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Abstract 

In this thesis, we devise a new stochastic optimlsation method (cascade optimisation 

algorithm) by incorporating the concepts from Markov process whilst eliminating the 

inherent sequential nature that is the major deficit preventing the exploitation of advances 

in distributed computing infrastructures. This method introduces partitions and pools to 

store intermediate solution and corresponding objectives. A Markov process increases 

the population of partitions and pools. The population is distributed periodically 

following an external certain. With the use of partitions and pools, multiple Markov 

processes can be launched simultaneously for different partitions and pools. The cascade 

optimisation algorithm is suitable for parallel and distributed computing environments. In 

addition, this method has the potential to integrate knowledge acquisition techniques (e. g. 

data mining and ontology) to achieve effective knowledge-based decision making. 

Several features are extracted and studied in this thesis. The application problems involve 

both the small-scale and the large-scale optimisation problems. Comparisons with the 

stochastic optimisation methods are made and results show that the cascade optimisation 

algorithm can converge to the optimal solutions in agreement with other methods more 

quickly. The cascade optimisation algorithm is also studied on parallel and distributed 

computing environments in terms of the reduction in computation time. 
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Chapter 1 Introduction 

Optimisation has evolved from the academic interest to technology that is broadly 

applied to many fields. Classification of optimisation problems depends on different 

characteristics, e. g. continuity, linearity and convexity. According to the linearity. 

optimisation problems are classified into continuous problems or discrete problems. 

Linear problems or non-linear problems are two subclasses in terms of the linearity of 

problems. Optimisation problems can also be classified into convex problems that have 

no local optimal solutions and non-convex problems that might involve local optimal 

solutions according to their convexity properties. Depending upon the classification of 

optimisation problems, different optimisation techniques are proposed. Deterministic 

optimisation and stochastic optimisation are two major techniques differing in the way of 

searching for the optimal solutions. 

Deterministic methods involve linear programming, non-linear programming, mixed 

integer linear programming, and mixed integer non-linear programming. Each of these 

programming models is associated with a specific class of problems. The methods are 

developed based on the properties of the problems and take advantage of different 

mathematical and geometric theories. Simplex method and ellipsoid method are two 

popular linear programming methods. Branch and Bound is often used to solve 

non-linear problems. Traditional methods for discrete problems rewrite the problem to 

linear or non-linear problems and involve Generalized Benders Decomposition and Outer 

Approximation. Global optimisation methods have been recently used in the mixed 

integer problems. 

Stochastic optimisation methods apply a heuristic-based search system to make the 

algorithm less sensitive to modelling errors. These methods are more suitable for 
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highly dimensional problems with inherent system noise than the classical deterministic 

method. Large numbers of runs under varying initial conditions are utilized to 

statistically guarantee the convergence of these methods. If these runs all converge to 

the solutions that have identical or similar qualities, these solutions are considered to be 

the global optimal solutions. In this case, stochastic methods can converge to global 

optimal solutions even starting from different initial conditions. Numerous stochastic 

methods are developed but four popular ones will be reviewed in Chapter 2. 

Application problems are often high dimensional and have large search spaces. The 

heuristic-based search system takes longer time to converge than the deterministic 

optimisation methods. Current research on stochastic optimisation techniques focuses on 

this problem. Parallel computing techniques have been proved to be an effective way 

forward. With the developments of new distributed computing techniques, a large-scale 

distributed computing environment can be implemented. Computers in this environment 

are remotely connected via the Internet. However, the sequential nature within the 

heuristic-search system prevents the stochastic methods from large-scale distributed 

applications. In addition, some parallel applications have the computers running 

synchronously so that the faster computers have to wait for the slower ones. Then the 

computing resources are not fully exploited and the benefit in speeding up the 

convergence is limited. A new stochastic optimisation method is proposed, which 

incorporates the concept from the heuristic- search system but meanwhile minimizes the 

limitations. 

In Chapter 2, optimisation is described based on principle and classifications. The 

optimisation techniques and corresponding classifications are also reviewed in this 

chapter. The principles of deterministic optimisation and stochastic optimisation 

techniques are elaborated along with their advantages and limitations. Four popular 

stochastic optimisation methods are reviewed along with their properties. In Chapter 3, a 

few concepts that can benefit optimisation are introduced. In Chapter 4, the new 

stochastic optimisation algorithm is described from a conceptual point of view. In the 
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course of studies, two implementations are developed and explained in Chapter 5. To 

evaluate and validate the algorithm, a few important features of the algorithm are studied 

in small-scale optimisation problems in Chapter 6. These features involve the 

management of the stochastic search,, the optimisation structure size, the depth of the 

search, and the selection and coordination of the termination criteria. A few large-scale 

problems are used to study these features in Chapter 7. In addition, search policies that 

have impact on the perfon-nance are proposed and studied. Comparison with traditional 

stochastic optimisation methods is performed on a complex application problem. The aim 

of the comparison is to explore the advantages and limitations of the new method over 

the stochastic methods. In Chapter 8, some adjustments on the implementation of the 

new method are selected to meet the requirement of a parallel and distributed computing 

application. In theory, the computation time should decrease as the number of 

computing resources increases. The reduction of the computation time is studied in this 

chapter. Results are also compared with those of the parallel Tabu Search to illustrate 

the advantages of the new method when applied on parallel and distributed computing 

envirorunents. 
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Chapter 2 Optimisation and Techniques 

2.1 Problems 

The formulation of a mathematical optimisation problem is: 

Given: f: S -> R, S c R" 

sought: tx* EE SIf (x) ý! f (x*)Vx c Sl 

where 

(2.1) 

S: a subset of the Euclidean space R" specified by the constraints 

(equality or inequality), 

x: the available point in space S, 

f: the objective function, 

x *: the optimal solution in space S. 

In this thesis, the above formulation is denoted as: 

min f (x) (2.2) 
xes 

In space S, there are some x'E S following: 

N, (x) = ýx G S: llx - x'11: 9 Öý 
(2.3) 

xt =f (x') : ýg f (x), Vx e N, (x) 
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where 

x': the local optima in space S 

6: a small positive value in [0, I]. 

2.2 Classification of optimisation problems 

Optimisation problems can be divided into a number of different classes. 

Firstly, optimisation problems can be classified into either continuous or discrete 

problems. The problems are considered to be continuous if their variables are real and 

continuous. Otherwise they are discrete problems. With discrete variables in the 

problems, the formulation of the optimisation problems is outlined as follows: 

min (xy) f 
X'y 

, 4X, Y)=o 

S1. x Y)<o 
x=V, yGY =- ý0,11" 

where 

x: the continuous variables, 

y: the discrete variables, 

f(x, y): the objective function, 

h(x, y) and g(xy) : the equality and the inequality constraints. 

(2.4) 

Secondly, the problems can be classified into convex or non-convex problems depending 

on the convexity of the search space and the objective function. The space is 

considered to be convex if the closed line segment joining any two available points is in 

the space. The formulation of the closed line segment is illustrated as: 
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Xseg -== tX IX= (1 
-'; 

L)XI + AX2! 
10:! 

ý ý' < 11 X15X2 lE (2.5) 

where 

Xseg : the segment line 

the end point of the line 

X2 : the other end point of the line 

,; L :a parameter associated with points in the line. 

Based on Eq. 2.5, S is the convex set 
ifXseg 

(-- S. The objective function is considered 

to be the convex function if it satisfies Jensen's inequality. The definition of Jensen 's 

inequality is: 

-'OXI + ýXd (1 
- 

ý')f (XI) + Ilf 
(X2) XI ý X2 G Slo:! ý ý' <1 (2.6) 

where 

x, and X2 : two points in S 

ý, :a parameter between 0 and 1. 

The problems that satisfy the above conditions are considered to be convex and have a 

unique global optimal solution. In contrast, the problems may have only local optimal 

solutions if the space and the objective function do not satisfy the conditions above. 

Optimisation problems can be classified into linear or non-linear problems depending on 

the linearity of the objective function and the constraints. An optimisation problem is 
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non-linear if its variables are non-linear or if its objective function is a non-linear 
function. The variables are considered to be non-linear if the equality and the inequality 

constraints are non-linear. 

2.3 Optimisation methods 

Optimisation methods systematically exploit the degree of freedom to minimize or 

maximize an objective function subject to the constraints. Different optimisation 

techniques have been developed and applied to a number of application problems. These 

methods can be classified as deterministic optimisation methods and stochastic 

optimisation methods. 

2.3.1 Deterministic methods 

Deterministic methods focus on topological and geometrical methods to solve the 

optimisation problems. The development of deterministic methods evolves from linear 

programming (LP), non-linear programming (NLP), mixed-integer linear programming 

(MILP), and mixed-integet non-linear programming (MINLP). 

(a) Linear programming 

LP defines the methods to solve the linear optimisation problems. These problems 

involve the linear objective function that is subject to the linear equality and/or the 

inequality constraints. From the geometrical point of view, the linear constraints of 

these problems define a convex polyhedron as the feasible region. Also because the 

objective functions of these problems are linear, all local optimal solutions are 

automatically global optimal solutions (Karush, 1939). The typical methods for linear 

problems involve the simplex problem, and the ellipsoid method (Shor, 1972). 
1 
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(i) Simplex method 

From the geometric point of view, the constraints of the linear problem define a convex 

polytope. The optimal solution is one of the polytope vertices. The simplex method 

leverages this insight by rewriting the problems so that one of the vertices can be found 

easily. Then the method explores the vertices along the edge of the polytope until a 

local optimal solution is approached. This local optimal solution is also a global optimal 

solution because of the convexity of the polytope. In the search, there might be 

multiple adjacent vertexes that improve the optimal solution. Thus, the simplex method 

applies a pivot rule to determine which vertex to select. An efficient rule can make this 

method quickly converge to the optimal solutions. Otherwise, the algorithm will spend 

long time to converge. Klee and Minty (1972) found that the simplex method may 

visits all vertices before arriving at the optimal vertex. 

(ii) Ellipsoid method 

The ellipsoid method was the first algorithm developed to solve the linear programs. It 

works by reducing the problem to a problem of feasibility. This method defines a 

polytope that is bounded by ellipsoids. The volume of these ellipsoids decreases at each 

iteration until the centres of the ellipsoids are in the polytope, or until the ellipsoids are 

too small. Then the central points are the global optimal solutions. This method has 

been proved to be the polynomial-time solvability of the linear programs and converge 

much quicker than simplex method. 

/L i 

(VV Nonlinear programming 

Optimisation problems, especially engineering ones, often involve non-linear 

formulations either in the objective functions or in the equality or the inequality 

constraints. Approaches for nonlinear problems involve Lagrange multiplier method, 

iterative linearization method, iterative quadratic programming method, and penalty 
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function method. These methods apply Karush-Kuhn-Tucker (KKT) condition that 

provides necessary conditions for a solution to be optimal. The overviews of Lagrange 

multiplier method, generalized reduced gradient method, and sequential quadratic 

programming method (an iterative linearization method and an iterative quadratic 

programming method) are illustrated in the following sections. 

(i) Lagrange multiplier method 

The Lagrange multiplier method can be applied to nonlinear problems formulated by 

multivariable objective function and constraints. It uses the Lagrange multiplier to locate 

the optimal solution. The necessary condition for an extremum of an objective function is 

that the partial derivative of its Lagrange function with respect to variables and the 

multiplier must be zero. The algorithm then can easily find the optimum that is the same 

as that of the Lagrange function. The Lagrange multiplier method is limited on a small 

spectrum of NLP problems since it requires that the domain of a problem is an open set 

and the objective function and constraints of the problem must have continuous first 

partial derivative. 

(ii) Generalized reduced gradient method 

The generalized reduced gradient method is an iterative linearization method that firstly 

linearizes the problem and successively applies linear programming techniques. At each 

iteration, this algorithm linearizes the constraints and computes the reduced gradient to 

determine the search components for variables. The objective function is improved by 

changing the variables using these search components. Newton's method is then applied 

to regain feasibility of variables with respect to original constraints. The algorithm is 

considered to be in convergence if the search components can be arbitrarily reduced to 

infinite small. A major disadvantage of the generalized reduced gradient method is the 

requirement of feasibility of both the initial and the intermediated points. Thus, the 

algorithm has to spend long time to converge. 
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(iii) Sequential quadratic programming 

The sequential quadratic programming method is considered to be the most efficient and 

powerful algorithm for NLP problems. In this method, the search direction is deten-nined 

through minimizing the quadratic approximation of the Lagrangian function with linear 

approximation of the constraints. At each iteration,, the Hessian matrix of the Lagrangian 

function is required to be updated to determine the search direction through a quadratic 

programming method. Schittkowski (1985) reported that the sequential quadratic 

programming method outperforms other nonlinear methods in terms of efficiency and 

accuracy over a large number of nonlinear problems. 

(c) MLxed integer programming 

Some complicated problems involve discrete binary variables that represent the existence 

of process units and streams (Achenie & Biegler 1990, Kokossis & Floudas 1990). MILP 

and MINLP are two techniques devised for these problems. Typical methods for these 

problems involve Branch and Bound, Generalized Benders Decomposition and outer 

Approximation. 

(i) Branch and Bound 

This method is an iterative algorithm. At each iteration, the branch step splits the search 

space to different sub spaces. The Bound step computes the upper and lower bounds for 

the global optimal solutions within the sub spaces. Then the algorithm discards the 

sub spaces if their lower bounds are greater than the upper bounds of the others. The 

recursion terminates when the search space is reduced to a single element or the upper 

bound of the search space matches its lower space. 
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(h) Generalized Benders Decomposition 

The major concept of Generalized Benders Decomposition (Benders 1962, Geoffrion 

1972) is to decompose the application problems into the primal and the master 

sub-problems using the approximation methods. During the processing of this method. 
the system alternates between the solutions of two sub-problems. The master problems 

use non-linear duality theory and the Lagrange multipliers obtained in the primal 

problems to anticipate the integer variables. In addition, the master problem also 

generates the lower bound for the optimal. The primal problem set these integer variables 

according to the anticipation and solving the non-linear problems to find the upper bound 

for the optimal solutions. As the method proceeds, the lower bound increases and the 

upper bound decreases. The optimal solution can be found if the two bounds are close 

enough. 

(iii) Outer Approximation 

Based on the study of Benders and Geoffrion, Duran and Grossman (1986) proposed 

another method that is similar to Generalized Benders Decomposition. In this method, 

the application problems are also decomposed to the nonlinear and the mixed integer 

linear problems to formulate the upper and the lower bounds on the solutions. However, 

this method uses outer approximation (linearisation) of the nonlinear objective function 

and the constraints around the primal solutions to generate the mixed integer linear 

problems. This method is faster than Generalized Benders Decomposition method when 

the application problems are small-scale but slower when the problems are large-scale 

(Biegler et al., 1997). 

Deterministic methods suffer from a number of shortcomings that restrict its applications 

to complex engineering problems. In addition, the methods are highly sensitive to the 

initialisation of variables, especially for the non-linear problems and the non-convex 

problems. Starting from different initial solutions, these methods are likely to converge to 
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the different optimal solutions. So for the complex engineering problems, deterministic 

methods are likely to converge to local optimal or non-optimal solutions or fall to 

converge at all. In contrast,, stochastic optimisation methods can avoid these 

shortcomings and will be reviewed in the following sections. 

2.3.2 Stochastic methods 

Stochastic methods refer to the minimization (or maximization) of the objective 
functions in the presence of randomness in optimisation processes. Recently, stochastic 

optimisation methods are becoming more and more popular in the engineering domain. 

In contrast to deterministic methods, stochastic methods follow a statistical random 

probabilistic driven search to explore the entire search space. In some cases, this random 

search process can speed up the convergence and make the algorithm less sensitive to the 

modelling errors. That is because the random search allows for the movements to 

unexplored areas of the search space that may contain a good solution. The advantages 

and disadvantages of stochastic methods have been reviewed by Arsham (1998), 

Fouskakis and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and Fogel (2000), 

and Spall (2003). In this thesis, four representative stochastic methods are reviewed 

involving Simulated Annealing, Tabu search, an Evolutionary method (Genetic 

Algorithm) and a new probabilistic computational optimisation method (Ant Colony). 

(a) Simulated annealing 

Simulated annealing algorithm (SA) is based upon the physical analogy of a cooling 

crystal structure that attempts to arrive at some stable (globally or locally minimal 

potential energy) equilibrium. Through a slow annealing procedure from a high 

temperature to the freezing temperature, a crystal can be restructured to the form that has 

the minimum energy level. This behaviour was simulated by Metropolis (Metropolis et al. 

1955) as a meta-heuristic optimisation algorithm and firstly applied to real optimisation 
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problems by Kirkpatrick (Kirkpatrick et al., 1983) and Cerny (1985). SA was 

successfully applied to continuous reactions and separation systems (Floquet, Pibouleau,, 

& Domenech, 1997; Marcoulaki & Kokossis, 1999; Meta & Kokossis, 1997.1998: 

Cardoso, Salcedo, Feyo de Azevedo, Barbosa, 2000), Batch distillation (Hanke & Li. 

2000), the flowsheet optirazation (Painton & Diwekar, 1995; Chaudhuri & Diwekar, 
' 

1996,1997), batch scheduling (Das, Cummings, & LeVan 1990; Patel, Mah, & Karimi, 

1991; Wang et. al 1999), energy networks (Dolan, Cummings, & LeVan, 1989,1990; 

Maia, Vidal de Carvalho, & Qassim, 1995) and molecule design (Marcoulaki & 

Kokossis,, 2000a, b) 

The algorithm is recursive starting from an initial state at high temperature. Evolutions of 

states are carried out using the Markov process towards both better states as well as 

worse states according to the acceptance criterion. At each temperature, reversible state 

transitions (homogenous Markov processes) are perfortned to equilibrate the system. 

Temperatures are reduced according to a cooling schedule. Based on an acceptance 

criterion,, transitions to the worse states are increasingly reduced with the decreasing 

temperatures. SA is likely to converges to the global optimal solutions if the temperature 

reduces according to Illogt, with T, close to 0 and t is infinite (T,: temperature at 

iteration t). This convergence of SA can be proved by a statistical argument (Marcoulaki 

& Kokossis, 1999; Aarts & van Laarhoven, 1985). 

