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Abstract

Functionally graded materials (FGM) are composite materials with microstructure

gradation optimized for the functioning of engineering components. For the case of

fibrous composites, the fibre density is varied spatially, leading to variable material

properties tailored to specific optimization requirements. There is an increasing demand

for the use of such intelligent materials in space and aircraft industries. The current

preferred methods to study engineering components made of FGM are mainly

modelling particularly those that are finite element (FE) based as experimental methods

have not yet sufficiently matured. Hence this thesis reports the development of a new

Mindlin-type element and new Reissner-type element for the FE modelling of

functionally graded composite (FGC) structures subjected to various loadings such as

tensile loading, in-plane bending and out-of-plane bending, buckling and free vibration.

The Mindlin-type element formulation is based on averaging of transverse shear

distribution over plate thickness using Lagrangian interpolation. Two types of Mindlin-

type element were developed in this report. The properties of the first Mindlin-type

element (i.e. Average Mindlin-type element) are computed by using an average fibre

distribution technique which averages the macro-mechanical properties over each

element. The properties of the second Mindlin-type element (i.e. Smooth Mindlin-type

element) are computed by using a smooth fibre distribution technique, which directly

uses the macro-mechanical properties at Gaussian quadrature points of each element.

The Reissner-type element formulation is based on parabolic transverse shear

distribution over plate thickness using Lagrangian and Hermitian interpolation. Two

types of Reissner-type element were developed in this report, which include the

Average and Smooth Reissner-type elements.

There were two types of non-linearity considered in the modelling of the composite

structures, which include finite strain and material degradation. The composite

structures considered in this paper are functionally graded in a single direction only, but

the FE code developed is capable of analysing composite structures with multi-

directional functional gradation. This study was able to show that the structural

integrity enhancement and strength maximisation of composite structures are achievable

through functional gradation of material properties over the composite structures.
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1 Introduction

Composite materials have fully established themselves as workable engineering

materials and are now relatively commonplace around the world, particularly for

structural purposes. Early military applications of polymer matrix composites during

World War II led to large-scale commercial exploitation, especially in the marine

industry, during the late 1940s and early 1950s. Today, the aircraft, automobile, leisure,

electronic and medical industries are quite dependent on fibre-reinforced plastics, and

these composites, namely particulate or mineral filled plastics, are also widely used in

industry because of the associated cost reduction.

In the continuing quest for improved performance, which may be specified by various

criteria including less weight, more strength and lower cost, traditional materials

frequently reach the limit of their usefulness. Hence, material scientists, engineers and

scientists are always striving to produce either improved traditional composite materials

or new materials such as functionally graded materials (FGMs).

FGMs are composite materials with microstructure gradation optimized for the

functioning of the engineering component. For the case of fibrous composites, the fibre

density is varied spatially, leading to variable material properties tailored to specific

optimization requirements. There is an increasing demand for the use of such intelligent

materials in space and aircraft industries.

The objective of this research is to study the structural integrity of engineering

components made of FGMs. This research objective can be broken down into sub-

topics which include micromechanics analysis, finite element static and dynamic

analysis, buckling analysis and progressive damage analysis.

The technique employed in this thesis for the determination of the structural integrity of

engineering components is to carry out a computational damage assessment of the

component. In order to determine failure, the maximum stress in the component needs

to be compared with the maximum permissible stress obtained from a selected failure

criterion. Hence maximum stress was determined by employing a numerical method

called Finite Element Method. Also in order to analyse the functionally graded

composite, the micromechanical equations were employed.
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This thesis does not only determine the structural integrity of engineering components

but it also determines the optimum design of engineering components. The FE code

developed in this thesis carries out the structural integrity of engineering components

and the analysis of the results obtained from running the code for different fibre

distributions enables the code user to determine the optimum fibre distribution. The

flow chart that explains the FE code structure with the implementation of the

optimisation technique is as shown in Figure 1-1.
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Figure 1-1: FE analysis and optimisation flowchart
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1.1 Background

Composite materials are often used in different engineering fields, especially in the

aerospace field. The main advantage of composite materials is the high stiffness-to-

weight and strength-to-weight ratios. The limitations of composite materials are the

following: the weakness of interfaces between layers may lead to delamination, extreme

thermal loads may lead to debonding between matrix and fibre due to mismatch of

mechanical properties, and residual stresses may be present due to difference in

coefficients of thermal expansion of the fibre and the matrix. To overcome the

limitations, functionally graded materials (FGMs) have recently been proposed.

The FGMs are made in such a way that the volume fractions of two or more materials

are varied continuously along a certain dimension. The FGMs can be made as required

for application, for example, thermal barrier plate structures can be made from a

mixture of ceramic and metal for high temperature application. The advantage of the

FGM plate is that its material properties vary continuously from one surface to the

other, thus it avoids the interface problem that exists in homogeneous composites.

The FGM concept was originated in Japan in 1984 during the space-plane project, in the

form of a proposed thermal barrier material capable of withstanding a surface

temperature of 2000 K and a temperature gradient of 1000 K across a cross section <10

mm. Since 1984, FGM thin films have been comprehensively researched, and are

almost a commercial reality. The FGMs were first developed by Japanese scientists in

the 1980s. Since that time, the FGMs have been used in several branches and are still

being broadened. The main research works on functionally graded materials cover

topics such as thermo-elasticity, fracture mechanics, buckling vibration and control.

The main applications of functionally graded materials include fibre optics, space

rockets, engines, armour tanks etc.

1.2 Objectives

This research aims at developing the theory and software for finite element stress and

vibration analysis of engineering components made of functionally graded fibrous

layered composite materials. The basic aspects of the research are as follows:

 A full study of the micromechanics of fibrous composites, so as to be able to
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predict accurately all required material properties from those of the constituents.

 A full study of failure criteria and damage mechanisms as appropriate to FGM.

 Derivation of special finite elements capable of efficiently dealing with FGM,

including centrifugal loading and different non-linear aspects.

 The development of computer software based on the derived theories, for stress

and vibration analysis of engineering components made of functionally graded

fibrous layered composite materials, and capable of assessing the structural

integrity of the components.

 Applications on optimum design of engineering components such as rotating

turbine discs, and any other useful industrial application

1.3 FGM Applications

FGMs offer great promise in applications where the operating conditions are severe.

For example, wear-resistant linings for handling large heavy abrasive ore particles,

rocket heat shields, heat exchanger tubes, thermoelectric generators, heat-engine

components, plasma facings for fusion reactors, and electrically insulating

metal/ceramic joints. They are also ideal for minimising thermomechanical mismatch

in metal-ceramic bonding.

Koch and Gunter (2003) carried out a research on a new generation of cutting tools

based on functionally graded sialons for solving the machining problems of the 21st

century. It was proposed that new ceramic tool materials on the basis of Silicon

Nitride/Oxide ("Sialons") with a tough core would be developed, to allow a

significantly higher performance in machining, in particular for "heavy-to-machine-

parts". It was also proposed that the output would enable the European machining

industry to increase and speed up the production combined with saving of resources and

should benefit for health and environment.

The Swedish Defence Research Agency (2002) presented an article in their annual

report on armour for future combat vehicle. In order to meet the conflicting demands of

lower vehicle weight and much improved protection, future generations of fighting

vehicles will need new types of armour. A promising passive armour concept, studied
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at Swedish Defence Research Agency, is designed to cause interface defeat of the

projectile. Interface defeat of tungsten kinetic energy long-rod projectiles has been

demonstrated at velocities close to 2000m/s using today’s ceramics and armour

technologies. Spark Plasma Sintering is an interesting technology to produce FGMs.

FGM have the potential to be very efficient armour materials. Swedish Defence

Research Agency has been conducting initial experiments to produce an FGM with a

hard outer surface of TiB2 and a strong, ductile inner surface of titanium. There are still

some difficulties to overcome but the results so far are encouraging. Swedish Defence

Research Agency also conducts research into active protection systems against KE-

projectiles and electromagnetic armour.

Siegmund (2005) describes a program to develop low-cost, functionally graded (FG)

carbon-carbon composites for use in a wide range of new applications including

automotive structural and heat transfer components, orthopaedic implants, friction

materials for the specialty automotive, truck and aerospace industries. C-C composites

have been the material of choice for high-end high temperature applications for

commercial and military aircraft. However, their high cost has limited their application

to other significant markets. The research team (Purdue University, University of Notre

Dame, Indiana University, Honeywell Aircraft Landing Systems, and National

Composite Centre) proposes to change this by introducing a new class of C-C

composites with significantly lower cost. The program merges the related expertise of

the team members and proposes the development of new technologies to make FG-C-C

composites with $10/lb a reality. The program uniquely integrates a robotic

manufacturing process, a novel process chemistry approach, materials design and

structural analysis with an industrial-scale operation.

Bey (2002) investigated functionally graded metallic foams as an alternative thermal

protection system for space transportation vehicles. An integrated thermal-structural

concept in which the load bearing structure has insulating capability and has potential

for significant weight savings over current thermal protection systems (TPS). Current

TPS do not have a structural function so they are parasitic from a structural viewpoint.

Current TPS include coated ceramic tiles or blankets of fibrous insulation affixed to the

vehicle surface and metallic panels in which fibrous insulation is encapsulated in foil

and placed between an outer metal surface and the vehicle structure. A multifunctional
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TPS concept is based on metallic panels that are continuously graded in composition

and porosity.

U.S. DoD (2002) researched on F135 engine and PW J52 engine and they applied

functional graded thermal barrier coatings on turbine components, which will increase

component life under severe environment and reduce the down-time for the repair of

components and enhance readiness of the fleet. These were run in two engine tests for

qualification: (i) F402 engine (AV-8B) test as test engine for insertion in F135 engine

(JSF) and (ii) PW J52 (EA-6B) engine test.

1.4 Thesis Layout

Chapter 1 describes the advent of FGMs, and presents the research objectives. It also

reviews the application of FGMs which helps to justify the research objectives.

Chapter 2 reviews publications on composites and FGMs. Then it reviews publications

on the application of FEM to composite plates and shells which also reflects the

developments of non-linear Mindlin and Reissner-type elements. It also reviews

publications on the application of FEM on FGMs.

Chapter 3 describes how to compute the elastic and strength properties of FGMs using

micromechanics techniques. It also describes the fibre distribution techniques

employed in this work, such as manual fibre distribution, average fibre distribution and

smooth fibre distribution technique. Finally the chapter describes the failure criteria and

the damage mechanism used in the progressive damage modelling of FGMs.

Chapter 4 explains the Mindlin-type plate bending element theory and derives the

equation used in the finite element programming. The finite element formulation of

displacement equation, strain equation, stress equation, strain energy variation and

generalised equation of equilibrium were summarised in the chapter. The generalised

equation of equilibrium is then linearised in-order to obtain the Mindin-type element

equation. Material non-linearity and geometrical non-linearity have been considered.

Chapter 5 explains the Reissner-type plate bending element theory and derives the

equation used in the finite element programming. The non-linear Reissner-type element

theory defines the displacement equation, strain equation, stress equation, strain energy
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variation and generalised equation of equilibrium. The generalised equation of

equilibrium is then linearised in-order to obtain the Reissner-type element equation.

Chapter 6 describes how the micromechanical equations and the FE equations derived

in previous chapters were used in developing the FE codes which were used in the

analysis of functionally graded composites. The use of flowcharts was employed to

give an in-depth explanation of the FE codes.

Chapter 7 explains the validation of the FE codes. The validation exercise was carried

out in three stages. The first stage involves the validation of the infinitesimal strain part

of the Average Mindlin programs against analytical solutions using traditional

composite plate cases. The second stage involves the validation of the infinitesimal

strain part of the Average, Smooth and Ordinary Mindlin programs against Abaqus

results using the functionally graded composite (FGC) cases. The third stage involves

the validation of infinitesimal and finite strain part of the Average and Smooth

programs against the Ordinary programs using the FGC cases.

Chapter 8 describes the optimisation technique and presents the optimum design. This

optimisation technique involves changing the fibre distribution parameters and running

the FE codes for the given fibre distribution, checking to see if all constraints have been

satisfied. The constraints that have been considered include stress constraints, buckling

load constraints and natural frequency constraints.

Chapter 9 summarises the conclusion of the research and gave some recommendation of

future works.

Appendix A presents the constitutive equations for laminates in order to explain all

equations used in this thesis.

Appendix B explains why certain integrated D matrices become zero in the analysis of

symmetric composite laminates of the Reissner-type elements.
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2 Literature Review

In order to demonstrate a significant contribution in the FGM technology, an awareness

of the history and current development in FGM technology was required. Hence, an

extensive literature review was undertaken. The scope of this literature review focussed

on the various components that constitute this research work. Hence this chapter

reviews publications on composites and FGMs. It reviews publications on the FE

analysis of composite plates and shells which also reflect the developments of non-

linear Mindlin and Reissner-type elements. It also reviews publications on the FE

analysis of FGMs.

2.1 Composites and FGMs

This section reviews the publications on the developments in research of composites

and FGMs. It is well recognized that shear deformation can be more significant in

laminated, anisotropic plates than in isotropic, homogeneous plates. Shear deformation

theories based on Mindlin’s assumptions have been developed for laminated,

anisotropic plates as described by Yang et al (1966) and Whitney and Pagano (1970). A

theory has also been developed by Whitney (1990) for the bending of laminated,

anisotropic plates which includes the effects of transverse shear deformation in a

manner similar to the theory of Reissner (1950) for homogeneous, isotropic plates. This

theory has been modified by Whitney and Rose (1991) to include the effect of

transverse normal stress without increasing the number of bending equations above

those generated in classical shear deformation theory. Whitney (1992) investigated the

effect of transverse shear and normal stresses on the bending of symmetrically

laminated, anisotropic plates subjected to cylindrical bending under uniform lateral

load.

There were no publications found on progressive damage analysis of functionally

graded composite. Hence the literature review in this section only focuses on

progressive damage analysis of traditional composite. A comprehensive literature

review on progressive damage analysis of composites was undertaken by Zahari (2005).

Padhi et al (1998) presented a method, which study the non-linear behaviour, first ply

failure and ultimate collapse of laminated composite plates with clamped edges,
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subjected to transverse pressure. Several failure criteria, including Hashin and Tsai-Wu,

are used to predict the failure mechanisms. The effect of aspect ratio on the strength

and stiffness of laminated composite plates is studied. Non-linear strain-displacement

relations that contain large strain and large rotation are used in the analysis. The general

purpose finite element program Abaqus is used for analysis. The predictions of the

model correlate well with experimental data for different aspect ratios.

Prusty et al (2001) developed a first ply failure analysis method for predicting the

failure load on the laminated composite stiffened panels under various loading

conditions. Various failure theories such as maximum stress, maximum strain,

Hoffman, Tsai-Wu and Yeh-Stratton theories have been implemented for prediction of

first ply failure loads using iterative procedure. A few laminated composite bare

stiffened panels with various loading cases are solved for first-ply failure analysis. The

results of un-stiffened and stiffened plates with various loading cases are compared with

the published ones. New results for different stiffened shell panels having various

radius-to-span ratios are presented and convergence study is made for the validation.

A key publication on the developments in research of FGMs was published by Koizumi

(1997) which reviews FGM activities in Japan. Japanese scientists STA (1987)

proposed the unique FGM concept to prepare new composite by using heat-resistant

ceramics on the high temperature side and tough metals with high thermal conductivity

on the low-temperature side, with a gradual compositional variation from ceramic to

metal. In order to extend the applications of FGMs to different fields of industry such

as optics and/or electronic materials, in 1990 the needs of FGM were surveyed.

Through this survey, about 200 possibilities for utilising the FGM concept to improve

conventional materials and to create new materials were proposed and these proposals

were published by the Society of Non-Traditional Technology (1991). Japanese

scientists STA (1993) focussed on the possibility of improving the efficiency of energy

conversion materials by FGM technology. The results revealed that FG technology

would remarkably increase efficiency for photoelectric, thermoelectric, thermionic and

nuclear energy conversions.
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2.2 FE Analysis of Composite Plates and Shells

This section discusses the development of the FE method and reviews the publications

on FE analysis of composite plates and shells. The concept of the FE method stems

from work done in the 1940s, in which Courant (1943), Prager and Synge (1947) made

variational assumptions in solving differential equations. Many of the early attempts for

the solution of continuum elasticity problems were based on representing the continuum

by an equivalent assemblage of bars and beams as described by Hrennikoff (1941) and

McHenry (1943).

The next step in the utilisation of FEM was taken by Boeing in the 1950s when Boeing,

followed by others, used triangular stress elements to model airplane wings. Levy

(1953) proposed an analysis for aircraft wings using a collection of elementary beam

and torque boxes. The first engineering applications of the FE method were described

by Argyris (1954). Turner et al (1956) refined Levy’s work by reducing the torque

boxes to assemblies of triangular and rectangular slices. Yet it was not until the 1960

that Clough (1960) made the term “finite element” popular. Melosh (1963) established

the basic conditions for accurate finite element derivations. Zienkiewicz and Cheung

(1967) wrote the first book entirely devoted to the FE method in 1967. Engineers have

managed to develop finite elements for the analysis of many linear and nonlinear

problems as described by Zienkiewicz (1977).

The developments of non-linear Mindlin and Reissner-type elements will now be

discussed. A good literature review on plate theory was published by Apetre and

Sankar (2008). Reissner (1945) was the first to propose a plate theory that included the

effect of shear deformation and that assumed linear longitudinal displacements and

constant transverse displacements. Mindlin (1951) introduced the correction factor into

the shear stress to account for the fact that the model predicts a uniform shear stress

through the thickness of the plate. Yang et al (1966) extended Mindlin’s theory for

homogeneous plates to laminates consisting of arbitrary number of bonded layers.

Whitney and Pagano (1970) developed a Mindlin-type theory for anisotropic laminated

plates consisting of an arbitrary number of bonded anisotropic layers that includes shear

deformation and rotary inertia. Displacement field is assumed to be linear in thickness

coordinate. Since 1970, the plate theory was improved by including higher-order terms
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in displacement assumptions. Essenburg (1975) assumed second-order transverse

displacements and linear longitudinal displacements. Also Reissner (1975) included

third-order terms in the in-plane displacements’ z-expansion. Lo et al (1977) included

third-order in-plane and second-order out-of-plane terms. Reddy (1984) developed a

third order shear deformation theory (TSDT) for composite laminates based on assumed

displacement fields (third-order in-plane, and constant out-of-plane displacements).

Finite elements based upon Kirchoff’s theory were the first plate-bending elements to

be published. The first element to employ Mindlin’s theory, was introduced by Hinton

et al (1975). It was recognized that the finite element solutions which employed

Mindlin elements become less accurate than those based upon Kirchoff elements, when

the plate thickness was reduced. This reduction in accuracy associated with Mindlin

elements has been referred to as the “locking” phenomenon. In 1978, many researchers

such as Pugh (1978) and Hughes et al (1978a) investigated this phenomenon, and the

reduced and selective integration schemes have been proposed as a means to avoid

locking. Also a nine-node quadrilateral element known as the “heterosis” element

which exhibits improved characteristics in comparison with both the eight-node

serendipity and the nine-node Lagrangian elements was derived by Hughes et al

(1978b). An analysis of a sufficient and necessary criterion of selective reduced

integration which must be satisfied in order that locking is avoided; was introduced by

Tsach (1981). Shape functions are considered the most important part in the derivation

of a new finite element. In 1986, El-Zafrany and Cookson (1986a, b) introduced a

general theory for the derivation of shape functions for triangular and quadrilateral

family of finite elements. Attia (1996) introduced a new conforming and non-

conforming finite elements for the static and dynamic analysis of rotating composite

layered plates and shells. The elements consider parabolic distribution of transverse

shear stresses and were based on Lagrangian and Hermitian shape functions. In 1999, a

family of high-order facetted shell elements of linear and non-linear stress and vibration

analysis of composite layered plates and shell structures was introduced by Attia and El-

Zafrany (1999). Engineering slope angles were employed in element equations and

transverse stresses were expanded over the thickness.

Tang et al (1983, 1984) introduced the quasi-conforming element technique. However

all of the examples were limited to linear formulations. The quasi-conforming non-
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linear formulation is based on the updated Lagrangian method with the assumption of

small strains and large displacements. Guan et al (1992, 1995) presented a nine-node

quasi-conforming degenerated shell element for linear and non-linear analysis. Many

articles have been published by Shi and Voyiadjis (1991 - 1993) using the quasi-

conforming formulation. Park et al (2006) studied the linear static and dynamic

response of laminated composite plates and shells using a quasi-conforming shell

element. The quasi-conforming shell element has been fully extended for the large

displacement of elasto-plastic analysis by Kim and Lomboy (2006).

2.3 FE Analysis of FGMs

Pervaiz (1999) investigated the structural integrity of a functionally graded disk. Two

cases were considered which includes the disk under a bending load and the disk under

a centrifugal loading. Generally it was observed that stress distribution improvement

was achieved with different fibre distribution, hence suggesting that it is possible to find

a fibre distribution capable of minimising stress in the component and this formulated

the optimisation objective in this report. Also, Martinez (2001) developed the work of

Pervaiz (1999) further.

Reddy (2000) presented a theoretical formulation and finite element models based on

third order shear deformation theory for the analysis of through-thickness functionally

graded plates. The Navier solution for simply supported plates based on the linear

third-order theory, also the non-linear static and dynamic finite element results based on

the first-order theory were presented by Reddy (2000) to show effects of volume

fractions and modulus ratio of the constituents on deflections and transverse shear

stresses.

Javaheri and Eslami (2002) derived equilibrium and stability equations for rectangular

simply supported functionally graded plates. The derivation was based on the classical

plate theory and with the assumption of power law composition for the material. And

the buckling analysis of functionally graded plates under in-plane compression was

investigated.

Bobaru and Jian (2004) undertook a study of optimisation of FGMs with temperature

dependent properties using a mesh-free solution. In this study, mass is minimised,

whilst a constraint is defined in terms of violating the critical tensile and compressive
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stresses. This study started with a configuration that has thin coatings of pure metal and

pure ceramic at the exterior with a thick FGM layer in-between. Nine designs were

used. They converge to a profile that has a thin FGM layer. The metal (ZrO2) is lighter

than the ceramic (Ti-6Al-4V) and the resulting FGM is metal rich. This work highlights

the significance of the objective of this report.

Silvia and Paulino (2004) developed a design solution for FGM structures by using the

concept of continuum topology optimisation. It was concluded that novel structural

types are obtained by exploring the functionally graded materials idea. Hence, it was

recommended that the design of composite unit cells made of FGMs be considered

using continuum topology optimisation concepts. This recommendation justifies the

optimisation objective of this report.

Chen and Liew (2004) investigated the buckling behaviour of FGM rectangular plates

subjected to non-linearly distributed in-plane edge loads. They stated that a mesh-free

method which approximates displacements based on scattered nodes (i.e. radial basis

function and polynomial basis) was employed, in-order to avoid complicated numerical

procedures that arises in the FEM from the use of elements. This FEM complication

was dealt with in this thesis.

Kim et al (2008) extended the non-linear quasi-conforming formulation to the case of

FGM structures and the associated FE model that accounts for the mechanical

behaviour. The quasi-conforming non-linear formulation is based on the updated

Lagrangian method with the assumption of small strains and large displacements. The

geometrically non-linear formulation is derived using the full definition of the Green

strain tensor that includes bending and transverse shear stresses in the geometric

stiffness. The explicit definition of stiffness matrix was used hence no Gauss

integration was employed. Thus the computational time is significantly reduced in the

incremental non-linear analysis. The material properties of the FGM plates and shells

are assumed to change continuously throughout the thickness of the plate and shell,

according to the volume fraction of the constituent materials based on sigmoid

functions.
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2.4 Summary

This section summarizes the lessons learnt from the literature review carried out in this

report. The lessons learnt include:

 Weight minimization without strength reduction is achievable in FGM components.

 Strength maximization without increase in weight is achievable in FGM

components.

 FGM components with complex geometry require FE method.

 FE method for FGMs requires complicated mathematical procedures.

 Very little research works have been carried out on non-linear FEA and progressive

damage analysis of FGM components.

