
Loughborough University
Institutional Repository

An investigation of elbow
loading in one-handed tennis

backhand groundstrokes
using computer simulation

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• Doctoral Thesis. Submitted in partial ful�lment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/8051

Publisher: c© Jonathan Alexander Glynn

Please cite the published version.

https://dspace.lboro.ac.uk/2134/8051


 
 
 

This item is held in Loughborough University’s Institutional Repository 
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s 
EThOS service (http://www.ethos.bl.uk/). It is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



AN INVESTIGATION OF ELBOW LOADING 
IN ONE-HANDED TENNIS BACKHAND 

GROUNDSTROKES USING 
COMPUTER SIMULATION 

by 

Jonathan Alexander Glynn 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements for the award of 
Doctor of Philosophy of Loughborough University 

April 2007 

@ Jonathan Alexander Glynn, 2007 



ABSTRACT 

An investigation of elbow loading in one-handed tennis backhand 

groundstrokes using computer simulation 

Jonathan Alexander Glynn, Loughborough University, 2007 

A 3D subject-specific computer simulation model of a ball-racket system linked to an 

upper-limb and torso was developed to investigate factors which may result in adverse 

loading at the elbow during one-handed backhand groundstrokes. Rigid hand, 

forearm, upper-arm and torso segments were driven by joint angle time histories 

obtained from backhand performances. Wobbling mass segments were incorporated 

to represent soft tissue motion. The upper-limb model was attached to a forward 

dynamics model of the racket-ball system using spring-dampers at the thenar and 

hypothenar eminences of the hand. The racket frame was represented using two rigid 

bodies with two torsional spring-dampers to allow motion in and out of the racket 

plane. The stringbed was represented by nine point masses connected using elastic 

springs. A point mass representation of the tennis ball allowed normal and oblique 

impacts at the nine locations on the stringbed. Inertia parameters for the elite tennis 

player and the rackets and visco-elastic parameters for the rackets and ball were 

determined from independent experimental tests. Visco-elastic parameters for the 

hand and wobbling masses were determined within the matching process of six 

backhand trials. Excellent agreement between performance and matching simulations 

was obtained with a mean RMS difference of 1.3% based on racket kinematics, 

outbound ball velocity and time of ball contact. Simulation results suggest that the 

inertia and stiffness parameters of the racket frame and the stringbed tension have a 

relatively small influence on elbow loading within current design ranges. In contrast, 

the off-centre ball impact simulations resulted in an 11% increase in peak internal 

elbow joint force, a 22% increase in peak pronation-supination net torque and a 19% 

increase in peak elbow-flexion extension net torque around the elbow joint. This 

research suggests that racket frame vibration is an unlikely mechanism for tennis 

elbow and that an accumulation of peak loads from off-centre hits is a more likely 

cause. 
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CHAPTER 1 

INTRODUCTION 

1.1 CHAPTER OVERVIEW 

This chapter provides a general overview of the area of study focussing on 

loading at the elbow when performing one-handed backhand groundstrokes. Previous 

research relevant to this field, both experimental and theoretical, is summarised. The 

statement of purpose and specific research questions to be addressed are presented. 

1.2 THE AREA OF STUDY 

In recent years, tennis injuries and in particular `tennis elbow' (TE), have 

become a primary concern for tennis equipment manufacturers as the application of 

science and research has pushed technology to its limits. TE is an umbrella term 

describing medial and lateral elbow pain caused by a variety of activities from 

plumbing to shaking hands (McLaughlin & Miller, 1980). In 1902, Clado found 

lateral epicondylitis in top French tennis players, and for the first time the condition 

was connected with the name `tennis elbow'. Interestingly, Roetert et al. (1995) 

suggest that 40 to 50% of recreational tennis players will be affected at some stage, 

although it is generally acknowledged that elite tennis players do not suffer from this 

condition (Blackwell & Cole, 1994). 

Most teaching professionals attribute TE among the population of recreational 

players to poorly performed backhand strokes (McLaughlin & Miller, 1980). In 

particular, research has found that more than 90% of TE results from `improper 

movements' of the one-handed backhand groundstoke (Ellenbecker, 1995). The 

process of co-ordinating multiple body parts is further complicated by ball and 

stringbed deformations and subsequent vibrations of the racket frame. 

Although there is general agreement as to its pathology, citations for the 

aetiology of TE are many and varied. Biomechanical evidence would appear to 

suggest that the initial impact shock wave is the most likely cause of TE 

(Knudson, 2004). However, there is relatively little known about the effects of 
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perturbing racket parameters and ball impact characteristics on loading at the elbow 
joint and the associated potential for injury to the performer. 

1.3 PREVIOUS RESEARCH 

Previous research concerning the tennis one-handed backhand groundstroke 

has been both experimental (the collection of data from an actual performance) and 

theoretical (mathematical and computer simulation models). In the past, experimental 

studies have used high-speed cinematography (e. g. Elliott et al., 1989) and more 

recently automatic tracking systems (e. g. Wang, 1998). Measurement inaccuracy in 

kinematic studies due to low frame rates and insufficient camera numbers has 

typically prevented the derivation of joint torques and forces (Wu et al., 2001). To 

examine factors such as hand forces (Knudson, 1991 a), force sensing resistors have 

been used whilst tennis racket accelerations have been monitored using 

accelerometers attached to the racket frame (e. g. Hennig et al., 1992). 

The major difficulties of studying the upper extremity kinetics have been the 

measurement of impact forces during actual performances (Wu et al., 2001) and the 

understanding of how impact force is distributed throughout the hand-arm system 

(Roetert et al., 1995). Experimental research in tennis has been hampered by the 

complexity of strokes and the short contact phase of the ball on the stringbed (Schlarb 

et al., 1998). Researchers have been unable to draw f urn conclusions on the effect of 

perturbing racket parameters under experimental conditions as changes to one 

variable, such as racket mass, have inadvertently introduced changes to another, such 

as technique. 

To overcome these problems, mathematical models (e. g. Hatze, 1976) and 

more recently computer simulation models (e. g. Glitsch et al., 1999) have been 

developed. The tennis player was typically modelled as a series of rigid bodies linked 

by simple pin joints (e. g. Nesbit et al., 2006). The racket frame has been modelled 

with differing levels of complexity depending on the number of dimensions used and 

whether the human has been considered as part of the system. Stringbed and balls 

have typically been modelled as flexible bodies when human interaction with the 

racket handle has been ignored (e. g. Casolo & Lorenzi, 2000). Where the tennis 

player has also been considered as part of the system, the racket has often been fixed 
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to the hand segment and not actively gripped (e. g. Nesbit et al., 2006) resulting in 

unrealistic inputs to the ann. 

Nesbit et al. (2006) have suggested racket inertia parameters and the location 

of ball impact may appreciably affect loading at the elbow, whilst racket frame 

vibration is sensitive to its stiffness and the aforementioned variables. However, the 

predicted relative effects of these parameters must be treated with caution as model 

features such as racket frame vibration, variable grip pressure and anatomical 

damping in the system have been neglected. Further research is needed to obtain a 

clearer understanding of how loading from tennis ball impacts during a one-handed 

backhand groundstroke is transmitted to the upper-limb system. 

1.4 STATEMENT OF PURPOSE 

The intention of this study is to achieve a better understanding of the factors 

which may increase the loading at the elbow joint when performing one-handed tennis 

backhand groundstrokes. In particular, it is hoped to advance knowledge concerning 

the aetiology of TE. It is of interest to know how the joint reaction forces and the net 

joint torques experienced at the wrist and elbow joints are affected by the inertia and 

visco-elastic properties of the tennis racket frame. The effects of perturbing the ball 

impact location on the stringbed and the stringbed stiffness on the loading transmitted 

to the upper limb are also of concern. To facilitate this a computer simulation model 

of one-handed backhand groundstrokes was developed. Following satisfactory 

evaluation, the model was used to address the following research questions. 

1.5 RESEARCH QUESTIONS 

Ql. How do the inertia and the stiffness and damping properties of the tennis racket 

frame affect elbow loading in one-handed tennis backhand groundstrokes? 

Research into tennis injuries has been hampered by the difficulty of isolating 

racket parameters, to measure the effect of changing them, when the player is also 
involved. "No one has done any real experiments to determine a racket's influence on 

injury. Until someone comes up with a way of measuring it, we're stuck with 

anecdotal evidence. " (Brody, 1997) 
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Theoretical approaches (e. g. Nesbit et al., 2006) have suggested that racket 

mass centre inertia values may noticeably affect the torques experienced at the elbow 
although such results must be treated with caution due to the omission of potentially 
important model features such as racket frame vibration. 

In a review of modem tennis equipment, Miller (2006) notes that a link has 

been proposed between the increased stiffness of modem rackets causing faster racket 
frame vibration and an increased susceptibility to TE. Segesser (1985) suggested that 

vibrations of the racket frame in the region of 80 to 200 Hz are likely to contribute to 

the development of TE. Whilst manufacturers are keen to point out that their rackets 
dampen out frame vibrations quickly, the vibrations are damped out significantly 

faster when the racket is hand-held (Brody, 1989). 

Q2. How does the location of the ball impact on the stringbed and the stringbed 

stiffness affect elbow loading in one-handed tennis backhand groundstrokes? 

The forces generated by ball-racket impact, especially off-centre impacts, have 

been identified as a factor that may contribute to the development of TE 

(Hennig et al., 2002). When the impact of the ball on the racket is not along the 

longitudinal axis of the racket frame, the racket will rotate around that axis. This 

creates a moment around the wrist which must be resisted by the forearm 

musculature. Knudson (1991a) suggests rackets that minimise the effects of off- 

centre impacts should be considered as an intervention to reduce the risk of TE. 

It is widely accepted that an increase in string tension results in a decrease in 

ball contact time and outbound velocity with the advantage of greater hitting 

accuracy. Increased string tension is likely to contribute to an increase in the initial 

shock after ball impact due to the shorter ball-stringbed contact time (Hennig, 1992). 

String tension may also affect off-centre impacts since rackets strung at a higher 

tension rotate less on impact (Brody et al., 2002). 

Q3. Does the rigid body recoil of the racket or its modal response have the greater 

influence on the loading components at the elbow? 

This is an important question as it may indicate the mechanism of injury. If 

initial forces and torques from impulsive loading are dominant, this would support 
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research suggesting that high eccentric loading of the wrist extensor muscles may be 

the cause of TE (Blackwell & Cole, 1994). If vibration forces are dominant, the 

vibration of the racket frame could be the primary cause of TE (Knudson, 2004). To 

address this question the model needs to incorporate the modal response of the racket 
frame, variable grip force, and anatomical damping (Nesbit et al., 2006). 

1.6 CHAPTER ORGANISATION 

Chapter 2 critically reviews the literature relating to studies on the analysis of 

one-handed tennis backhand groundstrokes. There is also a review of the literature 

relating to the techniques of investigation within the field of performance related 

sports biomechanics, relevant to this study. 
Chapter 3 describes the features of the computer simulation model that has 

been developed. Details of how the racket frame, the stringbed and the tennis ball 

were modelled are included. The human upper-limb model is described and details of 

the wobbling mass models and racket-hand interface are presented. Features of the 

angle-driven model are then introduced. 

Chapter 4 describes the equipment and protocol that was used to collect 

kinematic and kinetic data for an elite subject performing one-handed tennis backhand 

groundstrokes. The techniques used to obtain the subject-specific inertia and gripping 

parameters for the elite subject, required as input to the simulation model, are also 

detailed. 

Chapter 5 details the methods used to calculate the stiffness and damping 

properties of the tennis ball, stringbed and racket frame models. There is also a 

description of how the inertia parameters of the tennis racket were obtained. 

Chapter 6 outlines the procedure used for the evaluation of the angle-driven 

simulation model including the results of this process. The results from simulations 

using the model are presented and direct comparisons are made between trials 

matched to actual performances. A sensitivity analysis is then performed to examine 

the effects of model parameters on the observed output. 
Chapter 7 discusses the results of this study and applies them to answering 

the research questions posed in this chapter. A discussion of the limitations of the 

study and suggestions for future research are included. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CHAPTER OVERVIEW 

This chapter comprises two main sections. Firstly, there is a review of the 

literature that has focussed on the one-handed tennis backhand groundstroke. 

Appraisals of injury to the upper extremity of tennis players and key aspects of the 

ball-racket-arm system with a view to creating a computer simulation model are 

given. Secondly, the techniques of investigation required to develop a subject- 

specific computer simulation model of one-handed tennis backhand groundstrokes are 
discussed. The associated sub-sections include reviews of simulation modelling 

processes, parameter determination and image analysis. 

2.2 THE TENNIS BACKHAND 

The backhand, together with the forehand and service, form the cornerstone of 

tennis stroke production (Elliott et al., 1989). Historically, the tennis backhand has 

been defined as the stroke that causes the back of one's hand to be facing the 

opponent when striking the ball (Roetert & Groppel, 2001). The emergence and 

popularity of the two-handed backhand have forced some reconsideration of that 

definition. To account for the vastly different position of the hands on the racket, a 

more general definition is that a backhand is the stroke where the ball approaches to 

the left side of a right-handed player. 

It is widely accepted that the one-handed backhand requires greater strength 

on the part of the performer than in the two-handed case (Giangarra et al., 1993). 

This is due to only one upper-limb being used to generate force when swinging the 

racket and a decreased rotation of the trunk when compared to the two-handed case 

(Groppel, 1984). Despite considerable debate as to why, researchers agree that there 

is a link between poorly performed one-handed backhand groundstrokes and an 
increased susceptibility to elbow injury. 

6 



2.2.1 One-handed backhand technique 

Both the slice and topspin one-handed backhand groundstrokes can be broken 

down into three distinct phases (Figure 2.1): 

Phase 1: a racket preparation phase which begins with the first motion of the 

backswing and ends with the first forward motion of the racket. 

Phase 2: an acceleration phase which begins with a forward swing of the racket 

towards the ball and ends with ball impact. 

Phase 3: a follow through phase, beginning with ball impact and followed by a 

continuous forward movement of the racket following the ball. 

Figure 2.1. Phases of the one-handed tennis backhand groundstroke 
(adapted from Giangarra et al., 1993, pg. 395) 

Traditionally, a player will adopt a closed stance with the body turned sideways to the 

net. This allows a full backswing and the racket to hit through the line of the ball in 

the contact zone (Tilmanis, 1975). When the player steps towards the incoming ball, 

the hips turn slightly, transferring momentum to the trunk, which begins rotating. The 

upper-arm then moves about the shoulder initiating slight forearm movement, which 

in turn causes the hand and racket to be correctly positioned for ball contact 

(Groppel, 1984). Due to the difficulty involved in coordinating the body parts, a 

recreational player will often rely on the forearm musculature as a power source 

(Nirschl, 1974). 

2.2.2 Upper extremity injuries to tennis players 

The upper extremity is thought to be particularly susceptible to injury in tennis 

because of the repetitive muscular contractions needed to accelerate and stabilise the 
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dominant limb (Jobe & Nuber, 1986). Due to the relatively low occurrence of wrist 
injuries amongst tennis players, this area has received little attention in the literature. 

Wrist injury may occur due to repetitive forceful stroke play or less commonly from 

the sudden direct impact of the racket handle (Osterman et al., 1988). Wrist 

tendonitis (inflammation and degeneration of the tendon sheath) is uncommon in 

tennis, but may occur in novice players with poor stroke mechanics or in advanced 

players who have excessive wrist motion (Kibler & Chandler, 1994). Shoulder pain is 

a common complaint amongst tennis players, particularly in the region of the anterior 

rotator cuff muscles (McCann & Bigliani, 1994). Injury can occur from the adverse 

stresses during the serve and overhead motions, where the acromion bone on top of 

the shoulder impinges on the rotator cuff. However, elbow injury in tennis has 

received by far the most attention. 

2.2.3 A specific injury: Tennis elbow 

Epidemiology of tennis elbow 

Tennis elbow (TE) is an umbrella term that describes pain localised on the 

inside or outside of the elbow from a variety of repetitive motions 

(McLaughlin & Miller, 1980). Approximately 50% of tennis players can expect to 

get TE at some time during their tennis lifetime (Kamien, 1992; Priest et al., 1980). 

Its prevalence in recreational players is well reported (Priest et al., 1980; Roetert et 

al., 1995) whilst the incidence amongst elite tennis players is extremely low 

considering their frequency and intensity of play (Blackwell & Cole, 1994). The 

condition is most common amongst individuals over 35 years of age and cases are 

generally equal between genders (Renstrom, 1994). 

Pain on the medial side of the elbow results from irritation of the common 

wrist flexor attachment on the medial epicondyle that is usually associated with the 

vigorous wrist flexion actions in serving or the forehand drive groundstroke 

(Roussopoulos & Cooke, 2000). Pain on the outside of the elbow is from irritation of 

the common wrist extensor attachment (lateral epicondyle) that is usually associated 

with errors in one-handed backhand groundstroke technique (Bernhang et al., 1974; 

Blackwell & Cole, 1994; Giangarra et al., 1993; Roetert et al., 1995). Due to its 

relatively high incidence and chronic nature, lateral epicondylitis has received most 

attention and the term is often used interchangeably with TE. 
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Tennis players using a two-handed backhand groundstroke rarely develop TE 

since there are two body parts to coordinate (Roetert et al., 1995) and another arm to 

absorb more energy from the impact (McCue, 1982). A player with poor one-handed 
technique will use the wrist stabilising muscles rather than the posterior shoulder 

musculature to generate power (Akuthota, 2004). This `leading elbow technique' can 

cause overuse of the wrist extensors and supinators. 

Pathology of tennis elbow 

Within the forearm, there are several muscles originating from the lateral 

epicondyle, which function to extend the wrist. Although any of the common 

extensor origin tendons may be affected by overuse and repetitive stress, the extensor 

carpi radialis brevis (ECRB) muscle is most commonly cited. The tendon of the 

ECRB muscle is comparatively short and wide (Blackwell & Cole, 1994) and may 
have a poor biomechanical design with respect to the other wrist extensor muscles 

(Ljung et al., 1999). Micro-tears and scarring occur, although inflammatory cells are 

rarely found in chronic cases (Akuthota, 2004). The ECRB muscle inserts into the 

base of the third metacarpal at the centre of the hand (Figure 2.2). 

Exrensor carpi 
radialis brevis 

Figure 2.2. Extensor carpi radialis brevis muscle 
(adapted from Stone & Stone, 2003, pg. 134) 

Aetiology of tennis elbow 

Of all tennis injuries, TE has received by far the most attention. However, 

there appear to be large gaps in the knowledge of its aetiology. The search for the 

cause of TE has focused on loading from the initial shock wave and the frame 
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vibrations caused by impact (Knudson, 2004). Roussopoulos and Cooke (2000) 

suggest the physical stimuli which alone, or in combination, may cause injury: 

"A single sharp impulsive stress and strain to the muscles, as from a badly hit ball 

" An accumulation of `normal' or slightly high stresses, from prolonged playing 

"A sharp vibration in the loaded muscle, as from a badly hit ball 

" An accumulation of many vibrations, each one not in itself dangerous 

Published research has been unable to establish whether any or all of these 

stimuli are responsible. Segesser (1985) suggested that tennis racket oscillations in 

the range of 80 to 200 Hz are likely to contribute to the development of TE. In 

contrast, Knudson (1991 a) argues that impulsive loading (initial shock) in tennis is the 

likely mechanism of injury since only these large forces can create the recoil of the 

racket that rapidly stretches the muscles of the forearm. Studies have demonstrated 

that muscle damage and muscle soreness are greater after exercise that involves 

eccentric contractions (Enoka, 1996; Lieber et al., 1991). Alternatively, repetitive 

concentric contraction of the wrist muscles, shortening as they maintain tension to 

stabilise the wrist, may produce chronic overload (Roetert et al., 1995). Collectively, 

the biomechanical and clinical studies would appear to support the impulsive loading 

theory of tennis elbow as opposed to the vibration theory (Miller, 2006). The factors 

that may increase the likelihood of injury are more numerous: 

Table 2.1. Factors that may increase the likelihood of injury 

Racket parameters Technique Physiology 

Sweet spot size Grip tightness 

Stringbed stiffness Ball impact location 

Frame stiffness and damping Wrist over-extension 

Frame vibration modes and Wrist snap 

frequencies 

Frame inertia parameters Fatigue induced stroke 
degeneration 

Mode of contraction (eccentric) 

Genetic predisposition 

Ageing and / or illness 

Fatigue induced strength 

reduction 

Inadequate muscle, bone, and / 
or tendon development 
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2.2.4 Modelling the equipment 

Numerous researchers have examined the interaction between the equipment 

and the tennis player with a view to understanding TE. Whilst some have focused on 
biomechanical aspects of the ball-racket-arm system, including the grip on the racket 

and the effect of the ball-racket impact on the player's arm, others have examined the 

physical mechanics of tennis rackets. The following is a review of the literature that 

has implications for creating a subject-specific computer simulation model of one- 
handed tennis backhand groundstrokes. 

In recent years, the modelling of an impact between a tennis ball and racket 
has been attempted by many, although few models incorporate the human system as 

well. The majority have modelled the ball, stringbed and racket frame components 

separately and then combined them to create a complete model of the system. 

The tennis ball 

The impact of a tennis ball with strings has been simplified tremendously (e. g. 

Brannigan & Adali, 1981) and is typically studied for cases where the ball is incident 

normally on the strings, with ball rotation being neglected (Brody, 1997; Cross, 

2000c; Goodwill & Haake, 2000a). The ball has previously been modelled as a point 

mass to which a spring-damper system is attached (e. g. Goodwill & Haake, 2003; 

Leigh & Lu, 1992). These viscoelastic models (Nigg & Herzog, 1999) assume that 

the surface of contact between the ball and strings is simply a plane that intersects the 

spherical ball. The theory implies that if a spring is displaced a distance x from its 

equilibrium position and moves with velocity Yc, then the restoring force (F) from the 

spring is governed by Equation 2.1 where k is the spring constant (N/m) and c is the 

damping coefficient (Ns/m). 

F=-kx-cx (2. i) 

Arguing that the natural frequency of the ball's vibration has an effect on the 

coefficient of restitution (COR), Matsuhisa et al. (2004) modelled the ball as two 

point masses connected by a spring. 

Recently, more complex Finite Element (FE) models were developed 

(e. g. Casolo et al., 1999). The weakness of this approach was that the computational 
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requirements related to modelling the ball limited the complexity with which the 

racket frame could then be modelled. 

The oblique impact of a tennis ball onto a rigid horizontal surface has 

previously been modelled using relatively simple Newtonian mechanics (e. g. 
Brody, 1984) and applying a COR in the vertical direction to account for energy 
losses in rebound. An assumption of these models was that neither the ball nor the 

surface deform and the COR is constant. The more complex model by Haake et 

al. (2003) incorporates features of viscoelastic, impulsive and Newtonian force 

models. A non-linear spring and damper was used to model the stiffness and energy 
loss in the shell whilst the model simulates impulsive forces at the front and rear of 

the ball due to mass in the shell coming to rest. Friction forces acting upon the ball 

were also accounted for which allowed ball rotation (spin) to be reversed. 

The tennis racket 

The tennis racket consisting of stringbed and frame sections has been 

modelled theoretically at various levels of sophistication depending on the number of 
dimensions used and whether the tennis player was considered as part of the dynamic 

system. 

The stringbed 

Viscoelastic models have been used extensively in the modelling of the 

stringbed (e. g. Goodwill & Haake, 2003; Leigh & Lu, 1992; Maeda & Okauchi, 

2002). In the one-dimensional model of Leigh and Lu (1992), the interwoven strings 

formed a membrane where the tension in each string was the same and did not change 

with the deflection of the string. In reality, the string becomes stiffer with increasing 

deflection and the stiffness varies across the face of the racket, being lower at the 

centreline than the rim. A damping term was considered only as a hypothetical 

possibility since the strings absorb the incoming ball energy by deforming and 

returning 95% of that energy back to the ball (Brody, 1995). 

In the FE models of Widing and Moeinzadeh (1990) and Casolo et al. (2000), 

a mesh of two-node cable elements was used to represent the strings. To simplify the 

models, strings were assumed to be connected at the contact points although this may 

not always be the case under deformation as strings move relative to each other. 
Modelling the strings discretely as opposed to a membrane gave the flexibility to 
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change the string pattern and string tensions. However, this extension limited the 

models to a static analysis due to the difficulty in constructing and solving a complex 

model of a dynamic system. 
Brody (1988) used a laser and high-speed electronic equipment to determine 

the effect of string tension on the dwell time (time between ball contact with the 

strings and separation) for a range of impact speeds. Figure 2.3 shows that with 

increasing string tension and ball-racket relative speeds, the dwell time decreased. In 

agreement with other studies (e. g. Cross, 2000a) the impact of the ball with the strings 

was a very short event, lasting between 4 and 8 ms. Increased string tension is likely 

to contribute to an increase in the initial shock after ball impact as the increased 

impulse at ball contact occurs in a shorter time (Hennig, 1992). 
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Figure 2.3. Dwell time of the ball on the strings for a range of 

impact conditions (adapted from Brody, 1988, pg. 12) 

Studies have shown (Brannigan & Adali, 1981; Brody, 1979; Groppel et al., 

1987; Knudson, 1988) that the rebound velocity of the ball increases with a decrease 

in string tension, the so-called `trampoline effect'. Experimental research by 

Goodwill and Haake (2004) supports a decrease in the dwell time for an increase in 
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string tension, but results suggest that for the same shot, rebound velocity and ball 

spin were not dependent on string tension. A simple theoretical model of planar 
forehand groundstrokes (Kawazoe et al., 2003) suggests that there is no appreciable 
increase in the predicted shock vibration transmitted to the wrist joint for an increase 

in initial string tension from 45 to 65 lbs. 

The racket frame 

The modelling of a tennis racket frame can be divided into two broad sections: 

rigid beam models and flexible beam models. A rigid beam model has the advantage 

of requiring fewer parameters. Since modem rackets are so stiff, they can be 

modelled by treating the frame as a rigid body enclosing a flexible string membrane 

(Brody, 1997). A major limitation of this approach is that the vibrations of the frame 

and the associated energy losses are not accounted for. Goodwill and Haake (2003) 

showed that for impacts along the longitudinal axis, close to the geometric stringbed 

centre, the rigid beam model agrees well with experimental data, but given a range of 

impact locations, a flexible beam model offers a closer match (Figure 2.4). Another 

limitation of rigid beam models is that the effect of altering the material from which 

the frame is made cannot be observed. 

Ball rebound 
velocity (m/s) 

Rigid beam 12 
A model 

Flexible beam 8 
model . ... 

4{ 
I" Experimental data 

2 

Butt, T=. 0 , ---" ---ý Tip -" 
-80 -60 -40 -20 0 20 40 60 80 

Ball impact position relative to geometric string centre (mm) 

Figure 2.4. Comparison of rigid and flexible beam models in calculating ball 

rebound velocity (adapted from Goodwill & Haake, 2003, pg. 84) 
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Most beam models (e. g. Goodwill & Haake, 2000b) have been one- 
dimensional, modelling only collisions on the longitudinal axis. Two-dimensional 

models (e. g. Cross, 2000a) have typically assumed that the beam undergoes rigid 
body rotation about the longitudinal axis when the ball impacts off-centre. Cross 

argued that this assumption was justified since it had been shown experimentally 
(Kawazoe, 1997) that the fundamental frequency for torsional oscillations is much 

higher than that for transverse oscillations. However, Cross is referring to the motion 

of the ball post-impact and torsional oscillations may be important for the 

transmission of vibration and forces to the human arm system. 

Mathematical models exist (Hatze, 1976; Missavage & Baker, 1984), which 

are similar in complexity and assume the racket frame to be a flexible beam of non- 

uniform cross-section. The force acting between the ball and racket is considered to 

be greatest at the centre of the head decreasing steadily towards the boundary. 

Brannigan and Adali (1981) developed a more complex FE model that included the 

parameters of string tension and string configuration although they neglect the 

deformation of the ball in their equations. Based on the experimental results of Hatze 

(1976) they modelled the impact force N(t) between the ball and racket as a sine 
function (Equation 2.2) of ball-stringbed contact time (r). 

N(t) = Fsin(nt/r), F> 0,0: 5 t:! 5 r (2.2) 

The FE model of Brannigan and Adali (1981) used elastic beam elements (78 nodes) 

with a constant cross-sectional area, as well as homogenous mass distribution (Figure 

2.5). 

ýh 
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O®®®® nodes 

Figure 2.5. Example of an elastic beam used in FE modelling 
(adapted from Schlarb et a1., 1998, pg. 380) 
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Assuming the frame undergoes small deformations, Casolo et al. (2000) developed a 

racket frame model using three-dimensional linear beam elements (no mid-side 

nodes) with two nodes. Other researchers (Glitsch et al., 1999; Widing & 

Moeinzadeh, 1990) have modelled the racket frame with curved beam elements. 
The weakness of the FE approach is that researchers have been forced to use 

an unrealistic boundary condition (a clamped handle). This restriction is necessary 

due to the difficulty in modelling dynamic interactions with other bodies. These 

simulations have typically led to results that do not correspond to the real stroke 

situation (Schlarb et al., 1998). In an attempt to combine the two approaches, Schlarb 

et al. (1998) used the results of a FE analysis as input for a flexible racket forward 

dynamics model. The planar computer model was based on a multiple pendulum 

consisting of upper-arm, lower arm, hand and racket. Comparison of acceleration 

profiles at the racket handle (Figure 2.6) showed that the simulation output closely 

matched the experimental data. 

Acceleration (g) 
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Figure 2.6. Comparison of acceleration profiles at the racket handle 

(adapted from Schlarb et al., 1998, pg. 381) 

2.2.5 Modelling the grip 

On the basis of experimental vibration patterns (e. g. Brody, 1989) and 

computer simulations (e. g. Schlarb et al., 1998), it has been suggested that the `freely 

gripped' racket best approximates real play results. The main arguments presented to 

support this model are that (a) the hand has only a small effect on racket vibration, 

and (b) the ball will leave the strings before the impulse is transmitted along the 
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racket frame to the hand (Brody, 1997; Cross, 1998). However, only the combination 

of this racket with a suitable hand-racket connection can simulate a real tennis stroke 

and the inputs to the human system. No definitive conclusions have emerged as yet 

on how to properly interconnect human and racket models (Nesbit et al., 2006). 

The mechanical coupling of the racket handle with the body is changed with 

each modification of grip force (Nab et al., 1998). Consequently, there have been few 

attempts to model the interaction between the human hand and the handle of the 

tennis racket in any detail. Based on the assumption that the ball impacts a stationary 

racket undergoing rigid body rotation, Kawazoe (1997) modelled the hand-held grip 

as a simple pin joint. The input to the human arm in terms of force and vibration is 

therefore assumed to be unrealistic. This can also be said for the model of Nesbit et 

al. (2006) as the connection between the racket and the hand was perfectly rigid with 

no damping. The authors acknowledge that the model lacks the soft tissue elasticity 

that would absorb and dissipate the impact energy. 

In the dynamic simulation of a forehand groundstroke, Schlarb et al. (1998) 

used a bushing (finite) element (Figure 2.7), which enabled the researchers to define a 

stiffness matrix between the two nodes. Although simulations with other hand-racket- 

connections (e. g. fixed) were tried, only the combination of a freely vibrating racket 

model with a loose, moveable hand-racket-connection (using a bushing element) was 

found to adequately simulate the accelerations of a real tennis stroke. 

axial 

hitting direction 

arm radial 

racket 
hand 

t1 
rotation 

Figure 2.7. Bushing element used to model the hand-racket handle 

interaction (adapted from Schlarb et al., 1998, pg. 381) 
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2.2.6 Modelling the upper-limb 

Human joint motion consists mainly of rotation and small amounts of 

translation are typically ignored in human body models (e. g. Alexander, 1990). To 

model the tennis player, chains of rigid bodies linked by pin joints have typically been 

used in planar simulation models (e. g. Casolo & Ruggieri, 1991; Glitsch et al., 1999; 

Schlarb et al., 1998). Bahamonde and Knudson (2003) modelled the stroking arm 

using a three-segment rigid body inverse dynamics model to examine the kinetics of 

the upper-limb during a forehand groundstroke. The model included a racket / hand 

segment, forearm and upper-arm. It is anticipated that in the modelling of a one- 
handed backhand groundstroke, the hand and racket will need to be modelled in 

isolation to account for movement between the two. 

The wrist joint 

Wrist motion is the result of a complex interaction of carpal kinematics 

occurring at different levels of the joint (Riek et al., 1999). However, during normal 

wrist motion, there is very little movement between individual bones and they can be 

thought of as a functional unit (Savelberg et al., 1993). The movements occurring at 

the joint are flexion / extension and radial / ulnar deviation (Figure 2.8). It has been 

shown that there is a small separation between the flexion / extension axis and the 

radial / ulnar axis (Andrews & Youm, 1979) but that torque about the wrist is 

insensitive to changes in the separation of the two axes over a range of 0-2.0 cm 
(Buchanan et al., 1993). As a result, the wrist has been modelled (Gohner et al., 1998; 

Riek et al., 1999) as a simple two DOF hinge joint with coincident axes of rotation. 

Neul 

E 
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Ulnar deviation - 

Figure 2.8. Movements of the wrist joint (adapted from Cybex Norm 

Testing & Rehabilitation System, 1996, pg. 36) 
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For half a second either side of ball impact, Wang et al. (1998) determined the major 

movements occurring at the wrist joint during a one-handed tennis backhand to be 

flexion / extension (39.6 ± 20.8 deg) and radial / ulnar deviation (46.8 ± 18.3 deg). 

The elbow joint 

The major movements occurring at the elbow joint (Figure 2.9) during a one- 

handed tennis backhand are flexion / extension (35.3 ± 14.4 deg) and pronation / 

supination (71.2 ± 20.8 deg) (Wang et al., 1998). However, the geometry of the joint 

and the ligamentous constraints result in the additional motion of abduction / 

adduction which creates a `carrying angle' (Challis, 1991). There have been 

contradictory reports as to how the carrying angle varies and simulation models have 

typically neglected this third DOF. Gohner et al. (1998) used two hinge joints at the 

elbow to represent forearm flexion / extension and forearm pronation / supination in 

their model of forehand groundstrokes. Hummel and Hubbard (2001) modelled a 

revolute joint at the humeral-ulnar articulation to produce elbow flexion. Separate 

segments were used for the ulna and radius bones and a single DOF was used to 

describe the pronation of the ulna-radius pair as in Lemay (1996). 

Neutral 

Supination eutral Pronation 

Figure 2.9. Movements of the elbow joint (adapted from Cybex Norm 

Testing & Rehabilitation System, 1996, pg. 41) 

Shoulder joint 

The shoulder mechanism, consisting of the thorax, clavicle, scapula and 

humerus, is because of its complexity one of the most challenging systems to model 
(Helm, 1994). As a consequence, 2D models (e. g. Luca & Forrest, 1973) that neglect 

the movement of the scapula, have dominated the research. In reality, the scapula will 

move, but motion studies have shown that a fixed and reproducible relation exists 
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between motions of the scapula and the humerus (Helm, 1994). Elliott et al. (1989) 

observed that the shoulder angle (due to the external rotation of the humerus) and the 

resultant end point velocity remain relatively stable throughout the forward swing of 

the one-handed backhand groundstroke to maintain control of the racket at impact. 

The results of Wang et al. (1998) showed that the major movements of the 

shoulder joint (Figure 2.10) for a one-handed backhand groundstroke are adduction / 

abduction (-73.6 ± 11.5 deg), flexion / extension (45.7 ± 20.2 deg), and internal / 

external rotation (46.3 ± 13.7 deg). Gohner et al. (1998) represented each of these 

shoulder joint movements by using three hinges. 
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Figure 2.10. Movements of the shoulder joint (adapted from Cybex Norm 

Testing & Rehabilitation System, 1996, pg. SO) 

2.2.7 Racket arm kinematics 

In the one-handed backhand groundstroke the wrist joint is extending up to 

impact, and is often forced into a rapid flexion indicating a short, violent eccentric 

muscle stretch (Knudson, 2004). There has been research into how the kinematics of 

the wrist joint differ between novice and advanced players (e. g. Blackwell & Cole, 

1994; Riek et al., 1999) to try and explain the disparity in the incidences of TE for 

both groups. Blackwell and Cole (1994) found that expert players struck the tennis 

ball with their wrists extended by an average of -23 deg from neutral alignment; 

moreover, their wrists were moving further into extension at impact. In contrast, 

novice players struck the ball with their wrists flexed 13 deg from neutral alignment 

whilst moving their wrists further into flexion. Riek et al. (1999) used experimental 

results as input to a computer simulation model. 
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Figure 2.11. Flexion / extension wrist joint angles of novice and advanced players 

performing a backhand stroke (adapted from Riek et al., 1999, pg. 479) 

In agreement with the trend reported by Blackwell and Cole (1994) the 

advanced group reached a minimum extension angle of -10 deg from neutral 

alignment approximately 100 ms before impact and then moved their wrists further 

into extension. The model predicted that the novice group would begin movement 

toward wrist flexion well before ball impact and reach a peak wrist flexion angle of 

approximately 10 deg from neutral alignment around 100 ms before ball impact. 

Shortly after impact, the wrists of the novice players moved into more flexion in 

agreement with the experimental results of Blackwell and Cole (1994), before 

extending the wrist once more. 

Riek et al. (1999) found that the angular position about the radial deviation 

axis showed differences between the advanced and novice groups. Novice players 

began the stroke with the wrist ulnar deviated. The advanced group exhibited a 

similar kinematic pattern but began the movement with the wrist radially deviated. 

By means of a cinematographic analysis (two phase-locked cameras operating 

at 200 Hz), Elliott and Christmass (1995) calculated pre- and post-impact mean joint 

angular velocities from the displacement data of different backhand groundstrokes. 
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Figure 2.12. Mean angular velocities for the low backspin backhand 

stroke at the shoulder (+), elbow (e) and wrist (e) joints 

(adapted from Elliott & Christmass, 1995, pg. 150) 

A comparison of joint angular velocities for the upper-limb showed that racket head 

speed was derived from the summation of forward movement of the body, trunk 

rotation and rotations about the shoulder, elbow and wrist joints. However, the 

external rotation of the upper-arm and forearm supination would also appear to play 

integral roles in the generation of racket-head speed (Elliott & Christmass, 1995). As 

illustrated by Figure 2.12, the body segments slowed down just prior to contact. The 

subsequent negative acceleration of the hitting limb during the follow through phase 

may be important in reducing the chance of injury (Elliott et al., 1986). However, 

before making such statements, it must be first shown that the negative acceleration is 

not a consequence of over smoothing the large negative acceleration of impact 

(Knudson, 2001). 

Wang et al. (1998) used an automatic tracking system operating at 60 Hz to 

analyse the 3D kinematics for performances of one-handed backhand groundstrokes. 

The validity of the results obtained is questionable due to the relatively low frame rate 

of the six cameras used, for a movement which lasted less than a second. The 

experiment found that the movement of the shoulder was small for the acceleration 

phase immediately prior to impact. The maximum angular velocities of the shoulder 

external rotation, elbow flexion and wrist extension occurred in the instant prior to 

impact, then immediately decreased as in the study by Elliott and Christmass (1995). 
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2.2.8 Hand forces 

Studies measuring forces on key hand locations have found a wide variability 
in peak forces transmitted to the hand during one-handed backhand groundstrokes 
(Ratze, 1976; Knudson, 1991a; Knudson & White, 1989). Peak forces due to the 

impulsive loading from ball impact have ranged from 5 to 311 N with the largest 

influencing factor appearing to be how far off-centre the ball impacts the racket face. 

Knudson has published extensively his work into forces induced in the hand 

by the tennis racket for the forehand (Knudson, 1991b; Knudson & White, 1989) and 

backhand groundstrokes (Knudson, 1989,1991a). The results obtained from force 

sensing resistors showed that all subjects tightened their grips immediately before 

impact by increasing the forces at the hypothenar sensor for the forehand and at the 

thenar sensor for the backhand (Figure 2.13). 

