Cranfield University

Oyedele Oluwaseun Oyekoya

Structural Integrity of Engineering Components made of
Functionally Graded Materials

School of Engineering

PhD



Cranfield University

School of Engineering

PhD THESIS

2008

Oyedele Oluwaseun Oyekoya

Structural Integrity of Engineering Components made of Functionally
Graded Materials

Supervisor: Dr. D Mbaand Dr. A El-Zafrany

Academic Y ear 2004 to 2008

© Cranfield University, 2008. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyright holder.



Acknowledgement

| thank God for blessing me with great parents. Although both of them were only
educated to O-Level, they encouraged and supported me throughout my time as a
student.

| thank God for blessing me with understanding brothers, sister and friends who have
encouraged me throughout my time as a student.

| thank God for blessing me with Mr. Stephen Omefe. He was my Mathematics teacher
in primary school. Academically, He had trained me in the way that | should go and |
have not departed from it.

| thank God for blessing me with Jokotola Adeyemi (my wife) who has been very
understanding and supportive. Her advice and encouragement have been very
invaluable.

| thank God for blessing me with role models such as Mr Dapo, Pastor Abraham
Sackey, Pastor lan Meldrum, Pastor Emmanuel Mbakwe, Pastor Victor Jibuike, Pastor
Josh Masih, Mr Wenceslas Gatarabirwa and Dr. Edmond Chehura.

| thank God for blessing me with Dr. David Mba and Dr. Ali El-Zafrany. They have
been more than a supervisor. They have been an inspiration to me and they have played
avita role in nurturing my academic potential. Initialy, | wanted to go straight into a
PhD program after completing the MSc course, but Dr. El-Zafrany advised me to
consider a part-time PhD program and retain my full-time job. | took up his invaluable

advice and thanks to him; | have completed my studies with five years work experience.

Finally, | thank God for blessing me with all these great blessings and | thank Him for
taking me through the good and bad times of a PhD program. My prayer is that | will
be able to use the knowledge that | have gained during my student life, to make a

difference in the world.



Abstract

Functionally graded materiadls (FGM) are composite materials with microstructure
gradation optimized for the functioning of engineering components. For the case of
fibrous composites, the fibre density is varied spatialy, leading to variable material
properties tailored to specific optimization requirements. There is an increasing demand
for the use of such intelligent materials in space and aircraft industries. The current
preferred methods to study engineering components made of FGM are mainly
modelling particularly those that are finite element (FE) based as experimental methods
have not yet sufficiently matured. Hence this thesis reports the development of a new
Mindlin-type element and new Reissner-type element for the FE modelling of
functionally graded composite (FGC) structures subjected to various loadings such as

tensile loading, in-plane bending and out-of-plane bending, buckling and free vibration.

The Mindlin-type element formulation is based on averaging of transverse shear
distribution over plate thickness using Lagrangian interpolation. Two types of Mindlin-
type element were developed in this report. The properties of the first Mindlin-type
element (i.e. Average Mindlin-type element) are computed by using an average fibre
distribution technique which averages the macro-mechanical properties over each
element. The properties of the second Mindlin-type element (i.e. Smooth Mindlin-type
element) are computed by using a smooth fibre distribution technique, which directly

uses the macro-mechanical properties at Gaussian quadrature points of each element.

The Reissner-type element formulation is based on parabolic transverse shear
distribution over plate thickness using Lagrangian and Hermitian interpolation. Two
types of Reissner-type element were developed in this report, which include the

Average and Smooth Reissner-type elements.

There were two types of non-linearity considered in the modelling of the composite
structures, which include finite strain and material degradation. The composite
structures considered in this paper are functionally graded in a single direction only, but
the FE code developed is capable of analysing composite structures with multi-
directiona functional gradation. This study was able to show that the structura
integrity enhancement and strength maximisation of composite structures are achievable

through functional gradation of material properties over the composite structures.
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1 Introduction

Composite materials have fully established themselves as workable engineering
materials and are now relatively commonplace around the world, particularly for
structural purposes. Early military applications of polymer matrix composites during
World War |l led to large-scale commercia exploitation, especially in the marine
industry, during the late 1940s and early 1950s. Today, the aircraft, automobile, leisure,
electronic and medical industries are quite dependent on fibre-reinforced plastics, and
these composites, namely particulate or minera filled plastics, are also widely used in

industry because of the associated cost reduction.

In the continuing quest for improved performance, which may be specified by various
criteria including less weight, more strength and lower cost, traditional materials
frequently reach the limit of their usefulness. Hence, materia scientists, engineers and
scientists are always striving to produce either improved traditional composite materials
or new materials such as functionally graded materials (FGMs).

FGMs are composite materials with microstructure gradation optimized for the
functioning of the engineering component. For the case of fibrous composites, the fibre
density is varied spatially, leading to variable material properties tailored to specific
optimization requirements. There is an increasing demand for the use of such intelligent

materials in space and aircraft industries.

The objective of this research is to study the structural integrity of engineering
components made of FGMs. This research objective can be broken down into sub-
topics which include micromechanics anaysis, finite element static and dynamic

analysis, buckling analysis and progressive damage analysis.

The technique employed in this thesis for the determination of the structural integrity of
engineering components is to carry out a computationa damage assessment of the
component. In order to determine failure, the maximum stress in the component needs
to be compared with the maximum permissible stress obtained from a selected failure
criterion. Hence maximum stress was determined by employing a numerical method
called Finite Element Method. Also in order to analyse the functionally graded
composite, the micromechanical equations were employed.



This thesis does not only determine the structural integrity of engineering components
but it aso determines the optimum design of engineering components. The FE code
developed in this thesis carries out the structural integrity of engineering components
and the anaysis of the results obtained from running the code for different fibre
distributions enables the code user to determine the optimum fibre distribution. The
flow chart that explains the FE code structure with the implementation of the

optimisation technique is as shown in Figure 1-1.



Read data from

input file

Choose element type

Mindlin-type RERS IR
element element

Choose type of fibre distribution or charpge fibre distribution parameters

Manual fibre Averagefibre Smooth fibre
distribution distribution distribution

Choose type of analysis

Progressive Finite Buckling
damage strain analysis
analysis analysis

Check for constraints such as natural
frequency, buckling frequency and strength

Optimum Design

Figure 1-1: FE analysis and optimisation flowchart



1.1 Background

Composite materials are often used in different engineering fields, especialy in the
aerospace field. The main advantage of composite materials is the high stiffness-to-
weight and strength-to-weight ratios. The limitations of composite materials are the
following: the weakness of interfaces between layers may lead to delamination, extreme
thermal loads may lead to debonding between matrix and fibre due to mismatch of
mechanical properties, and residual stresses may be present due to difference in
coefficients of thermal expansion of the fibre and the matrix. To overcome the
limitations, functionally graded materials (FGMSs) have recently been proposed.

The FGMs are made in such a way that the volume fractions of two or more materials
are varied continuously along a certain dimension. The FGMs can be made as required
for application, for example, thermal barrier plate structures can be made from a
mixture of ceramic and metal for high temperature application. The advantage of the
FGM plate is that its material properties vary continuously from one surface to the

other, thus it avoids the interface problem that exists in homogeneous composites.

The FGM concept was originated in Japan in 1984 during the space-plane project, in the
form of a proposed therma barrier material capable of withstanding a surface
temperature of 2000 K and a temperature gradient of 1000 K across a cross section <10
mm. Since 1984, FGM thin films have been comprehensively researched, and are
almost a commercial reality. The FGMs were first developed by Japanese scientists in
the 1980s. Since that time, the FGMs have been used in severa branches and are still
being broadened. The main research works on functionally graded materials cover
topics such as thermo-elasticity, fracture mechanics, buckling vibration and control.
The main applications of functionally graded materials include fibre optics, space
rockets, engines, armour tanks etc.

1.2 Objectives

This research aims at developing the theory and software for finite element stress and
vibration analysis of engineering components made of functionally graded fibrous

layered composite materials. The basic aspects of the research are asfollows:

e A full study of the micromechanics of fibrous composites, so as to be able to



predict accurately all required materia properties from those of the constituents.
e A full study of failure criteria and damage mechanisms as appropriate to FGM.

e Derivation of specia finite elements capable of efficiently dealing with FGM,

including centrifugal loading and different non-linear aspects.

e The development of computer software based on the derived theories, for stress
and vibration analysis of engineering components made of functionaly graded
fibrous layered composite materials, and capable of assessing the structura

integrity of the components.

e Applications on optimum design of engineering components such as rotating

turbine discs, and any other useful industrial application

1.3 FGM Applications

FGMs offer great promise in applications where the operating conditions are severe.
For example, wear-resistant linings for handling large heavy abrasive ore particles,
rocket heat shields, heat exchanger tubes, thermoelectric generators, heat-engine
components, plasma facings for fusion reactors, and electricaly insulating
metal/ceramic joints. They are aso ideal for minimising thermomechanical mismatch

in metal-ceramic bonding.

Koch and Gunter (2003) carried out a research on a new generation of cutting tools
based on functionally graded sialons for solving the machining problems of the 21%
century. It was proposed that new ceramic tool materials on the basis of Silicon
Nitride/Oxide ("Siaons') with a tough core would be developed, to alow a
significantly higher performance in machining, in particular for "heavy-to-machine-
parts'. It was aso proposed that the output would enable the European machining
industry to increase and speed up the production combined with saving of resources and
should benefit for health and environment.

The Swedish Defence Research Agency (2002) presented an article in their annual
report on armour for future combat vehicle. In order to meet the conflicting demands of
lower vehicle weight and much improved protection, future generations of fighting

vehicles will need new types of armour. A promising passive armour concept, studied



a Swedish Defence Research Agency, is designed to cause interface defeat of the
projectile. Interface defeat of tungsten kinetic energy long-rod projectiles has been
demonstrated at velocities close to 2000m/s using today’s ceramics and armour
technologies. Spark Plasma Sintering is an interesting technology to produce FGMs.
FGM have the potential to be very efficient armour materials. Swedish Defence
Research Agency has been conducting initial experiments to produce an FGM with a
hard outer surface of TiB2 and a strong, ductile inner surface of titanium. There are still
some difficulties to overcome but the results so far are encouraging. Swedish Defence
Research Agency also conducts research into active protection systems against KE-

projectiles and el ectromagnetic armour.

Siegmund (2005) describes a program to develop low-cost, functionally graded (FG)
carbon-carbon composites for use in a wide range of new applications including
automotive structural and heat transfer components, orthopaedic implants, friction
materials for the specialty automotive, truck and aerospace industries. C-C composites
have been the material of choice for high-end high temperature applications for
commercia and military aircraft. However, their high cost has limited their application
to other significant markets. The research team (Purdue University, University of Notre
Dame, Indiana University, Honeywell Aircraft Landing Systems, and National
Composite Centre) proposes to change this by introducing a new class of C-C
composites with significantly lower cost. The program merges the related expertise of
the team members and proposes the development of new technologies to make FG-C-C
composites with $10/lb a redity. The program uniquely integrates a robotic
manufacturing process, a novel process chemistry approach, materials design and

structural analysis with an industrial-scale operation.

Bey (2002) investigated functionally graded metallic foams as an aternative thermal
protection system for space transportation vehicles. An integrated thermal-structural
concept in which the load bearing structure has insulating capability and has potential
for significant weight savings over current thermal protection systems (TPS). Current
TPS do not have a structural function so they are parasitic from a structural viewpoint.
Current TPS include coated ceramic tiles or blankets of fibrous insulation affixed to the
vehicle surface and metalic panels in which fibrous insulation is encapsulated in foil

and placed between an outer metal surface and the vehicle structure. A multifunctional



TPS concept is based on metallic panels that are continuously graded in composition

and porosity.

U.S. DoD (2002) researched on F135 engine and PW J52 engine and they applied
functional graded thermal barrier coatings on turbine components, which will increase
component life under severe environment and reduce the down-time for the repair of
components and enhance readiness of the fleet. These were run in two engine tests for
qualification: (i) F402 engine (AV-8B) test as test engine for insertion in F135 engine
(JSF) and (ii) PW J52 (EA-6B) engine test.

1.4 Thesis Layout

Chapter 1 describes the advent of FGMs, and presents the research objectives. It also

reviews the application of FGMs which helps to justify the research objectives.

Chapter 2 reviews publications on composites and FGMs. Then it reviews publications
on the application of FEM to composite plates and shells which aso reflects the
developments of non-linear Mindlin and Reissner-type elements. It also reviews

publications on the application of FEM on FGMs.

Chapter 3 describes how to compute the elastic and strength properties of FGMs using
micromechanics techniques. It also describes the fibre distribution techniques
employed in this work, such as manual fibre distribution, average fibre distribution and
smooth fibre distribution technique. Finally the chapter describes the failure criteriaand

the damage mechanism used in the progressive damage modelling of FGMSs.

Chapter 4 explains the Mindlin-type plate bending element theory and derives the
equation used in the finite element programming. The finite element formulation of
displacement equation, strain equation, stress equation, strain energy variation and
generalised equation of equilibrium were summarised in the chapter. The generalised
equation of equilibrium is then linearised in-order to obtain the Mindin-type e ement

equation. Material non-linearity and geometrical non-linearity have been considered.

Chapter 5 explains the Reissner-type plate bending element theory and derives the
equation used in the finite element programming. The non-linear Reissner-type el ement

theory defines the displacement equation, strain equation, stress equation, strain energy



variation and generalised equation of equilibrium. The generalised equation of
equilibrium is then linearised in-order to obtain the Reissner-type element equation.

Chapter 6 describes how the micromechanical equations and the FE equations derived
in previous chapters were used in developing the FE codes which were used in the
analysis of functionally graded composites. The use of flowcharts was employed to
give an in-depth explanation of the FE codes.

Chapter 7 explains the validation of the FE codes. The validation exercise was carried
out in three stages. The first stage involves the validation of the infinitesimal strain part
of the Average Mindlin programs against analytical solutions using traditional
composite plate cases. The second stage involves the validation of the infinitesimal
strain part of the Average, Smooth and Ordinary Mindlin programs against Abaqus
results using the functionally graded composite (FGC) cases. The third stage involves
the validation of infinitessima and finite strain part of the Average and Smooth
programs against the Ordinary programs using the FGC cases.

Chapter 8 describes the optimisation technique and presents the optimum design. This
optimisation technique involves changing the fibre distribution parameters and running
the FE codes for the given fibre distribution, checking to seeif al constraints have been
satisfied. The constraints that have been considered include stress constraints, buckling

load constraints and natural frequency constraints.

Chapter 9 summarises the conclusion of the research and gave some recommendation of

future works.

Appendix A presents the constitutive equations for laminates in order to explain al
equations used in thisthesis.

Appendix B explains why certain integrated D matrices become zero in the analysis of

symmetric composite laminates of the Reissner-type elements.



2 Literature Review

In order to demonstrate a significant contribution in the FGM technology, an awareness
of the history and current development in FGM technology was required. Hence, an
extensive literature review was undertaken. The scope of this literature review focussed
on the various components that constitute this research work. Hence this chapter
reviews publications on composites and FGMs. It reviews publications on the FE
analysis of composite plates and shells which also reflect the developments of non-
linear Mindlin and Reissner-type elements. It also reviews publications on the FE

analysis of FGMs.

2.1 Composites and FGMs

This section reviews the publications on the developments in research of composites
and FGMs. It is well recognized that shear deformation can be more significant in
laminated, anisotropic plates than in isotropic, homogeneous plates. Shear deformation
theories based on Mindlin's assumptions have been developed for laminated,
anisotropic plates as described by Yang et a (1966) and Whitney and Pagano (1970). A
theory has also been developed by Whitney (1990) for the bending of laminated,
anisotropic plates which includes the effects of transverse shear deformation in a
manner similar to the theory of Reissner (1950) for homogeneous, isotropic plates. This
theory has been modified by Whitney and Rose (1991) to include the effect of
transverse normal stress without increasing the number of bending equations above
those generated in classical shear deformation theory. Whitney (1992) investigated the
effect of transverse shear and norma stresses on the bending of symmetrically
laminated, anisotropic plates subjected to cylindrica bending under uniform lateral
load.

There were no publications found on progressive damage analysis of functionally
graded composite. Hence the literature review in this section only focuses on
progressive damage analysis of traditional composite. A comprehensive literature
review on progressive damage analysis of composites was undertaken by Zahari (2005).
Padhi et a (1998) presented a method, which study the non-linear behaviour, first ply

faillure and ultimate collapse of laminated composite plates with clamped edges,



subjected to transverse pressure. Severa failure criteria, including Hashin and Tsai-Wu,
are used to predict the failure mechanisms. The effect of aspect ratio on the strength
and stiffness of laminated composite plates is studied. Non-linear strain-displacement
relations that contain large strain and large rotation are used in the analysis. The general
purpose finite element program Abagus is used for analysis. The predictions of the
model correlate well with experimental datafor different aspect ratios.

Prusty et al (2001) developed a first ply failure analysis method for predicting the
failure load on the laminated composite stiffened panels under various loading
conditions. Various failure theories such as maximum stress, maximum strain,
Hoffman, Tsai-Wu and Y eh-Stratton theories have been implemented for prediction of
first ply falure loads using iterative procedure. A few laminated composite bare
stiffened panels with various loading cases are solved for first-ply failure analysis. The
results of un-stiffened and stiffened plates with various loading cases are compared with
the published ones. New results for different stiffened shell panels having various

radius-to-span ratios are presented and convergence study is made for the validation.

A key publication on the developments in research of FGMs was published by Koizumi
(1997) which reviews FGM activities in Japan. Japanese scientists STA (1987)
proposed the unique FGM concept to prepare new composite by using heat-resistant
ceramics on the high temperature side and tough metals with high thermal conductivity
on the low-temperature side, with a gradual compositional variation from ceramic to
metal. In order to extend the applications of FGMs to different fields of industry such
as optics and/or electronic materials, in 1990 the needs of FGM were surveyed.
Through this survey, about 200 possibilities for utilising the FGM concept to improve
conventional materials and to create new materials were proposed and these proposals
were published by the Society of Non-Traditional Technology (1991). Japanese
scientists STA (1993) focussed on the possibility of improving the efficiency of energy
conversion materials by FGM technology. The results reveded that FG technology
would remarkably increase efficiency for photoelectric, thermoelectric, thermionic and

nuclear energy conversions.
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2.2 FE Analysis of Composite Plates and Shells

This section discusses the development of the FE method and reviews the publications
on FE analysis of composite plates and shells. The concept of the FE method stems
from work done in the 1940s, in which Courant (1943), Prager and Synge (1947) made
variational assumptionsin solving differential equations. Many of the early attempts for
the solution of continuum elasticity problems were based on representing the continuum
by an equivalent assemblage of bars and beams as described by Hrennikoff (1941) and
McHenry (1943).

The next step in the utilisation of FEM was taken by Boeing in the 1950s when Boeing,
followed by others, used triangular stress elements to model airplane wings. Levy
(1953) proposed an analysis for aircraft wings using a collection of elementary beam
and torque boxes. The first engineering applications of the FE method were described
by Argyris (1954). Turner et a (1956) refined Levy's work by reducing the torque
boxes to assemblies of triangular and rectangular slices. Yet it was not until the 1960
that Clough (1960) made the term “finite element” popular. Melosh (1963) established
the basic conditions for accurate finite element derivations. Zienkiewicz and Cheung
(1967) wrote the first book entirely devoted to the FE method in 1967. Engineers have
managed to develop finite elements for the analysis of many linear and nonlinear
problems as described by Zienkiewicz (1977).

The developments of non-linear Mindlin and Reissner-type elements will now be
discussed. A good literature review on plate theory was published by Apetre and
Sankar (2008). Reissner (1945) was the first to propose a plate theory that included the
effect of shear deformation and that assumed linear longitudinal displacements and
constant transverse displacements. Mindlin (1951) introduced the correction factor into
the shear stress to account for the fact that the model predicts a uniform shear stress
through the thickness of the plate. Yang et a (1966) extended Mindlin's theory for
homogeneous plates to laminates consisting of arbitrary number of bonded layers.
Whitney and Pagano (1970) developed a Mindlin-type theory for anisotropic laminated
plates consisting of an arbitrary number of bonded anisotropic layers that includes shear
deformation and rotary inertia. Displacement field is assumed to be linear in thickness
coordinate. Since 1970, the plate theory was improved by including higher-order terms

11



in displacement assumptions. Essenburg (1975) assumed second-order transverse
displacements and linear longitudinal displacements. Also Reissner (1975) included
third-order terms in the in-plane displacements’ z-expansion. Lo et a (1977) included
third-order in-plane and second-order out-of-plane terms. Reddy (1984) developed a
third order shear deformation theory (TSDT) for composite laminates based on assumed
displacement fields (third-order in-plane, and constant out-of-plane displacements).

Finite elements based upon Kirchoff’s theory were the first plate-bending e ements to
be published. The first element to employ Mindlin’s theory, was introduced by Hinton
et a (1975). It was recognized that the finite element solutions which employed
Mindlin elements become less accurate than those based upon Kirchoff elements, when
the plate thickness was reduced. This reduction in accuracy associated with Mindlin
elements has been referred to as the “locking” phenomenon. In 1978, many researchers
such as Pugh (1978) and Hughes et a (1978a) investigated this phenomenon, and the
reduced and selective integration schemes have been proposed as a means to avoid
locking. Also a nine-node quadrilateral element known as the “heterosis’ element
which exhibits improved characteristics in comparison with both the eight-node
serendipity and the nine-node Lagrangian elements was derived by Hughes et d
(1978b). An anaysis of a sufficient and necessary criterion of selective reduced
integration which must be satisfied in order that locking is avoided; was introduced by
Tsach (1981). Shape functions are considered the most important part in the derivation
of a new finite element. In 1986, El-Zafrany and Cookson (1986a, b) introduced a
genera theory for the derivation of shape functions for triangular and quadrilateral
family of finite elements. Attia (1996) introduced a new conforming and non-
conforming finite elements for the static and dynamic analysis of rotating composite
layered plates and shells. The elements consider parabolic distribution of transverse
shear stresses and were based on Lagrangian and Hermitian shape functions. In 1999, a
family of high-order facetted shell elements of linear and non-linear stress and vibration
analysis of composite layered plates and shell structures was introduced by Attia and El-
Zafrany (1999). Engineering slope angles were employed in element equations and
transverse stresses were expanded over the thickness.

Tang et a (1983, 1984) introduced the quasi-conforming el ement technique. However

al of the examples were limited to linear formulations. The quasi-conforming non-
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linear formulation is based on the updated Lagrangian method with the assumption of
small strains and large displacements. Guan et a (1992, 1995) presented a nine-node
quasi-conforming degenerated shell element for linear and non-linear analysis. Many
articles have been published by Shi and Voyiadjis (1991 - 1993) using the quasi-
conforming formulation. Park et a (2006) studied the linear static and dynamic
response of laminated composite plates and shells using a quasi-conforming shell
element. The quasi-conforming shell element has been fully extended for the large

displacement of elasto-plastic analysis by Kim and Lomboy (2006).

2.3 FE Analysis of FGMs

Pervaiz (1999) investigated the structural integrity of a functionally graded disk. Two
cases were considered which includes the disk under a bending load and the disk under
a centrifugal loading. Generally it was observed that stress distribution improvement
was achieved with different fibre distribution, hence suggesting that it is possible to find
a fibre distribution capable of minimising stress in the component and this formulated
the optimisation objective in this report. Also, Martinez (2001) developed the work of
Pervaiz (1999) further.

Reddy (2000) presented a theoretical formulation and finite element models based on
third order shear deformation theory for the analysis of through-thickness functionally
graded plates. The Navier solution for ssmply supported plates based on the linear
third-order theory, also the non-linear static and dynamic finite element results based on
the first-order theory were presented by Reddy (2000) to show effects of volume
fractions and modulus ratio of the constituents on deflections and transverse shear
stresses.

Javaheri and Eslami (2002) derived equilibrium and stability equations for rectangular
simply supported functionally graded plates. The derivation was based on the classica
plate theory and with the assumption of power law composition for the material. And
the buckling analysis of functionally graded plates under in-plane compression was
investigated.

Bobaru and Jian (2004) undertook a study of optimisation of FGMs with temperature
dependent properties using a mesh-free solution. In this study, mass is minimised,
whilst a constraint is defined in terms of violating the critical tensile and compressive
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stresses. This study started with a configuration that has thin coatings of pure metal and
pure ceramic at the exterior with a thick FGM layer in-between. Nine designs were
used. They converge to aprofile that has athin FGM layer. The metal (ZrO,) is lighter
than the ceramic (Ti-6Al-4V) and the resulting FGM is metal rich. Thiswork highlights

the significance of the objective of this report.

Silvia and Paulino (2004) developed a design solution for FGM structures by using the
concept of continuum topology optimisation. It was concluded that novel structural
types are obtained by exploring the functionally graded materials idea. Hence, it was
recommended that the design of composite unit cells made of FGMs be considered
using continuum topology optimisation concepts. This recommendation justifies the

optimisation objective of this report.

Chen and Liew (2004) investigated the buckling behaviour of FGM rectangular plates
subjected to non-linearly distributed in-plane edge loads. They stated that a mesh-free
method which approximates displacements based on scattered nodes (i.e. radial basis
function and polynomia basis) was employed, in-order to avoid complicated numerical
procedures that arises in the FEM from the use of elements. This FEM complication
was dealt with in thisthesis.

Kim et a (2008) extended the non-linear quasi-conforming formulation to the case of
FGM structures and the associated FE model that accounts for the mechanical
behaviour. The quasi-conforming non-linear formulation is based on the updated
Lagrangian method with the assumption of small strains and large displacements. The
geometrically non-linear formulation is derived using the full definition of the Green
strain tensor that includes bending and transverse shear stresses in the geometric
stiffness.  The explicit definition of stiffness matrix was used hence no Gauss
integration was employed. Thus the computational time is significantly reduced in the
incremental non-linear analysis. The materia properties of the FGM plates and shells
are assumed to change continuously throughout the thickness of the plate and shell,
according to the volume fraction of the constituent materials based on sigmoid

functions.
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2.4 Summary

This section summarizes the lessons learnt from the literature review carried out in this

report. Thelessons learnt include:

Weight minimization without strength reduction is achievable in FGM components.
Strength  maximization without increase in weight is achievable in FGM
components.

FGM components with complex geometry require FE method.

FE method for FGMss requires complicated mathematical procedures.

Very little research works have been carried out on non-linear FEA and progressive
damage analysis of FGM components.

FGM technology can be beneficial in vast application such as aerospace, mechanical

application, medical application etc.

In comparison to existing publications, this thesis has been able to give unique

contributions to the subject matter. These contributions include Mindlin-type element

formulation based on averaging of transverse shear distribution over plate thickness

using Lagrangian interpolation, Reissner-type e ement formulation based on parabolic

transverse shear distribution over plate thickness using Lagrangian and Hermitian

interpolation, finite strain modelling based on Green’s strain-displacement equation and

smooth fibre distribution technique based on numerical computation of macro-

mechanical properties at Gaussian quadrature points.
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3 Micromechanics and Failure Criteria of Fibrous
Composites

In the traditiona method, the equations that describe the stress-strain behaviour of a
lamina and the load-deformation behaviour of a laminate are based on the elastic
properties of the lamina, and as such, ignore the microscopic nature of the materia. In
other words, no direct account of the fact that fibre reinforced materias is being

considered.

Since the starting point of a significant proportion of composites manufacture is the
combination of fibres and matrix, it would be appropriate to predict the behaviour of the
composite (laminate) from the knowledge of the properties of the constituents alone. It
is important to note that micromechanics models have proven to be successful in
predicting the longitudinal modulus in tenson and compression, and reasonably
successful in predicting the corresponding strengths. Whilst models exist for predicting
transverse and shear stiffness, they do not compare well with experimental data. There
are no satisfactory methods for predicting transverse and shear strengths. A good
literature which gives a detailed explanation of micromechanics can be found in the
book written by Matthews and Rawlings (1999)

The deficiencies in micromechanics models mean that the prediction of laminate
performance from only the knowledge of fibre and matrix properties is not possible at
the moment. However, successful use of macro-mechanics to predict laminate
behaviour is possible; provided the values of stiffness and strength obtained from

experiments on representative unidirectional samples are used as input values.

This chapter defines the elastic and strength properties of FGMs. It describes the
micromechanics algorithm and the fibre distribution techniques such as manual fibre
distribution, average fibre distribution and smooth fibre distribution technique
developed in thiswork. The basic failure criteria of composites are also summarised.
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3.1 Elastic and Mass Properties of FGMs

In order to compute the elastic and mass properties of FGMs, micromechanical analysis
is required. The micromechanical properties of unidirectional composite such as
longitudinal stiffness, transverse stiffness, shear modulus, Poisson’s ratio and density
are presented. The following derivations in this chapter assume that composites
considered are perfect mixtures of fibres and matrix (i.e. negligible ar space in
composite). More information on Micromechanics can be found in the book written by
Matthews and Rawlings (1999); Datoo (1991); Argarwal et. a. (2006) and Kaw (1997).

Longitudinal stiffness

Consider a unidirectional composite loaded by a force F; parallel to the fibres as shown
inthe Figure 3-1. In order to establish equilibrium, it can be shown that:

I:c = Ff + I:m (3-1)

where subscript ¢, f and m stands for composite, fibre and matrix respectively.

Fe —F —1

Figure 3-1: Unidirectional composite loaded in thefibredirection
Equation 3.1 can be re-written as:

oA =0:A +o,A, (3.2
where A, A and A, represents the cross-sectional area of the composite, fibre and
matrix respectively.

Using the definition of fibre volume fraction (Vs) and matrix volume fraction (Vi) given
below

Ve=—3 Vu= % (3.3)

Equation 3.2 becomes:
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c.=0,V; +0.V, (3.4)
Equation 3.4 can be rewritten as.

E.c.=E; eV, +E ¢V, (3.5)
where E is the Young's modulus. Also &, & and &, represent the transverse strain of
the composite, fibre and matrix respectively.

In this case, perfect bonding is assumed (i.e. ec=g=&n which implies there is no slippage

at the fibre/matrix interface), also Ec=E;; it can be shown that Equation 3.5 ssimplifies
to:

E11 = Efvf + Em\/m (3-6)

Transverse stiffness

Consider a unidirectional composite loaded by a stress o perpendicular to the fibre as
shown in the Figure 3-2. The transverse extension of the composite (&) is the sum of

the matrix extension (6m) and fibre extension (&):

50 = 5f + 5m (3-7)

«—>
f

A
v

tc

Figure 3-2: Unidirectional composite loaded perpendicular to thefibredirection
Equation 3.7 can be re-written as:

el. =gty +e.t, (3.8)
where t;, tr and t,, represents the thickness of the composite, fibre and matrix

respectively. Also &, & and &y, represent the transverse strain of the composite, fibre

and matrix respectively.
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Using the definition of fibre volume fraction (Vi) and matrix volume fraction (V)

given below

Ve =17 V=" (3.9)

Cc C

Equation 3.8 becomes:

g. =&V, +¢e.V,, (3.10)
Equation 3.10 can be rewritten as:

o) O ¢ o)

EC = Vi + Em Vi (3.11)

C f m

where E isthe Young's modulus.

In this case, the transverse stress on the fibres and the matrix are equal i.e. oc=ci=0m,

also E.=E», hence Equation 3.11 simplifiesto:
1 _ Vi Vo

E, E; E

(3.12)

m

Shear modulus
Consider a unidirectional composite loaded by a shear stress 7. as shown in the Figure
3-3. The shear deformation of the composite (Ac) is the sum of the matrix extension

(Am) and fibre extension (As):

Ac = Af + Am (3-13)

M atrix
Fibre

Figure 3-3: Shear deformation model

Equation 3.13 can be re-written as:

Yele =7ty +7nln (3.14)
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where I, Iy and |, represents the length of the composite, fibre and matrix respectively.
Also ¥, % and ym, represent the in-plane shear strain of the composite, fibre and matrix
respectively.

