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DECOMPSH Deterministic/Stohastic  

DSL Digital Subscriber Line 

DWT Discrete Wavelet Transform 

EDT Equal Differential Time 

EEWS Earthquake Early Warning System 

EMSC European Mediterranean Seismological Centre 

FDR False Discovery Rate 

FDSN International Federation of Digital Seismograph Networks 

FEC Forward Equivalency Class 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

FTP File Transfer Protocol 

GI-NOA Geodynamics Institute of National Observatory of Athens 

GPRS General Packet Radio Service 

GPS Global Positioning System 

GST Global System Table 

HPF High Pass Filter 

HSNC Hellenic Seismological Network of Crete 

HT Hard Thresholding 

HVSR Horizontal to Vertical Signal Ratio 

HYBSURE Hybrid SURE 

IANA Internet Assigned Number Authorities 

IFT Inverse Fourier Transform 

IP Internet Protocol 

ISC International Seismological Committee 

ISDN Intergraded Services Digital Network 

IS-IS Intermediate System to Intermediate System 

ISP Internet Service Provider 

IWT Inverse Wavelet Transform 

JCL Job Control Language 

L2TP Level 2 Tunnelling Protocol 

LA(l) Least Asymmetric filter of length l 
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LCD Liquid Crystal Display 

LGS Laboratory of Geophysics and Seismology 

LPF Low pass Filter 

LSP Label Switched Path 

LTA Long Time Average 

MAD Medium Absolute Deviation 

MINH Minimax estimator - hard thresholding 

MINS Minimax estimator - soft thresholding 

MMS Multimedia Messaging System 

MODWT Maximum Overlap Discrete Wavelet Transform 

MPLS Multi Protocol Label Switching 

MRA Multi Resolution Analysis 

MSE Mean square Error 

NEIGHBL Neighborhood Block 

NHLM New global High Noise Model 

NLNM New Low Noise Model 

OS Operating System 

OSI Open Systems Interconnection 

OSPF Open Shortest Path First 

PPP Point to Point Protocol 

QTF Quasi Transfer Function 

RSVP Resource ResrVation Protocol 

RTP Reftek Transmission Protocol 

RTS Real Time Subsystem 

SAS Seismic Analysis Subsystem 

SCAD Smoothly Clipped Absolute Deviation 

SMS Short Messaging System 

SNR Signal to Noise Ratio 

SPT System Process Table 

ST Soft Thresholding 

STA Short Time Average 

STD Standard Deviation 

STFT Short Time Fourier Transform 

SURE Stein’s Unbiased Risk Criterion 

TCP Transmission Control Protocol 

TE Traffic Engineering 

TEI Technological Educational Institute 

THE Aristotle University of Thessalonica Seismological Network 

THRSDA Hypothesis testing thresholding 

TI Translation Invariant 

TSS Two Station Subarray 

UDP User Datagram Protocol 

VISU VisuShrink 

VoIP Voice over IP 

VPN Virtual Private Network 

VSAT Very Small Aperture Terminal 

WAE Wavelet Azimuth estimation 

WDM Wavelet Denoising Method 

WEpE Wavelet Epicentral Estimation 

WME Wavelet Magnitude estimation 

WT Wavelet Transform 

XML Extensible Markup Language 
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Abstract 

This work deals with two main fields: 

a) The design, built, installation, test, evaluation, deployment and maintenance of 

Seismological Network of Crete (SNC) of the Laboratory of Geophysics and 

Seismology (LGS) at Technological Educational Institute (TEI) at Chania. 

b) The use of Wavelet Transform (WT) in several applications during the operation of the 

aforementioned network. 

 SNC began its operation in 2003. It is designed and built in order to provide denser 

network coverage, real time data transmission to CRC, real time telemetry, use of wired ADSL 

lines and dedicated private satellite links, real time data processing and estimation of source 

parameters as well as rapid dissemination of results. All the above are implemented using 

commercial hardware and software which is modified and where is necessary, author designs 

and deploy additional software modules. Up to now (July 2008) SNC has recorded 5500 

identified events (around 970 more than those reported by national bulletin the same period) 

and its seismic catalogue is complete for magnitudes over 3.2, instead national catalogue which 

was complete for magnitudes over 3.7 before the operation of SNC. 

  During its operation, several applications at SNC used WT as a signal processing tool. 

These applications benefited from the adaptation of WT to non-stationary signals such as the 

seismic signals. These applications are: 

� HVSR method. WT used to reveal undetectable non-stationarities in order to eliminate 

errors in site’s fundamental frequency estimation. 

� Denoising. Several wavelet denoising schemes compared with the widely used in 

seismology band-pass filtering in order to prove the superiority of wavelet denoising 

and to choose the most appropriate scheme for different signal to noise ratios of 

seismograms.  

� EEWS. WT used for producing magnitude prediction equations and epicentral 

estimations from the first 5 secs of P wave arrival.  

� As an alternative analysis tool for detection of significant indicators in temporal 

patterns of seismicity. Multiresolution wavelet analysis of seismicity used to estimate 

(in a several years time period) the time where the maximum emitted earthquake energy 

was observed.  



Brunel University  Chapter 1  

George Hloupis  Reg. No: 9725331 

16 

 

 

1. Seismological Signal Processing – An Introduction 

1.1 Historical review 
 

 From the ancient years earthquakes have attracted the attention of human 

nature. This caused because there is no other physical phenomenon that produces so 

much fear and insecurity as an earthquake. It happens suddenly, it is unexpected and 

until today its prediction remains an open question. Only the last twenty five years 

there were many destructive earthquakes (Pakistan 2005, North Algeria 2003, El 

Salvador 2001, Athens 1999, Turkey 1999, Kozani 1995, Nortdridge 1994, Loma 

Prieta 1989, Kobe 1995, Mexico City 1985, California 1983) that caused injuries and 

deaths for a significant number of people. The vast majority of earthquakes were take 

place in areas at the borders of the plates of the outer crust of the Earth, whilst a small 

number of earthquakes occur because of the eruption of volcanoes. One of the most 

seismogenic zones around the world is the Eastern part of the Mediterranean Sea 

where a ferocious event is taking place, “the sinking of the African plate underneath 

the Eurasian plate” (Kiratzi & Louvari, 2003). The earthquakes there often exceed 

magnitude 7 on the Richter scale becoming one of the human’s most fearful natural 

disasters.  

 Since short term earthquake prediction is not a widely accepted procedure the 

most practical way for earthquake protection is via knowledge of the local geology as 

well as its dynamic behaviour during earthquakes. A range of approaches and 

strategies did by engineers include: 

a) Measuring earthquakes’ attributes by installation and continuous operation of 

seismological networks. 

b) Site characterization by estimating the influence of local site effects during 

earthquakes. 

c) Earthquake early warning system (EEWS) in order to produce useful alerts 

before the approach of destructive waves. 

d) Study of local regional seismicity in order to identify possible characteristic 

patterns or relations. 

The above procedures try to measure attributes of the earthquake and its 

occurrence times which both are non-stationary quantities. The widely used Fourier 

transform, although useful for stationary signals from simple dynamic systems  
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consist of a linear superposition of few independent, strong, nonevolving periodicities. 

It has severe drawbacks for analyzing signals from the following two important 

categories: Signals that include transients or variable periodicities and signals that 

significantly depart from stationarity, as is the case of intermittent energy releases. 

 

1.2 Aim of this Research 

This research focus on the engineering aspects of recently installed seismological 

network as well as to the application of Wavelet Transform (WT), to seismological 

data acquired from the aforementioned network. The engineering aspects associated 

with hardware and software for the real time Hellenic Seismological Network of Crete 

(HSNC) which is mainly designed and fully built, installed, tested, deployed, 

maintained and evaluated by the author, are presented. In addition, the applicability of 

wavelets is investigated in the following areas: 

a) As an improvement tool for a method widely used to estimate a site’s 

fundamental frequency (Horizontal to Vertical Spectral Ratio – HVSR) and 

thus estimate local site effects. WT used to reveal undetectable non-

stationarities in order to eliminate errors in site’s fundamental frequency 

estimation. 

b) As a denoising scheme for the improvement of earthquake recordings acquired 

by a recently installed seismological network. Several wavelet denoising 

schemes compared with the widely used in seismology bandpass filtering in 

order to prove the superiority of wavelet denoising and to choose the most 

appropriate scheme for  different signal to noise ratios of seismograms . 

c) As a real time earthquake magnitude and epicentral estimator in order to 

provide to an EEWS the necessary rapid information for possible alert 

generation. Wavelet coefficients used to predict earthquake’s magnitude and 

to estimate epicentral location both in the first 4-6 secs after first P wave 

arrival. 

d) As an alternative analysis tool for detection of significant indicators in 

temporal patterns of seismicity. Multiresolution wavelet analysis of seismicity 

used to estimate (in a several years time period) the time where the maximum 

emitted earthquake energy was released. 
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1.3  Literature review 

 In signal processing, the representation of signals is crucial to the potential 

outcome of the project. For example, the Arabic numeral representation permits one 

to easily notice if a number is a power of 10, but more difficult to realize a power of 

16. With the hex representation, the situation is reversed. Meyer (1993) wrote “any 

particular representation makes certain information explicit at the expense of 

information that is pushed into the background and may be quite hard to recover”. 

Non-stationary signals observed in a variety of engineering fields (wind, 

ocean, and earthquake engineering). The inability of conventional Fourier analysis to 

preserve the time dependence and describe the evolutionary spectral characteristics of 

non-stationary processes requires tools which allow time and frequency localization 

beyond standard Fourier analysis. The spectral analysis of nonstationary signals 

cannot describe the local transient features due to averaging over the duration of the 

signal. This makes the Fourier representation inadequate when it comes to analyzing 

transient signals. In seismological signal processing concentrating on (e.g an 

earthquake) is a process for selecting the essential information from an overwhelming 

amount of data. In order to localize both the frequency and the time information in a 

signal several transforms and bases have been proposed (Mallat 1989a, Vetterli 1995). 

An FFT based method, the Short Time Fourier transform (STFT, also called the 

window Fourier transform or the Gabor transform) provides time and frequency 

localization to establish a local spectrum for any time instant. The key feature of the 

STFT is the application of the FT to a time varying signal when the signal is viewed 

through a narrow window centered at a specific time. The signal is multiplied by 

window function (typically Gaussian) and the Fourier integral is applied to the 

windowed signal. The local frequency content is then obtained at time. The window is 

moved to a new time and the process is repeated. High resolution cannot be obtained 

in both time and frequency domains simultaneously due to Heisenberg’s inequality 

(Pinsky, 2001). The window must be chosen for locating sharp peaks or low 

frequency features, because of the inverse relation between window length and the 

corresponding frequency bandwidth (Kareem, 1993). A multi resolution 

representation of the process can be achieved if there is an attribute that allows 
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variable resolution in time and frequency. Accordingly, the time-frequency window 

would narrow automatically to observe high frequency contents of a signal and widen 

to capture low frequency phenomena.  

The projection of signals with continuous or discrete wavelet analyzing 

functions, that are by definition self-similar and well localized in both time (and 

space) and frequency (or wavenumber) domains, provides efficient descriptions, in 

terms of sparseness, of non-stationary, transient, or ‘bursty’ records. Fourier methods 

of signal decomposition use infinite sines and cosines as basis functions, whereas the 

wavelet transform uses a set of orthogonal basis functions which are local. A short 

duration, high frequency phenomenon is buried in a Fourier representation with the 

background averaged spectral content, whereas wavelet transformation allows the 

retention of local transient signal characteristics beyond the capabilities of the infinite 

harmonic basis functions by allowing a multi-resolution representation of a process. 

The wavelet transform originated in geophysics in the early 1980s for the analysis of 

seismic signals (Morlet et al., 1982a, b) and was later formalized by Grossmann and 

Morlet (1984) and Goupillaud et al. (1984). Important advances were made by Meyer 

(1992, and references therein), Mallat (1989a, b), Daubechies (1988, 1992), Chui 

(1992a), Wornell (1995), and Holschneider (1995), among others. These advances 

then impacted other areas of study and particularly applications in geophysics for 

process understanding. An increasingly large variety of applications using wavelets: 

detection of periodic signals in noisy time series (e.g. Otazu et al., 2002), monitoring 

of period variations (e.g. Frick et al., 1997, Fligge et al., 1999), unevenly sampled 

period analysis (e.g. Foster, 1996), derivation of multifractal properties (e.g. Arneodo 

et al., 1988, Argoul et al., 1989, Muzy et al., 1991, 1993, Arneodo et al., 1995, 1998), 

random multifractal synthesis (e.g. Benzi et al, 1993), localized structure 

identification (e.g. Lucek & Balogh, 1997, Roux et al., 1999, Mouri et al., 1999), 

polarization analysis (e.g. Baumjohann et al., 1999), denoising (e.g. Fligge & Solanki, 

1997, Komm et al., 1999), signal to noise ratio enhancement (e.g. Zhang & Paulson, 

1997), information compression (e.g. Muhlmann & Hanslmeier, 1996), multi-

resolution image decomposition (e.g.  Mallat, 1989a, Pantin & Starck, 1996), studies 

of random walks (Arneodo et al., 1996), flow structure analysis (Haynes & Norton, 

1993), population classification (Bendjoya et al., 1991), clustering detection (Bijaoui 
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et al., 1993, Girardi et al., 1997, Lima Neto et al., 1997), fluid turbulence simulations 

(e.g Schneider et al., 1997). 

A seismic signal is often seen as containing noise which obscures the 

information of interest. This noise may simply be measurement error, or it could be 

fluctuation details, which are problematic when the underlying trends or 

discontinuities are being investigated. Many methods have been developed for 

denoising a signal, in the hope that the noise can be suppressed and the significant 

patterns retained and revealed. These methods have ranged from simple moving 

averages or moving medians, to methods of considerable mathematical complexity. 

Wavelets provide denoising methods which are relatively simple to use, while 

adapting well and automatically to the form of the signal being denoised. The most 

common procedure where denoising using wavelets may be achieved is by shrinking 

individual coefficients and reconstructing a signal from these shrunken coefficients. A 

full description of the method may be found in Donoho and Johnstone (1994) and 

Donoho et al. (1995). Pazos et al (2003) used a non linear filter based on WT in order 

to enhance the SNR of seismograms. Galliana – Merino et al (2004) used WT to 

deconvovle seismograms from noise while same authors (Galliana – Merino et al, 

2003) used WT to denoise short period seismograms. Although these efforts were 

successful they were limited to wavelet approaches very common in literature. 

Site effects are the most important factor in the earthquake damage 

distribution and refers to the effect of the surface and subsurface geological 

characteristics, surface and subsurface topography and of the strong lateral variations 

and discontinuities on the enhancement of seismic motion. The influence of local site 

effects in the earthquake damage distribution has been studied extensively (Hough et 

al, 1990; Faccioli, 1991; Borcherdt et.al, 1992; Mucciarelli & Monachesi, 1997; Bard, 

1999; Nakamura, 1989). The influence of surface geological characteristics on 

seismic motion has been well documented and is related to the modulation of wave 

propagation from the seismic source to the recorded site. Site effects studies are used 

to estimate dynamic response of various types of geological structures and the 

tectonic environment of the area under study, to estimate the ground amplification 

effects and to evaluate local sites effects due to surface geology. The Horizontal to 

Vertical Spectrum Ratio (HVSR), (Nogoshi-Igarashi, 1971, Nakamura 1989, 2000) is 
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a widely used technique (since it is rapid, cheap and non destructive) for estimating a 

site’s fundamental frequency and amplification ratio and thus its expected behaviour 

during earthquake. It is based on ambient noise recordings. One point that receives 

criticism is that it assumes stationarity of the recorded signals since it uses FT to 

calculate the required spectrums. The use of WT to overcome this restriction seems 

natural but there are only a couple of studies that involves WT and HVSR. 

Specifically, Parolai (2006) used wavelet denoising in order to isolate high amplitude 

transients from ambient noise and Carniel et al (2007) used WT to improve the 

spectra peak correlation between horizontal and vertical components. 

Over the last few years, there is an increasing number of studies in several 

active seismic areas of the world regarding experimentation of seismic early-warning. 

Systems have been developed and implemented in Taiwan, Japan, USA, Romania, 

Turkey and Mexico where alert signals from dense seismological networks in the 

earthquake source area are sent to nearby urban settlements. The Earthquake Early 

warning systems (EEWS) are based on real-time automated analysis of ground 

motion. The early information, provided by EEWS when the seismic waves are still 

propagating, can be used, to enable several standby procedures such as shutting down 

of critical systems. Depending on the network geometry and configuration around the 

potential seismic source and/or target area, the early warning systems can be 

distinguished in (Kanamori, 2005) 

• regional (dense seismic network deployed on the potential earthquake 

source area 

• on-site (single instrument or array of instruments deployed at the target 

site, which is distant from the earthquake source area 

For regional EEWS systems the earthquake warning begins at the time of first 

P-wave detection at the network operated in the earthquake source area and lasts a 

few to several tens of seconds depending on the distance between the source and the 

target area. For on-site EEWS the time begins also at the at the time of first P-wave 

detection but last a few seconds depending on the distance between the site and the 

alerts’ processing centre. 

In order to provide real-time magnitude estimations for EEW purposes, a 

method based on the predominant period (which can be calculated from the first 4 
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secs just after the first P-wave arrival) has been first proposed by Allen and Kanamori 

(2003). The method has been mainly validated and calibrated on regional recordings 

of ground motion velocity. The evidence for a scaling relationship between the 

predominant period and magnitude observed on earthquake records from different 

seismic regions evaluated in several studies for (Allen, 2004, Olivieri & Schweitzer, 

2007, Olivieri et. al., 2008). The main question that arised is if the predominant period 

estimator allow the prediction of the earthquake size from the measurement of 

frequency content of early radiated seismic signals. This hypothesis is called in 

question by Olson and Allen (2005) who argue about the deterministic nature of the 

rupture process and by Rydelek and Horiuchi (2006) who found no evidence of 

dominant frequency scaling with magnitude from the analysis of waveform data 

recorded by the Japanese Hi-net seismic network. 

Alternative approaches were presented by Wu and Zhao (2006a) for California 

earthquake data. They determined an attenuation relationship for low-pass, filtered 

peak displacement amplitude records at the first three seconds after the arrival of the 

P-wave. Zollo et. al., (2006) used low-pass filtered peak amplitudes from P and S 

waves initial arrivals and show that is a robust measurement for estimating the 

magnitudes of earthquakes and has practical application in earthquake early warning 

systems. 

The current research focus to the executions of the tasks involved the design, the 

deployment, the implementation and the installation of real time seismological 

network as well as on the elimination of the shortcomings of the above studies. More 

specific it is focus on the elimination of the following deficiencies: 

a) The majority of the ordinary seismological signal processing tools uses 

bandpass filtering in order to improve the signal to noise ratio of recorded 

seismograms. It is well known that these conventional filters introduce some 

delay to the signal resulting to false time arrivals and to lower SNR 

seismograms introduce distortion in the shape of the P wave arrival 

(Scherbaum, 1996). This leads to wrong epicentral estimations (especially in 

real time and automatic estimation systems) since this procedure is highly 

dependent from the accuracy of time marking. Non linear denoising tools 

such as wavelets proposed by some studies and proved superior against 
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conventional filters regarding the improvement of SNR and elimination of 

false time arrivals. However, until today there is no study focused on the 

comparison of different wavelet denoising approaches for different SNR 

seismograms. 

b) The widely used HVSR method for estimating site effects based on the 

spectral ratio between horizontal and vertical components of ambient noise. 

This ratio is calculated using conventional Fourier transform which by 

definition assumes stationarity. When the analyzed ambient noise contains 

non-stationarities (transients, near field artificial noise) this assumption is not 

verified. There are a couple of studies (Parolai, 2006, Parolai, et. al., 2009) 

that support that high amplitude short period transients does not affect the 

result of HVSR method. Until today there is no study that investigate the 

effect of low amplitude (which are non detectable by amplitude thresholding 

techniques) long period transients and the detection of them using non linear 

tools such as wavelets 

c) Real time earthquake magnitude estimation from the first few seconds of P 

wave arrival seems efficient by using the predominant frequency estimator. 

This estimator as Wolfe (2006) and Simmons et al. (2006) pointed out, has 

significant scattering in some cases mainly, caused by its recursive calculation 

based on a spectral domain relation. The alternative solution is to transfer 

from time-frequency domain to time-scale domain such as wavelet domain. 

The use of wavelets in magnitude estimation has introduced by Simmons et 

al., (2006) but until today is applied only in California’s seismic zone. In this 

research the earthquake magnitude is calculated using different WT and in 

addition WT is used at the same time to estimate the earthquake’s epicentral. 

We emphasize that the use of a single transform has never been used for 

EEWS to the best of our knowledge 

d) Scaling analysis of the temporal properties in earthquakes sequences has been 

used to understand the dynamic variability of seismicity by means of scale 

independent measures. These measures often suffer from non-stationarities 

that characterize the time dynamics of a seismic sequence. The use of wavelet 

based measure is a solution that can overcome this shortcoming. 
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1.4 Organization  

This thesis has been divided into eight chapters of which Chapter 1 is the introduction. 

Chapter 2 begins with necessary theoretical definitions of wavelet transform 

(WT) in its different implementations (redundant and non-redundant) and continues 

with some practical considerations to each one. Transformation of a typical 

seismological signal by means of WT is also presented along with the results of using 

different bases 

Chapter 3 presents the data acquisition and signal processing system, the 

seismological network. More specific, a detailed description of installed seismological 

network along with the necessary software needed for data collection and processing 

initially presented. The procedures that followed in order to satisfy the different 

requirements that such a system had along with prototype solutions that produced 

during this research are also presented. Finally, implementation details of HVSR 

method are presented in order to clarify the several stages and the chapter finishes 

with the practical considerations that followed during the data collection procedures. 

Chapter 4 deals with the use of WT in a method which estimates site’s 

fundamental frequency (Horizontal to Vertical Spectral Ration method – HVSR) 

which is important for preliminary ambient noise surveys during the investigation of a 

station’s location. This method involves spectrum calculation and since it uses FFT to 

implement this, it assumes stationarity. After a short presentation of HVSR method 

the influence of low amplitude non-stationarities is examined by using a set of well 

controlled artificial signals. Furthermore, the ability of WT to reveal non-stationary 

portions of examined signals is presented. 

Chapter 5 covers the application of WT for denoising seismological data. It 

provides a detailed presentation of several wavelet denoising schemes which all 

initially applied to synthetic seismograms. After the qualification of denoising 

schemes, those which qualified as successful, applied to real seismograms (of 

different quality) in order to investigate if and how wavelet denoising schemes could 

increase seismogram’s quality. Finally a comparison between wavelet denoised 

seismograms with band-passed ones is performed in order to estimate the qualitative 



Brunel University  Chapter 1  

George Hloupis  Reg. No: 9725331 

25 

 

 

improvement by using wavelets in ordinary seismological operations such as 

epicentre estimation. 

Chapter 6 looks at the application of redundant WT for an Earthquake Early 

Warning System (EEWS). This is achieved by rapid earthquake magnitude as well as 

epicentral estimation. The main questions that this chapter tries to approach are on the 

correlation between wavelet coefficients of seismograms recorder at South Aegean 

from the first 5secs of an earthquake and magnitude and on the use of wavelet 

coefficients in a parallel algorithm in order to estimate the epicentral location. 

Recordings from several seismological stations around Crete Island were examined 

and show that is possible to use the redundant WT for EEWS purposes. 

Chapter 7 investigates the use of multiresolution wavelet analysis to seismic 

catalogue. Scaling analysis of the temporal properties in earthquakes sequences using 

the standard deviation of wavelet coefficients applied to two seismic catalogues from 

Western Mediterranean and in both cases, before strongest events, characteristic 

patterns were revealed. 

 Chapter 8 is the concluding chapter of the thesis, which highlights to the 

engineering aspects of the recently installed seismological network as well as to the 

four distinct areas of signal processing work:  

- Wavelet denoising schemes are qualified as superior to ordinary bandpass 

filters as they preserve the shape and time localization of P wave arrivals and 

they performed better in seismic signal determination from noisy recordings  .  

- The WT can be used to identify non stationary disturbances in ambient noise 

recordings especially when their amplitude is comparable. 

- The use of WT coefficients from the first few seconds after P wave arrival as 

an efficient magnitude and epicentral estimator. 

- Multiresolution wavelet analysis of the standard deviation of WT coefficients 

reveals a two fold feature: at lower scales it decreases in correspondence with 

the occurrence of the strongest earthquake while at high scales it is 

characterized by oscillating behaviour, which is a typical for background 

seismicity. 

In addition, recommendations for future work and suggestions for the expansion 

of proposed techniques are clearly stated. 
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2. Introduction to wavelets  

2.1 Introduction 

This section describes some key concepts of wavelet transform (WT) that are 

going to be used. Basic concepts and theory can be found in many books and papers 

at many different levels of exposition. Some of the standard books are Chui (1992a, 

1992b), Daubechies (1992), Mallat (1998), Meyer (1993), Vetterli (1995). 

Introductory papers include Graps (1995), Strang (1994) and  Cohen (1996).  

Wavelet transforms (WT) can be considered as the localized equivalent of the 

Fourier transform. Their principle is that all signals can be decomposed from sets of 

other signals with constant shape but varying scale and amplitude. Just as Fourier 

Transform (FT) decomposes a signal into harmonic components, the WT decomposes 

a signal into wavelet components. Each wavelet component called level and by adding 

the complete set of levels it is possible to recover the initial signal. In case of FT, 

where bases are trigonometric sine and cosine functions, the signal is transformed into 

the frequency domain. But this is done at the cost of time resolution. With wavelets 

analysis, we may use different sets of bases as long as they follow some properties. 

Wavelets allow more flexibility for the signal analysis. In fact, with wavelets, the 

signal is transformed into a time scaled wavelet domain, where the bases are dilations 

and translations of the original mother wavelet. The latter works as a band pass 

function which limits the signal, both in frequency and time. Therefore, we can say 

that, while conserving the time dimension of the original data, the wavelets allow 

observing a time series at different scales. 

2.2 Multiresolution analysis  

In order to facilitate how wavelet analysis can be used to extract information 

at different scales basic aspects of multiresolution analysis (MRA) will be presented 

here. MRA presented by Mallat (1989a, 1989b, 1989c) based on the idea that a signal 

can be projected in a nested sequence of subspaces if some requirements (that define 

the multiresolution analysis) satisfied. Relationships between the wavelet and its 

complementary transforms can be established through the multiresolution analysis. 

The latter is guided from following axioms adopted by Daubechies (1988) 
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A multiresolution analysis consists of a sequence of embedded closed 

subspaces: 

2 1 0 1 2... ...V V V V V
− −

⊂ ⊂ ⊂ ⊂      (2.1) 

Such that they have the following properties: 

i. Upward completeness 

2 ( )
m

m

V L
∈

=∪ �
Z

      (2.2) 

ii. Downward completeness 

{0}
m

m

V
∈

=∩
Z

       (2.3) 

iii. Scale invariance 

( ) 0
( ) 2m

m
f t V f t V∈ ⇔ ∈      (2.4) 

iv. Shift invariance 

( )0 0( ) ,f t V f t n V n∈ ⇒ − ∈ ∀ ∈Z      (2.5) 

v. Existence of an orthonormal basis 

( ){ }t n nφ − ∈Z       (2.6) 

For Vo, where φ ∈  Vo 

The function φ(t) in Eq. 2.5 is called scaling function 

According to Eq. 2.6 the function φ(t), as a scaling function, forms an 

orthogonal basis for Vo. Using the scale and shift invariance we can write orthonormal 

basis { },m n
nφ ∈Z  for Vm (Daubechies 1988) 

2
, ( ) 2 (2 ),    for ,

m
m

m n
t t n m nφ φ

−
−

= − ∈Z     (2.7) 

The factor 
2/2 m−

 in Eq.2.7 ensures that the norm 
)(, t

nm
φ

 is always unity 

independent of m,n which means also that 
1)( =tφ

. 

It is also proved (Daubechies 1988) that whenever a sequence of spaces satisfy 

Eq.2.2 – 2.5 there exists an orthonormal basis for )(2 RL   

2
, ( ) 2 (2 ),    for ,

m
m

m n
t t n m nψ ψ

−
−

= − ∈Z      (2.8) 

Such that 
Zn }{ , ∈nmψ

, is an orthonormal basis for a space Wm which is 

orthogonal complement of the space Vm in Vm-1 

1 1m m m
V V W

+ +
= ⊕         (2.9) 
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The function ψ(t) in Eq.2.8 is called the wavelet function. A graphic 

representation of how a scaling and a wavelet function, acting as basis, can span a 

subspace depicted in Fig. 2.1 

 

Figure 2.1.  Nested vector subspaces spanned by wavelet and scaling basis  

 

 Function φ(t)can be represented as a linear combination of the function φ(2t-n)  

∑
∈

−=

Zn

ntnht )2()(2)( φφ        (2.10) 

where coefficients h are defined as : 

Zn ,1)( ∈∀=nh        (2.11) 

Equation 2.10 is called the dilation equation 

The scaling function acts as a low-pass filter. It’s easy to shown that ( ) 1t dtφ

∞

−∞

=∫   

Hence its FT for ω=0 is φ(0)=1. In a similar way we can represent the wavelet 

function ψ(t) as a linear combination of function φ(2t-n) 

∑
∈

−=

Zn

ntngt )2()(2)( φψ       (2.12) 

where coefficients g for orthonormal basis are defined as: 

)1()1()( 01 +−−= ngng
n      (2.13) 

Equation 2.12 is called the wavelet equation 

 In summary MRA provides a framework to approximate a function at different 

resolutions and determine the difference of information between successive 

approximations. Scaling function relates the approximations at different scales while 

wavelet function relates the detail information across scales.  
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2.3 Fourier and Wavelet transforms  

For a signal f(t) FT has a great ability to capture signal’s frequency as long as 

f(t) is composed of a limited number of stationary components. However, if non-

stationary components exists at f(t) they are going are to spread over the whole 

frequency band. This is the initial limitation of FT: it offers excellent frequency 

resolution without offering time information about it because from the one 

dimensional domain (time), signal is transformed to another one dimensional domain 

(frequency). WT could overcome this limitation by providing both time and frequency 

localization since it transforms the signal from one dimensional domain to a two 

dimensional domain. Necessary concepts and a brief comparison between them will 

present. 

In general, an event or physical process can be described either in the time 

domain as f (t) or in the frequency domain as f (ω) (Press et al., 1995). The FT is a 

useful tool in determining the frequency contents of a process f (t): 

1ˆ( ) ( )( ) ( )
2

i t
f Ff f t e dt

ω

ω ω

π

∞
−

−∞

= = ∫     (2.14) 

The original process f(t) can be reconstructed from the frequency 

components )(ˆ
ωf  using the inverse Fourier transform (IFT), defined as: 

1 ˆ( ) ( )
2

i t
f t f e d

ω

ω ω

π

∞
−

−∞

= ∫       (2.15) 

The Fourier transform is generally suitable for analyzing a process whose 

frequency content does not change over time because it can only provide the average 

information of the frequency content. A windowed Fourier transform introduced by 

Gabor (1946) in order to determine time-localized information in the frequency 

domain: 

∫
∞

∞−

−

−= dtebtwtfbfF
tiwindow ω

ω )()(),)((     (2.16) 

The function, w(t) (called the windowing function) can be any compactly 

supported function. The translations w(t - b) of the function w(t) ensure that the 

transform includes only the information around the center of the time of interest 

(t=b). 

The main disadvantage of the windowed transform is about fixed window 

size; Once a w(t) is chosen, its size remain constant. This is not an ideal solution for a 
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nonstationary process which may consist of high frequency (rapid changes) and low 

frequency content (long period trends) requiring different window sizes. A wider 

window is preferred for low frequency phenomena while a narrow window should be 

used to analyze high frequency content 

On the other hand, the wavelet transform can utilize different window sizes in 

order to provide both time-localized and frequency-localized information. A 

comparative visualization depicted at Fig. 2.2 

 

Figure 2.2. Comparative visualization of time-frequency representation of a non-stationary 

signal in time domain (top left), frequency domain (top right), STFT domain (bottom right) 

and WT domain (bottom right). (Shukla, 2003) 

 

The wavelet theorem was first formally introduced by Grossmann and Morlet 

(1984). The wavelet transform at time t = b and scale a is defined as: 

1
( , ) ( )

2

t b
Wf a b f t dt

aa
ψ

∞

−∞

− 
=  

 
∫       (2.17) 
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The function ψ(t) is called a wavelet. A wavelet is a function that waves 

through the t-axis such that: 

( ) 0t dtψ

∞

−∞

=∫         (2.18) 

The function ψ(t) is called a wavelet if and only if its Fourier transform 

)(ˆ ωψ satisfies the admissibility condition (Heisenberg,1929): 

� �
2 2

0

0

( ) ( )
d d C

ψ

ψ ω ψ ω

ω ω

ω ω

∞

−∞

= = < ∞∫ ∫     (2.19) 

The coefficients produced by Wf(a,b) are called wavelet coefficients. The 

parameter a is called dilation or scale and is equivalent to the window size in the 

windowed Fourier transform. By changing a, we can adjust this window size 

adjusting in this way the analyzing information contained in different frequencies of 

the data. A small value of a may be used to analyze high frequency information while 

a larger value of a may be used to analyze a lower frequency process. The parameter b 

is called translation and is equivalent to shifting in a windowed transform. If ℜ∈ba,  

then the WT is called Continuous Wavelet Transform (CWT). 

Wavelets are constructed to meet certain mathematical properties in order to 

be used as basis functions to transform other functions. Depending on application 

extra restrictions may apply when constructing specific wavelets. The simplest form 

of wavelet is the Haar wavelet, which is described by the Haar function (Haar, 1910) 

defined as:   

11 0
2

1( ) 1 1
2

0

t

t t

otherwise

ψ

 ≤ <

 
 

= − ≤ < 
 
  

      (2.20) 

 

The Haar function defined in Eq. 2.20 is called a mother wavelet. A family of 

wavelets can be constructed from the mother wavelet by dilations using the dilation 

parameter a and translations using parameter b. Fig. 2.3 displays a few members of 

the Haar wavelet families. 
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Figure 2.3. Wavelets constructed from Haar basis function. 

 

The graphic representation of CWT is illustrated by the scalogram which is 

defined as the square magnitude of the CWT coefficients
2

),( bW
f

α . Typical example 

can be seen at Fig.2.4 

 

Figure 2.4. Vertical component of a seismic motion recording (top) and is associated CWT 

scalogram (bottom). Colour scale depicts the squared magnitude of associated wavelet 

coefficient (brighter scales: higher values, darker scales: lower values) 
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WT as a linear transform holds the following properties similar to other linear 

transforms such as FT (these properties can easily be shown by using the Haar 

wavelet as basis and unit impulse function as transformed signal): 

� Linearity. As the CWT is defined by an inner product it holds its linearity 

� Time invariance. The CWT of a time delayed version of a signal is a time-

delayed version of its CWT. This important property is lost for discrete 

sampling schemes. 

� Energy conservation. The CWT conserves energy in a similar way that FT 

did using Parceval’s theorem 

∫∫∫
∞

∞−

∞

∞−

∞

∞−

⋅= dbdbWf
aC

dttf αα

ψ

2

2

2
),(

11
)(    (2.21) 

� Scaling property. For an f(t) with CWT estimated as Wf(a,b) a scaled 

signal 







=

''

1
)('

αα

t
ftf  leads to a CWT defined as 









=

'
,

'
),('

a

b

a

a
WbW ff α . Scaling property illustrated in Fig.2.5 showing the 

CWT of the same signal scaled by a factor of 2. 

 

 

Figure 2.5. Signal f(n) (left top), its CWT scalogram using Haar wavelet (right top), signal 

f(n) scaled by a factor of 2 (left bottom) and its CWT using Haar wavelet (right bottom) 

(Provaznic, 2001). 
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2.4 Discrete Wavelet Transform  

 The basic tool needed for analyzing a signal using wavelets is the Discrete 

Wavelet Transform (DWT) that will be presented here. It plays a role analogous to 

that of the Discrete Fourier Transform in spectral analysis. DWT derived from the 

discretization of CWT parameters α and b. 

 CWT based analysis yields a potential wealth of information. When presented 

in a plot such as the bottom plot of Fig.2.3 or the right plots of Fig.2.5 is an excellent 

tool for exploratory data analysis because it helps picking out features of interest. 

Recall that the CWT leads a one-dimensional signal (from time domain) to a two-

dimensional domain (scale, position), it is obvious that there is a lot of redundancy.  

