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ABSTRACT 
Objective  During feeding there is an integrated ‘whole body’ response which 
endeavours to maintain energy homeostasis.  The integrated response consists of sensory, 
postingestive, postabsorptive and cognitive feedback which exerts control over ingestive 
behaviour.  It is accepted that when an imbalance in this integrated response occurs and 
may promote an increased fat mass and ultimately can lead to obesity which is known to 
play an important role in the development of IGT and type 2 diabetes.  This study 
investigated the integrated responses of a test meal to determine any differences between 
IGT, type 2 diabetics and controls in their integrated response mechanisms.  This 
knowledge may be important in both predicting the onset of these diseases and in the 
treatment of them.   
Research Design and Methods  IGT and type 2 diabetics with a BMI greater than 30 
and were recruited together with a group of healthy controls. The study assessed habitual 
energy intakes and energy expenditure in all groups.  All participants’ height, weight, 
BMI and WHR were measured.  A taste test assessed the sensory component of food 
intake.  The metabolic response and parallel changes in appetite to the meal were 
recorded at baseline and at 15, 30, 60, 90 and 120 minutes.      
Results  Control participants had significantly lower weight (p<0.01), BMI (p<0.01), 
waist (p<0.01) and hip (p<0.01) measurements compared to IGT and the type 2 diabetic 
groups.  Habitual diet diaries indicated a lower sugar intake in the type 2 diabetic group 
compared with IGT and control groups.  Percentage protein intake was significantly 
lower in control participants (14.4%, p<0.05) compared to IGT (17.2%) and type 2 
diabetics (18.5%).  Activity diaries highlighted an indication of increased 
strenuous/physical activity in the control participants compared to IGT participants 
however, this was not statistically significant.  The control group showed greater 
sensitivity to PROP followed by type 2 diabetics and then IGT participants (p<0.05).  
Throughout the study the control participants rated themselves the most hungry compared 
to IGT (p<0.05) and type 2 diabetics (p<0.01) respectively and controls were also the 
least satiated (p<0.05).  There was no difference in fullness ratings.  Control participants 
rated prospective consumption the highest compared to IGT and then type 2 diabetics 
(p<0.05) respectively.  The differences in EE measured by calorimetry when normalised 
for body weight indicated that IGT (p<0.01) and type 2 diabetic participants (p<0.01) had 
significantly lower EE than control participants.  CHO oxidation rates were significantly 
lower in IGT and type 2 diabetics (p<0.05). Investigating the blood parameters showed 
no differences in plasma ghrelin responses, that IGT participants had the highest overall 
plasma glucose (p<0.01) and insulin (p<0.05) responses.  
Conclusions  It is clear that there are subtle differences in the pathways of energy 
balance in IGT and type 2 diabetics compared to controls; including sensitivity to taste, 
subjective feelings of appetite, EE, oxidation rates and differing blood parameters.  Taste 
appears to be an important contributor to the sensory control of food intake and is 
associated with an increased sugar intake.  Furthermore, differences between IGT and 
type 2 diabetics demonstrate that the degree of management of the disease can influence 
the effectiveness of the metabolic pathways controlling food intake.  It is not clear which 
component is the most influential in the control of food intake and it is likely that the 
synergistic effects are what potentiate the diseases and make them difficult to combat.  
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CHAPTER 1 - INTRODUCTION 

 

1.1 FOOD INTAKE AND ENERGY BALANCE 

 

Food or energy intake is regulated by the balance of physiological mechanisms 

responsible for promoting and inhibiting intake.  This process of energy intake is 

dictated by energy requirements i.e. metabolism and physical activity which regulates 

energy expenditure.  Energy balance is thus achieved when energy intake equals 

energy expenditure.  Energy intake, a result of feeding behaviour, is regulated by the 

constant circulation of neural and hormonal (neuro-endocrine) signals and the changes 

in signalling as a consequence of intake.  Such signals are received decoded and acted 

on by appropriate tissues resulting in energy homeostasis.  The physiological systems 

involved include gastrointestinal, cardiovascular, brain, and musculoskeletal and are 

responsible for the maintenance of this complex underplay of communication.  Such 

co-ordination should ensure an appropriate supply of nutrients and the regulation of 

the episodic pattern of eating.   

 

The motivation to feed is crucial in the homeostatic control of feeding behaviour and 

is regulated centrally by two key areas, the brain stem and the arcuate nucleus (ARC) 

of the hypothalamus (Park and Bloom 2005).  The ARC receives input from the 

periphery; including incretins and hormones released during and after feeding, such as 

leptin, ghrelin, cholecystokinin (CCK), neuropeptide Y (NPY) and insulin; and other 

parts of the brain.  Within the ARC there are two interconnecting collections of 

neurons, one having a positive influence and one having a negative influence, which 
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project to the paraventricular nucleus (PVN) where the regulation of food intake and 

energy expenditure is controlled.  The homeostatic control of feeding behaviour 

should be sensitive enough to ensure that energy intake meets expenditure and 

maintains energy balance.  In disease states where neuro-endocrine regulation is 

disrupted then energy homeostasis fails.  This includes disease states such as IGT and 

type 2 diabetes.   In a similar manner to positive and negative balance of inputs 

maintaining energy homeostasis Blundell et al (2001) described appetite as a balance 

between excitatory and inhibitory processes.  The excitatory processes being ‘hunger’ 

which arises from bodily energy needs and the inhibitory process being ‘fullness’ 

which arises from postingestive physiological processing of foods consumed and 

results in satiety; the process in which further food intake is inhibited.  Both 

excitatory and inhibitory processes can be modulated by neuro-endocrine signals 

arising from the body’s energy stores.  The need to seek food arises by metabolic 

processing and is given direction through specific sensory systems, such as smell and 

taste and is driven by metabolic demand  (Freidman 1995).  

 

Current trends indicate that control of energy intake and levels of energy expenditure 

can significantly diverge so that chronic high levels of imbalance between these 

mechanisms can occur; which is either recognised as a result of low physical activity 

levels; increased energy intake; or a combination of the two (McGough 2001).  The 

resultant energy imbalance indicates that dysfunction of mechanisms that dictate 

food/energy intake are not tightly coupled with energy expenditure and therefore 

promote expansion of fat mass leading to overweight and obesity (Stubbs 1998).  

Increased fat mass and adipose tissue, in recent years, has been implicated in 

promoting an inflammatory response (Chandalia and Abate 2007).  The process of 
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increased fat mass results in decreasing concentrations of long chain polyunsaturated 

fatty acids (LCPUFA) and has a negative feedback control on inflammation  (Das 

2007).  Under normal conditions LCPUFA help to promote the mechanisms 

responsible for regulating food intake by potentiating insulin action and shifting leptin 

action.  When the actions of insulin and leptin are dysfunctional they contribute to the 

development of metabolic syndrome by promoting the inflammation process.  

Markers of inflammation are elevated in subjects with obesity, insulin resistance, type 

2 diabetes and IGT intimating that metabolic syndrome is a low-grade inflammatory 

condition (Das 2007).  Food intake is such a key element in the prevention and 

treatment of IGT and type 2 diabetes because, as discussed earlier, an imbalance can 

lead to obesity therefore, it is important to understand how the inflammatory process 

is influenced by poor dietary choices and chronic overeating.  Research therefore 

centers on the energy intake side of the energy balance equation (energy balance = 

energy intake (EI) – energy expenditure (EE)) because of the many 

factors/mechanisms which influence food intake.  However, a significant point to 

remember is that exercise is anti-inflammatory in nature suggesting that symptoms of 

the metabolic syndrome can be counteracted. 

  

 1.2 THE INFLUENCE OF TASTE IN THE CONTROL OF FOOD INTAKE 

 

One of the key mechanisms responsible for the promotion of energy intake and 

encouraging food ingestion is taste.  Promotion of food intake occurs due to the 

palatability of food (Yeomans et al.  2005) and the sensitivity of the mouth in relaying 

the attributes of the palatable food.  Palatability increases appetite and therefore food 

consumption, whereas satiety limits consumption by reducing meal size or by 
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delaying the time of the next meal (Drewnowski 1998).  Measures of palatability 

include the perceived pleasantness of a given food, intent to eat, and the amount of 

food consumed (Drewnowski 1997b).  Finally, sensory-specific satiety was 

specifically defined as reduced palatability of the just-consumed food relative to other 

foods (Rolls 1985).  Due to the opposing effects of palatability and satiety, the most 

palatable foods are by definition the least satiating, and vice versa.  Therefore, taste 

can either increase food intake or decrease it depending on the palatability of the food 

type.  Furthermore, the palatability of one food being consumed can decrease while 

simultaneously the palatability of another food increases.  For example, Snoek et al 

(2004) reported that while eating sausages, the liking for sausages strongly declined at 

the same time that the liking for other savoury foods declined to a lesser degree, and 

the liking for sweet foods increased.  The decrease in liking of a particular food is also 

associated with reduced intake of that particular food in a subsequent meal (Snoek et 

al.  2004).  Some researchers have argued that the palatability of sugar and fat 

overrides normal satiety signals, thereby leading to overconsumption and weight gain 

(Green and Blundell 1996).  Furthermore, Drewnowski and Levine (2003) found that 

a continued high fat diet affects the circuitry in the brain involving appetite, reward 

(opiate) and energy metabolism.  Sensory specific satiety is said to occur straight after 

consumption of that food, therefore before any opportunity for digestion and 

absorption of the food and so it is specific to the sensory aspects of the food i.e. 

texture, colour and flavour (Rolls 1997).  The manipulations that occur in feeding 

behaviour as a result of palatability, sensory specific satiety and taste may also affect 

energy expenditure by negatively changing the efficiency of energy utilisation. 
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Therefore taste is a fundamental influencing component of food intake.  The 

mechanisms regulating taste suggest physiological, psychological and also genetic 

factors in the homeostatic control of food intake.  Taste sensations serve as an 

indicator of a food’s nutritional value and are important in the development of food 

preferences as well as driving appetite.  Human and animal experiments show that 

there is a learned association of a food’s taste with its postingestive effects including 

salivary, gastric, pancreatic, and intestinal secretions (Booth 1982; Warwick et al.  

1990). These associations permit modulations of food choice and/or meal size, and 

will therefore initiate fullness, in anticipation of these postingestive effects.   

Therefore, it is logical to propose that eating behaviour will be directed towards foods 

which have obvious energy value i.e. sweet or fatty foods (Blundell 1991; Schiffman 

1998) which elevate opiate levels, giving a pleasurable effect.  In general most 

humans possess a strong liking for the sweet taste of foods and for fatty texture.  The 

term taste involves many sensory experiences including true taste i.e. the perception 

the primary tastes of salt, sweet, sour and bitter, retronasal olfaction i.e. the perception 

of olfactory stimuli from within the oral cavity, and oral somato-sensation which 

refers to the perception of touch, temperature and pain.  The ability to taste sweetness 

and bitterness varies.  The variability is thought to be associated with the density of 

fungiform papillae on the tongue (Drewnowski 1997).  Furthermore, taste can also be 

influenced by disease states such as exposure to pathogens; trauma and infection; 

malnutrition; medication; surgical interventions and aging.  For example the chorda 

tympani nerve functions in taste sensation and innervates taste buds of the tongue, and 

in turn interacts with signals associated with ingestive and digestive activity in the 

processing area within the dorsal medulla (Bartoshuk 2000).  Damage to this nerve 

may cause poor taste sensitivity on the anterior tongue and may also affect oral 
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somato-sensations due to inhibited nerve action (Dinehart et al.  2006).  Poor taste 

sensitivity can result in altered food choices.   

 

1.2.1 The Relationship between Taste and Age 
 
 
 
It is known that the CNS has a minute to minute dependence on nutrient supply and so 

can profoundly affect dietary intake.  Current theories describe functions of brain 

receptors for cholecystokinins, opioid-like endorphins, and serotonin that appear to 

influence eating behaviour and satiety (Selhub et al. 2000).  So altered eating 

behaviour and/or declining appetite, due to taste, may lead to nutritional deficiencies.  

Epidemiological evidence linking low vitamin status or intake with a decline in 

neurocognitive function in the elderly was first described by Goodwin et al (1983). 

These authors showed that healthy elderly subjects who had low blood concentrations 

or intakes of folate, vitamin B-12, vitamin C, and riboflavin scored poorly on tests of 

memory and nonverbal abstract thinking.  However, the importance of these 

observations with respect to declining appetite in the elderly is uncertain.  Sensory 

impairments may be associated with decreased appetite in older individuals including, 

declining olfactory function which may impair flavour perception and lead to a 

decreased appetite or changes in food choices. Rolls and McDermott (1991) studied 

the effects of age on sensory-specific satiety in older adults (45-60 years) and the 

elderly (65-80 years).  Rolls hypothesised that sensory specific satiety is attenuated in 

the elderly which causes them to consume a more mundane diet and therefore to eat 

less which the hypothesised that the elderly compensated for by adding flavour to 

their food.  Both Fanelli and Stevenhagen (1985) and Brown (1976) found that dietary 

variety was found to decline in the oldest participants (>65).  However, Rolls found 
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no decline in sensory specific satiety in the older and elderly participants which 

suggests that the mechanisms underlying taste are not well understood.  The 

relationship between taste and age needs further investigation.  However, analysing 

the literature surrounding the relationship between taste and age gave definition to the 

age range identifiable for the current study.     

 

1.2.2 The Genetic Sensitivity of Taste 

 

Poor sensitivity to specific taste was identified as ‘Taste Blindness’ by Fox (1931) 

who later went on to record the taste qualities of phenythiocarbamide (PTC), a bitter 

compound with the N-C=S group.  Further studies led to the conclusion by Blakeslee 

& Salmon, (1931) that PTC non-tasting is a Mendelian recessive characteristic i.e. 

individuals with two recessive alleles (tt) are non tasters and individuals with 1 

dominant allele (Tt or tT) and two dominant alleles (TT) are tasters.  More recent 

studies (Reed et al. 1999) suggested that taster status may also influence the 

phenotype of a person.  When an individual has the nontaster phenotype, and 

therefore a lack of ability to taste, it is necessary to understand if and how this alters 

food intake and also, importantly how the satiety cascade is affected because this may 

alter the process of meal cessation.  Furthermore, if an individual has a lack of taste 

which results in a lack of satiety does this lead to a tendency to overeat?   

 

Overall, taste appears to be moderately heritable.  However, the genetic and 

environmental factors that, together, add up to create the human taste phenotype make 

it difficult to assess heritability.  The most common studies are genotype-phenotype 

correlations for taste-related genes and behaviour.  On one hand, the behavioural 
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assays for sensitivity have been in widespread use since the early 1930’s however, 

results are sensitive to method as shown by Bartoshuk (2000) and the methods used to 

assess bitter sensitivity vary considerably.  The earliest studies on the genetics of taste 

perception used PTC crystals (Snyder 1931; Blakeslee 1931). Their use was later 

followed by PTC-impregnated filter paper and PTC solutions in water (Blakeslee and 

Salmon 1935).  In the 1960’s, Fischer et al (1963) was the first to substitute 6-n-

propylthiouracil (PROP) for PTC because PROP was odorless and less toxic.  Three 

criteria have been considered in the choice of PTC and PROP, the question of odor 

cues, the degree of separation of nontasters and tasters and the toxicities of the 

compounds (Lawless 1980).  PROP was found to be both odorless and less toxic and 

although PCT was found to be a better discriminator than PROP concern over the 

toxicity of PCT has led to increased use of PROP in recent years (Lawless 1980).  

Taste thresholds are now determined by using a modified up-and-down procedure that 

involves forced-choice judgments and successive serial dilutions of the bitter 

compounds. The Prop series traditionally started with solution 14, containing 1.021 g 

Prop/L (corresponding to 0.006 mol/L), with progressive dilutions down to solution 1 

(Kalmus 1971). Current methods call for 15 Prop solutions ranging in concentration 

from 0.000001 to 0.0032 mol/L that increase in one-quarter log increments on the 

molar scale (Gent and Bartoshuk 1983).  Lawless (1980) also investigated different 

methodologies (paper tests, forced choice thresholds, recognition thresholds and 

category ratings) and found that there were high rates of misclassification with paper 

tests and reported that threshold tests were accurate to a quarter log step and found no 

difference between ascending and descending threshold tests.   New methods are still 

being developed using PROP, including new methods using PROP filter paper (Zhao 

2003) and some methods simply involve tasting a solution and rating the degree of 
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liking or disliking and the intensity on labeled magnitude scales (Keskitalo et al.  

2007).  This method is particularly used for children.  In adults, threshold tests are the 

methodology of choice when assessing the detection thresholds of the bitter 

compound PROP.  The current study utilised threshold tests using the up-down 

procedure.  McBurney and Collings (1977) introduced the up-down procedure with 

forced choice into modern taste psychophysics.  Where subjects are given two stimuli 

(water and a given concentration of the tastant) and asked to choose the one with a 

taste where the concentration is either increased or decreased after non-detection or 

detection respectively.  The reversal points determine the threshold and a run is ended 

after two correct choices.  A recent study suggests that three correct choices gives 

adequate reliability of the threshold (Marks and Wheeler 1998) without risking 

subject fatigue.     Therefore, in the current study this up-down method was used with 

reliability that the correct number of choices to detect a subject’s true threshold.  If 

this procedure is used with only one correct choice and the procedure is begun below 

the subject’s true threshold, the ‘threshold’ that results can be much lower than the 

subject’s true threshold (Bartoshuk 2000). 

 

Fisher et al (1963) considered the behavioural implications of the genetic variation in 

taste and found associations between PROP tasting and drug sensitivities, personality 

type, smoking habits and, vitally, food preferences.  So far, studies investigating taste 

genetics have only considered bitterness however other studies have shown bitter and 

sweet pathways to be analogous (Drewnowski 1997b).  Increased sensitivity to PROP 

was initially linked to the enhanced perception of sweet taste and increased rejection 

of bitter PROP solutions (Drewnowski 1997b).  Increased sensitivity has also been 

hypothesised to cause a reduction in food intake associated with the perception of 
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sweet and fatty foods and therefore poor sensitivity has been linked with increased 

food intake (Drewnowski 1998).  As this body of evidence has increased, Bartoshuk 

(1991; Bartoshuk 2000; Bartoshuk et al.  1994) detected differences between taste 

perceptions in the tasters of PROP; those who perceived PROP (0.0032M 

concentration) as moderately bitter as medium tasters and those who perceived PROP 

as extremely bitter as supertasters (Bartoshuk 1991).  From then onward three 

bitterness taster groups; non-tasters, tasters, and super-tasters were referred to 

(Bartoshuk 1991).   

 

As discussed earlier the N-C=S group which categorises bitter compounds are also 

associated with containing phytochemicals or phytonutrients (Drewnowski et al.  

1997a).  These phytochemicals are plant-based phenols that are present in the 

everyday diet and are reported to have antioxidant and anticarcinogenic properities.  

Duffy (2004) studied the variation in oral sensations, dietary behaviours and 

cardiovascular (CVD) risks.     The ability to taste PROP has been linked with the 

rejection of other bitter compounds and with reduced acceptance of some bitter foods.  

The most frequently cited example of bitter food rejection is the reported avoidance 

by PTC tasters of bitter compounds found in raw cruciferous vegetables: cabbage, 

broccoli and brussel sprouts (Niewind et al.  1988). Further studies show PROP 

tasters have reduced preferences for grapefruit juice, Japanese green tea, and selected 

soy products (Akella et al.  1997; Kaminski et al.  2000).  Bitter foods contribute a 

major dietary source of bioactive phytochemicals, some of which are thought to 

reduce the risk of cancer and coronary heart disease.  This leads to the hypothesis that 

tasters and super-tasters of PROP may have reduced dietary exposure to the bitter but 

beneficial phytonutrients that are found in fruit and vegetables (Drewnowski and 
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Gomez-Carneros 2000).  As discussed earlier other differences between tasters and 

non-tasters have also been described.  Some concentrations of sucrose, neohesperidin 

dihydrochalcone and saccharin tasted sweeter to tasters than to non-tasters (Gent and 

Bartoshuk 1983) while Looy and Weingarten (1992) found that tasters were more apt 

to dislike the taste of sweet solutions.  However, Schiffman et al (1985) found no 

difference in the sensory evaluations of soft drinks whatever the sweetener between 

tasters and non-tasters so results have been conflicting.  Finally, studies with PROP 

sensitivity focused on adiposity and a study found that greater PROP bitterness was 

associated with lower fat preference and lower body mass indices in non-obese 

individuals (Hutchins et al.  2002).  Therefore, Duffy (2004) hypothesised that the 

variability in taste may explain the differences in preference for foods/beverages and 

dietary intake and ultimately chronic diseases such as obesity, IGT and type 2 

diabetes which are all known risk factors of CVD.  It is unknown, however if the 

PROP effects on adiposity, in the obese, are similar to that of non-obese individuals or 

if they are overshadowed by the multiple causes of obesity, including dysfunctional 

physiological and metabolic control mechanisms or environmental influences.   

 

The question, of course then arises about the relationship between PROP tasting and 

body mass index (BMI, kg/m²).  The association between PROP tasting and body 

weight remains unproven however, some researchers have suggested that PROP 

tasting may protect against obesity (Tepper and Nurse 1997; Tepper 1998).  Duffy et 

al (1999) found that reduced PROP sensitivity, i.e. lack of taste, resulted in an 

increased BMI in normal weight persons.  In contrast, in overweight and obese 

individuals an increased sensitivity correlated with an increased BMI.  Tepper (1998) 

found that normal weight non-tasters could not distinguish the fat content of dressings 
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(high and low fat) and liked the high-fat dressing more than the low-fat dressing, 

whereas the two taster groups gave higher ratings of fat-content to the high fat 

dressing and liked both samples equally.  The observed response to fat content may be 

analogous to the dislike of intensely sweet stimuli by PROP tasters in the sucrose 

studies by Looy and Weingarten (1992).  In general, findings provide indirect 

evidence that the dietary patterns of PROP tasters may have important implications 

for weight status, but study findings have been varied therefore require further 

confirmation.  Bartoshuk (2000) investigated the associations between PROP tasting 

and the liking/disliking for sweet/high fat foods and found a negataive association that 

was strongest in women.  Nevertheless, the association found in women support the 

hypothesis that supertaster females will eat less high sweet/fat foods compared to a 

nontaster, due to their dislike of those food types.  Long-term this may prevent 

supertasters from gaining weight.  Thus, sensitivity to taste dictates dietary intake.  

Tepper and Ullrich (1999) found both female and male supertasters were thinner in 

their sample where restrained eaters were excluded. The evidence discussed suggests 

that individuals who cannot taste well cannot make food selections based on prior 

learned associations between taste quality and the metabolic consequences of that 

food.  That is, inappropriate food selections may be made that compromise general 

health.  Therefore it could be suggested that the lack of sensitivity to the fat content of 

foods may be what leads to positive energy balance.  Furthermore, the continual 

intake of fatty foods will promote a positive energy balance and weight gain. The high 

energy density and palatability of sweet and fatty foods has been associated with 

higher energy intake (Drewnowski and Specter 2004).  Recent studies have shown 

that highly palatable, energy dense foods have been associated with reduced satiation 

and satiety and passive overconsumption of fats and sweets (Drewnowski and Specter 
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2004).  Taste status is therefore important in the integrated control of food intake and 

energy balance. 

   

1.3 MECHANISMS OF SATIETY 

 

Following ingestion of food, neural and endocrine mechanisms are responsible for the 

regulation of feeding behaviour.  Gastrointestinal chemo-receptors respond to the 

nutrient products of digestion (sugars, fatty acids and amino acids).  In addition, 

stretch and mechanoreceptors are activated by the presence of food in the stomach 

and proximal small intestine.  Signals from gastrointestinal receptors (mechano and 

chemo-receptors) are transmitted via vagal afferent nerves to the medulla and hind 

brain where integration of this visceral input occurs so that the physical and chemical 

properties of food can affect the short-term regulation of food intake i.e appetite. 

 

 Signals arise from every part of the feeding sequence involving location, selection, 

ingestion, digestion, and the absorption of nutrients, see figure 1.1.  These signals can 

be localised to sensory inputs from the nose and mouth, gastrointestinal signals, 

circulating factors, metabolic signals, nutrient stores and the postabsorptive sensory 

capabilities of the liver and the nervous system (Blundell 1992; Stubbs 1999).  These 

subsystems functionally interact to produce a feeding sequence, initiated by hunger 

and ending with satiety.  Hunger can therefore be described as the motivation to seek 

and consume food which initiates a period of feeding behaviour (Blundell and Halford 

2000).  Appetite is independent of hunger as it can be considered in the short term as 

the physiological processes which together with psychological and environmental 

factors determine the day-to-day episodic pattern of meal and snack consumption, and 
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in the long term be considered a homeostatic process that maintains the energy 

balance and ensures energy storage (Blundell and Halford 2000).   Satiation is the 

within-meal process that brings the period of eating to an end, thereby determining 

meal size whereas satiety is the process in which further food intake is inhibited and 

therefore determines the time between meals (Blundell and Halford 2000). 

 

As discussed earlier, the sensory properties of sugar and fat make them difficult to 

resist.  Fat content appears to influence palatability, and thus food choices, and 

consequently affects food consumption (Drewnowski and Rock 1995).  It is for this 

reason that fat is seen to be a weak indicator of satiety.   The effects of different 

nutrients on the capacity to satiate has undergone much investigation and the results 

have varied.  Some studies suggest that CHO is more satiating than fat (Lawton et al.  

1998) and others have indicated that  fat and CHO are equally satiating, in that 

changes in the energy content of foods associated with the modification of either the 

fat or CHO content are followed by accurate energy compensation (Rolls et al.  1991).   

More recent studies have established that protein is the most satiating nutrient 

(Paddon-Jones et al.  2008).  In substituting other macronutrients for protein, it may 

have a role in the facilitation of weight loss by promoting satiety and causing a 

reduction in energy consumption.    However, it is often assumed that the initiation of 

feeding occurs following hunger but meal initiation does not only depend on internal 

cues but also environmental cues, such as time of the day, social events and food cues, 

all of which can trigger an eating episode (see figure 1.1). 
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Figure 1.1 The Satiety Cascade.  Conceptualisation of the contributions of the 
cognitive and behavioural events, physiological and metabolic events and the brain 
interactions to the time course of satiety (Blundell et al. 2005).  PVN = 
paraventricular nucleus; NST = nucleus of the tractus solitarius; CCK = 
cholecystokinin; FFA = free fatty acids; T:LNAA = tryptophan: large neutral amino 
acids. These are the levels of psychological events (hunger perception, cravings, hedonic 
sensations) and behavioural operations (meals, snacks, energy and macronutrient intakes); the 
level of peripheral physiology and metabolic events; and the level of neurotransmitter and 
metabolic interactions in the brain. Appetite reflects the synchronous operation of events and 
processes in the three levels. Neural events trigger and guide behaviour, but each act of 
behaviour involves a response in the peripheral physiological system; in turn, these physiological 
events are translated into brain neurochemical activity. This brain activity represents the 
strength of motivation to eat and the willingness to refrain from feeding. The lower part of the 
psychobiological  system illustrates the appetite cascade which prompts us to consider the events 
which stimulate eating and which motivate organisms to seek food, those behavioural actions 
which actually form the topography of eating, and those processes which follow the termination 
of eating and which are referred to as postingestive events. Even before food touches the mouth, 
physiological signals are generated by the sight and smell of food. These events constitute the 
cephalic phase of appetite. Cephalic-phase responses are generated in many parts of the 
gastrointestinal tract; their function is to anticipate the ingestion of food. During and 
immediately after eating, afferent information provides the major control over appetite. It has 
been noted that afferent information from ingested food acting in the mouth provides primarily 
positive feedback for eating; that from the stomach and small intestine is primarily negative 
feedback. 
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1.3.1 Gastric Emptying and the effect on Satiety 

 

An important internal mechanism which can influence satiety is gastric emptying.  

Gastric emptying is the limiting step between meal ingestion and the metabolic uptake 

of nutrients at the cellular level.  As such, its role in the control of eating behaviour 

has been emphasised in health and disease (Muurahainen  et al.  1988).  Studies have 

shown that patients with anorexia nervosa have markedly delayed gastric emptying 

(Duhois et al.  1979) and obese patients have accelerated emptying (Johansson et al.  

1976) also support the existence of such a relationship and emphasise its potential 

involvement in clinical disorders such as IGT and type 2 diabetes.  Emptying of the 

stomach slows down as its energy content increases (Hunt 1980), and this process 

might prolong the duration of postprandial satiety, and thus help to regulate energy 

intake.  Gastric emptying has therefore been utilised as an internal physiological 

biomarker of satiety in research.   

 

Starchy foods are known to elicit different postprandial blood responses of glucose 

and insulin. Pasta, legumes, and products based on whole-cereal grains are slowly 

digested foods, whereas potatoes, most breakfast cereals, and conventional bread 

products elicit high metabolic responses. The glycaemic index (GI) was introduced to 

classify starchy foods according to their effect on postprandial glycaemia (Jenkins et 

al.  1981). The GI is defined as the incremental area under the curve (AUC) for blood 

glucose after ingestion of a test product as a percentage of the corresponding area for 

a reference product (glucose or white bread).  An insulinemic index can be calculated 

from the corresponding incremental insulin AUCs.  In a study of different bread 

products, postprandial glucose and insulin responses were lower after ingestion of 
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sourdough bread than after the ingestion of a corresponding yeast bread (Liljeberg 

1995).  In the same study, it was found that a bread with added sodium propionate 

also lowered blood glucose and insulin concentrations, despite its neutral pH.  In a 

study by Liljeberg and Björck (1996), the influence of sodium propionate on the 

gastric emptying rate (GER) was studied by using paracetamol as a marker. As judged 

from a lowered paracetamol concentration in the blood after ingestion of bread with 

added sodium propionate, it was concluded that the salt reduced the GER (Liljeberg 

and Björck 1996). Thus, it was suggested that the bread with added sodium 

propionate was the mechanism for the lowered metabolic response because there was 

no evidence of any effects on the rate of starch hydrolysis in similar in vitro 

experiments.  It is known that GERs are influenced by the volume, energy content, 

and density of the meal and by the particle size of the gastric contents (Horowitz et al.  

1994); however, other meal factors are likely to influence the luminal receptors of the 

small intestine, which control gastric emptying.  In the same study by Liljeberg and 

Björck (1996) satiety was reported to have lasted longer after ingestion of bread with 

added sodium propionate than after ingestion of the reference bread without sodium 

propionate.  Prolonged  post meal satiety usually occurs concomitant with low GERs 

because the extension of the stomach is one factor that promotes a feeling of satiety. 

 

Along with the influence of differing food items GER is influenced by a number of 

peripheral biomarkers such as cholecystokinin (CCK), peptide YY (PYY) and 

glucagon like peptide-1 (GLP-1).  The inhibitory effect of GLP-1 on gastric emptying 

has been reported in both normal subjects (Nauck et al. 1997) and in individuals with 

diabetes (Gutniak et al.  1996).  It has been suggested that obese individuals have 

attenuated GLP-1 response to meals.  Naslund et al (1998) infused obese men with 
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either saline or GLP-1 to determine the effects on gastric emptying.  The results of the 

study showed decreased rates of gastric emptying and hypothesised that the increased 

concentration of GLP-1 caused a prolonged effect on mechano and chemo-receptors 

in the stomach and small intestine, which relay important information to the CNS, via 

the vagus nerve.  Therefore, GLP-1 administered to obese subjects may have a 

weight-reducing and slimming effect if given over a prolonged period of time.  In 

summary, this study showed that GLP-1 administered to obese subjects induced a 

prolonged period of postprandial satiety and slower rate of gastric emptying than did 

saline infusion. This effect of GLP-1 on hunger may be mediated through central 

mechanisms or vagal afferent pathways together with prolonged gastric emptying.  

Additional gastrointestinal hormones, particularly CCK (Muurahainen  et al.  1988) 

and peptide YY (PYY) (Lin et al.  1996) are also important in mediating the slowing 

of gastric emptying induced by small-intestinal nutrients.  Previous studies showed 

that CCK (Muurahainen  et al.  1988), and PYY (Allen 1984) slow gastric emptying: 

CCK (Fraser 1993) by stimulating isolated pyloric pressure wave (IPPWs) frequency 

and inhibiting distal gastric (antral) contractions and PYY by inhibiting interdigestive 

migrating contractions in the small intestine (Lin et al.  1996).  In summary, the 

influence of gastric emptying on satiety has been established and therefore food is 

initially the most crucial component that influences the physiological mechanisms that 

indirectly control satiety. 

 

1.4 THE AUTONOMIC CONTROL OF FEEDING BEHAVIOUR 

 

The presence of food further stimulates inhibition of eating by maintaining the 

physiological mechanisms mediating satiety.  In order to achieve energy homeostasis 
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it is necessary to regulate the energy intake with energy expenditure to ensure that 

energy stores are maintained at an appropriate level. Energy balance is achieved 

through the integration of periphery signals when feeding commences.  The signals 

involved which influence feeding behaviour are located in multiple brain areas.  The 

hypothalamus plays a key role in this process.  Meal-related satiety information is 

conveyed to the nucleus of the tractus solitarius (NTS) in the medulla, on which 

converge vagally transmitted signals from the gastro-intestinal tract, including taste, 

gastric distension and portal vein glucose levels.  For example, high blood glucose, 

i.e. after feeding, facilitates efferent activity of the pancreatic and hepatic branch of 

the vagus nerve which is mediated by the intestinal peptide cholecystokinin (CCK) 

(Beglinger and Degen 2004).  CCK signals to the NTS via CCKA receptors on the 

sensory terminal of the vagus nerve and in turn causes an increase in insulin secretion 

from the pancreas and glycogen synthesis in the liver and ultimately results in 

satiation, the cessation of feeding (Fry and Ferguson 2007).  Endocrine pathways have 

been identified which activate the afferent fibres of the vagus nerve, i.e. in the action 

of ghrelin or influence hypothalamic activity directly, i.e. in the action of leptin.    The 

ventromedial hypothalamic nucleus (VMH) was long considered to be a ‘satiety 

centre’.  Stimulation of the VMH inhibits feeding (Williams et al.  2001).  Recent 

studies have shown a high abundance of leptin receptors in neurons of the VMH.  The 

VMH has direct connections with paraventricular neurons and the lateral 

hypothalamic area (LHA), where the regulation of food intake and energy expenditure 

is controlled. Low blood glucose (hypoglycaemia) activates efferent activity of the 

pancreatic, hepatic and adrenal branches of the splanchnic nerve, which results in 

increased glucagon secretion from the pancreas, release of glucose from the liver and 

secretion of catecholamines from the adrenal medulla and is the stimulation required 
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for feeding initiation (Woods and Porte 1974).  This process is mediated by 

neuropeptide Y (NPY), an orexin, which induces feeding. NPY containing neurons 

originate in the ARC of the hypothalamus and innervate the LHA which has been 

classically viewed as the ‘feeding centre’.  Stimulation of the LHA increases food 

intake and also contains large numbers of glucose-receptive neurons that respond to 

circulating glucose levels, probably mainly via pathways ascending from the 

hypothalamus.   

 

Mayer (1953) formulated the ‘glucostatic’ theory that glucose availability to specific 

glucose-sensing neurons is an important factor regulating feeding behaviour and 

ultimately body weight.  Glucose is the main metabolic fuel of the brain.  Reductions 

in blood glucose or any blockade of neuronal glucose utilisation powerfully stimulate 

feeding.  Specific parts of the central nervous system (CNS) contain neurons that can 

detect changes in ambient glucose concentration, for example glucose responsive 

neurons in the LHA and medulla oblongata (Williams et al.  2001).  However, their 

place in the hierarchy of the CNS system that regulates feeding is uncertain, although 

they may have some involvement in the modulation of the autonomic efferent 

activity.  It is becoming clear that glucose-sensing neurons may communicate 

extensively with other appetite-regulating neuronal systems.  This suggests that blood 

glucose and the activity of peripheral glucose sensors directly and indirectly affect 

feeding behaviour.  

 

There are other peripheral metabolic sensing neurons in the regulation of energy 

homeostasis and include neural afferents from the hepatic portal vein, gut, and carotid 

sinus.  The messages from these peripheral areas are all conveyed via the vagus and 
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sympathetic nervous system to the NTS in the medulla and are then relayed to a 

variety of other brainstem and hypothalamic areas.  These are joined by neural inputs 

from somatic afferents mediating sight, sound, taste, pain and touch and these 

incoming signals are integrated within clusters of neurons which are also responsive 

to metabolic and hormonal inputs from the periphery.  Therefore the CNS has an 

important role in the control of food intake.     

 

1.5 THE METABOLIC CONTROL OF FOOD INTAKE 

 

Whilst the physical properties and the endocrine responses which occur due to the 

presence of food in the gut initiate satiety responses, the consequences of chemical 

digestion and absorption of nutrients further compounds mechanisms of satiety 

enabling a metabolic control of food intake.  

 

The gastrointestinal (GI) tract processes ingested food, both mechanically and 

chemically, into small, absorbable units.  Thus carbohydrates (CHO) are processed in 

the stomach and small intestine into fatty acids and monosaccharides; fats/lipids are 

transformed into glycerol and fatty acids and finally, proteins are cleaved to amino 

acids.  The digestive end products become absorbed by the body.  The entire process 

of digestion is coordinated by interactions of the enteric nervous system that 

innervates the walls of the GI tract which cause the release of peptides from 

specialised endocrine cells into the circulation or to serve as neurotransmitters 

mediating signals from the enteric nervous system.  The GI hormones are synthesised 

and secreted from the mucosa of the stomach and upper small intestine and their 

release is mediated by both the cephalic mechanism, via the vagus nerve, and the 
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intraluminal mechanisms, via the cholinergic system (Vay et al.  1971).  These signals 

are transmitted from the gut to the brain and are interpreted in the hypothalamus, 

reflecting the load of nutrients ingested.  The gut peptides exhibit a response to food 

intake and some have been examined carefully to determine whether the response is 

of physiological relevance.  For example, there are three main GI peptides which are 

released following the ingestion of food; gastrin, whose response has been determined 

to be in gastric acid secretion (Lam et al.  1980); CCK, whose response to a meal is in 

gallbladder contraction (Byrnes et al. 1981); and secretin, whose response has been 

associated with pancreatic bicarbonate output to regulate the pH of the duodenal 

contents (Yamada 1985).  The effect that food exerts on GI hormones therefore 

depends on the macronutrient mix of the meal because separate nutrients elicit 

different responses to different peptide containing cells (Yamada 1985).  CCK, for 

example, is stimulated by fats (Matzinger et al.  2000), gastrin appears to be 

stimulated by protein and amino acids (Lichtenberger 1982) and CHO’s are known to 

stimulate other polypeptides such as gastric inhibitory polypeptide (also known as 

glucose-dependent insulinotropic peptide or GIP) and is a member of the secretin 

family of hormones (Cataland et al.  1974).  Incretins, such as GIP and GLP-1, are a 

type of GI hormone that cause an increase in the amount of insulin released from the 

β-cells of the islets of Langerhans in the pancreas.  Release of incretins can occur 

even before the presence of increased blood glucose and therefore insulin is released 

rapidly following food intake.  Incretins slow the rate of absorption of nutrients into 

the blood stream by slowing gastric emptying and therefore may play a role in 

reducing food intake (Marks et al.  1991).  Other hormones released in response to 

food include ghrelin, which is produced in both the stomach and the hypothalamus 

and hormone concentrations decrease when food is consumed.  Also, leptin is 
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produced by adipocytes in response to food intake and has a role in inhibiting food 

intake (Ahrén and Havel 1999)   As a group, the peptides of digestion are satiety 

signals because most create a sensation of fullness in humans and reduce food intake 

when administered to humans or animals (Beglinger and Degen 2006) and all play a 

potential role in the maintenance of energy balance.  There are other endocrine 

regulators of food intake such as cytokines, IL-6 (interleukin-6) and TNF-α (tumor 

necrosis factor), which also have a role in the inhibition of food intake (Havel 2001) 

and are associated with infection, inflammation and cancer (Weingarten 1996), 

glucocorticoids which increase food intake, and probably interact with insulin and 

leptin in the long-term regulation of energy homeostasis (Havel 2001), and growth 

hormone which is also associated with both increased and decreased food intake 

(Havel 2001).   