Markovprocess 
In SA, successive transitions are performed from a current state to a new neighbouring 

state following the Markov process. The definition of Markov process is: 

A Markov process ( {X,, )) is a stochastic sequence of events, it, here the 

probability of any particular future behaviour of the process, when its current 
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state is known exactly, is not altered by additional knowledge concerning its past 

behaviour (Trivedi, 1982). 

The formulation of the Markov property (Taylor and Karlin, 1980) is: 

Týx�-� j x� il 
(2.7) 

Týx�� i XO '01 
... , 

X�-I = 'n-1 
3 

Xn V'k 
3CS, Vn, k eN 

where 

S: the search space, 

the states in the space, 

n: the time sequence. 

According to the literature of losifescu (1980), the transition matrix ( jTj, 
j 
I) is a 

stochastic matrix of non negative elements in which the sum of entries in each row i is 

equal to unity. Each element ( Ti, j ) of the stochastic matrix stores the transition 

probability from states i to other statesj. Figure 2.1 outlines the flowchart of SA. 

14 
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Figure 2.1 SA 

Acceptance criterion 

Optimal 

Solutions 

The new generated states are accepted or rejected according to the Metropolis criterion 

(Metropolis et al., 1953). The major element in the Metropolis criterion is the 

acceptance probability that is fonnulated as: 

Pi = exp(-(fj - f) / T) Ij (2.8) 
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where 

P,, 
J. : the acceptance probability for the transition from state i to statej, 

f andfJ : the objective function values of state i and statej, 

T: the annealing temperature. 

Depending on Eq. 2.8, the Metropolis criterion can be fonnulated as: 

P-= min(l, exp(-(fj - f) / T)) 
Ij (2.9) 

Based upon Eq. 2.9, statej can be accepted with the acceptance probability (P,, j) equal to 

I if fj is smaller than fi . In contrast, state j can be accepted with the acceptance 

probability ( Pi, 
j 

) less than I if fj is larger than f. One important feature of the 

Metropolis criterion is that the acceptance probability for the transition to a worse state 

(f, is larger than f) is nonzero. This feature can prevent the algorithm from being stuck 

in local optimal solutions. As the temperature decreases, the acceptance probability of 

accepting the worse states is reduced. When the temperature is close to zero, only the 

better states can be accepted and SA becomes the Greedy algorithm (Black, 2005). 

Cooling schedule 

The cooling schedule involves several important parameters that include: 

o Initial temperature. 

* Decrement functions. 

Final temperature 

Length of the Markov process. 
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The initial temperature is usually assigned a high value so that all generated states can be 

accepted involving both the better ones and the worse ones. In contrast, the final 

temperature is usually low close to the freezing temperature (T = 0) so that only the better 

states can be accepted in transitions. The decrement function deten-nines the decrement of 

the temperature at each iteration. In the analogy to a physical process, the system can be 

easily equilibrated when the temperature is high. With the low temperature, the 

equilibrium of the system is difficult to approach. An appropriate decrement function 

allows the temperature to decrease quickly at the high temperatures and slowly at the low 

temperatures. There are many different cooling schedules proposed and studied in the 

literature. However, these cooling schedules are generally classified into the static 

cooling schedules and the dynamic cooling schedules. In the former one, all parameters 

are predefined and cannot be changed in the process. One of the static cooling schedules 

is the exponential cooling schedule proposed by Kirkpatrick (Kirkpatrick et al, 1982), 

T =aT t+l t 

where 

a: a constant close to, but smaller than 1. 

(2.10) 

In contrast, the dynamic cooling schedules have their parameters adaptively changed in 

the process. A logarithmic cooling schedule is proposed by Aart and Van Laarhoven 

(1985). The fon-nulation of the logarithmic cooling schedule is: 

=T 1+ 
tI 

T In(I + r) t 
3cy' 

(2.11) 

where 

CY t: the standard deviation of the state objectives at each iteration, 
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r: a parameter to control the reducing rate of temperatures. 

With a large r, the temperature is reduced quickly and SA could quickly converge to the 

optimal solutions but with low solution qualities (which is measured by objective value). 

In contrast,, with a small r. temperature is reduced slowly and SA has to spend long 

computation time to converge to optimal solutions. The length of the Markov process can 

also affect the performance. In general, SA requires the long Markov process at the low 

temperatures to achieve the system equilibrium. SA uses either the static Markov 

process or the dynamic Markov process. With the static Markov process, SA uses the 

Markov process of the same length throughout. With the dynamic Markov process, SA 

firstly uses the short Markov process when the temperatures are high, then the length of 

the Markov process increases as the temperatures decrease. This is because at the high 

temperatures the system is easy to equilibrate so that the short Markov process is selected. 

However, at the low temperatures, the system is difficult to equilibrate so that SA uses a 

long Markov process. 

Termination criterion 

The SA terminates if one of the following termination criteria (Marcoulaki & Kokossis, 

1999; Meta, 1998) are met: 

* The temperature falls below the freezing temperature. 

0 No state can be accepted for a number of iterations. 

The maximum number of iterations have been completed. 

Remarks on Simulated Annealing 

SA has been proved to be a robust optimisation method even for the complex problems 

that have a large number of variables and local optima (Romeo et al., 1984; White, 1984) 
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when compared with the low efficiency and limited reliability of the other global 

optimisation methods (Dixon et al., 1975; Dixon et al., 1978; Masri et al., 1980; Pronzato 

et al., 1984). However, it is computationally expensive and requires excessive time to 

solve complex problems (Linke & Kokossis, 2003b). The most important issues are to 

address the controls in the parameters, such as the initial temperature, the final 

temperature, the decrement function, and the length of Markov process. SA has been 

applied to heat exchanger networks (Dolan et al, 1990), separation (Floquet et al, 1994). 

flowsheet optimisation (Painton & Diwekar, 1995), reactor network synthesis 

(Marcoulaki & Kokossis 1999, Cordero et al. 1997) and liquid-liquid extraction 

(Papadopoulos & Linke, 2004). 

(b) Tabu search algorithm 

Tabu search (TS) is a member of the family of local search methods. It uses both the 

memory structure and artificial intelligence to enhance the performance (Glover, 1989, 

1990ý 1993). Applications of TS are wide and cover the realms of resource planning, 

telecommunications, VLSI design, financial analysis, scheduling, space planning, energy 

distribution,, molecular engineering, logistics, pattern classification, flexible 

manufacturing, waste management, mineral exploration, biomedical analysis, 

envirom-nental conservation and scores of others. Similar to SA, TS is a recursive method. 

At each iteration, a state transition is carried out from the current solution to one of its 

best neighbour state. Figure 2.2 outlines the flowchart of TS. 
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Figure 2.2 TS 

RSMandFLM 

Final the best 

TS employs the memories to avoid the solution transitions that might lead to a visited 

solution. There are two types of memory. One is the recent-based short-term memory 

(RSM) and the other one is the frequency-based long-term memory (FLM). 

RSM is incorporated into TS in the form of a Tabu list. It records the latest transitions 

that have executed and assigns them with Tabu status. Then the Tabu transitions are 

excluded to force the search away from the visited states and avoid the search being 

entrapped into a cycle. The size of the Tabu list (L'-B) is a user-specified parameter. It 

determines the number of recorded transitions. The Tabu list is updated at each transition 
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and the FIFO (first-in-first-out) discipline is used to limit its size. In contrast to the 

short-term memory of the Tabu list, FLM enables TS to learn the experience from the 

past transitions. It records the frequencies of the transitions that have already executed. 
Depending on these frequencies, the search in TS has bias either to the promising regions 

that involve the good solutions or to the regions that have never been visited before. 

Intensification and Diversification 

Depending on FLM, TS applies the Intensification and the Diversification search 

schemes (Intensification and Diversification) to improve the performance. The idea of 

Intensification is to pay more efforts on the promising regions where the good solutions 

are likely to appear. With Intensification, TS can quickly converge to the optimal 

solutions. In contrast to Intensification, Diversification leads the search away from the 

regions that have been visited with a high frequency. Thus, the search can explore 

un-visited regions. To use Intensification and Diversification, TS does Intensification for 

a number of iterations (L IT ) and switches to Diversification for a number of iterations 

(L DV ). Then TS conducts random transitions for a number of iterations (LRD). Deciding 

the optimal ratio between the intensification period and the diversification period 

(L IT IeV ) is a challenge for the successftil implementation of TS. 

Aspiration criterion 

The main objective of RSM is to avoid the search re-performing the transitions that have 

been performed in the recent past. However, some transitions with the Tabu status 

might lead to some good unvisited states. To allow these transitions, it is necessary to 

override the Tabu list. The Tabu list can be overrided when: 

The best neighbour in the transition is better than the best state. 

0 All neighbours in the transitions are Tabu. 
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Termination criterion 

Glover et al. (1993) proposed the termination criteria that include: 

The best state stays same for a certain number of iterations. 

* Total number of the iterations is larger than the maximum number of 

iterations. 

TS terminates if either of these conditions are satisfied. 

Remarks on Tabu Search 

TS is an effective and efficient optimisation method. It can produce the optimal solutions 

that significantly surpass those obtained by some other methods. However, there are also 

some challenges in the study of TS. 

First and foremost, it is a challenge to decide the size of the neighbourhood at each 

iteration. If the size were too big, TS has to estimate a large number of neighbour states 

at each iteration and spend long time. In contrast, TS can quickly converge but to the 

states with the low qualities, if the size were too small. To find an appropriate 

neighbourhood size, Wang (Wang et al., 1999) proposed a dynamic neighbourhood size 

scheme. In such scherne,, the search starts with a small neighbourhood size. The size 

keeps increasing as time wears on. The results presented by Wang (Wang et al., 1999) 

indicated that TS with the dynamic neighbourhood size can converge to similar optimal 

solutions to those obtained by TS with the large constant neighbourhood size. 

T, 
Secondly, deciding the size of Tabu list ( L' ) is another challenge. When L" is too 

small. TS might be entrapped in the non-optimal region since it executes too many 
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similar transitions. In contrast,, a big L' allows the search covering the whole search 

space. However, the search is distracted by exploring the search space and can not 

quickly converge to the optimal solutions. Based on the studies over the past decades. it 

is shown that TS converges to the good optimal solution when LTB is set to 7 (Ashley, 

2004). 

Finally, it is also difficult to determine the optimal ratio between the Intensification 

period and the Diversification period. However, current applications of TS follow a 

common discipline. This discipline provides that TS uses more Diversifications at the 

beginning to explore the entire search space. Then TS changes to more Intensifications to 

probe into the promising regions to find the global optimal solutions. TS that observes 

this discipline have been applied to the engineering problems that include plant process 

design (Wang et al, 1999, Cavin et al, 2004), heat exchanger networks (Lin & Miller, 

2004) and reaction/separation systems (Linke & Kokossis, 2003a). 

Genetic algorithms 

Genetic Algorithm (GA) is an evolutionary method that utilizes the technique inspired by 

evolutionary biology such as inheritance, mutation, selection and crossover. GA has been 

applied to a wide range of engineering problems that include dynamic control of 

processes (Pham, 1998), molecular design (Venkatasubramanian et al, 1994) and so on. 

Figure 2.3 presents the flowchart of GA. 
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Figure 2.3 GA 

Initial population 
Firstly, a number of initial solutions are generated to form the first population. Then the 

solutions in the population are interpreted into the chromosomes using the binary 

representation. 

Genetic operation 

GA employs the operations inspired by the evolutionary biology to generate new 

populations. These operations involve selection, crossover, and mutation. 

Selection operation 

The selection operation selects a sub-population from the population to produce offspring. 

There are a number of different ways to select the sub-populations. These ways include 

the tournament selection method, the roulette wheel selection method and so on. The 
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tournament selection method has been proved more efficient than other selection 

methods. 

Reproduction operations 

The reproduction operation generates a new population. The operations include the 

crossover operation and the mutation operation. The idea of the crossover operation is 

that a biological system combines the genetic genes of the fittest individuals to generate 

offspring and spread their genetic infon-nation over populations. There are numbers of 

different crossover operations, e. g. the one-point crossover operation, the two-point 

crossover operation, and the uniform crossover operation. On the other hand, the 

mutation operation is analogous to the biological mutation. New information is 

introduced into the population by this operation. A typical mutation operation probably 

selects an arbitrary bit in an organism strings and changes it. The aim of the mutation 

operation is to avoid being trapped in the local optimal solutions by introducing the 

diversities in the evolution of populations. 

Termination criterion 
The convergence of GA is reflected by the tennination criteria that include: 

* The number of iterations approaches a maximum number. 

9 The best solution the stays same for a number of iterations. 

Manual inspection of the population can also be used to check the convergence. 

Remarks on Genetic Algorithm 

GA is a population based mate-heuristic algorithm so that the performance of GA relates 

to the size of population. With a large population, GA can converge to the good optimal 
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solutions but requires a long computational time. In contrast, GA can quickly converge 

but to the optimal solutions with low qualities when the population is small. Carroll 

(1996) and Goldberg et al., (1992) proposed a rule to estimate the magnitude of the 

population. The formulation of this rule is: 

1 

k 

where 

1: the length of the chromosome string, 

x the number of the possibilities for each chromosome, 

ka parameter that defines the average length of the chromosomes 

(2.12) 

Although Eq. 2.12 gives a good approximation to the optimal population size, 

population based optimisation methods still require a long computation time to evaluate 

solutions at each iteration. 

(d) Ant colony optimisation 

Ant colony optimisation algorithm (ACO) is a new stochastic optimisation method 

proposed by Dorigo (Dorigo, 1992). ACO has been applied to the engineering problems 

that include batch scheduling (Jayaraman et al., 2000) and dynamic optimisation of 

chemical processes (Rajesh et al., 2001). The basic idea of ACO is derived from the 

behaviour of ants that try to find the shortest path from their nest to food sources. Figure 

2.4 illustrates the flowchart of ACO. 
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Figure 2.4 ACO 

Initial pheromone 

ACO firstly generates a set of initial solutions in different regions. Each region is 

assigned a small pheromone value (ro) calculated based upon the formulation proposed 

by Gambardella et al., (1999): 
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1 

, ro =- (2.13) c 

where 

C: the best objective value. 

Establish new solution 
At each iteration, ants move to a new region according to a probability: 

pi Ti j, kEEN (2.14) ITk 

k 

where 

Pj: the probability for an ant moving to regionj, 

r and rk : pheromones of regionj and region k. 

Pheromone update 

The pheromone of a region increases if an ant passes the region and lays some 

pheromone. On the other hand, the pheromone of this region also evaporates as time 

elapses. Bonabeau (Bonabeau, et al. 1999) proposed a pheromone-changing schedule. 

The formulation of this schedule is: 

rj.,, (I - p) ATj 

TJ 
't 
(I - P) 

where 

Fitness imDrove 

(2.16) 
otherwise 

Tj, j : the pheromone of regionj at time t, 

Ahe evaporation rate. 
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and 

A4 

A-cj Ar j 

where 

A -c I' : the unit pheromone that an ant i lays at regionj, 

M. the number of ants in ACO. 

Termination criterion 

(2.17) 

Conventionally, ACO terminates after a predefined maximum number of iterations 

complete. However, it is difficult to find a suitable maximum number. Papadopoulos 

and Linke (2004) proposed a new termination criterion providing that ACO terminates if 

the standard deviation of the objectives stays small for a number of iterations. The study 

reported that such termination criterion could save 86% of CPU time with no 

compromise to the quality of the optimal solutions. 

Remark on A CO 

In ACO, the number of ants is a significant parameter. With a large number of ants, ACO 

can converge quickly but to non-optimal or locally optimal solutions or fail to converge 

at all . 
On the other hand, ACO might not produce the expected synergistic effects of 

cooperation due to pheromone decay (Bonabeau et al., 1999) when ACO employs a small 

number of ants. Another important parameter is the evaporation rate (p). 

Papadopoulos and Linke investigated the impact of p and find ACO can reach the best 

convergence when p= 50%. 
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2.4 Remarks on optimisation and optimisation methods 

Optimisation aims to explore the best solutions to problems by exploiting the degrees of 

freedom in order to maximise (or minimise) the objective function subject to the equality 

and / or the inequality constraints. Optimisation problems can be classified based upon 

the continuity, the linearity and the convexity of the objective function or the constraints. 

A large number of optimisation methods have been proposed according to the 

classification of optimisation problems. These methods include both detenninistic 

methods and stochastic methods. The former ones use the topological or the 

geometrical techniques to solve optimisation problems. By using these techniques, 

deterministic methods can quickly converge to optimal solutions. However, with these 

techniques, deterministic methods are limited to a small spectrum of problems, e. g. some 

methods require the objective functions of application problems differentiable. In 

addition, deterministic methods might converge to a local optimal solution when the 

applications are complex and involve non-convex and non-linear formulations. In 

contrast, stochastic methods follow a statistical random probabilistic driven search. With 

the randomness in search, stochastic methods can fully explore the search space and 

exclude the locally optimal solutions. However, with the random search, stochastic 

methods require a long computation time to converge. 

To solve these shortcomings, previous efforts focused either on the optimisation methods 

themselves or applying advanced computing techniques. Recently, with the 

development of advanced computing techniques, more and more attention is paid on 

integrating these techniques to optimisation. In next chapter, a few of these computing 

techniques are reviewed along with their applications to optimisation techniques. 
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Chapter 3 Optimisation and computing 

Different computing techniques have been applied to optimisation, aiming at exploiting 

key features and guiding the search efficiently through a parallel use of knowledge 

acquisition and distributed computing techniques. 

3.1 Knowledge acquisition 

Knowledge acquisition techniques transform the knowledge available in the world to the 

forms that can be used by a knowledge-based system. It is also called knowledge 

discovery that is defined by Fayyad et al., (1996) as the process of identifying valid, 

novel, potentially useful, and understandable patterns in existing data. Data mining is an 

important method in knowledge acquisition and was originally utilized in business 

intelligence and financial analysis. With data mining methods, relationships within the 

real world data can be identified so that non-statistician can help on decision making 

(Monk & Wagner, 2006). Moreover, data mining methods can also extract the 

information from the data generated in experiments. Two Crow Corporation (1999) 

reviewed the different data mining techniques involving neural networks, decision trees 

(classification trees), rule induction, K-nearest neighbour and memory-based reasoning, 

logistics and so on. In addition, several standards for data mining techniques are 

proposed, e. g. the CRISP-DM standard and the Java Data-Mining Standard. 

