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ABSTRACT 

T HE primary function of this research project has been to investigate the physical 

properties of the lower jaw of the Atlantic Bottlenose Dolphin (Tursiops trun

eatus). This has been achieved through numerical modelling techniques, established 

physical measurements and modem Laser Doppler Velocity Measurements. 

During the course of this work some interesting characteristics of the dolphin jaw struc

ture have been discovered. Sound speeds and attenuation levels of the jawbone have 

been determined and the implications assessed. The geometric array formed by the 

dolphin teeth of the lower jaw can be used to form an end-fire array which produces a 

beam pattern similar to those of the dolphin. The geometric array has also been anal

ysed for its passive acoustical properties, in particular its ability to form acoustic stop 

bands within the audible range of the dolphin. 

The results of this research show that the directivity of the dolphin can be reproduced 

using the morphological features of the lower jaw. 
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CHAPTER 1: 

INTRODUCTION 

A COUSTICS is the study of sound production, propagation and interaction with 

its medium and any perturbing objects. There are many applications of acous

tic theory ranging from simple transducer design for audible sound generation (e.g. 

clock alarm) to signicantly more complex systems capable of imaging (e.g. medical 

ultrasonic imaging). This thesis focuses on a particular application which has been 

exploited in the animal kingdom - echolocation. In particular this thesis will examine 

the implementation of sound reception in the Bottlenose Dolphin (Tursiops truncatus) 

using a variety of techniques. 

1.1 Background 

SOund Navigation and Ranging or as it is more commonly know SONAR has been in 

existence in an elementary form since 1490, when Leonardo Da Vinci was quoted as 

saying, 'If you bring your ship to a stop and place the head of a long tube into the water 

and place the outer extremity to your ear, you will hear ships at great distances from 

you' [l.l]. This basic principle was not applied until the turn of the 20th century, when 

the submarine bell was invented. This was a device that was used by ships to navigate 

around coastal areas. The device exploited the difference between the speed of sound 

in air to that of water. A simultaneous noise was produced in both the water and the air 

by using an under water bell and a loud horn. The distance from the shore could then 

be calculated by knowing the speed at which the sound travelled in both mediums and 

the different times of arrival. 

I 



1. Introduction 2 

The next major progression in sonar came in 1914, when R. A. Fessenden built a mov

ing coil transducer, capable of detecting an iceberg at a range of 2 miles, this is one 

of the earliest examples of a man made active sonar system. Following this in 1914 

was the start of World War I. As a result a significant effort was invested into the de

velopment of SONAR. By 1918, both Britain and the United States of America had 

built active SONAR systems, and had them put them into operation on a small number 

of marine vessels. The development of these systems had been made possible by the 

discovery and exploitation of the piezoelectric effect and by advances in vacuum-tube 

technology. 

As electronic technology progressed, German scientists concentrated on the develop

ment of the physics of underwater acoustic propagation, and Lichte et al. [1.2] pub

lished the first paper on underwater acoustics. This paper demonstrated the complex 

paths that sound follows under the sea, with respect to changing temperature bound

aries. It was not until the onset of the second world war that the American Navy stared 

to use the term SONAR. Since these first steps, SONAR systems have undergone many 

evolutions and have now become a mature and well understood discipline. In a mature 

discipline however there is still grounds for improvement! 

1.2 Sonar 

It was not until World War 2 that the main mathematical formulas regarding sound 

propagation were formed and published [1.3]. The first calculations were used to pre

dict the basic range characteristics of a sonar system. These equations are useful for 

describing the performance of existing designs and are useful for providing guidelines 

on designing and manufacturing new systems. The sonar equations relate the various 

properties of sound production, transmission and reception, and these can be grouped 

into both the desired and undesired properties. The desired property is the signal, which 

you are trying to measure while the undesired part is the signal loss. Signal loss is a 

product of noise from a variety of sources, although these can generally be classified 
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into three groups; Reverberation, self induced noise and Ambient Noise. Signal loss 

also stems from absorption in the transmission medium and spreading. 

As with any system, the goal is to increase the ratio between the desired signal and 

the undesired noise and loss component. Self noise can be controlled by good system 

design, whereas the other components are more difficult to control and, in the case of 

spreading, is unavoidable. Reverberation can be minimised by the use of short pulsed 

signals and by using a narrow beam angle on the transmitter and receiver, however this 

is still a major issue for shallow water system and is one of the main reasons for the 

study in this PhD thesis. 

Sonar systems are generally grouped into two types, Passive or Active sonar. Passive 

sonar is when only a receiving array is operated and the system listens for sounds 

produced externally to the system, these could range from marine mammal noises such 

as dolphin click and whistles to engine noise for a submerged submarine. In this case, 

the receiving array is typically large with many elements so that the maximum amount 

of information can be obtained and processed from the received signals. In contrast 

active sonar systems contain elements that can transmit signals of various frequencies 

and time durations and then a receiving system that is made up similar to the passive 

system. 

1.2.1 Basic Sonar Equations 

Although Sonar covers a very diverse field of applications in a large variety of mediums 

which each have their own individual properties, the principles of sound transmission 

and reception within a homogeneous medium can be modelled by the general sonar 

equations. These equations are built from several simple values that explain what hap

pens to a pressure signal as it is produced, and propagates around its environment. 

All the general sonar equations use the decibel as a scalar unit due to the large scale of 

the units involved in sound propagation. The decibel is defined in Equation 1.1 
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dB = 10 log POW ER 
reference 

4 

(1.1) 

Source level (SL) is the theoretical pressure 1 meter away from the source of an object, 

SL is defined in Equation 1.2. The reference intensity used in underwater acoustic 

applications is typically I /J. pascal. 

B L = 10 log Intensity at 1 meter 
Reference Intensity 

(1.2) 

When a signal is transmitted from a point source the wave front spreads out. The way in 

which it spreads out is a function of the transmitter directivity and the geometry of the 

sound channel. In a free field, a point source will spread spherically. When this happens 

the total energy of the field stays constant (neglecting absorption) but the intensity at 

a single point is reduced, this is called Transmission Loss (TL) and is proportional to 

the distance from the source r. The spherical spreading equation is shown in Equation 

1.3. Cylindrical spreading is another common type of spreading that often takes place 

within a waveguide. The cylindrical equation is shown in Equation 1.4. In many cases 

spherical or cylindrical spreading can be used to estimate the best or worst case for 

transmission loss. Other techniques provide better approximations such as, ray tracing, 

normal mode models, fast field models, multi path expansion method and parabolic 

equation models, each of these methods have their own strengths and drawbacks [1.4]. 

TL = 2010gr (1.3) 

TL = 10 log r (1.4) 

Target Strength (TS) is a property that defines the amount of incoming energy that is 

re-radiated by an object, this is the ratio of reflected intensity to the incident energy and 

is calculated 1 m from the target. 

TB = 10 10 Intensity reflected 
g Intensity incident 

(1.5) 

Noise Level (NL), as stated earlier, is a product of ambient noise in the environment as 

well as self noise, which could be caused by the electrical components in the system 
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01 

Figure 1.1: Passive Sonar System 

as well as the acoustic noise that could be produced by the operating vessel. There are 

a variety of techniques that can be used to suppress noise in a system, these range for 

simple solutions such as turning off all engines on a vessel while measuring to complex 

signal processing, using filtering and correlation techniques. Noise level is typically 

expressed in dB re I JLPa. 

Oirectivity Index (Ol) is the gain that is produce by the transmitter I receiver not having 

an even power I sensitivity in all directions, this causes an increase in some directions 

and a decrease in others. For shallow waters where high reverberation between the 

bottom and the surface is likely to occur a highly directional transmitter and receiver is 

desirable. Ol is defined in Equation 1.6. 

DI = IOl0g Peak Intensity of Radiated Pattern (1.6) 
Average Intensity of Radiated Pattern 

Using the basic sonar parameters a full system can be constructed. Figure 1.1 shows 

a simple system for passive sonar operation. This system is trying to detect the signals 

sent from the dolphins in the figure but is also receiving background noise generated 

from the ship. From this diagram it can be seen that the detection threshold (OT) of 

the system is influenced by the directivity of the receiving array, the background Noise 

Level (NL) and the transmission loss (TL) from the source signal with a Source Level 