 FGM technology can be beneficial in vast application such as aerospace, mechanical

application, medical application etc.

In comparison to existing publications, this thesis has been able to give unique

contributions to the subject matter. These contributions include Mindlin-type element

formulation based on averaging of transverse shear distribution over plate thickness

using Lagrangian interpolation, Reissner-type element formulation based on parabolic

transverse shear distribution over plate thickness using Lagrangian and Hermitian

interpolation, finite strain modelling based on Green’s strain-displacement equation and

smooth fibre distribution technique based on numerical computation of macro-

mechanical properties at Gaussian quadrature points.
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3 Micromechanics and Failure Criteria of Fibrous

Composites

In the traditional method, the equations that describe the stress-strain behaviour of a

lamina and the load-deformation behaviour of a laminate are based on the elastic

properties of the lamina, and as such, ignore the microscopic nature of the material. In

other words, no direct account of the fact that fibre reinforced materials is being

considered.

Since the starting point of a significant proportion of composites’ manufacture is the

combination of fibres and matrix, it would be appropriate to predict the behaviour of the

composite (laminate) from the knowledge of the properties of the constituents alone. It

is important to note that micromechanics models have proven to be successful in

predicting the longitudinal modulus in tension and compression, and reasonably

successful in predicting the corresponding strengths. Whilst models exist for predicting

transverse and shear stiffness, they do not compare well with experimental data. There

are no satisfactory methods for predicting transverse and shear strengths. A good

literature which gives a detailed explanation of micromechanics can be found in the

book written by Matthews and Rawlings (1999)

The deficiencies in micromechanics models mean that the prediction of laminate

performance from only the knowledge of fibre and matrix properties is not possible at

the moment. However, successful use of macro-mechanics to predict laminate

behaviour is possible; provided the values of stiffness and strength obtained from

experiments on representative unidirectional samples are used as input values.

This chapter defines the elastic and strength properties of FGMs. It describes the

micromechanics algorithm and the fibre distribution techniques such as manual fibre

distribution, average fibre distribution and smooth fibre distribution technique

developed in this work. The basic failure criteria of composites are also summarised.
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3.1 Elastic and Mass Properties of FGMs

In order to compute the elastic and mass properties of FGMs, micromechanical analysis

is required. The micromechanical properties of unidirectional composite such as

longitudinal stiffness, transverse stiffness, shear modulus, Poisson’s ratio and density

are presented. The following derivations in this chapter assume that composites

considered are perfect mixtures of fibres and matrix (i.e. negligible air space in

composite). More information on Micromechanics can be found in the book written by

Matthews and Rawlings (1999); Datoo (1991); Argarwal et. al. (2006) and Kaw (1997).

Longitudinal stiffness

Consider a unidirectional composite loaded by a force Fc parallel to the fibres as shown

in the Figure 3-1. In order to establish equilibrium, it can be shown that:

mfc FFF  (3.1)

where subscript c, f and m stands for composite, fibre and matrix respectively.

Figure 3-1: Unidirectional composite loaded in the fibre direction

Equation 3.1 can be re-written as:

mmffcc AAA   (3.2)

where Ac, Af and Am represents the cross-sectional area of the composite, fibre and

matrix respectively.

Using the definition of fibre volume fraction (Vf) and matrix volume fraction (Vm) given

below
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Equation 3.2 becomes:
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2
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mmffc VV   (3.4)

Equation 3.4 can be rewritten as:

mmmfffcc VEVEE   (3.5)

where E is the Young’s modulus. Also c, f and m represent the transverse strain of

the composite, fibre and matrix respectively.

In this case, perfect bonding is assumed (i.e. c=f=m which implies there is no slippage

at the fibre/matrix interface), also Ec=E11 it can be shown that Equation 3.5 simplifies

to:

mmff VEVEE 11 (3.6)

Transverse stiffness

Consider a unidirectional composite loaded by a stress c perpendicular to the fibre as

shown in the Figure 3-2. The transverse extension of the composite (c) is the sum of

the matrix extension (m) and fibre extension (f):

mfc   (3.7)

Figure 3-2: Unidirectional composite loaded perpendicular to the fibre direction

Equation 3.7 can be re-written as:

mmffcc ttt   (3.8)

where tc, tf and tm represents the thickness of the composite, fibre and matrix

respectively. Also c, f and m represent the transverse strain of the composite, fibre

and matrix respectively.
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Using the definition of fibre volume fraction (Vf) and matrix volume fraction (Vm)

given below

c

m
m

c

f

F
t

t
V

t

t
V  ; (3.9)

Equation 3.8 becomes:

mmffc VV   (3.10)

Equation 3.10 can be rewritten as:
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
 (3.11)

where E is the Young’s modulus.

In this case, the transverse stress on the fibres and the matrix are equal i.e. c=f=m,

also Ec=E22 hence Equation 3.11 simplifies to:
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(3.12)

Shear modulus

Consider a unidirectional composite loaded by a shear stress c as shown in the Figure

3-3. The shear deformation of the composite (c) is the sum of the matrix extension

(m) and fibre extension (f):

mfc  (3.13)

Figure 3-3: Shear deformation model

Equation 3.13 can be re-written as:

mmffcc ttt   (3.14)
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where lc, lf and lm represents the length of the composite, fibre and matrix respectively.

Also c, f and m represent the in-plane shear strain of the composite, fibre and matrix

respectively.

Using the definition of fibre volume fraction (Vf) and matrix volume fraction (Vm)

given in Equation 3.9, Equation 3.14 becomes:

mmffc VV   (3.15)

Equation 3.15 can be rewritten as:
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τ
 (3.16)

where  is the in-plane shear modulus.

In this case, the shear stress on the fibre and matrix are equal i.e. c=f=m, also c=12

hence Equation 3.16 simplifies to:
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(3.17)

where )1(2 f
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


Also f and m represent the Poisson’s ratio of the fibre and matrix respectively.

Poisson’s ratio

Consider a unidirectional composite loaded by a stress c parallel to the fibre as shown

in the Figure 3-4. The transverse contraction of the composite (c) is the sum of the

matrix transverse contraction (m) and fibre transverse contraction (f):

mfc   (3.18)

Figure 3-4: Unidirectional composite loaded in the fibre direction
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Equation 3.18 can be re-written as:

mmmfffccc ttt   (3.19)

where c, f and m represent the Poisson’s ratio of the composite, fibre and matrix

respectively. Also c, f and m represent the transverse strain of the composite, fibre

and matrix respectively.

Using the definition of fibre volume fraction (Vf) and matrix volume fraction (Vm) given

in Equation 3.9, Equation 3.19 becomes:

mmmfffcc VV   (3.20)

In this case, perfect bonding is assumed (i.e. c=f=m which implies there is no slippage

at the fibre/matrix interface), also c=12 it can be shown that Equation 3.20 simplifies

to:

mmff VV  12 (3.21)

Density

The density of a composite can be computed by taking into account the conservation of

mass which is given below.

mfc MMM  (3.22)

where Mc, Mf, and Mm represent the mass of the composite, fibre and matrix

respectively.

Equation 3.22 can be re-written as:

mmffcc vvv  (3.23)

where vc, vf, and vm represent the volume of the composite, fibre and matrix

respectively.

Using the definition of fibre volume fraction (Vf) and matrix volume fraction (Vm)

given below
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v
V  (3.24)

Equation 3.23 becomes:

mmffc VV   (3.25)



22

3.2 Strength Properties of FGMs

The strength properties of FGMs can be computed in terms of the strength properties of

their constituents by using the rules of mixture as described in this section. More

information on the strength properties can be found in the book written by Daniel and

Ishai (2006).

Longitudinal Tensile Strength

Consider a composite under longitudinal tensile force, the phase with lower ultimate

strain will fail first. For perfectly bonded fibres, two cases are distinguished depending

on the relative magnitudes for the ultimate tensile strains of the constituents.

In the case in which the ultimate tensile strain of the fibre (ft
u) is lower than that of the

matrix i.e. ft
u < mt

u, the composite will fail when its longitudinal strain reaches the

ultimate tensile strain of the fibre. Hence, the longitudinal composite tensile strength of

the composite can be approximated by Equation 3.26 [Daniel and Ishai (2006)].











f1

m
mfftt

E

E
VVXX (3.26)

where Xft represents the longitudinal fibre tensile strength, Vf and Vm represent the fibre

and matrix volume fraction respectively, E1f and Em and Longitudinal Young’s modulus

of fibre and matrix respectively.

In the case in which the ultimate tensile strain of the matrix (mt
u) is lower than that of

the fibre i.e. mt
u < ft

u, the composite will fail when its longitudinal strain reaches the

ultimate tensile strain of the matrix. Hence, the longitudinal tensile strength of the

composite can be approximated by Equation 3.27 [Daniel and Ishai (2006)].











m

f1
fmmtt

E

E
VVXX (3.27)

where Xmt represents the longitudinal matrix tensile strength.

The above equations do not take into consideration the random distribution of fibre and

matrix strength. In the case of fibre-dominated strength, for example, fibre strength

varies from point to point and from fibre to fibre.
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Longitudinal Compressive Strength

Consider a composite under a longitudinal compressive force, failure is assumed to be

associated with microbuckling or kinking of the fibres within the matrix. In the case of

low fibre volume ratio values, the extensional or out-of-phase mode of microbuckling is

predicted with a longitudinal composite compressive strength given by Equation 3.28

[Daniel and Ishai (2006)].
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(3.28)

where Vf and Vm represent the fibre and matrix volume fraction respectively, E1f and Em

and Longitudinal Young’s modulus of fibre and matrix respectively.

In the case of high fibre volume ratios i.e. Vf ≥ 0.5, the most likely failure mode is the

shear mode which is governed by the shear strength of the fibre. The predicted strength

based on this mode is given by Equation 3.29 [Daniel and Ishai (2006)].





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


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f1

m
mffsc

E

E
VVX2X (3.29)

where Xfs represents the shear strength of the fibre.

Transverse Tensile Strength

Consider a transversely loaded composite, the residual stresses and strains due to curing

of the matrix, or thermal stresses and strains due to thermal expansion mismatch, must

be taken into account in predicting failure. Assuming a maximum tensile stress or strain

failure criterion and linear elastic behaviour and linear elastic behaviour to failure for

the matrix, one can predict the transverse composite tensile strength for a unidirectional

composite using Equation 3.30 [Daniel and Ishai (2006)].






k

X
Y rmmt

t (3.30)

where Xmt represents the matrix tensile strength, k represents the stress concentration

factor and rm represents the radial (maximum) residual stress.
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Transverse Compressive Strength

Consider a unidirectional composite under a transverse compressive force, the high

compressive stress concentration at the interface may cause compressive failure in the

matrix and/or fibre crushing. The predicted transverse composite compressive strength

for this failure mechanism is given by Equation 3.31 [Daniel and Ishai (2006)].






k

X
Y rmmc

c (3.31)

where Xmc represents the matrix compressive strength.

In-plane Shear Strength

Consider a composite under in-plane shear force, a high shear stress concentration

develops at the fibre-matrix interface. The high shear stress at the interface can cause

shear failure in the matrix and/or fibre-matrix debonding. The in-plane shear strength of

the composite based on matrix shear failure can be predicted with Equation 3.32 [Daniel

and Ishai (2006)].




k

X
S ms

(3.32)

where Xms is the matrix shear strength, k is the shear stress concentration factor.
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3.3 Fibre Distribution Techniques

It describes the micromechanics algorithm and the fibre distribution techniques such as

manual fibre distribution, average fibre distribution and smooth fibre distribution

technique developed in this work. This section explains the implementation of fibre

distribution in the FE code that was developed for this work. Equation 3.33 is used to

implement fibre distribution in the FE code.

P
121f ξ)V(VV(ξ)V  (3.33)

where

V1 = fibre volume fraction at x1, y1 or r1 or gradation offset

V2 = fibre volume fraction at x2, y2 or r2

P = gradation exponent

3casefor,
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12

1
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
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









x1, y1 or r1 = End “1” of the functionally graded domain

x2, y2 or r2 = End “2” of the functionally graded domain

x, y or r = the position in the domain

Manual Fibre Distribution

This fibre distribution technique enables the code user to manually specify the fibre

volume fraction for each element along the direction of fibre volume fraction variation.

Average Fibre Distribution

This fibre distribution technique enables the code user to either specify the fibre volume

fractions such as V1 and V2 or the mean fibre volume fraction V and fibre volume

fraction, V1. The fibre volume fractions are then computed at the midpoint of each

element using equations, which will be derived later in this section.



26

Smooth Fibre Distribution

This fibre distribution technique enables the code user to either specify fibre volume

fractions such as V1 and V2 or the mean fibre volume fraction V and fibre volume

fraction, V1. The fibre volume fractions are then computed at each Gaussian quadrature

point using equations which are derived subsequently in this section.

Derivation of mean fibre volume fraction V for specified V1 and V2

Using the fibre distribution equation below:

P
121f ξ)V(VV(ξ)V  (3.34)

And the mean fibre volume fraction is as given below:
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It can be shown that:
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(3.36)

Derivation of fibre volume fraction V2 for specified V1 and V

Rearranging Equation 3.34 gives.

Q)(1VQV(ξ)V
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(3.37)

Rearranging the above equation gives:

Q

Q)(1VV
V 1f

2


 (3.38)

The plots of the fibre distribution for all ten optimisation cases considered in this thesis

were obtained using Equation 3.33 and they are as shown below. It should be noted that
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each of the ten optimisation cases have a mean fibre volume fraction of 0.4. The case

with gradation exponent of zero (i.e. P=0) represents the traditional composite case.
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Figure 3-5: Fibre ratio distribution plot for cases with P=0 and P=0.5
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Figure 3-6: Fibre ratio distribution plot for cases with P=0 and P=1
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Figure 3-7: Fibre ratio distribution plot for cases with P=0 and P=2
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3.4 Failure Criteria and Damage Mechanisms

Progressive damage analysis is based on the assumption that the damaged material can

be substituted with an equivalent material with degraded properties. A comprehensive

literature review on progressive damage analysis was undertaken by Padhi et al (1998).

Most property degradation models can be grouped into three categories such as total

discount approach, limited discount method and residual property method as shown in

the diagram below. The total discount approach reduces the stiffness and strength of a

failed ply to zero, although the ply is physically present. The limited discount method

reduces stiffness based on the failure mode in action. For fibre failure, the longitudinal

stiffness is degraded whereas for matrix failure, zero stiffness and strength are assigned

to the failed ply for the transverse mode. The limited discount method was employed

by Chang and Chang (1987), Chang and Lessard (1991) and Shahid and Chang (1995).

The residual property method as described by Lo et al (1996) uses continuum damage

models to predict progressive damage and the stiffness drop in the laminate.

Figure 3-8: Types of property degradation

Chang and Lessard (1991) assume that after failure occurs, the stresses in the failed

directions drop to zero immediately, which corresponds to brittle failure with no energy

absorption. This kind of failure model usually leads to immediate, unstable failure of

the composite. This assumption is not very realistic. In reality, the stress-carrying

capacity degrades gradually with increasing strain after failure occurs. Hence the

behaviour of the composite after onset of failure is not likely to be captured well by this

model. Moreover, the instantaneous loss of stress-carrying capacity also makes the

post-failure analysis results strongly dependent on the refinement of the FE mesh and

Limited discount
approach
 Chang & Chang, 1987
 Chang & Lessard, 1991
 Shahid & Chang, 1995

Total discount
approach

Residual property
approach
 Lo et al, 1996

Property
degradation
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the finite element type used. Further details on progressive damage analysis can be

found in Reddy & Reddy (1993), Kim et al (1996), Kam & Sher (1995), Echaabi et al

(1996) and Tolson & Zabaras (1991).

In this thesis, a damage mechanism based on the material degradation model found in

Spottswood and Palazotto (2001) was employed in the finite element programs. The

damage mechanism involves carrying out a failure check at the node of element at every

load increment by using any of the interactive failure criteria. If failure is detected,

material properties of the failed element are degraded and equilibrium is re-established.

The failed element is degraded by multiplying the element stiffness properties in the

finite element code with a strength reduction factor which is given by the equation

below.

elementpernodesofNo.

elementpernodesfailedofNo.
0.1FactorReductionStiffness  (3.39)

Failure criteria for composite materials are often classified into two groups: namely,

non-interactive failure criteria and interactive failure criteria. Further details can be

found in a publication by Sleight (1999).

Non-Interactive Failure Criteria

A non-interactive failure criterion is defined as one having no interactions between the

stress or strain components. These criteria, sometimes called independent failure

criteria, compare the individual stress or strain components with the corresponding

material allowable strength values. The maximum stress and maximum strain criteria

belong to this category. Both failure criteria indicate the type of failure mode. The

failure surfaces for these criteria are rectangular in stress and strain space, respectively.

Interactive Failure Criteria

Interactive failure criteria involve interactions between stress and strain components.

Interactive failure criteria are mathematical in their formulation. Interactive failure

criteria fall into three categories: (1) polynomial theories, (2) direct-mode determining

theories, and (3) strain energy theories. The polynomial theories use a polynomial

based upon the material strengths to describe a failure surface. The direct-mode

determining theories are usually polynomial equations based on the material strengths
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and use separate equations to describe each mode of failure. Finally, the strain energy

theories are based on local strain energy levels determined during a nonlinear analysis.

Most of the interactive failure criteria are polynomials based on curve-fitting data from

composite material tests. The most general polynomial failure criterion for composite

materials is the tensor polynomial criterion proposed by Tsai and Wu (1971). Other

popular quadratic failure criteria include those by Tsai-Hill, Azzi and Tsai, Hoffman,

and Chamis. The failure surfaces for these quadratic criteria are elliptical in shape. One

of the disadvantages of these quadratic failure criteria is that they predict the initiation

of failure but say nothing about the failure mode or how the composite fails.

Using strength parameter defined earlier in this chapter, in conjunction with the

interactive failure criteria, it can be determined whether an FGM component has failed

or not. The commonly used interactive failure criteria include:

1) Tsai-Hill Failure Criterion

The Tsai-Hill failure criterion is based on the distortion energy failure theory of Von-

Mises distortional energy yield criterion for isotropic materials. Hill (1950) adapted the

Von-Mises distortional energy yield criterion to anisotropic materials. Then Tsai

(1968) adapted it to a unidirectional lamina. Distortion energy is a part of the total

strain energy in a body which is due to a change in the body shape. It is assumed that

failure in the material takes place only when the distortion energy is greater than the

failure distortion energy of the material. Failure occurs when the failure index (F.I.)

given by Tsai-Hill failure criterion exceeds 1 i.e. the following inequality [Kaw (1997)]

must be satisfied to ensure no failure has occurred:
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(3.40)

where

X = Xt or Xc and Y = Yt or Yc depending on the signs of 11 and 22 (i.e. if the

applied stress is tension, use the tensile strength and if the applied stress is

compressive, use the compressive strength).

Xc and Yc are absolute values.

Xt and Yt = Longitudinal and transverse compressive strength respectively

Xc and Yc = Longitudinal and transverse compressive strength respectively
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11 = Stress in the fibre, “1” or longitudinal direction of the material axis.

22 = Stress in the “2” or transverse direction of the material axis

12 = In-plane shear stress in the material axis.

S = Shear strength

This criterion considers the interaction of the stresses in the material axes directions

unlike the maximum strain and maximum stress failure criteria. The criterion will not

indicate the mode of failure as the maximum stress and maximum strain failure criteria

will do.

2) Hoffman Failure Criterion

As in Tsai-Hill failure criterion, the Hoffman failure criterion is an interactive failure

criterion which indicate whether failure has occurred or not, but it does not indicate the

mode of failure. Failure occurs when the failure index (F.I.) given by Hoffman failure

criterion exceeds 1 i.e. the following inequality [Kaw (1997)] must be satisfied to

ensure no failure has occurred:
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3) Tsai-Wu Failure Criterion

The Tsai-Wu failure criterion is based on the total strain energy failure theory of

Beltrami. Tsai and Wu (1971) applied the failure criterion to a lamina in plane stress.

As in Tsai-Hill and Hoffman failure criteria, the Tsai-Wu failure criterion is an

interactive failure criterion which indicate whether failure has occurred or not, but it

does not indicate the mode of failure. This criterion is very similar to the Hoffman

failure criterion except for the value of the coefficient F12. Failure occurs when the

failure index (F.I.) given by Tsai-Wu failure criterion exceeds 1 i.e. the following

inequality [Kaw (1997)] must be satisfied to ensure no failure has occurred.
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The coefficient *
12F has to be determined from a biaxial test. Performing such a biaxial

test on a laminate is not straightforward and the value of the coefficient is usually

estimated. Tsai and Hahn (1980) have shown that the value of the coefficient must be

between the limits -1 and 1. In the absence of a measured value, the coefficient is

generally set to -0.5.
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4 Mindlin-type Element Theory

This section explains the Mindlin-type plate bending element theory and derives the

equation used in the finite element programming. The finite element formulation of

displacement equation, strain equation, stress equation, strain energy variation and

generalised equation of equilibrium have been summarised in this section. The

generalised equation of equilibrium is then linearised in-order to obtain the Mindlin

element equation. The material non-linearity and geometrical non-linearity have been

considered, and integrations through plate thickness have been carried out analytically.

4.1 Stress and Strain Equations

Displacement Components

The composite plate is represented by Nl layers, which are parallel to the x-y plane such

that for layer l:

)()( , l
U

l
L ZzZz  (4.1)

are the equations of its lower and upper surfaces, and its thickness is given by:

)()()( l
L

l
U

l ZZh  (4.2)

The total thickness of the composite plate can be obtained as follows:
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)( (4.3)

The mid-plane of the plate )0( z is assumed to be the bending neutral plane.

Transverse shear modelling is based on the following equations which can be found in a

publication by Attia and El-Zafrany (1999):
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where o
zy

o
zx  , represent the values of transverse shear strains at the mid-plane, and:
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Approximate (z-linearised) distributions of u,v, (the displacement components in x and y

directions) can be assumed such that:
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The lateral displacement (in z-direction) w is assumed to be independent of z, i.e.

),(),,( yxwzyxw  (4.9)

Hence, it can be deduced from equations (4.8) and (4.9) that:
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where oo vu , represent displacement values at the mid-plane of the plate and yx  , are

average slope angles defined as follows:
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Strain Components

The transverse strain components at any point inside the plate are assumed infinitesimal,

they are negligible for thin plates, other components are defined in the x-y plane and

they may assume finite values. The strain component z will always be assumed

negligible.

Transverse shear strains

Using Equations (4.4) and (4.5), the transverse shear strains can be represented by the

following vector:
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and from Equation (4.13) it can be deduced that:

γγ ˆ)(zf (4.14)

where
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The x-y strain components

These are yxyx  ,, and are represented with the following vector:
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Using Green’s strain-displacement equations, then:
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Using the previous equations, the x-y strain vector can be partitioned and represented in

terms of different vectors and matrices as follows:
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where the vectors and matrices in the above equation are defined as follows:
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Also the variation of the total x-y strain vector can be represented in matrix form as

shown below:
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And the variation of the transverse shear strain vector is derived from Equation (4.14)

as:
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γγ ˆ)( dzfd  (4.30b)

Stress Components

The relevant stress components at any point inside the lth layer of a composite layered

plate can be represented in terms of two vectors defined as follows:

(a) The transverse shear stress vector
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(b) The x-y stress vector
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Using constitutive equations for the lth layer, as explained in Appendix A, the stress

vectors can be expressed in terms of strain vectors as follows:

γμγμτ ˆ)( )()()( lll zf (4.33)

εDσ )()( ll  (4.34)

Strain Energy Variation

The variation of strain energy density (strain energy per unit volume) due to a variation

of displacement at any point inside the lth layer of the plate can be expressed as follows:

zx
l
zxzy

l
zyyx

l
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l
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l
x

l dddddUd  )()()()()()(  (4.35)

which can be represented in the following matrix form:

)()()( ltltl ddUd σετγ  (4.36)

The variation of strain energy per unit area of the plate surface is defined as follows:

dzUdUd
h

h

l


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
2

2

)( )( (4.37)

and the variation of the strain energy of the plate is given by:
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Substituting from Equations (4.30) into (4.36), it can be deduced that:
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i.e.
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4.2 Interpolated Equations of Displacement and Strain

Displacement Components

Mindlin-type elements are based on Lagrangian interpolation, and for an n-node

element the mid-plane displacement components and average slope angles at any point

),( yx in the mid-plane of the plate can be interpolated as follows:
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where    
iyixiii wvu  ,,,, are values at node i ),( ii yx and ),( yxNi represents

Lagrangian shape functions.

