := queried ∪ {c 7→ a} ||
mr := m

END;

EVENT receiveAccept(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ acceptR ∧
c 7→ a ∈ initiator ∧
sender(m) = participant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ ACCEPT

THEN

acceptR := acceptR ∪ {c 7→ a}
END

END;

EVENT receiveRefuse(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ refuseR ∧
c 7→ a ∈ initiator ∧
sender(m) = participant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧

Appendix A Query-If Case Study Event-B Models 179

m ∈ REFUSE
THEN

refuseR := refuseR ∪ {c 7→ a}
END

END;

EVENT receiveInform(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ informR ∧
c 7→ a ∈ initiator ∧
sender(m) = participant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ INFORM ∧
answer(m) ∈ BOOL

THEN

informR := informR ∪ {c 7→ a}
END

END;

EVENT receiveFail(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ failR ∧
c 7→ a ∈ initiator ∧
sender(m) = participant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧

Appendix A Query-If Case Study Event-B Models 180

m ∈ FAIL
THEN

failureR := failureR ∪ {c 7→ a}
END

END

END

A.11 Participant - Component Model

MODEL participant0

SEES context

VARIABLES refused, accepted, informed, failed, acceptS, refuseS, informS,
failureS, queryR, pInitiator, pParticipant

INVARIANT

refused ∈ CONVERSATION 7→ AGENT ∧
accepted ∈ CONVERSATION 7→ AGENT ∧
informed ∈ CONVERSATION 7→ AGENT ∧
failed ∈ CONVERSATION 7→ AGENT ∧
acceptS ∈ CONVERSATION 7→ AGENT ∧
refuseS ∈ CONVERSATION 7→ AGENT ∧
informS ∈ CONVERSATION 7→ AGENT ∧
failureS ∈ CONVERSATION 7→ AGENT ∧
queryR ∈ CONVERSATION 7→ AGENT ∧
pInitiator ∈ dom(queryR)→ AGENT ∧
pParticipant ∈ dom(queryR)→ AGENT

INITIALISATION

refused := ∅ ||
accepted := ∅ ||
informed := ∅ ||
failed := ∅ ||
acceptS := ∅ ||
refuseS := ∅ ||
informS := ∅ ||
failureS := ∅ ||
queryR := ∅ ||
pInitiator := ∅ ||

Appendix A Query-If Case Study Event-B Models 181

pParticipant := ∅

EVENTS

EVENT receiveQuery(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ queryR ∧
sender(m) = a ∧
messageConversation(m) = c ∧
m ∈ QUERY ∧
question(m) ∈ PROPOSITION

THEN

queryR := queryR ∪ {c 7→ a} ||
pParticipant := pParticipant ∪ {c 7→ receiver(m)} ||
pInitiator := pInitiator ∪ {c 7→ a}

END

END;

EVENT mr ← sendAccept =

ANY

c
a

WHERE

c 7→ a ∈ queryR ∧
c 7→ a /∈ accepted ∧
c 7→ a /∈ refused ∧
c 7→ a ∈ pInitiator ∧
m ∈ MESSAGE ∧
sender(m) = pParticipant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ ACCEPT

THEN

acceptS := acceptS ∪ {c 7→ a} ||
accepted := accepted ∪ {c 7→ a} ||

Appendix A Query-If Case Study Event-B Models 182

mr := m
END;

EVENT mr ← sendRefuse =

ANY

c
a

WHERE

c 7→ a ∈ queryR ∧
c 7→ a /∈ refused ∧
c 7→ a /∈ accepted ∧
c 7→ a ∈ pInitiator ∧
m ∈ MESSAGE ∧
receiver(m) = a ∧
sender(m) = pParticipant(c) ∧
messageConversation(m) = c ∧
m ∈ REFUSE

THEN

refuseS := refuseS ∪ {c 7→ a} ||
refused := refused ∪ {c 7→ a} ||
mr := m

END;

EVENT mr ← sendInform =

ANY

c
a

WHERE

c 7→ a ∈ acceptS ∧
c 7→ a /∈ informed ∧
c 7→ a /∈ failed ∧
c 7→ a ∈ pInitiator ∧
c 7→ a ∈ accepted ∧
m ∈ MESSAGE ∧
sender(m) = pParticipant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ INFORM ∧
answer(m) ∈ BOOL

Appendix A Query-If Case Study Event-B Models 183

THEN

informS := informS ∪ {c 7→ a} ||
informed := informed ∪ {c 7→ a} ||
mr := m

END;

EVENT mr ← sendFailure =

ANY

c
a

WHERE

c 7→ a ∈ acceptS ∧
c 7→ a /∈ failed) ∧
c 7→ a /∈ informed ∧
c 7→ a ∈ pInitiator ∧
c 7→ a ∈ accepted ∧
m ∈ MESSAGE ∧
sender(m) = pParticipant(c) ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ FAIL

THEN

failS := failS ∪ {c 7→ a} ||
failed := failed ∪ {c 7→ a} ||
mr := m

END

END

A.12 Middleware - Component Model

MODEL middleware0

SEES context

VARIABLES msgset

INVARIANT

msgset ⊆ MESSAGE

Appendix A Query-If Case Study Event-B Models 184

INITIALISATION

msgset := ∅

EVENTS

EVENT send(m) =

PRE

m ∈ MESSAGE
THEN

msgset := msgset ∪ {m}
END;

EVENT m ← receive(a) =

PRE

a ∈ AGENT
THEN

ANY

m0
WHERE

m0 ∈ MESSAGE ∧
receiver(m0) = a ∧
m0 ∈ msgset

THEN

m := m0
END

END

END

Appendix B

Contract Net Case Study

Event-B Models

B.1 Context

CONTEXT context

SETS

CONVERSATION
AGENT

END

185

Appendix B Contract Net Case Study Event-B Models 186

B.2 m0 - Abstract Machine

MACHINE m0

SEES context

VARIABLES

cfp
responded
selected
completed
cancelled

INVARIANTS

inv1 : cfp ∈ CONVERSATION ↔ AGENT
inv2 : responded ⊆ cfp
inv3 : selected ⊆ responded
inv4 : completed ⊆ selected
inv5 : cancelled ⊆ cfp

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act2 : responded := ∅
act3 : selected := ∅
act4 : completed := ∅
act5 : cancelled := ∅

END

EVENT callForProposals

ANY

c
as

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfp)

Appendix B Contract Net Case Study Event-B Models 187

grd3 : as ∈ CONVERSATION ↔ AGENT
grd4 : dom(as) = {c}
grd5 : ran(as) ⊆ AGENT

THEN

act1 : cfp := cfp ∪ as
END

EVENT respond

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfp
grd2 : c 7→ a /∈ responded

THEN

act1 : responded := responded ∪ {c 7→ a}
END

EVENT select

ANY

c
as

WHERE

grd3 : c ∈ dom(responded)
grd1 : as ⊆ responded
grd2 : as ∩ selected = ∅

THEN

act1 : selected := selected ∪ as
END

EVENT complete

ANY

c
as

WHERE

grd3 : c ∈ dom(selected)
grd1 : as ⊆ {c}� selected
grd2 : c /∈ dom(completed)

THEN

act1 : completed := completed ∪ as
END

Appendix B Contract Net Case Study Event-B Models 188

EVENT cancel

ANY

c
as

WHERE

grd1 : c ∈ dom(cfp)
grd2 : c /∈ dom(cancelled)
grd3 : as ⊆ {c}� cfp

THEN

act1 : cancelled := cancelled ∪ as
END

END

B.3 m1 - First Refinement

MACHINE m1

REFINES m0

SEES context

VARIABLES

cfp
proposed
refused
accepted
rejected
informed
failed
cancelStarted
informCancelled
failCancelled
selected1
completed
cancelled

Appendix B Contract Net Case Study Event-B Models 189

INVARIANTS

inv1 : proposed ⊆ cfp
inv2 : refused ⊆ cfp
inv3 : proposed ∩ refused = ∅
inv18 : selected1 ⊆ proposed
inv4 : accepted ⊆ selected1
inv5 : rejected ⊆ proposed
inv6 : accepted ∩ rejected = ∅
inv7 : informed ⊆ accepted
inv8 : failed ⊆ accepted
inv9 : informed ∩ failed = ∅
inv10 : cancelStarted ⊆ cfp
inv11 : informCancelled ⊆ cancelStarted
inv12 : failCancelled ⊆ cancelStarted
inv13 : informCancelled ∩ failCancelled = ∅
inv14 : responded = proposed ∪ refused
inv15 : selected = accepted ∪ rejected

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act6 : proposed := ∅
act7 : refused := ∅
act8 : accepted := ∅
act9 : rejected := ∅
act10 : informed := ∅
act11 : failed := ∅
act12 : cancelled := ∅
act13 : informCancelled := ∅
act14 : failCancelled := ∅
act2 : selected1 := ∅
act3 : completed := ∅
act4 : cancelStarted := ∅

END

EVENT callForProposals

Appendix B Contract Net Case Study Event-B Models 190

REFINES callForProposals
ANY

c
as

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfp)
grd3 : as ∈ CONVERSATION ↔ AGENT
grd4 : dom(as) = {c}
grd5 : ran(as) ⊆ AGENT

THEN

act1 : cfp := cfp ∪ as
END

EVENT propose

REFINES respond
ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfp
grd2 : c 7→ a /∈ proposed
grd3 : c 7→ a /∈ refused

THEN

act1 : proposed := proposed ∪ {c 7→ a}
END

EVENT refuse

REFINES respond
ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfp
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ proposed

THEN

act1 : refused := refused ∪ {c 7→ a}
END

EVENT select1

Appendix B Contract Net Case Study Event-B Models 191

ANY

c
as

WHERE

grd1 : c ∈ dom(proposed)
grd2 : as ⊆ {c}� proposed
grd3 : c /∈ dom(selected1)

THEN

act1 : selected1 := selected1 ∪ as
END

EVENT accept

REFINES select
ANY

c
as

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(accepted)
grd3 : as ⊆ {c}� selected1
grd4 : as ∩ rejected = ∅

THEN

act1 : accepted := accepted ∪ as
END

EVENT reject

REFINES select
ANY

c
as

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(rejected)
grd3 : as = ({c}� proposed) \ ({c}� selected1)
grd4 : as ∩ accepted = ∅

THEN

act1 : rejected := rejected ∪ as
END

EVENT inform

ANY

Appendix B Contract Net Case Study Event-B Models 192

c
a

WHERE

grd1 : c 7→ a ∈ accepted
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed

THEN

act1 : informed := informed ∪ {c 7→ a}
END

EVENT fail

ANY

c
a

WHERE

grd1 : c 7→ a ∈ accepted
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed

THEN

act1 : failed := failed ∪ {c 7→ a}
END

EVENT complete

REFINES complete
ANY

c
as

WHERE

grd1 : c ∈ dom(informed ∪ failed)
grd2 : as ⊆ {c}� (informed ∪ failed)
grd3 : c /∈ dom(completed)

THEN

act1 : completed := completed ∪ as
END

EVENT cancel1

ANY

c
as

WHERE

grd1 : c ∈ dom(cfp)

Appendix B Contract Net Case Study Event-B Models 193

grd2 : as ⊆ {c}� cfp
grd3 : c /∈ dom(cancelStarted)

THEN

act1 : cancelStarted := cancelStarted ∪ as
END

EVENT informCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelStarted
grd2 : c 7→ a /∈ informCancelled
grd3 : c 7→ a /∈ failCancelled

THEN

act1 : informCancelled := informCancelled ∪ {c 7→ a}
END

EVENT failCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelStarted
grd2 : c 7→ a /∈ failCancelled
grd3 : c 7→ a /∈ informCancelled

THEN

act1 : failCancelled := failCancelled ∪ {c 7→ a}
END

EVENT cancelled

REFINES cancel
ANY

c
as

WHERE

grd1 : c ∈ dom(informCancelled ∪ failCancelled)
grd2 : as ⊆ {c}� (informCancelled ∪ failCancelled)
grd3 : c /∈ dom(cancelled)

THEN

act1 : cancelled := cancelled ∪ as

Appendix B Contract Net Case Study Event-B Models 194

END

END

B.4 m2 - Second Refinement

MACHINE m2

REFINES m1

SEES context

VARIABLES

cfp
proposed
refused
selected1
accepted
rejected
informed
failed
cancelStarted
informCancelled
failCancelled
cfpS
cfpR
proposeS
proposeR
refuseS
refuseR
acceptS
acceptR
rejectS
rejectR
informS
informR
failS

Appendix B Contract Net Case Study Event-B Models 195

failR
cancelS
cancelR
informCancelS
informCancelR
failCancelS
failCancelR
completed
cancelled
initiator
participant

INVARIANTS

inv1 : cfpS ⊆ cfp
inv2 : cfpR ⊆ cfpS
inv3 : proposeS ⊆ proposed
inv4 : proposeR ⊆ proposeS
inv5 : refuseS ⊆ refused
inv6 : refuseR ⊆ refuseS
inv7 : acceptS ⊆ accepted
inv8 : acceptR ⊆ acceptS
inv9 : rejectS ⊆ rejected
inv10 : rejectR ⊆ rejectS
inv11 : informS ⊆ informed
inv12 : informR ⊆ informS
inv13 : failS ⊆ failed
inv14 : failR ⊆ failS
inv15 : cancelS ⊆ cancelStarted
inv16 : cancelR ⊆ cancelS
inv17 : informCancelS ⊆ informCancelled
inv18 : informCancelR ⊆ informCancelS
inv19 : failCancelS ⊆ failCancelled
inv20 : failCancelR ⊆ failCancelS
inv21 : initiator ∈ dom(cfpS)→AGENT
inv22 : participant ∈ dom(cfpS)↔ AGENT
inv23 : proposeS ⊆ cfpR
inv24 : refuseS ⊆ cfpR
inv25 : acceptS ⊆ selected1
inv26 : rejectS ⊆ proposed
inv27 : informS ⊆ acceptR

Appendix B Contract Net Case Study Event-B Models 196

inv28 : failS ⊆ acceptR
inv29 : informCancelS ⊆ cancelR
inv30 : failCancelS ⊆ cancelR