Data mining methods have been applied to many different fields. In the medical field, 

data mining techniques are broadly applied to the pharmaceutical development and the 

construction of ecological models (Dzeroski et al., 1997). In the chemistry and chemical 

engineering fields, data mining techniques are used in discovery of knowledge from the 

chemical databases (Liang & Gan, 2001), in reaction data mining (Wang et al., 2001), 

and in process modelling and OPtimisation applications (Nandi et al., 2003). Ashley and 
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Patrick (2004) proposed a knowledge driven optimisation method in which the 

optimisation technique combines with a knowledge acquisition method. This method 

takes the form of TS and uses the classification tree data mining method to extract the 

rules. Then the algorithm follows these rules and focuses on the high perfon-nance 

regimes. The method has been proved successful for a number of illustrative engineering 

problems. It outperforms the robust stochastic optimisation algorithm (TS) in terms of 

the convergence speed. The study reported the usefulness of integrating the knowledge 

acquisition into optimisation. 

3.2 Parallel and distributed computing 

Parallel computing is a form of computation in which many calculations are carried out 

simultaneously. From the 1990s, parallel computing techniques had been applied on the 

computing envirom-nent in which computers are connected via a network. Distributed 

computing is a variation of parallel computing. With the distributed computing 

techniques, the computers in the distributed environment work closely like a single 

computer. The information is communicated via the network. Parallel computing and 

distributed computing techniques have been applied to different problems, e. g. 

engineering problems (Cox, 2002) and optimization problems (Foster et al, 1999; Foster 

et al,, 2001). 

In optimisation, parallel and distributed computing techniques can improve the 

computation capability so that the optimisation method can solve previously unsolvable 

complex problems. With the improved computation capability, optimisation methods can 

quickly converge to the global optimal solutions. To apply parallel and distributed 

computing techniques, the optimisation method firstly breaks the problem into several 

independent parts so that multiple computers can execute these parts simultaneously. 

Since stochastic optimisation methods use random probabilistic approaches to determine 

the search direction, the relations between the current transition and the previous 

transitions are not as strong as those in deterministic optimisation methods. Thus, 
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stochastic optimisation methods are more suitable for parallel computing techniques. In 

the following sections, the applications of parallel and distributed computing techniques 

to the four stochastic optimisation techniques (SA, TS, GA, and ACO) are reviewed in 

terms of their classifications,, advantages and limitations. 

(a) Parallel SimulatedAnnealing (SA) 

Parallel computing techniques have been applied to SA in many different ways. These 

applications can be classified into the parallel SA with serial transitions, the parallel SA 

with parallel transitions, and the parallel SA with both serial and parallel transitions 

depending on the information transition modes (Leite and Topping, 1999). 

The parallel SA with only serial transitions requires that the method rigorously follows 

the normal SA, so it is unlikely to produce a significant speedup on convergence. 

However, such a scheme is still broadly used since the motivation of SA is derived from 

the stochastic nature which requires multiple runs to improve the reliability of the results. 

To implement this forin of parallel SA, each computer is assigned its own SA. The initial 

points (the global information) are firstly distributed to the computers to initialise the SA. 

Then the computers execute the SA independently with no information transferred 

between them. 

In contrast, the parallel SA with only parallel transitions is implemented as the 

master-worker paradigm. The workers are assigned by different Markov processes. The 

Markov processes are launched simultaneously. The master collects the objectives on the 

workers and then returns the best objective to the workers after all Markov processes 

finish a transition. This parallel SA might encounter bottlenecks and high communication 

traffic when a large number of workers are employed and all transfer information with 

the master at the same time. 

The last form of parallel SA is the one with both serial transitions and parallel transitions. 
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The master-worker computing framework is still selected. The workers do a number of 

transitions in the Markov processes and then send their best objectives to the master. The 

master then selects the best one of these objectives and distributes it to workers to restart 

the Markov processes. Compared to the parallel SA with parallel transitions, this parallel 

SA reduces the communication between the workers and the master. However, the 

faster workers have to wait for the other workers to finish their work at each iteration. 

Thus, the computational resources available in the environment are not fully exploited. 

A parallel SA (hybrid parallel SA) was proposed by Mahfoud and Goldberg (1992). It has 

become increasingly popular and can be found in variety Of applications. This parallel SA 

combines SA with GA to introduce the population-based characteristics into an annealing 

framework. To implement the hybrid parallel SA, the master-worker computing 

structure is selected. The reproduction operations (the crossover and the mutation 

operations) execute on different workers in parallel. The new generated populations are 

evaluated on these workers and sent back to the master. The master collects the 

populations from the workers. Then the master rearranges the populations and 

broadcasts them back to the workers. The temperatures on the master are used to control 

the convergence of the method. However, the hybrid parallel SA might encounter 

bottlenecks and high communication traffic if the populations transferred between the 

workers and the master are large or the environment involves large numbers of workers. 

Parallel Tabu Search (TS) 

Similar to the parallel SA, parallel computing techniques have been applied to TS in 

different ways. These applications involve the parallel TS with parallelism in cost 

function evaluation, the parallel TS with parallelism in problem decomposition, and the 

TS with parallelism in solution domain explorations. 
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The first parallel TS delegates evaluations of neighbours to different workers 

(Chakrapani and Skorin-Kapov, 1993). The master-worker computing structure is used to 

implement the parallel TS. The master searches the neighbours of the current points and 

distributes them to the workers, while the workers evaluate these neighbours 

concurrently and send the results back to the master. Since the most time expensive 

tasks execute on the workers simultaneously, the computation time can be significantly 

reduced. However, this parallel TS might encounter high communication traffic since the 

information is transferred between the master and workers after each move. 

The second parallel TS firstly decomposes the application problem to several sub 

problems. These problems are distributed to the computers. The computers do TS in 

parallel to solve these sub problems. The best objectives are exchanged between the 

computers periodically. Glover et al., (1993) applied this form of parallel TS to vehicle 

routing problems. Since the parallel TS has to firstly decompose the application problems, 

it is a problem dependent method. 

In the last form of parallel TS, the master-worker computing structure is still selected. 

The workers do TS in parallel. The information that transfers between the workers and 

the master is a set of parameters that include the length of the Tabu list, the number of 

the neighbours and so on. To implement this parallel TS, the master generates a set of 

parameters for each worker after a number of moves. These sets of parameters are sent to 

workers to control the next moves. This parallel TS is suitable for multiple instruction 

and multiple data parallel computing with distributed memory (Grainic et al., 1995a; 

1995b). However, since the faster workers have to wait for the slower ones, the 

computation resources cannot be fully exploited. 

(c) Parallel Genetic Algorithms (GA) 

Since GA is a population-based stochastic optimisation method, it can be easily 

parallelised. Till now, parallel GA can be found in different applications (Baluja, 1994; 
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Mariusz and Riccardo, 1999; Cantýi-Paz, 1998). These parallel GA can be classified into 

the ones with parallelism in evaluations and the ones with parallelism in population 

(CantU-Paz, 1998). 

In the first form of parallel GA, the master-worker computing structure is selected. The 

workers evaluate the solutions and do mutation operations to generate new solutions in 

parallel. The master performs the selection and the crossover operations and distributes 

populations to the workers. In this parallel SA, workers take the most expensive time 

tasks and execute them in parallel. The overall computation time can be reduced. 

However, with a large number of workers in the environment, the communication traffic 

between the workers and the master is high and the reduction on the overall computation 

time is limited. 

The second fonn of parallel GA distributes the population to the workers. The workers 

run GA in parallel. This form of parallel GA can be further classified into the parallel GA 

with distributed memories and the parallel GA with shared memory. In the first one, each 

computer runs a GA on a sub population and transfers members in this population with 

those in other populations from time to time. The division of population depends on 

topology techniques such as the hypercube and the multi-dimensional mesh. This parallel 

GA was firstly proposed by Cantfi-Paz (1998). In the second one, the sub populations are 

in the same memory and the workers communicate with the memories periodically. Both 

sub classification of this parallel GA might encounter high communication traffic since 

the workers have to communicate frequently either with other computers or with the 

shared memory. 

Moreover, yet a further form of parallel GA combines GA with some stochastic 

optimisation algorithms. Such parallel GA is named as the hybrid GA. Based on the 

discussion in parallel SA, the studies on the hybrid GA focus on combining parallel GA 

with SA. 
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(d) ParallelAnt Colony (ACO) 
Most of the parallel ACO follow the idea proposed by Randall and Lewis (2002). In this 

idea, ants are distributed to different workers. The ants on the same computers are 

regarded as those from the same colonies. The parallel ACO include the centralized 

parallel ACO and the decentralized parallel ACO. 

The centralized parallel ACO uses the master-worker computing structure. The master 

collects pheromone from the workers and sends the specified solutions and new 

generated pheromone to the workers. To implement this parallel ACO, ants are firstly 

distributed to different colonies on the workers. The master then distributes each worker 

an initial solution set and pheromone set. The workers then run ACO in parallel for 

numbers of iterations and generate new solution sets. The master collects these solution 

sets and pheromone sets and selects the best solutions and generates the new pheromone 

set. Then the master sends them to the workers to run ACO again. Since the workers 

have to communicate frequently with the master, the centralized parallel ACO might 

encounter high communication traffic loading. Piriyakumar and Levi (2002) studied 

this parallel ACO on the travel salesman problems and found that the communication 

time could be reduced to some extent by decreasing the frequency of transferring the 

information between the master and the workers. However, lessening communication 

frequency could lead the algorithm to the optimal solutions with low qualities. 

In contrast to the centralized parallel ACO, the decentralized parallel ACO runs 

sequential ACO on individual computers. The information (the selected solutions and 

pheromones) is exchanged between computers after a certain number of iterations. 

Kruger and Middendorf (1998) studied this Parallel ACO on the salesman problems and 

reported that the decentralized parallel ACO can achieve the optimal solution with high 

solution quality (objective value of the solutions close to that of the global optimal 

solution) and spend less time on communication than the centralized parallel ACO. 

However, the decentralized parallel ACO might in some circumstances encounter high 
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communication traffic bottleneck since the faster workers cannot exchange the 

information with the colonies on the slower workers until they all finish work. Another 

reason is that the information transferred between computers is large when the 

application problems are high dimensional that involve large numbers of variables. 

The application of parallel computing techniques can undoubtedly improve the 

computation capability. However, with the synchrony and sequential nature in the 

conventional stochastic methods, computation resources cannot always be fully exploited. 

Thus the benefit in speeding up the convergence is limited. In addition, the number of 

available resources within a corporation is finite. With the development of advanced 

technologies, the parallel and distributed computing applications are no longer limited to 

the same location with a localised cluster of computers, but are instead being applied on 

the Grid networks across the Internet. 

3.3 Grid technology and applications 

Grid computing techniques were first developed to enable resource sharing, job 

dispatching and data mining in the decade from 1980s to 1990s (Foster & Kesselman, 

1999). Recently, Grid computing techniques are used for many different objectives, e. g. 

integrated networking, communication, computation and information and help executing 

large-scale, resource intensive and distributed applications (Berman et al., 2003). In 

Grid computing techniques, a Grid is described as an infrastructure that integrates 

networking, communication, computation and information to provide a virtual platform 

for resources sharing, message and command passing, data transfer and mining and task 

scheduling and dispatching in the fields of business, government, science and industries. 

Foster and Kesselman (1999) divided a Grid into 4 layers from bottom to top as follows: 

Fabric layer, Core middleware layer, User level layer and Application layer. 
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Fabric la er y 

The Fabric layer provides the resources in Grid. The resources could be CPU power 

resources, storage, database, network portal, operating systems, etc. 

(ii) Core middleware layer 

This layer defines the core communication and the authentication protocols required for 

Grid-specific network transactions. The communication protocols enable the exchange of 

data between the resources in the fabric layer, whilst the authentication protocols provide 

the secure mechanisms for verifying the identity of administrators, users and resources. 

User level layer 

The user level lay is on top of the core middleware layer. It provides the protocols and 

services for capturing interactions across resources. This layer is made up of 

programming tools, resource brokers and deployment devices so that it can implement a 

wide variety of sharing behaviours. 

(iv) Application layer 

The application layer is the highest layer in a Grid. It is designed for users. This layer 

consists of the Grid programming models and the Grid application execution 

environment. The former one is used for users to program the applications, whilst the 

later one implements the remote controls in the Grid. 

Grid computing techniques are firstly developed as meta-computing techniques involving 

the applications established on Internet protocols. Grids provide application-oriented 

frameworks with the emerging of Open Grid Services Architecture (OGSA) and shared 
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virtual systems. Users can access the resources remotely by using the information service 

and the resource broker layers. End-users do not have to know where the tasks perform 

and where the data is stored. Grid middleware are software packages that unify different 

computing and data resources in a specified manner. With these packages, the resources 
in a Grid can be accessed remotely by client software without incompatibility problems. 

Globus is a middleware developed as a metacomputing infrastructure toolkit providing 

capabilities and interfaces for communication, information, resource location5 resource 

scheduling, authentication and data access (Foster & Kesselman, 1997). 

In optimisation, Papadopoulos et al. (2005) applied modified TS on a simple Grid (a 

cluster computer network) in which computers were connected via a local network. 

Master-worker computing structure was selected in this application. The workers ran TS 

in parallel and sent objectives to the master periodically. The master then calculated the 

standard deviation of these objectives and broadcasted it to the workers. This standard 

deviation determines whether the algorithm selects a random direction or selects the 

user-defined direction. The user-defined direction is produced by analysing the 

previous moves using a data mining method. Introducing the user-defined direction can 

avoid the premature convergence of the optimisation method. Due to the high 

communication traffic between the master and the workers,, this modified TS can gain at 

most seven times speedup at most when applying it on distributed computing 

enviromnents. 

3.4 Remarks and discussions 

Different computing techniques (e. g. knowledge acquisition, parallel computing, and 

distributed computing) have been integrated in optimisation either to guide the search 

efficiently or to produce high-throughput computation capacities. To guide the search, 

optimisation applies knowledge acquisition techniques. However, most of the 

conventional stochastic optimisation methods do not record and manage the intermediate 

system infonnation. To produce high-throughput computation capacities, parallel and 

distributed computing techniques are applied to optimisation. Because of the sequential 
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nature, it is difficult to apply parallel and distributed techniques to conventional 

optimisation methods. Thus, the conventional optimisation methods have developed 

passively exploitation of knowledge acquisition and parallel and distributed computing 

techniques. In addition, most of the current parallelization follows synchronous mode in 

which the faster worker has to wait for the slower ones before it starts work. This 

parallelization suffers from high communication traffic amongst computational resources 

and can only achieve small benefit in speeding up convergence. Thus, it is a challenge to 

develop a fully distributed optimisation method in which the computational resources run 

simultaneously but following asynchronous mode in which computers works as a single 

computer. 

A fully distributed optimisation algorithm that can capitalize on knowledge acquisition 

techniques is proposed in our research. The concepts of this algorithm are explained in 

detail in the next chapter. 
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Chapter 4 The Cascade Optimisation Algorithm 

A fully distributed stochastic optimisation algorithm is proposed by incorporating the 

concepts from the Markov process of SA. It introduces conceptual partitions and pools 

to store intennediate solutions and corresponding objective values. The partitions and 

pools grow as the Markov process generates new intermediate solutions. Populations 

within partitions and pools are distributed periodically according to an external criterion. 

With the use of partitions and pools, multiple Markov processes can executes 

simultaneously without interactions. Thus, the new algorithm is suitable for distributed 

computing technique. The general formulation of optimisation problems takes the form: 

, h(x, y) =0 

min f (x, y) s1.1g(x, y) <0 

xcXa 9i', y GY =- ý0,1ý" 

where f(x, y)is the objective function, h(x, y)and g(x, y) are the constraints. 

4.1 Notation 

Anp, 
l Domain of Dh nP 

Density functions in A,, 
P,, . 

dz A profile of A,, 
P,, , 

D Domain of an optimisation problem. 

Dh Cascade of nP pools at time t. 
np, t 

Objective ftmction of an optimisation problem. 

niin Minimumf in Pj,, at time t. 
ill 

(4.1) 
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fim, ax 

ft min 

f, max 

F 

L 91 

G 

G1 

G,, 
p 

Maximumf in P,,, at time t. 

h Minimumf in DnP', at time t. 

h Maximumf in Dn'P't at time t. 

A superset of numerical functions, including objective function. 

Markov process defined over time t. 

Superset of partitions in D. 

The highest partition. 

The lowest partition. 

Gj, l Partition j at time t. 

hA numerical function in F. 

hj, t 
A numerical function of Pj,, 

h SM A measure of object ( D, P, )- 

Hj, 
l A probability measure of 

A W". 

i Index of solutions in partitionj. i=1,2 ...... Mj 

i. Index of partitions from top to bottom. j=1,2,..., nP 

L The length of Markov process. 

Mi. Number of available points in Gj,, 

nP Number of partitions/pools 

nF5 nST 9 nd Integer constants. 

The highest pool. 

P The highest pool. nP 

pi, 
t 

Pooli at time t. 

h 
Qt The population of G, or Dnp, 

t 
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Qj, t 
The population of Gj,, or Pj,,. 

A parameter in the cooling schedule used to determine the shape of 
r 

curve between T, and Tp 

RA random number in [0,1 ]- 

SQ'I Available point i in partition Gj,,. 

S Available region of an optimisation problem. 

t Sequence of time periods. t=0,1,... 

T, The temperature associated with P,. 

The temperature associated with P TIP nP 

Tj Parameter associated with Pj and is called temperature here. 

F-, A small value in [0,1]. 