of (SL). The system is shown mathematically in Equation 1.7, this is the fundamental 
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SL 

~~~~DT ~ ~NL 
Figure 1.2: Active Sonar System 

equation for passive sonar operation. 

DT = SL - TL- NL+DI 

6 

(1.7) 

A similar scenario can now be constructed for an active sonar system. Figure 1.2 shows 

an active system, in this system a signal is transmitted from a point source and received 

on the hydrophone array. The sound signal is transmitted from the point source with a 

source level (SL) the signal then undergoes spreading which causes a transmission loss 

(TL), the signal then reflects off the bottom of the ship which has an associated target 

strength (TS), this signal again undergoes spreading which causes more transmission 

loss (TL) the signal is then received at the hydrophone array along with background 

noise (NL) and additional multipath transmission signals which is commonly known 

as reverberation level (RL). The equation for systems of this type is shown in Equation 

1.8. In this case the noise in the system is a product of the reverberation level and the 

background noise level. 

DT= SL - 2TL - (NL+RL) + DI (1.8) 

These basic equations can be used to estimate the maximum performance of a sonar 

system. 
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1.2.2 Bioacoustics 

Bioacoustics is the study of acoustics that originates from, or is intercepted, by ani

mals including humans. The subject area is constructed from a wide variety of dis

ciplines such as neurophysiology, physiology, biology, engineering, signal processing 

and acoustics. The primary aim of researchers within this field is to define how sounds 

are produced, received and the information encoded and decoded from them. In this 

thesis an engineering view of sonar is presented which examines how the physiology 

of the dolphin can be used to provide enhanced signal processing information to the 

processing system and increase the information gained from echolocation signals. 

1.3 Document Description 

The remainder of this chapter will describe the work that will be presented in the rest 

of this thesis. In this thesis unless otherwise specified the term 'Dolphin' refers to the 

Atlantic Bottlenose Dolphin (Tursiops truncatus). 

Chapter 2 provides a background literature review of the subject of bioacoustics. This 

literature review provides the motivation for the work that is presented in the remainder 

of this thesis. 

Chapter 3 examines the properties of the lower jaw when the teeth are assumed to 

act as individual pressure receptor elements. The work in this chapter is based on 

numerical simulations within Matlab. The construction and testing of a real end-fire 

array system is also discussed and comparisons between real and simulation results are 

also presented. 

Chapter 4 presents measurement work carried out on a real jaWbone, using a variety of 

techniques. The aim of this work is to define more accurately what happens as sound 

travels through the lower jaw and teeth of the jaw. This work provides data that can be 

used in future experiments and modelling work. 
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Chapter 5 describes the verification of custom TLM modelling software for use in sim

ulating acoustic wave propagation. This software is then benchmarked and used to 

examine jaw properties that were identified in the earlier chapters of this work. In 

particular acoustic band gap structures are examined. 

Chapter 6 draws conclusions from the work that has been presented and suggests further 

work that could be performed to further expand on the work within this thesis. 
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CHAPTER 2: 

BIOACOUSTICS AND DOLPHIN ECHOLOCATION 

B IOACOUSTICS is the study of acoustic energy that is emitted or received by a 

living biological creature. This can be for a range of purposes such as commu

nication, navigation, object classification and ranging. It has been reported by many 

authors [2.1, 2.2, 2.3, 2.4] that in the 1770's the Italian scientist Lazzaro Spallanzani 

observed that bats were capable of avoiding objects in a dark room even when owls 

were incapable of navigating. He continued to observe that bats which had been vi

sually blinded could still fly with the same precision. This observation was followed 

up by Swiss scientist Charles Jurine who conducted experiments with bats which gave 

the first evidence of the use of acoustics in navigation by animals. In this experiment 

he fi lied the ears of a bat with wax. He found that the bats became unable to navigate 

when the ear canal was obstructed and collided with obstacles that they had previously 

avoided. He concluded that the bats hearing was an important part of the orientation 

and obstacle avoidance capability, however, he was unsure of the reasons for this de

pendency, as the bats were completely silent to the human ear. 

After the sinking of the Titanic in 1912 Hiram Maxim I suggested that icebergs could 

be located in the same way he hypothesised bats echo located. He thought that by using 

low frequencies generated by the flapping of bats wings and listening to the returning 

echos, icebergs could be detected through the water and avoided. Although it is now 

known that sound generation takes place in the larynx of a bat [2.6], this is the first 

. documented example of biologically inspired design in underwater acoustics. 

It wasn't until 1938 that the correct high frequency mechanism of bat echolocation was 

I who previously invented the machine gun in 1885 [2.5] 
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experimentally proven by Pierce and Griffin [2.7]. In their work they describe how they 

were able to use a recently available piezoelectric microphone and a super heterodyne 

receiver to down shift the ultrasonic vocalisations of the bat to human audible frequeri

cies. They demonstrated that bats transmitted pulse bursts between 1-2 ms in duration 

between 30 and 70 kHz. In 1942 Robert Galambos was the first person to publish 

cochlear potentials evoked when ultrasonic frequencies were used to stimulate the ear . 

of a variety of bat species [2.8] demonstrating their ultrasonic hearing capabilities. This 

is the first example of a physiological study of a biological sonar system and was one 

of the pivotal works on the subject that laid proof for echolocation in bats. 

Following the work on echolocating bats came the discovery of echolocation in Dol

phins by McBride in 1947 [2.3]. He observed that at night in turbid conditions during 

capture exercises, dolphins (The Atlantic Bottlenose Dolphin) were able to evade fine 

nets that were masked by the darkness. This reminded him of the way in which bats 

were able to navigate around room void of light. He is also reported to have noted that 

dolphins were able to identify gaps in the nets and move through them even though this 

was beyond their visual capabilities. It is this capability that has caused scientists up to 

the present day to be fascinated by the abilities of the dolphin sonar system. 

2.1 Early Biosonar Discoveries 

In 1961 Kenneth Norris was the first person to conduct an experiment with a Bottlenose 

Dolphin to prove without doubt that dolphins did use echolocation to navigate and 

locate [2.9]. In his experiment he trained a dolphin to navigate across a tank of water 

and to avoid metal poles and other obstacles that were present. The test was then 

repeated with suction cups placed over the eyes of the animal to inhibit the use of its 

visual system. The poles were rearranged to verify that the dolphin was not navigating 

from memory, the dolphin completed the task successfully, while emitting ultrasonic 

signals and avoiding the obstacles, proving that dolphins could navigate without the 

use of eyesight. 
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In 1962 Evans and Prescott [2.10] were the first people to report that a Atlantic Bot

tlenose Dolphin was capable of transmitting 'Iow frequency whistle like cries' at the 

same time as producing echolocation clicks. From this they concluded that unlike bats, 

dolphins possess a system that is capable of using two domains of sound simultane

ously and that this may work in the same way that humans use taste and smell. This 

lead to a great deal of research into the dolphin sound production system and the dual 

sound production theory. 

In 1964 and 1968 Norris published the founding papers on the sonar systems of Cetaceans 

[2.11,2.12]. His work documents what was known about dolphin echolocation and nar

rates the dolphin's evolution from being a land based species back in to the sea. This 

was one of the first pieces of work that studied the dolphin physiology in depth and 

to highlight the morphological features that form the echolocation reception system. 

U sing experimental recordings it was shown that Dolphins emitted click trains in the 

region of 0.7-2.4 ms duration, with an extremely broadband frequency content. Further 

experimental evidence showed that sound was projected forward of the head of the dol

phin in a narrow beam. The main projection area was hypothesised as being located 

behind the forehead and not out of the larynx as in other mammals. This was based 

upon work carried out by Evans and Prescott [2.10] who had noted that the sound in

tensity reached a peak level when a receiver was positioned in front of the forehead of 

the animal and was lower at the larynx. 

When observing the skull of a porpoise that had washed up on the shore in Mexico, 

Norris noted that the lower jawbone was constructed from a pair of hollow channels 

with a sponge like bone material that was filled with blood and fatty oils. As the bone 

approached the ear, it formed a pair of very narrow homogeneous bones. When this 

section of bone was held up to the sunlight he observed the light passing through a 

specific oval shaped area (labelled k in Figure 2.1). This area he termed the 'Acous

tic Window'. He hypothesised that this area was thin enough to allow sound to pass 

directly through and be coupled by the surrounding fat to the inner ear of the animal. 

When examining a number of different species of odontocete this jaw structure was 
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Figure 2.1: Structures in the dolphin head, reproduced from Norris [2.12]. a, blowhole; 

b, vestibular sac; c, melon; d, tubular sac; e, nasal valve with lip entering tubular 

sac; f, internal nares; g, mesorostral cartilage; h, premaxillary nasal sac; i. cribri

form plate; k, Acoustic window in the mandible, and the site of overlaying fatty 

window. 

also evident. On closer examination the acoustic window was overlapped by soft tis

sue devoid of muscle fi bres with an oval fatty material which matched the area of the 

thinnest bone. From this he speculated that this could aid the sound transmission by 

impedance matching the incoming sound to the bone and then back into the inner ear. 

2.2 The Dolphin 

Dolphins come in a variety of species, however they are fundamentally similar, with 

the notable exception of river dolphins such as the Ganges river dolphin, which are 

not considered in this thesis. They are all carnivorous animals that travel the seas and 

oceans as single animals or as packs of up to a few hundred. Although dolphins are an 
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aquatic mammals that don't often leave the water 2, they still possess an excellent visual 

ability in air, where they are able to tell the difference between complex shape at ranges 

above lOOm. The visual sense is the parallel of its echolocation system in water. There 

has been a great deal of research into target discrimination by the Bottlenose Dolphin 

including work by Pack and Herman [2.13]. They suggest that the acoustic system 

allows for an acoustic imaging capability. In their work they show that the dolphin is 

able to interchangeably identify a target in air with its eye sight and then identify the 

same target in water using echolocation. 

2.3 Sound Transmission System 

Although the main objective of this thesis is to examine the reception system of the 

Bottlenose Dolphin, the characteristics of the transmission system have a direct impact 

on how the reception systems operates, and thus a basic overview will be presented 

here. 

2.3.1 Transmission Source 

There have been many questions raised over the years about the methods of sound pro

duction in dolphins. The dual source theory is now well established thanks to the work 

of Evans et al. [2.10] and Norris et al. [2.14]. Norris used X-ray motion pictures to 

observe the movement of the nasal sac and the larynx during high frequency sound pro

duction. They found that the movement in the nasal sac correlated with high frequency 

sound emissions and did not correlate with the larynx theory. They continued this work 

further and concluded that the larynx is not used in high frequency (>30 kHz) sound 

proouction. This work was validated by a number of further studies that used a variety 

of techniques to measure the change in air build up and pressure before, during and 

after sound emission in both the larynx and in the nasal sac. The nasal sac can be seen 

in Figure 2.1. 

2 unlike seals 
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Dormer [2.15] presented a list of twenty references that suggest possible sites of sound 

production in various species of dolphins. He surmised from this literature that the most 

probable two sites for sound production were the larynx and the nasal sac system. 

Cranford et al. [2.16,2.17], took advantage of modern advances in medical Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) as well as using more con

ventional dissection techniques to help locate the actual source of sound production. 

Using frozen but otherwise unblemished specimens of 19 different species, Cranford 

identified 'a small pair of fatty bursae embedded in a pair of connective tissue lips, a 

cartilaginous blade, a stout ligament, and an array of soft tissue air sacs'. They found 

that this structure was present in all echolocating toothed whales in their sample set. 

This morphological feature is commonly referred to as the Monkey Lip Dorsal Bursae 

(MLDB) complex, this area is identified on the CT slice shown in Figure 2.2. When air 

is massed through this structure the lips vibrate and slap together,he hypothesised that 

this could create repeatable. and controllable clicks. 

Goodson et al. [2.18] contradicted this theory, favouring the theory that cavitation 

occurs when bursae in the MLDB are ripped apart under muscle control. This in turn 

releases a reservoir of high pressure air and an implosion of bubbles create a high energy 

source to cause a click. 

2.3.2 Transmission Beam Fonning 

The CT data obtained by Cranford et al. [2.16] allowed other researchers to examine 

the effect of the melon structure on the sound transmission system. Aroyan [2.19] used 

the data set from a Common Dolphin Delphinus del phis and was able to linearly map 

the CT Hounsfield units to density, then assuming a linear correlation between density 

and sound velocity constructed a three dimension numerical model. This geometry was 

then used in Finite Difference Time Domain (FDTD) modelling in which a continuous 

sine wave of 75 kHz was injected at a point source near the site of the MLDB. From 

this the emerging beam pattern was obtained. Flint et al. [2.20] used a 2 dimensional 

slice of the CT data for a Harbour Porpoise (Phocoena phocoena) and applied the 



2. Bioacousrics and Dolphin Echolocation 16 

Figure 2.2: A er slice of a Bonlenose Dolphin taken through the Central axis of a dolphin. 

Transmission Line Modelling algorithm to examine the propagation. They established 

that the melon acted as a beam fonner for the outgoing sound wave in this animal. The 

authors used a piston excitation in the space behind the melon (shown in the top left of 

Figure 2.3) which produced an outgoing wave in the near field, which was flattened out 

as it passes through the melon and obtains far-field conditions at the tip of the rostrum. 

This effect can be seen in Figure 2.3 in a series of snap shots at different time intervals. 

A sound speed of 1273 - 1376 m1s have been reported at the Central core of the melon 

of a Bottlenose Dolphin and 1682 m1s towards the outer shell [2.21] 

More recently Houser et al. [2.22], using Cf and MRI techniques were able to scan a 

living Dolphin under sedation. The advantage of using a live dolphin is that the air sacs 

that are distributed around the forehead and the ear structure remain in their original 

shape. In earlier studies the specimens were post-mortem and these structures were 

changed by the freezing and thawing process. It was also possible to use Single Photon 

Emission Computed Tomography (SPECf) and Positron Emission Tomography (PET). 

The combination of these techniques and increased resolution provided further proof 

that the MLDB is the pneumatic echolocation click source. The scans sbowed that air 

sacs are displaced around the head which would successfully isolate the click source 

from the receiving ear. Using SPECf the blood flow around the animal was also anal-
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Figure 2.3: A series of snap shots of sound propagating through the melon of a Harbour Por

poise 

ysed. This showed high levels of blood flow around the brain, the lower jawbone and 

the melon. Houser suggests that the reason for high blood flow in the melon and lower 

jaw is to regulate the temperature of the fatty lipids contained within these structures 

which are used in echolocation. This is desirable as Fitzgerald [2.23] showed that sound 

speed in lipids is inversely proportional to temperature. If dolphins could not control 

the temperature of the focusing lens, then changes in water temperature due to changes 

in dive depth and seasonal variation would alter the click propagation characteristics, 

by maintaining the temperature the wave guide properties remain constant. 

2.3.3 Transmission Signals 

Dolphin signals were recorded and examined by Evans et al. [2.24]. In this paper the 

three operation bands are defined for a number of species and evidence is presented 

that each of the bands can be used interchangeably. As the main area of interest in this 

thesis is echolocation, click type signals that emanate from the MLDB will be exam

ined. Table 2.1 defines the acoustic spectrum used by the dolphin and the associated 

application. Signals below 30 kHz are believed to emanate from the larynx [2.16]. 
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Evans et al. [2.24] also presented beam patterns for the acoustic emissions from the 

Bottlenose Dolphin. They noted that when examining each click on a pulse to pulse ba

sis that the pattern changed and there was an energy difference of 'several dB.' This lead 

them to conclude that the animal possessed a beam forming capability. The experiments 

of Evans were performed on a captive animal in a shallow water environment. The 

source level of the peak to peak click was reported to be an average of 170 dB re I JlPa 

at I m with the peak energy being at 52 kHz. Au et al. [2.25] measured the echolocation 

clicks of free range dolphins during target detection tasks. They showed that free rang

ing dolphins have a higher SL !pan captive animals in reverberant environments. They 

measured the average peak-to-peak signal of 220 dB re 1 JlPa. They concluded that 

the change in amplitude could be due to the different environmental situation. Evans 

conducted his test in a reverberant swimming pool whereas Au conducted his trials in 

open waters situated in a busy harbour. This suggests the ability of the animal to control 

the amplitude of its output. Au's work again showed a difference in the peak levels that 

were seen by Evans. The most important observation of Au's was that the frequency 

content was seen to have the peak energy focused at a frequency between 120 kHz 

and 130 kHz which was much higher than previously thought. Au [2.26] measured the 

clicks of a Beluga whale in San Diego bay before relocating the animal to the Kaneohe 

Bay, which has a higher ambient noise level. The whale was observed to increase its 

click energy by 17 dB re 1 JlPa while the peak energy moved from being focused at 

40 kHz to 60 kHz up to 100 kHz to 120 kHz. This demonstrates how echolocating 

animals are capable of adapting to their environment. 

The length of each pulse was reported to be 'fairly uniform' with a pulse duration 

between 35 to 45 JlS. Au agreed with Evans that the dolphin was in complete control 

.of the inter-click period, he measured delays between clicks when the dolphins were 

at a controlled distance from a target, the inter-click time was always longer than the 