Using the definition of fibre volume fraction (Vi) and matrix volume fraction (V)

given in Equation 3.9, Equation 3.14 becomes:
Ve = yfvf + 7/me (3.15)
Equation 3.15 can be rewritten as:

Te & Tm
—=—V; +—=V, (3.16)

:uc H f :um
where u isthe in-plane shear modulus.

In this case, the shear stress on the fibre and matrix are equal i.e. -=%=1m, alS0 u=pi>

hence Equation 3.16 simplifies to:

1V, V_
=—* (3.17)
Hiyp  Hs  Hy
—_ Ef _ Em
where M oarv,) ™ T oaey)

Also v; and v, represent the Poisson’ s ratio of the fibre and matrix respectively.
Poisson’sratio

Consider a unidirectional composite loaded by a stress o parale to the fibre as shown
in the Figure 3-4. The transverse contraction of the composite (&) is the sum of the

matrix transverse contraction (o) and fibre transverse contraction (&):

5,=68,+6, (3.18)

2

f

Fibre

it
Gc<:| |::>Gc —»1
tm

Matrix

Figure 3-4: Unidirectional composite loaded in thefibredirection
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Equation 3.18 can be re-written as.

- 1:cvc‘c"c = _tfvfgf _tmvmgm (3.19)

where ve, v and vy, represent the Poisson’s ratio of the composite, fibre and matrix
respectively. Also &, & and &y, represent the transverse strain of the composite, fibre
and matrix respectively.

Using the definition of fibre volume fraction (Vs) and matrix volume fraction (Vi) given
in Equation 3.9, Equation 3.19 becomes:

chc = Vfgfvf +Vmgmvm (3-20)
In this case, perfect bonding is assumed (i.e. e.=&=&m Which implies there is no slippage

at the fibre/matrix interface), also vc=vi2 it can be shown that Equation 3.20 simplifies

to:
v, = ViV +v V, (3.21)
Density

The density of a composite can be computed by taking into account the conservation of

mass which is given below.

M.=M, +M_, (3.22
where M., M;, and My, represent the mass of the composite, fibre and matrix
respectively.

Equation 3.22 can be re-written as.
pcvc = pfvf + pmvm (3'23)

where v., Vi, and v represent the volume of the composite, fibre and matrix

respectively.
Using the definition of fibre volume fraction (Vi) and matrix volume fraction (V)
given below
\) Vv
Ve=—t; V=" (324)
VC VC
Equation 3.23 becomes:
Pc = pfvf + pme (3.25)
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3.2 Strength Properties of FGMs

The strength properties of FGMs can be computed in terms of the strength properties of
their constituents by using the rules of mixture as described in this section. More
information on the strength properties can be found in the book written by Daniel and
Ishai (2006).

Longitudina Tensile Strength

Consider a composite under longitudina tensile force, the phase with lower ultimate
strain will fail first. For perfectly bonded fibres, two cases are distinguished depending
on the relative magnitudes for the ultimate tensile strains of the constituents.

In the case in which the ultimate tensile strain of the fibre (&) is lower than that of the
matrix i.e. e < em", the composite will fail when its longitudinal strain reaches the
ultimate tensile strain of the fibre. Hence, the longitudinal composite tensile strength of
the composite can be approximated by Equation 3.26 [Daniel and Ishai (2006)].

Em
X=Xy |:Vf +V,, E_} (3.26)

1f

where X represents the longitudinal fibre tensile strength, V; and V, represent the fibre
and matrix volume fraction respectively, Ej; and E,, and Longitudina Y oung’s modulus
of fibre and matrix respectively.

In the case in which the ultimate tensile strain of the matrix (en) is lower than that of
the fibre i.e. em" < &', the composite will fail when its longitudinal strain reaches the
ultimate tensile strain of the matrix. Hence, the longitudinal tensile strength of the
composite can be approximated by Equation 3.27 [Daniel and Ishai (2006)].

E
X=X |:Vm + Vi E—lf} (3.27)

m

where X represents the longitudinal matrix tensile strength.

The above equations do not take into consideration the random distribution of fibre and
matrix strength. In the case of fibre-dominated strength, for example, fibre strength

varies from point to point and from fibre to fibre.
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Longitudinal Compressive Strength

Consider a composite under a longitudinal compressive force, failure is assumed to be
associated with microbuckling or kinking of the fibres within the matrix. In the case of
low fibre volume ratio values, the extensional or out-of-phase mode of microbuckling is
predicted with a longitudina composite compressive strength given by Equation 3.28
[Daniel and Ishai (2006)].

—E E vV -1/2
XC:ZVf m—1f Vf

L 3(1_Vf)_

— —11/2 (328)
XCZZVf EmElf Vf

3V, |

where V¢ and V, represent the fibre and matrix volume fraction respectively, Eis and En,

and Longitudinal Y oung’s modulus of fibre and matrix respectively.

In the case of high fibre volume ratios i.e. V¢ > 0.5, the most likely failure mode is the
shear mode which is governed by the shear strength of the fibre. The predicted strength
based on this mode is given by Equation 3.29 [Daniel and Ishai (2006)].

E
Xc=2Xs {Vf +Vin E—m} (3.29)
1f

where X5 represents the shear strength of the fibre.

Transverse Tensile Strength

Consider atransversely loaded composite, the residual stresses and strains due to curing
of the matrix, or thermal stresses and strains due to thermal expansion mismatch, must
be taken into account in predicting failure. Assuming a maximum tensile stress or strain
failure criterion and linear elastic behaviour and linear elastic behaviour to failure for
the matrix, one can predict the transverse composite tensile strength for a unidirectional
composite using Equation 3.30 [Daniel and Ishai (2006)].

X mt ~ Om

k— (3.30)

(o)

Y, =

where X represents the matrix tensile strength, k. represents the stress concentration

factor and o represents the radial (maximum) residual stress.
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Transverse Compressive Strength

Consider a unidirectional composite under a transverse compressive force, the high
compressive stress concentration at the interface may cause compressive failure in the
matrix and/or fibre crushing. The predicted transverse composite compressive strength
for this failure mechanism is given by Equation 3.31 [Daniel and Ishai (2006)].
v - XietOm
c K (3.31)

G

where X, represents the matrix compressive strength.

In-plane Shear Strength

Consider a composite under in-plane shear force, a high shear stress concentration
develops at the fibre-matrix interface. The high shear stress at the interface can cause
shear failure in the matrix and/or fibre-matrix debonding. The in-plane shear strength of
the composite based on matrix shear failure can be predicted with Equation 3.32 [ Daniel
and Ishai (2006)].

x ms
Szk— (3.32)

T

where X s iSthe matrix shear strength, k. isthe shear stress concentration factor.
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3.3 Fibre Distribution Techniques

It describes the micromechanics algorithm and the fibre distribution techniques such as
manual fibre distribution, average fibre distribution and smooth fibre distribution
technique developed in this work. This section explains the implementation of fibre
distribution in the FE code that was developed for this work. Equation 3.33 is used to
implement fibre distribution in the FE code.
V, (&) =V, +(V,-V,)E" (3.33)

where

V, = fibre volume fraction at X;, y1 or ry or gradation offset

V, = fibre volume fraction at x,, y, or r

P = gradation exponent

X=X,

E= , for casel
Xy =Xy

g=Y " for case2
Yo—Y:
r—r

E= ,  for case3
r2 rl

X1, Y1 0r ry = End “1” of the functionally graded domain
Xz, Y2 OF 1, = End “2” of the functionally graded domain
X, y or r = the position in the domain

Manual Fibre Distribution

This fibre distribution technique enables the code user to manually specify the fibre

volume fraction for each element along the direction of fibre volume fraction variation.

Average Fibre Distribution

This fibre distribution technique enables the code user to either specify the fibre volume

fractions such as V; and V, or the mean fibre volume fraction vV and fibre volume
fraction, V1. The fibre volume fractions are then computed at the midpoint of each

element using equations, which will be derived later in this section.
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Smooth Fibre Distribution

This fibre distribution technique enables the code user to either specify fibre volume

fractions such as V; and V, or the mean fibre volume fraction vV and fibre volume

fraction, V1. The fibre volume fractions are then computed at each Gaussian quadrature

point using equations which are derived subsequently in this section.

Derivation of mean fibre volume fraction E for specified V; and V>

Using the fibre distribution equation below:
Vi (§) =V, +(V, - V) ¢&”

And the mean fibre volume fraction is as given below:

Eimex
Ve
v ( ): Emin
f &-’ E.>max _émin
It can be shown that:
(V2 = VD) G —Emin)
_ Vl(émax _émin)+

<i;max _&min

Derivation of fibre volume fraction V, for specified V1 and z
Rearranging Equation 3.34 gives.

(&P+l _ aPJlrl)
(&max - &min)(P + 1)
Vi(©) = Vi + (Vz _Vl)Q

(aP-%—l _ aP-ﬁ—l)

(amax - amin)(P + 1)
Vi(6)=V,Q+V(1-Q)
Rearranging the above equation gives:
Vi-V,(1-Q)
Q

Vi €)=V, +(V,- V)

where Q=

V, =

(3.34)

(3.35)

(3.36)

(3.37)

(3.39)

The plots of the fibre distribution for all ten optimisation cases considered in this thesis

were obtained using Equation 3.33 and they are as shown below. It should be noted that
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each of the ten optimisation cases have a mean fibre volume fraction of 0.4. The case

with gradation exponent of zero (i.e. P=0) represents the traditional composite case.
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3.4 Failure Criteria and Damage Mechanisms

Progressive damage analysis is based on the assumption that the damaged materia can
be substituted with an equivalent material with degraded properties. A comprehensive
literature review on progressive damage analysis was undertaken by Padhi et al (1998).
Most property degradation models can be grouped into three categories such as total
discount approach, limited discount method and residual property method as shown in
the diagram below. The total discount approach reduces the stiffness and strength of a
failed ply to zero, although the ply is physically present. The limited discount method
reduces stiffness based on the failure mode in action. For fibre failure, the longitudinal
stiffness is degraded whereas for matrix failure, zero stiffness and strength are assigned
to the failed ply for the transverse mode. The limited discount method was employed
by Chang and Chang (1987), Chang and Lessard (1991) and Shahid and Chang (1995).
The residual property method as described by Lo et a (1996) uses continuum damage

models to predict progressive damage and the stiffness drop in the laminate.

Property
degradation

Total discount Limited discount Residual property
approach approach approach

e Chang & Chang, 1987 e Loetad, 1996

e Chang & Lessard, 1991

e  Shahid & Chana. 1995

Figure 3-8: Types of property degradation

Chang and Lessard (1991) assume that after failure occurs, the stresses in the failed
directions drop to zero immediately, which corresponds to brittle failure with no energy
absorption. This kind of failure model usually leads to immediate, unstable failure of
the composite. This assumption is not very redistic. In redity, the stress-carrying
capacity degrades gradually with increasing strain after failure occurs. Hence the
behaviour of the composite after onset of failureis not likely to be captured well by this
model. Moreover, the instantaneous loss of stress-carrying capacity also makes the
post-failure analysis results strongly dependent on the refinement of the FE mesh and
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the finite element type used. Further details on progressive damage analysis can be
found in Reddy & Reddy (1993), Kim et a (1996), Kam & Sher (1995), Echaabi et al
(1996) and Tolson & Zabaras (1991).

In this thesis, a damage mechanism based on the material degradation model found in
Spottswood and Palazotto (2001) was employed in the finite element programs. The
damage mechanism involves carrying out a failure check at the node of element at every
load increment by using any of the interactive failure criteria. If failure is detected,
material properties of the failed element are degraded and equilibrium is re-established.
The failed element is degraded by multiplying the element stiffness properties in the
finite element code with a strength reduction factor which is given by the equation
below.

. ) No. of failed nodesper el ement
Stiffness Reduction Factor = 1.0 - (3.39)

No. of nodes per element

Failure criteria for composite materials are often classified into two groups: namely,
non-interactive failure criteria and interactive failure criteria.  Further details can be
found in a publication by Sleight (1999).

Non-Interactive Failure Criteria

A non-interactive failure criterion is defined as one having no interactions between the
stress or strain components. These criteria, sometimes caled independent failure
criteria, compare the individual stress or strain components with the corresponding
material allowable strength values. The maximum stress and maximum strain criteria
belong to this category. Both failure criteria indicate the type of failure mode. The

failure surfaces for these criteria are rectangular in stress and strain space, respectively.

Interactive Failure Criteria

Interactive failure criteria involve interactions between stress and strain components.
Interactive failure criteria are mathematical in their formulation. Interactive falure
criteria fall into three categories: (1) polynomial theories, (2) direct-mode determining
theories, and (3) strain energy theories. The polynomia theories use a polynomial
based upon the material strengths to describe a failure surface. The direct-mode

determining theories are usually polynomia equations based on the material strengths
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and use separate equations to describe each mode of faillure. Finaly, the strain energy
theories are based on local strain energy levels determined during anonlinear analysis.

Most of the interactive failure criteria are polynomials based on curve-fitting data from
composite material tests. The most general polynomial failure criterion for composite
materials is the tensor polynomial criterion proposed by Tsai and Wu (1971). Other
popular quadratic failure criteria include those by Tsai-Hill, Azzi and Tsai, Hoffman,
and Chamis. The failure surfaces for these quadratic criteriaare élliptical in shape. One
of the disadvantages of these quadratic failure criteria is that they predict the initiation
of failure but say nothing about the failure mode or how the composite fails.

Using strength parameter defined earlier in this chapter, in conjunction with the
interactive failure criteria, it can be determined whether an FGM component has failed

or not. The commonly used interactive failure criteriainclude:

1) Tsai-Hill Failure Criterion

The Tsai-Hill failure criterion is based on the distortion energy failure theory of Von-
Mises distortional energy yield criterion for isotropic materials. Hill (1950) adapted the
Von-Mises distortional energy yield criterion to anisotropic materials. Then Tsal
(1968) adapted it to a unidirectional lamina. Distortion energy is a part of the total
strain energy in a body which is due to a change in the body shape. It is assumed that
failure in the material takes place only when the distortion energy is greater than the
failure distortion energy of the material. Failure occurs when the failure index (F.1.)
given by Tsai-Hill failure criterion exceeds 1 i.e. the following inequality [Kaw (1997)]

must be satisfied to ensure no failure has occurred:
c ? o 2 T 2 c c
SEENNE N NN LA 540

X =Xior Xcand Y =Y or Y. depending on the signs of c11 and o5 (i.€. if the

where

applied stress is tension, use the tensile strength and if the applied stress is
compressive, use the compressive strength).

Xcand Y are absolute values.

Xtand Y = Longitudinal and transverse compressive strength respectively

Xcand Y. = Longitudina and transverse compressive strength respectively
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o1 = Stressin thefibre, “1” or longitudinal direction of the material axis.

o2, = Stressin the“2” or transverse direction of the materia axis

T12 = In-plane shear stressin the material axis.

S = Shear strength
This criterion considers the interaction of the stresses in the material axes directions
unlike the maximum strain and maximum stress failure criteria. The criterion will not
indicate the mode of failure as the maximum stress and maximum strain failure criteria

will do.

2) Hoffman Failure Criterion

As in Tsai-Hill failure criterion, the Hoffman failure criterion is an interactive failure
criterion which indicate whether failure has occurred or not, but it does not indicate the
mode of failure. Failure occurs when the failure index (F.l1.) given by Hoffman failure
criterion exceeds 1 i.e. the following inequality [Kaw (1997)] must be satisfied to

ensure no failure has occurred:

F.l.=Fo,, + F,6,, + F;,67, + F,,05, + F415 + 2F,6,,0,, <1 (3.41)
where
1 1 1 1 1
TNXC TV Y TR
t C t C t C
1 1 -1
F,o=——, F.=—, F. =
22 Y,Y, BT g2 12 2X X

3) Tsai-Wu Failure Criterion

The Tsai-Wu failure criterion is based on the total strain energy failure theory of
Beltrami. Tsai and Wu (1971) applied the failure criterion to a lamina in plane stress.
As in Tsai-Hill and Hoffman failure criteria, the Tsai-Wu failure criterion is an
interactive failure criterion which indicate whether failure has occurred or not, but it
does not indicate the mode of failure. This criterion is very similar to the Hoffman
failure criterion except for the value of the coefficient Fi,. Failure occurs when the
failure index (F.l1.) given by Tsai-Wu failure criterion exceeds 1 i.e. the following

inequality [Kaw (1997)] must be satisfied to ensure no failure has occurred.

Fl=Fo,+Fo,, + Fllcslz1 + Fzzcsg2 + Fsstfz +2F,06,,06,, <1 (3.42)
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1 1 1 1 1
XX TR Y TR
t c t c t“tc
1 1 . F.
F, = , Fiy = —, F, =F,F,Fp =——2—
22 YtYC 33 Sz 12 12 117 22 /—XtXCYtYC

The coefficient F, hasto be determined from a biaxial test. Performing such a biaxial

test on a laminate is not straightforward and the value of the coefficient is usually
estimated. Tsai and Hahn (1980) have shown that the value of the coefficient must be

between the limits -1 and 1. In the absence of a measured value, the coefficient is
generally set to -0.5.
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4 Mindlin-type Element Theory

This section explains the Mindlin-type plate bending element theory and derives the
equation used in the finite element programming. The finite element formulation of
displacement equation, strain equation, stress equation, strain energy variation and
generalised equation of equilibrium have been summarised in this section. The
generalised equation of equilibrium is then linearised in-order to obtain the Mindlin
element equation. The material non-linearity and geometrical non-linearity have been

considered, and integrations through plate thickness have been carried out analytically.

4.1 Stress and Strain Equations

Displacement Components
The composite plate is represented by N, layers, which are parallel to the x-y plane such
that for layer I:

z=2", z=2z (4.1)
are the equations of its lower and upper surfaces, and its thicknessis given by:
h® =z -z" (4.2)

Thetotal thickness of the composite plate can be obtained as follows:
N,
h = Z h®) 4.3)
1=1

The mid-plane of the plate (z=0) isassumed to be the bending neutral plane.

Transverse shear modelling is based on the following equations which can be found in a
publication by Attiaand El-Zafrany (1999):

o 472 3_ 47

Yxe (X, Y52) = 7,,(X,Y) {1—? = Sha {1—?} (4.4)
o 472 3._ 47

7yz(X,y,Z) = yyz(xay) |:1_F = E}/yz |:1_Fj| (45)

where y7,, 7y, represent the values of transverse shear strains at the mid-plane, and:

h/2

_ 1 2 .
Y xz (X’y) = E j Y xz dz = 57/” (46)
_hy2



h/2

_ 1 2
yyz(xiy) = E J- Vyz dz = g)/yz (47)

-h/2
Approximate (z-linearised) distributions of u,v, (the displacement componentsin x and y

directions) can be assumed such that:

Vg © %+Z—VXV Vyz ® %JF%N (4.8)
The lateral displacement (in z-direction) w is assumed to be independent of z, i.e.
w(X,y,2) = w(X,Yy) (4.9)
Hence, it can be deduced from equations (4.8) and (4.9) that:
u(x,y,z) = u’(x,y)+z60,(x,y) (4.10)
V(X,Y,2) = V°(X,Y) — 26, (X,Y) (4.11)

where u®, v° represent displacement values a the mid-plane of the plate and 0, , 0, are

average slope angles defined as follows:
ow  _
0, =+ {E - }/yz} , 0, = - [& - }/XZ} (4.12)

Strain Components

The transverse strain components at any point inside the plate are assumed infinitesimal,
they are negligible for thin plates, other components are defined in the x-y plane and

they may assume finite values. The strain component &, will always be assumed

negligible.

Transverse shear strains

Using Equations (4.4) and (4.5), the transverse shear strains can be represented by the

following vector:
yXZ 2 }/XZ
y = _ g(l_ﬁj (4.13)

and from Equation (4.13) it can be deduced that:
y = f,(97 (4.19)

where

35



oW
7xz & + 9)’
g = = (4.15)
7yz 8_W - Qx
Loy
and
3 47
The x-y strain components
Theseare ¢,, ¢, 7,, and are represented with the following vector:
e ]
g =g (4.17)

yxy_

Using Green'’s strain-displacement equations, then:

-l
T ax 2| lax OX OX (4.18)

2 2 2
g, = @+l (G—UJ +(@j +(8—Wj (4.19)
o 2| % oy oy
_ou,ov [oudu avov  owow 220
Py oy OX |oxoy oxoy oOx oy (4.20)
Using the previous equations, the x-y strain vector can be partitioned and represented in

terms of different vectors and matrices as follows:

T

Ex 1 Am - ZA9 9m
gy | =8, —Zg, + 2 A, 0, (4.21)
Yy -zA +Z°A, | |0,
where the vectors and matrices in the above equation are defined as follows:
[0} [0} o (0] T
0. (x,y) = ou” ov° ou” ov (4.22)
oXx ox oy oy
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0,(X,y) = ow —} (4.23)

[ 06 06 '
0,y) = [-=r D T (4.24)
| OX  0OX oy oy
ou ov 0 0
OX OX
A Gy =| 0 o M & (4.25)
oy oy
ou° ov° ou’ ov°
oy oy OX OX
M
OX
ow
A, (Xy) = — (4.26)
oy
ow W
L oy oy |
00 ]
__y a@x 0 0
OX OX
00
A,(X,y) = 0 0 _%% 99, (4.27)
oy oy
00, a6, 90, a8,
oy oy OX oX |
[0} o [0} (0] T
& (X,y) = v o (4.28)
ox oy oy oX
00 06, |
g (Xy) =|-— 06, 06, _ % (4.29)
oX oy ox oy
Also the variation of the total x-y strain vector can be represented in matrix form as
shown below:
de, A_—zA, |Tde_
de, |=de, - zdg, + A, de,, (4.309)
dy,, -zA +Z°A, | | d6,

And the variation of the transverse shear strain vector is derived from Equation (4.14)

as
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dy = f,(2d7 (4.30b)

Stress Components

The relevant stress components at any point inside the I™ layer of a composite layered
plate can be represented in terms of two vectors defined as follows:
(a) The transverse shear stress vector

7'-XZ

0 = (4.31)

(b) The x-y stress vector

=0 (4.32)

Txy

Using constitutive equations for the I™ layer, as explained in Appendix A, the stress
vectors can be expressed in terms of strain vectors as follows:

f,(9n"7 (4.33)

¢ = D¢ (4.34)

0= pOy

Strain Energy Variation

The variation of strain energy density (strain energy per unit volume) due to a variation

of displacement at any point inside the I™ layer of the plate can be expressed as follows:

2 A7y, + 70 A7y, (4.35)

(1O - 0 0} 0]
du" = o,’de, +o0,'de, +1,,dy,, +7,,

y

which can be represented in the following matrix form:
dU® = dy'1" + de'e® (4.36)

The variation of strain energy per unit area of the plate surface is defined as follows:

hy/2
du’ = j (dU ") dz (4.37)

-h/2
and the variation of the strain energy of the plate is given by:

du =  [[(du")dxdy (4.38)

x— Yy surface
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Substituting from Equations (4.30) into (4.36), it can be deduced that:

dU® = f (2d9' t" +[de, + A, dO_+A, d6,
’ (4.39%)
—z(de, + A, d0, +A,d0,)+2°A,do,]s"
i.e.
dU" = f (2)d7' 10 +[de! +d6f, AL, + 6}, Al,
(4.39b)

— z(del +d0} AL +de, AL )+ 22 de} A, |6

4.2 Interpolated Equations of Displacement and Strain

Displacement Components
Mindlin-type elements are based on Lagrangian interpolation, and for an n-node
element the mid-plane displacement components and average slope angles at any point

(x,y) inthe mid-plane of the plate can be interpolated as follows:

W (x,y) = ZN (X, y)u (4.40)
V(x,y) = ZN (X, (4.41)
Wx,y) - ZN (x,y)w (4.42)
0,00) = N ()0, (4.43)
0,(x,y) - ZN 00, (4.44)

where ui,vi,vvi,(é?x)i,(ey)i are values a node i (x,y,) and N, (X,y) represents

Lagrangian shape functions.
Usualy, the two-dimensional Lagrangian shape functions are expressed in terms of

intrinsic coordinates (&,n) , and the relationships between Cartesian coordinates (X, y)

and intrinsic coordinates (£ ,7n) are obtained viathe following iso-parametric equations:

X(Em) = 2N (€ (4.45)
yEm = LN Emy (4.46)
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The nodal displacement vector for in-plane components can be defined as:

d,={u, v, u v, - u v} (4.47)

n

The nodal displacement vector for out-of-plane components can be defined as:
0, = { W (Qx )1 (Qy )1 o W, (Qx )n (Qy )n } (4-48)

Strain Components

Transverse shear strains
Substituting from Equations (4.42)-(4.44) into Equation (4.14), then:

1(X,y,2) = (2B, (x,y)9, (4.4939)
where
My
B, (X,y) = alil( (4.49b)
. — —-N 0
oy

Also the variation of transverse shear strains can be obtained from Equation (4.49a) as
follows:
dy(x,y,2) = f (2B, (x,y)dd, (4.50)

Total x-y strain vector and its variation

The total strain vector of x-y components can be represented in terms of nodal

parameters as:
.
&, B.+1A G —ZAG. 5
&= 20 A 2 L}"} (4.51)
Yy EAWGW—Z(Bb+§Amng+EA9G9 b
Hence it can be shown that:

N,

OX
Bo(x,y) = 0 % (4.52)

oy
NN
i oy O ]
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o o M
OX
B,(X,y) = | - 0 %’j 0 (4.53)
o N _oN
OX oy
_ N, _
OX
N,
OX
G,(x,y) = ON. (4.54)
.. 20
oy
o N
i oy ]
G,(xy) = 6Iil( (4.55)
0 0 0
i oy
0 o N
OX
0 % 0
G,(x,y) = N (4.56)
0 0 =0
oy
o M
i oy ]

Also the variation of the x-y strain vector can be represented in terms of nodal

parameters as shown below:

de T
B,+A,G,—-7A,G, do,
de, |= ) (4.57)
AG,-2B, +A,G,)+2°A,G, | | dd,
dy
Define the following non-linear B matrices:
B,y = A,G, (4.58)
with p=mw,0, gq=m,w,0
Define also:

41



w
I
W
o
+
>
3
®
3
ll
w
+
w

(4.59)

and

~

B,= B,+A,G, = B, +B (4.60)

Hence, Equation (4.57) can be rewritten as follows:
X B —2zB Tds
de, |= 0 _#om. ° (4.61)
Buw — 2B, + Z°B,, | | 9,

Variation of Strain Energy
Substituting from Equations (4.50) and (4.61) into (4.36), then the variation of strain
energy density at any point inside the Ith layer of the plate can be expressed as follows:

dUO(x,y,2) =[ds! B!] (f,(2) ")

(L)
o, [ BL+GAL-GA, || (4.62)
i 0 o m ' m m'e (L)
dd, | |GLA, ~ 2B + GIAL )+ ZGLAYL | |

o
Integrated stress vectors
(@) Integrated transverse shear stress
Thisis defined asfollows:
hy/2
T = j f, (21" dz (4.63)

b2

Substituting from Equation (4.33) into (4.63), then it can be deduced that:

hy/2
T = j f2(2)p" dz |9 (4.64)
—hy2
Define an integrated p matrix as follows:
2 "o 4z
B, = jfy (2)p"dz = jz 1-— [n"dz (4.65)
-h/2 —h/2

and for the special case of transversely isotropic plate, where al layers have the same p
matrix, it can be proved that:
p, =chp (4.66)
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Hence, it can be deduced that:
T=n,y=n,B3, (4.67)

(b) Integrated x-y stress vectors
These can be defined generally as follows:
_oi'” .

h/2
6,= ()" [26Vdz = o (4.68)

“hy2

()
| Txy |

Equation (4.68) can also be expressed as:

h/2

6, = (-1)" { jz” D")dz} (e, +¢,+¢g,)

~hj2
h/2

4 (—1)”*{ | z”*lD")dz} (e, +20p ) (4.69)

—h/2

hy/2
n (_1)n+2 l: J’Zn+2 D(I)dz:l (89)

—hy2

Defining integrated D matrices generally as follows:

h/2
D, = j z'D"dz (4.70)

—hy2

then Equation (4.69) can be simplified as follows:

6= ()" [D, (6o + £+ £4)~ Doy e + g )+ Dy, (4.71)
with the following special cases:

6,= D (g, +¢,+¢,)- Dl(sb +8m9)+ D.,g, (4.72)

G, = — [Dl (so +&,+ sw)— D, (sb + €. )+ D, 59] (4.73)

6,= D,(e, +&,+8,)— D&, +&m )+ D, &, (4.74)

Integrating Equation (4.62) over the layers with respect to z, then it can be deduced that:

dU’ = da}B! 7 +(dd! B! +ds! Bl )s,

g (4.75)
+(daL B!, +dd, B )o, + d5. B, o,
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4.3 Derivation of FE Equations for Mindlin-type Element

Generalized Equations of Equilibrium

The wok done by actua external loads can be expressed in terms of equivaent nodal

loading represented with the following vector:

I:0
F = (4.76)
I:b
where
F,=1{F). (FR). (F), (F), - (Fdw (Fuf (4.77)
F=1(F) M), M) -  (Fn (M), (M), (479

and misthe total number of finite element mesh nodes.
From the principle of virtual work due to avariation of displacement:

dy = dUu—-dw =0 (4.79)
Equation (4.79) can be expressed as.