Im{ pact 

-IIII- 

(A) 

0 

(B) 

Figure 2.13. Superior view of hand placement on the racket in a backhand grip (A), 

and the corresponding sensor locations on the palm of the hand (B); 

where H and T are the approximate locations of the hypothenar and 

thenar eminences respectively (adapted from Knudson, 1991 a, pg. 284) 

Although pre-impact forces showed a consistent pattern, peak post-impact forces were 

highly variable ranging from 4 to 309 N and from 6 to 124 N for the forehand and 

backhand respectively. Interestingly, the intermediate subjects used had much lower 

thenar forces (20N as opposed to ON for advanced subjects) during the backhand, in 

preparation for impact. According to Knudson, this provides less resistance to the 
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acceleration of the racket. Large impact acceleration may be related to a rapid stretch 

of the wrist extensors, which has been hypothesised to be the cause of tennis elbow 

(Knudson, 1991a). 

The considerable variability in the magnitude of the impulsive forces observed 

by Knudson was attributed to variations in impact location and racket velocity during 

the experiments. Cross (1998) minimised this problem by measuring forces at 

selected impact locations and using a stationary racket to keep the initial racket 

velocity constant at zero. The results were consistent with those of Knudson and 

White (1989) who found that for the forehand groundstroke, the force increases at the 

base of the index finger and decreases at the hypothenar eminence during the impact. 

On the basis that the force on the middle finger remained constant at all times, Cross 

(1998) suggests that the axis of rotation within the hand is located almost exactly in 

the middle of the hand. 

2.2.9 Racket arm kinetics 

A simple analytical model developed by McLaughlin and Miller (1980) was 

the first to calculate internal forces and moments during one-handed tennis backhand 

gorundstrokes. They formulated a linear objective function and minimised the 

weighted sums of the muscle stresses, joint moments, and joint reaction forces on 

structures in the forearm through optimisation. The results correlated reasonably well 

with observed patterns of muscle electromyogram (EMG) signals for the nine selected 

forearm muscles. However, there was no attempt to estimate or scale muscle 

parameters to their subjects. Instead, input parameters were taken from the literature. 

An investigation into the dynamics of the extensor carpi radialis brevis 

(ECRB) muscle during one-handed backhand groundstrokes was undertaken by Riek 

et al. (1999). Their simulation model predicted that the advanced group would exhibit 

a considerably larger peak force (89.9 N) when compared with the novice group 

(65.3 N). In the advanced group, impact occurred well before (128 ms) the peak force 

but for the novice group impact nearly coincided (32 ms after) with the peak force. 

As a result, it is likely that the muscle was in a less advantageous state to deal with the 

sudden stretch, just after impact (Riek et al., 1999). It can be inferred that a higher 

force in the ECRB muscle is associated with increased loads in tendon attaching it to 

the lateral epicondyle at the elbow. However, it is unknown what the critical loads 

are which may cause micro-tears within the tendon. 
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Figure 2.14. Muscle force in ECRB predicted by the model for advanced 

and novice groups (adapted from Riek et al., 1999, pg. 480) 

Wu et al. (2001) developed a mathematical model to estimate ball contact duration on 

the stringbed (dwell time) and the peak impact force on the racket for two tennis 

backhand techniques. Data was only collected at 60 Hz and this may explain why the 

errors in predicted dwell time are similar to the actual dwell times calculated in other 

studies (e. g. Cross, 2000a). For the advanced subjects, a one-handed backhand 

groundstroke with a short backswing had a significantly shorter dwell time 

(0.008 ± 0.003 s) and a greater peak resultant force (330.0 ± 141 N) than that with a 

long backswing (0.016 ± 0.004 s and 180.8 ± 49 N). The explanation provided is that 

a long backswing allows the racket to follow the ball after initial ball and racket 

contact, which increases the ball and racket contact duration. However, the relative 

ball-racket velocities at impact are not given and the reason for an increase in dwell 

time is not clear. 

2.2.10 Muscle activation of the upper-limb 

Electromyography (EMG) has been widely employed to examine the muscular 

demands of tennis strokes with particular attention given to the wrist extensors during 

the one-handed backhand groundstroke (Li et al., 2004). The high level of muscular 

activity of the wrist extensors may be one of the reasons for the predisposition of 

these muscles to injury (Morris et al., 1989; Giangarra et al., 1993). 
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Ryu et al. (1988) used EMG signals to analyse the complex sequences of 

muscle activity occurring at the shoulder in tennis players. The middle deltoid, 

supraspinatus, and infraspinatus (Figure 2.15) were found to be most active in the 

acceleration and follow-through stages (see Figure 2.1) of the one-handed backhand 

groundstroke, whilst some activity was noted in the biceps brachii, latissimus dorsi 

and serratus anterior. The follow-through phase was characterised by moderate 

activity of the biceps brachii, middle deltoid, supraspinatus, and infraspinatus. 
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Figure 2.15. Anterior view of the muscles and tendons of the upper-arm 

(adapted from Jozsa & Kannus, 1997, pg. 54) 

Blackwell and Cole (1994) examined the EMG signals from the ECRB muscle 

and for the flexor carpi radialis (FCR) muscle during the one second interval centred 

on the time of ball-racket impact. The activity of the ECRB muscle increased during 

the post-impact period for the expert players consistent with the wrist extension they 
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produced following ball-racket impact. Activity of the FCR remained unchanged 

(expressed as a percentage of maximal voluntary contraction) from pre- to post- 

impact intervals in both groups. 

The simulation model of Rick et al. (1999) predicted that advanced players 
display increasing activation levels of the ECRB muscle up to, and just after, ball 

impact. Thereafter, the activation level drops (Figure 2.16) in contrast to the 

aforementioned study. 
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Figure 2.16. Simulated activation of the ECRB muscle 
(adapted from Riek et al., 1999, pg. 479) 
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EMG analyses of the one-handed backhand groundstroke (Bauer, 1997; 

Knudson & Blackwell, 1997) revealed that groups of healthy players and players 

suffering from tennis elbow exhibited different activation patterns of the racket arm 

musculature with respect to similar ball-racket impacts. The data of Bauer (1997) 

indicated that the wrist extensor muscles were activated significantly earlier for the 

injured subjects than the uninjured ones (-0.39 s as opposed to -0.24 s) and were also 

activated for longer after impact (0.39 s as opposed to 0.24 s). Muscles were 

considered active if the magnitude of the EMG reached 20% or greater of that 

recorded during maximum voluntary muscle contractions. 

2.2.11 Length, mass and moment of inertia of tennis rackets 

Kneib et al. (1998) used a computer simulation model to study the influence of 

racket length on the tennis stroke. The model was based on 2D multiple pendulums 
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consisting of upper-arm and forearm, hand and racket segments. The arm segments 

were linked by hinge joints and the viscoelastic properties of the racket, strings and 

ball were combined in an overall spring-damper system according to Leigh and Lu 

(1992). A racket with an elongated grip but the same mass and moment of inertia as a 

conventional racket resulted in increased loads in the wrist (16%), elbow (17%) and 

particularly the grip joint (212%). Kneib concluded that the advantage of a higher 

rebound velocity (2%) is attained at an unacceptable cost to the recreational player. 

Depending on where additional mass is added, altering the total mass of a 

racket will affect the balance point and the total weight of the racket as well as the 

moments of inertia (MOIs) and the vibration response (Cross, 2001). Cross found 

that mass added at the tip of the racket is effective at increasing racket power and that 

the point of maximum power is shifted towards the tip of the racket. Both Kamien 

(1990) and Renstrom (1994) state that there is no definitive or consistent evidence 

that any particular weight of racket or type of racket frame material will decrease or 

increase the risk of arm injury. 

Mitchell et al. (2000) investigated the effect of racket inertia values upon the 

head speed generated by tennis players during the serve. The results indicated that a 

decrease in racket inertia, within realistic limits, can significantly increase the head 

speed achieved by skilled players although it is noted that this result may not be 

independent of the weight of the racket. Brody (1985) talks about the `swingweight' 

of the racket which is the MOI about the transverse axis through the handle. 

-7jjý 

Swingweight axis Longitudinal axis 

Figure 2.17. Swingweight and longitudinal axes of a tennis racket 

The swingweight determines the racket's `hitting mass' when the ball is struck and is 

a matter of preference for the tennis player. Also of importance to the tennis player is 

the MOI about the longitudinal axis through the handle of the racket as this 

determines the racket's resistance to twisting when the ball is hit `off-centre'. Using 

their computer simulation model of a tennis forehand groundstroke, Nesbit et al. 

28 



(2006) suggest that the MOI about the longitudinal axis of the tennis racket noticeably 

influences the pronation / supination torque at the elbow. However, the simplicity 

with which the hand interacts with the racket in this model raises questions as to the 

extent to which it can predict the relative effect of perturbations of racket MOI values. 

The MOI about the frontal axis perpendicular to the plane of the racket is of concern 

only when spin is being applied to the ball as in a `slice' groundstroke (Brody, 1985). 

2.2.12 The sweet spots 

Professor Howard Brody has written many articles concerning the physics of 

tennis. He observes that there are three definitions of the sweet spot on the strings of 

the racket, each based on a different physical principle. The first definition of the 

sweet spot is the point giving the maximum coefficient of restitution (COR), which is 

where the greatest return velocity is generated. The second definition relates to the 

point at which the impact gives no reaction impulse at the racket handle, the centre of 

percussion (COP). The third definition connects the sweet spot to a point on the 

racket face along the longitudinal axis (the node) at which being struck by the ball 

results in minimal vibrations on the racket handle. This spot is actually a curved line 

which extends from the middle of the strings to points at about two and ten o'clock on 

the frame (Brody et al., 2002). The node refers to the point where the curved line 

intersects with the longitudinal axis of the racket. Cross (1997) also defines a dead 

spot, which is the point on a racket where an incident ball stops dead on a stationary 

racket (Figure 2.18A). 
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Figure 2.18. The sweet spots of a tennis racket (A) and its fundamental 

mode of vibration (B) (adapted from Brody, 1988, pg. 25) 
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2.2.13 Off-centre impacts 

Forces on the hand arise from rotation, translation and vibration of the racket 
handle (Cross, 1998). The initial shock your hand feels can be minimised by hitting 

the ball at the COP (Roetert & Groppel, 2001) whilst for an impact at the node, the 

vibration component is zero (Brody, 1981). The forces generated by ball-racket 

impact, especially off-centre impacts, have been identified as a factor that may 

contribute to the development of tennis elbow (Hennig et al., 1992). When the impact 

of the ball is not along the longitudinal axis of the racket frame, the racket will rotate 

around that axis. This creates a moment around the wrist which must be resisted by 

the forearm musculature. Although modem rackets are more forgiving in terms of 

performance they have also led to an increased shock transmission from the racket to 

the player (Miller, 2006). Knudson (1991 a) suggests rackets that minimise the effects 

of off-centre impacts should be considered as an intervention to reduce the risk of 

tennis elbow. 

2.2.14 Vibration of racket frame 

The system of tennis racket and strings is elastic with little damping and is 

therefore prone to vibrations. When the ball strikes the racket, energy is imparted to 

the strings. Some of this energy goes to vibrating the structure at a characteristic 

resonance frequency typically in the range 100 - 200 Hz (Brody, 1995; Cooke et al., 

2002). The strings will vibrate at a frequency of about 400 Hz at a low string tension 

and up to 600 Hz at a high string tension (Brody et al., 2002). Brody (1989) also 

showed that the hand holding the racket damps out the racket frame oscillations much 

faster than the frame material itself and that a stiffer racket has a shorter free damping 

time because it is vibrating at a higher frequency. It is the racket frame vibrations that 

cause the major discomfort since the frame has a greater mass than the strings and 

more energy is involved in its oscillation (Fairley, 1985; Roetert & Groppel, 2001). 

Whereas most studies in the past have performed measurements at the racket 

frame, some researchers (Hennig et al., 1992; Tomosue et al., 1991) have measured 

the vibrations experienced by the human body itself. The vibration at the arm after 
ball impact showed a strong inverse relationship with the resonance frequency of the 

racket frame (Hennig et al., 1992). When the ball impacted off-centre, almost a 

threefold increase in load onto the arm was observed. The data indicate that the 

vibrations in the wrist were only one tenth of those in the racket handle and that 
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vibration levels in the elbow were approximately a third of those experienced at the 
wrist. The attenuation in the amplitude of vibration from the racket to the elbow is to 
be expected. However, since the measurements were taken externally with 
accelerometers clamped to bony protrusions at the wrist and elbow, the accuracy to 

which this reflects the oscillating loads transmitted through the muscle / tendon 

system is unknown. 

A very tight grip has been shown to increase the magnitude of the transmitted 

vibration due to an increase in the impulsive force at the point of impact (Hatze, 

1976). Vibration at frequencies below 40 Hz can be effectively transmitted through 

the arm to the shoulder whereas the absorption of vibration energy from frequencies 

above 60 Hz takes place almost entirely in the hand (Dong et al., 2004; Sorensson & 

Burstrom, 1997). Studies which focussed on hand-forearm vibration have found that 

discomfort due to vibration applied to the hand decreased as frequencies exceeded 
180 Hz (Li et al., 2004). However, as uncomfortable as these oscillations may feel, 

there is no clinical evidence that vibrations are (or are not) a source of injury to the 

hand or arm (Brody, 1995; Roetert & Groppel, 2001). 

2.2.15 Summary of tennis literature 

Mathematical models of varying complexity have been used for tennis 

simulation. To model the human, chains of rigid bodies have typically been used 

whilst the strings / impact surfaces and balls are mostly taken as flexible bodies. The 

tennis racket frame has been modelled using both rigid and flexible beams. Few 

simulation models have incorporated the human and ball-racket systems and those 

that did made assumptions which reduce the confidence that can be placed in the 

model output. 
The research on the impact dynamics of tennis rackets demonstrates that the 

ball, racket and string system are subject to very large forces and vibration. 

Experiments and theoretical models have attempted to shed light on these phenomena, 

but as yet it is unclear what effect these forces and vibrations have on the upper-limb 

of the tennis player. No mention has been made of a suitable biomechanical model of 

the one-handed backhand groundstroke capable of predicting this. Such a model, 

customised to an individual performer, could permit analysis of the relative effects of 

racket parameters and technique on loading at the elbow. 
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2.3 TECHNIQUES OF INVESTIGATION 

Research into dynamic activities can be divided into two categories: 

experimental and theoretical. However, the most effective approach encompasses 
both types of research (Yeadon & Challis, 1994). 

Whereas experiments measure what happens in the real world to real objects, a 

mathematical model forms a similar basis for a computer experiment (Bartlett, 1999). 

The advantage of this is that quantities of interest can be systematically and 
independently varied, whereas experimentally it is sometimes difficult to represent a 

system physically so that its behaviour throughout a range of conditions can be 

examined. Computer simulation allows complete reproducibility at an arbitrary time 

resolution (Kneib et al., 1998). Problems arise when the theoretical model is found to 

be an inadequate representation of the movement being studied. This can generally be 

avoided by basing simulations on appropriate experimental data as part of the 

scientific method (Yeadon & Challis, 1994). 
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Figure 2.19. The theory-experiment cycle of the scientific method 

Experimental difficulties in tennis research caused by the complexity of the 

strokes and the short contact phase demand the development of computer simulation 

models (Schlarb et al., 1998). An investigation of the one-handed tennis backhand 

groundstroke requires knowledge of a number of different techniques. In the 

following sections, a review of simulation modelling, parameter determination and 

image analysis is provided. 
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2.4 SIMULATION MODELLING 

2.4.1 Overview of simulation model development 

There are four distinct phases in simulation modelling: the development of the 

model, the evaluation of the model, the optimisation of a performance using the 

model and a sensitivity analysis. 

2.4.2 Development of simulation model 

Model complexity 

Previous models involving the human body have been very complex 
(e. g. Hatze, 1981) although there are those who advocate the use of simpler models 

(e. g. Alexander, 1992; Hubbard, 1993). An advantage of a simpler approach is that it 

is easier to discover the effect of perturbing model parameters (Alexander, 1995; 

Pandy, 2003) although the accuracy of the model may be poor and important features 

may be omitted (Yeadon & Challis, 1994). With highly complex models, the 

derivation of the equations of motion and the model parameters is challenging, whilst 

the interpretation and evaluation of the results is more difficult (Yeadon & King, 

2002). However, a complex model can be made to simulate a simple model by the 

use of suitable constraints (Yeadon & Challis, 1994). The challenge for the 

investigator appears to be the selection of an appropriate level of complexity, bearing 

in mind the purpose of the model. 

Formulation of equations of motion - software packages 

The development of a simulation model requires the formulation of the 

equations of motion. Whilst some researchers have chosen to develop their models 

from first principles (e. g. Brannigan & Adali, 1981; Hatze, 1976), more recent models 

have successfully made use of the availability of special computer programs such as 

DADS (Schlarb et al., 1998) and AUTOLEVTm3 (Hummel & Hubbard, 2001). 

The development of computer code is relatively quick and the chance of 

making a mistake in the code is reduced. Also, the researcher is not concerned with 

the numerical methods used and can focus on the biomechanical problem in question. 

However, although software packages can reduce the complexity of producing a 

model, they cannot help with the selection of the structure of the model 
(Yeadon & Challis, 1994). 
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2.4.3 Evaluation 

Only when a model has been shown to accurately represent the real life 

situation can the researcher be confident in its capabilities (Hubbard, 1993). A 

simulation model may be customised to the individual performer by calculating 

subject-specific parameters. This allows the simulated performance of the model to 

be compared with the same athlete's actual performance. Although most models are 

evaluated with respect to kinematic data, if the model is being used to evaluate forces, 

a kinetic comparison of simulation and performance is also required 

(Yeadon & King, 2002). 

2.4.4 Optimisation 

Since modem computers allow many simulations to be run one after each 

other, a special type of experimentation, optimisation, becomes feasible (Nigg & 

Herzog, 1999). The optimisation process is used to determine the minimum or 

maximum value of a given objective function which comprises one or more 

independent variables. Weightings must be determined for each variable so that an 

optimal solution can be reached. There are many algorithms, varying in complexity, 

that are capable of maximising or minimising a given function. When the objective 

function is multi-dimensional and is dependent on more than one variable, a process 

called `Simulated Annealing' has often been used (e. g. King, 1998; Wilson, 2003). 

Simulated Annealing Algorithm 

Presented by Corana et al. (1987) the Simulated Annealing Algorithm (SAA) 

is based on how liquids cool to form solids. The analogy is that when molten metal is 

allowed to cool slowly (anneal) the molecules within will align themselves to form 

pure crystals. The pure crystals are in a state of minimum energy since there has been 

ample time for the atoms to lose energy during redistribution. The algorithm starts at 

some ̀ high' temperature given by the user and creates a sequence of points, choosing 

which to accept and reject. The process will accept uphill (to move away from local 

optima) as well as the usual downhill moves in search of a global minimum. After a 

specified number of points have been tried, the temperature is reduced. This 

procedure continues until a temperature is reached whereby no more useful energy 

can be expected. 
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Corona et al. (1987) and Goffe et al. (1994) tested the SAA on a number of 
functions and compared the results with other optimisation algorithms such as the 
Simplex Method (Neider & Mead, 1965) which is a local optimisation method. The 

process of Simulated Annealing was found to be costly in terms of function 

evaluations for a single run when compared to other methods. However, when 

compared to multiple runs needed by other algorithms to test different starting values, 

the SAA becomes effective (Goffe et al., 1994). A major advantage of the SAA over 

other optimisation methods is that by exploring the function's entire surface, the 

process is largely independent of the starting value (Goffe et al., 1994). 

2.4.5 Sensitivity analysis 

A sensitivity analysis is needed to enable the researcher to place complete 

confidence in the results of the simulation study. The problem lies in the uncertainty 

associated with the values given to the model parameters not included in the 

optimisation procedure (Yeadon & Challis, 1994). A sensitivity analysis investigates 

the effect that such uncertainties have on a calculated optimum. High sensitivity 

implies that small deviations from the theoretical optimum will result in values that 

are appreciably below optimum whilst the converse is also true. 

2.4.6 Summary of simulation models 

The stages involved in the development, evaluation and optimisation of a 

simulation model have been discussed with reference to the literature. The next 

section details the parameters required and the techniques used to obtain them. 

2.5 PARAMETER DETERMINATION 

2.5.1 Overview of parameter determination 

For a simulation model to accurately represent real life activity, parameters 

must be determined directly from experiments or indirectly through an optimisation 

process when direct measurements are not possible. This section will review the 

possible methods of determination for the inertia parameters of the human and for the 

parameters of the tennis ball and tennis racket. 
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2.5.2 Inertia parameters 

In studies of human movement, the segments of the human body are idealised 

as rigid bodies. It is necessary to know the mass, mass centre location, and the 

principal moments of inertia (MOIs) about the mass centre of the rigid body. One of 
the earliest methods of determining segmental inertia parameters was using cadavers 
(e. g. Dempster, 1955). Later, this cadaver data was used within regression equations 

as a means of expressing the segmental inertia parameters as functions of 

anthropometric measurements. This approach has been linear (e. g. Hinrichs, 1985) 

and non-linear (e. g. Yeadon & Morlock, 1989) with the latter yielding more accurate 

estimates. The obvious disadvantage of cadaver data is that it is not subject-specific 

and therefore of little value in a subject-specific computer simulation model. 
A number of techniques are needed to calculate inertia parameters by direct 

measurement. Water immersion techniques have been used to calculate segment 

volumes (Clauser et al., 1969), reaction board measurements for mass centre locations 

(Drillis et al., 1964) and oscillation techniques for MOIs (Hatze, 1975). Some of 

these experimental methods are restricted to certain body segments and there is the 

difficulty of obtaining inertia parameters for central segments (Yeadon & Challis, 

1994). 

Magnetic Resonance Imaging (MRI) circumvents the reliance on cadaver data 

and can distinguish between various soft tissues (Mungiole, 1990). At present, the 

impracticality of this technique, being expensive and not widely available, appears to 

outweigh its apparent accuracy in providing estimates of segmental inertia 

parameters. For determination of the MOIs of the upper-limb, Challis and Kerwin 

(1992) showed that geometric modelling techniques gave acceptable accuracy and 

offered a relatively simple alternative to statistical methods. 

Geometric modelling 

In these mathematical models, body segments are represented by a series of 

geometric solids of different shapes, the size of which are - determined by 

anthropometric measurements. The inertial properties of the body segments are 

determined by assuming that the segments have the same volumes as the geometric 

solids. The densities of the segments are taken from cadaver data introducing 

uncertainty in the estimated values. Although geometric models are all based on the 

same principles, their complexity has differed amongst researchers. For instance, 
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Hatze (1980) developed a 17-segment model requiring 242 direct measurements from 
the subject. In contrast, the inertia model of Yeadon (1990a) comprises 11 segments 
and 40 geometric solids, specified by 95 anthropometric measurements. The 

maximum error of the total body mass estimates was found to be 2.3% as opposed to 
0.32% which Hatze (1980) records. However, the time needed to take these 

measurements is approximately 20 to 30 minutes compared to over an hour when 

using Hatze's earlier model. 

Inertia parameters of a tennis racket 

The MOIs of a tennis racket about its principal axes through the centre of mass 
(COM) and about parallel axes are needed as input to a 3D simulation model. Brody 

(1985) describes simple experiments that can be performed to achieve this. By 

suspending a racket on a wire and measuring the period of the torsional oscillations 

(T), the MOI of the racket can be calculated using the following Equation 2.3: 

I=kT2/47tZ (2.3) 

The value k is the torsional constant of the wire which can be determined by 

measuring T for a calibration block of known'MOI and similar mass to the racket. 

The parallel axis theorem (Ii = Ism + md2) can then be used to connect the MOI about 

any axis (Id) with the MOI about the COM of the racket (Lm) as long as the distance 

between the axes (d) is known. 

2.5.3 Generating joint motion 

As input to a simulation model, information regarding the forces acting on the 

system are needed. When the technique has not required maximum effort by the 

performer and the forces created by the muscles are not of great importance 

(e. g. Yeadon et al., 1990c) then joint angle time histories have been used as input. 

However, if the performer reaches a state of maximum effort a muscle model is 

required that will adequately describe the forces / torques produced during dynamic 

one-handed backhand groundstrokes so that techniques can be limited to those within 

the capabilities of the performer. 

The parameters of many muscle-driven simulation models have been taken 

from the literature which means that the model cannot be customised to an individual 
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(Yeadon & Challis, 1994). In order to obtain subject-specific strength parameters to 
limit techniques in angle-driven models and for torque-driven simulation models, 
joint torques have been measured using an isovelocity dynamometer (e. g. King & 

Yeadon, 2002; Kong, 2005). 

Isovelocity dynamometry 

Isovelocity dynamometers, such as the KinCom and Cybex control the angular 

velocity through a specified range of movement (ROM) and measure, via a strain 

gauge force transducer, the force applied. The subject works maximally against a 

crank that is moving at a constant angular velocity over a range of angles. Active 

machines allow torques to be measured under eccentric-concentric conditions. The 

angular velocity may be set to zero so that isometric trials can be performed. The 

resistance of the device equals the applied muscular torque throughout the ROM. The 

advantage of this method over isoinertial testing (variable speed with a fixed 

resistance) is that the effect of angular acceleration on the torque produced does not 

need to be accounted for (King, 1998). 

The disadvantages are that the machine will not operate at very high angular 

velocities (typically no higher than 500 deg/s) and this may require the researcher to 

extrapolate the torque-angular velocity data (e. g. King & Yeadon, 2002). 

Additionally, the data collection procedure assumes that the participant is able to 

reach maximum activation throughout the central eccentric-concentric phases of each 

trial. In a review of isovelocity dynamometry, Herzog (1988) states that (a) 

gravitational effects, (b) inertial effects, and (c) the non-rigidity of the limb / crank 

arm system must be accounted for if the isovelocity torque data is to accurately 

represent the movement in question. 

2.5.4 Wobbling masses 

To date, most biomechanists have made the significant modelling assumption 

that the human body is composed of a set of rigid bodies. Hatze (1988) argues that 

the rigid-body approximation for segments is justifiable since during the course of a 

motion, the muscles will change their contractive state, and hence their consistency 

from very soft in the relaxed state to almost rigid in the completely contracted state. 

However, it has been shown that wobbling masses play an important role in 

38 



dissipating energy during an impact (Pain & Challis, 2001 a) and upper-body vibration 
(Yue & Mester, 2001). 

As many of the parameters in a wobbling mass model are unknown, attempts 

to separate the rigid and wobbling components in whole-body simulation models have 

been simple (e. g. Kong, 2005; Mills, 2005). Here, the bone has been separated from 

all other components and the relative mass components of each were calculated. This 

gives two rigid bodies that are connected to each other via non-linear spring-dampers 

in such a way that the visco-elastic properties of the soft tissue can be modelled. Data 

from the literature (e. g. Clarys & Marfell-Jones, 1986) can be used to determine the 

ratios of bone to soft tissue mass in a subject-specific model. However, care must be 

taken when applying the ratios to athletes with considerably less body fat than those 

in the literature. 

2.5.5 Spring parameters 

In a mathematical simulation model of a tennis ball-racket impact, it is 

anticipated that springs will be needed in the modelling of the ball-racket system, the 

grip, and any wobbling masses that are incorporated. 

Equipment parameters 

Previous models of tennis equipment (e. g. Brody, 1979; Cross, 2000a; Leigh 

& Lu, 1992) have included spring-damper systems. In a simple one-dimensional 

analysis, Leigh and Lu (1992) modelled the ball, strings and racket separately and 

then assembled the whole system. 

6b ss br 

FFa Fro 
Fa: 

deformed system 
m 

Fee M Fro 

ball strings racket 

Figure 2.20. Model of ball-strings-racket system 
(adapted from Leigh & Lu, 1992, pg. 193) 

39 



Simple experiments were carried out to determine the elastic and damping properties 

of the system. A quasi-static test was performed on a tennis ball to determine the 

elastic force Fbe as a function of the deformation Sb of the ball. The non-linear 

relationship observed was Equation 2.4: 

Fbe = kböy + Ilb5b3 (2.4) 

where kb and nb are the spring constants that were found to be kb = 18.44 kN/m and nb 

= 23860 kN/m3. A limitation of a quasi-static test is that the ball is subjected to 

surface forces on both sides. Brody (1979) performed a force-deformation test on a 

tennis ball that was placed in a rigid cup so that only one side deformed. His results 

indicated a value for kb of about 12.26 kN/m. Neither test can account for the inertia 

forces distributed throughout the ball during an impact (Leigh & Lu, 1992). 

Additionally, the behaviour of a ball during a rapid compression (a ball hitting a hard 

surface) is not the same as that for a slow compression during testing (Brody et al., 

2002). Dignall and Haake (2000) found that tennis ball stiffness and damping 

coefficients show a linear relationship with incoming velocity (Figure 2.21). 
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Figure 2.21. The variation of (A) tennis ball stiffness and (B) tennis 

ball damping coefficient against incoming speed 
(adapted from Dignall & Haake, 2000, pg. 158) 

Cross (2000a) used separate spring stiffness values for the compression and 

expansion phases to account for the hysteresis in the ball although the spring stiffness 
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values did not vary as a function of ball deformation or relative ball velocity. The 
hysteresis loss in the ball was determined by finding the area enclosed by a force- 

compression curve for a complete compression and expansion cycle. Reasoning that 

the ball parameters (kb and cb) are not constant throughout the impact phase, Goodwill 

and Haake (2003) determined them empirically using the coefficient of restitution and 

contact time data from an experiment in which a ball was propelled towards a force 

platform, perpendicular to the surface. It was assumed that the values of kb and eb 

were dependent only on the maximum displacement value of the centre of mass of the 

ball and not on the stiffness of the force plate surface. 
The stringbed stiffness has been determined by dropping an incompressible 

sphere onto the strings of a clamped racket (Leigh & Lu, 1992) and by a quasi-static 

compression test (Goodwill & Haake, 2003). In the later experiment, loads of up to 

700 N were applied over a circular area of varying diameter, perpendicular to the 

stringbed of a racket. For the range of contact areas and stringbed deflections tested, 

the string-bed stiffness was found to lie between 40 and 60 kN/m. The damping 

coefficient has been considered negligible (e. g. Leigh & Lu, 1992) or in the case of 
Goodwill and Haake (2003), has been assigned a constant value which equates to a 
5% loss of energy in the stringbed, equal to that found experimentally by Cross 

(2000b). 

Wobbling mass parameters 

Springs that are heavily damped have been used in the past as a way of 

connecting wobbling masses to each skeletal part. These approaches have been both 

linear (Cole et al., 1996) and non-linear (Pain & Challis, 2001b). Pain and Challis 

(2001b) determined the spring and damping parameter values using an optimisation 

technique. The magnitude and frequencies of the movement of the wobbling masses 

in the simulation model were matched as closely as possible to the movements of 

wobbling masses, determined experimentally. 

2.5.6 Summary of parameter determination 

The above sections have described some of the techniques that have been used 

to evaluate the subject and equipment-specific parameters needed to develop a 

computer simulation model. The next section will focus upon the techniques that will 
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be needed to record and analyse performances of one-handed tennis backhand 

groundstrokes. 

2.6 IMAGE ANALYSIS 

2.6.1 Overview of image analysis 

A 3D image analysis of one-handed backhand performances is required so that 

realistic inputs can be obtained for the simulation model. Data must be collected and 

then processed accordingly. 

2.6.2 Data collection techniques 

One of the earliest methods used to acquire the time histories of various body 

landmarks was cinematography. However, analysing the film is a slow, pedestrian 

task, and subject to human error whilst the cost of purchasing and processing cine 
film is high (Atha, 1984). For the analysis of impacts where the duration of contact 

can be very short, Atha (1984) suggests that high-speed cinematography (a minimum 

framing rate of 300 Hz) should be used. High-speed digital cameras can offer high 

sensor pixel counts, high speed framing rates and excellent image quality. Unlike 

cine techniques, they offer immediate playback direct from the camera memory or 

archived image files. If the performance is recorded using at least two cameras and 

the body landmarks are digitised manually, then the direct linear transformation 

(DLT) technique (Abdel-Aziz & Karara, 1971) or modifications thereof (e. g. Hatze, 

1988) can be used to reconstruct the 3D locations of body landmarks. 

The most recent technique for the quantitative analysis of movement is based 

around systems where markers are automatically tracked. The markers can be active 

(e. g. light emitting diodes (LEDs) with SELSPOT), or passive (e. g. reflective markers 

with VICON). The advantages of passive markers are that they require no power 

source or connecting wires, are lightweight and inexpensive to replace. The 

disadvantages of such systems are the limited image resolution at sample rates higher 

than 50 or 60 Hz, the interference caused by sunlight and the difficulty in 

automatically identifying markers (Yeadon & Challis, 1994). In contrast, LED-based 

systems generally have higher spatial and temporal resolution and have automatic 

marker identification. 
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The system will digitise the locations of these markers, a significant advantage 

over cinematography and video that require much manual digitisation for quantitative 

analysis (Bartlett, 1997). However, only the locations of the surface placed markers 

are given and unlike the aforementioned systems that rely on manual digitisation, the 

operator cannot estimate the joint centre locations of obscured points (Yeadon & 

Challis, 1994). Displacements (relative to the joint centre) of the individual skin- 

mounted markers of up to 20 mm have been observed due to soft tissue movement 

(Fuller et al., 1997). 

2.6.3 Data processing: filtering and curve fitting techniques 

Having reconstructed the coordinates of important body landmarks, this data 

needs additional processing before it is in a suitable form for interpretative analysis. 

The recorded coordinates may contain systematic errors due to lens distortion or 

incorrect marker placement and random errors (noise). These must be reduced before 

further calculations and differentiation (Bartlett, 1997). Data smoothing is also 

needed for the determination of interpolated values (Yeadon, 1990b). The most 

popular techniques for the removal of random noise are: digital filters, truncated 

Fourier series, and splines. Tennis impacts are complicated by the large accelerations 

at impact and the data smoothing necessary to model the lower-frequency movements 

(Knudson, 2001). 

All three methods produce good fits to displacement data but the digital filter 

does not provide a smooth analytical function for future computations whilst the 

Fourier series requires equispaced data (Wood, 1982). A comparison of the 

techniques described, all with optimum filtering applied, was performed by Challis 

and Kerwin (1987) for the analysis of film data. They showed that the quintic spline 

(Wood & Jennings, 1979) was superior to other techniques in terms of smoothing and 

evaluating the second differentials, whilst the Reinsch cubic spline proved to be 

superior for interpolating data. 

2.6.4 Summary of image analysis 

This section has reviewed the techniques required to collect and analyse data 

on sports performances. The nature of a tennis ball-racket impact means that a high- 

speed data collection system will be needed to obtain sufficient information. The 

techniques required to obtain an accurate 3D reconstruction and then process the data 
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have been discussed with reference to the literature. The method used to smooth the 

data before analysis depends on the individual application. Yeadon and Challis 

(1994) warn of errors incurred by over smoothing the data at points of impact, 

especially when the sampling frequency is low. 

2.7 CHAPTER SUMMARY 

This chapter has reviewed the literature that has implications for creating a 

computer simulation model of one-handed tennis backhand groundstrokes. There are 

two main sections as issues concerning the tennis stroke and simulation modelling in 

general are addressed. The next chapter will focus on the development of the 

simulation model using a software package. 
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CHAPTER 3 

MODEL DEVELOPMENT AND FEATURES 

3.1 CHAPTER OVERVIEW 

A computer simulation model of one-handed tennis backhand groundstrokes 

was developed. The model comprised a tennis ball-racket system linked to an upper- 

limb and torso. This chapter describes how the model was formulated using 

Autolev 3.4 Professional software package and details the specific features of the 

model. 

3.2 MODEL DEVELOPMENT USING AUTOLEV 

3.2.1 Overview of model development 

As a multi-body 3D model was required, it was necessary to have a complete 

understanding of the software package used and to test ideas for modelling aspects of 

the dynamic system. Initially, a simple 2D model was formulated based on first 

principles that consisted of a rigid beam tennis racket and point-mass ball system 

fixed to an upper-limb segment. An Autolev model of the same system was then 

coded and the results of simulations with this code were compared with the output 

from the model coded from first principles. Once satisfied that output from the model 

generated by Autolev code was correct, more segments and features were 

systematically added until a tennis ball-racket and upper-limb system were 

represented in 3D. 

At each stage error checks were performed, for example, ensuring that angular 

momentum about the mass centre of the system was constant when no external forces 

were acting on the system. In addition, a Matlab code enabled stick figure 

representations of the simulations to be animated and viewed from three different 

positions. Figure 3.1 is an example of a simulation where the ball is viewed from 

above, directly behind and to the side of the human. The torso, upper-limb segments, 

the racket and the ball are shown for an instant in time when peak ball-stringbed 

deformation occurred. 
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Figure 3.1. Matlab stick figure animations to observe simulations from directly 

above (A), behind (B) and to the side of the human (C) 

3.2.2 Formulating equations of motion 

AutolevTM 3.4 Professional software package (Kane & Levinson, 1996) was 

used to formulate the equations of motion for the model. Expressions relating to 

constrained generalised inertia forces and constrained generalised active forces were 

determined resulting in the equations of motion being formulated. Autolev utilises a 

Kutta-Merson numerical integration algorithm, with a variable step size Runge-Kutta 

integration method to advance the solutions of the equations of motion. The Autolev 

command file backhand (Appendix 1) describes the structure of the model. Here, 

commands defining the positions and orientations of each body and the internal and 

external forces acting on the system were expressed. Three files were produced when 

the Autolev command file was run: a Fortran program, an input file for the simulation 

model, and a directory of output files generated when the model was executed. 

3.2.3 Customisation of Fortran code 

The Fortran code had to be compiled although customisation was first required 

for the model to meet the needs of the study. The equations of motion remained 

untouched but alterations were necessary to allow both single simulations and 

multiple simulations as part of optimisations to be run. It was also necessary to 

evaluate the model by comparing performances and simulation output by minimising 

differences in kinematic variables. The Fortran programme generated by the Autolev 

code was converted into a subroutine of a main programme. By calling further 

subroutines and selecting certain options, the joint angle time histories used to drive 

the simulation were specified. 
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3.3 RACKET-BALL SYSTEM MODEL 

3.3.1 Overview of racket-ball system model 

The racket-ball system model was broken down into three distinct parts: the 

racket frame, the stringbed and the ball. Each was modelled in isolation and then 

combined to recreate the whole system. 

3.3.2 Racket frame model 

The racket frame was modelled as two rigid bodies connected by a frictionless 

pin joint located at the antinode of the fundamental modes of vibration in and out of 

the plane of the racket face (Figure 3.2). Vibration of the racket frame was modelled 

using two torsional spring-dampers to allow motion in and out of the racket plane. 

The passive torque between the two bodies E and F about an axis was given by 

Equation 3.1: 

T =-kfO-cf9 (3.1) 

where T= the torque between the two bodies E and F 

kf = the stiffness coefficient 

cf = the damping coefficient 

0= the angle between the two bodies E and F 

6= the angular velocity of body E relative to F 

Node Body F 

..... Antinode 

"------ -- Node ----- 
Body E 

AB 
Figure 3.2. Location of nodes and antinode for a fundamental mode shape (A) 

and the rigid body approximation of the tennis racket (B) 
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Details of the determination of the stiffness and damping coefficient for each torsional 

spring-damper are given in Section 5.4.2. 

3.3.3 Stringbed model 

It was important to design a model that would incorporate impacts away from 

the geometric stringbed centre (GSC) as this may be a factor influencing the loading 

at the elbow joint (Hennig et al., 1992). The stringbed model (Figure 3.3) comprised 

a point of impact at the GSC and then an additional eight points were positioned 

around it so that each was the diameter of a tennis ball away from the adjoining 

contact point. In this way, almost the entire stringbed surface could be covered and a 

variety of impacts could be modelled. Each point of contact was considered a particle 

with its mass being that of the synthetic gut used to string the racket divided by nine 

(the number of points of contact). 

Point masses were connected to additional points of contact and / or a point(s) 

on the racket frame by a linear spring. When the springs were of natural length at the 

start of a simulation, the force in them was due to a constant term representing initial 

string tension. Stringbed stiffness varied as four spring constants were defined around 

the GSC (ksl: ks4). An additional six constants (k5: k10) were defined to give the 

stiffness of the springs near the racket frame as a multiple of the four spring constants 

(Figure 3.3). In this way, the determination of the spring constants by optimisation 

(Section 5.6.2) was made easier. A damping term was not included since the strings 

absorb the incoming ball energy by deforming and returning 95% of that energy back 

to the ball (Brody, 1995). 