Usually, the two-dimensional Lagrangian shape functions are expressed in terms of

intrinsic coordinates ),(  , and the relationships between Cartesian coordinates ),( yx

and intrinsic coordinates ),(  are obtained via the following iso-parametric equations:
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The nodal displacement vector for in-plane components can be defined as:

 nno vuvuvu 2211δ (4.47)

The nodal displacement vector for out-of-plane components can be defined as:

        
nynxnyxb ww  

111δ (4.48)

Strain Components

Transverse shear strains

Substituting from Equations (4.42)-(4.44) into Equation (4.14), then:

byxzfzyx δBγ ),()(),,(  (4.49a)

where
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Also the variation of transverse shear strains can be obtained from Equation (4.49a) as

follows:

bdyxzfzyxd δBγ ),()(),,(  (4.50)

Total x-y strain vector and its variation

The total strain vector of x-y components can be represented in terms of nodal

parameters as:
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Hence it can be shown that:
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Also the variation of the x-y strain vector can be represented in terms of nodal

parameters as shown below:
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Define the following non-linear B matrices:

qpqp GAB  (4.58)

with  ,,,,, wmqwmp 

Define also:
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and
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Hence, Equation (4.57) can be rewritten as follows:
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Variation of Strain Energy

Substituting from Equations (4.50) and (4.61) into (4.36), then the variation of strain

energy density at any point inside the lth layer of the plate can be expressed as follows:
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Integrated stress vectors

(a) Integrated transverse shear stress

This is defined as follows:
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Substituting from Equation (4.33) into (4.63), then it can be deduced that:
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Define an integrated  matrix as follows:
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and for the special case of transversely isotropic plate, where all layers have the same 

matrix, it can be proved that:
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Hence, it can be deduced that:

bδBμγμτ   ˆ~ (4.67)

(b) Integrated x-y stress vectors

These can be defined generally as follows:
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Equation (4.68) can also be expressed as:
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Defining integrated D matrices generally as follows:
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then Equation (4.69) can be simplified as follows:

     εDεεDεεεDσ 21)1(   nmbnwmon
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n (4.71)

with the following special cases:

     εDεεDεεεDσ 21  mbwmooo (4.72)

     εDεεDεεεDσ 3211  mbwmo (4.73)

     εDεεDεεεDσ 4322  mbwmo (4.74)

Integrating Equation (4.62) over the layers with respect to z, then it can be deduced that:
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4.3 Derivation of FE Equations for Mindlin-type Element

Generalized Equations of Equilibrium

The wok done by actual external loads can be expressed in terms of equivalent nodal

loading represented with the following vector:
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where

 mymxyxyxo FFFFFF )()()()()()( 2211 F (4.77)

 mymxmzyxzb MMFMMF )()()()()()( 111 F (4.78)

and m is the total number of finite element mesh nodes.

From the principle of virtual work due to a variation of displacement:

0 WdUdd (4.79)

Equation (4.79) can be expressed as:
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Since bo dd δδ , represent arbitrary parameters, then their coefficients in the above

equation vanish, leading to:
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which represent the generalized equations of equilibrium.

If an approximate solution is employed then the previous equations will lead to the

following residual vectors:
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When calculating the residual forces, the equation above is integrated analytically with

respect to z, leading to:
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Linearization of Equations of Equilibrium

To restore equilibrium, i.e. to make the residual vectors vanish we assume:
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such that OROR  bo ,

Substituting from Equations (4.85) into (4.82), then it can be deduced that:
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Expanding the previous expressions and ignoring high order terms, and using the

definitions of bo RR , given in Equations (4.82), then Equations (4.86) and (4.87) can

be reduced to:

   

  o
ltt

m
lt

m
t
m

ltt
m

l
N

e e

t
m

t
m

t
o

dzdydxz

z
e

RσAGσAG

σAGσAGB






)()(

)()(

1




(4.88)



46

   

 
 b

ltt

lt
m

tlt
w

t
w

ltt

lt
m

tt
b

N

e e

lt
w

t
w

lt

dzdydxz

zz

zzf
e

RσAG

σAGσAGσAG

σAGBσAGτB








)(2

)()()(2

)(

1

)()(

)(

)(

)(







(4.89)

Equations (4.88) and (4.89) can be divided into two parts each. The first part contains

the terms which include σ and the second part has the terms with A’s, as follows:

     o

N

e

e
o

e
o

e

RRR
Aσ





1

(4.90)

     b

N

e

e
b

e
b

e

RRR
Aσ





1

(4.91)

where, with the use of non-linear B matrices:
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Analysis of σ Terms

Using Equations (4.33) and (4.50), the increment of transverse shear stress can be

expressed as follows:

b
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)()()( )(ˆ)( (4.96)

Hence, it can be deduced that:
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Similarly the increment of x-y stress can be obtained from Equations (4.34) and (4.61),

as follows:
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Using Equation (4.70), the following integrated stress increments can be deduced:
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Using Equations (3.97) and (3.99)-(3.101) then Equations (3.92) and (3.93) can be

reduced as follows:
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Analysis of A Terms

Using the integrated stress defined by Equation (4.68), then Equations (4.94) and (4.95)

can be simplified as follows:
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Using matrix manipulations, the following theorems can be proved:
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Substituting from Equations (4.111)-(4.113) into (4.109) and (4.110), then it can be

deduced that:
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Final Matrix Equations of the Element

Substituting from Equations (4.102), (4.103), (4.116), (4.117) into (4.90) and (4.91), it

can be deduced that:
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which can be rewritten as follows:
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and the element stiffness matrices are defined as follow:
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4.4 Derivation of Mass Matrix for Mindlin-type Element

It is assumed that different layers are made of the same composite material but with

different fibre orientations, i.e. the density of every layer is the same i.e.

 )( L (4.128)

Using D’Alembert’s principle, the inertial force vector acting at an infinitesimal volume

due to an acceleration vector is:
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Hence, the work done by the inertia force due to an infinitesimal virtual displacement

field is:
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Using the expression below
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It can be shown that
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Expanding the equation above and integrating with respect to z gives:
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Defining the following displacement components:

)(),(),,( tyxtyx ooo δNq  (4.134)
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Equation (4.130) can be rewritten as:
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Defining the following mass matrices:
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Equation (4.140) can be rewritten as:
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Hence it can be shown that the element mass matrix is as given below:
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5 Reissner-type Element Theory

This chapter explains the Reissner-type plate bending element theory and derives the

equation used in the finite element programming. The Reissner-type element theory

defines the displacement equation, strain equation, stress equation, strain energy

variation and generalised equation of equilibrium. These are based upon parabolic

distributions of transverse shear strains over the plate thickness. The transverse shear

strains are assumed infinitesimal whilst the x-y strain components are considered finite,

according to Green’s strain-displacement equations. The generalised equation of

equilibrium is then linearised in-order to obtain the Reissner-type element equation. The

element interpolations are based on Lagrangian and Hermitian shape functions, with 7

degrees-of-freedom per node for non-conforming elements, and 8 degrees-of-freedom

per node for the conforming elements. All integrations through the plate thickness (i.e.

with respect to z) are carried out analytically.

5.1 Stress and Strain Equations

Modelling of Transverse Shear Strains

The composite plate consists of Nl layers, which are parallel to the x-y plane such that

for layer l:

)()( , l
U

l
L ZzZz  (5.1)

are the equations of its lower and upper surfaces, and its thickness is given by:

)()()( l
L

l
U

l ZZh  (5.2)

The total thickness of the composite plate can be obtained as follows:





lN

l

lhh
1

)( (5.3)

The midplane of the plate )0( z is assumed to be the bending neutral plane.

Consider the composite plate to be transversely isotropic, which means continuous

transverse shear strains all over the thickness of the plate. Using a three-point

Lagrangian interpolation (Attia & El-Zafrany, 1999), the distributions of transverse

shear strains over the plate thickness can be expressed as follows:
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where o
zy

o
zx  , represent the values of transverse shear strains at the midplane.

The average values of transverse shear strains over the plate thickness can be defined

as follows:
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and Equations (5.4) and (5.5) can be rewritten as follows:
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From Mindlin’s plate-bending theory, average slope angles are defined as follows:
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where

zxyzyx   , (5.12)

Hence, Equations (5.8) and (5.9) can be rewritten as follows:











2

2

2
3 4

1),(),,(
h

z
yxzyx yzx  (5.13)











2

2

2
3 4

1),(),,(
h

z
yxzyx xzy  (5.14)

Equations (5.13) and (5.14) can be expressed in the following matrix form:
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Notice also that the variation of transverse strain vector is:

γγ ˆdfd  (5.17)
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Displacement Components

The following approximations are considered in this theory:

(a) The lateral deflection w is independent of z, the distance along the plate

thickness.

(b) The transverse shear strains are infinitesimal.

The second approximation will lead to:
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Substituting from Equations (5.13) and (5.14) into (5.18), then it can be deduced that:
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Integrating Equations (5.19) and (5.20) with respect to z, then:
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and oo vu , represent the values of u, v at the midplane (z = 0).
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The x-y Strain Components

General definitions

These are yxyx  ,, and are represented with the following vector:
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Using Green’s strain-displacement equations, then:
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Using the previous equations, the x-y strain vector can be partitioned as follows:

LS εεε  (5.29)

where Sε represents the first order terms, or the infinitesimal strain vector, i.e.
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and Lε represents the additional non-linear terms in Green’s equations, i.e.
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Infinitesimal strain components

Substituting from Equations (5.21) and (5.22) into (5.30), then it can be deduced that:
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Additional large strain components

Substituting from Equations (5.21) and (5.22) into (5.31), then it can be proved that:
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Matrix representation of additional large strain components

This can be achieved in terms of the following rotation vectors:
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Hence, by matrix manipulation it can be proved that:

(i) mmmmmmmm dd θAεθAε  ,
2
1 (5.48)

where
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Total strain vector and its variation

From previous equations, the total x-y strain vector can be expressed as follows:
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which can also be written as follows:
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The variation of the total x-y strain vector can be obtained from the previous equation as

follows:
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Stress Components

The relevant stress components at any point inside the lth layer of a composite layered

plate can be represented in terms of two vectors defined as follows:

(a) The transverse shear stress vector
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(b) The x-y stress vector
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Using constitutive equations for the lth layer, as explained in Appendix A, the stress

vectors can be expressed in terms of strain vectors as follows:

γμγμτ ˆ)( )()()( lll zf (5.64)

εDσ )()( ll  (5.65a)

Substituting from Equation (5.60) into (5.65a) then it can be deduced that:
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Strain Energy Variation

General

The variation of strain energy density (strain energy per unit volume) due to a variation

of displacement at any point inside the lth layer of the plate can be expressed as follows:

zx
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which can be represented in the following matrix form:
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Substituting from Equation (5.61) into (5.69) then it can be deduced that:
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The variation of strain energy per unit area of the plate surface is defined as follows:
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and the variation of the strain energy of the plate is given by:
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Integrated stress matrices

These are used in the expressions of Ud  and the integrated transverse shear stress is

defined as follows:
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Defining





2

2

)(2 )(
h

h

l dzzf μμ  (5.74)

then Equation (5.73) can be rewritten as follows:
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γμτ ˆ~
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Notice also that for transversely isotropic composites:
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then











10

01)( lμ (5.77)

which is the same for every layer. Hence, Equation (5.74) is reduced to:
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For x-y stress components, we define the following integrated stress vectors:
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Substitute Equation (5.65b) in the previous definitions to obtain explicit expressions for

the integrated stress vectors. It can be seen that the parts of the integrated terms that

depend on z will lead to the following integrated D matrices:
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with

00 ,  DDDD  (5.87)

Explicit forms of integrated D matrices are given in Appendix B.

Hence, Equations (5.79)-(5.81) can be expressed as follows:
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Variation of strain energy due to transverse shear components

The variation of strain energy density due to transverse shear components is given by

Equation (5.68), and from which it can be deduced that:
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dydxUddU  (5.91b)

Variation of strain energy due to x-y components

The variation of strain energy density due to x-y stress and strain components is given

by Equation (5.70), and from which it can be deduced that:
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5.2 Interpolated Equations of Displacement and Strain

Degrees of Freedom for a Plate Element

Based on displacement distributions given by Equations (5.21)-(5.23), the degrees of

freedom for a plate element with respect to its local axes, at its midplane, are as follows:
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yx  , the transverse shear strain components.

For an n-node element the nodal displacement vector is defined as follows:
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Interpolation of Displacement

The displacement components at the midplane of an n-node element are interpolated as

follows:

o
i

n

i
i

o uyxNyxu ),(),(
1



 (5.97)

o
i

n

i
i

o vyxNyxv ),(),(
1



 (5.98)

 
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i
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1

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 (5.99)

 
iy

n

i
iy yxNyx  ),(),(

1



 (5.100)

where Ni represents Lagrangian shape functions.

There are two types of interpolation for the lateral deflection w as described in a

publication by El-Zafrany and Cookson (1986a, b):

(a) Non-conforming elements

 



n

i
yiixiiii wyxHwyxGwyxFyxw

1
,, ),(),(),(),( (5.101)

(b) Conforming elements

 



n

i
yxiiyiixiiii wyxPwyxHwyxGwyxFyxw

1
,,, ),(),(),(),(),( (5.102)

where iiii PHGF ,,, represent Hermitian shape functions.
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Interpolation of Strain

Interpolation of transverse shear strain

Substituting from Equations (5.99) and (5.100) into (5.16b), then it can be deduced that:


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where
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Infinitesimal strain parts

Substituting from Equations (5.97) and (5.98) into (5.33), then it can be shown that:
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where
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Similarly, substituting from Equations (5.99) and (5.100) into (5.35), then it can be

deduced that:
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Substituting from Equation (5.101) or (5.102) into (5.34), then it can be proved that:
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where for non-conforming elements:
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and for conforming elements:
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Substituting from Equations (5.105), (5.107), (5.109) into (5.32) then it can be deduced

that:

 δBδBδBε ),()(),(),(),,( yxzfyxzyxzyx bbooS  (5.112)

Interpolation of rotation vector

Substituting from Equations (5.97) and (5.98) into (5.44), then it can be shown that:
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Similarly by substituting from Equations (5.99) and (5.100) into (5.47), it can be

deduced that:
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Substituting from Equation (5.101) or (5.102) into Equations (5.45) and (5.44), then it

can be proved that:
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where for non-conforming elements:
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and for conforming elements:
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Total strain vector and its variation

Using equations from sections 2.3.2 and 2.3.3 then the total x-y strain vector, as defined

by Equation (5.60), can be expresses as follows:
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Hence, the variation of the x-y strain vector can be expressed as follows:
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5.3 Derivation of FE Equations for Reissner-type Element

Strain Energy and Work Variations

The variation of strain energy density at any point in the lth layer of a composite plate is

given by Equation (5.67). Substituting from Equations (5.103) and (5.123) into (5.67)

then:
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The equivalent nodal loading is assumed to have the same variation as the work done by

actual loads. Hence, the variation of the work done by actual loads can be expressed as

follows:

 FδFδFδFδ t
b

t
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t
o

t ddddWd  (5.126)

where F represents the equivalent nodal loading vector.

Derivation of Generalized Equations of Equilibrium

From the principle of virtual work due to a variation of displacement:

0 WdUdd (5.127)

Substituting from Equations (5.125) and (5.126) into (5.127), it can be deduced that:
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The variations represent small arbitrary changes; hence the coefficients of displacement

variations in Equation (5.128) vanish, leading to:
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Equations (5.129)-(5.131) represent the generalized equations of equilibrium.

If an approximate solution is employed then the previous equations will lead to the

following residual vectors:
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When calculating the residual forces Equations (5.132)-(5.134) are integrated

analytically with respect to z, leading to:
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Linearization of Equations of Equilibrium

To restore equilibrium, i.e. to make the residual vectors vanish we assume:
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such that OROROR  ,, bo

Substituting from Equations (5.138) into (5.132) - (5.134), then it can be deduced that:
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Expanding Equations (5.139)-(5.141), using the definitions of residual vectors given by

Equations (5.132)-(5.134), and ignoring σA  terms, then it can be deduced that:
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which can be rewritten as follows:
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Analysis of Δσ Terms 

Notice that it can be deduced from Equations (5.65) and (5.123) that:
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which can be rewritten as follows:
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We will require integrated stress or stress increment, and from Equation (5.154) we can

deduce the following general form:
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Terms of Equation (5.24)

Using Equation (5.155) then it can be deduced that:
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Substituting from Equations (5.156)-(5.158) into (5.148), then it can be deduced that:
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where
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Terms of Equation (5.149)

Using Equation (5.155) then it can also be shown that:
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Substituting from Equations (5.156)-(5.158), (5.163) and (5.164) into (5.149) it can be

proved that:

   δKδKδKR
σ


 bbbbobo

e
b (5.165)

where
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Terms of Equation (5.150)

Using Equation (5.155) then it can also be proved that:
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The transverse shear stress term in Equation (5.150) can also be integrated with respect

to z as follows:

 
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Hence, Equation (5.150) can be simplified as follows:

     δKKδKδKR
σ


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e (5.171)

where
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
e

t dydx BμBK (5.175)

Analysis of ΔA Terms 

Using the integrated stress vectors, as defined by Equations (5.79)-(5.81), then the

residual vectors defined by Equations (5.151)-(5.153) can be expressed as follows:

    dydx
e
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m

t
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t
m

e
o  
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A 10 (5.176)
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e
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    dydx
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 
  σAGσAGσAGR

A 10 (5.178)

Using matrix manipulations, the following theorem can be proved:

pqq
t
p θSσA  (5.179)

where

 ,,,,, nnqmp 

and
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Similarly, it can be proved that:

bwwww
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Notice also that:

 δGθδGθδGθ  ,, bomm (5.182)

Hence, Equation (5.176) can be rewritten as follows:
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where


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m
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t
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Similarly, Equation (5.177) can be expressed as follows:
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where
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
e

t dydx

 GSGK 2 (5.189)
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Equation (5.178) can also be expressed as follows:
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where
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Final Matrix Equations of the Element

Using the results of Equations (5.159), (5.165), (5.171), (5.183), (5.187), and (5.192),

then Equations (5.145), (5.146), and (5.147) can be rewritten as follows:
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which can be rewritten as follows:
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(5.199)

where the element stiffness matrices are defined as follows:
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5.4 Derivation of Mass Matrix for Reissner-type Element

It is assumed that different layers are made of the same composite material but with

different fibre orientations, i.e. the density of every layer is the same i.e.

 )( L (5.202)

Using D’Alembert’s principle, the inertial force vector acting at an infinitesimal volume

due to an acceleration vector is:

dxdydzaFd


 (5.203)

Hence, the work done by the inertia force due to an infinitesimal virtual displacement

field is:
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. (5.204)

Using the expression below
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It can be shown that
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Expanding the equation above and integrating with respect to z gives:
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Defining the following displacement components:

)(),(),,( tyxtyx ooo δNq  (5.208)

)(),(),,( tyxtyx bδNq   (5.209)
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)(),(),,( tyxtyx tδNq   (5.210)

)(),(),,( tyxtyx bww δNq  (5.211)
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 ......),(),( iiiiww PGHFyx  NN

for conforming elements (5.214a)

 ......),(),( iiiww GHFyx  NN

for non-conforming elements (5.214b)
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







































......

......
),(

,,,

,,,

yiyiyi

xixixi

GHF

GHF

y

w
x

v

yxN

for non-conforming elements (5.215b)

Equation (5.204) can be rewritten as:
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(5.216)

Defining the following mass matrices:
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Equation (5.216) can be rewritten as:
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Hence it can be shown that the element mass matrix is as given below:
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6 Finite Element Programming

This chapter explains the unique and innovative programming concepts developed for

the FE analysis of functionally graded composites. During the literature review for this

work, it was discovered that there were very little literature on FE analysis of

functionally graded composites. Chen and Liew (2004) actually admitted that FE

method for functionally graded composites leads to complicated numerical procedures.

A breakdown of the innovative concepts in this work is given below.

 A special FGM element has been derived which is a modification of the

Reissner and Mindlin plate bending element. This special element further

develops the Reissner and Mindlin plate bending element theory to account for

the D-matrix in the element stiffness matrix as a function of fibre ratio

distribution. The advantage of this special element is not only in its usefulness

in analysing FGMs but also in its capability to be interfaced into existing

commercial software for the analysis of FGMs.

 Two techniques were employed in computing the element stiffness matrix.

These techniques include the averaging technique and smoothing technique.

The averaging technique is a simple concept which involves computing an

average fibre ratio per element. While the smoothing technique involves the

computation of the fibre ratio at the Gaussian quadrature points which is then

used directly in the computation of the element stiffness matrix. During the case

studies, it was demonstrated that as the mesh becomes finer, the result of the

averaging technique converges to the result of the smoothing technique.
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The structure of the FE code implemented in this thesis is as shown below. The aim of

this chapter is to give an in-depth explanation of the FE code. As a result, this chapter

focuses on the explanation of each block in the flow chart shown below.

Figure 6-1: FE code structure

Choose type of fibre distribution

Choose type of analysis

Buckling
analysis

Dynamic
analysis

Progressive damage analysis
and finite strain analysis

End

Average fibre
distribution

Manual fibre
distribution

Smooth fibre
distribution

Read data from
input file

Use Reissner-type or
Mindlin-type element
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6.1 Static Analysis Algorithm

In order to carry out static analysis of composites, the code user needs to identify a

suitable element to use in solving the problem. Table 6-1 shows the description of

different types of static analysis codes developed in this thesis.

Table 6-1: Static analysis code description

Code Description

AV-CONF-STA.FOR Static analysis of composites using average conforming

Reissner-type element.

AV-NONCONF-STA.FOR Static analysis of composites using average non-

conforming Reissner-type element.

SM-CONF-STA.FOR Static analysis of composites using smooth conforming

Reissner-type element.

SM-NONCONF-STA.FOR Static analysis of composites using smooth non-

conforming Reissner-type element.

AV-MIND-STA.FOR Static analysis of composites using average Mindlin-type

element.

SM-MIND-STA.FOR Static analysis of composites using smooth Mindlin-type

element.

The subroutines used in developing the static analysis codes will now be explained. In

the static analysis codes, there are calls to subroutines which have been listed below in

the order of calling sequence.

 SET FILE

 DATA

 LINEARAN

 NONLINEAR

SET FILE

This subroutine sets input and output files.
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DATA

The input file (*.DAT) is divided into a number of modules, each is recognized by a

single control word. The DATA subroutine reads the input file and recognizes its

modules through the calls of different subroutine for each input module, as follows:

ELEMID: Identifies the number of coordinates, number of degree of freedom and

element type.

NODE: Reads the nodal coordinates from the input data file (*.DAT) and writes out this

coordinates to an output data file (*.OUT).

ELEMENT: Reads the element topology from the input data file and writes out this

element topology to an output data file.

COMPOS: Reads the fibre and matrix properties. It also reads the number of layers,

thickness of layers and fibre direction.

FUNGRADED: Reads the fibre distribution and calculates the average fibre ratio for

every element as shown below.

 Computes Vf2 using )(*)1( 112 ffff VVPVV 

 Computes the average fibre ratio per element )(fV using

))(pξ(ξ

)ξ(ξ
)V(VV(ξV

pp

f
1

)
minmax

1
min

1
max

121







 Calls MICROMECHANICS subroutine to calculate composite material

properties using micromechanics equations.

BOUNDARY: Reads the number of boundary conditions, number of degree of freedom,

prescribed displacement, number of nodes with boundary conditions and list of nodes

with boundary conditions.

LOAD: Reads the number of loaded nodes, number of load increments and direction of

rotation. It also reads the list of loaded nodes and the corresponding applied loads.