T G(L)

T X
. iz [dao} { B, + G, A, — ZG A, e
dd, | |GLA! —7ZB! +GLA! )+ 2GLAL y dxdydz
;_ﬁ[z'['[ b WA Z( b 0 m) oMo G)((;) 3 (4.80)
+dd,B; f «

—doLF. —doLF. =0
Since dé,,dd, represent arbitrary parameters, then their coefficients in the above

equation vanish, leading to:

T U)((L)

. h/2 t t At t At
ST Bo * Sl = Z3nfto o |+B! f, 7O lxdydz
= 370 |IGLAL —2BL +GLAL )+ Z2GLA) v

- i;) (4.82)
-[F, R]'=0

which represent the generalized equations of equilibrium.
If an approximate solution is employed then the previous equations will lead to the

following residual vectors:



(L)
N, h/2 t t oAt t At T| Ox
2 [ [l tB°+Gthmt_ZtGmA3 o |08 [+ By, 7 tdxdydz
e1frz'e |[Cuwhw— Z(Bb +Gé)Am)+ ZGyA, (4.82)

ol

-IF RI'=-[R, RyJ'
When calculating the residual forces, the equation above is integrated analytically with
respect to z, leading to:

R

= F-3 (B 4Gy AL o, + (G AL e, dxdy (4.83)

ezle

Ne _
R, = Fb—;'EJ-{B;r+(G‘VVA‘W)GO+(BL+G;AL1)01 w8

+(G) Al)e, | dxdy

Linearization of Equations of Equilibrium

To restore equilibrium, i.e. to make the residual vectors vanish we assume:
0oy = 0,4y +AD
Gy = Oyy +Ac (4.85)
A= Ay FAA

such that R,—»0O, R,—»O

Substituting from Equations (4.85) into (4.82), then it can be deduced that:

i”ﬁ[‘-”l + Gtm(Atm + AAtm)] (G(D n Ao"))

= (4.86)
+G (AL +AAL)(=2) (6" + A6 ) dxdydz—F, = O

Ne

D []1e) 1, e s ax”) Gl AL+ aaL o+ 2o

+ [B,‘D +G}, (Aﬁn + AA}n)](—z) (c(') + Ac")) (4.87)

+G! (AL +AAL)(22) (6" + Ac" ) dxdydz—F, = O
Expanding the previous expressions and ignoring high order terms, and using the
definitions of R, R, given in Equations (4.82), then Equations (4.86) and (4.87) can
be reduced to:

im{[BhGinA‘m]Ac“) +GL A} (- za6") (4.88)

+G! AAL 6" + G AAY (— ZG(I))}dXdde = R,
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Ne
S [[[{B! f,(2a10 +GL, AL A6 +[B} + G AL | (- za6®)
e=l ¢
+GY AL (ZA6")+ GLAAL 6" + Gl AAL (-2) 6" (4.89)
+GYAAL (22)6" fdxdydz = R,
Equations (4.88) and (4.89) can be divided into two parts each. The first part contains

the terms which include Ae and the second part has the terms with AA’s, as follows:

Ne

SR+ R)a] = R (4.90)
Ne
Zl[(RE)AG + (Rg)AA] =R, (4.91)
where, with the use of non-linear B matrices:
/
(R2), = hf [[[B: 6" + B}, (- za6" )| axdy dz (4.92)
-h/2 e

h/2

(R¢),, = _J/Z jej[B; f (A" +B., Ac" (4.3)

+ B! (- za6" )+ BY, (2 Ac® )| dxdydz

/
(RE), = T H[G;AA; o" + G AA (—2) 6" dxdydz (4.94)

-h/2 e

y
(R = hjz jj[GtWAAth(')+G;AAtm(—z)c<'>+G;AA;(z2)c<'>]dxdydz (4.95)

-h/2 e

Analysisof Aec Terms

Using Equations (4.33) and (4.50), the increment of transverse shear stress can be

expressed as follows:
AtV = £ (9p A7 = £ (2nV B, A8, (4.96)

Hence, it can be deduced that:

hy2
j f (a1"dz = p, B, AS, (4.97)

—hy/2
Similarly the increment of x-y stress can be obtained from Equations (4.34) and (4.61),

asfollows:
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Ac® = DV Az = DV [B, A8, +B,, Ad,

: 4.98
—7(B,,, A8, + B, Ad, )+ 2B, AS, ] %

Using Equation (4.70), the following integrated stress increments can be deduced:

b2

[Ac"dz = D, (B, A8, +B,,48,)- D, (B,,A8, + B, A5,

I (4.99)
+D,(B,, AS,)

T2a6"dz = D (B, 48, +B,, 48, )-D, (B, A8, + B, A5,

i/zzAc 1150 A0, + B, 30, J= D, By A0, + 5, A0y, (4.100)
+D3(B(99A8b)

h/2

.[Zz AeVdz = DZ(EOAESO + BWWAS,D)— Dg(BgmAao + I-S’bAﬁb) (4.101)

“h2

+ D4 ( BHH Aé"b)
Using Equations (3.97) and (3.99)-(3.101) then Equations (3.92) and (3.93) can be

reduced as follows;

(R2),, = Koo 88, +K oy A3, (4.102)
(Re),, = Koo AB, + Ky AB, + K A3, (4.103)
where
Koo = ” [éto D, I-5’0 - I§L D,By, — By D; éo +Bym D, Bgm]dxdy (4.104)
KOb = _[ [ég DOBW\N_étO Dléb_B;lewa

¢ ) (4.105)
+B!D,B,, +BY,D,B, - B, D,B,,|dxdy

Kb0: J-.[ [BfNWDoéo_éra Dléo_BwaDlBHm

o (4.106)
+ Btee Dz Bo + B:) D2 Bem - Bt99 D3 Bem]dXdy = K:Jb
K, =[] B}n,B,dxdy (4.107)
K= || [B\D,B,,~B\,D,B,~B,D,B,,
+B.D,B, +B! D,B,, + B, D,B,, (4.108)

- é:) D;By — Bf% D, éb + Btee D, B%]dXdy

a7



Analysisof AA Terms

Using the integrated stress defined by Equation (4.68), then Equations (4.94) and (4.95)

can be smplified as follows:

RS = [[[GhAAL 6, + G AA, 6, ] dxdy

(RS). = fI [G,an

Using matrix manipulations, the following theorems can be proved:

t

w

6, +G. AA! 6, + G, AAL 6, | dxdy

AA' 6, =S, A8 =S, G, Ad,

AAj 6, =

S.A0, = S, G, Ad,

AAl G, = S, A0, = S,G,Ad,

where

G)((”)

0

(n)
Thy

and

0
S =

w

(0)
Tyy

0

G)((”)

0

(n)
Tyy

(0)
Tyy

(0)
Gy

T

(o2

(n)
xy

0

(n)

0

(n)
Tyy

0

oM

(4.109)

(4.110)

(4.111)
(4.112)

(4.113)

(4.114)

(4.115)

Substituting from Equations (4.111)-(4.113) into (4.109) and (4.110), then it can be

deduced that:

(RO)AA =K ;m A80 + K?ne AEsb

(Rb)AA = KgmAao + (K \[/rvw + ng)Aab

where

Kim = [[ G1nS, G nxdy

K7y = [[GLS.G, dxdy

Kim = [ G5S,Gaxdy
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(4.117)

(4.118)

(4.119)

(4.120)



Kiw = [[ 6.8, G, dxdy

K, = [[G}S,G, dxdy

Final Matrix Equations of the Element

(4.121)

(4.122)

Substituting from Equations (4.102), (4.103), (4.116), (4.117) into (4.90) and (4.91), it

can be deduced that:

Ne

=)

()

i{K w0 A8, + (K, +Kyp )AS,
e=1

+KS Ad, + (K3, +KS,)AS, = R,

which can be rewritten as follows:

i) [

and the e ement stiffness matrices are defined as follow:

K oo Ko
K =

Ko  Kgp+K,

K Ko
Ke? =

Kom Kl +Kg
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{K A8, +K o AD, +K % AS, +K 7, AS, | = R

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)



4.4 Derivation of Mass Matrix for Mindlin-type Element

It is assumed that different layers are made of the same composite material but with
different fibre orientations, i.e. the density of every layer isthe samei.e.

P =p (4.128)
Using D’ Alembert’s principle, the inertial force vector acting at an infinitesimal volume
due to an acceleration vector is:

dF = —p a dxdydz (4.129)
Hence, the work done by the inertia force due to an infinitessmal virtual displacement
fieldis:

aw, = - [[[ pdg.addydz = [[[ pdq'q dxcydz (4.130)

volume volume

Using the expression below

q(x,y,z,t)={q““}[q“zqﬂ (4.131)
d. d.
It can be shown that

da'd = (0} - 21a} )+ d,- zd, |+ da} d, (4.132)

Expanding the equation above and integrating with respect to z gives:
h/2 . . . K .
jdqtqdz=h(dngo+dthqwj+12dq;qg (4.133)

-h/2

Defining the following displacement components:

do(X, y,t) = N (X, y)8,(t) (4.134)
qe(x-y-t): Ne(x,y)ﬁb(t) (4135)
qw(X1y1t)= Nw(x1y)6b(t) (4136)
. N (&, 0

V=M= | T 8 (4.137)

_ [0 0 ~N,(&.7) .. 4138
Ne(x’y)_Ne(é’n)_[... 0 N, (&.7) 0 } (4.138)
N,(x,y)=N, (& n)=[. N (&n) 0 0 .] (4.139)
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Equation (4.130) can be rewritten as:

phdd' NN, 8o+ phdd.NLN, 8o

a = 3
X=y +'Oh

. dxdy
dd;N, N, ds

Defining the following mass matrices:

M, = [[ p ANLE MIN(E n) dxdy

M., = [[ P hNLE DN, E ) dxdy

ph®
M, = =—N,(E nN,(E n)dxd
o xjjy 5 V0@ N, & ) dy
Equation (4.140) can be rewritten as:
dw , = —{dﬁ‘oM Lo+ dsi[M ., + M, ]}ib}

=-dé'M }5‘
Hence it can be shown that the element mass matrix is as given below:

M, 0
M =
0 M, +M,

ww
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(4.141)

(4.142)

(4.143)

(4.144)

(4.145)



5 Reissner-type Element Theory

This chapter explains the Reissner-type plate bending element theory and derives the
equation used in the finite element programming. The Reissner-type element theory
defines the displacement equation, strain equation, stress equation, strain energy
variation and generalised equation of equilibrium. These are based upon parabolic
distributions of transverse shear strains over the plate thickness. The transverse shear
strains are assumed infinitesimal whilst the x-y strain components are considered finite,
according to Green's strain-displacement equations. The generalised equation of
equilibrium is then linearised in-order to obtain the Reissner-type element equation. The
element interpolations are based on Lagrangian and Hermitian shape functions, with 7
degrees-of-freedom per node for non-conforming elements, and 8 degrees-of-freedom
per node for the conforming elements. All integrations through the plate thickness (i.e.

with respect to z) are carried out analytically.

5.1 Stress and Strain Equations

Modelling of Transver se Shear Strains
The composite plate consists of N layers, which are parallel to the x-y plane such that
for layer I:

z=2", z=20 (5.1
are the equations of its lower and upper surfaces, and its thicknessis given by:

h® =z -z" (5.2)

Thetotal thickness of the composite plate can be obtained as follows:
N
h=>ho (5.3)
1=1
The midplane of the plate (z=0) isassumed to be the bending neutral plane.

Consider the composite plate to be transversely isotropic, which means continuous
transverse shear strains all over the thickness of the plate. Using a three-point
Lagrangian interpolation (Attia & El-Zafrany, 1999), the distributions of transverse

shear strains over the plate thickness can be expressed as follows:
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e (6Y.2) = 72(xY) {1—‘}1—22} (54

o 47
Vyz (X’ Y, Z) = 7Vyz (X! y) 1- F (55)
where y;,, 7y, represent the values of transverse shear strains a the midplane.

The average values of transverse shear strains over the plate thickness can be defined

asfollows:
1" 2
V.. (X,y) = = dz = —y? 5.6
FaloV) = | 7z =351 (5.6)
_ 1" 2 .
yyz(xiy) = F J- Vyz dz = g)/yz (57)

and Equations (5.4) and (5.5) can be rewritten as follows:

5 A7

)/XZ (X’y7z) = E)/XZ (le) 1_F (5-8)
5 47

Yy.(X,Y,2) = 37,,(X,Y) 1—F (5.9)

From Mindlin’s plate-bending theory, average slope angles are defined as follows:
oW ow

0,=—-7,= —-Vv, (5.10)
oy "oy
ow ow
0, =——+y,  =——-— 511
y =T T =T Yy (5.11)
where
V= 7yz ' l//y = _7xz (512)
Hence, Equations (5.8) and (5.9) can be rewritten as follows:
5 47
Vx: (X Y,2) = =3y, (X,Y) 1—F (5.13)
5 47
)/yz(X,y,Z) = EWX(X’y) 1_F (514)

Equations (5.13) and (5.14) can be expressed in the following matrix form:
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Y(x.y.2) = {7} = £ @7(xy) (5.15)
where
3 47?
fy (Z) = E|:1—F:| (516&)
7(x,2) = {_Wy} (5.16b)
Yy

Notice also that the variation of transverse strain vector is:
dy = fyd? (5.17)



Displacement Components
The following approximations are considered in this theory:

@ The lateral deflection w is independent of z, the distance along the plate

thickness.
(b) The transverse shear strains areinfinitesimal.

The second approximation will lead to:

Cow o ow oy
Pa™ o T o T oy oz

Substituting from Equations (5.13) and (5.14) into (5.18), then it can be deduced that:

(5.18)

ou ow 3 47°
S I 5.19
oz ox 2%( h? J (19
2
v_ w3, 142 (5.20)
0z oy 2 h
Integrating Equations (5.19) and (5.20) with respect to z, then:
0 ow
u(x,y,z) = u (x,y)—z&— f, (v, (5.20)
= V° ow f 22
v(X,y,2) =V (X’y)_25+ Dy, (5.22)
with
w(X,Y,2) = W(X,Y) (5.23)
where
3. 272
flI/ (Z) = EZ—F (524)

and u°, v° represent the values of u, v at the midplane (z= 0).
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The x-y Strain Components

Generad definitions

Theseare ¢,, ¢, 7,, and are represented with the following vector:

€x

e =| e, (5.25)

yxy_

Using Green'’s strain-displacement equations, then:

s = u Llfau) (av)" (aw)’ 526
“ox 2| \ex OX OX (5:26)
ov 1l(au) (ov) [(owY
g, = —+_ (—uj + —J J{—WJ (5.27)
oa 2|\oy oy oy
6u av ou ou 6v 6v oW ow 5 28
Ty = ay x| ox 6y ox ay X oy (528)
Using the previous equations, the x-y strain vector can be partitioned as follows:
€ =¢&;+¢ (5.29)
where g representsthefirst order terms, or the infinitesimal strain vector, i.e.
_ & _
OX
ov
g = @ (5.30)
ou ov
_+_
Loy OX]

and g represents the additional non-linear termsin Green’s equations, i.e.
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Infinitesimal strain components

B

OX
),
oy

(5)+(5)
5)(5)

2(8u ou

uou NV, OWOW
OX oy Oxoy oOXx oy

(5.31)

Substituting from Equations (5.21) and (5.22) into (5.30), then it can be deduced that:

es(X,Y,2) = &, (X, y)—zg, (X, y)+ f, (e, (X,y)

where

& (X,y) =

& (X,y) =

g, (X,y) =

ou°
OX

aVO
oy

ou® o
+

L oy  OX |

- o ]

x>

0w
8y2
0°W

| OX0y |

9y,
OX

oy,
oy

oy, vy
| Ox oy |
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(5.33)

(5.34)

(5.35)



Additional large strain components

Substituting from Equations (5.21) and (5.22) into (5.31), then it can be proved that:

L (X Y,2) = £ (X, Y) T8, (X, V) + 28, (X, y) + f 18,

—ze,, (X, V) + f, &, (X, ¥) - 21, &, (X, Y)

where

e (X,Y) =

g (X,Y) =

€0 (X, Y) =

g, (Xy) =

N

N[~

1

d
of OVx OV OV

ow) (otw Y
@ ) "\ axay

0°wW 0*w

) (5]
+ P
oXoy oy*

0°w 0w

2 + 2
OX~ OX0y OXoy oy

)
5

oy, ?
OX

o

y v,

oX oYy
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oxX oy

|

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



€ (X,Y) =

ou® oW ov° 9w

+
X OX°  OX OXoy
ou° o*'w  ov° o°w

+
oy oxoy oy oy’
ou® o*w  au® oPw  av° dPw av° ocw

&, (X, Y)=

&y, (X,Y) =

| oxdy ox

+ >+ 5+
| OX OXoy 0y OX ox oy® 0y oXxoy |

_ou° Oy,

OX OX
0w’ oy,

L OV Oy,

L OV Oy,

OX OX

oy oy
0w oy, ou° vy,

LoV 9y,

oy oy
+6V oy,

oX oy oy ox

o’w oy,

ox oy oy OX |

o°w oy,

0% X
o’w oy,

OXoy OX
2
N oW oy,

- oxdy oy
o*'w Oy, o*woy,

oy* oy

o°Woy, 0°W Oy,

x> oy
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oy> ox  oxdy oy |

(5.41)

(5.42)

(5.43)



Matrix representation of additional large strain components

This can be achieved in terms of the following rotation vectors:

0, (X,y) = (5.44)

0,(x,y) = (5.45)

0,(x,y) = (5.46)

0,(x,y) = (5.47)

oy,
oy

Hence, by matrix manipulation it can be proved that:
() &m= 3A,0,,, de = A_dO_ (5.48)

where
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ou oV 0 0
OX OX
Axy)=| 0o o MW
oy oy
ou° oV° ou° ov°
oy oy OX OX
(”) SWW = %AWBW' daww = Adew
where
U
OX
A,xy) =0 ow
oy
ow w
| oy oy |
(iii) g,=3A,0,, dg,= A,d0O,
where
ow ow 0
ox? OX oy
0*w 0°wW
A, (X,y) = 0 0 -
0w o0*w 0*w o0*w
Oy Ox oy? oxoy
(iv) £, =5A,0,, deg, = A do,
where
-, _
_ 9y oy 0 0
OX OX
0
Av/ (X'y) = 0 0 - Yy al//x
oy oy
_ovy oy, 0wy Oy,
oy oy OX OX
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(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)



€= 3(A,0,+A,0_),
(V) 0 2( 0 0 ) (556)
de,, = A_d6,+A,do

(Vi) fy = 3400, + 4, 0,), (5.57)
de,, = A,d6, +A, do_ '

g, = 1(A,0 +A 0,)
(vii) w= 3400, +A,0,) (5.58)
de,, = A,d68, +A d8,

Total strain vector and its variation

From previous equations, the total x-y strain vector can be expressed as follows:
£(X,¥,2) = & (X, ¥) +&mn (X, Y) + &, (X, Y)
— 2 &, (X, y) + &0 (V) ]+ £, (D2, (6, V) + £, (X, V)] (5.59)
- zf,(2gy, (X, )+ Z &4 (X, V) + f(Dg,, (X,Y)
which can aso be written as follows:
£(x,y,2) = g, +3(A,0,+A,0,)-2z[e,+1(A,0,+A,0,)]
+ 1, [e, +3(A,0, +A,0,)]-12f, (A, 0,+A,0,) (5.60)
+37°(A,0,)+317(A,0,)
The variation of thetota x-y strain vector can be obtained from the previous equation as
follows:
de(x,y,2) = de, +(A_ d0_+A,do, )-z[de +(A,_do,+A,de )]
+f,[de, +(A,d6, +A,do,)|-2f, (A, do,+A,de,) (5.61)
+7°(A,de,)+ fWZ(AW dev,)

Stress Components

The relevant stress components at any point inside the I™ layer of a composite layered

plate can be represented in terms of two vectors defined as follows:

(@) The transverse shear stress vector

Xz

0 = (5.62)

yz
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(b) The x-y stress vector

=0 (5.63)

Txy

Using constitutive equations for the I™ layer, as explained in Appendix A, the stress

vectors can be expressed in terms of strain vectors as follows:
="y = £,n"7 (5.64)
¢ = DVe (5.653)
Substituting from Equation (5.60) into (5.65a) then it can be deduced that:
6" = D" {e +1(A,0,+A,0,)-2[c,+1(A,0,+A,0)
+f,[e, +2(A,0, +A,0,)]-12f, (A,0,+4,0,) (5.65h)
+12(4,0,)+117(a,0, )}
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Strain Energy Variation

General
The variation of strain energy density (strain energy per unit volume) due to a variation
of displacement at any point inside the I"™ layer of the plate can be expressed as follows:

) dyy, + 7 07, (5.66)

y

1)

a0 = oV de, + 00 de, + 1! 0

dy,, +7

which can be represented in the following matrix form:

dU0® = dy't” +de'e” = dU" +dU" (5.67)
where
() " _ St ()
de = dy'1t" = fy(z)dy‘r (5.68)
dU® = de'e” (5.69)

Substituting from Equation (5.61) into (5.69) then it can be deduced that:
dU® = {de, +(de\ A%, +de}, A, ) z[ de. +(de, A, + deL AL )
+ 1, [de! +(de) A +de AL )|~ 21, (dO} AL +dol A})  (5.70)

+ zz(dﬂgA;)+ fyf(dﬂf/,A;, )}0(')

The variation of strain energy per unit area of the plate surface is defined as follows:

hy/2
du’ = j (dU ") dz (5.71)

—hy2
and the variation of the strain energy of the plate is given by:
du = [[(du")dxdy (5.72)

x—ysurface

Integrated stress matrices

These are used in the expressions of dU’ and the integrated transverse shear stressis

defined as follows:
hy/2 hy/2
T = j f(2t"dz = j t2(2u" jdz (5.73)
) —h/2
Defining
hy/2

T j f?(z)n" dz (5.74)

—hy2

then Equation (5.73) can be rewritten as follows:



T=p,7
Notice aso that for transversely isotropic composites:

Mo = Hyp = H

O 10
01

which isthe same for every layer. Hence, Equation (5.74) is reduced to:

then

b2

6uh|1 O
T fz(z)dzu('):—{
144 _F[/zy 5 0 1

For x-y stress components, we define the following integrated stress vectors:

hy/2
6, = (-1)" j 2" 6" dz
—h/2

_ (n) (n) (n)
= {Gx Oy Txy }

hy/2
6,0 = (<) j 2" 1, (2) 6" dz
—h/2

_ (yn) (yn) (yn)
= {Gx Oy Txy }

b2
6,, = '[flf(z) " dz
“hy2

= {G)((l//l//) GSW) T)((v;w)}

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

Substitute Equation (5.65b) in the previous definitions to obtain explicit expressions for

the integrated stress vectors. It can be seen that the parts of the integrated terms that

depend on z will lead to the following integrated D matrices:
hy/2
D, = jz“ D" dz
—h/2
h/2
D,,= [2'f,(2D"dz
—hy/2
hy/2
D,,,= [Z'f}(2D"dz
—hy2
hy/2

D = Iz“ f2(z)D" dz

yyyn
“h/2
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(5.82)

(5.83)

(5.84)

(5.85)



b2

D j f4(2)D" dz (5.86)

yywy
~y2

with
D =D

yy0 vyy vyy0

D,, =D (5.87)

Explicit forms of integrated D matrices are given in Appendix B.

Hence, Equations (5.79)-(5.81) can be expressed as follows:
= (-)"{D, [¢,+%(A,0,+A,0,)]-D, e, +1(A,0,+A,6,)
D,,[s, +1(A,0, +A,0 )] D,..,(A,0, +A 0,) (5.88)
+iD,.,(A,0,)+3D wn(Awew)}

6,n = ()" {D,, [£,+1(A,0,+A,0,)]-D, e, +1(A,0,+A,0,)
+D,,.[e, +1(A,0, +A,0,)]-iD,, .. (A,0,+A,0,) (5.89)
+3D, .5 (A, 8,)+3D wwn(A 0,))

c,, ={ L [e.+2(A,0,+A,0,)]-D,,.[e +1(A,0,+A,0,)

D,,, [s +1(A,0,+A,0 m)]—;wal(AWGHJrAHBW) (5.90)

WWZ( 9) WWWW( v w)}

wy (n+1)

Variation of strain energy due to transverse shear components

The variation of strain energy density due to transverse shear components is given by
Equation (5.68), and from which it can be deduced that:

y
du’ = hjz[du Oldz = di'F (5.913)

—hy2
with
du, = j j dU’ dxdy (5.91b)

Variation of strain energy due to x-y components

The variation of strain energy density due to x-y stress and strain components is given
by Equation (5.70), and from which it can be deduced that:
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hy
du’ = de;” dz = [del +(deL AL +de, AL )]s,

w
—hy2

+[de! +(de AL, + et AL s,

+[de! +(de} A" +de’ Al )|6,,+(d6LA! +d6L AL s, ,

4

+(deyAl ), +(d6 Al )e,,
with
du, = [[du; dxdy
x-y
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(5.924)

(5.92b)



5.2 Interpolated Equations of Displacement and Strain

Degrees of Freedom for a Plate Element
Based on displacement distributions given by Equations (5.21)-(5.23), the degrees of

freedom for a plate element with respect to itslocal axes, at its midplane, are as follows:

u’, v° the in-plane displacement components,
w, X E the bending components for non-conformining elements, and
2
W, w , 8_vv ow the bending components for conforming el ements,
OX 0y oxoy
VeV, the transverse shear strain components.

For an n-node element the nodal displacement vector is defined as follows:

60
6 = |9, (5.93)
6l//
where
B, = w0 v oW v oW v (5.94)
6b = {Vvl \Nl,x Wl,y Wn Wn,x Wn,y}
for non-conforming elements (5.95a)
6b = {V\ﬁ Vvl,x \Nl,y Wl,xy Wn Wn,x Wn,y Wn,xy}
for conforming elements (5.95b)
6l// = {(l//x)l (l//y)l (l//x)z (l//y)z ( X)n (l//y)n} (5.96)
with
OW oW R
\Ni,xE AL ’ \Ni,yE A ) \Nl,xyE
X at(x,i) ay at (x,v;) axay at(x,y;)
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Inter polation of Displacement

The displacement components at the midplane of an n-node element are interpolated as

follows:
W(x,y) - ZN (x,y) W (5.97)
vy = 2NV (5.99)
v(x,y) = 2Ni(x,y)( ) (5.99)
w06 = SN ) (5.100)

where N; represents Lagrangian shape functions.

There are two types of interpolation for the lateral deflection w as described in a
publication by El-Zafrany and Cookson (19864, b):

(&) Non-conforming el ements

wiey) = 3[R )W+ G (Y)W, + H, (x,y)w, ] (5.101)

(b) Conforming elements
w(x,y) = D[R )W+ G ()W, + H ()W, + RGyw,]  (5.102)

where F, G, H,, P represent Hermitian shape functions.
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Interpolation of Strain

Interpolation of transverse shear strain
Substituting from Equations (5.99) and (5.100) into (5.16b), then it can be deduced that:

7(x,y) = {‘H = B, (x.,Y) 9, (5.103)
where
B 0 _Ni(x’y)
B, (x,y) = { B N, (x.Y) 0 } (5.104)

Infinitesimal strain parts

Substituting from Equations (5.97) and (5.98) into (5.33), then it can be shown that:

ou°
OX
avo
& (X,y) = oy = B,(x,y) 9, (5.105)
ou® oV
+
| oy  OX |
where
N
OX
B,(x,y) = - 0 % (5.106)
oy
ONp  ON
. ay  ox ]

Similarly, substituting from Equations (5.99) and (5.100) into (5.35), then it can be
deduced that:
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_ _av/y .
OX
oy,
g, (W) =1 S |=
oy, 9y,
| OX oy |
where
0
ON,
B, (x,y) = E
N,
L OX

B, (X,y)9,

oN,

OX
0

_ N,
oy

(5.107)

(5.108)

Substituting from Equation (5.101) or (5.102) into (5.34), then it can be proved that:

g, (X, y) =

where for non-conforming

B, (x,y) =

71

0°wW
OX?
0°wW
ayz = B,(x,y) 9,
0*w
| OX0y |
e ements:
o°F G 0O°H
x> x> OX?
O°F G o°H,
oy’ oy’ oy’
°F, .G L, H,
oxoy oxoy oxoy

(5.109)

(5.110a)



and for conforming elements:

PR PG oH, P
ox? ox? ox? ox?

2 2 2 2
B, (X,y) = |- g 'j 4 % 0 :' 2 Fj (5.111b)
oy oy oy oy

2 2 2 2
LR L0060, LR
oxoy oxoy oxoy  oxoy

Substituting from Equations (5.105), (5.107), (5.109) into (5.32) then it can be deduced
that:

gs(X,y,2) = B,(x,¥)8,—zB,(x,¥)8, + f, (2B, (X,¥)8, (5.112)

Interpolation of rotation vector

Substituting from Equations (5.97) and (5.98) into (5.44), then it can be shown that:

ou°
OX
ov°
OX
0,(x,y) = = G, (X,Y) 9, (5.113)
ou°
oy
ov°
L oy |
N ‘
OX
N,
where G..(X,y) = ox (5.114)
n N |
oy
o M
i oy |

Similarly by substituting from Equations (5.99) and (5.100) into (5.47), it can be
deduced that:
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where

0,(x,y) =

G, (xy) =

=G, (x,y)9,

_ON;
OX

N,

OX

.
oy

N

oy

(5.115)

(5.116)

Substituting from Equation (5.101) or (5.102) into Equations (5.45) and (5.44), then it

can be proved that:

0,(x,y) =

99 (x,y) =

R
=

R
=

= GW(X’ y) 6b

= G,(x,y) 9,

73

(5.117)

(5.118)



where for non-conforming elements:

G,(xy) =

G, (x,y) =

and for conforming elements:

G,(x,y) =

G, (x,y) =

oF oG,
X X
oF oG
ERd

0°F

0°H,

OX>

0°F

OX?

0°H,

oXoy
0°F

oXoy

0°H,

oXoy
0°F

oXoy

0°H,

8y2

oy

8y2

oXoy

oXoy

oXoy
0°F,
8y2
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oXoy
0°G
8y2

OH.
OX
OH.

R

oX

R

oy
0°H, o°P
ox? ox?
0°H, 0°
oXoy OX
0°H,
oXoy OX
0°H, 0°
ay? oy?

(5.119)

(5.120)

(5.121)

(5.122)



Total strain vector and its variation

Using equations from sections 2.3.2 and 2.3.3 then the total x-y strain vector, as defined
by Equation (5.60), can be expresses as follows:

£(X,Y,2) = [Bo(X, )8, + 1A (X,¥)G (X, ¥)8, + 1A, (X,¥) G, (X, V)3, ]
~2[By(x, )8, + 1A, (X, )G, (X, )8, + 1A, (X,Y) G (X, Y)3,]
+1,(2[B, (x,Y)8, + 1A, (X,Y)G, (X, V)3, + 1A, (X,Y)G (X Y)8,]
—21,(D[2A, (X, V)G, (X, )8, + 1A, (X, )G, (X, )3, ]
+3Z2A, (%, Y)G, (X, )8, +2 2 (A, (X, Y)G, (X,Y)d,

(5.123)
Hence, the variation of the x-y strain vector can be expressed as follows:

de(X,y,2) =[B,(X,y)dd, + A (X, Y)G (X, Y)dd, + A,,(X,)G,,(x,y)dd, ]
—2[B, (%, y)d8, + A (X,Y) Gy (X, V) A, + A, (X, )G (X, ) dB, ]
+1,(2)[B, (x,y)d8, +A.(X,Y)G, (X,y)dd, + A, (X, V)G (X, y)dd,]
~2f, (2 [A, (%, Y)G,(x,Y)d8, + A,(x,Y)G, (x,)d8, |
+Z2 A, (X, )G,y (x,y)dd, + f2(2) A, (X, ¥)G, (X,y)d3,

(5.124)
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5.3 Derivation of FE Equations for Reissner-type Element

Strain Energy and Work Variations

The variation of strain energy density at any point in the Ith layer of acomposite plateis

given by Equation (5.67). Substituting from Equations (5.103) and (5.123) into (5.67)

then:

dUO(x,y,2) = [dd} (BL+G, AL )+ d8}G., AL (")

+[dsi Gt AL +da, (BL+GY AL )|(- z6")
+[dsi gL AL +da, (B! +GL AL)|(f, (2)6")
+[dsi G AL +ds! GL AL](-2f, (2)6")
+[dsi G AL](22 60)+[dd! GL AL ](12(2) 6")
+[ds; B!](f,(2) ")

(5.125)

The equivalent nodal loading is assumed to have the same variation as the work done by
actual loads. Hence, the variation of the work done by actual loads can be expressed as
follows:

dW = dé'F = dd\F, +dé,F, +ds' F, (5.126)

where F represents the equivalent nodal |oading vector.

Derivation of Generalized Equations of Equilibrium
From the principle of virtual work due to avariation of displacement:
dy =du-dw =0 (5.127)
Substituting from Equations (5.125) and (5.126) into (5.127), it can be deduced that:
N, V2
> [ [[{las: (B, +c8 AL )+ da, 6L, AL (6)
e=1

-h2 e
+[dst Gt AL +da), (BL +GY AL ) (- z6®)
+[dsi Gt AL +d, (B +G AL)|(F, (2)6") (5.128)
+[dsiGL AL +ds! G! AL](-2f, (2)6")
+[dsi G AL] (22 60)+[dd! GL AL |(12(2) 6©)
+[ds! B|(f,(2) =)} dxdydz— da} F, - s, F, — dd', F, =0
The variations represent small arbitrary changes; hence the coefficients of displacement

variations in Equation (5.128) vanish, leading to:
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i I I {(BL+GLAL )6 +GL AL (- z6")

=R (5.129)
+GL AL (f, (2) o)} dxdydz—F, = O

N, h/2

t At 60 4 (B t ()
; J/zﬂ GL Al 6" +(B,+G) AL )(- z6") 5130
+GL AL (-2, 6")+ G AL (226" fdxdydz—F, = O
N, W2
> [ I8 e+ (m, < e, AL, o) 131

+GL AL (-2, 6")+ G Al (126")|dxdydz—F, = O
Equations (5.129)-(5.131) represent the generalized equations of equilibrium.