 In general DWT are generated by sampling (in time-scale domain) a 

corresponding CWT. The CWT cannot be computed using finite precision discrete 

machines. However, approximation to the CWT can be made to almost arbitrary 

precision through dense sampling of the time-scale plane. Such a way the DWT is 

specified by selecting a time-scale sampling set and an analyzing wavelet. If the DWT 

must satisfy some properties these selection cannot be made arbitrarily. Discretization 

could be made according to the following formula: 













 −
=

j

k

j

kj
a

bt
W

a
tW

1
)(,       (2.22) 

where j

j
aa 0=  and j

k
akbb 00=  where 

0 0, , 1, 0j k a b∈ Ζ > ≠ . Here j controls the 

dilation (scale) and k controls the translations (shift). Although this approach could 

lead to infinity of transforms, the term DWT is commonly used with a particular 

choice of time-scale sampling: the dyadic sampling (Fig.2.6). In addition the 

analyzing wavelets are restricted to those that generate orthogonal or biorthogonal 

bases.  

 In dyadic lattice the discretization can be achieved by setting α0=2 and b0=1. 

In this case Equation 2.22 becomes: 

,

1 2
( )

22

j

j k jj

t k
W t W

 − ⋅
=  

 
      (2.23) 
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Figure 2.6. Dyadic discretization lattice of α and b for CWT 

 

Wavelets for DWT are usually selected to be orthogonal and have unit energy. 

This means that decomposed signal has no redundancy unlike the CWT as shown in 

Fig.2.7. 

 

Figure 2.7. DWT scalogram (middle) and CWT scalogram (bottom) of the first secs of an  

earthquake recording (top).  
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2.5 Pyramidal Algorithm  

 Following the conclusions of 2.2, it is obvious that wavelet analysis initially 

lead to a decomposition of examined signal into approximations and details at 

multiple levels of resolution. In this section, the computation of approximation and 

detail wavelet coefficients will be discussed. This computation derived from MRA 

relationships through scaling and wavelet functions. In addition the decomposition 

(analysis) and reconstruction (synthesis) scheme using filters will also present. 

 Applying the relations of MRA to discrete case the discrete values of detail 

signal (coefficients through wavelet function ψ) at level j and time k can be calculated 

as: 

dtttfd jkjk )()( ψ∫
∞

∞−

=        (2.24) 

Equation 2.24 can be seen as the inner product between f and ψ. 

 Similarly, the discrete values of approximated signal (coefficients through 

scaling function φ are: 

dtttf jkjk )()( φα ∫
∞

∞−

=         (2.25) 

which also can be seen as the inner product between f and φ. 

 Equations 2.24 & 2.25 hold under general single scale decomposition. In order 

to calculate wavelet coefficients multiple scale decomposition relationships must de 

defined.  For approximated signal the following relation holds (detailed proof can be 

found at Athichanagorn, 1999, pp25-29): 

)2(,1 khaa
jkj
∗=

+
       (2.26) 

where h  sequence can be interpreted as the low-pass filter as described in Equation 

2.11. Equation 2.26 shows that the approximated signal at level j+1 is computed by 

taking every second sample from the result of convolution between 
ja  and h . This 

leads to an approximated signal at level j+1 which is subsampled by two. 

 Under similar approach, the detail signal can be expressed as: 

)2(,1 kgdd
jkj
∗=

+
       (2.27) 

where g  sequence can be interpreted as the high-pass filter as described in Equation 

2.13. Respectively, detail signal at level j+1 can be computed by taking every second 
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from the result of convolution between 
j

d  and g  which means also that detail signal 

at level j+1 is subsampled by two. 

 As the decomposition level increases the sample sizes of approximated and 

detail signals decrease (by a factor of two). This computation approach is called 

pyramidal algorithm or the nonredundant algorithm (since the data samples are 

different at each level). Figure 2.8 shows a graphic representation for 3 scales. 

j=0

h g

j=1

h g

j=2

h g

j=3

Details

Approximations

Original signal  

Figure 2.8. Wavelet decomposition using pyramidal algorithm 

 

DWT is commonly implemented using dyadic multirate filter banks 

(consisting of  g  and h  filters discussed earlier) which divide the signal frequency 

band into subbands as shown in Fig.2.9.  

 

Figure 2.9. DWT for j=5 scales. Division of index-spectrum plane (left) and division of 

frequency spectrum using filter banks (right) (Provaznic, 2001). 
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 At each scale, detail coefficients are generated from the output of high-pass 

filter since approximation coefficients are outputs from low-pass filters. In other 

words at each scale approximation captures low frequency trends since detail captures 

high frequency components. So the connection between wavelets and filter banks is 

that high-pass filter leads to wavelet function and low-pass to scaling function. A 

typical structure for signal decomposition is depicted in Fig.2.10 where a three scale 

DWT is performed using octave-band filter bank. 

 

Figure 2.10. A three scale DWT decomposition 

 

 Inverse DWT (IDWT) reconstructs a signal from approximation and detail 

coefficients produced from decomposition. As a reverse procedure the steps that 

required are upsampling by 2 and filtering. Upsampling by 2 is achieving by inserting 

zeros between samples. For a multi-level reconstruction a relation for successive 

approximation must be defined. It is proved that the following relationship holds 

(Athichanagorn, 1999): 

)()( 11, kgdkhaa
jjkj

∗+∗=
++

��
      (2.28) 

Equation 2.28 shows that approximated signal αj,k can be reconstructed by upsampling 

coefficients αj+1 and dj+1 , convolve them with filters h and g respectively and add 

these convolutions. Figure 2.11 depicts these steps where a filter bank representation 

of reconstruction is shown at Figure 2.12 
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Details

Approximations

Original signal

j = 3

h g

j = 2

h g

j = 1

h g

j = 0  

Figure 2.11. Wavelet reconstruction using pyramidal algorithm 

 

 

 

Figure 2.12. A three scale DWT reconstruction 

 

  The defining properties of a wavelet filter are not sufficient to yield a 

DWT whose coefficients can be interpreted as approximations and details at certain 

levels. Daubechies (1992) keeping in mind certain regularity conditions, defined a set 

of wavelet filters, all of which are able to localize differences of adjacent weighted 

averages. By definition a filter of even length L has a squared gain function given by: 
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)()()( 2][
fAfDfH L

L

D
≡       (2.29) 

where AL is the squared gain function for the difference filter {1,-1} and 

D(f)≡4sin
2
(πf). It can be shown (Percival & Walden, 2000) that 

2
2

1
)(

][][
=








+= fHfH

DD  for all f and any filter {hl} with squared gain function 

][D
H  is a wavelet filter. Equation 2.29 implies that Daubechies wavelet filters can be 

interpreted as the complex filter consists of L/2 filter (yielding the differencing 

operation) in series with a low-pass filter (yielding the averaging procedure). 

 Similarly, the corresponding scaling filter {gl} has a squared gain function: 









−≡ fHfG

DD

2

1
)(

][][       (2.30) 

 For L=2 the Haar wavelet filter 








−==

2

1
,

2

1
10 hh  is constructed and for 

L=4 the Daubechies 4 {D(4)} filter 

  

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
 +
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−

=
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31
,
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,
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,
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31
4320 hhhh . Squared gain functions for 

D(4) are shown in Fig.2.13.  
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Figure 2.13. Squared gain functions for D(4) filters {hj,l}for j=1…4 and {g4,l} 
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 In general, there are many real-valued wavelets based on type {h0,h1,….hL-1} 

with squared gain function ][D
H . As L increases the difficulty of selecting the 

appropriate pair of wavelet and scaling filters also increases. Daubechies (1992) 

defined two additional criteria in order to establish this selection: first, selected 

scaling filters must have minimum delay than other candidates and second the phase 

of the scaling filter’s transfer function must be as close as zero (similar to linear phase 

filter’s). The class of filters that satisfies the first criterion is the Daubechies (D) 

family of filters with L=2,4,6,…. since the second criterion is satisfied by the class of 

filters called Least Assymetric (LA) with L=6,8,10,…. A third candidate class of 

filters are the Coiflets (C) with lengths L=6,12,18,24 and 30 which are alternatives to 

Daubechies filters providing also phase closer to zero than LA. Their main 

disadvantage is that they provide fewer differencing operations for a given filter width 

(L/3 versus L/2 for D filters) (Percival & Walden, 2000). Fig.2.14 shows a 5-level 

D(4) filter since Fig.2.15 shows a LA(8) filter. 
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g

j,l

L
j
 = 4

Wavelet
h

j,l

j = 2 L
j
 = 10

j = 3 L
j
 = 22

j = 4 L
j
 = 46

0 Lj -1
l

j = 5

0 Lj -1
l

L
j
 = 94

D4
Equivalent Filters

 

Figure 2.14. D(4) scaling {gj,l} and wavelet {hj,l} filters for j=1…,5 scales. Lj denotes the 

length of the filter  
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Figure 2.15. LA(8) scaling {gj,l} and wavelet {hj,l} filters for j=1…,5 scales. Lj denotes the 

length of the filter 

 In summary, pyramidal algorithm using a subsequent convolution of 

approximations and details with low and high-pass filters respectively, is able to 

decompose as well as to reconstruct a signal under the frame of wavelet analysis. The 

important point is that between successive levels the data samples are downsampled 

(at decomposition) or upsampled (at reconstruction) by a factor of two. From many 

possible wavelet filters Daubechies, Least Assymetric and Coiflets are those that are 

going to be used to next sections. 

2.6 Practical considerations for DWT  

 When one begins a DWT analysis several issues arised since there is no “blind 

rule” that must be followed in order to get the results. Depending on the application 

and the nature of examined signal some consideration must be addressed. In this 

section four of them will be discussed: Boundary conditions, the number of levels, 

choice of wavelet filter and sample size that is not power of two. 

2.6.1 Boundary conditions  

 DWT (full or partial) implemented by using filters. A filtering operation close 

the boundaries (the beginning and the end) of the time series {Xn: n=0,1,…N-1} 
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assumes that is a periodic sequence with period N.  This means that is expected for 

XN-1, XN-2.… to be successful surrogates for unsampled values of process X-1, X-2 .. 

that described by X as depicted in Figure 2.16. This assumption holds only when the 

sample size is chosen appropriately otherwise is problematic especially when there is 

discontinuity between XN-1 and X0. For example, a time series that presents annual, 

seasonal and monthly variations would not affected by boundary conditions only if 

the sample size is equal to an integer multiple of a year.  

X
-2

X
-1

X
0

X
1

X
N-2

X
N-1

Sampled signal

 

Figure 2.16. Corresponding surrogates for unobserved (X-1, X-2) and sampled (X0,.…XN-1, 

XN-2) signal 

 Percival and Walden (2000) calculated the number of boundary coefficients 

j
L′  (coefficients that are influenced by boundary conditions) for a given filter length 

for several scales. Table 2.1 list the results which hold for wavelet as well as scaling 

filters (based on assumption that 
jj

NL ≤′  where jj
NN

2
=  is the length of 

approximation or details at level j.  

 

Table 2.1. Number of boundary coefficients based on wavelet filter with length L. The 

calculated number refers to affected coefficients for both sides of time series (Percival and 

Walden, 2000) 
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 The main result that derived from Table 2.1 is that 
j

L′  is increased as scale j 

increases and does not depend on N. So, as the level of decomposition becomes 

bigger the influence of boundary conditions affects more and more the details and 

approximations. This fact must always keep in mind before the selection of a wavelet 

filter. An important fact also that Haar wavelet (L=2) does not suffer from any kind of 

boundary conditions. A relation that denotes the results of Table 2.1 is: 

21
2

−≤′≤− LL
L

j
       (2.31) 

 An effective technique to reduce boundary effects is to replace the time series 

X with a time series with length 2N consists of  X along with the time reversed version 

of X as shown: 

0122112210

]2[ ,,,....,,,,,....,,, XXXXXXXXXXX
NNNN

N

−−−−
=  (2.32) 

Using X
[2N]

 constructed time series instead of X has the effect that the surrogates of 

unobserved signal’s samples X-1, X-2 .. are now the X1, X2,… of sampled signal, 

which is obvious that they present a lower mismatch possibility than before. A 

graphic representation of this fact is depicted in Figure 2.17. 
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Figure 2.17. Corresponding surrogates for unobserved (X-1, X-2) and 2N constructed time 

series (X0,.…XN-1, XN-2, XN-1….. X0). 

 When DWT applied to X time series then it yields to decomposition using 

“circular boundary conditions” while applied to X
[2N]

 is a decomposition using 

“reflection boundary conditions”.  

2.6.2 Number of levels  

 For a time series {Xn: n=0,1,…N-1} with sample size N=2
j
 the pyramid 

algorithm for DWT will completed after j levels. Depending on the application, there 

is also a great possibility that the algorithm stop at level J0 < j. In this case the DWT 

is called partial DWT at level j. Partial DWT are commonly used in practice because 

they provide the flexibility to specify a scale J0 beyond which wavelet analysis of 

larger scales has no real interest.  
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 Recall that Wj {j=1,2,….J0} is the vector space of detail coefficients at scale j 

and 
0J

V  is the vector space of approximation, Xn will be decomposed as: 

∑
=

+=

0

0

1

J

j

Jj VWX        (2.32) 

0J
V  will contain 

02
J

N  coefficients of X which represents (as approximations) 

averages over the scale 
0Jτ . 

 A reasonable selection of level J0 is highly dependant from the application. 

Main idea under successful picking of J0 is to set it in a way that scaling coefficients 

could have a meaningful association with physical scales. Setting J0 too high will lead 

to large scales that will not provide useful information. On the other hand, setting J0 

too low will produce approximations that could not promote interesting features.  

 Another factor that will impact the choice of J0 is the width L of the wavelet 

filter. This is because large L produces large filter widths for the higher level of h  and 

g  filters. For this reason an upper bound is 100 +
≤≤ JJ LNL . This upper bound also 

ensures that details and approximation will decrease their influence by boundary 

conditions. 

2.6.3 Choice of wavelet filter  

 As already mentioned the choice of wavelet filter is not a direct procedure and 

is always dependable from the application in use. A main factor for the selection of 

the wavelet filter is to define the aim of the analysis and then choose the appropriate 

wavelet filter. Although there are many studies using wavelets there are only few 

studies that provide step-by-step procedures (Torrence & Compo, 1999, Breiman & 

Peters, 2000). 

 In practice, two main considerations must be taken into account. First, there 

are many cases where wavelet filters with short widths (L=2,4 or 6) introduce 

artifacts in results producing unrealistic coefficients (a typical example is presented at 

section 2.11). On the other hand, wavelet filters with L > 6 has two main 

disadvantages: 

� As L increases the number of coefficients that influenced from boundary 

conditions also increase 

� Computational requirement increase also 
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 The objective is the choice of the wavelet filter with smallest L that produces 

the most reasonable results. In other words there must be a pre-analysis procedure 

where the selection begins with quite small L and increases until an artifact free 

coefficient set is produced. 

2.6.4 Handling non 2
J
 sample sizes 

 As already discussed DWT (full or partial) designed to work with sample sizes 

of specific length. More specific, full DWT needs sample size N to be a power of two 

{N=2
J
}. Similarly, partial DWT of level J0, needs sample size to be an integer 

multiple to 02
J . Of course these requirements usually not hold in practice. In order to 

fulfill the above requirements two solutions were proposed and presented below. 

 First solution based on padding which is a usual technique at FFT algorithms. 

The idea is to create a new time series, say 
n

X ′ , from original one 
n

X  with new length 

NN >′  and then take the DWT of the 
n

X ′ . Padded values are equal to the sample 

mean X  of 
n

X . 

 Second solution based on truncation of 
n

X  to shorter series whose lengths are 

a multiple of 02
J . Let N ′′  < N an integer multiple of 02

J  then two subseries of 
n

X  

can be defined: ],....[  and  ],....[ 1

]2[

10

]1[

−′′′′−−′′
≡≡

NNNN
XXXXXX  both of length N ′′ , 

It is proved (Coifman & Donoho,1995) that this scheme leads to scale based 

decomposition of weighted sum of squares with half weights being attached to the 

NN ′′−  samples at the beginning and end of 
n

X .  

2.7 Maximal Overlap DWT  

 In this chapter a modified version of DWT will be discussed. This transform is 

called maximum overlap DWT (MODWT) and focus on the elimination of DWT 

shortcomings that discuss earlier. MODWT belongs to the group of redundant and 

non-orthogonal wavelet transforms that met in the literature under names 

“undecimated DWT” (Shensea, 1992), “shift invariant DWT” (Beylkin,1992), 

“translation invariant DWT” (Coifman & Donoho, 1995), “Stationary DWT” (Nason 

& Silverman,1995) and “non-decimated DWT” (Bruce & Gao, 1996). The main 

differences of MODWT from full or partial DWT will be discussed also. 

 The MODWT differs from the DWT in that it is a highly redundant, 

nonorthogonal transform (Percival and Walden, 2000). The MODWT retains 
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downsampled values at each level of the decomposition that would be otherwise 

discarded by the DWT. The MODWT is well-defined for all sample sizes N, whereas 

for a complete decomposition of J levels the DWT requires N to be a multiple of 2
J
 . 

The MODWT offers several advantages over the DWT. The redundancy of the 

MODWT facilitates alignment of the decomposed wavelet and scaling coefficients at 

each level with the original time series, thus enabling a ready comparison between the 

series and its decomposition. Coefficients derived using the MODWT are not 

influenced by circular shifting of the input time series, whereas values derived using 

the DWT depend upon the starting point of the series. Finally, the redundancy of the 

MODWT wavelet coefficients modestly increases the effective degrees of freedom 

(EDOF) on each scale and thus decreases the variance of certain wavelet-based 

statistical estimates. Since the MODWT is energy conserving, it is well suited for 

analyzing the scale dependence of variability. 

 Decomposing 
n

X  using MODWT to J0 levels theoretically involves the 

application of J0 pairs of filters. The filtering operation at the jth level consists of 

applying a wavelet (high-pass) filter { }
kjg ,

~ to yield a set of wavelet coefficients  

1

, ,

0

jL

j n j k n k

k

W g X

−

−

=

=∑ �        (2.33) 

 and a scaling (low-pass)filter { }
kj

h ,

~
 to yield a set of scaling coefficients 

1

, ,

0

jL

j n j k n k

k

V h X

−

−

=

=∑ �        (2.34) 

 The equivalent wavelet { }
kj

h ,

~
 and scaling { }

kj
g ,
~  filters for the jth level are a set 

of scale-dependent localized differencing and averaging operators, respectively, and 

can be regarded as stretched versions of the base (j = 1) filters. The jth level equivalent 

filter coefficients have a width Lj=(2
j
-1)(L-1)+1, where L is the width of the j = 1 base 

filter. In practice, the filters for j >1 are not explicitly created because the wavelet and 

scaling coefficients can be generated sequentially using an elegant algorithm (which 

will discussed later) that involves just the j = 1 filters operating on the jth level scaling 

coefficients to generate the j+1 level wavelet and scaling coefficients (Percival and 

Walden, 2000). The jth level wavelet coefficients characterize those components of the 

signal with fluctuations matching the unitless scale 2
j-1

. In addition, MODWT 
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coefficients for different scales are approximately uncorrelated and are hence useful 

statistical measures for partitioning variability by scale. 

2.8 A trous algorithm  

 In this section, we discuss a redundant, shift-invariant algorithm that computes 

the approximated  and  detail  signals  at  the  same  spacing  across  scales  using  

nonorthonormal wavelet  bases. This  algorithm  is  called  the  a  trous  algorithm and 

it  was  first  proposed by Holschneider et.al (1989).  Shensa (1992) later studied the 

relationship between the a trous algorithm and the pyramidal algorithm and 

concluded that the a trous algorithm is in fact a nonorthonormal multiresolution 

algorithm for which the discrete wavelet transform is exact. 

 In order to keep the original sampling frequency (in which 2
j
 = 2

0
 = 1), the 

wavelet function is now discretized as: 








 −
=

jkj

kt
t

22

1
)(, ψψ       (2.35) 

and the scaling function as: 








 −
=

jkj

kt
t

22

1
)(, φφ        (2.36) 

 Mallat (1998) further showed that the approximated signal aj+1,k and detail 

signal dj+1,k  can be computed using these multiscale relationships through low-pass 

filter h  and high-pass  filter g . Obviously, the filters h  and g  are different from h  

and g defined in the section 2.5 in which the wavelets are orthogonal. For any filter 

sequence x(n), xj(n) is denoted as the filter sequence obtained by inserting 2
j−1

 zeros 

between each sample of x(n). The insertion of zeros into the sequence creates holes, 

thus the algorithm is called the a trous algorithm (trous means holes in French). The 

approximated and detail signals are respectively determined by 

)(,1 kha
jjkj

∗=
+

α        (2.37) 

and 

)(,1 kgad
jjkj

∗=
+

       (2.38) 

 Therefore, the approximated signal at level j+1 can be calculated by inserting 

2
j−1

 zeros between each sample of the low-pass filter h  and performing the discrete 

convolution between aj and the resulting filter. The detail signal at level  j +1 can be  
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computed  in  a  similar  fashion  using  the  high-pass  filter g . A  diagram  of  the 

a`trous  algorithm  for  wavelet  decomposition  is  depicted  in Fig.2.18. The size and 

spacing of the original data are preserved across scales while signals at higher levels 

of decomposition provide information with coarser contents. 

 

j=0
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Details
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h

h

g

g

g

 

Figure 2.18. Wavelet decomposition using a’trous algorithm 

 

 In order to reconstruct signal at lower levels of decomposition, Mallat (1998) 

defined the dual scaling function )(
~

tφ  and dual wavelet )(~ tψ  using frame theory 

introduced by Duffin & Schaeffer (1952). For an orthonormal wavelet basis, the basis 

and its dual are the same. The multiscale relationships for the dual scaling function 

)(
~

tφ  and the dual wavelet )(~ tψ  exist in the Fourier domain as: 

















=

∧∧∧

2

~

2

~

2

1~ ω
φ

ω
φ h        (2.39) 

and 

















=

∧∧∧

2

~

2

~

2

1~ ω
ψ

ω
ψ g        (2.40) 

where h
~

 is called the low−pass dual filter, and g~  is called the high−pass dual filter. 

The reconstructed signal aj,k is then computed as: 
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( ))(~)(
~

2

1
11, kgdkhaa jjjjkj ∗+∗=

++
      (2.41) 

 Using Equation 2.41, the approximated signal aj,k can be reconstructed by first 

inserting 2
j-1

 zeros between each sample of the dual filters h
~

 and g~  and then adding 

together the discrete  convolution between aj +1  and the resulting low-pass dual filter 

and the convolution  between  dj +1   and  the  resulting  high-pass  dual  filter. Figure 

2.19 depicts a schematic diagram of signal reconstruction using the `a trous 

algorithm. Starting from any level of decomposition, approximated signals at 

subsequently lower levels of decomposition and the original signal can be 

reconstructed over the same grid. 
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Figure 2.19. Wavelet reconstruction using a’trous algorithm 

 

2.9 Practical considerations for MODWT  

 Following the same procedure as in 2.6 practical considerations about 

MODWT will be discussed. It must be noted that many of the subjects that presented 

for DWT also holds for MODWT. However, since there are significant differences 

between them and the discussed subjects will focus on these differences.  

 The first issue that does not need special consideration is the handling of 

samples sizes that are not power of two. As already discussed in Section 2.7 MODWT 

is defined for all sample sizes so (unlike the DWT) there is no need for special 
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adaptation to handle certain sample sizes. This is one of the main differences between 

DWT and MODWT 

 The second issue is about boundary conditions. Since MODWT uses circular 

filters for its implementation, results from Section 2.7.1 will also hold here. Percival 

& Walden (2000) showed that boundary regions of MODWT are larger than DWT. 

This is not a serious shortcoming of MODWT since, on one hand, the difference is 

quite small and on the other hand the advantages from using MODWT against DWT 

are more important. 

 Therefore, the issues that left for discussion is the choice of wavelet filter and 

the choice of level J0 

2.9.1 Choice of wavelet filter 

 The Daubechies class of wavelets possesses appealing regularity 

characteristics and produces transforms that are effectively localized differences of 

adjacent weighted averages (Daubechies, 1992). The Least Symmetric subclass has 

approximate linear phase and exhibits near symmetry about the filter midpoint. This 

linear phase property means that events and sinusoidal components in the wavelet and 

scaling coefficients at all levels can be aligned with the original time series. For the 

MODWT, this alignment is achieved by circularly shifting the coefficients by an 

amount dictated by the phase delay properties of the basic filter. LA filters are 

available in even widths L. The optimal filter width is dependent on the characteristics 

of the signal and problem domain of interest. A wider filter is smoother in appearance 

and reduces the possible appearance of artifacts in the calculated coefficients due to 

the filter shape. It also results in better uncorrelatedness between wavelet coefficients 

across scales for certain time series, which is useful for deriving confidence bounds 

from certain wavelet-based estimates. However, using a wider filter results in many 

more boundary coefficients, especially at higher levels.  LA filters yield coefficients 

that are approximately uncorrelated between scales while having a filter width short 

enough such that the impact of boundary conditions is tolerable.  

 Compared to DWT, MODWT is less dependant upon choice of wavelet filter 

but not so much so that a particular filter proposed for every wavelet analysis. A 

preliminary study of the investigated features of examined signal is still needed.  
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2.9.2 Choice of level J0 

 A time series can be completely or partially decomposed into a number of 

levels. For complete decomposition of a series of length N = 2
J
 using the DWT, the 

maximum number of levels in the decomposition is J. In practice, a partial 

decomposition of level J0 < J suffices for many applications. A J0 level DWT 

decomposition requires that N be an integral multiple of 2
J
0. The MODWT can 

accommodate any sample size N and, in theory, any J0. In practice, the largest level is 

commonly selected such that J0 preclude decomposition at levels heavily influenced 

by boundary conditions.  

 In particular, for alignment of wavelet coefficients with the original series, the 

condition 
0J

L , i.e. the width of the equivalent filter at the J0-th level is less than the 

sample size, should be satisfied to prevent multiple wrappings of the time series at 

level J0. Selection of J0 determines the number of octave bands and thus the number 

of scales of resolution in the decomposition.  

 If, as in DWT, there is a need that at least one MODWT coefficient is not a 

boundary coefficient, then the following condition must apply 









+

−

< 1
1

log20
L

N
J        (2.42) 

if Equation 2.42 seems too tight, alternative upper bounds are 

( )NJ 20 log<         (2.43) 

and in rare cases 

( )NJ 5.1log20 <        (2.44) 

 Of course, the above three upper bounds are suggested only as a guide; the 

final choice of J0 is application-dependant. 

2.10 Field example 

 In this section wavelet decompositions will be presented using both DWT and 

MODWT in order to derive their already discussed differences. An example from 

field measurement will used. More specific a wavelet transform (partial DWT and 

MODWT) will take place. The examined signal is the vertical component of a 

seismogram as depicted in Fig. 2.20. 



Brunel University  Chapter 2    

George Hloupis  Reg. No: 9725331 

53 

2000 4000 6000 8000 10000 12000 14000 16000
-1

-0.5

0

0.5

1
x 10

5

samples

c
o
u
n
ts

 

Figure 2.20. Vertical component seismogram. Y-axis refers to output counts from a ∆-Σ 

DAC; X-axis refers to samples 

 There are N=16384 samples measured in units of counts (which can easily be 

converted in Volts by multiply them with corresponding nominal bit weight) and 

collected at a rate of 125 samples per second, so the sampling rate is ∆t=0.008 

seconds. Fig.2.21 through 2.24 show the partial DWT coefficients for J0=5 using 

Haar, D(4), C(6) and LA(8) filters.  
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Figure 2.21. Partial DWT coefficients of level J0=5 using Haar filter. 
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Figure 2.22. Partial DWT coefficients of level J0=5 using D(4) filter. 
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Figure 2.23. Partial DWT coefficients of level J0=5 using C(6) filter. 
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Figure 2.24. Partial DWT coefficients of level J0=5 using LA(8) filter. 

 The number of coefficients in each subvector Wj is N/2
j
 therefore W1 has 8192, 

W2 has 4096, W3 has 2048, W4 has 1024, W5 has 512 and V5 has 512 also. Number of 

scales set to 5 because over this number there is no physical meaning for produced 

coefficients. The coefficients are related with averages over scales of 0.016 secs for 

W1 until 0.2560 secs for W5. In frequency terms, coefficients are related over scales of 

62.5Hz for W1 until 3.9Hz for W2. 

 In order to compare the previous results WT reapplied with the same 

parameters (J0, filters) but using MODWT. Results are presented in Fig.2.25 through 

2.28. For each level, vertical lines add in order to delineate the region outside of 

which boundary conditions have great influence. Coefficients also are plotted after 

proper circular shifting in order to be aligned with original time series. This shift is 

denoted by vector 
j

s
WT j
~−

 where sj declares the number of samples that corresponding 

coefficient shifted and defined as (Cornish, 2004): 

2

][ jH

j

L
s

−

=         (2.45) 

for wavelet coefficients 

)1(2

)2)(1(
][

−

−−

=

L

LL
s

jG

j
       (2.46) 

for scaling coefficients. 
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Above Equations hold when L/2 is even. Corresponding equations for odd L/2 can be 

found in Percival & Walden (2000). 
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Figure 2.25. MODWT coefficients of level J0=5 using Haar filter. 
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Figure 2.26. MODWT coefficients of level J0=5 using D(4) filter. 
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Figure 2.27. MODWT coefficients of level J0=5 using C(6) filter. 
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Figure 2.28. MODWT coefficients of level J0=5 using LA(8) filter. 
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 At the forthcoming sections, the majority of MODWT will based on 

Daubechies and Least Asymmetric filters. As already mentioned the choice of a 

wavelet filter is application-dependent. The above two classes of filters seems to be 

the best candidates for studied applications and this fact will be revealed concisely 

from a detailed examination at Fig.2.25 until Fig.2.28. An 8 sec (N=700) portion 

(focus on the beginning of the seismic event) is presented in Fig.2.29 until Fig.2.32 

for the four already mentioned filters {Haar, D(4), C(6), LA(8)} 
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Figure 2.29.Expanded view of Figure 2.25 
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Figure 2.30.Expanded view of Figure 2.26 
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Figure 2.31.Expanded view of Figure 2.27 
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Figure 2.32.Expanded view of Figure 2.28 
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2.11 Summary 

 This chapter provides the essential framework needed from the wavelet 

literature to support the application of wavelet methods in forthcoming sections. More 

specific, initially the relation between MRA and wavelets is described in order to 

derive the essential link of using wavelet analysis to perform MRA. Then the 

advantages of WT over FT according to time-frequency representations are presented 

and as an example the CWT is described. Dyadic discretization of CWT leads to 

DWT which can easy be implemented using high & low pass filters which presented 

along with typical implementation algorithm. Practical considerations of DWT 

including boundary conditions, choice of last level for a partial DWT and handling 

sample sizes that are not power of two are also discussed. An extension of DWT, the 

MODWT is presented along with its implementation algorithm and corresponding 

practical considerations. The chapter finishes with a field example (a seismic event) 

which is analyzed using the aforementioned wavelet approaches. 
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3.  Design of Seismological Data Collection Network 

3.1 Introduction 

This section describes the hardware and software aspects for the Hellenic 

Seismological Network of Crete (HSNC) of the Laboratory of Geophysics and 

Seismology (LGS) at Technological Educational Institute (TEI) at Chania, which is 

mainly designed, built, installed, tested, deployed and maintained by the author in 

order to enable the research reported in this thesis to be carried out.   

The Aegean region (34–42°N, 19–29°E) which comprises the Hellenic arc and 

the adjacent areas of the Greek mainland, the Aegean Sea and western Turkey, is one 

of the most seismically active zones of the world and the most active in western 

Eurasia due to the convergence between the African and Eurasian lithospheric plates. 

The seismic activity especially in the southern Aegean area is very intense and 

extends up to a depth of about 180 km. The seismicity of South Aegean (34–38°N, 

21–28°E)  is extremely high and is characterised by the frequent occurrence of large 

shallow and intermediate depth earthquakes (Fig.3.1 and Fig.3.2).  

 

Figure 3.1. Geographic distribution of epicenters for earthquakes with magnitude ΜL>=4 

during for 1/5/2005 until 30/9/2006. Data extracted from preliminary earthquake catalogues 

of HSNC and GI-NOA (http://www.gein.noa.gr/services/cat.html). 
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Figure 3.2. Geographic distribution of epicenters for earthquakes with magnitude ΜL<4 

during for 1/5/2005 until 30/9/2006. Data extracted from preliminary earthquake catalogues 

of HSNC and GI-NOA (http://www.gein.noa.gr/services/cat.html). 

 

Main geotectonic feature of the region consists of the Hellenic Trench, where 

the Eastern Mediterranean oceanic lithosphere (front part of the African plate) is 

subducted under the Aegean microplate. In historical times, this high seismicity has 

produced earthquakes of magnitude as large as 8 (Papazachos, 1990; Papazachos & 

Papazachou, 1997) pointing out the great seismogenetic potential of the area. 

Such an area demands a dense seismological network in order to achieve three 

main objectives: 

• The most possible accurate estimation of earthquakes’ attributes in 

order to increase the knowledge of area’s geotectonic structure. 

• Investigation of  microseismic activity in order to reveal possible 

unidentified faults or to study the aftershock sequence after strong 

earthquakes 

• Deployment of a regional EEWS focused on the protection of specific 

areas inside it. 

The deployment of public available seismological stations before the 

installation of HSNC (i.e. 2003) is depicted in Fig. 3.3.  The installed stations with 

public data availability belonged to GEOFON network (http://geofon.gfz-

potsdam.de/geofon/). This network wasn’t sufficient for the requirements described 
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above because of two main reasons: the average distance between stations was over 

200km and the collecting data center was held in Germany, from where the data were 

available. The result was that if a research based on these stations only, the results 

would be rather inaccurate. In addition if a local authority wanted to operate an 

EEWS based on these stations except their limiting number there would be introduced 

unnecessary delays from the data transmission to Germany and back (through analog 

leased lines). The elimination of these shortcomings is the primary objective for the 

design and installation of SNC that will be described in the next sections. 

 

Figure 3.3. Geographic topology of the installed available stations before the installation on 

Seismological Network of Crete. Yellow triangles denote real time data transmission and 

green triangles denotes non-real time data transmission. 

3.2 Seismological stations network 

3.2.1 Requirements analysis 

 After extensive analysis of the requirements the following issues are critical 

for the successful long-term operation of a seismological network: 

a) Geographical spreading to the whole Crete and to broader South Aegean 

area. 
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b) Autonomous, fully automated, high resolution and dynamic range 

measuring field stations that will incorporate advanced techniques and 

technologies of analog and digital measurements 

c) Wired and/or Wireless data transfer by implementing contemporary 

communication technology (optical fibres, ISDN, DSL, satellite 

connection, internet etc) 

d) Real Time Telemetry and continuous, error-free, data transmission  

e) Central Station surveillance and massive data storage 

f) Secure and continuous access (through internet, e.g. on-line or ftp) to the 

multi-parametric database of the network from certified users. 

g) Hierarchical data processing seismological software, expandable and 

upgradeable. 

h) Possibility for automated dissemination of selected data and/or information 

to the authorities. 

  

3.2.2    Geographical Location selection 

When setting up new stations, they can be either part of a local or regional 

network, or each one can be a single station. In our case the design is a regional 

network. Studying a map will then give an ideal location, often a remote one, which 

however could be severely constrained by practical considerations: 

• Power: The power required by the equipment can vary between 1 W, to more 

than 100 W depending on type of station. High power stations need access to 

the power grid while low power stations might get by using solar cells, in 

which case a careful consideration on the size of batteries and solar cell to use 

must be made (see section later on power). It is worth compromising other 

aspects of station installation in order to be able to use a public power line. 

• Communication: If the station is to transmit by radio, it often has to be located 

near mountain tops. Satellite communications do not have this limitation, but 

use more power. Land line (leased lines private networking) communications 

require the station to be near to a network service provider hub. 

• Noise: The station must be away from noise sources, particular human made. 

• Security: Unfortunately, vandalism and theft is not uncommon and some areas 

are worse than others. There is not much point in putting up a nice low noise 
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station, if the solar cells and batteries disappear within a week. So apart from 

making a solid construction, the geographical location can be important to 

avoid these problems. 

• Access: Ideal locations might require a helicopter to get there. Since few 

seismologists can afford that in the long run, easy access to a site is essential 

to ensure long-term maintenance. 

• Weather: Areas with humid condition, extreme cold or warm areas or with a 

high probability of lightning were avoided. Within a given geographical 

region, there might not be much variation in these parameters. 

• Topography: It is generally advised to avoid rough topography, which might 

modify seismic waveforms, however this conflicts with putting stations on 

hilltops for better communication. 