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act6 : proposed := ∅
act7 : refused := ∅
act8 : accepted := ∅
act9 : rejected := ∅
act10 : informed := ∅
act11 : failed := ∅
act12 : cancelled := ∅
act13 : informCancelled := ∅
act14 : failCancelled := ∅
act2 : selected1 := ∅
act3 : cfpS := ∅
act4 : cfpR := ∅
act5 : proposeS := ∅
act15 : proposeR := ∅
act16 : refuseS := ∅
act17 : refuseR := ∅
act18 : acceptS := ∅
act19 : acceptR := ∅
act20 : rejectS := ∅
act21 : rejectR := ∅
act22 : informS := ∅
act23 : informR := ∅
act24 : failS := ∅
act25 : failR := ∅
act26 : cancelS := ∅
act27 : cancelR := ∅
act28 : informCancelS := ∅
act29 : informCancelR := ∅
act30 : failCancelS := ∅
act31 : failCancelR := ∅
act32 : completed := ∅

Appendix B Contract Net Case Study Event-B Models 197

act33 : cancelStarted := ∅
act34 : initiator := ∅
act35 : participant := ∅

END

EVENT sendCfp

REFINES callForProposals
ANY

c
as
a

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfp)
grd3 : as ∈ CONVERSATION ↔ AGENT
grd4 : dom(as) = {c}
grd6 : a ∈ AGENT
grd5 : ran(as) ⊆ AGENT \ {a}

THEN

act1 : cfp := cfp ∪ as
act2 : cfpS := cfpS ∪ as
act3 : initiator := initiator ∪ {c 7→ a}
act4 : participant := participant ∪ as

END

EVENT receiveCfp

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpS
grd2 : c 7→ a /∈ cfpR
grd3 : c 7→ a ∈ participant

THEN

act1 : cfpR := cfpR ∪ {c 7→ a}
END

EVENT sendProposal

REFINES propose
ANY

c

Appendix B Contract Net Case Study Event-B Models 198

a
WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ proposed
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ participant

THEN

act1 : proposed := proposed ∪ {c 7→ a}
act2 : proposeS := proposeS ∪ {c 7→ a}

END

EVENT receiveProposal

ANY

c
a

WHERE

grd1 : c 7→ a ∈ proposeS
grd2 : c 7→ a /∈ proposeR
grd3 : c 7→ a ∈ participant

THEN

act1 : proposeR := proposeR ∪ {c 7→ a}
END

EVENT sendRefusal

REFINES refuse
ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ proposed
grd4 : c 7→ a ∈ participant

THEN

act1 : refused := refused ∪ {c 7→ a}
act2 : refuseS := refuseS ∪ {c 7→ a}

END

EVENT receiveRefusal

ANY

c

Appendix B Contract Net Case Study Event-B Models 199

a
WHERE

grd1 : c 7→ a ∈ refuseS
grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ participant

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

EVENT select

REFINES select1
ANY

c
as

WHERE

grd1 : c ∈ dom(proposeR)
grd2 : as ⊆ {c}� proposeR
grd3 : c /∈ dom(selected1)

THEN

act1 : selected1 := selected1 ∪ as
END

EVENT sendAccept

REFINES accept
ANY

c
as

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(accepted)
grd3 : as ⊆ {c}� selected1
grd4 : as ∩ rejected = ∅
grd5 : as ⊆ participant

THEN

act1 : accepted := accepted ∪ as
act2 : acceptS := acceptS ∪ as

END

EVENT receiveAccept

ANY

c

Appendix B Contract Net Case Study Event-B Models 200

a
WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ participant

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendReject

REFINES reject
ANY

c
as

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(rejected)
grd3 : as = ({c}� proposed) \ ({c}� selected1)
grd4 : as ∩ accepted = ∅
grd5 : as ⊆ participant

THEN

act1 : rejected := rejected ∪ as
act2 : rejectS := rejectS ∪ as

END

EVENT receiveReject

ANY

c
a

WHERE

grd1 : c 7→ a ∈ rejectS
grd2 : c 7→ a /∈ rejectR
grd3 : c 7→ a ∈ participant

THEN

act1 : rejectR := rejectR ∪ {c 7→ a}
END

EVENT sendInform

REFINES inform
ANY

c

Appendix B Contract Net Case Study Event-B Models 201

a
WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ participant

THEN

act1 : informed := informed ∪ {c 7→ a}
act2 : informS := informS ∪ {c 7→ a}

END

EVENT receiveInform

ANY

c
a

WHERE

grd1 : c 7→ a ∈ informS
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ participant

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES fail
ANY

c
a

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ participant

THEN

act1 : failed := failed ∪ {c 7→ a}
act2 : failS := failS ∪ {c 7→ a}

END

EVENT receiveFail

ANY

c

Appendix B Contract Net Case Study Event-B Models 202

a
WHERE

grd1 : c 7→ a ∈ failS
grd2 : c 7→ a /∈ failR
grd3 : c 7→ a ∈ participant

THEN

act1 : failR := failR ∪ {c 7→ a}
END

EVENT complete

REFINES complete
ANY

c
as

WHERE

grd1 : c ∈ dom(informR ∪ failR)
grd2 : as ⊆ {c}� (informR ∪ failR)
grd3 : c /∈ dom(completed)

THEN

act1 : completed := completed ∪ as
END

EVENT sendCancel

REFINES cancel1
ANY

c
as

WHERE

grd1 : c ∈ dom(cfp)
grd2 : as ⊆ {c}� cfp
grd3 : c /∈ dom(cancelStarted)
grd4 : as ⊆ participant

THEN

act1 : cancelStarted := cancelStarted ∪ as
act2 : cancelS := cancelS ∪ as

END

EVENT receiveCancel

ANY

c
a

Appendix B Contract Net Case Study Event-B Models 203

WHERE

grd1 : c 7→ a ∈ cancelS
grd2 : c 7→ a /∈ cancelR

THEN

act1 : cancelR := cancelR ∪ {c 7→ a}
END

EVENT sendInformCancel

REFINES informCancel
ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ informCancelled
grd3 : c 7→ a /∈ failCancelled
grd4 : c 7→ a ∈ participant

THEN

act1 : informCancelled := informCancelled ∪ {c 7→ a}
act2 : informCancelS := informCancelS ∪ {c 7→ a}

END

EVENT receiveInformCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ informCancelS
grd2 : c 7→ a /∈ informCancelR
grd3 : c 7→ a ∈ participant

THEN

act1 : informCancelR := informCancelR ∪ {c 7→ a}
END

EVENT sendFailCancel

REFINES failCancel
ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelR

Appendix B Contract Net Case Study Event-B Models 204

grd2 : c 7→ a /∈ failCancelled
grd3 : c 7→ a /∈ informCancelled
grd4 : c 7→ a ∈ participant

THEN

act1 : failCancelled := failCancelled ∪ {c 7→ a}
act2 : failCancelS := failCancelS ∪ {c 7→ a}

END

EVENT receiveFailCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ failCancelS
grd2 : c 7→ a /∈ failCancelR
grd3 : c 7→ a ∈ participant

THEN

act1 : failCancelR := failCancelR ∪ {c 7→ a}
END

EVENT cancelled

REFINES cancelled
ANY

c
as

WHERE

grd1 : c ∈ dom(informCancelR ∪ failCancelR)
grd2 : as ⊆ {c}� (informCancelR ∪ failCancelR)
grd3 : c /∈ dom(cancelled)

THEN

act1 : cancelled := cancelled ∪ as
END

END

Appendix B Contract Net Case Study Event-B Models 205

B.5 Context 2

CONTEXT context2

REFINES context

SETS

MESSAGE

CONSTANTS

sender
receiver
messageConversation

AXIOMS

axm1 : sender ∈ MESSAGE →AGENT
axm2 : receiver ∈ MESSAGE →AGENT
axm3 : messageConversation ∈ MESSAGE → CONVERSATION

END

B.6 m3 - Third Refinement

MACHINE m3

REFINES m2

SEES context2

VARIABLES

cfp
proposed
refused
selected1

Appendix B Contract Net Case Study Event-B Models 206

accepted
rejected
informed
failed
cancelStarted
informCancelled
failCancelled
cfpS
cfpR
proposeS
proposeR
refuseS
refuseR
acceptS
acceptR
rejectS
rejectR
informS
informR
failS
failR
cancelS
cancelR
informCancelS
informCancelR
failCancelS
failCancelR
completed
cancelled
initiator
participant
cfpM
proposeM
refuseM
acceptM
rejectM
informM
failM
cancelM
informCancelM
failCancelM

Appendix B Contract Net Case Study Event-B Models 207

pParticipant
pInitiator

INVARIANTS

inv1 : cfpM ⊆ MESSAGE
inv2 : cfpS = (cfpM � messageConversation)−1; receiver
inv3 : proposeM ⊆ MESSAGE
inv4 : proposeS = (proposeM � messageConversation)−1; sender
inv5 : refuseM ⊆ MESSAGE
inv6 : refuseS = (refuseM � messageConversation)−1; sender
inv7 : acceptM ⊆ MESSAGE
inv8 : acceptS = (acceptM � messageConversation)−1; receiver
inv9 : rejectM ⊆ MESSAGE
inv10 : rejectS = (rejectM � messageConversation)−1; receiver
inv11 : informM ⊆ MESSAGE
inv12 : informS = (informM � messageConversation)−1; sender
inv13 : failM ⊆ MESSAGE
inv14 : failS = (failM � messageConversation)−1; sender
inv15 : cancelM ⊆ MESSAGE
inv16 : cancelS = (cancelM � messageConversation)−1; receiver
inv17 : informCancelM ⊆ MESSAGE
inv18 : informCancelS = (informCancelM � messageConversation)−1; sender
inv19 : failCancelM ⊆ MESSAGE
inv20 : failCancelS = (failCancelM � messageConversation)−1; sender
inv21 : pParticipant ⊆ participant
inv22 : pParticipant ∈ dom(cfpR) ∪ dom(cancelR)↔ AGENT
inv23 : participant = ((cfpM ∪ cancelM) � messageConversation)−1; receiver
inv24 : pInitiator ⊆ initiator
inv25 : pInitiator ∈ dom(cfpR) ∪ dom(cancelR)→AGENT
inv26 : initiator = ((cfpM ∪ cancelM) � messageConversation)−1; sender

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act6 : proposed := ∅
act7 : refused := ∅
act8 : accepted := ∅

Appendix B Contract Net Case Study Event-B Models 208

act9 : rejected := ∅
act10 : informed := ∅
act11 : failed := ∅
act12 : cancelled := ∅
act13 : informCancelled := ∅
act14 : failCancelled := ∅
act2 : selected1 := ∅
act3 : cfpS := ∅
act4 : cfpR := ∅
act5 : proposeS := ∅
act15 : proposeR := ∅
act16 : refuseS := ∅
act17 : refuseR := ∅
act18 : acceptS := ∅
act19 : acceptR := ∅
act20 : rejectS := ∅
act21 : rejectR := ∅
act22 : informS := ∅
act23 : informR := ∅
act24 : failS := ∅
act25 : failR := ∅
act26 : cancelS := ∅
act27 : cancelR := ∅
act28 : informCancelS := ∅
act29 : informCancelR := ∅
act30 : failCancelS := ∅
act31 : failCancelR := ∅
act32 : completed := ∅
act33 : cancelStarted := ∅
act34 : initiator := ∅
act35 : participant := ∅
act36 : cfpM := ∅
act37 : proposeM := ∅
act38 : refuseM := ∅
act39 : acceptM := ∅
act40 : rejectM := ∅
act41 : informM := ∅
act42 : failM := ∅
act43 : cancelM := ∅
act44 : informCancelM := ∅
act45 : failCancelM := ∅

Appendix B Contract Net Case Study Event-B Models 209

act46 : pParticipant := ∅
act47 : pInitiator := ∅

END

EVENT sendCfp

REFINES sendCfp
ANY

c
as
a
ms

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfp)
grd3 : as ∈ CONVERSATION ↔ AGENT
grd4 : dom(as) = {c}
grd6 : a ∈ AGENT
grd5 : ran(as) ⊆ AGENT \ {a}
grd7 : ms ⊆ MESSAGE
grd8 : sender [ms] = {a}
grd9 : receiver [ms] = ran(as)
grd10 : messageConversation[ms] = {c}

THEN

act1 : cfp := cfp ∪ as
act2 : cfpS := cfpS ∪ as
act3 : initiator := initiator ∪ {c 7→ a}
act4 : participant := participant ∪ as
act5 : cfpM := cfpM ∪ ms

END

EVENT receiveCfp

REFINES receiveCfp
ANY

c
a
m

WHERE

grd1 : m ∈ cfpM
grd2 : c 7→ a /∈ cfpR
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c

Appendix B Contract Net Case Study Event-B Models 210

THEN

act1 : cfpR := cfpR ∪ {c 7→ a}
act2 : pParticipant := pParticipant ∪ {c 7→ a}
act3 : pInitiator := pInitiator ∪ {c 7→ sender(m)}

END

EVENT sendProposal

REFINES sendProposal
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ proposed
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : proposed := proposed ∪ {c 7→ a}
act2 : proposeS := proposeS ∪ {c 7→ a}
act3 : proposeM := proposeM ∪ {m}

END

EVENT receiveProposal

REFINES receiveProposal
ANY

c
a
m

WHERE

grd1 : m ∈ proposeM
grd2 : c 7→ a /∈ proposeR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

THEN

Appendix B Contract Net Case Study Event-B Models 211

act1 : proposeR := proposeR ∪ {c 7→ a}
END

EVENT sendRefusal

REFINES sendRefusal
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ proposed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : refused := refused ∪ {c 7→ a}
act2 : refuseS := refuseS ∪ {c 7→ a}
act3 : refuseM := refuseM ∪ {m}

END

EVENT receiveRefusal

REFINES receiveRefusal
ANY

c
a
m

WHERE

grd1 : m ∈ refuseM
grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

Appendix B Contract Net Case Study Event-B Models 212

EVENT select

REFINES select
ANY

c
as

WHERE

grd1 : c ∈ dom(proposeR)
grd2 : as ⊆ {c}� proposeR
grd3 : c /∈ dom(selected1)

THEN

act1 : selected1 := selected1 ∪ as
END

EVENT sendAccept

REFINES sendAccept
ANY

c
as
ms

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(accepted)
grd3 : as ⊆ {c}� selected1
grd4 : as 6= ∅
grd5 : as ∩ rejected = ∅
grd6 : as ⊆ participant
grd7 : ms ⊆ MESSAGE
grd8 : receiver [ms] = ran(as)
grd9 : messageConversation[ms] = {c}
grd10 : sender [ms] = {initiator(c)}

THEN

act1 : accepted := accepted ∪ as
act2 : acceptS := acceptS ∪ as
act3 : acceptM := acceptM ∪ ms