two-way transit time. A typical Bottlenose Dolphin click recreated from Au [2.3] can 

be seen in Figure 2.4. Ivanov has since conducted a more in-depth study of the inter 

click period with a increasingly distant target and drawn the same conclusion [2.27]. 
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Frequency Band Description Passive I Active Function 

Coarse Long Range Capability 

200-900 Hz Phase coherent Iis- Passive Source Location 

tening 

4-30 kHz barks, yelps, One way signalling Active 

rasps 

Fine short Range Capability 

30-150 kHz Spatially coherent Active 

reflections 

Intra species com

munications 

Location, Rang

ing and potential 

acoustic imaging 

19 

Table 2.1: Table of acoustic frequencies used by the Bottlenose Dolphin and their possible uses. 

The larynx is used to produce the low frequency whistles and the pneumatic MLDB 

system is used to produce the high frequency echolocation signal. 

2.3.4 Transmission Pattern 

The early work conducted by Norris and Evans [2.28] noted that the sound beam that 

emanated from in front of the dolphin's forehead was highly focused. Evans et al. 

[2.10, 2.29] examined the corpse of a Spinner Dolphin and placed a continuous wave 

sound source in the nasal sac complex. He was able to measure the transmission pattern 

of the source through the melon, and determined that the beam was focused on axis in 

the horizontal and 15° above the rostrum in the vertical. They also noted the beam 

width was inversely proportional to the source frequency. 

Au [2.30] and Au et al. [2.31] measured the vertical and horizontal beam patterns of 

the high frequency clicks of the Bottlenose Dolphin. The pattern was measured using 

an array offive hydrophones in both the horizontal and vertical plane. The signals were 

recorded by stationing the dolphin on a bite plate mid-water and then making it perform 

a target detection task. Alignment was performed by monitoring the orientation of the 
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Figure 2.4: A typical Bottlenose Dolphin echolocation signal in a noisy environment and its 

frequency content. [2.3] 

dolphin with an underwater video camera. Beam patterns from Au, Au, Pawloski and 

Moore, and Au, Moore and Haun are reproduced from [2.3] in Figure 2.5. The 3 dB 

beam width can be seen as being approximately 10" in both the horizontal and vertical 

planes 

Work conducted by Moore et at. in recent years has demonstrated adaptive control over 

the focus of the echolocation beam [2.32]. Using a 24 element circular hydrophone 

array spaced approximately 12° apart in the horizontal plane and 8° apart in the vertical 

planes, echolocation clicks were recorded from a dolphin performing a target detection 

task. The dolphin was located at a bite plate and presented with a target to echolocate 

upon. The target was positioned at increasingly greater distances to the left or right of 

the presumed Maximum Response Axis (MRA) of the echolocation beam. The results 
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Horozontal TX Pattems Of The BoW...,.. Dolphin V.rUesl TX Patterns Of The BottIenose Dolphin 
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Figure 2.5: Click transmission patters of the Bottlenose Dolphin. 

of the study demonstrated not only that dolphins were capable of detecting metal sphere 

and cylinder targets well off of the MRA of the echolocation beam, 21-26° and 13-19° 

respectively, but that the dolphin was capable of shifting the focus of the echolocation 

beam in both the horiwntal and vertical planes. There is currently an ongoing study by 

Houser [2.33] into the suggestion that the dolphin can change the shape of the melon 

under muscle control. This would have the effect of changing the focus of the melon 

and alter the beam width. 

2.3.5 Sonar Operation Strategy 

In recent years the advances in electronics and data acquisition systems have allowed 

more complex measurements of the echolocation click to take place. Martin et al. 

[2.34] constructed an acoustic acquisition system which they named the 'Bio-sonar 

Measurement Tool (BMn.' This tool measures depth, velocity and the incoming and 
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outgoing echolocation clicks from free swimming animals during target detection tasks. 

The equipment is mounted upon a bite plate that the dolphins are trained to carry in it's 

mouth. A single hydrophone is mounted approximately 1 m from the phonic lips and 

in line with the presumed MRA. Two receivers are mounted at a separation of 12.5 cm, 

sirnilar to the separation of the ears, to listen to returning signals and ambient noise. 

This equipment has allowed researchers to analyse how dolphins change their search 

strategy for a particular task. Results of search and detect trials using the BMT on 

two Bottlenose Dolphins demonstrated that considerable variation in search strategies 

existed for animals performing the same task [2.35]. One animal was searched its envi

ronment slowly (greater than 10 s) whilst emitting typical clicks with a peak frequency 

of 30-60 kHz and always approached the target closely prior to verifying target pres

ence to the human observer. The second animal searched the environment with greater 

speed (less than 10 s) and produce fewer clicks with a greater variability in its frequency 

content with the output being anywhere bet~een 20-120 kHz. Both animals increased 

the power of the echo returning from the target by either increasing the source level of 

the click or moving closer to the target during final target inspection. Houser suggested . 

that the 'Temporospatial relationships between the animals and the targets during the 

echolocation task suggested that dolphins often initially detected the target well off the 

MRA of the echolocation beam and then oriented toward the target for identification.' 

This behaviour indicates that dolphins have a variability in search strategies from ani

mal to animal as well as the adaptive control of echolocation. 

2.4 Reception System 

2.4.1 Reception Site 

As has already been discussed, Norris [2.28] confinned that the Bottlenose Dolphin 

did use echolocation to navigate. In one experiment suction cups were placed over the 

external ear openings to disturb the sound reception path. Even with the obstruction of 

the external openings the dolphin continued to echolocate. In 1968 Norris published 
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Figure 2.6: The Lower Jaw and Acoustic Window (shown dotted) as suggested by Norris [2.11]. 

data showing the lower jawbone structure of II different species of echolocation ani

mal. In all the species examined the lower jaw was a hollow channel containing a fatty 

tissue which connected to the tympanic bulla of the middle ear. Norris proposed that 

sound could pass through the thin 'pan bone' region and couple to the ear. The pan 

bone region is also known as the 'acoustic window', which is shown as a dashed line in 

Figure 2.6. 

Later work which involved electro-physiological studies conducted by Bullock et al. 

[2.36] gave further support to this hypothesis. The acoustically evoked potential was 

measured when a vibrating source was placed at various locations around the head of 

the animal. It was found that the maximum response was obtained when the source was 

placed on the front half of the lower jaw. 

McCormick et al. [2.37] performed invasive surgery to investigate the physiology of 

. the ear. In these tests they removed the connection from the outer ear to the middle ear 

(tympanic conus and tympanic membrane) and measured the cochlear potential when 

a sound vibrator was placed near the animal. The results showed that there was no 

difference to the cochlear response of the animal. They concluded that the tympanic 

conus and tympanic membrane played no role in sound reception to the inner ear. They 

next measured the effect of cutting the tympanic ligament, which connects the ear drum 

to the malleus or-the middle ear. The results showed no effect when this was removed 

and thus the sound conduction via this path was excluded. In further tests the cochlear 

response was measured from a vibrational source at various frequencies up to 100 kHz, 

pressed up against the animal and the maximum response area was plotted. It was 

found that the maximum response area was below the ear and along the lower jaw 
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in the vicinity of the acoustic window. They also noted a strong response when the 

vibrator contacted the teeth of the lower mandible and that the cochlear response varied 

depending on the driving direction on the tooth. The maximum response was obtained 

when the tooth was driven in a direction parallel with the jaw and a response of -25 dB 

at a right angle to the jaw axis. Overall it was demonstrated that the external auditory 

meatus (ear) played no part in sound reception and added support for the reception of 

sound via the lower jaw. 

Brill [2.38, 2.39] investigated the sound reception area by acoustically shielding the 

lower jaw of a dolphin and carrying out behavioural studies and acoustic measure

ments. In these trials .the lower jaw of the dolphin was covered with two different types 

of neoprene. The first type was dense neoprene that is believed to induce approximately 

I dB of attenuation to incoming sound while the second material was air filled neoprene 

which was believed to attenuate sound in the order of 30 dB. The dolphin had suction 

cups placed over its eyes so that sight could not influence the navigation and behaviour 

of the animal. Obstacle avoidance tests were performed with the lower jaw being cov

ered in either one of the two neoprene materials, however the ear openings remained 

unobstructed. It was found that the animals acoustic transmission waveform was not 

affected by the acoustic shielding however the animal failed to echolocate when the 

high attenuation material was worn. This experiment further demonstrates that the lar

ynx was not the main click generation source as the outgoing clicks would have been 

altered by the presence of the neoprene. More importantly, in the context of this thesis 

this establishes that sound is indeed received via the lower jaw area. What was not 

established was the precise position of the reception zone on the jaWbone. In the trial, 

the neoprene covered the entire jawbone including the acoustic window, the teeth and 

tip of the jaw. As a result it is not possible to be more specific about the main reception 

site. 

The work of Bullcok et al. [2.36] lead to the observations by Goodson et al. [2.40] 

that the teeth were periodically spaced and could act as individual pressure transducers. 

This hypothesis will be followed up in Chapter 3. 
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Figure 2.7: ABR results of the sensitivity of a female Bottlenose Dolphin. The values in the 

circles indicate the attenuation in dB applied to the transmitter to evoke a potential 

of I J1. Vpp. Therefore a higher value indicates a greater sensitivity. Reproduced from 

[2.41] 

The sensitivity mapping of the sound reception system was repeated using more modem 

techniques by MiiShl [2.41]. This time a non-invasive technique was employed which 

utilised the measurement of the Audio Brainstem Response (ABR) [2.33]. A PZT 

transducer was placed in various locations around the head transmitting a broadband 

synthetic click with a repetition rate of 10 Hz. The results of this work are recreated 

in Figure 2.7 They suggest that the region just in front of the acoustic window of the 

dolphin is the most sensitive. The results also show a significant sensitivity from the 

front half on the jaw near the rostrum which could indicate multiple sound paths. It 

was also noted that the propagation delay down this path was longer than expected for 

the construction tissues and the path length. This will be examined in more detail in 

Chapter 5 

Section 2.3.2 discussed the structure of the melon and the ability of the graded density 

lipids to impedance match and shape the beam of the outgoing signal. Koopman et el. 

[2.42] have shown that a similar structure exists towards the rear of the pan bone. They 

J 
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have shown that a similar structure of fatty lipids exists around the acoustic window, 

which could serve to increase directivity and to reduce or nullify the impedance mis

match between water and the pan bone. However at the current stage the exact function 

of these materials is uncertain. 

2.4.2 Reception Sensitivity 

The first studies to identify the audiogram of the Bottlenose Dolphin were conducted by 

Iohnson [2.43] as reported by Au [2.3]. Figure 2.8 shows the audiogram of a Bottlenose 

Dolphin plotted from Iohnson's data. Iohnson used the same approach that is used to 

measure the heating ability of humans. A 2 second tone was played and the dolphin 

responds with a 'yes' or 'no' response3 if a tone is heard. The level of the tone is 

decreased and increased until the minimum threshold level is found and repeated IQ 

times. Iohnsons results show that the Dolphin is capable of hearing continuous tones 

from 75 Hz up to 150 kHz. Since this first experiment, others have repeated the tests 

with different methodologies including the modem technique of the ABR [2.44], all of 

which broadly agree with Iohnsons' original o~servations. 

2.4.3 Reception Pattern 

There have been various studies to investigate the reception beam pattern of the dolphin 

in order to understand how the dolphin achieves its exceptional shallow water echolo

cation skills. The results from trials conducted by Au, Au and Moore [2.45, 2.46, 2.3] 

on a captive Atlantic Bottlenose Dolphin can be seen in Figure 2.9. The tests were 

conducted by training a Bottlenose Dolphin to station itself on a bite plate, and then 

transmitting a tonal signal and a masking noise. The difference in intensity between 

the tonal and the masking noise as a function of angle was measured, until the maxi

mum difference was obtained and repeatable. This avoids the need for invasive physical 

measurements. The masked hearing threshold is directly related to the hearing sensi-

3 This is indicated by the animal touching different paddles. 
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Figure 2.8: Audiogram of an adult Bottlenose Dolphin from the work by lohnson [2.43]. 
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59.1° 

32.0° 
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30.4° 

22.7° 

17.00 

Table 2.2: The 3 dB beam widths of the Bottlenose Dolphin, reproduced from [2.46]. 
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tivity. A summary of reception beam patterns is shown in Table 2.2, reproduced from 

experimental results of Au and Moore [2.46]. 

The vertical receiver pattern shows a sharper decline above the head then below, which 

seems to be in good agreement with the hypothesis of hearing via the lower jaw. The 

j 
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Figure 2.9: The horizontal hearing pattern of the Atlantic Bottlenose Dolphin, performed by Au 

and Moore [2.3] 

pattern also shows the the main response angle is 15°-25° above the central axis of the 

head, when the zero point is taken at the centre of the pan bone. The horizontal pattern 

also shows asymmetry around the central axis. In both planes the pattem narrows as 

the frequency increases. This allows the animal to use different frequency bands for 

different activities. The narrow beam patten is highly desirable when trying to locate 

a target in a noisy reverberant environment. The use of a narrow beam would also 

be desirable when combined with a physical sweeping technique that is often used by 

dolphins during target detection tasks. 
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2.4.4 Conclusion 

The dolphin exploits its broadband acoustic system to perfonn a range of tasks, and 

social interactions. They are capable of detecting a 76.2 mm stainless steel sphere at 

a distance of 119 m [2.471, discriminate between aluminium, copper, and brass circu

lar targets; between circles, squares, and triangular targets; and can recognise aspect

dependent objects at a variety orientations [2.47, 2.48, 2.491. The Bottlenose Dolphin 

and cetaceans in general have a well matched transmitter and receive pattern and sen

sitivity which use their energy resources efficiently. The signal transmitted towards a 

target by the dolphin appears to be very versatile allowing the gathering of direction, 

speed and acceleration and represents the result of millions of years of evolution. 

Dolphins have been credited with having a high performance sonar detection and clas

sification system for many years and are now regularly deployed in hostile situations 

for the detection of mines, buried objects and other objects [2.34, 2.501. Gaining an un

derstanding as to how these systems operate could potentially enhance human ability to 

operate in difficult shallow water reverberant environments. Some work on recreating 

this sonar system is underway 4 

Whilst the current trend in cetacean research is to examine what signal processing might 

be taking place in the dolphin brain, the aim of this thesis is to examine the signal 

processing within the physical structure of the dolphin skull. The viability of some 

current ideas will be examined and then some novel measurement techniques used to 

look for previously uncharacterised properties. Finally numerical computer simulations. 

using eT data will be shown which shed new light on the role of the lower jaw in 

echolocation. 

4 A Dolphin Based Sonar has been implemented by the V.S. Navy constructed from a single piston 

transducer with a 12° beamwidth at 1\0 kHz and side lobes below 17 dB along with twin receivers 

with 20° 3 dB bearnwidths at 1\0 kHz and a separation of 12.5 cm [2.50). 
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CHAPTER 3: 

CONSIDERATION OF THE DOLPHIN LOWER JAW 

AND TEETH AS A PASSIVE ACOUSTIC ARRAY 

T o begin the work for this PhD the examination of some current theories of sound 

reception in the Bottlenose Dolphin will be conducted. This work uses well de

fined and tested analytical techniques to study the conventional hearing models in addi

tion to some more unconventional hearing hypotheses such as sound reception via the 

teeth. This is done so that the current research can be evaluated and refinements can 

be suggested for further work. The work in this chapter is split into two sections. The 

first section examines some of the common acoustic arrays that can be compared to 

the dolphin's sound reception system and examines the properties of these arrays using 

known analytical solutions. The second section then demonstrates via experimenta

tion, the tooth array that has been hypothesised by Goodson et al. [3.1] and validates 

these results against analytical predictions. Beam patterns of the receiver system are 

presented and discussed in Section 2.4.3. 

3.1 Background 

There is evidence that man-made sonar systems are outperformed by echolocating ma

rine species in certain situations. This has been demonstrated by the breadth of re

search carried out in both academic and military establishments over the last 50 years, 

[3.2,3.3,3.4]. Since 1959 the United States military has operated a Mammal Maritime 

36 
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unit based in San Diego California which uses trained Marine Mammals including Bot: 

tlenose Dolphins and Sea Lions to hunt out objects such as rnines and hostile divers in 

shallow waters, rivers and oceans [3.5]. These animals are trained to carry out difficult, 

dangerous or covet tasks such as locating suspicious devices and marking them with 

buoy's or restraining hostile divers for inspection or capture by their human handlers. 

Developing a better understanding of the capabilities that dolphins possess has the po

tential to influence the future of man made sonar for the better. If it were possible to 

replicate the performance of these systems then it would reduces our dependency upon 

these animals. 

Goodson et at. [3.1] first hypothesised that dolphins could use their teeth as individual 

pressure transducers. This was based upon the observation that the teeth in the Atlantic 

Bottlenose Dolphin as well as the Harbour Porpoise are regularly spaced. For most of 

the jaw they are positioned in a straight line, potentially forming a linear array, however 

there is a certain amount of curvature towards the tip of the rostrum to account for the 

shape of the jaw. Figure 3.1 shows a jaw cast taken from an adult Atlantic Bottlenose 

Dolphin with a metric ruler placed alongside. Potter and Taylor however modelled 

the teeth as points on a parabolic curve· [3.6]. Measurements of tooth casts from adult 