• Geology: It is well known that a sensor on soft soil is noisier than a sensor on 

solid rock, so soft soil is avoided. 

The above requirements are all conflicting since an ideal station is likely to be 

in a remote area with no power, communication or security. Our primary goal was to 

ensure low cost and long-term operational stability because it is usually easier to get 

initial installation funds than operational funds. This often means that in some cases, 

the noise level will be higher than ideal and fewer earthquakes will be recorded. 

However since the operational stability will be higher, the total amount of data might 

not be reduced compared to a station with unstable operation. This fact is the 

motivation beyond the chapter 3 where a comparison between wavelet denoising 

methods took place in order to find the appropriate ones.  

 A seismic station located on solid basement rock can always be expected to 

have a lower noise level than a station of soft sediments, even if there is no clear noise 

source nearby. However, there can be unknown noise sources or the geology can be 

different from what it appears to be on the surface. What appears to be bedrock, might 

just be a big boulder. Before making the final selection of a site for a seismic station, 

preliminary ambient noise studies performed. As we are going to see (Chapter 6), 

noise above 1 Hz is mostly originating in the near field, while lower frequency noise 

might originate far away. The ambient noise survey had a dual purpose: first by 

running a short duration (~1h) ambient noise survey the site’s fundamental frequency 

and amplification ratio were estimated by means of HVSR method as described in 
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Chapter 4. Results from FRMA station depicted in Fig.3.4 where for other stations are 

presented in Appendix B 

 

Figure 3.4. Ambient noise survey for seismological station FRMA. 

 

The noise survey consisted of recording continuously for e.g. 24h. Then time 

intervals of e.g. 10 min, took out and average noise spectrums were calculated which 

are then compared to the Peterson (1993) curves as depicted in Fig.3.5 for the station 

FRMA. Peterson curves show the New global High Noise Model (NHLM) and the 

New Low Noise Model (NLNM). These curves represent upper and lower bounds of a 

cumulative compilation of representative power spectral densities determined for 

noisy and quiet periods at 75 worldwide distributed digital stations. These so-called 

Peterson curves have become the standard, by which the noise level at seismic 

stations is evaluated. Typically the average spectra of a seismic station must be fall 

between these curves. 
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Figure 3.5: Peterson noise curves (NHNM – blue dotted line, NLNM – blue dashed line) and 

the noise spectral level of Z component (red solid line) at station FRMA 

 

3.2.3 Sensors 

Two types of seismometers used in SNC: GURALP CMG-T40 (short period 

and broadband) and SERCEL L4-3D velocimeters which have 1Hz eigenfrequency as 

depicted at Fig. 3.6 (Sercel) and 3.7 (Guralp). Both are passive seismometers and 

contained three independent sensors (Vertical-Z and two horizontals – NS, EW) 

featuring low noise, large dynamic range and easy installation and use.  

 

Figure 3.6. Frequency response for Sercel seismometer (www.sercel.com) 
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Figure 3.7. Normalized frequency response (high frequencies – left, low frequencies – right) 

for Guralp CMG-40T seismometer (www.guralp.com). 

  

3.2.4 Data Acquisition System (DAS) 

The DAS system that used is the DAS-130-01 by Reftek inc. (Fig. 3.8). It 6 

input/output connectors, an LCD display, and a removable lid on top of the case.  

There are two Channel input connectors (each one can record from a 3-component 

sensor), a Terminal connector for setup and control, a Net connector combing 

Ethernet and Serial PPP for network access, a 12 VDC Power connector, and a GPS 

receiver connector.  

 
Figure 3.8. The DAS installed at SNC (Reftek inc)  
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Its LCD display allows the user to monitor the status of various subsystems 

within the 130 without having a terminal device attached. The Crystal Semiconductor 

24-bit/digital filter chip set provides more than 135 dB of broadband dynamic range. 

The digitizing rate is software-selectable from 1000, 500, 250, 200, 125, 100, 50, 40, 

25 and 20, 10, 5, and 1 sps (per channel). At any given sample rate, wideband 

performance is achieved through the use of digital Finite Impulse Response (FIR) 

digital filters, which provide passband to 80% of the Nyquist.  The gain of each 

channel is software-selectable to either one (x1), thirty-two (x32) or one hundred 

(x100). The removable CF media allows back up of the data when the link is down for 

a long period of time, so no data will be lost.  If the telemetry link is down for a very 

short time, then all the data remains in RAM and will be transmitted to the central 

acquisition station as soon as the link comes up.  Data recorded on the CF card then 

can be ftp’d to the central station at the user’s request. Two CF II cards of 2 GB 

capacity totaling 4 GB allow back up of the data for at least 200 days’ recording, three 

channels at 100 sps in Steim2 compressed mode.  Two CF II cards also allow the 130-

01 Recorder to operate in an “auto-wrap” mode.  In this mode, the first disk is filled 

with data; once it is full the second CF II card is formatted and then filled with data.  

Once the second disk is filled with data, the first disk is then formatted and data is 

then recorded to the first disk.  When the first disk is again full, the second disk is 

formatted and data is recorded to it.  This process repeats forever.  In this mode the 

user always has at least one CF II card worth of the latest data, plus whatever has been 

recorded to the current disk.  When data is also being recorded to a telemetry link 

while also recording to the disks in auto-wrap mode, if the telemetry link goes down, 

the 130 will finish filling the disk it is currently writing to, and then it will format the 

other disk and write to it until it is full. 

For a seismological field station the power consumption is one of the crucial 

factors. The 130-01 uses 3.3 VDC logic instead of 5V DC logic.  In addition, it is 

utilized the duty cycling of microcomputer subsystems to eliminate unnecessary 

power drain.  For example, the ADC outputs data to a shared memory device so that 

the CPU can be asleep during acquisition.  For a typical application, the central 

processor unit (CPU) will be active less than 1% of the time in order to move ADC 

samples into non-volatile memory.  Field station recording equipment is very low 

consumption DC powered equipment. Extra power consumption is produced when 
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using telemetry and active broadband sensors. The maximum measured values for all 

the DASes used are: 210 mA (continuous telemetry and data transmission, GPS in 

cycle mode, sampling at 125Hz, gain x1, passive 3 component sensor attached) plus 

108 mA if an active broadband sensor is attached providing a total of 318mA. That 

means around 7.7Ah per day needed. The calcium lead-acid battery that installed with 

each DAS is 65Ah which means that can hold up to 6 days (assuming 80% battery 

availability due to charging cycles) without charging. If there isn’t active sensor 

connected then this period can extend to 9 days.  

 Accurate timing is provided by a high precision crystal oscillator and an 

external reference provided by the Global Positioning System (GPS).  There are two 

two possible commercial GPS modules tested : Garmin’s and Trible’s . It is found that 

Garmin GPS receiver maintains time an order of magnitude better than the Trimble 

GPS (100 microseconds compared to 1 millisecond). When power is applied, the 130 

comes up with its internal time set to the base year.  Current time can be manually set 

by the operator or automatically by the GPS receiver.  The 130-01 will monitor the 

output of the GPS until a valid 3-D fix has been obtained, then update the frequency 

of the local oscillator and set time.  If the GPS receiver has been recently active 

(warm start), this process will only take about two minutes.  If the GPS has been 

moved a great distance since its last activity, or if it has not been operated for several 

months (cold start), this process will take approximately five minutes.  The frequency 

setting is maintained so that the oscillator frequency is always within spec, 

compensating for aging and temperature drift. 

 For back up data retrieval, the internal hard disks can be hot swapped in the 

field or data can be copied via ftp to the CRC.  In the field the user can swap an empty 

formatted disk with the one that has recorded data after verifying in the LCD message 

the RAM space available before the data is dumped to the disk. The disks can be 

swapped between dump cycles. Thus, the disk may be removed while the 130 

continues to acquire data.  Empty formatted disks can be used for data exchange in the 

field.  This approach is very practical because it consumes only a few minutes at a 

field site.  A disk full of data can be then carried to the Lab or Central Station for 

connection to your data processing PC via standard commercially available CF reader.  

Another way to get the data from the 130 is to ftp from the central processing PC.  

A schematic showing field installation of 130-1 is depicted in Fig. 3.9 
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Figure 3.9: General configuration of a field seismological station 

 

Each DAS has built-in hardware to support IP communications. It employs 

TCP and UDP other either Ethernet or PPP Serial interfaces.  Each interface has its 

own IP address, address mask, gateway, and target host IP address 

 

3.2.5 Installation of the seismic station 

The installation consists of setting up sensor and possibly recorder and/or 

transmission equipment. The installation will depend on type of sensor, and whether 

local or remote recording is done. 

Sensors are usually posed on aluminium enclosures to avoid stray currents and 

corrosion of the sensor feet when in contact with cement. The horizontal sensors were 

always oriented NS and EW such that a motion N or E gave a positive signal. The 

most common way to orient the sensors is to use a magnetic compass, taking 

magnetic declination into consideration. Inside buildings or vaults this might be 

unreliable and the direction must be taken outside and transferred inside. The 

orientation of the sensors should be within ±2 degrees.  
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Short period sensors usually do not require thermal insulation since they are 

little sensitive to temperature changes. Broadband sensors on the other hand require a 

very good thermal insulation. 

All the sensors were installed on basement rock. The depth of the installation 

is then only important to the extent of eliminating low frequency noise caused mainly 

by temperature changes. 

For a telemetered station in a remote area, more security had to be provided 

rather than the simple construction and there also be a need to install more equipment. 

In a construction, as this shown in Fig. 3.10 sensor, DAS, communication equipment 

and battery are placed in the house, while the GPS is outside. 

      

 

 

Figure 3.10: Typical installation of a short period seismological station: inside view (left), 

outside view (right) 

 

Broad band sensors require special care in installation in order to get a good 

low frequency performance. The lower the frequency, the more demanding and costly 

is the installation and the sensor, so it should be carefully considered what the purpose 

of the station is before starting an elaborate construction. The main problem with low 

frequency noise is tilt, which mainly affects the horizontal sensors. A deformation of 

1 µm over a distance of 3 km oscillating with a period of 10 min gives a vertical 

GPS 

Seismometer 

 

DAS 

UPS 

 

Telemetry  
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acceleration of 10
-10

 m/s
2
 in the vertical direction and 10

-8
 m/s

2
 in the horizontal 

direction (Bormann, 2002). These values are well above the NLNM. Tilt can be 

caused by temperature deformations of the ground or atmospheric pressure changes. 

A good installation should therefore be as deep as possible and in hard rock. The BB 

sensor itself will also be affected by temperature fluctuations, so short term 

temperature changes (with smaller duration than periods to be measured) should be 

avoided. Different sensors have different sensitivity to temperature changes. 

Typically, the sensor should be protected from day-night temperature changes. The 

24-hour sensor variation in temperature should be less then 1 degree. This stability is 

mainly achieved by insulation. A simple insulation that used is the one depicted in 

Fig.3.11 

 

Figure 3.11: Broadband seismometer thermal insulation (inside installation) 

 

Figure 3.12: Locations of the currently installed SNC stations 
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The current status of the network is depicted in Fig.3.12. and presented in 

Table 3.1. All the stations are registered to International Seismological Committee 

(ISC) and to International Federation of Digital Seismograph Networks (FDSN).  

Station 

Code 
Station Name 

Latitude 

(deg) 

Longtitude 

(deg) 

Elevation 

(m) 
Sensor 

STIA Sitia, Lasithi 35,2020 26,0909 89 Guralp CMG-40T 

KSTL Kastelli, Heraklio 35,3037 25,0707 70 Sercel L-4-3D 

KNDR Koundoura, Chania 35,2340 23,6857 25 Sercel L-4-3D 

PRNS Prines, Rethymno 35,3649 24,5015 51 Sercel L-4-3D 

KLDN Kaloudiana, Chania 35,4870 23,6905 44 Guralp CMG-40T 

FRMA Ierapetra, Chania 35,0144 25,7334 33 Guralp CMG-40T 

CHAN Chania 35,5192 24,0425 34 Guralp CMG-40T 

HERA Heraklio 35,0722 24,7656 17 Guralp CMG-40T 

GVDS Gavdos 34,8435 24,0902 164 Guralp CMG-40T 

KTHR Kythira 36,2606 23,0042 315 Guralp CMG-40T 

 

Table 3.1 – SNC permanent station list 

 

During the development stage there were some temporary installations that 

carried out. The locations of these installations are depicted in Fig.3.13. 

 

Figure 3.13: Locations of previously installed SNC stations (yellow circles).  

 

3.2.6 Data Transmission and Telemetry 

The most important factor for the design of SNC was the reliable and 

continuous data transmission to the Central Recording Centre (CRC) along with the 
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highest level of security, redundancy and failover performance in the most possible 

automated way. The network design based on the client-server model where each 

element of the network can pass requests and data to hosts inside the network. Each 

network element can be act as client and server at the same time but for different 

purposes. For example a DAS is the client that sends data to Data server at CRC. The 

same DAS can act as server if a certified user wants to download specific data from 

its CF disk using an ftp client.  

 

3.2.6.a Communication protocol 

 Since each DAS has the ability for IP communications the obvious choice is a 

TCP/UDP implementation. We had need for a relatively simple packet-oriented 

reliable transport protocol that can be easily implemented in embedded systems. We 

had also the need for transport these packets across Internet Protocol (IP) networks 

reliably, that is, in an ordered and error-free way. There were several approaches that 

one might take to accomplish this. The TCP/IP protocol suite provides two basic 

protocols at the transport layer that are accessible to the application through the 

Sockets API. These are the Transport Control Protocol (TCP), and User Datagram 

Protocol (UDP). A third protocol, the Reliable Data Protocol (RDP), has been defined 

that would generally meet our requirements but this protocol is not typically 

implemented in the IP stacks in most Operating Systems (OS) available today.  

TCP provides reliable, connection-oriented, byte stream service to the 

application and readily meets our requirements. However, TCP is relatively very large 

and complex and building a stable implementation is a daunting process to undertake. 

TCP provides much more functionality than is required to simply move 1 kilobyte 

packets across the network reliably and the size and complexity of implementation is 

simply too great. UDP, on the other hand, provides a very simple connection less, 

packet (datagram) oriented service that is unreliable. Because moving data are already 

in packets and these packets are 1 kilobyte or less in size, we seek for a protocol that 

could provide the additional functionality that we require at the application layer and 

use UDP as the underlying transport. 

A second, yet important, requirement is that a client application must be able to 

connect to the server application without requiring any configuration information. It 

must connect to the server without any knowledge of its own or the servers addresses 
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and so forth. UDP provides this capability while TCP, because it is connection-

oriented, does not. 

Unfortunately the widely used TCP/IP stack cannot satisfy other requirements 

also: 

•••• Platform independency.  All data values must stored in network byte order.  

Thus, it must be implemented on any hardware platform or OS that provides 

an IP protocol stack. 

•••• Encapsulation of the application data completely without having any 

dependency on the contents of any particular application data package 

•••• Self-contained and self-configuring at the client.  That is, the protocol stack 

must discover or be assigned all necessary parameters to operate from the 

network 

•••• Both the server and client must initiate the connection on-demand.  This 

means that when the application has data to send the connection will be 

established if needed simply by submitting the data packet to be sent. 

•••• Recover from loss of connection without data loss.  This means that if a client 

is sending data to the server and the connection is lost momentarily, it will 

reestablish the link and resume sensing the data. 

•••• Dealing with long, thin, pipes effectively.  That is to say that it must be 

capable of high utilization (>90%) of slow (9.6 kbps), high latency (>1 

second), connections such as VSAT links. 

•••• Small and relatively simple implementation. 

•••• Function at the application layer using the standard UDP Sockets API on the 

server system.   

•••• All network traffic must be UDP diagram to/from specific port number. 

Our choice was the Ref Tek Protocol (RTP). RTP is designed to provide the 

application with a full-duplex, packet-oriented, reliable, transport over UDP network 

connections. RTP is typically used in server-client fashion although this is by no 

means required. Typically there will by a server application running on a IP host 

somewhere on the network. Clients will attach themselves to the server to send and 

receive data. The client is typically an embedded system that attaches to the network 

through an asynchronous serial interface using Point-to-Point protocol however other 

interfaces will be implemented in the future. The server is typically an application 
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program running on a host and accesses the network via UDP sockets provided by the 

IP stack on the local operating system. The real-time data transmission is performed 

using RTP client.  The RTP client uses UDP/IP on port 2543, which is registered with 

the Internet Assigned Number Authorities (IANA). The payloads of RTP datagrams 

are 130 commands, responses and recording package. A typical network configuration 

using RTP is shown in Fig.3.14 and its correspondence to OSI model , in Fig. 3.15 

 

Figure 3.14: Typical network configuration using RTP 

 

 

Figure 3.15: Layers and interfaces at OSI view for RTP 

 

Once the DAS is powered up, the RTP client generates the discovery packet, 

which includes the DAS ID number, data collection host IP address, port number and 
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send it to the interface programmed by the operator for real-time data transmission. If 

the DAS is connected to the IP network, the discovery packets are sent to the IP 

network.  The data collection host resided at the CRC is “listening “ the port 2543, 

and as soon as it receives the discovery packet from the DAS with the unique ID 

number, performs the hand shaking with the RTP client and establishes the 

connection with the DAS. If the DAS is programmed for a continuous data recording 

to a designated communication interface (Ethernet or Serial port), data collection host 

begins receiving the data. The error-correction is performed by the positive 

acknowledgment from the host. In the event of the communication link failure, the 

data is acquired on the RAM while RTP client periodically sends the discovery 

packets. After the communication link comes back up, the data collection host will 

again receive the discovery packet from the remote DAS, re-establish the 

communication and resume the data acquisition automatically. 

 

3.2.6.b Wired Links 

 For the needs of wired links from seismological stations to CRC a Virtual 

Private Network (VPN) was implemented. The VPN based on Multi Protocol Label 

Switching (MPLS) technology over conventional Asynchronous Digital Subscriber 

Lines (ADSL).  

MPLS is defined by IETF (Internet Engineering Task Force). It combines the 

scalability of IP protocol, high speed switching from OSI’s 2
nd

 level and the ability to 

manage the available bandwidth using Traffic Engineering (TE) methods. It is 

compatible with the main routing protocols that used by Internet Service Providers 

(ISP) today such as OSPF, RSVP, MP-BGP, IS-IS and advanced services such as IP-

VPNs, L2TPv3 providing security levels similar to ATM and Frame-Relay 

technologies with lower cost. Briefly speaking, the advantages of MPLS are: 

• Security. The installed VPN was totally independent from other VPN existing 

between seismological stations. This is very important in the case where data 

exchange between collaborating seismological networks is planned. In a case 

that SNC want to send the data from the stations that had only at the West part 

of Crete, a new VPN between SNC and other institute can be defined 

including only these stations. The two VPNs will be isolated even if they 

include some common stations. To achieve this author used independent 
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routing tables for each VPN. The innovating part is that in each routing table 

the VPN ports are defined exclusively without leaving the ISP to handle this. 

Fig. 3.16 depict this situation 

� Flexibility. The use of different topologies (star, partial mesh, full mesh) by 

using several accessing methods (leased lines, aDSL, Dialup, GPRS) is not 

forbidden. This is important for two cases: first if a station faces access 

problems the use of an alternative link to the nearest station can solve the 

problem without changing the configuration of the VPN. Second, for the use 

of permanent networks (e.g a mobile seismological network for aftershock 

studies) only one point of access will be needed in order all the stations of the 

permanent network to reach the VPN. The above cases are depicted in Fig. 

3.17. 

� Quality of Service: The use of priorities policy is required in order to ensure 

that data are always be available. In the case of SNC the design gives higher 

priority to the seismological stations and lower priority to clients such as 

certified users that received data or events. This is dictated in order to ensure 

that in the case of a strong event where a malfunction in telecommunication 

facilities happens, the available bandwidth will be primarily used for the data 

transmission to CRC.  

In networks with ordinary routing, packets routed from the source to the 

destination hop-by-hop. Every intermediate router extracts the header of 

corresponding OSI layer, the information needed to forward it to the next available 

router. This process is repeated for every hop. The routing decision depends from 

several factors such as: 

• Generation and maintenance of dynamic routing tables. 

• Sorting of IP packets in Forward Equivalency Classes (FEC) based on 

the destination address. 

• FEC assignment in the next hop. 

The packets that belong to the same FEC forwarded through the same route. 

As the packets transferred into the network, every hop checks the packet and assigned 

to the corresponded FEC. By using MPLS the packet assignment did only once; at the 

packet’s entry to the network. FEC is coded with a constant length label which is 

embedded into packet. The next hop, instead of checking the contents of IP header 
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checks only the label in order to decide where to forward the packet. At every hop the 

old label is replaced by a new one. Data packets are forwarded through specific Label 

Switched Paths (LSP). Using this approach every router knows in advance what it has 

to do for packets with specific labels. 

  The VPN that built for the purposes of SNC is shown in Fig. 3.18. For backup 

purposes the routers that used has the option to connect to the VPN through ISDN 

lines. This is selected in order to ensure that in case of ADSL failure the data 

connection keeps active. 

 

Figure 3.18: VPN topology for the wired links used by SNC (shown 4 from 8 stations) 

 

  After the installation of the first six stations an availability survey (for one 

year operation) were carried out in order to estimate the total availability of the wired 

link. Results are shown in Fig.3.19. As it can be seen one station presents medium 

availability while the remaining ones have availability over 92%. 
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Figure 3.19: Wired link connection availability survey for six SNC stations over 2007   

 

  3.2.6.c Satellite Link 

 When the distance from the nearest point of network access is a forbidden 

factor the solution of wireless link becomes irreplaceable. Since the distance from the 

remote stations to CRC is over 200km in some cases the Satellite link (VSAT) is 

chosen as the only reliable solution as explained below. 

 In order to fit the satellite link in our needs the following requirements are 

described during the design stage: 

• Quick and easy development of VSAT terminals. The majority of the cases 

where a VSAT system is going to be installed will be in locations difficult to 

approach. 

• Support of low data rate in VSAT terminals. For sampling 3 channels at 

125Hz, each DAS needed around 8 Kbps Transmission rate and 2 Kbps 

Receive rate (including event and state-of-health packets). These values are 

rare in the VSAT links because today satellite links allocate obligatory a 

minimum bandwidth for each terminal (minimum Committed Information Rate 

(CIR) / remote). If some of the stations exceed this minimum bandwidth 

demanding more, extra bandwidth is allocated by the remaining available 
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(Burstable Bandwidth οn Demand - BBD). The minimum CIR/remote is 

usually 20 Kbps. Selection of such a VSAT system for 10 stations would lead 

to requested bandwidth of 200Kbps when only 80Kbps needed which means 

over doubled costs. 

The only satellite platform (and the one that selected) that had the ability of 

configurable minimum CIR / remote in a reasonable cost was the iNFINITI platform 

by iDirect (Dallas, USA). The minimum CIR/remote could be decreased until 16Kbps 

for general data packets which was the double bandwidth from what we expected. For 

this reason a different approach was used: the data packets from each DAS defined as 

voice packets and each link from DAS to CRC denoted as VoIP link. Under this 

approach the ability of using voice services at the satellite platform was revealed. This 

is important because the specific platform designed keeping in mind that voice 

packets must be handled different from data packets. That means that voice packets 

expected to be smaller than data packets and must have higher priority in order 

possible losses cannot be identified by human ear. In technical terms, by using voice 

packets, the minimum CIR / remote was able to decreased until 300bps which was an 

acceptable value. In addition the data from DAS to CRC as they treated as voice 

packets, they had the highest priority among any other traffic. Finally BBD mode 

selected for each station in order to cover the possibility that some station needs 

higher bandwidth due to retransmission of lost data packets.  

 The satellite carrier that selected was the Hellas-Sat. Based on EuroStar 

E2000+ launched at 2003 at 39
O
E and expected to have 18 years of operation. Its 

coverage is depicted in Fig.3.20 
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Figure 3.20: Hellas-Sat coverage for F2 beam 

 The western location that a station is expected to install is the Rhodes island. 

For this reason a link budget for this location is estimated as shown in App.4b. 

Translation of the results leads to the following values for the equipment in CRC as 

well as for the remote stations (Table 3.3). Schematic representation of the installation 

presented in Fig. 3.21 

 

Figure 3.21 – Satellite network topology 
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CRC main station Remote station 

2.4m diameter VSAT antenna 1.2m diameter VSAT antenna 

Amplifier 4W (requirements dictates 1W but 

increased for future use) 

Amplifier 2W 

Table 3.3 : VSAT equipment details 

 

3.3 Data Collection and Monitoring 

 The network topology that installed at LGS guided from the following main 

necessities: 

� Continuous data recording 

� Stability and easy of use for the testing new algorithms 

� Adaptation to the different conditions of exploitation and hardware 

architecture. 

These lead to a scheme with three data service point where the first one receives 

and stores all the data from SNC and collaborating networks (Primary server), the 

second one acts as a backup to the first one (Secondary server) and the third 

(Diskloop) is the point where the seismological signal processing is done as depicted 

in Fig. 3.22. 

 

Figure 3.22. Block diagram of the LGS configuration located at Chania 
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The data collection software is a commercial product (rtpd from Reftek inc) 

which is the implementation of RTP protocol. It runs on Linux OS and is responsible 

for collecting and archiving the data from the stations, performing quality control of 

them as well as sending acknowledgement packets back to stations. As a server it can 

respond to requests from clients, receive data from the stations, resend the data to 

other collaborating data centers and providing the monitoring packets for further 

processing. Communication with the DASes is performed by using the port 2543 for 

data transfer and port 5000 for commands and monitoring purposes. That means that 

DASes are able to send the data while receiving commands or sending at the same 

time their status. This scheme except the obvious speed benefits (since it has a 

dedicated to the data, channel) provides an alternative way to reach the remote DAS 

(in case of a data send or RTP failure) by using the port 5000 with conventional 

TCP/IP connection. All these are depicted in Fig. 3.23. 
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Figure 3.23 Schematic representation of the connectivity features (this page) and processes 

involved at CRC of LGS (previous page) for rtpd server. 

 

 The software that provided by the manufacturer for monitoring and controlling 

the DASes was a specialized Java application (RNC2) as well as a command line 

translator (rtcc). Both are not very user friendly so there was a need for developing 

simple tools for control and monitor. The new applications that written by the author 

are based on dynamic web pages which can pass the necessary command line 

arguments to the rtcc translator by using XML statements. A typical monitoring web 

page is shown is Fig.3.25 while flowchart diagram shown in Fig. 3.24. 
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Figure 3.25: Flowchart of monitoring and configuration software module 

 

 
 

Figure 3.24: DAS monitoring web page (top) and configuration page (bottom) 
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 By hyperselecting each DAS the user has the ability to derive the individual 

settings for each one and then (if needed) to pass the new parameters to DAS flash 

EPROM. Since the whole procedure is based in HTML methods the obvious 

advantage is that it can be completed from any device is capable to run a web 

browser. This is very important in the cases where the administrator cannot have 

physical access to the CRC because he can control the network from outside using 

only a web based device (laptop, handheld, palmtop, mobile phone). 

3.4 Data processing  

 3.4.1 Introduction 

 For the purposes of seismic signal processing, a multitasking, scalable, 

problem–oriented and open–architecture software designed for UNIX 

computers/networks called SNDP was installed. The SNDP is intended for interactive 

and automatic processing of multichannel seismological data recorded by the seismic 

arrays or regional networks. It's comprised mostly of programming and graphic 

facilities similar to the well-known program packages for seismic monitoring (e.g. the 

EP system [Fyen, 1989] at NORSAR or the IMS [Intelligent Monitoring System]; 

Bach et al., 1990 at the Center for Monitoring Research).It is based on problem-

oriented configuration of the system with a user-friendly interface for easy and quick 

installation of new user's data analysis procedures, thus implementing the open 

architecture concept. It includes a Job Control Language (JCL), a problem-oriented 

language, which enables the user to perform complex processing sessions in a manner 

of an Expert System.  

 

 3.4.2 Description 

The SNDP consists of two subsystems:  

• The Real-Time Subsystem (RTS) for multi-channel data collection, storage in 

a diskloop, and signal processing of the data flow. The major part of RTS is 

DP (real-time detectors) module. 

• An off-line Seismic Analysis Subsystem (SAS) for automated interactive 

processing of registered seismograms with more sophisticated and time-

consuming procedures (for example: statistically optimal multi-channel data 

analysis).  
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The block diagram of SNDP is shown in Fig.3.26 
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Figure 3.26: Block diagram of seismic processing system (www.synapse.ru) 

 

The main problem, arising in designing such a system as described in the 

introduction, is to provide the reliable performance of application procedures 

comprised in the system in conditions of variable intensity of data streams and 

activity of system users.  In the RTS of the SNDP this problem is solved by utilizing 

modern programming methodology. This involves the following general approaches 

and facilities: 
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• Up-to-down system design, i.e. dividing the system into a set of abstract 

levels.  As a result, a clear logic, free of local details, has been provided for 

each level. 

• Free asynchronous communication between different system processes is 

based on the port method.  Each process has to know nothing about other 

system processes.  It should possess a single input port with a queue facility 

and one or several output ports.  The process scans its input queue, executes 

requested actions, and sends results to the output ports. 

• Semaphore facilities to control all of the shared computer resources. 

• A unique System Process Table (SPT) in which all process ports and their 

priorities are defined.  To install new processes in the system, one needs only 

to expand the SPT. 

• Provision of a single way for modification of the system.  This avoids dualism 

in the system.  Structures of the system, sharing memory fields, values of 

system’s parameters, etc., must be defined in macros.  Modification of the 

macros provides the correct changes of all system programs and processes.  

For example, the SPT may also be contained in its own macro. 

• A specific Global System Table (GST) provides flexibility of system handling 

and easy modification of the system while including into it new tasks, 

methods, algorithms, and facilities.  The GST is contained in the system’s 

shared memory and comprises an arbitrary amount of named structures.  A 

catalogue is placed at the beginning of the GST.  It provides a direct access to 

the named structures.  Each structure is defined by a special macro, so as a 

result the GST is a set of such macros.  Each individual system process uses 

only those macros that it needs for execution.  When started, the user's 

program requests addresses of the named GST structures from the system.  To 

install a new user's program it is sufficient to expand the GST by including the 

new program macro in it. 

The processing stages that involved the above characteristics are: 

� Detection of seismic events 

� Identification and parameter estimation of seismic phases 

� Location of event sources 

� Identification of event types 
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3.4.3 Detection of seismic events 

Real time detectors, based on traditional STA/LTA algorithm, are intended for 

processing of continuous seismic data, incoming to LGS, from field stations as 

depicted in Fig.3.27 

 

Figure 3.27: Schematic representation of detection process (www.synapse.ru) 

 

� Detection of a signal is performed successively and independently within 

specified frequency bands. 

� If the signal is found, just the first onset is selected within one frequency 

band, the subsequent phases are not considered. 

� If one signal is detected by several independent methods, provision is 

made for selecting that one, which has the greater SNR. 
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3.4.4 Identification and parameter estimation of seismic phases 

This process completed by Estimator module which is integrate the following 

tasks: 

� Extraction of seismic phases of signals found by the Detector. 

� Exact estimation of seismic phase parameters. 

� Preliminary identification of seismic phase types to assist in procedures of: 

o Phase association to source 

o Determine epicenter coordinates 

o Depth 

o Magnitude of the source 

 

3.4.5 Location of event sources and identification of event types 

This complex process performs extraction and location of seismic sources 

according to results of detection and parameter estimation of seismic phases by 

stations of a regional network. After successful location each event is associated 

as regional or far source. The discrete steps that followed by this process are: 

� Regional association of phases from stations by the node sorting method. 

� Refinement of source coordinates by successively narrowing the area of 

analysis and by rejection of the wrong phase onsets. 

� Estimation of source depth by scanning over the depth using depth travel 

time tables of regional phases. 

� All the sources detected at the stage of regional association are represented 

in the form of a preliminary bulletin of events. 

� Analysis of sources from the preliminary bulletin to reveal intersection of 

data obtained from several stations. 

� Extracting and exclusion of partial solutions. 

� Forming the final bulletin of detected events. 

 

3.5 Dissemination of results 

 The software suites that discussed already had one major lack: they didn’t 

provide tools or modules for the publication of results. For this reason a complete set 

of dissemination tools is designed and implemented. The main requirements were: 

• Publication of results using conventional messaging techniques (email, sms) 
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• Produce of real time maps either as static images or at public platforms 

(Google Maps) 

• Storage of the events as well as the relevant seismograms 

• Notification of other collaborating institutes and public bulletins 

As long as SNDP software provides the flexibility to implement new algorithms 

running in parallel with real time system, the scripts that created to fulfil the above 

requirements are implemented in SNDP as below. 

Initially, there was a modification in regional associator module of SNDP 

(3.4.4) in order to produce output files according to our needs. By doing this, after 

each event two files were produced: a complete report (named bull_out) showing the 

results that need to be spread and a unique event id. The complete code including the 

modification is presented in App.4e.   

A new relational database, named seismos (i.e. “earthquake” in Greek) is 

designed and implemented in order to hold the results of each detected event. The 

database built in MySQL and had two main tables as shown in Fig.3.28 

Table Events  Table seismograms 

Field name Data type  Field name Data type 

Event_id Int32  Event_id Int32 

Date Date/time  Seismo_file file 

Time Date/time  complete boolean 

Lat Int32    

Lon Int32    

Depth Int32    

Mag Int16    

Auto_report boolean    

 

Figure 3.28: Structure of relational database Seismos 

 

 The Events table holds the information needed in order an event be published 

in a bulletin. The table seismograms hold 4min of data for each event in order to 

provide the ability for manual processing by human analysts in a later time. The two 

tables were separated in order the fastest search speed when a external request about 

event’s info is passed into. Usually other clients want to retrieve only the information 



Brunel University  Chapter 3    

 

George Hloupis  Reg. No: 9725331 

94 

 

about an event and not the seismogram. The database is updated automatic and 

manually. When an event occurs, the program steile (which will be explained below) 

retrieves the values from bull_out file that needed to fill the tables. In this case the 

field auto_report receives the value ‘Y’ which means that is a record created by 

automatic estimation. Later, when a human analyst is going to provide a more 

accurate analysis, his results are stored also to the table, having the auto_report valued 

as ‘N’. This is very useful because there is one database scheme that stores all the 

results which can be discriminated by checking the auto_report field. In secondary 

server there is also a replica of the main database.  

 The program steile (i.e. “send” in Greek) is responsible for the results 

handling. More specific, right after the estimation of an event, the steile receives the 

results and produces a series of actions with the following order: 

i. An email, reporting all the details of the seismic event (Latitude, Longitude, 

Magnitude, time), the parameters used for the estimation as well as the 

detected phase arrivals, is generated. This email is sent to specific users. 

Typical form of this email is shown in Fig.3.29 

Event      N 10476 

 

   Date         Orig.t    var_t    Lat      Lon     h      N_st N_as N_ph  Rls  Dist  XMag 

 2007/1/7 05:17:41.690  1.72    32.61    19.66    35.0     5    7    7    88   537  3.52 

 

 St Chan   Dist Phase             Time          TRes   Azim  Slow   SNR     Ampl    Per  Xmag 

 

KNDR  HHZ   468 Pn     2007/1/7 05:18:44.279   0.3    59.6   4.4    2.2    481.6  0.10 3.52 

KNDR  HHZ   468 Sn     2007/1/7 05:19:26.938  -2.4    45.9   8.6    2.1    501.7  0.07   -   

KLDN  HHZ   490 Pn     2007/1/7 05:18:45.328  -1.4   168.9  13.7    7.5  18775.6  0.09 5.12 

KTHR  HHZ   506 Pn     2007/1/7 05:18:49.607   0.8   264.4  14.0    2.5    270.4  0.04 3.48 

PRNS  HHE   534 Pn     2007/1/7 05:18:54.677   2.3   120.1  16.2    1.8    365.3  0.08 3.46 

PRNS  HHE   534 Sn     2007/1/7 05:19:45.985   2.1   187.3  18.1    2.8    733.5  0.07   -   

FRMA  HHN   632 Pn     2007/1/7 05:19:01.917  -1.6   161.6  13.1    6.7  26720.0  0.07 5.48 

 

=================================================================== 

Laboratory of Geophysics & Seismology (LGS)         

Seismological Network of Crete (SNC)              

 Email alert with automatic Preliminary solution   

------------------------------------------------------------- 

 

Figure 3.29: Email reporting an event  
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ii. Then, another email is formed and send it to European-Mediterranean 

Seismological Centre (www.emsc-csem.org) sending only the phases in  order 

to produce the most accurate hypocentral location estimation since it collects 

data from more than 35 seismological networks around Europe. The form of 

this email has the structure presented in Fig.3.30 

SNC-LGS reports: 

 

KNDR  HHZ  Pn     2007/1/7 05:18:44.279   

KNDR  HHZ  Sn     2007/1/7 05:19:26.938 

KLDN  HHZ  Pn     2007/1/7 05:18:45.328 

KTHR  HHZ   Pn     2007/1/7 05:18:49.607 

PRNS  HHE   Pn     2007/1/7 05:18:54.677 

PRNS  HHE  Sn     2007/1/7 05:19:45.985 

FRMA  HHN   Pn     2007/1/7 05:19:01.917 

Figure 3.30: Email reporting an event to EMSC  

 

iii. Next, the database seismos is updated automatically. At this stage, first the 

table events is filled and then the table seismograms. There is a possibility that 

not all the stations are operative during the event or some station presents a 

delay. In this case the seismograms table will not complete and the complete 

field is going to receive the value ‘N’. Later, when the analyst is going to 

perform manual analysis, the analysis software is configured to first check the 

value of report filed. If is ‘Y’ (which means that all the data are present) it 

proceed to the usual procedures, otherwise it requests data retransmission from 

the diskloop. The result that the analyst produces is written to the database 

with different event_id (it has the form YYYYMMDDDHHMMSS) and with 

auto_report field set to ‘N’. This is useful when on wants to discriminate the 

results produced from automatic system and human analyst. 

iv. Next the mapping application receives the results. The mapping application 

consists of two main parts: static and dynamic. The static mapping application 

produces a jpeg graphic file which can be embedded to MMS messages or to 

static web pages. A typical file of this type depicted in Fig.3.31. 
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Figure 3.31 : Static graphic file produced by dissemination software 

   

The dynamic mapping consists of automatically producing the code 

needed for the generation of a Google Map (maps.google.com). The code is 

written in Java and PHP. The application connects to database seismos, 

requests the last 10 events and produce them in a Google Map. The last event 

is indicated and every one of the 10 events can present its details (Lat, Lon, 

e.t.c) when the corresponding icon is pressed. Two snapshots of the 

application is shown in Fig.3.32. 
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Figure 3.32: Dynamic mapping application (GoogleMaps) in general view (top) and in 

interactive (bottom) view. 