END

EVENT receiveAccept

REFINES receiveAccept
ANY

c
a

Appendix B Contract Net Case Study Event-B Models 213

m
WHERE

grd1 : m ∈ acceptM
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ pParticipant
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ sender(m) ∈ pInitiator

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendReject

REFINES sendReject
ANY

c
as
ms

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(rejected)
grd3 : as = ({c}� proposed) \ ({c}� selected1)
grd4 : as ∩ accepted = ∅
grd5 : as ⊆ participant
grd6 : ms ⊆ MESSAGE
grd7 : receiver [ms] = ran(as)
grd8 : messageConversation[ms] = {c}
grd9 : sender [ms] = {initiator(c)}

THEN

act1 : rejected := rejected ∪ as
act2 : rejectS := rejectS ∪ as
act3 : rejectM := rejectM ∪ ms

END

EVENT receiveReject

REFINES receiveReject
ANY

c
a
m

WHERE

Appendix B Contract Net Case Study Event-B Models 214

grd1 : m ∈ rejectM
grd2 : c 7→ a /∈ rejectR
grd3 : c 7→ a ∈ pParticipant
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ sender(m) ∈ pInitiator

THEN

act1 : rejectR := rejectR ∪ {c 7→ a}
END

EVENT sendInform

REFINES sendInform
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : informed := informed ∪ {c 7→ a}
act2 : informS := informS ∪ {c 7→ a}
act3 : informM := informM ∪ {m}

END

EVENT receiveInform

REFINES receiveInform
ANY

c
a
m

WHERE

grd1 : m ∈ informM
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ participant

Appendix B Contract Net Case Study Event-B Models 215

grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES sendFail
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : failed := failed ∪ {c 7→ a}
act2 : failS := failS ∪ {c 7→ a}
act3 : failM := failM ∪ {m}

END

EVENT receiveFail

REFINES receiveFail
ANY

c
a
m

WHERE

grd1 : m ∈ failM
grd2 : c 7→ a /∈ failR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

Appendix B Contract Net Case Study Event-B Models 216

THEN

act1 : failR := failR ∪ {c 7→ a}
END

EVENT complete

REFINES complete
ANY

c
as

WHERE

grd1 : c ∈ dom(informR ∪ failR)
grd2 : as ⊆ {c}� (informR ∪ failR)
grd3 : c /∈ dom(completed)

THEN

act1 : completed := completed ∪ as
END

EVENT sendCancel

REFINES sendCancel
ANY

c
as
ms

WHERE

grd1 : c ∈ dom(cfpS)
grd2 : as ⊆ {c}� cfp
grd3 : c /∈ dom(cancelStarted)
grd4 : as ⊆ participant
grd5 : ms ⊆ MESSAGE
grd6 : receiver [ms] = ran(as)
grd7 : messageConversation[ms] = {c}
grd8 : sender [ms] = {initiator(c)}

THEN

act1 : cancelStarted := cancelStarted ∪ as
act2 : cancelS := cancelS ∪ as
act3 : cancelM := cancelM ∪ ms

END

EVENT receiveCancel

REFINES receiveCancel
ANY

Appendix B Contract Net Case Study Event-B Models 217

c
a
m

WHERE

grd1 : m ∈ cancelM
grd2 : c 7→ a /∈ cancelR
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c

THEN

act1 : cancelR := cancelR ∪ {c 7→ a}
act2 : pParticipant := pParticipant ∪ {c 7→ a}
act3 : pInitiator := pInitiator ∪ {c 7→ sender(m)}

END

EVENT sendInformCancel

REFINES sendInformCancel
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ informCancelled
grd3 : c 7→ a /∈ failCancelled
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : informCancelled := informCancelled ∪ {c 7→ a}
act2 : informCancelS := informCancelS ∪ {c 7→ a}
act3 : informCancelM := informCancelM ∪ {m}

END

EVENT receiveInformCancel

REFINES receiveInformCancel
ANY

c
a
m

Appendix B Contract Net Case Study Event-B Models 218

WHERE

grd1 : m ∈ informCancelM
grd2 : c 7→ a /∈ informCancelR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

THEN

act1 : informCancelR := informCancelR ∪ {c 7→ a}
END

EVENT sendFailCancel

REFINES sendFailCancel
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ failCancelled
grd3 : c 7→ a /∈ informCancelled
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

THEN

act1 : failCancelled := failCancelled ∪ {c 7→ a}
act2 : failCancelS := failCancelS ∪ {c 7→ a}
act3 : failCancelM := failCancelM ∪ {m}

END

EVENT receiveFailCancel

REFINES receiveFailCancel
ANY

c
a
m

WHERE

grd1 : m ∈ failCancelM
grd2 : c 7→ a /∈ failCancelR

Appendix B Contract Net Case Study Event-B Models 219

grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator

THEN

act1 : failCancelR := failCancelR ∪ {c 7→ a}
END

EVENT cancelled

REFINES cancelled
ANY

c
as

WHERE

grd1 : c ∈ dom(informCancelR ∪ failCancelR)
grd2 : as ⊆ {c}� (informCancelR ∪ failCancelR)
grd3 : c /∈ dom(cancelled)

THEN

act1 : cancelled := cancelled ∪ as
END

END

B.7 Context 3

CONTEXT context3

REFINES context2

CONSTANTS

CFP
PROPOSE
REFUSE
ACCEPT
REJECT
INFORM
FAIL

Appendix B Contract Net Case Study Event-B Models 220

CANCEL
INFORMCANCEL
FAILCANCEL

AXIOMS

axm1 : CFP ⊆ MESSAGE
axm2 : PROPOSE ⊆ MESSAGE
axm3 : REFUSE ⊆ MESSAGE
axm4 : ACCEPT ⊆ MESSAGE
axm5 : REJECT ⊆ MESSAGE
axm6 : INFORM ⊆ MESSAGE
axm7 : FAIL ⊆ MESSAGE
axm8 : CANCEL ⊆ MESSAGE
axm9 : INFORMCANCEL ⊆ MESSAGE
axm10 : FAILCANCEL ⊆ MESSAGE
axm11 : CFP ∩ PROPOSE = ∅
axm12 : CFP ∩ REFUSE = ∅
axm13 : CFP ∩ ACCEPT = ∅
axm14 : CFP ∩ REJECT = ∅
axm15 : CFP ∩ INFORM = ∅
axm16 : CFP ∩ FAIL = ∅
axm17 : CFP ∩ CANCEL = ∅
axm18 : CFP ∩ INFORMCANCEL = ∅
axm19 : CFP ∩ FAILCANCEL = ∅
axm20 : PROPOSE ∩ REFUSE = ∅
axm21 : PROPOSE ∩ ACCEPT = ∅
axm22 : PROPOSE ∩ REJECT = ∅
axm23 : PROPOSE ∩ INFORM = ∅
axm24 : PROPOSE ∩ FAIL = ∅
axm25 : PROPOSE ∩ CANCEL = ∅
axm26 : PROPOSE ∩ INFORMCANCEL = ∅
axm27 : PROPOSE ∩ FAILCANCEL = ∅
axm28 : REFUSE ∩ ACCEPT = ∅
axm29 : REFUSE ∩ REJECT = ∅
axm30 : REFUSE ∩ INFORM = ∅
axm31 : REFUSE ∩ FAIL = ∅
axm32 : REFUSE ∩ CANCEL = ∅
axm33 : REFUSE ∩ INFORMCANCEL = ∅
axm34 : REFUSE ∩ FAILCANCEL = ∅
axm35 : ACCEPT ∩ REJECT = ∅

Appendix B Contract Net Case Study Event-B Models 221

axm36 : ACCEPT ∩ INFORM = ∅
axm37 : ACCEPT ∩ FAIL = ∅
axm38 : ACCEPT ∩ CANCEL = ∅
axm39 : ACCEPT ∩ INFORMCANCEL = ∅
axm40 : ACCEPT ∩ FAILCANCEL = ∅
axm41 : REJECT ∩ INFORM = ∅
axm42 : REJECT ∩ FAIL = ∅
axm43 : REJECT ∩ CANCEL = ∅
axm44 : REJECT ∩ INFORMCANCEL = ∅
axm45 : REJECT ∩ FAILCANCEL = ∅
axm46 : INFORM ∩ FAIL = ∅
axm47 : INFORM ∩ CANCEL = ∅
axm48 : INFORM ∩ INFORMCANCEL = ∅
axm49 : INFORM ∩ FAILCANCEL = ∅
axm50 : FAIL ∩ CANCEL = ∅
axm51 : FAIL ∩ INFORMCANCEL = ∅
axm52 : FAIL ∩ FAILCANCEL = ∅
axm53 : CANCEL ∩ INFORMCANCEL = ∅
axm54 : CANCEL ∩ FAILCANCEL = ∅
axm55 : INFORMCANCEL ∩ FAILCANCEL = ∅

END

B.8 m4 - Fourth Refinement

MACHINE m4

REFINES m3

SEES context3

VARIABLES

cfp
proposed
refused
selected1
accepted

Appendix B Contract Net Case Study Event-B Models 222

rejected
informed
failed
cancelStarted
informCancelled
failCancelled
cfpS
cfpR
proposeS
proposeR
refuseS
refuseR
acceptS
acceptR
rejectS
rejectR
informS
informR
failS
failR
cancelS
cancelR
informCancelS
informCancelR
failCancelS
failCancelR
completed
cancelled
initiator
participant
pParticipant
pInitiator
msgset

INVARIANTS

inv1 : msgset ⊆ MESSAGE
inv2 : cfpM = msgset ∩ CFP
inv3 : proposeM = msgset ∩ PROPOSE
inv4 : refuseM = msgset ∩ REFUSE
inv5 : acceptM = msgset ∩ ACCEPT

Appendix B Contract Net Case Study Event-B Models 223

inv6 : rejectM = msgset ∩ REJECT
inv7 : informM = msgset ∩ INFORM
inv8 : failM = msgset ∩ FAIL
inv9 : cancelM = msgset ∩ CANCEL
inv10 : informCancelM = msgset ∩ INFORMCANCEL
inv11 : failCancelM = msgset ∩ FAILCANCEL

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act6 : proposed := ∅
act7 : refused := ∅
act8 : accepted := ∅
act9 : rejected := ∅
act10 : informed := ∅
act11 : failed := ∅
act12 : cancelled := ∅
act13 : informCancelled := ∅
act14 : failCancelled := ∅
act2 : selected1 := ∅
act3 : cfpS := ∅
act4 : cfpR := ∅
act5 : proposeS := ∅
act15 : proposeR := ∅
act16 : refuseS := ∅
act17 : refuseR := ∅
act18 : acceptS := ∅
act19 : acceptR := ∅
act20 : rejectS := ∅
act21 : rejectR := ∅
act22 : informS := ∅
act23 : informR := ∅
act24 : failS := ∅
act25 : failR := ∅
act26 : cancelS := ∅
act27 : cancelR := ∅
act28 : informCancelS := ∅
act29 : informCancelR := ∅

Appendix B Contract Net Case Study Event-B Models 224

act30 : failCancelS := ∅
act31 : failCancelR := ∅
act32 : completed := ∅
act33 : cancelStarted := ∅
act34 : initiator := ∅
act35 : participant := ∅
act46 : pParticipant := ∅
act47 : pInitiator := ∅
act36 : msgset := ∅

END

EVENT sendCfp

REFINES sendCfp
ANY

c
as
a
ms

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfp)
grd3 : as ∈ CONVERSATION ↔ AGENT
grd4 : dom(as) = {c}
grd6 : a ∈ AGENT
grd5 : ran(as) ⊆ AGENT \ {a}
grd7 : ms ⊆ MESSAGE
grd8 : sender [ms] = {a}
grd9 : receiver [ms] = ran(as)
grd10 : messageConversation[ms] = {c}
grd11 : ms ⊆ CFP

THEN

act1 : cfp := cfp ∪ as
act2 : cfpS := cfpS ∪ as
act3 : initiator := initiator ∪ {c 7→ a}
act4 : participant := participant ∪ as
act5 : msgset := msgset ∪ ms

END

EVENT receiveCfp

REFINES receiveCfp
ANY

Appendix B Contract Net Case Study Event-B Models 225

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ cfpR
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd3 : m ∈ CFP

THEN

act1 : cfpR := cfpR ∪ {c 7→ a}
act2 : pParticipant := pParticipant ∪ {c 7→ a}
act3 : pInitiator := pInitiator ∪ {c 7→ sender(m)}

END

EVENT sendProposal

REFINES sendProposal
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ proposed
grd3 : c 7→ a /∈ refused
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator
grd9 : m ∈ PROPOSE

THEN

act1 : proposed := proposed ∪ {c 7→ a}
act2 : proposeS := proposeS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveProposal

REFINES receiveProposal
ANY

c

Appendix B Contract Net Case Study Event-B Models 226

a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ proposeR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ PROPOSE

THEN

act1 : proposeR := proposeR ∪ {c 7→ a}
END

EVENT sendRefusal

REFINES sendRefusal
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ refused
grd3 : c 7→ a /∈ proposed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator
grd9 : m ∈ REFUSE

THEN

act1 : refused := refused ∪ {c 7→ a}
act2 : refuseS := refuseS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveRefusal

REFINES receiveRefusal
ANY

c
a

Appendix B Contract Net Case Study Event-B Models 227

m
WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ refuseR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ REFUSE

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

EVENT select

REFINES select
ANY

c
as

WHERE

grd1 : c ∈ dom(proposeR)
grd2 : as ⊆ {c}� proposeR
grd3 : c /∈ dom(selected1)

THEN

act1 : selected1 := selected1 ∪ as
END

EVENT sendAccept

REFINES sendAccept
ANY

c
as
ms

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(accepted)
grd3 : as = {c}� selected1
grd4 : as 6= ∅
grd5 : as ∩ rejected = ∅
grd6 : as ⊆ participant
grd7 : ms ⊆ MESSAGE
grd8 : receiver [ms] = ran(as)

Appendix B Contract Net Case Study Event-B Models 228

grd9 : messageConversation[ms] = {c}
grd10 : sender [ms] = {initiator(c)}
grd11 : ms ⊆ ACCEPT

THEN

act1 : accepted := accepted ∪ as
act2 : acceptS := acceptS ∪ as
act3 : msgset := msgset ∪ ms

END

EVENT receiveAccept

REFINES receiveAccept
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ acceptR
grd3 : c 7→ a ∈ pParticipant
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ sender(m) ∈ pInitiator
grd7 : m ∈ ACCEPT