If an approximate solution is employed then the previous equations will lead to the
following residual vectors:

N, V2

Ro = I:o _z I Ij{(BL +Gthtm)G(l) +G:nA; (— ZG(I))

=R (5.132)
+GL AL (f,(2) o)} dxdydz

N, W2
R,= F,— ;_J/Zjej{G;VAivc“) +(BL+GLAL)(-26) (5.133)

+GLA! (-2f,6")+ G} AL (226"} dxdydz

N, W2

R, = F,-3 [ [[1B, £,@7"+(B, +G} A} )1, ")

1 _hy2'e (5.134)
+G;,At( zf c('))+G‘ Al (f2 ('))}dxdydz
When calculating the residua forces Equations (5.132)-(5.134) are integrated
analytically with respect to z, leading to:
Ne
Ro= Fo= 2 JJ(BL+ Gl AL oo (G110 )o, 5135
+(Gth;,)oW0}dxdy

R, = F, - i” (G4,AL)e,+ (B, + G, AL ),

=1

(5.136)

()

+(G9A;)cwl+(G9A;)cz}dxdy
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R, = F, ZH T+(BL +G! Al Jo, 5137

(Gv/ A;) wl (Gw A;/)qu/}dXdy

Linearization of Equations of Equilibrium

To restore equilibrium, i.e. to make the residual vectors vanish we assume:
O,y = Oy + A
ggw = o), +Ac (5.138)

A, = Ay +AA

new

such that R,—»0O, R,—»0, R,—>O0
Substituting from Equations (5.138) into (5.132) - (5.134), then it can be deduced that:

O=F,- Nz hf [[{B: +GL (AL + A% (6" +ac")

e=l_p2 e
+G! (A; +AA) )(—z) (c(') + Ac(')) (5.139)

+G (AL +AAY )T, (2 (6 + A6 )} dxdydz

m

N, h/2
0=F-3 [ [[{GL (A, +aaL)e? + a0®)

e=l_p2 e
+[BL+G (AL +AAL =2) (a® + Ac®) (5.140)
+G;(Afﬂ +AA;)(— z fw)(c(') +Ac"))
+G}, (A; + AA;)(zz)(c(') + Ac('))}dxdydz

N, D2
o=F,-> [ [[{B.f,@(z" +ac®)

o1 2
+[BL +G (AL +AAL(F,) (6" +Ac®) (5.141)
+G)| (At +AAL)(-z )( 01 A"
+GL (AL +AAY)(£2)( 6" +Ac")}dxdydz

Expanding Equations (5.139)-(5.141), using the definitions of residual vectors given by

Equations (5.132)-(5.134), and ignoring AA - Ae terms, then it can be deduced that:

h/2
Bt GtAt G! A (-2)+GL A (f )|As"
Zj/ﬂ +GLAL)+GLAL (-2)+GL AL ()] Ao .

+[GL AAL + G AAL (-2)+ GL AAL (1,)]6® fdxdydz = R,
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N, N2
>

e=l_p2 e

N, V2

J [ftleiau+(Bi+GyAL)-2

+GLAL (-2 1,)+GY AL (2)| Ac® (5.143)
+[Gl AAL +GY AAY (-2)
+GLAAL (-2 1)+ G} AAL (22)] 6" | dxdydz = R,

> [ [[{Bof a0+ [(BL + G ALS,

e=l_p2 e

+GW A; (-z fw)+G;/A;/(fw2)]AG(I) (5.144)
+[ G AAL T, +G! AAL (-2 1)
+G! AAL (£7)]6" }dxdydz = R,

which can be rewritten as follows:

AA

Ne
Z;[(Rg)m"_ (RE)AA] =R, (5.145)
Ne
g[(RE)Aﬁ (Re)] = Ry (5.146)
N
Z[Re rRe). =R, (5.147)
h/2
> (1] {[(BL+G, AL )+ G AL (-2)+GL AL (1,)] Ac®) Jdxdydz
(5.148)
N, 2
zl E[/z'” toLaL+(Bi e Ak (5.149)
+GLAL (-2 1,)+GY Al (2)| Ac® }dxdydz
N, W2
t Q) t t At
zl Lj B! f At" +[(BL +G! AL)f, 5150
+GL AL (-2 1,)+G! AL (£2)] Ac® | dxdydz
h/2

i f ﬂ{[GthA?nJrG?nAAL (—Z)+G‘mAA;(fu,)]o“’}dxdydz (5.151)

e=l_h/2 e
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N, 2
(Re),, :EJ/ZLI{[G;VAAIW +GL AAL (-2) (5.152)
+GYAA (—zf,)+ G} AA! (22)]6" | dxdy dz
N, V2
R;),, = Z;!/ZH{[ G, AAn f, +G, AR, (-21,) (5.153)
+G,, AA, (fwz)]c(')}dxdydz

Analysis of Ac Terms
Notice that it can be deduced from Equations (5.65) and (5.123) that:
Ac” =DV {[B, A8, +A G, AS, +A,G,AS,]
~2[B,A8, +A_ G,AS, +A,G, AS]
+1,(2)[B, A8, +A,G, A8, +A,G, A, (5.1549)

~zf,(2)[A,G,A8, + A,G, AS, |

+2°A,G,Ad, + f;(z)AWGWASW}
which can be rewritten as follows:

Ac" = DV (B, +A,G,)-2zDVA,G, +f,(DVA, G, |78,
+[D"A,G,-2D"(B,+A,G,)-zf, (D" A, G, + D" A, G, |As,
+[f,(2D"(B, +A,G, )-2f, (D" A,G, + f3(2D"A, G, |3,

(5.154b)
We will require integrated stress or stress increment, and from Equation (5.154) we can
deduce the following general form:
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h/2 h/2 h/2
jf(z)m;(”dz: ﬂ J'f(z)D(')dZZI(BOJrAme)—{ J'zf(z)D")dz} A,G,

—h/2 -h/2 -h/2

hy/2
{ j f(2) fW(z)D"’dz} AWGm} A,

“hy2

h/2 h/2
ﬂ [t D(')dz:| AWGW—{ [zf(2 D")dz}(BbJrAmGg)
-h/2 -h/2

+
h/2 h/2
{ jz f(2) fW(z)D("dz:l A, G, { jzz f(2) D")dz} AHGH} AS,

-h/2 -h/2

h/2 h/2
+ﬂ [t fu,(z)D")dz}(BWJrAmGw)—{ [2t(2) fW(z)D")dz} A,G,

-h/2 -h/2

h/2
{ [t fwz(z)D")dz} AWGW}ASW

—hy2

(5.155)

Terms of Equation (5.24)

Using Equation (5.155) then it can be deduced that:

b2

[a6"dz= [D,(B, +A,,G,)-D,A,G,+D,0A,G,]As,

“hy2
+[p,A, G, -D,(B,+A,G,)-D,.A, G, +D,A,G,]As, (5.156)
+[p,,(B, +A,G,)-D,,A,G, +D,, A,G,|A3,
h/2

- [z86" dz= [-D,(B, +A,G,)+D,A,G,-D,,A, G,]43,
“hy2
+[-D,A,G,+D,(B,+A,G,)+D,,A,G,-D,A,G,|As, (5.157)
+[-p,., +A,G,)+D,,A,G, -D,,.A,G,]|As,

vyl
b2

[ 1,46 dz=[D,,(B,+A,G,)-D,,A,G,,+D,, A,G,|4s,
“hy2

+[D,,A,G,-D,.(B, +A,G,)-D
+p,, B, +A,G,)-D

A, G, +D,,A,G,|As, (5.158)

wiPe G, +D,,, A, Gw]Aaw

Substituting from Equations (5.156)-(5.158) into (5.148), then it can be deduced that:
(RE),, = Koo A8, +K o AB, +K ,, A, (5.159)

where
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K= [[{B:+G'AL)[D,(B,+A,G,)-D,A,G,,+D,,A,G,]

+(G,AY)[-D,([B,+A,G,)+D,A,G,~D,A,G,] (5.160)
+(G,AY)[D,,(B,+A,G,)-D,;A,G,+D,, A, G|} dxdy
Ke= [[{(B,+G,A.)[D,A,G,-D,(B,+A,G,)-D,,A, G, +D,A,G,]
+(,A})[-D,A,G,+D,(B,+A,G,)+D,,A, G, ~D,A,G,]

+(G.AL)[D,,A,G,-D,.(B,+A,G,)-D,,.A, G, +D,,A,G,|} dxdy
(5.161)

vyl

Ko, = “{(Bg +G\A!)p,.B, +A,G,)-D,.A,G,+D,,A,G,]|
(Gt Ay)[-D,.(B, +A,G,)+D,,A,G —leAWGW] (5.162)

+(GLAL)p, (BW+AmG )-D,,.A,G, +D,,, A, G, |} dxdy

vyl

Terms of Equation (5.149)

Using Equation (5.155) then it can also be shown that:
hy/2
[#46"dz=[D,(B,+A,,G,)-D;A,G,+D,,A,G,|A3,

—hy2

+[p,A,G,-D,(B,+A,G,)-D,;A, G, +D,A,G,| A8, (5.163)
+[p,,(B, +A,G,)-D,sA,G, +D,,,A, G, |48,
h/2

- [zf,A6"dz= [-D,,(B,+A,G,)+D,,A,G,-D,,.A, G,|A3,
-:/Z[—D A,G,+D,,(B,+A,G,)+D,,.A, G, DwsAeGe]ASb (5.164)
+[—le(BW+AmG )+D,,.A,G, WAWGW]A%

Substituting from Equations (5.156)-(5.158), (5.163) and (5.164) into (5.149) it can be
proved that:

(RS),, = KooAB,+K oy AS, + K, AB, (5.165)

where
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Ko =

—
P —

{(c4,A!)[D,(B,+A,G,)-D,A,G,+D,0A, G,]

+(B,+G, AL ) D, (B, +A,G,)+D,A, G, ~D,,A,G,]
+(G,AY)[D,(B, +A,G,)-DsA, G, +D,,A, G, |
+(GyA!)[-D,.(B,+A,G,)+D,,A,G,-D,,.A, G, dxdy
(5.166)
.= [[{(c\,A.)[D,A,G,-D,(B,+A,G,)-D,,A,G, +D,A,G,]
+( B!+ G} Al )-D,A,G, +D,(B,+A,G,)+D,,A,G,-D,A,G,]
+(6,A})[D,A,G, -D,(B, +A,G,)-D,;A, G, +D,A,G,]
+(G9A;,)[—DW1AWGW+Dwz(BbJrAmG )+D,,,A, G, —D,,A,G,|}dxdy

(5.167)
Ky, = ” {(c\,A!)[D,0(B, +A,G,)-D,.A,G, +D,, A,G,]

(B; +GQA§n)[— le(BW +A,G,)+D,,A,G,-D,,.A,G,]

0 wyl
+(6,AY)[D,,(B, +A,G,)-D,sA,G, +D,,,A,G,]
+(G,A))-D,,.@, +A,6,)-D,,.A,G, ~D,,,.A, G, [jxdy

(5.168)
Terms of Equation (5.150)

Using Equation (5.155) then it can also be proved that:
hy/2

[t?a6"0z= [D,, (B, +A,G,)-D,,,A,G,+D,,, A, G,|A,
“h2
+[p,, A GW—wal(Bb+AmGQ)—DWWW1AWGH+DW2A9G9]A6b (5.169)
+[DW B, +A,G,)-D,,.,:A,G,+D,,,, A,G,|As

vy

The transverse shear stress term in Equation (5.150) can also be integrated with respect
to zasfollows:

b2

b/
[BL 1, (a1 dz = fB‘y[ff(z)u(')]ByASW dz

—h/2 -h/2

(5.170)
= B;IIN'BV‘ASW
Hence, Equation (5.150) can be simplified as follows:
(Rl/e/)AG = KWOA60+waA8b+(KWW +Ky;/)A6V, (5171)
where
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K,,= [[{B. +G. AL)[D,(B,+A,G,)-D,.A,G,+D,, A,G,]

AY)[-D,.(B, +A,G,)+D,,A,G,-D,,.A,G,] (5.172)

vyl

A'),, (B,+A,G.)-D,,.A,G,+D,,, A, G|} dxdy

vyl

A,G,+D,,A,G,]

vyl

+
+
K, = [[{B. +G. AL )[D,,A,G,~D,.(B, +A,G,)-D

+(G, AL)[-D,.A, G, +D,,([B,+A,G,)+D,,,A, G, ~D,;A,G,]

vy2

+(G,Al)[D,, A,G,-D,,.(B,+A,G,)-D,,.,. A, G, +D,,,A,G,|} dxdy
(5.173)

Ku/w: _”{(B;/—i_GE/Atm)[DWW(BW_’_AmG ) DWW1A G +D AWGW]

(Gt A))l-D,,.B,+A,G,)+D,,,A,G,-D,,,.A,G,]

(Gt A, )[waw B +AmGw)_ wwwlA@Gw wwww AWGV/]}dXdy
(5.174)
= [[Bin,, B, dxdy (5.175)

Analysis of AA Terms

Using the integrated stress vectors, as defined by Equations (5.79)-(5.81), then the
residual vectors defined by Equations (5.151)-(5.153) can be expressed as follows:

(R%),, = jj[G‘ AAL 6, +G' AAL 6, +G AAL 6, |dxdy (5.176)
(Re)., ”[G AAL 6, +GY AAL 6, +G} AA! 6, + Gl AA 6, |dxdy  (5.177)

R:), = [[[G! 8AL 6, +G, AAL6,, + G AA! 6, |dxdy (5.178)

v Cwy

Using matrix manipulations, the following theorem can be proved:
AA 6, = S, A0, (5.179)
where

p=m,0,y, q=nynyy
and



c? 0 ‘L'f(?/) 0
0 oW 0 T)((?,)
S, = (5.180)
o 0 o 0
0 Y 0 ol

Similarly, it can be proved that:

AAl 6, = S,A0, =S, G, AS, (5.181)
where
o )
S, =
©) ©)
TXy O-y

Notice aso that:
AQ, = G, Ad,, AD,= G,Ad,, AB, = G, Aj, (5.182)
Hence, Equation (5.176) can be rewritten as follows:

R, = [[lG!S,G,,48,+G,S,G, 48, +GLS, G, A8, |dxdy

(5.183)
= K7,A8,+Ko, A8, +K7, A,
where
Kfm= [[GhnSo G,y axdy (5.184)
K7y = [[GLS,G,d
mo = mS; G, dxdy (5.185)
Kim= [[G}S, G, dxdy (5.186)

Similarly, Equation (5.177) can be expressed as follows:
R:). = [[[G}S,G 28, +(G.,S,G,, +GLS,G, )As, + G, S,,G, A8, |dxdy

K5 A8, + (K, +K G, )AS, +K G, AS,

(5.187)

where
Kgn= [[G}S,G,dxdy (5.188)
K, = [[GyS,G, dxdy (5.189)
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Equati

where

K= [[G1,S,G,, dxdy (5.190)

Ks, = [[G}S,.G, dxdy (5.191)
on (5.178) can also be expressed as follows:
R),, = [[[G.S,:G 28, +GLS,,G, 48,+G.S,,G, As, |dxdy
e (5.192)
= K9,A8,+K7, A8, +K2, A3,
Kin= [[G}S,0Gdxdy (5.193)
Ke, = ij‘s G, dxdy (5.194)
44 v Syl=0 :
Ky, = [[G}S,,G, dxdy (5.195)

Final Matrix Equations of the Element

Using

the results of Equations (5.159), (5.165), (5.171), (5.183), (5.187), and (5.192),

then Equations (5.145), (5.146), and (5.147) can be rewritten as follows:

which

where

SU(K o+ K2 )88, + (Ko + K2, a6, + (Ko, +K2, )as, |= R

e=1

(5.196)

(o]

i{(Km+Kgm)Aao+(Kbb+K3VW+Kgg)Aab+(wa+K;;W)A6W}: R, (5.197)
e=1
Ne
Z{(KWO+K;m)ASO+(KWb+K;9)A6b+(KWV/+KVV+K;V/)A6W}: R

e=1

v

(5.198)
can be rewritten as follows:
. AS, R,
DI(K+K,)[ A8, b = | R, (5.199)
ot A, R,

the element stiffness matrices are defined as follows:
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K Koo

00 oy

K =| K, K, Ky, (5.200)
KWO wb Kv/v/ + KVV
K fm K o K

K'=| Kgn Ko, +K§ K3, (5.201)
Kym Ko Ky

5.4 Derivation of Mass Matrix for Reissner-type Element

It is assumed that different layers are made of the same composite material but with
different fibre orientations, i.e. the density of every layer isthe samei.e.
o= p (5.202)
Using D’ Alembert’s principle, the inertial force vector acting at an infinitesimal volume
due to an acceleration vector is:
dF = —p a dxdydz (5.203)
Hence, the work done by the inertia force due to an infinitessmal virtual displacement

fiddis:

aw, = - [[[ pdg.addydz = [[[ pdq'q dxydz (5.204)
volume volume
Using the expression below
a(x, y. z,t) = [2} : [q" N f*”q“/} (5.205)

It can be shown that
dq'q = (dq! - zdq} - fwdqf,)*(ao— 2q,- f, Eiwj+ dq. g, (5.206)

Expanding the equation above and integrating with respect to z gives:
hl/2

.o .o .o h3 .o
dg'gdz = h|dg'g. +dq! +—dq'!q,+
7hj/2 q'q ( q.d, qwqwj 15 440 Aot 0

17 h® .
dq, q

" (5.207)

h3 .o .o
+1O(dq;qw+dq:, qej

Defining the following displacement components:

Qo (X, Y, 1) = No(X, ) 8,(t)

qe(x! y!t) = NH(X! y)sb(t)
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q, (X, y,t) =N, (x,y)d,(t)

qw(x1 y1t) = NW(X7 y)ab(t)

No(X,y)ENo(é,n)=[_

NW(X,y)ENW(é,n)=[m

.. N,(&,n) 0 }

- 0 N;(&.m)

0 N.(&,n) }
-N,(&.n) 0

N, y)=N,¢&n)=[. F H -6 P .]

for conforming elements

N,(,y)=N,(&n)=[. F H, -G -]

for non-conforming elements

ov
Ay F. H. -G, P
_ ax N i,X i,X i,X i,
NQ(X’y)_ aVV_|: I:iy Hiy _Giy Pl
ay
for conforming elements
ov
Ay F. H. -G,
_ oX I i, i, x i,x
NH(X'y)_ aVV_|: Fiy Hiy _Giy
oy

Equation (5.204) can be rewritten as.

ph? 17 p h®

dWa:—” + dSLN},Ne‘S‘H
X-y

3
+'Oh

Defining the following mass matrices:

Mo = [[ PNLE DN n) dxdy

M., = [[ P hNLE DN, E ) dxdy

M,y = ijy"l;N;(a, N, (& ) dxdy

88

phds' NN, 8o+ p hddINLN, 8b

(dﬁ‘bN;NW 8+ d3INLN, E‘;bj

]

for non-conforming elements

d!NLN, 3.

(5.210)
(5.211)

(5.212)

(5.213)

(5.2144)

(5.214b)

(5.2158)

(5.215h)

dxty (5:216)

(5.217)

(5.218)

(5.219)



My, = H MNL(& N, (& n) dxdy (5.220)

140
h® |

M, = Jj”lo N & N, (& n) dxdy (5.221)
h? .

M, = xﬂy”lol\l;(é, MN, & mdxdy =M, (5.222)

Equation (5.216) can be rewritten as.

A6 M o, 8o+ dd M, + M, ]85+ d5M ,, 5.
dw , = - . .
. (dagM y 8ot dBIM mj (5:223)
=-dé'M %)
Hence it can be shown that the element mass matrix is as given below:

M, 0 0
M= 0 M, +M, M, (5.224)
0 M v M vy
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6 Finite Element Programming

This chapter explains the unique and innovative programming concepts developed for

the FE analysis of functionally graded composites. During the literature review for this

work, it was discovered that there were very little literature on FE analysis of
functionally graded composites. Chen and Liew (2004) actualy admitted that FE

method for functionally graded composites leads to complicated numerical procedures.

A breakdown of the innovative conceptsin thiswork is given below.

A specid FGM element has been derived which is a modification of the
Reissner and Mindlin plate bending element. This specia element further
develops the Reissner and Mindlin plate bending element theory to account for
the D-matrix in the element stiffness matrix as a function of fibre ratio
distribution. The advantage of this special element is not only in its usefulness
in analysing FGMs but aso in its capability to be interfaced into existing
commercial software for the analysis of FGMs.

Two techniques were employed in computing the element stiffness matrix.
These techniques include the averaging technique and smoothing technique.
The averaging technique is a simple concept which involves computing an
average fibre ratio per element. While the smoothing technique involves the
computation of the fibre ratio at the Gaussian quadrature points which is then
used directly in the computation of the element stiffness matrix. During the case
studies, it was demonstrated that as the mesh becomes finer, the result of the

averaging technique converges to the result of the smoothing technique.
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The structure of the FE code implemented in this thesis is as shown below. The aim of
this chapter is to give an in-depth explanation of the FE code. As a result, this chapter

focuses on the explanation of each block in the flow chart shown below.

Read data from
input file

Use Reissner-type or
Mindlin-type element

Choose type of fibre distribution

Manual fibre Average fibre Smooth fibre

distribution distribution distribution

Choose type of analysis

and finite strain analysis analysis

Progressive damage analysis Buckling

Figure6-1: FE code structure
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6.1 Static Analysis Algorithm

In order to carry out static analysis of composites, the code user needs to identify a

suitable element to use in solving the problem. Table 6-1 shows the description of

different types of static analysis codes developed in this thesis.

Table 6-1: Static analysis code description

Code

Description

AV-CONF-STA.FOR

Static analysis of composites using average conforming

Reissner-type element.

AV-NONCONF-STA.FOR

Static analysis of composites using average non-
conforming Reissner-type element.

SM-CONF-STA.FOR

Static analysis of composites using smooth conforming
Reissner-type element.

SM-NONCONF-STA.FOR

Static analysis of composites using smooth non-

conforming Reissner-type element.

AV-MIND-STA.FOR

Static analysis of composites using average Mindlin-type
element.

SM-MIND-STA.FOR

Static analysis of composites using smooth Mindlin-type

element.

The subroutines used in developing the static analysis codes will now be explained. In

the static analysis codes, there are calls to subroutines which have been listed below in

the order of calling sequence.

e SETFILE

e DATA

e LINEARAN
e NONLINEAR

SET FILE

This subroutine sets input and output files.
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DATA

The input file (*.DAT) is divided into a number of modules, each is recognized by a
single control word. The DATA subroutine reads the input file and recognizes its
modules through the calls of different subroutine for each input module, as follows:
ELEMID: ldentifies the number of coordinates, number of degree of freedom and
element type.

NODE: Reads the nodal coordinates from the input datafile (*.DAT) and writes out this
coordinates to an output datafile (*.OUT).

ELEMENT: Reads the element topology from the input data file and writes out this
element topology to an output datafile.

COMPOS: Reads the fibre and matrix properties. It also reads the number of layers,
thickness of layers and fibre direction.

FUNGRADED: Reads the fibre distribution and calculates the average fibre ratio for

every element as shown below.
o ComputesViusing V,, =V,, + (P+)* (V1 -V,,)
e Computes the average fibre ratio per element Vi) us ng
(Emex — i)

(5max - fmin)(p + 1)

e Cdls MICROMECHANICS subroutine to calculate composite material

V&)=V, +(V,=V,)

properties using micromechanics equations.
BOUNDARY': Reads the number of boundary conditions, number of degree of freedom,
prescribed displacement, number of nodes with boundary conditions and list of nodes
with boundary conditions.
LOAD: Reads the number of loaded nodes, number of load increments and direction of
rotation. It also readsthe list of loaded nodes and the corresponding applied loads.
STATIC: Reads the type of analysis, maximum number of iteration, permissible error
and relaxation factor.
DYNAMIC: Reads the type of eigenvalue analysis, number of eigenvalues, maximum
number of iterations and permissible error.
GAUSSDATA: Reads the number of Gauss quadrature points.
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SOUT: Readsthelist of nodes for displacement output and stress output.

FACETS: This subroutineis used for facet elements.

SET AXES: Defines local axes for facet elements.

BWF. This is subroutine is based upon calculating MD, the maximum difference
between node numbers inside an element, for al of the elements. The bandwidth for
assembled matrices is the calculated from MD, and the number of degrees-of-freedom
per node.

DLOAD: Computes the element equivalent loading to a uniformly distributed pressure.
RLOAD: Computes the element equivalent loading to rotation with uniform speed.
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LINEARAN

The flow chart for linear static analysis of composites using is as shown below.

Read data from input file

Ke =ASSEMBLER

Kr = REDUCER

Gaussian Banded Gaussian Frontal Gaussian
Elimination Solver Solver Solver

€s=LNSTRAING and es= LNSTRAINN

€. = NLSTRAING and g = NLSTRAINN

Rc = RESIDUAL

Figure 6-2: Linear static analysisflowchart
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In the LINEARAN subroutine, there were calls to subroutines which have been listed
below in the order of calling sequence.

ELEM1D: Identifies the number of coordinates, number of degree of freedom and
element type.

ASSEMBLER: Assemblesthe global stiffness matrix.

REDUCER: Computes the reduced force vector and the reduced stiffness matrix by
applying the prescribed displacements of the boundary condition to the equation of the
whole domain.

SOLVER: Computes the reduced displacement vector by using Gaussian elimination
method.

OEXPANDERL: Assembles the global displacement vector by combining the reduced
displacement vector and the prescribed displacements.

DISP: Writes the nodal displacement results into an output file.

LNSTRAING: Computes midplane infinitesimal strains at Gaussian quadrature points.
LNSTRAINN: Computes midplane infinitesimal strains averaged at nodes.

RESIDUAL: Computes the global residual vector.

REACT: Writes the nodal forces and nodal reactions to an output file.

STRAIN: Writes the nodal strain results with respect to the material axis and the local
axisto an output file.

STRESS:. Writes the nodal stress results with respect to the material axes and the local

axesto an output file.
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NONLINEAR

The flow chart for non-linear static analysis of composites with material degradation

and geometric non-linearity is as shown below.

Read data from input file

A 4
Linear analysis

v
Assemble global stiffness matrix

v
Reduce global stiffness matrix

v
Solve finite element equation

\ 4

Computeinfinitesimal strain values Increment
load

A 4 A
Compute finite strain values

) Degrade material
Has element failed? properties of failed
elements
No
Establish equilibrium 1‘
]
No

Check for convergence
(Is error permissible?)

lYes

Calculate required parameters

A\ 4
End

Figure 6-3: Nonlinear static analysisflowchart
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In the NONLINEAR subroutine, there were calls to subroutines which have been listed
below in the order of calling sequence.

ELEM1D: Identifies the number of coordinates, number of degree of freedom and
element type.

ASSEMBLER: Assemblesthe global stiffness matrix.

REDUCER: Computes the reduced force vector and the reduced stiffness matrix by
applying the prescribed displacements of the boundary condition to the equation of the
whole domain.

SOLVER: Computes the reduced displacement vector by using Gaussian elimination
method.

OEXPANDER: Assembles the global displacement vector by combining the reduced
displacement vector and the prescribed displacements. It also uses load increment and
relaxation factor parameters to assemble the global displacement vector.

LNSTRAING: Computes midplane infinitesimal strains at Gaussian quadrature points.
LNSTRAINN: Computes midplane infinitesimal strains averaged at nodes.
NLSTRAING: Computes midplane finite strains at Gaussian quadrature points.
NLSTRAINN: Computes midplane finite strains averaged at nodes.

FAIL ASSESS: Performs failure assessment by using either Tsai-Hill criteria, Tsai-Wu
criteria either Hoffman criteria.

RESIDUAL: Computes the global residual vector.

CONVERGENCE: Performs convergence check for nonlinear static iterations.
UPDATE: Updates the global force vector by removing the global residual vector
values from the global force vector values.

DISP: Writes the nodal displacement results into an output file.

REACT: Writes the nodal forces and nodal reactions to an output file.

STRAIN: Writes the nodal strain results with respect to the material axis and the local
axisto an output file.

STRESS:. Writes the nodal stress results with respect to the material axes and the local

axesto an output file.
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6.2 Buckling Analysis Algorithm

Buckling occurs at infinitessmal strains.

o =0
F,=0

Oy = Dooao - Dobab

6.1)
6,=D,¢, - D(B)sb
6,,=—D,&, —D,g,

m o

A small deflection analysis can be carried out with a small load representing the
distribution of actual load, and has equivalent nodal loading vector F, which is defined
below.

F, = Kb, (6.2)
Just before the onset of instability, the strains can be considered infinitesimal, and if
instability occurs at:

F=AF, (6.3

Hence

K +1K°(c,)8 =0

K +1K?(0,) =0 (64

This gives a characteristic equation and its smallest real roots define the critica
buckling load.
Foitea = Amin F (6.5)

min (o]

Buckling analysis to find 4, is similar to natural frequency analysis with a

hypothetical mass matrix definedas: M =-K?.
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Table 6-2 shows the description of different types of buckling analysis codes devel oped

in this report.

Table 6-2: Buckling analysis code description

Code

Description

AV-NONC-BUC.FOR

Buckling analysis of composites using average non-

conforming Reissner-type element.

AV-CONF-BUC.FOR

Buckling analysis of composites using average

conforming Reissner-type element.

SM-NONC-BUC.FOR

Buckling analysis of composites using smooth non-

conforming Reissner-type element.

SM-CONF-BUC.FOR

Buckling analysis of composites using smooth

conforming Reissner-type element.

AV-MIND-BUC.FOR

Buckling analysis of composites using average Mindlin-

type element.

SM-MIND-BUC.FOR

Buckling analysis of composites using smooth Mindlin-

type element.

The subroutines used in developing the buckling analysis codes will now be explain. In

the buckling analysis codes, there were calls to subroutines which have been listed

below in the order of calling sequence.

e SETFILE

e DATA

e LINEARAN
e SUBSPACE

SET FILE

This subroutine has been explained in the static analysis a gorithm.

DATA

This subroutine has been explained in the static analysis agorithm.
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LINEARAN

This subroutine has been explained in the static analysis a gorithm.

SUBSPACE

In the SUBSPACE subroutine, there were calls to subroutines which have been listed
below in the order of calling sequence.

DASSEMBLER: Assembles the globa mass matrix.

DREDUCER: Computes the reduced force vector and the reduced stiffness matrix by
applying the prescribed displacements of the boundary condition to the equation of the
whole domain.

DSOLVER: Solves the simultaneous equations using Choleski direct procedure.
TPRODUCT: computes the subspace stiffness matrix and the outer-shifted stiffness
matrix. It also computes the subspace mass matrix and the reduced banded mass
matrix.

EIGENV: Computes eigenvalues using simple iteration algorithm.

TRANSF: Computes the band product.

DOUTPUT: Writes the dynamic result values into an output file.

Further explanation of the subspace iteration algorithm will be described now. If the
matrix equation

Ks =AMS (66)
has K and M with a very large order and only relatively few eigenvalues are required,

subspace, or simultaneous iteration provides a very economical eigenvalue solver. The
method is based upon reducing K and M whilst restraining the lowest eigenvalues.

The subspace iteration algorithm consists of the following steps.

1. Assume aset of load vectors:
Ywp=lYs Y2  Y,] (6.7)
wherey; isavector of order m,r=1,2, ...,p
m is the total number of unknowns, or the order of the stiffness and mass

matrices of the component,
p is the number of the required lowest eigenval ues.
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A reasonable guessisto take Y s = ds.

. Solve the following p sets of equations, using a static analysis solver.
&m*m Qr = yr

for r=1,2,..,p

. Form the following rectangular matrix of elgenvectors:

~

X e p =[6, o, .. 5p]

. Obtain the reduced or subspace stiffness and mass matrices as follows:
ﬁ*p*p = (Lt) p*m &m*m Lm*p

M_p*p = (Lt) p*m M_m*m Lm*p

. Solve the subspace, or reduced, eigenval ue problem:

~ % _~ %

5_p*1 = A M_p*p 5_p*1

*

p*p

K

using any standard eigenval ue solver, such as ssimple iteration agorithm.

. Form the following sguare matrix of the reduced eigenvectors:

~

Lp*p :[51* 52* 59*]
. Transform back to the original space, i.e.
(Lm*p)new = (Lm*p)old Lp*p

. Update the load vectors, using:
(im*p)new = M_m*m (Lm*p)new

. lteration decision:

e Cadculate the maximum error in the eigenvaluesi.e.