4.2 Basic concepts 

Let S be the feasible region of 4.1: 

{(x, y) 1 h(x, y) =0A g(x, y): ýg 0, x cz X, y EEYI (4.2) 

and D is the domain of 4.1: 

D= f f(x, y) I V(x, y) c= S1 (4.3) 

Let G be the superset of disjoint partitions inS, so that: 

U (4.4) 
i 

with Gj being ordered sets of finite elements in S: 
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Gj - 
ýSlj 

ý 
S2, 

j ý' -*- sm,, j I s,, j cS i =1,2,..., Mj, j = 1,2,..., np (4.5) 

Let F be a superset of numerical functions. For each hcF including the objective 

function f of 4.1, s,, j cS can be mapped so that: 

si, j 
h> h(s,, j) = hi, j E-= 93 

Defined over Gj5f can be used to map Gj to 94mi so that: 

fj Gj f>f (Gj) = 
tf (sj, j)ýj = 

tfi, 
j 
ýj 

and 

fj I Gj f>fI (Gj) = 
tf (sj,, )ýj Af (SQ) ý!! f (Sk, 

j) Vi<k 

(4.6) 

(4.7) 

(4.8) 

Definition 4.1: A set P is a pool of G if El Gj cG so that P, is the domain of 4.7. 
j 

Definition 4.2: A set P is an orderedpool of G if 3GJ cG so that Pj is the domain of 
j 

4.8 

Illustration 43: 

Let the optimisation problem be: 

f= X2 +X2 +y 
min 12 

XI +X2 =y 

S-t- XI - X2Y <0 IXI 

! IX2!, Y >0 
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with the feasible region: 

S=ý(XIýX25Y)1 XI +X2 =Y A XI -X2Y<01'XIlX23Y>oý 

Let A, B, C, D, E, F, Q H, I be available points in S, Table 4.1 presents these points. 

Table 4.1 Available points in S 

Point X1 X2 y 

A 37.4 14.6 52 

B 20.2 41.8 62 

c 1.7 34.3 36 

D 16.4 18.6 35 

E 12.7 3.3 16 

F 35.7 39.3 75 

G 0.4 3.6 4 

H 1.7 21.3 23 

1 52.4 7.6 60 

Let the superset of partitions G=f GI, G2 G31(-S with 

G, = fA, B, Cl 
G2 

= {D, E, Fj 
G3 

=fI, H, GI 

Figure 4.1 illustrates the partitions G. 
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G, 

G2 

G3 

Figure 4.1 Partitions G 

According to f G, 
, 
G2and G3 

are mapped into PI, P2 and P, 

G, f)P, - 11665.8,2218.4,1215.11 

G2 f )P2 =f 649.8,189.2,2894.1) 

G3 f >P3 = {2863.9,479.5,17.11 

Based on Definition 4.1 and 4.2, P, and P2are pools and P3 is an ordered pool. 

Lemma A. - G is a a-algebra of G and P is a a-algebra of D 
ji 

Proof- 

In both 4.7 and 4-8: 

e0e Gj, OEEPj 

Any union of countable many elements of G, or P, is an element of G, or P, 
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9 The complement of any element of Gj in G or Pj in D is an element of G or 

D. 

Lemma B. - The objects (G, Gj) and (D, P, ) are measurable spaces. 

Proof- 

From lemma A. Gj is a a-algebra of G and Pj is a cy-algebra of D. QED 

Definition4.3: Q, is the population of Gj iff Qjistherankof Pj(G, ). - 

Q) = rank (G. )= rank (Pj ) (4.9) 

Let P, as defined in Definition 4.1. Let also an h-metric hj defined over P, as a 

mapping from 93m --> 93 so that: 

hph> h(Pj h(If,, j 
ýj (4.10) 

Lemma C. - Thefunction 

mi 

hsm (Pj) If (s,, j)I 

is a measure of the object (D, P 
J). 

Proof- 

hsn' is a ftinction: Pj h" ý-RU{oojwith values in the extended real numbers such 

that: 
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h -vm (P, ) ý! 0v Pi 

h'm (U Pj) h" (Pj) 
i 

Let hcF and a set of nP pools P 
, with their h, metrics. Let an ordered 

combination D' so that: np 

I, P ..., P h (p 
np 21 np (4.12) 

with 

hj >hk Vj >k (4.13) 

Definition 4.4. - A combination of nP pools P, is called a cascade if 3h cF so that 

Dh follows 4.13. np 

Illustration 4.2: 

Let us apply h, on P, , 
P2 and 

P3 of Illustration 4.1 so that 

h, = h" (PI) = f(A) +f (B) +f (C) = 5099.3 

h2 = h" (P2) =f (D) +f (E) +f (F) = 3733.2 

h3= h" (P3) =f (G) +f (H) +f (I) = 3360.5 

Based on Definition 4.4, the combination 

h p, P D3 
1 2IP31 

is a cascade following 
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h, >h2 >h 3 

Definition 4.5. - The cascade domain A 
nPof 

D, ' 
p 

is defined as. - 

np mi 

Anp U Ifi, 

j 

I 

j=l 

Lemma E. - B(A np , 
f,,, ) is a cy-algebra of 

Anp 
and 

j) h sm (P 

Hj = 
np 

j sm (P h j) 
j=l 

is a probability measure of A nP * 

Proof- 

B(A np , f,, j ) 
is a a-al gebra since 

90c B(Anp , 
fj, 

j 
) 

(4.14) 

(4.15) 

p , j) 
is an element of A,, 

p 
Any union of countable many elements of B(A, 

9 Each complement of B(A,, 
P, 

f,, 
j) is also anelementof A,, 

P. 

H(A,, 
p 
) is a probability measure since 

o H>O 

0H has the countable addition property of h" 

H (h sm) 

o (A,, 
P)=I 
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Illustration 4.3: 

The domain of Dh in Illustration 4.2 is 3 

A3 =f 2218.4,1665.8,1215.1 
ý 2894.15 649.8,189.2,2863.9,479.5,17.11 

Based on 4.15 and Illustration 4.2,, the probability measures of A3 are 

h" (PI) 
-- H, H(h' (Pl)) =: 

5 099.3 
-0.418 3 

j" h sm (Pj) 12193 

j=l 
h' (P2)- H2 H(h" (P2)) 

-3733.2 = 0.306 3 

sm (P 2ý. 'h ) 12193 

j=l 
h' (P3) H3 H(h' (P3)) 3360.5 

0.276 3 

j) h SM (p 12193 

J=l 

Let D' a sequence of cascades and A, the domains of Dh 
np, k P, 

k np, k 

Definition4.5. - Let d,, be the density probability function of A The d is a" rofille np, k 'zp 

of Dh iff 
np k 

limdk = d- 
k-4oo 

Illustration 4-4: 

Let the unconstraint optimisation problem be: 

(4.16) 
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min 

Let the sequence of cascade Dh-::: Ip, associated with the sequence of 3, k J, k ý 
P2, 

k ý 
P3, 

k 
I 

partitions Gk 
= 

{Gl, 
k 5 

G2, 
k 5 

G3, 
kj and 

Go = {GI, o 3 
G2,0 

ý 
G3�)= [{x, ý, ý2x, ý, {7x, l] 

Usingf, 

Dh=: [tx' 1, ý4x' 1, ý49x' ý] 
3,0 111 

Let partitions and pools expand by 

9k : Si, j, k -)0. Si, j, k+l - 

SQ, k 

k+2 

The Gl, 
kIG2, kand 

G3, 
k are given by 

xi xi xi 
Gl, 

k = {X�- 

2'6' '(k+2)! 

G =12x x, 
X1 2x, 

2, k 1ý 13 '(k+2)! 

G3, 
k = {7x,, 

7x, 7x, 7x, 
2'6 (k + 2)! 

Usingf, 
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222 

p Xi XI x] = ýX2 

! )2 
1, k 14 '36' '«k+2) 

4X2 4X2 4X2 P2, 
k =ý4 X12,111 

)2 4' 36 «k + 2)! 
49 -r- 

2 49 r2 4C)y- 2 
P3, 

k= 09x, 
, 

'- "' 
4 

The domain of Dh IS 3, k 

36 ((k +2 ! )2 

222 
X2 X2 

2 
ýX2 

Xi Xi x24,4,4x, 

A, h 
,= 

{4x, - ju n. k1i, 
4 '36' '«k+2)1)21U 4' 36 «k + 2) ! )2 

2 49 X2 49 X2 49X2 

149x 14 36 '«k+2 ! )2 

Using the probability measure Hk as the density function dk 
!, 

dk(A,, 
P, k 

)= Hk(A,, 
P, k 3 

hsm (P,, 
k 

Lhsm(p j, k 
J=l 

with 

k+2 

X1 
1: 1! 

h'(pl, 
k 

1=1 

! )2 ((k + 2) 

k+2 

4x 2 

hsln (p2, 
k 2 ((k + 2)! ) 

k+2 
2 49xi 11! 

1=1 

! )2 ((k + 2) 

hsm (p2, 
k 

3 

Lhsm (pj, 
k 

hsm 
3 

L hsm(pj, 
k 

j=l 
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The profile of D' 3, k 

d, = limd =[1 
]J=I, [ 4 

'[49- k-+oo 
k(Anp, l 

) 

54 54]j=2 54_j=3 

Definition 4.6: Let A' and A be the domains of D" and Dh respectively. D 
h' is 

nP nP nP nP nP 

h iff defined as an inflection of Dnp 

I 
=A npnp 

Illustration 4.5: 

The partitions in Illustration 4.1 is 

G=JGIýG2 !, 
G3 I 

with 

G, =fA, B, Cl G2 
=fD, E, Fl G3 

= JI, H, GI 

Let the partitions G' be 

G, G3 

with 

ýA, Bý DI G, =: ýC, E, Il G= ýF, H, Gý 
1 

(4.17) 
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Usingf, the cascades are 

3= 
ýPlý P2 

ý 
P31 

D" = {P, ', P2, P3'1 3 

with 

jf(A), f(B), f(C) I P2= tf(D), f(E), f(F)l P3 = lf(l), f(H), f(G)l 

and 

P'=jf(A), f(B), f(D)j P2 '= jf(C), f(E), f(I)l P3 '= jf(F), f(H), f(G)j 
I 

Since, 

A3 
= ýf(A), f(B), f(C), f(D), f(E), f(F), f(G), f(H), f(I)I -- A3 

is an inflection of Dh 3 

4.3 Expanding partitions and pools 

Let a Markov process 

gL : S__>S 
t 

defined over a sequence of time periods t where L is the length of a Markov process. 
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Let also 

Gj, l = (s Q'I , 
SQ, 2 )**, I si, j, f 

) 

so that 

L (S ss 
)ES k=1,2,..., t 91 i, j, k 

(Si, 

j, l+l I Q, t+2 5-1 i, j, i+L 

and Gj,, 
+L is given by: 

Gj, 
t+L :::::: 

Gj, 
l ugIL (SQ, 

k 
) (4.19) 

with (s,,,,, +, , 
Si, j, t+2 1-5 

Si, j, t+L 
)observing Markov properties. 

Let the sequence of pools Pj,, 
+L 

be defined over G,,, 
+L . so that 

Pj, 
I+L 

Pj, 
l U If (Si, 

j, t+l)l 
f (SQ, 

t+2)5***ý 
f (Si, 

j, I+L)l 
(4.20) 

Illustration 4.6: 

Let the Markov process (L = 3) be 

3 
9t (Si, 

j, k 

(Si, 

j, t+l ý Si, j, t+2 5 Si, j, t+3 

) 
Cz S 

with 
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s 
Si, 

j, k 

I, J, I+l ': t+2 

Let the partitions 

Si, 
j, t+2 -": 

S1. 
I, t+l Si, j, t+3 - 

Si, j, 1+2 

t+3 't+4 

Go = 
IGI, 

o 5 
G2,0 

5 
G3,0 

I 

with 

GI, 0 = ýx, G-G- 2,0 :: ýX2 1 
3,0 

ý X3 

Usingf, the cascade is 

Dh- 3,0 

ýPI, 
O ý 

P2,0!, PI, 
O 

with 

p :- {f (XI)l P2,0 ý ff (X2)1 
1,0 

3 Let gO map x, , so that 

x' x' x' 

xi 

263 24 

Go evolves to G3 

G3 = 
tG,,,,, G2,3 G3.3 

I 

p3,0 = 

57 
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with 

ýx x' x, xL, 
1,3 15--- 

2'6 '24 

Accordingly, 

Dh= IP,,, P 3,3 ý 2,3 ý 
P3,3 

with 

G2,3 =f X2) G3,3 =: I X3 ) 

10 :::::: ff(xl)ýf( I I)JO )I P2,0 ":: ýWXOI P3,0 ff (X3)1 

26 24 

If d, is a profile, Dh will be in equilibrium with respect to d nz 
iff 

limd(A np, l 
)= d- 

1-+00 

4.4 Outline of the Cascade Optimisation Algorithm 

The procedure of the cascade optimisation algorithm is illustrated as follows: 

(4.21) 

Step 1: Select a number of pools to formulate a cascade (following Definition 4.1). 

Step 2: Use a Markov process to increase populations in partitions and pools. 

The Markov process maps a point in a partition to new points at each iteration. The new 

points are placed into the partitions to increase their populations. 

Step 3: Check whether the cascade follows Eq. 4.13 and develop the inflections 

(following Definition -1.6) if required. 
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Step 4: Check the convergence of the algorithm and iterate with Step 2 

The convergence of the algorithm is determined by the termination criteria that address 
the controls in: 

* Population size 

* Optimisation progress 

* Population feature 

The details of the tennination criteria will be explained in section 4.5.3. Figure 4.2 

outlines the main steps of the algorithm. 

No 

Select partitions 

and pools 

Populate Markov 

processes 

Check the order 

of the cascade 

Develop an 

inflection 

Check convergence 

Ten-ninate? 

Yes 

Figure 4.2 Cascade optimisation algorithm flowchart 
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4.5 Cascade optimisation algorithm as a Markov process 

The cascade optimisation algorithm employs a Markov process to generate new points. 

The Markov process is similar to that in SA. A global parameter is used as the pool 

temperature that accounts for the level of uncertainty in each pool, as is the case of 

temperature in SA. Each pool j is associated with a temperature (Tj) and pools are 

sorted in decreasing T. . If the top (TI ) and bottom temperatures (T,, 
P) 

are fixed, T. 

is calculated on the basis of the following expressions: 

T-T 
f (j) 'P 

I-n P 

jr + T_ 
I 

T I -T np 

r I- np 
(4.22) 

The parameter r controls the convexity (concavity) of the function that is twice 

differentiable in [1, W] with its second derivative: 

T -T,, T" (j) p -r-2 

np 
(4.23) 

With different r,, Eq. 4.22 can produce different cooling schedules. These cooling 

schedules can be classified into three major categories: 

e With r>1, 
f T" (j).,: ý 0 the cooling schedules are a strictly concave functions. 

e With r<1, 
f T" (j) >0 the cooling schedules are strictly convex functions. 
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* With r=I, 
fT"(j)=o the cooling schedules are linear functions. 

Figure 4.3 illustrates the three classes of cooling schedules 

rý1 

r1 

1'1 

r-- 1 
1'1 

Figure 4.3 Cooling schedules 

Where X-axis denotes the index i and Y-axis denotes Tj - 

On the development of a stochastic oPtimisation algorithm with capabilities for distributed computing 61 



Siyu Yang 

Illustration 4.7. - 

To illustrate how T. controls and manages actions in the algorithm, let us now set up an 

instance of the algorithm at t=0, using 4 partitions and pools: 

Go = 
JGj, 

O!, G2,0, G3,05 G4,01 

Let 4 points 

12 X2 = 11 X3 =9 X4 = 

be distributed in partitions, so that 

GI, 0 = ýx, ý G2,0 = {X2 ) G3,0 = {X3 ý G4,0 = {X4 ) 

Usingf, the cascade is 

Dhpppp 
4,0 :::::::: 1 

11,0 ý 2,0 5 3,0 ý 4,0 

Let T, -100, T4 = 1, and r=1. Based on Eq. 4.22, each pool is associated with a 

temperature: 

T= 100, T, = 67 , 
T, = 34, and T4 

I 

Let a Markov processes (L=3) 

3 )ES k=1,2,. --, t t 
(Si, 

j, k 

(Sij, 

f+I ý 
Si, 

j, 1+2 ý 
Si, 

j, t+3 gt 

with 
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+ 
t+I 

4.5.1 Population growth 

The Markov process generates points and increases the population in the partitions and 

pools. Similar to that in SA, the Markov process follows the Metropolis criterion: 

P1,1+1 P(S,, j, t+l 
I s,, j,, ) =min 1, exp Tj 

where 

s,, j,, and s,, j,, +,: the current point and the new point, 

f,, j,, and f,, j,, -,, : objective of s,, j,, and si, j,, +, ý 

p,,, +,: the probability of accepting si, j,,,, - 

Tj : the temperature associated with Pj,,. 

With this criterion,, new points are accepted according to the rule: 

si, j, t+l 

si, j, t 

if pl, t+l ý! 

i p,,,,, f 

(4.24) 

(4.25) 

where 

R: a random number in [0,1 ]. 

As is apparent, the probability of accepting a new point is controlled by the pool 
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temperatures. When Tj is large (small), the Markov process follows a high (low) 

probability and accepts more (less) points. 

Illustration 4.8: 

Let us revisit the description presented in Illustration 4.7. Let the optimisation problem 

be 

min f =x' 

The cascade at time 0 is 

Dhppp 4,0 --,: f 
'1,0 ý 2,0 ý 3,0 1 

P4,0 

with 

P- {f (xl)ý = ý224ý 1,0 
P2,0 -= ff (X2 )1= f 12 11 P3,0 :::::::: ff (X3 )I 

-"::: 18 1) 

P4,0 =: ff (X4 )1= 
{641 

go' firstly maps x4to X5: 

38 

X4 go >x 5 =-+2=10 1 

Based on Eq. 4.24, 

po', --.,: 2.3E - 16 
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P<R and x is not accepted. ' maps x again to x: O'l 5 go 46 

X4 X6 =8 +2=6 
2 

and 

PI, 2 =1 

PI, 2 ý! R and X6 is accepted. gO then maps X6 to X7 : 

36 

X6 go >x 
7- -+2=4 3 

and 

P2,3 : -:: 1 

R and x is accepted. A set of points are generated by g' 2,3 70 

3 
X4 9t > (X6! 

1 
X7 

Go evolves to G3 : 

G3 
= 

tGI, 

3ýG2,3 5G3,3 ý 
G4,3 

I 

with 

GI, 
3 =ýxlý G, 3= 

{X' ý G��, = ýX31 G4,3 = ýX4 
ý X6 e X7 1 
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Usingf, the cascade 

h 
4,3 

pppp 
1,3ý 2,35 3,31 4,31 

with 

{f (xl)1 = {144ý Eo 
P2,0 =: = ff 

(X2 ))= 
f 12 11 p -= ff (X3)1= 

{811 3,0 - 

P4,0 -= ff (X4 )3 f (X6 )3 f (X7 )1= f 64,3 6,161 

It is obvious thatp,,,,, is large (small) when Tj is large (small). T, should be a large 

value so that all points can be accepted and T 
,, P 

should be a small value so that only the 

points better than the current ones are accepted. 