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT sendReject

REFINES sendReject
ANY

c
as
ms

WHERE

grd1 : c ∈ dom(selected1)
grd2 : c /∈ dom(rejected)
grd3 : as = ({c}� proposed) \ ({c}� selected1)
grd4 : as ∩ accepted = ∅
grd5 : as ⊆ participant
grd6 : ms ⊆ MESSAGE
grd7 : receiver [ms] = ran(as)

Appendix B Contract Net Case Study Event-B Models 229

grd8 : messageConversation[ms] = {c}
grd9 : sender [ms] = {initiator(c)}
grd10 : ms ⊆ REJECT

THEN

act1 : rejected := rejected ∪ as
act2 : rejectS := rejectS ∪ as
act3 : msgset := msgset ∪ ms

END

EVENT receiveReject

REFINES receiveReject
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ rejectR
grd3 : c 7→ a ∈ pParticipant
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ sender(m) ∈ pInitiator
grd7 : m ∈ REJECT

THEN

act1 : rejectR := rejectR ∪ {c 7→ a}
END

EVENT sendInform

REFINES sendInform
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ informed
grd3 : c 7→ a /∈ failed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c

Appendix B Contract Net Case Study Event-B Models 230

grd8 : c 7→ receiver(m) ∈ pInitiator
grd9 : m ∈ INFORM

THEN

act1 : informed := informed ∪ {c 7→ a}
act2 : informS := informS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveInform

REFINES receiveInform
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ informR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ INFORM

THEN

act1 : informR := informR ∪ {c 7→ a}
END

EVENT sendFail

REFINES sendFail
ANY

c
a
m

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ failed
grd3 : c 7→ a /∈ informed
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator

Appendix B Contract Net Case Study Event-B Models 231

grd9 : m ∈ FAIL
THEN

act1 : failed := failed ∪ {c 7→ a}
act2 : failS := failS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveFail

REFINES receiveFail
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ failR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ FAIL

THEN

act1 : failR := failR ∪ {c 7→ a}
END

EVENT complete

REFINES complete
ANY

c
as

WHERE

grd1 : c ∈ dom(informR ∪ failR)
grd2 : as ⊆ {c}� (informR ∪ failR)
grd3 : c /∈ dom(completed)

THEN

act1 : completed := completed ∪ as
END

EVENT sendCancel

REFINES sendCancel
ANY

Appendix B Contract Net Case Study Event-B Models 232

c
as
ms

WHERE

grd1 : c ∈ dom(cfpS)
grd2 : as ⊆ {c}� cfpS
grd3 : c /∈ dom(cancelStarted)
grd4 : as ⊆ participant
grd5 : ms ⊆ MESSAGE
grd6 : receiver [ms] = ran(as)
grd7 : messageConversation[ms] = {c}
grd8 : sender [ms] = {initiator(c)}
grd9 : ms ⊆ CANCEL

THEN

act1 : cancelStarted := cancelStarted ∪ as
act2 : cancelS := cancelS ∪ as
act3 : msgset := msgset ∪ ms

END

EVENT receiveCancel

REFINES receiveCancel
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ cancelR
grd4 : receiver(m) = a
grd5 : messageConversation(m) = c
grd3 : m ∈ CANCEL

THEN

act1 : cancelR := cancelR ∪ {c 7→ a}
act2 : pParticipant := pParticipant ∪ {c 7→ a}
act3 : pInitiator := pInitiator ∪ {c 7→ sender(m)}

END

EVENT sendInformCancel

REFINES sendInformCancel
ANY

c

Appendix B Contract Net Case Study Event-B Models 233

a
m

WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ informCancelled
grd3 : c 7→ a /∈ failCancelled
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator
grd9 : m ∈ INFORMCANCEL

THEN

act1 : informCancelled := informCancelled ∪ {c 7→ a}
act2 : informCancelS := informCancelS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveInformCancel

REFINES receiveInformCancel
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ informCancelR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ INFORMCANCEL

THEN

act1 : informCancelR := informCancelR ∪ {c 7→ a}
END

EVENT sendFailCancel

REFINES sendFailCancel
ANY

c
a

Appendix B Contract Net Case Study Event-B Models 234

m
WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ failCancelled
grd3 : c 7→ a /∈ informCancelled
grd4 : c 7→ a ∈ pParticipant
grd5 : m ∈ MESSAGE
grd6 : sender(m) = a
grd7 : messageConversation(m) = c
grd8 : c 7→ receiver(m) ∈ pInitiator
grd9 : m ∈ FAILCANCEL

THEN

act1 : failCancelled := failCancelled ∪ {c 7→ a}
act2 : failCancelS := failCancelS ∪ {c 7→ a}
act3 : msgset := msgset ∪ {m}

END

EVENT receiveFailCancel

REFINES receiveFailCancel
ANY

c
a
m

WHERE

grd1 : m ∈ msgset
grd2 : c 7→ a /∈ failCancelR
grd3 : c 7→ a ∈ participant
grd4 : sender(m) = a
grd5 : messageConversation(m) = c
grd6 : c 7→ receiver(m) ∈ initiator
grd7 : m ∈ FAILCANCEL

THEN

act1 : failCancelR := failCancelR ∪ {c 7→ a}
END

EVENT cancelled

REFINES cancelled
ANY

c
as

WHERE

Appendix B Contract Net Case Study Event-B Models 235

grd1 : c ∈ dom(informCancelR ∪ failCancelR)
grd2 : as ⊆ {c}� (informCancelR ∪ failCancelR)
grd3 : c /∈ dom(cancelled)

THEN

act1 : cancelled := cancelled ∪ as
END

END

B.9 m5 - Fifth Refinement

REFINEMENT m5

REFINES m4 SEES context3

INCLUDES mw.middleware0, initiator.initiator0, participant.participant0

INVARIANT

cfp = initiator .cfp ∧
cfpS = initiator .cfpS ∧
cfpR = participant .cfpR ∧
refused = participant .refused ∧
refuseS = participant .refuseS ∧
refuseR = initiator .refuseR ∧
proposed = participant .proposed ∧
proposeS = participant .proposeS ∧
proposeR = initiator .proposeR ∧
selected1 = initiator .selected ∧
accepted = initiator .accepted ∧
acceptS = initiator .acceptS ∧
acceptR = participant .acceptR ∧
rejected = initiator .rejected ∧
rejectS = initiator .rejectS ∧
rejectR = participant .rejectR ∧
informed = participant .informed ∧
informS = participant .informS ∧
informR = initiator .informR ∧
failed = participant .failed ∧

Appendix B Contract Net Case Study Event-B Models 236

failS = participant .failS ∧
failR = initiator .failR ∧
cancelStarted = initiator .cancelStarted ∧
cancelS = initiator .cancelS ∧
cancelR = participant .cancelR ∧
informCancelled = participant .informCancelled ∧
informCancelS = participant .informCancelS ∧
informCancelR = initiator .informCancelR ∧
failCancelled = participant .failCancelled ∧
failCancelS = participant .failCancelS ∧
failCancelR = initiator .failCancelR ∧
completed = initiator .completed ∧
cancelled = initiator .cancelled ∧
msgset = mw .msgset ∧
initiator = initiator .initiator ∧
participant = initiator .participant ∧
pInitiator = participant .pInitiator ∧
pParticipant = participant .pParticipant

EVENTS

EVENT sendCfp =

VAR

m
IN

m ← initiator .sendCfp;
mw .bcast(m)

END;

EVENT receiveCfp =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
participant .receiveCfp(m)

Appendix B Contract Net Case Study Event-B Models 237

END

END;

EVENT sendRefusal =

VAR

m
IN

m ← participant .sendRefusal ;
mw .send(m)

END;

EVENT sendProposal =

VAR

m
IN

m ← participant .sendProposal ;
mw .send(m)

END;

EVENT receiveProposal =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveProposal(m)

END

END;

EVENT receiveRefusal =

ANY

a
WHERE

Appendix B Contract Net Case Study Event-B Models 238

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveRefusal(m)

END

END;

EVENT select = initiator.select;

EVENT sendAccept =

VAR

m
IN

m ← initiator .sendAccept ;
mw .bcast(m)

END;

EVENT sendReject =

VAR

m
IN

m ← initiator .sendReject ;
mw .bcast(m)

END;

EVENT receiveAccept =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

Appendix B Contract Net Case Study Event-B Models 239

m ← mw .receive(a);
participant .receiveAccept(m)

END

END;

EVENT receiveReject =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
participant .receiveReject(m)

END

END;

EVENT sendInform =

VAR

m
IN

m ← participant .sendInform;
mw .send(m)

END;

EVENT sendFail =

VAR

m
IN

m ← participant .sendFail ;
mw .send(m)

END;

EVENT receiveInform =

ANY

Appendix B Contract Net Case Study Event-B Models 240

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveInform(m)

END

END;

EVENT receiveFail =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveFail(m)

END

END;

EVENT complete = initiator.complete;

EVENT sendCancel =

VAR

m
IN

m ← initiator .sendCancel ;
mw .bcast(m)

END;

EVENT receiveCancel =

Appendix B Contract Net Case Study Event-B Models 241

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
participant .receiveCancel(m)

END

END;

EVENT sendInformCancel =

VAR

m
IN

m ← participant .sendInformCancel ;
mw .send(m)

END;

EVENT sendFailCancel =

VAR

m
IN

m ← participant .sendFailCancel ;
mw .send(m)

END;

EVENT receiveInformCancel =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

Appendix B Contract Net Case Study Event-B Models 242

m ← mw .receive(a);
initiator .receiveInformCancel(m)

END

END;

EVENT receiveFailCancel =

ANY

a
WHERE

a ∈ AGENT
THEN

VAR

m
IN

m ← mw .receive(a);
initiator .receiveFailCancel(m)

END

END;

EVENT cancelled = initiator.cancelled

END

B.10 Initiator - Component Model

MODEL initiator0

SEES context

VARIABLES

cfp, cfpS, refuseR, proposeR, selected, accepted, acceptS, rejectS, rejected, informR,
failR, completed, cancelStarted, cancelS, informCancelR, failCancelR, cancelled, initia-
tor, participant

INVARIANT

cfp ∈ CONVERSATION ↔ AGENT ∧
cfpS ∈ CONVERSATION ↔ AGENT ∧
refuseR ∈ CONVERSATION ↔ AGENT ∧
proposeR ∈ CONVERSATION ↔ AGENT ∧

Appendix B Contract Net Case Study Event-B Models 243

selected ∈ CONVERSATION ↔ AGENT ∧
accepted ∈ CONVERSATION ↔ AGENT ∧
acceptS ∈ CONVERSATION ↔ AGENT ∧
rejected ∈ CONVERSATION ↔ AGENT ∧
rejectS ∈ CONVERSATION ↔ AGENT ∧
informR ∈ CONVERSATION ↔ AGENT ∧
failR ∈ CONVERSATION ↔ AGENT ∧
cancelStarted ∈ CONVERSATION ↔ AGENT ∧
cancelS ∈ CONVERSATION ↔ AGENT ∧
informCancelR ∈ CONVERSATION ↔ AGENT ∧
failCancelR ∈ CONVERSATION ↔ AGENT ∧
cancelled ∈ CONVERSATION ↔ AGENT ∧
initiator ∈ dom(cfpS)→ AGENT ∧
participant ∈ dom(cfpS)↔ AGENT

INITIALISATION

cfp := ∅ ||
cfpS := ∅ ||
refuseR := ∅ ||
proposeR := ∅ ||
selected := ∅ ||
accepted := ∅ ||
acceptS := ∅ ||
rejected := ∅ ||
rejectS := ∅ ||
informR := ∅ ||
failR := ∅ ||
completed := ∅ ||
cancelStarted := ∅ ||
cancelS := ∅ ||
informCancelR := ∅ ||
failCancelR := ∅ ||
cancelled := ∅ ||
initiator := ∅ ||
participant := ∅

EVENTS

EVENT ms1 ← sendCfp =

ANY

Appendix B Contract Net Case Study Event-B Models 244

c
as
a
ms

WHERE

c ∈ CONVERSATION ∧
c /∈ dom(cfp) ∧
as ∈ CONVERSATION ↔ AGENT ∧
dom(as) = {c} ∧
a ∈ AGENT ∧
ran(as) ⊆ AGENT \ a ∧
ms ⊆ MESSAGE ∧
sender [ms] = a ∧
receiver [ms] = ran(as) ∧
messageConversation[ms] = {c} ∧
ms ⊆ CFP

THEN

cfp := cfp ∪ as ||
cfpS := cfpS ∪ as ||
initiator := initiator ∪ {c 7→ a} ||
participant := participant ∪ as ||
ms1 := ms

END;

EVENT receiveRefusal(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ refuseR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ REFUSE

THEN

refuseR := refuseR ∪ {c 7→ a}

Appendix B Contract Net Case Study Event-B Models 245

END

END;

EVENT receiveProposal(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ proposeR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ PROPOSE

THEN

proposeR := proposeR ∪ {c 7→ a}
END

END;

EVENT select =

ANY

c
as

WHERE

c ∈ dom(proposeR) ∧
as ⊆ {c}� proposeR ∧
c /∈ dom(selected)

THEN

selected := selected ∪ as
END;

EVENT ms1 ← sendAccept =

ANY

c
as

Appendix B Contract Net Case Study Event-B Models 246

ms
WHERE

c ∈ dom(selected) ∧
c /∈ dom(accepted) ∧
as ⊆ {c}� selected ∧
as 6= ∅ ∧
as ∩ rejected = ∅ ∧
as ⊆ participant ∧
ms ⊆ MESSAGE ∧
receiver [ms] = ran(as) ∧
messageConversation[ms] = {c} ∧
sender [ms] = initiator(c) ∧
ms ⊆ ACCEPT

THEN

accepted := accepted ∪ as ||
acceptS := acceptS ∪ as ||
ms1 := ms

END;

EVENT ms1 ← sendReject =

ANY

c
as
ms

WHERE

c ∈ dom(selected) ∧
c /∈ dom(rejected) ∧
as = ({c}� proposed) \ ({c}� selected) ∧
as ∩ accepted = ∅ ∧
as ⊆ participant ∧
ms ⊆ MESSAGE ∧
receiver [ms] = ran(as) ∧
messageConversation[ms] = {c} ∧
sender [ms] = initiator(c) ∧
ms ⊆ REJECT

THEN

rejected := rejected ∪ as ||
rejectS := rejectS ∪ as ||
ms1 := ms

END;