dolphins indicate that the spacing between the teeth of the Bottlenose Dolphin are ap

proximately 11.4 mm. Assuming a sound speed in sea water of approximately 1475 

ms-1 and that the inter-dental spacing is equivalent to one wavelength this would sug

gest an operating frequency of 130 kHz which is close to the maximum observed sonar 

emission frequency of the Bottlenose Dolphin (see Figure 2.4). The idea that the teeth 

could ope·rate as passive elements was based on the structural similarity between the 

jaw and a travelling wave antenna. The Yagi antenna for example has passive rods that 

are periodically spaced to introduce gain. Yagi antennas typically operate over a rela

tively small bandwidth while having a high directivity. Therefore the idea of a passive 

array of this type appears controversial for a relatively broadband animal like the dol

phin. However in reality the animal has two such receptors and it will be shown later 

that the passive array theory is credible when the patten changes are considered. For the 

current chapter it is worth considering further the possibility that the teeth are acting as 
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Figure 3.1: Dental Jaw Cast from an Atlantic Bottlenose Dolphin 

individual receivers. This is very reasonable and logical approach from a sonar view

point as arrays of this type have been used extensively in man made sonar for many 

years. 

3.2 Theory Of The Lower Jaw As An Acoustic Transducer 

In this section some basic acoustic theories based on the dolphin morphology will be 

considered. 

3.2.1 1\vo Element Array Models 

The initial suggestion by Norris [3.7. 3.8] is that the dolphins receives sound via the 

lower jaw through the acoustic pan bone region at the rear of the lower jawbone. as has 

been illustrated previously in Figure 2.6. This pan bone region can be crudely approxi

mated as a line array of 2 omni-directional elements that are individually separated by 

approximately JO cm. This dimension has been confirmed from CT scan data provided 

by Houser and published in [3.9). Using the analytical solution for a two omni-direction 
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hydrophones [3.10] shown in Equation 3.1 it is possible to plot the array pattern. This 

produces a beam pattern which can be seen in Figure 3.3. In the equation d is the ele

ment separation, 8 is the beam angle and oX is the wavelength. This pattern demonstrates 

that there is no usable single beam available from processing the arriving signal as a 

summed line array with two omni-directional elements due to the high number of side 

lobes with equal sensitivity. 

Gain dB(8) = 20 log (cos(: Sin8)) (3 .1) 

3.2.2 Piston Model 

The acoustic pan bone region on the Atlantic Bottlenose Dolphin as observed by Norris 

is an oval shaped region approximately 7 cm long and 4 cm high. Assuming this is a 

cylindrical piston transducer with a radius of 5 cm (approximately equal surface area) 

and using an element separation of 10 cm, the beam pattern can be calculated from 

a pair of forward facing coplannar transducers using an analytical solution. A single 

radial piston transducer can be modelled using a Bessel function. and a pair can be 

considered in the manner described by Urick [3.11] to produce the analytical solution 

for the beam pattern shown in Figure 3.4. Note that 0" is defined as the broadside 

to the array as shown in Figure 3.2. The pattern produced could be very useful as 

narrow beam patterns can be obtained over a wide frequency range and compares well 

with the hearing patterns of a dolphin shown in Figure 2.9. Dolphins are known to 

have a sensitivity to signals 10 dB below their maximum sensitivity [3.2] . In the 2-

element piston array there are side lobes present above 10 dB which depending upon 

the returning signal strength. could still be detected by the dolphin and could be an 

undesirable characteristic. 
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Figure 3.2: A 13 element line array showing the broadside angle at 0° and end-fire at 90° 
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Figure 3.3: Beam panern at 30 kHz. 60 kHz. and 120 kHz for 2 omnidirectional elements sep

arated by 10 cm. 
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Two Piston Element line array with dolphin ear separation 
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Figure 3.4: Beam pattern at 30 kHz, 60 kHz, and 120 kHz for 2 5 cm radius piston elements 

separated by J 0 cm. 
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Figure 3.5: The hypothesised model of one side of the tooth array with delay lines. 

3.2.3 Phased Multi-Element Arrays 

Linear phased arrays are commonly used in radio communications, radar applications 

and in airborne audio systems. They are made from arrays of transducer elements 

that are equispaced. An individual fixed delay is applied to each channel before being 

summed together constructively and passed on to some form of processing system. 

These individual timing delays result in phase differences between adjacent elements 

which govern the array directivity or beam pattern (Figure 3.5). 

The Atlantic Bottlenose Dolphin has 44 teeth in total in the lower jaw which are ar

ranged in two rows along each side. It has been suggested by Dobbins [3.12, 3.13) that 

each of these two groups of 22 elements act as a line array with the teeth acting individ

ually as independent pressure transducers. The separation between each element, as has 

been explained, is 11.4 mm and thus at 130 kHz it would represent a A separated array 

pair. In this case each half of the array pair represents one side of the lower jawbone. 

A line array of n omni-directional sources separated by d has an analytical solution 

described by Waite [3.10) and shown in Equation 3.2. Using this equation the beam 

patterns for a line array at oX spacings for frequencies of 30 kHz, 60 kHz, and 120 kHz 

can be analysed. These frequencies have been modelled as they are the most frequently 

quoted in the literature. The modelling results are shown in Figure 3.6. 
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180 

Gain dB(IJ) = 20 log ( sin(~ sin IJ) ) (3.2) 
n sin("~d sin e) 

22 Element 11.4 mm separated array beam pattern 
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Figure 3.6: The beam pattern of a 22 omni-directional element broadside array with llA mm 

spacing. 

The pattern suggests that an active array is a viable theory. The main lobe is narrow with 

low side lobes. The directionality in a line array stems from the fact that all the array 

elements will receive a signal at exactly the same time when the source is in the broad

side position. When the signals arrive coherently the signals are summed constructively 

which causes maximum gain on the receiver. Many conventional array systems intro

duce delays into the arriving signals of elements. When the array is positioned end on to 

the transmission source all the signals arrive at the same time in phase at the processing 

point and produce a high gain due to the constructive interference. When the array is 
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moved away from this axis, signals will arrive destructively due to the additional delay 

and reduce the received signal, this technique is know as beam steering. Figure 3.7 

shows a pressure signal arriving at a line array of receivers, if a delay is introduced 

between these elements and the processing system then all the signals can be made to 

arrive simultaneously. 

Incoming Signal ~ducer 

• 
• 
• 

Figure 3.7: Pressure waves arriving out of phase at a line array. 

Equation 3.2 can be modified to allow for beam steering, this is shown in Equation 3.3 

as described by Waite [3.10] where B. is the steer angle. 

(
sin n 11"( d .inli _ d 'inli. ) ) 

Gain dB(B) = 20 log n sin 7r(~ _ ~) (3.3) 

Using Equation 3.3 the beam pattens for a 22 element line array separated by 11.4 cm 

with a beam steer of 90" has been calculated and is shown in Figure 3.8. Other angles 

have also been plotted in order to demonstrate the steering effect. This pattern shows 

a very well defined main lobe in the end-fire orientation with side lobes below 12 dB 

for the forward facing direction. In order to compare this array with the measurements 

of Au [3.14], the array is modelled at a number of different frequencies that can be 

seen in Figure 3.9. This pattern shows good correlation with the patterns from animal 
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22 Element 11.4 mm separated array beam pattern 
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Figure 3.8: The beam panern produced by 22 elements separated by 11.4 mm with different 

steer angles. 

experiments the 3 dB beam widths are summarised in Table 3.1. These patterns also 

show that the beam steering has caused a broadening of the main lobe. 
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180 
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22 Element 11.4 mm separated anray beam pattern 
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Figure 3.9: The beam panem produced by 22 elements separated by 11.4 mm with 90" steer 

angle at different frequencies. 

Frequency kHz Horizontal -3 dB beamwidth Horizontal -3 dB beamwidth 

Measurements (from Au et al.) Analytical 

30.0 59.1° 48° 

60.0 32.00 34° 

120.0 13.7° 24° 

Table 3. I : The 3 dB beam widths of the a 22 element 90" steered array at different frequencies 

compared with Dolphin beam width data reponed by Au reproduced from [3.14] . 
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3.3 Properties Of An End-Fire Array 

The time of arrival delays between elements can be shown to change as a function of 

incident angle by Equation 3.4, where d is the separation between elements, c is the 

speed of sound and (J is the beam angle. On examination of this equation in the range 

of (-90 :5 (J :5 90) shown in Figure 3.10 it is clear that at is nonlinear. A change in angle 

between 0" and 10" produces a larger change in at than that produced when changing 

by the same angular amount from 80" and 90"'. This effect means that when the array 

response is measured for beams approaching the end-fire position the signals from each 

element will start to move into phase faster compared to the broadside position, which 

produces a wider beam. 

at = d cos (J 
c 

(3.4) 

So far only the lower jaw structure has been considered, however it is also worth con

sidering what would happen if the teeth of the upper jaw were to be involved. In this 

case the separation of the teeth would be >./2 due to the interleaving of the lower and 

upper jaws, also in this scenario there would be 44 elements. Figure 3.11 shows the 

beam pattern from a 90" steered >./2 array. When comparing this to the 22 element ar

ray shown in Figure 3.9 we can see there is little change between 44 element >./2 array 

and 22 element>. array. In terms of making a synthetic array, the same performance 

can be achieved using either of the arrays however the lambda separated array require 

less elements. 

Up to this point only a single line array has been considered and as a result there exists 

a left-right ambiguity were the same sensitivity can be created from more than one 

angle. A more complete geometry of the dolphin's lower jaw is depicted in Figure 

3.12, the two arrays are separated by 12° [3.1]. In order to analyse this more complex 

situation the co-ordinate system for the singular line arrays must be altered to allow for 

the combining of the two patterns. In this case the 0" point has been taken as the point 

on the centre line at the rear of the two line arrays as indicated in Figure 3.12. Once the 
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Figure 3. 10: The change in time of arrival with angle 

two patterns have been mapped to the new co-ordinate system, the gain values can be 

converted inlo normalised voltage from their original dB units. In this case the received 

pressure is proportional to the voltage output of the array. The difference between the 

patterns of the two arrays can be calculated 

One common method of localisation in sonar is to calculate the voltage difference be

tween two spatially separated arrays and examine the effect with change in angle. By 

applying this technique the theoretical array difference results for this scenario can be 

calculated and is shown in Figure 3. 13. In this graph the linear regions near the end-fire 

direction of !he array shows the useful areas !hat may be used for target location. In 

this area there is a direct relationship between signal level and the angle of arrival . This 

area is approximately 20" wide on the 120 kHz signal. The graph can be interpreted as 

three linear regions, which show constant proportionality within its region. The angles 



3. Consideration Of The Dolphin Lower Jaw And Teeth As A Passive Acoustic Array 49 

44 Element S.7mm separated anray beam pattern 
90 

120 

180 ~----l-----~-~ 

240 300 

270 

30 kHz 90° steer 

60 kHz 90° steer 

120 kHz 90° steer 

Figure 3.11: 44 element line array separated by 5.7 mm at different frequencies at 90° steer. 

that are trackable by a dolphin are within the linear region of this array and match well 

with the beam patterns from animal experiments [3.14). 



3. Consideration Of The Dolphin Lower Jaw And Teeth As A Passive Acoustic Array 50 

I 
Hydrophone 
Array 

Origin 

Figure 3.12: Two line array's arranged similar to the dolphin teeth. 
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Figure 3.13: The array difference patterns for each type of line array at 90" Steer. 
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3.4 End-fire Array Measurements 

3.4.1 Methodology 

As the theoretical analysis indicated that it is possible to use two end-fire arrays sepa

rated at 12 degrees to produce a beam pattern similar to that of the dolphin, this theory 

was further investigated in the Loughborough University Acoustic tank. The dimen

sions of the tanks are 5 m by 9 m by 1.8 m in depth. The array used in these tests was 

provided by Dr. Peter Dobbins of S.E.A. Ltd. and manufactured by BAE Systems. The 

array was manufactured from 22 active piezo-ceramic elements. The resonance of each 

element was 380 kHz. The elements themselves were manufactured from a ceramic ma

terial and the whole assembly was encapsulated within a perspex block. The individual 

elements were cylindrical with a diameter of 3.2 mm. The transducers were chosen due 

to the physical size being similar to those of a typical Bottlenose Dolphin tooth. The 

centre of each element was separated from its neighbouring element by 9.5 mm, giving 

a total array length of 218 mm. To achieve a separation of one wavelength with the 

available array a source frequency of 78.95 kHz must be used assuming that the speed 

of sound in water in 1500 ms- I. A picture of the array can be seen in Figure 3.14. 

Unfortunately initial testing revealed that this array would not be suitable for testing 

this hypothesis due to the high directivity of the array elements. The properties of the 

array are presented in Appendix A. 

In the absence of satisfactory results from the line array, four ceramic ball hydrophones 

were used to construct a new array. Each element had a diameter of 11.4 mm as mea

sured with digital vernier callipers. The diameter of a tooth is known to be 4 mm as will 

be discussed in Chapter 5. The tooth diameter and main reception frequency of 120 kHz 

can be used as a scaling factor to find the frequency that best matches the diameter of 

the hydrophone. This yielded a frequency of 42 kHz. A mounting jig was constructed 

with thirteen clamping positions in order to allow moving of the four hydrophones to 

different positions within the end fire array. The element separation was 35.5 mm or >. 

separation when assuming a sound speed of 1493 ms- I (the speed of sound at the time 
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Figure 3.14: The end-fire array that is used in physical testing of the tooth array hypothesis. 

of testing). 

To determine the beam pattern of the array. the hydrophones were placed in jig posi

tions I to 4 and the jig was attached to a pan and tilt system. Careful attention was 

made to ensure that the centre of the array was aligned to the centre of the pan and tilt 

system. The source transducer used within the experiment was a piston transducer with 

a resonant frequency of approximately 60 kHz. The acoustic aperture of the transducer 

was 5 cm. Equation 3.5 calculates the Rayleigh Distance (D) of an acoustic source with 

an aperture radius of a is discussed by Kuntz et al. [3.15]. this was used to calculate the 

minimum separation of the source and the array (22 cm). The source transducer was 

placed 50 cm from the centre of the array which ensured that the far field condition was 

met for every beam angle measured even in the end-fire position. 



3. Consideration Of The Dolphin Lower Jaw And Teeth As A Passive Acoustic Array 54 

7r * a2 

D= -A- (3 .5) 

The time delays that are required in the end-fire design in Figure 3.5 are added after 

digitisation and will be discussed in a later section. 

A Hameg HM8130 function generator was used to produce a pulsed 10 cycle sine 

wave at a frequency of 42.0 kHz. The output signals from the hydrophones were fed 

into various pre-amplifiers with gains between 26 dB and 40 dB between 10Hz and 

100kHz. As different pre-amplifiers were used on the four channels an additional 

calibration steps was conducted in the post-processing. 

The beam patterns were measured using custom PC software. The software controlled 

the position of the pan and tilt system and captured waveforms from a Tektronix Digital 

oscilloscope to the controlling PC's hard drive at a sample rate of I MHz. Measure

ments were taken in 1° steps between ± 1800. In order to maintain a fixed time frame 

for each signal captured, the oscilloscope was triggered from the TTL gating output of 

the outgoing pulse. Once measurements had been taken for all four hydrophones they 

were moved to the next set of jig positions and the experiment was repeated until all 

positions had been measured. 

3.4.2 Post-Processing Calibration 

All the signals that were captured in the experiment were analysed and post processed 

using MatIab. When the array is in the broadside position the signals should arrive at 

each element at the same time and with the same signal strength. On examination of 

the broadside signals the gain was uneven (see Figure 3.15). To correct the variance 

in sensitivity a gain factor shown in Table 3.2 were applied to each channel in order 

to make the broadside response of each channel equal. The gain factors where then 

applied to all the recordings at each position. A typical return signal is also presented 

along with its frequency spectrum in Figure 3.16. 
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Channel Number Additional Gain in dB 

I 10.6160 

2 9.1066 

3 12.8117 

4 0.0606 

5 11.3009 

6 21.4322 

7 9.2859 

8 7.8980 

9 10.2848 

IO 20.0434 

11 9.5729 

12 0 

13 11.9319 

Table 3.2: Voltage gains applied to each channel to normaHse the broadside signal. 
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Figure 3.15: Element sensitivity at 90" before gain compensation. 
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Figure 3.16: A typical signal as received by the end-fire array, along with its frequency spec-

trum. 

Assuming that in the farfield of the transducer there is zero wave front curvature, when 

the array is in the broad side position, the time of arrival of the signals should all be 

equal. Using the cross correlation technique the time of arrival of the signal for each of 

the channels were determined. The different arrival times can be seen in Figure 3.17, 

this difference is most likely due to different phase responses of the pre-amplifiers. To 

correct for the time delay all signals were individually delayed to allow them arrive 

simultaneously. This was accomplished by padding the start of the fastest digitised 

signal with zeros. 
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Figure 3.17: The phase / time before correction across the array. 

3.4.3 Results 

Once the electrical artifacts have been removed via signal processing, the beam pattern 

can be plotted by numerically summing the signals from all the elements up at each 

angle and determining the rms value. All 13 elements were summed together to make a 

>. separated array. The beam pattern produced by this array can be seen in Figure 3.18. 

Using the theoretical line array that was shown in Figure 3.6 which was for 22 elements 

(not the 13 element used in the real array) with >. separation, it can be seen that the 

patterns agree well . The main difference is in the difference in the side lobes to -3 dB. 