4.5.2 Development of Inflections 

The inflections are developed periodically following Definition 4.6. To develop the 

inflections, Let F, nn and F, " be the maximum and minimum objectives in pools at 

time t. Apparently, the n, pools have n, +I boundaries. Let us assume that the 

cascade has nP +I pools associated with nP +I temperatures: 

(Ti - Ti+l) ax fim f mm 

j 
- (TI T 

p +j, 
max F, -Fmin 

t 

, 
max Each pooij is associated with two boundaries f 
, and 

(4.26) 
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FI max 
_Fmin )* (Tl j) + F, (4.27) _T max f 

im, 
in 

(TI -TIP +F) 
max 

_Fmm fim, ax 
(F, 

t)* (TI - Tj+l) 
+ F, max (4.28) 

(TI - 7ý +, ) 

Points are distributed among pools following 

f max min (4.29) 
i", 

ý!! f(Si, 
i, t) > fi"t 

Figure 4.4 presents the boundaries in the cascade 

f max Fm' 

Pool 1 
A min 

It 

---------- ------------------------- f max 
J't 

Pool i3 

---------- ------------------------ f min 
i't 

max 
np, t 

Pool np 

min F min fnp, 
t t 

Figure 4.4 Pools and boundaries 

Apparently 

min = 
max > min max (4.30) fi, 

- 1,1 
fi, 

I- 
fi, 

"= 
f", I" 

so that 

Vj <k (4.31) 
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The inflections of the cascade can observe 4.13 if 

Qj, f ýý' Qk, l V <k i (4.32) 

Illustration 4.9: 

Let us revisit Illustration 4.8, assuming the cascade has 5 pools associated with: 

T =100 
T2 

= 75.25 , 
T3 

= 50, T4 
= 25.75, and T5 

I !I 

F rmn and F3 max 
are: 3 

inin = (X 2= 16 F ax = 
(XI )2 

= 144 7) 3rn 

Based on Eq. 4.27 and Eq. 4.28, the boundaries for pools are 

f max 
= 144 

1ý 
7= 112 m" = 80 max 

=48 1,3 
f2", 

3ý 
f3,3 

1, 
f4], 

3 

f min 
=1 12ý min 

= 80!, min 
-48 

max 
= 16 1,3 

A, 
3 

f3,3 
ý 

f4], 
3 

Based on the boundaries, points are redistributed so that 

f max ý> min 
1,3 --": 

f(Xl)>f(X2) fl, 
3 

f max in 
21,3 

: ý' f (X3 f2lm, 
3 

f max in 
3,3 

>f (X4 )> f3m3 

f max 
41,3 

>f (X5 >f (X6 f4m3m 

The inflection is developed with the partitions: 
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GI, 
3 =f X1 I X21 G2,3 = fX31 G3,3 = IX41 G4,3 =ý X6 !, X7 

4.5.3 Termination criteria 

Based on the discussion in section 4.4, the termination criteria address the controls in 

(a) Population size 

To control the population size, a minimum population (Qmý') and a maximum population 

are proposed. Let Q, be the population of G or Dh, t. The termination I nP 

criterion provides 

0 The algorithm does not terminate if Q, is smaller than Q"'. 

0 The algorithm terminates if Q, is larger than Q"' . 

The first part of this criterion can avoid premature convergence. For example, if the 

algorithm tenninates when another termination criterion is true but Q, is smaller 

than Q' -Search is likely to stop at the non-optimal or the localy optimal solutions. The 

second part provides that the algorithm terminates when the pools have a large number of 

population. A large Q` ensures the convergence but requires long computation time. 

Optimisation progress 

The cascade optimisation algorithm also converges if the optimisation system does not 

progress any ftu-ther (no better solution can be explored). Let c be a value between 0 

and I and nF be an integer. The termination criterion provides that the cascade 

optimisation algorithm terminates if : 
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F" I< 
t+L 

for nF iterations. 

(c) Population feature 

As the population is distributed in pools, the cascade optimisation algorithm might have 

several features,, some of which reflect the convergence. Pool level and cascade level are 

two of these features. 

(1) Pool level 

The cascade optimisation algorithm is considered to be in convergence if the pool level is 

constant. The pool level is reflected on the standard deviation of the population of pools. 

Let cyt be the standard deviation and n ST be an integer. The termination criterion 

provides that the algorithm terminates if : 

I(TI 
- (TI+L 

11 
:5c 

for nST iterations 

(ii) Cascade level 

The cascade level is reflected on the density function (d, (A, 
P,, 

)). The cascade is in 

equilibriumif d, (A,, 
P,, 

) approximatestod, Letthechangeof d, (A,, 
P,, 

) be: 

Id, - dj+L 11 - 
ýýd, (Anp, 

I+L 
)- d, (A,, 

P, t)ýý 
(4.33) 
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j1d, - dt+L 11 approaches 0 if the cascade is in equilibrium. Let ns, be an integer 

ten-nination criterion provides that the cascade optimisation algorithm terminates if : 

Id, 
- dl+L 11 <C 

for nd iterations. 

4.6 The Cascade Optimisation Algorithm: Formulation 

The 

The cascade optimisation algorithm uses n, partitions (Gj,, ) and pools (Pj,, ). The set 

of n, P,,, are combined as a cascade (D", ). Given the top temperature (TI ) and the nP 

bottom temperature ( T,, 
P 

), each Pj,, is associated with a pool temperatures ( Tj ) 

following Eq. 4.22. The Markov process (g, ) increases the population in 

and Pj, . 

The cascade optimisation algorithm (COPT) is outlined as: 

Step I. - Place an initial point and its objectives into GI,, and P,,, - 

Gj, l 

Step 2. - Maps a point in Gj,, to new points. Place the new points and their 

objectives to G,,, and Pj,, 

Step 3: Check whether Dh 
'I 

follows Eq. 4.13 and develop an inflection if required. nP 

Step 4. - Check the tennination criteria described in section 4.5.3 and iterate with Step 

2. 
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4.7 Remarks and discussions 

4.7.1 COPT 

The partitions and pools are introduced into COPT to distribute populations. A Markov 

process maps a point in a partition to new points at each iteration. The inflections of the 

cascade are developed and the convergence of COPT is checked from time to time. The 

layout of Figure 4.5 presents the structure of COPT. 

Point +Tj 

JI" P, G I New points 

r ------------------ - 
P21 G2, 

L-------------------- 

:: o_- r -------------------- 
P31 

Ij 

L --------- --------- 

-- ---------- I 

G 4, P4ý1 

---------- 

L -------------------- 

No 

Yes 

Figure 4.5 COPT 

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 72 



Siyu Yang 

Based on the structure, multiple Markov processes can be launched simultaneously so 

that COPT can be effectively applied on parallel and distributed computing environments. 

With the Markov process, it is closely related to the stochastic methods. The 

similarities are illustrated in the following sections. 

4.7.2 Analogies between COPT and SA 

Let us consider a COPT structure featuring: 

eA large number of partitions and pools 

9A fixed population for each partition and pool 

* No inflections 

9 Population growth starting from the highest pool to the lowest pool 

oA Markov process mapping the last accepted point that is generated at previous 

iteration 

The layout of Figure 4.5 is changed to that of Figure 4.6 that presents SA. 
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P'l Gij 
L ----------------------- 
------------------------ 

P2, G21 III 
I----------------------- 

---------- 

-------- 

----- 

--- 
F 

--------- 

Gi, 

-------- /\ 

Figure 4.6 SA 

the last accepted point in G 

Initially, a point and its objective are placed into the G and P,,, .gL maps this point I't 0 

to new points following the Metropolis criterion. T, determine the acceptance 

probability in this criterion. The new points and their objectives are placed into the GI,, 

and P,,,. gLmaps SIL to new points. T2 determines the acceptance probability in the 

Metropolis criterion. Points and their objectives are placed into the G,,, and P,.,. 

The algorithm then iterates until when G, 
P,, 

and PýP, are filled by the new generated 

points and their objectives. Analogies between COPT and SA are strengthened as they 

both 
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Use the Markov process that follows the Metropolis criteria. 

e Have cooling stages (pools account for Tj 

* Have cooling stages sorted in decreasing T, - 

As is apparent, SA develops from the highest to the lowest cooling stages. With the 

sequential nature in SA, it is not suitable for running on parallel and distributed 

environments 

4.7.3 Analogies between COPT and TS 

Let us now consider the case of a COPT structure featuring: 

9A fixed population for each partition and pool 

e No inflections 

e New points generated out of a small subset of each pool 

The layout of Figure 4.5 is then changed to that of Figure 4.7 that presents TS. 
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---- ----------- Point+RSM+FLM 

PI'l New points 
---------- -------- - 

w 
b 

S ----------------------- 

G2. 
t 

P, 

--------------- -- - 

S2 

I P3ý1 IC 

---------------------- 

Figure 4.7 TS 

CL :a local search in which L neighbours are generated 

Sb: the best point in G and J, i 

(Sb 
j): 

5 f (si, 
j) 

vi 

P Initially, a point and its objective are placed into G1, and I'l . CL generates L 

neighbours of this point. The neighbours and their objectives are placed into G,,, and P,.,. 
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C' again generates L neighbours of sb and places them and their objective into 

G2,, 
and P2,, - G,,, is the recent-based short-term memory (RSM) used to prevent CL 

from generating the same points as the ones in the RSM. CL again generates the 

neighbours of s2' and places them and their objectives into 
G3,, 

and P3,,. G2,, is the 

RSM for this local search. TS keeps running until the neighbours of sb and their nP 

0. ectives are generated and placed into G,, 
P,, 

and P,, 
P,, . 

The super partitions G, are 

used as the frequency-based long-term memory (FLM). COPT performs 

intensifications and diversifications based on the FLM. Analogies between COPT and 

TS are strengthened as they both: 

9 Have the neighbourhood (partitions account for the neighbourhoods). 

9 Generate new points out of the point in the neighbourhood. 

The local search starts every time from the best point of the neighbours. TS has the 

sequential nature and is therefore not suitable for the parallel and distributed applications. 
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Chapter 5 Algorithm implementation as a 

master-worker paradigm 

5.1 Master-worker architecture 

The master-worker paradigm is common in parallel and distributed computing 

applications that execute on the environments involving a single master and a numbers of 

workers. The workers execute the computational tasks and the master dispatches the 

tasks to the workers and collects results. The global information is transferred between 

the master and the workers Periodically. To avoid bottlenecks and reduce the burden of 

communication with the master, one has to build the workers as independent from each 

other as possible. 

5.2 Master and worker tasks in COPT 

The Markov process increases the population of the pools. Multiple Markov processes 

can be launched simultaneously to increase the population. To implement COPT, the 

workers undertake the Markov process (Tskmc ) that is the time expensive task. On the 

other hand, the master implements the partitions and pools and executes the tasks that 

include: 

do Development of inflections (Tsk"f ) 

9 Checking the convergence of COPT (TskT' ) 

78 
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Tsk'"f and TskT' follow different time schedules. Figure 5.1 and Figure 5.2 outline the 

worker process and the master process respectively. 

0 

Figure 5.1 Worker process 

Figure 5.2 Master process 

There are two tasks that transfer the infon-nation between the master and workers: 
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* Exporting information from the master to workers (TskE' ) 

9 Importing information from workers to the master (TskP) 

5.3 Communication 

The information transferred between the master and workers involves: 

e Infon-nation related to points (point-related infon-nation) 

* Control commands for workers (command-related information) 

The point-related inforination includes: 

e M-W information that involves a selected point and its objective and transfers 

from the master to workers 

* W-M information that involves new points and their objectives and transfers from 

workers to the master 

The command-related information involves: 

9 Initiation commands (i. e. start COPT) 

* Termination commands (i. e. terminate COPT) 

Figure 5.3 outlines the infonnation transferred in the course of COPT. 
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Master Initiation Workers 

m-w 
---------- ------- > 

< 
W-m 

Tenninatioý 

I 

Figure 5.3 Information transferred 

Based on the figure, COPT develops from the top to the bottom. 

Initially, 

The master sends the initiation commands to the workers. 

In the course of COPT, 

Workers take the M-W information from the master. 

Workers send the W-M information to the master. 

Finally, 

The master sends the termination command to workers,, if the termination 

criteria are satisfied. 

5.4 Implementation of COPT 

COPT is implemented as the master-worker paradigm in two different ways. For 

implementation, the computing environment firstly includes a master and a worker. In 
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the following sections, the implementations are explained in terms of the partitions and 

inf -P skm' pools and tasks (Tsk T4""', TskE 
, 
Tsk'P, and T 

5.4.1 Implementation of partitions and pools 

The partitions and pools are developed by tables in a database. The database is 

implemented on the master. pool ID and point ID are two columns that identify the 

partitions/pools and the points in them. Let us revisit the notations described in Chapter 

4. The pool ID and the point ID correspond to the index j and the index i. 

Firstpartitions andpools method 

In the first implementation, the database involves poolfeature, cascade, and partitions 

tables. Figure 5.1 presents the partitions and pools. 

pool feature 
[X 

pool ID 
El 

temperature 

Figure 5.4 First implementation of the partitions and pools 

The pool_feature and the cascade tables implement the pools. The first one stores the 

pool temperatures (T, ). It involves pool ID and temperature columns. The latter one 

stores the objectives in pools. It involves point ID, pool ID and f columns. The f column 

stores the objectives. The pool ID column is the candidate key connecting to that in the 

pool_feature table. The partition table implements the partitions and stores the variables 
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of points. Beside the point ID column, the partitions table involves the columns that 

store the variables. These columns are Var X where X is the index of the variables. In 

Figure 5.4, three variables are stored in Par 1, Par 2, and Par 3 columns in the partitions 

table. The point ID column is the primary key connecting to that in the cascade table. 

The partitions table in this implementation stores the variables. If the application 

problem has n variables, the partitions table should have n VarX columns. With a large 

n employed, the table would grow quickly. In the end, the partitions table might become 

too big to manage. The size of the M-W information and the W-M information is large 

since they involve all the variables of the points. COPT therefore encounters bottlenecks 

and high communication traffic. In addition, this database for a particular problem may 

be not suitable for other problems since the numbers of the variables for these problems 

may be different. 

Second partitions andpools method 

In the second implementation, the database does not have the partitions table. The 

variables are stored in files (solution files) on the worker. The point-related information 

does not involve the variables. An additional table is introduced to store the M-W 

information. Figure 5.5 illustrates this partitions and pools. 

iDool feature 

3; 001 ID 

t crim erm tux, e 

-11' 

3)0 i3lt ID 

Teng er t-mr e 
f 

Figure 5.5 Second implementation of the partitions and pools 
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The database now involves pool_feature, cascade 
-f , and M- W tables. The pool eature 

table and the cascade table are the same as those in the first implementation. The M-W 

table stores the M-W information and comprises point ID, temperature and f columns. 
ID is another column that is the primary key identifying the different M-W infori-nations. 

This database stores only the objectives so that it is small even if COPT is applied to 

problems that have large numbers of variables. In addition, with the absence of the 

partition table, the implementation is suitable for different applications. The M-W 

information and the W-M information do not involve variables so that they become much 

smaller than those in the first implementation. 

5.4.2 Implementation of Tsk"' 

Tsk"" develops inflections of the cascade by periodically referring to Definition 4.6. 

The implementation of Tsk inI is illustrated as follows: 

First implementation of Tsk "' 

Tsk inf 
is implemented on the worker. Tsk" runs after Tsk' at each iteration. The 

worker calculates the boundaries (f "' and f 
Min 

ilt j'I Based on Eq. 4.22, the pool 

temperatures (Tj ) in the poo1jeature table, the maximum objective (Fm) and the 

minimum objective (F, ' ) in the cascade table are also used in the calculation. Then the 

master redistributes points based on these boundaries by updating the pool ID in the 

cascade table. Tsk"' can be quickly executed even in a big table. Table 5.1 illustrates 

the CPU time spent for Tsk"'f. 
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Table 5.1 Times for Tsk"' 

Size (rows) Time (s) 

10 0.013 

100 0.034 

1000 0.166 

10000 0.336 

Based on this table, Tsk"' spends only 0.336 seconds when the cascade table involves 
10000 rows. 

Second implementation of Tsk "' 

Tsk"' is now implemented on the master. The master calculates the boundaries of pools 

and redistributes the points in the pools. Tsk"' executes on a computer thread and 

follows independent time schedule. The time schedule for TW` in the first 

implementation is not feasible because the master now cannot catch the time when 

Tskmc finishes. To keep the order of the cascade Tsk inf 
executes as frequently as 

possible. A new schedule is proposed that COPT develops the inflections every time 

after the pools has a new point. 

on the worker. 

Tsk" now is parallel with and independent of Tsk' 

5.4.3 Implementation of TskT' 

Based on the description in section 4.5.3, termination criteria are related to the population 

in pools and the change of the best obj ective F, "' - Fn"r, the standard deviation 
+L 

of the populations (IICT, - GI+L ýj ), and density function (11d, - d, 
+L 

1ý ). TskT' checks these 

values periodically and determines the convergence. 
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First implementation of TskT' 

Tsk ' is implemented on the worker. The worker extracts Q,, IFt nun 
- FtrM 

+L 
Iý JJC7t -(3t+LIJ 

and Jýd, -d, +j 
from the partitions and pools and determines the convergence. Similar 

to the first implementation of Tsk "f , TskT' use ODBC to extract these values. This 

task is launched after Tskn'at each iteration. 

Second implementation of TskT' 

Similar to the second implementation of Tsk"f , TskT' is implemented on the master. 

The master extracts Q, 
ým Cyt+L 11 and ýjd, - dt 11 and determines the - FML IF, nlln 

t+ +L 

convergence. TskT' executes on a computer thread and follows a new time schedule. 

The schedule is based on a new time unit that is defined as the penod in which a new 

point is accepted and placed into partitions. The new schedule provides that the master 

checks the convergence every time after L new points are placed into partitions. 