 

All this said, it is important to understand that food sources are not digested equally.  

Flatt (1996) hypothesised that fuels are digested according to their storage capacity 

i.e. alcohol will be metabolised first due to the body having no storage capacity for 

alcohol, then protein, glucose and finally fat, having the largest storage capacity and is 

therefore metabolised last.  However, fuels are also not metabolised exclusively but 

are metabolised simultaneously as a ‘mixed fuel’.  Fuels are then either oxidised or 

stored (Friedman 1998).  Friedman (1995 and 1998) suggested that the partitioning of 

metabolic fuels causes alterations in energy balance, see figure 1.2.    Neural, 

endocrine, and biochemical mechanisms determine which fuels are used through 

which pathways and in which tissues.  For example, metabolic fuels may be stored as 

fat, oxidised for energy or for heat production, or converted to milk to feed offspring.  

Because mechanisms of fuel partitioning determine whether, and in which tissues, 
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metabolic fuels are oxidised, shifts in the flux of fuels could affect eating behaviour 

by altering the metabolic signal that controls food intake.  Fuel partitioning indirectly 

effects food intake by altering the oxidation of fuels in the tissue or cells that generate 

the signal for appetite control.  The liver has an important role in monitoring the 

changes in fuel metabolism that control food intake.  Russel (1963) was the first to 

propose a role for the liver in feeding behaviour and since then a considerable amount 

of research has supported the hypothesis that satiety and hunger are influenced by 

signals elicited in changes in liver metabolism (Novin and VanderWeele 1977; 

Tordoff & Friedman 1986).  Friedman (1998) suggested that this signal is associated 

with ATP production in the liver i.e. decreases in ATP production stimulate eating 

behaviour whereas increases in ATP suppresses eating.    

 

Furthermore, Friedman (1998) went on to suggest that under normal conditions there 

is a balance between fuel storage, mobilisation and utilisation however in obesity the 

balance changes towards fat storage instead of oxidation and therefore the fuel mix 

changes and contributes towards further weight gain.  What is not clear is why this 

occurs but the shift from oxidation to storage may be linked with the increased 

concentration of free fatty acids (FFA) in plasma as a result of higher body fat 

(DeFronzo et al.  1992).  The elevated concentration of FFA attenuate glucose uptake 

in muscle by inhibiting glucose oxidation and is strongly associated with insulin 

resistance (Wolfe 2006) which is a hallmark of the metabolic syndrome. 

 

This interplay between the synergistic effects of the peripheral and central control of 

food intake, taste including palatability and sensory-specific satiety to individual 

foods, and true fullness to a mixed meal is how our body deals with the physiological 
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and metabolic consequences of food.  Thus, the body arrives at the integrated 

cognitive response to a meal.  All components are necessary but singly each 

component has a different importance within this response.  The importance that each 

component has on food intake is still to be elucidated.   
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Figure 1.2  Fuel Partitioning and Energy Intake (Friedman 1995) 

A) Relationship between fuel partitioning and energy intake control under 
normal/steady state conditions  

B) Relationship between fuel partitioning and energy intake in obesity where 
increased energy intake is associated with increased energy deposition. 
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1.6 SHORT AND LONG-TERM CONTROL OF FEEDING 

 

The satiety cascade which occurs as a consequence of feeding may suggest that only 

short term influences, lasting hours and relating to individual meals exist to promote 

inhibition of eating.  However, it is clear that metabolic control over episodic eating 

and energy intake occurs over significantly longer periods extending to days or 

months (see figures 1.3 and 1.4).  Importantly, together the short and long-term 

signals interact to regulate energy balance.  Therefore if there is dysregulation in the 

short-term feeding process(es) then it is possible that long-term homeostasis, and thus 

body weight regulation, may consequently be affected.  Inevitably, increased energy 

intake and positive energy balance results in altered body composition and the change 

alone may influence feeding behaviour.  Hormonal influence may also affect the short 

and long-term control of food intake. 
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Figure 1.3  Short-Term Signals Regulating Food Intake (Havel 2001)  
Signals from the GI tract and the liver are involved in short-term regulation.  Afferent 
signals travel in vagal nerve fibers from stretch receptors and chemoreceptors 
activated by the presence of nutrients in the stomach and proximal small intestine.  
Nutrients arriving via the portal vein may also trigger vagal afferent signals from the 
liver. 
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Figure 1.4  Long-Term Signals Regulating Food Intake (Havel 2001)  
Insulin and leptin are important long-term regulators of food intake and energy 
balance.  Both act in the CNS to inhibit food intake and to increase energy 
expenditure, most likely by activating the sympathetic nervous system. 
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1.7  THE HORMONAL INFLUENCES OF THE CONTROL OF FOOD  

INTAKE 

 

1.7.1 Ghrelin 

 

Peripheral factors that participate in the short and long term control of appetite and 

adiposity can be either anorexigenic and promote reductions in food intake and 

consequently a reduced body weight or orexigenic and promote feeding and cause an 

increase in body weight.  Ghrelin is a unique hormone in that it activates appetite and 

promotes food intake whereas all the other known GI hormones uniformly inhibit 

food intake.  Therefore ghrelin concentrations increase during fasting, and are reduced 

by the presence of food in the stomach.  Most GI hormones and their receptors are 

present in regions of the CNS involved in regulating feeding behaviour and therefore 

inhibit/promote feeding when administered both peripherally and when administered, 

at low doses, directly into the brain. (Havel 2001).  It is unclear if the primary target 

for ghrelin and other GI hormones is in the periphery, in the CNS, or in both.  It is 

likely that both peripheral and CNS production and action of GI hormones represent 

comparable pathways in the regulation of feeding behaviour.   

 

Ghrelin is a novel 28-amino acid peptide hormone that has been recognised as an 

important regulator of hormone release and feeding promotion and was first identified 

based on its stimulation of growth hormone secretion via a growth hormone 

secretagogue receptor in animals and humans (Bowers 2001).  The mammalian 

ghrelin structure has an n’octanoyl modification at its third serine residue which is 

essential for its activities to stimulate growth hormone secretion from the pituitary 
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cells.  The stomach produces three quarters of the circulating ghrelin and is the 

principal site of ghrelin synthesis.  The gastric fundus, in the stomach, is the most 

abundant source of ghrelin and produces ten times more of hormone per gram of 

tissue than does the next richest site, the duodenum (Havel  2001).  Ghrelin is 

produced in the oxyntic mucosa of the stomach by enterendocrine cells.  Therefore 

when food is ingested, there is a rapid reduction in ghrelin levels due to the close 

proximity of the ghrelin producing cells.  Concentrations of ghrelin producing cells 

decrease throughout the small intestine as the distance from the stomach pylorus 

increases.  In humans, ghrelin levels rise before meals and fall rapidly after the 

ingestion of a meal (Williams and Cummings 2005) and secretion is finely regulated 

by several factors.  The stimulatory effect of ghrelin on feeding is independent of the 

stimulation of grown hormone (Yoshihara et al.  2002) which suggests it has an 

independent role in promoting food intake.  During fasting, ghrelin stimulates the 

ARC neurons that cause an increase of two orexigenic peptides, NPY and agouti 

related protein which initiate feeding and promotes an increase in body weight.  In 

contrast both leptin and insulin, produced from adipose tissue, exerts its influence on 

the ARC and inhibit feeding and produce a reduction in body weight.  This influence 

is exerted by suppressing NPY and agouti related protein peptides.  Studies involving 

ghrelin have shown increased stimulation of GI motility, gastric acid secretions and 

pancreatic exocrine secretion (Mora et al.  2005).  The bodily changes that occur as a 

result of changes in ghrelin concentration are in anticipation of a meal and therefore 

prepare the GI tract for food processing and transport.   

 

Ghrelin’s role is therefore in the regulation of mealtime hunger regulation and meal 

initiation by influencing postingestive satiety.  This hormone is a potent stimulator of 
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short term food intake and stimulates food intake more effectively than does any 

known molecule, except NPY (Havel 2001).  Ghrelin has been attributed to 

stimulating appetite and food intake even more in obese individuals than lean (Mora 

et al.  2005).  

 

1.7.1.1 Ghrelin and Obesity 

 

Individuals with obesity have been shown to have reduced plasma ghrelin levels and 

individuals with anorexia nervosa have been shown to have increased plasma ghrelin 

levels which suggests a negative feedback mechanism is in control of energy 

homeostasis (Shiiya et al.  2002). Fasting ghrelin concentrations in obese and type 2 

diabetic patients have been shown to be negatively correlated with BMI, fasting 

insulin and fasting leptin concentrations within both groups (Shiiya et al.  2002).  This 

may suggest a role for ghrelin in long-term feeding behaviour and body weight.  

Attenuation of ghrelin has been found in obesity and may be causative of the long-

term positive energy balance that leads to obesity.  The mechanism of attenuated 

ghrelin may be linked with macronutrient intake.  The link between glucose and 

ghrelin-producing cells was originated by studies which investigated the short-term 

response to oral and intravenous administration of glucose and water to normal 

subjects.  The study found that only the glucose administration caused a reduction in 

subjects’ plasma ghrelin concentrations (Shiiya et al.  2002). Similar studies 

investigated the administration of lipids and high-fat diets and found that they 

suppress postprandial ghrelin concentrations less effectively than glucose 

(Monteleone et al.  2003) which further advocates that glucose and insulin may 

modulate the postprandial ghrelin response (Blom et al.  2005).  Therefore, the long 
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term role of ghrelin may be linked to the long-term fluctuations in glucose and insulin 

concentrations which become dysfunctional in chronic states such as obesity, IGT and 

type 2 diabetes when blood glucose and insulin levels are elevated over a long period 

of time.  Therefore, it is not only important to understand the role that circulating 

ghrelin plays in food intake from meal to meal, it is necessary to understand the 

factors which regulate plasma ghrelin levels in relation to feeding and its long term 

role in the maintenance of energy balance and also its possible link in the pathology 

of obesity and related chronic diseases such as IGT and type 2 diabetes.   

 

1.7.2 Leptin 

 

Although leptin is not directly investigated in this study it is important to discuss this 

hormone due to the antagonistic effects of leptin to ghrelin.  Leptin is a circulating 

hormone mainly secreted by white adipose tissue and influences body weight 

homeostasis by altering food intake and energy expenditure.  Leptin influences the 

activity of the hypothalamus by modulating the expression of several neuropeptides to 

promote satiety.  Leptin interacts with both components of the energy balance 

relationship by promoting satiety and also by having a stimulatory effect on energy 

expenditure (Campfield et al.  1995).  Once released into the bloodstream leptin must 

gain access to specific regions in the brain, mainly the hypothalamus, involved in the 

regulation of food intake and energy balance.  The discovery of leptin was 

revolutionary because it confirmed the hormonal link between adipocyte and the 

brain, therefore an understanding of the biology of leptin offers significant insight into 

the complex inter-relationships among adipose tissue, the nervous system and 

peripheral organs.  Leptin is also increasingly spoken of as a general ‘metabolic’ 
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hormone, in that a rapidly expanding range of processes with which it interacts are 

being documented.  These processes include the inhibition of insulin secretion from 

the ß-cells of the pancreas (Emillson et al.  1997), the stimulation of glucose 

utilisation (Kamohara et al.  1997), stimulation of sugar transport across the small 

intestine (Lostae et al 1998), and actions in the immune system (Cock and Auwerx 

2003).  So it is clear that leptin has a role in both short and long-term pathways 

controlling food intake.   

 

1.7.2.1 Leptin and Obesity 

 

Research shows that the effectiveness of the leptin receptor is reduced in obesity, 

resulting in disruption of the leptin pathway which prevents critical hypothalamic 

areas from perceiving pertinent cues on energy status (De Fanti et al. 1998).  If the 

hypothalamus does not receive, sense, or properly integrate the nutritional state, a 

superficial negative energy balance and subsequent energetic efficiency ensue, 

resulting in obesity.  Diet induced obesity in humans is associated with increased 

leptin levels (Mercer and Speakman 2001).  Although leptin levels rise proportionally 

with adiposity, the increased leptin fails to curtail the progression of obesity (Zhang 

and Scarpace 2006).  Analogous to hyperinsulinemia and insulin resistance, 

hyperleptinemia has been postulated to be indicative of ‘leptin resistance’ (Flier 

1998).  Early studies suggested that leptin crosses the blood brain barrier (BBB) by a 

saturable transport system (Banks et al.  1996).  Research has discussed the possibility 

that the leptin transport system could be saturated near physiological concentrations in 

lean individuals, implying that the elevated leptin levels observed in obesity can 

produce no biological effects because the system is no longer responding (Flier 1998).  
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Banks et al (1996) also suggested an impaired transport of circulating leptin across the 

BBB in obese CD-1 mice due to a decreased capacity of the BBB to transport leptin.  

Human parallels are now recognised with the description of obese subjects with 

mutations in leptin or the leptin receptor (Montague et al.  1997).    Zhang and 

Scarpace (2006) further postulate that a leptin resistant state disrupts normal energy 

homeostasis, favours positive energy storage, and thus leads to even greater obesity.  

Leptin works synergistically with CCK to inhibit feeding.  Leptin is an adiposity 

signal and known for its long-term role in adiposity control and its short term role in 

modulating meal size (see figure 1.4) according to changes in energy balance and 

CCK operates as a satiety signal to reduce meal size.  

 

1.7.3 Cholecystokinin (CCK) 

 

Appetite is regulated by a complex system of central and peripheral signals which 

interact in order to modulate the individual responses to nutrient ingestion.  Satiety 

signals originate from the GI tract during a meal and through the vagus nerve, reach 

the NTS in the brainstem (see figure 1.3).  From the NTS, afferent fibers project to the 

ARC where satiety signals, namely CCK, are integrated with adiposity signals, 

namely leptin and insulin, creating a final response to a meal.   

 

CCK is released from endocrine cells localised in the mucosal layer of the proximal 

small intestine and travels via the portal vein to the liver and via the systemic 

circulation to the CNS.  CCK is also produced in the CNS and is released by 

hypothalamic neurons during feeding.  CCK release is stimulated by dietary fat, 

amino acids and small peptides released during protein digestion.  CCK inhibits food 
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intake by the activation of CCKA receptor subtype.  Moran et al (1998) demonstrated 

a defect in the CCKA receptor in obese rats resulting in reduced CCK.  CCK is likely 

to transmit vagal afferent signals to the medulla in the hindbrain by acting on 

receptors located in the pylorus and liver.  CCK’s role in feeding regulation is in 

energy homeostasis and is to inhibit food intake by inducing postprandial satiety by 

communicating fullness and thereby decreasing meal size.  West et al (1984) showed 

that CCK function is in short-term satiety by repeatedly administering CCK to rats 

when meals were initiated.  This resulted in reduced meal size.  However, the 

subsequent number of meals eaten increased and after an initial period of adaptation 

overall energy intake was unaffected and weight loss was minimal.   

 

Schneeman et al (2003) hypothesised that the constituents of food  would alter the 

way in which nutrients are handled in the postprandial period and this in effect would 

be evident in the hormonal and lipid response to the meal.  This study showed that fat, 

particularly dairy fat, is a more potent stimulator of CCK than a blend of non-dairy 

fats and found increased CCK concentrations in women.  This finding is of interest 

when considering CCK function(s) and relative interactions with other hormones in 

the response to eating.  For example, CCK has also been shown to slow gastric 

emptying, thus inhibiting food intake and also to have a role controlling the glycaemic 

response to a meal by increasing the sensitivity of tissues to insulin (Schwartz et al.  

1994) to maintain consistent blood glucose levels.  CCK release has also been shown 

to induce satiety in rats (Burton-Freeman et al.  1997) however, although an 

association between CCK and satiety has been postulated, studies on humans have 

been controversial.  Some studies showed a strong relationship between CCK release 

and satiety, using VAS (Burton-Freeman et al.  2002) and others did not (Schneeman 



 37

et al.  2003).  This suggests that there may be other influences, overriding signals 

within the food intake regulatory system under different dietary challenges.  These 

other influences may be important when considering obesity, IGT and type 2 diabetes 

because their habitual diet has been shown to be consistently high in fat content, 

particularly saturated fat (Walker et al.  1996).    This may implicate fat in promoting 

dysfunction in the CCK pathway which normally inhibits feeding.  It is therefore 

important to know how CCK varies with these conditions and how it interacts in the 

role of energy homeostasis for the diagnosis and treatment of IGT and type 2 diabetes.   

 

1.7.3.1.  CCK and Obesity 

 

Initial studies in obese rats (De Fanti et al.  1998) investigated the hypothesis that the 

synergistic interaction between leptin and CCK in the regulation of food intake may 

be dysfunctional.  Studies on the fatty Zucker rat showed defective leptin signalling 

and has been associated with altered long-term dietary cues yet the consequences of 

this defect on short-term cues, such as CCK remain unclear.  One possibility is that 

the defect in the leptin signalling system seen in obesity, may cause a blunting of 

CCK release from the PVN and effectively abolish the ability of CCK to inhibit 

feeding and thus promoting increased meal size. (De Fanti et al.  1998).  A recent 

study by Little et al (2007) concurred with the results of De Fanti et al (1998) and 

suggested that chronically elevated plasma CCK concentrations, induced by a 

continual increased consumption of dietary fat, mediate the reduction in sensitivity to 

the inhibitory effects of CCK on food intake. Human studies have not shown 

consistent results like those involving rats.  For example, the CCK response to a high 

fat diet via lipid infusions was not affected in humans although elevated postprandial 
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CCK concentrations were reported.  It has therefore been suggested that the increased 

postprandial plasma CCK response in humans is primarily due to a greater amount of 

nutrients present in the small intestine to stimulate the localised secretion of CCK 

which is resultant of more rapid gastric emptying.  Therefore, it is still not clear 

whether CCK has a role in human obesity because some studies have shown that 

fasting concentrations of CCK have been elevated in obese subjects (Baranowska et 

al.  2000) suggesting a CCK resistance but this has not been demonstrated in all 

studies (Lieverse et al.  1994).  Any impairment in the functionality of a hormone 

involved in the control of food intake is pivotal because its influence on other 

metabolic factors, such as insulin, will also impact on metabolic control and therefore 

alter the sensitivity of endocrine factors regulating the long term control of energy 

intake.   

 

1.7.4 Insulin 

 

It was first proposed by Woods and colleagues in the 1970s that insulin is a long term 

regulator of food intake, energy balance and body adiposity (Woods et al. 1974).  

Parasympathetic nerves innervating the pancreas are activated as a direct effect of 

incoming nutrients, especially glucose and amino acids, causing the secretion of 

insulin from the islet ß-cells of the endocrine pancreas (see figure 1.4).  Fat does not 

induce insulin secretion, although some fatty acids appear to be necessary for the full 

insulin secretory response to glucose (Havel 2001).  Insulin receptors have been 

identified in a number of brain regions which are known to influence the regulation of 

feeding including the ARC of hypothalamus.  Havel (1999) studied the effects of 

body adiposity to overall insulin secretion and insulin concentration in the systemic 
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circulation and found a correlation between fasting insulin levels and the insulin 

response with body adiposity.  In addition to inhibiting food intake, insulin increases 

sympathetic neural activity and energy expenditure.  Thus, insulin can regulate energy 

balance by inhibiting energy intake and by increasing thermogenesis.  

 

CNS neurons do not produce insulin, however the hormone insulin is transported into 

the brain via a receptor-mediated mechanism that is saturated at high insulin 

concentrations and therefore this is not a rapid process.  The transport process occurs 

over a period of hours as circulating insulin concentrations rise and thus is consistent 

with the theory that insulin is a long-term regulator of feeding behaviour.  

 

1.7.4.1 Insulin and Obesity 

 

After feeding, insulin is preferentially transported into the hypothalamus, compared 

with other brain areas and so the hypothalamic insulin content is increased.  This 

increase in hypothalamic insulin occurs after a high CHO meal, but does not occur 

after a high fat meal because there is a smaller circulating level of insulin after a high 

fat meal.  The transport system in the brain which controls circulating insulin levels is 

thought to be impaired following a high fat meal.  It was demonstrated in dogs that 

chronic consumption of high fat meals impairs brain insulin transport and the 

impairment is predictive of weight gain (Kaiyala et al.  2000).  Together the effects of 

reduced insulin secretion and reduced insulin transport to the CNS may contribute to 

the increased energy intake and obesity observed in humans consuming high fat diets.  

In other words, the intake of dietary fat and therefore the fatty acid composition of 

tissues may influence insulin sensitivity.  This can potentially be changed through 
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long-term dietary modifications (Mann 2000).  Therefore, the protocol of the current 

study included the assessment of habitual dietary intake to determine if there was 

differences in content, particularly fat content as it is known to have implications in 

the functionality of insulin. 

 

Insulin and leptin act in the CNS to inhibit food intake and to increase energy 

expenditure most likely by activating the sympathetic nervous system. The long-term 

regulation of food intake is paramount because the damaging effects that long-term 

increased body weight has on the neuro-endocrine metabolic control markers is 

considerable and can result in metabolic syndrome, diabetes and other chronic 

illnesses.  

 

1.8 GLUT-4 TRANSLOCATION 

 

Insulin promotes glucose uptake by muscle and adipose tissue via the stimulation of 

GLUT-4 transporters from intra-cellular sites to the plasma membrane.  A low 

abundance of the GLUT-4 transporter has also been shown to be present in low 

abundance in the brain endothelial cells lining the BBB in rats and mice (McCall 

1997;  Sankar 2002) which facilitates glucose transportation into the CNS in an 

insulin-independent fashion (Sankar et al.  2002).  This corresponds with Mayer’s 

(1953) glucostatic theory which suggests that glucose is the preferred source of 

energy, especially for the brain and that hunger depends on the rate that glucose 

crosses the cell membrane and is actually used by the body.  Therefore satiety occurs 

when glucose utilisation is adequate and a low level of glucose utilisation causes 

hunger, regardless of blood glucose concentration.  Mayer (1953) suggested that the 
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rate of glucose utilisation is monitored by the so called ‘satiety centre’ or 

ventromedial hypothalamus (VMH) and that VMH activity increases in response to 

increased glucose utilisation leading to satiety.  Therefore, GLUT-4 mediated 

transport in the muscle and brain is essential to the maintenance of glucose 

homeostasis.   

 

Attenuated GLUT-4 translocation and glucose uptake by muscles and fat cells 

following insulin stimulation represent a prime defect in insulin resistance.  In mice, 

adipose-selective disruption of GLUT-4 leads to secondary insulin resistance in the 

liver and muscle and results in IGT (Huang et al.  2005).  Alteration of GLUT-4, i.e. 

expression or function, contribute toward the development of insulin resistance and 

diabetes.  Under normal circumstances insulin causes an upregulation of GLUT-4 

mRNA in adipocyes but this effect is dependent on glucose concentration (Bilan et al. 

1992).  The response was seen at low glucose concentrations (5.6mM) but not at high 

glucose concentrations (25mM) which suggests a suppressing effect of glucose on 

insulin induced GLUT-4 gene expression (Bilan et al. 1992).  Results have been 

controversial and not all studies concur with this assessment of suppressed GLUT-4 

transportation (McCall et al. 1997) in hyperglycaemic states.  Bilan et al (1992) 

suggested that individuals with insulin resistance will demonstrate a lack of effect of 

insulin in a high glucose environment which may be due to the impaired insulin 

signalling produced by high glucose i.e. glucotoxic effect.  Reducing the glucose 

response in hyperglycaemic states, such as IGT and type 2 diabetes, is important, 

therefore GLUT-4 translocation is an important control mechanism in these 

conditions.  In the muscle, glucose transport by GLUT-4 is insulin-stimulated.  Bilan 

et al (1992) showed that glucose transporter function but not expression was impaired 
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by high glucose concentration in diabetic rats i.e. high glucose impairs insulin action 

on transport but not via altered GLUT-4 expression, whereas,  long-term exposure to 

high glucose in combination with high insulin levels produced a reduction in GLUT-4 

abundance.  Therefore, GLUT-4 therapy has been used as a means to lower plasma 

glucose in diabetic animals (Dolan et al. 1997).  Although research is inconsistent, 

GLUT-4 has a role in the control of energy balance through the maintenance of blood 

glucose levels which provide messages of fuel availability to the brain to determine 

metabolic feeding cues.   

 

1.9 INSULIN RESISTANCE 

 

An accretion of adipose tissue, as in obesity, is associated with insulin resistance 

(Frayn 2001).  Obesity and associated insulin resistance and hyperlipidemia are 

hallmarks of the metabolic syndrome and are major risk factors for type 2 diabetes.  It 

was in 1961 that the concept of insulin resistance was applied, following the 

observation that more obese diabetics were resistant to the blood glucose-lowering 

effect of insulin (Rabinowitz and Zierler 1961).  Therefore the body’s sensitivity to 

insulin, as in insulin resistance, has known to be associated with body fat since then.  

The mechanisms by which an accumulation of fat storage can lead to widespread 

changes in glucose and lipid metabolism, insulin resistance, and other mechanisms are 

still unclear.  Insulin resistance has two important characteristics 1) decreased cellular 

responses to insulin or perturbation of the insulin signalling pathways and 2) 

mutations in the insulin receptor gene which leads to alterations of receptor synthesis, 

degradation and function, i.e. in binding and alterations in translocation and function 

of glucose transporters (GLUT4), in severe insulin resistance.  Adipose tissue plays an 
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important role in the development of insulin resistance and increased circulating 

levels of free fatty acids (FFA) derived from adipocytes are demonstrated in insulin 

resistant states (Corcoran et al.  2007).  Increased FFA have been the most 

consistently discussed associated aberration in the etiology of obesity and insulin 

resistance.  FFA cause an inhibition of glucose uptake and utilisation in muscle, 

glycogen synthesis, glycolysis and an increase in heptatic production of glucose 

(Boden et al.  1994) and an associated glucose-stimulated insulin secretion (Capentier 

et al.  1999), all of which contribute to maintaining the insulin resistant condition.  

Insulin resistance may not be the same and may not occur at the same time in all 

tissues of the body i.e. muscle is resistant very early in the progression of metabolic 

syndrome whereas adipose tissue is not resistant in the early stages of whole-body 

insulin resistance (Das 2002).  The longer term toxic effect of FFA may effect ß-cells 

in the pancreas and this may be the element which associates obesity, insulin 

resistance and the development of type 2 diabetes (Unger 1995).  

 

Associated aberrations of insulin resistance include a propensity to oxidise fat at the 

expense of glucose due to reduced glucose utilisation (Frayn 2001).  Insulin resistance 

is associated with reduced glucose utilisation at a given insulin concentration and 

failed activation of adipose tissue lipoprotein lipase by insulin.  The partitioning of 

fatty acids towards oxidative tissues such as muscle is associated with impaired 

activation of adipose tissue lipoprotein lipase by insulin. This situation leads to the 

idea that insulin resistance may be seen as an adaptation to increasing fat mass (Frayn 

2001; Flatt 1995b).  Ultimately, insulin resistance not only affects the metabolism of 

glucose, but affects lipid metabolism and is also associated with hypertension and 

endothelial dysfunction.   
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 1.10 NUTRIENT STORAGE 

 

Any energy intake in excess of total energy expenditure is stored, however there is a 

hierarchy in the extent to which the macronutrients can be stored, as discussed earlier, 

and this has implications for their metabolic fate, once ingested.  Alcohol is a toxic 

drug which cannot be stored.  The storage capacity for protein and carbohydrate is 

limited and converting these nutrients to a more readily stored form is energetically 

expensive, therefore they are selectively oxidised.  The storage capacity for fat is 

potentially very large.  In some very obese subjects body fat can exceed 40% of total 

body weight (Stubbs 1998).  However, differences between energy stored and energy 

expended and differences in the composition of the fuel mixture oxidised may lead to 

important individual differences in the metabolic fate of excess energy under 

conditions of positive energy balance.  .A positive balance of protein will lead to rapid 

metabolism of a high proportion of the amount of protein ingested, the percentage 

depending on the body’s requirements for specific amino acids.  Similarly as CHO 

intake increases, more of it is disposed of by oxidation.  Because there is a ceiling on 

adaptive changes in energy expenditure (EE)  an increased oxidation of protein and 

CHO will lead to a decrease in the oxidation of fat.  Conversely, intake of fat does not 

promote fat oxidation and actually leads to fat storage (Flatt et al.  1988).  Diet 

composition can influence total energy intake and can alter nutrient balance without 

changing energy expenditure (Tremblay et al. 1989).  The fuel mix oxidized can be 

assessed by RQ (respiratory quotient) and can be measured by indirect calorimetry.  

The RQ of fat is 0.7, Protein 0.8 and CHO 1.0.  An excess of CHO affects energy and 

nutrient balance differently than that of an excess of fat and Horton et al (1995) found 

that an excess of fat leads to more body fat accumulation than an equivalent excess of 
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CHO.  Also, an increase in the thermic effect of food was observed with an excess of 

CHO and fat.  An increase in fat content in the diet will cause a lowering of the RQ 

towards fat oxidation and a reduction in oxidation and promotion of storage (Horton 

et al 1995).  This suggests that an excess intake of fat can lead to a positive energy 

balance and may pre-dispose an individual to obesity.  Flatt’s general theory is that 

the fuel mixture oxidized must match the fuel mixture ingested by seeking to regulate 

carbohydrate.  Hill et al (1994) proposed that some individuals may be at a higher risk 

of developing obesity than others, characterised by a metabolic and/or a behavioural 

susceptibility to weight gain.  He proposed that a behavioural susceptibility to obesity 

creates the opportunity for positive energy balance to occur, such as overeating or 

lack of activity, whereas metabolic susceptibility to obesity determines the metabolic 

fate of the excess energy when positive energy balance occurs.  For example, excess 

fat leads to more body fat accumulation than does CHO (Horton et al. 1995).  

Furthermore, individuals, for example, with a high metabolic susceptibility would be 

even more inclined to accumulate more body fat but less glycogen during periods of 

positive energy balance than an individual would with a lesser metabolic 

susceptibility to obesity.  This knowledge together with the knowledge that excess fat 

affects energy and nutrient balances differently than excess CHO does (Horton et al.  

1995) provides important information about the potential impact of dietary 

composition and nutrient storage on body weight regulation and obesity development.  

Additionally, the implications of long term obesity, such as in type 2 diabetes 

necessitate investigation.  
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1.10.1 Thermic Effect of Food 

 

Diet induced thermogenesis (DIT) is the increase in energy expenditure above resting 

associated with the digestion, absorption and storage of food.  DIT accounts for 

between 5-15% of the total daily EE (Tentolouris et al.  2008).  The thermic effect of 

specific nutrients is highest for protein (20-30%), then CHO (5-10%) and finally fat 

(0-3%).  The central problem in the control of energy balance has always thought to 

have been in the regulation of energy intake, however animal studies have shown that 

in excess energy intake the regulation of thermogenesis is important for the control of 

body fatness (Miller and Payne, 1962).  This has then led to a proliferation of research 

comparing total daily EE or another component of EE such as RMR or DIT.  The 

most significant outcome from this research was that a reduced DIT may contribute to 

the development or maintenance of obesity.  However, studies examining differences 

in DIT have conflicting results.  Some studies show a reduced DIT between lean and 

obese subjects (Segal et al.  1990) and others show no differences in DIT (D’Allesio 

et al. 1988; Tentolouris et al.  2008).  The conflicting results seem to be due to a 

number of reasons including different methodologies, test meals, pre-loads, age-

related differences and daily fluctuations dependant on the amount and type of 

nutrients consumed and the type and amount of physical activity (Weststrate 1993).  

Therefore, the goal of the current study was to assess the DIT induced after a ‘normal’ 

mixed nutrient meal and compare the results of IGT, type 2 diabetics and control 

participants. 
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1.11 THE PUBLIC HEALTH BURDEN OF CHRONIC DISEASES 

 
1.11.1 Obesity 
 
 
Obesity was highlighted as a major public health problem in the UK first by a joint 

department of Health/Medical Research Council report in 1974, and then by the 1983 

Royal College of Physicians (London) Report.  Currently, in Scotland 44% of adult 

men are overweight with a body mass index (BMI) of 25.9-29.9 and a further 14% are 

obese (BMI>30).  In women 32% are overweight and of that figure 17% are obese 

(SIGN, Obesity in Scotland).  Thus half of the adult male population and a third of the 

female population are at risk because they have gained excess weight.  Furthermore, 

about 20% of children are overweight.  Overweight children are found particularly in 

families where both parents are overweight or obese.  The younger an individual 

develops weight gain and obesity, the greater the long-term morbidity. 

 

As demonstrated already body weight is regulated by powerful physiological signals 

which change appetite and satiety to a far greater extent than is recognised.  However, 

only a small persistent discrepancy between daily intake and energy output is required 

to induce substantial weight gain over time.  Metabolic responses to overeating play 

only a modest role in buffering changes in energy balance.  The metabolic rate relates 

to the body weight of an individual, but there are substantial differences between 

individuals.  Many factors interact to induce weight gain, including behavioural, 

physiological, genetic, medical, therapeutic and psychological causes.  To try to 

identify a single factor as the cause of obesity in a patient oversimplifies a complex 

process. 
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The two major factors now being shown to be conducive to weight gain in western 

populations are 1) a reduction in activity levels, which decreases the total energy 

expenditure per day and 2) the ingestion of high-fat, energy dense foods, which 

facilitates excess energy intakes (Prentice and Jebb 1995). 

 

1.11.2 Impaired Glucose Tolerance 

 

IGT is conventionally defined as a plasma glucose level of ≥7.8 and<11mmol/L 2 

hours after ingestion of 75g glucose (WHO 1999).  IGT is a strong predictor of type 2 

diabetes and so it is important to clarify the determinants of IGT.  A few 

epidemiological studies have reported an association between greater abdominal 

obesity, measured by waist circumference or waist-to-hip ratio, and the risk of IGT.  

Progression from normal glucose tolerance to IGT is mostly due to deterioration of 

early-phase insulin secretion and to a lesser degree is the contribution of insulin 

resistance (Suzuki,  2003).  Individuals with IGT are at increased risk of developing 

type 2 diabetes (Yudkin and Coppack 1994).  However, IGT may revert to normal 

glucose tolerance and may not progress inexorably to diabetes.  Indeed, a great deal of 

heterogeneity exists in the rates of progression to diabetes in different populations and 

is higher in non-white racial/ethnic groups.  IGT is not only associated with 

progression to type 2 diabetes but is independently a risk factor for coronary heart 

disease (Califf et al.  2008).  IGT and type 2 diabetics have a number of common risk 

factors including obesity, advancing age, gestational diabetes, family history, 

dyslipidemia and insulin resistance.  Thereby arguing that IGT is a precursor of type 2 

diabetes, however it has not been quantified what factors contribute to the progression 

from IGT to type 2 diabetes.   
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1.11.3 Type 2 Diabetes 

 

In the UK there are approximately 2 million people who are diabetic and, in Scotland 

diabetes is rapidly becoming a health problem as over 170,000 people are diagnosed 

as diabetic (Scottish Government 2006).  Furthermore, research would indicate that 

thousands more have the condition but have not yet been diagnosed (Scottish 

Government 2006). Diabetes UK claim that this figure will double in the next 25 

years (Diabetes UK 2008).  The Scottish Diet report highlighted obesity as a growing 

problem of relevance to the high rates of type 2 diabetes, hypertension and 

hypercholesterolaemia in Scotland (SIGN 1995).  In fact 8 out of 10 type 2 diabetics 

are obese (Diabetes UK 2008).  The increased prevalence of childhood obesity is also 

precipitating type 2 diabetes in children (McGough 2001).   

 

The pathology of type 2 diabetes occurs when ßeta cells within the islets of 

langerhans, in the pancreas may be reduced in number and in chronic states of type 2 

diabetes this may result in fibrosis and deposition of amylin polypeptide within the 

islets. (Halton et al.  2006).  Concurrent with aberrant changes in insulin, as discussed 

above are other known mechanisms (sensory, physiological and psychological) which 

are dysfunctional in obesity and type 2 diabetes.  It is unclear which of the known 

mechanisms influence food intake to the greatest degree and this has never been 

investigated but it is probably due to the implications of the numerous tests that would 

need to be incorporated into the study design.  It is, of course, likely that it is the 

synergistic effect of these dysfunctional mechanisms which causes the progression of 

obesity and type 2 diabetes and which makes it so difficult to reverse the damage and 

effects of these chronic illnesses.  History shows, for example, it is difficult for 
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individuals to lose weight and to maintain weight loss (Tate et al.  2007; Johnstone et 

al.  2008).  This may be an effect of dysfunctional pathways brought about by 

consistent positive energy balance.  The increased knowledge earned by 

understanding the integrated response to food intake could potentially help in the 

prediction of obesity, IGT and type 2 diabetes. 