Appendix B Contract Net Case Study Event-B Models 247

EVENT receiveInform(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ informR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ INFORM

THEN

informR := informR ∪ {c 7→ a}
END

END;

EVENT receiveFail(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ failR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ FAIL

THEN

failR := failR ∪ {c 7→ a}
END

END;

Appendix B Contract Net Case Study Event-B Models 248

EVENT complete =

ANY

c
as

WHERE

c ∈ dom(informR ∪ failR) ∧
as ⊆ {c}� (informR ∪ failR) ∧
c /∈ dom(completed)

THEN

completed := completed ∪ as
END;

EVENT ms1 ← sendCancel =

ANY

c
as
ms

WHERE

c ∈ dom(cfpS) ∧
as = {c}� cfpS ∧
c /∈ dom(cancelStarted) ∧
as ⊆ participant ∧
ms ⊆ MESSAGE ∧
receiver [ms] = ran(as) ∧
messageConversation[ms] = {c} ∧
sender [ms] = intiator(c) ∧
ms ⊆ CANCEL

THEN

cancelStarted := cancelStarted ∪ as ||
cancelS := cancelS ∪ as ||
ms1 := ms

END;

EVENT receiveInformCancel(m) =

PRE

m ∈ MESSAGE
THEN

ANY

Appendix B Contract Net Case Study Event-B Models 249

c
a

WHERE

c 7→ a /∈ informCancelR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ INFORMCANCEL

THEN

informCancelR := informCancelR ∪ {c 7→ a}
END

END;

EVENT receiveFailCancel(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ failCancelR ∧
c 7→ a ∈ participant ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ initiator ∧
m ∈ FAILCANCEL

THEN

failCancelR := failCancelR ∪ {c 7→ a}
END

END;

EVENT cancelled =

ANY

c
as

WHERE

c ∈ dom(informCancelR ∪ failCancelR) ∧

Appendix B Contract Net Case Study Event-B Models 250

as ⊆ {c}� (informCancelR ∪ failCancelR) ∧
c /∈ dom(cancelled)

THEN

cancelled := cancelled ∪ as
END;

END

B.11 Participant - Component Model

MODEL participant0

SEES context

VARIABLES

cfpR, refuseS, proposeS, acceptR, rejectR, informS, failS, cancelR, informCancelS, fail-
CancelS, pInitiator, pParticipant

INVARIANT

cfpR ∈ CONVERSATION ↔ AGENT ∧
proposed ∈ CONVERSATION ↔ AGENT ∧
refused ∈ CONVERSATION ↔ AGENT ∧
refuseS ∈ CONVERSATION ↔ AGENT ∧
proposeS ∈ CONVERSATION ↔ AGENT ∧
acceptR ∈ CONVERSATION ↔ AGENT ∧
rejectR ∈ CONVERSATION ↔ AGENT ∧
informed ∈ CONVERSATION ↔ AGENT ∧
failed ∈ CONVERSATION ↔ AGENT ∧
informS ∈ CONVERSATION ↔ AGENT ∧
failS ∈ CONVERSATION ↔ AGENT ∧
cancelR ∈ CONVERSATION ↔ AGENT ∧
informCancelS ∈ CONVERSATION ↔ AGENT ∧
failCancelS ∈ CONVERSATION ↔ AGENT ∧
pInitiator ∈ (dom(cfpR) ∪ dom(cancelR))→ AGENT ∧
pParticipant ∈ (dom(cfpR) ∪ dom(cancelR))↔ AGENT

INITIALISATION

cfpR := ∅ ||
proposed := ∅ ||

Appendix B Contract Net Case Study Event-B Models 251

refused := ∅ ||
refuseS := ∅ ||
proposeS := ∅ ||
acceptR := ∅ ||
rejectR := ∅ ||
informed := ∅ ||
failed := ∅ ||
informS := ∅ ||
failS := ∅ ||
cancelR := ∅ ||
informCancelS := ∅ ||
failCancelS := ∅ ||
pInitiator := ∅ ||
pParticipant := ∅

EVENTS

EVENT receiveCfp(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ cfpR ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ CFP

THEN

cfpR := cfpR ∪ {c 7→ a} ||
pInitiator := pInitiator ∪ {c 7→ sender(m)} ||
pParticipant := pParticipant ∪ {c 7→ a}

END

END;

EVENT m1 ← sendRefusal =

ANY

c
a

Appendix B Contract Net Case Study Event-B Models 252

m
WHERE

c 7→ a ∈ cfpR ∧
c 7→ a /∈ refused ∧
c 7→ a /∈ proposed ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ REFUSE

THEN

refused := refused ∪ {c 7→ a} ||
refuseS := refuseS ∪ {c 7→ a} ||
m1 := m

END;

EVENT m1 ← sendProposal =

ANY

c
a
m

WHERE

c 7→ a ∈ cfpR ∧
c 7→ a /∈ proposed ∧
c 7→ a /∈ refused ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ PROPOSE

THEN

proposed := proposed ∪ {c 7→ a} ||
proposeS := proposeS ∪ {c 7→ a} ||
m1 := m

END;

EVENT receiveReject(m) =

Appendix B Contract Net Case Study Event-B Models 253

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ rejectR ∧
c 7→ a ∈ pParticipant ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
c 7→ sender(m) ∈ pInitiator ∧
m ∈ REJECT

THEN

rejectR := rejectR ∪ {c 7→ a}
END

END;

EVENT receiveAccept(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ acceptR ∧
c 7→ a ∈ pParticipant ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
c 7→ sender(m) ∈ pInitiator ∧
m ∈ ACCEPT

THEN

acceptR := acceptR ∪ {c 7→ a}
END

END;

EVENT m1 ← sendInform =

ANY

Appendix B Contract Net Case Study Event-B Models 254

c
a
m

WHERE

c 7→ a ∈ acceptR ∧
c 7→ a /∈ informed ∧
c 7→ a /∈ failed ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ INFORM

THEN

informed := informed ∪ {c 7→ a} ||
informS := informS ∪ {c 7→ a} ||
m1 := m

END;

EVENT m1 ← sendFail =

ANY

c
a
m

WHERE

c 7→ a ∈ acceptR ∧
c 7→ a /∈ failed ∧
c 7→ a /∈ informed ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ FAIL

THEN

failed := failed ∪ {c 7→ a} ||
failS := failS ∪ {c 7→ a} ||
m1 := m

END;

Appendix B Contract Net Case Study Event-B Models 255

EVENT receiveCancel(m) =

PRE

m ∈ MESSAGE
THEN

ANY

c
a

WHERE

c 7→ a /∈ cancelR ∧
c 7→ a ∈ pParticipant ∧
receiver(m) = a ∧
messageConversation(m) = c ∧
m ∈ CANCEL

THEN

cancelR := cancelR ∪ {c 7→ a} ||
pInitiator := pInitiator ∪ {c 7→ sender(m)} ||
pParticipant := pParticipant ∪ {c 7→ a}

END

END;

EVENT m1 ← sendInformCancel =

ANY

c
a
m

WHERE

c 7→ a ∈ cancelR ∧
c 7→ a /∈ informCancelled ∧
c 7→ a /∈ failCancelled ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ INFORMCANCEL

THEN

informCancelled := informCancelled ∪ {c 7→ a} ||
informCancelS := informCancelS ∪ {c 7→ a} ||
m1 := m

Appendix B Contract Net Case Study Event-B Models 256

END;

EVENT m1 ← sendFailCancel =

ANY

c
a
m

WHERE

c 7→ a ∈ cancelR ∧
c 7→ a /∈ failCancelled ∧
c 7→ a /∈ informCancelled ∧
c 7→ a ∈ pParticipant ∧
m ∈ MESSAGE ∧
sender(m) = a ∧
messageConversation(m) = c ∧
c 7→ receiver(m) ∈ pInitiator ∧
m ∈ FAILCANCEL

THEN

failCancelled := failCancelled ∪ {c 7→ a} ||
failCancelS := failCancelS ∪ {c 7→ a} ||
m1 := m

END

END

B.12 Middleware - Component Model

MODEL middleware0

SEES context

VARIABLES msgset

INVARIANT

msgset ⊆ MESSAGE

INITIALISATION

msgset := ∅

Appendix B Contract Net Case Study Event-B Models 257

EVENTS

EVENT send(m) =

PRE

m ∈ MESSAGE
THEN

msgset := msgset ∪ m
END;

EVENT bcast(ms) =

PRE

ms ⊆ MESSAGE
THEN

msgset := msgset ∪ ms
END;

EVENT mr ← receive(a) =

PRE

a ∈ AGENT
THEN

ANY

m
WHERE

m ∈ msgset ∧
receiver(m) = a

THEN

mr := m
END

END

END

Appendix B Contract Net Case Study Event-B Models 258

B.13 Example Proof Obligation

This section provides an example of a proof obligation being discharged using the inter-
active proof environment of the RODIN platform. The proof obligation comes from the
third refinement model for the Contract Net case study. In the figures included below
the naming of the models used is different from those above. This is because of the
iterations in the development of the models. The second refinement model is called m3
and the third refinement model is named m4.

Figure B.1 shows the main Proving view of the RODIN platform. The top window
displays the hypotheses that are currently available for use in discharging the proof
obligation. These have come from the guards of the event that has generated the proof
obligation. The window below shows the goal that currently needs to be proved for the
proof obligation to be discharged. The bottom window is the proof control. This section
includes buttons for running the different available provers, adding an hypothesis that
can be typed in the text input box, searching for available hypotheses from the model
and finding information about the proof obligation.

Appendix B Contract Net Case Study Event-B Models 259

Figure B.1: Proof Obligation

Appendix B Contract Net Case Study Event-B Models 260

Figure B.2: Proof Information

Selecting the ‘i’ button in the proof control window displays information about the
proof obligation. The information for this example proof obligation is shown in Fig-
ure B.2. The proof obligation comes from the an invariant condition and the sendPro-
posal event. The proof is required that the gluing invariant, proposeS = (proposeM �

messageConversation)−1; sender , is upheld after the occurence of the sendProposal

event. The gluing invariant describes the relationship between the variables proposeS

and proposeM using the fields of the messages that are in proposeM. The proof obligation
must show that after the action of the sendProposal event the relationships between con-
versation and agents in the proposeS variable is equal to the conversations and sender
agents of the messages in the proposeM variable.

The relationship between the proposeS and proposeM variables is not currently in the
selected hypothesis window and needs to be added for the provers to be able to discharge
the proof obligation. To find the required hypothesis the variable name proposeS was
typed into the text input box and the search hypotheses button was selected. All of the

Appendix B Contract Net Case Study Event-B Models 261

Figure B.3: Adding Hypotheses

hypotheses relating to the proposeS variable are then displayed in a window to the left
of the main proof window. This is shown in Figure B.3. The required hypothesis can
then be selected and added to the selected hypotheses window.

Two further hypotheses were needed for the provers to be able to discharge the proof obli-
gation. The hypotheses sender ∈ MESSAGE → AGENT and messageConversation ∈
MESSAGE → CONVERSATION are added to tell the provers that for each message
there is only one agent in the sender field and one conversation in the message field.
Figure B.4 shows all of the hypotheses in the selected hypotheses window. Adding
the hypotheses has automatically changed the form of the goal in the goal window.
The proposeS variable has now been replaced with the right-hand side of the invariant
proposeS = (proposeM � messageConversation)−1; sender .

Appendix B Contract Net Case Study Event-B Models 262

Figure B.4: Updated Goal

Appendix B Contract Net Case Study Event-B Models 263

Figure B.5: Running Prover

The information required for a prover to discharge the proof obligation is now available
in the selected hypotheses. Figure B.5 shows one of the available provers running in the
interactive proving view.

Figure B.6 shows the discharged proof obligation with the proof tree window to the left
of the main windows.

Appendix B Contract Net Case Study Event-B Models 264

Figure B.6: Discharged Proof Obligation

Appendix B Contract Net Case Study Event-B Models 265

Table B.1: RODIN Prover Statistics for the Contract Net Case Study

Model Total PO’s Proved Automatically Proved Interactively
m0 14 12 2
m1 62 46 12
m2 65 59 2
m3 113 44 69
m4 152 14 138

Table B.1 shows the statistics from the provers in the RODIN toolkit for the Contract
Net case study. The table does not include the models involved in decomposition as
these were verified using a different toolset. The table shows the total proof obliga-
tions generated for the models, the number of which were proved automatically by the
RODIN toolkit and the number that needed some degree of interaction for them to be
discharged. The first three models use the guidance to create the translation between the
goal model and the Event-B models. These generated relatively few proof obligations.
The majority of the proof obligations were discharged automatically by the provers.
The last two models in the table introduce the messages and then refine the messaging
medium. These models involve more data refinement than the earlier models and gen-
erate more proof obligations. A lot more of the proof obligations required interaction
for them to be discharged. The refinements made to these models follow patterns that
are repeated for the variables and events. Discharging the proof obligations generated
by these changes using the interactive prover requires the same steps to be repeated for
each proof obligation.