€ne =Max (4, -2, |i=12,. p)

loid ‘

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

e |f the maximum error is greater than a given permissible error then go to step-2.
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6.3 Dynamic Analysis Algorithm
Consider an ideal structure with no damping forces, the dynamic finite element matrix
equation can be reduced to the expression below.

M3 (t)+K 8(t)=F(t) (6.17)

In anatural mode, each point of a structure executes harmonic motion about the position
of static equilibrium at the same frequency. Hence it can be assumed that, at a natural
mode of vibration:

6(t):§cos((o t) (6.18)
where 5 represents the vector of nodal amplitudes.
The matrix equation represents a system of homogenous simultaneous equations which
can have anon-trivial solution, if the value of A satisfies the condition below:

|K =AM |=0 (6.19)
where 1 =?
The matrix equation of the dynamic eigenvalue problem was solved in this report. This
report employed two techniques which include the simple iteration and subspace

iteration techniques. Further details on these techniques can be found in publications of
Clint and Jennings (1970), Corr and Jennings (1976), Bathe and Wilson (1976).
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Table 6-3 shows the description of different types of dynamic analysis codes developed

in this thesis.

Table 6-3: Dynamic analysis code description

Code

Description

AV-NONC-DYN.FOR

Dynamic analysis of composites using average non-

conforming Reissner-type element.

AV-CONF-DYN.FOR

Dynamic analysis of composites using average
conforming Reissner-type element.

SM-NONC-DYN.FOR

Dynamic anaysis of composites using smooth non-

conforming Reissner-type element.

SM-CONF-DY N.FOR

Dynamic analysis of composites using smooth
conforming Reissner-type element.

AV-MIND-DYN.FOR

Dynamic analysis of composites using average Mindlin-

type element.

SM-MIND-DYN.FOR

Dynamic anaysis of composites using smooth Mindlin-

type element.

The subroutines used in developing the dynamic analysis codes will now be explain. In

the dynamic analysis codes, there were calls to subroutines which have been listed

below in the order of calling sequence and they have similar descriptions as that of the

buckling analysis subroutines.

e SETFILE

e DATA

e LINEARAN
e NONLINEAR
e ELEMID

e SUBSPACE
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7 Mindlin and Reissner Program Validation

In this chapter, the Mindlin programs (i.e. Average and Smooth Mindlin program) and
Reissner programs (i.e. Average and Smooth Reissner program) were validated. These
programs were validated in three stages which include program validation against
analytical solutions, program validation against a commercia package caled Abagus and
program validation against Ordinary FE programs (i.e. Ordinary Mindlin program and
Ordinary Reissner program). The Ordinary FE programs are programs developed in-
house for the finite element analysis of structures made of composite materials without
functional gradation. This chapter ams to present the three stages of validation

exercises.

7.1 Program Validation against Analytical Solution

In this section, the Mindlin programs (i.e. Average and Smooth Mindlin program) were
validated against analytical solution. The analytical solution presented in this section is
often referred to as the classical lamination theory (CLT). A more in-depth explanation
of the theory can be found in a publication by Agarwal et a (2006). The anaytical
solution could only be used to validate the infinitessmal strain part of the Mindlin
programs for the analysis of composite without functional gradation. Also, the
progressive damage capability of the Average Mindlin program was not validated
because damage prediction in the Mindlin programs uses a different approach in
comparison to the analytical technique. In the Mindlin programs, damage prediction is
done for each element but the anaytical technique can only predict damage for each
composite lamina. In this section, some numerical examples will be presented for this
validation exercise. These numerica examples include composite plate subjected to
tensile load, composite plate subjected to buckling load, free vibration of composite plate
and composite plate with a central hole subjected to tensile load. In order to solve these

numerical examples, the following solution technique is employed.

Consider alamina parallel to the x-y plane with (x-y-z) being the geometrical axes. Axes

(1-2-3) represent the material axes, where 1 is usualy in the fibre direction. The lamina
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is orthotropic with respect to (1-2-3) axes. Using generalised Hooke's equations, it can

be deduced that:
O, &,
o, =Q ¢,
T1o V12
where
1 En VauEy 0
Q= ﬁ V,Ey E. 0
A 0 0 (L-v,Va)ly,
where E;1 isthe Young's modulusin the®1” or fibre direction.

E.; isthe Young' s modulusin the “2” direction.
a2 is the shear modulus in the material axes (i.e. axes 1-2).
vi2 and v,; are the major and minor Poisson’s ratio respectively.
Using planar transformation for alamina, it can be deduced that:
Qu=1"Q,+m*Q,, +21°m*(Q, +2Q,,)
Q= 1"Qu+m*Q, +21°m?(Q, +2Qy)
Qu= Qu= (1"+m*)Q, +1°m* (Q, +Q, - 4Q;,)
Q= (17-m?f Qy +12m?(Q, +Q,, -2Q,,)
Qu= Qu = Im[12Q, - Q,, (12 - m?)(Q, +2Qy )|
Qs = Qg = Im[m?Q, ~12Q,, +(12-m?)(Q, +2Qy )|
where | = cosf and m=sné

0 = fibre orientation of lamina

(7.1)

(7.2)

(7.3)
(7.4)
(7.5)
(7.6)
(7.7)

(7.8)

Composite laminates are constructed of an arbitrary number of orthotropic lamina with

planes elastic symmetry in the plane of the laminate. In order to describe the behaviour

of the laminate, it is necessary to define the laminate force and moment resultants.
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Three force resultants:

h/2
(N,,N,,N, )= I@H,Gwrw)dz (7.9)
-h/2
Three moment resultants:
h/2
(MMM, )= j@&,owrw)zdz (7.10)
-h/2

where h is the laminate thickness and z is the norma coordinate measured from the
laminate mid-surface.

Since laminate strains are assumed in classical lamination theory to vary linearly through
the laminate thickness, the strain at any point through the laminate thickness can be

expressed as a function of laminate midplane strains, €° and curvatures, k.
e=¢&’+zk (7.11)

Now the force and moment resultants can be expressed in terms of the midplane strains
and curvatures of the laminate.

N=Ag+Bk

(7.12)
M =B&° + Dk

where the laminate stiffness matrix terms are defined in terms of the lamina properties.
N
Aj :ZQU (hl - hl—l)
1=1
1A 2 e
B, j ZEZQH (hl - hl—l) (7.13)
1=1

b 15" e p
= ZQij( | 1)
3=
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7.1.1 Traditional composite plate under tensile loading

Example 7.1.1: A rectangular traditional composite plate with a “[[-45/0/45],]s" stacking
sequence was subjected to a tensile loading of 240kN. The task is to validate the
displacement and stress result of the Average Mindlin program against the result of the
classical lamination theory. The FE modelling procedure and the anaytical solution

procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-1: Tensile case data

Geometry
L (m) 2.000 w (m) 1.000
t (m) 0.0300 No. of ply 12

Fibre and matrix properties

E; (Pa) 2.300E+11 Vi 3.500E-01 e (Pa) 8.519E+10
En(Pa) 3.400E+09 Vi 3.000E-01 Um (Pa) 1.308E+09
V¢ 04 Vi 0.6

Applied Force
F. (N) 2.400E+05 Ny (N/m) 2.400E+05
Ny (N/m) 0.000E+00 Ny (N/m) 0.000E+00

The notations used in Table 7-1 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
E; and En, represent the Y oung’s modulus of the fibre and matrix respectively.
vt and v represent the Poisson’ sratio of the fibre and matrix respectively.
us and um, represent the shear modulus of the fibre and matrix respectively.
Vi and V , represent the volume fraction of the fibre and matrix respectively.
F« represents the applied force in the x-direction.
N represents the distributed load.
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FE Modelling

The composite plate has a mid-plane as shown in Figure 7-1. Different meshes were
employed in this example to check for convergence. A mesh with 72 four-noded
Mindlin-type elements was selected and is as shown in Figure 7-1. A tensile load of
240kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with
reduced load at the corner nodes. For example, in the 72 element case, the load was
applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on
the x=2 edge as shown in Figure 7-1. Hence the equivalent noda loading for the 72
element case was 40kN at each nodes on the x=2 edge with 20kN at corner nodes on the

x=2 edge. The boundary condition shown in Table 7-2 was applied to the FE model.

Table 7-2: Boundary condition for thetensle case

Nodes Boundary condition

Node 20 Uu=v=w=06,=6,=0

Nodes on the x=0 edge excludingnode20 |u=0

kA

Figure 7-1: 4-noded element mesh for thetensile case
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Analytical Solution

Using the macro-mechanical equations (i.e. Equations 3.1 to 3.4) and the classical
lamination theory (i.e. Equations (7.1) — (7.13)), the deformation of the composite plate
was computed with Excel Spreadsheet as shown in Table 7-3.

Table 7-3: Analytical solution for thetensile case

Elastic constants

E.: (Pa) 9.404E+10 vy, 3.200E-01 s, (Pa) 2.157E+09
E, (Pa) 5.611E+09 vy 1.909E-02

Stiffness matrix

Q(Pa) 9.462E+10  1.807E+09  0.000E+00
1.807E+09  5.646E+09  0.000E+00
0.000E+00  0.000E+00  2.157E+09

Ply p 1 2 3 4 5 6
0 (°) -45 0 45 -45 0 45
Zp1 (M) -0.015 -0.0125 -0.01 -0.0075 -0.005 -0.0025
Z, (m) -0.0125 -0.01 -0.0075 -0.005 -0.0025 0
Zy - Zo (M) 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025
Zp - Zp1 -6.875E-05  -5.625E-05  -4.375E-05 -3.125E-05 -1.875E-05  -6.250E-06

1.422E-06 9.531E-07 5.781E-07 2.969E-07 1.094E-07 1.563E-08

Qu._ (Pa) 2.813E+10  9.462E+10  2.813E+10  2.813E+10  9.462E+10  2.813E+10

Q.. (Pa) 2.813E+10  5.646E+09  2813E+10  2.813E+10  5.646E+09  2.813E+10
Q. (Pa) 2.381E+10  1807E+09  2.381E+10  2.381E+10  1807E+09  2.381E+10
Qes_ (Pa) 2416E+10  2.157E+09  2416E+10  2.416E+10  2157E+09  2.416E+10
Qus_ (Pa)  -2224E+10  0.000E+00  2.224E+10 -2.224E+10  0.000E+00  2.224E+10

Q. (Pa)  -2.224E+10  0.000E+00  2.224E+10 -2.224E+10  0.000E+00  2.224E+10
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Table 7-3: Analytical solution for the tensile case (continued)

Ply p 7 8 9 10 11 12
0 (°) 45 0 -45 45 0 -45
Zpa (M) 0 0.0025 0.005 0.0075 0.01 0.0125
Z, (m) 0.0025 0.005 0.0075 0.01 0.0125 0.015
ZDZ- Zpa gm) 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025
(Zr??' Zo1 6.250E-06 187505  3.125E-05 4375E-05  5625E05  6.875E-05
(Zr%)_ Z’“S 1.563E-08 1.094E-07 2.969E-07 5.781E-07 9.531E-07 1.422E-06
Qi1 (Pa) 2.813E+10 9.462E+10 2.813E+10 2.813E+10 9.462E+10 2.813E+10
Q. (Pa) 2.813E+10  5.646E+09  2.813E+10  2813E+10  5.646E+09  2.813E+10
Q. (Pa) 2.381E+10 1.807E+09 2.381E+10 2.381E+10 1.807E+09 2.381E+10
Qess_ (PA) 2.416E+10 2.157E+09 2.416E+10 2.416E+10 2.157E+09 2.416E+10
Qi (Pa) 2.224E+10  0.000E+00 -2.224E+10  2.224E+10  0.000E+00 -2.224E+10
Q2_ (Pa) 2.224E+10 0.000E+00  -2.224E+10 2.224E+10 0.000E+00  -2.224E+10
Extensional stiffness matrix
A (N/m) 1.509E+09 4.943E+08 -5.960E-08
4.943E+08 6.190E+08 -6.706E-08
-5.960E-08 -6.706E-08 5.048E+08
Midplane strain
€ 2.154E-04
-1.720E-04
2.585E-21
Deformation
u (m) 4.309E-04
Layer | 1 2 3 4 5 6
ox (Pa) 1.963E+06 2.007E+07 1.963E+06 1.963E+06 2.007E+07 1.963E+06
oy (Pa) 2.911E+05 -5.821E+05 2.911E+05 2.911E+05 -5.821E+05 2.911E+05
Ty (PQ) -9.653E+05 5.577E-12 9.653E+05  -9.653E+05 5.577E-12 9.653E+05
Layer | 7 8 9 10 11 12
oxx (Pa) 1.963E+06 2.007E+07 1.963E+06 1.963E+06 2.007E+07 1.963E+06
oy (Pa) 2911E+05 -5.821E+05 2.911E+05 2911E+05 -5.821E+05 2.911E+05
Ty (PQ) 9.653E+05 5577E-12  -9.653E+05 9.653E+05 5.577E-12  -9.653E+05

The notations used in Table 7-3 are as described below.
E;1 and Ex represent the Young's modulus in the “1” and “2” direction of the

material axes respectively.

vi2 and vy are the major and minor Poisson’s ratio respectively.
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w12 represent the shear modulus in the material axes (i.e. axes 1-2).

Q represents the stiffness matrix of the composite plate.

0 represents the fibre orientation of the ply.

Z represents the ply location in the out-plane direction.

Q_ represents the transformed stiffness matrix of the composite plate which

contains Q11 , Q2 , Q12 , Qss , Q1s_and Qo .
A represents the extensional stiffness matrix of the composite plate.

€ represents the midplane strain vector of the composite plate
u represents the deformation of the composite plate in the x-direction of the
geometric axis.

Validation results

Figure 7-2 shows the nodal displacement result along the y=0.5 line for the Average
Mindlin Program. The displacement result of the classical lamination theory which has
been computed in Table 7-3 was plotted with the displacement results of the Average
Mindlin program as shown in Figure 7-2 for validation purpose. The displacement
results of the Average Mindlin program for different mesh cases show good convergence

and they also show good agreement with the result of the classical lamination theory.
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Figure 7-2: u-displacement validation against analytical solution for the tension case

Figure 7-3 to 7-5 show the stresses with respect to the material axes at x=0 and y=0.5.
The stress result of the classical lamination theory which has been computed in Table 7-3
was also validated against the stress results of the Average Mindlin program as shown in
Figures 7-3 to 7-5. The stress result of the Average Mindlin program shows good
agreement (al data points overlap) with the result of the classical lamination theory.
Figure 7-3 shows that the 0° plies have the highest o, relative to the 45° plies and -45°
plies. Thisis due to the fact that the fibres in the 0° plies are aligned in the tensile force
direction. Hence they carry a higher share of the load relative to the share of load of
fibresin the 45° plies and -45° plies. Figure 7-4 shows that the 0° plies have compressive
oyy values which are expected because the fibres are aligned in the direction of the tensile
load. Figure 7-5 shows that the 0° plies have no shear stress (txy) Which is expected
because the fibres are aigned in the direction of the tensile load. It can be seen that the
45° plies exhibit an equal but opposite shear stress in comparison with the -45° plies

which is due to the stacking sequence of the composite.
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Figure 7-3: oxx validation against analytical solution for the tension case

—e— Classical lamination theory
—=— 72 Av. Mindlin-type elements

z (m)

Figure 7-4: oyy validation against analytical solution for the tension case
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—e— Classical lamination theory
—=—72 Av. Mindlin-type elements
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Figure 7-5: 1,y validation against analytical solution for the tension case
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7.1.2 Traditional composite under compressive loading

Example 7.1.2: A rectangular traditional composite plate with a “[0/90]s" stacking
sequence was subjected to a uniaxial compression. It is simply supported along its four
edges. The task is to compute the critical buckling load using classical laminate theory
and the result is then used to validate the result of the Average Mindlin program. The FE

modelling procedure and the analytical solution procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanica data were obtained from atextbook by Kaw (1997).

Table 7-4: Buckling case data

Geometry
L (m) 2.000 w (m) 1.000
t (m) 0.0100 No. of ply 4

Fibre and matrix properties

E; (Pa) 2.300E+11 Ve 3.500E-01 us (Pa) 8.519E+10
En(Pa) 3.400E+09 Vi 3.000E-01 i (Pa) 1.308E+09
Vi 0.4 pr (Kgm?®) 1.800E+03
Vi 0.6 pm (Kgm?®)  1.200E+03

The notations used in Table 7-4 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
E; and E,, represent the Y oung’s modulus of the fibre and matrix respectively.
vt and v, represent the Poisson’ sratio of the fibre and matrix respectively.
us and py represent the shear modul us of the fibre and matrix respectively.
V¢ and V, represent the volume fraction of the fibre and matrix respectively.

pr and pm represent the density of the fibre and matrix respectively.

FE Modelling

The composite plate case has a mid-plane as shown in Figure 7-6. Different meshes were
employed in this example to check for convergence. A mesh with 72 four-noded
Mindlin-type elements was selected and is as shown in Figure 7-6. A compressive load
of 24kN was applied as an equivalent noda loads at the nodes on the x=2 edge with

reduced load at the corner nodes. For example, in the 72 element case, the load was
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applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on
the x=2 edge as shown in Figure 7-6. Hence the equivalent nodal loading for the 72
element case was 4kN at each nodes on the x=2 edge with 2kN at the corner nodes on the
x=2 edge. The boundary condition shown in Table 7-5 was applied to the FE model.
The Average Mindlin FE program is then used to perform buckling eigenvalue anaysis
on the model.

Table 7-5: Boundary condition for the buckling case

Nodes Boundary condition
Nodes on the x=0 edge u=0
Nodes on all four edges w=0

Figure 7-6: 4-noded element mesh for the buckling case
Analytical Solution

In order to determine the critical buckling load of the rectangular plate, it is assumed that
the laminate is specially orthotropic i.e. they satisfy the following three conditions.

e The in-plane stiffness matrix, A, is orthotropic with the direct and shear stiffness
terms uncoupled so that A6 and A are zero.
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e The bending stiffness matrix, D, is orthotropic with the bending and twisting stiffness

terms uncoupled so that D1 and Do are zero.
e Thein-plane and bending stiffness matrices are uncoupled, that is B=0.

The buckling loads can be computed using the equation below which can be found in a
textbook by Agarwal et. a. (2006).

2 m)* n)’ n\*(a)’
N, (mn)=x l:DH(E) +2(D12+2D66)(Bj +D22(B) (E) }

Using the transformed stiffness matrix computed in Example 7.1.1 and Equation (7.13 —
7.14), the buckling loads can be computed with the following spreadsheet.

(7.14)

Table 7-6: Analytical solution for the buckling case

Elastic constants

Ell (Pa) 9.404E+10 V12 3.200E-01
E., (Pa) 5.611E+09 Vo 1.909E-02
p (Kgm?) 1.440E+03 u1 (Pa) 2.157E+09
po (Kgm?)  1.440E+01
Stiffness matrix
Q (Pa) 9.462E+10 1.807E+09  0.000E+00
1.807E+09 5.646E+09  0.000E+00
0.000E+00  0.000E+00  2.157E+09
Layer | 1 2 3 4
0 (°) 0 90 90 0
Zp1 (M) -0.005 -0.0025 0 0.0025
Z, (m) -0.0025 0 0.0025 0.005
Z,-Z,1(m) 2500E-03  2.500E-03  2.500E-03  2.500E-03
(Zr%)' Zp1" 1 875E-05 -6.250E-06 6.250E-06  1.875E-05
3 3
(Zr; )' Zp 1.094E-07  1.563E-08 1.563E-08  1.094E-07
Q.. (Pa) 9.462E+10 5.646E+09 5.646E+09 9.462E+10
Q.. (Pa) 5.646E+09  9.462E+10 9.462E+10 5.646E+09
Q1. (Pa) 1.807E+09  1.807E+09 1.807E+09 1.807E+09
Qes_ (Pa) 2.157E+09  2.157E+09 2.157E+09 2.157E+09
Qs (Pa) 0.000E+00  2.914E-08  2.914E-08 0.000E+00
Q. (Pa) 0.000E+00  5.421E-06  5.421E-06 0.000E+00
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Table 7-6: Analytical solution for the buckling case (continued)

Bending stiffness matrix (N m)

D

6.958E+03  1.506E+02  3.035E-16
1.506E+02  1.397E+03 5.647E-14
3.035E-16 5.647E-14  1.798E+02

Buckling loads (N m™)

N(m,n) 1 2 3 4 5 6

1

OOk WN

8.240E+04  9.400E+05 4.576E+06 1.430E+07 3.475E+07  7.187E+07
9.253E+04  3.296E+05 1.276E+06 3.760E+06 8.940E+06  1.830E+07
1.707E+05  2.929E+05 7.416E+05 1.885E+06 4.237E+06  8.460E+06
2.882E+05 3.701E+05 6.446E+05 1.318E+06 2.681E+06 5.105E+06
4.415E+05 5.048E+05 6.986E+05 1.155E+06 2.060E+06  3.651E+06
6.297E+05 6.829E+05 8.328E+05 1.171E+06 1.827E+06  2.966E+06

The notations used in Table 7-6 are as described bel ow.

E;1 and Ex represent the Young's modulus in the “1” and “2” direction of the
material axes respectively.

p represents the density of the composite plate

Po represents the mass per unit area of the composite plate.

vi2 and vy are the major and minor Poisson’s ratio respectively.

u12 represent the shear modulus in the material axes (i.e. axes 1-2).

Q represents the stiffness matrix of the composite plate.

0 represents the fibre orientation of the ply.

Z represents the ply location in the out-plane direction.

Q_ represents the transformed stiffness matrix of the composite plate which
contains Q11 , Q2 , Q12 , Qes , Q1s_and Qo .

D represents the bending stiffness matrix of the composite plate.

N(m,n) represents the buckling load.

m and n represent the buckling load indices

The critical buckling load is the lowest of al the values. It can be seen from the
spreadsheet that the critical buckling load occurs when m=1 and n=1. Hence the critical
buckling load is 82.4kN m™.
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FE Convergence and Validation Results

The critical buckling load result of the classical lamination theory was then validated
against the results of the Average Mindlin program as shown in Table 7-7. The critical
buckling load results of the Average Mindlin program for different mesh cases show
It can be seen from
Table 7-7 that the results of the model with 200 elements agree well with the anaytical
resultsin predicting the buckling loads for al the 3 buckling modes.

good convergence and they converge to the analytical solution.

Table 7-7: Analytical validation result for the buckling case

, Buckling load (N m™)
i‘:ﬂg'”g & Eloments 32 72 128 200 Analytical
Elements Elements Elements Elements solution
1st mode 1.117E+05 | 9.067E+04 | 8.588E+04 | 8.429E+04 | 8.356E+04 | 8.240E+04
2nd mode 1.222E+05 | 1.007E+05 | 9.598E+04 | 9.432E+04 | 9.356E+04 | 9.253E+04
3rd mode 4.818E+05 | 2.114E+05 | 1.865E+05 | 1.788E+05 | 1.754E+05 | 1.707E+05

7.1.3 Traditional composite plate under free vibration

Example 7.1.3: The rectangular traditional composite plate considered in Example 7.1.2
is now under free vibration. It is simply supported along its four edges. The task is to
compute the first three natural frequencies using the classical lamination theory and the
result is then used to validate the result of the Average Mindlin program. The FE
modelling procedure and the anaytical solution procedure is presented for this example.
The geometrical properties and micro-mechanical properties are as given in Example
7.1.2.

FE Modelling

The
boundary condition shown in Table 7-8 was applied to the FE model. The Average

Different meshes were employed in this example to check for convergence.

Mindlin program is then used to perform free vibration eigenval ue analysis on the mode!.

Table 7-8: Boundary condition for freevibration case

Nodes Boundary condition

Nodes on all four edges w=0

Nodes on all four corners of the rectangular
traditional composite plate

u=v=w-= QX:Qy:O
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Analytical Solution

The natural frequencies can be computed using the equation below which can be found in
atextbook by Agarwal et. a. (2006).

Jﬂ_‘[%(m) 40, +20,)( ™) (2] <0,/ 1) } 714
o a a)\b b

Po represents the mass per unit area of the composite plate.

where

D represents the bending stiffness matrix of the composite plate

m and n represent the natural frequency indices.

Using the bending stiffness matrix computed in Example 7.1.2, the buckling loads can be
computed with the following spreadsheet.

Table 7-9: Analytical solution for the freevibration case

Natural frequencies (rad s'l)
Omn 1 2 3 4 5 6
1 118.82 401.34 885.48 1565.33 2439.99 3509.24
2 251.84 475.29 935.30 1605.36 2475.29 3541.93
3 513.09 672.03 1069.41 1704.83 2556.16 3612.07
4 888.90 1007.34 1329.34 1901.18 2711.22 3741.21
5 1375.20 1470.50 1729.86 2224.51 2970.59 3954.89
6 1970.80 2052.36 2266.52 2688.12 3357.50 4277.65

The fundamental frequency is the lowest of all the values. It can be seen from the
spreadsheet that the fundamental frequency occurs when m=1 and n=1. Hence the
fundamental frequency is118.82 rad s™.

FE Convergence and Validation Results

The natural frequency results of the classica lamination theory were then validated
against the results of the Average Mindlin program as shown in Table 7-10. The natural
frequency results of the Average Mindlin program for different mesh cases show good
convergence and they converge to the analytical solution. It can be seen from Table 7-10

that the results of the model with 200 elements agrees well with the anaytical results in
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predicting the natura frequencies for all the 3 free vibration modes. The results also

show that finer meshes are needed to accurately predict higher natural frequency modes.

Table 7-10: Analytical validation result for the free vibration case

Vibration Natural frequencies (rad s™)

mode 8 Elements 32 72 128 200 Analﬁical
Elements Elements Elements Elements solution

1st mode 154.49 125.93 121.80 120.43 119.81 118.82

2nd mode 314.69 270.07 259.62 256.00 254.34 251.84

3rd mode 1071.09 555.58 459.59 432.23 420.45 401.34

7.1.4 Traditional composite plate with a central hole under tension

Example 7.1.4: A rectangular traditiona composite plate with a central hole and a “[[-
45/0/45],]s" stacking sequence was subjected to a tensile loading of 24kN. The task isto
validate the stress result of the Average Mindlin program against the result of the
classical lamination theory. The FE modelling procedure and the anaytical solution

procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical data were obtained from atextbook by Kaw (1997).

Table 7-11: Data for thetraditional composite plate case with a central hole

Geometry
L (m) 2.000 w (m) 1.000 R (m) 0.1
t (m) 0.0300 No. of ply 12
Fibre and matrix properties
E; (Pa) 2.300E+11 v 3.500E-01 s (Pa) 8.519E+10
Em(Pa) 3.400E+09 Vi 3.000E-01 tm (Pa) 1.308E+09
V¢ 0.4 Vi 0.6
Applied Force
Fx (N) 2.400E+04 Ny (N/m) 2.400E+04
Ny (N/m) 0.000E+00 N, (N/m) 0.000E+00

The notations used in Table 7-11 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
R represents the radius of the hole.
E; and En, represent the Y oung’ s modulus of the fibre and matrix respectively.
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vt and v, represent the Poisson’ sratio of the fibre and matrix respectively.
ur and pm represent the shear modul us of the fibre and matrix respectively.
V¢ and V, represent the volume fraction of the fibre and matrix respectively.
F« represents the applied force in the x-direction.

N represents the distributed load.

FE Modelling

In order to model the composite plate with a central hole under uniaxia tensile loading,
the model was divided into four equal quarters. One of the quarter models was then used
in the FE modelling by applying boundary conditions which takes advantage of
symmetrical nature of the full model. The composite plate with a central hole has a mid-
plane as shown in Figure 7-7. Different meshes were employed in this example to check
for convergence. A mesh with 180 four-noded Mindlin-type elements was selected and is
as shown in Figure 7-7. A tensile load of 24kN was applied as an equivalent nodal loads
at the nodes on the x=2 edge with reduced load at the corner nodes. For example, in the
180 element case, the |oad was applied equally at nodes on the x=2 edge but with half the
loads at the corner nodes on the x=2 edge as shown in Figure 7-7. Hence the equivalent
nodal loading for the 180 element case was 4.8kN at each nodes on the x=2 edge with
2.4KkN at corner nodes on the x=2 edge. The boundary condition shown in Table 7-12
was applied to the FE model. The Average Mindlin FE program is then used to perform

linear static analysis on the model.

Table 7-12: Boundary condition for thetraditional composite plate case with a hole

Nodes Boundary condition
Nodes on the x=0 edge u=0
Nodes on the y=0 edge v=0
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Figure 7-7: 4-noded element mesh for atraditional composite plate with a hole

Analytical Solution

In order to determine the stress field in the vicinity of the central hole in the rectangular
traditional composite plate, it is assumed that the laminate is balanced i.e. it has equal
number of lamina with +6° and -6 ° fibre orientation. For such a laminate, the shear
coupling stiffness terms, A and Ay are zero. It is also assumed that the lamina within
the laminate are positioned symmetrically with respect to the laminate midplane, hence

the coupling terms Bj; become zero.

The stress field in the vicinity of a circular hole of radius, R, in an orthotropic laminate
under uniaxial loading, oyx” can be computed using the equation below which can be
found in atextbook by Whitney et. al. (1984).

(0, y)=05 {2+ [gjz +3(§)2 - (k7 —3)[5[%)6 7[%)8]} (7.15)

where o, =N/t

K? =1+n
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FE Convergence and Validation Results

Using the extensional <tiffness matrix computed in Example 7.1.1 and the above

equation, the effective stress results were plotted as shown below. The effective stress

ox(0,y) computed using the classical lamination theory was then validated against the

results of the Average Mindlin program as shown in Figure 7-8. The results of the

Average Mindlin program for different mesh cases show good convergence. The FE

results and the result of the classical lamination theory show similar trends.
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Figure 7-8: ox validation against analytical solution for the tension case
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7.2 Program Validation against Abaqus Program

In this section, the Mindlin programs were validated against a commercial FE package
called Abagus. The Abaqus package was used to validate the infinitesimal strain part of
the Mindlin programs for the analysis of functionally graded composite (FGC). Also, the
progressive damage capabilities of the Mindlin FE programs were not validated against
the Abagus package in this section but they were validated against the Ordinary FE
program in the next section. In this section, some numerical examples were presented for
this validation exercise. These numerical examples include composite plate subjected to
tensile load, out-of-plane load; buckling load and free vibration; a simply supported ring
subjected to uniform out-of-plane load; and a clamped ring subjected to uniform out-of-

plane load.
7.2.1 FGC plate under tensileloading

Example 7.2.1: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to a tensile loading of 240kN. The task is to validate the displacement and
stress result of the Average Mindlin program against the result of the Abagqus package.

The FE modelling procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as
given below. The micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-13: Tensile case data

Geometry
L (m) 2.000 w (m) 1.000
t(m) 0.0300 No. of ply 12

Fibre and matrix properties

E; (Pa) 2.300E+11 Vi 3.500E-01 s (Pa) 8.519E+10

Em(Pa) 3.400E+09 Vi 3.000E-01 um (Pa) 1.308E+09
Applied Force

F. (N) 2.400E+05

The notations used in Table 7-13 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
E; and E,, represent the Y oung’s modulus of the fibre and matrix respectively.
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vt and v, represent the Poisson’ sratio of the fibre and matrix respectively.

ur and pm represent the shear modul us of the fibre and matrix respectively.

F« represents the applied force in the x-direction.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with
72 four-noded Mindlin-type elements was selected. A tensile load of 240kN was applied
as an equivalent nodal |oads at the nodes on the x=2 edge with reduced load at the corner
nodes. For example, in the 72 element case, the load was applied equally at nodes on the
x=2 edge but with haf the loads at the corner nodes on the x=2 edge. Hence the
equivalent nodal loading for the 72 element case was 40kN at each nodes on the x=2 edge
with 20kN at corner nodes on the x=2 edge. The horizontal displacement of al the nodes
on the x=0 edge was fixed. The node at the (0, 0.5) coordinate was clamped (i.e. fixed in
all degrees of freedom).