 

1.12 OBESITY AND CHRONIC INFLAMMATION 

 

The presence of inflammation in obesity has clearly been demonstrated (see figure 

1.5).  The common feature in each investigating article is the inflammation–obesity–

insulin resistance connection.  Specifically, the study of Ortega Martinez de Victoria 

et al (2009) comments on factors related to macrophage activation in adipocytes as a 

source for cytokines for systemic inflammatory effects. In contrast, the study of Haus 

et al (2009) provides data on systemic effects resulting from inflammatory activation, 

namely, the relationship of cytokines with circulating lipid intermediates.  The 

evidence is  accumulating that adipose tissue plays a major role in the production of 

cytokines like interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor 

(TNF)-α, which, in turn increases the production of C-reactive protein (CRP) from the 

liver.  In addition, data from the West of Scotland Coronary Prevention Study 

(Freeman et al.  2002) showed that C-reactive protein predicted the development of 

type 2 diabetes in middle-aged men independently of established risk factors.  This 

long-term alteration in production may adversely affect the sensitivity and/or 

effectiveness of physiological systems controlling long-term energy balance.  The 

long-term effects of this dynamic system are not well documented.     
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Dietary factors, in particular dietary carbohydrates, have been considered in the 

aetiology of inflammation.  It is thought that dietary carbohydrates characterised by 

different postprandial insulin responses, may influence plasma cytokine 

concentrations and gene expression in adipose tissue.  This of course implicates 

glycaemic index in the control of inflammation which mediates the insulin response.  

Therefore, diets containing a high proportion of high glycaemic index foods (i.e. high 

in energy dense, fatty foods) are known to produce a heightened insulin response may 

be implicated in the promotion of inflammation .  A hypothesis has been made that 

ingestion of high glycaemic foods results in initial hyperinsulinaemia and a 

subsequent transient drop in glycaemia below fasting concentrations.  This is thought 

to activate cortisol and catecholamines, which restore fasting glucose concentrations 

and increase nonesterified fatty acid (NEFA) concentrations, which reflects increased 

mobilisation from adipose tissue and stimulation of lipolysis.  Sustained increases in 

plasma FFA can cause insulin resistance (Frayn, 2001).  Moreover, increased 

concentration of TNF-α and IL-6 are associated with insulin resistance (Ruderman, 

2006). 

 

Diet is a significant contributor to adiposity and is therefore an important component 

in the investigation of inflammation.  Dietary fat and plasma fatty acid composition, 

which is at least in part influenced by diet, are related to insulin sensitivity, blood 

pressure, plasma lipid profile and inflammation.  In obese individuals there is a strong 

association between IL-6 and TNF and obesity (Das 2002; Hotamisligil et al.  1993).  

Increased CRP is secondary to increased IL-6 secretion.  Leptin causes an 

upregulation in the production of IL-6 and also induces release of IL-1 in CNS.  The 

effects of leptin on food intake and body temperature are mediated by IL-1.  Thus 



 52

leptin’s influence is to further augment the synthesis and release of pro-inflammatory 

cytokines (i.e. IL-6).  The result of elevated pro-inflammatory cytokines in the 

hypothalamus may damage the specific neurons that sense plasma glucose levels and 

control the secretion of insulin from the pancreas, affecting glucose metabolism and 

potentially triggering positive energy balance and obesity.  These observations 

provide the link between an increase in the expression, and the plasma concentration 

of a proinflammatory cytokines and insulin resistance (see figure 1.5).  Subsequently, 

other metabolic sites may also be involved during the progression of complications 

i.e. hepatic and skeletal muscle insulin resistance.  It has been shown that adipocyte 

precursors and diverse immune cells such as T lymphocytes and macrohages possess 

similar potentials in escalating inflammatory cytokine production (Rosen et al.  1989).  

Thus, it appears that obesity is associated with a ‘local’ low-grade inflammation 

characterised by increased macrophage infiltration of adipose tissue and the 

production of inflammatory cytokines such as IL-6 and TNF which in turn causes an 

increased CRP concentration.  This may lead to endothelial dysfunction and 

perpetuate insulin resistance and then eventually atherosclerosis and cardiovascular 

disease (CVD).  It is not clear if the inflammatory response is the primary or 

secondary event that causes these diseases.  However, it is clear that study findings 

have important clinical and public health implications (Martin et al.  1992). Insulin 

resistance is a major risk factor for type 2 diabetes, coronary heart disease, stroke, and 

kidney disease.  Identifying risk factors for insulin resistance is important in the 

development of strategies for the prevention and treatment of insulin resistance.  

Inflammatory markers such as tumor necrosis factor, interleukin-6 and C-reactive 

protein have been associated with an increased risk of diabetes (Hu et al.  2004).  In 

addition, inflammatory factors such as C-reactive protein and fibrinogen have been 
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found to play an important role in the pathogenesis of cardiovascular disease (Danesh 

et al.  2004; Ridker et al.  2000). Prospective epidemiologic studies have indicated 

that C-reactive protein has additive effects on the risk of cardiovascular disease 

among patients with insulin resistance (Ridker et al.  2003).  Treatment of 

inflammation may reduce the risk of insulin resistance, diabetes, and related 

cardiovascular disease. 

 

Generally, the acute inflammatory response causes a reduction in appetite (Black 

2006) but with a chronic inflammatory response, as in type 2 diabetes, there appears 

to be no such change in feeding behaviour.  Black (2006) suggested that one reason 

for this could be because the IL-6 response is not strong enough.  It is not known if 

the long-term increase in cytokine levels causes permanent damage to glucose sensing 

neurons and the resultant poor insulin control.  However, this being the case, damage 

to glucose sensing neurons may influence glucose uptake from the blood which may 

have an array of effects including altered ATP levels, altered fuel mix, and therefore 

changes in storage and utilisation which ultimately may be the reason for further 

weight gain in already obese individuals. 
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Figure 1.5 Schematic representation of the relationship between adipose tissue and 
the various components of the metabolic syndrome:  the concept of adipose tissue 
dysfunction, IGT (impaired glucose tolerance, IFT (impaired fasting glucose), GDM 
(gestational diabetes mellitus), HTN (hypertension) (Chandalia and Abate 2007).  
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1.13 PHYSICAL ACTIVITY 

 

As discussed in the very first chapter the importance of maintaining energy balance is 

paramount in leading a healthy lifestyle.  The key to this is to match energy intake 

with energy expenditure.  The relationship between physical inactivity and various 

health problems is well established (Blair et al.  1996; Hardman 1996).  The body of 

evidence over the past half century has led to the consensus that sedentary living leads 

to coronary artery disease and perhaps to some cancers, stroke, non-insulin-dependent 

diabetes mellitus and other health problems (Bouchard et al.  1994).  Overweight and 

obesity accentuate all the manifestations of metabolic syndrome and their 

development may be related to sedentary living; therefore, some discussion of the 

potential of exercise to influence weight regulation is necessary and it is consequently 

important to recognise what the differences in physical activity are between the three 

groups in the current study.  Biological mechanisms that contribute to the lower risk 

associated with activity include improved lipoprotein profile, insulin action, glucose 

tolerance, lower blood pressure and the loss of total weight and body fat (Williams 

2001).  Lower death rates associated with regular physical activity are consistent in 

different populations (Blair et al. 1996; Blair & Connelly 1996).  The level of physical 

activity has been identified as one factor which may exert a beneficial effect on 

insulin and glucose dynamics.  For example, one study of 70-89 yr old men found that 

insulin concentrations during an oral glucose tolerance test were lowest in men with 

the highest physical activity levels, undertaken mainly by walking, cycling, and 

gardening (Feskens et al.  1994).  The findings are similar for women:  in a 

prospective study of 87,000 middle-aged women, those taking part in vigorous 

exercise had only two-thirds the risk for developing type 2 diabetes when compared to 
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inactive women (Manson et al. 1991).  The positive effects following an acute bout of 

exercise include an enhancement in glucose uptake into skeletal muscle, via the 

GLUT-4 facilitated diffusion; this is partly an insulin-independent contractile effect, 

which persists for several hours after the cessation of exercise (Young et al.  1987).  

In addition, the response of the glucose transport system to insulin is enhanced; 

usually lasting about 48 hours (Mikines et al.  1988).  The enhanced transport system 

is important for individuals who have dysfunctional glucose and insulin regulation as 

exercise may help to improve the effectiveness of mechanisms where glucose and 

insulin are involved, most importantly energy metabolism.  Beneficial metabolic 

changes are correlated with the loss of body weight and body fat due to increasing 

energy expenditure with exercise.   This has been reported to be regardless of exercise 

intensity (Bouchard et al.  1993).  Exercise over months and years, may well stimulate 

long-term effects on whole-body insulin sensitivity, which are independent of 

qualitative changes in insulin-mediated transport in muscle, due to body composition 

changes i.e. decreased adipose tissue and increased muscle mass.  The positive effects 

of exercise are well documented and have consequently resulted in reduced appetite 

sensations in lean and obese rats (Ramirez et al.  1997.  Short and long-term effects of 

exercise facilitate to improve energy expenditure by acting on the hypothalamus to 

coordinate the neuro-endocrine and appetite responses to exercise (Engler 2007) and 

therefore maintain energy balance.   
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1.14  METHODS FOR MEASURING ENERGY INTAKE AND ENERGY 

EXPENDITURE 

 

One of the major obstacles in nutritional epidemiology research has been uncertainty 

about the validity of existing dietary assessment methodologies (Block 1982).  The 

doubly labeled water method for measuring total daily energy expenditure can serve 

as a reference for assessing the accuracy of conventional dietary intake methodologies 

(Schoeller 1990). This concept is based on the premise that the measurement of total 

energy expenditure in free-living individuals can serve as a proxy measure of energy 

intake when subjects are in energy balance (Poehlman 1992).  Studies measuring 

energy intake have found that self-reported food intakes underestimated habitual 

energy intakes (Livingstone et al.  1992; Bandini et al.  1990).  However, they lend 

themselves better to large epidemiological studies due to their advantages; such as 

low cost, ease of completion and they are adaptable to most research settings.  Self-

reported measurements of energy intake include weighed records, 24-hour recall, food 

frequency questionnaires.  There are other methods of estimating energy intake such 

as prediction equations which measure energy expenditure and are used on the 

premise that the measure of EE can serve as a alternative measure of energy intake 

when individuals are in energy balance (Johnson et al.  Although, accuracy is 

questionable and there is no gold standard method of measuring energy intake in free 

living subjects, a protocol which validated the 4-day weighed intake (Bingham and 

Day 1997) made this the method of choice in the current study. 

  

There are many different methodologies for measuring energy expenditure.  

Measurements of daily energy expenditure (EE) are made to estimate energy 
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requirements.  Measurements are either 1) continuous i.e. direct and indirect 

calorimetry, 2) factorial i.e. activity diaries, accelerometers, 3) heart rate monitoring 

and the determination of individual oxygen consumption, 4) doubly labeled water or 

5)  energy intake in conjunction with changes in body composition.  Continuous 

measurements of EE would give the most reliable results however are not feasible for 

studies on free living individuals.  For this reason the current study utilised factorial 

methods for the measurement of EE.   

 

1.15 SUMMARY OF THE CURRENT RESEARCH IN FOOD INTAKE 

 

Body weight should be well regulated through biological control of food intake.  The 

regulation of food intake is often seen to be controlled via the brain, as a monitor of 

peripheral body fat stores via messages such as leptin, insulin and acetylation-

stimulation protein (Levitsky 2005), initiating a set of peptide and neuro-endocrinal 

events that constitute the neural substrates of eating behaviour and energy 

expenditure.  Therefore biologically, it is clear that body weight is not well regulated.   

There is a failure in one or more of the feedback systems which controls energy 

balance that leads to the development of obesity.  Research into feeding behaviour 

and body weight control has taken two approaches; appetite and energy balance. In 

the research of appetite the area measured is normally food intake and is often 

concerned with the qualitative aspects of eating such as food choice, preferences and 

the sensory aspects of food, together with the hunger, fullness and the hedonic 

sensations which accompany eating.  Among energy balance research the area 

measured is usually energy intake and is concerned with the quantitative aspects of 

eating and with the energy value of food i.e. macronutrient composition of food and 
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its impact on energy balance.  Research on appetite control has been heavily 

influenced by psychologists and energy balance research has been the spectrum of 

physiologists, biochemists and nutritionists.  These two approaches to research into 

‘feeding behaviour’ conflict when explaining abnormal eating and the consequences 

for weight gain. It is unclear whether obesity is brought about by enhanced feelings of 

hunger, ill-judged food choices, weakened satiety, sensorily induced over-

consumption, from inadequate oxidation of fuels, or different neuro-endocrine 

responses to dietary intake.  The divergent approach into the investigation of feeding 

behaviour reveals that the mechanisms controlling feeding are, not only biological 

but, mutifactorial and complex and are characterised by the on-going interaction 

between peripheral and central mechanisms that sense and respond to changes in the 

external environment i.e. nutrient supply and temperature, and to the internal 

environment i.e. changes in plasma glucose.  It seems apparent that the homeostatic 

control of feeding behaviour is less well designed to cope against an excessive 

environmental supply of energy and nutrients (Blundell and Stubbs 1997).  

 

 

 

 

 

 

 

 

 

 



 60

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6  Modified schematic diagram illustrating that the pattern of eating 
behaviour arises from an interaction between biological regulation and environmental 
adaptation. (Blundell and Tremblay 1995).  IGT and Type 2 Diabetes affects the 
physiology of metabolism, appetite may affect afferent brain signals, and taste 
sensitivity may affect eating behaviour, all denoting  a complex interplay of 
mechanism controlling the homeostasis of food intake. 

Appetite 

Taste 
IGT

Type 2 Diabetes 
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1.16 GENERAL AIMS OF THE THESIS 

The aim of the study was to investigate the components involved in the metabolic 

handling of food and how the responses differ between IGT, type 2 diabetic and 

control participants.   

 

1.16.1 Objectives of the Thesis: 

 

• To determine anthropometric measures in IGT, type 2 diabetics and a healthy 

control group and compare differences. 

 

• To investigate differences in habitual energy intake and energy expenditure 

and compare the differences between IGT, type 2 diabetics and control 

participants.  

 

• To measure taste in IGT, type 2 diabetics and a healthy control group. 

 

• To investigate subjective ratings of appetite including; hunger, satiety, fullness 

and prospective consumption. 

 

• To measure energy expenditure and diet induced thermogenesis in IGT, type 2 

diabetics and a healthy control group. 

 

• To determine fasting and postprandial rates of substrate oxidation in IGT, type 

2 diabetics and a healthy control groups. 

 

• To determine the integrated response to a test meal measuring glucose, insulin 

and the novel hormone ghrelin. 

 

• To identify any associations between taste, appetite, blood profiles and food 

intake. 
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CHAPTER 2 - METHODS 
 

 
2.1 PARTICIPANTS 
 
 

Participants eligible for recruitment were between the ages of 20 and 70 years in 

accordance with the inclusion criteria. Impaired glucose tolerant (IGT) and type 2 

diabetic participants’ blood glucose levels must have been taken within the last 12 

months and must have still been within the range for diagnosis of that disease, see the 

diagnosis range below.  The participants blood glucose concentrations determined 

whether they were placed into the type 2 diabetic group or the IGT group.  IGT and 

type 2 diabetic participants were recruited having a body mass index (BMI) of greater 

than 30, were not taking any antihyperglycemic medication, and were free from any 

other metabolic disease as per the inclusion criteria. 

 

Table 2.1  Definition and Diagnosis Criteria for IGT and Type 2 Diabetes  

 IGT Type 2 Diabetes 

Fasting <7.0 mmol/l ≥7.0 mmol/l 

2 Hour/Random ≥7.8 and ≤11.1 mmol/l ≥11.1 mmol/l 

WHO 1999   

 

A group of healthy control subjects were also recruited who had no diagnosed 

metabolic disorder.  Exclusion criteria included patients who were claustrophobic 

because they had to undergo tests which involved being covered by a hood and 

patients must have been free from any other metabolic disease.  
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2.1.1 Recruitment 

 

Patients at the Western General Hospital (WGH) in Edinburgh were recruited by 

screening patient records to identify their eligibility as type 2 diabetic participants.  

When they attended their outpatient appointment at the diabetic clinic within the 

WGH, subjects were then approached and were informed about the study and 

provided with an information sheet.  Participants were given one week to read the 

study information before they were contacted by telephone where the content of the 

study was discussed further and participants were recruited if willing.  Both 

appointments for the study were made with the participant at this stage.  IGT 

participants were recruited from the same diabetic clinic although it was also 

necessary to involve GP practices in Lothian.  This was done by sending letters out to 

GP practices outlining the study and asking for access to their patients (appendix 1).  

Patients meeting the inclusion criteria were identified by searching on GPASS and 

then by mailing the study information to those patients on behalf of the practice.  

Participants completed and sent back a ‘patient details’ form (appendix 2) to become 

involved in the study and then contact was made by telephone to discuss the study.  

At this stage if the participants were willing to be involved in the study both 

appointments were made.  Control participants were recruited by advertisement in 

Queen Margaret University.  All subjects were provided with verbal and written 

information regarding the study and informed consent (appendix 3) was obtained 

from all participants.  Participants were provided with the name, telephone number 

and email address of the study’s independent advisor.  Once recruited, participants 

were requested to attend 2 sessions with less than 1 month between the initial and 

second test day.  The first session was simply introducing the participants to the 
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environment, nursing staff and to equipment that would be used on the main study 

day, particularly the calorimeter to ensure they felt comfortable with it and all the 

other procedures.  Height, weight and BMI were recorded at the first session and 

subjects were instructed to complete diet and activity diaries to bring along to their 

second session and finally to complete a 24 hour urine sample to be collected on 

arrival for their second session.  The second session was when the test procedures 

were carried out.  Participants were asked to avoid alcohol for the 24 hours prior to 

the study days to ensure a normal hydration status and were also asked to avoid 

exercise the day before the study days to ensure a normal metabolic status. 

Participants were also instructed to fast for 12 hours prior to commencing the second 

study day (water was allowed during this period) to allow for fasting data to be 

collected. 
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2.1.2 Experimental Protocol 

 

 

 

 

 

 

Figure 2.1  Schematic Diagram of the Study Protocol 
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The study was approved by the Wellcome Trust Clinical Research Facility (WTCRF) 

following a proposal and application for clinical assistance.  A feasibility review was 

undertaken by them to determine costs and approval was granted for 1 year, subject to 

ethical, and research and development (R&D) management approval from both 

Lothian Primary Care Trust (LPCT) and Lothian University Hospital Trust (LUHT).  

R&D management approval was subsequently given by both trusts (LUHT and 

LPCT) and an ‘honorary contract’ and a ‘Disclosure Scotland’ check was obtained 

before research could commence.   All participants attended the Wellcome Trust 

Clinical Research Facility at the Western General Hospital, Edinburgh on two 

occasions to complete the study.   

 

2.1.2.1 Participant – Session 1 

 

On the first occasion participants were familiarised with the facility, the study 

protocol was explained and patients were shown all equipment to be used and then 

written consent was obtained.   Anthropometric tests were completed i.e. height, 

weight, BMI, waist and hip measurements.  Participants were instructed on the 

successful completion of the 4-day diet and activity diaries and were given verbal and 

written instructions (appendix 4) on the successful completion of a 24-hour urine 

collection, all of which had to be completed for attendance at their second session.   
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2.1.2.2 Participant – Session 2 

 

On admission into the unit for session two, general practitioner, medical history and 

current medications were recorded for each participant.  Initial blood pressure (BP) 

was recorded.  To facilitate blood taking a cannula was placed in the brachial vein 

along with a minimal infusion of normal saline to ensure the cannulas’ patency and 

then baseline blood samples were recorded.  At this stage, guidance was given on 

successful completion of the Visual Analogue Scales (VAS) and all terms were 

explained e.g. hunger, satiety, fullness and prospective consumption.  Baseline VAS 

measurements were recorded and time was given for the patient to relax into the 

environment.  Each participant then underwent an initial period of indirect calorimetry 

for 30 minutes, with the first 10 minutes of results being discarded to allow the 

participant to acclimatise to the calorimeter.  Subjects were asked to lie at rest in a 

supine position, with their arms away from their body and palms facing upwards, with 

their legs slightly apart, and to remain awake during the recording period.  

Immediately after this, participants were given a breakfast equal in calorific value 

including: 1 x 30g box of Kellogg’s cornflakes, 200g of semi-skimmed milk, 1 piece 

of white toast with a portion of butter and a 200ml carton of freshly squeezed orange 

juice.  The time taken to eat the breakfast was recorded.  At specific time points 

throughout the morning, BP and pulse, VAS, bloods and 10 minutes indirect 

calorimetry were recorded.  At 120 minutes the timer was stopped and the cannula 

was removed.   
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2.2 BODY COMPOSITION MEASUREMENTS 

 

2.2.1 Height and Weight 

 

Subjects’ height and weight were measured.  Subjects were asked to remove their 

shoes, heavy outer garments and jewellery, loose change, keys and mobile phones.     

Height was measured using a stadiometer (wall fixed height measure, CMS Weighing 

Equipment Ltd, London, UK) to the nearest 0.1 cm.  Weight was measured to the 

nearest 0.1 kg (Seca 761, Birmingham, UK).  Body Mass Index (BMI) was calculated 

by the division of weight (kg), by height (m²). 

 

2.2.2 Waist and Hip Measurements 

 

Waist is defined as the point midway between the iliac crest (superior border of hip 

bone) and the costal margin (lower rib).  Hip is defined as the widest circumference of 

the buttocks and below the iliac crest.  Subjects were asked to remove all outer layers 

of clothing, shoes, belts and any tight garments intended to alter the shape of the 

body.  Waist and hip were measured twice to the nearest 0.1 cm using a tape measure.   

 

2.2.3 Waist: Hip Ratio 

 

Waist: hip ratio (WHR is defined at the waist circumference divided by the hip 

circumference).  It is a measure of the distribution of abdominal fat (central obesity) 

Raised WHR has been shown to be associated with certain health risks and may be a 

stronger predictor than BMI of the risk of diabetes or insulin resistance.  A high WHR 
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has been taken to be 0.95 or more in men and 0.85 or more in women (Department of 

Health 1995). 

 

2.3 PHYSIOLOGICAL PARAMETERS 

 

Blood pressure and pulse rate were also measured throughout the study period at the 

six determined timepoints.  These were recorded using a Dinamap Compact Vital 

Signs Monitor 9000EM04 (Johnson & Johnson Medical Ltd, Gwent, UK) on the arm 

which was not cannulated for blood letting. 

 

2.4 TASTE TEST 

 

A taste test was used to examine how individual sensitivities to bitter-tasting 

compounds affects food intake by determination of the detection threshold for the 

taste of 6-n-propylthiouracil (PROP).  PROP taste thresholds were determined using a 

series of 15 PROP solutions that ranged in concentration from 1.0 x 10-6mmol/l to 3.2 

x 10-3mmol/l PROP.  This range of concentrations increases in quarter log steps as per 

Drewnowski (Drewnowski et al.  1991; Drewnowski et al.  1997a and 1997b) as 

shown below: 

Log (1.0 x 10-6) = -6 to Log (3.2 x 10-3) = -2.5 mol/l PROP 

i.e. (-6.0, -5.75, -5.5, -5.25, -5.0, -4.75, -4.5, -4.25, -4.0, -3.75, -3.0, -3.25, -3.0, -2.75, 

-2.5). 

170g PROP =  1L = 1mmol/l 

170mg PROP = 1ml  1mmol/l =  170 x 3.2g = 0.0032 = 544mg 

     170 x 1.8g = 0.0018 = 306mg 
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The highest concentration, solution no. 15 contained 0.5446 g/l; the next 

concentration, solution no. 14 contained 0.3064 g/l and so on.  The 4 stock solutions 

(15, 14, 13 & 12) were diluted by 10 times to make the less concentrated solutions.  

The PROP chemical was purchased from Pfaltz & Baver, Waterbury, CT, USA as per 

Drewnowski (1997).  The solutions were prepared and numbered at least one day 

before testing with tap water and stored at 4oC.  

 

2.4.1 Testing procedures 

 

Tests were always performed in the morning of the study, either in session 1 or 2.  

Subjects were requested to abstain from eating, drinking and brushing their teeth for 1 

hour prior to the test.  Each subject was given verbal instructions (Keller et al.  2002) 

on the correct completion of the taste test prior to starting the test and was standing 

alone with the experimenter in a hospital room.  The sip-swirl-and-spit method was 

used and a rinse with tap water separated the sampling of the pairs of stimuli.   

 

2.4.2 Detection Threshold Determination 

 

Subjects were first presented with the reference solution (tap water) and then with two 

identical glasses, one containing a solution of the tastant (about 10ml of solution) at 

an intermediate concentration and the other containing tap water.  Solutions were at 

room temperature.  The participant was asked “Do you taste anything?” and if the 

response was “no” the participant was presented with a higher concentration and the 

result was recorded (see appendix 5).  If they answered “yes”, participants were 

required to indicate which of the two samples was identical to the reference.  Wrong 
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answers led to the presentation of a higher concentration again paired with tap water, 

and correct answers to a lower concentration.  Detection thresholds were measured 

using an up-and-down procedure with a forced choice pair presentation method 

(Dixon and Massey 1960).  PROP tasters were defined as having thresholds of <1.0 x 

10-4mmol/l (equivalent to solution 9) and non-tasters as having thresholds in excess 

of 2.0 x 10-4mmol/l (equivalent to solution 10).  This separation criteria was similar 

to that adopted by Fischer et al (1963) who regarded the concentration of 1.88 x 10-

4mmol/l as the threshold, and to that of Bartoshuk (1993) who used threshold values 

of 2.0 x 10-4mmol/l to separate tasters from non-tasters. 

 

2.4.3 Suprathreshold Scaling 

 

For each tastant to be scaled, subjects were asked to taste and rate PROP solution 12.  

The subjects were required to rate the intensity of bitterness using the labelled 

magnitude scale (LMS) with 6 categories (appendix 5) from ‘barely detectable to 

‘strongest imaginable’.  Verbal instructions were given on the use of the LMS 

(Appendix 6).  Green’s strategy was to include only as many descriptors as subjects 

could comfortably use, as too many may confuse subjects and too few may leave gaps 

in the scale and thus reduce its usefulness (Newstead and Griggs 1984).   The LMS is 

a quasi-logarithmic scale with semantic descriptors that is equivalent to magnitude 

estimation scaling (Green et al.  1993).  The placement of semantic descriptors along 

the length of the scale makes this scale easy for subjects to understand and use.  The 

scale (see figure 2.2) is 165 mm in length and is anchored at the bottom with the 

phrase ‘barely detectable’ and at the top with ‘strongest imaginable’.  The top of the 

scale, ‘strongest imaginable’, on the LMS refers to the strongest oral sensation an 
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individual has been exposed to in everyday life (Tepper and Ullrich 2002).  This 

general description of descriptors has revealed no discernable differences in the 

ratings for PROP than when an explicit definition was used (Sposato et al.  2001) i.e. 

‘strongest imaginable oral sensation’ as opposed to ‘strongest imaginable sensation of 

any kind’.  The scale is particularly useful for collecting intensity responses to strong 

stimuli such as PROP because it permits an individual to rate a stimulus based on the 

full range of his/her everyday experiences rather than truncating the individual’s 

response to a standard descriptor (i.e. very strong).  Since the intensity of PROP to 

supertasters can exceed the limits of a standard rating scale, the LMS avoids ceiling 

effects often associated with the use of standard, scaling techniques (Prutkin et al. 

2000).  

 

Participants rinsed their mouth with tap water before they began and between each 

sample.  They were required to place the whole sample in the mouth (10ml), 

expectorate it and rate its intensity by making a single mark on the scale.  Subjects 

could then rinse their mouth.   

 

Subjects were independently classified by the one-solution test.  For non-tasters, the 

upper limit of the confidence interval reached a value of 15.5, approximately 

‘moderate’ on the LMS (Tepper 2001).  The lower limit for supertasters occurred at a 

value of 51, corresponding to ‘very strong’ on the scale.  Medium tasters fell within 

the intermediate range, >15,5 and <51.  Some subjects gave borderline ratings for 

PROP.  When this occurred, the individual’s detection threshold determination results 

were considered. 
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Figure 2.2  The Labelled Magnitude Scale used for the PROP Taste Testing for a 
Single Solution Test devised by Green et al (1993).  The version used by the 
experimenter includes a numerical scale (Appendix 5)  
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2.5 FOOD INTAKE AND ENERGY EXPENDITURE MEASUREMENTS 

 

2.5.1 Diet Diary 

 

Subjects completed a 4-day food diary (Bingham et al.  1994) so that food intake 

could be measured in kilocalories per day.  Subjects were given verbal and written 

instructions on successful completion of the diary and were also given a telephone 

number to contact with queries regarding the diary (appendix 7).  Subjects were asked 

to complete the diary within the course of one week and to record three week days 

and 1 weekend day.  This would take into account the day of the week variations.  It 

has often been stated that there is no gold standard that can be used to validate 

prospective methods of dietary assessment carried out in free living subjects however, 

a validation protocol (Bingham and Day 1997) specified a 4 day weighed food record 

was developed to minimise the burden on volunteers asked to weigh and record their 

food for prolonged periods.  Subjects also received a portion sizes photograph book 

(Nelson et al.  2002) to help estimate weights while out with the home.  To assess the 

validity of the weighed-food records, average dietary nitrogen intake from the 4-d 

weighed food record was compared with average urinary nitrogen output from the 24-

hr urine collection.  All diet diaries were analysed by the author using the dietary 

analysis computer programme, Comp-eat 5 (Carlson Bengston Consultants Ltd, 

London, UK).  The reported intake was analysed and percentage energy provided 

from fat, carbohydrate and protein was assessed.  
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2.5.2 Activity Diary 

 

Subjects were asked to complete a 4-day activity diary (appendix 8) so that energy 

expenditure including activity could be estimated in kilocalories per day.  Again, 

subjects were given verbal and written instructions on successful completion of the 

diaries and were also given a telephone number to contact with queries regarding the 

diaries.  Subjects were required to keep a detailed record of all activities carried out 

during the day, including, showering, eating, walking, sitting at work/in front of the 

television, doing housework and also of any leisure or sporting activity.  The time of 

day, the amount of time spent carrying out the activity and the intensity of the activity 

were noted in the diary.  Physical activity levels (PAL) (WHO 1985) were calculated 

by giving ‘weights’ to activities depending on their intensity, e.g. sleep/rest is given a 

weight of 1.0 whereas heavy activity is 7.0.  Energy expenditure was then calculated 

for each activity within the 24 hours by multiplying the total time and intensity for 

each activity by the calculated hourly basal metabolic rate (BMR).  BMR was 

calculated using the equations of Schofield et al (1985) which utilise height and 

weight as an indicator of BMR.  Total daily metabolic expenditure was then 

calculated by adding the sum of the energy expended for each activity (Gerrior et al.  

2006). 

 

2.6 TEST MEAL 

 

On study days participants were booked in to arrive at their preferred time between 8-

9am therefore breakfast was used as a test meal in this study.  This time was booked 

in with the WTCRF so that they could arrange parking (if necessary) and greet the 
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participant on their arrival.  An identical, isocaloric meal was used for all subjects so 

that the difference between the groups could be identified.  Each test meal was made 

immediately prior to consumption by the researcher.  The subjects were instructed to 

consume the test meal as quickly as was comfortably possible and the importance of 

finishing the meal was stressed.  Time taken to finish the breakfast was recorded.  The 

composition of the test meal is provided below: 

 

Table 2.2  Composition of the Test Meal and Energy Value of each Component 

 

Food Item Quantity

Energy 
value 
from 
CHO 

(kcals) 

Energy 
Value 

from Fat    
(kcals) 

Energy 
Value from 

Protein 
(kcals) 

Total 
Energy 
Value 
kcals 

Kellogs Cornflakes 30g 100.8 2.43 9.48 112.8 

Semi-skimmed Milk 200 ml 35.25 30.6 27.2 93.1 

Brown bread toasted 25g 46.125 6.25 11.2 63.75 

Butter 15g 0.34 110.97 0.36 111.69 

Fresh Orange 250ml 75.94 trace 0.36 82.5 

Totals (kcals) 

Macronutrient (%) 
 

258.45 

(56%) 

150.25 

(32.5%) 

48.6 

(10.5%) 

463.84 

 

 

2.7 MEASURES OF APPETITE BY VISUAL ANALOGUE SCALES 

 

Visual analogue scales (VAS) measures a characteristic or attitude that ranges across 

a continuum of values and is a 100mm in length anchored by word descriptors at each 
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end.  VAS were used to measure subjective sensations of hunger, satiety, fullness and 

prospective food consumption (see appendix 9).  Each subject was given verbal 

instructions on the correct completion of the VAS and the four subjective measures of 

appetite were explained.  Hunger was classified as the subjective desire to consume 

food, satiety as the subjective feeling of ‘satisfaction’ from food and was classed as a 

positive feeling.  Subjects were asked to differentiate between the fullness sensation, 

which was described as a ‘gastric’ or ‘stomach bloated ness’ feeling and could be 

classed as a negative feeling.  Prospective consumption was described as the ability to 

consume more food, which subjects had to quantify using the scale.   Subjects were 

asked to mark the scale at the point which best described the extent of their feelings 

for each category.  The visual analogue scales were quick and easily scored, 

measuring the distance along the 100 mm line to the mark the subject made.  VAS 

rating scales were used as they are more sensitive and less restrictive than category 

scales, which may produce bias.  VAS have previously been shown to encompass 

some ability to predict aspects of feeding behaviour and act as a useful adjunct to 

measures of food, energy and nutrient intake.  VAS have also been shown to be 

sensitive to experimental manipulations, provided those manipulations exceed or 

disrupt the effects of the habituated motivation to eat (e.g. hunger at meal-times), and 

they have been shown to have good reproducibility (test-retest reliability) under 

controlled conditions provided that they are used in within-subject designs (Stubbs et 

al.  2000).    Limitations of the VAS were that the subjects were still restricted by the 

end dimensions of the scale and that assessing the validity was difficult because they 

could not be compared with an objective physical measure (Maxwell 1978).  The 

latter can be overcome if examining the VAS for the hunger measurement before and 

after a meal as it was in this study.  The scales were used to analyse fasting (baseline) 
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levels and at 5 further points throughout the study period (see figure 2.1).  At each 

timepoint a fresh VAS was used so that comparisons could not be made with previous 

results. 

 

2.8 INDIRECT CALORIMETRY 

 

Indirect calorimetry was used to determine energy expenditure and substrate oxidation 

in the study.  Following the study protocol, indirect calorimetry was used on each 

subject at regular intervals of the 3½ hour study period using an indirect calorimeter 

(Datex  Deltatrac Metabolic Monitor, Hatfield, Hertfordshire, UK).  A known rate of 

airflow through the hood (at steady state conditions air flow is set to maintain a 

concentration of carbon dioxide (CO2) in the chamber of approximately 0.5%) enables 

the gas analysers to interpret oxygen consumption and carbon dioxide production.  

Deltatrac analysers measure the volume of oxygen consumed, using a paramagnetic 

sensor, as oxygen has a large paramagnetic susceptibility.  Carbon dioxide produced 

was measured using an infrared sensor.   

 

2.8.1 Operation of the Calorimeter 

 

Before initiation of the current study the calorimeter was serviced by a Datex 

engineer.  Regular calibration of the flow rate and respiratory quotient (RQ) of the 

Deltatrac calorimeter was performed using an alcohol burn kit in accordance with the 

manufacturer’s instructions.  Flow was checked by burning a known amount of pure 

ethanol in a Deltatrac designed alcohol burner.  This check of the flow rate enabled 
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adjustments to be made to the calorimeter and also checked accuracy of the RQ 

(Ethanol RQ = 0.67) for any problems with the linearity of the gas sensors.   

 

The calorimeter was switched on, in the morning of the study, at least 30 minutes 

prior to the commencement of the study.  Before usage, the gas sensors were 

calibrated using a gas mixture of 5% carbon dioxide and 95% oxygen (Quick CAL, 

calibration gas, Datex, Helsinki, Finland).  Calibration for atmospheric pressure was 

also performed using a barometer as this may contribute to drifts in the gas sensors.  

Prior to the initial calorimetry measurement, subjects were informed of the basic 

procedure for using the calorimeter and the duration of each measurement.  To ensure 

the subjects were in a stable state, a 10 minute acclimatisation period was included at 

the start of each test day.  Subjects were measured in a quiet, private room and were 

given no stimulus.  To ensure accurate readings, subjects remained awake throughout 

measurement periods and the researcher or research nurse stayed with the subject at 

all times throughout the measurement periods. Indirect calorimetry measurements 

were taken in a fasted state for 30 minutes, and then at 15, 30, 60, 90 and 120 minutes 

following the test meal, with the measurement lasting for 10 minutes on each occasion 

over the study period.  

 

2.8.2 Limitations of Calorimetry 

 

Limitations of indirect calorimetry are that the data gives no information about the 

substrates being oxidized in individual organs and tissues.  Furthermore, indirect 

calorimetry assumes a single value for the volumes of O2 (oxygen) consumed and 

CO2 (carbon dioxide) produced during the complete oxidation of one gram of each of 
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the substrates.   However, these values depend very much upon the type of substrate 

being oxidised (Table 2).  For example, oxygen consumption depends on whether the 

sugar is a mono, di, or polysaccharide.  The carbohydrate energy source of the body in 

the postabsorptive state is glycogen, which will consume 829 ml of O2 per gram of 

glycogen oxidised.  If however, one is studying a subject or patient who is receiving 

glucose, carbohydrate oxidation expressed as glucose will be underestimated by 11% 

if the starch (glycogen) value is used in the calculations.  Protein oxidation holds 

similar limitations in that the volume of oxygen consumed per gram of protein will 

change depending on whether the protein is primarily a meat, milk or cereal.  Unlike 

protein and carbohydrates, the amount of oxygen consumed per gram of fat oxidised 

varies little depending on its source. 
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Table 2.3  Oxygen Consumption for Nutrient Oxidation (Jequier et al.  1987) 

 
Oxygen consumed per gram of nutrient 

Oxidised (litres) 

Protein 0.966 

Beef muscle 1.008 

Casein 1.008 

Zein (Maize Protein) 1.052 

Carbohydrates  

Starch 0.829 

Sucrose 0.786 

Lactose 0.786 

Glucose 0.746 

Fat 2.019 

Corn Oil 2.015 

Pig fat 2.037 

 

 

Also, hyperventilation during indirect calorimetry can influence the measured O2 

consumption, CO2 production, and the respiratory quotient.  During hyperventilation 

CO2 is eliminated in excess of that produced by oxidative metabolism and there is a 

decrease in the bicarbonate pool.  CO2 elimination increases rapidly and exceeds 

concomitant O2 consumption which results in a respiratory quotient greater than 1.0.  
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Hyperventilation is normally followed by a compensatory period of hypoventilation 

during which metabolically produced CO2 is stored to re-equilibrate the bicarbonate 

pool (Jequier et al.  1987).  To overcome this limitation it was ensured that no 

participants were claustrophobic and that all participants were given time to relax 

before the procedure commenced.  Jequier et al (1987) stated that the mean values for 

carbohydrate and fat oxidation will be correct provided that the respiratory exchange 

measurements encompass these transient changes.   