 

v. At last step, a SMS message is generated and send to predefined users. The 

text of the message gives very briefly the main details of the event such as : 

HSNC-LGS Earthquake alert (PRELIMINARY) <--> Date=2006/1/8, 

Time=22:01:43, Lat=34.23, Lon=22.12, Mag(L)=4.7.  

 

3.6  Experimental details on ambient noise measurements 

This section describes the experimental details of field measurements for 

ambient noise, the data acquisition scheme as well as basic guidelines that followed 

through measurements. Most of the guidelines are derived from the results of 

SESAME project (see http://sesame-fp5.obs.ujf-grenoble.fr/SES_TechnicalDoc.htm) 

and Mucciarelli (1998). 
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3.6.1 Data acquisition guidelines  

The experimental parameters play a significant role at HVSR technique 

because up to now there is not a general framework for the data collection and 

processing of ambient noise measurements. In this section the guidelines from some 

complete studies (Mucciarelli 1998, Parolai et.al. 2001, SESAME project 2004) will 

be presented.  

The experimental parameters that affect the HVSR data collection procedure 

are classified in three main categories: 

� Parameters related to data acquisition 

� Parameters related to field measurement 

� External parameters 

Studies that examined the above parameters concluded to the following 

guidelines that followed during our measurements: 

• Use of accelerometers is not preferable because they are very sensitive to 

frequencies below 1Hz 

• Sampling frequency of 50Hz is enough since the maximum frequency that is 

useful for the engineers is up to 25Hz. 

• Cable length between seismometer and data acquisition system must be less 

than 100m 

• Use of seismometers with eigenperiod higher than 20sec is not preferable 

because they demand high relaxation time without providing better recordings 

• Investigation of a site with expected frequency f0 must be done with 

seismometers with eigenfrequency lower than f0 

• In order to have a reliable estimation of  HVSR the following relation must 

hold when splitting the ambient noise recording into several time windows  

wt
f

10
0 >       (3.1) 

where tw is the length of each window in sec. It is recommended that the 

number of iterations 0fntn
wwc

⋅⋅=  should be more than 200 (i.e for an f0 at 0.5Hz 

nw=10 and tw=40 or nw=20 and tw=20 but not nw=40 and tw=10). This fact is clearly 

depicted in Table 3.4 
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f0 

(Hz) 

Minimum 

length of tw 

(sec) 

Minimum 

number of 

iterations nc 

Minimum 

number of 

windows nw 

Minimum 

useful 

signal (sec) 

Minimum 

recording 

time (min) 

0.5 20 200 10 400 20 

1 10 200 10 200 10 

2 5 200 10 100 50 

5 5 200 10 40 3 

10 5 200 10 20 2 

 

Table 3.4 – Proposed parameter values for HVSR survey (SESAME project, 2004) 

 

• A site’s resonance frequency is characterized as clear peak if the amplitude of 

HVSR (A0) at this point is more than 2 

3.6.2 Field measurement guidelines  

• Seismometers must be fully leveled and with direct coupling with the ground. 

• The placement of seismometer at concrete or asphalt has no effect since no 

artificial peaks produced from 0.2Hz to 20Hz (Fig.3.33) 

•  

 

Figure 3.33. Comparison of HVSR curves with ambient noise that recorded with asphalt 

(left) and without asphalt (right) at the same site (http://sesame-fp5.obs.ujf-grenoble.fr) 

 

• Measurements at soft grounds (mud, turf, wet ground) must be avoided. 

• At grounds covered by snow or ice the seismometer must be installed above a 

metallic plate in order to avoid possible inclination due to liquefaction 

• Measurements near buildings, trees or other similar structures must be avoided 

when wind with velocity larger than 5m/s is blow. Under these conditions the 
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movement of these structures could introduce low frequency domination into 

HVSR results (Fig. 3.34) 

 

Figure 3.34. Comparison of HVSR curves with ambient noise that recorded with wind (left) 

and without wind (right) at the same site (http://sesame-fp5.obs.ujf-grenoble.fr) 

 

• Measurements above garages, tunnels, large tubes and other similar basement 

structures must be avoided because we have undesirable vitiation of 

fundamental’s frequency amplification value (Fig. 3.34). 

 

Figure 3.35. Comparison of HVSR curves with ambient noise that recorded 30m away from a 

basement structure (left) and above it (right) at the same site (http://sesame-fp5.obs.ujf-

grenoble.fr) 
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3.6.3 External parameters 

• Seismometer must be protected from wind even for low velocities (>5m/s). 

• Measurements under strong raining must be avoided. Under light raining 

no problem is reported as long as the seismometer is covered.(Fig. 3.36) 

 

Figure 3.36. Comparison of HVSR curves with ambient noise that recorded under strong rain 

(left) and without rain (right) at the same site (http://sesame-fp5.obs.ujf-grenoble.fr) 

• Measurements near single-colored noise sources (industrial units, 

generators, pumps, motors) must be avoided. 

• All the temporary small period perturbations (human walk, cars and 

motorcycles) could influence the HVSR results. In case that these 

perturbations could not rejected the duration of the measurement must be 

increased (Fig.3.37)  

 

Figure 3.37. Comparison of HVSR curves with ambient noise that recorded with people 

walking at different distances near seismometer (left) and without people (right) at the same 

site (http://sesame-fp5.obs.ujf-grenoble.fr) 
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3.6.4 Data processing 

In the current section the necessary steps for the estimation of HVSR will be 

presented. These steps will be performed by public available 

(http://www.geo.uib.no/seismo/REPORTS/SESAME/J-SESAME/) J-SESAME 

software (Atakan et al., 2004a,b, Koller et. al 2004) which is also described.  

 A key part to HVSR estimation is the selection of the most stationary (aka 

“quiet”) windows Ni in order to ensure that the estimation includes only far away 

sources. Short period transients, high amplitude non-stationary noise and any other 

perturbations as described before must be excluded form the ambient noise signal.  

There are two approaches to achieve this: manually and automatic by using an 

antitrigger algorithm.  

Besides the manual selection directly from the screen, which is often the most 

reliable, but also the most time consuming, an automatic window selection module 

has been used in view of processing large amounts of data. The objective is to keep 

the most stationery parts of ambient noise and to avoid the transients often associated 

with specific sources (walks, close traffic). This objective is exactly the opposite of 

the usual goal of seismologists who want to detect signals, and have developed 

specific "trigger" algorithm to track the unusual transients. As a consequence, we 

have used here an "antitrigger" algorithm which is exactly the opposite: it detects 

transients but it tries to avoid them. 

The procedure to detect transients is, very classically, based on a comparison 

between the short term average (STA), i.e., the average level of signal amplitude over 

a short period of time, (typically around 0.5 to 2.0 s), and the long term average 

"LTA", i.e., the average level of signal amplitude over a much longer period of time, 

denoted (typically several tens of seconds). When the ratio STA/LTA exceeds an a 

priori determined threshold (typical values are between 3 and 5), then an "event" is 

detected. 

In our case, we want to select windows without any energetic transients: it 

means that we want the ratio STA/LTA to remain below a small threshold value Smax 

(typically around 1.5 – 2) over a long enough duration. Simultaneously, we also want 

to avoid noise windows with anomalously low amplitudes: we therefore also 

introduce a minimum threshold Smin, which should not be reached throughout the 

selected noise window. 
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There are also two other criteria that may be optionally used for the window selection: 

� One may wish to avoid signal saturation – as saturation does affect the Fourier 

spectrum. J-SESAME looks for the maximum amplitude over the whole noise 

recording, and automatically excludes windows during which the peak amplitude 

exceeds 99.5 % of this maximum amplitude.  

� In some cases, there might exist long transients (for instance related to heavy 

traffic, trains and machines) during which the STA/LTA will actually remain 

within the set limits, but that may be not representative of real seismic noise. 

Another option has therefore introduced to avoid "noisy windows", during which 

the LTA value exceeds 80% of the peak LTA value over the whole recording. 

The software automatically looks for time windows satisfying the above criteria; 

when one window is selected, the program looks for the next time window, and 

allows two subsequent windows to overlap by a specified amount (default value is 

10%). A typical example using data collected in the frame of SE-RISK project, is 

shown in Fig. 3.38 

 

 

Figure 3.38. Selected “quiet” windows of ambient noise (at green) 

 

After the selection of appropriate windows the following estimation procedure is 

followed where the typical values are those that suggested as defaults: 

 



Brunel University  Chapter 3    

 

George Hloupis  Reg. No: 9725331 

104 

 

• DC offset removal  

• Cosine tapering of each window (usually 5%) 

• Spectrum calculation of each component NS, EW (horizontals) and V (vertical) 

for each window Ni. At Fig.3.39 we plot the results from the spectrum calculation 

for window N11 (which is highlighted with red color). 

 

 

Figure 3.39. HVSR results for window N12 (upper part - highlighted red). Spectrum of each 

component NS, EW, V (lower part-left) and their estimated ratios H/V, NS/V, EW/V (lower 

part-right) 

 

• Spectrum Smoothing. The raw values of Fourier spectra are smoothed (for each 

window Ni) before the computation of H/V ratio using the Konno-Ohmachi  

(1998) method. This specific method is preferred because the smoothing window 

function can be adapted to the frequency range that we are interested providing a 

smoothing window function constant in a variable logarithmic frequency range. 

When the smoothing window requires values of the raw spectrum outside the 

range 0 - FNyquist, then the smoothed spectrum will be restricted to the significant 

frequency interval. 
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• Calculation of geometric mean of horizontal components H(Ni)spectrum. For each 

window Ni the mean is calculated as : 

)()()(
iii

NNSNEWNH •=     (3.2) 

• Calculation of HVSR for each window Ni : 
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• Calculation of HVSR for all the selected windows : 
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Where 
w

n'  is the number of selected windows. 

• Estimation of site’s fundamental frequency f0. At Figure 3.41 the f0 depicted by 

grey vertical line among with its standard deviation (STD) 

 

Figure 3.41. HVSR (black line), HVSR*STD (red line), HVSR/STD(blue line). f0 (grey line) 

and f0±mean STD (grey zone). Pink zone defines the frequency range where possible results 

are unreliable due to window length. 

 

• Visual estimation of HVSR amplitude (A0) that corresponds to site’s fundamental 

frequency. 
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3.7    Summary  

This chapter deals with the experimental details of seismological signal 

processing as well as some practical aspects and rules followed during this research. 

The author of this thesis was responsible for the design, testing, installation, 

deployment, maintenance and expansion of SNC at LGS. Design requirements, 

deployment processes and methods, implementation details, testing procedures and 

evaluation actions are presented. Today, SNC operates in real time and is able to 

provide automatic and manual estimations of earthquake events at South Aegean area. 

Its installation, improved the detection capability of the whole area since the 

interstation distance was decreased and the lower magnitude of completeness from 3.7 

before installation, today is 3.2.  
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4. Wavelet-based Applications on Ambient Noise  

4.1 Introduction 

Disasters that can be caused by strong earthquakes have direct relation with 

local geological conditions due to ground motion. For better understanding of ground 

conditions direct results of ground motion during an earthquake are the best data. 

However this kind of approach has the disadvantage that can be applied mainly in 

areas with high seismicity. For this reason methodologies that rely on analysis of 

ambient noise recordings are very useful in order to estimate the influence of surface 

geological conditions. 

Among these methodologies the Horizontal to Vertical Spectrum Ratio 

(hereafter HVSR) or Quasi Transfer Function, (QTF) that proposed by Nakamura 

(Nakamura, 1989) received great attention from the scientific community (although 

some different ideas support the theoretical background of the method on the wave 

type of ambient noise). This caused from the simple, rapid and economical data 

collection as well as from the direct results that can be produced according to the 

dynamic characteristics of the near surface geological structure. For this reason, 

HVSR method can be used for the characterization of a site before the installation of 

a seismological station. 

This chapter describes the main concepts of HVSR technique and how it can 

be improved by means wavelet transform techniques.More specific, after the 

presentation of key concepts for HVSR, effects of long duration, low amplitude 

disturbances will be discussed since this is usually undetectable from thresholding 

algorithms. The examination of known ambient noise signals contaminated with 

synthetic disturbances is used in order to investigate the effects of these disturbances. 

Since are usually undetectable a wavelet projection is proposed as a preliminary test 

for the identification of these disturbances. The chapter finishes with some real 

examples and the improvements that obtained for the used of WT. 
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4.2 Ambient noise basics 

4.2.1 Definition of Ambient noise 

By the term ambient noise we define the continuous vibration of earth which 

is not caused by events of small duration like earthquakes or explosions. The 

spectrum of ground motion that is recorded at one point is the superposition of the 

characteristics of a source (source effects) and local geological conditions (site 

effects). 

Dividing the sources that cause the ambient noise with respect to their 

spectrum we can summarize: 

1. Long period noise ( f < 0.3 until 0.5 Hz), generated by ocean waves at long 

distances. It is characterized from constant spectrum for several hours and related 

with climatic condition that existed above oceans. 

2. Intermediate period motion (between 0.3-0.5Hz and 1 Hz)  produced by sea waves 

near coast as well as from the wind 

3. Small period motion(f > 1 Hz), produced by human activities. 

Another separation, between long (Τ > 1s) και small (Τ < 1s) periods corresponds 

to the traditional separation between microseisms of natural generated sources and 

ambient noise of artificial – human activities. Although the limit of 1s between them 

can be shifted to higher periods (Seo, 1997) at urban areas which characterized by low 

frequencies and high impedance differences among subsurface layers. 

4.2.2 Relation of ambient noise with surface waves 

Ambient noise consists mainly from surface waves. Many researchers (among 

them  Nogoshi & Igarashi, 1971, Field & Jacob, 1993, Lachet & Bard, 1994, Ansary 

et al., 1995, Horike, 1996, Tokimatsu et al., 1996, Konno & Ohmachi, 1998) agree to 

the following conclusions (Bard, 1999):  

� The shape of the H/V spectral ratio related with ellipticity of Rayleigh waves 

because they dominate at vertical component 

� Ellipticity depends from the frequency and presents a sharp peak near the 

fundamental frequency for sites that characterized from great impedance 

difference between upper and deeper layers. 
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Some researchers endorse the opinion that these results hold good only in simple 

structures (Horike, 1996) but from the above studies arised the ellipticity of curves for 

Rayleigh waves at sites with different and complex velocity profiles. These results are 

enough in order to extend above assumptions to every single dimension velocity 

profile 

The transfer function S
T
 of surface waves defined as 

ST = S 
H S 

/ S 
H B

     (4.1) 

where SHS is the spectra of horizontal noise component at surface and SHB  is 

the spectra of horizontal noise component that incidence from bedrock layers to 

surface layers. The SHS mainly affected by surface waves. As long as the ambient 

noise propagates mainly as Rayleigh waves there is a possibility that SHS influenced 

by that. The influence of Rayleigh waves must be included at vertical component of 

noise EVS at surface but not included at vertical component EVB at bedrock. Assuming 

that the vertical component of ambient noise is not amplificated from upper 

sedimentary layers, the ES ratio  

ES = E V S / E V B      (4.2) 

depicts the influence of Rayleigh wave: If there is not such an influence then 

ES=1. The ES ratio has value greater than 1 if Rayleigh wave influence increase. 

The ST/ES ratio can be considered as a reliable estimation of a transfer 

function, called  STT defined as follows: 

ST T = S T / E S = R S / R B      (4.3) 

Where  R S = S H S / E V S  and R B = S H B / E V B.   

At bedrock layers the propagation of seismic movement is the same for all 

directions. That means RB=1 and from Eq.4.3 we have STT=RS. That means that the 

transfer function of surface layers can be estimated by using only ambient noise.  

The same methodology can be followed for the estimation of maximum 

amplification: the horizontal amplification from the surface layers can be estimation 

from the ration between horizontals and vertical amplification ratios.  

  Noise at deeper layers assumed that is the same for all directions because 

multiple wave motions repeat a local diffraction after noise that generated from an 

earthquake. For this reason it is possible the estimation of local effects by using the 

recorded ambient noise at surface. 
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4.2.3 Relation of ambient noise with body waves 

Separating the wavefield of ambient motion into surface waves (with index s) 

and body waves (index b) we could derive the following relations: 

S
NH

(f) = Sb
H
(f) + Ss

H
(f) = HT(f) . Rb

H
(f) + Ss

H
(f)  (4.4) 

S
NV

(f) = Sb
V
(f) + Ss

V
(f) = HV(f) . Rb

V
(f) + Ss

V
(f),  (4.5) 

where  Rb
H
 (and Rb

V
 respectively) is the horizontal (vertical respectively) spectrum of 

ambient noise body wave at reference station 

After calculations, the H/V ratio between S
NH

 and S
NV

 could be expressed as: 

A
NHV

 = [ HT . Ar
NHV

 + β . As ] / [ VT + β ]    (4.6) 

 where 

• Ar
NHV

 is the H/V spectrum ratio of ground motion in bedrock 

• β is the relational analogy of surface noise waves from vertical component namely 

β=Ss
V
(f) / Rb

V
(f) 

• As is the ratio between horizontal to vertical component of surface waves, namely 

As(f)=Ss
H
(f) / Ss

V
(f) 

Studies of many ambient noise recordings from different stations show that it 

consist from body waves as well as from surface waves. However, up to now there is 

no complete theory that explains the nature of ambient noise wavefield.  

4.3 The Nakamura method  

 Determination of dynamic characteristics of surface geological topologies can 

be achieved by using data from boreholes. Although it offers great accuracy, borehole 

method has a great disadvantage: in order to cover a wide area we need a number of 

boreholes, close to each other. This leads to increasing cost, a considerable amount of 

involved people and finally a quite big time period until the extraction of safe results. 

Aiming to the development of a rapid and effective method for the estimation of 

ground response during an earthquake, Nakamura proposed the HVSR (Horizontal to 

Vertical Spectral Ratio or QTS-Quasi Transfer Spectra) method based on ambient 

noise recordings at 0.5 – 20 Hz frequency range. This range includes all the noises 

that generated from natural and human activities under the assumption that the impact 

of each independent source is limited. 
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At Fig.4.1 we depict the differences at recordings between different 

earthquakes at different stations. As we can notice recordings at different stations 

even for the same earthquake produces different results. Besides that we can observe 

that recordings from different earthquakes are quit similar for each station because of 

the geological conditions of each area. In other words, concerning the dynamic 

characteristics, the influence of surface geology seems to be important than other 

involved factors. 

 

Figure 4.1 Accelerograms from different earthquakes at different stations (Nakamura, 1989). 

 

  

For the forthcoming analysis (Nakamura, 2000) we consider a typical 

geolocigal structure of a sedimentary basin as depicted in Fig.4.5 
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Figure 4.5 Typical geolocical structure of a sedimentary basin (Nakamura, 2000) 

We assume that ambient noise consist of Rayleigh and other waves. The 

horizontal and vertical spectra (Hf ,Vf) of surface ground can be expressed as follows 

: 

sbhf HHAH +∗=   (4.7) 

sbvf VVAV +∗=    (4.8) 

b

f

h
H

H
T =     (5 .9) 

b

f

v
V

V
T =     (4.10) 

where 

• Ah and Av are the amplification factors of horizontal and vertically incident 

body waves 

• Hb and Vb are the spectra of horizontal and vertical motion in the basement 

under the basin  

• Hs and Vs are the spectra of horizontal and vertical propagation direction of 

Rayleigh waves. 

• Th and Tv are the amplification factors of horizontal and vertical motion of 

surface geological structures 

In a frequency range where the horizontal component amplificate importantly the 

vertical component cannot (Av=1). If there is no effect of Rayleigh waves, then Vf 

≈Vb. Otherwise, if Vf > Vb, then we consider that this affected by surface waves. In 
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such case we calculate the effect of Rayleigh waves from the ratio Vf  /Vb (=Tv) and 

the horizontal amplification can be written as: 

b

b

b

b

f

f

v

h

h

V

H

QTS

V

H

V

H

T

T
T ===

∗     (4.11) 

where QTS is : 
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In Eq.4.12 we have (H b / V b) ≈1 

From the above equations we can derive the following: 

� Hs/Hb and Vs/Vb relates directly with Rayleigh waves energy. In case of no 

influence of Rayleigh waves then QTS=Ah/Av. 

� If we have any significant influence then QTS=Hs/Vs,  

� If the ground motion at basement Vb is relatively large comparing to Rayleigh 

waves then QTS=Ah. 

� QTS represents first order proper frequency due to multiple reflections of  SH 

waves and leads to the estimation of amplification factor, independent from 

the amount of influence caused by Rayleigh waves. 

 

The HVSR technique also applied at earthquake records. At Fig.4.6 the H/V 

spectral ratio depicted for two different earthquakes that recorded at the same station. 

Even though the seismograms seem different the H/V spectral ratios are quite similar.  
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Figure 4.6 H/V spectral ratio of strong motion recordings from different earthquakes that 

recorded at the same station (Nakamura, 1989).  

4.4 Estimation of HVSR 

The horizontal to vertical spectral ratio (HVSR) is estimated from the three 

components of the ambient noise recordings (North-South, East-West and Vertical) 

through the following steps (Magri et al.1994, Mucciarelli 1998): 

1) Offset removal: the mean of the entire recording is deducted from each 

sample. 

2) Single window processing: The second step consists in selecting portions of 

the signal that do not contain transients. This is done manually (by visual 

examination of the recording) or with the aid of automatic window selection 

algorithms based on well-known STA/LTA approaches. 

3) Process of individual windows: 

i. Bandpass filtering (usually from 0.1 to 20 Hz) 

ii. Cosine tapering with a length of 5% is applied on both side of the 

window signal of the vertical, North-South and East-West component. 

iii. FFT is applied to each component in order to obtain the spectral 

amplitudes. 

iv. A smoothing function is applied (usually Konno & Ohmachi window 

function) to each spectral amplitude (Kohno et al. 1995). 

v. Merging of two horizontal spectral amplitudes with a quadratic or 

arithmetic mean  
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vi. Thus in each of the windows the distribution of log10(H/V) is obtained 

as a function of  frequency. 

4) H/V is averaged over all window results 

The majority of studies (Bard, 1999) show spectral ratios with one 

fundamental frequency at loose soils and nearly flat at rock soils (Fig.4.8). Of course 

the amplitude and the fundamental frequency differ from site to site. The natural 

content of fundamental frequency relates directly with the fundamental resonance 

frequency. However, there are a number of sites that they present a more complex 

structure with two or more amplification frequencies. This fact may be initially 

explained by the ellipticity of Rayleigh waves for sites with high impedance 

differences between two subsequent layers. Finally there are many cases where the 

spectral ratios may not present detectable peaks or they have unexplained many 

bumps.  

                      

Figure 4.8 – An example of H/V spectral ratios in loose soils (left) and in rock soils (right) 

(Bard, 1999). 

Nevertheless for the majority of cases (over 90%) the higher peak corresponds 

to the fundamental frequency such as fp
NHV 

= f0
NHV

 και Ap
NHV

 = A0
NHV

. The 

assumption that the funadamental peak frequencies are the site’s fundamental 

resonance frequency based on the hypothesis that local effects are stronger than any 

other influence. This hypothesis verified by many experimental studies at long period 

sites (Τ > 1s): Mexico (Lermo et al., 1994), Los Angeles (Yamanaka et al., 1993), San 

Francisco Bay area (Hough et al., 1991). This caused from the existence of very loose 

gsoils (Mexico, SF Bay) which imply big impedance differences in relation with 
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depth or where there is not a loose soil site (Los Angeles Basin) implied from the 

natural source of microseisms at long periods (the spectrum in near white noise levels)

Concerning short periods the results from the studies are not so homogeneous. 

Hough et al. (1992)  estimate  a  resonant  frequency around 2.5Hz  at  Tiber  Valley 

(Italy), Gitterman et  al.  (1996) reported a resonant  frequency around 3Hz at  Hula 

Valley (North Israel).  Yamanaka et al. (1993) reported big variations from man made 

noise around 3Hz at Los Angeles area since  Milana et al. (1996) gather the same 

conclusion from their studies at Central Italy.

Probably these contradictable  observations  relate  with impedance  contrast  as a 

function of depth: 

• Strong impedance difference: the body and surface waves trapped and there is a 

detectable  peak  at  spectrum  which  corresponds  to  the  fundamental  resonance 

frequency whatever the source of the waves is.

• Weak impedance difference: the waves are not trapped enough leading to ambient 

noise spectra representative of source characteristics.

4.5 Effects of non-stationary noise in HVSR 

The  calculation  of  spectral  ratios  in  HVSR  involves  FFT  methods  as 

mentioned earlier. This lead to the necessary assumption that the used ambient noise 

must  consists  from the  most  stationary parts  of  measured  time-series.  This  is  the 

expected object from step 2 of HVSR estimation at section 4.4. In this section we will 

discuss the effects of non-stationary noise in HVSR calculation.

An unanswered question by the seismological community is whether only the 

stationary part of the recorded signal should be used, or the nonstationary (e.g., man 

made noise, industrial disturbances, random strong clipped signals) signals could also 

be included in the analysis. Most authors exclude nonstationary noise (e.g., Horike et  

al.,  2001)  while  others  (Mucciarelli  et  al.,  2003)  showed  that  the  H/V  ratio  of 

nonstationary noise might not worse the results. In addition, they reported cases where 

the results are similar in amplitude, to the H/V spectral ratio of earthquakes. Since 

HVSR is, in general, a rapid approach the use of only the stationary part of the signal 

would make the method less attractive. This is a usual case in urban areas where (for 

the selection of “quiet” noise) long measurement periods are required
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Transient  noise  is  expected  to  be  generated  mainly  by  close  sources  and 

generally affects the noise spectra at frequencies higher than 1–2 Hz (McNamara  et  

al.,  2004, Parolai  & Galliana-Merino,  2006).  The ratio  between body and surface 

waves could compose a different wavefield due to the different energy that required to 

penetrate  different  sediments.  This event could caused from the effect  of different 

resonant frequencies (above or below 1Hz). 

Parolai  &  Galliana-Merino  (2006)  studied  the  influence  of  short  period 

transients  with  amplitude  one  to  two times  greater  that  mean  amplitude  of  noise 

(Fig.4.9). They conclude that transients are dominated by energy at frequencies higher 

than 1–2 Hz and including these transients in the HVSR calculation does not worsen 

the results.

Figure 4.8 – Typical ambient noise recordings used at Parolai & Galliana-Merino (2006).

The  question  that  remains  unanswerable  is  what  influence  has  the  non-

stationarities (including long period transients) especially when they have amplitude 

comparable  to  that  of  ambient  noise.  If  these  non-stationarites  exists  only  in  few 

specific  times  then  the  averaging  of  results  (step  4  in  HVSR  calculation)  will 

eliminate  their  influence.  The  problem  that  we  faced  is  when  this  type  of  non-

stationarities is present to the majority of a recorded microtremor signal. This is a 

usual  case  in  urban  areas  field  measurements  where  artificial  noise  sources  are 

unpredictable and unavoidable. 

George Hloupis Reg. No: 9725331
117



Brunel University  Chapter 4  

 

George Hloupis  Reg. No: 9725331 

118 

 

 

4.6 Evaluation of HVSR calculations  

 There is a number of methods that used by researchers in order to evaluate the 

reliability of HVSR results but three of them are usually referenced as they can be 

applied in the majority of studies: geotechnical borehole data, HVSR from S-waves of 

earthquake data and Spectral Analysis of Surface Waves. 

 Geotechnical data derived by boreholes that take place in the area of interest. 

From borehole data we have a clear picture of subsurface soils which lead to an 

accurate estimation of velocity profile at the subsurface layers. A typical subsurface 

profile side-by-side with corresponding S-wave velocity profiles from 3 sites are 

depicted in Fig.4.12 

 

  

Figure 4.9 – Soil- and S-wave velocity-profiles from three sites (1) Fill, (2) Silt, (3) Sand, (4) 

Clay, (5) Coarse sand, (6) Loam, (7) Soft rock, (8) Mudstone, (9) S-wave velocity (combined 

results from Athanasopoulos, 2000, Mastrolorentzo, 2004 and Papadopoulos et. al, 2006) 

 

The S-wave velocity profile is used to estimate site’s transfer function which 

leads to the determination of site’s fundamental frequency and amplification ratio. It 

is obvious that borehole data provide to the researcher the most accurate tool to 

characterize the subsurface but this method has two main disadvantages: it’s a 

destructive technique and it is costly and time consuming. 
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Of course there are non-destructive techniques that are able to estimate the S-

wave velocity profile. Among them, great attention is gathered by Spectral Analysis 

of Surface Wave (SASW) using array measurements. According to this technique a 

circular or near circular array of measurement stations is using to record ambient 

noise signals. The objective is to estimate the phase velocities among measurement 

point . For the estimation of phase velocities from array records of ambient noise, two 

methods have mainly been applied. One method is the frequency-wavenumber (f-k) 

spectral method (e.g., Horike, 1985; Matsushima and Okada, 1990; Kawase et al., 

1998), and the other is the spatial autocorrelation method (e.g., Aki, 1957; Okada et 

al., 1987; Malagnini et al., 1993). For the spatial autocorrelation method, four to six 

stations per array are sufficient (Okada et al., 1987), and it is necessary to deploy 

stations in a circular configuration with one common station at the center (Aki, 1957; 

Okada et al., 1987). On the other hand, more than seven stations per array are 

necessary for the stable results in f-k spectral method (Okada et al., 1990), but there 

are fewer restrictions on array configurations compared with spatial autocorrelation 

method. From phase velocities it is possible to calculate an S-wave velocity profile 

which will lead us to estimation of fundamental frequency. In every case the main 

objective os to estimate the P and S velocity profiles because from them it is easy to 

estimate a theoretical model as depicted in Fig.4.10 

 

Figure 4.10 – P (a) and S (b) velocity profiles and the calculated theoretical H/V response (d) 
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The main objective of estimating the fundamental frequency of a site is to 

predict its response at forthcoming earthquake. It is more than obvious that HVSR 

from S-waves of earthquakes recorded at the area of interest should be a reference 

value. The phenomenon of seismic wave amplification due to sedimentary deposits 

and topographical conditions constitutes a major factor in damage and loss during 

strong earthquakes. The site response is best determined from recorded ground motion 

during an actual strong event by means of comparison with recordings at a nearby 

reference site located on rock (Daragh, 1991, Bocherdt, 1992, Rogers et.al, 1994, 

Gutiere et. al, 1994). In most cases, mainly in regions where the seismic activity is 

relatively low this type of analysis is usually impractical. Many investigators 

evaluated site response functions from moderate to weak motions of earthquakes 

(King & Tucker, 1984, McGarr et. al, 1991, Liu et, al 1994, Zavlnsky et. al 2000 and 

references herein). The implementation of this approach, however, still requires the 

rather frequent occurrence of earthquakes. Some observations after strong earthquakes 

have shown that the effects of local topography on ground motion might be of great 

importance (Hartzell et. al., 1994, Spudich, 1996, Bouchon & Barer, 1996).  

 HVSR can be applied to different regions in a recorded seismogram as marked 

in Fig.4.11. There are several studies that proposing usually P-waves, S-waves and 

Coda-waves. Sato & Kawase (2001) produce a comparative study and conclude that 

best results for earthquake HVSR are obtained by using S-waves and Coda-waves. In 

our study we are going to use S-waves from strong motion recordings since Coda-

waves give us similar or in some case worst results 
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Figure 4.11 - Time windows that can be used in strong motion HVSR (1) P wave, (2) 2.5 sec 

after P wave, (3) 5 sec after P wave, (4) just before S wave, (5) S wave, (6) 5 sec after S 

wave, (7) 10 sec after S wave, (8) 15 sec after S-wave, and (9) to (23) late S coda. We will 

call (2) and (3) early P coda and (6) to (8), early S coda. The late S coda starts after twice the 

S-wave travel time and ends when the signal-to-noise spectral ratio is less than 2 between 1 

and 3 Hz. (Sato & Kawase ,2001) 

 

 For illustrative purpose two typical HVSR calculations using the above 

approaches are presented in Fig.4.12 

  

Figure 4.12 – HVSR curves from S-waves of earthquake (solid line), from borehole data 

(dashed line) and from SASW array method (dotted line) (Sato & Kawase, 2001). 
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4.7 Evaluation of STA/LTA algorithm using synthetic disturbances 

The purpose of this section is to investigate the limits of the widely used Short 

Term Average – Long Term Average (STA/LTA, Stewart 1977) algorithm. STA/LTA 

used in ambient noise studies in order to automatically detect the non-stationary parts 

of the signal and thus to exclude them. This is done by using the algorithm in an 

antitrigger way: when it finds windows that fulfill the STA/LTA criteria, these are 

excluded from the processing stream of data (SESAME, 2004). By selecting 

appropriate parameters one can avoid the non-stationary parts of the signal that can 

possibly alter the frequency content.  

The STA/LTA is, in principle, an amplitude comparison algorithm. In other words 

it produces results only when differences in amplitudes can identified; it usually has 

no ability over small differences. To illustrate this fact we run some test cases using 

artificial (hereafter SX) signals (Fig.4.13 – details at Table 4.1) added to real 

mictrotremors recordings (hereafter RX). 

  

Figure 4.13: Test signals used as artificial disturbances to ambient noise recordings. Details 

of their attributes can be found in Table 1. 

All recordings acquired using Reftek DAS-130 as data logger equipped with 

Guralp GMT-40T seismometer and with LGIT CityShark equipped with Lenartz 3D 



Brunel University  Chapter 4  

 

George Hloupis  Reg. No: 9725331 

123 

 

 

5sec sensor. Sampling rate was 125Hz and recording duration was 20min. In order to 

avoid as much as possible the urban area disturbances that will be examined later, RX 

collection sites were located in countryside locations, far away from any human-

involved activities. In addition, these recordings are analyzed thoroughly using he 

method that will be described later in order to verify the absence of important long 

duration transients. 

Signal name Duration (secs) Frequency (Hz) 

S1 7 1 

S2 7 4 

S3 4 4 

S4 7 7 

S5 4 7 

S6 4 15 

S7 7 (1
st
) , 4 (2

nd
) 1 (1

st
) , 7 (2

nd
) 

S8 7 (1
st
) , 4 (2

nd
) 4 (1

st
), 7 (2

nd
) 

S9 7 (1
st
 and 2

nd
) 4 (1

st
), 15 (2

nd
) 

 

Table 4.1: Specifications of used test signals 

 

 

Figure 4.14  Study areas: Chania (top left) and Rethymno (top right) at Crete Island (bottom). 

Triangles indicate RX sites, circles X sites and squares KRX sites.  
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We used as detection threshold the value n
γ = Χ

 which is defined as the average 

of absolute values of ambient noise time series Xn (for n samples). Typical examples 

of thresholds calculated using γ value are depicted in Fig.4.15, for different 

recordings.  