From the experimental results it is also clear that the beam pattern of the I3-element 

broadside array at >. frequency is narrower than the 120 kHz pattern of the dolphin. 

As the main aim of the experiment is to validate the use of an end-fire array in acoustics, 

the signal captured when the array was orientated 90" to the source were passed though 

a correlator to determine the time of arrivals. The aim of an end-fire array is to make 

all signals arrive simultaneously when the receiver is in the end-fire orientation to the 

acoustic source[3.1O]. Therefore the digital delays shown in Table 3.3 were added to 
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Channel Number Signal Delay in microseconds 

I 282 

2 264 

3 228 

4 202 

5 185 

6 160 

7 139 

8 128 

9 87 

10 64 

11 44 

12 2 

13 0 

Table 3.3: Time delays applied to each channel to allow the array to operate in end-fire mode. 

the captured signals. 

The beam pattern for the end-fire configuration is shown in Figure 3.19. This pattern 

shows a narrow beam along the axis of the array, with side lobes below 5 dB. The 3 dB 

beamwidth of the array is approximately 30° which when compared to the patterns of 

Au and Moore (Figure 2.9) is larger, however the analytical analysis shows that as the 

number of elements increases then the beam width is decreased. 

As for the analytical simulations, the single array results can be used to simulate the 

left and right side of the jawbone, by taking the array pattern, making a copy and then 

translating the pattern ± 6°. The result can be seen in Figure 3.20. The sum and 

difference pattern for the array is shown in Figure 3.21. This shows an almost linear 

region near the end-fire orientation and matches the simulation data (see Figure 3.13) 

well. 
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Figure 3.18: The beam pattern of an 13 element A separated broadside array. 
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Figure 3.19: The beam panern of a 13 element .x separated end-fire array. 
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Figure 3.20: Replica dolphin array pattern 
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Figure 3.21: The Array Difference Patterns for the replica end-fire array. 
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3.5 Conclusions 

The analytical and experimental studies carried out in this chapter highlight a number of 

possible array configurations that are capable of providing the beam pattens exhibited 

by the Atlantic Bottlenose Dolphin. The experimental work shows that an end-fire 

array is potentially a very useful design for producing a narrow beam with minimal 

side lobes. This is a feature that would be highly desirable in a shallow water sonar 

system. The work also proves that the replication of the teeth within the lower jaw does 

represent a viable sonar array at the frequencies known to be used by dolphins. The 

analytical expressions agree with the experimental work and can be used to demonstrate 

the usability of the end-fire array at frequencies of interest. Furthennore the use of two 

cylindrical pistol elements with 10 cm separation also produces a useful beam pattern 

although it does process larger side lobes than the end-fire arrangement. From these 

results no conclusions can be drawn as to the exact mechanism used by the dolphin. 

Further consideration is given to the Dolphin physiology in the next chapter and other 

mechanisms will be proposed. 
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CHAPTER 4: 

ACOUSTIC PROPERTIES OF THE LOWER JAW 

AND TEETH OF THE ATLANTIC BOTTLENOSE 

DOLPHIN 

T HE purpose of this chapter of this thesis is to describe and further investigate the 

sound coupling mechanisms and acoustic properties of the jawbone and teeth. 

The experiments detailed in the chapter will demonstrate the fundamental mechanical 

properties of the teeth and jawbone. Sound propagation and density measurements will 

also be presented. 

4.1 Background 

As covered in section 2.4 there is a large body of evidence to suggest that the lower jaw

bone is the main reception site of returning echolocation clicks. The actual mechanism 

by which the sound interacts with the jaw has been debated, including speculation by 

some researchers that the teeth may have a role in coupling sound to the receiver sys

tem [4.1,4.2, 4.3] . The work presented by Goodson et al. draws upon the convenient 

physiological arrangement of the teeth in the lower jaw of the dolphin with features 

that are currently implemented in man-made sonar systems. The hypothesis proposed 

is that the teeth in the lower jaw act as individual hydrophone elements that have a uni

form spacing similar to a periodic line arrays that are used in many conventional sonar 

66 
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arrays. The teeth of the Atlantic Bottlenose Dolphin are arranged with uniform spacing 

and regular size. 

The teeth of the Bottlenose Dolphin are considerably different to those of other mam

mals. Unlike other mammals dolphins are homodonts i.e. they do not possess different 

categories of teeth such as incisors, canines, pre-molars and molars; they only posses 

a single type of conical shaped tooth. From a biological point of view these teeth are 

ideally shaped for the task of grasping fast moving prey. Dolphins are known to feed 

upon small fish, which they swallow whole, and generally swallow head first, to pre

vent choking. Since they do not chew their food they do not need the other varieties 

of teeth . As fish are still alive when they are caught the conical shaped teeth are ideal 

for spearing the fish by puncturing their outer layer of skin. While the teeth are used in 

feeding they are also used during social interaction with other dolphins, in a behaviour 

termed 'raking.' Raking describes how dolphins scratch one another with their teeth in 

order to establish dominance within a group. 

Dolphins and other odontocetes are born with most of their teeth already formed below 

the gum line, but unerupted. The teeth at the rear of the mouth typically erupt first 

shortly after birth, with the front, smaller teeth, arriving last. Once formed, the teeth do 

not change shape or size, however they do form growth layers on the inside of the teeth 

which consist of different density dentine. These different layers are deposited approx

imately annually, in a similar way to rings on a tree and can be used to classify the ages 

of the animal [4.4]. Figure 4.1 shows a cross section of a tooth under a microscope. In 

this image some of the layers can be observed along the length of the tooth. 

4.2 Laser Doppler Velocimetry 

LDV is a non-invasive, non-contact method which is capable of accurately quantifying 

surface velocity due to an acoustic pressure stimulus and as such is an extremely useful 

technique for determining acoustic wave propagation in solid objects such as a dolphin 

jaw. A beam of coherent light is projected onto the vibrating surface being measured 



4. Acoustic Properties of the Lower Jaw and Teeth of the Allantic Bottlenose Dolphin 68 

Figure 4.1: Cross-section of a tooth taken from the lower jaw of an Atlantic Bottlenose Dolphin 

viewed under a microscope. 

and undergoes scattering. The back scattered light travelling back along the original 

optical path is collected by the LDV instrument and the Doppler shift frequency due to 

the surface movement is extracted by means of a heterodyning technique [4.5]. There is 

a direct relationship between Doppler frequency shift and the component of the surface 

velocity which lies parallel to the incident optical beam [4.6]. Once the Doppler fre

quency is obtained Equation 4.1 can be used to find the surface velocity where Id is the 

Doppler shift, >. is the wavelength of light that has undergone a Doppler shift and v is 

the surface velocity. Once the surface velocity is obtained the acoustic pressure can be 

calculated for the material undergoing vibration using Equation 4.2. P is the acoustic 

pressure, p is the density of the vibrating material, c is the speed of sound. 

(4.1) 

P =pcv (4.2) 

LDV has another interesting and useful feature when it is used in an aquatic environ

ment which is know as the acousto-optic effect [4.7] . The acousto-optic effect occurs 

because the propagating sounds causes minute changes in the refractive index of the 
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Figure 4.2: Functional Diagram of the internal workings of an LDV Head 

material. This has the overall effect of changing the optical path length and conse

quently local changes in pressure can be resolved. This property has been exploited 

to measure and visualise complex sound pressure fields propagating around scattering 

objects in water [4.8]. 

The LDV technique is widely used for the vibrational analysis of solid materials and 

has also been applied to high precision underwater sound pressure measurement using 

an acoustically compliant membrane [4.9) as well as underwater transducer assessment. 

The results of using a scanning LDV on the teeth and lower jaw of Bottlenose Dolphin 

will be considered in this thesis. The main reason for utilising this technique is the high 

accuracy it offers and the benefit of measuring the pressure field without altering it. 

LDV instruments are also capable of measuring small complex surfaces to which con

ventional bydrophones could not usually be coupled. The LDV used in this experiment 

is based upon the design by Pickering et al. [4.10). 

The commercial LDV used for this work is shown schematically in Figure 4.2. 1\vo 

beams of light are created from one coherent laser light source by means of a beam 

splitter, one of these beams is used to illuminate the target and the other is used as a ref

erence beam, which is passed through a homogeneous environment of sufficient length 

to compensate for coherence length and is then recombined with the beam of light that 
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has returned from the target under investigation. The returning light is an extremely 

high frequency. which can not be measured directly by opto-electronics. therefore a 

reference beam is injected which creates a measurable heterodyne frequency. The sig

nal produced is directionally ambiguous due to the hetrodynde frequency representing 

the frequency difference in the beams. For this reason the system includes a Bragg 

cell on the target arm in order to offset the resultant heterodyne technique from zero. 

The photo detectors (shown as D1 and D2 in the diagram) provide an output that is 

proportional to the intensity of the incident light. This signal is then demodulated with 

standard electronics in order to provide a voltage output which is proportional to the 

velocity of the target. 

4.3 Bone and Teeth Measurements 

Possibly one of the most disputed theories about dolphin hearing is the suggestion of 

Goodson et al. [4.1] that the teeth have a key role in sound reception. If the teeth are 

acting as sound pressure transceivers it seems reasonable to expect that the acoustic 

properties of an individual tooth to reveal some useful information in the frequency 

band of echolocation and have a reasonable impedance match to the surrounding envi

ronment. 

4.3.1 Tooth Density 

To measure density a standard measuring technique was employed. The experimental 

setup can be seen in Figure 4.3. The weight of a tooth in air was measured by placing 

a tooth on a calibrated top pan balance as shown on the left of Figure 4.3 and the result 

was recorded. Then a beaker of pure water was placed onto a top pan balance and the 

balance was zeroed. The tooth was hung from a spring balance and then lowered into 

the beaker until it was fully submerged underwater but not resting on the base of the 

beaker (right side of Figure 4.3). The change in weight that is observed on the top pan 

balance is due to the weight of water being displaced by the tooth. Pure water was 
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Spring Balan)e 

Top Pan Tooth ~ 

Bal;r- ~ ) 

Figure 4.3: Experimental setup for measuring the density of a tooth. 

used which has a density of 1000 kgm- 3, the weight of the displaced water is used to 

calculate the volume of displaced water and thus the volume of the tooth. From this the 

density can be found. This process is expressed in Equation 4.3. 

. weight in air . 
Denstty = . h " . h . x Denstty of Water (4.3) wetg t tn atr - wetg t tnwater 

To improve the overall accuracy three teeth from an adult male dolphin were used in 

the measurements. These teeth (unlike those of younger specimens) are fully filled with 

dentine as can be seen in Figure 4.1 . The results of the density measurements are shown 

in Table 4.1. 

Tooth Number 

Tooth 1 

Tooth 2 

Tooth 3 

Weight in air /kg Weight in water /kg 

0.00127 0.00063 

0.00103 0.00053 

0.00138 0.00071 

Average 

Table 4. I : Tooth Density Results 

Density kg.m- 3 

1983.20 

2061.99 

2061.01 

2035.4 

The density for the dolphin tooth compares well to similar densities which can be see 

in Table 4.2 
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Material Density Ikg·m- 3 

Water* 1000 

Kidney, Liver, Muscle, Blood' 1050 

Human* Fat 920 

Polyethylene** 900 

Rubber neoprene*' 1330 

Clay rock** 2200 

cartilage*** 1100 

Human Tooth (dentine)**** 2030-2350 

Human Tooth (enamel)**** 2890-3020 

Table 4.2: Tooth Density Results for a selection of other materials '[4.11] "[4.12] "'[4.13] 

····[4.14] 

4.3.2 Sound Velocity In A Freely-Suspended Tooth 

The equipment was initially configured as shown in Figure 4.4(a). Two 15 mm long 

piezocerarnic bi-morph vibrational elements shown in Figure 4.5 were attached using 

a malleable thermosetting glue to one side of the tooth in order to excite the transverse 

vibrational mode. A 400 J.l.s pulse containing a pure 100kHz sine wave was transmitted 

from the top element (T) and received on the second identical element (R). A Tektronix 

digital oscilloscope with a IO MHz sample rate was used to record both the outgoing 

and incoming signals, no other apparatus was used that could cause additional propaga

tion delays. From this data the delay was determined and thus the speed of sound could 

be calculated. The experiment was repeated using the setup in Figure 4.4(b), this time 

with a pair of uni-morph elements depicted in Figure 4.6 where attached to the ends of 

the tooth in order to excite the compressional mode. The same signal processing and 

measuring techniques were then applied in order to find the transmission delay. 

In order to remove unwanted noise and Spectral components from the results, all signals 

were filtered using a second-order Butterworth band pass filter having corner frequen

cies at 70 kHz and 130 kHz prior to analysis. The same filter was applied to each signal 
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Transverse Wave Speed 

Longitudinal Wave Speed 

2200ms- 1 

3380ms- 1 

Table 4.3: Measured sound speeds in the tooth. 

so that the phase delays introduced would cancel out. The propagation time delay for 

the transverse case was determined at 10.45 J.Ls and 7.78 I-'S for the compressional case. 

Sound velocity estinIates based on these times of arrival are therefore approximately 

2200m.s- I and 3380m.s-1 respectively. The propagation distance in the transverse 

measurement was assumed to be slightly shorter (23.11 mm) than the overall tooth 

length due to the finite contact area of the bi-morph element on the face of the tooth. 

These results are summarised in Table 4.3 and for comparison the sound speeds of some 

other materials are listed in Table 4.4. 

Material Longitudinal Wave Speed ms- 1 

Soft Tissues* 1540 

Brain* 1541 

Liver* 1549 

Kidney* 1561 

Blood* 1570 

Muscle* 1585 

Lens of Eye* 1620 

Skull Bone* 4080 

Human Tooth (dentine)** 3140-4140 

Human Tooth (enamel)** 4500-6250 

Table 4.4: Sound speeds for a selection of organic materials. *[4.12] **[4.14] 

4.4 Modal Analysis 
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Bench 

Pivot Poin-r---+--+---
b.,/.,oF-- Tooth --... ~/ 

(a) (b) (c) 

Figure 4.4: Tooth vibration measurement setup 

lSmm 

Figure 4.5: Bi-morph Vibrational Element 

4.4.1 Measurements Of Tooth Resonance In Air 

In this section, the vibrational modes and propagation velocities of individual teeth are 

examined using both standard and LDV measurement techniques. For the LDV tests the 

optical unit was placed approximately 2 m away from the tooth with the beam path tan

gential to the measurement surface. Two different teeth of mid-size were extracted from 

a lower jaw specimen for analysis. The first tooth had an overall length of 26.30 mm 

and was used in experiments (a) and (b) while the second tooth, measuring 26.4 mm 

was used in experiment (c). In order to improve the intensity of the scattered light from 

the tooth a thin layer of retre-reflective beads were adhered to the surface of the tooth. 

Retro-reflective beads are small glass spheres that allow light to be scattered back in 

the direction it originally travelled from, these are commonly used in traffic cones and 

reflective safety jackets. 
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Bmm 

Figure 4.6: Unimorph Vibrational Element 

Figure 4.7: Jig Setup for Bending Mode investigation 

4.4.2 Modal Properties Of A Restrained Tooth 

Since the tooth cannot be assumed to be freely suspended when mounted in the jaw

bone. the transverse vibrational mode was studied in more detail by being mounting in 

a test jig shown in Figure 4.7. The LDV was used to examine the modal structure at 

several different input frequencies . The rationale behind these frequencies is explained 

later on. The objective was to exarrtine the phase and amplitude changes as a function 

of distance along the body of the tooth. To perform this experiment. the tooth was 
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Figure 4.8: Jig Setup for Breathing Mode investigation 

mounted as shown in Figure 4.4(c). The tooth was firmly clamped at approximately 

II mm below the tip using two flat pieces of FR2 strip board, of 2 mm thickness. 

Other than this clamp, no other physical restraints were applied to the tooth. A sin

gle un i-morph disc element was attached to the top of the tooth using the same glue 

as in the previous experiment. A 500 J.l.s pulsed sine wave at the frequency of interest 

(80 kHz, 100kHz, 123 kHz, 134 kHz) was then projected into the tooth, and a number of 

data points were sampled using a Polytech PSV300 Scanning Vibrometer (PS V). 

The results of phase variation along the length of the tooth are depicted in Figure 4.9, 

which show that for signals which lie within the frequency band of the outgoing echolo

cation click of the animal, there are between 2 and 2.5 wavelengths along the tooth. 

There is a clear, and relatively uniform modal structure set up with a reasonably linear 
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Figure 4.9: (a) Phase variation along the tooth at resonance, (b) Mode structure visualisation 

stl23 kHz. The yellow squares on (b) correspond to the phase measurement posi

tions in (a). 

phase variation with distance. The result also confirms the existence of the transverse 

mode within the tooth at these frequencies. It seems quite possible, therefore, that the 

transverse rnode could be excited by an incoming echo, and that this could be coupled 

into other tissues for eventual processing at the tympanic bulla, or detection via the 

neurological system. 

A further experiment was carried out with the setup shown in Figure 4.8. This setup 

was used to examine if the tooth could vibrate with a breathing mode. Such a mode 

would absorb incoming sounds and cause the structure to grow and shrink, similar to a 

diaphragm during breathing. In this case the tooth was firmly attached to a uni-morph 

disc element. The element was driven at a range of frequencies between 50 kHz and 

130 kHz, while the LDV measured a point in the centre of the tooth and a point on the 

transducer. If the tooth were to exhibit a breathing mode then there would be a change 

in the phase difference between the two points. The results of this experiment were 

that no phase change was observed and therefore the tooth does not contain a breathing 

vibrational mode. 
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Vibrometer 

Jawbone--~I 

Hydrophone-+{j 

Figure 4. /0: Bone velocity measurement setup in water. 

Figure 4. I I: Spot measurement locations. 

4.4.3 Bone Propagation 

The work carried out by Brill [4.15] has shown the lower part of the mouth to be the 

main reception site of returning dolphin echolocation pulses. In order to study sound 

propagation inside the jawbone, two experiments were devised. Firstly a simple in-air 