Appendix C

Fault-Tolerant Contract Net Case

Study Event-B Models

C.1 Context

CONTEXT context

SETS

CONVERSATION

END

C.2 m0 - Abstract Machine

MACHINE m0

SEES context

VARIABLES

cfp
responded
selected
informed

266

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 267

failed
cancelled
recUnknown
recNotUnderstood

INVARIANTS

inv1 : cfp ⊆ CONVERSATION
inv2 : responded ⊆ cfp
inv3 : selected ⊆ responded
inv4 : informed ⊆ selected
inv8 : failed ⊆ cfp
inv5 : cancelled ⊆ cfp
inv6 : recUnknown ⊆ cfp
inv7 : recNotUnderstood ⊆ cfp

EVENTS

INITIALISATION

BEGIN

act1 : cfp := ∅
act2 : responded := ∅
act3 : selected := ∅
act4 : informed := ∅
act5 : cancelled := ∅
act6 : recUnknown := ∅
act7 : recNotUnderstood := ∅
act8 : failed := ∅

END

EVENT callForProposals

ANY

c
WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ cfp

THEN

act1 : cfp := cfp ∪ {c}
END

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 268

EVENT respond

ANY

c
WHERE

grd1 : c ∈ cfp
grd2 : c /∈ responded

THEN

act1 : responded := responded ∪ {c}
END

EVENT select

ANY

c
WHERE

grd1 : c ∈ responded
grd2 : c /∈ selected
grd3 : c /∈ failed

THEN

act1 : selected := selected ∪ {c}
END

EVENT inform

ANY

c
WHERE

grd1 : c ∈ selected
grd2 : c /∈ informed
grd3 : c /∈ failed

THEN

act1 : informed := informed ∪ {c}
END

EVENT failure

ANY

c
WHERE

grd1 : c ∈ cfp
grd2 : c /∈ failed
grd3 : c /∈ informed

THEN

act1 : failed := failed ∪ {c}

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 269

END

EVENT cancel

ANY

c
WHERE

grd1 : c ∈ cfp
grd2 : c /∈ cancelled

THEN

act1 : cancelled := cancelled ∪ {c}
END

EVENT arbitraryComm

ANY

c
WHERE

grd1 : c ∈ cfp
THEN

act1 : recUnknown := recUnknown ∪ {c}
END

EVENT receiveNotUnderstood

ANY

c
WHERE

grd1 : c ∈ cfp
THEN

act1 : recNotUnderstood := recNotUnderstood ∪ {c}
END

END

C.3 Context2

CONTEXT context2

REFINES context

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 270

SETS

AGENT

END

C.4 m1 - First Refinement

MACHINE m1

REFINES m0

SEES context2

VARIABLES

cfpS
proposeS
acceptS
informS
rejectS
cfpR
proposeR
acceptR
rejectR
informR
responded
informed
beforeTimeout
afterTimeout
rejectSD
proposeRD
refuseS
refuseR
cancelS
cancelR
informCancelS
failCancelS

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 271

informCancelR
failCancelR
informCancelled
failCancelled
failS
failR
failed1
failedCfp
failedCommit
unknownR
notUnderstoodS
notUnderstoodR
rejectRD

INVARIANTS

inv1 : cfpS ∈ CONVERSATION ↔ AGENT
inv2 : proposeS ∈ CONVERSATION ↔ AGENT
inv3 : acceptS ∈ CONVERSATION ↔ AGENT
inv4 : rejectS ∈ CONVERSATION ↔ AGENT
inv5 : informS ∈ CONVERSATION ↔ AGENT
inv6 : cfpR ⊆ cfpS
inv7 : proposeR ⊆ proposeS
inv19 : refuseS ⊆ cfpR
inv20 : refuseR ⊆ refuseS
inv8 : acceptR ⊆ acceptS
inv9 : rejectR ⊆ rejectS
inv10 : informR ⊆ informS
inv13 : proposeS ⊆ cfpR
inv44 : acceptS ⊆ proposeR
inv14 : informS ⊆ acceptR
inv21 : proposeS ∩ refuseS = ∅
inv15 : beforeTimeout ⊆ dom(cfpS)
inv16 : afterTimeout ⊆ beforeTimeout
inv18 : proposeRD ⊆ proposeS
inv17 : rejectSD ⊆ proposeRD
inv42 : rejectRD ⊆ rejectSD
inv22 : cancelS ⊆ cfpS
inv23 : cancelR ⊆ cancelS
inv32 : failS ⊆ acceptR
inv24 : informCancelS ⊆ cancelR

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 272

inv25 : failCancelS ⊆ cancelR
inv27 : informCancelR ⊆ informCancelS
inv28 : failCancelR ⊆ failCancelS
inv26 : informCancelS ∩ failCancelS = ∅
inv29 : informCancelled ⊆ dom(informCancelR)
inv30 : failCancelled ⊆ dom(failCancelR)
inv43 : informCancelled ∩ failCancelled = ∅
inv37 : informed ∩ failed1 = ∅
inv36 : informed ⊆ dom(informR)
inv38 : unknownR ⊆ cfpS
inv39 : notUnderstoodS ⊆ unknownR
inv41 : notUnderstoodR ⊆ notUnderstoodS
inv33 : failR ⊆ failS
inv34 : failed1 ⊆ dom(failR)
inv46 : failedCfp ⊆ afterTimeout
inv47 : failedCommit ⊆ dom(refuseR)
inv48 : failedCfp ∩ dom(proposeR) = ∅
inv49 : failedCommit ∩ dom(proposeR) = ∅
inv11 : cfp = dom(cfpS)
inv12 : selected = dom(acceptS)
inv31 : cancelled = informCancelled ∪ failCancelled
inv40 : recUnknown = dom(notUnderstoodS)
inv45 : failed = failed1 ∪ failedCfp ∪ failedCommit

EVENTS

INITIALISATION

BEGIN

act1 : cfpS := ∅
act2 : proposeS := ∅
act3 : acceptS := ∅
act4 : informS := ∅
act5 : rejectS := ∅
act6 : cfpR := ∅
act7 : proposeR := ∅
act8 : acceptR := ∅
act9 : rejectR := ∅
act10 : informR := ∅
act11 : responded := ∅
act12 : informed := ∅

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 273

act13 : beforeTimeout := ∅
act14 : afterTimeout := ∅
act15 : rejectSD := ∅
act16 : proposeRD := ∅
act17 : refuseS := ∅
act18 : refuseR := ∅
act19 : cancelS := ∅
act20 : cancelR := ∅
act21 : informCancelS := ∅
act22 : failCancelS := ∅
act23 : informCancelR := ∅
act24 : failCancelR := ∅
act25 : informCancelled := ∅
act26 : failCancelled := ∅
act27 : failS := ∅
act28 : failR := ∅
act29 : failed1 := ∅
act30 : unknownR := ∅
act31 : notUnderstoodS := ∅
act32 : notUnderstoodR := ∅
act33 : rejectRD := ∅
act34 : failedCfp := ∅
act35 : failedCommit := ∅

END

EVENT sendCfp

REFINES callForProposals
ANY

c
as
a

WHERE

grd1 : c ∈ CONVERSATION
grd2 : c /∈ dom(cfpS)
grd3 : as ∈ CONVERSATION ↔ AGENT
grd6 : a ∈ AGENT
grd4 : dom(as) = {c}
grd5 : ran(as) = AGENT \ {a}

THEN

act1 : cfpS := cfpS ∪ as
act2 : beforeTimeout := beforeTimeout ∪ {c}

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 274

END

EVENT receiveCfp

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpS
grd2 : c 7→ a /∈ cfpR

THEN

act1 : cfpR := cfpR ∪ {c 7→ a}
END

EVENT sendProposal

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ proposeS
grd3 : c 7→ a /∈ refuseS

THEN

act1 : proposeS := proposeS ∪ {c 7→ a}
END

EVENT receiveProposal

ANY

c
a

WHERE

grd1 : c 7→ a ∈ proposeS
grd2 : c 7→ a /∈ proposeR
grd3 : c /∈ afterTimeout
grd4 : c /∈ failedCommit

THEN

act1 : proposeR := proposeR ∪ {c 7→ a}
END

EVENT deadline

ANY

c

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 275

WHERE

grd1 : c ∈ beforeTimeout
grd2 : c /∈ afterTimeout

THEN

act1 : afterTimeout := afterTimeout ∪ {c}
END

EVENT receiveProposal2

ANY

c
a

WHERE

grd1 : c 7→ a ∈ proposeS
grd2 : c 7→ a /∈ proposeR
grd3 : c 7→ a /∈ proposeRD
grd4 : c ∈ afterTimeout

THEN

act1 : proposeRD := proposeRD ∪ {c 7→ a}
END

EVENT failToPropose

REFINES failure
ANY

c
WHERE

grd1 : c /∈ dom(proposeR)
grd2 : c ∈ afterTimeout
grd3 : c /∈ failedCfp

THEN

act1 : failedCfp := failedCfp ∪ {c}
END

EVENT sendRefusal

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpR
grd2 : c 7→ a /∈ refuseS
grd3 : c 7→ a /∈ proposeS

THEN

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 276

act1 : refuseS := refuseS ∪ {c 7→ a}
END

EVENT receiveRefusal

ANY

c
a

WHERE

grd1 : c 7→ a ∈ refuseS
grd2 : c 7→ a /∈ refuseR

THEN

act1 : refuseR := refuseR ∪ {c 7→ a}
END

EVENT sendReject

ANY

c
a

WHERE

grd1 : c 7→ a ∈ proposeRD
grd2 : c 7→ a /∈ rejectSD

THEN

act1 : rejectSD := rejectSD ∪ {c 7→ a}
END

EVENT responded

REFINES respond
ANY

c
WHERE

grd1 : c ∈ dom(proposeR)
grd2 : c /∈ responded

THEN

act1 : responded := responded ∪ {c}
END

EVENT failToCommit

REFINES failure
ANY

c
WHERE

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 277

grd1 : c ∈ dom(refuseR)
grd2 : c /∈ dom(proposeR)
grd3 : c /∈ failedCommit

THEN

act1 : failedCommit := failedCommit ∪ {c}
END

EVENT select

REFINES select
ANY

c
as
ar

WHERE

grd1 : c ∈ dom(proposeR)
grd2 : c /∈ dom(acceptS)
grd3 : c /∈ dom(rejectS)
grd4 : as ⊆ {c}� proposeR
grd5 : as 6= ∅
grd6 : ar = {c}� proposeR \ as
grd7 : c ∈ responded

THEN

act1 : acceptS := acceptS ∪ as
act2 : rejectS := rejectS ∪ ar

END

EVENT receiveAccept

ANY

c
a

WHERE

grd1 : c 7→ a ∈ acceptS
grd2 : c 7→ a /∈ acceptR

THEN

act1 : acceptR := acceptR ∪ {c 7→ a}
END

EVENT receiveReject

ANY

c
a

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 278

WHERE

grd1 : c 7→ a ∈ rejectS
grd2 : c 7→ a /∈ rejectR

THEN

act1 : rejectR := rejectR ∪ {c 7→ a}
END

EVENT receiveReject2

ANY

c
a

WHERE

grd1 : c 7→ a ∈ rejectSD
grd2 : c 7→ a /∈ rejectRD

THEN

act1 : rejectRD := rejectRD ∪ {c 7→ a}
END

EVENT sendInform

ANY

c
a

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ informS
grd3 : c 7→ a /∈ failS

THEN

act1 : informS := informS ∪ {c 7→ a}
END

EVENT receiveInform

ANY

c
a

WHERE

grd1 : c 7→ a ∈ informS
grd2 : c 7→ a /∈ informR

THEN

act1 : informR := informR ∪ {c 7→ a}
END

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 279

EVENT informed

REFINES inform
ANY

c
WHERE

grd1 : c ∈ dom(informR)
grd2 : c /∈ informed
grd3 : c /∈ failed1

THEN

act1 : informed := informed ∪ {c}
END

EVENT sendCancel

ANY

c
as

WHERE

grd1 : c ∈ dom(cfpS)
grd2 : as = {c}� cfpS
grd3 : c /∈ dom(cancelS)

THEN

act1 : cancelS := cancelS ∪ as
END

EVENT receiveCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelS
grd2 : c 7→ a /∈ cancelR

THEN

act1 : cancelR := cancelR ∪ {c 7→ a}
END

EVENT sendInformCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelR

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 280

grd2 : c 7→ a /∈ informCancelS
grd3 : c 7→ a /∈ failCancelS

THEN

act1 : informCancelS := informCancelS ∪ {c 7→ a}
END

EVENT sendFailCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cancelR
grd2 : c 7→ a /∈ failCancelS
grd3 : c 7→ a /∈ informCancelS

THEN

act1 : failCancelS := failCancelS ∪ {c 7→ a}
END

EVENT receiveInformCancel

ANY

c
a

WHERE

grd1 : c 7→ a ∈ informCancelS
grd2 : c 7→ a /∈ informCancelR

THEN

act1 : informCancelR := informCancelR ∪ {c 7→ a}
END

EVENT informCancel

REFINES cancel
ANY

c
WHERE

grd1 : c ∈ dom(informCancelR)
grd2 : c /∈ informCancelled
grd3 : c /∈ failCancelled

THEN

act1 : informCancelled := informCancelled ∪ {c}
END

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 281

EVENT failCancel

REFINES cancel
ANY

c
WHERE

grd1 : c ∈ dom(failCancelR)
grd2 : c /∈ failCancelled
grd3 : c /∈ informCancelled

THEN

act1 : failCancelled := failCancelled ∪ {c}
END

EVENT sendFail

ANY

c
a

WHERE

grd1 : c 7→ a ∈ acceptR
grd2 : c 7→ a /∈ failS
grd3 : c 7→ a /∈ informS

THEN

act1 : failS := failS ∪ {c 7→ a}
END

EVENT receiveFail

ANY

c
a

WHERE

grd1 : c 7→ a ∈ failS
grd2 : c 7→ a /∈ failR

THEN

act1 : failR := failR ∪ {c 7→ a}
END

EVENT failed

REFINES failure
ANY

c
WHERE

grd1 : c ∈ dom(failR)

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 282

grd2 : c /∈ failed1
grd3 : c /∈ informed

THEN

act1 : failed1 := failed1 ∪ {c}
END

EVENT receiveArbitraryComm

ANY

c
a

WHERE

grd1 : c 7→ a ∈ cfpS
THEN

act1 : unknownR := unknownR ∪ {c 7→ a}
END

EVENT sendNotUnderstood

REFINES arbitraryComm
ANY

c
a

WHERE

grd1 : c 7→ a ∈ unknownR
grd2 : c 7→ a /∈ notUnderstoodS

THEN

act1 : notUnderstoodS := notUnderstoodS ∪ {c 7→ a}
END

EVENT receiveNotUnderstood

REFINES receiveNotUnderstood
ANY

c
a

WHERE

grd1 : c 7→ a ∈ notUnderstoodS
grd2 : c 7→ a /∈ notUnderstoodR

THEN

act1 : notUnderstoodR := notUnderstoodR ∪ {c 7→ a}
END

END

Appendix C Fault-Tolerant Contract Net Case Study Event-B Models 283

Bibliography

J-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environ-
ment for Event-B. In Zhiming Liu and Jifeng He, editors, 8th International Conference
on Formal Engineering Methods, ICFEM 2006, volume 4260/2006 of Lecture Notes
in Computer Science, pages 588 – 605, Macao, China, 2006. Springer-Verlag.

J-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of discrete
models: Application to Event-B. Fundamenta Informaticae, XXI, 77(1 - 2):1 – 28,
2006.

Jean-Raymond Abrial. The B-Book, Assigning Programs to Meanings. Cambridge
University Press, Cambridge, 1996.