 

Figure 4.15: Thresholds calculated from γ value (a): Vertical component, (b): N-S 

component, (c): E-W component.  

Data are collected at locations as shown in Fig.4.14. As one can easily identify the 

proposed value of γ is rather conservative because we want to illustrate the transients 

with low amplitude (comparable to γ which is by definition a low value attribute). The 

window selection procedure is tested using the corresponding modules from well 

known, public available, software packages GEOPSY (www.geopsy.org) and J-

SESAME (http://www.geo.uib.no/seismo/software/jsesame/jsesame.html). Typical 

window selections from several recordings with and without added artificial 

disturbances are shown in Fig.4.16 
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Figure 4.16: Window selections (grey zones) using STA/LTA algorithm for raw ambient 

noise recordings without artificial disturbances (top plot) and with disturbances (bottom plot) 

starting at points indicated by arrows. All signal (S1-S9) added consequently two times as 

indicated by arrow groups (first set – solid arrows, second set dashed arrows). Each individual 

arrow indicates the starting sample of artificial signal.  

 

Initially we used the window selection procedure to raw recordings in order to 

determine the windows that will be accepted for the HVSR calculation. Next we 

contaminate the recordings by adding SX (X:1� 9) signal to every recording and 

reprocess them with the window module. Each artificial disturbance is added 



Brunel University  Chapter 4  

 

George Hloupis  Reg. No: 9725331 

126 

 

 

independently to each recording and repeated 20 times (starting from 50
th

 sec and 

repeated every 50 secs). The value of γ remains stable for each recording. We tested γ 

values from 0.5 to 2.5 with 0.1 resolution. The performance (Pr) of “antitriggering” is 

calculated using the relation: 

rP dd

ad

n

n
=

      (4.16) 

Where ndd : number of detected (and excluded) disturbances 

 nad : total number of disturbances, here 20 

At Fig.4.17 we summarize the performance of “antitriggering” for STA/LTA by 

plotting the results of Pr in relation of γ.  

 

Figure 4.17: Average results of STA/LTA performance according to γ value for all 

the artificial signals.  

 

We can conclude that if the amplitude of the transients is at least 1.5 times the 

value of γ it’s rather impossible for the STAL/LTA algorithm to detect these 

transients. Between 1.5 and 1.85 there are some cases where the detection is achieved 

but these detections achieved to transients with higher frequencies (signals S4, S5, 
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S6). In addition, the artificial signals that are monochromatic can be detected easier. 

Of course, this event cannot act as a rule because it can easily be inverted if one 

selects appropriate STA/LTA window lengths. For γ>1.85 the STA/LTA performs as 

expected.   

 

4.8  Impact of low amplitude transients to HVSR 

The purpose of this section is to investigate if and how, undetectable transients 

from STA/LTA algorithm can affect the results of HVSR method. In order to 

facilitate this we use ambient noise recordings (hereafter KRX) from 17 sites with 

known attributes. These are derived from results of previous studies (boreholes, array 

techniques) or we calculated 1D models using EERA code (Bardet et.al  2000) based 

on Vs profiles derived from previous studies also (EMERIC 2005, SE-RISK 2008).  

We used the recordings with γ<1.85 as described in the previous section and we 

prepared our dataset by adding the artificial disturbances in a progressive way: we 

begun by adding each one of nine SX signals in 50
th

 sec of each KRX thus creating 

17x9=153 cases. We performed the HVSR calculation and then we add one more 

instance of each SX at 100
th

 sec (thus creating 153 more cases with recordings that 

included two parts of the same SX – at 50
th

 and 100
th

 sec) and repeat the calculation. 

This procedure repeated 25 times. HVSR calculation performed as ordinary with 

recordings that bandpass filtered (0.2Hz to 20Hz), detrended and baseline corrected, 

5% cosine tapered, smoothed using Kohno & Ohmachi window with b=25.  

A typical example of how a single undetectable transient can affect the calculated 

spectrum is illustrated in Fig.4.18. Since the FT provides excellent localization in 

frequency domain it is expected that the (undetectable by STA/LTA) added 

disturbance will produce a peak in frequency domain. Of course, it is not expected 

that a single peak could significant affect site’s f0 since HVSR is an averaging result 

method. The question that arises is if there is a limit, over which, HVSR could be 

affected. 

At Fig.4.19 results from a site with good agreement between HVSR results and 

results obtained when parts of artificial disturbance (here S1) is added, are presented. 

It is obvious that as the number of undetectable disturbances increases the estimated f0 

is not depicted by a clear peak.  
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Figure 4.18: Typical example of spectrum contamination when one part of artificial signal is 

added. (a,b) S8 signal (γ=1) added from 300 until 307sec at raw recording. (c,d) S8 signal 

(γ=1.2) added from 200 until 207sec at raw recording. (e,f) S6 signal (γ=1) added from 300 

until 304sec at raw recording. (g) Spectrum of (b) recording without artificial signal (black 

line) and with it (grey line). (h) Spectrum of (d) recording without artificial signal (black line) 

and with it (grey line). (i) Spectrum of (f) recording without artificial signal (black line) and 

with it (grey line).  

 

At Fig.4.20 the HVSR results using recordings (from different known sites) where 

20 parts of artificial disturbances, added. We can identify three general cases: First, 

when f0 and artificial disturbances appeared individual then it’s difficult to identify 

which is real and which not. These are the case with 1Hz and 4Hz signals and some of 

7Hz (only when f0 is quite high). Second when f0 and artificial disturbances are quite 

close, the f0 seems shifted or more dispersed. This is the case with 1Hz signals. 

Finally, with high frequency artificial disturbances (15Hz and some 7Hz) an 

individual peak appeared at those values.  
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Figure 4.19: HVSR results from a single site with increasing parts of S1 signal added to raw 

recordings. (a) raw recording, (b) 1 part, (c) 7 parts, (d) 14 parts, (e) 20 parts, (f) 25 parts.  

 

 

Figure 4.20: HVSR results from different sites using recordings with artificial (non-detected) 

disturbances added. Vertical line in each plot indicates the calculated f0 from same raw 

recordings. Signals used to contaminate the corresponding recordings are: S1 at (a), S7 at (b), 

S1 at (c), S1 at (d), S5 at (e), S6 at (f).  
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An experienced analyst, as far there is some knowledge of the local geology, 

could reject these values but here we seek a more “computational” way to reject it. 

From the above it is obvious that there are enough cases where the undetectable 

transients could produce problems to estimation of f0. At this point we must mention 

that the values of artificial disturbances are carefully selected to represent non-

stationary disturbances that recorded during the big number of measurements that 

took place the last four years around big cities at Crete Island. These values are 

representable only for the urban areas that we investigate and no further extension 

should be made for other areas without prior acquisition of possible local singularities. 

 

4.9  Application of MODWT for identification of low 

amplitude transients 

In this section the application of MODWT in raw recordings will be discussed 

along with its application to experimental ones. From what we present so far it is 

obvious that, in case that we want to detect low amplitude non-stationary components 

to ambient noise recording, we need a more efficient detector than traditional 

STA/LTA. Our proposal is to transfer the amplitude detection from 1D time domain 

to 2D time-frequency domain using wavelets. Briefly speaking, by using time-

frequency representation we are able to detect the frequency of non-stationary part as 

well as its time attribute (i.e. position) inside recordings. For this transformation we 

used MODWT and not DWT because we don’t want to make any prior assumptions 

about the nature of recordings as explained in previous section.  

The MODWT performed using Least Asymmetric (LA) filters with length 8 using 

the WMTSA software (public available at www.atmos.washington.edu/~wmtsa). The 

number of levels used for decomposition was J0 = 8 which corresponds to physical 

period up to 4.098sec. Using the MODWT transform we calculate wavelet and scaling 

coefficients for consecutive windows with length each recording. We propose the use 

of MODWT not to whole recording but to subsections of it. The smaller window that 

a decomposition can be achieved dictated by the number of samples as already 

mentioned by Equations 2.42 and 2.43. Fig.4.21 illustrates such a decomposition from 

a recording where we select n=20000 (160sec). It contains one S2 disturbance at 8
th

 

sec, one S6 at 50
th

 sec and one S8 at 120
th

 sec. Lower panel illustrates the recording. 
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The top panel shows the wavelet coefficients 
~

,j tW  for levels j=1-8 and the 
~

8V  scaling 

coefficients plotted on the same vertical scale as the lower panel. For each level solid 

vertical lines near end points demarcate the boundaries outside of which the 

coefficients are influenced by boundary conditions. The coefficients are plotted after 

circular shifting of wavelet coefficients 
~

,j tW  in order to be properly aligned with 

original recording. The shifted vector is marked at the right of each subplot in the 

form of 
~

jv
jT W

−

 where vj indicates the number of samples the coefficients have been 

shifted.  

 

Figure 4.21: MODWT wavelet (levels 1–8) and scaling (J0=8) coefficients (top panel) and 

ambient noise recording (bottom panel). Solid vertical lines (top panel) indicate the 

boundaries outside of which coefficients are influenced by circular shifting. . 

 

Without any prior experience the reader can easily identify the nature and position 

of S2, S6 and S8 signals at different scales which, as already mentioned, corresponds 
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to different frequency bands. At this stage the analyst can select manually the portions 

of the recording that like to exclude or by using an automated procedure.  

At final stage we apply the MODWT to recordings from sites with calculated f0 is 

not agree with those than calculated from other methods or there were secondary 

HVSR picks that could confuse the analyst. At Fig.4.22 – 4.28 representative results 

(from several locations shown at Fig.4.14) with known differences between f0 from 

HVSR and 1D linear equivalent model using EERA code, are presented. 

 

 

Figure 4.22: Results from site KRX01 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 5Hz. Green dashed lines indicate the 

f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   
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Figure 4.23: Results from site KRX02 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 3.8Hz. Green dashed lines indicate 

the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   

 

Figure 4.24: Results from site KRX03 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 3.9Hz. Green dashed lines indicate 

the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   
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Figure 4.25: Results from site KRX04 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 1.5Hz. Green dashed lines indicate 

the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   

 

Figure 4.26: Results from site KRX06 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 0.8 and 0.55Hz. Green dashed lines 

indicate the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   
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Figure 4.27: Results from site KRX08 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 5.8Hz. Green dashed lines indicate 

the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   

 

Figure 4.28: Results from site KRX09 without WT non-stationarity detection (top) and with 

WT detection (bottom). Disturbances detected at around 8.5Hz and 11Hz. Green dashed lines 

indicate the f0  portion from 1D model as calculated from inverted Vs profile (EERA model).   
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The MODWT transformed recordings are shown in Figures 4.29 and 4.30. After 

detection and rejection of possible disturbed non-stationarities the HVSR results that 

we produced are illustrated in Fig.4.25.  

 

 

Figure 4.29: MODWT for recording from site KRX04. Significant non-stationary 

signal detected between 10
th

 and 95
th

 sec at around 1Hz.  
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Figure 4.30: MODWT for recordings from site KRX09. Significant non-stationary 

signal detected at 80
th

, 85
th

, 87
th

, 110
th

, 120
th

, 128
th

, 138
th

, 145
th

 and 150
th

 secs.  

 

 

4.10 Summary 

Non-stationary, artificial disturbances are a usual situation in urban places where 

industrial and anthropogenic activities run continuously. At these locations, ambient 

noise recordings collected even at late hours could suffer from transients with 

amplitudes comparable of ambient noise. Based on analysis described on the previous 

sections we may conclude that these transients remain undetectable from STA/LTA 

algorithm. In case of these transients have long duration there is a strong possibility to 

contaminate the calculation of f0. An experienced analyst could probably identify the 

non-stationarities by examining the FT in each windows but our intension is to focus 

on an automated signal selection procedure. The use of a WT in order to localise a 

signal in time-frequency domain and especially the use of a redundant one, such as the 
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MODWT, can solve the problem of accurate automatic determination of the above 

transients. If the amount of the transients is significant then they can be excluded 

since the MODWT is able to provide their time position in the recording. The whole 

procedure can run as a preliminary test to ambient noise recordings in order to provide 

a clear view of the existence of transients in ambient noise recordings. 
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5. Denoising seismic data 

5.1 Introduction 

During the development of a seismological network the choice of optimum 

field stations is problematic. It is not unusual that a preselected station’s location 

introduce some undesirable disturbances to recording seismograms after installation. 

The main disturbance that affects the quality of a seismogram is the ambient noise. In 

this chapter, wavelet methods for noise elimination will be presented and compared. 

In addition two main applications that are high related to the quality of a seismogram 

(P-wave detection and detection of microseismic signals) will examined before and 

after the application of appropriate wavelet denoising schemes. 

In order to derive onset times, amplitudes or other useful characteristic from a 

seismogram, the usual denoising procedure involves the use of a linear pass-band 

filter. This family of filters is zero-phase and is useful according to phase properties 

but their efficiency is reduced when transients are existing near seismic signals 

(Scherbaum, 1996). An alternative solution is the Wiener filter which proposed by 

Douglas (1997). This filter is a linear filter that focuses on the elimination of the mean 

square error between recorded and expected signal. Its main disadvantage is the 

assumption that signal and noise are stationary. This assumption does not hold for the 

seismic signals leading to denoising solutions that does not assume stationarity. 

Solutions based on WT proved effective for denoising problems across several areas. 

 Here we present recent WT denoising methods (WDM) that will applied later 

to seismic sequences of Seismological Network of Crete. The contents of this chapter 

begin with discussion of thresholding rules followed by discussion of classical 

wavelet estimators and Bayesian approach to wavelet thresholding. The contribution 

of this chapter is the comparison of WDM in seismological signals and the selection 

of the most appropriate methods for these type of signals. 

5.2 Non-parametric regression using wavelets 

Every type of measurement is associated with noise. Denoising is the 

procedure that targets to the attenuation of the fluctuations in data values in order to 

derive at least the most reperesentative characteristics of measured signal. Assuming 

that we have an unknown signal represented from f(ti) which is measured as: 
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1,2,..ni     )( =+=
iii

tfy ε       (5.1) 

where εi is the random noise with level σ associated with the measurement. 

The goal of any denoising method is to minimize the difference between yi and the 

true signal f(t). If f(t) in known, by running a parametric regression (i.e using least 

squares) the estimation of regression parameters could be achieved. When the 

underlying function f(t) is unknown (which is the case in seismic signals) this process 

is called non-parametric regression. A usual non-parametric regression solution is to 

express the unknown function f(t) as a Fourier series and then estimate the Fourier 

coefficients from the measured data. The success of this approach is highly dependant 

on the solution of the basis function for the series. An appropriate basis could be a 

function that carries the ability to approximate a large set of possible response 

functions using only few terms from Fourier expansion. From this point it is clear 

now that wavelets could be one group of the quested basis functions since they have 

the ability to express a wide variety of functions by using a limited set of basis. 

5.3 Wavelet direct thresholding rules 

As we cannot make prior assumptions about the behaviour of the seismic data 

it is quite clear that denoising seismic measurements is a non-parametric regression 

problem. An effective approach to this type of problems is the method called wavelet 

thresholding.   

Applying WT to the model at Equation 5.1 we have 

Wy  = Wf  + Wε       (5.2) 

Since WT is orthogonal noise is transformed to noise. If wj,k are the wavelet 

coefficients of Wf we may write 

yj,k = wj,k + σj,k         (5.3) 

The Equation 5.3 states that the wavelet coefficients of a noisy signal may be 

expressed as noiseless coefficients plus noise. 

The computation scheme of a wavelet thresholding approach consists of three 

basic stages which also depicted on Fig.5.1: 

1. Application of WT to the noisy data in order to derive wavelet 

approximation and details (coefficients) 

2. By using thresholds, coefficients are reduced, nullified those that are 

below a certain level. At this stage the noise coefficients are eliminated 
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3. Unknown function f(t) is estimated after inverse WT of the remaining 

coefficients from previous stage. 

( ) ( ) fdcdcy
InverseWT

kjkj

NGTHRESHOLDI

kjkj

WT
 →⋅ →→ )(,, ,,,, 00

λ  

Figure 5.1. Function estimation using thresholding. 

 As already mentioned, detail coefficients from WT represent the relative 

changes of measured signal through scales. Since noise is mainly fluctuations in the 

signal, these will depicted at details coefficients at small scales (high frequencies). To 

reduce noise, one can simply decrease or eliminate detail coefficients whose 

magnitude is below a predefined threshold value. This process usually found in the 

literature under the name wavelet shrinkage. This idea initially introduced by Donoho 

(1994,1995). He proposed two thresholded approaches: hard and soft thresholding. 

The criterion for this scheme is to replace the detail coefficients with zero whenever 

its magnitude is smaller than a preset threshold λ. Soft thresholding (ST) is defined as: 



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
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Hard thresholding (HT) is defined as: 









>

≤

=

λ

λ

kj,kj,

kj,

,

d if  d

d if         0
H

kjd       (5.5) 

 The ST is a continuous function and acts under the frame of “preserve” or 

“kill” rule since the HT is a discontinuous function that acts under “shrink” (by the 

amount λ) or “kill” rule as shown in Fig.5.2 

  

Figure 5.2. Soft and Hard thresholding functions 



Brunel University  Chapter 5    

 

George Hloupis  Reg. No: 9725331 

142 

 

 HT is preferred for applications where the signal contains peaks and 

discontinuities since ST is preferred for signals where smoothness of the estimated is 

the leading object. On the other hand, HT (due to its discontinuity) could be very 

sensitive to small changes of the data (Bruce & Gao, 1996). Also simple values of HT 

produce large variance at the estimated function. In order to remedy the above 

drawbacks some solutions such as firm thresholding (Bruce & Gao 1997) and 

nonnegative garrotte thresholding (Gao, 1998) proposed. Although the overcome the 

drawbacks of HT and ST the produce secondary complex requirements that act 

inhibitory to the estimated function. A quite fair solution is the smoothly clipped 

absolute deviation (SCAD) threshold proposed by Antoniadis & Fan (2001) which 

defined as: 

j,k ,

, j,k

j,k j,k

max 0 ) if 2

(α-1)d ( )
                 if 2  d

α-2

d                                           if d

j,k j,k j,k
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   (5.6) 

 where α suggested to have value near 3.7. In our study (after experimenting) 

we got the best results in average with α=3.8. SCAD rule acts under the frame of 

“preserve”, “shrink” or “kill”. It’s a piecewise linear function and does not create 

excessive bias when the wavelet coefficients are large. This is a useful feature for the 

first seconds of the seismic recordings where the amplitude monotonically increases. 

5.4 Wavelet direct thresholding estimators 

 Threshold λ can be chosen using a variety of methods according to given 

situations. One can separate them into two main categories: global threshold and level 

dependent threshold. Global threshold means that a single value of λ is applied to 

wavelet detail coefficients dj,k (j=j0,….j-1 for k=1,2,…,2
j-1

). Level dependent 

threshold means that a possibly different value of λ could be applied at each scale j. A 

typical representation of both categories depicted in Fig.5.3, where at the top plot a 

global threshold is selected (3.04) for all the scales instead of the bottom plot where 

the threshold is different in each scale 



Brunel University  Chapter 5    

 

George Hloupis  Reg. No: 9725331 

143 

 

 

 

Figure 5.3. Global (top plot) and level dependent (bottom plot) thresholding for a wavelet 

decomposed signal 

 Both methods require the estimation of noise level σ. A classical solution to 

the estimation of σ is the standard deviation of  yi values thus the estimation will take 

place in time domain. This is acceptable only when the underlying function f(ti) is 

without discontinuities. An alternative successful approach is to estimate σ in wavelet 

domain (Donoho & Johnstone, 1994). Here, σ is estimated using wavelet coefficients 

of last level (finest) because this is the level that contains more noise than signal. Its 

value is given by: 
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6745.0

)( ,1 kj
dMAD

−

=σ       (5.7) 

where MAD is the Medium Ablosute Deviation of the magnitudes of all the 

coefficients at finest level and factor 0.6745 rescales σ in order to be a suitable 

estimator.  

5.4.1 Universal threshold 

 Donoho & Johnstone (1994) proposed a minimax estimator for f in Equation 

5.1 based on ST and HT as well as on a parameter λn obtained through the 

minimization of a theoretical upper limit. It is defined as: 

nU log2σλ =        (5.8) 

where σ can be obtained as described earlier and n is the number of samples. 

This threshold is called universal and its main advantages is that ensures that every 

sample in WT in which the underlying function is zero will be estimated as zero 

(Antoniadis et.al, 2001). Also, is not dependent on wavelet scale. Its main drawback is 

that it leads to estimates that underestimate underlying function, since it has the 

tendency to eliminate to many coefficients especially at finest scales (Morretin, 1997) 

 

5.4.2 Adaptive (Sureshrink) threshold 

 This scheme proposed also by Donoho & Johnstone (1995) and uses the 

wavelet coefficients at each level j in order to choose a value for threshold λS.  Stein’s 

(1981) unbiased risk criterion (SURE) is employed in order to get an unbiased 

estimate of the l
2
 risk.  

If in level j we have nj coefficients then Sureshrink threshold is defined as: 

),(minarg
)log(20

tySURE intS
j≤≤

=λ    (5.9) 

Where 

{ }
2

2
1 1

,
( , ) 2 ,

j jn n

j

j j j j

k k j

y k
SURE y t n I y k t tσ

σ
= =

  
= − ≤ + ∧ 

  
∑ ∑  (5.10) 

The only drawback of Sureshrink is that when the wavelet coefficients are 

characterized from noticeable sparseness the noise contributed by many coefficients 

where the signal is zero swamps the information contributed the few coefficients 

where the signal is non-zero (Donoho, 1995). To overcome this special case a hybrid 

Sureshrink (HS) is proposed (Donoho & Johnstone, 1995) which is defined as: 
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                                       otherwise
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d jλ σ

λ
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=

 ≤ + 
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∑
  (5.11) 

The main idea behind HS is that if the set of wavelet coefficients found to be sparse 

then the HS replaced by Universal threshold; otherwise SURE criterion is used to 

select the λ value. 

5.4.3 Cross-Validation threshold 

 Cross-Validation (CV) is a method for estimation the prediction error for a 

fitted model to the data. The prediction error measures the fit success when it predicts 

a future sample. In terms of regression the predicted error is defined as: 

2)( yyEP
err

′′−′=      (5.12) 

Where y’ is the future sample and y’’  is the prediction using a particular model. An 

obvious solution is to use the mean square error (MSE) of the residuals as an estimate 

of Perr. In practice it’s proved that this is a very optimistic expectation because using 

the same data to fit and evaluate regression model we lead to an underestimation of 

Perr.  CV uses part of data samples to estimate the regression model while the 

remaining data samples used to evaluate that the estimated model is adequate. A 

classical algorithm for CV introduced by Efron & Tibshirani (1993): 

Assume that we have n data samples (y1, y2 ….yn). For each yi : 

• Fit the model and then revoke this sample 

• Compute the predicted value of i-th sample, 
∧

i
y  

• Compute ∑
=

∧

−

−=

n

i

ii yynCV
1

21
)(  as an estimation of Perr.  

 Based on this idea Nason (1994) proposed that in order to directly apply the 

DWT, the original data must initially split into two subsets of equal size: one 

containing the even-indexed samples, and the other, the odd-indexed. The odd-

indexed samples used to predict the even-indexed and vice versa. To be more specific, 

the goal is to estimate λ by minimizing the mean integrated squared error (MISE) 

between λ and underlying function f, defined as: 

∫ 





−Ε=

∧

dxxfxfM

2

)()()(
λ

λ    (5.13) 
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where 
∧

λ
f  is the wavelet threshold estimator of f in the model defined in Equation 

5.12, if we use the threshold λ. Estimator M(λ) is used because f is unknown. The 

implementation algorithm is: 

� Samples yi with odd indexes are removed form data set. The remaining m-1 

even indexed samples are reindexed from j=1 to 2
m-1

 

� From reindexed yi  an estimator 
E

t
f
∧

 calculated 

� From the removed odd indexed data, an interpolated version of them is 

calculated as: 






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+

=
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2
for           
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i
  (5.14) 

� Replace previous step for 
O

t
f
∧

 and E

i
y  respectively 

� An estimate of M(λ) is then calculated as: 
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M(λ) is estimated by using n/2 samples and therefore a correction for the sample 

size is needed. Nason (1995) used a heuristic method to estimate leave-out-half 

cross-validation threshold as: 

n

CV

log

2log
1

min

−

=

λ
λ       (5.16) 

where )(minarg
0

min λλ
λ

Μ=
≥

. 

 

5.4.4 Multiple Hypothesis Testing approach 

 The idea that wavelet thresholding can be viewed as a multiple hypothesis 

testing problem was proposed by Abramovich & Benjamini (1995, 1996). For each 

wavelet coefficient djk test is performed in the following hypothesis:  

H0: djk = 0  against  H1: djk ≠ 0. 

If H0 is rejected, djk is retained otherwise is discarded.  
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 Let D be the number of djk coefficients that are retained in the model. Of those 

D, R are correctly kept and G=D-R erroneously kept. In this case the error is s=G/D. 

The false discovery rate (FDR) of djk reflects the expected amount of erroneously 

retained coefficients among the ones finally kept; this is defined as the expectation (E) 

of s.  In order to achieve the best possible maximization of djk coefficients that will 

retained to the model according rule Es < α , Abramovich & Benjamini (1995, 1996) 

proposed the following algorithm: 

• Take j0=0. For each djk {j=0,1,…J-1; k=0,1,…2
J-1

} calculate the 2—sided 

value pjk (for H0: djk =0) 




























Θ−=

σ

d
12

jk

jkp  

where Θ is the cumulative distribution function of a standard normal random 

variable. 

• Order pjk values according to their size (each pjk corresponds to a djk) 

• Find 
















<= a

m

i
pim i:max . (0.01 < α < 0.05)  For this m calculate  

  







−Θ⋅=

−

2
1

1 m

FDR

p
σλ      (5.17)   

• Use threshold value λFDR and apply soft or hard thresholding το djk 

 

5.4.5 Recursive Hypothesis Testing approach 

 The λFDR discussed at 5.4.4 is a global threshold derived from a hypothesis 

testing that seeks to include as many djk is possible. Since this approach is not 

successful with signals that the underlying function has few features covered by noise, 

Odgen & Parzen (1996) propose an alternative hypothesis testing approach: The djk 

will include only when there is strong evidence that they are needed for reconstruction 

and the calculated threshold will be level-dependent. 

 Let X1,X2,…,Xs (i=1,2,…s) be independent random variables that represent the 

djk at level j=j0,…,J-1 with c=2
J
 . Let also Ξs represents a non-empty subset of indices 

{1,2,..,s}. Under these assumptions multiple hypothesis testing problem could be 

expressed as: 

si
iH Ξ∈=  ,0:0 µ  against 

si
iH Ξ∈∀≠    ,0:1 µ  ,

si
i Ξ∉∀=    ,0µ  (5.18) 
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where µ = {µ1,µ2,…µs} is the mean vector. 

If the number of the elements of Ξs in known, say equal to l, then the standard 

likelihood ratio test would be the sum of squares of l largest Xi elements. In practice, l 

is usually unknown so a recursive testing approach for Ξs using only one element is 

the proposal of Odgen & Parzen (1996). Using this approach the suitable test statistics 

is the largest of the squared Xi elements. The critical point α for this distribution is 

then estimated as: 

2
/1

1

2

1)1(
















 +−
Θ=

−

s
a

sx
α

     (5.19) 

The proposed algorithm consists of the following steps: 

i. Check a

si
xX >

2  

ii. If step i) is false then there is no strong indication that significant signal exists 

among wavelet coefficients. The threshold λRj (at current level j) receives the 

value of absolute largest remaining Xi 

iii. If step i) is true this is an indication that significant signal exists among wavelet 

coefficients. Remove largest Xi , set s=s-1 and return to step i) 

 The above algorithm could be interpreted as a ST rule using level-dependent 

thresholds and is called thrsda. The critical point is the value of α. A small value 

would lead to small number of wavelet coefficients included in reconstruction 

producing a smoother estimate. On the other hand, large value produces less smother 

estimate since the number of included wavelet coefficients is higher. In this study 

α=0.06. 

 

5.4.6 Shift Invariant threshold 

 Wavelet thresholding using DWT sometimes dominated by artifacts of various 

kinds. These artifacts are more obvious near discontinuities where they exhibit as 

pseudo-Gibbs phenomena, over and under shooting at certain levels. In order to 

improve suppression of these artifacts Coifman & Donoho (1995) proposed the 

translation invariant wavelet thresholding scheme. The basic idea is to correct 

possible misalignments between important features of underlying function and 

features of wavelet basis. This idea implemented by applying a range of shifts and 

then averaging. 
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 The lack of shift invariance is not necessarily a problem for many applications 

but denoising is not one of them. The problem arises from the fact that the DWT of a 

signal Xi and the DWT of a shifted version of Xi+n are different. They are different not 

under the scope of coefficients similarity but under the scope of coherency. The 

coherence of the signal is a measure of how compact the signal is represented. 

Compact representation is the one that needs few coefficients to represent the signal. 

Difference in coherency means that DWT of Xi needs different number of coefficients 

than DWT of Xi+i in order to represent it compactly. A typical example presented in 

Figure 5.4a and b 

 

Figure 5.4a. Two similar signals where the bottom is the right shifted version of top 

 

 

Figure 5.4b. DWT of original signal (four left plots) and DWT of shifted version (four right 

plots) (Adams et.al., 2001) 
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 White noise is, in general, incoherent. That means that there exists no 

representation in which white noise can compactly specified. Under this point of view 

a successful denoising approach is the one that retains the coherent part and reject tha 

coherent part of a sampled signal. For periodic signals Fourier transforms provide 

quite clear coherent representations. For non-periodic and more even for non-

stationary signals FT fails. This is where DWT comes to fill this gap but without 

being the ultimate tool. As presented in Figures 5.4a & b the coherence of DWT of a 

signal is highly dependent on the time shift of this signal. In other words there is a 

strong possibility that a time shifted version of a signal may be more coherent (in 

relation with its DWT representation) than the original signal. It is natural to assume 

that denoising performance could be improved if one found the optimal shift that 

presents the most coherent representation, denoising the shifted signal and then 

unshift it. Since there are many algorithms that could find this optimal shift there is no 

general shift that could be applied everywhere.  

 Coifman & Donoho (1995) proposal is based on denoising all possible shifts 

and then averaging. Let Sh represent the shift operator. For a signal f(k) {k=1,2,…n} 

Shf(k)=f(k+h mod n). The denoised signal 
∧

f  using translation invariant wavelet 

threshold λΤΙ is defined as: 

fSWWS
n

f hf

n

h

fh )()(
1 1

0

11

ΤΙ

−

=

−−

∧

∑ ⋅= λ     (5.20) 

where 
f

W  and 
1−

f
W  are the unshift DWT and inverse DWT of f respectively. 

5.5 Wavelet Group Thresholding estimators 

5.5.1 Introduction 

 The discussed thresholding estimators designed to apply at wavelet 

coefficients through term-by-term basis; each djk is compared with a threshold λ 

estimated by one of the previous methods. If λ>
jk

d  then this coefficient is retained 

otherwise is rejected. Term-by-term thresholding compromise between variance and 

bias contribution to mean square error. However, it is not the optimal solution because 

usually it removes too many coefficients resulting to a biased estimator. 

 An obvious solution is to utilizing information about neighboring wavelet 

coefficients. Instead of thresholding individual djk the rules and estimators that 
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discussed in previous sections could be applied in groups (blocks) of coefficients. 

This approach provides more “information” about the decision of retain or discard the 

examined wavelet coefficient. This is done because the amount of information that is 

available from the signal for estimating the average wavelet coefficient (within a 

group) is at least two times larger than the term-by-term case. This increase the 

success rate of threshold decisions since they will be more accurate and thus improve 

the convergence rates.  

 

5.5.2 A non-overlapping block thresholding estimator 

 Cai (1999) using the approach of ideal adaptation using oracle proposed the 

non-overlapping block thresholding estimator. At each level j = j0,..J-1, the djk are 

grouped together into non-overlapping groups of length L. If the last block is not 

filled then the first few necessary coefficients are used to fill (which is call Augmented 

case). In contrary, if the last coefficients are quite few then they are not used in the 

process (which is called Truncated case). 

 Let jb denote the set of indices of the coefficients in the bth block at level j 

{ }( ) ( , ) : ( 1) 1jb j k b L k bL= − + ≤ ≤  

and let 
2

jb
S denote the L

2
 energy of the noisy signal in block (jb). Estimation of djk , 

within each block, is done by using the James-Stein rule: 

jk

jb

jbjb

jk d
S

LS
d










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 −

=
2

22

)( ,0max
~ σλ

    (5.21) 

 In order to be operational Equation 5.21 must have predefined values for L 

and λ. In this study we follow Cai’s (1999) approach who suggests using L =log(n) 

and λ=4.50524 .  

 As was the case in term-by-term methods, estimation of the underlying 

function is obtained by using IDWT at scaling cjk {k=0,1,…2
jo

-1} and thresholded 

)(~ jb

jk
d  wavelet coefficients {j=j0,…J-1; k=0,1,…2

j
-1}. The resulting estimator denoted 

as BlockJS. 

 

5.5.3 An overlapping block thresholding estimator 

 Modification of non-overlapping block thresholding estimator proposed by 

Cai & Silvermann (2001). Their idea was that the treatment of the wavelet 
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coefficients that take place in the middle of each block is highly dependant from the 

data of the whole block.  

 The procedure begins by grouping the wavelet coefficients djk into non-

overlapping blocks (jb) of length L0 at each level j=j0,….J-1. Each block is extended 

by an amount L1=max(1,[L0/2]) in both directions in order to construct blocks (jB) 

with length L=L0+2L1. Let 2

jB
S denote the L

2
 energy of the noisy signal in block (jB). 

Within each block (jb) the appropriate wavelet coefficients are estimated as: 

jk

jB

jBjb

jk d
S

LS
d


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








 −

=
2

22

)( ,0max
σλ�

   (5.22) 

 The typical values of L and λ are: 

• 
2

log0

n
L =  and λ=4.50524 .This scheme called NeighBlock estimator and used 

neighbouring coefficients outside the block of interest in fixing the threshold 

• L0=L1=1 and nlog
3

2
=λ . This scheme is called NeighCoeff estimator and 

chooses a threshold for each coefficient by reference to the coefficients itself 

as well as to its neighbours. 

Estimation of underlying function done using IDWT as described in 5.5.2. 

 

5.6 Wavelet Bayesian Thresholding 

 In recent years, Bayesian non-linear wavelet thresholding has attracted the 

attention of a number of researchers. A comprehensive review and comparative study 

of Bayesian wavelet denoising approaches are presented by Antoniadis et al. (2001). 

Several recent studies (Abramovich et.al, 2002, Abramovich & Sapatinas, 1998, 

Chipman et. al, 1997, Clyde & George 2000, Vannucci & Corradi, 1999, Vidakovic 

1998) have demonstrated that Bayesian wavelet thresholding methods are 

advantageous over the classical wavelet thresholding approaches in the some 

situations. In this section a Bayesian approach will be discussed. 

 Bayesian approaches to choosing the shrinkage method are less ad-hoc than 

earlier methods, and have been shown to be effective. It is known that, in general, 

Bayes rules are “shrinkers” and that their shape in many cases has a desirable property 
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for wavelet shrinkage: it can heavily shrink small arguments and only slightly large 

arguments. If we use Bayes models for the wavelet coefficients the resulting optimal 

actions can be very close to thresholding. 

 Suppose that the measured data is contaminated by an additive white Gaussian 

noise, ε(ti) as follows: 

Nittgtf
iii

,,,.,2.1     ),()()( =+= ε     (5.23) 

where f(ti) and g(ti) represent the noisy and denoised experimental data, respectively. 

The noise term ε(ti)~N(0,σ
2
)  is a vector of independent, identically distributed (IID) 

errors with the mean of zero and the variance of σ
2
 in which the symbol ~ denotes a 

distribution. The denoising problem is equivalent to a univariate non-parametric 

regression problem. The goal of the Bayesian denoising approach is to recover the 

underlying noise-free time series g(ti) from the experimental measurements f(ti). 