In order to model the functional gradation of the FGC plate in the Abagqus package, the
fibre and matrix volume fractions were computed for each element at their midpoints by
using the fibre distribution egquations (i.e. Equation 3.34 and 3.38) developed in chapter 3.
The macro-mechanical properties were then computed for each element by substituting
the fibre and matrix volume fractions into the macro-mechanical equations developed in
chapter 3. For examplein the case of the mesh with 72 elements, the composite plate has
12 divisions in the x-direction. Hence the macro-mechanical properties at the 12
positions along the x-direction were computed using the Excel Spreadsheet as shown in
Table 7-14. Each macro-mechanical property was then assigned to each element in the
Abaqgus package based on the location of each element midpoint.
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Table 7-14: Computation of macro-mechanical properties

Functional gradation properties

P 1 Vi 0.4

V, 0.5

Xy (M) 0 Xz (M) 2

&.'min 0 &.'max 1

Q 0.5

V, 0.3

Macro-mechanical properties
x (m) g Vm Eu (Pa) Ez (Pa) Viz ni2 (Pa)

0.083 0.042 0.492 0.508 1.148E+11 6.594E+09 0.325 2.535E+09
0.250 0.125 0.475 0.525 1.110E+11 6.391E+09 0.324 2.457E+09
0.417 0.208 0.458 0.542 1.073E+11 6.199E+09 0.323 2.383E+09
0.583 0.292 0.442 0.558 1.035E+11 6.019E+09 0.322 2.314E+09
0.750 0.375 0.425 0.575 9.971E+10 5.849E+09 0.321 2.249E+09
0.917 0.458 0.408 0.592 9.593E+10 5.688E+09 0.320 2.187E+09
1.083 0.542 0.392 0.608 9.215E+10 5.536E+09 0.320 2.129E+09
1.250 0.625 0.375 0.625 8.838E+10 5.392E+09 0.319 2.073E+09
1.417 0.708 0.358 0.642 8.460E+10 5.255E+09 0.318 2.021E+09
1.583 0.792 0.342 0.658 8.082E+10 5.125E+09 0.317 1.971E+09
1.750 0.875 0.325 0.675 7.705E+10 5.001E+09 0.316 1.923E+09
1.917 0.958 0.308 0.692 7.327E+10 4.883E+09 0.315 1.878E+09

The notations used in Table 7-14 are as described below.
P represents the gradation exponent of the FGC plate.

V:_represents the average volume fraction of fibrein the composite plate.

X1 and X, represents the x=0 and x=2 edge respectively.

Emin and Emax represents the non-dimensional representation of the x=0 and x=2

edge respectively.

Q represents a constant term in the fibre distribution equation.

V, represents the volume fraction of the fibre at the x=2 edge.

X represents the position in the x-direction

& represents the non-dimensiona position in the x-direction.

V¢ and V, represent the volume fraction of the fibre and matrix respectively.

E;1 and Ex represent the Young's modulus in the “1” and “2” direction of the

material axes respectively.

v12 represents the major Poisson’s ratio of the composite plate.
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u12 represents the shear modulus in the material axes (i.e. axes 1-2).

FE convergence results

The displacement results of the Average Mindlin program and the Abaqus package were
analysed for different mesh cases and the results showed good convergence as shown in
Figures 7-9 to 7-10.
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4.500E-04 —=-32 Average Mindlin-type elements
72 Average Mindlin-type elements
4.000E-04 —+-128 Average Mindlin-type elements
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3.500E-04
3.000E-04
E 2.500E-04
>
2.000E-04
1.500E-04
1.000E-04
5.000E-05
0.000E+00
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x (m)

Figure 7-9: Mindlin program conver gence check for the tension case
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Figure 7-10: Abaqus program conver gence check for the tension case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary
FE program) were validated against the Abaqus program in this example. The Ordinary
FE program is an independent validation program developed in-house for the finite
element analysis of structures made of composite materials without functional gradation.
In order to use the Ordinary FE program and the Abaqus program for analysing a FGC
plate under tension, the macro-mechanica properties of each element of the FGC plate

were manually computed at the midpoint of each element and fed into both programs.

Figure 7-11 shows the noda displacement result aong the y=0.5 line. The u-
displacement results of the Mindlin programs were in good agreement (most data points
overlap) with the result of the Abagus program as shown in Figure 7-11. Also the results
of the Mindlin programs and the Abagus program were results of the FGC plate case with
P=1 and V,=0.5. In Figure 7-11, the classical lamination theory result for a traditional
composite (i.e. composite case with P = 0) was plotted for comparison purpose. The
maximum deflection results for all the Mindlin programs and the Abagus package were
in good agreement with each other. The u-displacement curves show that the FGC plate
experience higher stiffness and hence lower noda displacement around the x=0 edge (due
to higher fibre volume fraction) relative to the traditional composite. The u-displacement
curves also show that the FGC plate experience lower stiffness and hence higher nodal
displacement around the x=2 edge (due to lower fibre volume fraction) relative to the

traditional composite.
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Figure 7-11: u-validation against Abaqusresult for the tension case
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Figure 7-12 shows the stress result in the fibre direction (c11) at x=0 and y=0.5. The 611
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abaqus package. The results shown below are for a FGC plate with a
stacking sequence of “[[-45/0/45],]s". It can be seen from Figure 7-12 that the 0° plies
have the highest o1 relative to the 45° plies and -45° plies. Thisis due to the fact that the
fibresin the 0° plies are aligned in the tensile force direction. Hence they carry a higher
share of the load relative to the share of load of fibresin the 45° plies and -45° plies.

—e— Smooth Mindlin-type elements
—=— Average Mindlin-type elements

Ordinary Mindlin-type elements
—< Abagus S4-elements

O11 (N/m2)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
z (m)

Figure 7-12: o, validation against Abaqusresult for the tension case
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Figure 7-13 shows the stress result in direction normal to the fibre direction (o) at x=0
and y=0.5. The o, results of the Mindlin programs were in good agreement (most data
points overlap) with the result of the Abaqus package. It can be seen from Figure 7-13
that the 0° plies have compressive o2, values which are expected because the fibres are
aligned in the direction of the tensile load. Also the fibres of the 0° plies would only be

expected to experience compressive stress in the direction normal to the fibre direction.

—— Smooth Mindlin-type elements
—=— Average Mindlin-type elements

Ordinary Mindlin-type elements
—< Abaqus S4-elements

o622 (N/M2)
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Figure 7-13: o5, validation against Abaqusresult for the tension case
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Figure 7-14 shows the shear stress result (t12) a x=0 and y=0.5. The 7, results of the
Mindlin programs were in good agreement (most data points overlap) with the result of
the Abaqus package. It can be seen from Figure 7-14 that the 0° plies have no shear
stress which is expected because the fibres are aligned in the direction of the tensile load.
It can also be seen that the 45° plies exhibit an equal but opposite shear stress in
comparison with the -45° plies which is due to the stacking sequence of the composite.

—— Smooth Mindlin-type elements
—=— Average Mindlin-type elements
Ordinary Mindlin-type elements
— Abaqus S4-elements

T12 (N/ m2)
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Figure 7-14: 11, validation against Abaqusresult for the tension case
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7.2.2. FGC plate under out-of-plane bending

Example 7.2.2: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to an out-of-plane bending load of 1.2kN. The task is to validate the
displacement and stress result of the Average Mindlin FE program against the result of
the Abagus package. The FE modelling procedure is presented for this example. The
geometrical properties and micro-mechanical properties are the same as the one given in
Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with
72 four-noded Mindlin-type elements was selected. An out-of-plane bending load of
1.2kN was applied as an equivalent noda loads at the nodes on the x=2 edge with
reduced load at the corner nodes. For example, in the 72 element case, the load was
applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on
the x=2 edge as shown in Table 7-15.

Table 7-15: Applied load for the out-of-plane bending case

Nodes Applied load

Nodes on the x=2 edge excluding corner | F, = 0.2kN
nodes (i.e. node 13 and 14)

Corner nodes (i.e. node 13 and 14) F,=0.1kN

The boundary condition shown in Table 7-16 was applied to the FE models.

Table 7-16: Boundary condition for the out-of-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge U=SV=wW=6,=6y=0

In order to model the functional gradation of the FGC plate in the Abagqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical
properties were then computed for each element as described in Example 7.1.1.

FE convergence results

The w-displacement results of the Average Mindlin program and the Abaqus package
were analysed for different mesh cases and the results showed good convergence as
shown in Figures 7-15 and 7-16.
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Figure 7-15: Mindlin program convergence check for the out-of-plane bending case
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Figure 7-16: Abaqus program conver gence check for the out-of-plane bending case
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Mindlin program validation result

All the Mindlin programs including the independent validation program (i.e. the Ordinary
FE program) were validated in this example. The results of the Mindlin programs and the
Abaqus package shown in Figure 7-17 were results of the FGC plate case with P=1 and
V,=0.5. It can be seen from Figure 7-17 that the w-displacement results of the Mindlin
programs were in good agreement (most data points overlap) with the result of the

Abaqus package.
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Figure 7-17: w-displacement validation against Abaqusresult for the out-of-plane
bending case
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Figure 7-18 shows the stress result in the fibre direction (c1;) a x=0 and y=0.5. The 611
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagus package. The results shown below are for a FGC plate with a
stacking sequence of “[[-45/0/45],]s". It can be seen from Figure 7-18 that the 2™ and
11" plies have the highest absolute o1, values. This is due to the combined effect of 0°
fibre orientation and the fact that the tensile and compressive stress (due to the applied
out-of -plane bending load) increases away from the midplane of the composite plate.
The 0° fibre orientations are aligned in the direction of the tensile and compressive stress
caused by the out-of-plane bending load. Hence the 0° plies experience a higher share of
o1 relative to the 45° plies and -45° plies. Since the 2™ and 11" plies have 0° fibre
orientation and they are the furthest 0° plies from the midplane, it is expected that they

have the highest 11 values which are equal in magnitude and opposite in direction.
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Figure 7-18: o411 validation against Abaqusresult for the out-of-plane bending case
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Figure 7-19 shows the stress result in direction normal to the fibre direction (o2) a x=0
and y=0.5. The oy, results of the Mindlin programs were in good agreement (most data
points overlap) with the result of the Abaqus package. It can be seen from Figure 7-19
that the 1% and 12" plies have the highest absolute o2, values. This is due to the
combined effect of fibre orientation and the fact that the tensile and compressive stress
(due to the applied out-of-plane bending load) increases away from the midplane of the
composite plate. The -45° fibre orientations are not aligned in the direction of the tensile
and compressive stress caused by the applied out-of-plane bending load. Hence the -45°
plies experience a higher share of o, relative to 0° plies and 45° plies. Since the 1% and
12" plies have -45° fibre orientation and they are the furthest -45° ply from the midplane,
it is expected that they have the highest o5, values which are equal in magnitude and

opposite in direction.
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Figure 7-19: o2, validation against Abaqusresult for the out-of-plane bending case
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Figure 7-20 shows the shear stress result (t12) a x=0 and y=0.5. The 7, results of the
Mindlin programs were in good agreement (most data points overlap) with the result of
the Abagus package. It can aso be seen from the graph that 11, increases away from the

midplane of the composite plate for each ply with specific fibre orientation.
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Figure 7-20: 11, validation against Abaqus result for the out-of-plane bending case
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7.2.3 FGC plate under compressive loading

Example 7.2.3: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to a compressive load of 24kN. The values of the functiona gradation
properties include gradation exponent, P=1 and gradation offset, V1=0.5. Thetask isto
validate the buckling eigenvalue results of the Mindlin programs against the result of the
Abaqus package. The FE modelling procedure is presented for this example. The
geometrical properties and micro-mechanical properties are the same as the one given in
Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. A mesh with
72 four-noded Mindlin-type elements was selected. A buckling load of 24kN was
applied as an equivalent nodal loads at the nodes on the x=2 edge with reduced load at
the corner nodes. For example, in the 72 element case, the load was applied equally at
nodes on the x=2 edge but with half the loads at the corner nodes on the x=2 edge as
shown in Table 7-17.

Table 7-17: Applied load for the buckling case

Nodes Applied load

Nodes on the x=2 edge excluding corner nodes | Fx = 4kN
(i.e. node 13 and 14)

Corner nodes (i.e. node 13 and 14) F = 2kN

The boundary condition shown in Table 7-17 was applied to the FE model.

Table 7-18: Boundary condition for the buckling case

Nodes Boundary condition
Nodes on the x=0 edge U=SV=w=6,=6,=0
Nodes on the x=2 edge w=0

In order to model the functional gradation of the FGC plate in the Abagus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.1.1.

FE convergence and validation results

In this example, the first three buckling modes were analysed. The buckling eigenvalue
isthe ratio of critical buckling load to the applied load. The buckling eigenvalue results
of the Mindlin programs and the Abagus package were analysed for different mesh cases
and the results showed good convergence as shown in Table 7-19. This table aso shows
that the buckling eigenvalue results of the Mindlin programs were in good agreement
with the results of the Abaqus package. It can also be seen that for accurate eigenvalue

prediction of higher buckling modes, finer meshes are required.

Table 7-19: Validation for the buckling case using Abaqus program

Buckling Eigenvalues
Abaqus S4-elements 1% Mode | 2" Mode | 3™ Mode
8 Elements 25.62 88.49 141.65
32 Elements 20.79 67.06 87.69
72 Elements 20.00 61.20 83.61
128 Elements 20.26 61.81 87.54
Average Mindlin-type elements 1" Mode | 2" Mode | 3" Mode
8 Elements 23.97 82.74 99.44
32 Elements 20.65 67.19 86.18
72 Elements 20.01 61.57 83.22
128 Elements 19.77 59.68 82.08
Smooth Mindlin-type elements 1% Mode | 2" Mode | 3™ Mode
8 Elements 23.98 82.39 99.47
32 Elements 20.65 67.18 86.09
72 Elements 20.01 61.57 83.17
128 Elements 19.77 59.68 82.05
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7.24 FGC plateunder freevibration

Example 7.2.4: Consider a rectangular FGC plate with a “[[-45/0/45],]s" stacking
sequence under free vibration. The values of the functional gradation properties include
gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the natural
frequency results of the Mindlin programs against the result of the Abaqus package. The
FE modelling procedure is presented for this example. The geometrical properties and

micro-mechanical properties are the same as the one given in Example 7.1.1.

FE Modelling

Different meshes were employed in this example to check for convergence. The

boundary condition shown in Table 7-20 was applied to the FE model.

Table 7-20: Boundary condition for the free vibration case

Nodes Boundary condition

Nodes on the x=0 edge U=Vv=w=06,=6,=0

In order to model the functional gradation of the FGC plate in the Abagus package, the
fibre and matrix volume fractions were computed for each element at their midpoints by
using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.1.1.

FE convergence and validation results

In this example, the first three free vibration modes were analysed. The first three
fundamental frequency results of the Mindlin programs and the Abagus package were
analysed for different mesh cases and the results showed good convergence as shown in
Table 7-21. Thistable also shows that the first three fundamental frequency results of the
Mindlin programs were in good agreement with the results of the Abaqus package. The
results aso show that finer meshes are needed to accurately predict higher natural

frequency modes.
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Table 7-21: Validation for thefree vibration case using Abagus program

Natural frequencies (Hz)

Abaqus S4-elements 1% Mode | 2™ Mode | 3™ Mode
8 Elements 7.13 29.04 47.42
32 Elements 7.12 28.64 42.63
72 Elements 7.10 28.41 41.73
128 Elements 7.04 28.29 41.44
200 Elements 7.01 28.32 41.62

Average Mindlin-type elements 1% Mode | 2™ Mode | 3™ Mode

8 Elements 6.95 28.68 46.71
32 Elements 7.11 28.68 42.59
72 Elements 7.10 28.46 41.80
128 Elements 7.10 28.38 41.50
200 Elements 7.10 28.36 41.35

Smooth Mindlin-type elements 1% Mode | 2™ Mode | 3™ Mode

8 Elements 6.96 28.70 46.78
32 Elements 7.11 28.68 42.60
72 Elements 7.10 28.46 41.81
128 Elements 7.10 28.38 41.50
200 Elements 7.10 28.36 41.36

7.2.5 Traditional composite plate with a central hole under tension

Example 7.2.5: A rectangular traditional composite plate with a central hole a
“[[-45/0/45],]s" stacking sequence was subjected to atensile loading of 24kN. Thetask is

to validate the displacement results of the Average Mindlin FE program against the result
of the Abaqus package. The FE modelling procedure is presented for this example. The
geometrical properties, micro-mechanical properties and loading condition are as givenin
Example 7.1.4.

FE Modelling

In order to model the composite plate with a central hole under uniaxia tensile loading,
the model was divided into four equal quarters. One of the quarter models was then used
in the FE modelling by applying boundary conditions which takes advantage of
symmetrical nature of the full model. These include specifying the u-displacement of the
nodes on the x=0 edge as zero and also specifying the v-displacement of the nodes on the

y=0 edge as zero. Different meshes were employed in this example to check for
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convergence. A mesh with 180 four-noded Mindlin-type elements was selected. A
tensile load of 24kN was applied as an equivalent nodal loads at the nodes on the x=2
edge with reduced load at the corner nodes. For example, in the 180 element case, the
load was applied equally at nodes on the x=2 edge but with half the loads at the corner
nodes on the x=2 edge. Hence the equivalent nodal loading for the 180 el ement case was
4.8kN at each nodes on the x=2 edge with 2.4kN at corner nodes on the x=2 edge.

FE convergence results

The displacement results of the Average Mindlin program and the Abaqus package were
analysed for different mesh cases and the results showed good convergence as shown in
Figures 7-21 and 7-22.

2.50E-05

—e— 180 Av. Mindlin-type elements

—#- 125 Av. Mindlin-type elements
80 Av. Mindlin-type elements

2.00E-05 + 45 Av. Mindlin-type elements

—*— 20 Av. Mindlin-type elements

150E-05 +- -~

1.00E-05 -~~~ b / 77777777777777777777
=

500E-06 +------F---oombm e

u(m)

0.00E+00

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 7-21: Mindlin program conver gence check for therectangular plate case
with a hole
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2.50E-05
—e— 180 Abaqus $4-elements

—=— 125 Abaqus $4-elements

80 Abaqus $4-elements
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1.00E-05

5.00E-06
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0 01 0.2 03 04 05 0.6 0.7 08 0.9 1
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Figure 7-22: Abaqus program convergence check for the rectangular plate case with
ahole

148



Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary
FE program) were validated in this example. The Ordinary FE program is an
independent validation program developed in-house for the finite element analysis of
structures made of composite materials without functional gradation. The u-displacement
results of the Mindlin programs were in good agreement (most data points overlap) with

the result of the Abagus package as shown in Figure 7-23.

2.50E-05 \ \
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l l l | A
1.50E-05 +— e N ——
| | | 4 |
E l l l - l l
= | | | - | |
1.00E-05 f-nmmoemoe AR T — R S —
| L | |
) i i i
e | | |
5.00E-06 - Lo e
0.00E+00 ‘ ' ' ' ‘ 1 1 ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7-23: u-displacement validation against Abaqusresult for therectangular
plate case with a hole
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7.2.6 Simply supported FGC ring case

Example 7.2.6: A ssimply supported FGC ring with a “[[-45/0/45],]s" stacking sequence
was subjected to a pressure loading of 50kPa. The task is to validate the displacement
and stress result of the Average Mindlin program against the result of the Abagus
package. The FE modelling procedureis presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanica data were obtained from atextbook by Kaw (1997).

Table 7-22: Data for the simply supported ring case

Geometry
R (m) 0.500 R, (m) 1.000
t (m) 0.030 No. of ply 12

Fibre and matrix properties
E; (Pa) 2.300E+11 Vi 3.500E-01 e (Pa) 8.519E+10
En (Pa) 3.400E+09 Vin 3.000E-01 Um (Pa) 1.308E+09

The notations used in Table 7-22 are as described below.
Ri, Ro and t, represent the inner radius, outer radius, thickness of ply respectively.
E; and E,, represent the Y oung’ s modulus of the fibre and matrix respectively.
vt and v represent the Poisson’ sratio of the fibre and matrix respectively.

us and um, represent the shear modulus of the fibre and matrix respectively.

FE Modelling
A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. Different meshes were
employed in this example to check for convergence. A triangular element has been
employed in order to demonstrate and validate the capability of the Mindlin programsin
modelling with triangular elements. A mesh with 128 triangular elements is as shown in
Figure 7-24. The element employed for the Mindlin programs is a triangular Average
Mindlin-type element. The element employed for the Abaqus package is a triangular
shell element called S3-element.
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Figure 7-24: 3-noded triangular element mesh for a simply supported ring

The loading and boundary condition shown in Figure 7-25 was applied to the FE models

in this example.

Uniform pressure
applied in the out-
of-plane direction

Symmetry condition ~ i-€ zdirection

i.e.u=6,=0 Simply supported
edgei.e. w=0

Simply supported

edgei.e. w=0

Symmetry condition
i.e.v=6,=0

Figure 7-25: Loading and boundary condition for the ssmply supported ring case
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In order to mode the functiona gradation of the FGC ring in the Abaqus package, the
fibre and matrix volume fractions were computed for each element at their midpoints by
using the fibre distribution equations developed in chapter 3. The macro-mechanical
properties were then computed for each element as described in the spreadsheet below.

Table 7-23: Computation of macro-mechanical properties

Functional gradation properties

P 1 Vi 0.4
Vi 0.5

ri (m) 0.5 ro (M)

Emin 0 Emax

Q 0.5

V, 0.3

Macro-mechanical properties

r (m) € Vi Vi Ei (Pa) Ez, (Pa) Vi2 pi2 (Pa)
0.5313 0.0625 0.4875 0.5125 1.139E+11 6.542E+09 0.3244 2.515E+09
0.5938 0.1875 0.4625 0.5375 1.082E+11 6.246E+09 0.3231 2.402E+09
0.6563 0.3125 0.4375 0.5625 1.025E+11 5.976E+09 0.3219 2.298E+09
0.7188 0.4375 0.4125 0.5875 9.687E+10 5.728E+09 0.3206 2.203E+09
0.7813 0.5625 0.3875 0.6125 9.121E+10 5.500E+09 0.3194 2.115E+09
0.8438 0.6875 0.3625 0.6375 8.554E+10 5.289E+09 0.3181 2.034E+09
0.9063 0.8125 0.3375 0.6625 7.988E+10 5.094E+09 0.3169 1.959E+09
0.9688 0.9375 0.3125 0.6875 7.421E+10 4.912E+09 0.3156 1.889E+09

FE convergence results

The w-displacement results of the triangular Average Mindlin-type elements and the
Abaqus S3-elements were anaysed for different mesh cases and the results showed good

convergence as shown in Figures 7-26 and 7-27.
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Figure 7-26: Mindlin program convergence check for the simply supported ring

case
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Figure 7-27: Abaqus program conver gence check for the simply supported ring case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary
FE program) were validated in this example using the mesh with 200 elements. The
results of the Mindlin programs and the Abagus package shown in Figure 7-28 were
results of the FGC ring case with P=1 and V;=0.5. It can be seen from Figure 7-28 that
the w-displacement results of the Mindlin programs slightly differ from the result of the
Abaqus package. In Figures 7-26 and 7-27, it can be seen that the result of the 200
Abaqus S3-elements agrees well (most data points overlap) with the results of the 72

triangular Mindlin-type elements.
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Figure 7-28: w-displacement validation against Abaqusresult for the simply
supported ring case
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Figure 7-29 shows the stress result in the fibre direction (c3;) at x=0 and y=0.75. The c1;
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies above the midplane
experience tensile stresses and the ones below the midplane experience compressive
stresses which is a shown in Figure 7-29. Also the plies equidistant from the midplane
experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-29: 611 validation against Abaqusresult for the simply supported ring case
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Figure 7-30 shows the stress result in the fibre direction (o) at Xx=0 and y=0.75. The 62,
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abaqus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies above the midplane
experience tensile stresses and the ones below the midplane experience compressive
stresses which is a shown in Figure 7-30. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.
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Figure 7-30: o, validation against Abaqusresult for the simply supported ring case
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Figure 7-31 shows the stress result in the fibre direction (t12) at x=0 and y=0.75. The 11,
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagqus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies equidistant from the
midplane experience stresses which are equal in magnitude but opposite in direction.

This phenomenon can be seen in Figure 7-31.

—— Smooth Mindlin-type elements
—=— Average Mindlin-type elements
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Figure 7-31: 11, validation against Abaqusresult for the simply supported ring case
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7.2.7 Clamped FGC ring case

Example 7.2.7: A clamped FGC ring with a “[[-45/0/45],]s" stacking sequence was
subjected to a pressure loading of 50kPa. The task is to validate the displacement and
stress result of the Average Mindlin program against the result of the Abagqus package.
The FE modelling procedure is presented for this example. The geometrica properties

and micro-mechanical properties are asin Example 7.2.5.

FE Modelling

A quarter of the model has been modelled instead of the full ring model by taking
advantage of the axisymmetry nature of the FE problem. Different meshes were
employed in this example to check for convergence. A triangular element has been
employed in order to demonstrate and validate the capability of the Mindlin programsin
modelling with triangular elements. The element employed for the Mindlin programsisa
triangular Average Mindlin-type element. The element employed for the Abaqus
package isatriangular shell element called S3-element.

The loading and boundary condition shown in Figure 7-32 was applied to the FE models

in this example.

Uniform pressure
applied in the out-
of-plane direction

Symmetry condition -6 Zdirection

i.e.u=6,=0 Clamped edgei.e.
u=v=w=06x=6,=0

Clamped edgei.e.

uU=v=w=0,=6,=

Symmetry condition
i.e. v=6,=0

Figure 7-32: Loading and boundary condition for the ssmply supported ring case

In order to mode the functiona gradation of the FGC ring in the Abaqus package, the

fibre and matrix volume fractions were computed for each element at their midpoints by
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using the fibre distribution equations developed in chapter 3. The macro-mechanical

properties were then computed for each element as described in Example 7.2.5.

FE convergence results

The w-displacement results of the triangular Average Mindlin-type elements and the
Abaqus S3-elements were anaysed for different mesh cases and the results showed good

convergence as shown in Figures 7-33 and 7-34.
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Figure 7-33: Mindlin program conver gence check for the simply supported ring
case
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Figure 7-34: Abaqgus program convergence check for the simply supported ring case
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Mindlin program validation results

All the Mindlin programs including the independent validation program (i.e. the Ordinary

FE program) were validated in this example using the mesh with 200 elements. The

results of the Mindlin programs and the Abagus package shown in Figure 7-35 were

results of the FGC ring case with P=1 and V;=0.5. It can be seen from Figure 7-35 that

the w-displacement results of the Mindlin programs show a close agreement (most data

points overlap) with the result of the Abaqus package.
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Figure 7-35: w-displacement validation against Abaqusresult for the clamped ring
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Figure 7-36 shows the stress result in the fibre direction (c11) at x=0 and y=0.75. The c1;
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagqus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies above the midplane
experience tensile stresses and the ones below the midplane experience compressive
stresses which is a shown in Figure 7-36. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.

—— Smooth Mindlin-type elements
—=— Average Mindlin-type elements

Ordinary Mindlin-type elements
—< Abaqus S3-elements
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Figure 7-36: o1; validation against Abaqusresult for the clamped ring case
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Figure 7-37 shows the stress result in the fibre direction (c2,) at x=0 and y=0.75. The 62,
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagqus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies above the midplane
experience tensile stresses and the ones below the midplane experience compressive
stresses which is a shown in Figure 7-37. Also the plies equidistant from the midplane

experience stresses which are equal in magnitude but opposite in direction.

—— Smooth Mindlin-type elements
—=— Average Mindlin-type elements

Ordinary Mindlin-type elements
—+ Abaqus S3-elements

z (m)

Figure 7-37: o5, validation against Abaqusresult for the clamped ring case
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Figure 7-38 shows the stress result in the fibre direction (t12) at x=0 and y=0.75. The 11,
results of the Mindlin programs were in good agreement (most data points overlap) with
the result of the Abagqus package. The results shown below are for a FGC ring with a
stacking sequence of “[[-45/0/45],]s". It is expected that the plies equidistant from the
midplane experience stresses which are equal in magnitude but opposite in direction.

This phenomenon can be seen in Figure 7-38.

—e— Smooth Mindlin-type elements
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Figure 7-38: 11, validation against Abaqusresult for the clamped ring case
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7.3 Program Validation against Ordinary Program

In this section, the Mindlin programs (i.e. Average and Smooth Mindlin program) were
validated against the Ordinary Mindlin program. Also the Reissner programs (i.e
Average and Smooth Reissner program) were validated against the Ordinary Reissner
programs. The Ordinary FE programs are programs developed in-house for the finite
element analysis of structures made of composite materials without functional gradation.
The Ordinary FE programs include the Ordinary Mindlin Program, Ordinary non-
conforming and conforming Reissner program. The Ordinary FE programs were used to
validate the infinitessmal and finite strain part of the Mindlin and Reissner programs for
the analysis of functionally graded composite (FGC). Also, the progressive damage
capabilities of the Mindlin and Reissner programs were validated. In this section, some
numerical examples were presented for this validation exercise. These numerical
examples include FGC plate subjected to tensile load, out-of-plane load; buckling load
and free vibration; a simply supported ring subjected to uniform out-of-plane load; and a

clamped ring subjected to uniform out-of-plane load.
7.3.1 FGC plate under tensileloading

Example 7.3.1: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to atensile loading of 8BVIN. The task is to validate the displacement, stress and
the progressive damage result of the Mindlin and Reissner programs against the result of
the Ordinary FE programs. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanica data were obtained from atextbook by Kaw (1997).
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Table 7-24: Tensile case data

Geometry
L (m) 2.000 w (m) 1.000
t(m) 0.0300 No. of ply 12

Fibre and matrix properties

E; (Pa) 2.300E+11 7 3.500E-01 s (Pa) 8.519E+10

En(Pa) 3.400E+09 Vi 3.000E-01 um (Pa) 1.308E+09
Strength properties

Xt (Pa) 7.200E7 Xme (Pa) 1.020E8 Xms (Pa) 3.400E7

Xt (Pa) 2.067E9 X (Pa) 1.999E9 om (Pa) 0.0

Ko 1 ke 1

The notations used in Table 7-24 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
E: and En, represent the Y oung’'s modulus of the fibre and matrix respectively.
vt and v, represent the Poisson’ sratio of the fibre and matrix respectively.
us and py represent the shear modul us of the fibre and matrix respectively.
Xmt, Xme @nd X represent the tensile, compressive and the shear strength of the
matrix respectively.
X and Xi represent the tensile and compressive strength of the matrix
respectively.
orm represent the maximum residual radial stress at the interface.
ke and k. represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling
A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the
conforming Reissner program. A mesh containing 128 4-noded non-conforming
elements was employed for the non-conforming Reissner program. A tensile load of
8MN was applied as an equivalent nodal |oads at the nodes on the x=2 edge with reduced
load at the corner nodes. For example, in the 128 element case, the load was applied
equally at nodes on the x=2 edge but with haf the loads at the corner nodes on the x=2
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edge. Hence the equivalent noda loading for the 128 element case was IMN at each
nodes on the x=2 edge with 500kN at the corner nodes on the x=2 edge. In order to
model the finite strain, a tenth of the equivalent nodal loading was applied at every load

increment.
The boundary condition shown in Table 7-25 was applied to the FE model.