5.4.4 Implementation of TskE1 

TskEI selects the M-W information from partitions and pools and transfers it to the 

worker. The implementations of Tsk'P is illustrated as follow: 

First implementation of TskEP 

TskEP is implemented on the worker and executes before Tsk' at each iteration. 

With the partition table, the M-W information involves the variables of the selected 

points. The worker takes the M-W infonnation and initializes the Markov processes. 

Since the Markov process observes the Metropolis criterion that requires the pool 
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temperatures, the M-W information involves the pool temperatures. For example, if 

TskE' selects the point 3 from partition 4, the objectives and variables where the point 

ID is 3 and pool ID is 4 are selected from the cascade table and the partition table. The 

temperature of pool 4 (T4) is also selected from poolfeature table. The worker selects 

the M-W information from the master and starts Tsk"c. TskE' in this implementation is 

not suitable for executing on the parallel and distributed computing environments. The 

master would become too busy to deal with the queries from the workers when a large 

number of workers intent to fetch the M-W informations at the same time. 

Second implementation of TskEP 

In this implementation, TskEP are separated into two subtasks that include: 

e The master selects the M-W information and stores it in the output files. 

* The worker takes the output files from the master and finds the corresponding 

solution files. 

The M-W information involves the objectives of the points and the temperature of the 

pool where the points are selected. This information is firstly stored in the M- W table 

and then transformed to the content in the output files (named as Export). Similar to 

other tasks in the second implementation, this subtask executes on a computer thread 

following a new schedule. Based on the schedule, this subtask executes every I second 

so that the M-W information can be updated as frequently as possible. Figure 5.6 

illustrates the master putting M-W information into an ouput file in TskEP . 
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Figure 5.6 Master storing M-W infon-nation into an output file 

The other subtask executes on the worker. It takes the output files from the master and 

finds the corresponding solution files to start Tskmc. To find the solution files, the 

name of each solution file is appended by the point ID of the selected solution (SoX 

where X is the point ID). The worker reads the point ID in the output files and finds out 

the solution files. Figure 5.7 illustrates the worker finding the solution file. 

rj, = Export 0- ý ýSUN 

Figure 5.7 Worker finding the solution file of point X 

The subtasks executes before Tsk"c at each iteration. 

5.4.5 Implementation of Tsk" 

First implementation of Tsk'P 

Tsk 'I is implemented on the worker. The worker sends the W-M information to the 

master and stores them into partitions and pools. The W-M inforination involves the 

objectives and the variables of the new points that are stored in the cascade and the 
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partitions tables. The worker runs TskP every time after Tsk"c. Similar to the first 

implementation of Tsk-P, TskP is not suitable for running on parallel and distributed 

computing environments. The master might become too busy to deal with the queries 

from the workers when a large number of workers are intent to send the W-M 

information at the same time. 

Second implementation of TskP 

Similar to the second implementation of Tsk-ý'P, TskP is divided into two subtasks that 

include: 

9 The worker sends the input files to the master. 

* The master reads the input files and puts the points in partitions and pools. 

Variables are stored in the solution files on the worker. The W-M information 

involves the objective and point ID of a point and is stored in the input files (named as 

Import). Then the worker sends them to the master. The input files are associated with 

the solution files and their names are also appended by the point IDs (Imporff where X is 

the point ID). 

In the second subtask, the master reads the input files and places the objectives in the 

cascade tables as presented in Figure 5.8. 
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Figure 5.8 Master storing W-M information into the partitions and pools 

The bulk insert task of Microsoft SQL server 2000 is used to store the W-M information. 

It has been proven to be the quickest way to insert data. Table 5.2 shows the CPU time 

spent for inserting different size data into database by using the traditional SQL queries. 

Table 5.2 Time spent by using SQL queries 

Size (Kb) Time (s) 

10 1.234 

100 3.437 

1024 60.656 

10240 665.359 

It is obvious that increasing the data size increases the time. This method has to spend a 

long time to insert a large amount of data into the database. For example, it has to spend 

665.4 seconds to insert I OMb data into the database. As the queries execute on the 

worker, the increasing time would increase the overall time spent for COPT. Table 5.3 

illustrates the clock time spent by using the bulk insert task. 

Table 5.3 Time spent by using the bulk insert task 

Size (Kb) Time (s) 

10 0.281 

100 0.328 

1024 

10240 

0.61 

1.453 
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Based on the results, the bulk insert task is orders of magnitude quicker than SQL queries. 

For example, the bulk insert task only spends 1.5 seconds for inserting I OMb data. In 

addition , increasing the data size does not lead to an unacceptable increment on the time 

spent. 

Each of these subtasks has an independent time schedule. The first subtask follows a 

schedule where the worker sends the input file every time after a new point is generated 

and stored in the files (the solution files and the input files). On the other hand, the 

second subtask executes as long as the master obtains a new input file. 

5.4.6 Implementation of Tskmc 

First implementation of Tsk"c 

Tskmc is implemented on the worker. The worker runs the Markov process that follows 

the Metropolis criterion. 

Second implementation of Tskmc 

The worker takes Tsk"c and follows the steps: 

Step 1: Selection of initial solution extracts the output files and finds the 

corresponding solution files based on the description in the second implementation of 

TskEP in section 5.4.4. Then the worker reads the solutions in the files. 

Step 2: Development of new solutions runs the Markov process following the 

Metropolis criterion. 
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Step 3: Storage of solutions stores the newly accepted solutions in the files (the 

solution files and the input file). 

Figure 5.9 illustrates the worker generating new points and storing them in files. 

Figure 5.9 Worker generating new points and storing them in files 

The worker generates four points whose point IDs are 1,2,3, and 4. Then the worker 

stores these points in paired files namely: Importl and Sol, Import2 and So2, Import3 

and So3, Import4 and So4 files respectively. 

5.4.7 Relations between the tasks 

In the first implementation, all tasks execute sequentially on the worker so that COPT is 

difficult to be parallelized. In addition, with a large numbers of workers employed, the 

master would become too busy to deal with the queries from the workers. 

In the second implementation, the tasks (Tsk"" andTskT) execute on the master. TskE1 

I 
and Tsk P are separated into two subtasks where one executes on the master and the 

other runs on the worker. All the above tasks are associated with specific tables and 

follow different time schedule. Figure 5.10 presents the relation of computer threads, 

tasks and tables. 

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 92 



Sivu Yan 

Tasks 

------------------------ -- ------------------------------- -- 

Poo1jeature 
cascade I Poo1jeature Tables 

cascade 
cascade 

M-W 

L---------------- 
-- 

cascade 

Figure 5.10 Relations of computer threads, tasks, and tables 

5.5 Computing implementation 

The master runs on Windows 2000 server on which the partitions and pools are 

implemented as the tables in database. The database is managed by Microsoft SQL server 

2000. The worker runs on Windows XP professional on which the tasks are programmed 

using Fortran programming language. In the first implementation, all tasks are coded 

on the worker and executed sequentially. To communicate with and manage the database 

on the master, the worker uses Fortran SQL library to call Open Database Connectivity 

(ODBC). In the second implementation, the tasks (Tsk"f, TskT, Tsk`ý, and Tsk") are 

implemented by intrinsic functions of the SQL server, running on independent computing 

threads of the master. The worker now only undertakes Tsk"c which is coded by 

Fortran prograMming language. 
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5.6 Remarks and Discussions 

There are two different implementations for COPT, in which the partitions and pools are 

developed by the tables of a database. The database in the first implementation includes 

the partition table that stores the variables of points. The size of the database, in such 

case, increases quickly if the application problem involves a large number of variables. 

The partitions and pools are not universal since the partition table has to change when 

COPT is applied to different applications. In addition, the amount of information 

transferred between the master and workers is large since it involves the variables. In 

contrast,, the database in the second implementation does not involve the partition table. 

The growth of the database is very small even if the application problem involves a large 

number of variables. Without the partition table, the partitions and pools are suitable 

for different applications. The information transferred between the master and the worker 

is now much smaller than that in the first implementation. 

COPT involves several tasks and is developed differently in the two implementations. In 

the first implementation, the worker undertakes all tasks and runs them sequentially. 

COPT does not follow the requirement of a master-worker paradigm. With a large 

number of workers employed, the master would become too busy to deal the queries 

from workers. In the second implementation, the master undertakes Tsk' and TskT' and 

half of TskEPand TskP while the worker focuses on Tsk". The tasks on the master 

are independent and follow different time schedules. COPT is implemented as the 

master-worker paradigm and can be applied to the parallel and distributed computing 

environments. 

In the following chapter, COPT is studied on several simple problems in terms of the 

impact of its important features and the selection and coordination of the termination 

criteria. The performance of COPT reflects on the solution quality (measured by 

objective value) and computation time. 
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Chapter 6 Evaluation and validation 

6.1 Features and problems 

COPT has several features that can affect its performance. These features involve: 

e The management of stochastic search 

e The size of optimisation structure 

e The depth and intents of search 

* The selection and coordination of different termination criteria 

The management of stochastic search relates to the inflection of COPT which is 

implemented as redistributing the populations of pools. The distribution of population 

may adopt different distribution functions. With the pool temperatures, the Markov 

process follows different acceptance probabilities. The distribution function therefore 

has an impact on the performances. The size of optimisation structure is determined by 

the number of partitions (pools) (n, ). As n, increases, the population of a partition 

(pool) decreases so that the structure size has an apparent impact on the perfon-nance. 

The length of Markov process (L) determines the depth of search. Compared to a short 

Markov process, a long Markov process might explore the search space more easily. 

The ten-nination criteria involve four different parts. The selection and coordination of 

the termination criteria also have an impact on the performance. 

6.2 Benchmark problems 

COPT is applied to four test problems (Floudas, 1999). These problems arose in literature 
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studies involving a wide spectrum of problems including: 

0 Quadratic assignment problems 

0 Heat exchanger network synthesis problems 

0 Phase and chemical equilibrium problems 

0 Process design problems 

The four test problems are listed as: 

TP I is a non-convex quadratic problem 

0 TP2 is a generalized geometric programming problem 

0 TP3 is a twice differential nonlinear programming problem 

0 TP4 is a quadratically constraint problem 

The formulations of TP I- TP4 are given in the Appendix A. 

6.3 Implementation and performance measurements 

The performance of COPT is measured by its solution quality and the computation time 

required to converge. The solution quality is accounted by the objective of the optimal 

solution achieved (F"). The computation time is measured differently in the two 

implementations. In the first implementation, the tasks are implemented sequentially on 

the worker. The computation time is accounted by the worker's CPU time that is sum of 

the CPU times for all tasks, so that: 

5 
CPU T CPU 

Tt 
t=l 
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Tcpu = the worker's CPU time 

Tcpu = the CPU time for Tskmc I 

Tý CPU = the CPU time for Tsk "'f 

Tý CPU = the CPU time for TskT' 

Týcpu = the CPU time for Tsk -4'p 

T5 cpu = the CPU time for Tsk 'I 

On the other hand,, Tsk"', TskT, and part of TskEPand TskP execute on the master 

and are independent of Tskmc in the second implementation. The computation time is 

the maximum of the CPU times for the tasks, so that 

CPU CPU 
5 

,I TCPU T maxf T, 
t t=2 

Compared to the other tasks, Tskmc is the most time expensive one. Table 6.1 illustrates 

5 
CPU the comparison between Tcpu and I Tt COPT is applied to TPI and terminates 

t=2 

when the population of pools (Q, ) approaches 1000. 

Table 6.1 CPU times for the tasks 

Tcpu 10.787 

5 

L Tt CPU 2.513 
t=2 
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5 
TcpU is Based on the above table,, T, u is about 5 times larger than I TICPU 

. 
Thus, 

I 
t=2 

the overall computation time. 

Depending up the discussions in Chapter 5, COPT is implemented on a computing 

environment with a master and a worker. The configurations of the master and the 

worker are presented in Table 6.2 

Table 6.2 Configurations of the master and the worker 

Master CPU Ram Memory 

Prise-sql Intel(R) Core(TM) 

2.13GHz 

2Gb 

Worker CPU Ram Memory 

Grid I Intel(R) Pentium(R) 

1.20GRz 

512Mb 

6.4 The management of stochastic search 

Distribution functions can be influenced by the pool boundaries. These pool boundaries 

are associated with the pool temperatures. The cooling schedule presented in Eq. 4.22 

determines the pool temperatures. Since the parameter r controls the convexity 

(concavity) of the cooling schedule, it might have impacts on distribution functions. With 

different r values, three classes of cooling schedules are produced: 

*Linear cooling schedule (r= I) 

e Convex cooling schedules (r > 1) 
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Go Concave cooling schedules (r < 1) 

Each class of cooling schedules is associated with a form of distribution functions, 

involving: 

* Linear distribution 

* Convex distributions 

* Concave distributions 

The distribution of population that follows the above distribution functions are illustrated 

in the following sections. 

(i) Linear distribution 

The Linear distribution is associated with the linear cooling schedule. In the linear cooling 

schedule, the temperature difference of adjacent pools is constant. Based on Eq. 4.26, the 

difference of the boundaries of a pool (defined as pool size) is constant. The distributions 

of population of ten pools at three periods are extracted and illustrated in Figure 6.1. The 

three periods account for: 

0 Initial phase ( Q, - 100 ) 

0 Intermediate phase ( Q, =5 00 ) 

0 Final phase ( Q, = 1000 ) 

Q, : the population of pools at time t 

Q: the population size 

j: index of a pool 
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Figure 6.1 Linear distributions 

Based on the above figures, the linear distribution tries to evenly distribute the population 

into pools with no bias. With the use of inflection, each pool is distnbuted by 

intennediated solutions within the same quality level (defined by its lower bound 

rwn 

,,, and upper bound f, 7), increasing from the top pool to the bottom pool. The 

linear distribution produces the quality levels which can be distributed by almost the 

same amount of intermediate solutions. The Markov process that starts from an 
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intermediate solution within a pool follows the acceptance probability controlled by the 

corresponding pool temperatures. Thus, cascade optimisation algorithm that uses linear 

distribution can execute the Markov process that follows different acceptance 

probabilities and starts from the same number of intermediate solutions within different 

quality levels. 

(ii) Concave distribution 

The concave distribution is associated with the concave cooling schedule. In the concave 

cooling schedule, the temperature difference of adjacent pools follows: 

Tj - Tj+l > Tk 
- Tk+l VJ <k 

Tj and Tk : the temperatures of poolj and pool k 

Based on Eq. 4.26, the size of pools decreases from the top pool (pool 1) to the bottom 

pool (poolnp). Figure 6.2 presents a concave distribution (with r---O. I) at the three 

periods. 
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Figure 6.2 Concave distributions 

As the figures illustrate,, the population of a higher pool (the top pool or a pool close to 

the top pool) is larger than that of a lower pool (the bottom pool or a pool close to the 

bottom pool). With the inflection, each pool is assigned by a quality level increasing 

towards the bottom pool. With inflection under a concave distribution, the number of 

intermediate solutions within a low quality level is larger than the number of intermediate 

solutions within a high quality level. 

The Markov process for a higher pool can launch from a large number of intermediate 

solutions in the overall space. Such Markov process follows a high acceptance 

probability and can easily explore the search space. With inflection, the promising areas 

penetrate downwards to lower pools. In contrast, the Markov process for a lower pool 

focuses on a small number of good intermediate solutions in promising areas. Such 

Markov process now follows a low acceptance probability and searches deeply for the 

optimal solution within the promising areas. Thus, the cascade optimisation algorithm 

.-0 Qj 
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with concave distribution is likely to explore the search space and converge to the 

optimal solution. 

As r decreases,, the concavity of a cooling schedule increases. Two concave cooling 

schedules are selected as: 

0 The one with a small concavity (r--O. I) 

0 The one with a large concavity (r= -10 ) 

The corresponding distributions of population at the last period are extracted and 

illustrated in Figure 6.3. 
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Figure 6.3 Concave distributions with different r 
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Based on the figures, the bias of distributions moves up towards the top pools (PI ) as the 

concavity increases. Finally, the most of the population is distributed to P, 
- 

(iii) Convex distribution 

The convex distribution is associated with the convex cooling schedule. In the convex 

cooling schedule, the temperature difference of adjacent pools follows: 

Tj - Tj+l < Tk- Tk+l Vj <k 

Based on Eq. 4.26, the size of pools increases from the top pool to the bottom pool. 

Figure 6.4 presents a convex distribution at the three periods. 
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Figure 6.4 Convex distributions 

The distribution of population has bias to lower pools. This bias becomes more and more 

obvious as COPT proceeds. In contrast to concave distributions, the number of 

inten-nediate solutions within a low quality level is smaller than the number of 

intennediate solutions within a high quality level. The Markov process for a lower pool is 

launched from a large number of good intermediate solution in promising areas, whilst 

the Markov process for a higher pool focuses on a small number of points. In such case, 

the search cannot easily explore the search space and is likely to be distracted by too 

many intermediate solutions within high quality levels. 

As r increases, the convexity of a cooling schedule increases. Two convex cooling 

schedules are selected as: 

0 The one with a small convexity (r = 2) 

0 The one with a large convexity (r= 10 ) 

The corresponding distributions of population at the last period are extracted and 

illustrated in Figure 6.4. 
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Figure 6.5 Convex distributions with different r 

The bias of distributions moves downward to the bottom pools (PP) as the convexity 

increases. Finally, the most of the population is distributed to P,, 
P . 

To study the effect of r and the distribution functions, the cooling schedules with nine r 

values from -10 to 20 are selected. The top pool temperature (T, ) should be a large 

value so that the Markov process launched from the top pool can accept all new points. 

In contrast, the bottom pool temperature (7ý ) should be a small value so that the Markov 
P 

process launched from the bottom pool can only accept the new points better than the 

current points. So T, =I 00 and 7ý 
P=0.01 

are selected. A Markov process with the 

fixed length (L=-10) is selected to generate new points. The set of experiments concludes 

convergence on the basis of the Population of pools so that COPT terminates when the 

46 8 

r=10 

--- -- -- ------------------------------------------ - 
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population of pools (Q) approaches a maximum population (Q" ) (the complete set of 

termination criteria are discussed in Section 6.7). The test problems are small-scale so 

that the stochastic search can quickly generate a large population. Q'a' is assigned a 

large value so that 

2000 

If the population is distributed in a large number of pools, the impact of distribution 

functions can be easily extracted. So the number of pools is fixed as: 

np = 100 

10 statistical runs with different initial points are selected to test each distribution 

function. The results are the averages of the 10 runs. Figure 6.6 presents the 

perfonnances of COPT. 