 

Lastly, the calculation of energy expenditure in indirect calorimetry cannot take into 

account any of the oxygen and carbon of amino acids that remain combined with 

nitrogen, and excreted as nitrogenous products in the urine.  To overcome this 

limitation, urine was collected to measure urinary nitrogen and estimate the 

contribution of protein oxidation to the O2 and CO2 measurements. 

 

2.9 RESPIRATORY QUOTIENT  

 

Respiratory quotient (RQ) was calculated through the measurement of oxygen 

consumption and carbon dioxide production.   RQ is the ratio of moles of carbon 

dioxide produced to the moles of oxygen consumed on oxidation of a given amount of 

each nutrient.  These values are close to 0.7 for fat, 0.8 for protein, 1.0 for 

carbohydrate and 0.8 for a mixed macronutrient meal.  Energy expenditure per litre of 

oxygen consumed is very similar for all three major nutrients, however RQ can be 

used to determine substrate oxidation (when urinary nitrogen is also calculated).   
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2.9.1 Non-protein Respiratory Quotient 

 

With the knowledge of RQ, non-protein respiratory quotient (NPRQ) and substrate 

oxidation rates could be determined.  NPRQ was estimated by subtracting the volume 

of oxygen consumed and carbon dioxide produced per gram of protein oxidised, from 

the total volume of oxygen consumed and carbon dioxide produced as shown in the 

equation below: 

 

NPRQ = VCO2 – PVCO2 
        VO2 – PVO2 

Whereby  PVCO2 = N x 6.25 x 0.774 

  PVO2 = N x 6.25 x 0.966 

And  N = Urinary nitrogen (g/day) 

 

2.10 URINARY NITROGEN 

 

Participants were asked to bring a 24 hour urine collection along on the morning of 

the second session at the WGH which was collected in the 24 hours prior to 

commencement of session 2.  Urine was collected for a period of 24 hours to 

determine nitrogen excretion and permit calculation of the NPRQ (non protein 

respiratory quotient).  Total urine was measured and 2 aliquot samples were frozen (-

40oC freezer) for later analysis.   
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Urinary nitrogen was also used as an indicator of the validity of dietary intake 

(Bingham & Cummings, 1985) and as such was built into the methodology of the 

current study to objectively verify the diet diaries because it is independent of the 

techniques used to test dietary intake.  Even with the daily variation of dietary intake 

the average nitrogen output was reported to be a constant fraction of nitrogen input 

(Bingham & Cummings, 1985).     

 

2.10.1 Procedure for determination of Urinary Nitrogen 

 

Urine was analysed using a Leco-FP328 protein/nitrogen analyser.  The Leco was 

calibrated following the manufacturers instructions on a daily basis.  Initially power-

up checks were performed by the Leco after it was switched on.  Blanks were inserted 

to assess the percentage of nitrogen and argon impurities in the oxygen gas used and 

finally EDTA was used for calibration as the nitrogen content of this is known 

precisely at 9.59%.   

 

A 200 µl specimen was pipetted and weighed into a tin foil sample cup to be 

analysed.  The Leco then performed its 3 phase analyse cycle.  Phase 1 purged the 

sample of atmospheric gases, phase 2 burned the sample in an 850oC furnace flushed 

with oxygen to ensure rapid combustion.  The combusted products (mainly CO2, H2O, 

NOx and N2) were then passed through a thermoelectric cooler to remove most of the 

water.  In phase 3 a piston was forced down on the gas products and a 10 cc aliquot of 

the sample mixture was collected through a valve.   This was then swept through hot 

copper to remove oxygen and change NOx to N2 then, through lecosorb and 

anhydrone to remove CO2 and water respectively.  The product remaining was 
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nitrogen contained in a helium carrier and this was measured by a thermal 

conductivity cell.  The result is displayed as a percentage of nitrogen.  Total urinary 

nitrogen can then be calculated by multiplication of this figure by the subjects’ total 

urine volume over 24 hours. 

 

2.11 SUBSTRATE OXIDATION RATES 

 

Indirect calorimetry measures the volume of CO2 produced and O2 consumed by 

oxidative processes, and for each litre of oxygen consumed there is a known amount 

of heat released.  This is not constant but depends on the type of nutrients oxidised.  

By measuring oxygen consumption, carbon dioxide production, and urinary nitrogen, 

the proportion of different oxidative fuels can be calculated.  The rate of substrate 

oxidation for each study period was calculated by the following formulas based on 

oxygen consumption (VO2), carbon dioxide production (VCO2), and urinary nitrogen 

excretion (Nu) and was calculated using the equations shown below (Suen et al.  

1998): 

 

Lipid oxididation (g/d) = 1.67 x (VO2 –VCO2) – 1.92 x Nu 

Glucose oxidation (g/d) = 4.09 x (VCO2 – 2.88) x (VO2 – 2.59) x Nu 

Protein oxidation (g/d) = 6.25 x Nu 

 

2.12 BLOOD ANALYSIS 

 

An indwelling cannula was placed in the brachial vein of each subjects arm at least 15 

minutes prior to the beginning of the study.  The cannula was kept patent with a 5ml 
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infusion of normal saline over the length of the protocol.  Blood samples were 

withdrawn at various timepoints throughout the study period.  To avoid any dilution 

effect, the first 2 millilitres (ml) of blood from each withdrawal were discarded.  At 

each of the 6 timepoints for blood sampling 4 samples were withdrawn.  These 

samples were withdrawn into blood tubes containing heparin, 

ethylenediaminetetraacetic acid (EDTA) and fluoride.  These were inverted and 

placed into ice. 

 

All blood samples were then centrifuged at 2500 rpm for 10 minutes (4oC), providing 

a relative centrifugal force of 1328.  Plasma was then stored in a -80oC freezer at the 

Wellcome Trust research facility for subsequent batch analysis.  All samples were 

centrifuged and stored within 30 minutes of blood letting.  Analysis of Glucose, 

Insulin and Ghrelin concentrations were performed at the laboratory in QMUC. 

 

2.12.1 Glucose 

 

Glucose was analysed using the Glucose Liquid Reagent Hexokinase Method 

(Randox, United Kingdom).   This method is totally enzymatic utilising both 

hexokinase and glucose-6-phosphate dehydrogenase enzymes.  This is the principle 

reaction: 

Glucose + ATP  G-6-P + ADP 

G-6-P + NAD+  gluconate-6-P + NADH + H+ 

 

In this procedure 10µl of sample or standard was added to 1000µl of buffer solution 

and mixed and the absorbance (A1) was measured at 340 nm wavelength as per the 
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method instructions.  The enzyme reagent was then added (10µl) and the tubes were 

mixed again and incubated for 10 minutes at +20 - +25OC.  The absorbance (A2) was 

then measured within 30 minutes.  The result of the following calculation was then 

calculated: A2-A1 = ∆A sample/standard.  This test is linear up to a glucose 

concentration of 38.9 mmol/l.  All tests were completed in duplicate and the average 

of the sample/standard was used in the following final calculation: 

Glucose concentration (mmol/l) = ∆A sample/standard x 16.2 

 

2.12.2 Insulin 

 

Insulin was analysed using the Insulin Ultrasensitive ELISA kit EIA-2337 (DRG 

Diagnostics, Germany).  This is a solid phase two-site enzyme immunoassay and it is 

based on the direct sandwich technique in which two monoclonal antibodies are 

directed against separate antigenic determinants on the insulin molecule.  In this 

procedure the microtiter wells, previously coated with a mouse monoclonal anti-

insulin antibody, had 25µl of calibrator/samples and 100µl of enzyme conjugate 

added, and was incubated on a plate shaker for 1 hour at room temperature.  During 

incubation insulin in the sample reacts with peroxidase-conjugated anti-insulin 

antibodies and anti-insulin antibodies bound to microtitration well.  A simple washing 

procedure then removes any unbound enzyme labelled antibody.  Then 200µl of 

substrate 3,3’,5,5’,-tetramethylbenzidine (TMB) is added and the samples are 

incubated for a further 30 minutes at room temperature.  The bound conjugate is 

detected by the reaction with TMB.  The reaction is stopped by adding acid (0.5M 

H2SO4) to give a colorimetric endpoint and then shaken to ensure mixing.  A 

microplate reader MRX (Dynex Technologies (UK) Ltd, Sussex, UK) with a 
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reference filter of 450nm was used to determine the absorbance as per the Elisa kit 

instruction guidelines.  A standard curve was drawn for each kit and used the 

corresponding regression equation to determine results.  All samples were measured 

in duplicate.  The detection limit is <0.07 mU/l calculated as two standard deviations 

above the Calibrator 0. 

 

2.12.3 Ghrelin 

 

Ghrelin was analysed using the Human acylated Ghrelin enzyme immunoassay kit 

A05106 (Bertin Technologies, France).  This EIA (enzyme immunometric assay) is 

based on a double-antibody sandwich technique.  In this procedure the microtiter 

wells, previously coated with anti-ghrelin mouse monoclonal antibody (specific to the 

C-terminal part of ghrelin), had 100µl of standard/quality control/1:5 diluted samples 

and 100µl of anti-acylated ghrelin-AChE (acetylcholinesterase) tracer added (which 

recognises the N-terminal part of acylated ghrelin) and was incubated for 20 hours at 

+4OC.  This long immunological incubation allows the increase of assay sensitivity: 

0.3 pg/ml versus 0.8 pg/ml for rapid  (3 hrs at room temp) immunological incubation.  

This incubation period allows the two antibodies to form a sandwich by binding on 

different parts of the human acylated ghrelin.  The sandwich is immobilised on the 

plate so a simple washing procedure allows the excess reagents to be washed away.  

The concentration of the human acylated ghrelin is then determined by measuring the 

enzymatic activity of the immobilised AChE. 200µl of Ellman’s Reagent is added, 

which acts with AChE to form a yellow compound, and incubated in darkness at room 

tempterature for 30 minutes.  A microplate reader MRX (Dynex Technologies (UK) 

Ltd, sussex, UK) with a reference filter was used to determine the absorbance at 



 89

405nm as per the kit A05106’s instruction guidelines.  A standard curve was drawn 

for each kit and used the corresponding regression equation to determine results.  The 

limit of detection in the samples is 1.5 pg/ml due to the minimal plasma dilution.   

 

2.13 ETHICAL APPROVAL 

 

Ethical approval for the recruitment of control participants at QMU was approved on 

the 26th of June 2003.  The study was approved by the Lothian Health Ethics 

Committee, Orthopaedic Surgery/Surgery Research Ethics Sub-Committee, 

Deaconess House, Edinburgh on 4th December 2003 and a subsequent amendment 

was approved on the 19th of January 2005 which approved an amendment in the 

criteria to the inclusion age changing it initially from 18-60 years to 18-70 years.  

Subsequent LPCT research and development committee approved the study on the 4th 

of November 2003 and LUHT research and development committee approval was 

gained on 24th November 2003.  The honorary contract was gained on the 12th of 

December 2003 and from here Dr. John McKnight who is the consultant at the 

diabetic centre within the metabolic unit at the WGH and Dr. Casey Stewart, the 

consultant of OPD2 at the Royal Infirmary in Edinburgh were both contacted and 

consent was given to access patient records within both hospitals.  Dr. Ewan 

Crawford who was at that time clinical director of north west Edinburgh LHCC at 

Corstorphine hospital became the study’s independent advisor for the IGT and type 2 

diabetic patient groups and he gave instruction as to which GP practices to contact 

regarding the study. 
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2.14 DATA ANALYSIS 

 

2.14.1 Area Under the Curve (AUC) 

 

AUC was used as a summary measure of some of the data such as, appetite 

parameters, EE and blood responses.  AUC can be interpreted in these circumstances 

as the cumulative response from a series of measurements on each individual.  In this 

study parameters were recorded at fixed time points and were calculated as per 

Altman (1991).  The data are joined by straight lines to get a ‘curve’.  The AUC is 

usually calculated by adding the areas under the curve between each pair of 

consecutive observations.  In the current study it was desirable to identify a single 

measure of primary interest to be able the comparison between the components of 

energy intake.  AUC as a single measure enabled this to be done and was used to 

observe the total sensitivity or cumulative response of particular energy intake 

components.  Interpretation is simplified by having one ‘unit of measurement’ per 

subject as opposed to many different time points. 

 

2.14.2 Timepoints 

 

Timepoints were used to demonstrate intensity at a certain time i.e. blood 

concentrations, RQ, EE and substrate oxidation.  Timepoints give a record of how the 

intensity changes over time.  In comparison to an AUC response with one value, 

timepoints will give information about where the changes in intensity lie. 
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2.15 STATISTICAL ANALYSIS 

 

Statistical analysis was performed using the Statistical Package for Social Sciences 

(SPSS, Version 15.0).  To determine whether the study data was normally distributed 

the Shapiro-Wilks’ test was used.  Results with a value of p<0.05 were considered 

significant and in these cases data was analysed using the non parametric, Kruskal 

Wallis test and results with a value of p>0.05 were considered non-significant and in 

these cases data was analysed using parametric tests.  Descriptive data has been 

expressed as mean ± standard error of the mean (SEM).  Where data was found to be 

normally distributed the three groups of subjects were compared using analysis of 

variance (ANOVA) to reveal any statistically significant differences between groups.  

Subsequent Bonferroni adjustment tests were made to assess where the differences 

between groups occur.  Repeated measures ANOVA were used to determine whether 

there was any statistical difference within groups over the study period.    

 

Spearman’s correlation was used to determine the strength and direction of the linear 

relationship between energy intake components and Pearson’s correlation was used 

when the data was considered non parametric. 
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CHAPTER 3 - RESULTS 

 

3.1 PARTICIPANTS 

 

Forty-six participants were recruited for the research study; 11 impaired glucose 

tolerant participants from the diabetic clinic at the Western General Hospital and from 

GP practices, 17 type 2 diabetics from the Western General Hospital and 18 control 

participants from Queen Margaret University (QMU).  The mean age of IGT 

participants was 51 years, type 2 diabetic participants were 53 years, and control 

participants were 39 years. Age (yrs) was measured for comparison between groups 

and showed a significant difference between control and IGT participants (p=0.014) 

and control and type 2 diabetics (p<0.001). Gender profiles within the groups in the 

study included 5 males and 6 females within the impaired glucose tolerant 

participants, 8 males and 9 females in the type 2 diabetic group and 4 males and 13 

females in the group.   

 

3.1.1 Intergroup Comparisons of Anthropometric Characteristics  

 

Anthropometric data collected included height (m), weight (kg), body mass index 

(BMI) (wt/ht²), waist and hip measurements (cm) and waist to hip ratio.  Intergroup 

comparisons of anthropometric characteristics were analysed using ANOVA with 

Bonferroni post hoc tests (Table 3.1).  Height (cm) was measured for comparison 

between groups and as expected indicated no differences.  Weight was significantly 

lower in control participants (65.2kg) compared with IGT participants (92.5kg), 
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p=0.002 and type 2 diabetic participants (91.6kg), p=0.005.  BMI was significantly 

lower in the control group when compared with IGT participants (p=0.002) and type 2 

diabetics (p = 0.000); see figure 1.  Similarly, there were no differences between IGT 

and type 2 diabetic groups for weight or BMI.  There were significantly higher waist 

and hip measurements in both IGT participants (waist, p=0.002 and hip, p=0.002) and 

type 2 diabetic participants (waist, p<0.0001 and hip, p<0.0001) compared to 

controls.  IGT and type 2 diabetic participants did have higher waist-to-hip ratios 

(WHR) compared to control participants but there was no significant difference 

between groups.  IGT and type 2 diabetics have been implicated in having impaired 

taste sensitivity because of the association with obesity and these two diseases (Mattes 

et al.   1990).  However,  it is not sufficiently known if the disease states of IGT and 

type 2 diabetes affects the sensitivity of taste to a greater degree as to alter the ratios 

of nontasters:tasters:supertasters.   

 

Table 3.1  Anthropometric Measurements of IGT, Type 2 Diabetic and Control                    
Participants 
 

Characteristic IGT 
n=11 

Type 2 Diabetic 
n=17 

Control 
n=18 

Height (m) 1.68 (0.22) 1.62 (0.26) 1.67 (0.29) 

Weight (kg) 92.5 (7.10) 91.6 (6.13) 65.2 (3.64)* 

Body Mass Index (wt/ht²) 32.6 (2.23) 34.7 (2.02) 23.3 (0.80)* 

Waist (cm) 108.1 (5.77) 110.8 (4.95) 83.6 (2.83)* 

Hip (cm) 112.4 (4.94) 114 (4.62) 89.75 (2.41)* 

Waist to Hip Ratio  0.96 (0.17) 0.97 (0.15) 0.93 (0.15) 

Values are means ± SEM 
*   p < 0.01 compared to the other groups Bonferroni Pairwise comparison 
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Figure 3.1  Mean Body Mass Index (BMI) of IGT, Type 2 Diabetic and Controls 
* p<0.01 Control group significantly different from other 2 groups 
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3.2 TASTE 

 

The protocol for the taste test is described in the methods chapter, but for clarity is 

described in brief below.    The values used for this analysis are from the rating of 

PROP solution 12 (5.75x10-4mmol/l).  Each person rated this solution on a 9-point 

category scale ranging from 1 = barely detectable to 9 = strongest imaginable taste.  

The mean scale tasted was analysed using Kruskal-Wallis tests to determine 

intergroup comparisons and Mann-Whitney tests were performed between nontasters, 

tasters and supertasters to determine where the differences lay between the taste 

groups.  Furthermore, Mann-Whitney tests were also performed between IGT, type 2 

diabetic and controls to determine where the differences lay between the study 

groups.   

 

3.2.1 Intergroup Comparisons between Nontasters, Tasters, and Supertaster 

Groups  

 

As expected non tasters rated the bitter PROP solution the lowest on the taste scale 

(barely detectable to strongest imaginable taste) and supertasters rated it the highest 

on the taste scale, close to the strongest imaginable taste.  There was a significant 

difference between supertasters and both tasters (p<0.0001) and nontasters 

(p<0.0001), see figure 3.2. There was also a significant difference between tasters and  

nontasters, p=0.013.   
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3.2.2 Intergroup Comparisons between IGT, Type 2 Diabetic and Control 

Groups 

 

The Kruskal-Wallis test showed a p value close to significance, p=0.064 when using 

participants as a whole group and to detect an interaction with taste sensitivity rated 

on the taste scale.  Therefore Mann-Whitney Tests were completed between the study 

groups.  The subjective ratings of bitterness on the taste scale show that IGT 

participants rated the bitter taste the lowest (figure 3.3) and this was significantly 

different from type 2 diabetic participants and control participants (p<0.05).   

 

Additionally, the taste detection test, which determined what concentration the bitter 

compound was first tasted, demonstrated that IGT participants first tasted the bitter 

solution PROP at the highest concentration when compared to the control group.  The 

control participants were the most sensitive to PROP and first tasted the bitter solution 

at the lowest concentration (figure 3.4).  To detect the interaction between the 

participants as a whole group and PROP taste detection a Kruskal-Wallis test was 

performed and showed significance at p<0.01.  Therefore subsequent Mann-Whitney 

tests were performed.  Results show that IGT participants’ detection of the PROP 

solution was at a significantly higher concentration than control participants (p<0.01).  

There was no significant difference between type 2 diabetics and either IGT or control 

participants.   
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Figure 3.2  Taste Scale for bitter compound PROP for Nontasters, Tasters and                 
Supertasters 
Values are Median and Upper and Lower Quaritiles 
*p<0.05 when compared to the tasters 
**p<0.0001 when compared to nontasters and tasters 
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Figure 3.3  Mean values on PROP Taste Scale for IGT, Type 2 Diabetic and Control 
Participants 
Values are Median and Upper and Lower Quartiles  
*p<0.05 when compared to type 2 diabetics and controls 
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Figure 3.4  Concentration that PROP was detected by IGT, Type 2 Diabetic and 
Control Participants  
Values are Median and Upper and Lower Quartiles 
*p<0.01 when compared to control participants 
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3.3 HABITUAL FOOD INTAKE RECORDED BY DIET DIARIES  
 

Diet diaries were recorded for 4 days in the week between the participant’s 

introduction session and the test day.  Results for each day of the diet diary recording 

were averaged to represent a single day’s intake and are shown in table 3.2.  The 

results are presented as basic macronutrient groups (protein, fat and carbohydrate 

(CHO)) and energy intake and expenditure.  To facilitate the evaluation of the type of 

macronutrients consumed the fat content of the diet was fractioned into 

polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), and 

saturated fatty acids (SFA) and the CHO content was fractionated into starch and 

sugar.  The results indicate averages over a 24-hour period.  Due to underreporting 

one control subject was withdrawn from the results.  Guidelines for cut off values to 

identify suspected underreporters has been developed using EI:BMR ratio in a series 

of publications (Black et al.  1991; Goldberg et al.  1991).  EI:BMR is based on the 

assumption the total energy expenditure (TEE) is equal to EI and where 

TEE=BMRxPAL (physical activity level).  Therefore, underreporters in the current 

study were identified by multiplying an individuals BMR, calculated using equations 

by Schofield et al (1985)  by 1.2 which is the minimum EI:BMR ratio for survival and 

not compatible with long term health (WHO 1985).    

 

The results in table 3.2 show that there was no significant difference in the average 

energy intake (k/cal), total fat (g/day), protein (g/day) or CHO (g/day) intake between 

groups, although the type 2 diabetic group tended to have the lowest intake of fat, 

CHO (g/day) and total energy (k/cals).  Total fat (g/day) intakes, including MUFA, 

PUFA and SFA, were lowest in the type 2 diabetic participants compared to the other 
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participant groups, but this was not statistically significant.  The type 2 diabetic 

participants were shown to have significantly lower intakes of sugar (g/day) compared 

with the control (p=0.013) and IGT groups (p=0.026) respectively.  Starch intake was 

highest in the IGT group compared with the type 2 diabetic group and control groups 

respectively, but this was not statistically significant.  Non-Starch Polysaccharide 

(NSP) intakes were lowest in the type 2 diabetics (g/day) and highest in the IGT 

participants, however there were no significant differences between groups.  

Conversely, alcohol intake (g/day) was highest in the type 2 diabetic group but no 

differences were found between groups. 
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Table 3.2  Nutrient Intakes in IGT, Type 2 Diabetic and Control Participants  

Macronutrient Group IGT 
n=11 

Type 2 Diabetic 
n=17 

Control 
n=17 

Energy Intake 
(kcal/day) 
 

2068 (176.12) 1729 (166.8) 1980 (179.5) 

Energy Expenditure 
(kcal/d) 
 

2666 (204.02) 2683 (131.15) 2210 (119.14) 

Protein (g/day) 87.77 (7.0) 77.0 (6.46) 70.28 (5.98) 

Fat (g/day): 81.55 (10.64) 65.32 (7.68) 81.61 (10.35) 

            PUFA (g/day) 15.31 (3.0) 11.07 (1.21) 17.21 (3.35) 

            MUFA (g/day) 26.28 (3.54) 21.96 (2.61) 25.86 (3.79) 

            SFA (g/day) 29.53 (3.71) 23.67 (3.51) 27.94 (4.44) 

CHO (g/day): 243.55 (19.81) 196.78 (13.57) 237.03 (22.15) 

           Sugar (g/day) 111.26 (10.03) 71.74 (5.46)* 110.05 (11.91) 

           Starch (g/day) 126.05 (17.81) 120.99 (10.38) 118.16 (14.35) 

NSP (g/day) 13.6 (0.83) 12.46 (0.77) 14.06 (1.55) 

Alcohol (g/day) 9.41 (4.21) 13.53 (7.12) 10.64 (2.85) 

Values are means ± SEM  
* p<0.05 compared to the other groups Bonferroni Pairwise comparison 
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Table 3.3  Percentage of Energy Intake from each Macronutrient 

 
Values are Mean ± SEM 
*p<0.05 control group different from type 2 diabetic group 
 
 
 

Macronutrients were also presented as percentages of total energy intake, see table 

3.3.  Macronutrients were divided into protein, fat (PUFA, MUFA, and SFA), CHO 

(sugar and starch) and alcohol.  Again, the results shown indicate averages over a 24 

hour period.  The control group had a significantly lower percentage of energy from 

protein compared to type 2 diabetic participants (p=0.016).  The percentage intake of 

CHO, fat, and alcohol were similar in all 3 groups.  The type 2 diabetic participants 

had the lowest percentage intake of sugar and the highest starch intake but this was 

not significantly different from the other groups.   

 

Macronutrient Group IGT Type 2 Diabetic Control 

% Energy Protein 17.24 (1.03) 18.55 (1.24) 14.43 (0.76)* 

% Energy Fat: 34.77 (1.78) 33.31 (1.51) 35.68 (1.73) 

       % Energy PUFA 6.44 (0.82) 5.86 (0.53) 7.15 (1.01) 

        % Energy MUFA 11.16 (0.62) 11.31 (0.69) 11.04 (0.89) 

    % Energy SFA 12.72 (1.06) 11.89 (0.87) 12.10 (0.99) 

% Energy CHO: 44.58 (1.64) 44.40 (1.96) 45.50 (2.03) 

    % Energy Sugar 21.04 (2.17) 16.66 (1.25) 21.55 (1.48) 

    % Energy Starch 22.35 (1.28) 27.0 (1.53) 22.21 (1.88) 

% Energy Alcohol 3.32 (1.41) 3.70 (1.61) 4.32 (1.19) 
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Figure 3.5 shows the percentage intake of each of the main macronutrients. A noted 

difference was in the protein intake where IGT participants had 17% intake, type 2 

diabetics had a 19% intake and control participants had a 14% protein intake.  Type 2 

diabetics, IGT and then control participants respectively showed an increasing 

percentage of fat intake and there was a significant difference between control and 

type 2 diabetic participants (p<0.05)..    

 

Diet diaries gave an indication of habitual intake but the experimental protocol 

required expression of short term intakes to investigate how the episodic ingestion of 

food contributes to overall habitual intakes.  Therefore the short term effects of a test 

meal were investigated in the current study.   
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Figure 3.5  Main Macronutrients which make up 100% of Energy Intake in IGT, 
Type 2 Diabetic and Control Participants 
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3.3.1 Meal Consumption 

 

The test meal consisted of 56% CHO, 32.5% fat and 10.5% protein and was of low 

calorific value to ensure a complete postprandial response within the 120 minute test 

period.  The meal was presented when participants were 12 hours fasted.  It consisted 

of cereal with semi skimmed milk, toast with full fat butter and freshly squeezed 

orange juice.  Subjects were given as much time as they required to consume the 

meal.  The length of time taken to consume the meal, see figure 3.6, was covertly 

recorded and participants were requested to consume all the contents of the meal.  

This was to ensure that all participants were consuming an equal quantity of food.  

Results indicate the length of time taken to consume the meal (mins) for each group.  

The average time to consume the test meal did not differ between groups.  The 

average time to eat the meal was 10.63 minutes for IGT and control participants and 

11.07 minutes for type 2 diabetics. 
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Figure 3.6  Length of time for IGT, Type 2 Diabetics and Control Participants to 
Consume the Test Meal 
Values are Mean ± SEM 
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3.4 SUBJECTIVE MEASUREMENTS OF APPETITE  

 

Visual analogue scales (VAS) were used to assess subjective measures of appetite 

using four parameters, hunger, satiety, fullness, and prospective consumption (PC).  

Each of these parameters were measured at regular intervals throughout the test 

periods as shown in figure 2.1.  In order to analyse differences within groups 

(intragroup comparisons) repeated measures ANOVA with post hoc test comparisons 

were used.  This measured differences over time.  Subsequent pairwise comparisons 

were done where differences were identified, using independent t-tests.  ANOVA 

with Bonferroni post hoc tests were used to analyse results between groups 

(intergroup comparisons).   

 

3.4.1 Hunger  

 

3.4.1.1 Intragroup Comparisons 

 

For all groups the levels of hunger changed significantly throughout the study day.  

Following the meal there was a drop in hunger ratings in all groups.  By 120 minutes 

after the meal was consumed levels of hunger had increased again.  Repeated 

measures ANOVA analysed hunger across time (from fasting until 120 minutes after 

the test meal).  There was a significant difference within-groups in all three groups 

(p<0.0001) across time.  The result of this test also demonstrated that there were 

differences between the control group and both IGT  and type 2 diabetic participants,  

(p<0.01) therefore ANOVA with Bonferroni post hoc tests were performed to 

determine at which timepoints the differences lay between groups.   
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Figure 3.7  Hunger ratings for IGT, Type 2 Diabetic and Control Participants over the 
Study Period 
Values are Means and SEM 
* p<0.05 when compared to the other 2 groups 
** p<0.05 when compared to type 2 diabetics 
*** p<0.01 when compared to type 2 diabetics 
+ p<0.05 when compared to IGT group 
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Figure 3.8  Hunger ratings for IGT, Type 2 Diabetic and Control Participants 
represented as the Amount of Change from Baseline Levels 
Values are Means and SEM 
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3.4.1.2 Intergroup Comparisons 

 

The hunger ratings were significantly different at baseline (fasting) levels between 

control participants (p<0.05) and the other 2 groups (figure 3.7).  Due to the 

difference in baseline values hunger ratings were also represented as change from 

baseline (figure 3.8).  It was important to observe the change over time because the 

starting point (fasting level) for hunger was different between groups.  After the test 

meal subjective ratings of hunger decreased sharply in all groups but decreased the 

most in the control group and resulted in no significant differences between subjective 

ratings of hunger at 15 minutes post-meal.  At 30 minutes post-meal IGT participants 

hunger ratings remained steady, type 2 diabetic participants reported a further 

reduction in subjective ratings whereas control participants reported an increase in 

hunger ratings resulting in a significant difference between control participants and 

type 2 diabetic participants, p = 0.017.  All 3 groups then reported increasing levels of 

hunger at 60, 90 and 120 minutes following the test meal.  There was significant 

differences between control and type 2 diabetics at 60 mins (p<0.05), 90 mins 

(p<0.01) and 120 mins (p<0.05) and there was significant differences between control 

and IGT participants at 60 mins (p<0.05) and 90 mins (p<0.05).  At 120 minutes IGT 

participants reported a sharp increase in subjective levels of hunger, to a level higher 

than their fasting measurement, therefore there was no significant difference between 

IGT and control participants at this timepoint.  Control and type 2 diabetic 

participants’ hunger levels at 120 minutes did not reach as high as fasting levels. 
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3.4.1.3 Hunger Area Under the Curve  

 

The AUC value was utilised to observe the whole hunger response, recorded by a 

single value.  It is a useful tool to analyse the difference between groups for a whole 

response.  The mean AUC response for subjective ratings of hunger was significantly 

different between IGT and controls (p<0.05) and type 2 diabetics and control 

participants (p<0.01), see figure 3.9.  Control participants had the overall greatest 

hunger response compared to both IGT and type 2 diabetics.  There was no difference 

between the 2 latter groups. 
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Figure 3.9  Visual Analogue Scales: AUC for Hunger 
Values are Means and SEM 
* p<0.05 when compared to controls 
** p<0.01 when compared to controls 
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3.4.2 Satiety 

 

3.4.2.1 Intragroup Comparisons  

 

Repeated measures ANOVA demonstrated that for all 3 groups there was a significant 

difference in the subjective ratings of satiety over time (p<0.0001).  All groups 

followed a similar pattern as fasting subjective levels of satiety were midrange then 

15 minutes following the meal there was an increase in satiety ratings for all groups 

and then a gradual decrease in levels until 120 minutes for all groups.  The satiety 

ratings at 120 minutes did not fall to the same level as fasting levels for any of the 

three groups.  The IGT participants recorded the highest level of satiety, followed by 

type 2 diabetics and then control participants.  The result of this test also shows that 

there were differences between the control group and both IGT and type 2 diabetic 

participants therefore ANOVA with Bonferroni post hoc tests were completed to 

establish at what timepoints the differences were and this can be observed on figure 

3.10.  
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Figure 3.10  Satiety Ratings for IGT, Type 2 Diabetic and Control Participants over 
the Study Period 
Values are Means and SEM 
* p<0.05 when compared to type 2 diabetics 
+ p<0.05 when compared to IGT group 
++p<0.01 when compared to IGT group 
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3.4.2.2 Intergroup Comparisons 

 

Fasting satiety ratings were lower in control participants but this was not significantly 

different, see figure 3.10.  At 15 minutes post meal there was an increase in subjective 

levels of satiety resulting in a significant difference between IGT and control 

participants, p<0.01 and control and type 2 diabetic participants, p<0.05.  In all 

groups there was a gradual decline in subjective levels of satiety at 30 minutes, with 

control participants recording significantly lower levels of satiety at this timepoint 

compared to IGT participants, p<0.05.  At 60 minutes there was no significant 

differences between satiety levels and at 90 minutes there was a significant difference 

again between control and both IGT and type 2 diabetic participants, p<0.05 with 

control participants again still recording the lowest levels of satiety.  There were no 

significant differences between participants at the final, 120 minute timepoint. 

 

3.4.2.3 Satiety Area Under the Curve 

 

The mean area under the curve (AUC) for subjective ratings of satiety was 

significantly different between control participants and both IGT participants 

(p=0.016) and type 2 diabetics (p=0.032), see figure 3.11.  The control participants 

reported the lowest feelings of satiety and therefore had the lowest overall satiety 

response.  There was no difference in satiety ratings between IGT and type 2 

diabetics. 
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Figure 3.11 Visual Analogue Scales Intergroup Comparisons: AUC for Satiety 
Values are Means and SEM  
* p<0.05 when compared to other 2 groups 
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3.4.3 Fullness 

 

3.4.3.1 Intragroup Comparisons 

 

For all 3 groups fasting subjective levels of fullness were low.  At 15 minutes 

following the meal there was a sharp increase in fullness ratings.  The 2 patient groups 

(IGT and type 2 diabetes) fullness levels increased slightly at 30 minutes, whereas the 

control group decreased slightly.  Then there was a gradual decrease in subjective 

levels of fullness until 120 minutes in all groups. There was a significant difference 

over time within all 3 groups, p<0.0001.  On the whole IGT participants reported the 

highest levels of fullness until 60 minutes when a large drop meant that their levels 

were slightly below the type 2 diabetic participants.  Control participants recorded the 

lowest levels of fullness throughout the study period.  The repeated measures 

ANOVA indicated that there were differences between groups, therefore ANOVA 

with bonferroni posthoc tests was performed to determine where the differences lay, 

see figure 3.12.  
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Figure 3.12  Fullness Ratings for IGT, Type 2 Diabetic and Control Participants over 
the Study Period 
Values are Means and SEM 
* p<0.05 when compared to type 2 diabetics 
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3.4.3.2 Intergroup Comparisons 

 

At baseline the fullness ratings were lower in control participants but this was not 

significantly different.  At 15 minutes post meal there was an increase in subjective 

levels of fullness in all groups,  again there was no significant differences between 

IGT, type 2 diabetic and control groups.  In all groups there was a gradual decline in 

subjective levels of fullness at 30 minutes and 60 minutes, although IGT participants 

demonstrated the largest decline in fullness ratings at 60 minutes, and all groups 

levelled off at 120 minutes. At 90 minutes control participants recorded significantly 

lower levels of fullness when compared to type 2 diabetics, p=0.048. 

 

3.4.3.3 Fullness Area Under the Curve 

 

Control participants tended to report the lowest rating for fullness, see figure 3.13.  

This resulted in the AUC response in control participants to be the smallest, however 

this was not significantly different.  Therefore control participants felt the least full 

throughout the study period whereas IGT participants felt the most full. 

 

 

 

 

 

 

 

 



 121

 

 

 
 
 
 
 
 
 
 
Figure 3.13 Visual Analogue Scales Intergroup Comparisons: AUC for Fullness 
Values are Mean and SEM 
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3.4.4 Prospective Consumption (PC) 

  

3.4.4.1 Intragroup Comparisons 

 

For all 3 groups the fasting (baseline) subjective levels of prospective consumption 

were high.  Levels started highest in the IGT participants and were lowest in the type 

2 diabetic participants.  Again, the recorded levels of prospective consumption 

followed a similar pattern in all three groups.  At 15 minutes following the meal there 

was a sharp decrease in prospective consumption ratings, as expected.  This reduction 

in levels was most pronounced in the IGT participants whose levels then fell below 

that of the control participants and remained intermediate for the rest of the study 

period.  At 30 minutes IGT and type 2 diabetic participants reported a further 

reduction whereas control participants reported an increase in prospective 

consumption.  From there, for the rest of the timepoints, all groups reported a gradual 

increase in prospective consumption until 120 minutes post meal.  Type 2 diabetic 

participants recorded the lowest levels at all timepoints.  The control participants 

came closest to reaching fasting values of prospective consumption.  Across time 

there was a significant difference between type 2 diabetic participants and control 

participants (p<0.05). The repeated measures ANOVA indicated that there were 

differences between groups therefore ANOVA with Bonferroni post hoc tests was 

performed to determine where the differences lay. 
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Figure 3.14  Prospective Consumption Ratings for IGT, Type 2 Diabetic and Control 
Participants over the Study Period 
* p<0.05 when compared to type 2 diabetic participants 
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3.4.4.2 Intergroup Comparisons 

 

At baseline there was no significant difference between subjective levels of 

prospective consumption (figure 3.14).  Fifteen minutes post meal there was a sharp 

decrease in subjective levels of prospective consumption in all groups and there 

remained no significant difference between IGT, type 2 diabetic and control groups.  

In IGT and type 2 diabetic groups there was a further decrease in levels of prospective 

consumption but in control participants there was a small increase in subjective levels 

of PC at 30 minutes, resulting in a significant difference (p<0.01) between type 2 

diabetics and control participants.  All 3 groups then recorded a gradual increase in 

levels of prospective consumption at 60 minutes until 120 minutes.  There was a 

significant difference between type 2 diabetics and controls at 60 minutes (p<0.01).  

There was no significant difference at the 90 minute timepoint. There was no 

significant difference between IGT participants and either type 2 diabetic or control 

participants. 

 

3.4.4.3 Prospective Consumption Area Under the Curve 

 

The mean AUC for the subjective rating of prospective consumption was significantly 

lower in type 2 diabetic participants when compared to control participants (p=0.016) 

meaning they had the lowest desire to eat throughout the study period, see figure 3.15.  

There was no difference in PC between IGT and control or type 2 diabetic 

participants.   
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It is the change in appetite following a meal which allows increased energy intake.  