Figure 3.3. Points of ball contact and spring constants for the stringbed model 
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Each contact point had a single degree of freedom (DOF) to allow deformation 

of the contact point perpendicular to the plane of the racket in its resting state. High- 

speed video data (Section 4.2.1) showed that for the impacts observed on the 

stringbeds tested, movement of the point on the stringbed in the plane of the racket 

was small. The extra 2 DOF per point mass (an extra 18 DOF for the simulation 

model) would have caused high computational requirements and were therefore 

assumed to be zero. Any movement of the ball relative to the contact point on the 

stringbed was incorporated in the 3 DOF ball model (Section 3.3.4). 

The force in each spring in the stringbed was defined using Equation 3.2 with 
Ls1 equal initially to Lo; so that the force in all springs at the start of a simulation was 

equal to the initial force within each spring, STO: 

STi =- ks; (Ls; - Lo; + (ST 0/ks; )) (3.2) 

where: ST; = the restoring force in the spring 

ks; = the stiffness of the spring 

Ls; = the length of the spring during the simulation 
Lo; = the initial length of the spring 

STO = the initial force within the spring 

3.3.4 Tennis ball-stringbed impact model 

For a typical one-handed backhand groundstroke, the tennis ball is struck at or 

near the top of its bounce. Analysis of high-speed video data of one-handed backhand 

groundstrokes (Section 4.2.2) showed that the major component of ball velocity was 

normal to the racket plane on impact. Vicon motion analysis of the same trials 

(Section 4.2.2) showed that the tennis racket had considerable components of velocity 

in the plane of the racket as well as the main component of velocity out of the plane of 

the racket. Since the relative velocity between the ball and-the racket is important 

when considering the force between the ball and the stringbed, oblique impacts were 

incorporated when creating the ball model. 

The ball was modelled in 1D as a point mass (mb) connected to a point mass 

on the stringbed (ms) by a spring and damper in parallel (Figure 3.4). The normal 

force (N) acting on the ball was given by Equation 3.3 where x was the displacement 
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and k was the velocity of the ball relative to the point on the stringbed, whilst k and c 
were the spring and damping coefficients respectively. 

X 

mb ms 

k 
Figure 3.4. Spring-damper model of the normal component of ball-stringbed impact 

N=- kx- ck (3.3) 

The oblique component of the ball was represented by a friction force 

opposing its motion. A tennis ball will initially slide on contact with the stringbed. If 

the friction force and the angle at which the ball strikes is large enough, the ball may 
begin to roll (Brody, 1984). The interaction between the ball and the stringbed can be 

analysed in terms of the coefficients of sliding and rolling friction. For the purpose of 

this simplified model, a single coefficient of friction (pi) was used to define the 

friction force (F) acting perpendicular to the normal force and in the opposite 
direction to the horizontal component of the ball velocity (vb). Weight (mg) is the 

other force acting on the ball (Figure 3.5). 

F=µiN 

Figure 3.5. Forces acting on the ball during impact with the stringbed 

(3.4) 

50 



Since tennis ball rebound velocity depends on the stringbed stiffness at the 

point of impact, three values for pi were included for the oblique component of the 

ball model (Figure 3.6). 

Figure 3.6. Coefficients of friction corresponding to points of impact on the stringbed 

3.4 TENNIS PLAYER MODEL 

3.4.1 Overview of tennis player model 

Based on the kinematic analysis of the performance data collected, explained 

in Section 4.2.1, the need for a 3D model incorporating a torso, upper-arm, forearm 

and hand segment was evident. Wobbling masses were necessary to model the soft 

tissue motion relative to the bone and a method of gripping the racket at the handle 

was required that would result in realistic inputs to the human system. 

3.4.2 Upper-limb model 

The global origin of the system was coincident with the centre of the thorax 

segment at the start of a simulation. The displacement, velocity and acceleration of 

the thorax centre from the global origin were specified in the global x, y and z 

directions with respect to time for the course of the simulation. A rigid segment with 

three rotational DOF connected the thorax centre to the shoulder joint. Each joint was 

modelled as a simple pin joint and the centres were connected by rigid bodies of fixed 

length (Figure3.7). At the shoulder joint there were three rotational DOF to allow 

flexion / extension (Asre), horizontal adduction / abduction (O, u) and internal / external 

rotation (Osie). At the elbow joint, there were three rotational DOF to allow flexion / 
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extension (tiefe), pronation / supination (Oeps) and the adduction / abduction (9e. ) 

which creates the carry angle. At the wrist joint there were also two rotational DOF to 

allow flexion / extension (6,, te) and radial / ulnar deviation 

(0,0,0) "" 
%%% Pý 

Z 

X, 4- 

*#mow 

Figure 3.7. The human rigid-body model with 11 rotational and 3 translational DOF 

Joint angles were based on the standard anatomical position (Figure 3.8). 

Shoulder flexion, shoulder abduction, shoulder internal rotation, elbow flexion, 

forearm pronation, wrist flexion and wrist radial deviation were defined as positive 

movements (an increase in joint angle). 

F 
1ýI 

or, 

I 

Figure 3.8. Standard anatomical position 
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3.4.3 Wobbling masses 

Wobbling masses were included within the upper-arm and forearm segments 

to represent the movement of soft tissue relative to the rigid bone. Both arm segments 

were divided into the fixed and wobbling component (Section 4.4.3). Each wobbling 

mass was modelled as an additional rigid body that initially lay on top of the fixed 

rigid body representing the bone (Figure 3.9). 

. ýý. 

"ý,, i 

Figure 3.9. The wobbling mass attached to the rigid segment 

through two sets of non-linear damped springs 

The wobbling masses were attached to the fixed rigid components by two identical 3D 

non-linear damped springs. The springs were near critically damped and the spring- 

damper force was given by the following equation (Pain & Challis, 2001 a): 

F= -kx'-cv 

where F= spring force 

k= stiffness 

c= damping 

x= displacement 

v= velocity 

3.4.4 Racket-hand interface 

(3.5) 

Research has shown that for the one-handed backhand topspin drive 

groundstroke, peak forces occur at the thenar and hypothenar eminences (Hatze, 1976; 

Knudson, 1991b; Knudson & White, 1989a) whilst the axis of rotation of the racket 
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handle is located almost exactly in the middle of the hand (Cross, 1998). In reality, 
the movement of the racket relative to the hand is influenced by muscular contractions 

modifying the grip forces. However, at impact and for a short time period after the 

racket recoils and behaves like a spring-damper relative to the hand. 

The hand was represented by a rigid segment connecting the wrist joint centre 

to the proximal end of the metacarpal of the middle forger which in turn was fixed to a 

cylinder encasing the racket handle. The fixed orientation of the cylinder relative to 

the rigid segment was equivalent to the initial orientation of the racket handle relative 

to the same rigid segment. Inside the cylinder was a series of six spring-dampers at 
both the thenar and hypothenar eminences to model the gripping forces. Both 

eminences were modelled by four points, equispaced around the circumference of the 

cylinder and an additional two points along the longitudinal axis of the cylinder. Each 

point was connected to the fixed point on the racket handle (a rigid rod) by a linear 

spring-damper (Figure 3.10). 

hypothenar eminence 

springs 

racket handle ý. 
ý on handle 

thenar eminence (T) 

rigid body connecting wrist 
joint centre to hand cylinder 

Figure 3.10. Racket-hand interface 

The dimensions of the cylinder and the location of the eminences were 

determined from anthropometric measurements (Section 4.3.3). The initial lengths of 

the springs were all equal so that the tendency of the racket was always to revert back 

to this equilibrium position after ball impact. An initial force term at both eminences 

meant that the force in the springs was non-zero whilst in its initial position at impact. 

Motion analysis of the one-handed backhand groundstrokes showed that there was 

linear and angular acceleration of the mass centre of the racket at ball impact in the 

global reference frame. Additional forces at each eminence were therefore needed to 

generate non-zero net force at the two contact points on the racket handle. These 

54 



forces at each eminence were ramped down using a quintic function (Yeadon, 1984) 

over a time period of 10 ms. A sensitivity analysis was performed (Section 6.4.8) to 

show the effect of ramping down time on outputs at the arm. The gripping force 

acting on the point on the racket handle was given by Equation 3.7: 

F=-k(L-Lo+(F0/k))-cL(L-Lo)+Ro (3.7) 

where F= force between the points on the racket handle and hand eminences 
Fo = the initial force acting on the fixed point on the racket handle 

Ro = initial force ramped down using a quintic function 

k= the stiffness coefficient 

c= the damping coefficient 
L= the length of the spring during the simulation 
L= the rate of change of the length of the spring with respect to time 

Lo = the initial length of the spring 

Since gripping forces were applied to two single points on the racket handle, a 

mechanism for modelling resistance to the rotation of the racket handle about its 

longitudinal axis was needed (particularly for off-centre impacts). This was achieved 

by using a torsional spring-damper. The initial torque was ramped down using the 

same quintic function as for the gripping forces. The torque acting about the 

longitudinal axis of the racket handle was given by Equation 3.8: 

TE =-kE(e-eo) -cEOJO-eat+To (3.8) 

where TE = the torque about the longitudinal axis of the racket handle 

To = initial torque ramped down using a quintic function 

kE = the stiffness coefficient 

CE = the damping coefficient 

6= angle of the racket handle about longitudinal axis relative to hand 

60 = initial angle of the racket handle about longitudinal axis relative to hand 

6= angular velocity of the racket handle relative to hand 
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3.5 ANGLE-DRIVEN MODEL 

3.5.1 Overview of angle-driven model 

Movements of the tennis player segments were driven by joint angle time 
histories obtained from Vicon motion analysis (Section 4.2.2). Input parameters were 
specified and a series of output files produced after running a simulation. 

3.5.2 Joint angle time histories 

Joint angle time histories and their first two derivatives of the movements 
about the thorax centre and at the shoulder, elbow and wrist joints were obtained by 
fitting the original data with quintic splines (Wood & Jennings, 1979). Each trial was 
cropped and spline coefficients determined for when the wrist joint centre began 

moving forward towards the incoming ball to the point when the wrist joint centre 

was no longer moving forwards in the direction of the outbound ball in the follow 

through phase. With the correct initial conditions, a simulation could be run for any 
time period between these two events. However, many features of interest in terms of 
the subsequent loading at the elbow joint (ball impacting the stringbed and leaving, 

racket frame oscillation and decay, transmission of force through arm system) occur 

in the first 50 ms after ball impact (Brody, 1989). Therefore, simulations were run 
from ball impact to a point in time 50 ms afterwards. 

3.5.3 Input parameters and model output 

The input to the model included the initial position and velocity of the ball in 

the global reference frame along with the relative velocity between the ball and 

selected contact point on the stringbed. The position of the racket handle relative to 

the hand and the initial angles, angular and linear velocities between the racket handle 

and the hand were also required. Subject-specific inertia parameters for the tennis 

player (Section 4.3.3) and tennis rackets (Section 5.3.3) determined from experiments 

were used. Some of the model parameters such as the stiffness and damping 

coefficients at the racket-hand interface were difficult, if not impossible to measure 

directly from an experiment. These parameters were determined indirectly by driving 

the model with the known initial conditions and joint angle time histories and 
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optimising the uncertain parameters to minimise the difference between simulation 
and performance. Details of the optimisation procedures are in Section 4.5.2. 

The model outputs of most interest were the resultant internal joint forces at 
the wrist and elbow joints and the net torques around the joints required to produce 
the movement. For the purpose of evaluating the model, the linear and angular 
displacements of the racket relative to the hand, the time of contact between the ball 

and the stringbed and the outbound ball velocities were required. 

3.5.4 Joint torque limit 

In reality the muscles around a joint create a torque that causes changes in 

joint angles. Section 4.6.2 outlines the procedures used to determine the subject- 

specific parameters of 3D surface functions which describe the joint torque / angle / 

angular velocity profiles for the movements of interest at a joint. The surface function 

calculates the maximum voluntary joint torque that the tennis player can produce for a 

given angle and angular velocity. An isovelocity dynamometer was used to collect 
data for a range of angles and angular velocities. The joint torques output from the 

simulation model are compared to the maximum voluntary joint torques determined 

from strength tests in Section 6.2.5. 

3.6 CHAPTER SUMMARY 

This chapter describes the development and features of the computer 

simulation model used to answer the research questions posed in Chapter 1. The 

model incorporates a ball-racket system linked to an upper-limb and torso segnent. 

Details of the data collections and the procedures used to calculate the model 

parameters are given in the following chapters. 
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CHAPTER 4 

PERFORMANCE DATA COLLECTION AND 

SUBJECT PARAMETER DETERMINATION 

4.1 CHAPTER OVERVIEW 

In this chapter an explanation of the equipment used and protocol for 

collecting kinematic, kinetic and electromyography (EMG) data of an elite male 

subject performing one-handed tennis backhand groundstrokes is given. This chapter 

also explains the experimental and theoretical procedures used to obtain inertia, 

wobbling mass and gripping parameters of the subject, required as input to the model. 

In addition, there is an overview of the methods used to calculate subject-specific 

maximum voluntary torque profiles which could be used to establish if theoretical 

maximum joint torque limits are violated for a given technique. 

4.2 PERFORMANCE DATA COLLECTION 

4.2.1 Overview of performance data collection 

To have confidence that a computer simulation model can replicate real life 

movement, the simulation output must be compared to performances of the subject / 

equipment. A testing protocol was established to collect synchronised kinematic, 

kinetic and EMG data for this purpose. 

4.2.2 Kinematic data collection 

Vicon motion tracking system 

A Vicon 624 motion tracking system, situated within the National Gymnastics 

Centre at Loughborough University, was utilised to collect kinematic data. Twelve 

M2 strobe cameras sampling at a frequency of 250 Hz were used to calibrate a 

volume of approximately 2.5 m3 and then track the motion of markers attached to the 

subject as he performed one-handed backhand groundstrokes. Reflective markers 

25 nun in diameter, were attached to body landmarks in accordance with the Gollum 
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generic marker set. Additional markers were placed on the right biceps brachii, the 

forearm and at six locations on the racket frame (Figure 4.1). Wand calibration of the 

performance volume yielded a mean reconstruction error of 2.2 mm. Within the 

Vicon Bodybuilder software a model code tennisgollum. mod (Appendix 2) was 

developed specifically for the analysis of the data collected. Markers were assigned 

labels and then joint centres and specified angles and displacements were calculated. 

ABL 

Figure 4.1. Marker placement for the front (A) and back (B) 

of the subject and a tennis racket (C) 

Fitting splines to data 

Raw kinematic data from the Vicon motion analysis was fitted using quintic 

splines (Wood & Jennings, 1979) to smooth errors in the data and to give time 

histories which could be used in the simulation model. The error in each data point 

was calculated by comparing each data point with an equivalent pseudo data value 

determined by averaging data values from adjacent frames (King, 1998). 

Joint angle-time histories 

Joint angles were defined as in Section 3.4.2 and joint angle-time histories for 

each selected trial can been seen in Appendix 3 for 50 ms before and after initial ball 

impact. The joint angles at impact observed in this study are comparable to those 
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reported by Wang et al. (1998). As expected for an elite performer, the angle-time 

histories for a particular joint movement are consistent across trials. On closer 

inspection, there was a noticeable difference in the shoulder flexion / extension angle 

for Trial 56 (slice groundstroke) when compared to the topspin drive groundstrokes as 

the subject `chops' down on the ball by extending the shoulder joint to generate 

underspin. Additionally, for Trial 8 where the ball impacts the stringbed off-centre, 

the wrist appears to be forced into more flexion after ball impact when compared to 

the other trials where impact occurs around the geometric stringbed centre. This is 

clearly illusrated in Figure 4.2 which shows the splined wrist joint flexion / extension 

time histories for Topspin drive Trials 8 and 24 (both LM 8 racket frames strung at 

57 lbs) when the ball impact location changes. The wrist joint flexion / extension 

angle-time histories are comparable to those reported by Riek et al. (1999) although as 

the method of joint angle calculation is unknown in that case, more detailed 

comparisons are not possible. 

Wrist joint 
angle (deg) 

-Trial 8 (off-centre ball impact) 
10 -Trial 24 (central ball impact) 

-0. 

-IU 

Time (s) 

Figure 4.2. Splined wrist joint flexion / extension angle-time 

histories for a central and off-centre ball impact 

05 
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High-speed cameras 

Two Phantom v4.1 high-speed digital cameras (Vision Research Inc. ) 

operating at 2500 Hz were used to calculate the inbound and outbound ball velocities 

by digitising the centre of the ball using the associated Phantom software. The impact 

location and the time of ball contact with the stringbed were also obtained. The 

cameras were genlocked with the master camera directly behind the tennis player 

(Figure 4.3) and the slave approximately in line with the longitudinal axis of the 

tennis racket at the point of impact. The exposure time was set to 390 is whilst the 

trigger was chosen so that the ball impact occurred approximately in the middle of the 

data capture. For the selected trials, Table 4.1 shows the inbound and outbound ball 

velocities in the global y and z directions (indicated on Figure 4.3). The component 

of inbound and outbound ball velocity in the x direction was assumed to be close to 

zero for each trial as the ball cannon was fixed and only shots hit back into the target 

area were selected. The impact location (indicated on Figure 4.3) and the time of ball 

contact on the stringbed are also presented. 

v 

Figure 4.3. View of the subject with an instrumented racket standing in the 
hitting volume with a high-speed camera directly behind 
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Table 4.1. Inbound and outbound ball velocities for selected performance trials 

Trial Inbound ball velocity Outbound ball velocity Contact Impact 

number (m/s) (m/s) time (ms) location 

y z y z 

1 -10.04 -0.17 34.13 1.88 4.2 

8 -8.68 -1.45 24.75 5.06 3.8 2 

24 -8.80 -0.59 30.07 1.84 4.0 

31 -9.98 -2.35 33.08 4.05 4.0 

36 -9.00 -1.35 30.94 6.19 4.0 

56 -10.01 -1.58 27.73 2.95 4.0 

Uni-axial accelerometers 

For certain trials, tennis rackets had three uni-axial, Brüel and Kjaer charge 

accelerometers mounted at the throat of the tennis racket using custom manufactured 

aluminium brackets clamped to the frame. Accelerometers were fixed in the centre to 

measure in plane and at the left and right sides of the bracket to measure out of plane 

racket frame accelerations. Accelerometer data were captured at a frequency of 2000 

Hz to compare the actual racket frame accelerations (e. g. Figure 4.4) with those 

predicted by the simulation model. A comparison for a trial is made in Section 6.2.3. 

Acceleration (m/s/s) 

1500 1 ball impact 
- left accelerometer 

1000 - right accelerometer 

- central accelerometer 
500 A 

0 
0.08 0.14 0.16 0.18 0.2 

-500 
H 

trilv 

-1000 

-1500 

-2000 
JI Time (s) 

Figure 4.4. Examples of raw acceleration traces from uni-axial accelerometers 

mounted on a bracket attached to the racket frame 
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4.2.3 Kinetic data collection 

Tekscan pressure sensors 

To obtain information on how the tennis racket was interacting with the hand, 

one of each of the two racket models was instrumented with Tekscan pressure sensors 

under the grip. Two Tekscan sensors, sampling at 250 Hz allowed full grip pressure 

to be monitored. The main sensor allowed 6 of the 8 flats of the racket handle to be 

covered whilst an additional sensor monitored the pressure over the remaining two 

flats. Each sensor was mounted on plastic strips to cover the soft and uneven 

polyurethane foam surface. The Tekscan system was pre-calibrated in the laboratory 

and pressures were recorded in PSI over individual sensor areas of 0.25 square inches. 

Figure 4.5 shows a section of a typical Tekscan trace from the main sensor at 

the time of ball impact for a topspin drive backhand groundstroke. The system 

accurately predicts the relative changes in grip pressure. The high pressures around 

the thenar (top left) and hypothenar (bottom right) eminences are clearly shown by the 

`hot' colours. This supports the idea that the hand-racket complex can be modelled as 

suggested in Section 3.4.4. A comparison is made for a particular trial in the model 

evaluation (Section 6.2.4). The absolute pressure values predicted by the Tekscan 

system are limited due to the low sampling frequency at impact, and the inability to 

measure forces that are not perpendicular to the plane of the sensor. 

Figure 4.5. A typical pressure plot for main Tekscan sensor at the time of ball impact 

4.2.4 EMG data collection 

A Biovision electromyography (EMG) system was used for the analysis of 

muscle activity during each trial. The purpose of this was to obtain information that 
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would help to optimise muscle activation timings for any muscle-driven model 
developed in the future. Nine channels were utilised so that the muscle activation 
timings of the extensor carpi radialis brevis, flexor carpi radialis, biceps brachii, 

triceps brachii, pectoralis major, latissimus dorsi, anterior deltoid, medial deltoid and 
posterior deltoid muscles could be obtained. The associated wires and amplifiers 

were taped to the subject's skin to minimise any movement and hence reduce noise. 
The sampling frequency was set to 1000 Hz and an electrical gain oft 5V was used. 
The collection time for the data in each trial was 10 seconds. 

4.2.5 Synchronisation 

Synchronisation of all the equipment used during performance analysis was 

achieved using a trigger system (Figure 4.6). 

Tekscan Tekscan cuffs Charge 
computer and sensors amplifier 

Tekscan 8-channel 
trigger box connector 

Vicon cameras 

Signal calc HP 
Receiving laptop analyser 

Vicon data trigger box 
station 

High-speed 
camera 

Wireless EMG High-speed 
trigger button camera Gen-locked 

Figure 4.6. A schematic illustrating the synchronisation process for data collected 

A wireless trigger was used to send a radio signal to the receiving trigger box and the 

Vicon data station. An analogue channel was set up in the Vicon software to receive 

a square pulse to allow post-synchronisation. The trigger box receiving the signal 
from the wireless button directly triggered the EMG and high-speed camera systems, 

along with the Tekscan trigger box. The Tekscan trigger box triggered the Tekscan 

system through a serial connection not present on the receiving trigger box. The 

Signal Calc system was triggered from the Tekscan trigger box through a standard 
BNC cable to reduce the number of connections to the receiving trigger box. 
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4.2.6 Testing Protocol 

The testing procedures were explained to the subject in accordance with the 
Loughborough University ethical guidelines and an informed consent form was 

signed (Appendix 4). The subject was asked to warm up thoroughly and then hit one- 
handed topspin and slice backhand groundstrokes until he felt ready to start the data 

collection process. Reflective markers and surface EMG electrodes were placed on 

the subject in specified locations. 

A tennis court section was created along the vaulting track using masking tape 

(Figure 4.7). A hitting area was established just behind the baseline. A pilot study 

established that a hitting volume of 2.5 m3 was sufficient to enable a one-handed 
backhand groundstroke to be performed and an experienced tennis player believed the 

bounce of the ball on the runway surface to be consistent with that of a slow tennis 

court. The Vicon cameras were positioned and the focus and zoom of each were 

adjusted so that the entire hitting volume was covered. 

Bola O Target : ball area 
machine 

" 

11.9m 11.9m 

Net 

Vicon camera 

X 

7. 
ý 

y 

Baseline 
2.5m -º 

2.5m Hitting 
r-C: 3 

volume 
" 

High-speed 
camera 

Figure 4.7. Experimental set-up for the performance data collection 

New `Penn Titanimum' tennis balls were launched from a Bola ball machine 

which was situated just behind the opposite baseline. The intention was to mimic a 

baseline rally and the trajectory and ball velocity were adjusted until the subject felt 

comfortable with the ball delivery. The subject aimed to return the ball so that it 

landed within a target area just inside the opposite baseline. Once a consistent ball 

path had been established the high-speed video cameras could be positioned so that 

the tennis racket head and impacting ball could be seen clearly from the side and from 

behind. Fifty-six trials were captured with Vicon and EMG data collected for each. 
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There were eight combinations of rackets with two frame types (Head LM Prestige 

and Head LM 8), two different string tensions (57 lbs and 70 lbs for the LM Prestige 

and 57 lbs and 75 lbs for the LM 8) for each racket and either no instrumentation, 

Tekscan pressure sensors under the grip, or uni-axial accelerometers mounted at the 

racket throat. A trial was considered to be successful if all the equipment had been 

triggered correctly / received a pulse for synchronisation purposes and the subject felt 

that he had hit the ball with good technique into or close to the target area. For each 

racket combination, data were collected for at least three successful slice 

groundstrokes and three successful topspin groundstrokes. In total, six successful 

trials were selected (Table 4.1) for further analysis as they provided all the 

information needed to compare actual and simulation model outputs for a variety of 

impact conditions. 

4.3 SUBJECT INERTIA PARAMETERS 

4.3.1 Overview of subject inertia parameters 

The segmental inertia parameters of the subject were required as input to the 

model. A successful protocol in the past (King, 1998; Wilson, 2003) has been to use 

the geometric model of Yeadon (1990b). This method is practical and the researcher 

can determine the inertia parameters with little inconvenience to the subject. 

4.3.2 Method 

The geometric model of Yeadon (1990b) splits the body into 11 segments. To 

calculate the inertia parameters of each, 95 anthropometric measurements were taken 

on the subject by an experienced researcher (Figure 4.8). Lengths, widths, depths and 

perimeters from various parts along the body were recorded (Appendix 5). The 

inertia model used the segmental density values of Chandler et al. (1975) as initial 

estimates. These values were subsequently varied within a subroutine until there was 

a match between the whole body mass determined by the inertia model and the body 

mass of the subject measured using Seca Alpha digital scales. 
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AB 

Figure 4.8. Anthropometric measurements at the elbow (A) and wrist joints (B) 

4.3.3 Results 

Table 4.2 shows the segmental inertia parameters used as input to the 

geometric model. I, ly, and IZ refer to the moments of inertia about the lateral, frontal 

and longitudinal axes respectively (Yeadon, 1990a). 

Table 4.2. Segmental inertia parameters for the upper-arm, forearm and hand 

segment mass distance of length of moment of inertia (kgm2 ) 

(kg) COM from segment (m) I,, I, 
proximal depth' (m) 

joint (m) width2 (m) 

right upper-arm 2.1810 0.1470 0.3380 

right forearm 1.5170 0.1240 0.2960 

0.08 
right hand 0.4010 0.0500 0.0981 

0.052 

0.01694 0.01694 0.00258 

0.01009 0.01017 0.00121 

0.00045 0.00054 0.00054 

The lengths of the upper-limb segments calculated from the inertia model 

were then compared with the lengths of the segments determined by the distance 

between joint centres established from the Vicon motion analysis (Section 4.2.2). 
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Excellent agreement was found across the six selected trials for the forearm segment 

with less than 2 nun difference on average. However, due to disparities in the 

location of the shoulder joint centre, the length of the upper-arm segments calculated 
from the Vicon data were larger by an average of 49 mm. The length of the upper- 

arm segment from the inertia model was adjusted by this offset along with the 

location of the centre of mass using the corresponding ratio. This allowed the 

simulation model to be driven with the correct kinematics and made the conditions at 

ball impact correct. 
The hand segment was modelled as described in Section 3.4.4. The different 

position of the hand when in the anatomical zero position to that when gripping the 

racket was accounted for. The mass value of the hand from the geometric model was 

used along with anthropometric measurements to calculate the moments of inertia of 

the hand gripping the racket by using mathematical equations for specific shapes. The 

cylinder encasing the racket handle was taken to be hollow with an internal diameter 

equal to that of the tennis racket handles used (assuming the handle to be a cylinder). 

4.4 WOBBLING MASS PARAMETERS 

4.4.1 Overview of wobbling mass parameters 

The wobbling mass parameters required include the spring stiffness and 

damping coefficients, the mass distribution, centre of mass (COM) location and the 

moments of inertia of the fixed and wobbling components. 

4.4.2 Spring stiffness and damping 

Both wobbling masses were attached to the fixed segments at each end by 

identical non-linear spring-dampers (Section 3.4.3). A Fast Fourier was performed on 

the Vicon positional data of markers on the upper-arm and forearm at locations where 

most wobbling mass movement would occur. By filtering out the low frequency 

vibration due to the motion of the upper-limb (approximately 2 Hz), the vibration 

frequencies of both upper-arm and forearm could be estimated. For the six selected 

trials, the vibration frequencies of the upper-arm and forearm displacements were 

9f0.5 Hz and 14 f 0.5 Hz respectively. The stiffness coefficients were varied and 

simulations of selected trials run until the actual and simulated displacement 

frequencies of the wobbling masses matched during the performance. Near-critical 
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damping coefficients were selected (Pain & Challis, 2001a). Table 4.3 gives the 

stiffness and damping coefficients of the wobbling mass springs that gave the best 

match across all six selected trials. A sensitivity analysis was later performed and the 

results are shown in Section 6.4.7. 

Table 4.3. Stiffness and damping coefficients of the wobbling mass spring-dampers 

wobbling mass stiffness coefficient (107N/m3) damping coefficient (Ns/m) 

upper-arm 2 

forearm 3 

4.4.3 Mass distribution 

Measuring body composition 

95 

120 

Values for the masses and the percentage composition of fat and bone for the 

upper-arm and forearm were taken from Clarys and Marfell-Jones (1986) who 

performed anthropometry on 6 embalmed cadavers (3 male, 3 female). Values for the 

percentage composition of bone and fat and whole body mass of these 6 subjects were 

obtained from Clarys et al. (1984). 

To relate this information to the subject in this study, an estimate of body fat 

as a percentage of whole body mass was calculated based on skinfold measurements. 

The principle behind this technique is that the amount of subcutaneous fat is 

proportional to the total amount of body fat. Based on a standardised description of 

skinfold sites and procedures (Balady et al., 2000), measurements were taken at seven 

sites on the body (chest, midaxillary, triceps, subscapular, abdomen, suprailiac, thigh). 

All measurements were taken on the right (dominant) side of the body and the folds 

were created in a location and at an angle specified by Balady, Berra et al. (2000). 

The calliper was placed 10 mm away from the thumb and finger, perpendicular to the 

skinfold, and halfway between the crest and the base of the fold. The measurement 

was taken for no longer than 2 seconds after initiating the pinch, which was 

maintained whilst reading the calliper (Figure 4.9). Duplicate measurements were 

taken at each site and a retest was performed if the measurements were not within 

2 mm. 
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Figure 4.9. Skinfold measurement on the anterior midline of the right thigh 

Regression equations for body density (Db) were used to convert the sum of 

the seven skinfolds to percent fat. As the first equation for Db is based on the 

population of males (Balady et al., 2000) and the other is based on a population of 

white male athletes (Withers et al., 1987), an average of the two values was obtained. 
This yielded an average body fat composition of 8.4%. 

Table 4.4. Skinfold measurements (nom) to determine body composition 

skinfold site test 1 test 2 average 

chest 8.5 8.5 8.5 

midaxillary 6.0 6.0 6.0 

triceps 6.5 6.5 6.5 

subscapular 8.0 8.0 8.0 

abdomen 12.5 11.5 12.0 

suprailiac 6.0 6.0 6.0 

thigh 9.0 8.0 8.5 

total 5 5.5 
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7 site formulae (chest, midaxillary, triceps, subscapular, abdomen, suprailiac, thigh): 

Body Density =1.112 - 0.00043499 (sum of 7 skinfolds) + 

(Balady et al., 2000) 0.00000055 (sum of 7 skinfolds)2 - 0.00028826 (age) 

= 1.083210473 (1) 

Body Density = 1.0988 - 0.0004 (sum of 7 skinfolds) 

(Withers et al., 1987) =1.0766 (2) 

Average body density (Db) = [(1) + (2)]/2 

=1.0799 

Body fat %= [(4.95/Db) - 4.5] x 100 

= 8.4% 

Scaling from the literature 

For the cadavers in their study, Clarys et al. (1984) reported the average body 

mass and body fat percentage as 64.3 kg and 34.6% respectively. The corresponding 

values for the elite subject in this study were 75.5 kg and 8.4% respectively. The 

following procedure was applied to find an estimate of the fixed and wobbling mass 

within the upper-arm and forearm segments: 

Mass subject 

% fat subject 

upper-arm mass 

fat mass 
fat-free mass 

fat in upper-arm 

fat ratio 

new % fat in upper-arm 

new fat mass 

= 75.5 kg 

= 8.4% 

= 1.560 kg (Clarys & Marfell-Jones, 1986) 

= 0.587 kg (Clarys & Marfell-Jones, 1986) 

= 1.560 - 0.587 = 0.973 kg 

= 
0.587 

= 37.63% 
1.560 

_% 
fat in upper - arm 

= 
37.63 

=1.0876 
whole body % fat 34.6 

= 1.0876 x 8.4% = 9.14% 

= 1.560 x 9.14% = 0.142 kg 
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new upper-arm mass = fat-free mass + new fat mass 

= 0.973 + 0.142 

= 1.115 kg 

bone mass = 0.218 kg (Clarys & Marfell-Jones, 1986) 

fixed mass ratio = 
bone mass = 

0.218 
=19.55% 

new upper - arm mass 1.115 

wobbling mass ratio = (100 - 19.55)% = 80.45% 

forearm mass = 0.764 kg (Clarys & Marfell-Jones, 1986) 

fat mass = 0.181 kg (Clarys & Marfell-Jones, 1986) 

fat-free mass = 0.764 - 0.587 = 0.973 kg 

% fat in forearm 
0.181 

= 0.764 = 23.69% 

% fat in forearm 23.69 
= 0.6847 fat ratio whole body % fat 34.6 

new % fat in forearm = 0.6847 x 8.4% = 5.75% 

new fat mass = 0.764 x 5.75% = 0.044 kg 

new forearm mass = fat-free mass + new fat mass 

= 0.583 + 0.044 

= 0.627 kg 

bone mass = 0.122 kg (Clarys & Marfell-Jones, 1986) 

bone mass 0.122 
_ fixed mass ratio new forearm mass 0.627 -19.46% 

wobbling mass ratio = (100 - 19.55)% = 80.54% 

The mass of the fixed (mf) and wobbling (m. ) components were calculated 

using the segmental masses obtained from Yeadon's (1990b) model and the above 

fixed to wobbling ratios. 

Table 4.5. Masses of the fixed and wobbling components 

inertia parameter upper-arm forearm 

mf(kg) 0.426 0.295 

mw (kg) 1.755 1.237 
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4.4.4 Centre of mass location and moment of inertia 

The moment of inertia (MOI) of the whole segment (ig) about an axis was 

determined from Yeadon's (1990b) model. Ig is the sum of the MOIs of the fixed (lt) 

and wobbling (I%%) components. Using the Parallel Axis Theorem and considering the 

MOI about the x (lateral) axis: 

Ig = If + mr(xr - x)2 + IW + mw(xw - x)` (4.1) 

where x= distance of the whole segment COM to the proximal. joint centre 

xf = distance of the fixed component COM to the proximal joint centre 

xH, = distance of the wobbling component COM to the proximal joint centre 

mf mw 

-* If + Iw( L 

X Xf Xw 

i1 

Figure 4.10. Modelling a segment as a fixed and ýwbbling component 

It was assumed that the lengths of the fixed and wobbling components were 

the same as the length (L) of the whole segment. The fixed component was modelled 

as a uniform cylinder. The volume of the cylinder was calculated by dividing its mass 

(mt) by its density (d). Density values from Clarys & Marfell-Jones (1986) fier the 

upper-arm and forearm were 1224.0 and 1308.0 mg/m3 respectively. The radius of' 

the cylinder (r) was calculated using Equation 4.2: 

7rr2L = 
M' (4.2) 

If was determined using the equation defining MOI for a uniform cylinder: 

If = 12mf, 
L'+4mfr' (4.3) 
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For the fixed component with uniform density, xf was taken as: 

Xf=2L (4.4) 

For the wobbling component, xW was calculated using Equation (4.5): 

mfxf+mN, xW =(mf+mý�)x (4.5) 

Iw was then calculated using Equation 4.1. Due to symmetry, the MOI values about 

the y (frontal) axes were equal to those about the x (lateral) axes. The ratio of If to 1, 

for these two axes was then used to separate the MOI about the z (longitudinal axis) 

into its fixed and wobbling components. 

Table 4.6. Segmental inertia parameters for the fixed and wobbling components 

inertia parameter upper-arm forearm 

mf (kg) 0.4260 0.2950 

mr (kg) 1.7550 1.2370 

I IIfy (kgm2) 0.0030 0.0020 

IW,, /Iwy (kgm2) 0.0140 0.0080 

If, (kgm2) 0.0005 0.0002 

1. (kgm2) 0.0025 0.0008 

xf /yf (m) 0.1450 0.1480 

xw/yw (m) 0.1210 0.1180 

L (m) 0.2890 0.2960 

r (m) 0.0196 0.0156 
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4.5 GRIP PARAMETERS 

4.5.1 Overview of grip parameters 

Section 3.4.3 describes the model for the hand-racket system which included 

six identical spring-dampers at the hypothenar and the thenar eminences and a 
torsional spring-damper to apply a passive torque about the longitudinal axis of the 

racket handle. These visco-elastic parameters for an individual trial were determined 

by a matching optimisation process which minimised the differences between 

simulation and performance. In Chapter 5 all the parameters for the tennis racket 
frames, stringbeds and ball were determined from independent experimental tests. 

These parameters were then fixed in the model for all matching optimisations. 

4.5.2 Matching optimisation process 

The output variables chosen for comparison were the three displacements of a 

point on the racket frame (in global x, y, z directions) relative to the wrist joint centre 

and the time histories of the three angles between the hand and the racket handle. In 

this way, the six degrees of freedom of the racket relative to the hand are represented. 
Comparisons were made from the time of ball impact and every ms thereafter for 

50 ms. A simulation score SGG (Figure 4.11) was calculated as the average root- 

mean-squared percentage difference between simulation and performance for the 

aforementioned variables. 

simulation score SGRIP 

3 racket point 3 racket angles 
displacements II relative to hand 

penalty score 

Figure 4.11. Summary of the components of the simulation score SG up 

To make comparisons between variables of different units, a1 deg difference 

in racket angle was assumed to be equivalent to a1 cm difference in racket point 
displacement (based on how a1 deg change in an angle at the wrist could affect the 
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position of a point on the racket approximately 60 cm away). Each of the 3 racket 

point and 3 racket angle displacements were given a weighting of 1/6. Although the 

outbound ball velocity was not directly compared in this score function, an additional 

penalty score was used to encourage a solution that would allow the ball to land in or 

near to the target area. For each 1 m/s difference between the simulation velocity and 

the specified limit, 1 penalty point was added to the score. 

4.5.3 Initial conditions for matching optimisations 

The initial displacements and velocities of the three angular degrees of 
freedom of the racket relative to the hand were taken from the Vicon motion analysis 

data. However, unlike Section 4.2.2 where the whole data set was splined, the data 

set was cropped at the frame just before impact to avoid smoothing across the impact. 

Since the Vicon sampling frequency was 250 Hz, the instant of ball contact with the 

stringbed was often between two frames. The instant of ball contact was determined 

by the high-speed video images allowing the associated Vicon frames to be 

determined due to synchronisation of the data sets. The angular displacements and 

velocities at the instant of ball contact were obtained by linear extrapolation of the 

values from Vicon just prior to impact. 

The linear displacements and velocities of the wrist joint centre in global 

coordinates were determined by splining the associated Vicon data that had been 

cropped just prior to ball impact. When compared with the model output, small 

differences were found. in the linear displacements (maximum 3 mm) and velocities 

(0.12 m/s). These differences can be attributed to errors in segment lengths and joint 

angles propagated throughout the system. Small adjustments were made to the linear 

displacements and velocities of the thorax centre to match the model output with the 

raw data at ball impact. Once the model wrist joint was in the correct position and 

had the same linear velocities at ball impact, the racket was positioned within the 

hand to match the global coordinates of a marker on the racket frame of known 

location. Any differences in the linear velocities of the point on the racket frame were 

therefore due to linear velocities of the racket handle relative to the hand which could 

be input to the model. 
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4.5.4 Results of matching optimisations 

The matching process for the 6 trials was achieved by varying the 8 gripping 

parameters until the best match between simulation and performance was found. The 

score SGG was minimised using the Simulated Annealing optimisation algorithm 
(Corana et al., 1987). All SGRIP values shown in Table 4.7 have no penalty score 

associated with them indicating that the direction of the simulation outbound ball 

velocity was agreeable with performance data. 