Table 7-25: Boundary condition for thetensile case

Nodes Boundary condition

Node 20 (i.e. node at (0, 0.5) coordinate) U=v=w=0,=0y,=0 (i.e al degrees of
freedom are fixed at Node 20)

Nodes on the x=0 edge excludingnode20 |u=0

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,
the fibre and matrix volume fractions were computed for each element at their midpoints
by using the fibre distribution equations (i.e. Equation 3.34 and 3.38) developed in
chapter 3. The macro-mechanical properties were then computed for each element by
substituting the fibre and matrix volume fractions into the macro-mechanical equations
developed in chapter 3. The computed macro-mechanical properties of each element of

the FGC plate were then fed into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-39 and 7-40 show the nodal displacement results along the y=0.5 line for a
FGC plate case with P=1 and V;=0.5 at the 9" load increment. The displacement results
for the Mindlin and Reissner programs were in good agreement with the Ordinary FE
program. The slope of the u-displacement curve, du/6x increases as the nodal position, x
increases. This implies that the FGC plate experience increase in change in u-
displacement, Au; and hence reduction in longitudina stiffness as the noda position, x
increases. This result can be attributed to reduction in fibre volume fraction as the nodal
position, x increases. The v-displacement results along the y=0.5 line are zeroes as
expected because the FGC plate is fixed in the x and y directions a the (0, 0.5)

coordinate and it is subjected to atensile load.
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Figure 7-41 shows the through-thickness stress result in the fibre direction at node 1 (i.e.
the (0, 0) coordinate) for a FGC plate case with P=1 and V;=0.5 at the 9" load increment.
The stress results of the Average and Smooth Mindlin programs were in good agreement
with the result of the Ordinary Mindlin program. It can be seen from Figure 7-41 that the
0° plies have the highest o1; relative to the 45° plies and -45° plies. Thisisdueto the fact
that the fibres in the 0° plies are aligned in the tensile force direction. Hence they carry a

higher share of the load relative to the share of load of fibres in the 45° plies and -45°
plies.
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In order to model the progressive damage, a check for failure was undertaken at the node
of each element for every load increment and if failure is detected, materia properties of
the element are degraded and equilibrium is re-established. The failure criterion that was
used in checking for failure is the Tsai-Hill failure criterion. Figure 7-42 shows the
damage contour plot for the first three layers of a FGC plate case with P=1 and V,=0.5 at
the 9™ load increment. This figure also shows the typical damage contour plot of all the
programs for the FGC plate under tension. The damage contour plot is the plot of the
Tsai-Hill failure index at all nodes on the FGC plate. If the Tsai-Hill failure index is
greater than one, then the composite plate is damaged, else the composite plate is
undamaged. The Tsai-Hill failure index was obtained using the equation provided in
Chapter 3.

In order to understand the damage results in Figure 7-42, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plot that the 0° plies were more susceptible to
damage because they carry higher share of the load in comparison to the 45° and -45°
plies. Thisis dueto the fact that the fibre orientations in the 0° plies were aligned in the
direction of the tensile load. The damage results were expected results because damage
contour plot were based on Tsai-Hill failure index which is afunction of fibre orientation.
The effect of functional gradation can be seen in al the three plies but it is more
pronounced in the 0° plies as shown for the 2™ ply in Figure 7-42. The figure shows that
the ply is stronger around the x=0 edge than it is around the x=2 edge hence the
undamaged regions are regions close the x=0 edge as shown in Figure 7-42. Also the
results include the effect of stress transfer. This effect is due to the undamaged regions
being stiffer than the damaged regions and they carry a large portion of the extra loads
that were meant for the damaged regions and therefore the undamaged regions are
stressed more. Hence this results in stress transfer occurring both in the in-plane and out-

of-plane directions.
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Since failure was more pronounced in the 2" ply, a closer study of the progressive
damage of the 2™ ply was undertaken. Figure 7-43 shows the progressive damage
contour plot for the 2™ ply (i.e. 0° ply) of a FGC plate case with P=1 and V,=0.5 for nine
load increments. This figure aso shows the typical progressive damage contour plot of
all the programs for the FGC plate under tension. The damage contour plot is the plot of
the failure index at all nodes on the FGC plate. If failure index is greater than one, then
the composite plate is damaged, else the composite plate is undamaged. It can be seen
from the damage contour plot that failure index increases as the nodal position, x
increases. Thisindicates that the weaker region is the region around the x=2 edge. Also
no damage occurred at the first nine load increments but on the tenth load increment, the
program could not establish equilibrium and hence it could not provide a solution. This
implies that complete damage has occurred in the FGC plate at the tenth load increment.
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Figure 7-43: Progressive damage contour plot of the second ply for the tension case
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Figure 7-44 shows the progressive damage plot for the 2™ ply (i.e. 0° ply) of a FGC plate
case with P=1 and V1=0.5 for the 6™ to 9" load increment. This figure also shows the
progressive damage plot of the Average and Smooth Mindlin programs for the FGC plate
under tension. The results were in good agreement with each other. The damage plot is
the plot of the failure index at al nodes on the y=0.5 line of the FGC plate. It can be seen
from the damage plot that failure index increases as the noda position, x increases. This

indicates that the weaker region is the region around the x=2 edge.
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Figure 7-44: Progressive damage plot of the second ply for thetension case
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7.3.2 FGC plate under in-plane bending

Example 7.3.2: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to an in-plane bending load of 1.6MN. Thetask isto validate the displacement,
stress and the progressive damage result of the Mindlin and Reissner programs against
the result of the Ordinary FE programs. The FE modelling procedure is presented for this
example. The geometrical properties and micro-mechanical properties are as given in
Example 7.3.1.

FE Modelling

The FGC plate has a mid-plane as shown in Figure 7-45. A mesh containing 128 4-
noded Mindlin-type elements was employed for the Mindlin programs. A mesh
containing 128 4-noded conforming e ements was employed for the conforming Reissner
program. A mesh containing 128 4-noded non-conforming elements was employed for
the non-conforming Reissner program. An in-plane load of 1.6MN was applied as an
equivalent nodal loads at the nodes on the x=2 edge with reduced load at the corner
nodes. For example, in the 128 element case, the load was applied equally a nodes on
the x=2 edge but with half of the loads at the corner nodes on the x=2 edge as shown in
Figure 7-45. Hence the equivalent nodd loading for the 128 element case was 200kN at
each nodes on the x=2 edge with 100kN at corner nodes on the x=2 edge. In order to
model the finite strain, a tenth of the equivalent nodal loading was applied at every load
increment.

The boundary condition shown in Table 7-26 was applied to the FE moddl.

Table 7-26: Boundary condition for the in-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge U=v=w=0x=0y=0 (i.e. al degrees of
freedom are fixed at the x=0 edge)
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Figure 7-45: 4-noded element mesh for the in-plane bending case

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,
the fibre and matrix volume fractions were computed for each element at their midpoints
by using the fibre distribution equations (i.e. Equation 3.34 and 3.38) developed in
chapter 3. The macro-mechanical properties were then computed for each element by
substituting the fibre and matrix volume fractions into the macro-mechanical equations
developed in chapter 3. The computed macro-mechanical properties of each element of
the FGC plate were then fed into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figure 7-46 and 7-47 show the nodal displacement results along the y=0.5 line for a FGC
plate case with P=1 and V1=0.5 at the 9" load increment. The displacement results for
the Mindlin and Reissner programs were in good agreement with the Ordinary FE
program. It can be seen that the v-displacement curve has a zero slope at the x=0 edge
which is due to the fact that the FGC plate is clamped at the x=0 edge. The slope of the
v-displacement curve, dv/dx then gradually increases with increase in the nodal position,

X; due to the coupled effect of the bending curvature and functional gradation properties.

175



Awverage Mindlin

—++— Smooth Mindlin

—&— Ordinary Mindin

0.06

1.4 1.6 1.8

1.2

0.8

0.6

0.4

0.2

x(m)

Figure 7-46: v-displacement validation against Ordinary Mindlin program for the

in-plane bending case

,
I
I
I
|
|
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Lo _
I
I
I
|
|
I
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ [
I
I
|
”
[ a a
r )
g&c255
= N BT R, S|
a0 .% Lo | N a e
2 g 3] 14
Yy o R =
Tow 005
=« EEOQgc?
s38822s w1
o~ .z~ 7
s EP s ETPE
<!nHO<C<mWOoOwm
R N N i
% m’v x o [p
F
I I \\\\, \\\\\\\\\\\\\\
| | |
| | |
I I I
I I I
““““ S S U S S W
| | | | |
| | | | |
I I I I I
I I I I I
I I I I I
\\\\\\\\ -t - —-—"F—-"—"=—"=—"=—"—"4-"=—"=—"=—"=—"=—"—"pF—-"=— = =— ==
| | | | |
| | | | |
I I I I I
I I I I I
I I I I I
| | | | | Y,
© T} < ™ I — %
© © © S o o
o o o o o o
(w)n

0.2

1.4 1.6 1.8

1.2

0.6 0.8

0.4

x(m)

in-plane bending case

Figure 7-47: v-displacement validation against Ordinary Reissner program for the
176



Figure 7-48 shows the through-thickness stress result in the fibre direction at node 1 (i.e.
the (0, 0) coordinate) for a FGC plate case with P=1 and V;=0.5 at the 9" load increment.
The stress results of the Average and Smooth Mindlin programs were in good agreement
with the result of the Ordinary Mindlin program. The in-plane bending load results in a
tensile force on the y=0 edge and a compressive force on the y=1 edge. The tensile force
on the y=0 edge results in the highest 51, at node 1 on the 0° plies due to the alignment of
the fibres with the tensile force. This effect results in the 0° plies carrying the highest
share of the load. Also the combined effect of the tensile force on the y=0 edge and
compressive force on the y=1 edge results in a high value of o1, at node 1 on the 45° plies

due to the fibre alignment of the plies.
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Figure 7-48: Stress validation against Ordinary Mindlin program for thein-plane
bending case
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The progressive damage modelling employed in this example is as described in Example
7.3.1. Figure 7-49 shows the damage contour plot for the first three layers of a FGC plate
case with P=1 and V1=0.5 at the 9" load increment. This figure also shows the typical
damage contour plot of all the programs for the FGC plate under in-plane bending.

In order to understand the damage results in Figure 7-49, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plots that most region around the y=0 and y=1
edges for most of the plies were damaged. But the y=1 edge of the 0° plies were less
damaged in comparison to the other plies. This is expected because the fibre orientation
of the 0° plies were aligned to the compressive force (due to in-plane bending load) on
the y=1 edge. Hence the damage at the y=1 edge for the 0° plies were dependent on the
strength of the fibre. Also the damage results include the effect of stress transfer. This
effect is due to the undamaged regions being stiffer than the damaged regions and they
carry a large portion of the extra loads that were meant for the damaged regions and
therefore the undamaged regions are stressed more. Hence this results in stress transfer

occurring both in the in-plane and out-of -plane directions.
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Figure 7-49: Damage contour plot of thefirst three pliesfor thein-plane bending
case
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Since failure was more pronounced in the 1% and 3" ply, a closer study of the progressive
damage of the 1% ply was undertaken. Figure 7-50 shows the progressive damage
contour plot for the 1% ply (i.e. -45° ply) of a FGC plate case with P=1 and V;=0.5 for
nine load increments. This figure also shows the typica progressive damage contour plot
of al the programs for the FGC plate under in-plane bending. The damage contour plot
is the plot of the failure index at all nodes on the FGC plate. If failure index is greater
than one, then the composite plate is damaged, else the composite plate is undamaged. It
can be seen from the damage contour plot that damage was initiated during the 6" load
increment at the corner nodes on the y=0 edge. The damage then spreads towards the

y=0.5 line and towards the x=2 edge in subsequent load increments.
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Figure 7-50: Progressive damage contour plot of thefirst ply for thein-plane
bending case

Figure 7-51 shows the progressive damage plot for the 2™ ply (i.e. 0° ply) of a FGC plate
case with P=1 and V1=0.5 for the 5™ to 8" load increment. This figure also shows the
progressive damage plot of the Average and Smooth Mindlin programs for the FGC plate
under in-plane bending. The results were in good agreement with each other. The
damage plot is the plot of the failure index at all nodes on the y=0 edge of the FGC plate.

It can be seen from the damage contour plot that failure index reduces as the nodal
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position, x increases. Thisindicates that the maximum bending moment is experienced at
the (0, 0) and (O, 1) coordinates, which results in maximum bending stress at this edge

and hence maximum failure index.

The damage curves were smooth from the 1% load increment to the 5 load increment,
which is the load increment before the onset of damage. After the damage at the 6" load
increment, the curves is no longer smooth, this effect is due to stress transfer which
occurs when undamaged region carry the extra load of the damaged region. Also the 7"
and 8" load increments have some missing failure indices around the x=0 region. This
effect is due to the fact that when an element has completely failed, the stiffness value at
each node of the element is degraded to zero, hence nodal stress of the element is zero
resulting in anodal failureindex value of zero. The nodal failure index values of zero are
eliminated from the plot to best demonstrate the progressive damage, since damage

occurs when failure index exceeds the value of one.
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Figure 7-51: Progressive damage plot of thefirst ply for the in-plane bending case
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7.3.3 FGC plate under out-of-plane bending

Example 7.3.3: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to an out-of-plane bending load of 36kN. The task is to validate the
displacement and stress result of the Mindlin and Reissner programs against the result of
the Ordinary FE programs. The FE modelling procedure is presented for this example.
The geometrical properties and micro-mechanical properties are the same as the one

givenin Example 7.3.1.

FE Modelling
A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the
conforming Reissner program. A mesh containing 128 4-noded non-conforming
elements was employed for the non-conforming Reissner program. An out-of-plane
bending load of 36kN was applied as an equivalent nodal loads at the nodes on the x=2
edge with reduced load at the corner nodes. For example, in the 128 element case, the
load was applied equally at nodes on the x=2 edge but with half of the load at the corner
nodes on the x=2 edge. Hence the equivalent nodal loading for the 128 element case was
4.5kN at each nodes on the x=2 edge with 2.25kN at corner nodes on the x=2 edge.

The boundary condition shown in Table 7-27 was applied to the FE models in this

example.

Table 7-27: Boundary condition for the out-of-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge u=v=w=0,=6y=0(i.e all degrees of
freedom are fixed at the x=0 edge)
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In order to model the functional gradation of the FGC plate in the Ordinary FE programs,
the fibre and matrix volume fractions were computed for each element at their midpoints
by using the fibre distribution equations developed in chapter 3. The macro-mechanical
properties were then computed for each element by substituting the fibre and matrix
volume fractions into the macro-mechanical equations developed in chapter 3. The
computed macro-mechanical properties of each element of the FGC plate were then fed

into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-52 and 7-53 show the nodal displacement results along the y=0.5 line for a
FGC plate case with P=1 and V1=0.5 at the 7" load increment. The displacement results
for the Mindlin and Reissner programs were in good agreement with the Ordinary FE
program. The displacement results of the Mindlin programs were not in good agreement
with the Reissner programs. This discrepancy can be explained by the difference in
transverse shear modelling employed in each program. Another reason for the
discrepancy is that damage had occurred in the region of the x=0 edge at the 7" load
increment for the Reissner programs but no damage had occurred in the FGC plate for the
Mindlin programs. It can be seen that the w-displacement curve has a zero slope at the
x=0 edge which is due to the fact that the FGC plate is clamped at the x=0 edge. The
slope of the w-displacement curve, dw/dx then gradually increases with increase in the
nodal position, X; due to the coupled effect of the bending curvature and functional
gradation properties.
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Figure 7-54 shows the through-thickness stress result in the fibre direction at node 1 (i.e.
the (0, 0) coordinate) for a FGC plate case with P=1 and V,=0.5 at the 7" load increment.
The stress results of the Average and Smooth conforming Reissner programs were in
good agreement with the result of the Ordinary conforming Reissner program. The out-
of-plane bending load results in a tensile force on the top plies (i.e. plies at positive z
positions) and compressive force on the bottom plies (i.e. plies at negative z positions).
This effect resultsin a distribution of o1; across the plies with the maximum tensile stress
o a the 1% ply (i.e. ply at z=0.015m) and maximum compressive stress oy, at the 121

ply (i.e. ply at z=-0.015m).
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Figure 7-54: Stressvalidation against Ordinary Mindlin program for the out-of-
plane bending case
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The progressive damage modelling employed in this example is as described in Example
7.3.1. Figure 7-55 shows the damage contour plot for the first three layers of a FGC plate
case with P=1 and VV1=0.5 at the 7" load increment. This figure also shows the typical

damage contour plot of most programs for the FGC plate under out-of-plane bending.

In order to understand the damage results in Figure 7-55, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plots that the region around the node at the (0, 1)
coordinate of the 1¥ ply (i.e. ply a z=0.015m) experienced the worst damage. The 12"
ply (i.e. ply a z=-0.015m) also experienced the same worst damage around the node at
the (0, 1) coordinate. The damage reduces for each ply in the direction towards the
midplane of the FGC plate. Also the damage results include the effect of stress transfer.
This effect is due to the undamaged regions being stiffer than the damaged regions and
they carry a large portion of the extraloads that were meant for the damaged regions and
therefore the undamaged regions are stressed more. Hence this results in stress transfer

occurring both in the in-plane and out-of -plane directions.
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Figure 7-55: Damage contour plot of thefirst three pliesfor the out-of-plane
bending case
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Since failure was more pronounced in the 1% ply, a closer study of the progressive

damage of the 1% ply was undertaken. Figure 7-56 shows the progressive damage

contour plot for the 1% ply (i.e. -45° ply) of a FGC plate case with P=1 and V;=0.5 for

seven load increments. This figure also shows the typical progressive damage contour

plot of most programs for the FGC plate under out-of-plane bending. The damage

contour plot isthe plot of the failure index at all nodes on the FGC plate. If failure index

is greater than one, then the composite plate is damaged, else the composite plate is

undamaged. It can be seen from the damage contour plot that damage was initiated

during the 6™ load increment at the corner nodes on the (0, 1) coordinate. The damage

then spreads towards the x=2 edge in subsequent |oad increments.

o

1 1 1
0.8 ! 0.8 0.8
0.6 0.6 0.6
08
0.4 04 0.4
0.2 0.2 0.2
0 0 0
o 0a 1 15 2

ns 1 15 2 ns 1 15 o
Load Increment = 1 Load Increment = 2 Load Increment =3

05 1 145 2 0s 1 15 2 1} 05 # 15 2
Load Increment = 4 Load Increment =5 Load Increment =&

0.6
0.6
0.4
0.2

05 1 15 2
Load Increment =7

Figure 7-56: Progressive damage contour plot of thefirst ply for the out-of-plane
bending case

186



Figure 7-57 shows the progressive damage plot for the 1¥ ply (i.e. -45° ply) of a FGC

plate case with P=1 and V1=0.5 for the 4™ to 7" load increment. This figure also shows

the progressive damage plot of the Average and Smooth conforming Reissner programs

for the FGC plate under out-of-plane bending. The results were in good agreement with

each other. The damage plot isthe plot of the failure index at dl nodes on the y=0.5 line
of the FGC plate.
decreases as the nodal position, x increases. This indicates that the maximum bending

It can be seen from the damage contour plot that the failure index

moment is experienced at the x=0 edge which results in maximum bending stress at this

edge and hence maximum failure index. No damage was encountered on the nodes on

the y=0.5 line of the FGC plate.
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7.34 FGC plate under compressive loading

Example 7.3.4: A rectangular FGC plate with a “[[-45/0/45],]s" stacking segquence
subjected to a compressive load of 24kN. The vaues of the functional gradation
properties include gradation exponent, P=1 and gradation offset, V,=0.5. The task isto
validate the buckling eigenvalue results of the Reissner programs against the results of
the Mindlin programs. The FE modelling procedure is presented for this example. The
geometrical properties and micro-mechanical properties are the same as the one given in
Example 7.1.1.

FE Modelling

A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin
programs. A mesh containing 128 4-noded conforming elements was employed for the
conforming Reissner program. A mesh containing 128 4-noded non-conforming
elements was employed for the non-conforming Reissner program. A buckling load of
24kN was applied as an equivalent nodal loads at the nodes on the x=2 edge with reduced
load at the corner nodes. For example, in the 128 element case, the load was applied
equally at nodes on the x=2 edge but with half of the load at the corner nodes on the x=2
edge. Hence the equivalent nodal loading for the 128 element case was 3.0kN at each
nodes on the x=2 edge with 1.5kN at corner nodes on the x=2 edge.

The boundary condition shown in Table 7-28 was applied to the FE models in this

example.

Table 7-28: Boundary condition for the buckling case

Nodes Boundary condition

Nodes on the x=0 edge Uu=v=w=0x=0y=0 (i.e al degrees of
freedom are fixed at the x=0 edge)

Nodes on the x=2 edge w=0
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Mindlin and Reissner program validation results

In this example, the first three buckling modes were analysed. The buckling e genvalue
isthe ratio of critical buckling load to the applied load. The buckling eigenvalue results
of the Mindlin programs, Reissner programs and the Abaqus package were analysed for
the 128 element mesh case. Table 7-29 shows that the buckling eigenvalue results of the
Mindlin and Reissner programs were in good agreement with the results of the Abaqus

package.

Table 7-29: Validation for the buckling case using Abaqus program

Buckling Eigenvalues

FE Models 1¥Mode | 2" Mode | 3 Mode
Abagus $4-elements 20.26 61.81 87.54
Average Mindlin dements 19.77 59.68 82.08
Smooth Mindlin elements 19.77 59.68 82.05

Smooth non-conforming Reissner elements 19.62 57.73 82.94
Average non-conforming Reissner elements 19.60 57.70 82.92
Smooth conforming Reissner elements 19.52 57.31 82.61
Average conforming Reissner el ements 19.50 57.28 82.59

7.3.5 FGC plateunder freevibration

Example 7.3.5: Consider a rectangular FGC plate with a “[[-45/0/45],]s" stacking
sequence under free vibration. The values of the functional gradation properties include
gradation exponent, P=1 and gradation offset, V,=0.5. The task is to validate the natural

frequency results of the Reissner programs against the result of the Mindlin programs.
The FE modelling procedure is presented for this example. The geometrica properties

and micro-mechanical properties are the same as the one given in Example 7.1.1.

FE Modelling
A mesh containing 128 4-noded Mindlin-type elements was employed for the Mindlin

programs. A mesh containing 128 4-noded conforming elements was employed for the
conforming Reissner program. A mesh containing 128 4-noded non-conforming

elements was employed for the non-conforming Reissner program.

The boundary condition shown in Table 7-30 was applied to the FE moddl.
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Table 7-30: Boundary condition for the free vibration case

Nodes

Boundary condition

Nodes on the x=0 edge

U=Vv=w=0,=6,=0 (i.e dl degreesof
freedom are fixed at the x=0 edge)

Mindlin and Reissner program validation results

In this example, the first three free vibration modes were analysed. The first three

fundamental frequency results of the Mindlin programs, Reissner programs and the
Abaqus package were analysed for 128 element mesh case. Table 7-31 shows that the

first three fundamental frequency results of the Mindlin and Reissner programs were in

good agreement with the results of the Abagus package.

Table 7-31: Validation for thefreevibration case using Abaqus program

Natura Frequencies (Hz)

FE Models 1st Mode 2nd Mode | 3rd Mode

Abagus $4-elements 7.04 28.29 41.44
Average Mindlin elements 7.10 28.38 41.50
Smooth Mindlin elements 7.10 28.38 41.50
Smooth non-conforming Reissner elements 7.10 28.50 41.21
Average non-conforming Reissner elements 7.10 28.50 41.20
Smooth conforming Reissner elements 7.11 28.50 41.12
Average conforming Reissner elements 7.11 28.50 41.11
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7.3.6 FGC platewith a central hole under tensile loading

Example 7.3.6: A rectangular FGC plate with a central hole and a “[[-45/0/45],]s"
stacking sequence was subjected to a tensile loading of 7.5MN. The vaues of the
functional gradation properties include gradation exponent, P=1 and gradation offset,
V,;=0.5. The task is to validate the displacement results of Mindlin and Reissner
programs against the result of the Ordinary FE programs. The FE modelling procedureis

presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanical data were obtained from a textbook by Kaw (1997).

Table 7-32: Data for the FGC plate with a central hole

Geometry
L (m) 2.000 w (m) 1.000 R (m) 0.1
t(m) 0.0300 No. of ply 12

Fibre and matrix properties
E; (Pa) 2.300E+11 7 3.500E-01 s (Pa) 8.519E+10
En(Pa) 3.400E+09 Vi 3.000E-01 tm (Pa) 1.308E+09

Strength properties

X (PA) 7.200E7 Xme (Pa) 1.020E8 Xms (P8) 3.400E7
Xy (Pa) 2.067E9 Xt (Pa) 1.999E9 i (P) 0.0
K, 1 k. 1

The notations used in Table 7-32 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
R represents the radius of the hole.
E; and E,, represent the Y oung’s modulus of the fibre and matrix respectively.
vt and v, represent the Poisson’ sratio of the fibre and matrix respectively.
us and uny, represent the shear modulus of the fibre and matrix respectively.
Xmt, Xme @nd X s represent the tensile, compressive and the shear strength of the
matrix respectively.
Xq and Xg represent the tensile and compressive strength of the matrix
respectively.

orm represent the maximum residual radia stress at the interface.
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ks and k. represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

In order to model the FGC plate with a central hole under uniaxia tensile loading, the
model was divided into four equal quarters. One of the quarter models was then used in
the FE modelling by applying boundary conditions which takes advantage of symmetrical
nature of the full model. A mesh containing 125 4-noded Mindlin-type elements was
employed for the Mindlin programs. A mesh containing 125 4-noded non-conforming
elements was employed for the non-conforming Reissner program. A tensile load of
7.5MN was applied as an equivalent nodal loads at the nodes on the x=2 edge with
reduced load at the corner nodes. For example, in the 125 element case, the load was
applied equally at nodes on the x=2 edge but with half the loads at the corner nodes on
the x=2 edge. Hence the equivalent nodal loading for the 125 element case was 1.5MN at
each nodes on the x=2 edge with 750kN at the corner nodes on the x=2 edge. The
boundary condition shown in Table 7-33 was applied to the FE model.

Table 7-33: Boundary condition for the FGC plate with a central hole

Nodes Boundary condition
Nodes on the x=0 edge u=0
Nodes on the y=0 edge v=0

Mindlin and Reissner program validation results

Figures 7-58 and 7-59 show the nodal displacement results along the y=0 edge for a FGC
plate case with P=1 and V,=0.5 at the 9" load increment. The displacement results for
the Mindlin and Reissner programs were in good agreement with the Ordinary FE
program. The slope of the u-displacement curve, du/ox gradually increases with increase
in the nodal position, x; due to the coupled effect of the central hole and functional
gradation properties. The v-displacement results along the y=0 edge are zeroes as

expected because a symmetry boundary condition was applied at the edge.
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Figure 7-59: Displacement validation against Ordinary Mindlin program for the




Figure 7-60 shows the through-thickness stress result in the fibre direction at node 1 (i.e.
the (0, 0) coordinate) for a FGC plate case with P=1 and V;=0.5 at the 9" load increment.
The stress results of the Average and Smooth Mindlin programs were in good agreement
with the result of the Ordinary Mindlin program. It can be seen from Figure 7-60 that the
0° plies have the highest o1; relative to the 45° plies and -45° plies. Thisisdueto the fact
that the fibres in the 0° plies are aligned in the tensile force direction. Hence they carry a
higher share of the load relative to the share of load of fibres in the 45° plies and -45°

plies.
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Figure 7-60: Stressvalidation against Ordinary Mindlin program for the FGC plate
with a hole
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The progressive damage modelling employed in this example is as described in Example
7.3.1. Figure 7-61 shows the damage contour plot for the first three layers of a FGC plate
case with P=1 and V1=0.5 at the 9" load increment. This figure also shows the typical
damage contour plot of most programs for the FGC plate with central hole under tensile
loading.

In order to understand the damage results in Figure 7-61, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plot that the region around the edge of the central
hole has high failure index due to high stress concentration because the central hole act as
astress raiser in the FGC plate. The effect of functional gradation can be seen in al the
three plies but it is more pronounced in the 0° plies as shown for the 2™ ply in
Figure 7-61. The figure shows that the ply is stronger around the x=0 edge than it is
around the x=2 edge hence the undamaged regions are regions close the x=0 edge as
shown in Figure 7-61. Also the results include the effect of stress transfer. This effect is
due to the undamaged regions being stiffer than the damaged regions and they carry a
large portion of the extraloads that were meant for the damaged regions and therefore the
undamaged regions are stressed more. Hence this results in stress transfer occurring both

in the in-plane and out-of-plane directions.
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The 1% ply has been selected for a closer study of its progressive damage. Figure 7-62
shows the progressive damage contour plot for the 1% ply (i.e. -45° ply) of a FGC plate
case with P=1 and V,=0.5 for nine load increments. This figure also shows the typical
progressive damage contour plot of all the programs for the FGC plate with central hole
under tension. The damage contour plot is the plot of the failure index at all nodes on the
FGC plate. If failure index is greater than one, then the composite plate is damaged, else
the composite plate is undamaged. It can be seen from the damage contour plot that
damage was initiated during the 6™ load increment at the region around the edge of the
central hole. The damage then gradually spreads in the FGC plate in subsequent load

increments.
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Figure 7-62: Progressive damage contour plot of thefirst ply for the FGC plate with
ahole
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Figure 7-63 shows the progressive damage plot for the 1¥ ply (i.e. -45° ply) of a FGC
plate case with P=1 and V1=0.5 for the 6" to 9" load increment. This figure also shows
the progressive damage plot of the Average and Smooth Mindlin programs for the FGC
plate under tension. The results were in good agreement with each other. The damage
plot is the plot of the failure index at al nodes on the y=0 edge of the FGC plate. The
failure index curve is dependent on the effect of the central hole and functional gradation

properties.
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Figure 7-63: Progressive damage plot of thefirst ply for the FGC plate with a hole
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7.3.7 Simply supported FGC ring case

Example 7.3.7: A FGC ring with a “[[-45/0/45],]s" stacking sequence was subjected to a

pressure loading of 2MPa. The values of the functional gradation properties include
gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the

displacement results of Mindlin and Reissner programs against the result of the Ordinary

FE programs. The FE modelling procedure is presented for this example.

The geometrical properties and micro-mechanical properties are as given below. The

micromechanica data was obtained from a textbook by Kaw (1997).

Table 7-34: Data for the simply supported ring case

Geometry
R (m) 0.500 R, (m) 1.000
t (m) 0.030 No. of ply 12
Fibre and matrix properties
E; (Pa) 2.300E+11 Vi 3.500E-01 s (Pa) 8.519E+10
En(Pa) 3.400E+09 Vi 3.000E-01 Um (Pa) 1.308E+09
Strength properties
Xt (Pa) 2.067E9 Xine (PA) 1.999E9 Xms (Pa) 3.600E7
Xit (Pa) 7.200E7 Xic (Pa) 1.020E8 orm (Pa) 3.400E7
Ko 1 K. 1

The notations used in Table 7-34 are as described below.
Ri, Ro, and t, represent the inner radius, outer radius and thickness of ply

respectively.

E: and En, represent the Y oung’s modulus of the fibre and matrix respectively.

vi and v represent the Poisson’ sratio of the fibre and matrix respectively.

us and py represent the shear modul us of the fibre and matrix respectively.

Xmt, Xme @nd X s represent the tensile, compressive and the shear strength of the

matrix respectively.

Xq and Xg represent the tensile and compressive strength of the matrix

respectively.

orm represent the maximum residual radia stress at the interface.
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ks and k. represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling
A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. A triangular element has been
employed in order to demonstrate and validate the capability of the FE programs in
modelling with triangular elements. A mesh containing 200 3-noded triangular Mindlin-
type elements was employed for the Mindlin programs. A mesh containing 200 3-noded
triangular non-conforming elements was employed for the non-conforming Reissner
program. The boundary condition shown in Table 7-35 was applied to the FE model.