STATIC: Reads the type of analysis, maximum number of iteration, permissible error

and relaxation factor.

DYNAMIC: Reads the type of eigenvalue analysis, number of eigenvalues, maximum

number of iterations and permissible error.

GAUSSDATA: Reads the number of Gauss quadrature points.
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SOUT: Reads the list of nodes for displacement output and stress output.

FACETS: This subroutine is used for facet elements.

SET AXES: Defines local axes for facet elements.

BWF: This is subroutine is based upon calculating MD, the maximum difference

between node numbers inside an element, for all of the elements. The bandwidth for

assembled matrices is the calculated from MD, and the number of degrees-of-freedom

per node.

DLOAD: Computes the element equivalent loading to a uniformly distributed pressure.

RLOAD: Computes the element equivalent loading to rotation with uniform speed.
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LINEARAN

The flow chart for linear static analysis of composites using is as shown below.

Figure 6-2: Linear static analysis flowchart
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In the LINEARAN subroutine, there were calls to subroutines which have been listed

below in the order of calling sequence.

ELEM1D: Identifies the number of coordinates, number of degree of freedom and

element type.

ASSEMBLER: Assembles the global stiffness matrix.

REDUCER: Computes the reduced force vector and the reduced stiffness matrix by

applying the prescribed displacements of the boundary condition to the equation of the

whole domain.

SOLVER: Computes the reduced displacement vector by using Gaussian elimination

method.

OEXPANDERL: Assembles the global displacement vector by combining the reduced

displacement vector and the prescribed displacements.

DISP: Writes the nodal displacement results into an output file.

LNSTRAING: Computes midplane infinitesimal strains at Gaussian quadrature points.

LNSTRAINN: Computes midplane infinitesimal strains averaged at nodes.

RESIDUAL: Computes the global residual vector.

REACT: Writes the nodal forces and nodal reactions to an output file.

STRAIN: Writes the nodal strain results with respect to the material axis and the local

axis to an output file.

STRESS: Writes the nodal stress results with respect to the material axes and the local

axes to an output file.
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NONLINEAR

The flow chart for non-linear static analysis of composites with material degradation

and geometric non-linearity is as shown below.

Figure 6-3: Nonlinear static analysis flowchart
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In the NONLINEAR subroutine, there were calls to subroutines which have been listed

below in the order of calling sequence.

ELEM1D: Identifies the number of coordinates, number of degree of freedom and

element type.

ASSEMBLER: Assembles the global stiffness matrix.

REDUCER: Computes the reduced force vector and the reduced stiffness matrix by

applying the prescribed displacements of the boundary condition to the equation of the

whole domain.

SOLVER: Computes the reduced displacement vector by using Gaussian elimination

method.

OEXPANDER: Assembles the global displacement vector by combining the reduced

displacement vector and the prescribed displacements. It also uses load increment and

relaxation factor parameters to assemble the global displacement vector.

LNSTRAING: Computes midplane infinitesimal strains at Gaussian quadrature points.

LNSTRAINN: Computes midplane infinitesimal strains averaged at nodes.

NLSTRAING: Computes midplane finite strains at Gaussian quadrature points.

NLSTRAINN: Computes midplane finite strains averaged at nodes.

FAIL ASSESS: Performs failure assessment by using either Tsai-Hill criteria, Tsai-Wu

criteria either Hoffman criteria.

RESIDUAL: Computes the global residual vector.

CONVERGENCE: Performs convergence check for nonlinear static iterations.

UPDATE: Updates the global force vector by removing the global residual vector

values from the global force vector values.

DISP: Writes the nodal displacement results into an output file.

REACT: Writes the nodal forces and nodal reactions to an output file.

STRAIN: Writes the nodal strain results with respect to the material axis and the local

axis to an output file.

STRESS: Writes the nodal stress results with respect to the material axes and the local

axes to an output file.



99

6.2 Buckling Analysis Algorithm

Buckling occurs at infinitesimal strains.

bbboobmθ

b(3)obbθ

bobooom

L

L

εDεDσ

εDεDσ

εDεDσ

0F

0σ











(6.1)

A small deflection analysis can be carried out with a small load representing the

distribution of actual load, and has equivalent nodal loading vector Fo which is defined

below.

oo KδF  (6.2)

Just before the onset of instability, the strains can be considered infinitesimal, and if

instability occurs at:

oFF  (6.3)

Hence

  
  0λ

λ

o

o













KK

0δKK
(6.4)

This gives a characteristic equation and its smallest real roots define the critical

buckling load.

ocritical FF min (6.5)

Buckling analysis to find min is similar to natural frequency analysis with a

hypothetical mass matrix defined as: KM  .
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Table 6-2 shows the description of different types of buckling analysis codes developed

in this report.

Table 6-2: Buckling analysis code description

Code Description

AV-NONC-BUC.FOR Buckling analysis of composites using average non-

conforming Reissner-type element.

AV-CONF-BUC.FOR Buckling analysis of composites using average

conforming Reissner-type element.

SM-NONC-BUC.FOR Buckling analysis of composites using smooth non-

conforming Reissner-type element.

SM-CONF-BUC.FOR Buckling analysis of composites using smooth

conforming Reissner-type element.

AV-MIND-BUC.FOR Buckling analysis of composites using average Mindlin-

type element.

SM-MIND-BUC.FOR Buckling analysis of composites using smooth Mindlin-

type element.

The subroutines used in developing the buckling analysis codes will now be explain. In

the buckling analysis codes, there were calls to subroutines which have been listed

below in the order of calling sequence.

 SET FILE

 DATA

 LINEARAN

 SUBSPACE

SET FILE

This subroutine has been explained in the static analysis algorithm.

DATA

This subroutine has been explained in the static analysis algorithm.
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LINEARAN

This subroutine has been explained in the static analysis algorithm.

SUBSPACE

In the SUBSPACE subroutine, there were calls to subroutines which have been listed

below in the order of calling sequence.

DASSEMBLER: Assembles the global mass matrix.

DREDUCER: Computes the reduced force vector and the reduced stiffness matrix by

applying the prescribed displacements of the boundary condition to the equation of the

whole domain.

DSOLVER: Solves the simultaneous equations using Choleski direct procedure.

TPRODUCT: computes the subspace stiffness matrix and the outer-shifted stiffness

matrix. It also computes the subspace mass matrix and the reduced banded mass

matrix.

EIGENV: Computes eigenvalues using simple iteration algorithm.

TRANSF: Computes the band product.

DOUTPUT: Writes the dynamic result values into an output file.

Further explanation of the subspace iteration algorithm will be described now. If the

matrix equation


~~

MK  (6.6)

has K and M with a very large order and only relatively few eigenvalues are required,

subspace, or simultaneous iteration provides a very economical eigenvalue solver. The

method is based upon reducing K and M whilst restraining the lowest eigenvalues.

The subspace iteration algorithm consists of the following steps.

1. Assume a set of load vectors:

]...[ 21* ppm yyyY  (6.7)

where yr is a vector of order m, r = 1, 2, …, p

m is the total number of unknowns, or the order of the stiffness and mass

matrices of the component,

p is the number of the required lowest eigenvalues.
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A reasonable guess is to take Yrs = rs.

2. Solve the following p sets of equations, using a static analysis solver.

rrmm yK * (6.8)

for r = 1, 2, …, p

3. Form the following rectangular matrix of eigenvectors:

]
~

...
~~

[ 21* ppmX  (6.9)

4. Obtain the reduced or subspace stiffness and mass matrices as follows:
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(6.10)

5. Solve the subspace, or reduced, eigenvalue problem:

*

1*

*

*

*

1*

*

*

~~
pppppp MK   (6.11)

using any standard eigenvalue solver, such as simple iteration algorithm.

6. Form the following square matrix of the reduced eigenvectors:

]
~

...
~~

[ *
9

*
2

*
1* ppX (6.12)

7. Transform back to the original space, i.e.

*

*** )()( ppoldpmnewpm XXX  (6.13)

8. Update the load vectors, using:

newpmmmnewpm XMY )()( ***  (6.14)

9. Iteration decision:

 Calculate the maximum error in the eigenvalues i.e.

 piMaxe
oldnew ii ...,,2,1,max   (6.15)

 If the maximum error is greater than a given permissible error then go to step-2.
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6.3 Dynamic Analysis Algorithm

Consider an ideal structure with no damping forces, the dynamic finite element matrix

equation can be reduced to the expression below.

     ttt FδKδM 


(6.17)

In a natural mode, each point of a structure executes harmonic motion about the position

of static equilibrium at the same frequency. Hence it can be assumed that, at a natural

mode of vibration:

  )δδ tωcost (
~

 (6.18)

where δ
~

represents the vector of nodal amplitudes.

The matrix equation represents a system of homogenous simultaneous equations which

can have a non-trivial solution, if the value of  satisfies the condition below:

0λ  MK (6.19)

where 2ωλ

The matrix equation of the dynamic eigenvalue problem was solved in this report. This

report employed two techniques which include the simple iteration and subspace

iteration techniques. Further details on these techniques can be found in publications of

Clint and Jennings (1970), Corr and Jennings (1976), Bathe and Wilson (1976).
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Table 6-3 shows the description of different types of dynamic analysis codes developed

in this thesis.

Table 6-3: Dynamic analysis code description

Code Description

AV-NONC-DYN.FOR Dynamic analysis of composites using average non-

conforming Reissner-type element.

AV-CONF-DYN.FOR Dynamic analysis of composites using average

conforming Reissner-type element.

SM-NONC-DYN.FOR Dynamic analysis of composites using smooth non-

conforming Reissner-type element.

SM-CONF-DYN.FOR Dynamic analysis of composites using smooth

conforming Reissner-type element.

AV-MIND-DYN.FOR Dynamic analysis of composites using average Mindlin-

type element.

SM-MIND-DYN.FOR Dynamic analysis of composites using smooth Mindlin-

type element.

The subroutines used in developing the dynamic analysis codes will now be explain. In

the dynamic analysis codes, there were calls to subroutines which have been listed

below in the order of calling sequence and they have similar descriptions as that of the

buckling analysis subroutines.

 SET FILE

 DATA

 LINEARAN

 NONLINEAR

 ELEMID

 SUBSPACE
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7 Mindlin and Reissner Program Validation

In this chapter, the Mindlin programs (i.e. Average and Smooth Mindlin program) and

Reissner programs (i.e. Average and Smooth Reissner program) were validated. These

programs were validated in three stages which include program validation against

analytical solutions, program validation against a commercial package called Abaqus and

program validation against Ordinary FE programs (i.e. Ordinary Mindlin program and

Ordinary Reissner program). The Ordinary FE programs are programs developed in-

house for the finite element analysis of structures made of composite materials without

functional gradation. This chapter aims to present the three stages of validation

exercises.

7.1 Program Validation against Analytical Solution

In this section, the Mindlin programs (i.e. Average and Smooth Mindlin program) were

validated against analytical solution. The analytical solution presented in this section is

often referred to as the classical lamination theory (CLT). A more in-depth explanation

of the theory can be found in a publication by Agarwal et al (2006). The analytical

solution could only be used to validate the infinitesimal strain part of the Mindlin

programs for the analysis of composite without functional gradation. Also, the

progressive damage capability of the Average Mindlin program was not validated

because damage prediction in the Mindlin programs uses a different approach in

comparison to the analytical technique. In the Mindlin programs, damage prediction is

done for each element but the analytical technique can only predict damage for each

composite lamina. In this section, some numerical examples will be presented for this

validation exercise. These numerical examples include composite plate subjected to

tensile load, composite plate subjected to buckling load, free vibration of composite plate

and composite plate with a central hole subjected to tensile load. In order to solve these

numerical examples, the following solution technique is employed.

Consider a lamina parallel to the x-y plane with (x-y-z) being the geometrical axes. Axes

(1-2-3) represent the material axes, where 1 is usually in the fibre direction. The lamina
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is orthotropic with respect to (1-2-3) axes. Using generalised Hooke’s equations, it can

be deduced that:
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where E11 is the Young’s modulus in the “1” or fibre direction.

E22 is the Young’s modulus in the “2” direction.

12 is the shear modulus in the material axes (i.e. axes 1-2).

12 and 21 are the major and minor Poisson’s ratio respectively.

Using planar transformation for a lamina, it can be deduced that:
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3223 2QQmlQlQmmlQQ  (7.8)

where l = cos and m = sin

   = fibre orientation of lamina

Composite laminates are constructed of an arbitrary number of orthotropic lamina with

planes elastic symmetry in the plane of the laminate. In order to describe the behaviour

of the laminate, it is necessary to define the laminate force and moment resultants.
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Three force resultants:
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Three moment resultants:
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where h is the laminate thickness and z is the normal coordinate measured from the

laminate mid-surface.

Since laminate strains are assumed in classical lamination theory to vary linearly through

the laminate thickness, the strain at any point through the laminate thickness can be

expressed as a function of laminate midplane strains, o and curvatures, k.

kεε z o (7.11)

Now the force and moment resultants can be expressed in terms of the midplane strains

and curvatures of the laminate.
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where the laminate stiffness matrix terms are defined in terms of the lamina properties.
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7.1.1 Traditional composite plate under tensile loading

Example 7.1.1: A rectangular traditional composite plate with a “[[-45/0/45]2]s” stacking

sequence was subjected to a tensile loading of 240kN. The task is to validate the

displacement and stress result of the Average Mindlin program against the result of the

classical lamination theory. The FE modelling procedure and the analytical solution

procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-1: Tensile case data

Geometry

L (m) 2.000 w (m) 1.000

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Vf 0.4 Vm 0.6

Applied Force

Fx (N) 2.400E+05 Nx (N/m) 2.400E+05

Ny (N/m) 0.000E+00 Nxy (N/m) 0.000E+00

The notations used in Table 7-1 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Vf and Vm represent the volume fraction of the fibre and matrix respectively.

Fx represents the applied force in the x-direction.

N represents the distributed load.
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FE Modelling

The composite plate has a mid-plane as shown in Figure 7-1. Different meshes were

employed in this example to check for convergence. A mesh with 72 four-noded

Mindlin-type elements was selected and is as shown in Figure 7-1. A tensile load of

240kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with

reduced load at the corner nodes. For example, in the 72 element case, the load was

applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on

the x=2 edge as shown in Figure 7-1. Hence the equivalent nodal loading for the 72

element case was 40kN at each nodes on the x=2 edge with 20kN at corner nodes on the

x=2 edge. The boundary condition shown in Table 7-2 was applied to the FE model.

Table 7-2: Boundary condition for the tensile case

Nodes Boundary condition

Node 20 u = v = w = x = y = 0

Nodes on the x=0 edge excluding node 20 u = 0

Figure 7-1: 4-noded element mesh for the tensile case
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Analytical Solution

Using the macro-mechanical equations (i.e. Equations 3.1 to 3.4) and the classical

lamination theory (i.e. Equations (7.1) – (7.13)), the deformation of the composite plate

was computed with Excel Spreadsheet as shown in Table 7-3.

Table 7-3: Analytical solution for the tensile case

Elastic constants

E11 (Pa) 9.404E+10 12 3.200E-01 12 (Pa) 2.157E+09

E22 (Pa) 5.611E+09 21 1.909E-02

Stiffness matrix

Q (Pa) 9.462E+10 1.807E+09 0.000E+00

1.807E+09 5.646E+09 0.000E+00

0.000E+00 0.000E+00 2.157E+09

Ply p 1 2 3 4 5 6

 (
o
) -45 0 45 -45 0 45

Zp-1 (m) -0.015 -0.0125 -0.01 -0.0075 -0.005 -0.0025

Zp (m) -0.0125 -0.01 -0.0075 -0.005 -0.0025 0

Zp - Zp-1 (m) 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025
Zp

2
- Zp-1

2

(m)
-6.875E-05 -5.625E-05 -4.375E-05 -3.125E-05 -1.875E-05 -6.250E-06

Zp
3

- Zp-1
3

(m)
1.422E-06 9.531E-07 5.781E-07 2.969E-07 1.094E-07 1.563E-08

Q11_ (Pa) 2.813E+10 9.462E+10 2.813E+10 2.813E+10 9.462E+10 2.813E+10

Q22_ (Pa) 2.813E+10 5.646E+09 2.813E+10 2.813E+10 5.646E+09 2.813E+10

Q12_ (Pa) 2.381E+10 1.807E+09 2.381E+10 2.381E+10 1.807E+09 2.381E+10

Q66_ (Pa) 2.416E+10 2.157E+09 2.416E+10 2.416E+10 2.157E+09 2.416E+10

Q16_ (Pa) -2.224E+10 0.000E+00 2.224E+10 -2.224E+10 0.000E+00 2.224E+10

Q26_ (Pa) -2.224E+10 0.000E+00 2.224E+10 -2.224E+10 0.000E+00 2.224E+10
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Table 7-3: Analytical solution for the tensile case (continued)

Ply p 7 8 9 10 11 12

 (
o
) 45 0 -45 45 0 -45

Zp-1 (m) 0 0.0025 0.005 0.0075 0.01 0.0125

Zp (m) 0.0025 0.005 0.0075 0.01 0.0125 0.015

Zp - Zp-1 (m) 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025
Zp

2
- Zp-1

2

(m)
6.250E-06 1.875E-05 3.125E-05 4.375E-05 5.625E-05 6.875E-05

Zp
3

- Zp-1
3

(m)
1.563E-08 1.094E-07 2.969E-07 5.781E-07 9.531E-07 1.422E-06

Q11_ (Pa) 2.813E+10 9.462E+10 2.813E+10 2.813E+10 9.462E+10 2.813E+10

Q22_ (Pa) 2.813E+10 5.646E+09 2.813E+10 2.813E+10 5.646E+09 2.813E+10

Q12_ (Pa) 2.381E+10 1.807E+09 2.381E+10 2.381E+10 1.807E+09 2.381E+10

Q66_ (Pa) 2.416E+10 2.157E+09 2.416E+10 2.416E+10 2.157E+09 2.416E+10

Q16_ (Pa) 2.224E+10 0.000E+00 -2.224E+10 2.224E+10 0.000E+00 -2.224E+10

Q26_ (Pa) 2.224E+10 0.000E+00 -2.224E+10 2.224E+10 0.000E+00 -2.224E+10

Extensional stiffness matrix

A (N/m) 1.509E+09 4.943E+08 -5.960E-08

4.943E+08 6.190E+08 -6.706E-08

-5.960E-08 -6.706E-08 5.048E+08

Midplane strain

 2.154E-04

-1.720E-04

2.585E-21

Deformation

u (m) 4.309E-04



Layer l 1 2 3 4 5 6

xx (Pa) 1.963E+06 2.007E+07 1.963E+06 1.963E+06 2.007E+07 1.963E+06

yy (Pa) 2.911E+05 -5.821E+05 2.911E+05 2.911E+05 -5.821E+05 2.911E+05

xy (Pa) -9.653E+05 5.577E-12 9.653E+05 -9.653E+05 5.577E-12 9.653E+05

Layer l 7 8 9 10 11 12

xx (Pa) 1.963E+06 2.007E+07 1.963E+06 1.963E+06 2.007E+07 1.963E+06

yy (Pa) 2.911E+05 -5.821E+05 2.911E+05 2.911E+05 -5.821E+05 2.911E+05

xy (Pa) 9.653E+05 5.577E-12 -9.653E+05 9.653E+05 5.577E-12 -9.653E+05

The notations used in Table 7-3 are as described below.

E11 and E22 represent the Young’s modulus in the “1” and “2” direction of the

material axes respectively.

12 and 21 are the major and minor Poisson’s ratio respectively.
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12 represent the shear modulus in the material axes (i.e. axes 1-2).

Q represents the stiffness matrix of the composite plate.

 represents the fibre orientation of the ply.

Z represents the ply location in the out-plane direction.

Q_ represents the transformed stiffness matrix of the composite plate which

contains Q11_, Q22_, Q12_, Q66_, Q16_ and Q26_.

A represents the extensional stiffness matrix of the composite plate.

 represents the midplane strain vector of the composite plate

u represents the deformation of the composite plate in the x-direction of the

geometric axis.

Validation results

Figure 7-2 shows the nodal displacement result along the y=0.5 line for the Average

Mindlin Program. The displacement result of the classical lamination theory which has

been computed in Table 7-3 was plotted with the displacement results of the Average

Mindlin program as shown in Figure 7-2 for validation purpose. The displacement

results of the Average Mindlin program for different mesh cases show good convergence

and they also show good agreement with the result of the classical lamination theory.
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Figure 7-2: u-displacement validation against analytical solution for the tension case

Figure 7-3 to 7-5 show the stresses with respect to the material axes at x=0 and y=0.5.

The stress result of the classical lamination theory which has been computed in Table 7-3

was also validated against the stress results of the Average Mindlin program as shown in

Figures 7-3 to 7-5. The stress result of the Average Mindlin program shows good

agreement (all data points overlap) with the result of the classical lamination theory.

Figure 7-3 shows that the 0o plies have the highest xx relative to the 45o plies and -45o

plies. This is due to the fact that the fibres in the 0o plies are aligned in the tensile force

direction. Hence they carry a higher share of the load relative to the share of load of

fibres in the 45o plies and -45o plies. Figure 7-4 shows that the 0o plies have compressive

yy values which are expected because the fibres are aligned in the direction of the tensile

load. Figure 7-5 shows that the 0o plies have no shear stress (xy) which is expected

because the fibres are aligned in the direction of the tensile load. It can be seen that the

45o plies exhibit an equal but opposite shear stress in comparison with the -45o plies

which is due to the stacking sequence of the composite.
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Figure 7-4: yy validation against analytical solution for the tension case
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Figure 7-5: xy validation against analytical solution for the tension case
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7.1.2 Traditional composite under compressive loading

Example 7.1.2: A rectangular traditional composite plate with a “[0/90]s” stacking

sequence was subjected to a uniaxial compression. It is simply supported along its four

edges. The task is to compute the critical buckling load using classical laminate theory

and the result is then used to validate the result of the Average Mindlin program. The FE

modelling procedure and the analytical solution procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-4: Buckling case data

Geometry

L (m) 2.000 w (m) 1.000

t (m) 0.0100 No. of ply 4

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Vf 0.4 f (Kg m-3) 1.800E+03

Vm 0.6 m (Kg m-3) 1.200E+03

The notations used in Table 7-4 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Vf and Vm represent the volume fraction of the fibre and matrix respectively.

f and m represent the density of the fibre and matrix respectively.

FE Modelling

The composite plate case has a mid-plane as shown in Figure 7-6. Different meshes were

employed in this example to check for convergence. A mesh with 72 four-noded

Mindlin-type elements was selected and is as shown in Figure 7-6. A compressive load

of 24kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with

reduced load at the corner nodes. For example, in the 72 element case, the load was
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applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on

the x=2 edge as shown in Figure 7-6. Hence the equivalent nodal loading for the 72

element case was 4kN at each nodes on the x=2 edge with 2kN at the corner nodes on the

x=2 edge. The boundary condition shown in Table 7-5 was applied to the FE model.

The Average Mindlin FE program is then used to perform buckling eigenvalue analysis

on the model.

Table 7-5: Boundary condition for the buckling case

Nodes Boundary condition

Nodes on the x=0 edge u = 0

Nodes on all four edges w = 0

Figure 7-6: 4-noded element mesh for the buckling case

Analytical Solution

In order to determine the critical buckling load of the rectangular plate, it is assumed that

the laminate is specially orthotropic i.e. they satisfy the following three conditions.

 The in-plane stiffness matrix, A, is orthotropic with the direct and shear stiffness

terms uncoupled so that A16 and A26 are zero.
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 The bending stiffness matrix, D, is orthotropic with the bending and twisting stiffness

terms uncoupled so that D16 and D26 are zero.

 The in-plane and bending stiffness matrices are uncoupled, that is B=0.

The buckling loads can be computed using the equation below which can be found in a

textbook by Agarwal et. al. (2006).
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Using the transformed stiffness matrix computed in Example 7.1.1 and Equation (7.13 –

7.14), the buckling loads can be computed with the following spreadsheet.