Table 4.7. Parameters for hand-racket interface from matching optimisations 

Parameter (units) 

Trial number 1 8 

Optimi 

24 

sed value 

31 36 56 

CH (Ns/m) 716500 778400 453000 116500 574000 553500 

CT (Ns/m) 741800 837600 473000 441800 579000 82600 

CTORE (Nms/rad) 9.0 2.3 0.8 16.9 10.8 30.1 

KH (N/m) 65200 61800 101000 65300 74000 115300 

KT (N/m) 64000 11900 94800 64100 76300 60400 

KTORE (Nm/rad) 70.0 26.9 30.0 98.9 99.0 29.1 

RHO (N) 12.6 16.6 18.7 11.0 10.0 13.2 

RTO (N) 14.6 8.9 10.1 10.1 10.0 12.3 

SGG (%) 0.83 0.32 0.47 0.30 0.14 0.29 

where CH = damping coefficient for hypothenar eminence 

CT = damping coefficient for thenar eminence 

CTORE = damping coefficient for torsional spring-damper 

KH = stiffness coefficient for hypothenar eminence 

KT = stiffness coefficient for thenar eminence 

KTORE = stiffness coefficient for torsional spring-damper 
RHO = initial force at hypothenar eminence 

RTO = initial force at thenar eminence 
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Figures 4.12 and 4.13 give examples of performance and simulated racket angular 
displacements relative to the hand and racket point linear displacements respectively 

for a matched trial. The displacements are in global x, y, z directions whilst racket 

angle axes x, y, z correspond to rotations about the longitudinal, transverse and frontal 

axes of the tennis racket. 

0 time (s) 

0.00 0.01 0.02 0.03 0.04 p. 05 

-20 
r, r` rnnnnnNRw 

11 

-40 

" performance X 

-60 -. --simulation X 
  performance Y 

-80 simulation Y 

x performance Z 

-100 -. -- simulation Z 

-120 

-140 
racket angle (deg) 

Figure 4.12. Comparison of simulation and performance racket angles 
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Figure 4.13. Comparison of simulation and performance racket point displacements 
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4.5.5 Sensitivity of grip parameters 

Table 4.8 summarises the trials that were chosen and the variations between 

the trials to enable the research questions to be answered. 

Table 4.8. Summary of the six trials chosen for further analysis 

Trial Racket model String tension (lbs) Impact location Groundstroke 

1 LM Prestige 57 Centre Topspin 

8 LM 8 57 Off centre Topspin 

24 LM 8 57 Centre Topspin 

31 LM Prestige 70 Centre Topspin 

36 LM 8 75 Centre Topspin 

56 LM 8 75 Centre Slice 

In reality the gripping of the tennis racket is due to the contraction of small 

muscles within the forearm and hand. It is not therefore surprising to see some 

differences in the optimised grip parameters between trials. However, given that the 

subject was elite and able to replicate the kinematics of a particular groundstroke 

consistently, groundstrokes that are similar should have grip parameters that are 

transferable between the trials. Visual inspection of Table 4.7 shows that the 

optimised grip parameters are of the same orders of magnitude for each matched trial. 

A sensitivity analysis was performed on similar trials according to Table 4.8 (trials 1 

and 31, trials 24 and 36). For the trials within each similar pair the grip parameters 

were swapped and the score Sow was recorded (Table 4.9). 

Table 4.9. Sensitivity of the grip parameters 

Trial SGiur SGp (grip parameters swapped) 

1 1.93 (parameters from trial 31) 

31 2.52 (parameters from trial 1) 

24 0.97 (parameters from trial 36) 

36 0.82 (parameters from trial 24) 
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When the grip parameters from trials 24 and 36 were swapped, the score SGG 
increased as expected in each case. The magnitude of the increase was 0.50 deg for 

trial 24 and 0.68 deg for trial 36. As a close match was achieved when the parameters 

were swapped, this suggests that the solutions are not `knife-edge solutions' and that 

the model is not very sensitive to perturbations to the gripping parameters. The 

corresponding increases in SGG for trials 1 and 31 are 1.10 and 2.22 deg respectively. 

The SGG scores of 1.93 deg and 2.52 deg are agreeable but in this case it is clear that 

the gripping technique has varied slightly between trials. It is possible that a set of 

robust grip parameters could be found to match for similar trials. However, it would 

appear that due to subtle modifications of gripping technique made by the performer 
during performances, each matching simulation trial will -have a unique set of 

optimised grip parameters. 

4.6 MAXIMUM VOLUNTARY JOINT TORQUE PARAMETERS 

4.6.1 Overview of maximum joint torque parameters 

The angle-driven model of the human in this study allows the net torque at 

each joint to be calculated. The maximum voluntary torque generated by a particular 

movement at a joint can be represented by a 9-parameter surface function, which 

expresses maximum torque as a function of joint angle and angular velocity (King et 

al., 2006; Yeadon et al., 2006). 

4.6.2 Method 

A CYBEX NORMTm isovelocity dynamometer was used to measure maximal 

isometric and isovelocity joint torques. The movements tested were flexion / 

extension and radial / ulnar deviation at the right wrist; flexion / extension and 

proration / supination at the right elbow; flexion / extension, horizontal abduction / 

adduction and internal / external rotation at the right shoulder joint. Examples of the 

positioning of the subject and dynamometer for different joints and movements can be 

seen in Figures 4.14 and 4.15. 
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Figure 4.14. Positioning of subject and dynamometer for wrist flexion 

Figure 4.15. Positioning of subject and dynamometer for shoulder flexion 

An established protocol (King et al., 2006) was used to calculate the 9 

parameters needed to define the theoretical maximum voluntary torque profiles. The 

raw angle and torque data were converted from a voltage to radians and Newton- 

metres respectively, corrected for the combined weight of the limb and the crank arm 

and converted from crank angle / angular velocity / torque data to joint angle / angular 

velocity / torque data. 
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4.6.3 Fitting a 9-parameter function 

From the isovelocity trials, data are only available at certain angular velocities. 
To obtain a relationship between joint torque and joint angular velocity which holds 

for any angular velocity, a 7-parameter function can be fit to the raw data (Kong, 

2005; Wilson, 2003). In the concentric phase, the relationship between torque (T) and 

angular velocity (w) is governed by the classical Hill (1938) hyperbola (Equation 4.6). 

(T+TTXw+w. )=C (4.6) 

where, Tc = 
T°w° 

w 
C=TT((0max+(0. ) 

Similarly, in the eccentric phase, the relationship between torque and angular 

velocity can be expressed as in Equation 4.7. The ratio of slopes between concentric 

and eccentric phase is defined by a constant k. 

(Te-TXCS-w)=-E (4.7) 

_ 
(T� - T. ) CO. wa 

where, ý° = kTo ' (w. + cu° 

E_-cu°(T. -To 

The 7-parameter function allows the maximum voluntary torque to be 

calculated for a range of joint angular velocities. To incorporate angle dependence, 

two additional parameters were needed to define how the torque changes over an 

angle range (King et al., 2006). 

4.6.4 Results 

For each joint movement tested, a 9-parameter function as described above 

was used to fit the experimental data from the isovelocity dynamometer trials. Tables 

4.10 to 4.12 give the optimised 9 parameters for the wrist, elbow and shoulder joints 

respectively. Figure 4.16 is an example of a 3D surface plot of the theoretical 

maximum voluntary torque that the subject can produce for a given joint angle and 

angular velocity during a specified movement. 
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Table 4.10. Optimised parameters for the wrist joint 

Parameter Flexion Extension Radial deviation Ulnar deviation 

T. (Nm) 44.37 23.74 31.47 41.05 

T. (Nm) 62.12 33.23 44.06 57.47 

wmax (rad/s) 32.25 27.00 27.17 27.00 

cu. (rad/s) 16.13 8.10 10.25 8.10 

amin 0.97 0.99 0.81 0.97 

m 0.95 3.00 0.17 3.00 

co 1(rad/s) 0.88 0.74 -0.82 -1.19 

q 0.26 0.27 0.65 0.47 

theopt (rad) 0.68 0.07 0.04 0.06 

Table 4.11. Optimised parameters for the elbow joint 

Parameter Flexion Extension Pronation Supination 

T. (Nm) 81.31 53.15 16.88 23.25 

Tm", (Nm) 113.83 74.41 23.64 30.54 

wmax (rad/s) 29.17 27.03 28.96 33.11 

w,, (rad/s) 10.51 8.11 10.94 15.34 

aj 0.90 0.89 0.71 0.89 

m 0.87 0.07 0.27 0.05 

co, (rad/s) -1.59 -1.20 -0.23 -1.12 

q 0.46 0.48 0.42 0.17 

theopt (rad) 1.33 0.6 1.22 1.50 
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Table 4.12. Optimised parameters for the shoulder joint 

Parameter Flexion Extension Horizontal Horizontal Internal External 

abduction adduction rotation rotation 

To (Nm) 56.29 120.75 67.07 92.31 42.34 33.22 

T, nax (Nm) 78.81 169.04 93.90 129.24 59.27 46.50 

wmax (rad/s) 27.00 32.76 27.00 27.00 28.92 28.92 

we (rad/s) 8.10 13.83 8.10 8.13 9.83 9.83 

amin 0.99 0.91 0.92 0.92 0.92 0.92 

m 3.00 2.47 0.04 0.01 0.84 0.84 

c) I (rad/s) -3.00 1.49 -1.27 -0.62 -0.13 -0.13 

q 0.29 0.14 0.07 0.25 0.34 0.37 

theopt(rad) 0.42 1.09 1.26 2.39 2.20 2.74 

ý' ý. 

0 

angular velocity (degls) 

Figure 4.16. Nine parameter fit to raw data for shoulder horizontal adduction 

84 



4.7 CHAPTER SUMMARY 

This chapter has described the methods that have been used to collect data of 
the subject performing one-handed backhand groundstrokes. This was necessary to 

compare simulation and performance. Subject-specific inertia, wobbling mass and 

gripping parameters were calculated to be used as input to the simulation model. The 

following chapter describes the methods used to determine parameters for the racket 

frame, stringbed and ball models. 
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CHAPTER 5 

EQUIPMENT PARAMETER DETERMINATION 

5.1 CHAPTER OVERVIEW 

Section 3.3.1 describes a model of a tennis racket frame consisting of two 

rigid bodies connected by a frictionless pin joint. Two torsional spring-dampers were 

used to apply passive torques between the two bodies and allow motion in and out of 

the racket plane. A point mass model of the tennis ball and stringbed interaction 

incorporated visco-elastic and friction components to model both normal and oblique 

components of ball movement. The stringbed was represented by nine point masses 

connected using elastic springs. In this chapter the methods used to determine 

equipment-specific parameters for the models of the racket frames, tennis ball and 

stringbeds are presented along with the results. 

5.2 MODAL ANALYSIS 

5.2.1 Overview of modal analysis 

A modal analysis of each tennis racket used during the performance data 

collection was carried out to identify its mode shapes and natural frequencies. To 

achieve this, the tennis rackets were stimulated by an electromagnetic exciter attached 

to the frame via a `sting' (a thin longitudinally stiff wire with little lateral stiffness) 

and force transducer. The response of the racket in terms of force and velocity was 

measured at several locations using a Doppler laser vibrometer. 

5.2.2 Method 

Both racket models at a low and high string tension were analysed. The racket 

frame was excited in a direction normal to the plane of the racket stringbed and also in 

the direction of the plane of the stringbed. Reflective tape was placed at 31 locations 

along the racket fame and handle and at 9 points on the stringbed for the out of plane 

testing. For the in plane modal analysis, 16 reflective markers were used. Before 

each racket was analysed, an industry standard test was performed using a Babolat 

Racket Diagnostic Centre (BRDC) and the values obtained are presented in Table 5.1. 
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Figure 5.1 shows the location of the axes for the BRDC testing about which the 

moment of inertia (MOI) values were calculated and the positions of reflective 

markers for the modal analysis. 

Table 5.1. Industry standard tennis racket parameters 

Racket Property LM Prestige LM Prestige LM 8 LM 8 

(57lbs) (701bs) (571bs) (75lbs) 

Mass (kg) 0.323 0.318 0.266 0.270 

String bed stiffness (%) 66.0 86.0 51.0 68.0 

Frame stiffness (%) 57.0 57.0 61.0 61.0 

MOI about X axis (kgm2 x 10"1) 0.326 0.322 0.331 0.334 

MOI about Y axis (kgm2 x 10"') 0.341 0.337 0.351 0.354 

Balance point from 
0.325 0.331 0.380 0.380 

butt cap (m) 

X XY Y 

AB 

Figure 5.1. Locations of axes for MOI calculations and reflective markers 
for the (A) out of plane and (B) in plane modal analysis 
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A shaker was attached via a sting and a force transducer to the racket frame. 

The sting kept the force transmitted acting in a direction that was either out of or in 

the plane of the stringbed in its resting position. The method of attachment for the out 

of plane testing allowed both the transverse and torsional modes of vibration to be 

excited. The shaker was controlled by a spectrum analyser, which excited the racket 

with a selected frequency range of 0- 1000 Hz. Measurements were taken at the 

selected points on the strings, frame and handle using a Polytec Doppler laser 

vibrometer (Figure 5.2). The velocity of these points was established by measuring 

the Doppler shift between the frequency of the transmitted and reflected light. 

Figure 5.2. Doppler laser vibrometer 

The outputs from the force transducer and the laser vibrometer were input to 

the spectrum analyser (Figure 5.3). 

Force transducer 

Force Reflective 
Shaker transducer tape 

Laser 
vibrometer 

Shaker 
driver Controller 

Conditioning 
amplifier 

Spectrum I 
--- I... - 

Computer 

Figure 5.3. Experimental arrangement for the modal analysis of tennis rackets 
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Fifty trials were averaged to obtain a frequency response function (FRF). The FRF 

was the ratio between the harmonic displacement response and the harmonic force 

response, with both displacement and force being complex numbers. At resonance, 

the real part was zero and the imaginary part was at its maximum. Each FRF was 

acquired using software that performed a Fast Fourier Transform. The FRFs were 

exported in ASCII Universal File format for further analysis. 

5.2.3 Results 

A modal frequency was found by observing where the real component of the 

FRF was zero (Table 5.2). 

Table 5.2. Natural frequencies of tennis racket frames (Hz) 

Mode shape LM Prestige LM Prestige LM 8 LM 8 

(57lbs) (70lbs) (57lbs) (75lbs) 

Out of 
Fundamental 

plane 
132.2 132.2 149.8 149.3 

mode 
In plane 158.4 158.4 178.1 179.1 

Out of 
Second 

plane 
353.4 360.0 358.1 359.4 

mode 
In plane 382.5 383.4 381.6 375.0 

An impact will excite the tennis racket across the full frequency spectrum. 

Over the frequency range of 0- 1000 Hz, a number of different modes were observed. 

Several modes were found in the region of 20 Hz. These were most likely the rigid 

body modes due to the racket swinging on the sting. The high frequency modes 

(600 - 1000 Hz) could be associated with the strings and the third transverse mode of 

the racket frame. Players find it difficult to perceive vibrations above 150 Hz at any 

location other than the fingers (Reynolds et al., 1977). Vibrations above 200 Hz tend 

to be isolated to the area of the hand and fingers in contact with the handle and are 

likely to be attenuated by soft tissue before reaching the arm (Reynolds & Angevine, 

1977). 
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In this study the fundamental modes of the racket frame in and out of the plane 
of the racket were modelled. If significant levels of vibration are generated and 
transmitted to the elbow at these frequencies, an extension of the model in the future 

to approximate the higher frequency response of the racket would be necessary. 
From its real and imaginary components, the amplitude of the FRF at each 

frequency of excitation and the phase difference was calculated. This enabled the 

mode shapes of each tennis racket to be animated using a Macro that was 

programmed in Visual Basic. Since the fundamental modal frequencies for both 

racket models were very similar for the two different string tensions, the mode shapes 

were assumed to be the same in each case. A quadratic equation was fitted through 

the amplitude data so that, with appropriate scaling, the position of the nodes and 

antinodes (Section 3.3.1) could be estimated (Table 5.3). The lengths of the LM 

Prestige and LM 8 rackets tested were 0.686 in and 0.695 m respectively from the butt 

end of the racket handle to the tip of the racket frame. 

Table 5.3. Location of the antinodes for the fundamental modes of 

vibration of the racket frames (from butt end) 

Mode feature LM Prestige LM 8 

Antinode location out of plane (m) 0.349 0.350 

Antinode location in plane (m) 0.366 0.375 

5.3 RACKET INERTIA PARAMETERS 

5.3.1 Overview of racket inertia parameters 

In addition to the location of the antinodes, the moments of inertia (MOIs) of 

each tennis racket about its principal axes through the centre of mass (COM) were 

needed to calculate the torsional stiffness of the racket frame. Since the rigid body 

approximation of the tennis racket consists of two rigid bodies, it was necessary to 

find the principal MOIs about the COM for each. The MOI of each racket about the 

three principal axes (Figure 5.4) was first measured with the strings intact to 

determine their contribution. The same procedures were then applied when the 

strings were removed and then the racket was cut at the average position of the 
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antinodes in and out of the plane of the racket frame. Table 5.3 shows that the 

antinodes for the in and out of plane cases were within 25 mm of each other for both 

racket frames. Assuming that they were in the same location simplified the model 

code considerably. The MOI of the racket segment with the handle was calculated 

and therefore that of the other part of the racket could also be found. Where the 

measurement was not taken through the COM of the racket / racket part, the parallel 

axes theorem was used (Equation 5.1). This meant that at each stage, the location of 

the COM had to be determined. 

I= ICG+md2 

I= the MOI of the racket about an axis 
ICG = the MOI of the racket about a parallel axis through its COM 

m= the mass of the racket 
d= the distance between the parallel axes 

Transverse axis 

Longitudinal axis 

Figure 5.4. The three principle axes through the COM of the tennis racket 

5.3.2 Method 

MOl about longitudinal axis 

(5.1) 

The BRDC (Section 5.2.2) could not be used to calculate the MOI of the 
racket frame about its longitudinal axis. Additionally, the BRDC could not measure 
MOI values for parts of the racket frame directly. An industrial measuring device was 

used to calculate the MOI of the tennis racket about the longitudinal axis. A custom 

made attachment (Figure 5.5) allowed the racket to be securely mounted onto the 
device so that the longitudinal axis was directly above the centre of rotation. 
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Figure 5.5. Measuring the MOI about the longitudinal axis of the tennis racket 

Once an initial measurement had been taken to zero the scale, MOI values could be 

determined by allowing the racket to oscillate and reading the digital scale. A custom 

built calibration device was built consisting of an aluminium stand and discs of 

known MOI. Tests showed that there was no difference between the theoretical and 

measured MOI values to four decimal places throughout a range within which the 

racket parts would lie. Therefore no adjustment was made to the values taken directly 

from the measuring device. 

MOI about the transverse and frontal axes 
Calculating the MOI of the racket about its transverse and frontal axes 

involved using a pendulum method to time the period of oscillation. The period of a 

pendulum (Brody, 1985) is: 

T=2ir 
WI 

mgh 

where T= the period of the pendulum 

m= the mass of the racket and the attachment 
g= acceleration due to gravity 
h= the height of the pivot above the COM of the racket 
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Rearranging: 

mghT 
47r 2 (5.3) 

Equation 5.3 gives the MOI of the racket plus the pendulum attachment. To find the 

MOI of the pendulum attachment to be subtracted, sample objects of known MOI 

similar to that of a tennis racket were tested. The known MOI values were then 

subtracted from the overall MOI values to leave the MOI of the attachment. 

A custom built rig (Figure 5.6) was used to provide a flat, level surface for the 

pendulum to swing. A metal plate had a rectangular slot cut in the centre to accept a 

racket and a shallow groove of semi-circular profile was made. This allowed the 

needle point contacts of the pendulum to move back to the centre of the groove and 

not impart too much friction on the system. To find the period of the racket 

oscillation an oscilloscope was used in conjunction with a laser, light gate and 

receiver. The laser gate was cut twice for each racket oscillation allowing the period 

of oscillation to be determined by observing the difference between every second 

trigger. The light gate was positioned in the middle of the swing plane and the angle 

of the pendulum swing from the vertical did not exceed 15 degrees. 

Figure 5.6. Experimental rig used to calculate the racket frame 

MOI values about the frontal and transverse axes 
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Centre of mass 
A fixed knife edge and a knife edge on a set of electronic scales were used to 

balance the racket and calculate its COM location by taking moments about point o 

(Figure 5.7) and then applying Equation 5.4. 

X 
R 

X2 , xi 
d 

racket 

knife edge 

Egi, 

mg electronic scale 

Figure 5.7. Calculation of the COM of the racket / racket part 

X= X1+X2 

Rd 
xi =- 

mg 

where x= the distance of the COM of the racket / racket part from the butt end 

x1= the distance of the COM of the racket / racket part to the point 0 

x2 = the distance between the butt end and point 0 

d= the distance between the two knife edges 

m= the mass of the racket / racket part 

g= the acceleration due to gravity 

R= reaction force at the knife on the electronic scale 

(5.4) 

Figure 5.8 overleaf shows the scales being supported by a sheet of machined 

aluminium which provided a flat, level surface. The knife edge on top of the scales 

sat on two supports and the two overhangs were butted up against the side of the 

scales. This allowed the apparatus to be accurately positioned but easily removed as 

well. The other fixed knife edge had a hinged datum attached which allowed the 

racket to be correctly positioned. 
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Figure 5.8. The rig, scales and knife edges used to calculate the racket COM 

5.3.3 Results 

The MOIs about the COM of each racket were calculated about the three 

principle axes. Each racket was then cut at the antinode of the fundamental mode of 

vibration and subsequently the MOIs of the separate racket parts were calculated. For 

the purpose of this analysis, racket part E refers to that component of the racket 

containing the handle. The COM of the racket part is measured from the butt end or 

the racket part that would be closest to the butt end of the racket. 

Table 5.4. MOI values for the racket frame about three perpendicular 

axes through the COM for the LM Prestige 

Racket part Mass Distance MOI about MOI about MOI about 

(kg) of COM longitudinal frontal axis transverse 
from butt axis (kgm2) (kgm2) axis (kgm`) 

end (m) 

Whole (strings) 0.30890 0.33007 0.00146 0.01788 0.01606 

Whole (no strings) 0.29400 0.32419 0.00141 0.01722 0.01586 

Part E 0.13350 0.11365 0.00004 0.00173 0.00172 

Part F 0.16050 0.15032 0.00137 0.00465 0.00331 
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Table 5.5. MOI values for the racket frame about three perpendicular 

axes through the COM for the LM 8 

Racket part Mass Distance MOI about MOI about MOI about 
(kg) of COM longitudinal frontal axis transverse 

from butt axis (kgm2) (kgm2) axis (kgm2) 

end (m) 

Whole (strings) 0.25540 0.39014 0.00166 0.01316 0.01252 

Whole (no strings) 0.24050 0.38463 0.00161 0.01284 0.01200 

Part E 0.10690 0.19543 0.00010 0.00203 0.00200 

Part F 0.13360 0.18702 0.00151 0.00392 0.00311 

Tables 5.4 and 5.5 suggest that the strings have a relatively small influence on the 

MOI values for both rackets. For the simulation model where the stringbed was 

represented using nine point masses, their inertia parameters were incorporated within 

racket frame part F. 

Comparison of results from pendulum tests and BRDC 

When comparisons were made with the results from Table 5.1 it could be seen 

that the position of the COM of the whole racket from the butt end was 5 mm less 

when calculated using the BRDC for the LM Prestige and 12 mm less for the LM 8 

racket. Table 5.6 compares the MOI values about the frontal and transverse axes 

through the COM points of both whole rackets calculated by the pendulum oscillation 

technique described and by the BRDC. 

Table 5.6. Comparison of MOI values using the pendulum 

oscillation technique and the BRDC 

Axis through the COM of the LM Prestige (kgm2) LM 8 (kgm2) 

whole racket about which the BRDC Pendulum BRDC Pendulum 
MOI was calculated 

Frontal 0.0173 0.0179 "0.0152 0.0134 

Transverse 0.0158 0.0161 0.0122 0.0125 
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A simple calculation using Equation 5.1 was performed to convert from the axis of 

the BRDC (10 cm from the butt end of the racket) to an axis through the COM of the 

whole racket. Table 5.6 shows the differences in the MOI values derived using the 

two different techniques for the whole rackets. Differences between the two values 

varied from 3.4 to 13.4%. The BRDC could not be used to calculate the MOI values 
for racket parts as well as the whole racket. An error analysis was performed for the 

methods used in this study. 

5.3.4 Error analysis 

Centre of mass 
Since the measurements were repeated and differed slightly, it was necessary 

to look at the uncertainty in such variables. Error propagation was used with the 

approximate percentage error in the final result being calculated by using estimated 

measured values and their known ranges of random error. The constants it and g were 

assumed to have no error associated with them. 

m=0.3±0.0001 kg x2=0.1±0.002m R=0.2 ± 0.0001 kg d=0.4±0.002m 

SRd/m Sd 2+ SR 2+ SmJ 2 
(5.5) 

Rd/m d) Rm 

SRd/m 
= 

/1O. OO2'2 
+ 

0.0001 2+0.0001 2=0.0050 

Rd/m 0.4 0.2 0.3 

Adding the uncertainty of x2: 

SF(Rd) +x2 = 0.00502 +0.0022 = 0.0054 
m 

A final estimated error of 0.54% for the value of the COM obtained using this rig was 
calculated. 
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MOIfrom pendulum tests 

The same method as above was used to estimate the percentage error involved 

in calculating the MOI of the racket segment. 

m=0.3±0.0001 kg h= 0.35 ± 0.002 m T=1.4±0.001 s 

S mhTZ 
__ 

6m 2+ Sh) 2 
+(2( . (5.6) 

mhT2 h 

1=0 10. Z 0.002 2+2 (M. 

4 . 0059 
030001 

+ 35 

Therefore, the error associated with the MOI calculated using the pendulum was 

0.59%. This value is an estimate of the error due to the measurable factors and not 

the error incurred by any friction in the pivot. Additionally, this value was associated 

with the MOI about an axis through the pivot point and therefore there was an 

additional error associated with using the parallel axes theorem (Equation 5.1). 

(2())2 S mh2 
_ 

(Fm 
+ 

Sh 
5.7 2 

mh h () 

ýSmh2 = 
(2: 0001)2+ 2 0.002 2 

=0.011 
mh 0.3 0.35 

) 

This gives a value for the fractional uncertainty of mh2 of 1.1%. Adding the 

uncertainty of the MOI about the pivot point gives: 

8[m11T2 + mh2 
]=0.00592 + 0.0112 (5.8) 

= 0.0125 

The final estimated error of the MOI of the racket about an axis through its COM 

calculated using the pendulum was 1.25%. 
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5.4 FRAME STIFFNESS AND DAMPING PARAMETERS 

5.4.1 Overview of frame stiffness and damping coefficient determination 

Stiffness and damping coefficients for the torsional spring-dampers applying 
passive torques around the frictionless pin joint connecting two racket frame bodies 
(Section 3.3.2) were determined. This enabled the vibration response and the 

associated energy loss of flexible racket frames to be approximated. The coefficients 

were established by matching the vibration response of the actual and simulated 

racket frames in terms of acceleration amplitudes and rates of decay. 

5.4.2 Method 

An experiment was performed whereby the racket frame was freely suspended 
from a rig by fishing wire and then struck by an impact hammer at a point on the 
handle that would be in the middle of the player's grip (away from the node located at 
the top of the handle). A small cross-section of the polyurethane foam handle was cut 

away to enable the racket to be struck and an accelerometer to be mounted opposite 

using beeswax on the metal frame. The direction of the strike was either directly in or 
out of the plane of the racket to excite both mode shapes with higher amplitudes. The 
impact hammer was connected to a charge amplifier to measure the magnitude and 
duration of the impact force. The decay trace was observed using Signal Cale 

software. 
A simulation model of the two-part racket frame vibrating in space was 

created using Autolev with the inertia parameters from Section 5.3.3 as input. The 

stiffness and damping coefficients were perturbed manually and simulations run until 

the best match was found between the acceleration traces collected experimentally 

and those predicted by the simulation model. Values were compared every 1 ms over 

a simulation period of 100 ms. The score function was equal to the root-mean-square 

(RMS) difference between the experimental and model acceleration values. The same 

procedure was applied for both the out of plane and in plane cases. 

5.4.3 Results 

The optimised stiffness and damping coefficients for both racket models are 
displayed in Tables 5.7 and 5.8 along with the RMS score expressed as a percentage 

of maximum experimental acceleration. Figures 5.9 and 5.10 compare the 
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experimental and simulation model acceleration versus time traces for a point on the 

handle of the LM 8 racket frame when it was excited by a force out of plane and in 

plane respectively. 

Table 5.7. Torsional stiffness and damping coefficients (out of plane) 

Racket Torsional stiffness Torsional damping RMS 

model coefficient (Nm/rad) coefficient (Nms/rad) (%) 

LM Prestige 910 0.03 9.8 

LM 8 1075 0.04 8.9 

Table 5.8. Torsional stiffness and damping coefficients (in plane) 

Racket Torsional stiffness 

model coefficient (Nm/rad) 

LM Prestige 1650 

LM 8 1800 
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Figure 5.9. Comparison of experimental and model acceleration (out of plane) 
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Figure 5.10. Comparison of experimental and model acceleration (in plane) 

Figures 5.9 and 5.10 show that the LM 8 racket frame vibrates at a higher 

resonant frequency when excited in the plane of the racket when compared to the out 

of plane case. The same trend was observed for the LM Prestige racket frame 

although the resonant vibration frequencies were lower than the corresponding values 

for the LM 8 for both the in and out of plane cases This was expected from the 

aforementioned modal analysis results as the fundamental modal frequency was 

higher for the out of plane and in plane cases. The results also show that the stiffer 

the torsional spring, the greater the damping coefficient. Brody et al. (2002) stated 

that this may be due to the stiffer frames storing less energy and there being more 

cycles per time period where each cycle dissipates some of the vibration energy. The 

time for amplitude of the oscillations to fall to half its value ranged from 20 to 59 ms. 

This was considerably less than values reported by Brody (1989) of 180 to 750 ms but 

is perhaps not surprising given advancements in racket technology since Brody 

performed his experiments. 

The low RMS scores shown in Tables 5.7 and 5.8 indicate a close match 

between the experimental and simulation model acceleration traces in terms of 

frequency and amplitude which suggests that the stiffness to mass ratio and also the 

damping coefficient are sensible. 
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5.5 BALL-STRINGBED IMPACT PARAMETERS 

5.5.1 Overview of ball model parameter determination 

Section 3.3.3 describes the tennis ball-stringbed impact model. A Matlab 

programme modified from Davies (2005) required the Matlab files from the force 

plate and the two uni-axial accelerometers attached to it (Section 5.5.2). The 

accelerometers were needed to obtain an average correction factor for the movement 

of the top plate during ball impact. Whilst the movement of the plate is small, the 

effect on measured force can be significant (Davies, 2005). The model calculates 
best-fit values for the spring and damping coefficients by using a Taylor's series 

expansion. However, because the equation for the normal component of ball force 

gives a high force at initial contact with the stringbed, an adjustment had to be made 
for use within the simulation model. The force was ramped up from zero to the value 

calculated by Equation 3.3 over an interval of 0.5 ms. This was achieved using a 

quintic function. 

To model the oblique component of the impact between the ball and the point 

on the stringbed further ball cannon testing was needed so that the rebound angle data 

could be used within optimisation routines to calculate the friction coefficients for 

each stringbed. 

5.5.2 Method 

Normal component of ball-stringbed impact model 

To obtain the required force traces, several pieces of equipment were needed. 

A piezoelectric Kistler Type 9067 force plate was attached securely to the rig within 

the impact chamber and positioned such that the ball would impact normally and into 

the centre of the force plate. This was achieved using a digital goniometer and an 

infrared laser respectively. Two uni-axial Briiel and Kjaer charge accelerometers 

were mounted at the rear of the force plate either side using beeswax (Figure 5.11). 
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Figure 5.11. Piezoelectric force plate and uni-axial accelerometers 

Balls were fired at the force plate using a custom built pneumatic ball cannon. 

Air was supplied from the main compressor to a reservoir at 80 PSI which was 

connected to an amplifier allowing pressures up to 160 PSI to be generated. By 

adjusting the air pressure in the reservoir, the velocity at which the ball left the 

horizontal barrel was moderated. Analysis of high-speed video from the performance 

data collection (Section 4.2.2) allowed the relative velocities between the ball and 

tennis racket at impact to be calculated. Successive images of the tennis ball and 

racket frame were digitised using Phantom v5.0 software. The tennis ball (average 

diameter of 67.5 mm) was used as the calibration object for each trial as the ball was 
in a slightly different plane for each trial. The average relative impact velocities 
between the ball and stringbed were found to be 28.90 and 25.95 m/s for the topspin 

drive and slice one-handed backhand groundstrokes respectively. A range of inbound 

ball velocities of between 18 and 33 m/s were therefore used. For each of the six 

target inbound velocities (18,21,24,27,30 and 33 m/s), five impacts were measured 

so that experimental fluctuations were averaged and extremes filtered. Trials were 

accepted if the inbound velocity was within ± 0.5 m/s of the target velocity. 
The ball passed through a set of ballistic light gates to record its velocity. As 

the ball went through the first light gate it partially blocked the light received by the 

sensor causing an electronic counter to be triggered. As the ball passed through the 

second light gate the counter was stopped. The gates remained a fixed distance apart 
allowing the calibrated counter to calculate the ball velocity. The light gates triggered 
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a pulse generator that in turn triggered a high-speed camera which operated at 
10,000 Hz. Simultaneously, a pulse was sent to the HP analyser so that the force plate 

and accelerometer data could be synchronised with the high-speed data. The high- 

speed camera software allowed a series of bitmap images to be saved onto the laptop 

computer so that contact time between ball and force plate could be obtained 

(Figure 5.12). 

Laptop Camera box High-speed 
camera 

Force plat 
Charge 
amplifier 

Pulse generator Fý_ 
Impact D=+: 

=i 
chamber 

Sinai-calc Light gates Laptop 1 1-4 
-1-f- 

meter Ball 
HP analyser 

Dual velocity 

cannon 

Figure 5.12. Equipment set-up to record force traces from tennis ball impacts 

Oblique component of ball-stringbed impact model 

In addition to the normal impacts described in Section 5.5.2, a series of 

oblique impacts were studied. The relative angles and velocities for the topspin and 

slice one-handed backhand groundstrokes were calculated from the high-speed video 

recordings. However, instead of impacting with a force plate, balls were propelled 

from the ball cannon at points on a racket stringbed. Balls were fired at two angles 

and velocities at all nine points on the racket stringbed (Figure- 5.13). 
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Figure 5.14 shows the two average relative angles and linear velocities 

between the ball and stringbed for the topspin drive and slice one-handed backhand 

groundstrokes. 

17.1deg 
-15.6 deg 

30.9 m/s 24.5 m/s 

topspin slice 

Figure 5.14. Ball cannon impact conditions to replicate 

topspin drive and slice groundstrokes 

Sequential post-impact ball images were digitised to calculate the rebound 

angle relative to a line perpendicular to the stringbed plane (Figure 5.15). 

Ir 

An Autoleu programme was written to simulate the impact conditions using the 

stringbed model described in Section 3.3.2. The Fortran code became part of an 

optimisation routine where only the friction coefficients were varied until the best 

match was found between the measured and simulation rebound angles. 
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Figure 5.15. Typical image from Sensicam camera of an oblique impact 



5.5.3 Results 

Normal component of ball-stringbed impact model 

Figure 5.16 shows an experimental force trace along with the force trace 

predicted by the normal component of the ball model. Table 5.9 shows the values of 

the spring stiffness and damping coefficients that achieved the best fit between the 

experimental and model force traces. 

Force (N) 
1800 ý 

0 

Figure 5.16. Typical force traces for a ball impacting normal to a force plate 

Table 5.9. Stiffness and damping coefficients for the normal 

component of the ball model 

Inbound velocity Stiffness coefficient Damping coefficient Contact time 

(m/s) (kN/m) (Ns/m) (ms) 

18.37 43.04 18.61 3.50 

22.88 52.73 24.94 3.30 

24.14 55.08 25.19 3.20 

27.93 60.20 30.54 3.10 

29.07 63.70 31.63 3.00 

32.93 64.99 36.05 2.90 
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For each of the six inbound ball velocities a spring stiffness and damping 

coefficient were determined by optimisation as described in Section 5.5.1. The spring 

stiffness (Figure 5.17) and damping coefficients (Figure 5.18) were plotted against 
inbound ball velocity. The coefficients of determination (R2 values) were close to 1 

indicating strong linear correlations and this allowed values to be determined within 

the experimental range of inbound ball velocities by linear interpolation. 

Stiffness coefficient 
(kN/m) 

80 

60- 

y =1.5491 x+ 16.522 
RZ = 0.9494 

" 40 
15 20 25 30 35 

Inbound ball velocity (m/s) 

Figure 5.17. Model estimates for the spring stiffness against inbound ball velocity 
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Figure 5.18. Model estimates for the spring damping against inbound ball velocity 
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The results from determining the ball spring parameters were consistent with 
the findings of other studies (e. g. Dignall et al., 2000) that tennis ball stiffness and 
damping coefficients show a positive linear relationship with incoming velocity for 

the range of impact velocities tested. 

Oblique component of ball-stringbed impact model 

Table 5.10 shows the experimental rebound angles obtained by digitising high 

speed video images of the ball post impact with a point on the stringbed. The target 

initial ball velocities and racket orientations were those shown in Figure 5.14 and the 

angles were measured relative to a line perpendicular to the plane of the stringbed as 
illustrated in Figure 5.15. 

Table 5.10. Experimental ball rebound angles for oblique ball 

impacts at nine points on a stringbed 

Point 

of 
impact 

Prestige 57 lbs 

Topspin Slice 

(deg) (deg) 

Prestige 70 lbs 

Topspin Slice 

(deg) (deg) 

LM8 57 lbs 

Topspin Slice 

(deg) (deg) 

LM8 75 lbs 

Topspin Slice 

(deg) (deg) 

1 13.0 -11.7 12.7 -11.6 13.9 -11.1 14.2 -11.9 

2 11.5 -10.8 11.3 -10.8 12.6 -10.3 13.6 -10.8 

3 12.9 -11.7 12.6 -11.8 12.8 -11.4 14.3 -12.0 

4 14.5 -11.1 14.2 -11.2 14.2 -10.8 14.6 -11.1 

5 13.1 -10.6 12.7 -10.7 13.0 -10.7 13.9 -10.8 

6 14.1 -11.0 13.8 -11.2 14.3 -10.9 14.7 -11.2 

7 15.1 -10.6 14.8 -10.3 15.7 -9.5 15.8 -10.1 

8 14.0 -9.7 13.7 -9.2 14.3 -9.7 14.6 -9.8 

9 15.0 -10.7 14.7 -10.4 15.8 -9.7 15.9 -10.2 
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Table 5.11 shows the optimised coefficients of friction for each racket 
stringbed. The score refers to the average percentage difference between the 

experimental and simulation model rebound angles. 

Table 5.11. Optimised coefficients of friction for each racket stringbed 

Racket stringbed Coefficients of friction Score Standard 

µi 92 113 (%) deviation 

LM Prestige (571bs) 0.35 0.36 0.37 6.11 0.31 

LM Prestige (70lbs) 0.35 0.36 0.38 6.89 0.45 

LM 8 (571bs) 0.26 0.29 0.32 7.24 0.39 

LM 8 (75lbs) 0.26 0.30 0.35 7.71 0.43 

Each score value is less than 8%, which is encouraging given the level of 

complexity with which the interaction between the ball and a point on the stringbed is 

modelled. Also presented is the average standard deviation of the percentage 
differences between the experimental and model rebound angles for the 18 trials (9 

points of impact, 2 inbound velocities). The average standard deviation values are 
low in each case which indicates that the data is not widely dispersed and that the 

optimised values produce sensible results for each impact condition. 