Table 7-35: Boundary condition for the simply supported ring case

Nodes Boundary condition

Nodes on the x=0 edge u=6,=0 (i.e. symmetry boundary condition was
applied to the x=0 edge)

Nodes on the y=0 edge v=26,=0 (i.e. symmetry boundary condition was

applied to the y=0 edge)

Nodes on the r=0.5 edge and the | w=0 (i.e. the r=0.5 edge and the r=1 edge are
r=1 edge simply supported)

In order to model the functional gradation of the FGC ring in the Ordinary FE programs,
the fibre and matrix volume fractions were computed for each element at their midpoints
by using the fibre distribution equations developed in chapter 3. The macro-mechanical
properties were then computed for each element by substituting the fibre and matrix
volume fractions into the macro-mechanical equations developed in chapter 3. The
computed macro-mechanical properties of each element of the FGC ring were then fed
into the Ordinary FE programs.
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Mindlin and Reissner program validation results

Figures 7-64 and 7-65 show the nodal displacement results along the y=0 edge for a FGC
ring case with P=1 and V1=0.5 at the 8" load increment. This FGC ri ng is graded in the
radial direction. The displacement results for the Mindlin and Reissner programs were in
good agreement with the Ordinary FE program. The displacement results of the Mindlin
programs had small discrepancy in comparison to the displacement results of the Reissner
programs. This discrepancy can be explained by the difference in transverse shear
modelling employed in each program. The w-displacement value at r=0.5 and r=1is zero

as expected because the ring is smply supported at the r=0.5 and r=1 edges.
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Figure 7-64: w-displacement validation against Ordinary Mindlin program for the
simply supported ring case
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Figure 7-66 shows the through-thickness stress result in the fibre direction at node 20 (i.e.
the (0, 0.95) coordinate) for a FGC ring case with P=1 and V=05 at the 8" load
increment. The stress results of the Average and Smooth Mindlin programs were in good
agreement with the result of the Ordinary Mindlin program. The out-of-plane bending
load results in a tensile stress on the top plies (i.e. plies at positive z positions) and
compressive stress on the bottom plies (i.e. plies at negative z positions). This effect
resultsin alinear distribution of o1 across the plies with the maximum tensile stress 613
at the 1% ply (i.e. ply at z=0.015m) and maximum compressive stress o1; at the 12 ply
(i.e. ply a z=-0.015m).

cqq at node 20 (N/mz)
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Figure 7-66: Stressvalidation against Ordinary Mindlin program for the ssmply
supported ring case
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The progressive damage modelling employed in this example is as described in Example
7.3.1. Figure 7-67 shows the damage contour plot for the first three layers of a FGC ring
case with P=1 and VV1=0.5 at the 8" load increment. This figure also shows the typical
damage contour plot of most programs for the FGC ring subjected to a pressure |oading.

In order to understand the damage results in Figure 7-67, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plots that the region around the x=0 edge of the 1%
ply (i.e. ply at z=0.015m) experienced the worst damage. This effect can be explained by
the fact that the applied pressure causes the ring to experience an out-of-plane bending
which results in atensile stress on the 1% ply in the radial direction. This tensile stressis
not aligned with the resultant fibre direction (i.e. 0° for the stacking sequence of “[[-
45/0/45],]s") around the x=0 edge, hence the reason for damage at thisregion. Reduction
in failure index occurs away from the x=0 edge because the difference in the orientation
of thetensile stressin the radia direction and the resultant fibre direction of the FGC ring
reduces. The damage reduces for each ply in the direction towards the midplane of the
FGC ring. The damage results include the effect of stress transfer. This effect is due to
the undamaged regions being stiffer than the damaged regions and they carry a large
portion of the extra loads that were meant for the damaged regions and therefore the
undamaged regions are stressed more. Hence this results in stress transfer occurring both

in the in-plane and out-of-plane directions.
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Since failure was more pronounced in the 1% ply, a closer study of the progressive

damage of the 1% ply was undertaken. Figure 7-68 shows the progressive damage

contour plot for the 1% ply (i.e. -45° ply) of a FGC ring case with P=1 and V/1=0.5 for nine

load increments. This figure aso shows the typical progressive damage contour plot of

most programs for the FGC ring subjected to a pressure loading. The damage contour

plot isthe plot of the failureindex at all nodes on the FGC ring. If failureindex is greater

than one, then the composite ring is damaged, else the composite ring is undamaged. It

can be seen from the damage contour plot that damage was initiated during the 7" load

increment at the x=0 edge. The damage then spreads in the FGC ring in subsequent load

increments.
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Figure 7-69 shows the progressive damage plot for the 1% ply (i.e. -45° ply) of a FGC ring
case with P=1 and V1=0.5 for the 4™ to 7" load increment. This figure also shows the
progressive damage plot of the Average and Smooth Mindlin programs for the FGC ring
subjected to pressure loading. The results were in good agreement with each other. The
damage plot is the plot of the failure index at al nodes on the x=0 edge of the FGC ring.
It can be seen from the damage contour plot that the maximum failure index occurs
around the r=0.7m region and x=0 edge. This indicates that the maximum bending
moment is experienced around the r=0.7 region which results in maximum bending stress

at this region and hence maximum failure index.
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Figure 7-69: Progressive damage plot of thefirst ply for the simply supported ring
case

207



7.3.8 Clamped FGC ring case

Example 7.3.8: A FGC ring with a “[[-45/0/45],]s" stacking sequence was subjected to a
pressure loading of 3.5MPa. The values of the functional gradation properties include
gradation exponent, P=1 and gradation offset, V1=0.5. The task is to validate the
displacement results of Mindlin and Reissner programs against the result of the Ordinary
FE programs. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanical properties are as given in Example 7.3.7.

FE Modelling
A quarter of the model has been modelled instead of the full ring model by taking

advantage of the axisymmetry nature of the FE problem. A triangular element has been
employed in order to demonstrate and validate the capability of the FE programs in
modelling with triangular elements. A mesh containing 200 3-noded triangular Mindlin-
type elements was employed for the Mindlin programs. A mesh containing 200 3-noded
triangular non-conforming elements was employed for the non-conforming Reissner
program. The boundary condition shown in Table 7-36 was applied to the FE modd.

Table 7-36: Boundary condition for the clamped ring case

Nodes Boundary condition

Nodes on the x=0 edge u=6,=0 (i.e. symmetry boundary condition was
applied to the x=0 edge)

Nodes on the y=0 edge v =6,=0 (i.e. symmetry boundary condition was

applied to the y=0 edge)

Nodes on the r=0.5 edge and the |u=v=w=6,=6,=0 (i.e. ther=0.5 edge and the
r=1 edge r=1 edge are clamped)

In order to model the functional gradation of the FGC plate in the Ordinary FE programs,
the fibre and matrix volume fractions were computed for each element at their midpoints
by using the fibre distribution equations developed in chapter 3. The macro-mechanical
properties were then computed for each element by substituting the fibre and matrix

volume fractions into the macro-mechanical equations developed in chapter 3. The
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computed macro-mechanical properties of each element of the FGC plate were then fed

into the Ordinary FE programs.

Mindlin and Reissner program validation results

Figures 7-70 and 7-71 show the nodal displacement results along the y=0 edge for a FGC
ring case with P=1 and V1=0.5 at the 9™ load increment. This FGC ri ng is graded in the
radial direction. The displacement results for the Mindlin and Reissner programs were in
good agreement with the Ordinary FE program. The displacement results of the Mindlin
programs had small discrepancy in comparison to the displacement results of the Reissner
programs. This discrepancy can be explained by the difference in transverse shear
modelling employed in each program. The w-displacement value at r=0.5 and r=1is zero

as expected because thering is clamped at the r=0.5 and r=1 edges.
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Figure 7-70: w-displacement validation against Ordinary Mindlin program for the
clamped ring case
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Figure 7-72 shows the through-thickness stress result in the fibre direction at node 1 (i.e.
the (0, 0.5) coordinate) for a FGC ring case with P=1 and V;=0.5 at the 9" load
increment. The stress results of the Average and Smooth Mindlin programs were in good
agreement with the result of the Ordinary Mindlin program. The out-of-plane bending
load results in a compressive stress on the top plies (i.e. plies at positive z positions) and
tensile stress on the bottom plies (i.e. plies at negative z positions). This effect resultsin
adistribution of o311 across the plies with the maximum compressive stress o1 a the 1%
ply (i.e. ply at z=0.015m) and maximum tensile stress o1; at the 12" ply (i.e. ply at z=-
0.015m).
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Figure 7-72: Stressvalidation against Ordinary Mindlin program for the clamped
ring case
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The progressive damage modelling employed in this example is as described in Example
7.3.1. Figure 7-73 shows the damage contour plot for the first three layers of a FGC ring
case with P=1 and V1=0.5 at the 9" load increment. This figure also shows the typical

damage contour plot of most programs for the FGC ring subjected to a pressure loading.

In order to understand the damage results in Figure 7-73, it must be noted that the
damage are based on Tsai-Hill failure index which is a function of the micromechanical
strength properties, fibre orientation of ply, functional gradation and stress transfer. It
can be seen from the damage contour plots that the region around the clamped edges of
the 1% ply (i.e. ply a z=0.015m) experienced the worst damage. This effect can be
explained by the fact that the applied pressure causes the ring to experience an out-of-
plane bending which results in a compressive stress around the clamped edges on the 1%
ply in the radial direction. This compressive stress is not aligned with the resultant fibre
direction (i.e. 0° for the stacking sequence of “[[-45/0/45],]<”) around the x=0 edge, hence
the reason for damage at this region. Reduction in failure index occurs away from the
x=0 edge because the difference in orientation of the compressive stress in the radia
direction and the resultant fibre direction of the FGC ring reduces. The damage reduces
for each ply in the direction towards the midplane of the FGC ring. The damage results
include the effect of stress transfer. This effect is due to the undamaged regions being
stiffer than the damaged regions and they carry a large portion of the extra loads that
were meant for the damaged regions and therefore the undamaged regions are stressed
more. Hence this results in stress transfer occurring both in the in-plane and out-of-plane
directions.
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Figure 7-73: Damage contour plot of thefirst three pliesfor the clamped ring case

213



Since failure was more pronounced in the 1% ply, a closer study of the progressive
damage of the 1% ply was undertaken. Figure 7-74 shows the progressive damage
contour plot for the 1% ply (i.e. -45° ply) of a FGC ring case with P=1 and V/1=0.5 for nine
load increments. This figure aso shows the typical progressive damage contour plot of
most programs for the FGC ring subjected to a pressure loading. The damage contour
plot isthe plot of the failureindex at all nodes on the FGC ring. If failure index is greater
than one, then the composite ring is damaged, else the composite ring is undamaged. It
can be seen from the damage contour plot that damage was initiated during the 7" load

increment at the (O, 0.5) coordinate. The damage then spreads along the clamped edges
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Figure 7-74: Progress damage contour plot of thefirst ply for the clamped ring case
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Figure 7-75 shows the progressive damage plot for the 1% ply (i.e. -45° ply) of a FGC ring
case with P=1 and V1=0.5 for the 6™ to 9" load increment. This figure also shows the
progressive damage plot of the Average and Smooth Mindlin programs for the FGC ring
subjected to pressure loading. The results were in good agreement with each other. The
damage plot is the plot of the failure index at al nodes on the x=0 edge of the FGC ring.
It can be seen from the damage contour plot that the maximum failure index occurs
around the clamped edges. This indicates that the maximum bending moment is
experienced around the clamped edges which results in maximum bending stress at these
edges and hence maximum failure index. The 7™ to 9" load increments have some
missing failure indices around the r=0.5 edge. This effect is due to the fact that when an
element has completely failed, the stiffness value at each node of the element is degraded
to zero, hence nodal stress of the element is zero resulting in a nodal failure index value
of zero. The noda failure index values of zero are eliminated from the plot to best
demonstrate the progressive damage, since damage occurs when failure index exceeds the

value of one.
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Figure 7-75: Progressive damage plot of thefirst ply for the clamped ring case
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In this chapter, three stages of vaidation were undertaken. The first stage involves the
validation of the infinitesmal strain part of the Average Mindlin programs against
analytical solutions using traditional composite plate cases. The second stage involves
the validation of the infinitessmal strain part of the Average, Smooth and Ordinary
Mindlin programs against Abaqus results using the FGC cases. The third stage involves
the validation of infinitesimal and finite strain part of the Average and Smooth programs
against the Ordinary programs using the FGC cases. In the validation exercise, the
results of the Average and Smooth programs were in good agreement with the analytical

solutions, Abaqus program results and Ordinary program results.
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8 Optimisation Result

The optimisation technique used in this thesis can be described as fail-safe design
technigue which involves the imposition of constraints to ensure that the physical
limitations of materials or structural properties required for satisfactory performance are
not exceeded. This optimisation technique involves changing the fibre distribution
parameters and running the three FE codes for the given fibre distribution, checking to
see if all constraints have been satisfied. The constraints that have been considered
include displacement constraints, failure index constraints, buckling load constraints
and natural frequency constraints. Figure 8-1 is a good description of this optimisation
technique concept.

In this optimisation exercise, two geometry cases were considered. These cases include
the rectangular functionally graded composite (FGC) plate case and the rectangular
FGC plate case with a central hole. The two geometry cases are the same as the one
used in the validation exercise and it is as described in the previous chapter.
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Figure 8-1: Optimisation Technique
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8.1 Fibre Distribution Effect on Finite Strain and Progressive

Damage Results

In this section, progressive damage analysis was carried on a rectangular FGC plate and
rectangular FGC plate with hole. Ten different fibre ratio distribution cases were
considered which was achieved by changing the different gradation exponent, P and
different gradation offset, V; in the fibre distribution equation discussed in Chapter 3.
The rectangular functionally graded composite (FGC) plate case was subjected to
tensile loading, in-plane bending and out-of-plane bending. The rectangular FGC plate
case with hole was subjected to tensile loading. The results obtained are presented in

this section.
8.1.1 FGC plate case under tensileloading

Example 8.1.1: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to atensile load of 8MN. The task isto compute the displacement and failure
index results using conforming Reissner programs for ten fibre distribution cases and to
study the fibre distribution effect on the displacement and failure index results. The FE

modelling procedure is presented for this example.

The geometrical properties, micro-mechanical properties and loading condition are as

given below. The micromechanical datawere obtained from atextbook by Kaw (1997).

Table 8-1: Tensle casedata

Geometry
L (m) 2.000 w (m) 1.000
t (m) 0.0300 No. of ply 12

Fibre and matrix properties

E (Pa) 2.300E+11 vt 3.500E-01 w (Pa) 8.519E+10
Enm(Pa) 3.400E+09 Vi 3.000E-01 tn (P2) 1.308E+09

Strength properties

X (Pa) 7.200E7 Xne (PQ) 1.020E8 X (P) 3.400E7
Xi (Pa) 2.067E9 Xic (P2) 1.999E9 om (Pa) 0.0
Ko 1 K. 1

The notations used in Table 8-1 are as described below.
L, w, and t, represent the length, width, thickness of ply respectively.
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E; and E,, represent the Y oung’s modulus of the fibre and matrix respectively.

v and v, represent the Poisson’ s ratio of the fibre and matrix respectively.

urs and pm represent the shear modulus of the fibre and matrix respectively.

Xmt, Xme @and X ms represent the tensile, compressive and the shear strength of the
matrix respectively.

X# and Xi. represent the tensile and compressive strength of the matrix
respectively.

orm represent the maximum residual radial stress at the interface.

ks and k. represent the stress concentration factor and the shear stress

concentration factor respectively.

FE Modelling

A mesh containing 128 4-noded conforming elements was employed for the conforming
Reissner program. A tensile load of 8MN was applied as an equivalent nodal loads at
the nodes on the x=2 edge with reduced load at the corner nodes. For example, in the
128 element case, the load was applied equally at nodes on the x=2 edge but with half
the loads at the corner nodes on the x=2 edge. Hence the equivalent nodal loading for
the 128 element case was IMN at each nodes on the x=2 edge with 500kN at the corner
nodes on the x=2 edge. In order to model the finite strain, a tenth of the equivalent
nodal loading was applied at every load increment. Also in order to model the
progressive damage, a check for failure was undertaken at the node of each element for
every load increment and if failure is detected, material properties of the element are
degraded and equilibrium is re-established.

The boundary condition shown in Table 8-2 was applied to the FE model.

Table 8-2: Boundary condition for the tensile case

Nodes Boundary condition

Node 20 (i.e. node at x=0 and y=0.5) u=v=w=0,=0,=0 (i.e al degrees of
freedom are fixed at Node 20)

Nodes on the x=0 edge excludingnode20 |u=0
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Displacement Results

Figure 8-2 to 8-4 show the nodal displacement results at the 2™ load increment along
the y=0.5 line for a FGC plate with ten fibre distribution cases. The nodal displacement
results for the 2™ load increment have been presented because it is the increment at
which none of the ten fibre distribution cases have experienced complete damage. In
the tension case, the parameter that is of maor interest is the u-displacement.

Minimisation of u-displacement is usually the desired effect for design purposes.

Figure 8-2 shows the comparison of the displacement results for the tension cases with
P=0 and P=0.5. And it shows that the fibre distribution case with P=0.5 and V;=0.5,
and the traditiona composite case (i.e. P=0 and V;=0.4) satisfy the minimum u-

displacement constraint at the x=2 edge.

Figure 8-3 shows the comparison of the displacement results for the tension cases with
P=0 and P=1. And it shows that the traditional composite case (i.e. P=0 and V,=0.4)
sati sfies the minimum u-displacement constraint at the x=2 edge.

Figure 8-4 shows the comparison of the displacement results for the tension cases with
P=0 and P=2. And it shows that the traditional composite case (i.e. P=0 and V1=0.4)
sati sfies the minimum u-displacement constraint at the x=2 edge.

The results of the tensile load case showed that the less stiff region of the FGC plates
experienced higher u-deflection in comparison with the traditional composite plate. It
can be seen from the displacement plots that increase in gradation offset, V1 causes
dlight increase in u-displacement at the x=2 edge. The increase in gradation exponent, P
causes significant increase in u-displacement at the x=2 edge. Since the desirable fibre
distribution effect on the u-displacement result is to minimise the u-displacement at the
x=2 edge, the optimum fibre distribution effect is achievable by decreasing the
gradation exponent, P or gradation offset, V1. Hence the optimum fibre distribution
effect is achieved by the fibre distribution case with P=0.5 and V;=0.5, and the
traditional composite case (i.e. P=0). These fibre distribution cases are the best cases of

all the ten fibre distribution cases that satisfy the minimum u-displacement constraint.
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Figure 8-4: Displacement plot for tension cases with P=0 and P=2

Progressive Damage Results

Figures 8-5 to 8-7 show the progressive damage plots for the 2™ ply (i.e. 0° ply) of a
FGC plate case with ten fibre distribution cases for different load increments. In some
of the plots, failure index results were not plotted for some FGC plate cases because
they were already completely damaged at the given load increment. The damage plot is
the plot of the failure index (F.1.) at al nodes on the y=0.5 line of the FGC plate. It can
be seen from the damage contour plot that the failure index increases as the nodal
position, x increases for all the FGC plate cases. This indicates that the weaker region
is the region around the x=2 edge for all FGC plate cases. The damage plots show that
constant failure index occurs at al nodal positions on the traditional composite plate
(i.e. P=0).

Figure 8-5 shows the comparison of the failure index along the y=0.5 line for the

tension cases with P=0 and P=0.5. Minimisation of the failure index at the weaker
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region (i.e. x=2 edge) is usually the desired effect for design purposes. The figure
shows that the traditional composite case (i.e. P=0 and V;=0.4) satisfies the minimum

failure index constraint.

Figure 8-6 shows the comparison of the failure index along the y=0.5 line for the
tension cases with P=0 and P=1. It aso shows that the traditional composite case (i.e.
P=0 and V,=0.4) satisfiesthe minimum failure index constraint.

Figure 8-7 shows the comparison of the failure index aong the y=0.5 line for the
tension cases with P=0 and P=2. It also shows that the traditional composite case (i.e.

P=0 and V,=0.4) satisfiesthe minimum failure index constraint.

The results of the tensile load case showed that the less stiff region of the FGC plates
experienced higher failure index in comparison with the traditional composite plate. It
can be seen from the damage plots that increase in gradation offset, V, causes slight
increase in the fallure index at the x=2 edge. The increase in gradation exponent, P
causes significant increase in the failure index at the x=2 edge. Since the desirable fibre
distribution effect on the damage result is to minimise the failure index at the x=2 edge,
the optimum fibre distribution effect is achievable by decreasing the gradation
exponent, P or gradation offset, V;. Hence the optimum fibre distribution effect is
achieved by the traditional composite case (i.e. P=0 and V1=0.4). These fibre
distribution cases are the best cases of all the ten fibre distribution cases that satisfy the

minimum failure index constraint.
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8.1.2 FGC plate case under in-plane bending

Example 8.1.2: A rectangular FGC plate with a “[[-45/0/45],]s" stacking sequence was
subjected to an in-plane bending load of 1.6MN. The task is to compute the
displacement and failure index results using conforming Reissner programs for ten fibre
distribution cases and to study the fibre distribution effect on the displacement and
failure index results. The FE modelling procedure is presented for this example. The

geometrical properties and micro-mechanica properties are as given in Example 8.1.1.

FE Modelling

A mesh containing 128 4-noded conforming elements was employed for the conforming
Reissner program. An in-plane bending load of 1.6MN was applied as an equivalent
nodal loads at the nodes on the x=2 edge with reduced load at the corner nodes. For
example, in the 128 element case, the |load was applied equally at nodes on the x=2 edge
but with half the loads at the corner nodes on the x=2 edge. Hence the equivalent nodal
loading for the 128 element case was 200kN at each nodes on the x=2 edge with 100kN
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at the corner nodes on the x=2 edge. In order to model the finite strain, a tenth of the
equivalent nodal loading was applied at every load increment. Also in order to model
the progressive damage, a check for failure was undertaken at the node of each element
for every load increment and if failure is detected, material properties of the element are
degraded and equilibrium is re-established.

The boundary condition shown in Table 8-3 was applied to the FE model.

Table 8-3: Boundary condition for in-plane bending case

Nodes Boundary condition

Nodes on the x=0 edge U=v=w=0x=0y=0 (i.e. all degrees of
freedom are fixed at the x=0 edge)

Displacement Results

In the in-plane bending case, the parameter that is of maor interest is the v-
displacement. Minimisation of v-displacement is usually the desired effect required for
design purposes. Figure 8-8 to 8-10 show the nodal displacement results at the 9" load

increment along the y=0.5 line for a FGC plate with ten fibre distribution cases.

Figure 8-8 shows the comparison of the v-displacement results for the in-plane bending
case with P=0 and P=0.5. And it shows that the case with P=0.5 and V1=0.6 satisfy the

minimum v-displacement constraint at the x=2 edge.

Figure 8-9 shows the comparison of the v-displacement results for the in-plane bending
case with P=0 and P=1. And it shows that the case with P=1 and V;=0.6 satisfy the
minimum v-displacement constraint at the x=2 edge.

Figure 8-10 shows the comparison of the v-displacement results for the in-plane
bending case with P=0 and P=2. And it shows that the case with P=2 and V;=0.55

satisfy the minimum v-displacement constraint at the x=2 edge.

It can be seen from the v-displacement plots that increase in gradation offset, V1 causes
dlight decrease in v-displacement at the x=2 edge. The increase in gradation exponent,
P causes significant decrease in v-displacement at the x=2 edge. Since the desirable
fibre distribution effect on the v-displacement result is to minimise the v-displacement

a the x=2 edge, the optimum fibre distribution effect is achievable by increasing the
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gradation exponent, P or gradation offset, V1. Hence the optimum fibre distribution
effect is achieved by the fibre distribution case with P=2 and V;=0.55. In comparison
with the traditional composite case, a desirable effect of 28% reduction in v-
displacement at the x=2 edge is achieved by using this FGC plate case. This fibre
distribution case is the best case of al the ten fibre distribution cases that satisfy the

minimum v-displacement constraint.

0.07 { { i
~ = P=0.0, V1=0.40, V,(£)=0.40 | L
| b
- - - 0.5 : iz
006l  P=0.5,V1=0.50, V,(£)=0.50-0.150¢>> | IV
—&— P=0.5, V1=0.55, V,(£)=0.55-0.225¢" A

0.05 - —— P=0.5, V1=0.60, V(£)=0.60-0.300¢">

0.04

v(m)

0.03

0.02

0.01

Figure 8-8: Displacement plot for in-plane bending cases with P=0 and P=0.5
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9 Conclusion

In thisthesis, a Reissner-type element and a Mindlin-type element have been formulated

and used in performing a progressive damage analysis, buckling analysis and vibration

analysis of a functionally graded composite (FGC) structure. This thesis presents four

unique contributions to research which include:

¢ A Mindlin-type element was formulated for functionally graded composite structure
based on averaging of transverse shear distribution over plate thickness using
Lagrangian interpolation.

¢ A Reissner-type element was formulated for functionally graded composite structure
based on parabolic transverse shear distribution over plate thickness using
Lagrangian and Hermitian interpolation.

e A finite strain analysis was undertaken based on Green's strain-displacement
equation.

e A smooth fibre distribution technique was employed in this thesis based on
numerical computation of macro-mechanical properties a Gaussian quadrature

points.

In this thesis, the validation of the progressive damage results and finite strain results of

the Mindlin program and Reissner program were undertaken. The validation exercises

for two geometry cases (i.e. rectangular plate and ring) were undertaken. The validation

exercises were able to demonstrate the capability of the program to predict the

progressive damage of functional graded structures under finite strain condition. In the

validation exercise, the following results were obtained.

e The results of the Average and Smooth Mindlin program were in good agreement
with the anal ytical solution.

e The results of the Average and Smooth Mindlin program were in good agreement
with the Abaqus results.

e The results of the Average and Smooth FE programs were in good agreement with
the Ordinary FE programs using both Mindlin-type elements and Reissner-type

e ements.
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In this thesis, two geometry cases were considered for the optimisation exercise which
includes the rectangular FGC plate case and the rectangular FGC plate case with a
central hole. A methodical approach was used in demonstrating the design optimisation
process and an optimum fibre distribution was obtained for the load cases considered.
The fibre distribution effect on the progressive damage results, finite strain results,
buckling results and vibration results were investigated. This optimisation exercise was
able to demonstrate that constraints such as minimum failure index constraint, minimum
displacement constraint, maximum stiffness constraint, maximum critical buckling load
and maximum natural frequency can be use to determine the optimum fibre distribution

case.

Finally, this thesis achieved its objective by presenting a detailed explanation of the
functional graded technology from theoretical concept through to optimum design
application.

9.1 Recommendation of Future Work

Future work recommendation would be to extend this work to cover thermo-elasticity

and thermo-€el astodynamics.

Thermo-€elasticity

Thermo-€élastic analysis can be introduced to this FE model by adding an additional
term (i.e. thermal strain) to the stress-strain equation which accounts for the effect of
temperature. The thermal strain is a function of the material therma expansion

coefficient.

Thermo-€el astodynamics

This requires the consideration of mechanical and thermal loadings as functions of time.
Hence the change of temperature and displacement at a point inside the composite

material during an increment of time would result in corresponding energy increments.
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APPENDICES

The following topics are dealt with in this section.
e Constitutive equations for laminates

e Integrated D matrices

A Constitutive Equations for Laminates

A laminaisin, or paralel to, the x-y plane,
with X, y, z being the geometrical axes, as
shown in Figure A.1. If X,y',Z are the
material axes, where X' is usudly in the
fibre direction, then the elastic properties of
thelamina are:

(1) Young's modulus in the fibre

direction (Eyy).
(i)  Young'smodulusin y" direction (Ezy).

(ili)  Major Poisson’sratio (vi2). Fig. A.1 Axesof alamina

(iv)  Shear modulusin X' —y' plane ( ;).
v) Transverse shear moduli (tt,s = s, = 1).
Notice also that:

Ya _ Vi (A1)
E22 Ell

and o, isconsidered negligible.
The lamina is orthotropic with respect to xX'—y'—z' axes. Using generalized Hooke's

equations, then it can be deduced that:
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From which it can be deduced that:

and
where
g =
and
D' =
P«' _ {usl
0 Moz

E, = —
X y
En =
V.
&, = 25, +—0
X E y
En 22
1
Yy = —Tyy
Hio
1
yyz’ = 7’-yz
Hoxs
_ 1
?/z’x’ sz
Hz
o =D¢
_ [
T =Ry

Xy’

En o=
Vi By E.

0 0
10
01
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Notice also that the D" matrix is symmetric.

Using planar transformation for a lamina, as shown in Figure A.1, it can be deduced

that:

|2 m? 2lm
o = m? |2 —2Im |6
~Im Im  17-m?
|2 ny I'm
g =| n? |2 —Im |g®
-2lm  2lm ?—-m?

| =coso ,

Hence, it can be deduced that:

|2 nv
) m? |2
Im —Im
= DO M
where
|2 m?
DO = m? |2
Im —Im

8)(
, gV = g,
yxy
m=snéo
—2Im |2 nv
2lm |D'| n? |2
[2—m? -2lm 2Im
—2lm 12 m
2lm |D'| n? |2
12 —m? -2lm 2Im
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Writing

d, dp dy, d, d, O
D=|dy dp dy|, D=|d, d O (A.17)
dy di dg 0 0 dy

then it can be deduced from Equation (A.16) that:
d, = 1°d], + mtdy, + 2122 (dl, + 2dL,)
d,, = 1*d}, + m*d}, + 21 m*(dy, + 2d%;)
Ay = dy = (14 m*)dl, +12m? (dy, +dj, — 4dy)
A= (12 = M2 dlg + 17 m?(dl, + df, — 21,
dyy = dy = Im{I12d], — P}, — (12— P )(dl, + 2]
Ay = dy, = Im[medy, —12d}, + (17 - n?)(d, + 2, )]

It can aso be deduced from planar rotation that:

[' m}m,yf{' m}w (A.18)
-m | -m |

where

T
0 = { } O = {y} (A.19)
7’-yz yyz

Hence, it can be deduced from Equations (A.18) and (A.8) that:
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B Iy M w0

where

n® = I -m W ! m} — 12 prag + 10 g 1Mty = p155)
-m lm(:u31_/'l23) 1%t + 100 1y (A.21)
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B

B.1

Integrated D matrices

The integrated D, matrices are defined generally by Equation (1.82), from which it can

be deduced that:

N 2=z

2 |
D, = jz” DVdz = > jz” D" dz

~h/2 1=1 72=7z(»

Hence, it can be proved that:

n+1

D, - .NEH(ZL(’”)M(ZS))M} D}

from which it can be deduced that:

N,

D = {h(') D(')}
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(B.4)

(B.5)

(B.6)



Notice that for symmetric composites:
D,=0, D,=0
B.2  Other Integrated D Matrices

These are defined by Equations (1.83)-(1.86), and if we use the following generalized

expression:

h/2
D, - '[ (dgp(z)] D" dz (B8a)
o\ dz
then it can be deduced that:
N, Z:ZL(JI) N,
Dy=2 | (%j[)mdz = > {lg,(z9)-g,(z") 0"} (B.8b)
1=1 Z=Z|(_I) =1

Different g,(2) functions for different D, matrices, employed in the report are as

follows;

(i) Do

¢ 13 1(zY
9,0(2 = {fw dz = z {Z_E(Ej } (B.9)

(i) D,
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6. - [21,02 - ZE_E@}
(iii) D,

6,,(2) = Ezsz iz - z{g_é@}
(iv) D,

[ 3 2(zY
gwg(Z) = .C[ZSfW dz = ZS{E_7(EJ }

(v) D

vy

_22 _3§_§Ezi‘rz4
gww(z)_.([fwdz_zL 5(hj+7(h”

(vi) D,

o~ frize o] (2] 2(2]]
(vii) D,,,

o= e 28 o2 42

(vii) D,,,,

( 27 9(z\Y 9(z\" 4(zY
gl//l//w (Z) = {f;dz = Z4{§—Z(Fj +Z(Ej —g[ﬁj}
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(ix) D

vyyl
s sl2r 27(z2) L (z2)' 8(zY
G012 = {sz dz = z L—O—ﬂ(ﬁj +2(Ej it (B.17)

(x) D

vy

z 81 27(z\ 2\ 48(z\ 16( 2z

= (f4gz = A1S2_20(2) L6l 2] 2201 2] 422 2] | (B1sS
gv/u/v/vl (Z) ,([ v z z |:80 7 (hj * [hj 11(hj +13[hj ( )

For symmetric composites:
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