analysis with the PSV, secondly a more sophisticated measurement with the jawbone 

fully immersed in water and with the PSV laser projecting downwards into the water 

column. 

For the in-air measurements a un i-morph element was affixed to the dense bone material 

at the front of the jaw. The jaw was freely suspended with tethers. A 400 /los pulsed 

100 kHz sine wave was then injected into the uni-morph terminals and the PSV was 
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Jawbone -. 

Vibrometer 

Uni-morph 

Figure 4.12: Bone velocity measurement setup in air. 

used to measure the peak surface displacement as a function of distance from the source. 

The oscilloscope mentioned earlier was used to obtain time of arrival measurements 

up to 55 mm from the source. The second measurement was carried out in a large 

freshwater tank with the experimental setup shown in Figure 4.10. The equipment 

was con figured with the laser directly above the centre of the hydrophone in order to 

minimise the acousto-optical effect that occurs as the light travels through water [4.6). 

For practical reasons the bone had to be tilted relative to the normal of the hydrophone 

surface plane at an angle of approximately 110. This was necessary in order to allow 

the laser to scan the full length of the bone. This tilt angle is close to the 60 offset 

which forms the natural shape of the dolphin skull. During the LDV measurement a 

calibrated hydrophone was used to transmit a I ms pulsed 100kHz sine wave. The 

PSV was used to measure the time of arrival at various positions (see Fig. 3). Due 

to problems with light scattering and low reflection levels, the bone was treated with 

retro-reflective beads. 
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In the directly-coupled measurements of the bone in air, the time of arrival measure

ments gave a mean sound velocity of 2607 m.s-1. Measurements of displacement along 

the jaw became increasingly difficult on account of the high attenuation rate. Over the 

first 20 mm from the source an attenuation rate of 1.2 dB mm-1 was observed. For the 

in-water measurements the velocities determined from the times of arrival are shown 

in Table 4.5. The estimates obtained appear close to the speed of sound in water. On 

account of the high attenuation rates observed in the direct coupled measurements, and 

since this estimate of sound velocity is also in conflict with the earlier results we would 

therefore conclude that the arrival times measured are due to the water-borne sound 

causing vibration in the bone. Significantly, we do not believe that the largest pro

portion of the energy arriving at the data points had successfully propagated down the 

length of the jawbone. 

Point Speed From Point 1 in water 

2 1523 rn/s 

3 1559 rn/s 

4 1560 rn/s 

5 1596 rn/s 

Average 1560 rn/s 

Table 4.5: Bone velocity measurements in water. 

4.4.4 Tooth And Bone Measurements 

If the teeth are operating as an active element as has been suggested [4.1, 4.3] then it 

seems likely that they would exhibit resonant behaviour. Further measurements were 

therefore carried out on the in-water setup of Figure 4.10. The PSV was directed to

wards two separate teeth on the jawbone. One of the teeth was near to the sound source 

at the front of the jawbone (referred to as Tooth A) and the second was further back in 

the jaw (referred to as Tooth B). A swept frequency source was then used to pick out 

any resonant behaviour. The calibration carried out on the transducer prior to the mea-
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Figure 4.13: Tooth A vibrational resonance 
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surement ensured that the sound pressure level was equalised over the measurement 

band. The maximum surface velocity was then determined for each tooth as a function 

of frequency. From the graphs in Figures 4.13 and 4.14 a clear similarity can be seen, 

with resonant peaks at approximately 80 kHz to 90 kHz and then a resonant band from 

115 kHz to 135 kHz. It is worth noting that these frequencies lie within the commonly 

accepted band of the Bottlenose Dolphins echolocation signal [4.16]. 

4.5 Discussion and Further Analysis 

4.5.1 Tooth Characteristic Impedance 

Characteristic acoustic impedance is the ratio of effective sound pressure at a point to 

the effective particle velocity at a point in a free progressive wave and is analogous to 
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Figure 4.14: Tooth B vibrational resonance 

the characteristic electrical impedance of an infinitely long, lossless transmission line. 

This impedance can be calculated using Equation 4.4. The measurements conducted in 

the previous section allow an estimate to be made for the tooth impedance. Using the 

average tooth density from Table 4.1 and taking the transverse mode velocity measured, 

the impedance is 4.48 MPa·s·m-3, which is approximately three times larger than sea 

water which is 1.45 MPa·s·m-3 [4.17]. 

At an impedance change boundary, a proportion of the acoustic wave will propagate 

through the boundary, while the remainder will be retlected back into the original 

medium. 

z=pc (4.4) 
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(4.5) 

(4.6) 

If a plane wave of pressure Pi is incident upon a planar surface and in a medium with 

impedance Zl when the second surface is constructed from a medium with impedance 

Z:! the ratio of reflected pressure r can be calculated from the impedance relationship 

using Equation 4.5, while the transmitted energy ratio T can be calculated using Equa-

. tioil 4.6. Using the assumption that a plane wave is propagating in sea water, the coeffi

cient of pressure that would be coupled into a medium made from the same material as 

a tooth would be 0.5 while the reflection coefficient would be 0.5. This analogy is not 

entirely accurate as this does not take account of the translation between longitudinal 

wave in a liquid medium switching into sheer waves in the solid medium, or the effect 

of incident angle. 

4.5.2 Experimental Limitations 

It is worth noting that the jawbone of a living animal will normally be filled with fatty 

lipids [4.18] that are shown to have a varying sound speed close to water. The Acoustic 

impedance of Caster Oil is 1.54 MPa·s·m-3 and seawater at 1.45 MPa·s·m-3 [4.17] and 

the Jipids of the lower jaw are assumed to be similar [4.19]. It is also worth noting 

that the method of clamping the tooth when examining the bending moments is not 

the same as the mechanism which holds the tooth in the lower jaw, and therefore the 

bending moments will differ. 

4.6 Conclusions 

The fact that the teeth of the specimen measured exhibited resonant behaviour within 

the dolphin echolocation frequency range provides further support for the theory that 



4. Acoustic Properties of the Lower Jaw and Teeth of the Atlantic Bottlenose Dolphin 84 

they are involved in hearing. The LDV technique has produced modal maps showing 

that the tooth has between 2 and 2.5 wavelengths along its length in this band. The 

tooth resonance has been confirmed in isolation by several in-air measurements and 

also when mounted in the jaw in fresh water. The bone measurements suggest that it 

is possible to couple sound into the jaw, however the attenuation of the wavefront as it 

propagates from the tip of the jaw seems very high. This would rule out the possibility 

that the hard material in the bone acts as the primary acoustic pathway from the nose of 

the animal to the tympanic bulla. A more likely route for sound conduction is via the 

fatty channel within the jaw cavity. This theory is consistent with the recent work of 

Ryabov [4:20]. A sound conduction path which is not ruled out by our measurements is 

therefore from the teeth via the fatty channel and then to the tympanic bulla. It should 

be emphasised, however that the specimen used in the experiments was devoid of any 

soft tissue and that the presence of lipid materials, blood etc, which will affect the 

acoustic properties, especially in the jaw cavity and in the areas surrounding the teeth. 
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CHAPTER 5: 

BAND GAP HEARING IN THE LOWER JAW AND 

TEETH 

T HIS section of the thesis describes the phenomenon of acoustic stop bands or 

band gaps, and goes on to examine how this phenomenon might play a role in 

the sound reception thought the lower jaw structure of the dolphin. In order to examine 

this in detail, numerical modelling techniques have been applied and custom software 

designed and produced based upon the Transmission Line Modelling technique. 

5.1 Introduction 

TLM has been used in acoustics for a number of years and has been proved to be 

an equivalent to finite difference time domain modelling. The main benefit of TLM 

when compared to other volume element methods are its speed and its ability to model 

highly complex geometrical features effectively [5.1]. An advantage of choosing a time 

domain technique is the ability to capture a broad frequency band in a single simulation 

run. This is a particularly important feature when modelling dolphin sonar excitations 

which are, by nature, broadband. The use of the TLM technique in this work allowed 

for rapid design construction and simulation of complex geometries as well as the use 

of signals that would be difficult to produce and would be time consuming to carry out 

experimentally. 

88 
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5.1.1 Numerical Modelling Technique 

The Transmission Line Modelling (TLM) method is a time domain, differential nu

merical modelling technique ideally suited to the study of field problems [5.2). It has 

found many applications including those within the field of bioacoustics [5.3,5.4) and 

is broadly comparable with the finite difference method in the time domain [5.5]. TLM 

exploits the analogy between waves propagating in an acoustic field and pulses propa

gating on an orthogonal mesh of interconnected transmission lines. These transmission 

lines are governed by differential equations which are isomorphic to those of the trans

mission medium and thus the network can model the propagating waves. The equiv

alence of the transmission line model with the linearised Euler equations in acoustics 

can be proved mathematically and consequently it is possible to conceptually manipu

late just the transmission lines. An additional advantage of applying transmission line 

equivalents is that stability criteria are guaranteed to be met when the model includes 

only passive electrical components. Typically TLM is applied to a structured arrange

ment of cubic or parallelepipedic cells (the mesh) which are individually termed' nodes. 

Discretization 

In order to simulate real work problems, the physical geometry must be 'discretised 

into meshed mathematical nodes. This process introduces the problem of spherical 

quantisation which is analogous to the quantisation of voltage in an analogue to digital 

converter. Figure 5.1 shows a sphere in the real world analogue domain and in the 

digital form after processing for TLM modelling. It is therefore very important that 

the correct sampling rate is selected to avoid erroneous results due to the discretisation. 

The disadvantage to high definition digital models is that more computer memory is 

needed. However if an insufficient number of nodes are used then dispersion becomes 

problematic. Typically 10 nodes are required in each spatial direction per wavelength 

at the maximum frequency of interest. For example, if the model requires simulation 

at 100 kHz in a pure water medium with a sound speed of 1500 ms- 1 then the cell size 

t::.l would be calculated as follows, 
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Figure 5.1: Example transfonnation of real world Objects into a TLM mesh 
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tll = O.~~5 = 0.0015 m = 1.5 mm 

Dispersion 

Much more rigorous consideration to the problem of dispersion has been given by De 

Cogan [5.6] and Neilson [5.7]. Since the focus of this thesis is the application of TI..M 

to the problem of dolphin hearing a detailed theoretical analysis will not be presented. 

However steps have been taken to establish and confirm experimentally the effect of 

dispersion. As an example a 2 dimensional shunt-node TI..M program was used to study 

cylindrical wave propagation. In the model a centrally excited single-cycle sinusoid at 

a frequency of7.5 kHz was applied. The graphical results are presented in Figure 5.2. 

The mesh for this model had a node spacing of 0.10 m (2 nodes per wavelength in the 

chosen medium). As the time domain waveform demonstrates the effect of dispersion 

vary according to angle with the worst effect of dispersion noticed at 45° to the meshing 

axis. 
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Dispersion 

Much more rigorous consideration to the problem of dispersion has been given by De 

Cogan [5.6] and Neilson [5.7]. Since the focus of this thesis is the application ofTLM 

to the problem of dolphin hearing a detailed theoretical analysis will not be presented. 

However steps have been taken to establish and confirm experimentally the effect of 

dispersion. As an example a 2 dimensional shunt-node TLM program was used to study 

cylindrical wave propagation. In the model a centrally excited single-cycle sinusoid at 

a frequency of7.5 kHz was applied. The graphical results are presented in Figure 5.2. 

The mesh for this model had a node spacing of 0.10 m (2 nodes per wavelength in the 

chosen medium). As the time domain waveform demonstrates the effect of dispersion 

vary according to angle with the worst effect of dispersion noticed at 45° to the meshing 

axis. 
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5.2 Acoustic Band Gaps 
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Wave propagation in 2 and 3 dimensional periodic structures in the field of electromag

netics has received great attention in recent years. This is due to the promise of being 

able to engineer far field radiation and reception patterns by manipulation of the near 

field scattering structure. This ability is highly desirable to antenna designers as well 

as more fundamental uses such as Anderson localisation of light [5.8). In addition, a 

number of practical applications have been proposed including 'narrow band pass fil

ters, enhanced surface mounted microwave antennas, sharp bend radius waveguides, 

and the zero threshold laser.' As a result of this interest the research community has be

gun to analyse the similarity of electromagnetic band gaps for acoustic pressure waves. 

The main motivation for this is the possibility to control the propagation and reception 

of acoustic signals, as well as producing passive filters for noise and vibration isolation. 

One example of where this is need in the field of underwater acoustics is for isolating 

construction noise such as piling in sensitive environments. The symmetry involved in 

periodic arrays allows a solution to be formed based upon the plane wave expansion 

techniques. Due to the similarity in the analytical solution method between these prob

lems and the analogous problems in solid state physics much of the terminology has 

been continued over. The differences between the nature of electron wave functions, 
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and electromagnetic and acoustic waves are accounted for in adapting these techniques 

from one regime to another. 

For band gaps to be present a periodic arrays of scattering elements must be constructed 

in a specific structure. When this is done certain frequency bands exhibit dispersive 

behaviour which prevents the passage of these frequencies [5.9]. It is possible to design 

such a structure in order that for certain bands. wave propagation is heavy attenuated. 

and the term band gap is often applied. 

In acoustics the experimental observations of Robertson et al. [5.8]. have demonstrated 

the existence of acoustic stop bands or band gaps within a periodic scattering array 

of long cylindrical metallic rods. It was demonstrated that if solid cylindrical rods are 

placed in a square or triangular lattice with a volumetric filling factor of greater than 0.3 

then an acoustic band gap can be sustained. The filling factor F. for a square lattice can 

be calculated by Equation 5.1. where a is the separation between centres of adjacent 

elements and d is the diameter of the cylindrical rods. 

(5.1) 

Furthermore it has been established that the centre frequency le of the acoustic band 

gap can be predicted from the periodicity of the lattice geometry by using Equation 5.2. 

where u is the speed of sound propagation in the medium surrounding the rods. 

u 
le= -

2a 
(5.2) 

While it is possible to construct analytical solutions for simple infinite arrays with ge

ometric symmetry. complex geometry and finite arrays typically require a brute force 

numerical solution method. hence the reason for choosing TLM to examine the propa

gation in the dolphin jaw. 
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5.3 TLM Benchmarks 

Before applying the TLM software to a complex geometry the code was fully validated 

against a number of numerical benchmarks with exact analytical solutions . 

. 5.3.1 Spreading 

The first benchmark verified the spreading algorithms, which were compared against 

cylindrical spreading. This has an analytical solution of spreading loss = 10 log r, 

where r is the distance from the source. A five cycle 100 Hz sine wave was inserted at 

the centre of a square mesh measuring 1020x 1020 nodes, where each node represents 

10 cm, which offers 150 nodes per wavelength, which allowed for simulation without 

any artifacts being produced due to dispersion. The acoustic wave propagation was 

measured at I meter intervals (or every 10 nodes), the numerical mesh was made large 

enough to avoid any interaction with the external boundaries before the simulation was 

ended. The comparison between the modelling and the analytical solution can be seen 

in Figure 5.3. The modelled results were first converted from the raw time domain 

signal into rms pressure, and then into dB. The dB values were then normalised by 

subtracting the pressure value at I m from all other values. This made the value at I m 

o dB to match the analytical theory. From this we can see the cylindrical spreading 

modelled by the TLM software closely follows the analytical solution. The differences 

that do occur are at a range greater than the I m range, the simulations that follow all 

operate below I m. 

5.3.2 Boundary Conditions 

As this modelling software was intended for use in underwater acoustics, some of the 

common boundary conditions that arise in underwater acoustics were implemented. 

The boundary conditions implemented are described below along with their proof of 

operation. 
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50 

Perfect Reflection Boundary condition Produces an in-phase reflection of the signal, . 

the signal is reflected about the normal axis to the surface so that 'The angle of inci

dence is equal to the angle of reflection,' in accordance with Snell's law. A simulation 

was conducted in which a single cycle I kHz sinusoid was injected into a 2-d TLM 

mesh with a node spacing of 0.1 m, the speed of sound in the mesh was assumed to be 

1500 ms-i. The time domain signal can be seen in Figure 5.4. The losses in the signal 

are due to spreading as verified earlier. The distance between the first measurement 

point and the source is IOm, then the signal travels to the boundary and back which 

is a distance of 20 m leading to an analytical spreading loss of 4.71 dB. The time de

lay between the two signals is approximately 0.01333 s, which leads to a distance of 

19.995 m. The actual spreading loss seen in the model is 5.73 dB, 

Pressure release boundary condition Occurs on the interface between air and water 
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Figure 5.4: Time domain waveform of an incident and reflected sine wave 

particularly on the surface of the sea. This boundary inverts the incoming signal and 

reflects it in the same manor as a conventional reflector i.e the signal is reflected about 

the normal so that the angle of incidence is equal to the angle of reflection, however 

the phase of the signal is changed by ISO degrees. The same setup as for the previous 

boundary condition was used to verify the software and the incident and reflected time 

domain waveforms can be seen in Figure 5.5. In this graph we can see that the travel 

time is identical to the previous experiment and that the peak to peak pressure is the 

same, the only change is that the phase of the signal becomes inverted. 

Absorbing boundary condition This boundary is capable of absorbing propagation 