.............. 

.... ......... 

3000 ............. 

-15 -10 -5 05 10 15 20 25 

r 

.................. - ............. ............. 

TP2 optimal solution (lower is better) 

............... . ................ 

20 

is 

505 10 is 20 25 
-15 -10 

ZVV 

---- - ----------- ISO , ----- -- -- ----------------- -------------- - 
CPU secs 

-1 Imp ...... ....... ...................... * ....... ...... ............... ............. ... --*-I IMP 
2 IMP 2-IMP 

-- ----- -- --------------------- 

-15 -10 -5 05 10 15 20 25 

r 

............ ................... ...... ........................ 

TP2 computation time 

IMP 2_IMP 

107 On the development of a stochastic optimisation algorithm with capabilities for distributed computing 

TPI computation time 

----------- 

TP1 Solution quality (lower is better) 



Siyu Yang 

-*--I IMP A 21 MP 

-is -10 -S 05 10 15 20 25 

r 
.................... ........ . ............... . ......................................... -- ----------------- - 

TP4 optimal solution (lower is better) 

-15 -10 -5 5 10 15 x 25 

. ............. . ................... .-- 

-46.5 
CPU secs 

--*-I IMP 
L 2_IMP 

TP4 computation time 

Figure 6.6 Perfon-nance with different distribution functions 

f. objective values 

I-IMP: the first implementation 

2_IMP: the second implementation 

The distribution of population has an increasing bias moving toward to the bottom pool 

as r increases. This bias decreases the solution qualities of COPT. Meanwhile, the 

computation time decreases with this bias. In addition, the computation time for the 

first implementation is larger than that for the second implementation. That is because 

COPT that uses the second implementation launches the tasks simultaneously so that the 

computation time is not sum of the CPU times for the tasks but the CPU time for 

Tsk"" . Based on the results, adopting the concave distribution with r close to -2 can 

give the best tradeoff between the solution quality and the computation time. 
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6.5 Size of optimisation structure 

The size of optimisation structure is detennined by the number of pools (np). The 

Markov process launched from a pool follows an acceptance probability. With a 

large np,, the Markov process follows a large number of probabilities so that the search 

might converge to the optimal solution. In theory, increasing np increases the CPU time 

for Tsk"f and TskT. The computation time for the first implementation increases 

with np. In contrast, the computation time for the second implementation is the CPU 

timefor Tskmc. Theimpactof nP on computation time depends on the Tsk'. 

TT, L, and Q"' are set the same as those in the study of distnbution functions. np 

The concave distribution function (r=-2) is selected. Eight different structure sizes are 

selected with nP from 5 to 500. Figure 6.7 illustrates the performances. Similar to the 

study in distribution functions, the results are the average of 10 stochastic runs. 
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Figure 6.7 Performance with different structure sizes 

Based on the figures, increasing structure size increases the solution qualities. The 

incremental benefit diminishes as nP is larger than 100. Table 6.3 presents the standard 

deviations of F" (a F min) in two ranges ( nP < 100 and nP ý! 100 ) when using the 

first implementation. 
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Table 6.3 Standard deviations of F min 

Test problems UFmin ( nP <I 00 aFmin ( nP ý! 100 

TPI 109.164 0.539 

TP2 4.019 0.00261 

TP3 0.150 0.00248 

TP4 0.297 0.000332 

Let us take TP I for example. (T. -i- for nP < 100 is about 170 times larger than that for 

np > 100. 

The computation time increases with the structure size. That means that COPT with a 

large optimisation structure size requires a long computation time to converge. To 

check the degree of increment on computation time, an increasing ratio is introduced. 

This ratio is measured by the percentage of the time difference between np =5 and 

np = 500 over the time of np = 500 (r Ins ). Table 6.4 illustrates the ratio for the two 

implementations. 

Table 6.4 Increasing ratios 

Test problems r 
Ins (I-IMP) r 

Ins (2_IMP) 

TP 1 0.814 0.632 

TP2 0.632 0.419 

TP3 0.808 0.683 

TP4 0.762 0.668 

As the table illustrates, the two implementations have large increasing ratios (the smallest 

one is 42%). However. COPT can be applied on the parallel and distributed 

mputing ill 
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computing environment so that the resulting increment can be reduced. 

6.6 Depth of search 

The depth of search is reflected on the length of Markov process (L). A long Markov 

process can explore more points than a short Markov process. COPT with a long 

Markov process can easily converge to the optimal solution but at the expense of a long 

computation time. 

To study the depth of search, parameters (T, 7ýp , r,. and Q") are set same as those 

in the study of the size of optimization structure. nP = 100 is selected. Seven different 

search depths are selected with L from 5 to 60. The results are the averages of 10 

statistical runs. Figure 6.8 presents the perfonnances with different search depths. 
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Figure 6.8 Performance with different search depths 

Based on these results, COPT cannot achieve obvious benefit in solution quality by 

increasing search depths. A percentage of convergences is introduced to test the benefits. 

Let us take the results of TPI for example. Table 6.5 presents the percentages of 

convergences (p"g). 

Table 6.5 Percentages of convergences 

L p cvg (I-imp) p cvg (2_IMP) 

5 92.4% 94.6% 

10 92.6% 93.4% 

20 94.6% 99.6% 

30 99.6% 98.5% 
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40 99.7% 100% 

50 100% 99.6% 

60 99.6% 99.7% 

Based on the table, the search depth has a small effect on convergence (the minimum 

pcvg = 92.4% ). 

For the first implementation, the computation time decreases firstly and then increases as 

L increases. The computation time involves the CPU time for Tsk"c ( Tlcpu ) and 

TskEP ( T4cpu ). Tlcpu is large when COPT uses a long Markov process. However, 

Tcpu is small since M-W information is transferred to the worker only a few times. 4 

The increasing search depth increases Tlcp' but decreases Tcpu Initially, the 4 

decreasing rate of Tcpu is larger than the increasing rate of Tlcpu so that the 4 

computation time decreases. Later on, the decreasing rate is smaller than the increasing 

rate so that the computation time increases. For the second implementation, Tlcpu is the 

computation time and cannot be affected by T4CPU 
-So the computation time increases as 

the search depth increases. Since the search depth does not have a significant impact on 

the solution quality, the fixed search depth (L= 10) is selected for the following studies 

6.7 Termination criteria 

The proposed termination criteria involve: 

(i) population size controls 
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This termination criterion proposes the minimum population (Qm") and the maximum 

population (Q"' ). It provides: 

C OPT does not terminate if Q, is smaller than QmIn. 

0 COPT terminates if Q, is larger than Q". 

To study this termination criterion, parameters (T,, 7ýp , r, nP , and Q") are set same 

as those in the study of search depth. The Markov process (L=10) are selected. Eight 

Q, from 10 to 3000 are selected to terminate COPT. Figure 6.9 presents the 

performances. 
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Based on the results, increasing Q, increases the solution quality. The incremental 

benefit diminishes when Q, is larger than 1000. COPT can rarely converge to 

non-optimal or local optimal solutions if Q, ý! 1000 - Table 6.5 illustrates the standard 

deviations of F" ( (T 
F min) ( Q, < 1000 and Q, ý! 1000 ) when using the first 

implementation. 

Table 6.6 Standard deviation of F' 

Test problems a Fmin (Qt <1000) aFmm (Q' > 1000) 

TP 1 567.229 1.292 

TP2 18.311 0.418 

TP3 0.167 0.000701 

TP4 1.365 0.000772 

TP3 computation time 

....... .... 

SOO 1000 
1500 2000 2SOO 3000 3500 

TP4 computation time 
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Let us take TP I again for example. CrF min for Q, < 1000 is about 438 times larger 

than that for Q, ý! 100. Thus, Q" is set to 1000. On the other hand, Qm' is set to 

3000 to ensure that COPT converges to the optimal solution. 

On the other hand,, the computation time increases with Q, . In addition, the difference 

between the computation times for the two implementations also increases. That is 

because for the first implementation the computation time involves the CPU times for 

Tsk'P and TskP 
. 

These two CPU times increase since more and more W-M 

information and M_W information are transferred as Q, increases. 

(ii) Optimisation Progress controls 

This termination criterion provides that COPT terminates if the best objective stays same: 

F, nun F' l+L 
1 

:5E 

for a number of iterations ( nF ). For the first implementation, F"' is checked every 

time after the Markov process. For the second implementation, F' is checked every 

time after L new points are placed into partitions. -=0.1 is selected to determine the 

accuracy of the global optimal. Parameters (T,, T,, 
P , 

r, L, np , and Q"') are set 

same as those in the study of population size controls. Figure 6.10 presents the 

performances with different nF * 
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Based on the results , increasing nF increases the solution quality. Meanwhile, the 

computation time increases with the nF* Adopting nF= 10 can give the best tradeoff 

between the solution quality and computation time. 

(iii) Population feature control - pool level 

The pool level is reflected on the standard deviation of the population of pools (orj 

Figure 6.11 presents or, as COPT proceeds. 
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Figure 6.11 Standard deviations of the population of pools 
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As the figures illustrate, a, decreases as COPT develops so that the population has the 

decreasing pool level. A termination criterion related to the pool level is proposed. In 

this criterion, COPT terminates if the standard deviation stays the same: 

lat 
- al+L 

11 <E 

for nST iterations. To study the effect of nST 
ýE= 

'is selected to determine the 

accuracy of the standard deviation. Parameters (TI, T,, 
p , 

r. L, np, and Q"') are kept 

the same as those in studies of the previous termination criteria. Figure 6.12 presents the 

performances with different nST 
' 
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IMP 2-IMP 

Figure 6.12 Perforn-lance with different nST 

The solution quality increases as nST increases. Meanwhile, the computation time also 

increases. Based on the results, nST =I 0 gives the best tradeoff between the solution 

quality and computation time. 

(iv) Population feature control - cascade level 

Another feature is the cascade level that relates to the density functions of pools. Based 

on the discussion in Chapter 4, the cascade is considered to be in equilibrium if the 

density function stays same: 

Id, - dl+L 11 < -6 
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for n iterations. The cascade level of population in such case stays the same and d 

COPT converges. 

To study the effect of c, n. =3is selected. Parameters (T,, 7ý 
p, 

r, L, np,, and Qm' ) 

are kept the same as the those in studies of the previous ten-nination criteria. With large 

value of c close to one,, the termination criterion cannot respond to even a large 

Idt - dI+L ýj so that COPT quickly converges but to a solution with a low quality. With a 

small E close to 0, the termination criterion is sensitive to a small 11d, 
- d, 

+L 
11 so that 

COPT can converge to a good solution but spends a long time. Figure 6.13 presents the 

performance with different E. 
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As the figures illustrate, increasing e decreases the solution quality and the 

computation time. Based on the result, c=0.3 is selected to approach the best tradeoff 

between the computation time and solution quality. n, is another parameter in this 

termination criterion. The performance when using the termination criterion with five n, 

from I to 20 is extracted and illustrated in Figure 6.14. 
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The solution quality increases as nd increases. Meanwhile,, the computation time 

increases. The tennination criterion with nd : '- 10 is adopted to give the best tradeoff 

between the solution quality and computation time. The research related to the 

population features is not complete. There might be some other preferred population 

features to choose. These features should be investigated to relate the characteristics of 

the problems. 
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6.8 Remarks and discussion 

COPT has three important features that involve the management of stochastic search, size 

of optimisation structure, and the depth of search. These features have impact on the 

performance of COPT. The performance is measured by the solution quality and the 

computation time. Based on the results, COPT with a convex distribution can converge to 

good optimal solutions but require a long computation time. Increasing structure size 

increases the solution quality and meanwhile increases the computation time. The 

search depth does not have significant impact on solution quality but does on the 

computation time. The termination criteria relate to the controls in the population size 

controls, optimisation progress, and the population features. To control the population 

size, a minimum population Qm' is proposed to prevent the algorithm from premature 

convergence. The algorithm terminates when the population approaches a maximum 

populationQ". Depending on the study of the small-scale problems, Q" and Qmax 

were set to 1000 and 3000 respectively. To control the optimisation progress, the 

algorithm ten-ninates if F, min 
stay the same for a number of iterations ( nF )* 

Increasing nF can increases the solution quality and the computation time. Based on the 

,LI:! ý 0.1 for 10 iterations can give the results,, terminating the algorithm when IF, ' - F, ' 

best tradeoff between the computation time and solution quality. To control the 

population feature, we control both the pool level and the cascade level. The pool level 

and the cascade level are measured by the standard deviation of population of pools (or, ) 

and the density function of the domain (a, ) respectively. The algorithm tenninates if 

(T a for a number of iterations (n or Ild, - d, +L or a number of 11 
1- I+LIJ 

!ý 0-' 
ST 

) 11 
:5Ef 

iterations ( nd )* Increasing nST and nd increases the solution quality and the 

computation time. The algorithm with a small c can converge to a good optimal 

solution but require a long computation time. Depending on the study of the 
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small-scale problems, setting both nSTand nd to 10 and E to 0.3 can give the best 

tradeoff between computation time and solution quality. 

All the above studies are based on the four small-scale problems. In next chapter, 

COPT is studied on large-scale problems. Since the Markov process follows different 

acceptance probabilities, the form of distributing acceptance probabilities in search 

(search policy) is another important feature. The impact of search policies is studied as 

well as the above features. The comparison between the performances of COPT and a 

conventional stochastic method is explored on the application of a complex engineering 

problem. 
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Chapter 7 Large-scale applications 

7.1 Problems 

In this chapter, the studies of COPT involve: 

0 Features and termination criteria 

0 Search policies 

9 Performance on complex problems 

The features and the termination criteria described in Chapter 6 are now studied in 

engineering problems. The Markov Process follows different acceptance probabilities 

determined by pool temperature. The form of distributing acceptance probabilities to the 

Markov process might lead to different performance. For example, COPT that uses the 

Markov process with a high acceptance probability might perfon-n differently with the 

one that uses Markov process with a low acceptance probability. Search policies are 

proposed to decide this form. The impacts of search policies on the perfon-nance of 

COPT are studied in this chapter. COPT is also studied on complex problems, in 

comparison with the stochastic methods (TS). 

7.2 Benchmark problems 

(a) Reaction engineering optimisation 

Engineering problems applied in the studies include: 

problem I 

Problem I is lactose production that is the hydrolysis of lactose by P-galactosidase. It has 
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six components that include: 

" P-galactosidase (that is the enzyme) 

" lactose and glucose 

" galactose with (x and P forms 

" gluconic acid 

" deactivated enzyme 

This problem involves a main reaction where lactose is hydrolyzed into glucose and 

P-galactosidase as a by-product, a reaction that deactivates the enzyme, as well as several 

other side reactions which produces additional by-products. The kinetics include 4 linear 

equations and one non-linear fraction. The objective is to maximize the outlet 

concentration of Glucose. More details of this problem have been illustrated in Appendix 

B. The optimal structure of reactor network for this reaction problem is a series of PFRs, 

which is in agreement with published results (Marcoulaki and Kokossis, 1999). 

Problem 2 

Problem 2 is Van de Vusse reaction scheme that consists of a combination of parallel and 

serial reactions (Marcoulaki and Kokossis, 1999; Kokossis and Floudas, 1990). This 

reaction scheme includes 3 components that are represented by A, B, and C and 3 

reactions. These reactions include a first-order main reaction that produces the desired 

product, a first-order reaction in series with the main reaction and consuming the desired 

product, and a second-order reaction in parallel with the main one. The kinetics includes 

2 linear and I quadratic equations. The objective is to maximize the concentration of 

component B. More details of this problem have been illustrated in Appendix B. The 

optimal structure is composed by a CSTR (V==10.13 L) followed by a PFR (V=15.14 L). 

Chitra and Govind (1985) found the same optimal configuration with a CSTR (V=l 1.211 

L) followed by a PFR (V=16.81 L). Kokossis and Floudas (1990) found an optimal 

configuration composed by a CSTR (V=l 1.382 L) followed by a PFR (V=16.811 L). 
-7 

____________7_Fýchasf 
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Process synthesis applications 

The purpose of process synthesis applications is to design flow sheets using 

superstructure schemes that include all different possibilities for mixing and processing. 

A comprehensive superstructure is presented in Figure 7.1 (Papadopoulos & Linke, 

2004). The superstructure consists of all possible combinations of n reactor units. The 

reactor type is modelled as: 

Ideal stirred tank reactors (CSTR) 

Plug flow reactors (PFR) 

Distributed side stream reactor (DSSR) 

Figure 7.2 illustrates the reactor representation/options where PFR is approximated as a 

cascade of equal volume sub-CSTRs (Kokossis & Floudas, 1990). 

Fi 
h. - IIiv1 
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Reactor IA AL Reactor 2 Reactor n 

PI, 

-------------L Recycle strearq I-------------- 
I------------- 
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------------------- ------------------ 
L 
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I 

Figure 7.1 Superstructure representation 
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Figure 7.2 Reactor representation/options 

The use of the superstructure is presented in combination with reactions described in 

problem 3 to optimise reactor efficiency and select the reactor types appropriate to 

integrate. This superstructure problem has been solved by TS (Glover 1989,1990,1993) 

and SA (Kirkpatrick et aL 1983, Aarts and van Laarhoven 1985) and GA (Holland, 1975). 

Problem 3 

Problem 3 is related to a Biocatalytic reaction process (Saccharomyces Cerevisiae 

production). In the problem glucose is converted to ethanol at the presence of the 

biocatalyst, namely Saccharomyces cerevisiae. The components of this problem involve: 

0 intracellular glucose 

intracellular pyruvate 

0 intracellular acetaldehyde 

0 acetate 

0 intracellular ethanol 

enzyme (Acetaldehyde dehydrogenase) 

0 nicotinamide adenine dinucleotide 

adenosine triphosphate 
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According to Lei, etal. (2001), this process can be characterised with 12 reactions that 

can be divided into three groups. The first group comprises 3 reactions that lead to the 

production of ethanol. The second group includes 3 reactions whi I 'ch complete with those 

in the first group. The third group consists of 6 reactions representing the mechanism of 

the growth of Saccharomyces cerevisiae. The kinetic model involves 10 nonlinear 

fractions and I linear equation. The objective is to maximize the production of ethanol. 