 In the wavelet decomposition of time series decomposition of the time series, 

the noise item ε(ti) in Equation 5.23 is also resolved into a series of corresponding 

noise εjk: Thus, the decomposed coefficients djk  can be expressed by 

12,....1,0;1,.....      , 0 −=−=+=

∧

j

jkjjkjk kJjjdd εσ  (5.24) 

where ε(ti)~N(0,1) are independent random variables and  djk are noise free 

coefficients. The distribution of the decomposed coefficients on djk and 2

j
σ  is 

expressed as: 

),(~,
22

jjkjjkjk dNdd σσ

∧

     (5.25) 

Equation 5.25 is the conditional distribution form of Equation 5.24. Following 

Vidacovic (1998), a non-informative prior distribution of djk can be assumed as 

follows: 

),,0(~ 2

jjkjkjk
Nd τγγ       (5.26) 

where 
jk

γ  is a binary random variable with independent Bernoulli distribution 

{ ( ) ( )
j

PP πγγ
ξκξκ

==−== 011 }. It determines whether the coefficients are zero 

( jkγ =0) or non zero ( jkγ =1). The variance 
2

j
τ  represents the magnitude of djk at jth 

decomposition level. In practical applications the same values of 2

j
τ  and πj are 

assigned for all coefficients in the jth level. The values of  πj = 0.5 and τj = 1 are 

chosen for the non-informative prior in currect study. The standard deviation σj is 
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estimated from the wavelet coefficients of the jth level of wavelet decomposition 

through dividing the median of the wavelet coefficients by a factor. The value of 

0.6745 suggested by Percival and Walden (2000) for the factor will be used. 

 Based on the Bayes’ rule, the posterior distribution is obtained form Equations 

5.25 and 5.26 as follows: 

2 2 2

2

2 2 2 2
ˆ ˆ| , , ~ ,

j j j

jk jk jk j jk jk jk

j j j j

d d N d
τ σ τ

γ σ γ γ

σ τ σ τ

 
  + + 

  (5.27) 

and the marginal posterior distribution of djk conditionally on 2

j
σ  is given by a 

mixture model described as follows (Vidacovic, 2000): 
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∧∧∧

)0(),1(1),1(~,
222

δσγξσγσ jjkjkjkjjkjkjjkjk dpddpdd     (5.28) 

where ξ(djk) is the posterior distribution of Equation 5.27 which describes the non-

zero djk with the probability of  

2 1
( 1| , )

1
jkjk j
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p dγ σ

η

∧

= =

+

     (5.29) 

Where ηjk is the posterior odds ration of γjk = 0 versus γjk = 1, given by 

2 2 1/ 2 2 2

2 2 2 2
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j j j j j

d
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 + 
  (5.30) 

 The decomposed coefficients are thresholded based on the following 

hypothesis test: 

0:    versus0: 10 ≠= jkjk dHdH     (5.31) 

The following thresholding rule is used to test the hypothesis and threshold the 

wavelet coefficients (Antoniadis et.al, 2001): 

)1(
~

<=

∧

jkjkjk
Idd η       (5.32) 

where I(.) is an indication function. It is equal to unity when ηjk < 1. Thus, is H0 

rejected and the coefficient djk is estimated by jkd
∧

. Otherwise is equal to zero and 

jkd
∧

 is thresholded. Since ηjk in Equation 5.30 represents the Bayes factor, 
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Equation 5.32 is also called Bayes factor thresholding rule (BFTR) (Vidacovic, 

1998). The thresholded coefficients 
jk

d
~

 are then used to reconstruct the denoised 

function as usual. Figure 5.5 depicts the Bayesian WT denoising approach which is 

done in five steps: 

1) Measured data are decomposed by WT 

2) non-informative prior distributions are imposed on the decomposed 

coefficients 

3) posterior distributions of the coefficients are derived based on the Bayes’ 

theorem 

4) the noise is removed from the coefficients through a Bayesian hypothesis 

testing 

5) the denoised data is reconstructed through an inverse WT 

 

Figure 5.5. Outline of Bayesian WT denoising approach.   

 

Except BFTR, the following Bayesian implementations used in this study: 

• BAMS (Bayesian Adaptive Multiresolution Smoother) proposed by Vidacovic 

& Ruggeri (2000).They obtained obtained wavelet shrinkage estimates by 

putting a distribution on σ
2
 and considering a prior distribution for the wavelet 

coefficients djk that is similar in spirit to the prior mixture model. 

• Decompsh (Deterministic – Stohastic Decompositions) proposed by Huang & 

Cressie (2000). Since all the Bayesian approaches described previously to 

obtain wavelet shrinkage and wavelet thresholding estimates, assumed a prior 
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for each wavelet coefficient djk with zero mean, they relaxed this assumption 

by assuming that the underlying signal is composed of a piecewise smooth 

deterministic part plus a zero mean stochastic part. 

5.7 Performance measures 

 In order to measure the performance of the various methods that presented 

before, the following measures has been used (where f(ti) and g(ti) represent the noisy 

and denoised experimental data, respectively): 

• Signal to Noise Ratio  (SNR).  
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• Mean Square Error (MSE) 

∑
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 The above measures used widely in denoising studies and the information that 

produce can be characterized as “quantitative” since they provide the numerical 

proofs for the performance of a denoising method. The “qualitative” approach 

requires measures that can examine the success of a method regarding its ability to 

preserve the shape of the seismic signal. More specific, it is of high interest to 

preserve the shape of the P seismic phase arrival (P onset) since it’s the key for the 

extraction of useful conclusions for the location of an earthquake, i.e. the hypocentral 

coordinates and the origin time of the seismic event along with seismological network 

operation, early warning systems and structure of the earth. For this reason, one more 

performance measure will be used: the P-wave delay ∆tp which is defined as the delay 

between denoised and original detected initial P wave pulse. The denoised 

seismogram will be always the one with the better SNR.  

It is well known that conventional filters introduce some delay to the signal 

resulting to false time arrivals (Scherbaum, 1996). In general, wavelet denoising 

methods improves this drawback and as it can be seen from Table 5.9 there are small 

differences between them. An illustration of this situation is shown at Figure 5.13, 

where two denoised signals are overlapped to the original in order to get an 

illustrative view of the tp differences. 
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Figure 5.6. Time differences for P-wave arrival  among the real signal (solid black line), 

denoised signal after filtering with a Chebyshev type I filter (red dashed line) and denoised 

signal after filtering with a wavelet (TI-H) method (blue dotted line). 

 

 This time difference could create an important error in earthquake’s location 

estimation. Even it is not used in every day seismological practice it is useful to 

present the following simplified example that educational demonstrate the influence 

of P-wave arrivals in the accuracy of earthquake location. The event’s distance from 

each station is empirically calculated by multiplying by 10 the difference between S-

wave and P-wave arrivals and then correspond this time difference to distance by 

using travel-time graphs, such as the one in Fig. 5.8. It is more than obvious that time 

differences that produced by filtering can alter the estimation of the epicentre by more 

or less kilometres. A typical example of this situation is the location difference that 

produced by using the seismograms (from 3 stations) at Fig. 5.6. This situation is 

depicted in Figure 5.9 where the estimated location from the recordings of three 

stations which are filtered by using a Chebyshev type I filter varies significantly from 

the correct location (as this announced by other seismological networks, EMSC and 

THE). 
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Figure 5.7. Location using the circle method. Stations S1, S2, S3 record an earthquake (left). 

The estimated epicentre located at inside black common area of three circles (right) 

 

 

Figure 5.8. Travel time graph 
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Figure 5.9. Epicentral location difference (triangle: correct location, square: wrong location). 

 

Also important is the amplitude difference that could possibly produced by 

filtering because the maximum amplitude in a seismogram used in earthquake’s 

magnitude estimation and especially in local Richter magnitude (Lay & Wallace, 

1995) as shown in Fig.5.10 

 

Figure 5.10. Magnitude determination using max amplitude of S-waves 

5.8 Synthetic example 

 In this section all the discussed methods will apply to a set of known 

seismological signals corrupted by artificial noise. This comparison will reveal the 

performance of each method and at the same time will lead to the optimization for 

some critical parameters of each method when needed. 

 



Brunel University  Chapter 5    

 

George Hloupis  Reg. No: 9725331 

160 

 

5.8.1 Description of the synthetic signals 

 The initially signal (Figure 5.11) is a seismogram that follows the typical 

behaviour of recorded seismograms at Seismological Network of Crete (SNC 

hereafter). 

 

Figure 5.11. Synthetic seismic signal, P-onset time (at sample 315) pointed out by dashed 

line 

 In order to explore the validity of the proposed techniques the seismic 

recording at Figure 5.11 contaminated randomly with different types of noise: a) 

Gaussian white noise, b) colored noise c) ambient noise recorded from seismic 

stations of SNC). The contamination applied using different SNR levels (from -10db 

to +60db). The SNR of the original signal is defined between pre-event portion (0-300 

samples) and post-event portion (300-600 samples). Each signal is name-coded using 

the format XXn where XX declares the nature of the added noise (GN: white Gaussian, 

CL: colored noise, AQ: noise without spikes, AS: real noise with spikes) and n 

defines the serial number. Figures 5.12a, 5.12b and 5.12c present three typical noise-

contaminated signals and Table 5.1 summarizes the catalog of signals that will be 

used. 
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Figure 5.12. Seismic signal contaminated with different types of noise. Subplot a is a CL 

type noise, subplot b is a GN type noise and subplot c is a AQ type noise (see text for 

details). 

 

  Type of noise SNR (db) Acronym 

1 Ambient noise with spikes -10 AS1 

2 Colored -9 CL1 

3 ambient noise without spikes -8 AQ1 

4 white Gaussian -7 GN1 

5 ambient noise with spikes -6 AS2 

6 Colored -5 CL2 

7 ambient noise without spikes -4 AQ2 

8 white Gaussian -3 GN2 

9 ambient noise with spikes -2 AS3 

10 Colored -1 CL3 

11 ambient noise without spikes 0 AQ3 

12 white Gaussian 1 GN3 

13 ambient noise with spikes 2 AS4 

14 Colored 3 CL4 

15 ambient noise without spikes 4 AQ4 

16 white Gaussian 5 GN4 

17 ambient noise with spikes 6 AS5 

18 Colored 7 CL5 

19 ambient noise without spikes 8 AQ5 

20 white Gaussian 9 GN5 

21 ambient noise with spikes 10 AS6 

22 Colored 12 CL6 
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23 ambient noise without spikes 12 AQ6 

24 white Gaussian 12 GN6 

25 ambient noise with spikes 18 AS7 

26 Colored 18 CL7 

27 ambient noise without spikes 18 AQ7 

28 white Gaussian 18 GN7 

29 ambient noise with spikes 26 AS8 

30 colored 26 CL8 

31 ambient noise without spikes 26 AQ8 

32 white Gaussian 26 GN8 

33 ambient noise with spikes 32 AS9 

34 colored 32 CL9 

35 ambient noise without spikes 32 AQ9 

Table 5.1.  Catalog of seismic signals used in simulation study 

 

5.8.2 The influence of the thresholding rule 

 At section 5.3 three thresholding rules are discussed: soft, hard and SCAD. In 

this subsection the performance of wavelet denoising in regards of threshold value 

will be evaluated. More specific soft and hard thresholding values will be examined in 

accordance of MSE in order to evaluate the denoising performance at different 

thresholds. 

 Soft and hard thresholding rules with values from 0 to 8 will be examined. 

SCAD is not included because in practice is used more as a thresholding estimator 

rather that a thresholding rule. Denoising is performed using the following basis: 

Haar, D(4), C(6) and LA(8). The noisy signals are: AQ1, GN3, AQ5 and CL6. 

Representative results of threshold value vs. MSE are shown at Fig.5.13. 
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Figure 5.13 Performance evaluation of denoising (‘.’ for ST, ‘x’ for HT) using D(4) basis for 

GN3 (top left), CL6 (bottom left), AQ1(top right) and AQ5 (bottom right) 

 

 In each case the MSE between original and denoised signal is calculated and 

the results are summarized in Table 5.2 

 Signal AQ1 Signal AQ5 Signal GN3 Signal CL3 

Basis Hard  Soft  Hard  Soft  Hard  Soft  Hard  Soft  

Haar 3.8 1.4 2.8 1.2 3.4 1.4 2.8 1.2 

D(4) 3.4 1.6 3.2 1.4 3.4 1.2 3.4 1.4 

D(6) 3.4 1.6 3.2 1.4 2.8 1.2 3.2 1.4 

C(6) 3.2 1.4 3.4 1.4 2.6 1.2 3.2 1.4 

LA(8) 3.4 1.6 3.4 1.4 2.8 1.2 3.1 1.4 

 

Table 5.2.  Best numerically found thresholds in terms of MSE of denoised signals 

 

 The expected theoretical thresholds can be estimated by using the Eq.5.8. The 

theoretical calculated value is 3.7 which is close to the experimental hard thresholding 

values but not to the soft thresholding ones. This is a well known unsolved problem in 

wavelet literature (Lorenz, 1998, Graham, 1999, Adams et al, 2001) originating from 
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the fact that Eq.5.8 does not distinguish between soft and hard thresholds. Up to now 

there are no equations that can be used to calculate different soft and hard thresholds 

theoretically and for this reason a preliminary survey such the one here is useful for 

estimating the limits of the forthcoming soft and hard thresholds according to the 

nature of noisy signals. 

 

5.8.3 The influence of the DWT basis 

 Another choice that affects globally the denoising performance, except 

threshold, is the choise of the DWT basis that used for signal’s decomposition. In this 

section the effect of DWT basis will be evaluated. 

 The settings that will be used for this simulation are: 

� The original and noisy signals are the same as in section 5.8.2 

� In each denoising procedure, the best threshold (as obtained in 5.8.1) will be 

used. 

� Performance will be measured in terms of MSE 

The results presented in Table 5.3 

 

 Signal RQ1 Signal RQ5 Signal GN3 Signal CL3 

Basis Hard  Soft  Hard  Soft  Hard  Soft  Hard  Soft  

Haar 0.163 0.2263 0.4014 0.3732 0.0587 0.2264 0.2761 0.3215 

D(4) 0.0472 0.1482 0.1771 0.2438 0.1557 0.2785 0.1878 0.2250 

D(6) 0.0518 0.1527 0.1328 0.2001 0.1897 0.2471 0.1875 0.2081 

C(6) 0.05541 0.1475 0.1559 0.2118 0.1987 0.3021 0.1987 0.2878 

LA(8) 0.05146 0.1430 0.09931 0.1228 0.1554 0.2417 0.1331 0.1839 

 

Table 5.3.  MSE of denoised signals, by soft & hard thresholding, with different DWT basis 

used. 

 

 The answer to the obvious question “why one basis could not used for all ?” is 

that the noise component manifests itself as small amplitude coefficients in DWT and 

amplitude is the discriminative factor. Therefore, it’s clear that the more concentrated 

the signal energy is in small set of DWT coefficients, the easier is to distinguish signal 

and noise components. In cases where the DWT coefficients of the signal are small 

and widely spreaded out, these coefficients get mixed with those of the noise and the 
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wavelet denoising schemes yield poor performance. Therefore the best basis as 

interpreted from Table 5.3 gives their corresponding classes of signals the most 

energy concentrated DWTs.  

 

5.8.4 Application of Wavelet Denoising to Synthetic Signal Examples 

 Signals presented in Table 5.1 will denoised using the methods that described 

earlier. For the ease of reference these methods will presented at Table 5.3 along with 

the thresholding rule that used with.  Results from the comparison between different 

wavelet methods and conventional bandpass filters are presented in Appendix F. 

From the results below it is obvious that there is no wavelet denoising 

approach that “does it all”. Although some of them have a high performance in the 

majority of cases cannot be used a-priori. In contrast, we can justify as unsuccessful 

the Cross-Validation method (soft and hard versions) as well as the Minimax as they 

does not present better performance against conventional bandpass filtering especially 

in terms of P-wave SNR and MSE. 

Index Acronym Estimator Type Thresholding rule 

1 SCAD SCAD Not specific 

2 VISU-S VisuShrink Soft 

3 VISU-H VisuShrink Hard 

4 SURE Sure (Classical) Not specific 

5 HYBSURE Sure (Hybrid) Not specific 

6 CV-H Cross Validation Hard 

7 CV-S Cross Validation Soft 

8 MINS Minimax Soft 

9 MINH Minimax Hard 

10 TI-H Translation Invariant Hard 

11 TI-S Translation Invariant Soft 

12 NEIGHBL NeighBlock Not specific 

13 BLOCKJS_A Block Thresholding Augment 

14 BLOCKJS_T Block Thresholding Truncate 

15 THRSDA Hypothesis testing Soft 

16 FDR_H False Discovery Rate Hard 

17 FDR_S False Discovery Rate Soft 

18 DECOMPSH Deterministic/Stohastic  Not specific 

19 BFTR Bayesian Hypothesis 

testing 

 

20 BAMS Bayesian Adaptive 

Multiresolution  

 

 

Table 5.4.  Acronyms for the set of denoised methods used. 
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5.9 Evaluation with real seismic data 

In order to evaluate the results obtained from previous section, the 

aforementioned filtering approaches were applied to a set of real seismic records 

acquired from the SNC. These records correspond to events with various magnitudes 

and were selected as representatives for the specific seismological network and 

classified in five categories as will be shown later. The performance will be measured 

by using the ∆tp initially and then by estimating the epicentral error that produced due 

to erroneous P onset times. The MSE is rejected because, in the case of recorded data, 

the real denoised data is unknown.  

A database of 1250 selected events (from 01/01/2004 until 30/06/2008) used 

for this study. Events are selected in order to fulfill two main criteria:  

a) The corresponding events must be detected and bulleted by another global 

Seismological Institute. 

b) The seismological stations’ recordings must present noticeable differences in 

their quality. 

The necessity of condition a) based on the event that we need valid time 

estimation for P wave arrivals in order to calculate the difference value in ∆tp 

calculation. This calculation performed by using the HYPO2000 

(http://earthquake.usgs.gov/research/software/index.php#Hypo) software (Klein, 

2002) and an inverse approach as will be presented later. The b) condition ensures 

that the analysis will cover the majority of typical recordings that SNC collects and 

analyzes. 

The recordings database consists of five groups of real seismic data, graded 

from A to E in relation with their quality which is expressed by SNR as shown in 

Table 5.5. 

Category SNR Comments 

A >30 Very good quality. Analyst can clearly identify the P wave arrivals 

B (10,30) Good quality. Analyst needs a filter in order to identify the P wave 

arrivals. 

C (3,10) Medium quality. Amplitude of the seismic event is comparable to 

noise amplitude. Analyst needs a filter to identify the P wave arrivals 

D (0,3) Poor quality. There is no indication of seismic event. Analyst can 

hardly detect the P wave arrival after extensive filtering. 

E * Existence of high amplitude transients and other non homogeneous 

disturbances 

Table 5.5.  Attributes of used seismic data recordings. 
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Each recording tested with each one of the 16 remaining denoising methods 

(as shown in Table 5.4). Results from representative recordings that belong to 

separate categories (as presented in Table 5.5) for each one of the denoising methods 

are presented below. For each method a combined plot between category’s typical 

recording and denoised recording is presented. In addition for the best two methods 

(for each category) detailed combined plots around P arrival time are presented also. 

In the latter plots the trigger times from an STA/LTA detector are also depicted in 

order to have the ability to compare the accuracy improvement in P-wave arrival 

before and after denoising application. 

 

Figure 5.14 Original (black line) and denoised (grey line) recording from A category using 

VISU-H (top left), VISU-S (top right), SURE (bottom left) and HYBSURE (bottom right). 
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Figure 5.15 Original (black line) and denoised (grey line) recording from A category using 

TI-H (top left), TI-S (top right), FDR-H (bottom left) and FDR-S (bottom right). 

 

Figure 5.16 Original (black line) and denoised (grey line) recording from A category using 

TBLOCKJS-T (top left), BLOCKJS-A (top right), THRSDA (bottom left) and NEIGHBL 

(bottom right). 
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Figure 5.17 Original (black line) and denoised (grey line) recording from A category using 

SCAD (top left), DECOMPSH (top right), BAMS (bottom left) and BFTR (bottom right). 

 

Figure 5.18 P-wave arrival of the original (black line), wavelet (SCAD)  denoised (blue line) 

and bandpass filtered (red line) category A recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 
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Figure 5.19 P-wave arrival of the original (black line), wavelet (BAMS)  denoised (blue line) 

and bandpass filtered (red line) category A recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 

 

Figure 5.20 Original (black line) and denoised (grey line) recording from B category using 

VISU-H (top left), VISU-S (top right), SURE (bottom left) and HYBSURE (bottom right). 
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Figure 5.21 Original (black line) and denoised (grey line) recording from B category using 

TI-H (top left), TI-S (top right), FDR-H (bottom left) and FDR-S (bottom right). 

 

Figure 5.22 Original (black line) and denoised (grey line) recording from B category using 

TBLOCKJS-T (top left), BLOCKJS-A (top right), THRSDA (bottom left) and NEIGHBL 

(bottom right). 
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Figure 5.23 Original (black line) and denoised (grey line) recording from B category using 

SCAD (top left), DECOMPSH (top right), BAMS (bottom left) and BFTR (bottom right). 

 

Figure 5.24 P-wave arrival of the original (black line), wavelet (VISU-S)  denoised (blue 

line) and bandpass filtered (red line) category B recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 
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Figure 5.25 P-wave arrival of the original (black line), wavelet (TI-S)  denoised (blue line) 

and bandpass filtered (red line) category B recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 

 

Figure 5.26 Original (black line) and denoised (grey line) recording from C category using 

VISU-H (top left), VISU-S (top right), SURE (bottom left) and HYBSURE (bottom right). 
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Figure 5.27 Original (black line) and denoised (grey line) recording from C category using 

TI-H (top left), TI-S (top right), FDR-H (bottom left) and FDR-S (bottom right). 

 

Figure 5.28 Original (black line) and denoised (grey line) recording from C category using 

TBLOCKJS-T (top left), BLOCKJS-A (top right), THRSDA (bottom left) and NEIGHBL 

(bottom right). 
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Figure 5.29 Original (black line) and denoised (grey line) recording from C category using 

SCAD (top left), DECOMPSH (top right), BAMS (bottom left) and BFTR (bottom right). 

 

Figure 5.30 P-wave arrival of the original (black line), wavelet (TI-H)  denoised (blue line) 

and bandpass filtered (red line) category C recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 
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Figure 5.31 P-wave arrival of the original (black line), wavelet (BLOCKJST)  denoised (blue 

line) and bandpass filtered (red line) category C recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, unfiltered recording 

– black dashed line, wavelet denoised – blue dashed line, bandpass filtered – red dashed line). 

 

Figure 5.32 Original (black line) and denoised (grey line) recording from D category using 

VISU-H (top left), VISU-S (top right), SURE (bottom left) and HYBSURE (bottom right). 
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Figure 5.33 Original (black line) and denoised (grey line) recording from D category using 

TI-H (top left), TI-S (top right), FDR-H (bottom left) and FDR-S (bottom right). 

 

Figure 5.34 Original (black line) and denoised (grey line) recording from D category using 

TBLOCKJS-T (top left), BLOCKJS-A (top right), THRSDA (bottom left) and NEIGHBL 

(bottom right). 
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Figure 5.35 Original (black line) and denoised (grey line) recording from D category using 

SCAD (top left), DECOMPSH (top right), BAMS (bottom left) and BFTR (bottom right). 

 

Figure 5.36 P-wave arrival of the original (black line), wavelet (TI-S)  denoised (blue line) 

and bandpass filtered (red line) category D recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, wavelet denoised – 

blue dashed line, bandpass filtered – red dashed line). 
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Figure 5.37 P-wave arrival of the original (black line), wavelet (VISU-S)  denoised (blue 

line) and bandpass filtered (red line) category D recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, wavelet denoised – 

blue dashed line, bandpass filtered – red dashed line). 

 

 

Figure 5.38 Bandpassed category D recording which triggers (dashed vertical lines) 

STA/LTA multiple times (dummy events) Performance evaluation of denoising using LA(8) 

basis for GN3 (top left), CL6 
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Figure 5.39 Original (black line) and denoised (grey line) recording from E category using 

VISU-H (top left), VISU-S (top right), SURE (bottom left) and HYBSURE (bottom right). 

 

Figure 5.40 Original (black line) and denoised (grey line) recording from E category using 

TI-H (top left), TI-S (top right), FDR-H (bottom left) and FDR-S (bottom right). 
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Figure 5.41 Original (black line) and denoised (grey line) recording from E category using 

TBLOCKJS-T (top left), BLOCKJS-A (top right), THRSDA (bottom left) and NEIGHBL 

(bottom right). 

 

Figure 5.42 Original (black line) and denoised (grey line) recording from E category using 

SCAD (top left), DECOMPSH (top right), BAMS (bottom left) and BFTR (bottom right). 
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Figure 5.43 P-wave arrival of the original (black line), wavelet (TI-S) denoised (blue line) 

and bandpass filtered (red line) category E recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, wavelet denoised – 

blue dashed line, bandpass filtered – red dashed line). 

 

Figure 5.44 P-wave arrival of the original (black line), wavelet (THRSDA)  denoised (blue 

line) and bandpass filtered (red line) category D recording . Trigger times using STA/LTA 

presented as vertical lines (event’s reported actual time – black solid line, wavelet denoised – 

blue dashed line, bandpass filtered – red dashed line). 
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Figure 5.45 Distance errors in epicentral estimation for each denoising scheme using 250 

events from category A 

 

 

Figure 5.46 Distance errors in epicentral estimation for each denoising scheme using 250 

events from category B 
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Figure 5.47 Distance errors in epicentral estimation for each denoising scheme using 250 

events from category C 

 

 

Figure 5.48 Distance errors in epicentral estimation for each denoising scheme using 250 

events from category D 
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Figure 5.49 Distance errors in epicentral estimation for each denoising scheme using 250 

events from category E 

 

5.10 Discussion 

Two basic conclusions derived from the examination of the results: 

• Every wavelet denoising method provides similar or better results 

from the commonly used bandpass filtering 

• There is no specific WDM that can be used a-priori.  

Regarding the superiority of WDM over bandpass filtering is not surprisingly 

since the wavelet methods provide better time localization. This superiority is not 

expressed only as an improvement to SNR but also because the wavelet denoised 

seismograms did not suffer from delays at P-wave pulses. The latter is very important 

for the validity of results provided by a seismological network because an error in P 

wave’s arrival time could produce wrong estimations for earthquake’s epicenter. For 

seismograms that belong to category A this delay produced errors with an average 

value of 14 km. This value probably seems negligible for the estimation of a big 

earthquake but is unacceptable for modern, high resolution, seismic tomography 

methods which use the big earthquakes as triggering sources. As expected, as the 
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quality of the seismograms decreased the delay increases. One important point that 

must clarify is that for each seismogram the values in STA/LTA detector that used are 

the optimum ones in order to provide the better result regarding P wave estimation. 

This is very important since because for each seismogram the bandpassed filtered 

seismograms need some investigation in order to produce the better result. On the 

other hand, for the wavelet denoising methods the commonly used values for 

STA/LTA produce the above results. This is also very important since it relaxes the 

analyst from finding the better combination of STA/LTA values in order to detect 

every event but at the same time to reject other events (explosions, artificial noises). 

The poor performance of bandpass filtering is verified at categories C, D and E where 

the produced results are unacceptable for a seismological network. 

  For each of the five categories several WDM produce very good results. In 

general, even the worst WDM produce better results from bandpass filtering. This is a 

useful conclusion since it can lead to the confirmation of WDM as a defacto denoising 

method to modern seismological networks. Except the computational complexity 

(which is negligible when using today’s high performance PCs) it seems that there is 

no other reason that can stop using wavelets for denoising seismograms. 

As already mentioned, there is no unique WDM that produce the better results. 

From our results, it seems that TI-H, Bayesians and NEIGHBL produce best overall 

results but we can qualify them as the only appropriate. A suggestion that we can 

make is the use of the hybrid system that will select the most appropriate WDM 

according to seismogram’s SNR. This is not new idea because a system with this type 

selection scheme is proposed by Pazos et al (2003). Our proposal differs because we 

propose the use of different WDM according to SNR where Pazos et al approach 

selects different thresholds according to SNR. In contrary, they didn’t deal with 

seismograms with SNR<3. These seismograms (category D) are included to our 

analysis not to primarily show that WDM can handle them also but to show the ability 

of wavelets to detect non regional earthquakes or microearthquakes that will remain 

undetected using conventional bandpass filtering.  

Category E deals with the disturbances that a seismometer could acquire. 

These are not unusual, even if they exist over a short period of time (e.g. car passing, 

construction works near seismological station). The ability to have the same 

information quality from this type of stations remains high since WDM are not so 
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sensitive to these disturbances and they can handle the real seismic signal 

accordingly. 

WDM cannot by themselves provide a complete solution to earthquake 

detection but they can be used to denoise with high performance the seismic signals 

which then must be passed to appropriate earthquake attribute estimators (hypocentral 

estimation, magnitude calculation, phase detectors e.t.c) for further processing. 

5.11 Summary 

 Wavelet denoising schemes have proved to be well adapted to several types of 

signals. For non-stationary signals, such as seismograms, the use of linear and non-

linear wavelet denoising methods seems promising. The contribution of this chapter is 

a comparison study for wavelet denoising methods suitable for seismic signals, which 

proved from previous studies their superiority against appropriate conventional 

filtering techniques. The importance of wavelet denoising methods relies on two facts: 

they recovered the seismic signals having fewer artifacts than conventional filters (for 

high SNR seismograms) and at the same time they can provide satisfactory 

representations (for detecting the earthquake’s primary arrival) for low SNR 

seismograms or microearthquakes. The latter is very important for a possible 

development of an automatic procedure for the regular daily detection of small or 

non-regional earthquakes especially when the number of the stations is quite big.   

Initially, their performance is measured over a database of synthetic seismic signals in 

order to evaluate the better wavelet approach. As expected, there is no wavelet 

denoising method that outperforms the others but best overall results gained from TI-

S, Bayesian and NEIGHBL.  
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6. The Potential for a Wavelet Earthquake Early Warning 

System in South Aegean 

6.1 Introduction 

Since the complexity involved in earthquake process does not allow the use of 

a practical earthquake prediction method, the only approach that can reduce the 

seismic hazard mitigation is by using systems that can generate alerts before the 

destructive S waves arrive to the area of interest. Such a system is called Earthquake 

Early Warning System (EEWS) and its objective is to provide a few to tens of 

seconds of warning time for the oncoming ground motions allowing for mitigation 

actions in short term. EEWS that estimate the severity of ground shaking few seconds 

after its onset time are in operation in Japan (Nakamura 1984, 1988, 1989), Taiwan 

(Teng et al., 1997, Wu et al., 1998, 1999, Wu and Teng, 2002) and Mexico (Espinosa 

et al. 1995). The information produced by the above systems can be used by 

authorities in order to minimize the property damage and the loss in urban areas as 

well as to provide real time loss estimation for emergency response and recovery (Wu 

et al., 2002). 

 The measures needed for EEWS are the earthquake’s magnitude and its 

epicentral location. Their rapid and accurate determination is the main goal for the 

successful operation of an EEWS. An earthquake generates two main types of waves: 

the P ans S waves. The direct P waves have smaller amplitude and travel with faster 

velocity than S waves which have lower velocity but higher amplitude and thus hold 

the destructive attributes. The traditional way of estimating a local magnitude (ML) 

requires the whole seismogram. This is the most accurate method but from the 

seismic mitigation point is useless since the magnitude can only be estimated after the 

arrival of the destructive part of the earthquake. During last years, research has 

focused on whether an accurate earthquake magnitude can be rapidly estimated using 

only tht first few second of the P wave recordings acquired close to the epicenter, 

stations. Several studies on EEWS (Nakamura, 1988, Allen and Kanamori, 2003, 

Lockman and Allen, 2005, Olson and Allen, 2005, Kanamori, 2005, Wu and 

Kanamori, 2005a,b) used the dominant period of the first few seconds of the P wave 

as the observable that correlates with ML. They found that the predominant period 
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tends to increase with magnitude even where the rupture is not complete (large 

earthquakes) within the first 3-4 secs. This hopeful estimator is not without 

shortcomings. As Wolfe (2006) and Simmons et al. (2006) pointed out the 

predominant period estimator has significant scattering mainly caused by its recursive 

calculation based on a spectral domain relation. 

The purpose of this chapter is to demonstrate the use of wavelets as the 

common processing tool for earthquake’s rapid magnitude determination and 

epicentral estimation in order to move from time-frequency domain estimators to 

time-scale domain estimators. The goal is to use the same set of wavelet coefficients 

that characterize the seismogram (and especially its P wave portion) in order to use 

one technique (WT) for double use (magnitude and location estimation). Wavelet 

Magnitude Estimation (WME) is used to derive a scaling relation between 

earthquake’s magnitude and wavelet coefficients. In addition, the epicentral 

estimation is achieved by a new method (Wavelet Epicentral Estimation – WEpE) 

which is based on the combination of wavelet azimuth estimation (Galliana, 2007) 

and two stations method (Rydelek and Pujol, 2004). WME and WHE running in 

parallel, used as the core of a regional WEES in South Aegean. 

 

6.2 Fundamentals of EEWS  

The physical attributes that involved in an earthquake early warning system 

depend on: (1) strong ground shaking from a damaging earthquake is caused by shear 

(S) waves and the following surface waves, (2) typical crustal P-wave velocity is 

about 6-8 km/sec, whereas S- and surface waves travel at about half the speed of the 

P-waves, and (3) the seismic wave velocities are much slower than electromagnetic 

signals transmitted by telegraph, telephone, or radio at about 300,000 km/sec.  

Cooper (1868) was the first who propose an earthquake early warning system 

more than one hundred years ago. He proposed setting up seismic detectors 120km 

away California and when an earthquake triggered them, an electric signal would be 

sent by telegraph to San Francisco. This signal would then ring a big bell in the City 

Hall to warn citizens that an earthquake had occurred. Cooper’s scheme was never 

implemented. Heaton (1985) proposed a seismic computerized alert network for 

southern California. Nakamura (1988) implemented the single-station urgent 

earthquake detection and alarm system (UrEDAS) for the high speed train system in 
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Japan. Espinosa-Aranda et al. (1995) established the first earthquake early warning 

system for large events in order to produce alerts to the public in the Mexico City. 

Subsequently, EEWS have been implemented, experimented, and commented upon 

by several different groups  

An EEWS warns an area of interest (e.g. a urban area) of forthcoming strong 

shaking, normally with a few seconds to a few tens of seconds of early warning time, 

i.e., before the arrival of the destructive S- and surface waves of a damaging 

earthquake. These few seconds of advanced warning time will be useful for the pre-

programmed procedures for various critical facilities, such as stopping underground 

wagons and high-speed trains to avoid potential derailment, the controlled shutoff of 

gas pipelines to minimize fire hazards, the safe-guarding of computer facilities to 

avoid the loss of vital data and the preparation of auxiliary power sources in case of 

power failure in critical facilities (e.g. hospitals) 

An EEWS is basically a network of seismic recording systems, consisting of 

seismological stations (local or central) and a transmission infrastructure spreading 

the alarm to end users (Heaton, 1985) to initiate personal or automatic security 

measures. The success of an EEWS is directly related to the reduction in total losses 

produced in a region of interest for very critical facilities. 

EEWS may be categorized by the configuration of their seismic network as 

regional or site-specific (Kanamori, 2005). Regional EEWS consist of wide seismic 

networks covering a portion of the area which is likely to be the source of a 

catastrophic earthquake. The recorded data are sending to a processing centre in order 

to calculate earthquake parameters such as magnitude, location, faulting mechanism 

and peak ground velocities. Then, these values used to estimate the level of shaking 

in the affected area. The whole process requires a significant amount of time and for 

this reason in a possibly large portion of the region, there is no way the alarm be 

produced before the arrival of destructive waves. This area called the blind zone 

(Kanamori, 2005). These systems are guided to applications such as shake maps 

(Wald et al., 1999), which are territorial distributions of ground shaking available 

immediately after the event to the local authorities for emergency management, in 

order to direct their efforts to areas that expected to have the highest losses. These 

systems called Rapid Response Systems (Wieland, 2001). 
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When the system can spread the alarm during the event, before the ground 

motion hits some sites or areas of interest then it can classified as real-time EEWS. 

Even then, the system does not have enough time to spread the alert, The only known 

case where the EEWS has a more relaxed time margin for spreading the alert is the 

system that installed in Mexico city. This is achieved because seismic active zone is 

known and is sufficiently far away. The used EEWS is focused in this area (the 

subduction zone of the Pacific coast) by using 12 digital strong motion field stations 

located along a 300 km stretch of the coast. Each field station includes a computer 

that continually processes seismic activity within a 100 km radial area around each 

station. Two seconds are required for the information on an event to reach Mexico 

City.  