waves, which can simulate heavily attenuation materials or propagation off into the far 

field. This boundary condition is not numerically perfect due to the analogy of impulses 

on a transmission line not being equal to pressure spreading. A single cycle sine wave 

was transmitted at an absorbing boundary which was placed in the same location as the 
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Figure 5.5: Time domain waveform of an incident and reflected sine wave 
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boundaries in the previous experiments. The signal was measured for the same duration 

as in the previous boundary conditions to see if a wave was reflected. The time domain 

wave form for this simulation can be seen in Figure 5.6, note the absence of a reflected 

pulse when comparing to 5.4 and 5.5. The energy that is returned is -32.5 dB lower 

when compared to the signals in the other boundary condition tests. 

The software was then verified against the experiment performed by Robertson et ai. 

[5.8]. A series of rods were spaced to replicate the spacings and diameters used in their 

experiment, this setup can be seen in Figure 5.7. The results for this bench mark can 

be seen in Figure 5.8. The source for the benchmark experiment was a Gaussian plane 

wave which excited frequencies from dc tq above 10kHz. The scale of the experimental 

data has been normalised between 0 and I for easier comparison to the TLM results. 

All TLM results are normalised against a TLM model of exactly the same size, with the 

source and measurement points kept constant, but with the rods removed. These results 



5. Band Gap Hearing In The Lower Jaw and Teeth 97 

Absorbing Boundary Benchmark 
0.03,-----.---.... ---,----,------.---.... -----, 

0.02 

0.01 

Of-----' 

~ 
.5 i -0.01 

£ 
-0.02 

-0.03 

-0.04 

-0.05 L---~:::---__,:7:--__::_=--__=_':::----~:::---__,:-'::--~ o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 
timeins 

Figure 5.6: Time domain waveform of an incident and reflected sine wave 

show very good correlation with the experimental evidence. The low frequency roll off 

below 2kHz in the experimental results is due to the frequency response of the speaker 

used. The higher frequency band gaps appear to correlate well and the tail off above 

8kHz is very similar. This demonstrates that TLM is a useful modelling technique when 

looking for acoustic stop gaps. 

5.4 Band Gap Hypothesis 

The observations of Goodson and Klinoska [5.10] that the teeth in the lower jaw form 

a periodic structure with an almost uniform separation of 11.4 mm, have lead to the 

consideration of the existence of acoustic stop bands within the dolphin hearing system. 

Previous work carried out in Chapter 3 and published in [5.11] has revealed the speed of 

sound in the lower jawbone of a deceased adult B.ottlenose Dolphin with oui any flesh 
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Figure 5.8: TLM Modelling results compared with experimental results perfonned by Robert

son et al. [5.8] 
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Figure 5.9: er cross section of the lower jaw and tooth of a Bottlenose Dolphin 

or fatty materials present, is approximately 2600 rnIs which is considerably higher than 

that of water 1500 rnIs. This would result in a hard boundary condition which could 

act as an acoustic wave guide 10 any sound trapped inside the hollow bone channel. 

This work was also able to show that the speed of sound within an individual tooth is 

between 2200 rnIs and 3380 rnIs, in the best case this yields an impedance boundary 

of 4.48 MPa s m-3 • This gives a considerable impedance boundary between sound 

travelling in the hollow bone channel and the tooth. If sound were to enter the top of 

this channel the sound would have to travel down the hollow channel that is made up 

of various fatty lipids as has been shown by Koopman et al. [5.12]. In this work the 

authors show that the lower jaw is more complex than first thought, in that the jaw is not 

just made up from a single fatty material, but is made up from many compounds which 

are know to have differing sound velocities in much the same way as the melon does 

[5.13], this might serve to direct the sound around the contours of the jawbone. If this is 

the case then assuming that the sound is actually travelling in a straight line in a medium 

of uniform speed would not be far from the actual situation. From this evidence we have 

hypothesise the sound transmission path to be one where sound enters the hollow cavity 

of the jawbone near the rostrum of the animal, travels along the fatty sound channel, 

which is filled with teeth that are periodically spaced, sat within a wave guide and is 

then projected towards the ear. Using eT data that has been made available to us by 

the US Navy, which was originally taken by "ouser et al. [5.14], we have been able to 

examine how a tooth is sat in the gum and jawbone of a dolphin. 
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Figure 5. 10: TLM Geometry 

A small cross-section of the left side of a lower jawbone and the rooted section of a tooth 

can be seen in Figure 5.9. This picture shows the peg and socket nature of the dolphin 

tooth. The tooth is held in place by the gum and a soft bone structure that doesn't show 

up on this image due to its low density. From the header information in the eT images, 

it is possible to convert the number of voxels into real measurements where each voxel 

represents 0.6836 mm of space in each coordinate direction. Using this we can estimate 

the internal width of the channel to be between 8.9 mm near the top of the jaw and 

11.6 mm near to the base. Further to this the diameter of the tooth is approximately 

4 mm, which is confirmed by measurements with Vernier callipers on a tooth taken 

from the lower jaw of a deceased Bottlenose Dolphin that were used in chapter 4. With 

this information it is possible to construct a hypothetical two dimensional model of the 

tooth structure within the jawbone. 

5.4.1 Finite Waveguide Models 

Basic Model Set Up 

Figure 5.10 shows the geometry used in the first 2-d simulations. A Gaussian signal, 

(shown in Figure 5.11), was injected as a point source on the left hand side of the sim

ulation mesh aligned with the jawbone. The measurement point was placed at the far 

right of the mesh. The input signal was chosen in order to allows a wide band of fre

quencies within the outgoing dolphin click to be simultaneously excited. A horn with a 

45° angle was used at the exit end of the simulated jawbone to increase directivity and 

to emulate the transition from the jaw to the inner ear. An absorbing boundary condi-
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Figure 5.11: Input signal used in TLM simulations to produce a broadband excitation. 

tion was applied to the outer surface of the mesh to avoid reflections. The teeth and 

jawbone shown in Figure 5.10 are modelled by applying a + I reflection co-efficient at 

the periphery of each region within the numerical code. The mesh was constructed with 

a node size of 0.5 mm which given the sound speed of 1500 mls allowed a maximum 

modelling frequency of 300 k.Hz. This scaling factor was chosen in order to minimise 

the effect of dispersion and the effect of mesh coarseness error (spacial quantisation), 

which can be an issue when modelling curved surfaces. In order to solely show the 

effect of the teeth on the model, a calibration simulation was run with all the teeth re-

. moved. The output signals were converted to the frequency domain using a 2048 point 



5. Band Gap Hearing In The Lower Jaw and Teeth 

2d Band Gap at Various WIdths 

0.9 

0.8 

0.7 

I 

~ 

0.3 

0.2 

O:OL---..,.O.2~~O'~' _\~\?0\:.~6 ;;ff:~0'8::---~'v,--\::,:}~~!:.."i.j_\...:::,,:I:,::.;=! ::'~.8~L,~'!:.J2 
Frequency Hz x 105 

-- 7.Smm Spacing 

-- 9mm Spacing 

-- 10.5mm Spacing 

13.5mm Spacing 

--16.5mm Spacing 

102 

Figure 5.12: 2-D band gap structure for the hypothesised tooth model for a range of widths. 

DFf and then the calibration run was used to generate the nonnalisation factors for the 

simulations. As the width of the hollow fatty channel is not constant in the dolphin 

. the experiment was repeated for a range of channel widths (7.5 mm 9.0 mm 10.5 mm 

13.5 mm 16.5 mm), in order to identify and study the effects on the band gap structure. 

Results 

Figure 5.12 shows the effect of the teeth upon the transmission of sound through the 

sound channel with a selection of different widths. 

For all widths it can be seen that there is a stable band gap centred upon 65 kHz. This 

is close to the theoretical value that can be calculated by utilisation of Equation 5.2 

which is 68 kHz. However less stability was observed in the secondary band gap that 

is fonned at approximately 120 kHz. This band gap either continues for the rest of 

the hearing band or allows passage again at 135 kHz. This filter eff~t could serve to 

increase signal to noise ratio by filtering out unwanted lower frequencies whilst still 
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Figure 5.12: 2-D band gap structure for the hypothesised tooth model for a range of widths. 

DFf and then the calibration run was used to generate the nonnalisation factors for the 

simulations. As the width of the hollow fatty channel is not constant in the dolphin 

the experiment was repeated for a range of channel widths (7.5 mm 9.0 mm 10.5 mm 

13.5 mm 16.5 mm), in order to identify and study the effects on the hand gap structure. 

Results 

Figure 5.12 shows the effect of the teeth upon the transmission of sound through the 

sound channel with a selection of different widths. 

For all widths it can be seen that there is a stahle band gap centred upon 65 kHz. This 

is close to the theoretical value that can be calculated hy utilisation of Equation 5.2 

which is 68 kHz. However less stability was observed in the secondary band gap that 

is fonned at approximately 120 kHz. This band gap either continues for the rest of 

the hearing band or allows passage again at 135 kHz. This filter effect could serve to 

increase signal to noise ratio by filtering out unwanted lower frequencies whilst still 
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allowing those of interest to propagate to the ear. The slight ringing effect that can be 

seen in the pass band on the graph is due to the simulation output being substantially in 

the near field of the scattering array and its proximity to the absorbing boundary. 

5.4.2 Finite Model With Teeth Removed 

Model Set Up 

One further effect that was examined in the 2-d model was the effect of the band gap 

when some teeth are removed from the jaw. In order to model this, a new simulation 

was laid out as in Figure 5.!O but this time various combinations of teeth were removed. 

The same input signal was applied and the same analysis techniques were used as for 

the previous experiment. A typical result for the model where T4 , T7 , TIO TlI and TI9 

have been removed is shown in the following section. 

Results 

The results shown in Figure 5.13 demonstrate that the band gap is sustained and still 

centred about 65 kHz, however it shows attenuation in what was previously the pass 

band of the echolocation frequencies. If the theory is correct this could suggest that the 

dolphin would suffer a decrease in signal to noise ratio as a result of loosening teeth. 

What is also apparent is that when all the teeth are removed a plane wave can pass 

directly down the channel without this filtering effect. 

The 2-D results look reasonably convincing however it is clear from the er sLice shown 

in Figure 5.9 that the 2-D simulation is a crude approximation to the real geometry. In 

fact the tooth is not present for the full depth of the channel, nor is it infinitely long as 

has been assumed in the 2-D case thus caution should be exercised. 
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Figure 5.13: A typical result for removing some teeth from the jaw model. W=7.5mm 

5.5 Three-Dimensional Models 

Further modelling was carried out using a 3-D version of the TLM software used in the 

previous simulations. The software was again validated against analytical spreading 

models. The geometry depicted in Figure 5.14 shows the basic setup where rods of 

similar length to the tooth are contained within the channel. The height of the channel 

used was 34 mm and the height of the rods(teeth) was 25 mm. These dimensions were 

measured from the available eT data, however the depth of the channel and the depth 

of tooth penetration varies along the entire jawbone so this should still be considered 

to be a simplified model. The channel width was chosen to be 9 mm as this was within 

the variation and showed the best band gap structure in the 2-D experiment. The rod 

diameter was 4 mm as in the previous experiments. As before two measurements were 

taken and a normalised output showing the effect of the teeth was produced. The results 

can be seen in Figure 5.15. 
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Figure 5.14: 3-D TLM model of a simplified dolphin lower jaw. 
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Figure 5.15: 3-D simulation results compared to 2-D results were channel width is 9 mm. 

Although the band gap is less defined there is still a clear stop band between 55 kHz 

and 75 kHz. From this it can be seen that the band structure agrees with the 2-D version 

well, meaning the properties identified earlier are still applicable. The 3-D model still 

contains the same artifacts in the pass band that are due to the numerical modelling and 

the boundary conditions used. 
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From these models that have been implemented the filter effect has been demonstrated 

however the effect of this upon the binaural hearing of the dolphin has not been demon

strated. The current model only allows sound to enter at the tip of the rostrum which 

inhibits directionality data from being obtained. Looking at the er data shown in Fig

ure 5.16 reveals that for a single 2-D slice sound could propagate through the gum line 

and into the fatty channel of the lower jaw. As sound travels through the gum line in this 

manner it would interact with the teeth in a similar way to that previously hypothesised 

but this time different angles of arrivals could be interpreted. 

5.6 2-D TLM Simulation With Real Geometry 

Using the previously developed methodology it is possible to take the er data shown 

and perform beam pattern measurements upon the real geometry. In order to do this 

some assumptions need to be made. These are that the walls and teeth of the jaw act 

as perfect re Rectors and that we can model the receivers at each ear as omnidirectional 

receivers. 

The model was constructed based upon the er slice of Figure 5.16 and can be seen 

meshed for numerical analysis in Figure 5.17. The same Gaussian input signal show 

in Figure 5.11 was used as in the previous experiment. The source was positioned 

at a distance of 31 cm from the central point, and rotated about the central point. The 

model was scaled to fil a node size of 0.5 mm as was used in the previous models which 

gave a maximum modelling frequency of 300 kHz. The TLM simulations were run for 

4096 iterations and signals were measured al the two receivers. Absorbing boundary 

conditions were placed behind the receivers in order 10 prevent the signal for ringing 

on, as there is no other energy absorption in the model. Once the simulations where run 

Ihe data from each receiver was passed through a 4096 point DFT using Matlab. The 

signals where then collated for each angle and the beam patterns plotted. These plots 

are shown in Figures [5.18 10 5.27] 
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Figure 5.16: A er slice through the head and mid jaw of the Dolphin 

It is possible to compress all of the beam pattern data into 2 plots that reflect the dol

phins sensitivity at each frequency with it angle. These can be seen in Figures 5.28 and 5.29. 

These graphs show a clear difference between a model with and without teeth in the 

jawbone. It also shows some possible benefits to the sonar signal patterns. 

At 50 kHz the 5 dB beam pattern of both ears is approximately 15° each and combines 

to give 30°. When the teeth are present the patterns have no isolation between patterns 

but form a single 15° beam at the 5 dB points. As lower frequencies travel further due 

to lower attenuation it is likely this frequency is useful in finding the existence of a 

target at long range. 

As we move to 60 kHz we can see that the pattern without teeth has decreased it's 

isolation between channels and the 5 dB beam width is approximately 300, on the graph 

with the teeth present two nulls have started to for at +/- 5°_7°. This is consistent with 
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the earlier work that showed that a signal travelling directly on to the line of teeth would 

under go filtering in the region of 60-75 kHz. although the pattern for the ear remains 

the same width as for 50 kHz the isolation between patterns has increased which makes 

the combined beam pattern larger. 

At 65 kHz, which is near the centre of the band gap predicted in the earlier simulations. 

the combined pattern without the teeth has increased in size to 40" due to a decrease 

in isolation between ears and the spreading of the individual patterns for each ear. The 

patterns with the teeth present have increased in sensitivity in the null sections. while 

the isolation has increased. The main lobe of reception is approximately 20° wide. 

At 70 kHz the pattern without the teeth present have broadened. the main angle lobe 

5 dB angle is now 55°. The isolation between the ears has decreased by a small amount. 

The patterns with the teeth present now have another strong null between +/_2°_5°. The 

pattern for the left ear is approximately ISO wide and the right ear is 30°. The isolation 

between ears is greatly increased by the presence of the nulls in each of the patterns. 
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which could be used to improve target directionality. 

At 80 kHz the patterns for the left and right ears without the teeth present have further 

reduction in isolation between the ears, the total beam pattern for both ears is approxi

mately 70°. When looking at the patterns with the teeth present there is approximately 

7° of isolation between the main lobes of the left and right ears. Each of the patterns 

have a main lobe width of approximately 15°, the nulls between the patterns are on the 

0° axis. 

At 90 kHz the patterns without the teeth have moved further apart with each pattern 

approximately 200 wide. The patterns with the teeth present have narrowed but are still 

separated with an on axis null, each individual pattern is approximately 12° wide. 

At 100kHz the patterns without the teeth present are now isolated with the null at 5° 

from the main axis. The right ear has a 5 dB beam width of approximately 30° and the 

left ear has a beam width of 22°. The patterns with the teeth present are considerably 

narrower at approximately 7° in each ear, with a null between the two patterns being 

on the 00 axis. This pattern in particular shows a very good improvement caused by the 

teeth. 

At 110kHz the patterns without the teeth present are isolated by a considerable angle 

with the null on the main 00 axis. The right ear has a beam width of 25° and the left 

ear has a beam pattern of 200. The pattern with the teeth present are less defined than 

those at 100kHz, each of the ears now has a 2-prong pattern. The right ear has its first 

prong at - 2° and is approximately I ° wide. The second prong located at approximately 

-15° is 10° wide. The left ear has its first prong located at 5° and is approximately 7 

°wide. The second prong is again centred about 15° and is 15° wide. While this pattern 

is less stable than the pattern at 100kHz the main lobs are still smaller than for two 

conventional receivers and the patterns are directed more towards the 0° axis which 

would reduce th.e need to sweep the head for side to side. 

At 120 kHz the patterns without the teeth present have lost their isolation, meaning the 

loss of directional information at these high frequencies. The left and right ears both 

have null reception points at +/_5° which makes for a narrower beam pattern. The main 
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lobes for each pattern are approximately 10". The patterns with the teeth present are 

arguably better as they are isolated by a very small but well defined amount on the 0° 

axis with each 5 dB beam width being 15° wide. The patterns also contain a mid point 

in each pattern were the signal drops to -3 dB. 