Digitising errors 
The results for the outbound velocity of the ball and its angle of rebound were 

obtained by digitisation within customised ball tracking software. Errors may have 

occurred when digitising due to a lack of ball sphericity. Having hit the stringbed, the 

balls took a certain amount of time to reform back to their original shape but when the 

software calculated the centre box of the `mapped out' ball, it assumed the ball was 

spherical. Figure 5.14 illustrates that there was some distortion in the images 

obtained. The user could not be certain that the outline of the ball was marked out 

correctly. Selected images were digitised three times to check for fluctuations in 

results. The magnitudes of the differences were calculated and suggested that an error 

of 2% was possible in the results for outbound velocity and rebound angle. 
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5.6 STRINGBED PARAMETERS 

5.6.1 Overview of stringbed parameter determination 

To determine the spring parameters for the model of the stringbed described in 

Section 3.3.2, information regarding the coefficient of restitution (COR) as well as the 

amount of deflection of the stringbed was collected. Once this data had been obtained 
for a range of impact conditions, the spring coefficients could be determined by 

computer optimisation. 

5.6.2 Method 

Ball cannon tests 

To project balls onto the stringbed, the pneumatic ball. cannon was used. The 

ball was projected through ballistic light gates to obtain inbound ball velocity. For 

each of the six target inbound velocities (18,21,24,27,30 and 33 m/s), five impacts 

were measured so that experimental fluctuations were averaged and extremes filtered. 

The light gates triggered a pulse generator that in turn triggered the Sensicam 2000 

flash and camera units to record the post impact conditions (Figure 5.19). The camera 

unit consisted of a high-resolution multiple exposure digital camera which operated at 
250 Hz. Three images of the ball were captured. By placing a calibration chart image 

in the plane of the ball path (10 x 10 cm) and using a customised ball tracking 

software package to digitise these images, an estimate of outbound ball velocity and 

associated ball features such as rebound angle (for oblique impacts) were obtained. 
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Figure 5.19. Equipment set-up to record ball velocity for impacts onto the stringbed 
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The testing was carried out for each of the two types of racket used at both 

string tensions. Since the model incorporated nine points of impact on the stringbed, 

the point of impact was systematically varied. Due to the symmetry of the stringbed, 

only six points of impact were tested for each of the four racket combinations during 

the normal impacts. These impact locations were marked on the stringbed using small 

pieces of reflective tape. An infrared laser, lodged within the cylinder of the ball 

cannon, allowed the point of impact to be determined (Figure 5.20). The rig and 

associated clamps were adjusted accordingly and then tightened to prevent them 

moving significantly during impact. The rig was set in place so that the ball impacted 

normally onto the surface of the stringbed. This was achieved with the aid of a digital 

goniometer. 

Figure 5.20. The impact chamber and Sensicam 2000 set-up 

Experimental controls 
To ensure the consistency of the experimentation and to optimise the accuracy 

of the results, a number of controls were necessary. The Pro Penn Titanium tennis 

balls were taken out of their pressurised tubes 24 hours prior to testing and left to 

acclimatise in the laboratory to minimise the effects of environmental conditions. The 

temperature in the laboratory was noted and found to be consistently around 21 

degrees centigrade. The tennis balls were then placed in a ball clamp device and 
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compressed by approximately an inch in several directions by applying force using 
the lever handle. Further to these controls the ball masses, diameters and deformation 

characteristics were noted prior to ball cannon testing to achieve a level of 

consistency. Ball deformation was read from the scale of a Stevens Machine which 

allowed a known force to be applied to the ball placed between two plates. After each 

stringbed had been tested (approximately 30 impacts), the 3 balls used were discarded 

and an additional 3 balls were used for the next stringbed. 

The BRDC was used to check that stringbed stiffness had not changed within 

an extended testing period. When a certain inbound ball velocity was required, the 

images were only taken forward to digitisation if the inbound velocity was within 0.5 

m/s of the nominal velocity. The stringbed pattern was checked and repositioned if 

necessary to ensure consistent impact conditions. 

Static deflection tests 

Static deflection tests were performed in order to see if the results from the 

dynamic (COR) tests yielded sensible results for the amount of deflection of that point 

on the stringbed normal to the stringbed plane. For each of the four rackets, and for 

each six points of impact a series of five different loads (10.74 to 30.22 kg) were hung 

from each point (Figure 5.21A). Preliminary tests suggested that these loads would 

cover the range of deflection expected during a typical impact of the ball on the 

strings during a typical groundstroke in tennis (Brody et al., 2002). 

The racket frame was secured to a rig using a series of clamps. The circular 

disc used for the stringbed stiffness test on a BRDC was used to hang the loads from. 

This was to simulate how an actual tennis ball would recruit and distribute the force 

throughout the strings at impact. The disc was 50 mm in diameter and it has shown 

using high-speed video data that an area of between 35 and 65 mm on the stringbed 

(depending on the inbound velocity) will be covered by the ball (Goodwill & Haake, 

2000a). The BRDC disc was modified so that it had a flat surface on top. This 

enabled the needle of a Dial Test Indicator (DTI) to touch the surface (Figure 5.21B). 

As the stringbed depressed when more weight was added, the DTI could measure the 

amount of depression normal to the plane of the racket to an accuracy off 0.01 mm. 

112 



A B 

Figure 5.21. Set-up for measuring the static deflection of points on the stringbed 

(A) and the digital gauge used to take the measurements (B) 

Measurements were taken as more weights were added. Readings were also 

taken as the weights were unloaded to check for any hysteresis in the strings. The 

difference in the amount of deflection seen was considered negligible (0 - 0.02 mm) 

and could equally have been attributed to experimental error. 

Optimisations 

Two programmes were generated using Autolev to simulate a ball impacting 

normally onto a point on the stringbed and also a fixed load being hung from a point 

on the stringbed. The dynamic programme then became a subroutine of a separate 

optimisation routine. After establishing sensible starting values and bounds by 

running single simulations, the Simulated Annealing Algorithm (Corana et al., 1987) 

was used to systematically vary the 11 stringbed parameters (STO, KS 1: 4, K5: 10) until 

a best match was found between the experimental results and the simulation output 

(see Section 3.3.3 for an explanation of the stringbed parameters). 

For the range of inbound ball velocities used (approximately 18 to 33 m/s) a 

linear relationship (R2 greater than 0.86) was observed between the inbound ball 

velocity and the COR for each dynamic case. A strong linear relationship (R2 greater 

than 0.99) was also found between the applied load and the amount of deflection 
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perpendicular to the stringbed plane for each static case. Using this information and 
to simplify the optimisation process, the lowest and highest velocities were used in the 

dynamic optimisations and the lowest and highest loads were used in the static 

simulations. This gave 12 simulations to match in each case (2 velocities and 6 points 

of impact on the stringbed). The score function was the average percentage difference 

across the 12 simulations. The scores at each point were also monitored to ensure that 

the overall score was not biased towards any point or points in particular. 

For the higher tension LM Prestige and LM 8 models, optimisations were then 

run whereby parameters KS 1: 4 and K5: 10 remained the same as the optimised values 
for the lower tension racket. The initial tension in the springs, STO, was then varied. 
The intention was to see if changing STO for a particular racket stringbed could then 

accurately model the behaviour of the same stringbed with a higher initial tension. 
Once parameters had been established which yielded a close match to the 

COR values determined experimentally, it was desirable to know if the same 

parameters would yield sensible results in terms of the amount of deflection of the 

point on the stringbed in a direction perpendicular to the stringbed plane. The 

optimised values from the dynamic simulations were input to the static model and a 

single simulation was run. The score function was again the average percentage 
difference across the 12 simulations. A comparison was then made between the 

scores when all 11 parameters had been optimised using the dynamic model and when 

only STO had been optimised in the case of the higher tension rackets. 

5.6.3 Results 

Ball cannon tests 

Figure 5.22 shows how the mean COR varied for different rackets at a certain 

point of impact on the stringbed. A linear function was fitted through the data points 

and the coefficients of determination (R2) values were noted. Based on these results, 

the highest and lowest inbound ball velocities were used in the optimisation process. 

Tables 5.12 to 5.15 show the mean COR results for each racket type at low and high 

string tensions. Each table presents the results for the 6 points of impact at a low and 

high inbound ball velocity. The number in brackets is the standard deviation for the 5 

trials at each data point. 
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Figure 5.22. Variation in mean COR for different rackets over a range of 
inbound ball velocities at point 2 on the stringbed 

Table 5.12. Mean COR for LM Prestige (57 lbs tension) 

Ve1;,, (m/s) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

Low (21.26 to 22.36) 0.84 0.86 0.81 0.80 0.83 0.79 
(0.006) (0.006) (0.004) (0.002) (0.006) (0.004) 

High (30.85 to 33.13) 0.78 0.83 0.81 0.74 0.77 0.75 

(0.004) (0.004) (0.004) (0.002) (0.006) (0.004) 

Table 5.13. Mean COR for LM Prestige (70 lbs tension) 

Vel; n (m/s) Point I Point 2 Point 3 Point 4 Point 5 Point 6 

Low (19.90 to 20.89) 0.80 0.83 0.80 0.77 0.80 0.77 

(0.002) (0.004) (0.006) (0.002) (0.002) (0.004) 

High (30.02 to 33.13) 0.76 0.78 0.76 0.74 0.76 0.73 

(0.004) (0.002) (0.004) (0.002) (0.004) (0.004) 
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Table 5.14. Mean COR for LM8 (57 lbs tension) 

Vel;,, (m/s) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

Low (18.80 to 21.48) 0.85 0.90 0.87 0.83 0.86 0.86 
(0.004) (0.002) (0.004) (0.002) (0.004) (0.004) 

High (30.29 to 32.25) 0.83 0.81 0.83 0.74 0.83 0.78 

(0.006) (0.004) (0.004) (0.002) (0.004) (0.004) 

Table 5.15. Mean COR for LM8 (75 lbs tension) 

Ve1;,, (m/s) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

Low (18.73 to 21.99) 0.81 0.83 0.81 0.77 0.82 0.77 

(0.004) (0.004) (0.004) (0.002) (0.006) (0.004) 

High (31.00 to 32.20) 0.80 0.80 0.81 0.73 0.80 0.73 

(0.006) (0.004) (0.002) (0.002) (0.004) (0.004) 

Static deflection tests 

Figure 5.23 shows the deflection normal to the stringbed plane at the 6 points 

of impact for a particular racket. Tables 5.16 to 5.19 show the deflection at the lowest 

and highest applied loads at each point on the stringbed and for each racket type. The 

number in brackets refers to the difference in deflection recording when the weight 

was loaded and then unloaded. 

Deflection 

8 
(mm) 

7 

6 

5 

4 

, to- 

2 
1 

0 
10 15 20 25 30 

Applied mass (kg) 

ý- Point 1 

t Point 2 

Point 3 
Point 4 

Point 5 

Point 6 

Figure 5.23. Variation in deflection normal to the stringbed at different 

points on the stringbed for the LM Prestige (571bs tension) 
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Table 5.16. Deflection (mm) for LM Prestige (571bs tension) 

Mass (kg) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

10.74 2.16 2.69 2.53 2.35 2.55 2.10 

(0.001) (0.000) (0.001) (0.001) (0.002) (0.001) 
31.22 6.40 7.16 6.65 5.89 6.91 5.65 

(0.000) (0.001) (0.001) (0.001) (0.002) (0.002) 

Table 5.17. Deflection (mm) for LM Prestige (70lbs tension) 

Mass (kg) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

10.74 1.80 2.10 2.00 1.64 1.82 1.59 

(0.001) (0.000) (0.001) (0.001) (0.002) (0.001) 
31.22 6.02 6.21 5.90 4.69 5.60 4.44 

(0.001) (0.000) (0.001) (0.002) (0.002) (0.002) 

Table 5.18. Deflection (mm) for LM8 (571bs tension) 

Mass (kg) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

10.74 2.09 2.93 2.54 1.56 2.72 2.56 

(0.000) (0.000) (0.001) (0.001) (0.002) (0.001) 
31.22 5.87 8.22 6.37 4.38 7.05 5.54 

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

Table 5.19. Deflection (mm) for LM8 (751bs tension) 

Mass (kg) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

10.74 2.24 2.33 2.28 1.87 2.16 1.97 

(0.000) (0.000) (0.001) (0.001) (0.002) (0.001) 
31.22 6.64 6.84 6.57 4.86 5.96 5.16 

(0.000) (0.001) (0.001) (0.001) (0.002) (0.002) 
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Optimisations 

Table 5.20 summarises the results from the optimisations. Initially the values 

when all 11 parameters were optimised for a particular racket and string tension are 

presented. The results for the two rackets with high initial string tension when only 

STO was varied (stiffness values from the lower tension racket) are then shown. 

Table 5.21 shows how well these optimised parameters matched the amount of 

deflection normal to the stringbed plane for an applied load. The score in each case 

was the average percentage difference between the experimental and simulation 

output across the 12 trials. 

Table 5.20. Stringbed parameters optimised from dynamic results 

Parameter 
LM Prestige 

(571bs) 

LM Prestige 

(701bs) 

LM 8 

(571bs) 

LM 8 

(751bs) 

KS 1 (N/m x 105) 1.77 9.44 1.02 0.98 

KS2 (N/m x 105) 2.00 1.38 1.03 1.16 

KS3 (N/m x 10) 5.97 6.82 1.20 4.25 

KS4 (N/m x 105) 7.91 4.30 1.13 7.13 

K5 0.53 0.69 0.44 0.45 

K6 0.77 1.90 0.38 0.34 

K7 1.00 3.03 0.95 0.69 

K8 0.83 0.51 0.32 0.57 

K9 0.74 0.88 0.40 1.03 

K10 1.40 0.43 1.58 1.04 

STO (N) 648.2 821.3 735.8 1067.7 

SCORE (%) 0.84 1.09 2.13 1.19 

standard deviation 0.11 0.13 0.15 1.00 

STO (only STO varied) (%) - 772.9 - 967.7 

SCORE (only STO varied) (%) 1.5 1.4 
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Table 5.21. Score when the parameters from the dynamic 

optimisation are input to the static model 

LM Prestige LM Prestige LM 8 LM 8 
(571bs) (701bs) (571bs) (751bs) 

11 parameters 
6.5 10.7 6.0 9.1 

optimised (%) 

Only STO 
8.0 - 8.7 

optimised (%) 

Table 5.20 shows that the optimisation routine could vary the 11 parameters 

and achieve values resulting in less than an average of 2.2% difference between the 

experimental results and simulation output. The standard deviation of the 12 

simulations for each stringbed is also small indicating that the parameters are not 
biased towards certain impact conditions. When STO only was varied in the case of 
the higher tension rackets, an increase in the score of less than 0.5% was found. 

When single simulations were run using the static model to observe the 

amount of deflection of the point on the stringbed, scores of between 6 and 11 % were 
obtained (Table 5.21). In the case of the higher tension rackets, the score when the 

static model was run with eleven parameters that had been optimised was higher than 

that when only STO had been varied and the stiffness values were the same as for the 
lower tension racket of that type. This strengthens the argument that to model the 

same tennis racket with a different string tension, only STO needs perturbing. 

5.7 CHAPTER SUMMARY 

This chapter describes the methods that have been used to determine the 

parameters for the racket frame, tennis ball and stringbed. Where possible parameters 

have been determined directly from experiments. Alternatively, experimental results 

have been input to optimisation routines to determine parameters by a matching 

optimisation process. In Chapter 6, these parameters have been inputted to the 

computer model of one-handed backhand groundstrokes and simulations have been 

run to determine the effects of perturbing selected parameters. 
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CHAPTER 6 

MODEL EVALUATION AND RESULTS 

6.1 CHAPTER OVERVIEW 

Before the simulation model could be used with confidence, it was necessary 

to show how simulations compared with the subject's performances. This chapter 
describes how the simulation model was evaluated based on differences in the racket 
kinematics, ball-stringbed contact time and outbound ball velocity between 

performances and matching simulations. Comparisons of racket frame acceleration, 

grip force and net torques around the wrist and elbow joints for matched trials are also 

presented. Results from simulations using the model are then shown. Initially, direct 

comparisons were made between matching simulations. A sensitivity analysis was 

then performed as simulation parameters were perturbed for two matched trials. 

6.2 MODEL EVALUATION 

6.2.1 Overview of model evaluation 

In addition to comparing the displacements of the racket handle relative to the 

hand, comparisons of ball-stringbed contact time and outbound ball velocity for the 

performance and matching simulation were made. Whilst not used directly in the 

simulation score since not all trials had the same racket instrumentation, comparisons 

of racket frame accelerations and net torques about perpendicular axes through the 

centre of the racket handle were made for matched trials. The net joint torques around 

the wrist and elbow joints predicted by the simulation model were then compared to 

the theoretical maximum voluntary torques achievable, determined from strength tests 

on the subject. 

6.2.2 Simulation score 

A score function based on the kinematics of the racket relative to the hand was 

developed to optimise the grip parameters for the matching trials (Section 4.5.2). All 

trials resulted in an average root-mean-squared (RMS) percentage difference score 



between simulation and performance of less than 1%. To give an overall score for a 

simulation, the ball-stringbed contact time and the outbound ball velocities were also 

compared. An objective score SMOD (Figure 6.1) was calculated as the average RMS 

percentage difference between a simulation and a performance for the aforementioned 

variables. 

simulation score SMOD 

3 racket point 3 racket angles ball-stringbed outbound ball 
displacements relative to hand contact time velocity 

Figure 6.1. Summary of the components of the simulation score SMOD 

For the displacement of the racket relative to the hand, comparisons were 

made from the time of ball impact and every ms thereafter for 50 ms (Section 4.5.2). 

Since SMOD consisted of variables with different units, a1 deg difference in racket 

angle and a1 cm difference in racket point displacement were assumed to be 

equivalent to a 1% difference in the other variables. Each of the 3 racket point and 3 

racket angle displacements were given a weighting of 1/9 whilst the ball contact time 

and outbound velocity were given weightings of 1/6 each. The combined racket point 

displacements, the combined racket angles and the combined ball-stringbed contact 

time and outbound ball velocity therefore had a weighting of 1/3 each. 

Table 6.1. Simulation results and model evaluation score SMOD 

Trial Resultant ball velocity (m/s) Ball-stringbed contact time (ms) SMOD 

number Performance Simulation Performance Simulation (%) 

1 34.13 33.92 4.2 4.2 0.81 

8 26.26 27.30 3.8 3.7 1.09 

24 30.13 34.13 4.0 4.0 2.62 

31 33.33 33.24 4.0 4.1 0.63 

36 31.55 29.19 4.0 4.0 1.67 

56 27.89 28.16 4.0 4.0 0.66 
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6.2.3 Comparison of racket frame accelerations 

Racket frame accelerations were measured using uni-axial accelerometers 

mounted on an aluminium bracket attached to the racket frame (Section 4.2.2) and 

then compared to the matched simulation output. Racket frame accelerations out of 

the plane of the racket and in the plane of the racket were plotted every 0.5 ms from 

ball impact until 50 ms afterwards (Figure 6.2). Since the measured acceleration was 

from a trial where the ball hit the stringbed close to its geometric centre, the two 

accelerometers measuring out of plane accelerations showed very similar traces and 

therefore only one has been plotted. 

Acceleration (m/s/s) 
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Figure 6.2. Comparison of measured and simulation racket frame accelerations 

Figure 6.2 illustrates that in terms of acceleration amplitude and rate of decay, 

the simulation model compared well with measured acceleration for both the in plane 

and out of plane cases. Overall the comparisons are good with RMS difference 

scores, expressed as a percentage of maximum measured acceleration, of 10.2 and 

12.1% for the in and out of plane cases respectively. The frequencies of oscillation 

matched well initially although at around 15 ms after ball impact, the simulation 

acceleration lagged slightly behind that of the measured acceleration. Whilst the 

selection of appropriate frame stiffness and damping coefficients resulted in good 

agreement between simulation racket frame accelerations and those measured from 
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simple impact hammer tests (Section 5.4.2), it would appear that the inclusion of a 
ball-stringbed system and a hand gripping the handle also influence the model 

acceleration value. This match could have been improved by including non-constant 

visco-elastic parameters for the grip, but this was deemed an unnecessary level of 

complexity for this study. 
The simulation and measured in plane acceleration traces were appreciably 

smaller in amplitude than for the out of plane cases since the ball impacted almost 

perpendicular to the plane of the stringbed. Whilst not present for motion in the plane 

of the racket, high frequency components of racket frame acceleration out of the plane 

of the racket were predicted by the simulation model in the order of 600 Hz. These 

were due to the vibration of the stringbed, represented in this study by 9 point masses 

connected by elastic springs. The inclusion of a damping term in the spring equations 

could damp out this vibration and give a closer match. A sensitivity analysis was 

performed to observe the effect of omitting a stringbed damping term on the variables 

used as a measure of loading in the arm (Section 6.4.9). 

6.2.4 Comparison of Tekscan data with model grip forces . 

Two Tekscan sensors, sampling at 250 Hz allowed full grip pressure to be 

monitored during trials where the rackets were instrumented accordingly (Section 

4.2.3). Whilst clearly indicating when and where `hot spots' in grip pressure were 

occurring, the data were also used to estimate the net effect of all grip forces being 

applied to the racket handle. The average force applied to a pressure sensor cell was 

calculated by multiplying the average pressure recorded by the Tekscan sensor by the 

area of the cell (0.25 square inches). The moments of force about axes x and y 

through the centre of the grip (Figure 6.3B) were then calculated by multiplying the 

corresponding resultant forces by the distance (d) to the centre of the grip for each 

cross-section (Figure 6.3A). The net torques Tx and T about the x and y axes 

respectively were equal to the sum of the individual moments. The net torques about 

the z axis (Tz) measured from performances were due to the couple of the forces from 

opposite flats of the handle where the lines of action of the forces did not always pass 

through the centre of the octagon since flats were of different lengths. 
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Figure 6.3. A cross-section through the octagonal racket handle (A) and the 

resultant forces and net torques for the simulation grip model (B) 

A comparison of the net torques calculated from Tekscan data and those 

predicted by the simulation model was performed for a matched trial (Figure 6.4). 

Net torques were calculated from ball impact and every 4 ms until 50 ms afterwards 

about three mutually perpendicular axes through the centre of the racket handle, half 

way between the hypothenar and thenar eminences of the hand. 
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Figure 6.4. A comparison of the net torques about the centre of the handle from 

Tekscan data and the simulation model for a matched trial 

Figure 6.4 suggests that in terms of the net torques about axes through the 

centre of the racket handle, the simulation model produces magnitudes comparable to 

those calculated from experimental Tekscan data. Limitations of using the Tekscan 

system in this study were the low sampling frequency of 250 Hz and the inability to 

" 
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measure friction forces in the plane of the racket handle. These factors may have 

accounted for some of the discrepancy between the matching simulation and Tekscan 

data shown in Figure 6.4. The Tekscan data have indicated that the forces applied to 

the racket handle via the spring-damper systems at the hypothenar and thenar 

eminences of the hand, produce realistic net torques about axes through the centre of 

the racket handle. Further study may focus on the use of single-cell force sensors to 

enable more detailed comparisons of actual and simulated grip forces during one- 

handed backhand groundstrokes. 

6.2.5 Comparison of joint torques 

For the movements of most interest at the wrist and elbow joints, the net joint 

torques calculated for a matching simulation were compared with the theoretical 

maximum voluntary torques for a particular joint movement, determined from 

strength tests on the subject (Section 4.6.2). Initial ball impact is at time zero. 
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Figure 6.5. Simulation net joint torques and maximum theoretical voluntary joint 

torques for elbow pronation-supination (A) and flexion-extension (B) 
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Figure 6.6. Simulation net joint torques and maximum theoretical voluntary joint 

torques for wrist radial-ulnar deviation (A) and flexion-extension (B) 
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For each of the movements presented, net joint torque ramps up to its 

maximum value approximately 7 ms after ball impact and then decreases in a similar 
fashion from this point. This suggests that the muscles are working almost maximally 
for a short period of time to maintain control of the racket after ball impact. Running 

a simulation from 10 ms before impact to the point of ball impact confirmed that net 
joint torques were low just prior to ball impact and were not artefacts of initialisation 

of the simulation model. With the exception of small maximum voluntary joint 

torque violations for elbow supination (Figure 6.5A) and wrist extension (Figure 

6.6B), the net joint torques predicted by the model would appear to be well within the 

capabilities of the subject. The likely explanation for the violations is that the subject 

was not sufficiently familiarised with the isovelocity dynamometer and therefore 

unable to produce maximum torques, especially for high velocity trials (Kong, 2005). 

Additionally, the effect of the muscle-tendon complex and errors in the angular 

acceleration values obtained from the motion analysis may also have influenced the 

peak torque estimates from the model. 
The maximum voluntary joint torque limits established here can be used to 

check that the net joint torques predicted by the simulation model when the technique 

is perturbed are not unrealistic and within the strength capabilities of the performer 

(e. g. Hiley & Yeadon, 2005). 

6.2.6 Summary of model evaluation 

Six one-handed backhand trials have been matched using the simulation 

model. Excellent agreement has been found between performance and simulations in 

terms of racket kinematics, ball-stringbed contact time and outbound ball velocity. 

For a typical trial, simulated racket frame acceleration and grip force agree well with 

the data collected experimentally during performance and suggest that the input to the 

hand-arm system is realistic. The net joint torques predicted by the model also appear 

agreeable given the data from strength tests performed on the subject. These findings 

give more confidence in the results of the simulation model which has been shown to 

replicate one-handed tennis backhand groundstrokes well. 
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6.3 SIMULATION RESULTS 

6.3.1 Overview of simulation results 

Six trials from the performance data collection (Section 4.2.6) were selected 

for further analysis (Table 6.2). 

Table 6.2. Summary of the six trials chosen for fu tther analysis 

Trial Racket model String tension (lbs) Ball impact location Groundstroke 

1 LM Prestige 57 Centre Topspin 

8 LM 8 57 Off centre Topspin 

24 LM 8 57 Centre Topspin 

31 LM Prestige 70 Centre Topspin 

36 LM 8 75 Centre Topspin 

56 LM 8 75 Centre Slice 

Trials 8 and 24 were used to compare the effect of ball impact location. Trials 

1 and 36 were used to compare the effect of using either the LM Prestige `tour' racket 

or the LM 8 `recreational' racket with contrasting frame stiffness, damping, inertia 

and geometric frame properties. For trials 1 and 36, the initial stringbed tensions of 

each racket resulted in comparable stringbed stiffness values (Section 5.2.2) allowing 

a direct comparison of the contrasting racket frame parameters to be performed. 

Trials 36 and 56 were used to compare the effect of performing a slice as oppose to 

topspin drive one-handed backhand groundstroke. Trials 1 and 31 were used to 

examine the effect of the initial stringbed tension on loading at the elbow. 

For the six matched trials used in this analysis the relative ball-racket linear 

velocities and the racket angles relative to global x, y and z axes were calculated 

(Table 6.3). Due to the consistent kinematics of the subject and inbound ball velocity 

from the ball cannon, the pairs of trials used for direct comparisons had similar impact 

conditions. This meant that comparisons could be made between certain trials 

without the results being greatly influenced by the initial impact conditions. 
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Table 6.3. Comparison of global relative ball-racket linear 

velocities and racket angles at impact 

Trial 
number 

Linear relative ball-racket velocities (m/s) 

xyz 

Racket angles (deg) 

xy 

1 -0.15 32.16 2.03 -199.5 0.2 -101.4 
8 -2.32 30.45 3.90 -187.1 -24.9 -100.2 

24 -1.69 31.27 5.15 -201.0 -1.1 -99.0 
31 -2.65 32.67 3.74 -213.3 -2.3 -95.3 
36 -0.52 30.96 3.21 -202.7 -9.4 -89.8 
56 4.07 28.63 -9.11 -188.0 -15.5 -91.1 

6.3.2 Loading at the elbow 

The loading at the elbow joint is a combination of the internal forces and 

torques due to the muscles generating the joint motion and external forces and torques 

applied to the system through the ground and tennis racket (Elliott, 2006). Whilst the 

model developed cannot predict the loading within the muscle tendons where micro- 

tears may occur, the net joint torques, internal joint forces and forces within the 

wobbling mass springs can be used as representative measures. For the following trial 

comparisons, maximum flexion-extension (MFET) and maximum pronation- 

supination (MPST) net torques, maximum resultant internal joint forces (MIJF) and 

maximum force in the forearm wobbling mass spring-damper (MWMF) at the elbow 

were noted. Each variable was calculated every 0.5 ms from ball impact until 50 ms 

afterwards. Figure 6.7 shows Matlab stick figures for a typical one-handed topspin 

drive backhand groundstroke, looking from directly above the performer. 

" 

ball impact ball impact + 25 ms ball impact + 50 ms 

Figure 6.7. Matlab stick figure representations of a typical one-handed topspin drive 

backhand groundstroke from ball impact until 50 ms afterwards 
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6.3.3 Impact location: trial 8 versus trial 24 

The loading at the elbow joint for trials 8 (off-centre) and 24 (centre) was 

collated by running single simulations using the model (Table 6.4). 

Table 6.4. A comparison of peak loading at the elbow for trials 8 and 24 

Trial MFET (Nm) MPST (Nm) MIJF (N) MWMF (N) 

8 (off-centre) -80.2 -39.0 212.6 -88.9 

24 (centre) -74.1 -35.8 180.0 -75.4 

For each variable used to represent elbow loading as described in Section 6.3.2, the 

values were higher for trial 8 where the ball impacted away from the geometric 

stringbed centre (GSC). The greatest increases in loading were observed in MIJF and 

MWMF as both increased by 18%. The difference in the wrist joint flexion-extension 

angles was commented on in Section 4.2.2 with the wrist being forced approximately 

8 deg more into flexion after ball impact for trial 8. In terms of the model kinetics, 

perhaps the most noticeable difference between the trials was the magnitude and 

timing of the peak grip forces. Figure 6.8 shows the net forces due to the spring- 

damper systems at the hypothenar and thenar eminences of the hand in a direction 

approximately equal to that of the inbound ball at impact with the stringbed. 
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Figure 6.8. A comparison of net grip forces due to the spring-damper systems 

at the hypothenar and thenar eminences for trials 8 and 24 
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The peaks in the grip force components are clearly of greater magnitude and 

occur sooner after ball impact for trial 8. For both trials, the forces in opposite spring- 
dampers at the thenar and hypothenar eminences of the hand were almost equal and 

opposite due to the rotation of the racket handle about the centre of the hand. 

6.3.4 Racket frame: trial 1 versus trial 36 

Table 6.5 summarises some of the model racket frame parameters for the LM 

Prestige (trial 1) and LM 8 (trial 36) racket frames that were determined 

experimentally. L is the distance of the centre of mass of the racket from the butt end, 

M is the mass of the racket whilst Iio�g, Iftont and It,.. refer to. the moments of inertia 

about the frontal, transverse and longitudinal axes respectively through the centre of 

mass of each racket. The parameters k and c are the stiffness and damping 

coefficients for the torsional spring-dampers in and out of the plane of the racket. 

Whilst making a direct comparison between trials 1 and 36 (Table 6.6), differences 

can only be attributed to the combined effects of the interrelated racket frame 

parameters. 

Table 6.5. Parameters for racket frames used in trials 1 and 36 

Parameter Trial 1 Trial 36 

L (m) 0.333 0.392 

M (kg) 0.294 0.241 

1VIL2 (kgm2) 0.033 0.037 

Ilong (kgm) 0.00141 0.00161 

If, o�t (kgm) 0.01722 0.01284 

Iaa, g (kgm) 0.01586 0.01200 

ko, t (Nm/rad) 910 1075 

km (Nm/rad) 1650 1800 

co�t (Nms/rad) 0.03 0.04 

c; ý, (Nms/rad) 0.09 0.10 
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Table 6.6. A comparison of peak loading at the elbow for trials 1 and 36 

Trial MFET (Nm) MPST (Nm) MIJF (N) MWMF (N) 

1 (tour) -71.1 -40.6 173.0 -80.9 

36 (recreational) -75.2 -44.9 186.4 -77.8 

MFET for trial 1 is 4.1 Nm lower in magnitude than the corresponding value 
for trial 36. It has been proposed that there is a positive linear relationship between 

MFET and the difference in moments of inertia (ML2) between values about axes 

through the centre of mass and the grip (Nesbit et al., 2006). Since ML2 is slightly 

higher for trial 36, the results of this comparison would appear to support this 

hypothesis. MPST is 4.3 Nm greater for trial 1 than the corresponding value for trial 

36. The longitudinal axes of the racket and forearm are almost in line with each other 

just after ball impact when peak pronation-supination torques are predicted to occur. 

Ilo�g may therefore have the greatest influence on resisting the motion of the racket 

generated by the pronator-supinator muscle groups. A higher value for Iio�g for trial 

36 adds support to this argument. MIJF was 13.4 N greater although MWMF was 

3.1 N less in magnitude respectively for trial 36 compared to trial 1. A sensitivity 

analysis may shed more light on the relative effects of the racket frame parameters 

(Section 6.4.3). 

6.3.5 Technique: trial 36 versus trial 56 

Trial 36 was a topspin one-handed backhand drive groundstroke whilst trial 56 

was a slice one-handed backhand drive groundstroke. Shoulder, elbow and wrist joint 

angles are given in Appendix 3. Wrist and elbow joint angle time histories would 

appear to be similar between trials. However, the shoulder joint angle-time histories 

and the shoulder flexion-extension angles in particular, showed distinct differences. 

The loading at the elbow was compared for the two trials (Table 6.7). 

Table 6.7. A comparison of peak loading at the elbow for trials 36 and 56 

Trial MFET (Nm) MPST (Nm) MUF (N) MWMF (N) 

36 (topspin) -75.2 -44.9 186.4 -77.8 

56 (slice) -78.2 -42.2 188.9 -70.3 
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Simulation results suggest that performing a slice as opposed to a topspin 

drive groundstroke gives no notable change in the elbow loading. Whilst for trial 56 

small increases in the magnitudes of MFET and MIJF were seen, MPST and MWMF 

were smaller in magnitude than for trial 36. Since the wrist and elbow joint angle- 

time histories are similar for both trials, this would suggest that they are more 

important than movements at the shoulder in terms of the loading observed at the 

elbow. Whilst speculative at this point in time, further research may be able to 

advance knowledge on the effect of player technique on elbow loading. 

6.3.6 Initial stringbed tension: trial 1 versus trial 31 

The net torques about the elbow were not notably different for trials 1 and 31 

(Table 6.8). Trial 1, where the racket was strung at initial (low) tension of 57 lbs, 

resulted in a smaller MFET value but a larger MPST when compared to trial 31 where 

the racket was strung at a (high) tension of 70 lbs. Predicted MIJF and MWMF were 

5.0 and 7.4 N higher respectively for trial 31, possibly due to the higher predicted 

force between the ball and point on the stringbed when in contact (Figure 6.9). 

Table 6.8. A comparison of peak loading at the elbow for trials 1 and 31 

Trial MFET (Nm) MPST (Nm) MIJF (N) MWMF (N) 

I (low tension) -71.1 -40.6 173.0 -80.9 

31 (high tension) -81.6 -34.8 178.0 -98.3 

Force (N) 

1000 -trial 1 (low tension) 

-trial 31 (high tension) 

500 

0-' 
0 0.001 0.002 0.003 0.004 0.005 

Time (s) 

Figure 6.9. Ball-stringbed contact forces for rackets 

with low and high initial string tensions 
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The ball-stringbed force-time histories were similar in appearance although 

the peak force for trial 31 was greater and occurred just earlier. In addition, the time 

of contact of the ball on the stringbed was predicted to be lower. Estimates of the 

total impulse for ball-stringbed contact time suggested a slightly higher value for trial 

31 of 1.96 Ns as opposed to 1.92 Ns for trial 1. 

When considering the effect of the stringbed properties on loading at the 

elbow, the dynamic stiffness of the strings must be taken into account along with the 

initial string tension as the two combined determine stringbed stiffness. This will be 

investigated, as part of a sensitivity analysis. 

6.4 SENSITIVITY ANALYSIS 

6.4.1 Overview of sensitivity analysis 

Whilst direct comparisons have been made between the simulation output of 

the six matched trials, small variations in the kinematics of the arm and ball-racket 

relative velocity may account for some of the differences in elbow loading. To 

address this issue and investigate any uncertainty in other input parameters, a 

sensitivity analysis was performed on individual matched simulations as model output 

could then be attributed to the perturbation of a single parameter. 

6.4.2 Ball impact location 

Ball impact location was perturbed from the geometric stringbed centre (GSC) 

to three additional points of impact on the stringbed (Figure 6.10). Trial 36, for which 

the ball struck the stringbed at the GSC, was used since observations could then be 

made on how the elbow loading changed for off-centre impacts. 
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The effect of varying the impact location from the GSC at point 1 to points 2, 

3 and 4 on peak loading at the elbow was recorded (Table 6.9). Small adjustments 

were made to the initial relative linear velocity between the ball and point on the 

stringbed for each simulation perturbation to account for varying points on the 

stringbed having slightly different linear velocities. 

Table 6.9. The effect of ball impact location on peak loading at the elbow 

Point of ball impact on 
the stringbed 

MFET 
(Nm) 

MPST 
(Nm) 

MIJF 
(N) 

MWMF 
(N) 

1 -75.2 -44.9 186.4 -77.8 

2 -89.6 -45.4 207.0 -77.8 

3 -85.2 -54.7 203.0 -77.8 

4 -77.4 -53.9 199.0 -77.8 

The most striking observation from Table 6.9 was that MWMF did not change 

as the ball impact location varied. This finding was investigated further in Section 

6.4.7. In line with previous observations when trials 8 and 24 were compared, a 

simulated ball impact at point 3 yielded higher values in MFET, MPST and MIJF 

when compared with an impact at point 1. MPST were higher for impacts displaced 

from the longitudinal axis of the racket as the arm was forced to resist the recoil of the 

racket about this axis. The highest absolute value for MFET of -94.6 N was for point 

2 on the longitudinal axis of the racket nearer to its tip. An impact at point 3, further 

from the butt end of the racket, also increased MFET. 

The results presented in this section indicate that the location of ball impact 

influences the loading at the elbow. Loading has been found to be higher for ball 

impacts away from the GSC. The following sections will therefore investigate the 

effects of parameter perturbations for trial 8 where the location of ball impact was off- 

centre (point 3 on Figure 6.10). 

6.4.3 Racket frame stiffness and damping 

The racket frame stiffness and damping coefficients were perturbed 

independently of each other. The effects of twofold increases in each variable on 
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loading at the elbow, for the torsional spring-dampers in and out of the racket plane, 

were observed for each simulation perturbation (Table 6.10). Simulation results 

suggest that the damping of the racket frame had a small effect on peak loading at the 

elbow in terms of forces and net torques when compared to changing the ball impact 

location. The visco-elastic properties of the torsional spring-damper allowing 

movement out of the plane of the racket, had more effect on the loading at the elbow 

than the in plane parameters. This would appear sensible given the lower frequency 

and higher amplitude of vibration for the fundamental mode shape out of the plane of 

the racket, measured experimentally and also predicted by the model (Section 6.2.3). 

Table 6.10. The effect of racket frame stiffness and damping on peak loading at the elbow 

Point of ball impact on MFET MPST MIJF 

the stringbed (Nm) (Nm) (N) 

No perturbation -80.2 -39.0 212.6 

In plane frame stiffness x2 -81.1 -38.8 215.0 

Out of plane frame stiffness x2 -85.3 -36.8 227.5 

In plane frame damping x2 -78.8 -38.9 212.6 

Out of plane frame damping x2 -79.4 -39.1 190.6 

The most noticeable change in the initial peak loading at the elbow was a 7% 

increase in MIJF for a twofold increase in the out of plane racket frame stiffness. As 

well as observing the peak loading values, the time histories for loading variables 

were also examined since cyclic loading has been suggested as a possible mechanism 

for injury to the elbow (Knudson, 2004). 

The resultant internal joint reaction force at the elbow was plotted from ball 

impact and every 0.5 ms thereafter for 50 ms. When no racket was present the 

resultant internal joint force-time history at the elbow lay below the corresponding 

trace when the ball-racket system was present. The greatest difference between the 

two traces occurred in the first 15 ms. This corresponds with previously presented 

racket frame acceleration, net joint torque, grip force and U all-stringbed force data 

which have all peaked in this period after the ball has impacted the stringbed. 
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Figure 6.11. Comparison of resultant internal elbow joint force for trial 8 for the 

matched simulation and a simulation where no racket is present 

Figure 6.11 shows that there was no frequency component of around 178 Hz 

(the frequency of the fundamental mode of vibration out of the plane of the racket 

from Section 5.2.3) on the internal joint force-time histories which suggests that the 

racket frame vibration is significantly damped out by the hand after the initial peak, 

before reaching the elbow. Figure 6.12 shows the resultant internal joint force at the 

wrist for the matched simulation of trial 8 and also when there was no racket frame 

damping in the system. 