Table 7-6: Analytical solution for the buckling case

Elastic constants

E11 (Pa) 9.404E+10 12 3.200E-01

E22 (Pa) 5.611E+09 21 1.909E-02

 (Kg m-3) 1.440E+03  12 (Pa) 2.157E+09

o (Kg m-2) 1.440E+01

Stiffness matrix

Q (Pa) 9.462E+10 1.807E+09 0.000E+00

1.807E+09 5.646E+09 0.000E+00

0.000E+00 0.000E+00 2.157E+09

Layer l 1 2 3 4

 (
o
) 0 90 90 0

Zp-1 (m) -0.005 -0.0025 0 0.0025

Zp (m) -0.0025 0 0.0025 0.005

Zp - Zp-1 (m) 2.500E-03 2.500E-03 2.500E-03 2.500E-03
Zp

2
- Zp-1

2

(m)
-1.875E-05 -6.250E-06 6.250E-06 1.875E-05

Zp
3

- Zp-1
3

(m)
1.094E-07 1.563E-08 1.563E-08 1.094E-07

Q11_ (Pa) 9.462E+10 5.646E+09 5.646E+09 9.462E+10

Q22_ (Pa) 5.646E+09 9.462E+10 9.462E+10 5.646E+09

Q12_ (Pa) 1.807E+09 1.807E+09 1.807E+09 1.807E+09

Q66_ (Pa) 2.157E+09 2.157E+09 2.157E+09 2.157E+09

Q16_ (Pa) 0.000E+00 2.914E-08 2.914E-08 0.000E+00

Q26_ (Pa) 0.000E+00 5.421E-06 5.421E-06 0.000E+00
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Table 7-6: Analytical solution for the buckling case (continued)

Bending stiffness matrix (N m)

D 6.958E+03 1.506E+02 3.035E-16

1.506E+02 1.397E+03 5.647E-14

3.035E-16 5.647E-14 1.798E+02

Buckling loads (N m
-1

)

N(m,n) 1 2 3 4 5 6

1 8.240E+04 9.400E+05 4.576E+06 1.430E+07 3.475E+07 7.187E+07

2 9.253E+04 3.296E+05 1.276E+06 3.760E+06 8.940E+06 1.830E+07

3 1.707E+05 2.929E+05 7.416E+05 1.885E+06 4.237E+06 8.460E+06

4 2.882E+05 3.701E+05 6.446E+05 1.318E+06 2.681E+06 5.105E+06

5 4.415E+05 5.048E+05 6.986E+05 1.155E+06 2.060E+06 3.651E+06

6 6.297E+05 6.829E+05 8.328E+05 1.171E+06 1.827E+06 2.966E+06

The notations used in Table 7-6 are as described below.

E11 and E22 represent the Young’s modulus in the “1” and “2” direction of the

material axes respectively.

 represents the density of the composite plate

o represents the mass per unit area of the composite plate.

12 and 21 are the major and minor Poisson’s ratio respectively.

12 represent the shear modulus in the material axes (i.e. axes 1-2).

Q represents the stiffness matrix of the composite plate.

 represents the fibre orientation of the ply.

Z represents the ply location in the out-plane direction.

Q_ represents the transformed stiffness matrix of the composite plate which

contains Q11_, Q22_, Q12_, Q66_, Q16_ and Q26_.

D represents the bending stiffness matrix of the composite plate.

N(m,n) represents the buckling load.

m and n represent the buckling load indices

The critical buckling load is the lowest of all the values. It can be seen from the

spreadsheet that the critical buckling load occurs when m=1 and n=1. Hence the critical

buckling load is 82.4kN m-1.
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FE Convergence and Validation Results

The critical buckling load result of the classical lamination theory was then validated

against the results of the Average Mindlin program as shown in Table 7-7. The critical

buckling load results of the Average Mindlin program for different mesh cases show

good convergence and they converge to the analytical solution. It can be seen from

Table 7-7 that the results of the model with 200 elements agree well with the analytical

results in predicting the buckling loads for all the 3 buckling modes.

Table 7-7: Analytical validation result for the buckling case

Buckling
mode

Buckling load (N m
-1

)

8 Elements
32

Elements
72

Elements
128

Elements
200

Elements
Analytical
solution

1st mode 1.117E+05 9.067E+04 8.588E+04 8.429E+04 8.356E+04 8.240E+04

2nd mode 1.222E+05 1.007E+05 9.598E+04 9.432E+04 9.356E+04 9.253E+04

3rd mode 4.818E+05 2.114E+05 1.865E+05 1.788E+05 1.754E+05 1.707E+05

7.1.3 Traditional composite plate under free vibration

Example 7.1.3: The rectangular traditional composite plate considered in Example 7.1.2

is now under free vibration. It is simply supported along its four edges. The task is to

compute the first three natural frequencies using the classical lamination theory and the

result is then used to validate the result of the Average Mindlin program. The FE

modelling procedure and the analytical solution procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given in Example

7.1.2.

FE Modelling

Different meshes were employed in this example to check for convergence. The

boundary condition shown in Table 7-8 was applied to the FE model. The Average

Mindlin program is then used to perform free vibration eigenvalue analysis on the model.

Table 7-8: Boundary condition for free vibration case

Nodes Boundary condition

Nodes on all four edges w = 0

Nodes on all four corners of the rectangular
traditional composite plate

u = v = w = x = y = 0
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Analytical Solution

The natural frequencies can be computed using the equation below which can be found in

a textbook by Agarwal et. al. (2006).
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where

o represents the mass per unit area of the composite plate.

D represents the bending stiffness matrix of the composite plate

m and n represent the natural frequency indices.

Using the bending stiffness matrix computed in Example 7.1.2, the buckling loads can be

computed with the following spreadsheet.

Table 7-9: Analytical solution for the free vibration case

Natural frequencies (rad s
-1

)

mn 1 2 3 4 5 6

1 118.82 401.34 885.48 1565.33 2439.99 3509.24

2 251.84 475.29 935.30 1605.36 2475.29 3541.93

3 513.09 672.03 1069.41 1704.83 2556.16 3612.07

4 888.90 1007.34 1329.34 1901.18 2711.22 3741.21

5 1375.20 1470.50 1729.86 2224.51 2970.59 3954.89

6 1970.80 2052.36 2266.52 2688.12 3357.50 4277.65

The fundamental frequency is the lowest of all the values. It can be seen from the

spreadsheet that the fundamental frequency occurs when m=1 and n=1. Hence the

fundamental frequency is 118.82 rad s-1.

FE Convergence and Validation Results

The natural frequency results of the classical lamination theory were then validated

against the results of the Average Mindlin program as shown in Table 7-10. The natural

frequency results of the Average Mindlin program for different mesh cases show good

convergence and they converge to the analytical solution. It can be seen from Table 7-10

that the results of the model with 200 elements agrees well with the analytical results in
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predicting the natural frequencies for all the 3 free vibration modes. The results also

show that finer meshes are needed to accurately predict higher natural frequency modes.

Table 7-10: Analytical validation result for the free vibration case

Vibration
mode

Natural frequencies (rad s
-1

)

8 Elements
32

Elements
72

Elements
128

Elements
200

Elements
Analytical
solution

1st mode 154.49 125.93 121.80 120.43 119.81 118.82

2nd mode 314.69 270.07 259.62 256.00 254.34 251.84

3rd mode 1071.09 555.58 459.59 432.23 420.45 401.34

7.1.4 Traditional composite plate with a central hole under tension

Example 7.1.4: A rectangular traditional composite plate with a central hole and a “[[-

45/0/45]2]s” stacking sequence was subjected to a tensile loading of 24kN. The task is to

validate the stress result of the Average Mindlin program against the result of the

classical lamination theory. The FE modelling procedure and the analytical solution

procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-11: Data for the traditional composite plate case with a central hole

Geometry

L (m) 2.000 w (m) 1.000 R (m) 0.1

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Vf 0.4 Vm 0.6

Applied Force

Fx (N) 2.400E+04 Nx (N/m) 2.400E+04

Ny (N/m) 0.000E+00 Nz (N/m) 0.000E+00

The notations used in Table 7-11 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

R represents the radius of the hole.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.
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f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Vf and Vm represent the volume fraction of the fibre and matrix respectively.

Fx represents the applied force in the x-direction.

N represents the distributed load.

FE Modelling

In order to model the composite plate with a central hole under uniaxial tensile loading,

the model was divided into four equal quarters. One of the quarter models was then used

in the FE modelling by applying boundary conditions which takes advantage of

symmetrical nature of the full model. The composite plate with a central hole has a mid-

plane as shown in Figure 7-7. Different meshes were employed in this example to check

for convergence. A mesh with 180 four-noded Mindlin-type elements was selected and is

as shown in Figure 7-7. A tensile load of 24kN was applied as an equivalent nodal loads

at the nodes on the x=2 edge with reduced load at the corner nodes. For example, in the

180 element case, the load was applied equally at nodes on the x=2 edge but with half the

loads at the corner nodes on the x=2 edge as shown in Figure 7-7. Hence the equivalent

nodal loading for the 180 element case was 4.8kN at each nodes on the x=2 edge with

2.4kN at corner nodes on the x=2 edge. The boundary condition shown in Table 7-12

was applied to the FE model. The Average Mindlin FE program is then used to perform

linear static analysis on the model.

Table 7-12: Boundary condition for the traditional composite plate case with a hole

Nodes Boundary condition

Nodes on the x=0 edge u = 0

Nodes on the y=0 edge v = 0
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Figure 7-7: 4-noded element mesh for a traditional composite plate with a hole

Analytical Solution

In order to determine the stress field in the vicinity of the central hole in the rectangular

traditional composite plate, it is assumed that the laminate is balanced i.e. it has equal

number of lamina with +o and -o fibre orientation. For such a laminate, the shear

coupling stiffness terms, A16 and A26 are zero. It is also assumed that the lamina within

the laminate are positioned symmetrically with respect to the laminate midplane, hence

the coupling terms Bij become zero.

The stress field in the vicinity of a circular hole of radius, R, in an orthotropic laminate

under uniaxial loading, x
∞ can be computed using the equation below which can be

found in a textbook by Whitney et. al. (1984).
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FE Convergence and Validation Results

Using the extensional stiffness matrix computed in Example 7.1.1 and the above

equation, the effective stress results were plotted as shown below. The effective stress

x(0,y) computed using the classical lamination theory was then validated against the

results of the Average Mindlin program as shown in Figure 7-8. The results of the

Average Mindlin program for different mesh cases show good convergence. The FE

results and the result of the classical lamination theory show similar trends.
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Figure 7-8: x validation against analytical solution for the tension case
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7.2 Program Validation against Abaqus Program

In this section, the Mindlin programs were validated against a commercial FE package

called Abaqus. The Abaqus package was used to validate the infinitesimal strain part of

the Mindlin programs for the analysis of functionally graded composite (FGC). Also, the

progressive damage capabilities of the Mindlin FE programs were not validated against

the Abaqus package in this section but they were validated against the Ordinary FE

program in the next section. In this section, some numerical examples were presented for

this validation exercise. These numerical examples include composite plate subjected to

tensile load, out-of-plane load; buckling load and free vibration; a simply supported ring

subjected to uniform out-of-plane load; and a clamped ring subjected to uniform out-of-

plane load.

7.2.1 FGC plate under tensile loading

Example 7.2.1: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to a tensile loading of 240kN. The task is to validate the displacement and

stress result of the Average Mindlin program against the result of the Abaqus package.

The FE modelling procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-13: Tensile case data

Geometry

L (m) 2.000 w (m) 1.000

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Applied Force

Fx (N) 2.400E+05

The notations used in Table 7-13 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.
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f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Fx represents the applied force in the x-direction.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with

72 four-noded Mindlin-type elements was selected. A tensile load of 240kN was applied

as an equivalent nodal loads at the nodes on the x=2 edge with reduced load at the corner

nodes. For example, in the 72 element case, the load was applied equally at nodes on the

x=2 edge but with half the loads at the corner nodes on the x=2 edge. Hence the

equivalent nodal loading for the 72 element case was 40kN at each nodes on the x=2 edge

with 20kN at corner nodes on the x=2 edge. The horizontal displacement of all the nodes

on the x=0 edge was fixed. The node at the (0, 0.5) coordinate was clamped (i.e. fixed in

all degrees of freedom).

In order to model the functional gradation of the FGC plate in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by

using the fibre distribution equations (i.e. Equation 3.34 and 3.38) developed in chapter 3.

The macro-mechanical properties were then computed for each element by substituting

the fibre and matrix volume fractions into the macro-mechanical equations developed in

chapter 3. For example in the case of the mesh with 72 elements, the composite plate has

12 divisions in the x-direction. Hence the macro-mechanical properties at the 12

positions along the x-direction were computed using the Excel Spreadsheet as shown in

Table 7-14. Each macro-mechanical property was then assigned to each element in the

Abaqus package based on the location of each element midpoint.
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Table 7-14: Computation of macro-mechanical properties

Functional gradation properties

P 1 Vf_ 0.4

V1 0.5

x1 (m) 0 x2 (m) 2

min 0 max 1

Q 0.5 

V2 0.3 

Macro-mechanical properties

x (m)  Vf Vm E11 (Pa) E22 (Pa) 12 12 (Pa)

0.083 0.042 0.492 0.508 1.148E+11 6.594E+09 0.325 2.535E+09

0.250 0.125 0.475 0.525 1.110E+11 6.391E+09 0.324 2.457E+09

0.417 0.208 0.458 0.542 1.073E+11 6.199E+09 0.323 2.383E+09

0.583 0.292 0.442 0.558 1.035E+11 6.019E+09 0.322 2.314E+09

0.750 0.375 0.425 0.575 9.971E+10 5.849E+09 0.321 2.249E+09

0.917 0.458 0.408 0.592 9.593E+10 5.688E+09 0.320 2.187E+09

1.083 0.542 0.392 0.608 9.215E+10 5.536E+09 0.320 2.129E+09

1.250 0.625 0.375 0.625 8.838E+10 5.392E+09 0.319 2.073E+09

1.417 0.708 0.358 0.642 8.460E+10 5.255E+09 0.318 2.021E+09

1.583 0.792 0.342 0.658 8.082E+10 5.125E+09 0.317 1.971E+09

1.750 0.875 0.325 0.675 7.705E+10 5.001E+09 0.316 1.923E+09

1.917 0.958 0.308 0.692 7.327E+10 4.883E+09 0.315 1.878E+09

The notations used in Table 7-14 are as described below.

P represents the gradation exponent of the FGC plate.

Vf_ represents the average volume fraction of fibre in the composite plate.

x1 and x2 represents the x=0 and x=2 edge respectively.

min and max represents the non-dimensional representation of the x=0 and x=2

edge respectively.

Q represents a constant term in the fibre distribution equation.

V2 represents the volume fraction of the fibre at the x=2 edge.

x represents the position in the x-direction

 represents the non-dimensional position in the x-direction.

Vf and Vm represent the volume fraction of the fibre and matrix respectively.

E11 and E22 represent the Young’s modulus in the “1” and “2” direction of the

material axes respectively.

12 represents the major Poisson’s ratio of the composite plate.
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12 represents the shear modulus in the material axes (i.e. axes 1-2).

FE convergence results

The displacement results of the Average Mindlin program and the Abaqus package were

analysed for different mesh cases and the results showed good convergence as shown in

Figures 7-9 to 7-10.

0.000E+00

5.000E-05

1.000E-04

1.500E-04

2.000E-04

2.500E-04

3.000E-04

3.500E-04

4.000E-04

4.500E-04

5.000E-04

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x (m)

u
(m

)

8 Average Mindlin-type elements

32 Average Mindlin-type elements

72 Average Mindlin-type elements

128 Average Mindlin-type elements

200 Average Mindlin-type elements

Figure 7-9: Mindlin program convergence check for the tension case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated against the Abaqus program in this example. The Ordinary

FE program is an independent validation program developed in-house for the finite

element analysis of structures made of composite materials without functional gradation.

In order to use the Ordinary FE program and the Abaqus program for analysing a FGC

plate under tension, the macro-mechanical properties of each element of the FGC plate

were manually computed at the midpoint of each element and fed into both programs.

Figure 7-11 shows the nodal displacement result along the y=0.5 line. The u-

displacement results of the Mindlin programs were in good agreement (most data points

overlap) with the result of the Abaqus program as shown in Figure 7-11. Also the results

of the Mindlin programs and the Abaqus program were results of the FGC plate case with

P=1 and V1=0.5. In Figure 7-11, the classical lamination theory result for a traditional

composite (i.e. composite case with P = 0) was plotted for comparison purpose. The

maximum deflection results for all the Mindlin programs and the Abaqus package were

in good agreement with each other. The u-displacement curves show that the FGC plate

experience higher stiffness and hence lower nodal displacement around the x=0 edge (due

to higher fibre volume fraction) relative to the traditional composite. The u-displacement

curves also show that the FGC plate experience lower stiffness and hence higher nodal

displacement around the x=2 edge (due to lower fibre volume fraction) relative to the

traditional composite.
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Figure 7-11: u-validation against Abaqus result for the tension case
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Figure 7-12 shows the stress result in the fibre direction (11) at x=0 and y=0.5. The 11

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC plate with a

stacking sequence of “[[-45/0/45]2]s”. It can be seen from Figure 7-12 that the 0o plies

have the highest 11 relative to the 45o plies and -45o plies. This is due to the fact that the

fibres in the 0o plies are aligned in the tensile force direction. Hence they carry a higher

share of the load relative to the share of load of fibres in the 45o plies and -45o plies.
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Figure 7-12: 11 validation against Abaqus result for the tension case
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Figure 7-13 shows the stress result in direction normal to the fibre direction (22) at x=0

and y=0.5. The 22 results of the Mindlin programs were in good agreement (most data

points overlap) with the result of the Abaqus package. It can be seen from Figure 7-13

that the 0o plies have compressive 22 values which are expected because the fibres are

aligned in the direction of the tensile load. Also the fibres of the 0o plies would only be

expected to experience compressive stress in the direction normal to the fibre direction.
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Figure 7-13: 22 validation against Abaqus result for the tension case
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Figure 7-14 shows the shear stress result (12) at x=0 and y=0.5. The 12 results of the

Mindlin programs were in good agreement (most data points overlap) with the result of

the Abaqus package. It can be seen from Figure 7-14 that the 0o plies have no shear

stress which is expected because the fibres are aligned in the direction of the tensile load.

It can also be seen that the 45o plies exhibit an equal but opposite shear stress in

comparison with the -45o plies which is due to the stacking sequence of the composite.
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Figure 7-14: 12 validation against Abaqus result for the tension case
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7.2.2: FGC plate under out-of-plane bending

Example 7.2.2: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to an out-of-plane bending load of 1.2kN. The task is to validate the

displacement and stress result of the Average Mindlin FE program against the result of

the Abaqus package. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are the same as the one given in

Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with

72 four-noded Mindlin-type elements was selected. An out-of-plane bending load of

1.2kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with

reduced load at the corner nodes. For example, in the 72 element case, the load was

applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on

the x=2 edge as shown in Table 7-15.

Table 7-15: Applied load for the out-of-plane bending case

Nodes Applied load

Nodes on the x=2 edge excluding corner
nodes (i.e. node 13 and 14)

Fz = 0.2kN

Corner nodes (i.e. node 13 and 14) Fz = 0.1kN

The boundary condition shown in Table 7-16 was applied to the FE models.

Table 7-16: Boundary condition for the out-of-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0

In order to model the functional gradation of the FGC plate in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.1.1.

FE convergence results

The w-displacement results of the Average Mindlin program and the Abaqus package

were analysed for different mesh cases and the results showed good convergence as

shown in Figures 7-15 and 7-16.
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Figure 7-15: Mindlin program convergence check for the out-of-plane bending case
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Mindlin program validation result

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated in this example. The results of the Mindlin programs and the

Abaqus package shown in Figure 7-17 were results of the FGC plate case with P=1 and

V1=0.5. It can be seen from Figure 7-17 that the w-displacement results of the Mindlin

programs were in good agreement (most data points overlap) with the result of the

Abaqus package.
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Figure 7-17: w-displacement validation against Abaqus result for the out-of-plane
bending case
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Figure 7-18 shows the stress result in the fibre direction (11) at x=0 and y=0.5. The 11

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC plate with a

stacking sequence of “[[-45/0/45]2]s”. It can be seen from Figure 7-18 that the 2nd and

11th plies have the highest absolute 11 values. This is due to the combined effect of 0o

fibre orientation and the fact that the tensile and compressive stress (due to the applied

out-of-plane bending load) increases away from the midplane of the composite plate.

The 0o fibre orientations are aligned in the direction of the tensile and compressive stress

caused by the out-of-plane bending load. Hence the 0o plies experience a higher share of

11 relative to the 45o plies and -45o plies. Since the 2nd and 11th plies have 0o fibre

orientation and they are the furthest 0o plies from the midplane, it is expected that they

have the highest 11 values which are equal in magnitude and opposite in direction.
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Figure 7-18: 11 validation against Abaqus result for the out-of-plane bending case
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Figure 7-19 shows the stress result in direction normal to the fibre direction (22) at x=0

and y=0.5. The 22 results of the Mindlin programs were in good agreement (most data

points overlap) with the result of the Abaqus package. It can be seen from Figure 7-19

that the 1st and 12th plies have the highest absolute 22 values. This is due to the

combined effect of fibre orientation and the fact that the tensile and compressive stress

(due to the applied out-of-plane bending load) increases away from the midplane of the

composite plate. The -45o fibre orientations are not aligned in the direction of the tensile

and compressive stress caused by the applied out-of-plane bending load. Hence the -45o

plies experience a higher share of 22 relative to 0o plies and 45o plies. Since the 1st and

12th plies have -45o fibre orientation and they are the furthest -45o ply from the midplane,

it is expected that they have the highest 22 values which are equal in magnitude and

opposite in direction.

-2.000E+06

-1.500E+06

-1.000E+06

-5.000E+05

0.000E+00

5.000E+05

1.000E+06

1.500E+06

2.000E+06

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

z (m)

s
2

2
(N

/m
2
)

Smooth Mindlin-type elements
Average Mindlin-type elements
Ordinary Mindlin-type elements
Abaqus S4-elements

Figure 7-19: 22 validation against Abaqus result for the out-of-plane bending case
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Figure 7-20 shows the shear stress result (12) at x=0 and y=0.5. The 12 results of the

Mindlin programs were in good agreement (most data points overlap) with the result of

the Abaqus package. It can also be seen from the graph that 12 increases away from the

midplane of the composite plate for each ply with specific fibre orientation.
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Figure 7-20: 12 validation against Abaqus result for the out-of-plane bending case
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7.2.3 FGC plate under compressive loading

Example 7.2.3: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to a compressive load of 24kN. The values of the functional gradation

properties include gradation exponent, P=1 and gradation offset, V1=0.5. The task is to

validate the buckling eigenvalue results of the Mindlin programs against the result of the

Abaqus package. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are the same as the one given in

Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with

72 four-noded Mindlin-type elements was selected. A buckling load of 24kN was

applied as an equivalent nodal loads at the nodes on the x=2 edge with reduced load at

the corner nodes. For example, in the 72 element case, the load was applied equally at

nodes on the x=2 edge but with half the loads at the corner nodes on the x=2 edge as

shown in Table 7-17.

Table 7-17: Applied load for the buckling case

Nodes Applied load

Nodes on the x=2 edge excluding corner nodes
(i.e. node 13 and 14)

Fx = 4kN

Corner nodes (i.e. node 13 and 14) Fx = 2kN

The boundary condition shown in Table 7-17 was applied to the FE model.

Table 7-18: Boundary condition for the buckling case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0

Nodes on the x=2 edge w = 0

In order to model the functional gradation of the FGC plate in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.1.1.

FE convergence and validation results

In this example, the first three buckling modes were analysed. The buckling eigenvalue

is the ratio of critical buckling load to the applied load. The buckling eigenvalue results

of the Mindlin programs and the Abaqus package were analysed for different mesh cases

and the results showed good convergence as shown in Table 7-19. This table also shows

that the buckling eigenvalue results of the Mindlin programs were in good agreement

with the results of the Abaqus package. It can also be seen that for accurate eigenvalue

prediction of higher buckling modes, finer meshes are required.