Therefore, it was an important part of this protocol that habitual energy expenditure 

was also recorded to determine if participants were in energy balance.    
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Figure 3.15 Visual Analogue Scales Intergroup Comparisons: AUC for Prospective 
Consumption  
Values are Mean and SEM 
* p<0.05 when compared to control participants 
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3.5 ENERGY EXPENDITURE 

 

3.5.1 Activity Diaries 

 

Energy expenditure was measured by activity diaries over 4 days.  All subjects were 

instructed to keep the diaries.  Results of the activity diaries were averaged and are 

shown in figure 3.16.  Results are also normalised for body weight by dividing energy 

expenditure (kcal per 24 hrs) values with body weight for each subject and are 

graphically illustrated (figure 3.17).  This was done to determine differences in daily 

EE that were independent of weight. 

 

Average mean energy expenditure from the activity diaries shows that IGT and Type 

2 Diabetic participants have a similar EE and both have a higher mean EE than 

control participants (figure 3.16).  The result is not statistically significant.  However, 

once these results were normalised for body weight all 3 groups had a similar mean 

EE (figure 3.17).  Table 3.4 shows the average time (hrs) each day spent doing 

specific activities to determine if there was a difference in the type and amount of 

activity undertaken throughout the day.  One control participant failed to record their 

activity and therefore is discounted from this result only.  The time spent doing non-

physically active activities like sleeping, lying awake, sitting, sitting activities and 

standing were all very similar between groups.  The time spent in light activity, for 

example standing activities, was higher in the IGT participants than in the control and 

type 2 diabetic participants.  However, the type 2 diabetic participants spent the most 

time doing moderate activity such as walking and partaking in personal needs 

(showering, bathing, dressing etc).  IGT and type 2 diabetic participants did 
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considerably more housework than control participants but when examining the 

strenuous activity (gym work, aerobic activity, cycling, martial arts etc) the control 

participants did twice as much as the IGT participants and a little more than the type 2 

diabetic participants.  Overall there were no significant differences between groups 

for any of the activities although it is noteworthy that the IGT participants spent more 

of their time doing light to moderate activity and the control participants spent more 

of their time doing light and strenuous activity whereas the type 2 diabetic 

participants spent an even amount of time doing light, moderate and strenuous 

activities. 

 

The measurement of energy expenditure including activity in this type of protocol was 

important to assess the habitual activity of participants.  However, resting energy 

expenditure was also measured using indirect calorimetry.  This was important to 

assess the relationship between direct and indirect measurements of EE and also to 

compare resting EE between IGT, type 2 diabetic and control participants to 

determine differences in EE resultant of the disease status. 
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Figure 3.16  Mean Energy Expenditure recorded by Activity Diaries (kcals/day)  
Values are Mean and SEM 
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Figure 3.17  Mean Energy Expenditure (kcals) per Kilogram Body Weight 



 131

Table 3.4  Activity Diaries: Amount of time (hours) recorded doing common activities in IGT, type 2 diabetic and control participants. 

 

 

 

 

 

 

 

 

 

 

Values are Means and SEM 

 

 

 

Group Sleep 

Lying 

Awake Sitting 

Sitting 

Activity Standing

Standing

Activity 

Personal 

Needs Walking Housework

Strenuous

Activity 

IGT 
7.59 

(1.54) 

1.05 

(0.93) 

3.95 

(3.22) 

5.06 

(3.53) 

0.21 

(0.35) 

2.16 

(2.72) 

0.75 

(0.28) 

1.51 

(1.29) 

1.20 

(1.73) 

0.52 

(0.62) 

Type 2 Diabetic 
7.76 

(1.55) 

0.89 

(0.89) 

4.04 

(2.20) 

4.67 

(2.27) 

0.66 

(0.67) 

1.50 

(1.41) 

1.07 

(0.64) 

1.56 

(0.99) 

0.94  

(0.87) 

0.93 

(0.85) 

Control 
8.15 

(1.42) 

0.73 

(0.59) 

3.36 

(2.85) 

6.01 

(1.32) 

0.40 

(0.46) 

1.67 

(0.85) 

0.73 

(0.37) 

1.38 

(0.69) 

0.48 

(0.51) 

1.09 

(0.89) 
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3.5.2 Indirect Calorimetry 

 

Resting energy expenditure was measured 6 times throughout the test period using an 

indirect calorimeter.  Intergroup comparisons were assessed for all subjects.  Results 

shown are normalised for body weight by dividing energy expenditure (kcal per 24 

hrs) values by body weight (kg) for each subject and expressed as kilocalories per 

kilogram bodyweight (kcals/kgBW), see table 3.5.  Energy expenditure is also 

illustrated at individual timepoints throughout the test period.  Results are shown as 

mean resting energy expenditure and later as percentage change from resting energy 

expenditure, to indicate the diet induced thermogenesis (DIT) of the specific meal, 

see figure 3.19.  Results are also graphically illustrated as area under the curve, 

figure 3.18, so that the magnitude of the response across time could be observed.  

Results were analysed using analysis of variance (ANOVA) with Bonferroni post 

hoc test. 
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Table 3.5  Energy Expenditure Normalised for Body Weight (kcals/kgBW) 
 

Energy Expenditure 

 
IGT 

(n-11) 
 

 
Type 2 Diabetic 

(n-17) 
 

 
Control 
(n=16) 

 
 

Fasting 
 

18.72 (0.67) * 
 

18.73 (0.64) ** 
 

21.8 (0.76) 
 

15 Minutes post meal 
 

20.62 (0.47) ** 
 

21.80 (0.85) * 
 

25.13 (0.87) 
 

30 Minutes post meal 
 

20.43 (0.42) ** 
 

21.17 (0.74) ** 
 

24.78 (0.86) 
 

60 Minutes post meal 
 

20.45 (0.51) ** 
 

20.94 (0.74) ** 
 

24.88 (0.95) 
 

90 Minutes post meal 
 

20.05 (0.74) ** 
 

20.28 (0.73) ** 
 

24.12 (0.87) 
 

120 Minutes post meal 
 

20.06 (0.73) * 20.54 (0.81) * 23.42 (0.80) 

 
Values are means ± SEM 
*    p <0.05 significantly different from control participants 
**  p <0.01 significantly different from control participants 
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Figure 3.18  Area Under the Curve for Resting Energy Expenditure (kcals)  
Values are Mean and SEM 
* p< 0.01 significantly different from the other 2 groups 
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Resting energy expenditure data was collected and averaged to show differences 

between groups (table 3.5).  There were significant differences between control 

participants and both IGT and type 2 diabetic participants at all timepoints after 

normalising for body weight.  There was no significant difference between IGT and 

type 2 diabetic participants at any of the timepoints.  The AUC response shows that 

control participants had a significantly higher EE response to the meal than IGT and 

type 2 diabetic participants.  The AUC results are shown per kilogram body weight 

to achieve one value for each group.  Both IGT and type 2 diabetic participants have 

a lower AUC value than control participants.  This was statistically significant, 

p<0.01 (figure 3.18).   

 

Percentage change from fasting was measured for energy expenditure to determine 

the DIT of the meal.  On average the biggest change in energy expenditure (a 14.58% 

increase) for all groups was 15 minutes post meal.  Intergroup comparisons showed 

no significant difference between groups in the change from fasting levels.  Energy 

expenditure values for IGT and type 2 diabetic participants’ then gradually declined 

throughout the other 4 timepoints (30, 60 90 and 120 mins) to 7.23% (IGT) and 

9.62% (type 2 diabetics) above fasting levels.   Control participants’ energy 

expenditure remained at a higher level for 30 and 60 minutes post meal and then 

reduced at 90 and 120 minutes progressively to a level 7.68% above fasting levels.  

None or the three groups reached fasting levels of resting EE.  
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Figure 3.19  Percentage Change from Resting Energy Expenditure 
Values are Mean and SEM 
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Energy expenditure results were integrated using correlative statistical analysis to 

indicate associations between the results.  The integrated results assessed trends 

between predicted fasting EE and fasting EE measured by indirect calorimetry 

(figure 3.20), which is shown in the form of a Bland Altman plot, which is a 

statistical measure to compare two statistical methods (Bland and Altman 1986).  In 

this method the differences between the two techniques are plotted against the 

averages for each technique.  Horizontal lines are drawn at the mean difference 

between the techniques and the limits of agreement, which are defined as the mean 

difference plus and minus 1.96 times the standard deviation of the differences (Bland 

and Altman 1986).  The integrated results also investigated correlations between 

predicted fasting EE using Schofield equations and measured total daily EE by diet 

diaries (figure 3.21), fasting EE measured by indirect calorimetry measured and total 

daily EE by diet diaries (figure 3.22), and finally the relationship between BMI and 

EE (figure 3.23).  As all the results were considered normally distributed Pearson’s 

correlation was used for analysis.   
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Graph of Predicted EE versus EE by Calorimetry
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Figure 3.20  Bland Altman Plot of Predicted EE measured by the Schofield 
Equations and EE Measured by Indirect Calorimetry for IGT, type 2 diabetics and 
control participants.  Lines include;              the mean difference between the two 
methods;             and both the upper and lower limits of agreement.     
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Figure 3.21  Pearsons Correlation between Predicted EE measured by the Schofield 
equations and EE recorded from Diet Diaries in IGT, type 2 diabetic and control 
participants.  The line represents the linear trend.  The intercept and slope of line are 
given on the graph. 
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Figure 3.22  Pearsons Correlation between EE measured by Indirect Calorimetry 
(kgBW) and EE recorded from Diet Diaries (kgBW) for IGT, type 2 diabetics and 
control participants.  The line represents the linear trend.  The intercept and slope of 
line are given on the graph. 
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Figure 3.23  Pearsons Correlation of BMI and Fasting Resting Metabolic Rate 
measured by Indirect Calorimetry for IGT, type 2 diabetics and control participants.  
The line represents the the linear trend.  The intercept and slope of line are given on 
the graph. 



 142

Results show a strong positive correlation between EE predicted by the Schofield 

equations and calorimetry measured EE (kcals/day) as expected, p<0.01 (fig. 3.20).  

Therefore as predicted EE increases so does EE measured by calorimetry.  The Bland 

Altman plot shows that most participants fall within the limits of agreement.  There 

are 2 outliers, one IGT participant above the upper limit of agreement and one type 2 

diabetic participant below the lower limit of agreement.  Furthermore, as predicted 

EE increases so too does total EE measured by diet diaries, p<0.01 (fig 3.21). A 

correlation between EE measured by activity diaries and EE measured by calorimetry 

was done (figure 3.22).  The rational for this test was to assess the association 

between subjective measures and indirect measures of EE which has not, to my 

knowledge, been done before.  For the purpose of this measurement, the AUC 

measurement for calorimetry gave a single value to allow comparison between 

measurements.  This association was assessed independently of body weight to 

determine if there was a correlation between direct and indirect measurements of EE 

when evaluating individuals with a metabolic disease such as IGT or type 2 diabetes.  

A significant positive correlation, p<0.001 was found between the two EE 

measurements therefore as EE recorded by diet diaries increased there was an 

evidenced increase in EE recorded by calorimetry also, independent of weight.  In 

general, when observing the control participants in figure 3.22, they tended to be 

located further up the scale and therefore appeared to have a higher EE whereas 

IGT’s and type 2 diabetics were more towards the left of the figure, indicating a 

lower EE.  Lastly, a positive correlation was observed between resting RMR 

measured by calorimetry and BMI, p<0.05.  The control participants tended to be 

towards the left of the figure 3.23 whereas type 2 diabetics and particularly IGT 
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participants tend to be at the higher end of the graph indicating a higher BMI and 

resulting in a higher fasting RMR.   

 

3.6 RESPIRATORY QUOTIENT 

 

RQ was measured at each timepoint by calorimetry to determine fasting and 

postmeal values, so that an assessment could be made about the fuel mix being 

oxidised.  The RQ values were analysed using repeated measures ANOVA with 

Bonferroni posthoc tests.  Intragroup comparisons demonstrated that there was 

significant differences within groups across time for all three groups (p<0.0001) as 

expected.  The results show that the RQ of all groups rose from fasting and did not 

revert to fasting levels before the end of the test period.  The greatest rise from 

fasting levels was observed in the control group between fasting and 30 minutes and 

their RQ remained higher than the other two groups until the end of the test period.  

At 30 minutes the spread of the control group was large, indicating that there were 

many data points far from the mean.  A possible result of this has meant there is no 

significant difference between groups at this timepoint.  The Bonferroni post hoc 

tests suggested there were no significant intergroup differences.   
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Figure 3.24  Intragroup and Intergroup Comparisons in RQ over the Study Period 
Values are Mean and SEM 
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3.7 SUBSTRATE OXIDATION/NPRQ 

 

Respiratory quotient was measured at each timepoint by indirect calorimetry and was 

combined with nitrogen analysis, to indicate the non-protein respiratory quotient 

(NPRQ).  NPRQ was calculated using equations from Jequier, 1987.  To determine 

an association between protein intake from individuals’ habitual diet and nitrogen 

excreted in the urine, a Pearson’s correlation was completed (figure 3.25).  This 

would permit assumptions to be made about the accuracy of the completed diet 

diaries.     

 

This would permit assumptions to be made about the accuracy of the completed diet 

diaries.  A positive correlation was found between energy intake (r=0.337), derived 

from the measurement of food intake from diet diaries and urinary nitrogen.  The 

result allows the assumption to be made that the diet diaries were recorded 

accurately.  However, the r value shows that the degree of correlation, although 

significant was low.   As discussed earlier, the accuracy of diet diaries is always in 

question.  Therefore, an investigation as to the accuracy of energy intake recorded by 

diet diaries was undertaken.  Urinary nitrogen is a well known and established 

biomarker for protein intake (Tasevska et al.  2006).  Therefore, total urinary 

nitrogen (TUN) can be used to calculate protein intake, perhaps with more certainty 

than diet diaries.  Urinary nitrogen was used to calculate protein intake on the basis 

that:  
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protein intake (g/day) = total urinary nitrogen (g/day) x 6.25 (because 1gN – 6.25g 

protein) + 10 (g) (insensible losses such as fecaes, skin, fluids etc).   

 

This calculation allowed assumptions to be made as to the level of accuracy of 

protein and also to make generally assumptions as to the accuracy of other nutrients.  

Figure 3.25.1 gives a clear indication of any outliers within each group.   The control 

group are the only group to have a significant p value (p=0.01) indicating that they 

are the only group to have a significant correlation between the two measurements of 

protein intake.  The IGT group appear to have number of participants below the 

correlation line indicating an under-reporting of protein intake by diet diaries and one 

outlier over-estimated their protein intake by 2 times.  The type 2 diabetic group 

appears to be sporadically arranged and have the lowest correlation value, with no 

significance.  Two of the diabetic group in particular under reported their protein 

intake by 50%, however some also grossly over estimated their protein intake.   

 

Figure 3.25.2 shows that most participants fall within the limits of agreement, thus 

suggesting that urinary nitrogen is a plausible method for estimating energy intake.  

There are 3 outliers; 1 IGT participant and 2 type 2 diabetic participants.  This may 

indicate that the methods of estimating energy intake are not as reliable for these 

groups as the control group.  This figure may even show that energy intake, 

estimated by urinary nitrogen may be more useful than diet diaries because it 

eliminates the process of under reporting food stuffs.  However, it must be used with 

caution, particularly in obese participants because the variety of fat intake ranges 



 147

considerably, the current study ranges between 21% and 42% fat intake for the two 

overweight groups.  

 

Substrate oxidation rates were measured in the morning by indirect calorimetry after 

an overnight fast, with the patient awake, at room temperature.  One control patient 

did not manage to complete the 120 timepoint in this study and is therefore 

eliminated from these results.  At this time of the day and under these conditions, 

energy expenditure best represents resting metabolic rate (RMR) (Haugen et al.  

2003).  Results are shown with a correction for body weight so the observed 

aberrations were as a result of the disease status.  See figures 3.26  and 3.26.1 for 

CHO and fat oxidation rates respectively.  
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Figure 3.25  Pearson’s Correlation of Nitrogen Intake recorded by Diet Diaries and 
Nitrogen Excreted in Urine, both in grams/day for IGT, type 2 diabetics and control 
participants.  The lines represent the linear trend for each group and the slope and 
intercept is recorded for trend line. 
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Figure 3.25.1  Pearson’s Correlation of Protein intake (g/day) estimated from Diet 
Diaries and Calculated Protein Intake using Urinary Nitrogen for IGT, type 2 
diabetic and control participants.  The lines represent the linear trend for each group.   
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Figure 3.25.2 Bland Altman Plot of two methods of estimating Protein Intake; 1) 
Protein intake measured from diet diaries and 2) Protein intake measured from 
Urinary Nitrogen.  A value of 15% protein intake was used as an average percentage 
intake of the 3 groups and was used to reveal the relationship between the differences 
and the averages and to identify possible outliers.  The lines represent;               the 
mean difference between the two methods;               and both the upper and lower 
limits of agreement. 
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Figure 3.26  CHO Oxidation Rates in IGT, Type 2 Diabetic and Control Groups 
Values are Mean and SEM 
* = p<0.05 IGT group is significantly different from control group 
x = p<0.05 Type 2 Diabetic group is significantly different from the control group 
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Figure 3.26.1  Fat Oxidation Rates in IGT, Type 2 Diabetic and Control Groups 
Values are Mean and SEM 
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Figures 3.26 and 3.26.1 indicate the metabolic response to the test meal in all three 

groups.  In each group initial substrate oxidation rates indicated comparable fat and 

CHO oxidation rates as may be expected in individuals after an overnight fast.  

Figure 3.26 shows at 15 minutes post meal CHO oxidation increased in all groups 

however to a significantly higher level in control participants (p<0.05).  At 30 

minutes post meal CHO rates began to decrease in all groups but to a lesser degree in 

control participants resulting in significantly higher CHO rates when compared to 

IGT participants (p<0.05), who had the lowest levels of CHO oxidation at that time.  

At 60 minutes this decrease continued in type 2 diabetic and control participants but 

increased slightly in IGT participants however there was no significant difference.  

There was a significant difference between type 2 diabetic and control participants at 

90 minutes post meal when type 2 diabetic and control participants’ CHO oxidation 

rates increased slightly as IGT participant levels decreased.  At 120 minutes there 

was a further increase in oxidation rates in type 2 diabetic and control participants’ 

CHO oxidation rates and a further decrease in IGT participants although this was not 

statistically significant.   

 

Figure 3.26.1 illustrates large decreases in fat oxidation at 15 minutes post meal and 

then rates began to increase at 30 minutes for all groups.  At 60 minutes post meal 

type 2 diabetic and control participants increased further however the IGT 

participants fat oxidation rates reduced slightly.  At 90 minutes post meal all 3 

groups’ fat oxidation rates reduced and type 2 diabetic and control participant levels 

continued to reduce until 120 minutes whereas IGT participant levels increased 
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slightly at 120 minutes.  There were no significant differences between groups at any 

timepoint throughout the study period for fat oxidation.  

 

CHO (figure 3.26.2A) and fat (figure 3.26.2B) substrate oxidation rates were also 

expressed as the amount of change (g/day) at each timepoint following the test meal.  

Control participants appeared to show the greatest reduction in fat oxidation rates 

following the meal, followed by IGT and type 2 diabetic participants however this 

result was not significant.   Control participants also demonstrated the greatest 

increase in CHO oxidation rates postmeal. 

 

Protein Oxidation rates are also illustrated independent of body weight.  Results are 

shown as milligram of protein oxidised per kilogram body weight per minute, see 

figure 3.26.3.  IGT participants demonstrated the lowest levels of protein oxidation 

followed by type 2 diabetic participants with control participants exhibiting the 

highest protein oxidation rates.  No significant differences were observed between 

IGT, type 2 diabetic and control groups. 

 

Differences in oxidation rates signify dysfunctional processes in the control of food 

intake.  It has been hypothesised that insulin and glucose levels affect oxidation rates 

following the ingestion of food.  Therefore, the protocol of this study incorporated 

the measurement of blood parameters such as ghrelin, glucose and insulin.   
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Figure 3.26.2  Change (g/day) in Substrate Oxidation in IGT, Type 2 Diabetic and 
Control Participants,  (A) CHO Oxidation and (B) Fat Oxidation 
Values are Mean and SEM 
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Figure 3.26.3  Protein Oxidation Rates in IGT, Type 2 Diabetic and Control 
Participants 
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3.8 BLOOD ANALYSIS 

 

Blood sample aliquots were taken on 6 separate occasions throughout the study day.  

Blood was taken and analysed for glucose, insulin and ghrelin.  These samples were 

assessed using intergroup comparisons.  Results are expressed in standard 

international units and will be indicated on the individual graphs.  Results were 

analysed as described in the methods chapter.   

 

3.8.1 Glucose 

 

Fasting blood glucose results indicated that the control group had significantly lower 

blood glucose than IGT (p=0.0001) and type 2 diabetic (p=0.0001) participant 

groups (figure 3.27). All 3 groups’ plasma glucose levels increased 30 minutes 

postmeal and while control participants glucose levels reduced 60 minutes postmeal, 

IGT and type 2 diabetic participants’ plasma glucose levels continued to rise.  The 

results show that control participants had statistically lower glucose levels at 30 and 

60 minutes between than both IGT and type 2 diabetic groups.   

 

Glucose parameters were also shown as AUC (figure 3.28)  and confirmed the 

difference in glucose response between groups as again control participants had a 

significantly lower blood glucose response when compared to IGT (p=0.0001) and 

type 2 diabetic (p=0.0001) participants. 
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Figure 3.27  Plasma Glucose Concentrations in IGT, Type 2 Diabetic and Control 
Participants 
Values are Mean and SEM 
* p<0.0001 Control group significantly different from other 2 groups 
**p<0.001 Control group significantly different from other 2 groups 
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Figure 3.28  Glucose AUC Response in IGT, Type 2 Diabetics and Control 
Participants 
Values are Mean and SEM 
* p<0.0001 Control group significantly different from other 2 groups 
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3.8.2 Insulin 

 

Fasting insulin levels indicated that control participants had a significantly lower 

insulin concentration than IGT (p<0.05) and type 2 diabetics (p<0.01), see figure 

3.29.  Thirty minutes postmeal showed an increase in insulin levels in all groups but 

to the greatest degree in the control participants.  Control participants had 

significantly higher concentrations when compared to IGT participants at this stage 

(p<0.01) but there was no significant difference between control and type 2 diabetics.  

As insulin levels continued to rise at 60 minutes post meal control participants again 

had significantly higher levels than both IGT and type 2 diabetic groups (p<0.05).    

 

Insulin parameters were also shown as AUC (figure 3.30) and the values show that 

the overall insulin response was significantly greater in control participants when 

compared to IGT (p<0.05) participants and the insulin response of type 2 diabetics 

was very similar to that of control participants.  There was no significant difference 

between IGT and type 2 diabetic participants.  
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Figure 3.29  Plasma Insulin Concentrations in IGT, Type 2 Diabetic and Control 
Participants 
Values are Mean and SEM 
* p<0.05  significantly different from control group 
** p<0.01 significantly different from control group 
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Figure 3.30  Insulin AUC Response in IGT, Type 2 Diabetic and Control 
Participants  
Values are Mean and SEM 
* p<0.05 IGT group significantly different from control group 
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3.8.3 Ghrelin 

 

Table 3.6 demonstrates that fasting ghrelin results indicate no statistical differences 

between groups throughout the test period.  IGT participants showed a reduction in 

ghrelin levels between fasting and 30 minutes and then a further reduction from 30 to 

60 minutes (4.32%). The type 2 diabetic participants’ ghrelin concentrations reduced 

from fasting to 30 minutes and then levels rose between 30 and 60 minutes post meal 

by 4.77%.  Finally control participants demonstrated an increase in plasma ghrelin 

levels 30 minutes post meal and then ghrelin concentrations reduced at 60 minutes 

following the test meal. 

 

 

Table 3.6  Mean Percentage Change from Fasting Ghrelin Levels 

% change IGT Type 2 Diabetic Control 

 

Fast to 30 mins 

 

-3.87% (0.05%) 

 

-1.10% (0.06%) 

 

4.69% (0.07%) 

Fast to 60 mins -8.19% (0.07%) 3.67% (0.06%) 1.98% (0.07%) 

Values are Mean Percentage Change ± SEM 
 
 
 

 

 

 

 

 



 164

3.9 INTEGRATED ANALYSIS 

 

This protocol involved undertaking integrated analysis between the mechanisms 

contributing to the control of food intake.  The integrated responses were extremely 

important to investigate because they depict what is actually happening in the body 

after the consumption of food.  They give an indication about what mechanisms are 

strongly linked and what mechanisms may only be weakly linked.    

 

3.9.1 Taste and Habitual Diet 

 

To establish whether there was an association between taste status and habitual food 

intake a correlation between subjective ratings of bitterness on the taste scale and 

sugar intake measured by diet diaries was performed using Spearman’s correlation 

(figure 3.31).  A significant correlation was found demonstrating that as the 

sensitivity to the bitter compound PROP increases, i.e increasing sensitivity from 

nontaster to taster to supertaster, the corresponding sugar intake decreases.   
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Figure 3.31  Spearman’s Correlation Demonstrating the Association between Sugar 
Intake and Bitter (PROP) Taste Sensations Recorded on the Taste Scale  
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3.9.2 Appetite and Taste Analysis 

 

Correlations were completed where earlier results showed significant differences 

between groups.  Results were integrated using correlative statistical analysis to 

indicate associations between results.  Pearson’s correlations were used where the 

data was parametric and Spearman’s correlations were utilised in situations where 

the data was considered non-parametric.   

 

 

3.9.2.1 Correlation of Appetite Parameters versus Bitter PROP Taste Scale 

 

A correlation between subjective ratings of appetite the PROP taste scale was done 

using Spearman’s correlations (figures 3.32 to 3.32.3).  There were no significant 

correlations between appetite parameters and the tasting of the bitter compound 

PROP.  As the subjective rating of PROP increased, hunger (r=0.187) and PC 

(r=0.035) both increased indicating that the more sensitive an individual is to PROP 

the more hungry they will be and the tendancy to consume food earlier increases.  

This relationship was not anticipated even though it is not a significant result. 

Figures 3.32.1 and 3.32.2 show the relationship ratings of PROP on the taste scale 

and satiety and fullness.  Both appetite parameters (satiety and fullness) indicate a 

reduction as taste sensitivity increase, although the relationship’s are not significant.  

Therefore, as the sensitivity to PROP increases (i.e. non tasters are the least sensitive 

and supertasters are the most sensitive), levels of satiety and fullness decrease.  

Again, this deviates from the anticipated results, although the results are not 

significant.   
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Figure 3.32  Spearman’s Correlation between the AUC for Hunger and Bitter 
(PROP) Taste Sensations Recorded on the Taste Scale for IGT, type 2 diabetics 
and control participants.  The line represents the linear trend and the slope and 
intercept are recorded on the graph. 
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Figure 3.32.1  Spearman’s Correlation between the AUC for Satiety and Bitter 
(PROP) Taste Sensitivity Recorded on the Taste Scale for IGT, type 2 diabetics 
and control participants.  The line represents the linear trend and the slope and 
intercept are recorded on the graph. 
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Figure 3.32.2  Spearman’s Correlation between AUC for Fullness and Bitter (PROP) 
Taste Sensations Recorded on the Taste Scale for IGT, type 2 diabetics and control 
participants.  The line represents the linear trend and the slope and intercept are 
recorded on the graph. 
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Figure 3.32.3  Spearman’s Correlation between AUC for Prospective Consumption  
and Bitter Taste Sensations recorded on the Taste Scale for IGT, type 2 diabetics and 
control participants.  The line represents the linear trend and the slope and intercept 
are recorded on the graph. 
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3.9.3 Appetite and Oxidation Analysis 

 

The present study investigated the relationship between appetite sensations and 

oxidation rates to determine if there is a relationship between the two because the 

effects of this relationship may stimulate important signals which are necessary to 

evoke the satiety cascade and would result in the cessation of feeding.  Without this 

relationship feeding may continue for a longer duration and this may be what results 

in the maintenance of obesity.  The results of CHO oxidation were integrated as 

AUC from baseline to the end of the study period.  Appetite parameters assessed 

were hunger, satiety, fullness and prospective consumption, and were correlated with 

CHO and fat oxidation.    

 

3.9.3.1 Intergroup Comparisons 

 

Comparisons were done between appetite parameters and CHO oxidation.  CHO 

oxidation AUC was corrected for body weight to ensure that any differences 

observed were as a result of the disease state and not the differences in body weight.   

 

The results show that IGT participants consistently differed from type 2 diabetic and 

control participants.  As CHO oxidation increased, hunger (see figure 3.33) and 

prospective consumption (see figure 3.33.3) also increased for type 2 diabetics 

(hunger, r=0.217, p=0.0419; PC, r=0.302, p=0.255) and control (hunger, r=0.112, 

p=0.641; PC, r=0.134, p=0.609) participants whereas the IGT participants 

demonstrated a negative association meaning that as CHO oxidation increased, 
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hunger (r=-0.330, p=0.332) and prospective consumption (r=0.170, p=0.616) 

decreased. The results were not significantly different.  As expected, opposing results 

were found for CHO oxidation and satiety (see figure 3.33.1) and fullness (see figure 

3.33.2) however the type 2 diabetic (satiety, r=-0.476, p=0.063; fullness, r=-0.215, 

p=0.425) and control (satiety, r=-0.223, p=-0.390; fullness, r=-0.362, p=0.153) 

groups still differed from the IGT participants.  As satiety and fullness increased, 

CHO oxidation decreased showing a negative relationship, whereas in IGT 

participants as satiety (r=0.237, p=0.483) and fullness (r=0.621, p<0.05) increased so 

did CHO oxidation.  The positive relationship between fullness and CHO oxidation 

in IGT participants was significant (see figure 3.33.2).   
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Figure 3.33  Pearsons Correlation of CHO Oxidation and Subjective feelings of 
Hunger  for IGT, type 2 diabetic and control participants.  The lines represent the 
linear trend for each group and the intercept and slope is recorded for each line. 
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Figure 3.33.1  Correlation of CHO Oxidation and Subjective Feelings of Satiety for 
IGT, type 2 diabetics and control participants.  The lines represent the linear trend for 
each group and the intercept and slope is recorded for each line. 
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Figure 3.33.2  Correlation of CHO Oxidation and Subjective Feelings of Fullness for 
IGT, type 2 diabetics and control participants.  The lines represent the linear trend for 
each group and the intercept and slope is recorded for each line. 
* significance association at the level p<0.05 
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Figure 3.33.3  Correlation of CHO Oxidation and Subjective Feelings of Prospective 
Consumption for IGT, type 2 diabetics and control participants.  The lines represent 
the linear trend for each group and the intercept and slope is recorded for each line. 
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Similar correlation tests were completed for fat oxidation and the same four appetite 

parameters.  The trend observed between fat oxidation and hunger in type 2 diabetic 

(r=-0.445, p=0.084) and control (r=-0.105, p=0.689) participants was negative, 

therefore as fat oxidation increased, levels of hunger decreased, whereas in IGT 

participants (r=0.106, p=0.756) as fat oxidation increased, levels of hunger increased 

(figures 3.34).  The p values show that the associations were not significant.  As fat 

oxidation increased so did satiety (figure 3.34.1) in type 2 diabetics (r=0.207, 

p=0.443) and control (r=0.183, p=0.481) participants.  In IGT (r=-0.003, p=0.992) 

participants as fast oxidation increased levels of satiety reduced.  Fullness levels 

followed a similar pattern to that of satiety where as fat oxidation increases, fullness 

increased in type 2 diabetic (r=0.102, p=0.708) and control (0.210, p=0.419) 

participants (see figure 3..34.2).  The association in IGT participants again differed to 

the other two groups.  As fat oxidation increased, fullness decreased (r=-0.492, 

p=0.124) in IGT participants.  The results of the association between PC and fat 

oxidation deviated from the pattern observed in the other relationships between 

oxidation rates and appetite parameters.  As fat oxidation increased, PC increased in 

IGT participants (r=0.014, p=0.968) and control participants (r=0.005, p=0.985) 

whereas in type 2 diabetic participants as fat oxidation increased the levels of PC 

decreased (r=-0.452, p=0.079), see figure 3.34.3.  The associations between fat 

oxidation and appetite parameters were not significant.   
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Figure 3.34  Correlation of Fat Oxidation and Subjective Feelings of Hunger for 
IGT, type 2 diabetics and control participants.  The lines represent the linear trend for 
each group and the intercept and slope is recorded for each line. 
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Figure 3.34.1  Correlation of Fat Oxidation and Subjective Feelings of Satiety for 
IGT, type 2 diabetics and control participants.  The lines represent the linear trend for 
each group and the intercept and slope is recorded for each line. 
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Figure 3.34.2  Correlation of Fat Oxidation and Subjective Feelings of Fullness for 
IGT, type 2 diabetics and control participants.  The lines represent the linear trend for 
each group and the intercept and slope is recorded for each line. 



 181

 

-60

-40

-20

0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Prospective Consumption AUC (mm/min)

IGT Type 2 Diabetes Control

Linear (IGT) Linear (Type 2 Diabetes) Linear (Control)

IGT r = 0.014, p= 0.968
y = 0.0002, slope 26.848
Type 2 Diabetes r = -0.452, p= 0.079
y = -0.0063, slope 41.925
Control r = 0.005, p= 0.985
y = -0.0001, slope 19.776

Fa
t O

xi
da

tio
n 

A
U

C
 (m

g/
kg

/m
in

)

 

 

 

 

 

Figure 3.34.3 Correlation of Fat Oxidation and Subjective Feelings of Prospective 
Consumption for IGT, type 2 diabetics and control participants.  The lines represent 
the linear trend for each group and the intercept and slope is recorded for each line. 
 



 182

3.9.4 Appetite and Blood Parameters (Glucose and Insulin) 

 

A correlation of appetite parameters and blood plasma measurements was done to 

determine if there was an association between subjective measures of appetite and 

the corresponding biological measures following a meal.  The glucose and insulin 

results were separated by group into IGT (table 3.7), type 2 diabetic (table 3.8) and 

control participants (table 3.9).  Both the glucose and insulin parameters were 

correlated using AUC values and were corrected for differences in body weight to 

ensure that any differences observed were as a result of the disease status.   

 
 
Table 3.7  IGT Participants: Correlation between Glucose and Insulin and 
Subjective ratings of Hunger, Satiety, Fullness and Prospective Consumption. 
 

Glucose AUC Insulin AUC  

R-value p-value R-value p-value 

Hunger -0.210 0.536 -0.122 0.721 

Satiety -0.486 0.129 0.141 0.680 

Fullness 0.221 0.514 -0.137 0.689 

Prospective Consumption -0.196 0.564 0.179 0.599 

 

 

There were no significant differences between glucose or insulin and any of the 

appetite parameters in IGT participants  (table 32.7) suggesting that the differences 

observed in the AUC response for glucose and insulin between groups had no 

resultant effect on subjective appetite parameters.  
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Table 3.8  Type 2 Diabetic Participants: Correlation between Glucose and 
Insulin and Subjective ratings of Hunger, Satiety, Fullness and Prospective 
Consumption. 
 

Glucose AUC Insulin AUC  

R-value p-value R-value p-value 

Hunger 0.143 0.583 -0.523 0.031* 

Satiety -0.436 0.080 0.421 0.092 

Fullness -0.335 0.189 0.146 0.577 

Prospective Consumption 0.280 0.276 0.516 0.034* 

* significance at the level of p<0.05 

 

  

In type 2 diabetic participants there was a significant positive correlation between 

hunger and insulin levels (r = -0.523, p < 0.05) so as insulin levels increased, hunger 

reduced.  Alternatively, a greater overall insulin response is associated with reduced 

feelings of hunger.  There was also a positive relationship between insulin and 

prospective consumption which suggests that as the complete insulin response 

increases so does the desire to consume more food.  This is contradictory to the 

relationship between insulin and hunger and will be discussed further in the 

discussion chapter.   
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Table 3.9  Control Participants: Correlation between Glucose and Insulin and 
Subjective ratings of Hunger, Satiety, Fullness and Prospective Consumption. 
 

Glucose AUC Insulin AUC  

R-value p-value R-value p-value 

Hunger 0.193 0.474 -0.220 0.413 

Satiety -0.508 0.045* 0.147 0.587 

Fullness -0.424 0.102 -0.389 0.136 

Prospective Consumption 0.132 0.626 0.033 0.902 

* significance at the level of p<0.05 

 

 

The control participants demonstrated a negative relationship between the overall 

glucose response and satiety (p = -0.508, p < 0.05).  The results denote that as the 

glucose response increases, satiety levels decrease.  Therefore, it is necessary for 

blood glucose to be increased to maintain a satiety response, which is what would be 

expected.   
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CHAPTER 4 - DISCUSSION 

 

This study investigated the integrated responses to a meal and the differences found 

between IGT, type 2 diabetic and control participants.  It is accepted that an 

imbalance in the integrated response of food intake can result in a positive energy 

balance and over time this may lead to obesity and associated chronic disease.  The 

results have shown differences between control participants and both IGT and type 2 

diabetes and differences have also been established between IGT and type 2 diabetic 

participants.  This is important as it will confer an insight as to how the progression 

of disease affects the already dysfunctional mechanisms involved in the process of 

food intake.  Definate differences observed may assist to identify individuals who are 

likely to develop IGT and type 2 diabetes, using a specific set of physiological, 

psychological and biological markers.  Once a diagnosis of IGT and type 2 diabetes 

is made, counteracting the mechanisms which contribute to a dysfunctional satiety 

cascade and which affect feeding behaviour is essential and may prevent further 

progression of the disease.   

 

4.1 SUBJECT CHARACTERISTICS 

 

4.1.1 Age Differences between Groups 

 

In the current study subjects were recruited between the ages of 20 and 70 years.  In 

this study the IGT groups had ages ranging from 28 to 65 years, the type 2 diabetic 

participants age ranged from 36 to 66 years.  There was no significant differences 
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between the mean age of these two groups.  However, the control participants, who 

were recruited from the University population, were aged from 20 to 57 years (being 

the oldest participant) and this group were younger in age to the two patient groups.  

In the current study the control participants were not age matched.  The primary 

reason is linked with the timescale of the study data collection period.  The type 2 

diabetic and IGT participants were recruited over the course of a year.  Recruitment 

was based upon recruiting 1 patient per diabetic clinic.  Therefore it would not have 

been feasible to recruit all the patients before advertising for all control participants 

as this would have taken the data collection period past the planned time period.     