Force (N) 

250 -matched simulation 

- no racket damping 
200 

150 

100 

50 

0 Time (s) 

0.00 0.01 0.02 0.03 0.04 0.05 

Figure 6.12. Comparison of resultant internal wrist joint force for trial 8 for the 

matched simulation and a simulation with no racket damping 
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When compared to Figure 6.11 showing the resultant internal elbow joint 

force, the peak and the corresponding values for an instant in time are lower in 

Figure 6.12. This is due to the smaller effective mass at the wrist joint. There is more 

oscillation of the internal joint force at the wrist for the first 10 ms which has been 

attenuated slightly at the elbow. Figure 6.12 illustrates that with no racket damping, 

the change in the internal joint force at the wrist was negligible. This would suggest 

that the damping in the hand negates most of the vibration of the racket frame before 

it reaches the elbow. 

6.4.4 Racket frame moments of inertia 

The peak loading at the elbow was investigated when the inertia parameters 

for the racket frame were swapped from the `recreational' LM 8 to the `tour' LM 

Prestige model. The inertia parameters have been summarised in Table 6.5 

(Section 6.3.4). Essentially, the LM 8 was a lighter, longer racket of wide-body 

construction with a greater moment of inertia about the longitudinal axis but a smaller 

moment of inertia about the frontal and transverse axes when compared to the LM 

Prestige. The results are summarised in Table 6.11. 

Table 6.11. The effect of racket frame inertia parameters on peak loading at the elbow 

Racket frame MFET (Nm) MPST (Nm) MUF (N) 

LM 8 (recreational) -80.2 -39.0 212.6 

LM Prestige (tour) -78.4 -39.5 224.5 

An increase of 11.9 N in MIJF was observed when the inertia parameters for 

the `tour' racket were input to the model. However, changing the inertia parameters 

of the racket frame from those of a `recreational' racket to a `tour' racket appeared to 

have a small effect on the net torques around the elbow joint. A decrease in the 

magnitude of MFET of 1.8 Nm and an increase in the magnitude of MPST of 0.5 Nm 

were observed. It is possible that an increase in the net torque around the joint, 

needed to move the racket about an axis where the moment of inertia is higher, is 

balanced by the extra cushioning the racket provides in resisting the recoil due to ball 

impact. However, it would appear that the differences in the inertia properties of the 
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two rackets used were not sufficient to observe a positive effect on reducing elbow 
loading for either racket frame. When a simulation was run with a twofold increase in 

the moment of inertia of the racket about the longitudinal axis, a6 Nm reduction in 

MPST occurred. It is possible that perturbing the inertia parameters of the racket can 
influence the loading at the elbow. Further research may be able to optimise racket 
design to reduce the potential for injury. However, the design of the racket would 

also have to account for performance outcomes and governing body regulations. 

6.4.5 Stringbed stiffness 

The initial string tension for trial 8 was 57 lbs corresponding to a value for 

STO of 735.8 N in the model (Section 3.3.3). Three simulations were run where the 

value of STO was increased in increments of 77.3 N with the fourth and highest value 
for STO being equal to the initial stringbed tension for the racket strung at 75 lbs. The 

effects of varying STO on the variables used as indicators of elbow loading as well as 

the resultant outbound ball velocity and the time of contact of the ball on the stringbed 

were noted (Table 6.12). 

Table 6.12. The effect of STO on the outbound ball velocity, time of contact 

with the stringbed and the peak loading at the elbow 

STO 

(N) 

Outbound ball 

velocity (m/s) 

Ball-stringbed contact 
time (ms) 

MFET 

(Nm) 

MPST 

(Nm) 

MIJF 

(N) 

735.8 27.30 3.8 -80.2 -39.0 212.6 

813.1 27.28 3.7 -80.9 -39.9 221.5 

890.4 27.22 3.6 -81.9 -40.1 229.1 

967.7 27.21 3.5 -83.2 -41.9 232.4 

The predicted effect of a change in the initial string tension of the racket on 

the ball-stringbed contact time would appear comparable to the results of previous 

research (e. g. Brody, 1988). Whilst increasing the string tension resulted in an 

decrease in outbound ball velocity, the change is only small, bringing the simulation 

results in line with the experimental findings of Elliott (1982) and Goodwill and 
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Haake (2004). An increase in MFET, MPST and MIJF was seen for each incremental 

increase in STO. The largest increase between the two extremes of 9% was in MIJF. 

In reality, stringbed stiffness is determined by the dynamic stiffness of the 

springs as well as the initial string tension. Each spring stiffness in the model was 
increased by 10% to examine the effect on the loading at the elbow. Small increases 

were observed in MFET, MPST and MIJF. An increase in the dynamic string 

stiffness of approximately 70% was needed to see a comparable increase in loading 

variables as for a 32% increase in initial string tension. 

6.4.7 Wobbling mass parameters 

The results from this sensitivity analysis suggest that MWMF is insensitive to 

other parameter changes. The visco-elastic parameters of the non-linear spring- 
dampers used to attach the wobbling mass segments to the rigid bone segments were 

perturbed by f 10% to observe the effect on the net torques and resultant internal joint 

forces at the elbow joint. For a 10% increase, the maximum displacement of the 

wobbling mass from the rigid component decreased by 2% with less than a1% 

increase in the peak force in the spring-damper. There was no observable effect for 

either a decrease or increase in the visco-elastic parameters on the net torques around 

the elbow joint or in the magnitude of the resultant internal forces at the elbow joint. 

The loading at the elbow joint was relatively insensitive to the wobbling mass visco- 

elastic parameters when the kinematics used to drive the simulation were unchanged. 

Hence, the kinematics of the arm would appear to be the overriding factor governing 

the interaction between the rigid and wobbling components of the arm. 

6.4.8 Generating initial racket acceleration 

The equation for the forces acting between a point on the racket handle and the 

hypothenar / thenar eminences (F) incorporated an initial force term (Ro) which was 

ramped down over a 10 ms time period using a quintic function (Equation 6.1). 

F= -k(L- Lo+ (F0/k)) - cL(L- Lo) + Ro (6.1) 

The purpose of these additional terms was to generate the correct linear and angular 

accelerations of the racket handle for the instant of ball impact with the stringbed at 

the start of the simulation. A sensitivity analysis was needed to ensure that the grip 
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forces were predominantly due to the visco-elastic parameters of the spring-dampers 

and not too sensitive to the ramping down time of the additional grip force terms. The 

maximum and average resultant net force in the spring-dampers at the thenar and 
hypothenar eminences of the hand were compared for simulations from ball impact 

until 50 ms afterwards. A simulation with no additional force terms and two further 

simulations where the additional force terms were ramped down to zero in 10 and 
20 ms respectively were run (Table 6.13). 

Table 6.13. The effect of additional force terms on the maximum and average 

resultant net forces at the hypothenar and thenar eminences of the hand 

Hypothenar eminence Thenar eminence 
Simulation 

Max (N) Average (N) Max (N) Average (N) 

No additional force term 1022.4 232.8 907.3 223.1 

Ramp time = 10 ms 968.5 232.1 868.0 221.2 

Ramp time = 20 ms 974.6 235.2 868.0 223.2 

The additional force terms reduced the maximum resultant net forces due to 

the spring-dampers at the hypothenar and thenar eminences by approximately 5%. 

Whilst indicating that modelling the non-zero linear and angular accelerations of the 

racket at ball impact influences the net grip forces, the additional forces needed to 

achieve this are small compared to the forces in the spring-dampers. As a 

consequence, increasing the ramp-down time for the additional force terms from 10 to 

20 ms resulted in small increases in the maximum and average resultant net forces due 

to the spring-dampers. A selected ramp-down time of 10 ms would not appear to 

have a large effect on the net grip forces and therefore the input to the hand-arm 

system. In future, a more elegant way of generating the initial accelerations of the 

racket could be achieved by calculating the required offsets between the hand and 

racket to generate initial forces within the spring-dampers. However, for the purpose 

of this study, such a level of complexity has been shown unnecessary. 
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6.4.9 Stringbed damping 

To observe its effect on the loading at the elbow joint, a damping term was 
included in the equations for the springs connecting the point masses representing the 

stringbed, so that the energy returned to the ball was 95% of the value when no 
damping was present (Brody, 1995). The damping term was ramped up from zero to 

this calculated value over a period of 8 ms (approximately double ball-stringbed 

contact time) so that the interaction of the ball with the stringbed was still governed 

predominantly by the stiffness of the stringbed as in reality. Whilst reducing the 

amplitude of the high frequency component of the racket frame vibration due to the 

stringbed oscillating, the addition of the stringbed damping parameter did not 

influence the maximum net resultant torques or the resultant internal joint force at the 

elbow to any noticeable extent. A 1% reduction in each case was seen due to a 

reduction in the impact force between the ball and the point on the stringbed. The 

omission of a stringbed damping term would therefore appear to have little influence 

on the predicted relative effects of the simulation model. 

6.5 CHAPTER SUMMARY 

This chapter has described the methods used to evaluate the model. The 

simulation results from making direct comparisons between six matched trials are 

presented. A sensitivity analysis was subsequently performed to observe the effects 

of perturbing model parameters on the observed model outputs. Direct comparisons 

between trials suggested that for one-handed backhand groundstrokes with similar 

kinematics of the arm, small differences in elbow loading are observed if the racket 

properties are perturbed. A sensitivity analysis confirmed that the location of ball 

impact produced greater net changes in the loading at the elbow. The following 

chapter concludes with an application of the results obtained to answering the specific 

research questions posed in Chapter 1. A general discussion of the study is also given 

with comments on its limitations and implications for future research. 
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CHAPTER 7 

SUMMARY AND DISCUSSION 

7.1 CHAPTER OVERVIEW 

This chapter gives an overview of the present study by discussing the main 

topics covered in each chapter. A discussion of the limitations of this investigation 

along with suggestions for future research is also included. Finally, the model has 

been applied to answering the research questions raised in Chapter 1 by discussing the 

simulation results presented in Chapter 6. 

7.2 DISCUSSION 

7.2.1 Kinematic and kinetic data collection 

One-handed backhand groundstrokes were recorded using an automatic 

motion analysis system. Camera frame rate was limited to 250 Hz to ensure that the 

hitting volume of approximately 2.5 m3 was in the field of view of all cameras. A 

recent study at Loughborough University on triple jumping using a fully portable, 

upgraded motion analysis system enabled data to be captured at a higher camera 

frame rate of 480 Hz and for a larger performance volume. Such a set-up would 

result in more detailed kinematic data for future studies. 

Tekscan pressure sensors were attached to the grip of certain rackets and 

monitored grip pressures at a sampling frequency of 250 Hz. The results showed 

where peak grip pressures occurred over the entire grip surface at discrete time 

intervals during a groundstroke. This allowed comparisons of the net effect of 

gripping forces on net torques, about perpendicular axes through the centre of the 

racket handle, to be made (Section 6.2.4). It is anticipated that for future studies a 

custom built wireless device will be available, with tri-axial accelerometers within the 

grip and single-cell force sensing resistors on the grip surface. This would enable 

more detailed observations of grip force and racket motion relative to the hand to be 

made for each trial. 
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7.2.2 Parameter determination 

Equipment-specific parameters for the ball, stringbeds and racket frames were 

determined from independent experimental tests. In isolation, the ball, stringbed and 

racket frame models gave excellent agreement with experimental results. The 

equipment parameters were fixed before the ball-racket system was combined with an 

upper-limb and torso system to model one-handed tennis backhand groundstrokes. 

By fixing these parameters, it is harder to match performances using the model and 

this strengthens the evaluation of the model. 
In the present study, body segmental inertia parameters for the subject were 

calculated using the geometric model of Yeadon (1990b). Previous rigid body 

simulation models using segmental inertia parameters calculated using this method, 

have shown to produce realistic human motion (e. g. Yeadon & King, 2002). Splitting 

the segmental inertia parameters into rigid and wobbling components is more 

problematic as direct measurements cannot be taken. In this study, components were 

based on body composition estimates and bone to non-bone mass ratios reported in 

the literature. In the future, more accurate subject-specific inertia parameters could be 

obtained using alternative methods such as magnetic resonance imaging (MRI). 

Encouragingly, evaluation of the model showed that matched simulation 

trials agreed well with a variety one-handed backhand performances. It would appear 

that for the level of complexity of the simulation model, the methods of equipment 

parameter determination have been appropriate. 

7.2.3 Optimisation and model evaluation 

The Simulated Annealing optimisation algorithm (Corana et al., 1987) was 

used in this study to determine certain model parameters. Although costly in terms of 

the number of function evaluations needed, it has been shown to be very robust and 

capable of finding a global as opposed to a local optimum (Goffe et al., 1994). Since 

computer processors are becoming faster all the time, more simulations can be run in 

a given time period. The optimisation score is perhaps the most important part of the 

optimisation process as the weightings of each component of the score and any 

penalties introduced may have a large influence on the solutions found. In the future, 

the optimisation score may incorporate kinetic variables directly. 
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Once determined, simulation model parameters were fixed for the six 

performance trials. For the function used to determine the visco-elastic parameters of 

the grip, an average root-mean-squared (RMS) difference score between simulation 

and performance of less than 1% was obtained. When a single simulation was run 

with the gripping parameters fixed, the model evaluation scores representing the 

average RMS difference between a simulation and a performance for the six degrees 

of freedom of the racket relative to the hand, the ball-stringbed contact time and the 

outbound ball velocity, ranged from 0.63 to 2.62%. This excellent agreement 

between matched simulations and performances shows that an accurate subject- 

specific simulation model has been developed which can be used to investigate 

loading in one-handed backhand groundstrokes with confidence. Comparisons of 

racket frame acceleration and grip pressure data have been made for selected trials 

and showed good agreement. Improved tennis racket instrumentation in the future 

may permit higher sampling frequencies and a kinetic comparison of variables for 

each matching simulation and performance. 

7.2.4 Model limitations 

The model in this study predicts the internal joint forces and the net torques 

about a joint. Ideally, knowledge of the individual muscle forces should be 

investigated. However, current muscle models (e. g. Alexander, 1990; Soest et al., 

1993) assume the contractile components to be elements with no mass and the soft 

tissue is treated as a passive rigid component. To observe the transmission of force 

through the arm, a Finite Element model of the arm (e. g. Ng-Thow-Hing & Fiume, 

1999) and the ball-racket system would be needed, increasing the complexity of the 

system considerably. In time, this level of complexity may be possible, but it is 

beyond the scope of the present study. 

The upper-limb model is driven by joint-angle time histories and therefore 

technique is restricted to that of the subject in this study and it can be problematic to 

vary the technique substantially from that recorded. The model could be developed in 

the future to look at other players so that the effect of technique on the loading at the 

elbow can be quantified. 
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7.3 FUTURE RESEARCH 

7.3.1 Application to other tennis player groups 

In this study an elite male tennis player was selected since the subject was able 

to perform one-handed tennis backhand groundstrokes to a consistent and high 

standard. In addition, due to a high level of physical fitness, maximum voluntary 

strength tests were possible. Having established a series of protocols for processing 

data collected for the subject, repeating the process for more subjects would be less 

time consuming. 

As a natural progression, different groups could be analysed including 

females, juniors and senior players of varying abilities. The latter may be most 

important since the prevalence of tennis elbow in recreational players is well reported 

(Priest et al., 1980; Roetert et al., 1995). Since most young tennis players today will 

choose to hit a topspin drive with two hands on the racket, this is a feature which 

could be incorporated into the model in the future. Additional parameters and 

modification of the gripping mechanism may be needed to achieve this. At present, 

the model could be used to investigate loading in the arm during forehand and service 

motions by making alterations to the model input files and optimising for new 

gripping parameters. 

7.3.2 Technique optimisation 

The upper-limb model was driven by quintic splines of joint angle-time 

histories. Joint motion was fixed for a given trial and therefore limited conclusions 

can be drawn as to the effect of technique on loading in the arm. The next level of 

model complexity would be to generate joint motion using quintic functions 

(e. g. Hiley and Yeadon, 2005). This type of model allows manipulation of joint angle 

changes and is suitable for analysis of movement for which maximum muscle force is 

not being generated. The measured maximum voluntaryjoint torques that can be used 

to limit joint angle changes to those that are possible for the subject to achieve. 
A further progression would be to drive the simulation model with joint 

torques (e. g. King & Yeadon, 2002). The 9-parameter functions have already been 

calculated, which represent the maximum voluntary torques achievable by the subject, 

can be combined with torque activation timings to generate joint motion. The EMG 

data obtained from the performance data collection (Section 4.2.4) could be used in 



the optimisation process for the torque activation timings. Developing this model 
further so that individual muscles instead of net joint torques drive the simulation 

model could provide the best insight yet as to why damage might occur to extensor 

muscle tendons in the forearm when performing one-handed backhand groundstrokes. 

In principle, the effects of net muscular strength and muscle activation timings could 

be investigated. 

In this study the gripping technique of the performer for a given trial has not 

been perturbed. Hatze (1976) suggested that grip force could have an influence on the 

development of tennis elbow. Using a quintic function to vary the initial grip force 

could be used to investigate this in the future. 

7.3.3 Implications for performance 

This study has focussed on the possible effects of tennis racket parameters on 

the loading at the elbow experienced during one-handed tennis backhand 

groundstrokes. In theory, an optimal set of racket parameters could be found to 

achieve the lowest level of loading at the elbow. However, this optimal racket would 

have to conform to governing body regulations to be used in competitive play. 

Previous research has shown that perturbing properties of the racket frame and 

stringbed can have a large effect on the outbound ball performance. Whilst certain 

aspects of this model, for example the tennis ball representation as a point mass, are 

perhaps too simplistic to fully investigate performance factors, any conclusions on 

improved racket design must take into account the possible effect on performance. 

7.4 RESEARCH QUESTIONS 

Ql. How do the inertia and the stiffness and damping properties of the tennis racket 

frame affect elbow loading in one-handed tennis backhand groundstrokes? 

Changing the inertia parameters of the racket frame from those of a 

`recreational' racket to a `tour' racket appeared to have a small effect on the net 

torques around the elbow joint. It is possible that an increase in the net torque around 

the joint needed to move the racket about an axis where the moment of inertia is 

higher, was balanced by the extra cushioning the racket provided in resisting the 

recoil due to ball impact. However, it would appear that the differences in the inertia 



properties of the two rackets used in this study were not sufficient to observe a 

positive effect on reducing elbow loading for either racket frame. When a simulation 

was run with a twofold increase in the moment of inertia of the racket about the 

longitudinal axis, a6 Nm reduction in MPST occurred. It is therefore possible that 

perturbing the inertia parameters of the racket can influence the loading at the elbow 

to some extent. Further research may be able to optimise racket design to reduce the 

potential for injury. 

The stiffness and damping parameters of the racket frame primarily determine 

its modal response. The model was able to match the modal response of the racket 

well when freely suspended (Section 5.4.3) and hand-held (Section 6.2.3). When 

hand-held, the time for the magnitude of the out of plane racket frame acceleration 

had decreased to half its value at ball impact in approximately 10 ms. This was due to 

high levels of damping at the hand-racket interface. The in plane racket frame 

accelerations, measured experimentally and predicted by the model, were of small 

amplitude and were also damped out quickly by the hand. Therefore, perturbing the 

parameters for the in plane torsional spring-damper had little effect on the loading at 

the elbow. A twofold increase in the out of plane racket frame stiffness resulted in a 

7% increase in the maximum internal reaction force at the elbow occurring just after 

ball impact. A twofold increase in racket frame damping reduced the maximum 

internal reaction force at the elbow by only 2%. However, these parameters are not 

representative of the rackets tested and in reality the stiffness and damping of the 

frame are interrelated (Brody et al., 2002). 

The stiffness and damping properties of the racket frame are likely to affect 

the `feel' of the tennis racket at the grip where racket frame vibrations are damped out 

by the soft tissue of the hand. Additionally, an increase in racket power for stiffer 

racket frames has been shown (Cross, 2000a). However, it is unlikely that the 

stiffness and damping properties of the racket frame within current design ranges will 

affect the loading at the elbow considerably. 

Q2. How does the location of the ball impact on the stringbed and the stringbed 

stiffness affect elbow loading in one-handed tennis backhand groundstrokes? 

Of all simulation perturbations, the location of ball impact on the stringbed 

had the most influence on the loading at the elbow. Simulated off-centre ball impacts 
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increased the peak internal joint force by 11.1%, increased the peak pronation- 

supination net torque by 21.8% and increased peak elbow-flexion extension net torque 

about the elbow by 19.1% when compared to peak loading for an impact at the 

geometric stringbed centre. 

Whilst having well documented effects on outbound ball velocity and ball- 

stringbed contact time, an increase in stringbed stiffness also resulted in increased 

loading at the elbow. Net torques around the elbow were higher for a simulation with 

a `high' initial string tension although the largest increase proportional of 9% was for 

the internal joint force. The dynamic string stiffness was found to have less influence 

on loading at the elbow than the initial string tension as a 70% increase in its value 

was needed to see a comparable effect on increasing elbow loading as for a 32% 

increase in initial string tension. The simulation model suggests that there may be 

some trade-off when increasing stringbed stiffness between desired performance 

outcomes such as improved hitting accuracy and reducing the loading at the elbow. 

Q3. Does the rigid body recoil of the racket or its modal response have the greater 

influence on the loading components at the elbow? 

In Section 6.4.3, time histories of resultant internal joint forces were shown. 

Whilst the simulation racket frame accelerations exhibited the fundamental modal 

frequencies obtained from experimental modal analysis, these vibrations were 

attenuated as they progressed to the grip. It would appear that the hand then damped 

almost all of the vibration of the racket frame before it reached the elbow leaving a 

prominent force peak at around 5 ms after ball impact. When no racket frame 

damping was simulated, the effect on the resultant internal joint force downstream at 

the wrist was negligible. The simulation results would suggest that it is the rigid body 

recoil of the racket producing a large initial impulse that has the greatest effect on 

loading components at the elbow. 

Whilst the initial impact peak may be the overriding factor for the loading at 

the elbow, it is not clear at this point if the peak load from a `worst case bad hit' is 

high enough to cause micro-tears in the tendons of the extensor muscles. This would 

in part depend on the physical attributes of the tennis player. It would seem logical 

that physically fit elite performers are better able to cope with such loading. In 

addition, by virtue of being elite performers, they are subject to less off centre ̀ bad 
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hits'. Although speculative at this point in time, a plausible explanation is that an 
accumulation of these high loads, especially from off-centre hits, may lead to micro- 
tears within the tendons of the extensor muscles. 

7.5 CONCLUSION 

The simulation model developed in this study has been successfully evaluated 

and applied to investigating the loading at the elbow joint in one-handed backhand 

groundstrokes. A discussion of the methods used to develop the model and determine 

its parameters, along with the limitations of the model, has been presented. This 

research provides a basis for further work to answer questions that are not possible by 

experimental study alone. Future work has been suggested. Results from model 

simulations show that the inertia and stiffness parameters of the racket frame and the 
initial stringbed tension have a relatively small influence on elbow loading within 

current design ranges. In contrast, the location of ball-impact would appear to be an 
important factor in determining the loading at the elbow. This research suggests that 

cyclic loading due the modal response of the racket is an unlikely mechanism for 

tennis elbow and that an accumulation of high loading from off-centre hits is more 
likely to be a causative factor. 
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APPENDIX 1 

AUTOLEV CODE FOR BACKHAND MODEL 

% BACKHAND. AL 

THIS IS THE AUTOLEV CODE WHICH GENERATES A FORTRAN AND INPUT FILE 
NEEDED FOR THE COMPUTER SIMULATION MODEL 

physical declarations 

NEWTONIAN N 
BODIES A, B, C, D, WB, WC, E, F 
FRAMES INTNA, GRIP 
PARTICLES P(41: 50) 
POINTS O, PO, PW, PE, P { 1: 7}, P {9: 20}, P {25: 40), P50S, PRDO, PVM, PU, CM, RO 

mathematical declarations 

MASS A=MA, B=MB, C=MC, D=MD, WB=MWB, WC=MWC, E=ME, F=MF, & 
P41=MP41, P42=MP42, P43=MP43, P44=MP44, P45=MP45, & 
P46=MP46, P47=MP47, P48=MP48, P49=MP49, P50=MP50 

INERTIA A, IA1, IA2, IA3 
INERTIA B, IB1, IB2, IB3 
INERTIA C, ICI, IC2, IC3 
INERTIA D, ID 1, ID2, ID3 
INERTIA WB, IWB I, IWB2, IWB3 
INERTIA WC, IWCl, IWC2, IWC3 
INERTIA E, IE1, IE2,1E3 
INERTIA F, IF1,1F2,1F3 
SPECIFIED ANAL", ANA2", ANA3", AAB1", AAB2", AAB3", ABC1", ABC2", & 

ABC3", ACD2", ACD3", FIXX", FIXY", FIXZ" 
VARIABLES POCMX, POCMY, POCMZ, VOCMX, VOCMY, VOCMZ, & 

AOCMX, AOCMY, AOCMZ, RB {1: 2}, RC{1: 2}, FEXFEY, FEZ, FWX, FWY, FWZ, FE, FW, & 
TORAI, TORA2, TORA3, TORBI, TORB2, TORB3, TORCI, TORC2, TORC3, TORD2, TORD3, & 
Q{36}', U{44}', & 
POPOX, POPOY, POPOZ, POP{1: 7}X, POP{1: 7}Y, POP{1: 7}Z, & 
POP{9: 20}X, POP{9: 20}Y, POP{9: 20}Z, POP{25: 40}X, POP{25: 40}YPOP{25: 40}Z, & 
POPEX, POPEY, POPEZ, POPWX, POPWY, POPWZ, POPRDOX, POPRDOY, POPRDOZ, & 
POPVMX, POPVMY, POPVMZ, VPVMX, VPVMY, VPVMZ, APVMX, APVMY, APVMZ, & 
LP1P3, LP2P4, LP2P6, LP5P7, VP1P3, VP2P4, VP2P6, VP5P7, LOPO, VOPO, & 
YB45, YB45D, YB49, YB49D, YB46, YB46D, YB48, YB48D, & 
L4041, L4139,14144, L4241, L2942, L4245, L4342, L3043, & 
L4346, L3143, L4438, L4447, L4544, L4548, L4645, L4649, & 
L3246, L4737, L4736, L4847, L4835, L4948, L4934, L3349, & 
ST4041, ST4139, ST4144, ST4241, ST2942, ST4245,5T4342, ST3043, & 
ST4346, ST3143, ST4438, ST4447, ST4544, ST4548, ST4645, ST4649, & 
ST3246, ST4737, ST4736, ST4847, ST4835, ST4948, ST4934, ST3349, & 
R45N, R49N, R46N, R48N, TOREFI, TOREF2, TORE3, & 
R9H, R1OH, R11H, R12H, R13H, R14H, R15T, R16T, R17T, R18T, R19T, R20T, & 
L9H, L10H, L1 IH, L12H, L13H, L14H, L15T, L16T, L17T, L18T, L19T, L20T, & 
L9HD, LIOHD, L1 IHD, LI2HD, L13HD, L14HD, L15TD, L16TD, L17TD, L18TD, & 
L19TD, L20TD, B11, B12, B13, B21, B22, B23, B31, B32, B33 ,& Cl 1, C12, C13, C21, C22, C23, C31, C32, C33, & 
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D 11, D 12, D 13, D21, D22, D23, D31, D32, D33, & 
VP50, VP50X, VP50Y, VP50Z, W1, W2, & 
VELPWX, VELPWY, VELPWZ, VELPEX, VELPEY, VELPEZ, VELPIX, VELPIY, VELPIZ, & 
APRDOEI, APRDOE2, APRDOE3, APU, AP26X, AP26Y, AP26Z, AP27X, AP27Y, AP27Z, & 
GALFENX, GALFENY, GALFENZ, LALFENX, LALFENY, LALFENZ, & 
LAROX, LAROY, LAROY, FHX, FHY, FHZ, FTX, FTY, FTZ, RHX, RHY, RHZRTX, RTY, RTZ 

CONSTANTS L{I: 35}, G, KB, CB, KC, CC, KS{1: 4}, K{5: 10}, R9HO, RI IHO, Rl3HO, R15TO, & 
R17TO, R19TO, TORE30, KH, KT, CH, CT, KF{1: 3}, KTOREFI, CTOREFI, & 
KTOREF2, CTOREF2, KTORE, CTORE, VINY, & 
RACKANGO, RACKANGVELO, RHO, RTO, STO, TO, T 1, T2, RSC, CONST20, 
CONST2I, CONST22, L9HO, L1OHO, L11HO, L12HO, L13HO, & 
L 14HO, L 15T0, L 16T0, L 17TO, L 18T0, L 19TO, L20TO 

% simplify 

AUTOZ ON 
ZEE NOT= 
[FEX, FEY, FEZ, FWX, FWY, FWZ, TORB 1, TORB2, TORB3, TORCI, TORC2, TORC3, TORD2, TORD3] 

%----------------------------------------------- ------------ 
% geometry relating unit vectors 

DIRCOS(N, INTNA, BODY321, ANA3, ANA2, ANA 1) 
DIRCOS(INTNA, A, BODY321, -PI/2, -PI/2,0) 
DIRCOS(A, B, BODY321, AAB3, AAD2, AAB 1) 
DIRCOS(B, C, BODY321, ABC3, ABC2, ABC 1) 
DIRCOS(B, WB, BODY321, Q3, Q5, O) 
DIRCOS(C, D, BODY321, ACD3, ACD2,0) 
DIRCOS(C, WC, BODY321, Q8, Q 10,0) 
DIRCOS(D, E, BODY321, Q20, Q21, Q22) 
DIRCOS(D, GRIP, BODY321, CONST20, CONST21, CONST22) 
DIRCOS(E, F, BODY321,0, Q23, Q24) 

% AL angles for simple rotations 

ANA1 = T^3 
ANA2 - T^3 
ANA3 = T^3 
AAB I =T^3 
AAB2 = T^3 
AAB3 = T^3 
ABC1= T^3 
ABC2 = T^3 
ABC3 = T^3 
ACD2 - T^3 
ACD3 = T^3 

% position vectors 

pO PO> = FIXX*N 1> + FIXY*N2> + FIXZ*N3> 

FIXX = T^3 
FIXY = T^3 
FIXZ = T^3 

p PO AO> _ (L1/L2)*A1> 
P PO Pl>=L2*A1> 
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P_P1_BO> = L3*B1> 
P Pl P2> = L4*BI> 

P P1_P3>= QI*BI>+Q2*B2>+Q4*B3> 
P_P3_WBO> = L5*WB 1> 
P P3 P4> = L4*WB 1> 

P P2 PE>=Q1I*C1>+Q12*C2>+Q13*C3> 
P_PE_CO> = L6*C1> 
P PE P5> = L7*C1> 

P PE P6> = Q6*C1> + Q7*C2> + Q9*C3> 
P P6_WCO> = L8*WC1> 
P7P6 P7> = L7*WCI> 

P_P5_PW> = Q14*D 1> + Q15*D2> +Q I6*D3> 
P PW DO>=L9*D1>+L35*D2> 

P DO P9>=L10*GRIPI>+L11*GRIP2>+L12*GRIP3> 
PP9 PRD O> =Q 17 *E I>+Q 18 *E2> +Q 19 *E3> 
PP25_PRDO> = L13*E3> 
P__P26_PRDO> = L14*E3> 
P_PRDO_P27> = L14*E3> 
PP9_P10> = -2*L10*GRIP1> 
P7_P10_P16> = 2*LI4*GRIP3> 
PP16_PIS> = 2*L10*GRIP1> 
P_P9 P11>_-L10*GRIP1>-L10*GRIP2> 
P_P11_P12> = 2*LI0*GRIP2> 
P_P12_P18> =2*L14*GRIP3> 
P P18 P17> = -2*L10*GRIP2> 

P_P17 P19> = LI O*GRIP2> - L10*GRIP3> 
P P19_P20> = 2*L10*GRIP3> 
PP 11_P 13> =L 10*GRIP2> -L 10 *GRIP3> 
P P13 P14>=2*L10*GRIP3> 

P_P25_EO> = L15*E3> 
P 

_P25_P28> 
= L16*E3> 

P P28_P29> = L17*F3> 
P P28_FO>=L18*F3> 
P_P28_RO> = L34*F3> 
P P29 P30>-L19*F3>+L21*F1> 
P P30 P31> = L20*F3> + L22*F 1> 
P P31_P32> = L24*F3> + L23*F1> 
P P32_P33> = L25*F3>-L26*F1> 
P P33_P34> = L28*F3>-L27*F1> 

P P25 PU> = L32*E3> + L33*E 1> 

P P33 PVM> = L30*F1> + L31 *F3> 

P P34_P35> = L29*F3>-L21*F1> 
P_P35_P36> =-L29*F3>-L21*F1> 
P P36 P37> _ -L28*F3> - L27*Fl> 
P P37 P38> _ -L25*F3> - L26*Fl> 
P_P38_P39> =-L24*F3> + L23*F1> 
P P39_P40> -L20*F3>+L22*F1> 
P P29_P41> -L21 *F1> + Q25*F2> + (L19+L20)*F3> 
P P29 P42> = Q26*F2> + (L19+L20)*F3> 
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P P29 P43> = L21 *F1> + Q27*F2> + (L19+L20)*F3> 
P P2 9P44> = -L21 *F1> + Q2 8 *F2> + (L 19+L20+L24) *F3> 
P P29 P45> = Q29*F2> +(L19+L20+L24)*F3> 
P P29 P46> = L21 *F1> + Q30*F2> + (L19+L20+L24)*F3> 
P P29_P4'7> = -L21 *F 1> + Q31 *F2> + (L 19+L20+L24+L25) *F3> 
PP29 P48> = Q32*F2> + (L19+L20+L24+L25)*F3> 
PP29P49> = L21*Fl> + Q33*F2> + (L19+L20+L24+L25)*F3> 
PO P50> = Q34*Nl> + Q35*N2> + Q36*N3> 

P P45P50S> -P P45 P50> - RSC*YB45*F2> 
P P49 P50S> -P P49 P50> - RSC*YB49*F2> 
P P46P50S> =P P46 P50> - RSC*YB46*F2> 
P P48_P50S> =P P48 P50> - RSC*YB48*F2> 

% X, Y, Z co-ordinates of points 

POPOX = DOT(P O PO>, NI>) 
POPOY = DOT(P O PO>, N2>) 
POPOZ = DOT(P O PO>, N3>) 
POP1X =DOT(P O PI>, N1>) 
POPIY =DOT(P O_PI>, N2>) 
POP1Z = DOT(P O PI>, N3>) 
POP2X = DOT(P_Ö P2>, Nl>) 
POP2Y = DOT(P O P2>, N2>) 
POP2Z = DOT(P 0_P2>, N3>) 
POP3X = DOT(P_O P3>, Nl>) 
POP3Y = DOT(P O_P3>, N2>) 
POP3Z = DOT(P O P3>, N3>) 
POP4X = DOT(P Ö P4>, N1>) 
POP4Y = DOT(P (L P4>, N2>) 
POP4Z = DOT(P O P4>, N3>) 
POPSX = DOT(P_0_P5>, N1>) 
POPSY = DOT(PO P5>, N2>) 
POP5Z = DOT(P O PS>, N3>) 
POP6X = DOT(P_O_P6>, Nl>) 
POP6Y = DOT(P 0 P6>, N2>) 
POP6Z - DOT(P O_P6>, N3>) 
POP7X = DOT(P O P7>, NI>) 
POP7Y = DOT(P O P7>, N2>) 
POP7Z = DOT(P 0 P7>, N3>) 
POP9X = DOT(P_O_P9>, Nl>) 
POP9Y = DOT(P 0 P9>, N2>) 
POP9Z = DOT(P O_P9>, N3>) 
POPIOX=DOT(P O PIO>, Nl>) 
POP IOY = DOT(P_O_P IO>, N2>) 
POP IOZ = DOT(P O_P 10>, N3>) 
POP11X = DOT(P O PI I>, NI>) 
POPI IY = DOT(P O PI1>, N2>) 
POP11Z = DOT(P O P11>, N3>) 
POP12X = DOT(P_O_P12>, Nl>) 
POP12Y = DOT(P O P12>, N2>) 
POP12Z=DOT(P_O DOT(P_CLP 
POP13X = DOT(P O P13>, NI>) 
POP 13Y = DOT(P_O P 13>, N2>) 
POP13Z = DOT(P O P13>, N3>) 
POP14X = DOT(P 0 PI4>, NI>) 
POP14Y=DOT(P Ö P14>, N2>) 
POPI4Z = DOT(P_O_P14>, N3>) 
POP 15X = DOT(P_O P 15>, Nl>) 
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POP 15Y = DOT(P 0P 15>, N2>) 
POP15Z = DOT(P O_P15>, N3>) 
POP16X = DOT(P O P16>, Ni>) 
POP16Y = DOT(P_0 P16>, N2>) 
POP 16Z = DOT(P_O P16>, N3>) 
POP17X = DOT(P O P17>, Nl>) 
POP 17Y = DOT(P_Ö P 17>, N2>) 
POP17Z = DOT(P_O P17>, N3>) 
POP 18X = DOT(P_O P 18>, N l>) 
POP18Y = DOT(P 0 P18>, N2>) 
POP18Z = DOT(P0 P18>, N3>) 
POP19X = DOT(P 0 P19>, Nl>) 
POP19Y = DOT(P_O_P19>, N2>) 
POP 19Z = DOT(P O P19>, N3>) 
POP20X = DOT(P_O P20>, Nl>) 
POP20Y = DOT(P_0_P20>, N2>) 
POP20Z = DOT(P O P20>, N3>) 
POP25X = DOT(P_O P25>, Nl>) 
POP25Y = DOT(P O_P25>, N2>) 
POP25Z = DOT(P O P25>, N3>) 
POP26X = DOT(P_O P26>, Nl>) 
POP26Y = DOT(P_0 P26>, N2>) 
POP26Z = DOT(P O P26>, N3>) 
POP27X = DOT(P O P27>, Nl>) 
POP27Y = DOT(P O P27>, N2>) 
POP27Z = DOT(P O P27>, N3>) 
POP28X = DOT(P_O P28>, N1>) 
POP28Y = DOT(P 0 P28>, N2>) 
POP28Z = DOT(P O P28>, N3>) 
POP29X = DOT(P_O P29>, Ni>) 
POP29Y = DOT(P O P29>, N2>) 
POP29Z = DOT(P_O P29>, N3>) 
POP30X = DOT(P_O P30>, Ni>) 
POP30Y = DOT(P_O P30>, N2>) 
POP30Z = DOT(P_0 P30>, N3>) 
POP3 IX = DOT(P O P31>, NI>) 
POP3I Y= DOT(P_O P31>, N2>) 
POP31Z = DOT(P_OP31>, N3>) 
POP32X = DOT(P_O P32>, Nl>) 
POP32Y = DOT(P_O P32>, N2>) 
POP32Z = DOT(P O P32>, N3>) 
POP33X = DOT(P O P33>, Nl>) 
POP33Y = DOT(P_O P33>, N2>) 
POP33Z = DOT(P_O P33>, N3>) 
POP34X = DOT(P_(? P34>, N1>) 
POP34Y - DOT(P_0 P34>, N2>) 
POP34Z = DOT(PO P34>, N3>) 
POP35X = DOT(P O P35>, Nl>) 
POP35Y = DOT(P_O_P35>, N2>) 
POP35Z = DOT(P O P35>, N3>) 
POP36X = DOT(P O P36>, Nl>) 
POP36Y - DOT(P 0 P36>, N2>) 
POP36Z = DOT(P O P36>, N3>) 
POP37X = DOT(P O P37>, NI>) 
POP37Y = DOT(P_O P37>, N2>) 
POP37Z = DOT(P_O P37>, N3>) 
POP38X = DOT(P_0 P38>, NI>) 
POP38Y = DOT(P 0 P38>, N2>) 
POP38Z = DOT(P_O P38>, N3>) 
POP39X = DOT(P 0 P39>, Nl>) 