Table 7-19: Validation for the buckling case using Abaqus program

Buckling Eigenvalues

Abaqus S4-elements 1
st

Mode 2
nd

Mode 3
rd

Mode

8 Elements 25.62 88.49 141.65

32 Elements 20.79 67.06 87.69

72 Elements 20.00 61.20 83.61

128 Elements 20.26 61.81 87.54

Average Mindlin-type elements 1
st

Mode 2
nd

Mode 3
rd

Mode

8 Elements 23.97 82.74 99.44

32 Elements 20.65 67.19 86.18

72 Elements 20.01 61.57 83.22

128 Elements 19.77 59.68 82.08

Smooth Mindlin-type elements 1
st

Mode 2
nd

Mode 3
rd

Mode

8 Elements 23.98 82.39 99.47

32 Elements 20.65 67.18 86.09

72 Elements 20.01 61.57 83.17

128 Elements 19.77 59.68 82.05
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7.2.4 FGC plate under free vibration

Example 7.2.4: Consider a rectangular FGC plate with a “[[-45/0/45]2]s” stacking

sequence under free vibration. The values of the functional gradation properties include

gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the natural

frequency results of the Mindlin programs against the result of the Abaqus package. The

FE modelling procedure is presented for this example. The geometrical properties and

micro-mechanical properties are the same as the one given in Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. The

boundary condition shown in Table 7-20 was applied to the FE model.

Table 7-20: Boundary condition for the free vibration case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0

In order to model the functional gradation of the FGC plate in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by

using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.1.1.

FE convergence and validation results

In this example, the first three free vibration modes were analysed. The first three

fundamental frequency results of the Mindlin programs and the Abaqus package were

analysed for different mesh cases and the results showed good convergence as shown in

Table 7-21. This table also shows that the first three fundamental frequency results of the

Mindlin programs were in good agreement with the results of the Abaqus package. The

results also show that finer meshes are needed to accurately predict higher natural

frequency modes.
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Table 7-21: Validation for the free vibration case using Abaqus program

Natural frequencies (Hz)

Abaqus S4-elements 1
st

Mode 2
nd

Mode 3
rd

Mode

8 Elements 7.13 29.04 47.42

32 Elements 7.12 28.64 42.63

72 Elements 7.10 28.41 41.73

128 Elements 7.04 28.29 41.44

200 Elements 7.01 28.32 41.62

Average Mindlin-type elements 1
st

Mode 2
nd

Mode 3
rd

Mode

8 Elements 6.95 28.68 46.71

32 Elements 7.11 28.68 42.59

72 Elements 7.10 28.46 41.80

128 Elements 7.10 28.38 41.50

200 Elements 7.10 28.36 41.35

Smooth Mindlin-type elements 1st Mode 2nd Mode 3rd Mode

8 Elements 6.96 28.70 46.78

32 Elements 7.11 28.68 42.60

72 Elements 7.10 28.46 41.81

128 Elements 7.10 28.38 41.50

200 Elements 7.10 28.36 41.36

7.2.5 Traditional composite plate with a central hole under tension

Example 7.2.5: A rectangular traditional composite plate with a central hole a

“[[-45/0/45]2]s” stacking sequence was subjected to a tensile loading of 24kN. The task is

to validate the displacement results of the Average Mindlin FE program against the result

of the Abaqus package. The FE modelling procedure is presented for this example. The

geometrical properties, micro-mechanical properties and loading condition are as given in

Example 7.1.4.

FE Modelling

In order to model the composite plate with a central hole under uniaxial tensile loading,

the model was divided into four equal quarters. One of the quarter models was then used

in the FE modelling by applying boundary conditions which takes advantage of

symmetrical nature of the full model. These include specifying the u-displacement of the

nodes on the x=0 edge as zero and also specifying the v-displacement of the nodes on the

y=0 edge as zero. Different meshes were employed in this example to check for
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convergence. A mesh with 180 four-noded Mindlin-type elements was selected. A

tensile load of 24kN was applied as an equivalent nodal loads at the nodes on the x=2

edge with reduced load at the corner nodes. For example, in the 180 element case, the

load was applied equally at nodes on the x=2 edge but with half the loads at the corner

nodes on the x=2 edge. Hence the equivalent nodal loading for the 180 element case was

4.8kN at each nodes on the x=2 edge with 2.4kN at corner nodes on the x=2 edge.

FE convergence results

The displacement results of the Average Mindlin program and the Abaqus package were

analysed for different mesh cases and the results showed good convergence as shown in

Figures 7-21 and 7-22.
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Figure 7-21: Mindlin program convergence check for the rectangular plate case
with a hole
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated in this example. The Ordinary FE program is an

independent validation program developed in-house for the finite element analysis of

structures made of composite materials without functional gradation. The u-displacement

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package as shown in Figure 7-23.
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Figure 7-23: u-displacement validation against Abaqus result for the rectangular
plate case with a hole
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7.2.6 Simply supported FGC ring case

Example 7.2.6: A simply supported FGC ring with a “[[-45/0/45]2]s” stacking sequence

was subjected to a pressure loading of 50kPa. The task is to validate the displacement

and stress result of the Average Mindlin program against the result of the Abaqus

package. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-22: Data for the simply supported ring case

Geometry

Ri (m) 0.500 Ro (m) 1.000

t (m) 0.030 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

The notations used in Table 7-22 are as described below.

Ri, Ro and t, represent the inner radius, outer radius, thickness of ply respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

FE Modelling

A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. Different meshes were

employed in this example to check for convergence. A triangular element has been

employed in order to demonstrate and validate the capability of the Mindlin programs in

modelling with triangular elements. A mesh with 128 triangular elements is as shown in

Figure 7-24. The element employed for the Mindlin programs is a triangular Average

Mindlin-type element. The element employed for the Abaqus package is a triangular

shell element called S3-element.
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Figure 7-24: 3-noded triangular element mesh for a simply supported ring

The loading and boundary condition shown in Figure 7-25 was applied to the FE models

in this example.

Figure 7-25: Loading and boundary condition for the simply supported ring case

Uniform pressure
applied in the out-
of-plane direction
i.e. z directionSymmetry condition

i.e. u=y=0 Simply supported
edge i.e. w=0

Simply supported
edge i.e. w=0

Symmetry condition

i.e. v=x=0
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In order to model the functional gradation of the FGC ring in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by

using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in the spreadsheet below.

Table 7-23: Computation of macro-mechanical properties

Functional gradation properties

P 1 Vf_ 0.4

V1 0.5

ri (m) 0.5 ro (m) 1

min 0 max 1

Q 0.5 

V2 0.3 

Macro-mechanical properties

r (m)  Vf Vm E11 (Pa) E22 (Pa) 12 12 (Pa)

0.5313 0.0625 0.4875 0.5125 1.139E+11 6.542E+09 0.3244 2.515E+09

0.5938 0.1875 0.4625 0.5375 1.082E+11 6.246E+09 0.3231 2.402E+09

0.6563 0.3125 0.4375 0.5625 1.025E+11 5.976E+09 0.3219 2.298E+09

0.7188 0.4375 0.4125 0.5875 9.687E+10 5.728E+09 0.3206 2.203E+09

0.7813 0.5625 0.3875 0.6125 9.121E+10 5.500E+09 0.3194 2.115E+09

0.8438 0.6875 0.3625 0.6375 8.554E+10 5.289E+09 0.3181 2.034E+09

0.9063 0.8125 0.3375 0.6625 7.988E+10 5.094E+09 0.3169 1.959E+09

0.9688 0.9375 0.3125 0.6875 7.421E+10 4.912E+09 0.3156 1.889E+09

FE convergence results

The w-displacement results of the triangular Average Mindlin-type elements and the

Abaqus S3-elements were analysed for different mesh cases and the results showed good

convergence as shown in Figures 7-26 and 7-27.
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Figure 7-26: Mindlin program convergence check for the simply supported ring
case
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Figure 7-27: Abaqus program convergence check for the simply supported ring case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated in this example using the mesh with 200 elements. The

results of the Mindlin programs and the Abaqus package shown in Figure 7-28 were

results of the FGC ring case with P=1 and V1=0.5. It can be seen from Figure 7-28 that

the w-displacement results of the Mindlin programs slightly differ from the result of the

Abaqus package. In Figures 7-26 and 7-27, it can be seen that the result of the 200

Abaqus S3-elements agrees well (most data points overlap) with the results of the 72

triangular Mindlin-type elements.
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Figure 7-28: w-displacement validation against Abaqus result for the simply
supported ring case
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Figure 7-29 shows the stress result in the fibre direction (11) at x=0 and y=0.75. The 11

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies above the midplane

experience tensile stresses and the ones below the midplane experience compressive

stresses which is a shown in Figure 7-29. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-29: 11 validation against Abaqus result for the simply supported ring case
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Figure 7-30 shows the stress result in the fibre direction (22) at x=0 and y=0.75. The 22

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies above the midplane

experience tensile stresses and the ones below the midplane experience compressive

stresses which is a shown in Figure 7-30. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-30: 22 validation against Abaqus result for the simply supported ring case
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Figure 7-31 shows the stress result in the fibre direction (12) at x=0 and y=0.75. The 12

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies equidistant from the

midplane experience stresses which are equal in magnitude but opposite in direction.

This phenomenon can be seen in Figure 7-31.
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Figure 7-31: 12 validation against Abaqus result for the simply supported ring case
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7.2.7 Clamped FGC ring case

Example 7.2.7: A clamped FGC ring with a “[[-45/0/45]2]s” stacking sequence was

subjected to a pressure loading of 50kPa. The task is to validate the displacement and

stress result of the Average Mindlin program against the result of the Abaqus package.

The FE modelling procedure is presented for this example. The geometrical properties

and micro-mechanical properties are as in Example 7.2.5.

FE Modelling

A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. Different meshes were

employed in this example to check for convergence. A triangular element has been

employed in order to demonstrate and validate the capability of the Mindlin programs in

modelling with triangular elements. The element employed for the Mindlin programs is a

triangular Average Mindlin-type element. The element employed for the Abaqus

package is a triangular shell element called S3-element.

The loading and boundary condition shown in Figure 7-32 was applied to the FE models

in this example.

Figure 7-32: Loading and boundary condition for the simply supported ring case

In order to model the functional gradation of the FGC ring in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.2.5.

FE convergence results

The w-displacement results of the triangular Average Mindlin-type elements and the

Abaqus S3-elements were analysed for different mesh cases and the results showed good

convergence as shown in Figures 7-33 and 7-34.
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case
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Figure 7-34: Abaqus program convergence check for the simply supported ring case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated in this example using the mesh with 200 elements. The

results of the Mindlin programs and the Abaqus package shown in Figure 7-35 were

results of the FGC ring case with P=1 and V1=0.5. It can be seen from Figure 7-35 that

the w-displacement results of the Mindlin programs show a close agreement (most data

points overlap) with the result of the Abaqus package.
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Figure 7-35: w-displacement validation against Abaqus result for the clamped ring
case
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Figure 7-36 shows the stress result in the fibre direction (11) at x=0 and y=0.75. The 11

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies above the midplane

experience tensile stresses and the ones below the midplane experience compressive

stresses which is a shown in Figure 7-36. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-36: 11 validation against Abaqus result for the clamped ring case
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Figure 7-37 shows the stress result in the fibre direction (22) at x=0 and y=0.75. The 22

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies above the midplane

experience tensile stresses and the ones below the midplane experience compressive

stresses which is a shown in Figure 7-37. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-37: 22 validation against Abaqus result for the clamped ring case
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Figure 7-38 shows the stress result in the fibre direction (12) at x=0 and y=0.75. The 12

results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abaqus package. The results shown below are for a FGC ring with a

stacking sequence of “[[-45/0/45]2]s”. It is expected that the plies equidistant from the

midplane experience stresses which are equal in magnitude but opposite in direction.

This phenomenon can be seen in Figure 7-38.
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Figure 7-38: 12 validation against Abaqus result for the clamped ring case
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7.3 Program Validation against Ordinary Program

In this section, the Mindlin programs (i.e. Average and Smooth Mindlin program) were

validated against the Ordinary Mindlin program. Also the Reissner programs (i.e.

Average and Smooth Reissner program) were validated against the Ordinary Reissner

programs. The Ordinary FE programs are programs developed in-house for the finite

element analysis of structures made of composite materials without functional gradation.

The Ordinary FE programs include the Ordinary Mindlin Program, Ordinary non-

conforming and conforming Reissner program. The Ordinary FE programs were used to

validate the infinitesimal and finite strain part of the Mindlin and Reissner programs for

the analysis of functionally graded composite (FGC). Also, the progressive damage

capabilities of the Mindlin and Reissner programs were validated. In this section, some

numerical examples were presented for this validation exercise. These numerical

examples include FGC plate subjected to tensile load, out-of-plane load; buckling load

and free vibration; a simply supported ring subjected to uniform out-of-plane load; and a

clamped ring subjected to uniform out-of-plane load.

7.3.1 FGC plate under tensile loading

Example 7.3.1: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to a tensile loading of 8MN. The task is to validate the displacement, stress and

the progressive damage result of the Mindlin and Reissner programs against the result of

the Ordinary FE programs. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data were obtained from a textbook by Kaw (1997).
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Table 7-24: Tensile case data

Geometry

L (m) 2.000 w (m) 1.000

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Strength properties

Xmt (Pa) 7.200E7 Xmc (Pa) 1.020E8 Xms (Pa) 3.400E7

Xft (Pa) 2.067E9 Xfc (Pa) 1.999E9 rm (Pa) 0.0

k 1 k 1 

The notations used in Table 7-24 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Xmt, Xmc and Xms represent the tensile, compressive and the shear strength of the

matrix respectively.

Xft and Xfc represent the tensile and compressive strength of the matrix

respectively.

rm represent the maximum residual radial stress at the interface.

k and k represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the

conforming Reissner program. A mesh containing 128 4-noded non-conforming

elements was employed for the non-conforming Reissner program. A tensile load of

8MN was applied as an equivalent nodal loads at the nodes on the x=2 edge with reduced

load at the corner nodes. For example, in the 128 element case, the load was applied

equally at nodes on the x=2 edge but with half the loads at the corner nodes on the x=2
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edge. Hence the equivalent nodal loading for the 128 element case was 1MN at each

nodes on the x=2 edge with 500kN at the corner nodes on the x=2 edge. In order to

model the finite strain, a tenth of the equivalent nodal loading was applied at every load

increment.

The boundary condition shown in Table 7-25 was applied to the FE model.

Table 7-25: Boundary condition for the tensile case

Nodes Boundary condition

Node 20 (i.e. node at (0, 0.5) coordinate) u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at Node 20)

Nodes on the x=0 edge excluding node 20 u = 0

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,

the fibre and matrix volume fractions were computed for each element at their midpoints

by using the fibre distribution equations (i.e. Equation 3.34 and 3.38) developed in

chapter 3. The macro-mechanical properties were then computed for each element by

substituting the fibre and matrix volume fractions into the macro-mechanical equations

developed in chapter 3. The computed macro-mechanical properties of each element of

the FGC plate were then fed into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-39 and 7-40 show the nodal displacement results along the y=0.5 line for a

FGC plate case with P=1 and V1=0.5 at the 9th load increment. The displacement results

for the Mindlin and Reissner programs were in good agreement with the Ordinary FE

program. The slope of the u-displacement curve, u/x increases as the nodal position, x

increases. This implies that the FGC plate experience increase in change in u-

displacement, u; and hence reduction in longitudinal stiffness as the nodal position, x

increases. This result can be attributed to reduction in fibre volume fraction as the nodal

position, x increases. The v-displacement results along the y=0.5 line are zeroes as

expected because the FGC plate is fixed in the x and y directions at the (0, 0.5)

coordinate and it is subjected to a tensile load.
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Figure 7-39: Displacement validation against Ordinary Mindlin program for the
tension case
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Figure 7-41 shows the through-thickness stress result in the fibre direction at node 1 (i.e.

the (0, 0) coordinate) for a FGC plate case with P=1 and V1=0.5 at the 9th load increment.

The stress results of the Average and Smooth Mindlin programs were in good agreement

with the result of the Ordinary Mindlin program. It can be seen from Figure 7-41 that the

0o plies have the highest 11 relative to the 45o plies and -45o plies. This is due to the fact

that the fibres in the 0o plies are aligned in the tensile force direction. Hence they carry a

higher share of the load relative to the share of load of fibres in the 45o plies and -45o

plies.
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Figure 7-41: Stress validation against Ordinary Mindlin program for the tension
case
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In order to model the progressive damage, a check for failure was undertaken at the node

of each element for every load increment and if failure is detected, material properties of

the element are degraded and equilibrium is re-established. The failure criterion that was

used in checking for failure is the Tsai-Hill failure criterion. Figure 7-42 shows the

damage contour plot for the first three layers of a FGC plate case with P=1 and V1=0.5 at

the 9th load increment. This figure also shows the typical damage contour plot of all the

programs for the FGC plate under tension. The damage contour plot is the plot of the

Tsai-Hill failure index at all nodes on the FGC plate. If the Tsai-Hill failure index is

greater than one, then the composite plate is damaged, else the composite plate is

undamaged. The Tsai-Hill failure index was obtained using the equation provided in

Chapter 3.

In order to understand the damage results in Figure 7-42, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plot that the 0o plies were more susceptible to

damage because they carry higher share of the load in comparison to the 45o and -45o

plies. This is due to the fact that the fibre orientations in the 0o plies were aligned in the

direction of the tensile load. The damage results were expected results because damage

contour plot were based on Tsai-Hill failure index which is a function of fibre orientation.

The effect of functional gradation can be seen in all the three plies but it is more

pronounced in the 0o plies as shown for the 2nd ply in Figure 7-42. The figure shows that

the ply is stronger around the x=0 edge than it is around the x=2 edge hence the

undamaged regions are regions close the x=0 edge as shown in Figure 7-42. Also the

results include the effect of stress transfer. This effect is due to the undamaged regions

being stiffer than the damaged regions and they carry a large portion of the extra loads

that were meant for the damaged regions and therefore the undamaged regions are

stressed more. Hence this results in stress transfer occurring both in the in-plane and out-

of-plane directions.
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Figure 7-42: Damage contour plot of the first three plies for the tension case
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Since failure was more pronounced in the 2nd ply, a closer study of the progressive

damage of the 2nd ply was undertaken. Figure 7-43 shows the progressive damage

contour plot for the 2nd ply (i.e. 0o ply) of a FGC plate case with P=1 and V1=0.5 for nine

load increments. This figure also shows the typical progressive damage contour plot of

all the programs for the FGC plate under tension. The damage contour plot is the plot of

the failure index at all nodes on the FGC plate. If failure index is greater than one, then

the composite plate is damaged, else the composite plate is undamaged. It can be seen

from the damage contour plot that failure index increases as the nodal position, x

increases. This indicates that the weaker region is the region around the x=2 edge. Also

no damage occurred at the first nine load increments but on the tenth load increment, the

program could not establish equilibrium and hence it could not provide a solution. This

implies that complete damage has occurred in the FGC plate at the tenth load increment.

Figure 7-43: Progressive damage contour plot of the second ply for the tension case
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Figure 7-44 shows the progressive damage plot for the 2nd ply (i.e. 0o ply) of a FGC plate

case with P=1 and V1=0.5 for the 6th to 9th load increment. This figure also shows the

progressive damage plot of the Average and Smooth Mindlin programs for the FGC plate

under tension. The results were in good agreement with each other. The damage plot is

the plot of the failure index at all nodes on the y=0.5 line of the FGC plate. It can be seen

from the damage plot that failure index increases as the nodal position, x increases. This

indicates that the weaker region is the region around the x=2 edge.
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Figure 7-44: Progressive damage plot of the second ply for the tension case
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7.3.2 FGC plate under in-plane bending

Example 7.3.2: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to an in-plane bending load of 1.6MN. The task is to validate the displacement,

stress and the progressive damage result of the Mindlin and Reissner programs against

the result of the Ordinary FE programs. The FE modelling procedure is presented for this

example. The geometrical properties and micro-mechanical properties are as given in

Example 7.3.1.

FE Modelling

The FGC plate has a mid-plane as shown in Figure 7-45. A mesh containing 128 4-

noded Mindlin-type elements was employed for the Mindlin programs. A mesh

containing 128 4-noded conforming elements was employed for the conforming Reissner

program. A mesh containing 128 4-noded non-conforming elements was employed for

the non-conforming Reissner program. An in-plane load of 1.6MN was applied as an

equivalent nodal loads at the nodes on the x=2 edge with reduced load at the corner

nodes. For example, in the 128 element case, the load was applied equally at nodes on

the x=2 edge but with half of the loads at the corner nodes on the x=2 edge as shown in

Figure 7-45. Hence the equivalent nodal loading for the 128 element case was 200kN at

each nodes on the x=2 edge with 100kN at corner nodes on the x=2 edge. In order to

model the finite strain, a tenth of the equivalent nodal loading was applied at every load

increment.

The boundary condition shown in Table 7-26 was applied to the FE model.

Table 7-26: Boundary condition for the in-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at the x=0 edge)
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Figure 7-45: 4-noded element mesh for the in-plane bending case

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,

the fibre and matrix volume fractions were computed for each element at their midpoints

by using the fibre distribution equations (i.e. Equation 3.34 and 3.38) developed in

chapter 3. The macro-mechanical properties were then computed for each element by

substituting the fibre and matrix volume fractions into the macro-mechanical equations

developed in chapter 3. The computed macro-mechanical properties of each element of

the FGC plate were then fed into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figure 7-46 and 7-47 show the nodal displacement results along the y=0.5 line for a FGC

plate case with P=1 and V1=0.5 at the 9th load increment. The displacement results for

the Mindlin and Reissner programs were in good agreement with the Ordinary FE

program. It can be seen that the v-displacement curve has a zero slope at the x=0 edge

which is due to the fact that the FGC plate is clamped at the x=0 edge. The slope of the

v-displacement curve, v/x then gradually increases with increase in the nodal position,

x; due to the coupled effect of the bending curvature and functional gradation properties.
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Figure 7-46: v-displacement validation against Ordinary Mindlin program for the
in-plane bending case
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Figure 7-47: v-displacement validation against Ordinary Reissner program for the
in-plane bending case
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Figure 7-48 shows the through-thickness stress result in the fibre direction at node 1 (i.e.

the (0, 0) coordinate) for a FGC plate case with P=1 and V1=0.5 at the 9th load increment.

The stress results of the Average and Smooth Mindlin programs were in good agreement

with the result of the Ordinary Mindlin program. The in-plane bending load results in a

tensile force on the y=0 edge and a compressive force on the y=1 edge. The tensile force

on the y=0 edge results in the highest 11 at node 1 on the 0o plies due to the alignment of

the fibres with the tensile force. This effect results in the 0o plies carrying the highest

share of the load. Also the combined effect of the tensile force on the y=0 edge and

compressive force on the y=1 edge results in a high value of 11 at node 1 on the 45o plies

due to the fibre alignment of the plies.
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Figure 7-48: Stress validation against Ordinary Mindlin program for the in-plane
bending case
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The progressive damage modelling employed in this example is as described in Example

7.3.1. Figure 7-49 shows the damage contour plot for the first three layers of a FGC plate

case with P=1 and V1=0.5 at the 9th load increment. This figure also shows the typical

damage contour plot of all the programs for the FGC plate under in-plane bending.

In order to understand the damage results in Figure 7-49, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plots that most region around the y=0 and y=1

edges for most of the plies were damaged. But the y=1 edge of the 0o plies were less

damaged in comparison to the other plies. This is expected because the fibre orientation

of the 0o plies were aligned to the compressive force (due to in-plane bending load) on

the y=1 edge. Hence the damage at the y=1 edge for the 0o plies were dependent on the

strength of the fibre. Also the damage results include the effect of stress transfer. This

effect is due to the undamaged regions being stiffer than the damaged regions and they

carry a large portion of the extra loads that were meant for the damaged regions and

therefore the undamaged regions are stressed more. Hence this results in stress transfer

occurring both in the in-plane and out-of-plane directions.