At 130 kHz the patterns without the teeth present have narrowed. however there is still 

no isolation between ears. which would inhibit the gathering of directional information. 

The beam width for the right ear is 7° and for the left ear it is 18°. The patterns for the 

teeth show a much more useful beam pattern for precision echolocation. There is a well 

defined null between the patterns of each ear centred up on the 0° axis Each pattern is 

5° in width. There is however a second side lobe that can be seen at -30" .60" and +60" 

which is less desirable. 

M(2Ihl [5. 15] observed that sound entering the front of the jaw had an increased delay to 

what was expected from a simple ray trace of the path. The addition of the teeth to the 

jaw cavity also has the effect of increasing the propagation time to the assumed ear. For 

the model used in this simulation the propagation delay induced from adding the teeth 

to the simulation at zero degrees is 7 J1.s. Although this does not fully explain the delay 

this may be one of many features that causes a slow wave propagation. 

5.7 Conclusions 

Although there is great debate about how sound enters the jaw. either via the pan bone 

(acoustic window) as identified by Norris [5.161. via the teeth [5.10], via the mental 

foramens [5.17] or directly through the gums it is clear that once sound is within the 

bone it will travel along the jawbone and then undergo this filtering. If we make the 

assumption that the sound enters through the gums as shown in the latter numerical sim

ulations then we can see a vast improvement in the beam width and channel isolation. 

This type of geometry should be easily reconstructed within a man made system and 

may serve to enhance system performance and reduce cost and complexity. Whether 

this is the exact method that takes place in the dolphin is a matter for biologist and 
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physiologists. This work has examined acoustic band gaps that are a known acoustic 

principle and seen that they can take place in the dolphin geometry. This effect can 

certainly be used in a similar way to improve man-made systems 
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50 kHz Beam Pattern from CT data. 50 kHz Beam Pattern from CT data. 
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Figure 5. , 8: The Beam Pattern at 50kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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60 kHz Beam Pattem from eT data. 60 kHz Beam Pattem from eT data. 
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Figure 5. J 9: The Beam Pattern at 60kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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65 kHz Beam Pattem from CT data. 65 kHz Beam Pattern from CT data. 
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Figure 5.20: The Beam Pattern at 65kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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70 kHz Beam Pattern from CT data . 70 kHz Beam Pattern from CT data. 
90 75 90 75 

- Left Ear 
60 

-LettEr 

-- Right Ear -- RIght Ear 

15 15 

-45 

-60 

-90 -75 
-90 -75 

Figure 5.21: The Beam Pattern at 70kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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80 kHz Beam Pattern from CT data. 80 kHz Beam Pattern from CT data. 
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Figure 5.22: The Beam Pattern at 80kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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90 kHz Beam Pattern from CT data. 90 kHz Beam Pattern from CT data. 
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Figure 5.23: The Beam Panern at 90kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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100 kHz Beam Pattern from CT data. 100 kHz Beam Pattern from CT data. 
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Figure 5.24: The Beam Pattern at 100kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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110kHz Beam Pattern from CT data. 110kHz Beam Pattern from CT data. 
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Figure 5.25: The Beam Pattern at 110kHz. Left is wilh no teeth in the jaw. Right with Teeth in 

place 
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120 kHz Beam Pattern from CT data . 120 kHz Beam Pattern from CT data. 
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Figure 5.26: The Beam Pattern at 120kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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130 kHz Beam Pattem from CT data. 130 kHz Beam Pattem from CT data . 
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Figure 5.27: The Beam Pattern at 130kHz. Left is with no teeth in the jaw. Right with Teeth in 

place 
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Figure 5.28: Left is the Sensitivity With No teeth. Right is the Sensitivity with the teeth present. 
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Figure 5.29: Left is the Sensitivity With No teeth. Right is the Sensitivity with the teeth present. 
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CHAPTER 6: 

CONCLUSIONS 

T HE aim of this thesis was to further the underStanding of the receiving mech

anisms of the Atlantic Bottlenose Dolphin Tursiops truncatus. This has been 

achieved by empirical analysis of current theories, the application of Laser Doppler Vi

brometry measuring techniques (to examine previously unquantified properties of the 

materials that form the lower jaw structure) and numerical modelling of the scattering 

structure of the skull structure based on CT data that has only recently been made pub

licly available. Additionally the modelling techniques used within this t1jesis have been 

validated and can now be used by others for analysis and simulation of acoustic wave 

propagation. 

6.1 Contribution Of This Thesis 

6.1.1 End-Fire Array Hypothesis 

Current theories of hearing have been modelled and measured in Chapter 3. It has been 

shown that an array of hydrophone elements can produce a very useful end-fire beam 

pattern and, when scaled to the number of teeth that are present in the dolphin, produce 

a beam pattern that is similar to the beam pattern of the dolphin. The pattern produced 

by such an array is extremely useful for shallow water applications as it possess low 

side lobes. The two piston elements can also approximate the acoustic window and 

produces a pattern that closely matches the patterns measured from the Dolphin. This 

work does not add support to either theory of hearing, only that they are both plausible. 

125 
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6.1.2 Acoustical Properties Of Dolphin Teeth 

In Chapter 4 of this thesis, detailed measurements were conducted to define the speed 

of sound in the lower jawbone and the teeth. It was shown that the sound speed in the 

tooth of a Bottlenose Dolphin is 2200 ms-I for transverse waves and 3380 ms-I for 

compressional waves. To the best of the authors knowledge these figures were previ

ously unknown. This data can now be used by the wider community and in particular 

can be used to more accurately map density and sound speed in numerical simulations. 

The LDV measurements of the modal properties of the teeth have also been presented. 

It has been shown that the teeth have a resonance response between 80 kHz to 90 kHz 

and 115 kHz to 135 kHz when mounted in the jawbone without the presence of any tis

sues. If the teeth are being used as pressure sensors or couplers then this could be used 

to selectively amplify specific frequencies of sound to enhance performance. The LDV 

measurements also show that the teeth do not possess a breathing vibrational mode that 

had been speculated. 

6.1.3 Acoustical Properties Of Lower Jawbone 

Both LDV and standard acoustic sensors have been used to classify the speed of sound 

and attenuation levels in a lower jawbone of a deceased Dolphin. After some difficulty 

the sound speed in the Jawbone has been determined to be 2607 ms-I, this is higher 

than the sound speed of water and thus would have a higher acoustic impedance. During 

these experiments it was noted that the attenuation level in the jawbone was extremely 

high, at 1.8 dBmm- l . This property means that it is extremely unlikely for the sound 

to be coupled from the tip of the jaw to the acoustic window via bone propagation. It 

is likely that any propagation would occur through the fatty channel within the jaw or 

through the surrounding water. This would aid in reducing undesired multi path at the 

receiver. 
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6.1.4 Acoustic Band Gap Theory 

Chapter 5 has discussed acoustic band gap structures and presented numerical mod

elling evidence for the existence of acoustic band gaps caused by the geometry of the 

teeth within the lower jawbone. These simulations have been conducted in both two and 

three dimensions and upon have used both a simplified and real dolphin skull geometry. 

This work shows that the teeth produce a band gap which serves to shape the reception 

beam pattern of the animal by increasing inter-aural isolation at higher frequencies and 

produces a narrower beam than would be available without the teeth. The patterns are 

again similar to those of Au and Moore. Figure 6.1 Figure 6.2 and Figure 6.3 show the 

comparisons between the simulation results from Chapter 5 and the measurement work 

of Au and Moore. 

6.1.5 Relation To Current Work 

The work presented in this thesis has adapted and developed the existing sound recep

tion ideas of Au and Goodson and introduces the band gap hypothesis. In theoretical 

terms the band gap idea fills the link between the simple two element receiver suggested 

by Au [6.1] and the array of periodic receiving elements suggested by Goodson [6.2]. 

It is also consistent with a large proportion of the work by Ryabov [6.3] in which he 

assumes that sound travels along the inner channel of the jaw on its way to the middle 

ear. The band gap theory also correlates well with the recent work of Cranford et al. 

[6.4] who has demonstrated, using FEM modelling, that sound can travel into the lower 

jawbone channels !md then onto the ears in a beaked whale (Ziphius cavirostris). 
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Figure 6.1: A comparison of the TLM simulation results and the measured beam patterns of Au 

and Moore [6.5) at 30 kHz 
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Figure 6.2: A comparison of the TLM simulation results and the measured beam patterns of Au 

and Moore [6.5] at 60 kHz 
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Figure 6.3: A comparison of the TLM simulation results and the measured beam patterns of Au 

and Moore [6.5] at 120 kHz 
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6.1.6 Suggestions For Further work 

Artificjal Jaw Structures 

The next stage of this work should be to construct a simple array of periodically spaced 

scallering objects similar to the layout in Figure 5.17. This could then be used to 

test if the predicted increased directionality gained from the band gap path is useful. 

Funhermore this band gap allows for narrower beams to be formed using a smaller 

number of elements and could therefore be used to reduce system cost. 

Field Trials 

One theory that is raised by this work is the theory of gum hearing, in which sound is 

channel along the gums of the animal and then into the normal ear structure. This path 

contains additional directivity data that could aid localisation. If possible animal trials 

should be constructed in a similar fashion to Brill's trials to try and prove or disprove 

this hearing pathway and the effect on localisation. 

Material Modelling 

In the simulations presented in Chapter 5 the jawbone is modelled as an acoustically 

hard, perfectly reflecting boundary. The actual bone is constructed from flesh, cartilage, 

and other tissues which are known not to perfectly reflect incident sound as demon

strated in Chapter 4. In reality the bone and tissue would absorb some of the received 

sound depending on its frequency content which could alter the directionality patterns 

and sensitivity response. The modelling results presented in the thesis are still useful 

as any artificial systems can easily replicate the jawbone based upon the assumptions 

made in this thesis. 
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3D Modelling 

Currently the CT data available for the head of the Bottlenose Dolphin provided by 

Houser et al. does not contain the full rostrum and therefore prohibits the 3D mod

elling of the dolphin with all the tissues present. If this data were to become available 

then a full 3D model should be simulated. 3D modelling of the skeleton provided by 

digimorph was not performed in this thesis due to computational constraints however 

future work could concentrate upon this. 

Other Species 

Currently the CT data available is only for Bottlenose Dolphin. To add further weight 

to this theory, other animals which are known to echolocate should be examined for a 

similar band gap structure within the reception frequencies of the animal. 

6.2 Closing Remarks 

This thesis has shown that the teeth do indeed play a role within the echolocation sys

tem of the Dolphin whether it be as an acoustic resonator or as an array of passive 

scattering elements. The numerical modelling shows that the jaw structure provides 

excellent isolation of the upper echolocation frequencies, which is important for short 

range target detection and tracking. This theory of sound reception via the gums works 

well in parallel with the sound reception via the pan bone. The slow wave nature of 

the band gap means that signals that arrive as a result of the gum will be received af

ter those of the direct path into the pan bone. This would mean that both sets of data 

are available to the processing system thereby increasing system efficiency as only one 

click is needed to produce two return clicks. Such a structure could easily be emulated 

by man-made systems to improve target resolution via providing additional data. Fur

thermore the shaping of the acoustic path via passive scattering elements could be used 

as a mechanism to reduce array construction costs. 
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APPENDIX A: 

PROPERTIES OF THE BAE SYSTEMS ARRAY 

This section contains data about the end-fire array shown in Figure 3.14 that was pro

vided by Dr Peter Dobbins and built by BAE Systems. The array performance was not 

as expected and therefore was not used for the work conducted in Chapter 3 of this 

thesis. For future reference the wiring design and the beam patterns of the array will 

have been included. 

A.1 End Fire Array Wiring 

The array was provided with co-axial connections to each individual element, how

ever the recording equipment available only permitted the simultaneous recording of 

4 cliannels. A digitally controlled analogue multiplexer circuit was designed so that 

each channel could be selected in turn and then recorded. The multiplexer chosen was 

the Fairchild 4051, which offered the closest impedance match available with low leak

age. The circuit diagram is included as Figure A.l. The input selection signals to the 

multiplexer are TIL whilst the analogue power rails may be ± 5 to 15 V and GND 
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Figure A.I: End-fire array channel multiplexer. 
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Figure A.2: The filter characteristic of the hydrophone array wiring. 

As the ceramic elements of the array are placed in series with the 801l multiplexer, a 

first order low pass filter is formed. The capacitance of the elements in the array was 

measured using a HP 4193 Network analyser and found to be approximately 600 pF 

in the range of 50 kHz to 150 kHz. Using the equation for a first order rc filter [A.I] 

which is shown in Equation A.I where f is the frequency of interest, c is the hydrophone 

capacitance and r is the line resistance, the filtering effect that is caused by this design 

and any impact that it might have upon the sonar reception is evaluated. 

. 1 
Gatn dB = ---r====~ 

)1 + (27r frc)2 
(A.I) 

Figure A.2 shows the filter characteristics of the array design, from these results we can 

see that the frequencies of interest (j 100 kHz) are safely within the filter pass band. 
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To detennine the array beam pattern, the replica end-fire array was attached to a pan 

and tilt system. Careful attention was made to make sure the centre off the array was 

aligned to the centre of the pan and tilt system. The source transducer used within the 

experiment was a piston transducer who's resonant frequency is approximately 90 kHz. 

The acoustic aperture of the hydrophone was 5 cm. Equation 3.5 which calculates 

the Rayleigh Distance (D) of an acoustic source was used to calculate the minimum 

separation of the source and the array. Given a transmission frequency of 78.95 kHz 

and assuming a sound speed of 1500mls the near field should end at 41 cm. The source 

hydrophone was placed 65 cm from the centre of the array meaning the receiving array 

should satisfy farfield conditions even when in the end fire direction. 

A Hameg HM8130 function generator was used to produce a pulsed 8 cycle sine wave 

at a frequency of 78.9 kHz. The output signal from the multiplexer was fed into a pre

amplifier with 40 dB of gain between 10 Hz and 100kHz. As the same pre-amplifier 

is used with every channel in the array phase effects will be equal on ever signal and 

should cancel out. 

Custom PC software was written to control the position of the pan and tilt system in 

10 steps between ± 900, while cycling through each of the channels on the multiplexer 

and capturing the wavefonns on a Tektronics oscilloscope and to store the signal to the 

PC hard drive at a sample rate of I MHz. In order to maintain a fixed time frame for 

each signal captures on the oscilloscope were triggered from the TTL gating output of 

the outgoing pule. 

The results where then post processed in Matlab and the beam patterns of each element 

where obtained, which can be seen in Figures A.3-A.24. From these beam patterns it 

can be clearly seen that the elements are not omnidirectional. This is most probably 

due to the way in which the elements are fixed close to each other causing interference 

in the acoustic field, and the presence of the perspex mounting block. The lack of 

omnidirectionality means that this array could never operate in an end-fire mode. Figure 

A.25 shows the array working in a broadside configuration. 
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Figure A.3: Element I Beam Pattern. 
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Figure A.4: Element 2 Beam Pattern. 
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Figure A5: Element 3 Beam Pattern. 
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Figure A6: Element 4 Beam Pattern. 
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Figure A 7: Element 5 Beam Pattern. 
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Figure A.B: Element 6 Beam Pattern. 
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Figure A.9: Element 7 Beam Pattern. 
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Figure A.I 0: Element 8 Beam Pattern. 
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Figure A. 1 1: Element 9 Beam Pattern. 
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Figure A. 12: Element 10 Beam Pattern. 
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Figure A. 13: Element 11 Beam Pattern. 
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Figure A. 14: Element 12 Beam Pattern. 
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Figure A. 15: Element 13 Beam Pattern. 
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Figure A. 16: Element 14 Beam Pattern. 
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Figure A.17: Element 15 Beam Pattern. 
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Figure A.IS: Element 16 Beam Pattern. 
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Figure A19: Element 17 Beam Pattern. 
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Figure A20: Element 18 Beam Pattern. 
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Figure A21: Element 19 Beam Pattern. 
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Figure A22: Element 20 Beam Pattern. 
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Figure A23: Element 21 Beam Pattern. 
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Figure A.24: Element 22 Beam Pattern. 
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Figure A.25: All elements combined to fonn a broadside array. 
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