167 



POP39Y = DOT(P_O P39>, N2>) 
POP39Z = DOT(P_OP39>, N3>) 
POP40X = DOT(P_O P40>, Nl>) 
POP40Y = DOT(P O P40>, N2>) 
POP40Z = DOT(P_O_P40>, N3>) 
POP41 X= DOT(P_O_P41>, N l>) 
POP41Y = DOT(P 0 P41>, N2>) 
POP41Z = DOT(P O P41>, N3>) 
POP42X = DOT(P_O_P42>, Nl>) 
POP42Y = DOT(P O_P42>, N2>) 
POP42Z = DOT(P_O P42>, N3>) 
POP43X = DOT(P O_P43>, Nl>) 
POP43Y = DOT(P_0_P43>, N2>) 
POP43Z = DOT(P O P43>, N3>) 
POP44X = DOT(P_O_P44>, N1>) 
POP44Y = DOT(P 0 P44>, N2>) 
POP44Z = DOT(P_0_P44>, N3>) 
POP4SX = DOT(POLP45>, N1>) 
POP45Y = DOT(P_OP45>, N2>) 
POP45Z = DOT(P O P45>, N3>) 
POP46X = DOT(P_O_P46>, Nl>) 
POP46Y = DOT(P_O_P46>, N2>) 
POP46Z = DOT(P_0 P46>, N3>) 
POP47X = DOT(P_O_P47>, Nl>) 
POP47Y = DOT(P_0 P47>, N2>) 
POP47Z = DOT(P_O P47>, N3>) 
POP48X = DOT(P O P48>, Nl>) 
POP48Y = DOT(P O P48>, N2>) 
POP48Z = DOT(P 0 P48>, N3>) 
POP49X = DOT(P O P49>, Nl>) 
POP49Y - DOT(P t_ P49>, N2>) 
POP49Z = DOT(P_O P49>, N3>) 
POPVMX = DOT(P O PVM>, Nl>) 
POPVMY = DOT(P l_ PVM>, N2>) 
POPVMZ = DOT(P 0 PVM>, N3>) 
POPEX = DOT(PO PE>, N1>) 
POPEY = DOT(P O_PE>, N2>) 
POPEZ = DOT(P O PE>, N3>) 
pOPWX = DOT(P O PW>, Nl>) 
POP WY = DOT(P_O_PW>, N2>) 
POPWZ = DOT(P O PW>, N3>) 
POPRDOX = DOT(P_O PRDO>, Nl>) 
POPRDOY = DOT(P_O PRDO>, N2>) 
POPRDOZ = DOT(P O PRDO>, N3>) 

% centre of mass of the system 

P O_CM> = CM(O) 
POCMX = DOT(P_O CM>, N1>) 
POCMY = DOT(P_O CM>, N2>) 
pOCMZ = DOT(P O CM>, N3>) 

%- -----------------------__-----____.. __w---------------------------- 
% wobbling mass displacements and velocities 

LPIP3 =MAG(P P1_P3>) 
LP2P4 = MAG(P P2 P4>) 
LP2P6 = MAG(P P2 P6>) 
LP5P7 = MAG(P_P5_P7>) 
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VPIP3 = DT(LPIP3) 
VP2P4 = DT(LP2P4) 
VP2P6 = DT(LP2P6) 
VP5P7 = DT(LPSP7) 

kinematical differential equations 

Q1'=U1 
Q2'= U2 
Q3'=U3 
Q4'=U4 
Q5' = U5 
Q6'=U6 
Q7'= U7 
Q8' = U8 
Q9'=U9 
Q10' = U10 
Qil'=Uli 
Q12'=U12 
Q13' = U13 
Q14'= U14 
Q15'=U15 
Q16'=U16 
Q17'=U17 
Q18'-U18 
Q19'=U19 
Q20'= U20 
Q21' = U21 
Q22'= U22 
Q23'- U23 
Q24'= U24 
Q25'= U25 
Q26'= U26 
Q27'= U27 
Q28'= U28 
Q29'= U29 
Q30' = U30 
Q31' = U31 
Q32'= U32 
Q33'= U33 
Q34'= U34 
Q35'= U35 
Q36'= U36 

displacements and velocities of ball COM perpendicular to stringbed 

YB45 = Q35 - POP45Y 
YB49 = Q35 - POP49Y 
YB46 = Q35 - POP46Y 
YB48 = Q35 - POP48Y 

YB45D DT(YB45) 
YD49D = DT(YB49) 
YB46D = DT(YB46) 
YB48D = DT(YB48) 
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% lengths of 'strings' 

L4041= MAG(P P40 P41>) 
L4139 = MAG(P_P41 P39>) 
L4144 = MAG(P P41 P44>) 
L4241= MAG(P P42P41>) 
L2942 = MAG(P P29_P42>) 
L4245 = MAG(P P42 P45>) 
L4342 = MAG(P P43P42>) 
L3043 = MAG(P_P30_P43>) 
L4346 = MAG(P P43 P46>) 
L3143 = MAG(P P31 P43>) 
L443 8- MAG(P P44_P3 8>) 
L4447 = MAG(P P44 P47>) 
L4544 = MAG(P P45_P44>) 
L4548 = MAG(P_P45 P48>) 
L4645 = MAG(P P46 P45>) 
L4649 = MAG(P_P46 P49>) 
L3246 = MAG(P_P32 P46>) 
L4737 = MAG(P P47 P37>) 
L4736 = MAG(P_P47_P36>) 
L4847 = MAG(P P48 P47>) 
L4835 = MAG(P_P48_P35>) 
L4948 = MAG(P P49 P48>) 
L4934 = MAG(P_P49 P34>) 
L3349 = MAG(P P33_P49>) 

%- ---------------°»---»------»-----^--^»------»»»__w_ý». »_ 
% distances between racket handle and thenar eminences 

L9H = MAG(P P9 P26>) 
L1OH = MAG(P P10 P26>) 
L11H=MAG(P_P11 P26>) 
L12H = MAG(P P12 P26>) 
L13H = MAG(P P13_P26>) 
L14H = MAG(P P 14_P26>) 
L15T = MAG(P_P 15 P27>) 
L16T-MAG(P P16 P27>) 
LI7T = MAG(P_P17 P27>) 
L18T=MAG(P P18P27>) 
L19T = MAG(P_P 197P27>) 
L20T = MAG(P P20_P27>) 

L9HD = DT(L9H) 
LI OHD = DT(L1OH) 
L1 IHD = DT(LI IH) 
L12HD = DT(LI2H) 
L13HD = DT(LI3H) 
L14HD = DT(L14H) 
L15TD = DT(L15T) 
L16TD = DT(LI6T) 
L17TD = DT(LI7T) 
L18TD = DT(LI8T) 
L19TD = DT(L19T) 
L20TD = DT(L20T) 
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%- ----------- --------------_------------------------------ 
% matrix coefficients for angvel calculations 

B11 =DOT(Al>, Bl>) 
B12 =DOT(A1>, B2>) 
B 13 = DOT(A1>, B3>) 
B21 = DOT(A2>, B 1>) 
B22 = DOT(A2>, B2>) 
B23 = DOT(A2>, B3>) 
B31 =DOT(A3>, B 1>) 
B32 = DOT(A3>, B2>) 
B33 = DOT(A3>, B3>) 

Cll =DOT(B1>, C1>) 
C12 = DOT(B1>, C2>) 
C13 =DOT(B1>, C3>) 
C21=DOT(B2>, C1>) 
C22 = DOT(B2>, C2>) 
C23 = DOT(B2>, C3>) 
C31=DOT(B3>, C1>) 
C32 = DOT(B3>, C2>) 
C33 = DOT(B3>, C3>) 

D11 =DOT(C1>, D1>) 
D12 = DOT(C1>, D2>) 
D13 = DOT(C1>, D3>) 
D21 = DOT(C2>, D1>) 
D22 = DOT(C2>, D2>) 
D23 = DOT(C2>, D3>) 
D31 = DOT(C3>, D 1>) 
D32 = DOT(C3>, D2>) 
D33 = DOT(C3>, D3>) 

%- -»»-»M 
% rotation - angular velocities and accelerations 

ANGVEL(N, rNTNA, BODY321, ANA3, ANA2, ANA1) 
ALF INTNA N> = DT(W 1NTNA N>, rNTNA) 

W_A_INTNA> = O> 
WA N> =WA INTNA> +W INTNA N> 
ALF A N> = DT(W A N>, N) 

WB A>=(B13*DT(B12)+B23*DT(B22)+B33*DT(B32)+U37)*B1>+(B11*DT(B13)+& 
B21 *DT(B23) + B31 *DT(B33) + U38)*B2> + (B 12*DT(B 11) + B22*DT(321) + B32*DT(B3 1) +& 
U39)*B3> 
WB N>=W W_B_A> A N> 
ALL B N> = DT(W B_N>, N) 

WC B> = (C13*DT(C12) + C23*DT(C22) + C33*DT(C32) + U40)*C1> + (C11*DT(C13) + 
C21 *DT(C23) + C31*DT(C33) + U41)*C2> + (C12*DT(Cl 1) + C22*DT(C21) + C32*DT(C31) + U42)*C3> 
WCN>=WCB>+WB_N> 
ALF C N> = DT(W C N>, N) 

ANGVEL(B, WB, BODY321, Q3, Q5,0) 
W WB_N> =W WB B> +W B_N> 
ALF WB N> = DT(W WB N>, N) 
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W D_C>-(D13*DT(D12)+D23*DT(D22)+D33*DT(D32))*D1>+(D11*DT(D13)+ 
D21 *DT(D23) + D31 *DT(D33) + U43)*D2> + (D 12*DT(D 11) + D22*DT(D21) + D32*DT(D31) + U44)*D3> 
W D_N> = W_D_C> + W_C_N> 
ALPDN>=DT(WDN>, N) 

ANGVEL(C, WC, BODY321, Q8, Q 10,0) 
WWCN> =W WC C> +W CN> 
AlF WC N> = DT(W WC N>, N) 

ANGVEL(D, E, BODY321, Q20, Q21, Q22) 
WE N> = W_E_D> + W_D_N> 
ALF E N> = DT(W E N>, N) 

W GRIP D>=0> 
W_GRIP_N> =W GRiP_D> + W_D_N> 
ALF GRIP N> = DT(W GRIP N>, N) 

ANGVEL(E, F, BODY321,0, Q23, Q24) 
WF N> = W_F_E> + W_E_N> 
ALF F N> = DT(W F N>, N) 

GALFENX = DOT(ALF E N>, N 1>) 
GALFENY = DOT(ALF E N>, N2>) 
GALFENZ = DOT(ALF E N>, N3>) 
LALFENX = DOT(ALF E N>, E1>) 
LALFENY = DOT(ALF E N>, E2>) 
LALFENZ = DOT(ALF E N>, E3>) 

translation - linear velocities and accelerations 

V0_N> = 0> 
V_PO N> = DT(P 0 PO>, N) 
EXPRESS(V PO N>, A) 
V2PTS(N, A, PO, AO) 
EXPRESS(V AO_N>, A) 
V2PTS(N, A, PO, P1) 

VELPIX = DOT(V P1 N>, Nl>) 
VELPIY = DOT(V P1_N>, N2>) 
VELPIZ = DOT( V P1 N>, N3>) 

V2PTS(N, B, P1, BO) 
EXPRESSIV BO N>, B) 
V2PTS(N, B, P 1, P2) 
EXPRESS(V P2 N>, B) 

V P3_N> = DT(P O P3>, N) 
EXPRESS(V P3_N>, WB) 
V2PTS(N, WB, P3, WBO) 
EXPRESS(V WBO N>, WB) 
V2PTS(N, WB, P3, P4) 
EXPRESS(V P4 N>, WB) 

V PE N> = DT(P_O PE>, N) 
V2PTS(N, C, PE, CO) 
EXPRESS(V CO N>, C) 
V2PTS(N, C, PE, P5) 
EXPRESS(V P5_N>, C) 
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VELPEX = DOT(N PE N>, Nl>) 
VELPEY = DOT( V PE N>, N2>) 
VELPEZ = DOT(V PE N>, N3>) 

V P6 N> = DT(P O_P6>, N) 
EXPRESS(V P6 N>, WC) 
V2PTS(N, WC, P6, WCO) 
EXPRESS(N WCO N>, WC) 
V2PTS(N, WC, P6, P7) 
EXPRESS(V P7 N>, WC) 

V PW N> = DT(P O_PW>, N) 

VELPWX = DOT(V PW N>, Nl>) 
YELP WY = DOT( V P)KN>, N2>) 
VELPWZ = DOT( V PW N>, N3>) 

V2PTS(N, D, PW, DO) 
EXPRESS(V DO N>, D) 
V2PTS(N, D, PW, P9) 
EXPRESS(V P9_N>, D) 
V2PTS(N, D, PW, P 10) 
EXPRESS( V P10 N>, D) 
V2PTS(N, D, PW, P 11) 
EXPRESS(V P11_N>, D) 
V2PTS(N, D, PW, P 12) 
EXPRESS(V P 12 N>, D) 
V2PTS(N, D, PW, P13) 
EXPRESS( V P13 N>, D) 
V2PTS(N, D, PW, P 14) 
EXPRESS(V P14 N>, D) 
V2PTS(N, D, PW, P 15) 
EXPRESS(V P15 N>, D) 
V2PTS(N, D, PW, P 16) 
EXPRESS(V P16 N>, D) 
V2PTS(N, D, PW, P17) 
EXPRESS(V P17 N>, D) 
V2PTS(N, D, PW, P18) 
EXPRESS(V P18 N>, D) 
V2PTS(N, D, PW, P19) 
EXPRESS(V P19 N>$D) 
V2PTS(N, D, PW, P20) 
EXPRESS(V P20 N>, D) 

V PRDO N> = DT(P 0 PRDO>, N) 
EXPRESS(V PRDO N>, E) 
V2PTS(N, E, PRDO, P25) 
EXPRESS(V P25 N>, E) 
V2PTS(N, E, PRDO, P26) 
EXPRESS(V P26 N>, E) 
V2PTS(N, E, PRDO, P27) 
EXPRESS(V P27 N>, E) 
V2PTS(N, E, PRDO, EO) 
EXPRESS(V EO N>, E) 
V2PTS(N, E, PRDO, P28) 
EXPRESS(V P28 N>, E) 
V2PTS(N, E, PRDO, PU) 
EXPRESS(V PU N>, E) 
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V2PTS(N, F, P28, FO) 
EXPRESS(V FON>, F) 
V2PTS(N, F, P28, RO) 
EXPRESS(V RO N>, F) 
V2PTS(N, F, P28, P29) 
EXPRESS(V P29 N>, F) 
V2PTS(N, F, P28, P30) 
EXPRESS(V P30 N> F) 
V2PTS(N, F, P28, P31) 
EXPRESS(V P31_N>, F) 
V2PTS(N, F, P28, P32) 
EXPRESS(V P32_N>, F) 
V2PTS(N, F, P28, P33) 
EXPRESS(V P33 N>, F) 

V2PTS(N, F, P28, PVM) 
VPVMX = DOT(V PVM N>, Nl>) 
VPVMY = DOT(V, PVM_N>, N2>) 
VPVMZ = DOT(V PVM N>, N3>) 

V2PTS(N, F, P28, P34) 
EXPRESS(V P34 N>, F) 
V2PTS(N, F, P28, P35) 
EXPRESS(V P35 N>, F) 
V2PTS(N, F, P28, P36) 
EXPRESS(V P36 N>, F) 
V2PTS(N, F, P28, P37) 
EXPRESS(V P37_N>, F) 
V2PTS(N, F, P28, P38) 
EXPRESS(V_P38_N>, F) 
V2PTS(N, F, P28, P39) 
EXPRESS(V P39 N>, F) 
V2PTS(N, F, P28, P40) 
EXPRESS(V_P40_N>, F) 
V P41_N> = DT(P O P41>, N) 
EXPRESS(V P41 N>, F) 
V P42 N> = DT(P O P42>, N) 
EXPRESS(V P42_N>, F) 
V P43 N> = DT(P O P43>, N) 
EXPRESS(V P43_N>, F) 
V P44 N> = DT(P_O P44>, N) 
EXPRESS(V P44_N>, F) 
V P45 N> = DT(P_O P45>, N) 
EXPRESS(V P45_N>, F) 
V P46_N> = DT(P_O P46>, N) 
EXPRESS(V P46 N>, F) 
V P47 N> = DT(P_O_P47>, N) 
EXPRESS(V P47 N>, F) 
V P48_N> = DT(P_O P48>, N) 
EXPRESS(V P48 N>, F) 
V P49 N> = DT(P O P49>, N) 
EXPRESS(V P49 N>, F) 
V P50 N> = DT(P_O_P50>, N) 
EXPRESS(V P50 N>, F) 

V CM N> = DT(P_O CM>, N) 
VOCMX = DOT(V CM N>, N1>) 
VOCMY = DOT(V CM_N>, N2>) 
VOCMZ - DOT(V CM N>, N3>) 
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A_0 N> = 0> 
APO N> = DT(V PO_N>, N) 
EXPRESS(A PO N>, A) 
A2PTS(N, A, PO, AO) 
EXPRESS(A AO N>, A) 
A2PTS(N, A, PO, P1) 
EXPRESS(A P1_N>, A) 

A2PTS(N, B, P 1, BO) 
A2PTS(N, B, P 1, P2) 

A_PE N> = DT(V PE N>, N) 
A2PTS(N, C, PE, CO) 
A2PTS(N, C, PE, PS) 

A P3_N> = DT(V P3_N>, N) 
A2PTS(N, WB, P3, WBO) 
A2PTS(N, WB, P3, P4) 

A P6 N> = DT(V P6 N>, N) 
A2PTS(N, WC, P6, WCO) 
A2PTS(N, WC, P6, P7) 

A PW N>=DT(N PW N>, N) 
A22PTS(N, D, PW, DO) 
A2PTS(N, D, PW, P9) 
A2PTS(N, D, PW, P 10) 
A2PTS(N, D, PW, P11) 
A2PTS(N, D, PW, P 12) 
A2PTS(N, D, PW, P 13) 
A2PTS(N, D, PW, P 14) 
A2PTS(N, D, P W, P 15) 
A2PTS(N, D, PW, P 16) 
A2PTS(N, D, PW, P17) 
A2PTS(N, D, PW, P 18) 
A2PTS(N, D, PW, P 19) 
A2PTS(N, D, PW, P20) 

A PRDO N> = DT(V PRDO N>, N) 

APRDOEI = DOT(A PRDO N>, E1>) 
APRDOE2 = DOT(A1 PRD(? 

_N>, 
E2>) 

APRDOE3 = DOT(A PRDO N>, E3>) 

A2PTS(N, E, PRDO, P25) 
A2PTS(N, E, PRDO, P26) 
A2PTS(N, E, PRDO, P27) 

AP26X = DOT(A_P26 N>, N1>) 
AP26Y = DOT(A_P26 N>, N2>) 
AP26Z = DOT(A P26 N>, N3>) 
AP27X = DOT(A_P27_N>, N1>) 
AP27Y = DOT(A P27_N>, N2>) 
AP27Z = DOT(A_P27 N>, N3>)-. 

A2PTS(N, E, PRDO, EO) 
A2PTS(N, E, PRDO, P28) 
A2PTS(N, E, PRDO, PU) 

APU = DOT(A PU N>, E2>) 
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. A2PTS(N, F, P28, FO) 

A2PTS(N, F, P28, RO) 
GAROX = DOT(A RO N>, N1>) 
GAROY = DOT(A_RO N>, N2>) 
GAROZ = DOT(A_RO N>, N3>) 
LAROX = DOT(A RO_N>, F1>) 
LAROY = DOT(A RO N>, F2>) 
LAROZ = DOT(A_RO N>, F3>) 

A2PTS(N, F, P28, P29) 
A2PTS(N, F, P28, P30) 
A2PTS(N, F, P28, P3 1) 
A2PTS(N, F, P28, P32) 
A2PTS(N, F, P28, P33) 

A2PTS(N, F, P28, PVM) 
APVMX = DOT(A PVM N>, N1>) 
APVMY = DOT(A_PVM_N>, N2>) 
APVMZ = DOT(A_PVM N>, N3>) 

A2PTS(N, F, P28, P34) 
A2PTS(N, F, P28, P35) 
A2PTS(N, F, P28, P36) 
A2PTS(N, F, P28, P37) 
A2PTS(N, F, P28, P38) 
A2PTS(N, F, P28, P39) 
A2PTS(N, F, P28, P40) 
A J41 N> - DT(V P41_N>, N) 
A_ P42_N> = DT(V P42_N>, N) 
A_P43_N> = DT(V P43 N>, N) 
A P44 N> = DT(V P44_N>, N) 
A P45_N> = DT(V P45_N>, N) 
A P46 N> = DT(V P46 N>, N) 
AP47N>=DT(VP47N>, N) 
A P48_N> = DT(V P48_N>, N) 
A P49 N> = DT(V_P49_N>, N) 
A_P50 N> = DT(V P50 N>, N) 

A_CM N> = DT(V CM N>, N) 
AOCMX = DOT(A CM N>, N1>) 
AOCMY = DOT(A1 CM N>, N2>) 
AOCMZ = DOT(A_CM N>, N3>) 

%- ------------- ------- 
% auxiliary constraints 

AUXILIARY[1] = U11 
AUXILIARY[2] = U12 
AUXILIARY[31 = U13 
AUXILIARY[4] = U14 
AUXILIARY[S] = U15 
AUXILIARY[6] = U16 
AUXILIARY[7] = U37 
AUXILIARY[8] = U38 
AUXILIARY[9] = U39 
AUXILIARY[10] = U40 
AUXILIARY[I1] U41 
AUXILIARY[12] = U42 
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AUXILIARY[13] = U43 
AUXILIARY[14] = U44 
CONSTRAIN (AUXILIARY[U11, U12, U13, U14, U15, U16, U37, U38, U39, U40, U41, U42, U43, U44]) 

% forces 

GRAVITY(G*N3>) 

% quintic functions 

W1 = (T - TO)/(T1- TO) 
W2 =1- (T - TO)/(T2 - TO) 

% forces acting between the racket handle and thenar/hypothenar eminences 

R9H - KH*(L9HO - L9H + (RHO/KH)) - CH*L9HD*ABS(L9HO - L9H) + R9HO*(6*W2^5 - 15*W2^4 + 10*W2^3) 
R10H = KH*(L1OHO - L1OH + (RHO/KH)) - CH*L1OHD*ABS(L1OHO - L1OH) 
R1 1H = KH*(LI1HO - L1 1H + (RHO/KH)) - CH*L11HD*ABS(L11HO - L1 1H) + R11HO*(6*W2^5 - 15*W2A4 + 10*W2^3) 
R12H = KH*(L12HO - L12H + (RHO/KH)) - CH*L12HD*ABS(L12HO - L12H) 
R13H = KH*(LI3HO - L13H + (RHO/KH)) - CH*L13HD*ABS(L13HO - L13H) + R13HO*(6*W2A5 - 15*W2^4+ 10*W2^3) 
R14H = KH*(L14HO - L14H + (RHO/KH)) - CH*L14HD*ABS(L14H0 - L14H) 
R15T = KT*(L15TO - L15T + (RTO/KT)) - CT*L15TD*ABS(L15TO - L15T) + R15TO*(6*W2A5 - 15*W2^4 + 10*W2^3) 
R16T = KT*(L16TO - L16T + (RTO/KT)) - CT*L16TD*ABS(L16TO - L16T) 
R17T = KT*(L17TO - L17T + (RTO/KT)) - CT*L17TD*ABS(L17TO - L17T) + R17TO*(6*W2^5 - 15*W2^4+ 10*W2^3) 
R18T = KT*(L18TO - L18T + (RTO/KT)) - CT*L18TD*ABS(L18TO - L18T) 
R19T = KT*(L19TO - L19T + (RTO/KT)) - CT*L19TD*ABS(L19T0 - L19T) + R19TO*(6*W2^5 - 15*W2^4 + 10*W2^3) 
R20T = KT*(L20TO - L20T+ (RTO/KT)) - CT*L20TD*ABS(L20T0 - L201) 

FORCE(P9/P26, R9H*UNTTVEC(P P9 P26>)) 
FORCE(PIO/P26, R1OH*UNITVEC(P P10 P26>)) 
FORCE(P 11/P26, R11 H*UNITVEC(P P1 I_P26>)) 
FORCE(P12/P26, R12H*UNITVEC(P_P12 P26>)) 
FORCE(P13/P26, R13H*UNITVEC(P P13_P26>)) 
FORCE(P14/P26, R14H*UMTVEC(P_P14 P26>)) 
FORCE(PI5/P27, RI5T*UNITVEC(P P15 P27>)) 
FORCE(P16/P27, RI6T*UNTTVEC(P P16_P27>)) 
FORCE(P17/P27, R17T*UNITVEC(P P17 P27>)) 
FORCE(P18/P27, R18T*UNITVEC(P_P18 P27>)) 
FORCE(P19/P27, R19T*UNITVEC(P P19 P27>)) 
FORCF(P20/P27, R20T*tJNETVEC(P P20 P27>)) 

% net forces at contact points on racket handle 

FHX = DOT(FORCEP26>, El>) 
FHY = DOT(FORCE_P26>, E2>) 
FHZ = DOT(FORCE P26>, E3>) 
FTX = DOT(FORCEP27>, E1>) 
FTY = DOT(FORCE_P27>, E2>) 
FTZ = DOT(FORCE P27>, E3>) 
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net forces in springs at grip 

RHX = DOT(FORCE P9>, GRIP1>) + DOT(FORCE P10>, GRIP1>) + DOT(FORCE P11>, GRIP1>) 
+ DOT(FORCE P 12>, GRIP 1>) + DOT(FORCE P 13>, GRIP 1>) + DOT(FORCE P 14>, GRIP 1>) 
RHY = DOT(FORCE P9>, GRIP2>) + DOT(FORCE P10>, GRIP2>) + DOT(FORCE Pl l>, GRIP2>) 
+ DOT(FORCE_P12>, GRIP2>) + DOT(FORCE P13>, GRIP2>) + DOT(FORCE P14>, GRIP2>) 
RHZ = DOT(FORCE_P9>, GRIP3>) + DOT(FORCE P10>, GRIP3>) + DOT(FORCE P11>, GRIP3>) 
+ DOT(FORCE P 12>, GRIP3>) + DOT(FORCE P 13>, GRIP3>) + DOT(FORCE P 14>, GRIP3>) 
RTX = DOT(FORCE P 15>, GRIP 1>) + DOT(FORCE_P 16>, GR P 1>) + OT(FORCE P 17>, GR1P 1>) 
+ DOT(FORCE_P 18>, GRIP1>) + DOT(FORCE P19>, GRIP 1>) + DOT(FORCE P20>, GRIP 1>) 
RTY = DOT(FORCE P 15>, GRIP2>) + DOT(FORCE P 16>, GRIP2>) + OT(FORCE P 17>, GRIP2>) 
+ DOT(FORCE P18>, GRIP2>) + DOT(FORCE P19>, GRIP2>) + DOT(FORCE P20>, GRIP2>) 
RTZ = DOT(FORCE_P 15>, GRIP3>) + DOT(FORCE P 16>, GRIP3>) + OT(FORCE P 17>, GRIP3>) 
+ DOT(FORCE P18>, GRIP3>) + DOT(FORCE P19>, GRIP3>) + DOT(FORCE P20>, GRIP3>) 

%'string' forces as a function of length change and velocity of deformation 

ST4041= -KS3*K9*(L4041- L20 + (STO/(KS3*K9))) 
ST4139 = -KS4*K5*(L4139 - L22 + (STO/(KS4*K5))) 
ST4144 = -KS3 *(L4144 - L24 + (STO/KS3)) 
ST4241 = -KS4*(L4241- L21 + (STO/KS4)) 
ST2942 = -KS 1 *K7*(L2942 - L19 - L20 + (STO/(KS 1 *K7))) 
ST4245 = -KS 1 *(L4245 - L24 + (STO/KS 1)) 
ST4342 = -KS4*(L4342 - L21 + (STO/KS4)) 
ST3043 = -KS3*K9*(L3043 - L20 + (STO/(KS3*K9))) 
ST4346 = -KS3 *(L4346 - L24 + (STO/KS3)) 
ST3143 = -KS4*K5 *(L3143 - L22 + (STO/KS4*K5)) 
ST4438 = -KS2*K6*(L4438 - L22 - L23 + (STO/(KS2*K6))) 
ST4447 = -KS3*(L4447 - L25 + (STO/KS3)) 
ST4544 = -KS2*(L4544 - L21 + (STO/KS2)) 
ST4548 = -KS 1*(L4548 - L25 + (STO/KS1)) 
ST4645 = -KS2*(L4645 - L21 + (STO/KS2)) 
ST4649 = -KS3*(L4649 - L25 + (STO/KS3)) 
ST3246 = -KS2*K6*(L3246 - L22 - L23 + (STO/(KS2*K6))) 
ST4737 - -KS4*K5*(L4737 - L27 + (STO/(KS4*K5))) 
ST4736 = -KS3*K10*(L4736 - L28 + (STO/(KS3*K10))) 
ST4847 = -KS4*(I4847 - L21 + (STO/KS4)) 
ST4835 = -KS1 *K8*(L4835 - L28 - L29 + (STO/(KS 1 *K8))) 
ST4948 = -KS4*(L4948 - L21 + (STO/KS4)) 
ST4934 = -KS3*K10*(L4934 - L28 + (STO/(KS3*K10))) 
ST3349 = -KS4*K5*(L3349 - L27 + (STO/(KS4*K5))) 

% forces between nodes/point on racket frame 

FORCE(P40/P41, ST4041 *LTNITVEC(P P40 P41>)) 
FORCE(P41/P39, ST4139*UNITVEC(P P41 P39>)) 
FORCE(P41/P44, ST4144*UNITVEC(P_P41 P44>)) 
FORCE(P42/P41, ST4241 *UNTTVEC(P P42_P41>)) 
FORCE(P29/P42, ST2942*UNITVEC(P P29 P42>)) 
FORCE(P42/P45, ST4245*UNITVEC(P P42 P45>)) 
FORCE(P43/P42, ST4342*UNTTVEC(P P43 P42>)) 
FORCE(P30/P43, ST3043 *UNITVEC(P_P30_P43>)) 
FORCE(P43/P46, ST4346*UNITVEC(P_P43 P46>)) 
FORCE(P31 /P43, ST3143 *UNITVEC(P_P31_P43>)) 
FORCE(P44/P38, ST4438*UNITVEC(P_P44 P38>)) 
FORCE(P44/P47, ST4447*UNITVEC(P P44_P47>)) 
FORCE(P45/P44, ST4544*UNITVEC(P_P45 P44>)) 
FORCE(P45/P48, ST4548*UNITVEC(P P45 P48>)) 
FORCE(P46/P45, ST4645*UNITVEC(P P46 P45>)) 
FORCE(P46/P49, ST4649*TIN1TVEC(P P46 P49>)) 
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FORCE(P32/P46, ST3246*UNITVEC(P P32 P46>)) 
FORCE(P47/P37, ST4737*UNITVEC(P P47 P37>)) 
FORCE(P47/P36, ST4736*UNITVEC(P_P47 P36>)) 
FORCE(P48/P47, ST4847*UNITVEC(P_P48 P47>)) 
FORCE(P48/P35, ST4835 *UNITVEC(P_P48_P35>)) 
FORCE(P49/P48, ST4948 *UNTTVEC(P_P49_P48>)) 
FORCE(P49/P34, ST4934*UNITVEC(P P49 P34>)) 
FORCE(P33/P49, ST3349*UNITVEC(P P33 P49>)) 

force acting on ball corn normal to stringbed plane 
VINY is the relative velocity of the ball at contact 

R45N = RSC*(((1549.1*ABS(V1NY)) + 16522)*YB45 + ((1.1934*ABS(VINy)) - 
3.0662)*YB45D)*(6*W1^5 -15*W1^4 + 10*W1^3) 
R49N = RSC*(((1549.1 *ABS(VINY)) + 16522)*YB49 + ((1.1934*ABS(VINY)) - 
3.0662)*YB49D)*(6*Wl^5 - 15*Wl^4+ 10*Wl^3) 
R46N = RSC*(((1549.1 *ABS(VINY)) + 16522)*YB46 + ((1.1934*ABS(VINY)) - 
3.0662)*YB46D)*(6*Wl^5 -15*W1^4+ 10*W1^3) 
R48N = RSC*(((1549.1 *ABS(VINY)) + 16522)*YB48 + ((1.1934*ABS(VrNY)) - 
3.0662)*YB48D)*(6*Wl^5 - 15*Wl^4+ 10*W1^3) 

% force acting between ball and stringbed node 

FORCE(P45/P50, R45N*(F2> + KF1 *RSC*UNIITVEC(P P45_P50S>))) 
FORCE(P49/P50, R49N*(F2> + KF3 *RSC*UNTTVEC(P P49P50S>))) 
FORCE(P46/P50, R46N*(F2> + KF2*RSC*UNITVEC(P_P46 P50S>))) 
FORCE(P48/P50, R48N*(F2> + KF2*RSC*UNITVEC(P P48_P50S>))) 

% torsional spring-damperS to model fundamental mode of vibration and stop 
% racket rotation in the hand 

TOREFI= -KTOREFI*Q24 - CTOREFI*U24 
TOREF2 = -KTOREF2*Q23 - CTOREF2*U23 
TORE3 = -KTORE*(Q20 - RACKANGO) - CTORE*U20*ABS(Q20 - RACKANGO) + TORE30*W2 

TORQUE(E/F, TOREF 1 *F 1> + TOREF2*F2>) 
TORQUE E> += TORE3*E3> 

% wobbling mass forces 

RB1= -KB*LP1P3^3 - CB*VP1P3 
RB2 = -KB*LP2P4^3 - CB*VP2P4 
RCI = -KC*LP2P6^3 - CC*VP2P6 
RC2 = -KC*LP5P7^3 - CC*VP5P7 

FORCE(P 1/P3, RB 1 *UNTTVEC(P P1 P3>)) 
FORCE(P2/P4, RB2*UNITVEC(P P2_P4>)) 
FORCE(P2/P6, RC1 *UNrrVEC(P_P2 P6>)) 
FORCE(P5/P7, RC2*UNITVEC(P_PS P7>)) 

% internal joint forces 

FORCE(P2/PE, FEX*Cl> + FEY*C2> + FEZ*C3>) 
FORCE(P5/PW, FWX*D 1> + FWY*D2> + FWZ*D3>) 

FE = SQRT(FEX^2 + FEYA2 + FEZA2) 
FW = SQRT(FWX^2 + FWYA2 + FWZA2) 

internal joint torques 
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TORQUE(A/B, TORB 1 *B 1> + TORB2*B2> + TORB3*B3>) 
TORQUE(B/C, TORC1 *C1> + TORC2*C2> + TORC3*C3>) 
TORQUE(C/D, TORD2*D2> + TORD3*D3>) 

% equations of motion 

ZERO = FR() + FRSTARO 
KANE(FEX, FEY, FEZ, FWX, FWY, FWZ, TORB 1, TORB2, TORB3, TORC 1, TORC2, TORC3, TORD2, T 
ORD3) 

inputs 

INPUT TINITIAL = 0.2392, TFINAL = 0.2392, INTEGSTP = 0.00001, PRINTINT = 10, & 
ABSERR =1.0E-08, RELERR =1.0E-07, TO = 0.2392, T1= 0.2393, T2 = 0.2492 

INPUT MA = 31.884, MB = 0.426, MC = 0.295, MD = 0.401, MWB = 1.755, MWC = 1.237, & 
ME - 0.13350, MF = 0.16050, MP41= 0.00192, MP42 = 0.00192, MP43 = 0.00192, & 
MP44 = 0.00192, MP45 = 0.00192, M046 = 0.00192, M747 = 0.00192, & 
M248 = 0.00192, MP49 = 0.00192, MPSO = 0.059, & 
IA1= 0.321, IA2 =1.226, IA3 =1.104, & 
n3 l=0.0005,1B2 = 0.003, IB3 = 0.003, & 
IC 1= 0.0002, IC2 = 0.002, IC3 = 0.002, & 
ID 1=0.0001,1D2=0.001,1D30.001, & 
IWB 1=0.0025,1WB2 = 0.0 14, IWB3 = 0.014, & 
IWC1= 0.0008, IWC2 = 0.008, IWC3 = 0.008, & 
IE1 = 0.0020, IE2 = 0.0020,1E3 = 0.0001, & 
IF! = 0.0031, IF2 = 0.0039, IF3 = 0.0015, & 
L1=0.0, L2=0.145, L3=0.145,1A=0.347, L5=0.121, & 
L6 = 0.148, L7 = 0.288, L8 = 0.118, L9 = 0.06, L10 - 0.025, & 
L11= 0.0, L12 = -0.03, L13 = 0.05, L14 = 0.03, L15 = 0.1954, & 
L16=0.34, L17=0.0, L18=0.187, L19= 0.019, L20=0.091, L21=0.065, & 
L22 = 0.065, L23 = 0.0075, L24 = 0.068, L25 - 0.068, L26 = 0.0055, L27 - 0.067, & 
L28 x. 089, L29 = 0.02, L30 = -0.010, L31= 0.056, L32 = 0.29, L33 = 0.0, L34 - 0.052, & 
L35 = 0.03, L9HO = 0.025, L10HO = 0.025, LI 1HO = 0.025, L12HO = 0.025, & 
L13110 = 0.025, &L14HO = 0.025, & 
L15TO = 0.025, L16TO = 0.025, L17TO - 0.025, L18TO = 0.025, L19TO = 0.025, L20TO - 0.025, & 
KS1 = 1.0217E05, KS2 =1.0338E05, KS3 -1.1978E05, KS4 =1.1263E05, & 
K5 = 0.4362, K6 = 0.3769, K7 = 0.9491, K8 = 0.3234, K9 - 0.3979, K10 - 0.5755, & 
G= -9.81, ST0 = 967.7, & 
RHO = 0, RTO = 0, RSC = -1.0, & 
R9H0 = 40.0, R11HO = -95.0, R13HO - -53.0, R15TO = -51.0, R17TO =131.0, R19TO - -53.0, 
TORE30 = -0.55, & 
KF 1=0.26, KF2 = 0.30, KF3 = 0.35, RACKANGO - -2.29, & 
KTOREFI = 1075.0, CTOREFI = 0.04, KTOREF2 = 1800.0, CTOREF2 - 0.1, & 
KTORE = 0.0, CTORE = 0.0, & 
KT = 0.0, CT - 0.0, KH = 0.0, CH - 0.0, & 
KB - 0.5E08, CD = 35.0, KC = 3. OE08, CC = 60.0, & 
CONST20 - -2.29, CONST21 = -0.31, CONST22 = -0.60, & 
QI=0.00001, Q2 = 0.00001, Q3 = 0.0, Q4 = 0.00001, Q5 = 0.0, Q6 = 0.00001, & 
Q7 = 0.00001, Q8 = 0.0, Q9 = 0.00001, Q10 = 0.0, & 
Qil=0.0, Q12=0.0, Q13=0.0, Q14=0.0, Q15=0.0, & 
Q16 = 0.0, Q17 = -0.025, Q18 = 0.0, Q19 - 0.03, Q20 = -2.29, Q21- -0.31, & 
Q22 = -0.60, Q23 = 0.0, Q24 = 0.0, & 
Q25 = 0.0, Q26 = 0.0, Q27 = 0.0, Q28 - 0.0, & 
Q29 = 0.0, Q30 = 0.0, Q31 = 0.0, Q32=0.0, & 
Q33 = 0.0, Q34 = -0.5809576, Q35 = 0.5651189, Q36 = -0.5678907, & 
U17=-0.2, U18=3.5, U19=1.0, U20=1.42, U21 =-3.14, U22=0.55, & 
U35 = -9.0, VINY = -27.16, U36 - -1.35 
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outputs 