Figure 7-49: Damage contour plot of the first three plies for the in-plane bending
case
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Since failure was more pronounced in the 1st and 3rd ply, a closer study of the progressive

damage of the 1st ply was undertaken. Figure 7-50 shows the progressive damage

contour plot for the 1st ply (i.e. -45o ply) of a FGC plate case with P=1 and V1=0.5 for

nine load increments. This figure also shows the typical progressive damage contour plot

of all the programs for the FGC plate under in-plane bending. The damage contour plot

is the plot of the failure index at all nodes on the FGC plate. If failure index is greater

than one, then the composite plate is damaged, else the composite plate is undamaged. It

can be seen from the damage contour plot that damage was initiated during the 6th load

increment at the corner nodes on the y=0 edge. The damage then spreads towards the

y=0.5 line and towards the x=2 edge in subsequent load increments.

Figure 7-50: Progressive damage contour plot of the first ply for the in-plane
bending case

Figure 7-51 shows the progressive damage plot for the 2nd ply (i.e. 0o ply) of a FGC plate

case with P=1 and V1=0.5 for the 5th to 8th load increment. This figure also shows the

progressive damage plot of the Average and Smooth Mindlin programs for the FGC plate

under in-plane bending. The results were in good agreement with each other. The

damage plot is the plot of the failure index at all nodes on the y=0 edge of the FGC plate.

It can be seen from the damage contour plot that failure index reduces as the nodal
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position, x increases. This indicates that the maximum bending moment is experienced at

the (0, 0) and (0, 1) coordinates, which results in maximum bending stress at this edge

and hence maximum failure index.

The damage curves were smooth from the 1st load increment to the 5th load increment,

which is the load increment before the onset of damage. After the damage at the 6th load

increment, the curves is no longer smooth, this effect is due to stress transfer which

occurs when undamaged region carry the extra load of the damaged region. Also the 7th

and 8th load increments have some missing failure indices around the x=0 region. This

effect is due to the fact that when an element has completely failed, the stiffness value at

each node of the element is degraded to zero, hence nodal stress of the element is zero

resulting in a nodal failure index value of zero. The nodal failure index values of zero are

eliminated from the plot to best demonstrate the progressive damage, since damage

occurs when failure index exceeds the value of one.
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Figure 7-51: Progressive damage plot of the first ply for the in-plane bending case



181

7.3.3 FGC plate under out-of-plane bending

Example 7.3.3: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to an out-of-plane bending load of 36kN. The task is to validate the

displacement and stress result of the Mindlin and Reissner programs against the result of

the Ordinary FE programs. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are the same as the one

given in Example 7.3.1.

FE Modelling

A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the

conforming Reissner program. A mesh containing 128 4-noded non-conforming

elements was employed for the non-conforming Reissner program. An out-of-plane

bending load of 36kN was applied as an equivalent nodal loads at the nodes on the x=2

edge with reduced load at the corner nodes. For example, in the 128 element case, the

load was applied equally at nodes on the x=2 edge but with half of the load at the corner

nodes on the x=2 edge. Hence the equivalent nodal loading for the 128 element case was

4.5kN at each nodes on the x=2 edge with 2.25kN at corner nodes on the x=2 edge.

The boundary condition shown in Table 7-27 was applied to the FE models in this

example.

Table 7-27: Boundary condition for the out-of-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at the x=0 edge)
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In order to model the functional gradation of the FGC plate in the Ordinary FE programs,

the fibre and matrix volume fractions were computed for each element at their midpoints

by using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element by substituting the fibre and matrix

volume fractions into the macro-mechanical equations developed in chapter 3. The

computed macro-mechanical properties of each element of the FGC plate were then fed

into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-52 and 7-53 show the nodal displacement results along the y=0.5 line for a

FGC plate case with P=1 and V1=0.5 at the 7th load increment. The displacement results

for the Mindlin and Reissner programs were in good agreement with the Ordinary FE

program. The displacement results of the Mindlin programs were not in good agreement

with the Reissner programs. This discrepancy can be explained by the difference in

transverse shear modelling employed in each program. Another reason for the

discrepancy is that damage had occurred in the region of the x=0 edge at the 7th load

increment for the Reissner programs but no damage had occurred in the FGC plate for the

Mindlin programs. It can be seen that the w-displacement curve has a zero slope at the

x=0 edge which is due to the fact that the FGC plate is clamped at the x=0 edge. The

slope of the w-displacement curve, w/x then gradually increases with increase in the

nodal position, x; due to the coupled effect of the bending curvature and functional

gradation properties.
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Figure 7-52: w-displacement validation against Ordinary Mindlin program for the
out-of-plane bending case
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Figure 7-53: w-displacement validation against Ordinary Reissner program for the
out-of-plane bending case
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Figure 7-54 shows the through-thickness stress result in the fibre direction at node 1 (i.e.

the (0, 0) coordinate) for a FGC plate case with P=1 and V1=0.5 at the 7th load increment.

The stress results of the Average and Smooth conforming Reissner programs were in

good agreement with the result of the Ordinary conforming Reissner program. The out-

of-plane bending load results in a tensile force on the top plies (i.e. plies at positive z

positions) and compressive force on the bottom plies (i.e. plies at negative z positions).

This effect results in a distribution of 11 across the plies with the maximum tensile stress

11 at the 1st ply (i.e. ply at z=0.015m) and maximum compressive stress 11 at the 12th

ply (i.e. ply at z=-0.015m).
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Figure 7-54: Stress validation against Ordinary Mindlin program for the out-of-
plane bending case
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The progressive damage modelling employed in this example is as described in Example

7.3.1. Figure 7-55 shows the damage contour plot for the first three layers of a FGC plate

case with P=1 and V1=0.5 at the 7th load increment. This figure also shows the typical

damage contour plot of most programs for the FGC plate under out-of-plane bending.

In order to understand the damage results in Figure 7-55, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plots that the region around the node at the (0, 1)

coordinate of the 1st ply (i.e. ply at z=0.015m) experienced the worst damage. The 12th

ply (i.e. ply at z=-0.015m) also experienced the same worst damage around the node at

the (0, 1) coordinate. The damage reduces for each ply in the direction towards the

midplane of the FGC plate. Also the damage results include the effect of stress transfer.

This effect is due to the undamaged regions being stiffer than the damaged regions and

they carry a large portion of the extra loads that were meant for the damaged regions and

therefore the undamaged regions are stressed more. Hence this results in stress transfer

occurring both in the in-plane and out-of-plane directions.

Figure 7-55: Damage contour plot of the first three plies for the out-of-plane
bending case
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Since failure was more pronounced in the 1st ply, a closer study of the progressive

damage of the 1st ply was undertaken. Figure 7-56 shows the progressive damage

contour plot for the 1st ply (i.e. -45o ply) of a FGC plate case with P=1 and V1=0.5 for

seven load increments. This figure also shows the typical progressive damage contour

plot of most programs for the FGC plate under out-of-plane bending. The damage

contour plot is the plot of the failure index at all nodes on the FGC plate. If failure index

is greater than one, then the composite plate is damaged, else the composite plate is

undamaged. It can be seen from the damage contour plot that damage was initiated

during the 6th load increment at the corner nodes on the (0, 1) coordinate. The damage

then spreads towards the x=2 edge in subsequent load increments.

Figure 7-56: Progressive damage contour plot of the first ply for the out-of-plane
bending case
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Figure 7-57 shows the progressive damage plot for the 1st ply (i.e. -45o ply) of a FGC

plate case with P=1 and V1=0.5 for the 4th to 7th load increment. This figure also shows

the progressive damage plot of the Average and Smooth conforming Reissner programs

for the FGC plate under out-of-plane bending. The results were in good agreement with

each other. The damage plot is the plot of the failure index at all nodes on the y=0.5 line

of the FGC plate. It can be seen from the damage contour plot that the failure index

decreases as the nodal position, x increases. This indicates that the maximum bending

moment is experienced at the x=0 edge which results in maximum bending stress at this

edge and hence maximum failure index. No damage was encountered on the nodes on

the y=0.5 line of the FGC plate.
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Figure 7-57: Progressive damage plot of the first ply for the out-of-plane bending
case
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7.3.4 FGC plate under compressive loading

Example 7.3.4: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence

subjected to a compressive load of 24kN. The values of the functional gradation

properties include gradation exponent, P=1 and gradation offset, V1=0.5. The task is to

validate the buckling eigenvalue results of the Reissner programs against the results of

the Mindlin programs. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are the same as the one given in

Example 7.1.1.

FE Modelling

A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the

conforming Reissner program. A mesh containing 128 4-noded non-conforming

elements was employed for the non-conforming Reissner program. A buckling load of

24kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with reduced

load at the corner nodes. For example, in the 128 element case, the load was applied

equally at nodes on the x=2 edge but with half of the load at the corner nodes on the x=2

edge. Hence the equivalent nodal loading for the 128 element case was 3.0kN at each

nodes on the x=2 edge with 1.5kN at corner nodes on the x=2 edge.

The boundary condition shown in Table 7-28 was applied to the FE models in this

example.

Table 7-28: Boundary condition for the buckling case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at the x=0 edge)

Nodes on the x=2 edge w = 0



189

Mindlin and Reissner program validation results

In this example, the first three buckling modes were analysed. The buckling eigenvalue

is the ratio of critical buckling load to the applied load. The buckling eigenvalue results

of the Mindlin programs, Reissner programs and the Abaqus package were analysed for

the 128 element mesh case. Table 7-29 shows that the buckling eigenvalue results of the

Mindlin and Reissner programs were in good agreement with the results of the Abaqus

package.

Table 7-29: Validation for the buckling case using Abaqus program

FE Models
Buckling Eigenvalues

1st Mode 2nd Mode 3rd Mode
Abaqus S4-elements 20.26 61.81 87.54
Average Mindlin elements 19.77 59.68 82.08
Smooth Mindlin elements 19.77 59.68 82.05
Smooth non-conforming Reissner elements 19.62 57.73 82.94
Average non-conforming Reissner elements 19.60 57.70 82.92
Smooth conforming Reissner elements 19.52 57.31 82.61
Average conforming Reissner elements 19.50 57.28 82.59

7.3.5 FGC plate under free vibration

Example 7.3.5: Consider a rectangular FGC plate with a “[[-45/0/45]2]s” stacking

sequence under free vibration. The values of the functional gradation properties include

gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the natural

frequency results of the Reissner programs against the result of the Mindlin programs.

The FE modelling procedure is presented for this example. The geometrical properties

and micro-mechanical properties are the same as the one given in Example 7.1.1.

FE Modelling

A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the

conforming Reissner program. A mesh containing 128 4-noded non-conforming

elements was employed for the non-conforming Reissner program.

The boundary condition shown in Table 7-30 was applied to the FE model.
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Table 7-30: Boundary condition for the free vibration case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at the x=0 edge)

Mindlin and Reissner program validation results

In this example, the first three free vibration modes were analysed. The first three

fundamental frequency results of the Mindlin programs, Reissner programs and the

Abaqus package were analysed for 128 element mesh case. Table 7-31 shows that the

first three fundamental frequency results of the Mindlin and Reissner programs were in

good agreement with the results of the Abaqus package.

Table 7-31: Validation for the free vibration case using Abaqus program

FE Models
Natural Frequencies (Hz)

1st Mode 2nd Mode 3rd Mode
Abaqus S4-elements 7.04 28.29 41.44
Average Mindlin elements 7.10 28.38 41.50
Smooth Mindlin elements 7.10 28.38 41.50
Smooth non-conforming Reissner elements 7.10 28.50 41.21
Average non-conforming Reissner elements 7.10 28.50 41.20
Smooth conforming Reissner elements 7.11 28.50 41.12
Average conforming Reissner elements 7.11 28.50 41.11
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7.3.6 FGC plate with a central hole under tensile loading

Example 7.3.6: A rectangular FGC plate with a central hole and a “[[-45/0/45]2]s”

stacking sequence was subjected to a tensile loading of 7.5MN. The values of the

functional gradation properties include gradation exponent, P=1 and gradation offset,

V1=0.5. The task is to validate the displacement results of Mindlin and Reissner

programs against the result of the Ordinary FE programs. The FE modelling procedure is

presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-32: Data for the FGC plate with a central hole

Geometry

L (m) 2.000 w (m) 1.000 R (m) 0.1

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

 

Strength properties  

Xmt (Pa) 7.200E7 Xmc (Pa) 1.020E8 Xms (Pa) 3.400E7

Xft (Pa) 2.067E9 Xfc (Pa) 1.999E9 rm (Pa) 0.0

k 1 k 1 

The notations used in Table 7-32 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.

R represents the radius of the hole.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Xmt, Xmc and Xms represent the tensile, compressive and the shear strength of the

matrix respectively.

Xft and Xfc represent the tensile and compressive strength of the matrix

respectively.

rm represent the maximum residual radial stress at the interface.
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k and k represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

In order to model the FGC plate with a central hole under uniaxial tensile loading, the

model was divided into four equal quarters. One of the quarter models was then used in

the FE modelling by applying boundary conditions which takes advantage of symmetrical

nature of the full model. A mesh containing 125 4-noded Mindlin-type elements was

employed for the Mindlin programs. A mesh containing 125 4-noded non-conforming

elements was employed for the non-conforming Reissner program. A tensile load of

7.5MN was applied as an equivalent nodal loads at the nodes on the x=2 edge with

reduced load at the corner nodes. For example, in the 125 element case, the load was

applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on

the x=2 edge. Hence the equivalent nodal loading for the 125 element case was 1.5MN at

each nodes on the x=2 edge with 750kN at the corner nodes on the x=2 edge. The

boundary condition shown in Table 7-33 was applied to the FE model.

Table 7-33: Boundary condition for the FGC plate with a central hole

Nodes Boundary condition

Nodes on the x=0 edge u = 0

Nodes on the y=0 edge v = 0

Mindlin and Reissner program validation results

Figures 7-58 and 7-59 show the nodal displacement results along the y=0 edge for a FGC

plate case with P=1 and V1=0.5 at the 9th load increment. The displacement results for

the Mindlin and Reissner programs were in good agreement with the Ordinary FE

program. The slope of the u-displacement curve, u/x gradually increases with increase

in the nodal position, x; due to the coupled effect of the central hole and functional

gradation properties. The v-displacement results along the y=0 edge are zeroes as

expected because a symmetry boundary condition was applied at the edge.
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Figure 7-58: Displacement validation against Ordinary Mindlin program for the
FGC plate with a hole
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Figure 7-59: Displacement validation against Ordinary Mindlin program for the
FGC plate with a hole



194

Figure 7-60 shows the through-thickness stress result in the fibre direction at node 1 (i.e.

the (0, 0) coordinate) for a FGC plate case with P=1 and V1=0.5 at the 9th load increment.

The stress results of the Average and Smooth Mindlin programs were in good agreement

with the result of the Ordinary Mindlin program. It can be seen from Figure 7-60 that the

0o plies have the highest 11 relative to the 45o plies and -45o plies. This is due to the fact

that the fibres in the 0o plies are aligned in the tensile force direction. Hence they carry a

higher share of the load relative to the share of load of fibres in the 45o plies and -45o

plies.
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Figure 7-60: Stress validation against Ordinary Mindlin program for the FGC plate
with a hole
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The progressive damage modelling employed in this example is as described in Example

7.3.1. Figure 7-61 shows the damage contour plot for the first three layers of a FGC plate

case with P=1 and V1=0.5 at the 9th load increment. This figure also shows the typical

damage contour plot of most programs for the FGC plate with central hole under tensile

loading.

In order to understand the damage results in Figure 7-61, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plot that the region around the edge of the central

hole has high failure index due to high stress concentration because the central hole act as

a stress raiser in the FGC plate. The effect of functional gradation can be seen in all the

three plies but it is more pronounced in the 0o plies as shown for the 2nd ply in

Figure 7-61. The figure shows that the ply is stronger around the x=0 edge than it is

around the x=2 edge hence the undamaged regions are regions close the x=0 edge as

shown in Figure 7-61. Also the results include the effect of stress transfer. This effect is

due to the undamaged regions being stiffer than the damaged regions and they carry a

large portion of the extra loads that were meant for the damaged regions and therefore the

undamaged regions are stressed more. Hence this results in stress transfer occurring both

in the in-plane and out-of-plane directions.
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Figure 7-61: Damage contour plot of the first three plies for the FGC plate with a
hole
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The 1st ply has been selected for a closer study of its progressive damage. Figure 7-62

shows the progressive damage contour plot for the 1st ply (i.e. -45o ply) of a FGC plate

case with P=1 and V1=0.5 for nine load increments. This figure also shows the typical

progressive damage contour plot of all the programs for the FGC plate with central hole

under tension. The damage contour plot is the plot of the failure index at all nodes on the

FGC plate. If failure index is greater than one, then the composite plate is damaged, else

the composite plate is undamaged. It can be seen from the damage contour plot that

damage was initiated during the 6th load increment at the region around the edge of the

central hole. The damage then gradually spreads in the FGC plate in subsequent load

increments.

Figure 7-62: Progressive damage contour plot of the first ply for the FGC plate with
a hole
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Figure 7-63 shows the progressive damage plot for the 1st ply (i.e. -45o ply) of a FGC

plate case with P=1 and V1=0.5 for the 6th to 9th load increment. This figure also shows

the progressive damage plot of the Average and Smooth Mindlin programs for the FGC

plate under tension. The results were in good agreement with each other. The damage

plot is the plot of the failure index at all nodes on the y=0 edge of the FGC plate. The

failure index curve is dependent on the effect of the central hole and functional gradation

properties.
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Figure 7-63: Progressive damage plot of the first ply for the FGC plate with a hole
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7.3.7 Simply supported FGC ring case

Example 7.3.7: A FGC ring with a “[[-45/0/45]2]s” stacking sequence was subjected to a

pressure loading of 2MPa. The values of the functional gradation properties include

gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the

displacement results of Mindlin and Reissner programs against the result of the Ordinary

FE programs. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data was obtained from a textbook by Kaw (1997).

Table 7-34: Data for the simply supported ring case

Geometry

Ri (m) 0.500 Ro (m) 1.000

t (m) 0.030 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

 

Strength properties  

Xmt (Pa) 2.067E9 Xmc (Pa) 1.999E9 Xms (Pa) 3.600E7

Xft (Pa) 7.200E7 Xfc (Pa) 1.020E8 rm (Pa) 3.400E7

k 1 k 1 

The notations used in Table 7-34 are as described below.

Ri, Ro, and t, represent the inner radius, outer radius and thickness of ply

respectively.

Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Xmt, Xmc and Xms represent the tensile, compressive and the shear strength of the

matrix respectively.

Xft and Xfc represent the tensile and compressive strength of the matrix

respectively.

rm represent the maximum residual radial stress at the interface.



200

k and k represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. A triangular element has been

employed in order to demonstrate and validate the capability of the FE programs in

modelling with triangular elements. A mesh containing 200 3-noded triangular Mindlin-

type elements was employed for the Mindlin programs. A mesh containing 200 3-noded

triangular non-conforming elements was employed for the non-conforming Reissner

program. The boundary condition shown in Table 7-35 was applied to the FE model.

Table 7-35: Boundary condition for the simply supported ring case

Nodes Boundary condition

Nodes on the x=0 edge u = y = 0 (i.e. symmetry boundary condition was
applied to the x=0 edge)

Nodes on the y=0 edge v = x = 0 (i.e. symmetry boundary condition was
applied to the y=0 edge)

Nodes on the r=0.5 edge and the
r=1 edge

w=0 (i.e. the r=0.5 edge and the r=1 edge are
simply supported)

In order to model the functional gradation of the FGC ring in the Ordinary FE programs,

the fibre and matrix volume fractions were computed for each element at their midpoints

by using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element by substituting the fibre and matrix

volume fractions into the macro-mechanical equations developed in chapter 3. The

computed macro-mechanical properties of each element of the FGC ring were then fed

into the Ordinary FE programs.
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Mindlin and Reissner program validation results

Figures 7-64 and 7-65 show the nodal displacement results along the y=0 edge for a FGC

ring case with P=1 and V1=0.5 at the 8th load increment. This FGC ring is graded in the

radial direction. The displacement results for the Mindlin and Reissner programs were in

good agreement with the Ordinary FE program. The displacement results of the Mindlin

programs had small discrepancy in comparison to the displacement results of the Reissner

programs. This discrepancy can be explained by the difference in transverse shear

modelling employed in each program. The w-displacement value at r=0.5 and r=1 is zero

as expected because the ring is simply supported at the r=0.5 and r=1 edges.
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Figure 7-64: w-displacement validation against Ordinary Mindlin program for the
simply supported ring case
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Figure 7-65: w-displacement validation against Ordinary Reissner program for the
simply supported ring case
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Figure 7-66 shows the through-thickness stress result in the fibre direction at node 20 (i.e.

the (0, 0.95) coordinate) for a FGC ring case with P=1 and V1=0.5 at the 8th load

increment. The stress results of the Average and Smooth Mindlin programs were in good

agreement with the result of the Ordinary Mindlin program. The out-of-plane bending

load results in a tensile stress on the top plies (i.e. plies at positive z positions) and

compressive stress on the bottom plies (i.e. plies at negative z positions). This effect

results in a linear distribution of 11 across the plies with the maximum tensile stress 11

at the 1st ply (i.e. ply at z=0.015m) and maximum compressive stress 11 at the 12th ply

(i.e. ply at z=-0.015m).
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Figure 7-66: Stress validation against Ordinary Mindlin program for the simply
supported ring case
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The progressive damage modelling employed in this example is as described in Example

7.3.1. Figure 7-67 shows the damage contour plot for the first three layers of a FGC ring

case with P=1 and V1=0.5 at the 8th load increment. This figure also shows the typical

damage contour plot of most programs for the FGC ring subjected to a pressure loading.

In order to understand the damage results in Figure 7-67, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plots that the region around the x=0 edge of the 1st

ply (i.e. ply at z=0.015m) experienced the worst damage. This effect can be explained by

the fact that the applied pressure causes the ring to experience an out-of-plane bending

which results in a tensile stress on the 1st ply in the radial direction. This tensile stress is

not aligned with the resultant fibre direction (i.e. 0o for the stacking sequence of “[[-

45/0/45]2]s”) around the x=0 edge, hence the reason for damage at this region. Reduction

in failure index occurs away from the x=0 edge because the difference in the orientation

of the tensile stress in the radial direction and the resultant fibre direction of the FGC ring

reduces. The damage reduces for each ply in the direction towards the midplane of the

FGC ring. The damage results include the effect of stress transfer. This effect is due to

the undamaged regions being stiffer than the damaged regions and they carry a large

portion of the extra loads that were meant for the damaged regions and therefore the

undamaged regions are stressed more. Hence this results in stress transfer occurring both

in the in-plane and out-of-plane directions.
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Figure 7-67: Damage contour plot of the first three plies for the simply supported
ring case
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Since failure was more pronounced in the 1st ply, a closer study of the progressive

damage of the 1st ply was undertaken. Figure 7-68 shows the progressive damage

contour plot for the 1st ply (i.e. -45o ply) of a FGC ring case with P=1 and V1=0.5 for nine

load increments. This figure also shows the typical progressive damage contour plot of

most programs for the FGC ring subjected to a pressure loading. The damage contour

plot is the plot of the failure index at all nodes on the FGC ring. If failure index is greater

than one, then the composite ring is damaged, else the composite ring is undamaged. It

can be seen from the damage contour plot that damage was initiated during the 7th load

increment at the x=0 edge. The damage then spreads in the FGC ring in subsequent load

increments.

Figure 7-68: Progressive damage contour plot of the first ply for the simply
supported ring case
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Figure 7-69 shows the progressive damage plot for the 1st ply (i.e. -45o ply) of a FGC ring

case with P=1 and V1=0.5 for the 4th to 7th load increment. This figure also shows the

progressive damage plot of the Average and Smooth Mindlin programs for the FGC ring

subjected to pressure loading. The results were in good agreement with each other. The

damage plot is the plot of the failure index at all nodes on the x=0 edge of the FGC ring.