 

Studies comparing the results of type 2 diabetes and IGT with control participants 

often encounter similar age-related differences (Wolever and Mehling 2002).  The 

age differences may be explained by: 1) the nature of the disease state because type 2 

diabetes was commonly known as late-onset type 2 diabetes (Hansen et al.  2000) 

and so was initially identified as being an age-related illness, therefore older 

participants were expected and 2) the older range of the population had less time 

constraints i.e. less work or family commitments and therefore found it easier to 

dedicate time to be involved in the study.  Some investigators have reported 

significant changes or differences in body composition with advancing age (Steen 

1988) however studies primarily focus on subjects over the age of 70 years (Newman 

et al. 2005 & Ding et al. 2007) which discounts the participants in the current study 

as the maximum inclusion age was 66 years.  Hughes et al (2008) investigated body 

composition changes in participants up to the age of approximately 60 years, with a 

10 year follow up, and noted an increase in adipose tissue resulting in changes in 
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regional body composition such as increased waist and hip measurements.  This age 

related body composition change is symptomatic of the diseases that are being 

studied.  Therefore differences would be expected between the groups facilitating the 

requirement for the measurement of WHR as it is an indicator of body composition 

which is independent of body weight.   

 

There are known changes in nutrient handling and metabolism in the elderly; namely 

changes in fuel utilisation, reduced responsiveness to energy imbalances, changes in 

energy expenditure, reduced dietary variety, impairments in hormonal mediators and 

reduced hunger and increased satiation (Roberts and Rosenburg 2006).  In 

longitudinal studies, Keys et al (1973) recorded that basal metabolic rate (BMR) 

reduced 1-2% per decade over the ages of 20 to 75 yrs.  However, what is not clear is 

whether body composition changes are reflected in metabolic responses and if so 

when the metabolic changes start to manifest.  The World Health Organisation 

(WHO 1995) consider that ‘elderly’ is 65 years and above and this distinction is 

accepted in most developed countries.  Delacourte et al (2004), reported older 

subjects in an experimental underfeeding study experienced significantly less 

frequent symptoms of hunger (assessed using visual analogue scales) than young 

subjects, despite the fact that the older subjects lost significantly more weight and 

would therefore be expected to experience more frequent hunger.  The altered hunger 

versus satiety regulation seen in the study by Delacourte et al (2004) may be due to 

altered glucose homeostasis in old age i.e. blood glucose is regulated over a broader 

range (MacIntosh et al.  2001).  Melanson et al (1997) reported persistently elevated 

postprandial glucose and insulin in older women following consumption of 2,092- 
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and 4,184-kJ test meals compared with younger women. Provided that central 

mechanisms for converting a signal of energy status into a sensation of hunger are 

intact in older individuals, as one study (Brand et al.  1982) but not some others 

(Marker et al.  1999; Meneilly et al.  1994) indicated.  The elevated postprandial 

blood observed by Melanson et al (1999) could potentially lead to an attenuated 

return of hunger in the postprandial period.  Melanson (1997) also reported that in 

old age there is a reduced insulin sensitivity resulting in elevated circulating insulin 

which accompanies the high postprandial glucose levels in the body and the result of 

this may contribute to the delayed return of hunger.  The mechanism is thought to 

involve a central satiety effect of high insulin levels or by altering central sensitivity 

to other components in the cascade of mechanisms that regulate food intake such as 

cholecystokinin (CCK) and neuropeptide Y (NPY).  Although, as aforementioned, 

the subjects, except one, in the current study were below that which were considered 

‘elderly’ (WHO 2002), the age-related changes will be considered along with the 

continuing discussion of the current study.   

 

4.1.2 Gender Differences between Groups 

 

Significant differences were observed between males and females for a number of 

anthropometric measurements.  Males were significantly taller and heavier than 

females and there was no difference in BMI or age between the sexes.  These results 

were all expected and are consistent with other European studies (de Jong et al.  

2001).  Male participants had significantly larger waist measurements and waist to 

hip ratios when compared to female participants, however this could be attributed to 



 189

the gender split within groups i.e. the low number of male control participants.  The 

two patient groups had a similar number of male and female participants but the 

control group was skewed towards females (76%).  These findings do provide 

evidence for the need of combined sex and age-specific reference data.  The severity 

of the problems concurrent with type 2 diabetes and IGT identifies the need for 

specific data relating to the diseases and is therefore important for future research. 

For example, it has been recorded (WHO 1995) that a larger proportion of females 

reach older, old age (+85yrs) than males and so it is important to understand the 

metabolic consequences surrounding this age range and the differences between 

males and females.  Acquiring this data can provide important information for further 

research and may result in more specialised care and treatment of the diseases at 

pertinent points of the ageing process and allow an understanding of the metabolic 

changes that occur over time as type 2 diabetes and IGT progress.   

 

4.2 ANTHROPOMETRIC CHARACTERISTICS  

 

Control participants had significantly lower weight, BMI, waist, and hip 

measurements compared to the other two participant groups.  The age-related 

differences discussed earlier, such as age-related weight loss can almost be 

discounted because the weight in the type 2 diabetic group, which was the eldest 

group, was significantly higher than the control group.  The differences in BMI, 

waist and hip measurements were expected due to the significantly higher mean 

weight of the IGT and type 2 diabetic participants compared to the controls.  There 

was no significant difference found in either height or waist to hip (WHR) ratio 
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between groups.  The use of WHR as an anthropometric indicator to assess adipose 

tissue distribution was validated by in-vivo methods (Ferland et al.  1989).  Results 

have varied between studies; Daniel et al (1999) found no differences in WHR 

between normal and clinically obese individuals and concluded at higher BMIs, 

overall adiposity was a better indicator of poor glycaemic status than abdominal 

obesity.  On the other hand, Snijder et al (2003) concluded opposing results and 

suggested that WHR is a strong predictor of type 2 diabetes.  The current study 

indicates that WHR was not an important indicator of IGT and type 2 diabetes but 

that abdominal obesity, measured by waist and hip measurements certainly did 

indicate poor glycaemic status. 

 

4.3 TASTE 

 

Previous research has indicated that taste has a genetic origin (Blakeslee and Salmon 

1931).  This was originally tested with the bitter compound PTC and went on to be 

tested on a second bitter compound PROP.  It was established that humans can be 

separated into three taste status groups; nontasters, tasters and supertasters 

(Bartoshuk 1991).  Tasters and supertasters were found to dislike the bitter PROP 

compound and correspondingly they were reported to avoid foods containing this 

compound in their everyday food choices.  Tepper and Nurse (1998) studied the 

effect of fat perception with PROP taster status and found that tasters and 

supertasters could discriminate differences in the fat content between salad dressings 

(10% fat and 40% fat) whereas the nontasters could not.  Tasters and supertasters 

showed no preference for either dressing however the nontasters preferred the high 
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fat dressing.  The importance of the ability to discriminate food elements in the 

process of food intake is imperative.  A preference for high fat foods, or the lack of 

distinction between low and high fat foods, may result in a positive energy balance 

on a daily basis.  A consistent positive energy balance is known to result in obesity 

which can lead to IGT and overt type 2 diabetes.  

 

In the current study it was to be determined if IGT and type 2 diabetic participants 

follow the same taste status trends as previous results which have, in general, been 

undertaken on normal healthy subjects (Tepper & Ullrich 2002; Stein et al.  2003; 

Duffy 2004).  If previous research has been precise, non-tasters would be the 

heaviest participants because they cannot detect bitter content and corresponding fat 

content, differences in foods.  The resultant food preferences (Tepper and Nurse 

1997) would be expected to consist of both a higher energy density and fat content, 

so overall a greater average daily energy intake would be expected to be consumed in 

nontasters, than tasters and supertasters.  Conversely, the supertasters of PROP 

should have a dislike for bitter foods and high fat foods and therefore the aversion 

would cause a lower energy density diet, lower fat intake and overall lower daily 

energy intake.  In reality, the current study demonstrated that half (5 out of 10) of the 

nontasters were IGT participants and all except one of the nontasters were either IGT 

or type 2 diabetic.  This was expected and did conform to previous research to 

demonstrate that obese participants may be nontasters of bitter/fat content.  The 

result of the current study exposes that IGT participants are more likely to be 

nontasters of PROP. This suggests that IGT and type 2 diabetics participants, due to 

their lack of sensitivity to bitterness and fat have a propensity to avoid bitter foods 
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and consume fatty foods readily which, if continuous may consequentially result in 

positive energy balance and weight gain.  The results also suggest that nontasters are 

pre-disposed to gain weight.  Taste status may be a used as a prediction tool, along 

with physiological markers, to screen healthy or perhaps overweight individuals 

(BMI>25) to determine a pre-disposition for obesity.  Furthermore, all except one of 

the supertasters were control participants.  The results demonstrate significant 

intergroup comparisons between taste status and subjective ratings on the taste scale.  

Overall, 20% of the participants were nontasters, 64% were tasters and 16% were 

supertasters.  A study by Bartoshuk (2000)  stated that the frequency of non-tasters, 

tasters and supertasters was 25%, 50% and 25% respectively but that the figures 

must be adjusted depending on the dominancy of males or females in the sample, 

because more females are supertasters than are males (Bartoshuk et al. 1994).  There 

is no research which states how the ratios should change with gender however 

considering both the small sample of this study and that the patients were procured 

with a known metabolic disorder, it would be acceptable to have a lower percentage 

of supertasters.  Given the research, there would not be a high expectation of 

supertasters within the IGT and type 2 diabetic groups because of the relationship 

between PROP taster status and BMI (Tepper and Nurse 1998).   

 

Differences were found between IGT, type 2 diabetics and control participants and 

taste sensitivity.  The differences in the comparisons between groups and the taste 

scale for PROP were significant.  In reviewing the literature there were very few 

studies which investigate the influence of PROP on IGT and diabetic patients, 

therefore it is novel to observe that a group with metabolic disease do fit in to the 
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profile of the research which has been undertaken on healthy control subjects.  In the 

current study the IGT participants were significantly less sensitive to PROP on the 

taste scale and also identified PROP at a significantly higher concentration than 

control participants.  The type 2 diabetic patients were intermediary in the detection 

of PROP and were therefore not significantly different from either control or IGT 

participants. It is noteworthy to mention that IGT is known to be a lesser condition 

than type 2 diabetes and yet IGT patients were found to be more likely to be less 

sensitive to the bitterness of PROP.  With greater study numbers this result may have 

been observed more explicitly in type 2 diabetics.  An explanation for why the 

differences were found between IGT and type 2 diabetic participants may be that the 

IGT participants in this study were recruited after first diagnosis of their condition 

whereas the type 2 diabetics may have been diagnosed some time ago.  Therefore, it 

appeared that the type 2 diabetics had adapted to the presence of their condition and 

secure in their ability to control their diabetes, more so than the IGT participants.  

Consequently, the type 2 diabetics may have had greater habitual control over their 

diet and therefore their blood glucose.  It may be possible that once a level of control 

is established over blood glucose and insulin levels that taste sensitivity improves, 

analogous to the improvement in diabetic symptoms with good glycaemic control.  

Poor insulin sensitivity found in type 2 diabetic patients has been attributed to 

diminished taste for PROP bitterness (Moran et al, 2007; Williams & Cummings, 

2005).  Furthermore, reduced postprandial ghrelin suppression has also been 

associated with diminished taste for PROP bitterness (Moran et al, 2007; Williams & 

Cummings, 2005).  The blood results do show that the IGT participants appeared to 

have a diminished level of plasma ghrelin postprandially, whereas the type 2 diabetic 
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participant levels did not decrease to such a large degree.  Although the results in 

ghrelin concentrations were not significant between IGT and type 2 diabetics this 

may attribute to the difference seen in the taste results as it may denote a lesser 

glycaemic control in IGT participants.  Therefore, the results of this study show that 

a better glycaemic control may lead to improved ghrelin levels. As shown in the type 

2 diabetics and a concomitant improvement in taste sensitivity.  This hypothesis 

would warrant further investigation with both poorly and well managed type 2 

diabetics to determine a definitive answer as to how taste can vary with different 

states of glycaemic control.  In summary, the current study has demonstrated that 

IGT participants are more likely to be non-tasters and are unlikely to be supertasters.  

Also, taste status has the potential to be utilised as a prediction tool for obesity and 

may help the prevention of IGT and type 2 diabetes if weight gain can be avoided. 

 

The intake of fat and sugar have been implicated as being influenced by the taste 

sensitivity to PROP due to sharing similar pathways in the body that sense bitterness 

(Drewnowski 1997a).  In the current study, fat intake was not significantly different 

between IGT, type 2 diabetics and controls or between taster groups (nontasters, 

tasters and supertasters).  However, there was a decreasing trend observed between 

the taster groups in fat intake with increasing taste sensitivity (nontasters are least 

sensitive to taste, whereas supertasters are the most sensitive).  The average fat intake 

was 80g/day for non-tasters and 76g/day for both taster and supertaster groups.  

Furthermore, there was a similar trend in the intake of SFA.  Nontasters had a 

28.8g/day intake, tasters had a 27g/day intake and supertasters had a 25.5g per day 

intake.  The differences were not large enough for them to be significant differences 
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between taster groups and this may be an indicator of the compliance shown in the 

control of the habitual diets by IGT and type 2 diabetic participants in this study.   

 

Total fat intake in IGT participants was comparable with control participants but IGT 

participants had the highest amount of SFA in their diet whereas, type 2 diabetic 

participants had a lower fat intake and a correspondingly lower SFA intake.  The 

intake of fat was not significantly different between groups, however, again these 

small aberrations observed in IGT participants in the current study may have 

synergistic effects in the control of food intake and energy balance.  The occurrence 

of differing control over metabolic systems between IGT and type 2 diabetic 

participants is emerging.  IGT participants had the highest SFA intake and highest 

sugar intakes which habitually indicates less well controlled blood glucose levels.  

Thus, proposing the hypothesis that sensitivity to taste may be affected to a greater 

degree in an individual with poor glycaemic control than in an individual where 

glycaemic control is well managed.  This demonstrates how important a healthy 

habitual diet is, particularly in IGT and type 2 diabetics.   

 

4.4   HABITUAL FOOD INTAKE AND ENERGY EXPENDITURE 

 

4.4.1 Nutrient Intakes Assessed by Diet Diary  

 

The habitual dietary intake of the groups in the current study were examined to 

determine differences between groups.  Diet diaries were returned for all participants 

which was significant as it demonstrated the participants’ commitment to the study.  
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Differences included a significantly lower sugar intake (g/day) in type 2 diabetic 

participants when compared to IGT and control participants.  Also, control 

participants showed a lower percentage intake of protein (14%) when compared to 

IGT (17%) and type 2 diabetic (18.5%) participants.  It was important to consider 

how habitual diet would influence long term energy intake in the normal settings of 

these groups.  Food intake was assessed in this study by the use of four day estimated 

diet diaries. Although seven day weighed diaries were considered for use it was 

decided that this may be too onerous a task in addition to the other components of the 

study.  Diet diaries were used to determine any causative factors that may lead to 

positive energy balance and weight gain commonly seen in the IGT and diabetic 

patient groups (Klein et al.  2004).   

 

The type 2 diabetic participants had the lowest intakes (in grams and also percentage 

intake) of total fat and also saturated fatty acid (SFA).  Although this result was not 

significant, it is important because diabetes is associated with a high dietary fat 

intake (Rolls et al. 1994) and high fat intake may be key in the aetiology and 

maintenance of obesity.  The fat intake is important because it reflects the fact that 

the diabetics in this study were in contact with a dietician and were gaining dietary 

advice.  The IGT participants in the current study were not yet in contact with a 

dietitian as they were newly diagnosed.  The study investigated saturated fatty acid 

intake because it is known to be detrimental to body insulin sensitivity (Marin et al. 

2005) which is vital to the good (or bad) management of IGT and type 2 diabetes.  

When the digestion products of fat, FFA are elevated for prolonged periods it is 

known to lead to the progression of insulin resistance because elevated FFA affects 
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cellular glucose uptake and oxidation.  Elevated FFA cause a lowering of the RQ and 

the propensity to store rather than utilise fuel.  Therefore, the hypothesis can be made 

that the high total fat and SFA observed in the IGT participants may result in lower 

RQ values and a different ratio of CHO to fat oxidation. 

 

It has not been elucidated if the reduction in SFA desirable in diabetic diets should be 

substituted by CHO or MUFA and dietetic advice does not appear to favour one or 

the other macronutrients.  In the current study it appears that the fat intake may have 

been substituted for protein in IGT and type 2 diabetics.  Type 2 diabetic participants 

had a significantly higher percentage intake of protein (18.55%) compared to control 

participants (14.33%).  Gannon et al (2003) investigated the effect of a high protein 

diet (15%) and found a significantly reduced 24-hr integrated glucose response in 

type 2 diabetic patients and an increase in insulin response and therefore concluded 

that a high protein diet may improve blood glucose control in type 2 diabetic patients 

in the short-term.  Long term studies are required to determine the potential long 

term effects of such a diet.  The dietetic contact in the current study may explain the 

replacement of total fat for protein, particularly in the type 2 diabetic participants.  It 

is difficult to determine if the protein content has changed only when the 

participants’ diets have been under scrutiny or if this is truly a reflection of the 

habitual diet consumed.  However, it certainly appears that the habitual diets of IGT 

and particularly type 2 diabetics were well managed. 

 

The significance of an increased intake of protein in the habitual diet of the type 2 

diabetic participants is in its recorded influence on satiety.  Protein has consistently 
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been reported to be the greatest promoter of satiety (Stubbs 1998; DeCastro 1987).  

The protein effects of satiety are only short term, i.e. meal to meal.  Although 

successful in promoting weight loss (Brown et al.  1983), the effects of a long-term 

high protein diet are still not clear.  It has not been elucidated what the classification 

of a high protein diet is or what harm the effects of prolonged ketosis produces as 

this may be a problem for susceptible individuals.  The significance of a high protein 

diet is in its association with microvascular disease.  AGEs (advanced glycation 

endproducts) induce significant increases in inflammation and endothelial 

dysfunction, which is thought to be a major risk factor for atherosclerosis (Negrean 

2007). Dietary factors such as high protein diets can increase AGE production, when 

blood glucose is elevated, and this is even more important in type 2 diabetics for this 

reason because CVD is already the main cause of mortality.  Therefore, a continuous 

high protein diet may not be beneficial in IGT and type 2 diabetic participants.  

Furthermore, it should be noted that protein intakes are markedly constant when 

comparing one study population with another (Stubbs 1998) and it takes a lot of 

effort to maintain a high protein diet.  This highlights the potential problems 

associated with the misreporting of dietary intakes and it is also possible that 

misreporting may be specific to certain nutrients (Stubbs 1998).  Nevertheless, in 

investigating the self-reported results of the EE with energy intake, it would appear 

that half of the IGT and more than three-quarters of the type 2 diabetics were in 

weight loss because the average daily EE exceeded the intakes.  Whether this is a 

result of increased satiation, due to the increased protein intake, is difficult to say but 

there is certainly an argument to strengthen the hypothesis that protein is the most 

satiating macronutrient.   
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Accurate estimates of the dietary intake of free-living individuals are essential for 

nutritional research.  The degree of underreporting is positively correlated with body 

mass index (Schoeller 1990).  However, there are two explanations of 

underreporting; underrecording is the failure to record everything that is consumed, 

without a change in body mass; and undereating is the consumption of less than 

usual because of the requirement to record food intake, with a reduction in body 

mass (Goris et al.  2000).  Indicators of underreporting are selective underreporting 

of snacks (Livingstone et al.  1990) and fatty foods (Goris et al.  2000).  Poppitt et al 

(1998) studied nonobese women in a metabolic facility.  Subjects had ad libitum 

food intake, which was covertly measured and the next day were asked to report 

everything they ate and drank during the previous 24 hours.  It was found that snack 

foods were underreported, which are mostly carbohydrate rich.  This was another 

reason why the current study implemented the use of recorded food diaries which 

were to be completed at the time of food consumption.  Of course, all dietary 

assessment techniques rely on information supplied by the participants themselves 

and therefore often, their validity is questioned.  No method has been shown to be 

free of systematic error, for example, systematic underestimation of intake using the 

24 hour recall has been reported when compared with records of food consumed 

(Acheson et al.  1980).  Therefore, an independent verification method of dietary 

assessment was developed initially by Isaksson in 1980.  Twenty four hour urinary 

nitrogen showed that a food record and a diet history gave valid estimates of the 

average protein intakes (Isaksson 1980). Consequently, protein intake in the current 

study was validated by the significant relationship found between protein intake 
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(g/day) in the diet and the amount of nitrogen excreted in the urine collection.  This 

gives validity to the accurate completion of the diet diaries.  Only one participant was 

discounted from the study due to over/underreporting (i.e. intakes below 1.2 x 

BMR).  This individual was a control participant.  There were other participants who 

fell into the bracket of under/over reporting however it was decided that intakes 

matched their activity levels or their body weight status and they remained included 

in the study.   

 

The type 2 diabetic participants had the lowest intake (g/day) of sugar of the three 

groups.  Research has consistently shown that high CHO/low fat diets influence 

energy balance (probably by reducing food intake by greater satiety effects, reducing 

energy density and displacing fat from the diet) and thus help in body weight control 

(WHO 2002).  Improved body weight control has been shown in high CHO diets, 

even those containing a higher than normal amount of sugar. Sugar intake has been 

investigated as prevention against weight gain (Saris et al.  2000).  Generally the 

amount of ‘added sugar’ is restricted to <10% of total energy intake  (WHO 2002) 

and the consensus is that the intake of sugars does not appear to have a deleterious 

affect on the primary care of diabetes (Nadeau et al.  2001; Janket et al.  2003).  

Indicating that the IGT participants in the current study, who had the highest sugar 

intake, would not be negatively affected by the level of sugar intake.  However, an 

increase in sugar intake is almost always associated with an increased fat intake as 

well (WHO 2002).  This appears to be verified by the IGT participants in the current 

study because they had the highest intakes of fat and sugar.  As suggested earlier, the 

high sugar intake may be associated with the lack of taste sensitivity found in IGT 
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participants and may signify dysfunction in that mechanism of the metabolic control 

of food intake.  The reason that this may not have been as obvious in the type 2 

diabetics is because their recorded dietary intake seemed to be well controlled, as the 

sugar intake was significantly lower. 

 

While the type 2 diabetic patients had the highest intake of alcohol (g/day) the 

differences were not significant.  Shai et al (2007) studied the glycaemic effects of 

wine intake in diabetic patients who had previously abstained from alcohol intake.  

The results indicated reduced fasting plasma glucose levels but not postprandial (2 

hour) glucose levels.  Lapidus et al (2005) concurred with these results and also 

concluded that alcohol had a significant inverse association with the incidence of 

diabetes. 

 

The results of the percentage intake of the main macronutrients demonstrate that 

none of the groups were achieving the national guidelines set out by the British 

Nutrition Foundation of 50% CHO, 36% fat and 14% protein.  Control participants 

were the closest to meeting the CHO guidelines as their CHO intake was 46% and in 

fact met the fat 36% and protein intake 14% guidelines.  The IGT participants’ CHO 

intake was lower than the guidelines at 45%, their fat intake was 35% and the protein 

intake was higher than the guidelines at 17% and the type 2 diabetics had the lowest 

CHO intake at 44%, a 33% fat intake and the highest protein intake at 19% of the 

total intake.  As discussed earlier, this may be due to the dietary intervention that the 

type 2 diabetic patients received and although no diet is specifically discussed, the 

reduction of fat ultimately leads to an increase in the alternative macronutrient(s).  
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The potentially positive effect of a high protein diet is to increase satiety and 

consequently lower calorific intake.  A high protein intake helps to augment 

postprandial insulin secretion, promoting glucose transport and utilisation and 

thereby promoting improved glycaemic control in type 2 diabetics (Promintzer and 

Kreb 2006).  It has been found that a high protein diet (30%) (Gannon et al.  2003) 

improved 24-hr integrated glucose response by 40% but again the long-term effects 

of such a diet have not yet been identified therefore optimal macronutrient protein 

composition for the treatment and prevention of obesity and related diseases such as 

IGT and type 2 diabetes is not known.  

 

Habitual diet is only one of the considerations in balancing energy intake with 

expenditure.  It has been demonstrated that sedentary living may be related to obesity 

and metabolic syndrome (Hardman 1996).  

 

4.4.2 Differences in Habitual Activity  

 

Activity diaries were used to record the participants habitual activity and total daily 

energy expenditure (kcals/day).  There were no significant differences between any 

of the groups’ daily energy expenditure.  The control group had the lowest overall 

daily energy expenditure (2210 ± 119.14) when compared to the IGT (2666± 204.02) 

and type 2 diabetic participants (2683 ± 131.15). This may be attributed to the higher 

energy costs of sedentary and light activity in the obese which has similarly been 

recorded in previous studies (Blair and Buskirk 1987).  After normalising for body 

weight the three groups had very similar energy expenditure results, as expected.  
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When investigating the types of activities undertaken by each group there were no 

significant differences between groups although an observation was noted between 

the control participants and the IGT groups.  It was observed that the amount of 

strenuous/physical exercise completed by the IGT participants was less than control 

participants.  Daily physical activity guidelines state that adults should accumulate 

30 minutes of moderate intensity physical activity on most days of the week (WHO 

2002).  The similarity in EE between the groups may be explained by dietetic 

intervention as ‘lifestyle’ advice is given concurrently with dietary advice.  Another 

possible reason for the similarity in EE per kilogram bodyweight may be due to the 

average age of the type 2 diabetic participants.  Many of the participants were retired, 

giving them more time for moderately active activities such as walking, gardening 

etc, compared with the control group, all of which worked or were full time students.  

The results may suggest that the type of activity is important in the development of 

obesity and that strenuous physical activity may play a role in preventing weight 

gain.  Further investigation would need to be undertaken to understand the benefits 

of strenuous physical activity compared to moderate physical activity in IGT and 

type 2 diabetic participants.    

 

4.4.3  Biases and Limitations of Energy Intake and Energy Expenditure 

Methods 

 

4.4.3.1 Energy Intake 

Information on the usual macronutrient intakes of individuals is frequently a central 

component of nutrition studies. Such information is used, for example, as the basis 
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for defining relations between macronutrient intakes and morbidity and mortality and 

for determining the role of dietary energy in the development and treatment of 

obesity (Acheson et al.  1980).  Inaccurate information on dietary nutrient intakes 

will therefore lead to spurious conclusions regarding the importance of diet in the 

maintenance of long-term good health.  It is widely recognised that dietary 

assessment methodologies used currently to determine the usual nutrient intakes of 

individuals are open to several general criticisms (Bingham 1985).  In particular, 

subjects may bias the information obtained by not consuming typical amounts of 

food during the period when food intake is being recorded, and in addition, they may 

not accurately report the food that is consumed.  A special concern is that different 

groups of subjects may not exhibit the same degree of over or underreporting relative 

to their usual diet.  Thus, in addition to the widely recognised problem that energy 

intakes determined by a weighed food record tend to underestimate usual dietary 

nutrient intakes of individual subjects (Schoeller 1990), it is also possible that 

differences in group means for reported nutrient intakes may in part simply reflect 

group differences in methodological bias rather than being caused exclusively by 

differences in food consumption. 

 

The lack of detailed information on the bias inherent in different food intake 

assessment methods is due primarily to the absence, until recently, of an accurate 

reference method against which different methods could be compared. The 

successful validation of the doubly labeled water method for measurement of total 

energy expenditure (TEE) has now provided such a reference method (Schoeller 

1988).  Sawaya and colleagues (Sawaya et al.  1996) studied weighed food records 
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and 3 other widely used methods of food intake (24-hour recall (Gibson 1990), 

Willett food frequency questionnaire (Willett et al. 1985) and GHCRC/Block food 

frequency questionnaire (Block et al. 1990)) and compared them with doubly labeled 

water measurements of TEE in young adults and children.  Results of this study 

showed that no method gave accurate information on the usual energy intake of 

individual subjects.  In addition, there was an indication that old age may cause 

different relative biases in the four methods that were evaluated, although further 

studies are needed to confirm this suggestion.  In young women, 24-h recall data 

gave mean energy intakes that were closest to measures of TEE, and food-frequency 

questionnaires provided the only data that correlated with individual values for TEE.  

In older women, the Willett food-frequency questionnaire gave values for energy 

intake that were closest to measures of TEE, but there was no method that gave 

values for energy intake that correlated significantly with TEE.  Seven-day weighed 

dietary intakes, although by far the most difficult and time-consuming 

measurements, were neither more accurate nor more precise than the other, simpler 

methods, although they did provide the most accurate estimate of the mean 

difference in energy intake between the two groups.  The results indicate that EI 

derived by weighed intakes and food frequency questionnaires were in excellent 

agreement with mean EE measured by DLW therefore in the current study weighed 

records were the method of choice due to the low cost in comparison to the doubly 

labeled water method.  Furthermore, as already discussed, there was a positive 

correlation between protein intake and urinary nitrogen which again validates the 

data obtained in the diet diaries in the current study.   However, the correlation was a 

low correlation and this may be due to that some participants in the IGT and type 2 
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diabetic groups may have been in weight loss, which was reflected in their overall 

energy intake values (kcal/day).  Weight loss was not measured within the study and 

to incorporate a dietary restraint questionnaire to eliminate potential restrainers was 

too costly for the current study.  Therefore, it was difficult to eliminate under-

reporters in the current study because it was unclear if the low energy intake was due 

to under reporting or a true reduction in food intake due to dieting.  Consequently, 

only 1 individual was discounted from the study due to under reporting and this was 

a control participant, as it would have been expected that they were in energy balance 

and therefore, within the upper and lower limits of over and under reporting.   

 

4.4.3.2 Energy Expenditure 

The validity of the activity diary method is open to doubt.  It relies on the accurate 

description and timing of activities and their exact reproduction for measurement of 

their cost.  In addition the cost of some activities, the most important being sleep, is 

difficult or impossible to measure in the field, and assumptions have to be made for 

them. 

 

Inherent sources of error in the activity-diary method are incorporated into the 

process of recording activities and the conversion of these activities to energy 

expended.  Additionally, it is unlikely that a normal activity pattern can be 

maintained when activities are being recorded every minute.  Influencing activity 

seriously undermines the validity of any method for measuring habitual energy 

expenditure.  Some investigators have tried to overcome this problem by having 

observers record activities.  This may be feasible and socially acceptable in some 
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situations but not in others.  In the current study this would have been too time 

consuming to consider. The component of error associated with converting recorded 

activities into their energy equivalent is as important as the precision in recording 

activities. In many situations it is not possible to measure the energy costs of 

activities and consequently values found in the literature are used.  Even when the 

energy costs of activities are measured there is no guarantee that intensity and effort 

during measurement will accurately reflect those in a free-living situation.  Because 

both sources of energy costs are subject to error it is important to know whether 

energy expenditure calculated with measured values is more accurate than that 

calculated with the most widely used literature values.  Most of the published values 

used in this study were from studies of women of comparable body weight (Durnin 

1967) which suggests that overweight individuals may have an even higher error 

rate.   

 

4.4.4 Meal Consumption 

 

The test meal chosen was a low calorific meal designed to show a rapid and complete 

postprandial response.  There were no significant differences in the time taken to eat 

the test meal.   This is important because it has been hypothesised that the time taken 

to eat a meal and greater exposure time to food stimulates additional food intake and 

so also a greater total energy intake (Hetherington et al.  2006).  This was an 

important finding because it is one of multiple possible mechanisms that leads to a 

positive energy balance, which may consequently lead to obesity.  Varma et al 

(1999) found that energy intake was influenced by the time taken to consume a meal, 
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causing an increase in meal size.   In the current study a conclusion can be made that 

the feeding behaviour of IGT, type 2 diabetic and control participants investigated, in 

relation to meal consumption, was normal and the time taken to consume the meal 

was not an important factor in influencing food intake.  However, an argument could 

be made that the meal design in this study was not conducive to the discovery of time 

differences as the meal was not large enough to illustrate this effect.  Furthermore, it 

has also been hypothesised that future meals are affected by either high energy 

density (HED) or low energy density (LED) preloads.  For example, Mazlan et al 

(2006) discovered that only partial compensation (~40%) occurs after a HED pre-

load and compensation only occurs at the next meal so any subsequent meals are not 

affected and normal food intake occurs resulting in a short-term positive energy 

balance.  If this positive energy balance is not balanced out over time then it will 

result in slow weight gain.  Again, this is crucial to understand for people with IGT 

and type 2 diabetics because if their habitual diet incorporates sporadic inclusion of 

HED and/or high fat meals, as is common (Schulze et al.  2004), then weight gain is 

implicated over time.  High fat content is a feature of high energy dense foods and 

both are associated with poor glycaemic control (Ello-Martin et al.  2007).  The 

concept of the glycaemic index of food was introduced to distinguish and quantify 

the variability of the glycaemic responses to the CHO in different foods (Jenkins et 

al, 1981).  High glycaemic index foods result in increased blood glucose 

concentrations and an increased insulin demand which Schulze (2004) understood to 

lead to an exhausted pancreas resulting in glucose intolerance and then a 

consequential insulin resistance.  Poor glycaemic control has been associated with 

the risk of developing type 2 diabetes which is particularly important for the IGT 
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participants in this current study.  The discussion of whether IGT is an intermediary 

in the progression to type 2 diabetes is still under investigation.  Various studies 

(Marshall et al.  1994; Saldana et al.  1994) associate the fat intake with the 

progression of IGT to type 2 diabetes.  The current study shows that daily fat intake 

was within guidelines and therefore there should not be high progression rates from 

IGT to type 2 diabetes.  Saldana (2004) stated that a diet containing 41% fat would 

increase the risk of diabetes.  Therefore fat intake, energy density and glycaemic 

control are all important in the influence and control of food intake for these patient 

groups.  Importantly, it is necessary to understand how the effects of glycaemic 

control affects appetite and the ability to cease eating.  The type of macronutrients 

consumed may have a role in influencing subjective feelings of appetite, i.e. satiety 

and prospective consumption.     

 

4.5 VISUAL ANALOGUE SCALES 

 

4.5.1 Hunger and Prospective Consumption 

 

In this study subjective ratings of hunger, satiety, fullness and prospective 

consumption (PC) were measured from fasting levels and then following a test meal, 

of the same content for all three participant groups, to determine whether appetite 

ratings differed between groups and to discover what impact this had in the 

integrated process of food intake.  Prospective consumption is becoming increasingly 

important to record when studying IGT and type 2 diabetic patient groups because as 

previously mentioned obese groups tend to feed on highly palatable foods even when 
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sensations of hunger are low and satiety is high.  The foods tend to be high in energy 

density and so have a high fat content resulting in a positive energy intake, which 

may lead to further weight gain if not controlled over time.  This could contribute to 

the progression of their chronic disease.   

 

The overall hunger response was significantly higher in control participants 

demonstrating that they felt hungrier throughout the study.  Control participants also 

had lower fullness ratings which was only significant at the 90 minute timepoint and 

higher PC ratings when compared to the other two groups.  This may be indicative of 

an overall increase in appetite sensitivity which may be associated with taste 

sensitivity.  Supertasters, which were primarily control participants, demonstrated the 

greatest sensitivity to taste and therefore because the supertaster range of sensitivity 

is greater in taste it may also be the case in measures of appetite.  Furthermore, 

supertasters should consume an overall lower intake of food based on the hypothesis 

that BMI is associated with taste status and this may also contribute to the higher 

feelings of hunger observed in the controls compared to IGT and type 2 diabetic 

participants.  The current study shows that the greater feelings of hunger are not 

associated with a greater food intake, compared by the energy intakes from the diet 

diaries, but are associated with greater sensitivity to appetite. 

 

Hunger ratings were inversely correlated with satiety and fullness in the current 

study whereas prospective consumption positively correlated with hunger which 

validates the parameters of appetite ratings.  Looking at the overall response, type 2 

diabetic participants showed high fullness ratings, low hunger ratings and also rated 
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prospective consumption the lowest.  IGT participants rated high fullness ratings and 

hunger levels as being low.  This was similar to type 2 diabetics however, IGT 

participants recorded higher levels of prospective consumption than type 2 diabetic 

participants although this was not significant. The difference in PC ratings between 

IGT and type 2 diabetic participants may be put down to the subjectivity of the test.  

On the other hand, it is possible that IGT participants are displaying a greater desire 

to consume food when they do not feel particularly hungry which may of course be 

the factor responsible for the positive energy balance which leads to obesity, i.e. 

want versus need.   The appetite results of the current study differed to a similar 

study by Chapman et al (1999) who recorded appetite ratings in obese and non-obese 

subjects.  Chapman’s (1999) study recorded higher hunger ratings in obese patients 

before food intake and then recorded no differences in hunger during feeding.  In 

studying the diet diaries of IGT, type 2 diabetic and control groups, it was noted that 

many participants of both the patient groups missed breakfast out of their daily food 

routine whereas all control participants included breakfast in their habitual diet.  

Missing breakfast may contribute to the lower ratings of hunger observed in the IGT 

and type 2 diabetics on the study morning.  Because it was not ‘normal’ for these two 

groups of participants to eat this early in the day it may have resulted in the overall 

lower hunger sensations.  Meal placement may be a key factor when investigating 

IGT and type 2 diabetics because when food is not consumed in the morning this 

may result in increased hunger intensity and increased ratings of prospective 

consumption later in the day.  It may be that hunger intensities grow throughout the 

day and the amount of food consumed in subsequent meals and snacks may be more 

important than the first meal of the day.  Therefore, further research would be 
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required to determine the effects of meal skipping on the intensity of appetite 

parameters.  Many overweight dieters adopt this strategy of missing breakfast in an 

attempt to reduce their overall daily food intake (Rogers 1997).  However, it is 

unclear how this influences the next meal, food intake over the course of the day and 

if and how the body compensates over coming days.  This is an area that requires 

investigation, in particular in clinical groups such as IGT and type 2 diabetic 

populations.   

 

4.5.2 Satiety and Fullness 

 

Satiety may be defined as the state of inhibition over further consumption and is the 

interval between differing episodes of food consumption (Rogers and Blundell 

1991).  Satiety can be assessed as a behaviour of a physiological response and a 

reduction in satiety creates a stimulus for eating.  Studies have indicated that satiety 

ratings of sweet and fatty foods differ between obese and normal weight individuals 

(Salbe et al. 2004).  Therefore it was essential to determine how ratings differed 

between patient groups following a mixed meal where the content was the same for 

all three groups.  In the current study satiety ratings were highest in the IGT group 

and control participants rated satiety the lowest, which corresponds with the hunger 

ratings.  However, the expected result would have been to observe the highest satiety 

and fullness ratings in the control group because previously it has been shown that 

the satiety response in obesity is attenuated.  The current study indicates that the 

satiety response in type 2 diabetics and IGT participants in this study is normal 
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following the consumption of a mixed meal and is not associated with a reduction in 

satiating effects.   

 

When the satiating effects are diminished in obese individuals then the effect is 

mediated elsewhere in the complex pathways that control food intake.  Alternatively, 

the satiety response may be normal to a meal but the satiety effects may be 

overridden as a consequence of behavioural or sensory factors, such as emotions or 

palatability respectively.  Short-term intake of foods (i.e. snacking) due to 

palatability is associated with high fat, high energy dense foods which are consumed 

out-with mealtimes resulting in satiety responses being overridden (Yeomans et al.  