Jean-Raymond Abrial and Dominique Cansell. Click’n prove: Interactive proofs within
set theory. In David Basin and Burkhart Wolff, editors, Theorem Proving in Higher
Order Logics, 16th International Conference, TPHOLs 2003, volume 2758 of Lecture
Notes in Computer Science, pages 1–24, Rome, Italy, 2003. Springer-Verlag.

Jean-Raymond Abrial and L. Mussat. Introducing dynamic constraints in B. In D Bert,
editor, Second International B Conference B’98: Recent Advances in the Development
and Use of the B Method, volume 1393 of Lecture Notes in Computer Science, pages
83 – 128, Montpellier, France, 1998. Springer.

C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: towns, buildings,
construction. Oxford University Press, 1977.

T. Anderson and P.A. Lee. Fault Tolerance: Principles and Practice. Prentice-Hall
International Inc., New Jersey, USA, 1981.

Y. Aridor and D.B. Lange. Agent design patterns: elements of agent application design.
In Proceedings of the second international conference on Autonomous agents, pages
108–115. ACM Press New York, NY, USA, 1998.

R.J. Back. Incremental software construction with refinement diagrams. In Manfred
Broy, Johannes Gruenbauer, David Harel, and Tony Hoare, editors, Engineering
Theories of Software Intensive Systems: Proceedings of the NATO Advanced Study
Institute on Engineering Theories of Software Intensive Systems, pages 3 – 46, Mark-
toberdorf, Germany, 2005. Springer.

284

BIBLIOGRAPHY 285

R.J. Back, A. Akademi, J. Von Wright, F.B. Schneider, and D. Gries. Refinement
Calculus: A Systematic Introduction. Springer-Verlag New York, Inc. Secaucus, NJ,
USA, 1998.

R.J. Back and K. Sere. Stepwise refinement of action systems. Structured Programming,
12(1):17–30, 1991.

Bernhard Bauer. UML class diagrams revisited in the context of agent-based systems.
In Michael Wooldridge, Paolo Ciancarini, and Gerhard Weiβ, editors, Agent Oriented
Software Engineering II: Second International Workshop, volume 2222 of Lecture
Notes in Computer Science, pages 101–119. Springer-Verlag, 2001.

Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML: A formalism for spec-
ifying multiagent interaction. In Paolo Ciancarini and Michael Wooldridge, editors,
Agent-Oriented Software Engineering, volume 1957 of Lecture Notes in Computer
Science, pages 91–103. Springer-Verlag, Berlin, 2001.

Bernhard Bauer and James Odell. UML 2.0 and agents: How to build agent-based
systems with the new UML standard. Journal of Engineering Applications of Artificial
Intelligence, 18(2):141–157, 2005.

K. Beck and R.E. Johnson. Patterns generate architectures. In Mario Tokoro and
Remo Pareschi, editors, ECOOP’94. Proceedings of the 8th European Conference on
Object-Oriented Programming, volume 821 of Lecture Notes in Computer Science,
pages 139–149, Bologna, Italy, 1994. Springer-Verlag London, UK.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor: A
succesful application of B in a large project. In J.M. Wing, J. Woodcock, and
J. Davis, editors, FM’99 - Formal Methods: World Congress on Formal Methods in
the Development of Computing Systems, volume 1708 of Lecture Notes in Computer
Science, pages 369–387, Toulouse, France, 1999. Springer-Verlag.

JA Bergstra, A Ponse, and SA Smolka. Preface. In JA Bergstra, A Ponse, and
SA Smolka, editors, Handbook of Process Algebra. Elsevier Science Inc. New York,
NY, USA, 2001.

DM Berry and E Kamsties. Ambiguity in requirements specification. In Sam-
paio do Prado Leite, Doorn Julio Cesar, and Jorge Horacio, editors, Perspectives
on Software Requirements, volume 753 of The Springer International Series in
Engineering and Computer Science, pages 7 – 44. Kluwer Academic Publishers, 2004.

Sandrine Blazy, Frédéric Gervais, and Régine Laleau. Reuse of specification patterns
with the B Method. In D. Bert, J. P. Bowen, S. King, and M. Waldén, editors, ZB
2003: Formal Specification and Development in Z and B, volume 2651 of Lecture
Notes in Computer Science, pages 40 – 57, Turku, Finland, 2003. Springer-Verlag.

BIBLIOGRAPHY 286

Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California, USA, 1991.

Rafael H. Bordini, Mehdi Dastani, and Michael Winikoff. Current issues in multi-
agent systems development. In G. OHare, A. Ricci, M. OGrady, and O. Dikenelli,
editors, Engineering Societies in the Agents World VII 7th International Workshop,
ESAW 2006, volume 4457 of Lecture Notes in Computer Science, pages 38–61, Dublin,
Ireland, 2006. Springer-Verlag.

F.M.T. Brazier, C.M. Jonker, and J.Treur. Principles of compositional multi-agent sys-
tems development. In J. Cuena, editor, Proceedings of the 15th IFIP World Computer
Congress, WCC’98, Conference on Information Technology and Knowledge Systems,
pages 347–360, 1998.

Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nicholas R. Jennings, and Jan Treur.
Formal specification of multi-agent systems: a real-world case. In First International
Conference on Multi-agent Systems, pages 25 – 32, San Fransisco, CA, USA, 1995.
AAAI Press, CA, USA.

Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nicholas R. Jennings, and Jan
Treur. DESIRE: Modelling multi-agent systems in a compositional formal framework.
International Journal of Cooperative Information Systems, 6(1):67–94, 1997.

Paolo Bresciani and Paolo Donzelli. REF: A practical agent-based requirement engi-
neering framework. In Conceptual Modelling for Novel Application Domains. ER
2003 Workshops, volume 2814 of Lecture Notes in Computer Science, pages 217–228,
Chicago, IL, USA, 2003. Springer-Verlag.

Paolo Bresciani, Anna Perini, Paulo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An agent-oriented software development methodology. Autonomous Agents
and Multi-Agent Systems, 8:203–236, 2004.

FP Brooks. No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20(4):10–19, 1987.

M Butler and C Ferreira. An operational semantics for stac, alanguage for modelling
long-running business transactions. In Rocco De Nicola, Gianluigi Ferrari, and Greg
Meredith, editors, Coordination Models and Languages: 6th International Conference,
COORDINATION 2004, volume 2949 of Lecture Notes in Computer Science, pages
87–104, Pisa, Italy, 2004. Springer.

M Butler and M Leuschel. Combining csp and b for specification and property veri-
fication. In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM 2005:
Formal Methods: International Symposium of Formal Methods Europe, volume 3582,
pages 221–236, Newcastle, UK, 2005. Springer.

BIBLIOGRAPHY 287

M. Butler and D. Yadav. An incremental development of the Mondex System in Event-B.
Formal Aspects of Computing, 20(1):61–77, 2007.

Michael Butler. RODIN deliverable 16. prototype plug-in tools. Available From:
http://rodin.cs.ncl.ac.uk/deliverables/rodinD16.pdf. Technical report, University of
Newcastle-upon-Tyne, UK, 2006.

Michael Butler, Michael Leuschel, and Colin Snook. Tools for system validation with
B abstract machines. In Proceedings of ASM 2005: 12th International Workshop on
Abstract State Machines, pages 57 – 69, Paris, 2005.

M.J. Butler. Stepwise refinement of communicating systems. Science of Computer
Programming, 27(2):139–173, 1996.

Dominique Cansell and Dominique Méry. Time constraint patterns for Event B de-
velopment. In Jacques Julliand and Olga Kouchnarenko, editors, B 2007: Formal
Specification and Development in B, volume 4355 of Lecture Notes in Computer
Science, pages 140 – 154, Besancon, France, 2007. Springer-Verlag.

Edward Chan, Ken Robinson, and Brett Welch. Patterns for B: Bridging formal
and informal development. In Jacques Julliand and Olga Kouchnarenko, editors,
B 2007: Formal Specification and Development in B, volume 4355 of Lecture Notes
in Computer Science, pages 125 – 139, Besancon, France, 2007. Springer-Verlag.

P Cilliers. Complexity and Postmodernism: Understanding Complex Systems. Rout-
ledge, 1998.

Edmund M. Clarke Jr., Orna Grumberg, and Doran A Peled. Model Checking. The
MIT Press, USA, 2000.

ClearSy. B4free home page. Available From: http://www.b4free.com/, 2005.

P. Coad. Object-oriented patterns. Communications of the ACM, 35(9):152–159, 1992.

G Coulouris, J Dollimore, and T Kindberg. Distributed systems: concepts and design.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2000.

D. De Roure, M.A. Baker, N.R. Jennings, and N.R. Shadbolt. The evolution of the
Grid. Grid Computing: Making the Global Infrastructure a Reality, 2003.

Dwight Deugo, Michael Weiss, and Elizabeth Kendall. Reusable patterns for agent
coordination. In A. Omicini, F. Zambonelli, M. Klusch, and R Tolksdorf, editors,
Coordination of Internet Agents: Models, Technologies and Applications, pages 347
– 368. Springer, 2001.

Antoni Diller. Z: An Introduction to Formal Methods, Second Edition. John Wiley &
Sons, Chichester, UK, second edition, 1994.

http://rodin.cs.ncl.ac.uk/deliverables/rodinD16.pdf
http://rodin.cs.ncl.ac.uk/deliverables/rodinD16.pdf
http://www.b4free.com/

BIBLIOGRAPHY 288

M. d’Inverno and M. Luck. Development and application of a formal agent framework.
In M. G. Hinchey and L. Shaoying, editors, ICFEM’97: First IEEE International
Conference on Formal Engineering Methods, pages 222–231, Hiroshima, Japan, 1997.
IEEE Computer Society.

Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge. A formal spec-
ification of dMARS. In Rao Singh and Michael Wooldridge, editors, Intelligent
Agents IV: Proceedings of the Fourth International Workshop on Agent Theories,
Architectures and Languages, volume 1365 of Lecture Notes in AI, pages 155–176.
Springer-Verlag, 1998.

Paolo Donzelli. A goal-driven and agent-based requirements engineering framework.
Requirements Engineering, 9(1):16–39, 2004.

Eclipse. Eclipse platform homepage. Available From: http://www.eclipse.org, 2007.

A. Edmunds and M. Butler. Linking event-b and concurrent object-oriented programs.
In Refine 2008 - International Refinement Workshop, page In Press, Turku, Finland,
2008. Springer-Verlag.

N. Evans and M. Butler. A proposal for records in Event-B. In T. Nipkow and J. Misra,
editors, Formal Methods 2006, volume 4085 of Lecture Notes in Computer Science,
pages 221 – 235, McMaster, Canada, 2006. Springer-Verlag.

Hind Fadil and Jean-Luc Koning. A formal approach to model mulitagent interactions
using the B formal method. In Felix F. Romas, Victor Lrios Rosillo, and Ungerm
Herwig, editors, 5th International School and Symposium, ISSADS 2005, volume 3563
of Lecure Notes in Computer Science, pages 516 – 528, Guadalajara, Mexico, 2005.
Springer-Verlag.

R Fagin, JY Halpern, MY Vardi, and Y Moses. Reasoning about knowledge. MIT Press,
Cambridge, Massachusetts, USA, 2003.

A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 2, pages 737–744. ACM Press New York, NY, USA, 2002.

Jacques Ferber. Multi-Agent Systems: Introduction to Distributed Artificial Intelligence.
Addison Wesley, 1999.

FIPA. FIPA ACL message structure specification. Available From:
http://www.fipa.org/specs/fipa00061/SC00061G.pdf. Technical report, FIPA,
2002a.

FIPA. FIPA brokering interaction protocol specification. Available From:
http://www.fipa.org/specs/fipa00033/SC00033H.pdf. Technical report, FIPA, 2002b.

http://www.eclipse.org
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://www.fipa.org/specs/fipa00033/SC00033H.pdf
http://www.fipa.org/specs/fipa00033/SC00033H.pdf

BIBLIOGRAPHY 289

FIPA. FIPA contract net interaction protocol specification. Available From:
http://www.fipa.org/specs/fipa00029/SC00029H.pdf. Technical report, FIPA, 2002c.

FIPA. FIPA query interaction protocol specification. Available From:
http://www.fipa.org/specs/fipa00027/SC00027H.pdf. Technical report, FIPA,
2002d.

FIPA. FIPA request interaction protocol specification. Available From:
http://www.fipa.org/specs/fipa00026/SC00026H.pdf. Technical report, FIPA,
2002e.

Michael Fisher. Concurrent METATEM - a language for modelling reactive sys-
tems. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE ’93 Parallel
Architectures and Languages Europe, volume 694 of Lecture Notes in Computer
Science, pages 185–196, Munich, Germany, 1993. Springer-Verlag.

Michael Fisher. Temporal development methods for agent-based systems. Autonomous
Agents and Multi-Agent Based Systems, 10:41–66, 2005.

Michael Fisher. Metatem: The story so far. In R.H. Bordini, M. Dastani, J. Dix, and
A.E.F. Seghrouchni, editors, Programming Multi-Agent Systems. Third International
Workshop, ProMAS 2005, volume 3862 of Lecture Notes in Artificial Intelligence,
pages 3 – 22, Utrecht, The Netherlands, 2006. Springer-Verlag.

Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni. Computa-
tional logics and agents: A road map of current technologies and future trends.
Computational Intelligence, 23(1):61 – 91, 2007.

Michael Fisher and Michael Wooldridge. Towards formal methods for agent-based sys-
tems. In D Duke and A S Evans, editors, Proceedings of the BCS-FACS Nothern
Formal Methods Workshop, Electronic Workshops in Computing, Ilkley, UK, 1996.
Springer.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for au-
tonomous agents. In Jörg P. Müller, Michael J. Wooldridge, and Nicholas R. Jennings,
editors, ECAI’96 Workshop. Intelligent Agents III. Agent Theories, Architectures, and
Languages, volume 1193 of Lecture Notes in Computer Science, pages 21 – 35, Bu-
dapest, Hungary,, 1996. Springer-Verlag.

A. Fuxman, R. Kazhamiakin, M. Pistore, and M. Roveri. Formal Tropos: Language
and semantics. Available From: http://dit.unitn.it/ ft/papers/ftsem03.pdf. Technical
report, Trento, 2003.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Specifying
and analyzing early requirements in tropos. Requirements Engineering, 9(2):132–150,
2004.

http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://www.fipa.org/specs/fipa00027/SC00027H.pdf
http://www.fipa.org/specs/fipa00027/SC00027H.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
http://dit.unitn.it/~ft/papers/ftsem03.pdf
http://dit.unitn.it/~ft/papers/ftsem03.pdf

BIBLIOGRAPHY 290

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995.