OUTPUT T, POP45X, POP45Y, POP45Z, Q34, Q35, Q36 
OUTPUT T, POP49X, POP49Y, POP49Z, Q34, Q35, Q36 
OUTPUT T, POP46X, POP46Y, POP46Z, Q34, Q35, Q36 
OUTPUT T, POP48X, POP48Y, POP48Z, Q34, Q35, Q36 
OUTPUT T, POPVMX, POPVMY, POPVMZ, VPVMX, VPVMY, VPVMZ, APVMX, APVMY, 
APVMZ 
OUTPUT T, Q20, Q21, Q22, U20, U21, U22, U20', U21, U22' 
OUTPUT T, Q29, Q35, YB45, YB45D, R45N 
OUTPUT T, Q30, Q35, YB49, YB49D, R49N 
OUTPUT T, Q33, Q35, YB46, YB46D, R46N 
OUTPUT T, Q32, Q35, YB48, YB48D, R48N 
OUTPUT T, U34, U35, U36 
OUTPUT T, FEX, FEY, FEZ, FE 
OUTPUT T, FWX, FWY, FWZ, FW 
OUTPUT T, RB 1, RB2, Q 1, Q2, Q4 
OUTPUT T, RCI, RC2, Q6, Q7, Q9 
OUTPUT T, TORB 1, TORB2, TORB3, TORC 1, TORC2, TORC3, TORD2, TORD3 
OUTPUT T, L9H, L10H, L1 1H, L12H, L13H, L14H 
OUTPUT T, L15T, L16T, L17T, L18T, L19T, L20T 
OUTPUT T, R9H, R10H, RI IH, R12H, R13H, R14H 
OUTPUT T, R15T, R16T, R17T, R18T, R19T, R20T 
OUTPUT T, TOREFI, Q24, U24', TOREF2, Q23, U23, TORE3 
OUTPUT T, POPWX, POPWY, POPWZ, VELPWX, VELPWY, VELPWZ 
OUTPUT T, AP26X, AP26Y, AP26Z, AP27X, AP27Y, AP27Z 
OUTPUT T, LAROX, LAROY, LAROZ, LALFENX, LALFENY, LALFENZ 
OUTPUT T, GAROX, GAROY, GAROZ, GALFENX, GALFENY, GALFENZ 
OUTPUT T, FHX, FHY, FHZ, FTX, FTY, FTZ 
OUTPUT T, RHX, RHY, RHZ, RTX, RTY, RTZ 

units 

UNITS [T, T0, T1, T2] =S 
UNITS [ANAL, ANA2, ANA3, AABI, AAB2, AAB3, ABCI, ABC2, ABC3, ACD2, ACD3, 

RACKANGO] = RAD 
UNITS [Q3, Q5, Q8, Q10, Q20, Q21, Q22, Q23, Q24, CONST20, CONST2I, CONST22] - RAD 
UNITS [ANA1', ANA2', ANA3', AAB1', AAB2', AAB3', ABCI', ABC2', ABC3', ACD2', & 

ACD3', U3, U5, U8, U10, U20, U21, U22, U23, U24, RACKANGVELO] - RAD/S 
UNITS [ANA1", ANA2", ANA3", AABI", AAB2", AAB3", ABC1", ABC2", ABC3", ACD2", ACD3", & 
U3', U5', U8', U 1 O', U20', U21', U22', U23', U24', GALFENX, GALFENY, GALFENZ, LALFENX, LALFEN 
Y, LALFENZ] = RAD/S^2 
UNITS [Q 1, Q2, Q4, Q6, Q7, Q9, Q 11, Q 12, Q 13, Q 14, Q 15, Q 16, Q 17, Q 18, Q 19, Q25, Q26, Q27, & 

Q28, Q29, Q30, Q31, Q32, Q33, Q34, Q35, Q36, FIXX, FIXY, FIXZ, LOPO, & 
L9H, L1OH, L11H, L12H, L13H, L14H, L15T, L16T, L17T, L18T, L19T, L20T, & 
L4041, L4139, L4144, L4241, L2942, L4245, L4342, L3043, & 
L4346, L3143, L4438, L4447, L4544, L4548, L4645, L4649, & 
L3246, L4737, L4736, L4847, L4835, L4948, L4934, L3349, & 
L9HO, L1OHO, L1 IHO, LI2HO, L13H0, L14HO, L15TO, L16T0, LI7TO, L18T0, L19T0, L20TO, & 
POPOX, POPOY, POPOZ, POCMX, POCMY, POCMZ, POPEX, POPEY, POPEZ, POPWX, & 
pOPWY, POPWZ, LP1P3, LP2P4, LP2P6, LP5P7, YB45, YB46, & 
YB49, POPVMX, POPVMY, POPVMZ, POPRDOX, POPRDOY, POPRDOZ] -M 

UNITS L{1: 35} =M 
UNITS [POP{ 1: 7}X, POP { 1: 7}Y, POP { 1: 7}Z] =M 
UNITS [POP {9: 20}X, POP{9: 20}Y, POP{9: 20}Z] -M 
UNITS [POP {25: 49)X, POP{25: 49}Y, POP{25: 49}Z] =M 
UNITS [U1, U2, U4, U6, U7, U9, U11, U12, U13, U14, U15, U16, U17, U18, U19, U25, U26, U27, & 

U28, U29, U30, U3 1, U32, U33, U34, U35, U36, & 
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YB45D, YB46D, YB49D, YB48D, VPVMX, VPVMY, VPVMZ, FIXX', FIXY', FIXZ', VOPO, VINY, & 
VOCMX, VOCMY, VOCMZ, VPIP3, VP2P4, VP2P6, VP5P7, VELPWX, VELPWY, VELPWZ, & 
VELPEX, VELPEY, VELPEZ, VELP 1 X, VELP 1Y, VELP I Z, & 
L9HD, L 1 OHD, L 11 HD, L 12HD, L 13 HD, L 14HD, L 15TD, L 16TD, L 17TD, L 18TD, L 19TD, & 
L20TD] = M/S 

UNITS [U 1', U2', U4', U6', U7', U9', U 11', U 12', U 13', U 14', U 15', U 16', U 17', U 18', U 19', & 
U25', U26', U27', U28', U29', U30', U31', U32', U33', U34', U35', U36', & 
AOCMX, AOCMY, AOCMZ, AP VMX, AP VMY, APVMZ, APRDOE 1, APRDOE2, APRDOE3, & 
APU, AP26X, AP26Y, AP26Z, AP27X, AP27Y, AP27Z, & 
GAROX, GAROY, GAROZ; LAROX, LAROY, LAROZ] = M/S^2 

UNITS [RB{1: 2}, RC{1: 2}] =N 
UNITS [R45N, R46N, R49N, R48N, R9H, R1OH, R11H, R12H, R13H, R14H, R15T, R16T, & 

R17T, R18T, R19T, R20T, RHO, RTO, STO, FEX, FEY, FEZ, & 
FWX, FWY, FWZ, FE, FW, FHX, FHY, FHZ, FTX, FTY, FTZ, & 
ST4041, ST4139, ST4144, ST4241, ST2942, ST4245, ST4342, ST3043, & 
ST4346, ST3143, ST4438, ST4447, ST4544, ST4548, ST4645, ST4649, & 
ST3246, ST4737, ST4736, ST4847, ST4835, ST4948, ST4934, ST3349, & 
R9HO, R11H0, R13H0, R15T0, R17T0, R19T0, RHX, RHY, RHZ, RTX, RTY, RTZ] =N 

UNITS [MA, MB, MC, MD, MWB, MWC, ME, MF] = KG 
UNITS MP {41: 50} = KG 
UNITS G= M/S^2 
UNITS [KH, KT, KB, KC] = N/M 
UNITS KS { 1: 4) = N/M 
UNITS [KTORE, KTOREF 1, KTOREF21 = NM/RAD 
UNITS [CTORE, CTOREFI, CTOREF2] =NMS/RAD 
UNITS [CB, CC, CH, CT] = NS/M 
UNITS [IA{1: 3}, IB{1: 3}, IC{1: 3}, ID{1: 3}, IWB{1: 3}, IWC{1: 3}, IE{1: 3}, IF{1: 3}J =KGM^2 
UNITS [TORB1, TORB2, TORB3, TORCI, TORC2, TORC3, TORD2, TORD3, & 

TOREF 1, TOREF2, TORE3, TORE30] = NM 
UNITS [KF1, KF2, KF3, K5, K6, K7, K8, K9, W 1, W2, RSC] = NO UNITS 

%----------------------------------------------------------- 

SAVE C: \AL\JONO-AL\BACKHAND. ALL 
CODE DYNAMICSQ C: WL\JONO-AL\BACKHAND. FOR, SUBS 
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APPENDIX 2 

TENNISGOLLUM VICON BODYLANGUAGE MODEL 

{*VICON BodyLanguage (tm) model*} 
{*Start of macro section*} 

macro REPLACE4(pl, p2, p3, p4) 
{*Replaces any point missing from 

s234 - [p3, p2-p3, p3-p4] 
ply = Average(pl/s234)*s234 

x341 = [p4, p3-p4, p4-pl] 
p2V = Average(p2/x341)*s341 

s412 = [pl, p4-pl, pl-p2] 
p3V = Average(p3/x412)*s412 

s123 = [p2, p1-p2, p2-p3] 
p4V = Average(p4/x123)*s123 
{* Now only replaces if original 
pi = p1 ? ply 
p2 = p2 ? p2V 
p3 = p3 ? p3V 
p4 - p4 ? p4V 
endmacro 

{*End of macro section*} 

{*Initialisations*} 
{*ooo====a=: cý: =: *} 

set of four fixed in a segment*} 

is missing 11-99 *} 

------------------------------------------------------------------ 
{*Define optional marker points*} 
OptionalPoints(LPSI, RPSI, SACR, LTIB, RTIB) 
OptionalPoints(LUPA, LFRA, LWRA, LWRB, LWRI, LWRE, LFIN) 
OptionalPoints(LTHI, LSHN, LHEE, LMT5, LDOR) 
OptionalPoints(RUPA, RFRA, RWRA, RWRB, RWRI, RWRE, RFIN) 
OptionalPoints(RTHI, RSHN, RHEE, RMT5, RDOR) 
OptionalPoints(LFHD, RFHD, LBHD, RBHD, CLAV, C7, STRN, T10) 
OptionalPoints(LSHO, RSHO, LELB, RELB) 

{*Set Deadband, except for static trials*} 
If $Static<>1 Deadband = $Deadband Endlf 
------------------------------------------------------------------ 
*} 
optionalPoints(LTIB, RTIB) 

Gorigin = {0,0,0} 
Global = [Gorigin, {1,0,0}, {0,0,1}, xyz) 

{*KINEMATICS*} 

If ExistAtAll(LTHI, RTHI, LTIB, RTIB) Then 
VCM -1 

Else 
VCM =0 
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Endl f 

------------------------------------------------------------------ {*Pelvis, Sacrum, and Hips*} 
{*s===ca=o===a: =========a=*} 

If $Static==l Then {*Save average leg length as parameter*} 
If VCM == 1 

LLegLength = $LLegLength 
RLegLength = $RLegLength 

Else 
LLegLength = DIST(LASI, LKNE)+DIST(LKNE, LANK) 
RLegLength = DIST(RASI, RKNE)+DIST(RKNE, RANK) 

Endlf 
$LegLength - (LLegLength+RLegLength)/2 
PARAM($LegLength) 

Endl f 
PELF = (LASI+RASI)/2 

Pelvis - [PELF, LASI-RASI, PELF-SACR, yzx] 

If ($LAsisTrocanterDistance + $RAsisTrocanterDistance) <> 0 Then 
LATD = $LAsisTrocanterDistance 
RATD = $RAsisTrocanterDistance 

Else 
LATD = 0.1288*$LegLength-48.56 
RAID = LATD 

End If 

C- $LegLength*0.115-15.3 
InterASISDist=DIST(LASI, RASI) 

as = InterASISDist/2 

mm = $MarkerDiameter/2 

COSBETA - 0.951 
SINBETA = 0.309 
COSTHETA = 0.880 
SINTHETA = 0.476 

COSTHETASINBETA - COSTHETA*SINBETA 
COSTHETACOSBETA = COSTHETA*COSBETA 

LHJC = {C*COSTHETASINBETA - 
-C*SINTHETA + aa, 

-C*COSTHETACOSBETA - 

(LATD + mm) * COSBETA, 

(LATD + mm) * SINBETA}*Pelvie 

RHJC = {C*COSTHETASINBETA - (RATD + mm) * COSBETA, 
C*SINTHETA - aa, 
-C*COSTHETACOSBETA - (RATD + mm) * SINBETA}*Pelvis 

Pelvis - (LHJC+RHJC)/2 + Attitude(Pelvis) 

If $Static==l Then {*Save pelvis size as parameter*} 
$PelvisSize - DIST(LHJC, RHJC) 

Endlf 
pARAM($PelvisSize) 

PelvisSize = $PelvisSize 

PelvisScale {1.2,1,1} 

PelvisShift = {0,0,0} 
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{*HipJoints (not drawn)*} 
LHipJoint = LHJC+Attitude(Pelvis) 
RHipJoint = RHJC+Attitude(Pelvis) 

{*Sacrum (dummy; to establish relative pose of spine)*} 
SACO = PELF + $PelvisSize*{-1,0,0}*Attitude(Pelvis) 
Sacrum = SACO+Attitude(Pelvis) 

SacrumSize = PelvisSize/2 
SacrumScale = {1,1,1} 

SacrumShift = {0,0,0} 

{*Femura*} 

LKneeOS = ($MarkerDiameter+$LKneeWidth)/2 
LAnkleOS = ($MarkerDiameter+$LAnkleWidth)/2 
RKneeOS = ($MarkerDiameter+$RKneeWidth)/2 
RAnk1eOS = ($MarkerDiameter+$RAnkleWidth)/2 

If VCM == 1 Then 
LKJC=CHORD(LKneeOS, LKNE, LHJC, LTHI) 
RKJC=CHORD(RKneeOS, RKNE, RHJC, RTHI) 

LFemur=[LKNE, LHJC-LKJC, LTHI-LKJC, zxy] 
RFemur=[RKNE, RHJC-RKJC, RKJC-RTHI, zxy] 

LFemur=ROT(LFemur, 3(LFemur), -$LThighRotation) 
RFemur=ROT(RFemur, 3(RFemur), $RThighRotation) 

LKJC = {0, -LKneeOS, 0}*LFemur 
RKJC = {O, RKneeOS, O}*RFemur 
LFemur = LKJC + Attitude(LFemur) 
RFemur - RKJC + Attitude(RFemur) 

Else 
LKneeFlexRef = LASI + {-200,0,0}*Attitude(Pelvis) 

RKneeFlexRef = RASI + LKneeFlexRef - LASI 

LFemur = [LKNE, LKneeFlexRef+LKneeOS*2(Pelvis)-LKNE, LANK- 
LKNE, zyx, LTOE-LKNE] 

RFemur = [RKNE, RKneeFlexRef-RKneeOS*2(Pelvis)-RKNtE, RANK- 
RKNE, zyx, RTOE-RKNE] 

Endlf 

LKJC = CHORD(LKneeOS, LKNE, LKneeFlexRef, LKNE+500*2(LFemur)) 
RKJC = CHORD(RKneeOS, RKNE, RKneeFlexRef, RKNE-500*2(RFemur)) 

LAJC = CHORD(LAnkleOS, LANK, LKJC, LKJC+500*2(LFemur)) 
RAJC = CHORD(RAnkleOS, RANK, RKJC, RKJC-500*2(RFemur)) 

LKneeFlex - (LKJC, LKneeFlexRef-LKJC, LAJC-LKJC, zyx, LTOE-LKJC] 
RKneeFlex = (RKJC, RKneeFlexRef-RKJC, RAJC-RKJC, zyx, RTOE-RKJC] 

LFemur = (LKJC, LHJC-LKJC, -1(LKneeFlex), zyx] 
RFemur - (RKJC, RHJC-RKJC, -1(RKneeFlex), zyxj 

LFemurSize = DIST(O(LFemur), O(LHipJoint)) 
LFemurScale {1,1,1} 

LFemurShift {0,0,0} 

RFemurSize = DIST(0(RFemur), 0(RHipJOirit)) 
RFemurScale 
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RFemurShift - {0,0,0} 

{*Tibiae*} 

If VCM == 1 Then 
LAJC=CHORD(LAnkleOS, LANK, LKJC, LTIB) 
RAJC=CHORD(RAnkleOS, RANK, RKJC, RTIB) 

LTibia=[LANK, LKJC-LAJC, LTIB-LAJC, zxy] 
RTibia=[RANK, RKJC-RAJC, RAJC-RTIB, zxy] 

LTibia=ROT(LTibia, 3(LTibia), -$LShankRotation) 
RTibia=ROT(RTibia, 3(RTibia), $RShankRotation) 

LAJC = {0, -LAnk1e0S, O}*LTibia 
RAJC = {O, RAnkleos, O}*RTibia 
LTibia = LAJC + Attitude(LTibia) 
RTibia = RAJC + Attitude(RTibia) 

Else 
LTibia = [LAJC, LKJC-LAJC, -1(LFemur), zyx, LKJC-LHJC] 
RTibia = [RAJC, RKJC-RAJC, -1(RFemur), zyx, RKJC-RHJC] 

Endlf 

LTibiaSize = DIST(O(LTibia), O(LFemur)) 
LTibiaScale {0.9,0.93,0.93} 

LTibiaShift = {0,0, -0.01} 

RTibiaSize = DIST(0(RTibia), O(RFemur)) 
RTibiaScale = {0.93,0.93,0.93} 

RTibiaShift = {0,0, -0.01} 

{*Foot (and Toes) Segments*} 
{ *' =xc a= cxx x== x==== xxax x== c*} 

LFoot = [LTOE, LAJC-LTOE, LAJC-LKJC, zyx] 
RFoot = [RTOE, RAJC-RTOE, RAJC-RKJC, zyx] 

If $Static -1 Then 
If $StaticFootFlat == 1 Then 

LRF = {1(LAJC), 2(LAJC), 3(LTOE)} 
RRF ={1 (RAJC) ,2 (RAJC) ,3 (RTOE) } 
LFootRef = [LTOE, LRF-LTOE, LAJC-LKJC, zyx] 
RFootRef = [RTOE, RRF-RTOE, RAJC-RKJC, zyx] 

Else 
LFootRef = [LTOE, LHEE-LTOE, LAJC-LKJC, zyx] 
RFootRef = [RTOE, RHEE-RTOE, RAJC-RKJC, zyx] 

Endlf 

$LAnkleFlexOS = 1(<LFootRef, LFoot, yzx>) 
$RAnkleFlexOS = 1(<RFootRef, RFoot, yzx>) 

If ExistAtAll(LHEE, RHEE) Then 
$LFootLength - 1.1*DIST(LTOE, LHEE)-mm 
$RFootLength = 1.1*DIST(RTOE, RHEE)-mm 

Else 
$LFootLength = 1.34*DIST(LTOE, LAJC) 
$RFootLength = 1.34*DIST(RTOE, RAJC) 

Endlf 

EndI f 
PARAM($LA21k1eF1exOS, $RAnkleFlexOS, $LFootLength, $RFootLength) 
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LFoot = ROT(LFoot, 2(LFoot), $LAnkleFlexOS +5) 
RFoot = ROT(RFoot, 2(RFoot), $RAnkleFlexOS +5) 

LFootBreak = 0.24*$LFootLength 
RFootBreak = 0.24*$RFootLength 

ff = ($FootThickness/2+mm) 
LToes = {-ff, 0, -0.25*$LFootLength}*LFoot+Attitude(LFoot) 
RToeS = {-ff, 0, -0.25*$RFootLength}*RFoot+Attitude(RFoot) 
LFoot = {-ff, 0,0}*LFoot+Attitude(LFoot) 

RFoot = {-ff, 0,0}*RFoot+Attitude(RFoot) 

LFootSize = 0.76*$LFootLength 
LFootScale = {1,1,1} 

LFootShift = {0.13,0,0} 

RFootSize = 0.76*$RFootLength 
RFootScale - {1,1,1} 

RFOOtShift = {0.13,0,0} 

LToesSize = 0.24*$LFootLength 
LToesScale = {1,1,1} 

LToesShift = {0.42,0,0} 

RToesSize 0.24*$RFootLength 
RToesScale = {1,1,1} 

RToesShift {0.42,0,0} 

--------------------------------------------------------------------- 

{*Thorax segment*} 

Replace4(C7, T10, CLAV, STRN) 
UThorax = (C7+CLAV)/2 

LThorax = (T10+STRN)/2 

FThorax = (CLAV+STRN)/2 

BThorax = (C7+T10)/2 

TRXO = CLAV+0.5*(C7-CLAV) 
Thorax = [TRXO, LThorax-UThorax, BThorax-FThorax, zyx] 

ISHO = 300 
LSJC = LSHO+(ISHO*{0,0,0.2}+{0, - 
$LateralShoulderOffset, 0})*Attitude(Thorax) 
RSJC = 
RSHO+(ISHO*{0,0,0.2)+{0, $LateralShoulderOffset, 0})*Attitude(Thorax) 

{*Head Segment*} 

Replace4(LFHD, RFHD, RBHD, LBHD) 
LHead = (LFHD+LBHD)/2 
RHead = (RFHD+RBHD)/2 

BHead = (LBHD+RBHD)/2 

FHead = (LFHD+RFHD)/2 

If $Static ==1 Then 
$HeadSize = DIST(FHead, BHead) 
PARAN($HeadSize) 

Endl f 
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CHead = BHead+$MarkerDiameter*(FHead-BHead)/(2*$HeadSize) 
Head = [CHead, LHead-RHead, FHead-BHead, yzx] 

If $Static == 1 Then 
HeadRef = [CHead, LHead-RHead, -3(Global), yxz] 
If $StaticHeadLevel == 1 Then 

$HeadFlexOS = 1(<HeadRef, Head, yzx>) 
Else 

$HeadFlexOS -0 
Endlf 
PARAM($HeadFlexOS) 

Endlf 

Head = ROT (Head, 2(Head), $HeadFlexOS+$HeadTilt) 

HeadSize = $HeadSize 
HeadScale = {1.2,1.2,1.2} 

HeadShift = {0,0, -0.1} 

{*Clavicle Segments*} 

LClavicle - [LSJC, O(Thorax)-LSJC, -]. (Thorax), zyx] 
RClavicle = [RSJC, 0(Thorax)-RSJC, -1(Thorax), zyx] 

LClavicleSize = DIST(0(LClavicle), 0(Thorax)) 

LClavicleScale = {1,1,1) 

LClavicleShift = {0,0,0} 

RClavicleSize = DIST(0(RClavicle), 0(Thorax)) 
RClavicleScale = {1,1,1} 

RClavicleShift = {0,0,0} 

{*Humerus Segments*} 
{ *====m==saa: =s=3mß' 

} 

If ExistAtAll(LWRA, RWRA) 
LWRI = (LWRA+LWRB)/2 
RWRI - (RWRA+RWRB)/2 

Endlf 

ElbowOS = ($MarkerDiameter+$ElbowWidth)/2 

LHumerus = [LELB, LSHO+E1bowOS*2(Thorax)-LELB, LWRI-LELB, zyx] 
RHumerus = [RELB, RSHO-E1bowOS*2(Thorax)-RELB, RWRI-RELB, zyx] 

LEJC CHORD(ElbowOS, LELB, LSJC, LELB-500*2(LHumerus)) 
REJC = CHORD(ElbowOS, RELB, RSJC, RELB+500*2(RHumerus)) 

LRadius [LWRI, LWRA-LWRB, LEJC-LWRI, xyz] 
RRadius = [RWRI, RWRA-RWRB, REJC-RWRI, xyz] 

WristOS = ($MarkerDiameter+$WristThickness)/2 

LWJC = LWRI-$WristThickness/2*1(LRadius) 
RWJC = RWRI+$WristThickness/2*1(RRadius) 

---------------------------------------------------------------- 
If EXiStAtAll(LWRA, RWRA) 

(*Bar across back of wrist; A towards thumb*) 
LRadius - [LWRI, LWRA-LWRB, LEJC-LWRI, Xyz] 
RRadius = [RWRI, RWRA-RWRB, REJC-RWRI, xyz] 
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LWJC = LWRI-$WristThickness*2(LRadius) 
RWJC = RWRI+$WristThickness*2(RRadius) 

ElsIf ExistAtAll(LWRE, RWRE) 
{*WREs above back of wrist*} 
LWJC = CHORD(WristOS, LWRI, LEJC, LWRE) 
RWJC = CHORD(WristOS, RWRI, REJC, RWRE) 

Else 
LWJC = CHORD(WristOS, LWRI, LEJC, LEJC-500*2(LHumerus)) 
RWJC = CHORD(WristOS, RWRI, REJC, REJC+500*2(RHumerus)) 

Endlf 

Jono = [RSJC, RSJC-TRXO, UThorax-LThorax, zxy] 
LHumerus = [LEJC, LEJC-LSJC, LEJC-LELB, zxy] {* y towards centre *} 
RHumerus - [REJC, REJC-RSJC, RELB-REJC, zxy] 

{*Radius (and Ulnar) Segments*} 

LRadius = [LWJC, LWJC-LEJC, LWRB-LWR. A, zxy] {* y towards centre *} 
RRadius = [RWJC, RWJC-REJC, RWRA-RWRB, zxy] 

-------------------------------------------------------------------- 
{*Wrist Segments (dummy)*} 
{ *=aa zaa saaas===o==az===* 

} 

if ExistAtAll(LWRA, RWRA) 
(*Bar across back of wrist; A towards thumb*} 
LWrist = [LWJC, 3(LRadius), LWRB-LWRA, zxy] 
RWrist = [RWJC, 3(RRadius), RWRA-RWRB, zxy] 

E1self ExistAtAll(LWRE, RWRE) 
{*WREs above back of wrist*} 

LWrist = [LWJC, 3(LRadius), LWJC-LWRE, zyx] 
RWrist = [RWJC, 3(RRadius), RWJC-RWRE, zyx] 

Else 
LWrist - LWJC+Attitude(LRadius) 
RWrist - RWJC+Attitude(RRadius) 
LWrist = ROT(LWrist, 3(LWrist), -50) 
RWrist = ROT(RWrist, 3(RWrist), 50) 

Endlf 

----------------------------------------------------------------- 

{*Hand Segments*} 
{*===a=s-sa==aa*} 

------------------------------------------------------------------ If $Static -- 1 Then 
$HandSize = 0.35*(DIST(LWJC, LEJC)+DIST(RWJC, REJC)) 
PARAM($HandSize) 

Endlf 
----------------------------------------------------------------- 

If ExistAtA11(LFIN, RFIN) 
HandOS - ($MarkerDiameter + $HandThickness)/2 
LHND = CHORD(HandOS, LFIN, LWJC, LWJC-500*1(LRadius)) 
RHND = CHORD(HandOS, RFIN, RwJC, RWJC-500*1(RRadius)) 
LHand = [LWJC, LWJC-LHND, -i(LWrist), zyx) 
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Else 

Endlf 

RHand = [RWJC, RWJC-RHND, -1(RWrist), zyx] 

LHand = LWrist 
RHand = RWrist 

LHand = [LWJC, LHND-LWJC, LWRB-LWRA, zxy] {* y towards body centre *} 
RHand = [RWJC, RHND-RWJC, RWRA-RWRB, zxy] 

{*Tennis Racket*} 
{*==acaaaaaaaae*} 

Replace4(TRHDA, TRHDB, TRHDC, TRHDD) 

Midl= (TRHDB+TRHDC) /2 

Mid2=(TRHDA+TRHDD)/2 
MidHead=(Midl+Mid2)/2 
TennisRacket=[MidHead, Midi-Mid2, Mid1-TRHDA, yxz] 

OUTPUT(RSJC, REJC, RWJC, TRXO, TRHDA, TRHDB, TRHDC, TRHDD, TRHNA, TRHNB) 

{*Joint Angles*} 
{*cm=ýýaýaýca_*} 

See Euler Angles document for a detailed explanation *} 
{* of the use of the <> angle function *} 

{* First, find the general progression direction of the subject *} 
{* 

x ax x ýýýýý- Cxaxaxxa xx x x: xx ýýý caaxaas s= saxx9ssssasa a= a ax ass sass *} 

--------------------------------------------------------------------- 
PelvisDirection = AVERAGE( SACR-PELF 
If $Static -- 1 Then 

Anatomy = [0(Global), 3(Global), PelvisDirection, zyx] 
Else 

Progress = (PELF [7] + PELF [6] + PELF [5] + PELF [4] + PELF [3] 
- PELF[-71- PELF[-6]- PELF(-5]- PELF[-41- PELF [-3]) /5 

Anatomy - [0(Global), 3(Global), -Progress, zyx] 
Endlf 
If VCM -- 1 Then 

Fwd = 3(<Anatomy, Global>) 
{*align to +X*} Anatomy = Global 
If (Fwd > -135) AND (Fwd <_ -45) Then {*align to -Y*} 

Anatomy = ROT(Anatomy, 3(Anatomy), -90) 
ElseIf (Fwd > 45) AND (Fwd <= 135) Then {*align to +Y*} 

Anatomy = ROT(Anatomy, 3(Anatomy), 90) 
ElseIf (Fwd > 135) OR (Fwd <= -135) Then {*align to -X*} 

Anatomy - ROT(Anatomy, 3(Anatomy), 180) 
Endlf 

Endlf 

{*Anatomical Planes » Head*) 
RHeadAngles 6 <Anatomy, Head, yxz>(-3) 
LHeadAngles - -RHeadAngles(-1) 

{*Anatomical Planes » Thorax*} 
RThoraxAngles = -<Anatomy, Thorax, yxz> 
RThoraxAngles = <-180-RThoraxAngles(1), RThoraxAngles(2), 180- 
RThoraxAngles(3)> 
LThoraxAngles - -RThoraxAngles(-1) 

{*Anatomical Planes » Pelvis (VCM)*} 
RPelvisAngles - -<Anatomy, Pelvis, yxz>(-2) 
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LPelvisAngles = -RPelvisAngles(-1) 

{*Foot Progression: Anatomical Planes » Feet (VCM)*} 
LFootProgressAngles = -<Anatomy, LFoot, yxz>(-2) 
RFootProgressAngles = -<Anatomy, RFoot, yxz>(-3) 

{*Neck: Head » Thorax *} 
RNeckAngles = -<Head, Thorax, yxz> 
RNeckAngles =< -180-RNeckAngles(1), RNeckAngles(2) , 180- 
RNeckAngles(3) > 

LNeckAngles = -RNeckAngles(-1) 

* 

{*Thorax: Global » Thorax*} 
ThoraxAngles = -<Global, Thorax, yxz> 
JonoAngles = -<Global, Jono, zyx> 
JSA = -<Jono, RHumerus, yxz> 

{*Shoulders: Thorax » Humeri*} 
LShoulderAngles = -<Thorax, LHumerus, yxz> 
RShoulderAngles = <Thorax, RHumerus, yxz>(-1) 
AbsRSA = -<Thorax, RHumerus, yxz> 

{*Elbows: Humeri » Radii*J 
LElbowAngles = -<LHumerus, LRadius, yxz> 
RElbowAngles = <RHumerus, RRadius, yxz>(-l) all joint angles wrt 
flexion/pronation/int. rot. *} 
AbsREA = -<RHumerus, RRadius, yxz> 

{*Wrists: Radii » Hands*} 
LWristAngles = -<LRadius, LHand, yxz> 
RWristAngles = <RRadius, RHand, yxz>(-1) 
AbsRWA = -<RRadius, RHand, yxz> 

{*Tennis Racket: RRadius » Racket)*} 
RacketAngles= -<RHand, TennisRacket, yxz> 
RacketGlobal= -<Global, TennisRacket, yxz> 

--------------------------------------------------------------------- 
{*Lumbar Spine (Pelvis » Thorax)*} 
RSpineAngles = -<Pelvis, Thorax, yxz> 
RSpineAngles = <-180+RSpineAngles(1), -RSpineAngles(2), - 
180+RSpineAngles(3)> 
LSpineAngles = -RSpineAngles(-1) 

{*Hips: Pelvis » Femora (VCM)*} 
LHipAngles = <Pelvis, LFemur, yxz> 
RHipAngles - -<Pelvis, RFemur, yxz>(-l) 

{*Knees: Femora » Tibiae (VCM)*} 
LKneeAngles = <LFemur, LTibia, yxz>(-1) 
RRneeAngles = -<RFemur, RTibia, yxz> 

{*Ankles: Tibiae » Feet (VCM)*} 
LAA = -<LTibia, LFoot, yxz> 
LAnkleAngles =< -90 - 1(LAA), -3(LAA), -2(LAA)> 
_AA = -<RTibia, RFoot, yxz> 
RAnkleAngles -< -90 - l(RAA), 3(RAA), 2(RAA)> 
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(*Forefoot: Feet » Toes)-) 
LFFootAngles - <LFoot, LToes, yxz>(-1) 
RFFootAngles - -<RFoot, RToes, yxz> 
--------------------------------------------------------------------- 

OUTPUT(ThoraxAngles, AbBRSA, RShoulderAngles, AbsREA, RE1bowAngles, AbaRWA 

, RWristAnglea, JonoAngles, JSA) 
OUTPUT(RacketAngles, RacketOlobal) 

192 



APPENDIX 3 

VICON MOTION ANALYSIS DATA 
The following graphs show the shoulder, elbow and wrist joint angle-time histories 

for the selected trials. The raw vicon motion data and the splined joint angle time 

histories are shown for 50 ms either side of ball impact. 

Trial 1- one-handed backhand topspin groundstroke 
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Trial 8- one-handed backhand topspin groundstroke 

Trial 8 shoulder f Joint angle rawvicondata Trial 8 shoulder Joint angle f raw vicondata 
flexion / extension (deg) splined adduction I abduction (deg) splined 
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Trial 24 - one-handed backhand topspin groundstroke 

Trial 24 - shoulder Joint angle " rawvicondata Trial 24 shoulder " raw vicondata 
flexion/ extension (deg) splined adduction / abduction Joint angle --splined 
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Trial 31 - one-handed backhand topspin groundstroke 

Trial 31 - shoulder Joint angle " raw vicon data Trial 31 - shoulder " raw vicondata 
flexion / extension (deg) ----splined adduction / abduction Joint angle -. ---splined 
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Trial 36 - one-handed backhand topspin groundstroke 

Trial 36 - shoulder Joint angle " raw vicon data Trial 36 - shoulder Joint angle " raw vicondata 
flexion / extension (deg) -- splined adduction / abduction (deg) splined 

65 10 

55 
-0 . 

03 -0.0-110 0.01 0.03 0.05 

45 Time (s) 

-3 
35 

-0.05 -0.03 -0.01 0.01 0.03 0.05 -50 
Time (s) 

Trial 36 - shoulder " raw vicondata Trial 36 - elbow " raw vicondata 
Internal / external Joint angle 

___-_splined 
flexion / extension 

Joint angle 
-splined 

rotation (deg) (deg) 
45 

100 40 

80 
30 

60 25 

40 20 

-0.05 -0.03 -0.01 0.01 0.03 0 05 -0.05 -0.03 -0.01 0.01 0.03 0.05 
Time (s) Time (s) 

Trial 36 - elbow Joint angle 
" raw vicondata Trial 36 - elbow " raw vicon data 

adduction / abduction (deg) --splined pronation / supination Joint angle 
-splined (deg) 

-5 140 

-0.05 -0.03 -0.01-7 0.01 0.03 0.05 120 

9 Time (s) 

80 
13 so 

-15 -0.05 -0.03 -0.01 0.01 003 0.05 
Time (s) 

Trial 36 - wrist Joint angle " raw vicondata Trial 36 - wrist Joint angle " raw vicondata 

flexion / extension (deg) splined radial I ulnar deviation (deg) splined 

10 

5 
15 

5 

0.01 0.01 0 03 0.05 5 -0.05 -0.03 005 

-10 
Time (a) 

-15 
Time (s) 
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Trial 56 - one-handed backhand slice groundstroke 

Trial 56 - shoulder Joint angle " raw vicon data Trial 56 - shoulder " raw vicon data 
flexion / extension (deg) splined adduction/ abduction Joint angle --splined 

55 
(deg) 

10 
50 

45 -0.05 -0.0.01 0.03 0.05 
Time (s) 

35 -30 

-0.05 -0.03 -0.01 0.01 0.03 0.05 
Time (s) 50 

Trial 56 - shoulder f rawvicondata Trial 56 - elbow f raw vicondata Joint angle 
internal I external Joint angle _- splined flexion I extension -splined 

rotation (deg) (deg) 

45 
100 40 

80 35 

60 z5 

40 20 

-0.05 -0.03 -0.01 0.01 0.03 005 -0.05 -0.03 -0.01 0.01 0.03 0.05 
Time (s) Time (s) 

Trial 56 elbow Joint angle " rawvicondata Trial 66 - elbow " rawvicondata 
I adduction abduction (deg) 

- --- splined pronation I supination 
Joint angle 

splined (deg) 
-5 140 

-0.05 -0.03 -0.01 0.01 0.03 0.05 120 
-10 Time (s) "- ý 

ý 

60 

-20 -0.05 -0.03 -0.01 0.01 0.03 0.05 

Time (s) 

Trial 56 - wrist Joint angle " raw vicondata Trial 56 - wrist Joint angle " rawvicondata 

flexion/ extension (deg) 
-splined radial I ulnar deviation (deg) ---splined 

20 
15 

10 t- 
UU 5 -ý 

-0.05 Ot5 0.01 0 03 0.05 
0 003 001 0.01 0.03 0.05 Time(s) 

10 fý; 
Time (s) 
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APPENDIX 4 

SUBJECT INFORMED CONSENT 

Purpose 

To obtain kinematic, kinetic and EMG data during the performance of selected tennis 

backhand strokes. To obtain subject specific inertia, body composition and joint 

torque parameters. 

Procedures 

The kinematic, kinetic and EMG data of the tennis backhand strokes will be obtained 

using: 

" An automatic data collection system and two high-speed video cameras 

9 Tennis rackets instrumented with accelerometers and grip pressure sensors 

9 EMG data using surface electrodes attached to the arm holding the racket 

A number of trials will be requested with suitable breaks to minimise fatigue and 
boredom. 

The subject specific parameters will be obtained from: 

" Anthropometric measurements (using tape measures and specialist 

anthropometers) 

" Body composition measurements (using skinfold callipers) 

" Joint torque profiles (using an isovelocity dynamometer) 

During the measurements, more than one researcher will be present, at least one of 

who will be of the same sex as you. 

Questions 

The researchers will be pleased to answer any questions you may have at any time. 
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Withdrawal 

You are free to withdraw from the study at any stage without having to give any 

reasons. 

Confidentiality 

Your identity will remain confidential in any material resulting from this work. Video 

recordings will be stored in the video analysis room to which access is restricted to 

members of the biomechanics research team. On occasion video images may be 

required. In such an instance we will seek your written permission to use such images 

and you are perfectly free to decline. Video recordings will be kept for three years 

after publication of the study. 

I have read the outline of the procedures that are involved in this study, and I 

understand what will be required by me. I have had the opportunity to ask for further 

information and for clarification of the demands of each of the procedures and 

understand what is entailed. I am aware that I have the right to withdraw from the 

study at any time with no obligation to give reasons for my decision. As far as I am 

aware I do not have any injury or infirmity, which would be affected by the 

procedures outlined. 

Name ................................................ 

Signed ...............................................: (subject) Date.......................... 

In the presence of. Name ................................................ 
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APPENDIX 5 

ANTHROPOMETRIC MEASUREMENTS FOR 

SEGMENTAL INERTIA PARAMETERS 

NAME Jim May AGE 22 DATE 14/05/04 

All measurements in millimetres 

TORSO 

Level hip umbilicus ribcage nipple shoulder neck -º nose ear top 
Length 0 173 221 403 549 620 0 73 139 246 
Perimeter 946 840 815 910 380 476 586 
Width 
Depth 

348 296 296 319 350 
181 

LEFT ARM 

Level shoulder midarm elbow forearm wrist -º thumb knuckle nails 
Length 0 308 376 587 0 52 94 186 
Perimeter 367 272 262 260 
Width 

179 253 
62 105 

205 
85 

101 
47 

RIGHT ARM 

Level shoulder midarm elbow forearm wrist -º thumb knuckle nails 
Length 0 289 371 585 0 52 91 185 
Perimeter 
Width 

375 272 265 281 171 261 
64 109 

21 S 
87 

105 
49 

LEFT LEG 

RIGHT LEG 

Height (mm) 
11860 

Weight (N) 740.7 

201 