While regional systems directly improve the resiliency of communities to 

earthquakes, site-specific EEWS are designed using as primary objective the increase 

of safety margin for critical systems such as nuclear power plants, lifelines or 

transportation infrastructures. The seismological networks that used in these cases are 

smaller than those of the regional type because they cover only the surroundings of 

the system like protection armour for the seismic waves. The topology of the network 

depends on the time needed to activate the safety procedures before the S wave’s 

arrival. In these Seismic Alert Systems the alarm is generally produced when the first 

station triggered by an S wave. The difference from the aforementioned systems is 

that the source parameters of the event are not essential. This is because the 

calculation of source parameters is time-consuming. Also there is no significant 

uncertainty about the propagation of seismic waves since the path between the 

network and the site is limited. The alarm thresholds of these systems are configured 

in away that can produce alarm for every possible event even if it proved false. This 

is done because false alarms are preferable than lost alarms; the cost for issuing an 

alarm for an inexistent event is lower from the cost of a lost alarm. Among site-

specific systems a paradigmatic example is that of the Ignalina nuclear power plant in 

Lithuania (Wieland et al. 2000) which is designed to produce an alert 4 to 8 seconds 

before the destructive ground motion reaches the reactor. By knowing that the time 

needed to secure the reactor is 2 secs, this EEWS is an example of successful design. 
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6.3 Wavelet Magnitude Estimation 

6.3.1 Introduction  

 The use of predominant period (τc) of P-wave as a potential indicator of 

earthquake’s magnitude produced signignificant results in several cases (Japan – 

Nakamura, 1988, Horiuchi et al., 2006a; Taiwan, Wu & Teng, 2002; Italy, Olivieri et 

al., 2008). τc  is calculated as : 
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Where u(t) and ( )u t
•

are the ground motion displacement and velocity as a function 

of time, respectively. τ0 is the duration of the P wave that used for the calculation and 

usually taken between 3 and 4 secs. For the calculation an iterative algorithm is used 

which can be implemented for real time operation (Allen & Kanamori, 2003). 

The τc is obvious in time domain but Eq.6.1 shows that it must be calculated 

by means of a spectral domain expression too. That means that τc is a weighted 

measure of the spectral energy density in the seismogram, derived from its FT ( )u f
�

 

as a function of frequency f. The result is that there is strong possibility that the 

information contained in time frequency representation of a seismogram could not be 

estimated accurately. A typical example is shown in Fig.6.1 where the spectrograms 

of two seismograms are computed (Hann tapering, 50% overlapping) and 

superimposed with the calculated τc for 4secs. What is suprising is that τc has non 

zero values several seconds before the first arrival of P wave (which indicated by left 

vertical line). As Simmons et al,. (2006) indicated this is the main reason for high 

scattering of magnitude estimation that observed in several studies (Allen & 

Kanamori, 2003, Olson & Allen, 2005, Abercrombie, 2005) 
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Figure 6.1  Spectrograms of two different seismograms from different earthquakes. Thick 

line indicates the values of predominant frequency; vertical lines indicate the P wave arrival 

(left line) and S wave arrival (right line) (Simmons et. al.,,2006). 

 

The above shortcomings can be avoided if the magnitude estimator is 

investigated in time-scale domain by using WT. This idea is introduced by Simmons 

et al., (2006) who concluded that there is correlation between the station averaged 

thresholded wavelet coefficients and local magnitude at higher wavelet scale.  

 

6.3.2 Data analysis and method’s details 

The area of interest that the possible EEWS will protect defined at the South 

Aegean sea, focusing on the island of Crete. Since the island lies over the back arc of 

Hellenic subduction zone it is expected that strong and devastating earthquakes might 

occur. This verifed the last decades from the several over ML 6 earthquakes. The 

primary installed seismological network  from National Observatory of Athens 

(NOA) had an interstation average distance  round 220km. Recent installations from 

Geofon group and SNC-LGS all over Crete and surrounding islands decrase the 

average distance to 60km. This combined network cannot be characterized as dense; 
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for this reason is important to investigate the performance of the WME which has 

only be used in dense seismological networks (California – Simmons et. al., 2006; 

Japan, Mcguire et. al.,, 2008) 

For the current research data from 181 earthquakes used. Data were collected 

from the seismological stations of SNC-LGS (from 2003 until 2008) and GEOFON 

stations (from 1999 to 2008, public available at www.orfeus-knmi.nl/data/webdc). It 

is important to clarify that in the current research, the earthquakes that used have 

ML≥3.8 and their depth were up to 35km. we note that for each earthquake the used 

seismograms are those that recorded from stations up to 120km away from the 

epicentral (twice the average interstation distance in HSNC). A graphical 

representation of the above is shown in Fig.6.2 

 

Figure 6.2 : Earthquakes (blue dots) and seismological stations (triangle:SNC-LGS, square: 

Geofon) used for this study 

 

From each station only the vertical seismograms were used. Each seismogram 

is denoised using an appropriate (according to SNR) the wavelet denoising scheme as 

discussed in chapter 3. From each denoised seismogram 12sec around indicated onset 

time (as this derived from published earthquake bulletins, www.iaspei.org and 

www.emsc-csem.org) is wavelet transformed using MODWT. Unlike Simmons et. al, 

(2006) who used the lifting approach of WT here the use of a redundant WT is 
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dictated in order to avoid boundary effects; a fact the previous authors detected but 

didn’t take into account. The MODWT used the LA(8) basis and run over 7 scales.   

6.3.3 Results 

A typical set of earthquakes recorded from the aforementioned stations is 

depicted in Fig.6.3. 

 

Figure 6.3: Vertical component seismograms from two earthquakes (a) ML=5.5, depth 9km, 

epicentral distance 72km and (b) ML=5, depth 11km, epicentral distance 111km 

  

Transforming the above seismograms using MODWT with settings mentioned 

earlier produces the following results, as presented in Fig. 6.4 and Fig.6.5 
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Figure 6.4: MODWT of fig.6.3.a seismogram. Vertical arrow indicates the presence of 

maximum amplitude coefficient at corresponding scale. 

 

Figure 6.5: MODWT of Fig.6.3.b seismogram. Vertical arrow indicates the presence of 

maximum amplitude coefficient at corresponding scale. 

 

 The above results are characteristic for all the examined seismograms. A 

preliminary result that can be extracted from Fig.6.4 and Fig.6.5 is that the maximum 

amplitude coefficients are presented at higher scales. Also for the stronger earthquake 

the maximum coefficient is closer to the P wave arrival. These two observations 
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agree with the observations in predominant period studies where it is observed that 

stronger earthquakes present lower predominant frequencies in the first few seconds 

after P wave arrival.   

 The goal is to translate the wavelet transformed seismogram to information 

related to earthquake’s magnitude. For this reason we keep first significant wavelet 

coefficient at each scale for 4secs time window (t=0 denotes P-wave arrival). For 

each distinct magnitude the average of the absolute wavelets coefficients value is 

calculated over all stations that satisfy the epicentral and depth criteria. From these 

averages, the best-fit regression line is derived. The total number of vertical 

component seismograms that satisfy the epicentral and depth criteria were 962. 

Results are presented at Fig.6.6 for scales 4-7 (scales 1 to 3 are not present any 

significant correlation).  

 

Figure 6.6: The correlation of wavelet amplitudes at scale 4 (top left), 5 (top right), 6 

(bottom left) and 7 (bottom right) with earthquake magnitude. Results for individual 

seismograms are shown as grey dots (some share the same amplitude values), the 25
th
 and 

75th percentile as thin black dashes and the averages at every distinct magnitude by black 

squares. The thick line is the least-squares best fit line to the average values for high (Mh) and 

low (Ml) magnitude values. 
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 The results from Fig.6.6 show that there are significant correlations between 

station averaged wavelet coefficients at last two scales (6 and 7). More specific, best-

fit regression is achieved by low earthquake magnitude range in scale 6 and high 

magnitude range in scale 7. By using the corresponding equations to predict the 

magnitude, the average errors are below 0.7 at maximum. These facts is presented in 

Fig.6.7 

Figure 6.7: Magnitude errors of the prediction using equations derived at scales 6 (top) and 7 

(bottom). Errors shown as : black squares when low regression used for low magnitude 

prediction, grey triangles when high regression used for low magnitude prediction, black 

triangles when high regression used for high magnitude prediction and grey squares when 

low regression used for high magnitude prediction. The reported magnitudes extracted from 

EMSC catalogue (ML,EMSC) 

  

 From the above results (see Fig.6.6 and 6.7), the minimum errors produced 

when using low regression for low magnitude prediction from scale 6 and high 

regression for high magnitude prediction from scale 7. Thus the two equations 

characterizing the magnitude prediction using wavelets coefficients for South Aegean 

are: 

Ml = 1.41 * log(W6) – 1.1  (6.2) 

For reported magnitude ML,EMSC ≤ 5.2 

And 
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Mh = 0.86 * log(W7) +1.5   (6.3) 

For reported magnitude ML,EMSC ≥ 5.2 

In order to compare the WME with predominant frequency estimator for the 

South Aegean seismological station, analysis using the latter estimator was performed 

for the same set of earthquakes and for the same distance and depth criteria. The 

errors between predicted magnitude using predominant frequency estimator shown in 

Fig.6.8. 

Figure 6.8: Magnitude prediction errors when predominant frequency used as 

estimator. 

 The bigger scattering in results in comparison with WME, agrees with the 

same observations from Wu & Teng (2002) and Wu et al. (2006a) and shows that 

WME is more suitable estimator for South Aegean area.  

 

6.4 Wavelet Epicentral Estimation 

6.4.1 Introduction 

There are many approaches to standard earthquake location, which is 

performed when all the phase arrival times (P and S mainly) for an event are 

available. The goal for an EEWS is the use of a reliable method which can extract 

result as early is possible. For this reason the majority of the modern epicentral 

location methods focus on a solution that can be derived using only the P arrivals and 
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if possible without waiting for triggering from three stations (Front et al., 2004, 

Lomax, 2005, Rydelek and Pujol, 2004, Horiouchi, 2005, Satriano et al., 2008). The 

aforementioned methods use the principle of equal differential time formulation 

(EDT) of Font et al. (2004) and Lomax (2005) for standard earthquake location. EDT 

is a generalization of the master-station method (Zhou, 1994) and the "method of 

hyperbolas" cited by Milne (1886). Horiuchi et al. (2005) combine standard L2–norm 

event location, EDT location on quasi-hyperbolic surfaces, and the information from 

not yet arrived data to constrain the event location beginning when there are triggered 

arrivals from two stations. The two arrivals define a hyperbolic surface on which the 

event can be located.  

The above studies showed that it is possible to estimate epicentral location 

with accepted accuracy for an EEWS by using two stations and waiting the third in 

order to refine the result. Two problems that still are under investigation from the 

above methods are: (a) what is the time difference that the EEWS surcharged when 

one or more stations of the seismological network are not operational and (b) is it 

possible to increase the accuracy of the estimated by two stations epicentral ? For 

answering these problems we propose the use of WEpE which is a new method based 

on the combination of wavelet azimuth estimation (Galliana, 2007) and two stations 

method (Rydelek and Pujol, 2004) 

.  

6.4.2 Wavelet Azimuth Estimation (WAE) 

For a regional earthquake, the P wave is linearly polarized in the direction of 

propagation. The N, E and Z components of a seismogram can be projected onto the 

propagation direction. This projection, along the direction of incoming seismic signal 

L, presents the maximum variance (Fig 6.9).  

If the incoming seismic signal is noise free then this projection is zero in any 

other direction than L. Obviously this is not the case of real seismograms. In practice 

we expect the variance in direction L to be dominant and having extremely low 

values at any other direction. Folowing this fact, Magotra et al., (1989) provided the 

necessary formulation to calculate the azimuth (θ angle) and elevation (φ angle). 
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Figure 6.9 : Projection of the incoming seismic signal (Galliana, 2007) 

 

For the automatic azimuth estimation the method of Galliana et al., (2007) is 

used. This method uses three steps that can be summarized as follows: 

a) Denoising. It is very important that the incoming P wave to be as much noise free 

is possible; otherwise the difference between the maximum variance value and 

the minimum ones (as described earlier in the previous paragraph) could not be 

clearly dominant. Also a noisy seismogram (as discussed in chapter 3) usually 

provides false information about P wave onset time. 

b) P wave arrival detection. A modified STA/LTA detector is used for this purpose. 

The modification consists in the use of a LTA threshold along with the threshold 

value of ordinary STA/LTA. Under this approach, the first arrival time is defined 

when the value of STA/LTA ratio exceeds its threshold as well as the associated 

LTA also exceeded. In the present research the signal that used is not the 

denoised signal as proposed by Galliana et. al., (2007) but the wavelets 

coefficients of the denoised seismogram associated with scale 3. We note that the 

selection of scale 3 is consistent with the frequency proposed by Galliana et. al., 

(2007) since for 125Hz sampling rate this scale corresponds to frequency band 

15.6 – 7.8Hz). After experimenting using the data of HSNC, the most appropriate 

values that must be used for Galliana’s detector are STA/LTA = 1.5 and LTA = 

0.002 although as it will explained later we can select a value up to 0.006. In 

addition the window length of the detector is investigated below. 
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c) Azimuth estimation. This is achieved by using an adaptive length window in 

order to include only two periods of each component of denoised seismogram. 

Then, the union of three component windows defines the final time window 

where the covariance matrix and the eigenvector associated with the maximum 

eigenvalue is estimated. By using this eigenvector, the θ and φ angles (thus 

azimuth and elevation) are calculated (Magotra, 1989). 

In order to investigate the applicapibility of WAE method in installed 

seismological network we used a set of 20 local shallow earthquakes with magnitude 

from 3 to 6. We used the HYPO2000 (Klein, 2000) software to estimate accurately 

the location and the azimuth of each event. The specific software is used as the 

defacto package from the vast majority of the seismological networks all over the 

world for the manual estimations of epicentral location. It accuracy is ensured when 

an event is recorded at least from three stations. The events that used for the current 

comparison are recorded from at least four stations. HYPO2000 can also produce the 

errors associated with each angle giving us the ability to compare its accurate results 

with the results obtained by the WAE method. Table 6.1 shows the events used. Then 

these events are used by the WAE in order to estimate the azimuth as explained 

before.  

 

Event Longitude Latitude Magnitude (ML) Depth (km) 

1 21.11 35.89 3.3 3 

2 23.74 36.18 3.1 12 

3 23.63 36.21 4.2 11 

4 25.8 36.23 4.5 6 

5 22.41 35.26 4.5 12 

6 21.64 36.28 5.0 9 

7 26.79 34.25 5.3 10 

8 22.64 35.22 4.8 11 

9 21.81 36.32 6.0 23 

10 21.80 36.17 5.6 7 

11 23.70 36.29 3.4 3 

12 23.87 34.32 3.6 6 

13 21.90 36.36 3.9 7 

14 26.77 35.33 4.9 9 

15 24.74 36.06 3.5 8 

16 23.52 35.25 5.1 11 

17 21.69 34.27 4.8 11 

18 23.84 36.37 4.4 9 

19 24.76 34.36 5.4 7 

20 26.82 35.27 5.5 11 

Table 6.1.: Events source parameters used for azimuth test study  
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The results from HYPO2000 estimation and discussed method are presented 

in Table 6.2 and their difference is depicted in Fig.6.10. The results from HYPO2000 

used as reference values and difference between them and the calculated value of 

WAE method denoted as WAE error. 

Event Azimuth by 

Hypo2000 (deg) 

Azimuth by 

WAE (deg) 

1 91.5 87.1 

2 56.7 61.5 

3 134.2 132.1 

4 89.1 90.9 

5 23.5 26.7 

6 45.1 48.7 

7 16.9 16.1 

8 22.4 24.5 

9 123.5 121.9 

10 78.8 78.2 

11 144.6 139.8 

12 56.6 58.2 

13 55.7 54.2 

14 45.6 46.9 

15 61.6 58.7 

16 45.7 47.3 

17 44.2 41.8 

18 34.6 33.3 

19 49.2 49.1 

20 112.8 110.1 

Table 6.2: Azimuth estimations using WAE and HYPO2000 
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Figure 6.10. Difference between the azimuth estimated by WAE method and the azimuth 

obtained by HYPO2000 (WAE uses STA/LTA = 1.5 and LTA=0.002) 
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As mentioned earlier, the LTA threshold can vary from 0.002 to 0.006. Low 

value of LTA gives a sensitive detector which can produce arrival estimations prior to 

the real. On the contrary, high values of LTA produce arrival estimations close to the 

real but there is big possibility to include also other phases than P, leading in this way 

to wrong azimuth estimations. In order to investigate how this variation affects the 

error produced between WAE and HYPO2000 solution for each event we have used 

an LTA threshold ranging from 0.001 to 0.006 with 0.001 steps. For each case and 

event the errors calculated and the results are depicted in Fig 6.11 
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Figure 6.11 : Azimuth errors for WAE method for different LTA thresholds 

  

The results indicate that WAE can determine the azimuth with a standard 

deviation around 5.9
o
. The LTA threshold that seems suitable to the seismological 

stations of SNC – LGS is 0.002 since this is the value that produces the minimum 

azimuth errors in the majority of examined events (17 from 20). By keeping in mind 

that the whole procedure will need around 1.2secs in a typical PC we can conclude 

that WAE is a suitable method for an EEWS. 
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6.4.3 Epicentral estimation using Two-Station Subarray (TSS) method 

 TSS method is based on the concept of “not yet arrived data” proposed by 

Horiouch et al., (2005). A typical configuration for illustrating the method is shown 

in Fig 6.12 

 

Figure 6.12: Illustration of TSS method. Star denotes the earthquake, grey dots are the 

triggered stations and black dots are the non triggered stations (Rydelek & Pujol, 2004)  

 

Ideally, the seismic waves generated by this earthquake will eventually be 

recorded at all seismic stations in the figure. In case where only stations 1 and 2 (grey 

circles) at distances d1 and d2 are triggered from the first two P-wave arrivals at times 

t1 and t2, respectively. It can be easily shown (in the good approximation of a half-

space Earth that d2 - d1 = Vp(t2 - t1), where Vp is the local seismic P-wave velocity. 

Since this velocity has known value , it is obtained that the earthquake occurs along a 

curve that satisfies a simple condition: the locus of points such that the difference in 

the distances from two fixed stations (or points) to any point on the curve is constant. 

This is the definition of a hyperbola, which is drawn as the grey curve in Fig.6.12. If 

we waited for the P-wave arrival at a third station, two other hyperbolas could be 

constructed, and the area of common intersection would thus provide the approximate 

location of the epicentre of the earthquake. The hyperbolic method of earthquake 

location was first used by Mohorovicic (1915) and remained in use over the years 

until the advent of computer-based methods.  
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The two-station subarray method proposed here is based on the information 

that the epicentral location along the hyperbola can be constrained due to the fact that 

the first two arrivals were recorded by two particular stations, as illustrated in 

Fig.6.12. Because station 3 did not record the first P-wave arrival, the distance along 

the constrained (black) segment of the hyperbola from the epicenter to station 3 must 

be larger than to station 1. If the epicenter were on the hyperbola slightly north of the 

black segment, then station 3 would have recorded the first arrival and not station 1, 

and the hyperbola would have been different. The same argument is used to constrain 

the southern extent of the black segment; going slightly to the south of it means that 

station 7, instead of station 1, would have recorded the first P arrival. The length of 

the black segment of the hyperbola in Fig.6.12 is about 25 km, and in general this 

length will depend on station geometry and interstation spacing in the seismic array, 

as shown later for actual earthquakes. 

 

6.4.4 Wavelet Epicentral Estimation 

The TSS method discussed above needs two stations in order to estimate the 

hyperbola where the epicentre possibly lies. If the distance between the first two 

stations is quite high (~100km) then the hyperbola could extent up to 80 km. This is 

not accepted as epicentral estimation. In the case of SNC-LGS network there are 

cases where the interstation distance between two subsequent stations is quite high. 

For this reason there is a need for eliminating the limits where the hyperbola could 

extent. In order to achieve this, the use of WAE at the first triggered station, is 

proposed. The idea is that if the azimuth is known from the incoming seismic signal 

then we can define an area of interest as an isosceles triangle; with vertex angle the 

standard deviation of 5.9
o
 (as calculated earlier) pointing to the direction of azimuth 

and with equal sides calculated by the distance of the closest operating station (Fig. 

6.13) 
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Figure 6.13: Illustration of the construction of “area of interest” using azimuth estimation 

 

Since this area of interest can be defined using the first triggered station when 

the second station triggers and thus the hyperbola can be estimated, its limits can be 

shrink immediately. This is achieved by assuming as valid part of the hyperbola the 

part that lies down in the area of interest which is calculated before the second station 

triggers. This is depicted as a series of snapshot in Fig 6.14 where the ML=6.5 

earthquake occurred at January 8, 2006 used. 

 

 (a) 
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 (b) 

 

 (c)  
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 (d) 

 

 (e) 
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 (f) 

 

Figure 6.14: Snapshots of evolutionary detection of the epicentral location using WAE 

method  

 

The time begins at earthquake’s occurrence time (Fig.6.14.a). The first station 

triggers after 4.95secs (Fig.6.14.b) and from the P-wave is able to estimate the 

azimuth using WAE method. This is completed after 1.15secs and an area of interest 

can be defined (Fig.6.14.c). The area of interest (green shaded area) defines the area 

where the epicentrel expected to be. At t=9.7secs the second nearest station triggers 

and a hyperbola (black solid line) can be defined now using the TSS method 

(Fig.6.14.d). At t=10.8secs the second area of interest can be defined along with 

hyperbola (Fig.6.14.e). At this stage the hyperbola estimated from TSS method 

extends up to 90km. By keeping as valid only the portion that lies down inside the 

common part of two areas of interest, the possible hyperbola length decreased down 

to 12km which can be qualified as acceptable.  

Another case of interest is when the earthquake occurs outside the network. In 

this case the WAE method proves valuable because it shrinks the intrinsic inability of 

TSS method to estimate a reliable hyperbola. This case is demonstrated in Fig. 6.15 

where an earthquake occurs (red star in Fig 6.15.a). When the first nearest station 

triggers, it is possible to estimate the area of interest (Fig.6.15.b) after 1.1 secs 
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(Fig.6.15.c). During the calculation time the second station of the network triggers 

and it is possible to estimate the hyperbola. Since the event is outside the network the 

hyperbola will extent to east increasing the error in estimation (black solid line in 

Fig.6.15.c).  

When the second triggered station estimates the area of interest then the limits 

of hyperbola reduced and the epicentral estimation lies between the union of two 

areas of interest and corresponding hyperbola points (black solid line in Fig. 6.15.d) 

 

 (a) 
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 (b)  

 

 (c) 
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 (d) 

 

Figure 6.15: Snapshots  of evolutionary detection of the epicentral location using WAE 

method with earthquake occurred outside network 

 

In EEWS accurate earthquake location is of lesser concern compared to 

minimizing the amount of time needed to locate it, albeit imprecisely. Therefore the 

trade off with the WEpE method is between the uncertainty in the epicentral location 

and the time spent waiting for more stations to trigger. The usefulness of WEpE 

depends on the distance between stations. A dense network (~10km between stations) 

can provide location estimations using only the TSS method since the first three 

stations will trigger the first 3 secs (assuming a P wave velocity of 7km/sec) so there 

are no obvious benefits. For the National network where the interstation distance 

varies from 60km to 100km, WepE could provide epicentral estimations enough time 

before the third station triggers. As a general rule one can conclude that the case 

when unfortunately the distance between the stations is large then the greater the time 

saved compared to the time waiting the third station to trigger but at the cost of 

uncertainty in epicentral location. For large earthquakes this uncertainty becomes side 

issue since the main concern for an EEWS is a rapid estimation of location and 

magnitude. 
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6.5 Summary 

In this chapter, the ability of WT as a common processing tool for the 

purposes of EEWS is demonstrated. More specific, it is shown that is possible to use 

the same set of wavelet coefficients from a transformed seismogram for performing 

two actions : rapid magnitude estimation and epicentral location. For magnitude 

estimation, it is shown that the absolute value of the wavelet coefficients at lower 

scales of a WT (here 6 and 7) correlate with the local magnitude; for this two 

empirical relations are calculated: one for low magnitude prediction (up to 5.2) and 

one for high magnitude prediction (higher than 5.2). In general, the errors produced 

by WME are no more than ±0.6. Compared with predominant frequency estimator, 

WME shows better performance for the South Aegean area. For epicentral location 

purpose it is shown that a new proposed technique, WHE, which combines two 

different known approaches from seismology (azimuth estimation and epicentral 

estimation using two stations), can be used to estimate in real time the epicental with 

improved accuracy and especially when epicentral location is outside the area defined 

by installed seismological network. This fact makes this approach very important for 

the purposes of a regional EEWS. 
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7. Multiresolution Wavelet Analysis of Seismicity 

7.1 Introduction 

The time distribution of seismic events was the subject of several studies, dealing with 

their time-scaling properties (Wilson & Domnic, 1990, Godano, 1996, Oncle et.al.1996). A 

new wavelet based technique, has been recently developed for the purpose of dynamic 

variability of seismicity  investigation. It is based on scaling analysis of the temporal 

properties of sequences of earthquakes. This is not a new approach since many studies used 

set of scale-independent measures in order to examine the time fluctuations of a series of 

earthquakes (e.g., periodogram power-law exponent, Telesca et.al, 1998, the Allan–Factor 

power-law coefficient, Telesca et.al. 2002, the detrended fluctuation analysis power-law 

exponent, Telesca et.al 2002). The objective is to estimate the least-squares-fit slope of the 

investigated measure in a log-log (double logarithmic) plot coordinate system. These 

approaches provide the researcher with a quick picture and understanding of the correlation 

properties of earthquake series independently on the scale. Their disadvantage is that they are 

vulnerable to nonstationarities; a situation that is not very rare when characterizing the time 

dynamics of an earthquake sequence.. 

Multiresolution wavelet analysis has proved a valuable and accurate tool for the 

analysis of signals at multiple scales, especially in presence of nonstationarities which often 

contaminates such signals (Akay, 1987, Albroudi, 1996, Arneodo et.al., 1998). This method 

has been successfully used to discriminate healthy patients from those with cardiac pathology 

(Thurner et.al, 1998, Ashkenaz et.al., 1998). The above method produces a scale-dependent 

measure, the wavelet-coefficient standard deviation, which has been demonstrated to perform 

better than the scale-independent measures (Teich et.al, 2001). Recently, Telesca et al. (2004) 

have analyzed the time variation of the wavelet-coefficient standard deviation for two seismic 

sequences occurred in Italy, distinguishing between aftershock-related dynamics and 

background behaviour. 

The wavelet-coefficient standard deviation is used for the analysis of South Aegean 

seismicity. Initially, the seismic sequence from 1970 until 2003 is examined and the strongest 

event can easily identified at lower wavelet scales. The procedure is repeated with a more 

complete catalogue (from 2003 to 2008) where the a set of double strong earthquakes is 

identified at lower scales  
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7.2 Formulation 

As already mentioned in detail at Chapter 2, one of the basic advantages of wavelets is 

that they project a signal in the frequency domain as well as in the time domain 

simultaneously, unlike the usual Fourier transform where an event is accurately represented in 

the frequency or in the time domain only. This characteristic permits the successful derive of 

data with different behaviour through several scales and thus cannot provide a consistent 

multiresolution analysis. 

In this chapter the analysis of time intervals between successive seismic events (IS) 

{τi}, i = 1, … , L, where L is the length of the series, is taking place The initial step is to 

transform the IS from time space into a space of wavelet coefficients in order to derive the 

scale dependant measures. 

Mathematically speaking, the coefficients are obtained by carrying applying a DWT 

2
,

1
2 (2 )

Lawav a
a b i

i
W t i bψ− −

=

= −∑       (7.1) 

where the scale variable a and the translation variable b are integers, L represents the 

total number of IS intervals analyzed, and ψ is the wavelet function. The DWT is evaluated at 

the points (a, b) in the scale-interval-number plane. Smaller scales correspond to more rapid 

variations and therefore to higher frequencies. Orthogonality in DWT ensures that the 

information deduced at a certain scale a is disjoint from the information at other scales 

(Thurner, 1998). 

The standard deviation of the wavelet coefficients, as a function of scale is defined as: 
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where N is the number of wavelet coefficients at a given scale a and the indicate the 

average among the coefficients at a scale a (Telesca et.al.,2004) 

 

 

7.3 Geological and seismological settings 

    The SW segment of the Hellenic Arc (34ºΝ - 37.5º Ν, 20º Ε - 26º E) is the most active 

plate margin of the Mediterranean area, with correspondingly high seismicity and relatively 
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frequent occurrences of large earthquakes. The most dominant geotectonic feature is the 

Hellenic Trench, where the eastern Mediterranean oceanic lithosphere (front part of the 

African plate) is sub ducted under the Aegean microplate. The Hellenic Trench is parallel to 

the Hellenic Arc which consists of the outer sedimentary arc and the inner volcanic arc. The 

average distance between them is 120 km. The Sea of Crete appears a maximum depth around 

2 km and defined between between the sedimentary arc and the volcanic arc. The front part of 

the African oceanic lithosphere is subducting under the continental Aegean Sea lithosphere as 

part of the collision process of Africa–Eurasia plates. (McKenzie, 1978; Jackson, 1994; 

Kiratzi and Papazachos, 1995 among many others, Benetatos et. Al, 2004)  

The SW Hellenic Arc and Trench system generates large shallow- and intermediate-

depth earthquakes many of which have been are reported since early historic times. 

Magnitudes of up to 8.0 have been reported in the literature, (e.g., Papazachos, 1990; 

Papazachos and Papazachou, 1997). Although such figures may have been overestimated, 

(some of them were drawn on the basis of ancient and medieval archival data), they still 

signify the great seismogenetic potential of the area. 

Crete lies in the forearc of the Hellenic subduction zone, indicating the transition zone 

between the African and Eurasian plates. Active subduction is indicated by a north-dipping 

Wadati-Benioff seismic zone extending beneath Crete to a depth of about 200 Km (Le Pichon 

et. al.,, 1979; Knapmeyer and Harjes, 2000). Nowadays the Hellenic arc is associated with 

moderate arc-parallel extension and strong compression perpendicular to it. Subduction at the 

Hellenic subduction zone appears to have been operating continuously since at 26 Ma and 

likely back to 40 Ma (Spakman et al., 1988; Meulenkamp et al., 1988)  

The seismicity of the region provides valuable information on the geometry of the 

subduction zone, the deformation and the stress field in the region. The Aegean Wadati-

Benioff zone has been extensively studied (Knapmeyer, 1997). Benioff zone of Hellenic 

subbuction zone defined between  60 and 160 km depth by means of intermediate depth 

earthquakes. Inside the borders of Hellenic arc and around west and central Crete,  shallow 

events clusters form two NE–SW striking lineaments, one close to the coast of Crete and the 

other at least 150km long which crosses central Crete (Telesca et. Al, 2004, 2007) 
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7.4 Application to South Aegean seismicity until 2003 

The data that used in this study are the interevent times between successive seismic 

events of magnitude M ≥ 3.7, from 1970 to 2003, extracted from the GI-NOA catalogue 

(http://www.gein.noa.gr/services/cat.html). Mc = 3.7 represents the minimum magnitude of 

completeness of both catalogues, evaluated by the Gutenberg–Richter analysis (Gutenberg & 

Richter, 1956). Fig.7.1 shows the epicenter distribution of the earthquakes analyzed.  

 
Figure 7.1 Epicentral distribution of earthquakes (M ≥ 3.7) occurred in southern Aegean area over the 

period 1970–2003. The diamond indicates the largest earthquake of the sequence (M = 6.1) (Telesca 

et.al, 2007). 

 The 1970–2003 seismic sequence is composed by L = 3214 interevent intervals. The 

average and the standard deviation of the interevent times are approximately 5 × 103 min and 

7.7 × 103 min.  
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Figure 7.2. Interevent times between two successive events versus the time occurrence of the 

second event. Red arrow indicates the strongest event. (Telesca et. al., 2007) 

Fig.7.2 shows the interevent times between two successive events versus the time 

occurrence of the second event. The vertical arrow indicates the occurrence time of the largest 

event of the sequence (M = 6.1). Two temporal ranges [(1) & (2)] of the IS can be identified: 

in the region (1) the distribution of the interevent times seems rather varying with relatively 

high mean interevent time, in the region (2) the distribution appears more concentrated around 

a lower value for the mean interevent time. Multiresolution wavelet analysis was selected as 

the tool for the investigation of time fluctuations of the earthquake IS. Based on the 

theoretical definitions on section 7.2 and because there is a relation between the length L of 

the series and the number of scales m (Thurner et.al, 1998) we could investigate up to 11 

scales for the southern Aegean sequence. This is derived from the relation is L = 2a   
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Figure 7.3. σwav(a) for the seismic catalogue of southern Aegean area,  calculated by means of 

different wavelet functions. (Telesca et. al., 2007) 

Fig. 7.3 shows the standard deviation of the wavelet coefficients σwav(m), calculated by 

means of different wavelets. Initially, one can easily identify that there is strong variability of 

the wavelet coefficients. This is depicted by the high value of σwav(a) as the scale increases; 

this is an indication of the strong fluctuations displayed by the IS. In addition, σwav(a) 

increases with the scale a. Lower scales are associated with higher frequency oscillations, 

thus an increase of σwav(a) with the scale indicates that the fluctuations of higher frequency 

are less strong than those of lower frequency. Another observation is that all the wavelet bases 

produce similar results at small scales up to a = 5–6. This can be explained by keeping in 

mind that the wavelet coefficients is given by the relation L/2a  which means that at high 

scales a, the number of wavelet coefficients becomes decreases. This situation produce 

spreading among the standard deviations of different wavelet bases. 
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The time evolution of the σwav(a) is investigated by using a fixed event number 

window (500 events), shifting through the entire series. The same window legth is used for 

the analysis of time variation of the σwav(a) for a = 1, … , 8. Different wavelets bases have 

been used and produced similar results. Fig. 7.4, in the present section shows only the results 

obtained by means of the Daubechies 10 and Haar wavelets. Fig.7.4 through Fig.7.8 shows 

the variation of σwav,m(t) with wav = coif5, db5, db10, dmey, haar for the southern Aegean 

catalogue. In each plot, the strongest earthquake (indicated by the vertical arrow) that 

occurred in the area (M = 6.1) during the period of observation, is reported. The first common 

feature in all the plots is the variability of σwav,a(t). There is significant variability which 

means that there is temporal variability of the multiscale properties of the IS. The second, 

most striking feature is a pattern that is observed in all the plots: mainly at lower scales, the 

major shock of the seismic sequence is associated with a decrease of the temporal evolution 

of the σwav,a(t). Regarding the last scales (a= 7 and a = 8) which correspond to lower 

fluctuations of IS, a more regular and cyclical structure is assumed since there is no such 

sharp decrease as before..  

 

Figure 7.4. Time variation of σcoif5,a with a ranging from 1 to 8. (Telesca et. al., 2007) 
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Figure 7.5. Time variation of σdb5,a with a ranging from 1 to 8. (Telesca et. al., 2007) 

Figure 7.6. Time variation of σdb10,a with a ranging from 1 to 8. (Telesca et. al., 2007) 
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Figure 7.8. Time variation of σdmey,a with a ranging from 1 to 8. (Telesca et. al., 2007) 

 
Figure 7.7. Time variation of σhaar,a with a ranging from 1 to 8. (Telesca et. al., 2007) 
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7.5 Evaluation to South Aegean seismicity after 2003 

In this section we investigate if the results from the previous section hold, for the 

forthcoming seismic sequence (from 2003 up to July 2008) at the same region. A new 

interevent time series between two successive events versus the time occurrence of the second 

event, is generated. This is analyzed by means of the same wavelet bases used before in order 

to investigate the similarity of extracted results. 

The data that used are derived combined from the GI-NOA earthquake catalogue 

(http://www.gein.noa.gr/services/Noa_cat/CAT2003.TXT) and HSNC’s  catalogue, for the 

period from Jan 2003 until July 2008. The epicentre distribution of these events is shown in 

Fig.7.9. The histogram of the number of events versus magnitudes shows a simple distribution 

(Fig.7.10). The maximum in number of earthquakes occurs in the magnitude range 3 to 3.5, 

which is a first indication of the value of Mc of the catalogue. A Gutenberg-Richter analysis is 

performed in order to estimate the minimum magnitude of completeness (Mc). As shown in 

Figure 7.11 the examined catalogue proofs complete for magnitudes higher than 3.2. The Mc 

value is lower than the respective value for the 1970 – 2003 catalogue. This can be explained 

by considering that the last years, the number of seismographs installed in the examined area 

increased, comparing to the number of seismographs were installed during the period 1970 – 

2003. A denser seismological network has the ability to detect earthquakes with lower 

magnitude produced with this way, a catalogue with lower minimum value of completeness. 