2005).  In this instance cessation is strongly affected by sensory-specific satiety, the 

intake of a single food relative to the intake of other foods.  Therefore it is also 

important to distinguish between satiety and fullness.  Satiety is a neural response as 

opposed to fullness which is a physiological response to stretch recepters.  The IGT 

participants had the highest fullness ratings, followed by the type 2 diabetics and 

then the control participants.  There was a significant difference at the 90 minute 

timepoint only between control and type 2 diabetic participants where the type 2 

diabetics rated feelings of fullness greater than IGT participants.  The trends 

throughout the study period for IGT participants, as well as type 2 diabetics, showed 

high satiety and fullness and low hunger and prospective consumption, as shown by 

the area under the curve results.    

 

In summary, the appetite parameters were not what was expected however they were 

consistent.  The current study may indicate that control participants display increased 
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appetite sensitivity analogous to increasing taste sensitivity which may lead to a 

greater range of sensitivity i.e. higher when hungry and lower when full, but does not 

appear to result in altered food intake.  Obesity has been associated with 

dysfunctional satiety mechanisms thought to be due to the large storage capacity for 

fat  (Flatt et al.  1995).  Obesity occurs as a result of a high intake of energy from the 

overeating of high fat foods, consumption of a high energy density diet and the high 

palatability and weak satiation of high fat foods (Snoek et al.  2004).  This was not 

observed in the current study, however, as aforementioned a second meal may be 

more suited to elicit the attenuated satiety response that has been reported in other 

studies.  The possible reason for this is due to the irregularity of consuming breakfast 

at all, let alone so early in the day for the IGT and type 2 diabetic participants.  

Consuming food prior to the time a first meal would normally be consumed in the 

day may have resulted in raised satiety levels due to initially feeling less hungry, 

which was the case in this study.  This may have resulted in altered responses for all 

parameters of appetite in the two patient groups.    

 

The measurement of appetite parameters in this type of protocol is important to 

assess the dynamic changes which occur following a meal.  It is the change in 

appetite sensitivity which allows increased energy intake, as well as behavioural 

factors and decreased activity.   
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4.6 CALORIMETRY 

 

4.6.1 Respiratory Quotient and Energy Expenditure 

 

Most individuals maintain a steady body weight for long periods throughout their 

lifetime indicating a good control of energy intake and expenditure.  A steady state is 

likely to be maintained if the fuel mix oxidised in the body is equal in composition to 

the nutrient flux of the diet consumed thus balancing, protein, CHO and fat in the 

body.  The composition of the fuel mix oxidised and therefore respiratory quotient 

(RQ) are influenced by circulating substrate and hormone concentrations, which 

reflect the degree of replenishment of the body’s fuel reserve.  The composition of 

the fuel mix oxidised to drive oxidative phosphorylation changes considerably 

throughout the day.  However, nitrogen content undergoes minimal change and CHO 

content is maintained within a tight range (McDevitt et al.  2000).  Reasons for this 

are due to the important functional roles of proteins and the essential role of the 

body’s systems to sufficiently supply glucose to the brain.  Therefore, changes in the 

fuel mix oxidised alters an individuals overall energy balance primarily with changes 

in fat balance, which can easily accommodate gains or losses due to the large storage 

capacity for fat.   

 

When insulin is released postprandially, this initiates a rise in RQ and promotes the 

storage of nutrients.  Whereas, the release of hormones between meals activates 

mobilisation of the body’s glycogen and fat stores and ensures an adequate supply of 

ATP production and circulating glucose.  The composition of the fuel mix between 
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meals is also influenced by the body’s protein pools, the degree of repletion of its 

glycogen reserves and the size of the adipose tissue mass.  This is a consequence of 

the fact that rates of mobilisation, which are regulated by hormone concentrations, 

have to be multiplied by the size of the adipose tissue mass to which the hormone 

signals are conveyed.  For most individuals this is remarkably effective but the body 

composition for which this adjustment is achieved varies greatly between individuals 

and depends on genetic interactions and circumstantial factors.  Following a CHO-

containing meal RQ increases because CHO is favourably oxidised and after a 

protein-containing meal, amino acid oxidation increases.  However, fat oxidation is 

reduced after food consumption even when the meal contains fat, which suggests that 

control over fat balance is not effective (Flatt 1987).  In the current study RQ 

increased in all three groups postmeal as expected, as the body preferentially oxidises 

CHO and emulates the results of similar studies (Flatt 1995a & b).  Although there 

was no significant difference in RQ between groups, at 15 minutes postmeal the 

largest increase was in the control group.  It is known that when fat is consumed 

together with CHO (as in a mixed meal) it is followed by an increase in CHO 

oxidation and a reduction in fat oxidation, which is resultant of insulin release 

following the ingestion of CHO (Flatt 1995).  A study by Acheson et al (1987) in 

lean and obese subjects found that RQ rose similarly postmeal in both groups but 

dropped earlier and more rapidly in obese individuals.  The current study did not 

show the same results as Acheson et al (1987) as there was an increase in RQ, in 

response to CHO ingestion and oxidation, over all groups but to a greater extent in 

the control group.  The control group then had the larger decrease back to normal 

levels whereas the IGT participant group levelled off and decreased more gradually.  
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The type 2 diabetics also had a gradual reduction following the initial increase in RQ, 

but then increased further towards the end of the study period.  RQ levels did not 

reach fasting levels within the study period.  This study shows that RQ levels in IGT 

and type 2 diabetics did not rise as much as control participants suggesting that fat 

was being oxidised and CHO was being spared.  It was expected that the RQ would 

have remained higher for a longer period in the control group when compared with 

the two obese groups and that IGT and type 2 diabetic RQs would have reduced 

quicker towards fat oxidation.  A study by Schutz et al (1992) found obese subjects 

to have increased fat oxidation postprandially, compared to non-obese subjects, as 

the body attempted to regulate energy and fat balance in the long-term.  Therefore, it 

appears be that fuel oxidation in obese individuals is controlled firstly by their fuel 

stores and what fuel is currently circulating and then secondly by the type of fuel 

consumed by the most recent meal.  This insinuates that the body’s need to regulate 

long-term energy balance may be more important than the short-term regulation of 

food and consequently will also impinge upon the release of neuro-endocrine control 

mechanisms and may alter fuel oxidation.  Further results in the study of Acheson et 

al (1987) recorded a reduced diet induced thermogenesis (DIT) response to food in 

obese subjects.  The current study showed a similar lower DIT response for the IGT 

participants whereas type 2 diabetics had a very similar DIT response to the control 

participants. The IGT and type 2 diabetic participants in the current study had a BMI 

greater than 30 and therefore a blunted DIT was expected as it has previously been 

shown that obesity results in a reduced DIT response and that there is an inverse 

relationship between percentage body fat and DIT (Schutz et al.  1984).  Differences 

seen between this study and previous studies may be due to the smaller size of the 
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test meal in this study.  The differences observed between IGT and type 2 diabetics 

may again be due to the fact that the type 2 diabetics controlled their habitual diet 

well.  Inadvertently, this may have resulted in some weight loss and consequently a 

reduction in fat mass and a reversal in the symptoms of type 2 diabetes.  

 

Obesity is a multifactorial and complex disorder that is characterised by a long-term 

energy intake that is above energy expenditure (EE).  Many studies have examined 

the regulation of both these components to provide an understanding of energy 

balance in obesity.   In the current study daily EE was measured by activity diaries 

and there were no significant differences in EE between IGT, type 2 diabetics and 

control participants.  However, both IGT and type 2 diabetics had higher EE values 

throughout the study day when EE was measured by calorimetry.  This higher EE 

was expected and attributable to their greater weight, which results in high energy 

costs for innocuous activities.  Other studies have also shown EE to be higher in 

obese groups (Marques-Lopes et al.  2001).  To be able to discuss the changes in EE 

independently of weight, EE was normalised for body weight.  EE was significantly 

higher in control participants both in a fasting state and postprandially throughout the 

study period when normalised for body weight.  The overall changes in EE in 

response to the test meal are shown by the AUC.  The control participants’ response 

was significantly higher when compared to IGT and type 2 diabetic participants.  

This indicates a lower DIT in IGT and type 2 diabetics and therefore suggests, 

according to Stock (1997), that they are metabolically more efficient.  This means 

that a far greater proportion of ingested energy is deposited as fat, and much less is 

dissipated as heat, which is thought to be due to a reduced action of the sympathetic 
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nervous system (Stock 1997).   Together the low EE measurements, with possible 

low DIT response, and lower RQ values lead to the conclusion the metabolic 

handling of food results in a propensity to store fat to a greater level than control 

participants.  

 

When evaluating the differences between the resting metabolic rate (RMR) assessed 

by calorimetry and the total EE assessed by activity diaries in the current study, there 

was a positive correlation which validates both the use and the results of the activity 

diaries.  The differences observed in the 3 groups in RMR over the study are not seen 

in total daily EE recorded by activity diaries which suggests that the blunted EE 

response observed following food intake in the IGT and type 2 diabetic participants 

may contribute to a reduced daily EE which in turn may perpetuate weight gain.  On 

the other hand, the observed total daily EE by activity diaries would have been 

expected to have been significantly higher in the control group, particularly given the 

differences in the RMR, however no significant differences were observed.  The 

reasons for observing no differences in the total daily EE between groups may be due 

to the interventions initiated by IGT and type 2 diabetics post diagnosis to counteract 

their condition.  The interventions may have resulted in an increase in the amount of 

daily physical activity in the type 2 diabetic participants.  The activity diaries 

highlighted that some of the IGT and type 2 diabetic participants were reasonably 

active compared to the normal sedentary lifestyle expected to be observed in these 

patient groups: one was an avid cyclist, two participants were in professions which 

involved manual labour and another had recently started brisk walking. 
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4.6.2 Thermic Effect of Food 

 

Energy expenditure or thermogenesis may play a roll in body fatness (Miller and 

Payne 1962) therefore interest in DIT has emerged over time.  Energy balance 

control has always been associated with the regulation of energy intake however, 

animal experiments have shown that at excess energy intake, the regulation of 

thermogenesis is important for the control of body fatness (Thurlby and Trayhurn 

1979).  Numerous studies have been undertaken investigating energy expenditure or 

another component of daily energy expenditure i.e. RMR and DIT, in obese subjects 

with non-obese counterparts.  With respect to DIT, the most significant outcome of 

all these studies was that the DIT might be blunted in obese subjects and therefore 

may be significant in the pathogenesis of obesity (Bessard et al.  1983).  The 

evidence is conflicting (Samueloff et al.  1982) and therefore has had a negative 

effect on the elucidation of the etiology of problems of energy balance.  The 

disagreement in results in this field of study, particularly in postprandial metabolism, 

may be related to the constant reappraisal of the methodology for assessing RMR and 

DIT in humans.  The EE results suggested that there may have been reduced DIT in 

IGT and type 2 diabetic participants.  In the current study RMR and DIT were 

obtained with a ventilated-hood system.  However, no significant differences were 

found in DIT between groups.  This result was unexpected due to the reduced EE and 

RQ values in IGT and type 2 diabetics compared to control participants.  The trend 

was that the IGT participants had a blunted DIT response but the reduction was not 

significant.  Type 2 diabetic participants had a DIT response very similar to the 

control group.  Previous studies have shown that the differences in DIT between 
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control and obese subjects could result from a lower stimulation of the sympathetic 

nervous system in obese subjects due to a low ratio of diurnal/nocturnal nor-

epinephrine (NE) excretion (Schutz et al.  1984).  Schutz et al (1984) specifically 

demonstrated that urinary excretion of NE  during the day and night is increased 

however the relative increment in diurnal NE excretion over sleeping values was 

less, i.e. a lower ratio, in obese than control subjects.  This is important because NE 

is a hormone and neurotransmitter, secreted by the adrenal medulla and the nerve 

endings of the sympathetic nervous system to cause vasoconstriction and increases in 

heart rate, blood pressure, and the sugar level of the blood. Welle (1995) indicated 

that postprandial NE concentrations are caused by an increased spillover from 

sympathetic nerve endings in muscle brought about by glucose induced 

hyperinsulinemia.  Any messages conveyed via the sympathetic nervous system to 

the NTS in the medulla and are then relayed to a variety of other brainstem and 

hypothalamic areas.  A disturbance in the concentrations of NE will result in reduced 

sympathetic nervous system stimulation postprandially (in this case) which results in 

reduced EE.  Another hypothesis is that there may be a resistance to the thermogenic 

effects of NE in obese subjects.  Therefore these studies only go a little way to 

understanding the role of NE and the sympathetic nervous system in the etiology of 

obesity by reduced EE.  One major problem is that comparisons of lean and obese 

subjects cannot tell us whether a difference in sympathetic nervous system activity is 

the cause of or the result of obesity or its side effects, such as hypertension or 

hyperinsulinemia.   
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4.7 SUBSTRATE OXIDATION 

 

4.7.1 Fat Oxidation 

 

Studies have reported that fat oxidation rates reduce in obese individuals 

postprandially (Flatt 1995; Marques-Lopes et al.  2001).  Obesity occurs frequently 

together with both IGT and type 2 diabetes.  They are all characterised by insulin 

resistance, disturbances in intermediary CHO and fat metabolism, and most often by 

an increased adipose tissue mass, increased FFA, as well as increased triacylglycerol 

(TAG) storage within skeletal muscle. Increased TAG storage is thought to be 

observed in the body by a blunted fat metabolism following catecholamine release 

postprandially (Blaak 2003).  These disturbances perpetuate the progression of the 

said diseases (obesity, IGT and type 2 diabetes) because they play a role in the 

development and maintenance of adipose tissue stores, accumulation of lipid 

intermediates (strongly linked with skeletal muscle insulin resistance (Blaak 2003)) 

and TAGs in skeletal muscle, all risk factors for the development of whole body 

insulin resistance and type 2 diabetes.  In the current study there was no significant 

difference in oxidation rates between groups for protein, fat or carbohydrate when in 

a fasted state.  At fifteen minutes postmeal fat oxidation had reduced in all groups 

but to the greatest degree in the control group and then there was an increase in fat 

oxidation in all groups up to 30 minutes postmeal and again the control group had the 

sharpest increase.  Following this the IGT participants fat oxidation slightly reduced 

until 90 minutes and then slightly increased up until 120 minutes whereas the type 2 

diabetics and control participants levels of fat oxidation increased again until 60 
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minutes and then reduced until the end of the study period.  In the current study, after 

normalising for body weight, it appears that there was no tendency for obese 

individuals to have suppressed fat oxidation levels following a mixed meal as 

previous studies have shown (Owen et al.  1986; Acheson et al.  1987).  The current 

study shows that fat oxidation is higher after the meal consumption in IGT and type 2 

diabetics than in control participants.  This corresponds with a study by Astrup et al 

(1996) where obese subjects were found to have higher fat oxidation, however this 

was thought to be due to their increased weight and therefore enlarged body fat 

stores.  The current study corrected for body weight and an increase in fat oxidation 

was still observed.  The RQ of the IGT and type 2 diabetic participants was lower 

than that of the control participants suggesting that they were indeed oxidising fat at 

an increased rate and sparing CHO.  A study similar to the current study by Owen et 

al (1992) investigated oxidation rates for 4 hours following ingestion of a mixed 

meal and also found no differences between obese and lean individuals.  Therefore, 

in the current study fat oxidation does not appear to be one of the mechanisms which 

contributes to a blunted satiety response and dysfunctional feeding behaviour.   

 

4.7.2 CHO Oxidation 

 

In the current study overall CHO oxidation rates were similar between groups, as 

discussed earlier, due to the tight metabolic control over blood glucose levels 

however the control group did have the highest RQs throughout the study period 

suggesting that they were oxidising more CHO than the other groups.  When 

oxidation rates were normalised for body weight, CHO oxidation was significantly 
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higher at certain points throughout the study period in control participants compared 

to IGT and type 2 diabetic participants.  It was important to look at oxidation rates 

when normalised for weight to indicate the difference between groups as a result of 

the disease status.  The literature is sparse surrounding the assessment of oxidation 

rates when normalising for body weight.  It has been reported that in IGT and type 2 

diabetes there is impaired metabolic flexibility (Storlien et al.  2004), for example, an 

impaired switching from fatty acid to glucose oxidation in response to insulin 

(Phielix and Mensink 2008) which is again associated with insulin resistance and in 

particular skeletal muscle insulin resistance which impairs the cellular uptake of 

glucose causing an accumulation of lipid inside the muscle cell.  This process is 

under positive feedback control so as FFA levels increase in the cell, glucose uptake 

is further inhibited and in fact it is not clear if FFA is a cause of reduced cellular 

uptake or if it is the effect of it.  The impairment however, would be ever more 

apparent in IGT and type 2 diabetic patients when glycaemic control is poor and the 

positive feedback effect perpetuates the problem.  Furthermore, the lower CHO 

oxidation rates in the current study in the two patient groups may be driven by the 

body’s lack of metabolic need and drive to generate ATP for metabolic function.  

This may be a consequence of low levels of physical activity which is common in 

obesity (McGough et al.  2001).  Flatt (1995c) suggested that oxidation rates are 

dictated by the body’s need to generate ATP used in performing metabolic functions, 

in moving and in physical activity.  Therefore, if leading a sedentary lifestyle the 

requirement to sustain ATP regeneration will be minimal and oxidation rates will 

fall.  Conversely, it may be the amount of physical activity that is driving the fuel 

mix towards an increase in CHO oxidisation in the control participants.   
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In summary, the IGT and type 2 diabetic participant levels of CHO oxidation was 

lower than control participants once normalised for body weight indicating that this 

is one of the dysfunctional mechanisms involved in the complex interplay of 

mechanisms controlling food intake.  The impairment may be due to insulin 

resistance which impairs the uptake of glucose from the blood.  Therefore, the 

current study measured indicators in the blood which give information about the 

digestive process.     

 

4.8 BLOOD PARAMETERS 

 

4.8.1 Glucose 

 

In the current study the CHO content of the testmeal was 58%.  A similar study by 

Wolever and Miller (1995) investigated different CHO contributions in a meal (5%, 

30%, 45% and 60% CHO) and found that the meals with the highest CHO content 

produced the lowest blood glucose response.  This is significant because the dietary 

management of IGT and diabetes aims to optimise blood glucose control and to 

decrease the risk for the long-term complications associated with diabetes, i.e. retinal 

eye, kidney and nerve and cardiovascular disease.  In the current study, as expected 

when fasted, the control participants had a lower blood glucose concentration than 

the 2 patient groups and post meal all three groups’ blood glucose concentration rose.  

Wolever and Miller’s (1995) study showed no difference in blood glucose between 

type 2 diabetic and control groups with the 60% CHO meal.  However, in 
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contradiction, the blood glucose concentrations in the IGT and type 2 diabetics in the 

current study rose to a high level and at 60 minutes there was a significantly greater 

blood glucose profile in the two patient groups compared to control participants. 

Other studies have shown results similar to this study (Manders et al.  2005).  The 

raised blood glucose profile suggests that the IGT and type 2 diabetic groups in the 

current study had disrupted glucose uptake via GLUT 4 transportation, which is 

known to be a cause of insulin resistance (Bilan et al.  1992) and may be the cause of 

the previously noted low RQ, CHO oxidation rates and EE.  There was no significant 

difference between IGT and type 2 diabetic participants, however the type 2 diabetic 

participants had an intermediary blood glucose profile between the IGT and control 

participants.  The results expected would perhaps have shown the IGT participants to 

have the intermediary blood glucose levels because it is known to be a less severe 

disease, however the results remain consistent because it is likely that the outcome is 

due to the well controlled diets of the type 2 diabetics and may also be associated 

with the lower taste sensitivity identified in the IGT participants, but not in the type 2 

diabetic participants.  When good glycaemic control is achieved in type 2 diabetes 

the short term responses change i.e. increased satiety, improved insulin profile and 

therefore improved glucose transport.  Furthermore, the long term micro and 

macrovascular complications are improved as shown by the UK Prospective 

Diabetes Group (U.K.P.D.S) who has published literature investigating blood 

glucose and blood pressure in over 5000 people with type 2 diabetes.  

Hyperglycaemia and hypertriglyceridemia can lead to oxidative stress and 

endothelial dysfunction, which in itself is a known cause of cardiovascular disease 

(CVD) (Negrean et al.  2007).  In diabetes, endothelial dysfunction is triggered by 
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the production of advanced glycation end products (AGEs).  AGE concentrations are 

elevated in type 2 diabetes and come from the uncontrolled non-enzymatic reaction 

of sugars with proteins, particularly when blood glucose levels are high.  Increased 

AGE concentrations have significant pro-inflammatory (cause increased cytokine 

levels) and pro-oxidative effects, therefore play an important role in the development 

of diabetic complications as discussed earlier.  Insulin resistance is an effect of the 

inflammation associated with AGE concentrations, perhaps due to damage to specific 

neurons which sense plasma glucose levels and control insulin release from the 

pancreas.  Therefore it is imperative that glycaemic control is maintained and when 

hyperglycaemia is prevented some of the postprandial effects can be minimised 

which can reduce the long-term complications of diabetes. In the current study the 

type 2 diabetic participants and in particular the IGT participants should look to 

improve blood glucose control to prevent the progression of their disease.  Certainly, 

it appears that an aberration in blood glucose profile may contribute towards 

dysfunctional food intake and may be one of the triggers which causes alterations in 

consequent physiological parameters, such as EE, RQ and CHO oxidation, in the 

regulation of food intake.   

 

Of course, the crucial component in glucose transportation into the body cells is in 

insulin.  Therefore, it was important to record insulin levels in the study participants 

to  determine if: a) these participants had the traditionally high levels of insulin found 

in obese subjects and b) if this contributed as one of the dysfunctional pathways in 

the control of food intake. 
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4.8.2 Insulin 

 

Insulin sensitivity is central to IGT and type 2 diabetes.  Studies have shown that 

fasting insulin levels are higher in IGT and type 2 diabetic populations than in 

healthy, normal weight individuals (Wolever and Mehling 2002). The current study 

also showed that control participants had lower fasting insulin levels.  However, the 

postprandial insulin levels increased significantly more in the control participants in 

this study and were actually higher than the IGT and type 2 diabetic participants.  

This result was not anticipated.  The insulin concentrations followed that of the blood 

glucose changes except at 60 minutes when the insulin levels continued to rise in the 

control subjects when the blood glucose concentrations had fallen.  The overall 

glucose AUC response for control subjects was the lowest whereas their AUC for 

insulin was the highest.  The AUC for glucose in IGT participants was the highest 

and their AUC response for insulin was the lowest with the type 2 diabetic 

participants having the intermediary result.  It is assumed that in obese individuals 

regulation of the normally high insulin response is desirable but in this case with a 

high CHO mixed meal, a higher insulin response would have been expected in the 

patient groups. A reason for the response seen in the IGT participants is that the 

body’s response to a high carbohydrate meal, including the insulin response, is 

influenced by the rate of absorption of the meal (Collier and O’Dea 1982).  The AUC 

for insulin suggests that the insulin secretion in IGT participants in the current study 

was less sensitive to the meal than in control participants.  It is known that the release 

of insulin is a satiety factor and causes inhibition of feeding (Havel 1999).  If, 

however, the insulin response is blunted and satiation does not occur the result may 
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be abnormal ratings of appetite parameters i.e. reduced satiety and fullness, also 

increased hunger and prospective consumption.  This may potentially account for an 

increase in food intake and weight gain.  In the current study, although a reduced 

insulin response was seen in the IGT participants, a corresponding change in the 

appetite parameters was not observed and the reason for that is not clear.  A possible 

explanation for the low hunger and high satiety ratings may be a result of the low 

insulin response may slow down glucose uptake because the glucose uptake 

mechanism is insulin-induced.  This may have resulted in an overall slower 

processing of the breakfast.  The opposite may be true of the control participants, the 

high hunger and low satiety ratings may be a result of the high insulin response 

which promoted quick glucose storage and therefore quicker ingestion of the 

breakfast.  It is also possible that the dietary intervention which was received in the 

type 2 diabetic participants may have resulted in the improved insulin profiles 

observed when compared to the IGT participants.  A study by Mann (2000) has 

shown similarly improved insulin profiles as a result of dietary intervention, although 

further long-term studies are required to elucidate the mechanisms surrounding this 

change.  

 

Insulin is a known mechanism in the suppression of food intake (Blom et al.  2005) 

and exerts its action via the central nervous system.  In contrast, ghrelin also exerts 

its action via the CNS however has an opposite role to that of insulin, in the 

stimulation of food intake.   
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4.8.3 Ghrelin 

 

Ghrelin has an important role in food intake therefore it is important to understand 

the relationship between glucose, insulin, ghrelin and also appetite.  Plasma ghrelin 

concentrations rise gradually before a meal and decrease rapidly (Cummings et al, 

2001) following a meal in normal weight individuals.  Obese individuals have been 

shown to have reduced ghrelin concentrations (Shiiya et al.  2002) and furthermore, 

plasma ghrelin levels fail to decline following food intake (English et al.  2002).  The 

lack of suppression, following food intake, in obese individuals may contribute to 

increased food intake and potentiate obesity.  Plasma ghrelin concentrations are 

known to decrease after oral and intravenous administration of glucose whereas lipid 

or high fat diets suppress the postprandial ghrelin concentration less effectively 

(Blom et al.  2005).  The current study testmeal contained a high CHO content to 

assist the observation of plasma ghrelin changes.    Postprandially, IGT participants 

showed reductions in plasma ghrelin levels at both timepoints.  The type 2 diabetics 

only showed a very small reduction in plasma ghrelin levels at 30 minutes 

postprandially as expected, but then ghrelin levels increased at 60 minutes suggesting 

that the type 2 diabetic participants would have accepted further food intake at this 

stage. The control participants did not show a reduction in plasma ghrelin levels.  

Insulin is essential for meal-induced ghrelin suppression and to acutely increase 

leptin in healthy persons (Saad et al.  1998).  An inverse relationship has been found 

between leptin and ghrelin (Kalaitzakis et al.  2007) and it has been proposed that 

leptin is important in the suppression of basal ghrelin concentrations in 

normoinsulinaemic individuals.  Therefore in obese individuals ghrelin 
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concentrations have been found to be reduced which is thought to be due to being in 

a state of positive energy balance (Mingrone et al.  2006) and is caused by insulin 

resistance which is due to consistently high blood glucose levels.  Furthermore, the 

lack of ghrelin suppression following food intake may contribute to abnormal 

appetite parameters in obese individuals such as individuals with IGT and type 2 

diabetes.   Changes in ghrelin levels did not correspond with other studies.  In the 

current study the lack of suppression of ghrelin concentrations observed in the type 2 

diabetic participants may affect the satiety cascade by promoting reduced satiation 

and suggests that ghrelin is involved in the dysfunction of the satiety cascade and 

therefore also in the pathophysiology of obesity.  It was possible in the current study 

that the ghrelin assay was compromised and that these results may be distorted.  

Therefore it is impossible to make any genuine statements about the contribution of 

ghrelin in the control of food intake.  There was no correlation between plasma 

ghrelin levels and appetite parameters as would perhaps have been expected due to 

the suppression of ghrelin concentrations postmeal.  However as has often been 

observed, particularly in obese individuals, people do not always eat when they are 

‘hungry’ and do not always refrain from eating when ‘satiated’ (de Graaf et al.  

2004).  Therefore, it is imperative to understand the integrated responses involved in 

the process of food intake i.e. those which combine to initiate feeding and the 

mechanisms which contribute to the cessation of feeding. 
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4.9 INTEGRATED RESPONSES 

 

The integrated responses in the control of food intake are probably the most 

important to understand because there are a constellation of adverse metabolic, 

psychological and physiological changes that occur in chronic diseases such as IGT 

and type 2 diabetes.  Increased knowledge about the underplay of events involved in 

food intake may help in the prevention and treatment of such conditions.  Much of 

the research has focused on individual components in the process of food intake and 

this ongoing research is imperitive to fully understand the explicit involvement of 

each component i.e. how knowledge about fluctuations in ghrelin concentrations may 

be a feeding indicator.  However, it is now vital that researchers understand how 

these components interact to control food intake.  Every individual eats episodically 

therefore the ‘end point’, which in this case is cessation of eating, is universal.  Each 

person has the capacity to be satiated or has the means to initiate feeding, whether 

this occurs for different reasons in obese individuals compared to normal, healthy 

individuals and to what extent is not fully known.  The current study aimed to 

investigate the interactions between components to determine if the ‘end point’ is 

reached by similar means in IGT, type 2 diabetics and control participants.   

  

4.9.1 Influences of Taste, Appetite and Habitual Diet 

 

Appetite, in humans, appears to be unique to the species and to the individual person.  

Phylo-genetically this specificity relates particularly to the evolution of the cerebral 

cortex system and the complex interplay of the limbic and neocortical brain.  Such 
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specialised nervous and psychological control is not available to humans when they 

are born (Hamburger 1960) and therefore is learned by associated psychological 

factors such as emotional conflict and personal gratification.  Consequently, the 

nutritional aspects of appetite are sometimes distorted.  Taste can influence appetite 

because it is clear that some individuals can consume foods even when they do not 

‘feel’ hungry.  In this scenario, investigators have shown that often the food eaten is 

high in fat content which is consistent with the idea that fat tends to be less satiating 

than protein and CHO respectively (Chapman et al.  1999).  There is compelling 

evidence for innate preferences for sweet tastes and aversions to bitter tastes 

(Yeomans 2006).  In this study the relationship between taste and appetite was 

investigated by looking at taste status to bitterness and the amount of fat consumed in 

the habitual diet and then by how taste is correlated with subjective feelings of 

hunger, satiety, fullness and prospective consumption.  Looy and Weingarten (1992) 

were the first to suggest a link between sweet taste preferences and obesity and 

investigators have continued on to explore how appetite is influenced by PROP taste 

status.  Results have shown that PROP supertasters and tasters have an aversion to 

bitter and sweet food items and are more sensitive to the fat content in foods leading 

to avoidance of these food items.  Therefore supertasters and tasters tend to be 

normal weight whereas non-tasters have a propensity to be overweight as they are 

not sensitive to fat content and so do not have aversions to sweet/high fat foods.   

The current study exhibited no correlations between taste and appetite parameters, 

however does demonstrate that control subjects tasted PROP at a significantly lower 

concentration when compared to IGT participants.  The trend also showed that 

control participants tasted PROP at lower concentrations than type 2 diabetic 
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participants, however the result was not significant.  All control participants were 

either tasters or supertasters and there were no control participants in the non-taster 

status group.  Conversely, there were no IGT participants in the supertaster group 

and only one type 2 diabetic in this group.  These results provide further evidence 

that body weight is indeed related to taste status.  Salbe et al (2004) found a positive 

relationship between weight gain and hedonic responses to sweet and creamy 

solutions in Pima Indians.  Therefore, it was important to determine how taste status 

affects an individual’s habitual diet.  In the current study there was no relationship 

between habitual fat intake and taste status as some literature has suggested (Salbe et 

al.  2004).  However, a significant negative relationship between sugar intake and 

taste scale was found; in that the stronger the taste for the PROP compound was 

rated, the lower the dietary sugar intake.  Given that the supertasters rated the PROP 

compound the strongest, this result can be extrapolated to mean that supertasters had 

the lowest dietary sugar intake whereas non-tasters had the highest sugar intake in 

their diet.  This high sugar intake may in fact perpetuate obesity and the related 

cardiovascular disease.  Yudkin (1964) proposed in the early 1960s that the Western 

diets that were high in fat were also high in sugar and he proposed that the sugar 

intake may also play a role in cardiovascular epidemic.  In the current study, 

although no significant differences were recorded in fat intake from the 4-day diet 

diaries, IGT participants did record the highest fat intakes.  Recently, in the UK, 

although a low fat intake has been promoted, rates of obesity have continued to 

increase as has sugar intake (FSA 2008).  Even in children non-milk extrinsic (NME) 

sugar intakes increase with age.  The main contributors to NME being non-diet soft 

drinks along with confectionary, cakes, biscuits and pastries (FSA 2008).   Earlier, it 
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was discussed that sugar may actually prevent weight gain however the current study 

shows conflicting results.  This study shows that when taste sensitivity is poor this 

may cause an increase in the amount of sugar consumed in the diet.  This may mean 

an increase in cakes and biscuits which can result in positive energy balance and 

obesity.  By decreasing sugar intake a resultant reduction in the energy imbalance 

between intake and expenditure would be expected and overall may make a positive 

contribution to the prevention of obesity.   

 

4.9.2 Influences of Appetite and Substrate Oxidation 

 

The oxidation of nutrients will lead to either the storage or utilisation of nutrients and 

will ultimately lead to satiation.  The fuel mix is important and will determine the 

release of biomarkers which affect satiety (de Graaf et al.  2004) so it was essential to 

investigate the relationship between oxidation and appetite.  Appetite was analysed 

in relation to substrate oxidation in the current study, to assess if the differences in 

fuel usage are reflected in the appetite parameters.  The relationship reflects the 

metabolic profile of each group.  The aim of the current study was primarily to 

investigate the differences between IGT, type 2 diabetic and control participants.  

Therefore it was important to investigate the correlations between appetite and 

substrate oxidation between groups (IGT, type 2 diabetics and controls).  

Correlations were performed taking away the influence of body weight so that any 

differences observed were a result of the disease status.  This was important because 

the effects of obesity are different to the effects of IGT and type 2 diabetes.  This 

much is clear because there are obese individuals who never develop these 
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conditions and therefore it would be expected that the metabolic responses to food 

are different.   

 

Correlations were performed on AUC calculations taken from fasting until the end of 

the study period.  There were no significant correlations between fat oxidation and 

any of the appetite parameters in the current study.  Some studies suggest that the 

ability to induce satiety is influenced by the ability of fat to be readily oxidised 

(Bendixen et al.  2002).  In obese subjects basal fat oxidation has been shown to be 

reduced (Solomon et al.  2008) when compared to healthy control subjects.  This 

reduction is thought to be due to the accumulation of free fatty acids and results in 

increased intracellular fatty acid metabolites and disrupts insulin-signalling pathways 

which lead to insulin resistance and IGT.  The current study did not show differences 

in fat oxidation between either of the obese groups (IGT or type 2 diabetics) and the 

control participants, so although there were differences in the appetite parameters 

between groups it does not appear to be due to differences in the oxidation of fat.  It 

seems that the ratio of CHO to fat oxidised is more important than the fat oxidation 

itself.  

 

IGT participants demonstrated that hunger and prospective consumption reduced as 

CHO oxidation increased, whereas an increase in fullness and satiety increased.   

Conversely, type 2 diabetic and control participants showed an increase in hunger 

and prospective consumption as CHO increased and a corresponding reduction in 

satiety and fullness.  Therefore IGT participants in the current study are showing a 

response similar to those which Astrup et al (1996) recorded in normal control 
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participants.  Because of the high levels of satiety recorded in the current study it 

would be expected that the duration of satiety, i.e. the period between meals, in the 

IGT participants would be greater than in type 2 diabetics and control participants.  

To determine the effects of appetite and oxidation on subsequent meals further 

investigation would be required.  In contrast to CHO oxidation increasing in direct 

response to CHO intake, fat oxidation is not directly linked with intake (Astrup et al.  

1996) and this results in less accurately maintained fat balance.  In the current study 

the relationship between fat oxidation and appetite varied between groups.  The IGT 

participants again, for the most part, showed contrasting results to the type 2 diabetic 

and control participants.  As fat oxidation increased in IGT participants so did hunger 

and prospective consumption, whereas satiety and fullness reduced.  In type 2 

diabetics as fat oxidation increased, hunger and prospective consumption reduced 

and satiety and fullness increased.  Finally, in control participants as fat oxidation 

increased hunger reduced and satiety, fullness and prospective consumption all 

increased.  The results demonstrate the lack of any definitive relationship between 

appetite and fat oxidation.  A possible hypothesis that the increased fat oxidation 

postmeal observed in the IGT and type 2 diabetic groups, although not significant 

may be associated with the increased levels of satiety ratings recorded.  Although the 

differences in fat oxidation were not significant there was a notable increase post 

meal compared with the control group.  This hypothesis has been previously 

suggested back in the late 1990’s by Himaya (1997) however it does not appear to 

have been avidly pursued.  The current study may necessitate a re-evaluation of the 

satiety value of fat.  It clearly indicates that research aimed at providing an insight 

into the physiological and biochemical phenotypic expressions of the obesity genes 
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and how they interact with dietary fat should be conducted with caution as the results 

are extremely difficult to interpret.  

 

It is however, important to determine associations between measured processes in the 

control of feeding behaviour and subjective measures because it gives an idea of the 

influence that psychology has in food intake and the role that subjective feelings 

have in the control of food initiation and cessation.  Hence, associations were 

completed with appetite and taste, oxidation rates and biological markers. 

 
 
 
4.9.3 Influences of Appetite and Blood Parameters 

 

4.9.3.1 Glucose and Appetite 

 

As expected, in the current study, carbohydrate oxidation was higher in the control 

participants compared to the other two groups.  This was also reflected in the blood 

glucose profile as a subsequent lower concentration of glucose was found in the 

control participants.  Consequently it was noted that a decrease in blood glucose 

concentrations result in decreased hunger and satiety levels.  This does not concurs 

with previous research in that the drive to consume food is promoted following a 

decrease in blood glucose (Mayer 1960; Van Itallie and Hashim 1960) which is 

thought to reflect a sudden decrease in the supply of immediately available glucose 

(Melanson et al.  1999). The correlations with hunger, fullness and prospective 

consumption were not significant and demonstrate conflicting results from the 

anticipated outcomes.  The results of the current study showed that hunger and 
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prospective consumption increased, whereas satiety and fullness decreased as a result 

of an overall increased glucose response.  Perhaps the meal was not large enough to 

elicit large changes in the subjective responses even though the physiological 

changes were there.  The glucose response was greater in both the IGT and type 2 

diabetic groups however, the correlations between appetite ratings and the blood 

glucose response were different.  The type 2 diabetic participants correlations 

followed the same pattern as control participants whereas IGT participants 

demonstrated opposing results, as the blood glucose response increased, there was 

reduced hunger, satiety and prospective consumption and increased fullness, 

although these results were not significant.  So to summarise, all three groups 

demonstrated a negative association between satiety and blood glucose although the 

result was only significant in the control group, that is as the blood glucose response 

increases, satiety reduces.  It is thought that if blood glucose is modulated, there is a 

subsequent effect on satiety which is the basis for the glucostatic theory of food 

intake regulation (Mayer 1953).  Conversely, satiety and the termination of eating 

will only occur following an increase in blood glucose.  A study by Anderson et al 

(2002) demonstrated that high GI carbohydrates more effectively promote subjective 

feelings of satiety and reduce feelings of hunger at 60 minutes postmeal.  The current 

study does not concur with the glucostatic theory that a meal which results in a high 

glucose response suppresses food intake.  In fact, this study demonstrates that as the 

blood glucose response increases, satiety reduces, concurring with the hypothesis 

that foods which elicit a large glucose response, i.e. high GI foods, promote 

excessive energy intake.  This hypothesis is based on the hypothesis that meals 

which produce a quick initial glucose response, i.e. high glycaemic index (GI) foods, 
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then produce a corresponding postprandial dip in blood glucose, which again initiates 

feeding (Anderson et al.  2002).  The current study did not observe a corresponding 

correlation between the glucose response and prospective consumption which 

suggests that there was no corresponding dip in blood glucose in the participants.  