It can be seen from the damage contour plot that the maximum failure index occurs

around the r=0.7m region and x=0 edge. This indicates that the maximum bending

moment is experienced around the r=0.7 region which results in maximum bending stress

at this region and hence maximum failure index.
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Figure 7-69: Progressive damage plot of the first ply for the simply supported ring
case
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7.3.8 Clamped FGC ring case

Example 7.3.8: A FGC ring with a “[[-45/0/45]2]s” stacking sequence was subjected to a

pressure loading of 3.5MPa. The values of the functional gradation properties include

gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the

displacement results of Mindlin and Reissner programs against the result of the Ordinary

FE programs. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are as given in Example 7.3.7.

FE Modelling

A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. A triangular element has been

employed in order to demonstrate and validate the capability of the FE programs in

modelling with triangular elements. A mesh containing 200 3-noded triangular Mindlin-

type elements was employed for the Mindlin programs. A mesh containing 200 3-noded

triangular non-conforming elements was employed for the non-conforming Reissner

program. The boundary condition shown in Table 7-36 was applied to the FE model.

Table 7-36: Boundary condition for the clamped ring case

Nodes Boundary condition

Nodes on the x=0 edge u = y = 0 (i.e. symmetry boundary condition was
applied to the x=0 edge)

Nodes on the y=0 edge v = x = 0 (i.e. symmetry boundary condition was
applied to the y=0 edge)

Nodes on the r=0.5 edge and the
r=1 edge

u = v = w = x = y = 0 (i.e. the r=0.5 edge and the
r=1 edge are clamped)

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,

the fibre and matrix volume fractions were computed for each element at their midpoints

by using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element by substituting the fibre and matrix

volume fractions into the macro-mechanical equations developed in chapter 3. The
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computed macro-mechanical properties of each element of the FGC plate were then fed

into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-70 and 7-71 show the nodal displacement results along the y=0 edge for a FGC

ring case with P=1 and V1=0.5 at the 9th load increment. This FGC ring is graded in the

radial direction. The displacement results for the Mindlin and Reissner programs were in

good agreement with the Ordinary FE program. The displacement results of the Mindlin

programs had small discrepancy in comparison to the displacement results of the Reissner

programs. This discrepancy can be explained by the difference in transverse shear

modelling employed in each program. The w-displacement value at r=0.5 and r=1 is zero

as expected because the ring is clamped at the r=0.5 and r=1 edges.
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Figure 7-70: w-displacement validation against Ordinary Mindlin program for the
clamped ring case
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Figure 7-72 shows the through-thickness stress result in the fibre direction at node 1 (i.e.

the (0, 0.5) coordinate) for a FGC ring case with P=1 and V1=0.5 at the 9th load

increment. The stress results of the Average and Smooth Mindlin programs were in good

agreement with the result of the Ordinary Mindlin program. The out-of-plane bending

load results in a compressive stress on the top plies (i.e. plies at positive z positions) and

tensile stress on the bottom plies (i.e. plies at negative z positions). This effect results in

a distribution of 11 across the plies with the maximum compressive stress 11 at the 1st

ply (i.e. ply at z=0.015m) and maximum tensile stress 11 at the 12th ply (i.e. ply at z=-

0.015m).
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Figure 7-72: Stress validation against Ordinary Mindlin program for the clamped
ring case
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The progressive damage modelling employed in this example is as described in Example

7.3.1. Figure 7-73 shows the damage contour plot for the first three layers of a FGC ring

case with P=1 and V1=0.5 at the 9th load increment. This figure also shows the typical

damage contour plot of most programs for the FGC ring subjected to a pressure loading.

In order to understand the damage results in Figure 7-73, it must be noted that the

damage are based on Tsai-Hill failure index which is a function of the micromechanical

strength properties, fibre orientation of ply, functional gradation and stress transfer. It

can be seen from the damage contour plots that the region around the clamped edges of

the 1st ply (i.e. ply at z=0.015m) experienced the worst damage. This effect can be

explained by the fact that the applied pressure causes the ring to experience an out-of-

plane bending which results in a compressive stress around the clamped edges on the 1st

ply in the radial direction. This compressive stress is not aligned with the resultant fibre

direction (i.e. 0o for the stacking sequence of “[[-45/0/45]2]s”) around the x=0 edge, hence

the reason for damage at this region. Reduction in failure index occurs away from the

x=0 edge because the difference in orientation of the compressive stress in the radial

direction and the resultant fibre direction of the FGC ring reduces. The damage reduces

for each ply in the direction towards the midplane of the FGC ring. The damage results

include the effect of stress transfer. This effect is due to the undamaged regions being

stiffer than the damaged regions and they carry a large portion of the extra loads that

were meant for the damaged regions and therefore the undamaged regions are stressed

more. Hence this results in stress transfer occurring both in the in-plane and out-of-plane

directions.
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Figure 7-73: Damage contour plot of the first three plies for the clamped ring case
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Since failure was more pronounced in the 1st ply, a closer study of the progressive

damage of the 1st ply was undertaken. Figure 7-74 shows the progressive damage

contour plot for the 1st ply (i.e. -45o ply) of a FGC ring case with P=1 and V1=0.5 for nine

load increments. This figure also shows the typical progressive damage contour plot of

most programs for the FGC ring subjected to a pressure loading. The damage contour

plot is the plot of the failure index at all nodes on the FGC ring. If failure index is greater

than one, then the composite ring is damaged, else the composite ring is undamaged. It

can be seen from the damage contour plot that damage was initiated during the 7th load

increment at the (0, 0.5) coordinate. The damage then spreads along the clamped edges

of the FGC ring in subsequent load increments.

Figure 7-74: Progress damage contour plot of the first ply for the clamped ring case
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Figure 7-75 shows the progressive damage plot for the 1st ply (i.e. -45o ply) of a FGC ring

case with P=1 and V1=0.5 for the 6th to 9th load increment. This figure also shows the

progressive damage plot of the Average and Smooth Mindlin programs for the FGC ring

subjected to pressure loading. The results were in good agreement with each other. The

damage plot is the plot of the failure index at all nodes on the x=0 edge of the FGC ring.

It can be seen from the damage contour plot that the maximum failure index occurs

around the clamped edges. This indicates that the maximum bending moment is

experienced around the clamped edges which results in maximum bending stress at these

edges and hence maximum failure index. The 7th to 9th load increments have some

missing failure indices around the r=0.5 edge. This effect is due to the fact that when an

element has completely failed, the stiffness value at each node of the element is degraded

to zero, hence nodal stress of the element is zero resulting in a nodal failure index value

of zero. The nodal failure index values of zero are eliminated from the plot to best

demonstrate the progressive damage, since damage occurs when failure index exceeds the

value of one.
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Figure 7-75: Progressive damage plot of the first ply for the clamped ring case
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In this chapter, three stages of validation were undertaken. The first stage involves the

validation of the infinitesimal strain part of the Average Mindlin programs against

analytical solutions using traditional composite plate cases. The second stage involves

the validation of the infinitesimal strain part of the Average, Smooth and Ordinary

Mindlin programs against Abaqus results using the FGC cases. The third stage involves

the validation of infinitesimal and finite strain part of the Average and Smooth programs

against the Ordinary programs using the FGC cases. In the validation exercise, the

results of the Average and Smooth programs were in good agreement with the analytical

solutions, Abaqus program results and Ordinary program results.

F
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8 Optimisation Result

The optimisation technique used in this thesis can be described as fail-safe design

technique which involves the imposition of constraints to ensure that the physical

limitations of materials or structural properties required for satisfactory performance are

not exceeded. This optimisation technique involves changing the fibre distribution

parameters and running the three FE codes for the given fibre distribution, checking to

see if all constraints have been satisfied. The constraints that have been considered

include displacement constraints, failure index constraints, buckling load constraints

and natural frequency constraints. Figure 8-1 is a good description of this optimisation

technique concept.

In this optimisation exercise, two geometry cases were considered. These cases include

the rectangular functionally graded composite (FGC) plate case and the rectangular

FGC plate case with a central hole. The two geometry cases are the same as the one

used in the validation exercise and it is as described in the previous chapter.
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Figure 8-1: Optimisation Technique
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8.1 Fibre Distribution Effect on Finite Strain and Progressive

Damage Results

In this section, progressive damage analysis was carried on a rectangular FGC plate and

rectangular FGC plate with hole. Ten different fibre ratio distribution cases were

considered which was achieved by changing the different gradation exponent, P and

different gradation offset, V1 in the fibre distribution equation discussed in Chapter 3.

The rectangular functionally graded composite (FGC) plate case was subjected to

tensile loading, in-plane bending and out-of-plane bending. The rectangular FGC plate

case with hole was subjected to tensile loading. The results obtained are presented in

this section.

8.1.1 FGC plate case under tensile loading

Example 8.1.1: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to a tensile load of 8MN. The task is to compute the displacement and failure

index results using conforming Reissner programs for ten fibre distribution cases and to

study the fibre distribution effect on the displacement and failure index results. The FE

modelling procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 8-1: Tensile case data

Geometry

L (m) 2.000 w (m) 1.000

t (m) 0.0300 No. of ply 12

Fibre and matrix properties

Ef (Pa) 2.300E+11 f 3.500E-01 f (Pa) 8.519E+10

Em (Pa) 3.400E+09 m 3.000E-01 m (Pa) 1.308E+09

Strength properties  

Xmt (Pa) 7.200E7 Xmc (Pa) 1.020E8 Xms (Pa) 3.400E7

Xft (Pa) 2.067E9 Xfc (Pa) 1.999E9 rm (Pa) 0.0

k 1 k 1 

The notations used in Table 8-1 are as described below.

L, w, and t, represent the length, width, thickness of ply respectively.
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Ef and Em represent the Young’s modulus of the fibre and matrix respectively.

f and m represent the Poisson’s ratio of the fibre and matrix respectively.

f and m represent the shear modulus of the fibre and matrix respectively.

Xmt, Xmc and Xms represent the tensile, compressive and the shear strength of the

matrix respectively.

Xft and Xfc represent the tensile and compressive strength of the matrix

respectively.

rm represent the maximum residual radial stress at the interface.

k and k represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

A mesh containing 128 4-noded conforming elements was employed for the conforming

Reissner program. A tensile load of 8MN was applied as an equivalent nodal loads at

the nodes on the x=2 edge with reduced load at the corner nodes. For example, in the

128 element case, the load was applied equally at nodes on the x=2 edge but with half

the loads at the corner nodes on the x=2 edge. Hence the equivalent nodal loading for

the 128 element case was 1MN at each nodes on the x=2 edge with 500kN at the corner

nodes on the x=2 edge. In order to model the finite strain, a tenth of the equivalent

nodal loading was applied at every load increment. Also in order to model the

progressive damage, a check for failure was undertaken at the node of each element for

every load increment and if failure is detected, material properties of the element are

degraded and equilibrium is re-established.

The boundary condition shown in Table 8-2 was applied to the FE model.

Table 8-2: Boundary condition for the tensile case

Nodes Boundary condition

Node 20 (i.e. node at x=0 and y=0.5) u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at Node 20)

Nodes on the x=0 edge excluding node 20 u = 0
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Displacement Results

Figure 8-2 to 8-4 show the nodal displacement results at the 2nd load increment along

the y=0.5 line for a FGC plate with ten fibre distribution cases. The nodal displacement

results for the 2nd load increment have been presented because it is the increment at

which none of the ten fibre distribution cases have experienced complete damage. In

the tension case, the parameter that is of major interest is the u-displacement.

Minimisation of u-displacement is usually the desired effect for design purposes.

Figure 8-2 shows the comparison of the displacement results for the tension cases with

P=0 and P=0.5. And it shows that the fibre distribution case with P=0.5 and V1=0.5,

and the traditional composite case (i.e. P=0 and V1=0.4) satisfy the minimum u-

displacement constraint at the x=2 edge.

Figure 8-3 shows the comparison of the displacement results for the tension cases with

P=0 and P=1. And it shows that the traditional composite case (i.e. P=0 and V1=0.4)

satisfies the minimum u-displacement constraint at the x=2 edge.

Figure 8-4 shows the comparison of the displacement results for the tension cases with

P=0 and P=2. And it shows that the traditional composite case (i.e. P=0 and V1=0.4)

satisfies the minimum u-displacement constraint at the x=2 edge.

The results of the tensile load case showed that the less stiff region of the FGC plates

experienced higher u-deflection in comparison with the traditional composite plate. It

can be seen from the displacement plots that increase in gradation offset, V1 causes

slight increase in u-displacement at the x=2 edge. The increase in gradation exponent, P

causes significant increase in u-displacement at the x=2 edge. Since the desirable fibre

distribution effect on the u-displacement result is to minimise the u-displacement at the

x=2 edge, the optimum fibre distribution effect is achievable by decreasing the

gradation exponent, P or gradation offset, V1. Hence the optimum fibre distribution

effect is achieved by the fibre distribution case with P=0.5 and V1=0.5, and the

traditional composite case (i.e. P=0). These fibre distribution cases are the best cases of

all the ten fibre distribution cases that satisfy the minimum u-displacement constraint.
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Figure 8-2: Displacement plot for tension cases with P=0 and P=0.5
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Figure 8-4: Displacement plot for tension cases with P=0 and P=2

Progressive Damage Results

Figures 8-5 to 8-7 show the progressive damage plots for the 2nd ply (i.e. 0o ply) of a

FGC plate case with ten fibre distribution cases for different load increments. In some

of the plots, failure index results were not plotted for some FGC plate cases because

they were already completely damaged at the given load increment. The damage plot is

the plot of the failure index (F.I.) at all nodes on the y=0.5 line of the FGC plate. It can

be seen from the damage contour plot that the failure index increases as the nodal

position, x increases for all the FGC plate cases. This indicates that the weaker region

is the region around the x=2 edge for all FGC plate cases. The damage plots show that

constant failure index occurs at all nodal positions on the traditional composite plate

(i.e. P=0).

Figure 8-5 shows the comparison of the failure index along the y=0.5 line for the

tension cases with P=0 and P=0.5. Minimisation of the failure index at the weaker



224

region (i.e. x=2 edge) is usually the desired effect for design purposes. The figure

shows that the traditional composite case (i.e. P=0 and V1=0.4) satisfies the minimum

failure index constraint.

Figure 8-6 shows the comparison of the failure index along the y=0.5 line for the

tension cases with P=0 and P=1. It also shows that the traditional composite case (i.e.

P=0 and V1=0.4) satisfies the minimum failure index constraint.

Figure 8-7 shows the comparison of the failure index along the y=0.5 line for the

tension cases with P=0 and P=2. It also shows that the traditional composite case (i.e.

P=0 and V1=0.4) satisfies the minimum failure index constraint.

The results of the tensile load case showed that the less stiff region of the FGC plates

experienced higher failure index in comparison with the traditional composite plate. It

can be seen from the damage plots that increase in gradation offset, V1 causes slight

increase in the failure index at the x=2 edge. The increase in gradation exponent, P

causes significant increase in the failure index at the x=2 edge. Since the desirable fibre

distribution effect on the damage result is to minimise the failure index at the x=2 edge,

the optimum fibre distribution effect is achievable by decreasing the gradation

exponent, P or gradation offset, V1. Hence the optimum fibre distribution effect is

achieved by the traditional composite case (i.e. P=0 and V1=0.4). These fibre

distribution cases are the best cases of all the ten fibre distribution cases that satisfy the

minimum failure index constraint.
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Figure 8-5: Progressive damage plot for tension cases with P=0 and P=0.5
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Figure 8-3: Progressive damage plot for tension cases with P=0 and P=2

8.1.2 FGC plate case under in-plane bending

Example 8.1.2: A rectangular FGC plate with a “[[-45/0/45]2]s” stacking sequence was

subjected to an in-plane bending load of 1.6MN. The task is to compute the

displacement and failure index results using conforming Reissner programs for ten fibre

distribution cases and to study the fibre distribution effect on the displacement and

failure index results. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are as given in Example 8.1.1.

FE Modelling

A mesh containing 128 4-noded conforming elements was employed for the conforming

Reissner program. An in-plane bending load of 1.6MN was applied as an equivalent

nodal loads at the nodes on the x=2 edge with reduced load at the corner nodes. For

example, in the 128 element case, the load was applied equally at nodes on the x=2 edge

but with half the loads at the corner nodes on the x=2 edge. Hence the equivalent nodal

loading for the 128 element case was 200kN at each nodes on the x=2 edge with 100kN
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at the corner nodes on the x=2 edge. In order to model the finite strain, a tenth of the

equivalent nodal loading was applied at every load increment. Also in order to model

the progressive damage, a check for failure was undertaken at the node of each element

for every load increment and if failure is detected, material properties of the element are

degraded and equilibrium is re-established.

The boundary condition shown in Table 8-3 was applied to the FE model.

Table 8-3: Boundary condition for in-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge u = v = w = x = y = 0 (i.e. all degrees of
freedom are fixed at the x=0 edge)

Displacement Results

In the in-plane bending case, the parameter that is of major interest is the v-

displacement. Minimisation of v-displacement is usually the desired effect required for

design purposes. Figure 8-8 to 8-10 show the nodal displacement results at the 9th load

increment along the y=0.5 line for a FGC plate with ten fibre distribution cases.

Figure 8-8 shows the comparison of the v-displacement results for the in-plane bending

case with P=0 and P=0.5. And it shows that the case with P=0.5 and V1=0.6 satisfy the

minimum v-displacement constraint at the x=2 edge.

Figure 8-9 shows the comparison of the v-displacement results for the in-plane bending

case with P=0 and P=1. And it shows that the case with P=1 and V1=0.6 satisfy the

minimum v-displacement constraint at the x=2 edge.

Figure 8-10 shows the comparison of the v-displacement results for the in-plane

bending case with P=0 and P=2. And it shows that the case with P=2 and V1=0.55

satisfy the minimum v-displacement constraint at the x=2 edge.

It can be seen from the v-displacement plots that increase in gradation offset, V1 causes

slight decrease in v-displacement at the x=2 edge. The increase in gradation exponent,

P causes significant decrease in v-displacement at the x=2 edge. Since the desirable

fibre distribution effect on the v-displacement result is to minimise the v-displacement

at the x=2 edge, the optimum fibre distribution effect is achievable by increasing the
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gradation exponent, P or gradation offset, V1. Hence the optimum fibre distribution

effect is achieved by the fibre distribution case with P=2 and V1=0.55. In comparison

with the traditional composite case, a desirable effect of 28% reduction in v-

displacement at the x=2 edge is achieved by using this FGC plate case. This fibre

distribution case is the best case of all the ten fibre distribution cases that satisfy the

minimum v-displacement constraint.
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Figure 8-8: Displacement plot for in-plane bending cases with P=0 and P=0.5



253

9 Conclusion

In this thesis, a Reissner-type element and a Mindlin-type element have been formulated

and used in performing a progressive damage analysis, buckling analysis and vibration

analysis of a functionally graded composite (FGC) structure. This thesis presents four

unique contributions to research which include:

 A Mindlin-type element was formulated for functionally graded composite structure

based on averaging of transverse shear distribution over plate thickness using

Lagrangian interpolation.

 A Reissner-type element was formulated for functionally graded composite structure

based on parabolic transverse shear distribution over plate thickness using

Lagrangian and Hermitian interpolation.

 A finite strain analysis was undertaken based on Green’s strain-displacement

equation.

 A smooth fibre distribution technique was employed in this thesis based on

numerical computation of macro-mechanical properties at Gaussian quadrature

points.

In this thesis, the validation of the progressive damage results and finite strain results of

the Mindlin program and Reissner program were undertaken. The validation exercises

for two geometry cases (i.e. rectangular plate and ring) were undertaken. The validation

exercises were able to demonstrate the capability of the program to predict the

progressive damage of functional graded structures under finite strain condition. In the

validation exercise, the following results were obtained.

 The results of the Average and Smooth Mindlin program were in good agreement

with the analytical solution.

 The results of the Average and Smooth Mindlin program were in good agreement

with the Abaqus results.

 The results of the Average and Smooth FE programs were in good agreement with

the Ordinary FE programs using both Mindlin-type elements and Reissner-type

elements.
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In this thesis, two geometry cases were considered for the optimisation exercise which

includes the rectangular FGC plate case and the rectangular FGC plate case with a

central hole. A methodical approach was used in demonstrating the design optimisation

process and an optimum fibre distribution was obtained for the load cases considered.

The fibre distribution effect on the progressive damage results, finite strain results,

buckling results and vibration results were investigated. This optimisation exercise was

able to demonstrate that constraints such as minimum failure index constraint, minimum

displacement constraint, maximum stiffness constraint, maximum critical buckling load

and maximum natural frequency can be use to determine the optimum fibre distribution

case.

Finally, this thesis achieved its objective by presenting a detailed explanation of the

functional graded technology from theoretical concept through to optimum design

application.

9.1 Recommendation of Future Work

Future work recommendation would be to extend this work to cover thermo-elasticity

and thermo-elastodynamics.

Thermo-elasticity

Thermo-elastic analysis can be introduced to this FE model by adding an additional

term (i.e. thermal strain) to the stress-strain equation which accounts for the effect of

temperature. The thermal strain is a function of the material thermal expansion

coefficient.

Thermo-elastodynamics

This requires the consideration of mechanical and thermal loadings as functions of time.

Hence the change of temperature and displacement at a point inside the composite

material during an increment of time would result in corresponding energy increments.
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APPENDICES

The following topics are dealt with in this section.

 Constitutive equations for laminates

 Integrated D matrices

A Constitutive Equations for Laminates

A lamina is in, or parallel to, the x-y plane,

with x, y, z being the geometrical axes, as

shown in Figure A.1. If zyx  ,, are the

material axes, where x is usually in the

fibre direction, then the elastic properties of

the lamina are:

(i) Young’s modulus in the fibre

direction (E11).

(ii) Young’s modulus in y direction (E22).

(iii) Major Poisson’s ratio (12). Fig. A.1 Axes of a lamina

(iv) Shear modulus in yx  plane ( 12 ).

(v) Transverse shear moduli ).( 3123  

Notice also that:

11

12

22

21

EE


 (A.1)

and z is considered negligible.

The lamina is orthotropic with respect to zyx  axes. Using generalized Hooke’s

equations, then it can be deduced that:



265

yxx
EE

  



22

21

11

1
(A.2)

yxy
EE

  



2211

12 1
(A.3)

yxyx   



12

1
(A.4)

zyzy   



23

1
(A.5)

xzxz   



31

1
(A.6)

From which it can be deduced that:

εDσ  (A.7)

and

γμτ  (A.8)
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Notice also that the D matrix is symmetric.

Using planar transformation for a lamina, as shown in Figure A.1, it can be deduced

that:
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where the lamina is considered to be the lth layer of a composite plate, and:
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 sin,cos  ml (A.14)

Hence, it can be deduced that:
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Writing
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then it can be deduced from Equation (A.16) that:

 3312
22

22
4

11
4

11 22 ddmldmdld 

 3312
22

11
4

22
4

22 22 ddmldmdld 

   332211
22

12
44

2112 4dddmldmldd 

   122211
22

33

222
33 2dddmldmld 

   3312
22

22
2

11
2

3113 2ddmldmdlmldd 

   3312
22

22
2

11
2

3223 2ddmldldmmldd 

It can also be deduced from planar rotation that:
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Hence, it can be deduced from Equations (A.18) and (A.8) that:
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B Integrated D matrices

B.1 Dn

The integrated Dn matrices are defined generally by Equation (1.82), from which it can

be deduced that:
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Hence, it can be proved that:
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from which it can be deduced that:
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Notice that for symmetric composites:

ODOD  31 ,

B.2 Other Integrated D Matrices

These are defined by Equations (1.83)-(1.86), and if we use the following generalized

expression:
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then it can be deduced that:
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Different )(zg p functions for different Dp matrices, employed in the report are as

follows:
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(ii) 1D
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(iii) 2D
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(iv) 3D
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(v) D
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(vi) 1D
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(vii) 2D
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(x) D















































 

8642

5

0

4

13

16

11

48
6

7

27

80

81
)(

h

z

h

z

h

z

h

z
zdzfzg

z

 (B.18)

For symmetric composites:
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