H Gao, Y He, Z Qin, L Shao, and X Heng. Application of event b to modelling multi-
agent interactions. In Information and Communication Technology, 2007. ICICT’07.
International Conference on, pages 197–200, Cairo, EGYPT, 2007. IEEE.

Mark Greaves, Victoria Stavridou-Coleman, and Robert Laddaga. Guest editors intro-
duction: Dependable agent systems. IEEE Intelligent Systems, 19(5):20 – 23, 2004.

A. Hall. Seven myths of formal methods. Software, IEEE, 7(5):11–19, 1990.

A. Hall. Using formal methods to develop an ATC information system. Software, IEEE,
13(2):66–76, 1996.

Stefan Hallerstede. Justifications for the Event-B modelling notation. In J. Julliand and
O. Kouchnarenko, editors, B2007, 7th International Conference of B Users, volume
4355 of Lecture Notes in Computer Science, pages 46 – 63, Besancon, France, 2007.
Springer.

D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt, editor,
Logics and Models of Concurrent Systems, volume F-13 of NATO ASI Series, pages
477 – 498, New York, USA, 1985. Springer-Verlag.

C. Heitmeyer. On the need for practical formal methods. In Anders P. Ravn and Hans
Rischel, editors, FTRTFT’98, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 1486 of Lecture Notes in Computer Science, pages 18–26, Lyngby,
Denmark, 1998. Springer.

M.G. Hinchey and J.P. Bowen. To formalize or not to formalize. IEEE Computer, 29
(4):18–19, 1996.

CAR Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

CAR Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

I. Houstan and S. King. CICS project report: Experiences and results from the use of Z in
IBM. VDM91. Formal software development methods, vol. 1: Conference contribution.
In Soren Prehn and Hans Toetenel, editors, Lecture Notes in Computer Science, vol-
ume 552, pages 588–596, Noordwijkerhout, The Netherlands, 1991. Springer-Verlag.

M.P. Huget and J.L. Koning. Interaction protocol engineering. In Marc-Phillipe Huget,
editor, Communication in Multiagent Systems: Agent Communication Languages and
Conversation Policies, volume 2650 of Lecture Notes in Artificial Intelligence, page
209222. Springer, 2003.

BIBLIOGRAPHY 291

M Huth and M Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004.

Carlos A. Iglesias, Mercedes Garijo, José C. Gonzáles, and Juan R. Velasco. Analy-
sis and design of multiagents systems using MAS-commonKADS. In Munindar P.
Singh, Anand Rao, and Michael J. Wooldridge, editors, 4th International Workshop,
ATAL’97: Intelligent Agents IV: Agent Theories, Architectures, and Languages, Lec-
ture Notes in Artificial Intelligence, pages 313–327, Providence, Rhode Island, USA,
1997. Springer-Verlag.

Alexei Iliasov, Linas Laibinis, Alexander Romanovsky, and Elena Troubitsyna. Towards
formal development of mobile location-based systems. In Michael Butler, Cliff Jones,
Alexander Romanovsky, and Elena Troubitsyna, editors, Proceedings of the Workshop
on Rigorous Engineering of Fault Tolerant Systems, Newcastle upon Tyne, 2005.

Alexei Iliasov, Linas Laibinis, Alexander Romanovsky, and Elena Troubit-
syna. Rigorous development of fault-tolerant agent systems. Available From:
http://www.tucs.fi/research/publications/insight.php?id=tIlLaRoTr06a&table=techreport.
Technical Report 776, Turku Centre for Computer Science, 2006.

D. Jackson. Dependable software by design. Scientific American - American Edition,
294(6):68, 2006.

Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:
277–296, 2000.

N.R. Jennings. Commitments and conventions: The foundation of coordination in multi-
agent systems. The Knowledge Engineering Review, 8(3):223250, 1993.

C. B. Jones. Systematic Software Development using VDM, Second Edition. Prentice
Hall, Upper Saddle River, NJ, USA, 1990.

C. B. Jones. RODIN deliverable D9. preliminary report on methodology. Available From:
http://rodin.cs.ncl.ac.uk/deliverables/rodinD9.pdf. Technical report, University of
Newcastle-upon-Tyne, UK, 2005.

C. B. Jones. RODIN deliverable D19. intermediate report on methodology. Available
From: http://rodin.cs.ncl.ac.uk/deliverables/D19.pdf. Technical report, University of
Newcastle-upon-Tyne, UK., 2006.

C.B. Jones, D. Jackson, and J. Wing. Formal methods light. Computer, 29(4):20–22,
1996.

A. Krishna, A.K. Ghose, and S.A. Vilkomir. Co-evolution of complementary formal and
informal requirements. In Software Evolution, 2004. Proceedings. 7th International
Workshop on Principles of, pages 159–164, 2004.

http://www.tucs.fi/research/publications/insight.php?id=tIlLaRoTr06a\&table=techreport
http://www.tucs.fi/research/publications/insight.php?id=tIlLaRoTr06a\&table=techreport
http://rodin.cs.ncl.ac.uk/deliverables/rodinD9.pdf
http://rodin.cs.ncl.ac.uk/deliverables/rodinD9.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D19.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D19.pdf

BIBLIOGRAPHY 292

S. Kumar and P.R. Cohen. Towards a fault-tolerant multi-agent system architecture.
In Proceedings of the Fourth International Conference on Autonomous Agents, pages
459–466. ACM Press New York, NY, USA, 2000.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125–143, 1977.

Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In RE’01
International Joint Conference on Requirements Engineering, pages 249–263, Toronto,
2001. IEEE.

G.T. Leavens, J-R. Abrial, D. Batory, M. Butler, A. Coglio, K. Fisler, E. Hehner,
C. Jones, D. Miller, and S. Peyton-Jones. Roadmap for enhanced languages and
methods to aid verification. In Proceedings of the 5th international conference on
Generative programming and component engineering, pages 221–236, Portland, Ore-
gan, USA, 2006. ACM Press New York, NY, USA.

E. Letier. Reasoning About Agents in Goal Oriented Requirements Engineering. PhD
thesis, Universit Catholique de Louvain, 2001.

E. Letier and A. van Lamsweerde. Agent-based tactics for goal-oriented require-
ments elaboration. In Proceedings of the 24th International Conference on Software
Engineering, pages 83–93. ACM Press New York, NY, USA, 2002.

M. Leuschel and M. Butler. Automatic refinement checking for B. In Kung-Kiu Lau and
Richard Banach, editors, International Conference on Formal Engineering Methods
(ICFEM 2005), volume 3785 of Lecture Notes in Computer Science, page 345 359,
Manchester, UK, 2005. Springer-Verlag.

Michael Leuschel and Michael Butler. ProB : A model checker for B. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 855–874. Springer Verlag, 2003.

M. Luck and M. d’Inverno. Formal methods and agent-based systems. In C. Rouff,
M. Hinchey, J. Rash, W. Truszkowski, and D. Gordon-Spears, editors, Agent
Technology from a Formal Perspective, NASA Monographs in Systems and Software
Engineering. Springer, 2006.

Michael Luck and Mark d’Inverno. A formal framework for agency and autonomy.
In Proceedings of the First International Conference on Multi-Agent Systems, pages
254–260. AAAI Press/ MIT Press, 1995a.

Michael Luck and Mark d’Inverno. Structuring a Z specification to provide a formal
framework for autonomous agent systems. In J. Bowen and M. Hinchey, editors,
ZIM’95: The Z Formal Specification Notation, 9th International Conference of Z
Users, volume 967 of Lecture Notes in Computer Science, pages 47–62. Springer-
Verlag, 1995b.

BIBLIOGRAPHY 293

Michael Luck and Mark d’Inverno. Development and application of a formal agent
framework. In Proceedings of the First IEEE International Conference on Formal
Engineering Methods, Hiroshima, Japan, 1997.

C. Méteyer, Jean-Raymond Abrial, and L. Voisin. Rodin deliverable 3.2. Event-B lan-
guage. Available From: http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. Technical re-
port, University of Newcastle-upon-Tyne, UK., 2005.

B. Meyer. Object-oriented software construction. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1997.

M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct architecture refinement.
Software Engineering, IEEE Transactions on, 21(4):356–372, 1995.

N. Neagu, K. Dorer, D. Greenwood, and M. Calisti. LS/ATN: Reporting on a successful
agent-based solution for transport logistics optimization. In IEEE 2006 Workshop on
Distributed Intelligent Systems (WDIS’06), Prague, 2006.

G.A. Papadopoulos. Models and technologies for the coordination of internet agents:
A survey. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors,
Coordination of Internet Agents: Models, Technologies, and Applications, page 2556.
Springer, 2000.

H.V.D. Parunak and J. Odell. Representing social structures in UML. In Michael J.
Wooldridge, Gerhard Weiβ, and Paolo Ciancarini, editors, Agent-Oriented Software
Engineering II: Second International Workshop, AOSE 2001, Montreal, Canada, May
29, 2001: Revised Papers and Invited Contributions, volume 2222 of Lecture Notes in
Computer Science, pages 1 – 17. Springer, 2002.

S Paurobally, J Cunningham, and NR Jennings. A formal framework for agent in-
teraction semantics. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 91–98, Utrecht Netherlands, 2005.
ACM Press New York, NY, USA.

A. Perini, M. Pistore, M. Roveri, and A. Susi. Agent-oriented modelling by interleaving
formal and informal specification. In P. Giorgini, J.P. Müller, and J. Odell, editors,
Agent Oriented Software Engineering 2003, volume 2935 of Lecture Notes in Computer
Science, pages 36–52. Springer-Verlag, 2004.

Tolety Siva Perraju. Multi agent architectures for high assurance systems. In American
Control Conference, pages 3154 – 3157, San Diego, California, USA, 1999.

M.R. Poppleton. Towards feature-oriented specification and development with Event-B.
In Pete Sawyer, Barbara Paech, and Patrick Heymans, editors, 13th International
Working Conference, REFSQ 2007, volume 4542 of Lecture Notes in Computer
Science, pages 367 – 381, Trondheim, Norway, 2007. Springer.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

BIBLIOGRAPHY 294

R.S. Pressman. Software engineering: a practitioner’s approach: European adaptation.
McGraw-Hill, 2000.

J. Price. Christopher Alexander’s pattern language. Professional Communication, IEEE
Transactions on, 42(2):117–122, 1999.

Anand S. Rao and Michael P. Georgeff. Modelling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the
Second International Conference on Principles of Knowledge Representation and
Reasoning, San Mateo, California, 1991. Morgan Kaufmann Publishers.

D. Riehle and H. Zuellighoven. Understanding and using patterns in software develop-
ment. Theory and Practice of Object Systems, 2(1):3–13, 1996.

J. Rushby. Formal Methods and Their Role in the Certification of Critical Systems. SRI
International, Computer Science Laboratory, 1995.

D Sangiorgi and D Walker. The [pi]-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D. Weyns.
Agent implementation patterns. In J. Debenham, B. Henderson-Sellers, N. Jennings,
and J. Odell, editors, Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, pages 119–130, 2002.

R.G. Smith. The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers, 29(12):1104–1113, 1980.

C. Snook and M. Butler. UML-B: Formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodology (TOSEM), 15(1):92–122,
2006.

C Snook and M Butler. Uml-b and event-b: an integration of languages and tools. In
The IASTED International Conference on Software Engineering - SE2008, page (In
Press), Innsbruck, Austria, 2008.

Neil Storey. Safety-Critical Computer Systems. Pearson Education Limited, Bath, UK,
1996.

Jan Sudeikat, Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Evaluation
of agent-oriented software methodologies - examination of the gap between modeling
and platform. In P. Giorgini, J.P. Müller, and J. Odell, editors, Agent-Oriented
Software Engineering V, Fifth International Workshop, AOSE 2004, volume 3382,
pages 126 – 141, New York, NY, USA, 2004. Springer-Verlag.

H Treharne and S Schneider. Using a process algebra to control boperations. In IFM’99
1st International Conference on Integrated Formal Methods, pages 437–457, York,
UK, 1999. Springer-Verlag.

BIBLIOGRAPHY 295

Lin Wang, F. Li Hon, Dhrubajyoti Goswami, and Zunce Wei. A fault-tolerant multi-
agent development framework. In J. Cao, L.T. Yang, M. Guo, and F. Lau, editors,
Parallel and Distributed Processing and Applications, volume 3358 of Lecture Notes
in Computer Science, pages 126 – 135, Hong Kong, China, 2004. Springer.

M. Weiss. Pattern-driven design of agent systems: Approach and case study. In J. Eder
and M. Missikoff, editors, Conference on Advanced Information Systems Engineering
(CAiSE), volume 2681 of Lecture Notes in Computer Science, page 711 723, Klagen-
furt/Velden, Austria, 2003. Springer.

Michael Wooldridge and Paul E. Dunne. The computational complexity of agent veri-
fication. In John-Jules Meyer and Milind Tambe, editors, The Eighth International
Workshop on Agent Theories, Architectures and Languages (ATAL-2001): Intelligent
Agents VIII, volume 2333 of Lecture Notes in Computer Science, pages 338 – 350,
Seattle, WA, USA, 2001. Springer.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115 – 152, 1995.

Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3:
285–312, 2000.

E Yu. Agent-oriented modelling: Software versus the world. In Michael J. Wooldridge,
Gerhard Weiβ, and Paolo Ciancarini, editors, Agent-Oriented Software Engineering II:
Second International Workshop, volume 2222 of Lecture Notes in Computer Science,
pages 206 – 225, Montreal, Canada,, 2002. Springer.

Eric S. K. Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In 3rd IEEE International Symposium on Requirements Engineering
(RE’97), page 226. IEEE Computer Society, 1997.

E.S.K. Yu and J. Mylopoulos. Understanding why in software process modelling, anal-
ysis, and design. In Proceedings of the 16th international conference on Software
engineering, pages 159–168, Sorrento, Italy, 1994. IEEE Computer Society Press, Los
Alamitos, CA, USA.

Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini, and Michael Wooldridge.
Agent-oriented software engineering for internet applications. In Andrea Omicini,
Franco Zambonelli, M Klusch, and R. Tolksdorf, editors, Coordionation of Internet
Agents: Models, Technologies and Applications. Springer, 2000.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003.

BIBLIOGRAPHY 296

Franco Zambonelli and Andrea Omicini. Challenges and research directions in agent-
oriented software engineering. Autonomous Agents and Multi-Agent Systems, 9:253–
283, 2004.