The reason for this is unclear.  The type 2 diabetic and control participants did 

demonstrate a positive relationship between PC and blood glucose but this was not 

significant.  The IGT participants showed a negative relationship between PC and 

blood glucose which again was not significant.  The current study is consistent with 

studies which identify a strong satiety response with low GI foods.  Therefore the 

participants in this study would benefit from a low GI meal, thus reducing blood 

glucose levels, reducing the glycaemic response and lowering food intake.  

Therefore, the habitual diet of IGT and type 2 diabetics should include foods which 

will help to control blood glucose levels because consistently high blood glucose 

levels increase the risk of metabolic syndrome and cardiovascular disease.  This is 

also consistent with the idea that an improved, or lower, glycaemic response may 

improve secretion of ingestive hormones such as GLP-1 and CCK which help to 

promote the suppression of food intake.  A weak satiety response as a result of a high 

GI meal may promote the early initiation of feeding and the response is likely to be 

different to a healthy individual who is not concerned with blood glucose levels.  A 

healthy individual may make a different CHO choice and have a full and sustained 

satiety response.  Granfeldt et al (1994) investigated the response of low GI foods, 

which had high levels of resistant starch and is digested and released slowly and so 

helps to control blood glucose levels, for up to 180 minutes after feeding.  The results 

of this study showed a greater overall satiety response with the low glycaemic food.  
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However, this response was compared with white bread rather than a mixed meal.  

The comparisons between the different types of resistant starch were comparable to 

the study by Anderson et al (2002) in that the differences in satiety were only 

observed in the late phase, denoted from 95 minutes onwards and similarly 

demonstrated that in the short-term there is no ‘satiety’ benefit to consuming either a 

high or low GI diet.  Granfeldt et al (1994) concluded that long-term GI foods may in 

fact promote satiety however, further research would need to be done before it could 

be concluded that overall daily or weekly energy intake was influenced.  It is 

important to stress that these two studies have been carried out on normal subjects 

therefore the same conclusions cannot be assumed for subjects with IGT and type 2 

diabetes as their responses may differ.  Therefore, it is important that future research 

investigates the appetite and blood responses to different types of meals over both the 

short and long term.  Arguably a long term study is more important to determine if 

energy balance is achieved and maintained.  The answers may also explicitly lead us 

to conclusions about what food sources can more easily promote negative energy 

balance and weight loss.   

 

4.9.3.2 Insulin and Appetite 

 

It is well established (Lavin et al.  1998) that there is an increase in insulin secretion 

following a meal causing a rise in plasma insulin.  In the current study the overall 

insulin response measured by AUC was significantly lower in the IGT participants 

and intermediary in the type 2 diabetic participants compared to the controls.  A 

study by Lavin et al (1998) on normal subjects where insulin was initially injected to 
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simulate the conditions of type 2 diabetes investigated appetite levels following intra 

duodenal glucose infusions.  Results showed that the appetite ratings of hunger and 

fullness were not affected by the simulated condition of hyperinsulinemia and that a 

‘normal’ satiety response was seen following duodenal glucose infusions in that there 

was a reduction in hunger and fullness and subsequent food intake (Lavin et al.  

1998).  Lavin et al (1998) concluded that insulin was not a physiologic mediator of 

satiety.  In the current study there were no significant relationships between appetite 

parameters and the insulin response in IGT or control participants.  However, in type 

2 diabetics there was a significant inverse relationship between hunger and the 

insulin response, that is as insulin increases, hunger consequently reduces and a 

positive relationship between prospective consumption and the insulin response. 

Thus, as the insulin response increased so did the desire to consume food in type 2 

diabetics.  Therefore, the current study agreed somewhat conflicted with the results 

of Lavin et al (1998) because there were correlations between insulin concentrations 

and appetite parameters.  The claim that foods which promote a reduced insulinaemic 

response, i.e. low GI foods, have a positive effect on fuel oxidation by reducing CHO 

oxidation and fat storage and by increasing fat oxidation (Astrup et al.  1996).  The 

current study showed that a high insulin response resulted in an increased desire to 

consume more food in type 2 diabetics therefore the participants would benefit from 

aiming to achieve a reduced insulinaemic response by choosing appropriate food 

items to elicit a low glycaemic and insulinaemic response.  However, in the current 

study the inverse correlation between hunger and the insulin response is conflicting 

and suggests that as the total insulin response increases, hunger reduces.  Warranted, 

for satiety to occur an increase in insulin concentration must occur however, as stated 
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earlier in the discussion of the glucose results, it has been demonstrated that a low 

insulinaemic response helps to maintain satiety and prevents further food 

consumption.  Therefore, this result was unexpected and may be put down to 1) the 

complexities of metabolic disease or 2) the biases observed in the completion of 

visual analogue scales, discussed earlier.  However, throughout the study period 

there were differences in appetite ratings between control participants and both IGT 

and type 2 diabetic participants.  This suggests that other studies which simulate 

conditions of  diabetes may not give the same results as studies including patients 

who actually contain the disease.  This is because in IGT and type 2 diabetes there 

are known to be a number of dysfunctional mechanisms that interact and lead to the 

development of IGT and type 2 diabetes.  The lower insulin response identified in the 

IGT participants therefore may have contributed to the differences observed in 

appetite parameters i.e. satiety and hunger.  The possible mechanism for this is 

because of the low insulin levels, this resulted in slower glucose utilisation and 

storage and delayed the meal processing, leading to increase in satiety.  The reason 

for a failure to demonstrate a correlation may be due to the small sample size.  The 

current study has shown that insulin may not have a primary role in the differences 

established in subjective appetite ratings because of the erratic pattern of correlations 

observed.   
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CHAPTER 5 - FINAL DISCUSSION  

 

Impaired glucose tolerance and type 2 diabetes are now common chronic diseases 

which have resulted in copious amounts of research that aim to investigate both the 

prevention and treatment of these conditions.  The most important element in the 

prevention of these diseases is the ability to maintain a balance of energy intake with 

energy expenditure.  Research has primarily focused on the side of energy intake due 

to the innumerable mechanisms which influence food intake including; 

physiological, sensory, cognitive and behavioural mechanisms.  The longer term 

complications of IGT and type 2 diabetes can lead to morbidity, reducing the quality 

of life or mortality and this makes the current and ongoing research so very 

important.  Understanding the factors which contribute to the long-term 

complications of IGT and type 2 diabetes may help to predict or prevent the onset of 

disease and lead to a reduction in the number of people with IGT and type 2 diabetes.  

Alternatively, an understanding will allow more effective treatment of the symptoms 

and reduce the associated morbidity and mortality.   

 

Obesity is a key component in both these diseases and results in changes in the 

metabolic handling of food.  The aberrant responses in the metabolic handling of 

food affects consecutive food intake and therefore may perpetuate the problem of 

weight gain.  The IGT and type 2 participants in the current study were all classified 

as clinically obese and were therefore a suitable sample to compare the effects of 

food intake with a control group of healthy participants.  The test meal given was a 

mixed meal and identical for all participant groups.  This was important to enable the 
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investigation of the responses to food intake in an everyday situation in IGT and type 

2 diabetic participants and to determine if the response differs to healthy controls.  

Previous studies have investigated single components or perhaps two components i.e. 

the sensory and biological components of food intake.  The current study aimed to 

assess as many of the factors which influence the control of food intake without 

being overly invasive for the participant.  The sensory element investigated was 

specifically taste, the physiological element investigated included blood hormones 

and oxidation rates, and the cognitive element investigated were participants’ 

subjective feelings of appetite.   

 

The current study demonstrated the complexities involved in the investigation of 

food intake.  The mechanisms involved in food intake and satiety comprise of a 

complex interplay of events which result in either the desire to consume food or the 

inhibition of further food intake.  The similarity of food intake in the habitual diets of 

IGT and type 2 diabetic participants to the control participants was unexpected given 

the BMI of the two patient groups.  However, this may have been better assessed if 

patients were currently in weight loss.  If weight had been recorded in both sessions 

in the current study this knowledge would have allowed a definitive answer as to 

whether patients were in weight loss or not.  The two main differences between the 

groups’ habitual diet were in percentage of protein and sugar intakes of the 

participants.  Type 2 diabetic participants had the highest protein intakes followed by 

IGT and then control participants with the lowest protein intakes and type 2 diabetics 

had a lower sugar intake compared to IGT and control participants.  These two 

results in themselves were significant as they conveyed a message regarding self-
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mediated changes made to the participants’ dietary intake following diagnosis.  For 

type 2 diabetic participants this may have been associated with the dietary advice 

gained within the diabetic clinic.  Furthermore, the activity recorded by diaries was 

also very similar in all groups showing that the two patient groups were not leading a 

sedentary lifestyle as was anticipated.  There were differences in the intensity of 

activity undertaken, as the IGT participants had undertaken approximately a third 

less the amount of time undertaking strenuous exercise when compared to the control 

participants, however IGT’s executed more moderate activities such as housework 

and walking.  Therefore, including strenuous activity into their lifestyle may be an 

important factor to consider in IGT and type 2 diabetes as this may help to improve 

blood glucose profiles and oxidation rates.  Although this difference was not 

significant it may go some way to explain the behavioural disparity between groups 

as it is commonly known that exercise plays an important role in the maintenance of 

weight loss, prevention of weight gain and (Anderson and Konz, 2001) promotion of 

long-term healthy living (Klein et al.  2004). 

 

The taste results demonstrated that the IGT participants first tasted PROP at a higher 

concentration compared to the control participants.  The IGT participants were also 

less sensitive to the bitterness than PROP compared to type 2 diabetic and control 

participants.  Therefore, IGT participants were likely to be nontasters and were 

unlikely to be supertasters, whereas control participants were likely to be supertasters 

in the current study.  Tepper and Nurse (1998) suggested that nontasters had a 

preference for fat.  Therefore it was important to test that hypothesis and look at the 

habitual diet to determine if there were differences in fat intake between IGT, type 2 
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diabetics and control participants.  The current study demonstrated that the sugar 

intake of IGT patients is influenced by a lack of taste sensitivity and this may lead to 

an associated increase in fat intake although this was not definitive because there was 

no significant difference in self-reported dietary fat intakes.  The relationship may be 

more complex or indirect and would be worth further investigation at a more basic 

level.  This is because the effect of taste may manifest itself to a greater degree when 

making individual food choices such as in-between meals and snacks.  Whereas a 

main meal, such as lunch or dinner, may be considered ‘healthier’, per say, because it 

is a planned nutritive meal to appease a whole family.  Food preferences in IGT and 

type 2 diabetes would also merit investigation as it is imperative to understand how 

the effect of taste changes with these conditions and how this has an influence on 

habitual food choices. 

 

Appetite ratings showed the changes in satiety in response to the test meal.  In the 

current study the differences in appetite parameters between IGT, type 2 diabetic and 

control groups were observed particularly in subjective feelings of hunger, satiety 

and PC.  It is unclear why the differences were not observed in feelings of fullness.  

Significantly different results were observed in control participants compared to IGT 

and type 2 diabetic participants and this may be linked with the differences 

distinguished in taste status.  Increased taste sensitivity may intimate an increased 

sensitivity to appetite, as observed in the control participants without a simultaneous 

increase in food intake.  The opposite may be true of IGT participants i.e. lack of 

taste sensitivity may indicate a lack of appetite sensitivity.  Additionally the reduced 

hunger and PC and increased satiety observed in IGT and type 2 diabetics may be a 
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consequence of reduced EE compared to control participants.  The energy expended 

was an average of 24kcals/kgBW in control participants compared to 20 kcals/kgBW 

in IGT and type 2 diabetics therefore this may account for the associated differences 

seen in the subjective feelings of hunger.  The process by which these effects may 

transpire may be due to afferent signalling which provides information on nutrient 

intakes and status.  Furthermore, the results show that IGT and type 2 diabetics both 

had lower rates of DIT, RQ and CHO oxidation compared to control participants.  

These results, although not all significant are important and go some way to 

facilitating the understanding of the mechanisms which are influencing energy 

intake.  It appears that a reduced DIT and CHO oxidation, which will cause a 

reduction in RQ (because if more fat is being oxidised then it is sensible to assume 

that less CHO is being oxidised) somehow inhibits the stimulation of the sympathetic 

nervous system, which causes reduced EE.  This however does not explain the 

appetite ratings as the opposite results would have been expected, especially given 

the results of the physiological components but those differences may be related with 

sensitivity to taste and appetite.  The current study may indicate however that 

subjective markers of appetite do not appear as accurate as the physiological 

markers.  This may be due to IGT and type 2 diabetic participants conforming to 

what results they think the researcher wants them to feel rather than what they 

actually feel.   Reporting biases are commonly discussed with regards to the 

underreporting of food intake in the obese, however it has also been noted that there 

is a lack of data concerning the psychometric properties of VAS to assess weight 

related biases in this tool (O’Connor et al. 1996).   
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Low fat oxidation rates have been suggested to be associated with an increased risk 

of weight gain.  This was not demonstrated in the IGT and type 2 diabetics in the 

current study.  In fact when observing oxidation rates as a result of the disease and 

independent of weight these two patient groups had an increased level of fat 

oxidation.  This concurs with a study by Astrup et al (1994) where 24hour 

calorimetry demonstrated that overweight and obese subjects had a higher level of 

oxidative fat energy compared to control subjects.  Astrup et al (1994) then 

concluded that this was due to overweight and obese subjects consuming a diet 

higher in fat content.  However, in the current study the results were two-fold as this 

may have been true of the IGT participants and would then demonstrate why the 

oxidative fuel mix differed to control participants as a result of the disease.  The 

same pattern was not observed in type 2 diabetic participants as they had the lowest 

fat intake, although this difference was not significant.  What is clear is that the result 

of the aberrant changes in fat and CHO oxidation rates affected appetite levels 

differently in the two patient groups (IGT and type 2 Diabetics).  IGT participants 

demonstrated greater satiety as CHO oxidation increased and less satiety as fat 

oxidation increased.  Type 2 diabetics showed decreased satiety as CHO increased 

and increased satiety as fat oxidation increased.  The reason for the differences 

observed between groups is not clear because the test meal was the same for all 

groups.  Given that the overall levels of fat and CHO oxidation postmeal were 

similar, and not significantly different, the explanation for the differences in the 

correlations between appetite parameters and oxidation levels reflect that their 

body’s were reacting differently to the same meal.  The reasons for the differences 

observed may indicate differences in the ratio of CHO to fat oxidised which would 
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undoubtedly be controlled by the body fuel stores.  Therefore, it appears that the 

body fuel stores, at the time of food consumption, continue to influence to the 

greatest degree, the macronutrient which will be oxidised, following a mixed meal.  

The increased fat and reduced CHO oxidation may play a role in the low RQ and EE 

observed postmeal in IGT and type 2 diabetics compared to control participants and 

this may be attributable to the increased glucose response to the meal.  The raised 

blood glucose profile suggests disrupted uptake of glucose via GLUT-4 transport in 

IGT and type 2 diabetics, associated with insulin resistance and elevated FFA levels.  

The low RQ’s also promote preferential fuel storage over oxidation and this may 

potentiate further weight gain, in already obese individuals.  The current study 

demonstrates the complexity of mechanisms involved in the satiety cascade and the 

control of food intake.    

 

Metabolic parameters have been implicated in the control of ingestive behaviour by 

their availability in the circulating pool.  Metabolites associated with the ingestion of 

food (glucose, insulin, and ghrelin) were investigated and indicated a higher  glucose 

response, measured in IGT and type 2 diabetic participants compared to control 

participants.  The control group had significantly lower fasting insulin levels and 

significantly higher postmeal insulin levels which resulted in a significantly higher 

AUC response in control participants compared to IGT participants, who had the 

lowest insulin response.  The glucose response was expected however the postmeal 

insulin response was surprising.  It is difficult to elucidate the reasons for the insulin 

response observed postmeal in the current study however one conceivable theory 

may be related to the acute insulin response.  Insulin resistance is a core component 
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in the development of IGT and type 2 diabetes and a compensatory hypersecretion of 

insulin is the normal response but β-cell dysfunction is also a pre-requisite for the 

development of IGT and type 2 diabetes (Kahn, 2003).  Individuals who progress 

from normal glucose tolerance to IGT and type 2 diabetes are characterised by a 

lower first-phase insulin response (up to 30 minutes postmeal (Laaksonen et al.  

2005)) and an additional decline with time in the acute insulin response, even though 

the second-phase response is initially exaggerated.  In contrast, nonprogressors 

generally show little decline in β-cell function (Osei et al.  2001).  Improvement in 

the acute insulin response in the absence of deleterious changes on insulin sensitivity 

may therefore lower the risk of worsening glucose tolerance and the development of 

diabetes.  Thus, the lower 30 minute insulin levels in IGT and type 2 diabetics may 

suggest a lower acute phase insulin response due to β-cell dysfunction in these 

participants.  The result of the reduced insulin response may have caused a reduction 

in insulin-induced glucose transport and an overall lower CHO oxidation response to 

the meal.  Furthermore, the reduced insulin response may be responsible for the 

increased satiety and reduced hunger observed in the IGT and type 2 diabetic 

participants.  It is important to note that the current study does not give a true 

reflection of the full second phase insulin (which can last up to 180 minutes postmeal 

(Chiu et al.  2004)) response.  Assays were completed up to 60 minutes only and 

insulin levels were still increasing at this time.  It is possible that in observing the full 

insulin response, subjective ratings of appetite may have been more in line with what 

was expected in the IGT and type 2 diabetic groups.   
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CHAPTER 6 – CONCLUSIONS 

 

Many of the results have shown subtle differences in the metabolic handling of food 

in IGT and type 2 diabetics.  The results suggest that the overall response of IGT and 

type 2 diabetic populations deviate from the normal and this may be a result of the 

said diseases.  In the current study, it is clear that the dysregulation of the pathways 

observed, which contribute to the process of food intake (taste, DIT, EE, oxidation 

and blood profiles), leads the body to relay erroneous afferent messages to the brain 

which may lead to further metabolic changes which are to the detriment of 

maintaining energy balance.  A definitive answer cannot be made from the current 

research as to which mechanism(s) of the pathway is (are) most influential as that 

will require further extensive and detailed studies.  However, the influence of taste 

sensitivity in IGT and type 2 diabetics was one of the most significant findings.  

Taster status can be used as a tool in the treatment of IGT and type 2 diabetes as this 

study has shown that it may pre-dispose individuals to an increased sugar, and 

perhaps fat intake.  Having this knowledge makes it easier to tackle dietary issues 

found in IGT and type 2 diabetic nontasters.  Also, the current study highlights that 

subjective ratings do not appear to be as useful a tool as thought because the 

differences seen in biological markers of appetite were not conveyed in the 

subjective ratings.  The differences observed in metabolic status between controls 

and the two patient groups were enough to make inferences about the dysfunctional 

mechanisms which occur in these diseases.  The most prominent aberrations were 

observed in the IGT participants and were found in the pathways of taste, DIT, CHO 

oxidation and blood glucose levels.  These abnormalities between IGT and type 2 
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diabetics, although not conclusive to determine how progression of the diseases 

results in an altered physiological and metabolic response, did give an insight as to 

how individuals view the severity of their disease. The results also highlight that 

deviations in metabolic pathways may potentially be reversed, as observed in type 2 

diabetics, and with good management of IGT and type 2 diabetes the diseases can 

definitely be managed.  This was an interesting aspect of the study and showed that 

the severity of the disease did appear to be associated with the level of management 

(dietary and activity levels) of the disease.  Knowing how the body changes with 

progression of the disease is fundamental when looking at opportunities to reverse 

this advancement and is a key component in the prevention of IGT and type 2 

diabetes.  Furthermore, not all components of energy intake are within the human 

limits of control, such as taste, but understanding how the genetic implication of taste 

elicits changes in food choices can ameliorate the management of habitual diet which 

will go a large way to facilitate in the control of energy balance.  This may be 

particularly important in the control of IGT and type 2 diabetes. 
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APPENDIX 1 

 

Dear ‘patient’, 

 

I am writing to you on behalf of Jill Somerville of Queen Margaret University College who is a 
research nutritionist and is working on her PhD.  Jill has to complete a research project for 
this and is looking to recruit volunteers for a study she is doing looking at food intake in 
people with higher than normal blood sugar levels who do not have diabetes.  This letter 
explains what it is all about.  I would emphasise that there is no commercial interest in the 
study and it has full ethical approval.  The study does not involve you participating in 
anything painful, unpleasant or dangerous. 

 

Any decision that you might make about whether you take part or not will have no impact on 
the treatment you receive from the practice in the future. 

 

We would like to see patients between 20 and 70 years of age who are controlling their 
condition by diet. 

 

Volunteering for the study would involve 2 visits to the Wellcome Trust Clinical Research 
Facility at the Western General Hospital.  The first visit will take no longer than 30 minutes 
and the second visit will take a morning (3-4 hours).  Parking arrangements will be made for 
you at the Research Facility on the days of your visit.  The first visit to the clinic will involve 
completing the following tests: 

• Question/answer session 
• Have height, weight, waist & hip measurements taken 
• Completing a urine sample 
• Completing a diet diary 
• Completing a taste test 
• Have activity monitored. 

  

Research suggests that by losing weight, or preventing further weight gain, you can slow 
down the development of your disease. The advantage to you in taking part is that you will 
benefit from diet advice and will receive feedback on your diet and exercise.  The help given 
will aim to make it easier for you to balance your daily food intake against the energy you 
use, helping you to maintain a healthy lifestyle and good eating habits.  

 

If you would like to help with this study, or if you have any questions, please contact Jill 
Sommerville on the telephone number or email address below, or complete the Patient 
Details Form attached and return it to Jill on the address below and she will contact you: 

 
Jill Sommerville    Tel: 0131 317 3525 
Research Nutritionist   Email: jsommerville@qmuc.ac.uk 
Queen Margaret University College 
Clerwood Terrace 
Edinburgh, EH12 8TS 
 
Thank you for taking the time to read and respond to this. 
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APPENDIX 2 

 

19 January 2005        Version 1 
 
 

Patient Details Form 
 
 
Name:       Date of Birth:    
 
 
Address:      Gender:  M / F 
   
 
       Smoker/Non Smoker 
 
 
 
Tel:       Email: 
 
Mobile: 
 
 
 
When is a good time to contact you? 
 
 
Medication: 
 
 
 
 
 
 
 
Questions: 
 
 
 
 
 
 
 
Send to: 
 
Jill P. Sommerville 
Queen Margaret University College 
Department of Dietetics, Nutrition & Biological Sciences 
Corstorphine Campus 
Clerwood Terrace 
Edinburgh, EH12 8TS 
Tel: 0131 317 3525 
Email: jsommerville@qmuc.ac.uk 
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APPENDIX 3 

7 March 2005                                     
Version 2 
 

Integrating Components of Energy Intake in Impaired Glucose Tolerant and Non-

Insulin Dependant Type 2 Diabetic Populations 

 
 

Patient Information/Consent Form 

 

 

I would like to invite you to take part in a nutritional study that will examine 

responses to feeding. As you may know, overweight and obesity is known to be a 

health risk and we are keen to have a better understanding of the role of the main 

components involved in the feeding process so we may be able to help subjects who 

find it difficult to lose weight.  The study will particularly explore subjects who have 

normal blood glucose levels and subjects with blood glucose higher than normal, 

which results in impaired glucose tolerance (IGT) and type 2 diabetes.  

 

The aim of this research project is to compare subjects who have IGT and type 2 

diabetes with healthy control, non IGT, subjects to determine if there are any 

underlying reasons for increases in weight that come about as a result of a difference 

in the systems operating to control food intake. 
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The study is designed to investigate:      

• The differences in appetite following a meal, which may be predicted by 

certain hormones (chemicals) in the blood between IGT, type 2 diabetics and 

control subjects. 

• The inherited control of taste and its influence on food intake. 

• Information to be used in the treatment and prevention of Impaired Glucose 

Tolerance, type 2 diabetes and obesity. 
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What will be your level of participation in this study? 

 

1. We would like to ask you to attend two sessions that are convenient to you. 

The first session will last approximately 1-2 hours and the second session will 

last approximately 3-4 hours. (Travel expenses will be reimbursed). 

2. We would ask you to undergo a taste test, body weight, height and waist:hip 

ratio measurements and to complete an Eating Inventory. 

3. Between sessions you will be asked to complete a 4 day weighed intake of 

foods eaten, a 4 day physical activity diary and a 24hour urine sample. 

4. We would like to ask you to fast (12 hrs) the night before the second session 

of study and you will be required to consume a test meal. 

5. A needle will be placed in your arm to allow blood to be withdrawn (which 

may cause bruising), just over 5 level tablespoons of blood (80mls), over a 2 

hour period.  This will allow the monitoring of responses to the test meal. 

6. Your energy expenditure will be determined by measuring how much oxygen 

you use and how much carbon dioxide you expel at various time points 

throughout the study.  

• For this procedure we would like to ask you to lie down (without 

falling asleep) with your arms by your sides and would ask you to be 

silent throughout the procedure. 

• This will involve the wearing of a light hood, initially for 30 minutes 

to get a stable reading and then 5 subsequent measures lasting 10 

minutes each.   

7. We would like to ask you some questions about your level of hunger. 

 

(Please can you let me know if you are allergic to latex (or have any other known 
allergies)). 

 

The information obtained from this study may be used to aid weight loss or reduce 

weight gain therefore promoting a positive effect on blood glucose levels. 

 

May I remind you that participation is purely voluntary and you are free to withdraw 

at any time without giving a reason.  If you would like to enter this study you are 
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required to sign a consent form.  Altogether the participation time will be 6 hours, 

not including the food and activity diaries.  If you object to your GP being informed 

of your participation in this study please let me know.  

 

Should you wish any further details please contact – Jill Sommerville, Queen 

Margaret University College, Department of Dietetics, Nutrition and Biological 

Sciences, Corstorphine Campus, Clerwood Terrace, Edinburgh, EH12 8TS, or 

telephone on 0131 317 3525.   

 

The study’s independent adviser is: 

 
Dr Ewan Crawford 
Clinical Director North West Edinburgh LHCC 
Murrayfield Medical Centre 
35 Saughton Crescent 
Edinburgh 
EH12 5SS 
 
Email: ewan.crawford@lothian.scot.nhs.uk 
 
 
Tel: 0131 334 5713 
 
Dr. Crawford is a suitably qualified person who can advise you on the study but is 

not directly involved in the study and therefore will act independently, to give you 

sound advise, regarding the research.  Please do not hesitate to contact him or myself 

if you have any questions or require clarification about any part of the study. 

 

QMUC indemnity will not cover non-negligent (no fault) harm- a side effect or harm 

that comes about due to no-one’s fault. 

 

Thank you for taking the time to read this. 
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 Nutritional Study/Consent Form 
 

 

I                                                                                   have had this study fully 

explained to me and agree to participate. 

 

 

 

Signed:                                                                       Date: 

 

 

 

Witnessed by:                                                             Date:                                                               
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Reimbursement of Expenses Form 

 

 

 

 

I agree that I have received the travelling expenses from my home, which were 

incurred whilst coming to take part in the above study. 

 

Please try to provide receipts. 

 

 

 

Amount of expenses 

 

 

 

Signature of subject                                                                  Date 
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APPENDIX 4 

Integrating Components of Energy Intake in Impaired Glucose Tolerant 

and Non-Insulin Dependent Type 2 Diabetic Populations 

15 February 2005          Version 2 
 
 

COLLECTING A 24 HOUR URINE SAMPLE 
 

• To collect a 24 hour sample of your urine you should get up in the morning at 
your usual time, empty your bladder and discard the urine but take note of 
the time. 

 
• Enter the time that you passed urine on the label of the container.  After this 

time until the same time the following morning put all the urine you pass into 
the container. 

 

For example 
 

• If you get up at 8.00am, empty your bladder as soon as you can after getting 
up.  DO NOT PUT THIS URINE INTO THE CONTAINER -  this is 
overnight urine and is not part of your test BUT 8.00am would be the start 
and end TIME ENTERED ON THE LABEL. 

 
• Collect all the urine passed after 8.00am and put it into the container.  Even if 

the bowels move, try to collect urine separately. 
 

• Get up at the same time the following morning (8.00am) and empty your 
bladder.  COLLECT THIS URINE AND PUT IT INTO THE 
CONTAINER. 

 
That is your twenty four hour collection of urine complete!  Please 
remember to complete the label on the container by entering the start and 
end date and time and your name. 
 
 
Please note 
If you happen to miss putting urine in the container or a mishap occurs, please can 
you empty the container and begin the test again.  It is better to begin the test again 
rather than obtain inaccurate results. 
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APPENDIX 5 
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APPENDIX 6 

 

 

The following verbal instruction were read to aid completion of the suprathreshold 

scaling test and to establish the perceptual context for the ratings of taste intensity: 

 

In making your judgements of the taste, you should rate the stimuli relative to other 

tastes of all kinds that you have experienced.  Thus, ‘strongest imaginable’ refers to 

the most intense sensation of taste that you can ever imagine experiencing. This 

includes such varied sensations as those produced by a fresh lemon, a piece of 

celery, or spicy mustard.  Note that by ‘taste’ we do not mean the pain produced by a 

physical trauma like biting or burning your tongue.  Simply rate the samples relative 

to tastes that you experience in daily life (Green et al.  1996). 
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APPENDIX 7 
 
 

 
 
 
 
 
 
 
 

 
 

            
 

Start Date:________________________ 
 

Finish Date:_______________________ 
 

Diet Sheet Number:_______________ 
 
 
 
 

4 DAY  
DIETARY RECORD  
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Guidelines for Recording Dietary Intake 

 
All the information you need to fill in this record should be in 
this booklet,  
but if you have any difficulties please phone for help. 
 

0131-317-3525 (ask for Jill) or 
jsommerville@qmuc.ac.uk (e-mail)  

  
 

Do’s 
• do fill in this record each time you eat or drink 

anything 
• do take your booklet with you if you will be 

eating or drinking away from the home 
• do record everything you eat and drink for the 

whole day from waking to sleeping  
• do use as many pages as you like 
• do record any vitamin / mineral supplements you 

take 
 
 

Dont’s 
• don’t write from memory at the end of the day - 

you may forget some foods that you have eaten 
• don’t forget to record any between-meal snacks 

like sweets, chocolate, crisps, nuts, ice-cream, 
fruit, cups of coffee etc... 

• don’t include leftovers, write only what you 
actually eat 

• don’t forget to write the date and day on every 
page 
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How to describe the type and amount of foods eaten 

Amounts 
 
You can use general kitchen utensils to record your foods e.g. 
• teaspoon (tsp.)  - quarter, half, one, two etc.. heaped or level 
• dessert spoon (dsp.) - quarter, half, one, two etc.. heaped or level 
• tablespoon (tblsp.) - quarter, half, one, two etc.. heaped or level 
• ladel - quarter, half, one, two etc.. heaped or level 
• teacup 
• mug 
• wine glass 
• tumbler (half pint/pint) 
• soup bowl - small/medium/large 
• dessert bowl – small/medium/large 
• cereal bowl - small/medium/large 
• dinner plate - small/medium/large 
• side plate – small/medium/large 
 

Detail 
 
Try to give as much detail as possible e.g.: 
• Bread - was it white, brown or wholemeal?  Was it thick, 

medium or  
     thin sliced?, large or small loaf?, pre-sliced or did you cut it 
yourself? 
• Milk - was it full fat, semi-skimmed or skimmed? 
• Meat - what type of meat?, what cut of meat?, was it fatty or 

lean?,  
     roasted, fried or grilled? 
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Brand Names 
 

Write down the brand names of makers of foods where possible 
e.g.: 
• Robinson’s unsweetened orange juice 
• Heinz baked beans in tomato sauce 
• Safeway Cheese & Onion Crisps 
• Flora Sunflower Margarine 
 

Cooking Methods 
 

Give details of the cooking methods used e.g.: 
• Potatoes - were they boiled, mashed or baked or chipped? 
• Fish - was it grilled, poached, steamed or fried? 
 

Commercial Foods 
 

These include soups, meat and fish products, ready prepared 
meals,  
puddings, sweets etc..  Please write down: 
• The volume or weight written on the product or 
• the number of pieces/spoonfuls/slices/items 
 

Meat, Fish and Poultry 
 
When describing meat or fish write down: 
• the type of animal or fish 
• the cut of the meat and whether lean or fatty 
• the number of slices/portions/pieces/rashers 
• the part of the animal e.g. leg/drumstick/breast 
• the cooking method 
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Fruit & Vegetables 
 
When describing fruit and vegetables write down: 
• Whether raw or cooked 
• Whether peeled or eaten with the skin on 
• Whether the vegetables were old, new, frozen or canned 
• The number of spoonfuls/pieces/segments of whole fruits 

eaten 
 

Pasta & Rice 
 
Pasta includes spaghetti, lasagne, macaroni, noodles etc..   
Rice may be sweet or savoury, long or short grain, brown or 
white etc. 
Write down: 
• The type of pasta or rice 
• The number of spoonfuls/bowls (small, medium or large 

portion) when cooked 
 

Soups & Stews 
 
Write down the number of ladels/spoonfuls/cups 
 

Sauces 
 
Please don’t forget any sauces used e.g.:   
Tomato ketchup   Brown sauce 
Cheese or White sauces Salad Dressing 
Mustard    Gravy 
Salt, Pepper,    Spices, Herbs 
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Breads, Rolls & Crackers 
Write down: 
• The type of bread and the thickness of the slice 
• The number of slices/rolls/crackers 
• Is anything spread on the bread/roll/cracker? Is it thickly or 

thinly spread? 
 

Breakfast Cereals 
These include Cornflakes or other ‘box’ cereals, porridge, 
muesli etc.   
Write down: 
• The type or brand name of the cereal 
• The number of spoonfuls/bowls (small, medium or large 

portion) 
• Don’t forget to note the type and amount of any milk used 
 

Milk & Milk Products 
These include milk, cream, yoghurts or sauces.   
Write down: 
• Milk or cream put into tea and coffee etc. (e.g. small dash or 

milky coffee) 
• The amount drunk in spoonfuls, glasses, cups or fractions of a 

pint 
 

Cheeses 
Write down: 
• The type of cheese (e.g. cheddar, edam, brie etc.) 
• The size of  a piece, e.g. compared to a matchbox 
• The strength of the cheese (e.g. mature, medium, mild) 
 

Eggs 
 Write down the size, number and cooking method 
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Fats, Spreads, Jams, Sauces, Pickles 
Write down the number of teaspoons or portion packs used 
 

Confectionery, Savoury Snacks, Biscuits, Cakes 
Write down: 
• weights from the packet 
• small/medium/thick slice of cake or fraction of whole cake 
• number of biscuits/sweets 

Sugar 
Write down the type of sugar and the number of teaspoons, 
level or heaped. 

Drinks 
These include soft drinks e.g. tea, coffee, squash, juice, cola, etc.. 
as well 
as alcoholic drinks (see below).  Write down: 
• The type of drink 
• The number of cups, glasses, pints, cans, bottles etc.. 
• Diet or non diet, sugarfree 
 

Alcohol 
Write down: 
• The type of alcohol, number of measures and any mixers 

added  
     e.g. dash of diet coke  
 

Made-up Dishes 
There is space at the end of this booklet for you to write the 
recipes  
of homemade dishes.  Also, please write down or cut out and 
keep 
the Nutritional Analysis from the labels of ready prepared foods. 
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Recipes and Labels 
 
 

 
 

Please write below any recipes you have used while filling in this 
record. 

 
 
 

Please cut out the Nutritional Information from the labels 
of any commercial made-up foods you have eaten, not forgetting 

the name 
and brand of the item. 

 
Please attach recipes and labels to this diary and hand in with 

the 
completed record. 

 
Thank you for all your help and co-operation. 

 
 

Please could you return this record to myself at: 
 

JILL SOMMERVILLE 
Research Nutritionist 

Queen Margaret University College 
Clerwood Terrace 

Edinburgh 
EH12 8TS 
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APPENDIX 8 
 
 

 
Queen Margaret University College 

 
Energy Expenditure Assessment 

 
 
 
 
 
 
 

 
 

 
Name …………………………………………………… 
 
 
Start Date ……………………………………………… 
 
 
Finish Date …………………………………………….. 
 
 
 
 
 
 
 
 

4-Day Activity Diary 
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Activity Codes 
 
SL Sleeping   W Walking 
L Lying, awake   HW House work 
S Sitting still   DR Driving 
SA Sitting activities  J Jogging 
ST Standing   AE Aerobics 
STA Standing activities  S Squash 
MW Manual work    G Gardening 
PN Personal needs (i.e. washing, getting dressed, etc) 
 
 
If you are frequently involved in some activity which is not coded 
for, please make your own code (i.e. Martial Arts = MA). 
 
 
 
 
 
 
 
 
 
 

Guidelines for Recording Physical Activity 
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All the information you need to fill in this record should be in this 
booklet, but if you have any difficulties please phone (e-mail) for 
help on: 
 

0131-317-3525 (ask for Jill) or 
jsommerville@qmuc.ac.uk (e-mail)  

 
1. Using the codes on the previous page, record your activities in 

the daily sheets provided. 
 

2. Your activities will start from when you awake in the morning 
and will finish when you go to bed at night.  It is important 
therefore to carry the activity record sheets with you at all 
times. 

 
3. Record your activity each time you change activity, to the 

nearest minute using the codes on page 2. 
 
For example- (see overleaf): 
You get up to wash and dress at 8.02am,walk to work at 8.43am, 

start work at 9.00am (e.g. standing in a shop), sit for lunch at 

1.00pm, and re-start work at 13.30pm, walk home from work at 

17.15pm  and sit down to watch television at 17.35pm.  

In an hour you get up to make a meal.  When your meal is ready 
and you sit down to eat at 19.10 etc.  
 

4. Please record your activities in as much detail as possible. 
 
5. Please use centre pages of booklet for any notes 

Guidelines for Recording Physical Activity 
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APPENDIX 9 
 