 
Figure 7.9 Epicentre distribution of earthquakes (M ≥ 3.2) occurred in southern Aegean area over the 

period 2003–2008. Diamonds indicate the largest earthquakes of the sequence. 
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Figure 7.10 Histogram of the number of events versus the magnitude for the 2003-2008 seismic 

catalogue. Magnitude bins are equal to 0.1 

Figure 7.11 The frequency – magnitude distribution of earthquakes for 2003-2008 catalogue. 

Histogram of the number of events versus the magnitude for the 2003-2008 seismic catalogue.  

 



Brunel University  Chapter 7  
 

George Hloupis  Reg. No: 9725331 
226 

 

Due to this fact, the number L of interevent intervals is also increased. The 2003-2008 

sequence consists of L=3914 intervals as shown in Fig. 7.12 where the three largest 

earthquakes (8/1/2006 M=6.4, 14/2/2008 M=6.2, 14/2/2008 M=6.1 and 15/7/2008 M=6.4) 

indicated by red vertical lines. Instead of examine only the bigger earthquake as before, we 

select the three biggest. This is done in order to check the validity of the proposed method to 

larger data sets which may include more than one major event. This could be useful for the 

case of investigation of temporal patterns in declustered catalogues. 

 

 

Figure 7.12. Interevent times between two successive events versus the time occurrence of the 

second event for the period Jan 2003 until May 2008. Red vertical arrow lines indicates occurrence 

time of strongest events (M > 6.1). 

 

Following the guidelines derived from Fig.7.3 the results from first 8 scales will be 

presented. The wavelet analysis performed using the same wavelets and parameters as in 

previous section. The results are shown in Fig.7.13 through Fig.7.17 
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Figure 7.13. Time variation of σcoif5,a with a ranging from 1 to 8 

 
Figure 7.14. Time variation of σdb5,a with a ranging from 1 to 8. 
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Figure 7.15. Time variation of σdb10,a with a ranging from 1 to 8 

 
Figure 7.16. Time variation of σdmey,a with a ranging from 1 to 8. 
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Figure 7.17. Time variation of σhaar,a with a ranging from 1 to 8.  

 

The results derived from the previous catalogue (1970-2003) also hold here. More 

specific, for all wavelet bases, at scales from 1 to 6 (except dmey wavelet) one can associate 

again the occurrence of the major shock with a decrease in temporal evolution of the σwav,a(t). 

The interesting point in the examined catalogue is that it contains a set of “twin” earthquakes 

(earthquakes that can be associated with the same epicentral area and share very close 

occurrence times). The major decrease of standard deviation of wavelet coefficients exist not 

at the time of the strongest earthquake but at the time where “twin” earthquakes exist.  This 

leads to the possible conclusion that multiresolution wavelet analysis could provide an 

aposteri indicator of the maximum emitted earthquake energy which in some cases could be 

presented by a set of strong earthquakes. This result need further elaboration and is a part of a 

future research plan.  
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7.7 Summary  
In this chapter, the time dynamics of seismicity by means of the temporal variation of 

the wavelet-coefficient standard deviation σwav,a was examined. Initially the seismicity of 

southern Aegean area, during 1970-2003 as a point process, was analyzed. The strongest 

event in the sequence seems to discriminate two different temporal regimes, characterized by 

different dynamics displayed by the wavelet-coefficient standard deviation measure. The 

change from one regime to the other is very sharp at lower scales, corresponding to higher 

frequency fluctuations, due to background seismicity or the high number of aftershock events, 

while smoother at higher scales, corresponding to lower frequency fluctuations which 

correspond to long geodynamic processes. The same analysis provided with the seismicity 

from January 2003 until July 2008 which reveals the same results for background seismicity 

but the sharp change in lower scales occurred when the couple of the strongest earthquakes 

events appeared. Therefore, this method can possibly used to indicate the time occurrence of 

the maximum emitted earthquake energy. 
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8. Conclusions and Recommendations for Future Work 

       Conclusions 

This research focused in the installation of a regional seismological network and 

the applications of wavelets in problems that arise in several stages. Apart from the 

engineering aspects involved for the design, installation, deployment, operation and 

maintenance of seismological network, there are also four original contributions to 

knowledge using wavelets approaches: 

• Identification of disturbing transients in HVSR used for site effect 

characterization during design stage of seismological network. 

• Investigation of best wavelet denoising approaches for seismological 

signals. 

• Application of a wavelet based EEWS in South Aegean capable of 

producing reliable magnitude and epicentral estimates after 5 secs from the 

closest to the event station P-wave arrival. 

• Characterization on the dynamics of South Aegean seismicity catalogue. 

The South Aegean area and especially the area around Crete island is one of 

the most seismically active zones of the world and the most active in East 

Mediterranean. At the end of 2002 the limited number seismological stations that 

covered the area operated by two institutes: GI-NOA and GEOFON. Their combined 

network has an average interstation distance around 180km and only a limited number 

of stations was available for online data transmission. In addition, real time processing 

(event’s source parameter estimation and dissemination of results) was done only at 

GEOFON’s site, in Germany and only for stations that were capable to send their data 

in near real-time. These circumstances produced a fuzzy framework concerning the 

use of seismological network for local interest purposes capable of providing accurate 

in real time estimations. The design of SNC at LGS came to overcome, at least, the 

above limitations. The main goals that described during the design stage of SNC 

were: 

• Dense network coverage 

• Real time data transmission using all possible communication 

combinations 

• Real time data processing at CRC 

• Rapid dissemination of results in different forms 
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• Ability for easy upgrade and concurrent real time processing for the 

evaluation of new algorithms 

The installation of SNC begun at 2003. Each seismological station comprised 

of a high performance DAS with 24bit resolution, capable of storing 40 days of data, 

providing real time data transmission and telemetry, consuming only 2.4W at full 

operation (with 3 channel active sensor, disk writing and continuous data transmission 

and telemetry). 

For the communication to the CRC, a TCP/UDP based protocol, the RTP, is 

selected as proved to be the most appropriate for seismological network purposes. It 

provides the basic functionality as TCP/UDP but it is optimized for seismological data 

transmission aspects such as datagram implementation, expected delays from satellite 

links, recovery from loss of connection without data loss and relatively small 

implementation. All the data links that used compose a VPN fully isolated from non 

certified users but fully accessible using internet to registered users. The data links 

that used were wired and wireless. Wired links installed at locations that were closer 

to 2km from the local PTO’s point of presence. This is dictated because the 

technology that used, ADSL, which in Crete Island performs satisfactory for locations 

up to 2km. The availability survey that performed for year 2007 shows that for 5 from 

6 examined stations we have at least 92% availability. Wireless link using dedicated 

satellite connections used for stations where wired links could not provide the 

expected availability. The parameters of satellite link extracted using as test case the 

worst case scenario which is a future installation at western part of F2 beam of used 

satellite (Hellas-Sat II). The near 100% availability of these links verifies the validity 

of selected installation parameters of satellite link.  

Data collection, event and monitoring, real time processing and dissemination 

of results based on commercial packages that modified to cooperate with additional 

software written by the author. More specific, data collection based on the 

implementation of RTP protocol and provided by the DAS manufacturer (Reftek inc.). 

It is modified by the author to adapt to the specific needs of SNC. A complementary 

(to the one provided by DAS manufacturer) web application is created for event and 

monitoring. This new application has the advantage that is adapted to the type of web 

browser that a certified user runs: other options are available for the certified user that 

uses a desktop or laptop computer to access the SNC while fewer options are 

available for a certified user that uses his cellular phone or palmtop through GPRS. 
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Real time processing is based on the SNDP software. Among other advantages (that 

described in chapter 3), this software has the ability to run processes that produce the 

same result (e.g. magnitude estimation) in parallel providing a unique way to test and 

evaluate different algorithms for the same problem and thus selecting the best one. 

The algorithms of real time estimation of magnitude and epicentral that discussed in 

Chapter 6 are implemented in this way. Finally, the dissemination of results required a 

new set of software modules, written from scratch, since there were no available at the 

SNDP package. These modules are responsible for the creation (after an event 

estimation) of appropriate messages (emails, notification to online bulletin, sms, 

visible and auditive alerts), the update of the corresponding database, the production 

of static as well as dynamic mapping images, the selection of appropriate data 

portions for further analysis and the update of the corresponding web page.  

The second part of this thesis consist of the applications of wavelets for 

specific problems that arised during the operation of SNC. The first problem deals 

with the use of redundant WT for the identification of small amplitude transients on 

HVSR. Since HVSR method is used to estimate site’s characteristics it is obvious that 

was used for seismological’s stations location characterization. HVSR method 

assumes that the ambient noise that uses is stationary because it uses FT to calculate 

the spectra of horizontal and vertical component of ambient noise. Generally, it is 

advised to avoid long duration disturbances (e.g. near source man made or artificial 

noise) since it is expected to contaminate the spectral content of the estimated spectra. 

High amplitude disturbances usually can be detected by STA/LTA algorithm but 

when these disturbances have amplitude comparable to ambient noise it is very 

difficult to identify them (since STA/LTA is an amplitude comparison algorithm). 

The method that proposed is to project the components of ambient noise to wavelet 

domain where the frequency content and its time attributes (start – stop time) can 

easily be identified by an appropriate selection of scales. This process can run as a 

preliminary test to every HVSR survey in order to give the analyst the option to 

initially identified time windows that contain disturbances and then to exclude these 

portions of signal from further analysis. An algorithm implementing the above 

procedure and capable of handling the two common file formats used in HVRS 

surveys (SAF and ASCII) is also presented. 

The next application that investigated is the denoising of seismological signals 

using wavelets. The use of WDM in seismology is shown in Chapter 5, were some 
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successful cases presented. The need for WDM arised from the fact that the 

commonly used filtering schemes in seismological packages introduced unacceptable 

distortions  to P wave arrival leading to at least wrong epicentral estimations. Since 

today, there are many promising WDM. The contribution of this Chapter is to 

investigate the applicability of the latest WDM on the seismological signals. More 

specific, a comparison study, for 20 WDM using 1250 seismograms with different 

SNR is carried out. The result is that every WDM outperforms conventional filtering 

but there is no unique WDM that can perform satisfactory for all the cases. 

For real time data processing a potential for EEWS based on wavelets, is 

proposed. Rapid (4-6 secs after event occurs) determinations are the keystone of a 

successful and reliable EEWS. The use of WT for this application is presented only in 

a couple of studies and for magnitude determination only. In chapter 6, a wavelet 

based EEWS for South Aegean is introduced. The proposed method consists of 

combining wavelet based methods for magnitude and epicentral estimation. More 

specific, the wavelet magnitude estimation by Simmons (2006) is modified and used 

for South Aegean in order to derive a correlation between the amplitude of wavelet 

coefficients and local magnitude. Such a correlation is observed in last two WT scales 

and the appropriate magnitude prediction equations are estimated. For epicentral 

estimation, the proposed method based on the composition of two different 

approaches: the epicentral estimation using two station subbaray (TSS by Rydelek & 

Pujol, 2006) and wavelet azimuth estimation (WAE by Galliana et al., 2004). By 

combining these two methods, as never used before, a epicentral estimation with two 

triggering stations is available with a 5.9
o
 uncertainty. If the event happens outside the 

network, the proposed method has the advantage that uncertainty remains at 5.9
o
 

while in the TSS method the uncertainty increased dramatically. WME and WHE are 

capable to produce reliable results after 5secs which means that are suitable for 

implementation in an EEWS at South Aegean area 

The last application is the use of WT in multiresolution wavelet analysis of 

seismicity. Since the beginning of SNC around 5500 events were recorded and 

identified. This number provides a satisfactory material for the investigation of time 

dynamics of seismicity. The measure that used is the temporal variation of the 

wavelet-coefficient standard deviation σwav,m. Initially the seismicity of southern 

Aegean area, during 1970-2003 as a point process, was analyzed. The strongest event 

in the sequence seems to discriminate two different temporal regimes, characterized 
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by different dynamics displayed by the wavelet-coefficient standard deviation 

measure. The change from one regime to the other is very sharp at lower scales, 

corresponding to higher frequency fluctuations, while smoother at higher scales, 

corresponding to lower frequency fluctuations. The same analysis provided with the 

seismicity from January 2003 until July 2008 which reveals the same results for 

background seismicity but the sharp change in lower scales occurred when the couple 

of the strongest earthquakes events appeared. Therefore, this method can possibly 

used to indicate the time occurrence of the maximum emitted earthquake energy. 

 

      Recommendations for Further Work 

Reviewing the research described in this thesis a number of recommendations 

can be made regarding the further development of the proposed methods as well as a 

suggestion for new research programmes that can now be accomplished thanks to the 

achievement of reliable results from the application of WT to seismological signals: 

� Expansion of the seismological network. Even with the present topology 

the interstation distance in South Aegean combining all operating networks 

is not comparable with networks located in other seismogenic zones (e.g. 

California with 35 km interstation distance, South Italy with 40 km 

interstation distance). Additional stations installations are inevitable if we 

want to test and develop new methodologies for sophisticated EEWS. LGS 

planning 8 new, satellite linked installations until 2010.  

� Implementation of selection algorithm for WDM. As shown in Chapter 5 

there is no unique WDM that fits to all the data. Thus an algorithm capable 

of identifying the quality of incoming data (e.g. SNR, transient detection) 

could be useful for the selection of appropriate WDM. The future 

involvement of Artificial Neural Networks in this procedure, is promising 

� Evaluation of WME. The continuous evaluation of WME is mandatory in 

order to derive the best predicted magnitude equations. For this reason, the 

algorithm of recalculation of best fit equations after every final magnitude 

estimation (by human analyst) must be implemented in the real time 

system. Under this approach, after a human analyst estimates the final 

local magnitude, this value will inserted to the database and then the 

amplitude of wavelet coefficients will be estimated. A new best fit 
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regression will be calculated and the new equations will be used for the 

magnitude prediction of the next event. The future expansion of HSNC 

requires a distance correction factor to the expressions of WME. 

� Investigation of locally applicability of WME. Since the WME produced 

by averages over all stations, it will be interesting to investigate if the same 

relations hold for local (one station) estimations. If this will verified then 

the process of WME could be on site and only the estimated magnitude 

will be sent to CRC. This will decrease the time needed for producing an 

alert since it is easier to transfer an alert through a link rather than the data 

needed to estimate at CRC this alert. 
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Appendix B 

Results from ambient noise surveys at stations’ locations 
 

 

 
Figure B1: Station CHAN 

 
Figure B2: Station KTHR 

 

 

Figure B3: Station KNDR 

 
Figure B4 :Station STIA 
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Figure B5: Station HERA 

 
Figure B6: Station GVDS 

 

Figure B7: Station PRNS 

 
Figure B8: Station KLDN 
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Appendix C: Satellite Link Specifications 

 
Digital Link Budget 

Thursday, July 03, 2006 

Service Name HUB to Remotes Channel 

Coverage South Greece 

Uplink earth station Chania, Greece 

Downlink earth station Rodhos, Greece 

Satellite name Hellas Sat 2 

 

Link Input Parameters  Up  Down  Units 

Site latitude 35.37N 36.40N degrees 

Site longitude 24.48E 28.25E degrees 

Site altitude 0.5 0.5 km 

Frequency 14 12 GHz 

Polarization Vertical Horizontal  

Rain model ITU (29.5) ITU (40.3) (mm/h or zone) 

Availability (average year) 99.89 99.91 % 

Antenna aperture 2.4 1.2 metres 

Antenna efficiency / gain 65 65 % (+ prefix dBi) 

Coupling loss 1 0.5 dB 

Antenna tracking / mispoint error 1 0.2 dB 

LNB noise figure / temp  1 dB (+ prefix K) 

Antenna noise  30 K 

Adjacent carrier interference 28 28 dB 

Adjacent satellite interference 26 26 dB 

Cross polarization interference 28 28 dB 

Uplink station HPA output back-off 3  dB 

Number of carriers / HPA 1   

HPA C/IM (up) 30  dB 

Uplink power control 0  dB 
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Uplink filter truncation loss 0  dB 

 

Calculations at Saturation  Value  Units 

Gain 1m^2 44.38 dB/m2 

Uplink C/No 103.72 dB.Hz 

Downlink C/No 94.50 dB.Hz 

Total C/No 94.01 dB.Hz 

Uplink EIRP for saturation 77.34 dBW 

General Calculations  Up  Down  Units 

Elevation 46.12 46.26 degrees 

True azimuth 155.90 162.26 degrees 

Compass bearing 152.70 158.62 degrees 

Path distance to satellite 37333.23 37323.27 km 

Propagation time delay 0.124530 0.124497 seconds 

Antenna efficiency 65.00 65.00 % 

Antenna gain 49.06 41.70 dBi 

Availability (average year) 99.89 99.91 % 

Link downtime (average year) 9.643 7.889 hours 

Availability (worst month) 99.582 99.649 % 

Link downtime (worst month) 3.052 2.563 hours 

Spectral power density -56.57 -27.85 dBW/Hz 

Uplink Calculation  Clear  Rain Up  Rain Dn  Units 

Uplink transmit EIRP 41.67 41.67 41.67 dBW 

Transponder input back-off (total) 9.00 9.00 9.00 dB 

Input back-off per carrier 35.67 36.85 35.67 dB 

Mispoint loss 1.00 1.00 1.00 dB 

Free space loss 206.81 206.81 206.81 dB 

Atmospheric absorption 0.11 0.11 0.11 dB 

Tropospheric scintillation fading 0.29 0.29 0.29 dB 

Atmospheric losses total 0.41 0.41 0.41 dB 

Total path loss (excluding rain) 207.22 207.22 207.22 dB 
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Rain attenuation 0.00 1.19 0.00 dB 

Uplink power control 0.00 0.00 0.00 dB 

Uncompensated rain fade 0.00 1.19 0.00 dB 

C/No (thermal) 68.05 66.87 68.05 dB.Hz 

C/N (thermal) 18.87 17.69 18.87 dB 

C/ACI 28.00 26.81 28.00 dB 

C/ASI 26.00 24.81 26.00 dB 

C/XPI 28.00 26.81 28.00 dB 

C/IM 30.00 30.00 30.00 dB 

Eb/(No+Io) 15.07 13.93 15.07 dB 

Downlink Calculation  Clear  Rain Up  Rain Dn  Units 

Satellite EIRP total 52.00 52.00 52.00 dBW 

Transponder output back-off (total) 4.00 4.00 4.00 dB 

Output back-off per carrier 30.67 31.85 30.67 dB 

Satellite EIRP per carrier 21.33 20.15 21.33 dBW 

Mispoint loss 0.20 0.20 0.20 dB 

Free space loss 205.47 205.47 205.47 dB 

Atmospheric absorption 0.09 0.09 0.09 dB 

Tropospheric scintillation fading 0.29 0.29 0.29 dB 

Atmospheric losses total 0.38 0.38 0.38 dB 

Total path loss (excluding rain) 205.85 205.85 205.85 dB 

Rain attenuation 0.00 0.00 1.39 dB 

Noise increase due to precipitation 0.00 0.00 1.78 dB 

Downlink degradation (DND) 0.00 0.00 3.16 dB 

Total system noise 133.36 133.36 200.73 K 

Figure of merit (G/T) 19.75 19.75 17.98 dB/K 

C/No (thermal) 63.84 62.65 60.67 dB.Hz 

C/N (thermal) 14.65 13.47 11.49 dB 

C/ACI 28.00 26.81 28.00 dB 

C/ASI 26.00 24.81 26.00 dB 

C/XPI 28.00 26.81 28.00 dB 
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C/IM 18.00 16.81 18.00 dB 

Eb/(No+Io) 10.53 9.35 8.34 dB 

Totals per Carrier (End-to-End)  Clear  Rain Up  Rain Dn  Units 

C/No (thermal) 62.44 61.25 59.94 dB.Hz 

C/N (thermal) 13.26 12.07 10.76 dB 

C/ACI 24.99 23.80 24.99 dB 

C/ASI 22.99 21.80 22.99 dB 

C/XPI 24.99 23.80 24.99 dB 

C/IM 17.73 16.61 17.73 dB 

C/(No+Io) 60.41 59.23 58.68 dB.Hz 

C/(N+I) 11.23 10.05 9.50 dB 

Eb/(No+Io) 9.22 8.05 7.50 dB 

System margin 2.00 2.00 2.00 dB 

Net Eb/(No+Io) 7.22 6.05 5.50 dB 

Required Eb/(No+Io) 5.50 5.50 5.50 dB 

Excess margin 1.72 0.55 0.00 dB 

Earth Station Power Requirements  Value  Units 

EIRP per carrier 41.67 dBW 

Antenna gain 49.06 dBi 

Antenna feed flange power per carrier -7.39 dBW 

Uplink power control 0.00 dB 

HPA output back off 3.00 dB 

Waveguide loss 1 dB 

Filter truncation loss 0 dB 

Number of HPA carriers 1  

Total HPA power required -3.3878 dBW 

Required HPA power capability 0.4584 W 

Spectral power density -56.57 dBW/Hz 

Space Segment Utilization  Value  Units 

Overall link availability 99.800 % 

Information rate (inc overhead) 0.1313 Mbps 
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Transmit rate 0.1656 Mbps 

Symbol rate 0.0828 Mbaud 

Occupied bandwidth 0.0994 MHz 

Noise bandwidth 49.18 dB.Hz 

Minimum allocated bandwidth required 0.1076 MHz 

Allocated transponder bandwidth 0.1100 MHz 

Percentage transponder bandwidth used 0.31 % 

Used transponder power 21.33 dBW 

Percentage transponder power used 0.22 % 

Max carriers by transponder bandwidth 327.27  

Max carriers by transponder power 464.14  

Max transponder carriers limited by:- Bandwidth [327.27] 

 

 

Digital Link Budget 

Thursday, July 03, 2006 

Service Name Remotes to HUB Channel 

Coverage South Greece 

Uplink earth station Rodhos, Greece 

Downlink earth station Chania, Greece 

Satellite name Hellas Sat 2 

 

Link Input Parameters  Up  Down   Units 

Site latitude 36.40N 35.37N  degrees 

Site longitude 28.25E 24.48E  degrees 

Site altitude 0.4 0.5  km 

Frequency 14 12  GHz 

Polarization Horizontal Vertical   

Rain model ITU (40.3) ITU (29.5)  (mm/h or zone) 

Availability (average year) 99.88 99.92  % 

Antenna aperture 1.2 2.4  metres 
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Antenna efficiency / gain 65 65  % (+ prefix dBi) 

Coupling loss 0.2 0.5  dB 

Antenna tracking / mispoint error 0.5 0.5  dB 

LNB noise figure / temp  1  dB (+ prefix K) 

Antenna noise  30  K 

Adjacent carrier interference 28 28  dB 

Adjacent satellite interference 26 26  dB 

Cross polarization interference 28 28  dB 

Uplink station HPA output back-off 2   dB 

Number of carriers / HPA 1    

HPA C/IM (up) 60   dB 

Uplink power control 0   dB 

Uplink filter truncation loss .2   dB 

Required HPA power capability MIN   W 

 

Satellite Input Parameters  Value  Units 

Satellite longitude 39.00E degrees 

Transponder type TWTA  

Receive G/T 6 dB/K 

Saturation flux density -86.5 dBW/m2 

Satellite attenuator pad 0 dB 

Satellite ALC 0 dB 

EIRP (saturation) 52 dBW 

Transponder bandwidth 36 MHz 

Input back off total 9 dB 

Output back off total 4 dB 

Intermodulation interference 18 dB 

Number of transponder carriers AUTO  

 

Carrier/Link Input Parameters  Value  Units 

Modulation 4-PSK  



Brunel University  Appendix C 

George Hloupis                  Reg. No: 9725331 

260 
 

Required bit error rate performance 10^-8  

Required Eb/No without FEC coding 11.97 dB 

Required Eb/No with FEC coding 5.5 dB 

Information rate 0.128 Mbps 

Overhead 35 % 

FEC code rate 0.793  

Spreading gain 0 dB 

Reed Solomon code 1  

(1 + Roll off factor) 1.2  

Carrier spacing factor 1.3  

Bandwidth allocation step size 0.01 MHz 

System margin 2 dB 

 

Calculations at Saturation  Value  Units 

Gain 1m^2 44.38 dB/m2 

Uplink C/No 103.72 dB.Hz 

Downlink C/No 100.22 dB.Hz 

Total C/No 98.62 dB.Hz 

Uplink EIRP for saturation 76.84 dBW 

 

General Calculations  Up  Down  Units 

Elevation 46.26 46.12 degrees 

True azimuth 162.26 155.90 degrees 

Compass bearing 158.62 152.70 degrees 

Path distance to satellite 37323.27 37333.23 km 

Propagation time delay 0.124497 0.124530 seconds 

Antenna efficiency 65.00 65.00 % 

Antenna gain 43.04 47.72 dBi 

Availability (average year) 99.88 99.92 % 

Link downtime (average year) 10.519 7.013 hours 

Availability (worst month) 99.549 99.683 % 
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Link downtime (worst month) 3.292 2.313 hours 

Spectral power density -54.45 -31.25 dBW/Hz 

 

Uplink Calculation  Clear  Rain Up  Rain Dn  Units 

Uplink transmit EIRP 38.96 38.96 38.96 dBW 

Transponder input back-off (total) 9.00 9.00 9.00 dB 

Input back-off per carrier 37.88 39.59 37.88 dB 

Mispoint loss 0.50 0.50 0.50 dB 

Free space loss 206.81 206.81 206.81 dB 

Atmospheric absorption 0.11 0.11 0.11 dB 

Tropospheric scintillation fading 0.30 0.30 0.30 dB 

Atmospheric losses total 0.41 0.41 0.41 dB 

Total path loss (excluding rain) 207.22 207.22 207.22 dB 

Rain attenuation 0.00 1.71 0.00 dB 

Uplink power control 0.00 0.00 0.00 dB 

Uncompensated rain fade 0.00 1.71 0.00 dB 

C/No (thermal) 65.84 64.14 65.84 dB.Hz 

C/N (thermal) 15.47 13.76 15.47 dB 

C/ACI 28.00 26.29 28.00 dB 

C/ASI 26.00 24.29 26.00 dB 

C/XPI 28.00 26.29 28.00 dB 

C/IM 60.00 60.00 60.00 dB 

Eb/(No+Io) 12.67 10.97 12.67 dB 

Downlink Calculation  Clear  Rain Up  Rain Dn  Units 

Satellite EIRP total 52.00 52.00 52.00 dBW 

Transponder output back-off (total) 4.00 4.00 4.00 dB 

Output back-off per carrier 32.88 34.59 32.88 dB 

Satellite EIRP per carrier 19.12 17.41 19.12 dBW 

Mispoint loss 0.50 0.50 0.50 dB 

Free space loss 205.47 205.47 205.47 dB 

Atmospheric absorption 0.09 0.09 0.09 dB 
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Tropospheric scintillation fading 0.29 0.29 0.29 dB 

Atmospheric losses total 0.38 0.38 0.38 dB 

Total path loss (excluding rain) 205.85 205.85 205.85 dB 

Rain attenuation 0.00 0.00 1.00 dB 

Noise increase due to precipitation 0.00 0.00 1.40 dB 

Downlink degradation (DND) 0.00 0.00 2.41 dB 

Total system noise 133.36 133.36 184.18 K 

Figure of merit (G/T) 25.47 25.47 24.07 dB/K 

C/No (thermal) 67.34 65.64 64.94 dB.Hz 

C/N (thermal) 16.97 15.26 14.57 dB 

C/ACI 28.00 26.29 28.00 dB 

C/ASI 26.00 24.29 26.00 dB 

C/XPI 28.00 26.29 28.00 dB 

C/IM 18.00 16.29 18.00 dB 

Eb/(No+Io) 11.80 10.10 10.48 dB 

Totals per Carrier (End-to-End)  Clear  Rain Up  Rain Dn  Units 

C/No (thermal) 63.52 61.81 62.36 dB.Hz 

C/N (thermal) 13.15 11.44 11.98 dB 

C/ACI 24.99 23.28 24.99 dB 

C/ASI 22.99 21.28 22.99 dB 

C/XPI 24.99 23.28 24.99 dB 

C/IM 18.00 16.29 18.00 dB 

C/(No+Io) 61.58 59.88 60.80 dB.Hz 

C/(N+I) 11.21 9.50 10.43 dB 

Eb/(No+Io) 9.21 7.50 8.43 dB 

System margin 2.00 2.00 2.00 dB 

Net Eb/(No+Io) 7.21 5.50 6.43 dB 

Required Eb/(No+Io) 5.50 5.50 5.50 dB 

Excess margin 1.71 0.00 0.93 dB 

Earth Station Power Requirements  Value  Units 

EIRP per carrier 38.96 dBW 



Brunel University  Appendix C 

George Hloupis                  Reg. No: 9725331 

263 
 

Antenna gain 43.04 dBi 

Antenna feed flange power per carrier -4.08 dBW 

Uplink power control 0.00 dB 

HPA output back off 2.00 dB 

Waveguide loss 0.2 dB 

Filter truncation loss .2 dB 

Number of HPA carriers 1  

Total HPA power required -1.6772 dBW 

Required HPA power capability 0.6796 W 

Spectral power density -54.45 dBW/Hz 

Space Segment Utilization  Value  Units 

Overall link availability 99.800 % 

Information rate (inc overhead) 0.1728 Mbps 

Transmit rate 0.2179 Mbps 

Symbol rate 0.1090 Mbaud 

Occupied bandwidth 0.1307 MHz 

Noise bandwidth 50.37 dB.Hz 

Minimum allocated bandwidth required 0.1416 MHz 

Allocated transponder bandwidth 0.1500 MHz 

Percentage transponder bandwidth used 0.42 % 

Used transponder power 19.12 dBW 

Percentage transponder power used 0.13 % 

Max carriers by transponder bandwidth 240.00  

Max carriers by transponder power 772.30  

Max transponder carriers limited by:- Bandwidth [240.00] 
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Appendix D: Network Topology of Central Recording Centre 
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Appendix E: Installations 

 
 

  

 
 

Figure E.1: KSTL seismological station 

 

 

 
 

 

Figure E.2: FRMA seismological station 
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Figure E.3: GVDS seismological station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.4: KTHR seismological station 
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Figure E.5: Central Recording Centre 
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Appendix F : Result from synthetic signals’ denoising  

 

  Index NL-DTWT SCAD HS CV-H CV-S RHT-S TI-H TI-S 

1 RS1 -2.5 -2.00 -3.00 -3.38 -2.94 -3.16 -4.00 -3.50 

2 CL1 5.47 5.23 6.07 5.56 5.51 6.11 7.12 6.59 

3 RQ1 25.81 26.00 24.67 29.90 27.86 27.60 34.45 29.56 

4 GN1 8.79 8.90 10.89 10.21 9.50 10.56 12.87 11.88 

5 RS2 6.78 7.20 6.81 6.87 6.82 6.71 7.87 7.34 

6 CL2 8.39 6.78 9.36 12.35 10.37 9.84 12.10 10.73 

7 RQ2 9.3 9.10 8.76 9.05 9.18 9.57 11.76 10.26 

8 GN2 6.18 6.00 7.23 5.90 5.75 6.87 8.45 7.84 

9 RS3 6.21 6.10 6.60 7.34 6.45 6.60 7.98 7.29 

10 CL3 14.55 15.20 15.56 13.26 13.24 15.24 16.02 15.79 

11 RQ3 18.49 17.80 17.28 21.42 19.00 18.72 21.91 19.60 

12 GN3 16.54 16.00 17.94 19.35 17.09 17.64 19.87 18.90 

13 RS4 9.51 8.65 10.41 9.09 9.54 10.88 12.87 11.64 

14 CL4 24.56 24.58 25.55 22.10 23.93 26.24 28.87 27.21 

15 RQ4 11.56 12.45 11.43 14.12 13.17 12.79 14.67 13.05 

16 GN4 28.98 29.02 30.20 29.44 29.96 30.08 31.38 29.32 

17 RS5 11.35 12.45 12.05 11.53 11.73 12.97 14.56 12.67 

18 CL5 13.99 15.06 14.45 11.11 13.21 14.48 17.88 15.39 

19 RQ5 12.98 14.67 13.17 14.55 14.49 14.04 15.76 13.77 

20 GN5 12.89 13.87 14.20 11.08 12.61 13.53 14.52 13.67 

21 RS6 16.85 15.68 16.68 14.47 16.48 17.74 19.01 16.99 

22 CL6 17.54 18.98 19.18 19.94 19.73 19.21 19.95 18.63 

23 RQ6 38.15 22.45 28.86 33.62 37.77 36.00 42.54 34.00 

24 GN6 18.85 18.07 19.71 20.78 20.86 20.52 21.34 19.55 

25 RS7 22.15 23.45 22.24 20.40 23.00 23.58 25.67 22.82 

26 CL7 37.89 38.02 39.52 32.99 38.31 39.21 41.40 38.53 

27 RQ7 29.87 30.06 28.54 27.04 30.76 32.07 32.45 30.49 

28 GN7 20.14 20.45 22.49 21.82 22.68 23.55 24.53 23.51 

29 RS8 38.78 32.56 36.60 37.44 41.20 38.80 39.91 38.26 

30 CL8 41.56 38.90 41.87 44.74 46.65 44.71 44.60 43.23 

31 RQ8 40.25 42.66 39.48 49.06 48.28 42.78 45.01 42.25 

32 GN8 45.68 43.54 46.26 40.87 46.78 46.67 48.98 46.89 

33 RS9 34.25 34.60 32.79 28.53 33.93 35.30 34.02 33.40 

34 CL9 38.14 36.06 38.42 41.47 43.03 40.20 39.12 36.77 

35 RQ9 32.54 33.55 33.55 28.62 33.06 33.25 33.55 33.00 

Table A.1.  SNR Results  
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 Index NL-DTWT BL-A BL-T NBL FDR-H FDR-S BHT 

1 RS1 -2.5 -2.85 -3.72 -3.98 -2.82 -3.27 -4.10 

2 CL1 5.47 5.83 6.45 6.78 5.72 5.80 6.98 

3 RQ1 25.81 27.14 29.96 32.32 27.04 28.24 32.12 

4 GN1 8.79 9.28 10.22 12.01 9.38 10.53 11.98 

5 RS2 6.78 6.89 7.41 6.54 6.58 6.76 7.07 

6 CL2 8.39 8.98 12.39 11.76 9.27 10.92 11.98 

7 RQ2 9.3 9.37 10.05 10.65 9.15 9.20 11.93 

8 GN2 6.18 6.06 6.34 7.20 6.47 6.58 8.01 

9 RS3 6.21 6.48 7.57 6.99 6.28 6.95 7.40 

10 CL3 14.55 15.12 15.17 15.60 14.26 13.86 15.97 

11 RQ3 18.49 18.29 20.44 20.40 18.27 19.44 20.91 

12 GN3 16.54 15.93 17.89 18.43 16.87 18.16 19.02 

13 RS4 9.51 9.81 10.76 11.08 10.07 9.91 11.51 

14 CL4 24.56 25.05 24.46 26.00 24.17 23.55 22.45 

15 RQ4 11.56 12.08 13.65 13.45 11.77 12.88 13.65 

16 GN4 28.98 26.89 28.52 28.04 29.01 27.91 29.02 

17 RS5 11.35 12.54 13.48 13.56 11.92 11.52 14.50 

18 CL5 13.99 14.20 14.55 13.55 14.32 12.70 16.42 

19 RQ5 12.98 13.39 14.67 13.86 13.51 13.44 14.98 

20 GN5 12.89 12.58 12.16 13.51 13.07 11.82 14.01 

21 RS6 16.85 16.63 17.84 17.02 17.09 15.01 18.99 

22 CL6 17.54 18.50 21.26 18.99 18.74 18.29 19.85 

23 RQ6 38.15 32.77 38.16 41.00 35.27 32.13 43.09 

24 GN6 18.85 17.77 20.84 19.93 19.29 19.12 22.95 

25 RS7 22.15 23.36 24.43 24.00 23.27 20.59 25.01 

26 CL7 37.89 38.71 39.87 40.23 38.61 34.11 40.34 

27 RQ7 29.87 29.97 30.79 32.98 30.55 27.42 34.56 

28 GN7 20.14 20.71 21.61 25.67 21.50 21.57 22.49 

29 RS8 38.78 37.70 42.38 41.01 39.56 35.98 40.01 

30 CL8 41.56 41.49 48.73 44.00 42.89 41.75 45.06 

31 RQ8 40.25 41.05 47.43 44.34 43.35 43.20 44.96 

32 GN8 45.68 42.91 44.36 48.08 45.41 41.84 49.88 

33 RS9 34.25 34.37 34.38 33.56 34.70 29.54 33.80 

34 CL9 38.14 38.07 44.45 40.02 39.42 37.05 39.97 

35 RQ9 32.54 32.18 31.90 33.67 33.67 29.38 34.01 

Table A.2.  SNRp Results  

 

 

 