More details of this problem have been illustrated in Appendix B. Ashley (2004) reported 

that the optimal configurations are the combinations of plug flow and mixing. In her 

studies, both Tabu search and a rule-based search are used to explore the optimal 

configurations. The best Tabu structure features a feed bypass, while the best rule-based 

structure features a recycle. 

7.3 Optimisation Studies 

The experiments aim to explore the ability of the algorithm to cope with denoting 

problems. The studies explored: 

The efficiency of COPT to provide quick convergence to a good solution 

The impact of COPT features on the performance 

The implication of selecting different convergence criteria 

(i) Performance and settings 

The assessment is based on the solution quality and the computation time required to 

converge. Using the expenence accumulated in Chapter 6, experiments made advantages 

of the second implementation as described in section 5.4.1. A single worker and a single 

master are involved in the computing environment with the configurations illustrated in 

Table 6.2. The CPU time for Tskmc (Tlcpu) illustrated in section 6.3 represents the 
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computation time and the best objective (F"' ) in pools reflects the solution quality. 

(ii) COPT features 

The features of COPT include: 

The management of stochastic search 

The size of the optimisation structure 

The depth and intents of search 

Following the studies in Chapter 6, COPT terminates when the population of pools ( Q, ) 

approaches a maximum Q max 

(iii) Termination criteria 

The termination criteria address controls in the population of intermediate solutions, the 

optimisation progress, and the distribution of intermediate solutions in pools. In the 

population control, COPT does not terminate if Q is smaller than a minimum Q" and 

terminates if Q is larger than a maximum Qmx - In the optimisation progress control, 

COPT terminates if IF, "' - F, "' 1:! ý e for n iterations. In the distribution control, +L F 

COPT terminates if 11al - CF'I+L jj:! ý E for n, iterations or if 

iterations. 

(iv) Search policies 

Ildt - dt+L jj:! ý E for nd 
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To study the impact of search policies with a, now, much large number of pools, pools 

are clustered into floating, middle, and settling ranges. The floating range is related to 

high probabilities to accept new solutions, while the settling range is related to the low 

probabilities to accept new solutions. These ranges are associated with different 

parameters. Figure 7.1 illustrates the three ranges with 6 pools. 

Pool I 

Pool 2 

ooI3 

Pool 4 

I 

Floating range ( pf ) 

I 
Middle range (p ) 

Pool 5 

Settling range 

Pool 5 

Figure 7.3 Three ranges with 6 pools 

The three parameters accounting for the probabilities to select pools from different 

ranges are denoted by Pf , Pm ý and P, Choices of the parameters for seven different 

cases are presented in Table 7.1. 

icb : index of different combinations 

Table 7.1 Choice of Pf , P., and P, 
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I cb Pf P, PS 

1 0.75 0.125 0.125 

11 0.5 0.25 0.25 

0.33 0.33 0.33 

IV 0.25 0.5 0.25 

V 0.125 0.75 0.125 

VI 0.25 0.25 0.5 

Vil 0.125 0.125 0.75 

7.4 Results 

(a) Management of stochastic search 

The management of stochastic search is related to the distribution of population of pools. 

Following the experiences in Chapter 6, the distribution of population can adopts 

different distribution functions that are associated with cooling schedules. Based on 

Eq. 4.22, the cooling schedules are controlled by parameter r. To study the effect of 

distribution function,, nine different r values are selected for the cooling schedules 

( Tý = 100 and T,, 
P = 0.0 1 ). The Markov process has the fixed length (L= 10). The 

number of pools nP = 100 . Qmax = 1500 is selected. Ten statistical runs with different 

initial reactor network structures are tested for each distribution function. Results 

represent the averages of the tests. Figure 7.4 presents the COPT perfonnances. 
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Figure 7.4 Performance with different distribution functions 

F_max : the solution quality F" 

T_CPU: the computation time T, " 

Based on the results,, increasing r decreases the solution quality and also the computation 

time. COPT with a concave distribution can converge to a good solution but requires a 

long computation time. Adopting the concave distribution (r---2) can give the best 

tradeoff between the solution quality and the computation time. The effect of r and the 

distribution function on engineering problems is consistent with that on earlier 

small-scale optimisation problems. 
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(b) Size of Optimisation Structure 

Following the experiences in Chapter 6, the size of optimisation structure is reflected on 

the number of pools. To study the effect of the number of pools, the parameters (T, j 
nP 

L, and Q` ) are kept the same as in the study of distribution functions. The concave 

distribution function (r = -2) is selected to give good performance. Different numbers 

of pools ranging from 5 to 500 are selected. Results represent the average of 10 

stochastic tests. Figure 7.5 illustrates the performance with different structure size. 
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Figure 7.5 Performance with different structure sizes 
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Based on the results , increasing the structure size increases the solution qualities. 

Consistent with the analysis in 6.5, the incremental benefit diminishes as np exceeds 

100. The standard deviations of F" crF..,, (np<100 and npý! 100) are 

presented in Table 7.1. 

Table 7.2 Standard deviations of F" 

Test problems 49 F-" 
( "P < 100 (TFmax ( I? 

p 
ý! 100 

1 0.158 0.0126 

2 0.354 0.0400 

Following the methods in section 6.5, the increasing ratios of computation time is 

calculated and presented in Table 7.3. 

Table 7.3 Increasing ratios 

Test problems r 
Ins 

1 0.186 

2 0.214 

Based on the results, the increasing ratios are smaller than the ones produced on 

small-scale problems (the largest one is 21% that is smaller than that (41%) illustrated in 

table 6.4). The best tradeoff between the computation time and solution quality occurs 

with 100 pools. This value of 100 pools is then selected for the following studies. Since 

COPT can be applied on both parallel and distributed computing environments. the 

resulting increment of computation time can be reduced. 
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(c) Depth of search 

Following the experiences in Chapter 6, the depth of search is reflected on the length of 

Markov process. To study the depth of search, the parameters (TI, 7ý r, and Q max ) 

are kept the same as in the study of optimisation structure size and nP 100 Compared 

to the studies on small-scale problems, a larger range of search depths are selected 

ranging from 5 to 100. Figure 7.6 presents the performance. 
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Figure 7.6 Performance with different search depths 
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The results show that with increasing L the solution quality firstly increases and then 

decreases. However, both the incremental benefit and decremental loss are small. Table 

7.4 presents the percentages of the convergences (p "9 ) for the problem 1. 

Table 7.4 Percentages of convergences 

L p cvg (%) 

5 95.7% 

10 97.2% 

20 96.8% 

30 98.6% 

40 98.8% 

50 99.5% 

60 100% 

70 99.3% 

80 99.6% 

90 99.0% 

100 96.9% 

Based on the results, the depth of search has a small impact on the convergence of COPT 

(the minimum p"g = 95.7%). In contrast, the computation time increases as L increases 

so COPT with a long Markov process requires a long computation time to converge. 

Adopting the Markov process (L=50) can give the best tradeoff between the computation 

time and solution quality and it is this value that is selected for the following studies. 
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(d) Termination criterion 

(i) Population size control 

Following the studies in Chapter 6, the population size control is related to the control of 

Qmm and Qm. To study this termination criterion, parameters (T,, T,, 
P, 

and 

n, ) are set the same as in the study of search depths. The Markov process (L=50) is 

selected. Eight Q, from 10 to 3000 are selected to terminate COPT. Each result is the 

average of 10 statistical runs. Figure 7.7 presents the performance. 
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Figure 7.7 Performance with different Q, 
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Based on the results, the increasing Q, increases the solution quality. The incremental 

benefit diminished as Q, is larger than 1000. This is consistent with the study on the 

small-scale problems described in section 6.6. COPT can rarely converge to 

non-optimal or local optimal solutions if Q, ý! 1000 so that Q"" is set to 1000. On the 

other hand, Q` is set to 3000 to ensure that COPT converges to the optimal solution. 

(ii) Optimisation Progress controls 

In this termination criterion, COPT terminates if I Fm" - Fm' for n iterations. +L F 

c=0.1 is selected to determine the accuracy of the optimal solution. To study the effect 

ofnF ý parameters ( T, , 7ýp , r, nP, and L) are set same as those in the study of 

population size control. Figure 7.8 presents the perfonnance when using different 

nFfrom I to 20. 
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Figure 7.8 Performance with different nF 

The results show that the solution quality is increased by increasing n,. Meanwhile, the 

computation time also increases with increasing nF Adopting n, =I 0 can give the 

best tradeoff between the solution quality and computation time. This is consistent with 

the studies on small-scale problems illustrated in section 6.7. 

(iii) Distribution control - pool level 

Following the studies in section 6.7, the pool level is evaluated by the standard deviation 

of the population of pools (aj COPT terminates if Ilq, -q,,, jj: 5c for n, iterations. 

E=I is selected to determine the accuracy of the standard deviation. The parameters (TI ý 

7ýp ,r, npand L) are kept constant. Figure 7.9 presents the perfonnance when using 

different nST for the tennination criterion. 
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Figure 7.9 Performances with different nST 

The results show that the solution quality increases as nST increases. Meanwhile, the 

computation time also increases. Based on the results, the termination criterion with 

n ST= 10 is adopted to give the best tradeoffis between the solution quality and 

computation time. This is consistent with the studies of pool levels in section 6.7. 

(iv) Distribution control - cascade level 

Following the experience in Chapter 6, the cascade level is evaluated by the change of 

density function. In this termination criterion, COPT terminates if Ild d or t+Ljj: 
5E fl 

n iterations. To study the effect of cn=3 is selected. The parameters (TI, Tn 
ddP 
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r,, nP, and L) are kept constant. Figure 7.10 presents the performance when using z: - 

different E from 0.1 to 0.9. 
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Figure 7.10 Performances with different E 

The results show that increasing c decreases the solution quality and also the 

computation time. Adopting E=0.3 can give the best tradeoffs between the computation 

time and solution quality. Then E=0.3 is selected to study nd , 
Figure 7.11 

illustrates the performance when using different values of nd from I to 20. 
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Figure 7.11 Performance with different nd 

The results show that increasing nd can increase the solution quality. Meanwhile, the 

computation time also increases. Adopting nd :- 10 can give the best tradeoff between 

the solution quality and computation time. This is the same trend off as was found in the 

study of nd in section 6.7. 

(e) Search policies 

Depending on the above study, the termination criteria selected are: COPT does not 

terminate if Q, is smaller than 1000 and terminates if is larger than 3000, or if 

max max :! ýO. I for 10 iterations, or if 
- F+L 

II(T 
(Tt+L for 10 iterations, or if I F, I 

On the development of a stochastic optimisation algorithm with capabilities for distdbuted computing 145 



Siyu Yang 

dl+L jj:! ý 0.3 for 10 iterations. Comparison between the perfon-nances of the normal 

COPT and the COPT that uses the choices in Table 7.1 (COPT_S) is perfon-ned to study 

the search policies. The parameters (T,, 7ý 
P, 

r, np,, and L) are set the same as in 

the earlier study of tennination criteria. The results are the averages of 10 statistical runs 

that use different initial structures. Figure 7.12 illustrates the comparison. 
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Figure 7.12 Comparison between the perfon-nances of COPT and COPT-S I 

For COPT_S, the solution quality increases with an increasing bias to the settling range. 

Meanwhile the computation time increases with the bias. This reflects that COPT can 

converge to a good solution if the search has a bias to the settling range. Compared to 

the normal COPT, COPT_S can converge to a better solution with a bias to the middle 
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range or the settling range (choice IV- VII). However, COPT_S requires longer 

computation time than COPT with the bias. Based on the figures, the choice VI 

(p, -0.25, P2 =0.25, P3 =0.5) gives the best tradeoffs between the computation time 

and solution quality. 

The search policies are also studied in problem 2. Figure 7.3 presents the comparison 

between the performances of COPT and COPT-S. 
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Figure 7.13 Comparison between the performances of COPT and COPT_S 11 

The conclusion is consistent with the study of problem 1. The solution quality increases 

with an increasing bias on settling range. Meanwhile, the computation time increases. 

The results show that the choice VI can give the best tradeoff between the computation 

time and the solution quality. 
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7.5 Comparison with other methods 

Comparison between the perfon-nances of COPT and a conventional stochastic method is 

performed on a more complex problem (problem 3) than problem I and problem 2. 

Parameters (T,, 7ý 
P, 

r, np , and L) and the termination criteria are set the same as in 

the study of search policies. The search policy with choice VI is selected as the optimum. 

Referring to the studies by Ashley (2004), parameters and ten-nination criterion of TS are 

fixed,, so that: 

e Neighborhood size is set to 7. 

o The Tabu list that has a single entry is selected. 

e Termination criteria are set at un-improving for 50 iterations or maximum of 500 

iteration occurs. 

COPT runs on the computing environment involving a master and a worker. The 

configurations of the master and the worker are as in Table 6.2. TS runs on the worker. 

The solution quality and computation time for TS are evaluated by the best objective ever 

found and the worker's CPU time respectively. Table 7.5 illustrates comparison between 

the performances of the two methods. These results are averages of 10 runs using 

different initial structures. 

is : index of initial network structure 
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Table 7.5 Comparison between COPT and TS 

COPT TS 

is F max Tcpu F max Tcpu 

1 5.180 
_ 
59765.432 5.187 116864.701 

11 5.174 55009.087 5.172 100396.202 

111 5.175 12142.612 5.200 24279.421 

IV 5.174 34782.156 5.173 84837.643 

V 5.167 43789.348 5.172 76189.532 

vi 5.166 45721.413 5.201 69201.233 

Vil 5.174 32142.265 5.166 50132.212 

Vill 5.170 39123.574 5.201 66125.521 

Ix 5.170 32152.613 5.190 55284.311 

x 5.174 
1 

61923.557 5.180 125264.719 

Depending on the table, the performances of the two methods are further illustrated in 

Figure 7.4. 
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Figure 7.14 Comparison between COPT and TS 

F_max (COPT): the solution quality of COPT 

F_max (TS): the solution quality of TS 

T_CPU (COPT): the computation time for COPT 

T_CPU (TS): the computation time for TS 

Based on these results, we can say that COPT can achieve the same solution quality more 

quickly than TS. For example, the computation time for COPT that uses the second 

initial structure is twice as long as that for the TS. 

7.6 Remarks and Discussions 

COPT is studied on large-scale problems in this chapter. The impacts of the features are 

consistent with the earlier studies on small-scale problems. COPT with concave 

distribution can lead to better optimal solution but spend longer computation time than 

that with convex distribution. Increasing structure size (the number of pools) increases 

the solution quality and the computation time. The search depth (Markov process length) 

does not have apparent impact on solution quality but the computation time. COPT with 

a long Markov process requires a long computation time to converge. Based on the study 

7 
________ / 
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of large-scale problems, adopting r---2, nP = 100 ý L=50 can give the best tradeoff 

between the computation time and solution quality. Similar to the study of small-scale 

problems, the termination criterion related to the control in population size defines a 

minimum population (Q') and maximum population (Qm"). Based on the results, 

Q min 
and Q"' are set to 1000 and 3000. COPT can also tenninate if F, min 

stay the same 

for a number of iterations (nF)* Increasing nF can increases the solution quality and 

the computation time. Based on the results, ten-ninating the algorithm when 

F max 
-F 

max 1:! ýO. I for 10 iterations can give the best tradeoff. The last termination I t+L 

criterion related to the control in pool level and cascade level. To control the pool level, 

the algorithm terminates if the standard deviation of population of pools stay same 

(II(J-1 - UI+L [! ý 0- 1) for a number of iterations (nST )'On the other hand, to control the 

cascade level, COPT terminates if the density function of the domain stay same 

(Ild -d or a number of iterations (nd)* Increasing "STand nd increases the I t+L 
jj:! ý E) fl 

solution quality and the computation time. The algorithm with a small E can converge 

to a good optimal solution but require a long computation time. Similar to the study of 

small-scale problems, setting both nST and nd to 10 and c to 0.3 can give the best 

tradeoff between computation time and solution quality. 

Search policies are proposed to determine the form of distributing acceptance 

probabilities in the search. The pools are clustered into floating, middle, and settling 

ranges. Each range is assigned by a probability to select pools from this range. Based on 

the results, the search policies appear to be an open problem that could benefit by 

customization. The solution quality increases when there is an increasing bias to the 

settling range. Meanwhile the computation time increases with this bias. The search 
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policy with choice VI (p, = 0.25, P2 = 0.25, P3 = 0.5) can give the best tradeoffs between 

the computation time and solution quality. In addition, COPT is also studied on a 

complex problem. The comparison between COPT and TS is performed and results 

illustrate that COPT can converge to a solution with similar solution quality more 

quickly than TS. 

The previous computing environment includes only a single worker. However, the 

parallel and distributed environment should have multiple workers. To apply COPT on 

this environment,, the implementation requires some minor adjustments. In theory, the 

convergence can be sped up by increasing the number of workers. In the next chapter the 

benefits in speeding up convergence are studied and the benefits of COPT and stochastic 

method are compared. 
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Chapter 8 Parallel and Distributed computing 

8.1 Introduction 

COPT, in comparison to TS, SA, etc, has a large numbers of features that are parallel and 

independent: 

0 Each Markov process, previously part of a longer process, is now 

independent. 

0 The management of intermediate solutions between Markov processes can 

be done in parallel with the development of solutions. 

So COPT has obvious potential to distribute. Tasks to distribute include: 

0 The development of new solutions (launch of Markov processes) 

0 Communication with pools (analysis and management of intermediate 

solutions) 

The above tasks are related to Tsk"c described in section 5.2. 

Tasks related to storage and management of solutions include: 

Input data into pools 

Export data from pools 

Development of Inflections 

Checking the termination 
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The above tasks are related to Tsk', ', TskEP 
, Tsk"", TskT' described in section 5.2. 

8.2 Methodology 

Following the discussions in section 5.2, COPT has a master process and worker 

processes. The master process is to: 

Step 1: Initialization Select a number of partitions and pools. 

initial points for workers (N workers have at least N initial points). 

Generate a number of 

Step2: Data extraction (TskE' ) Select a set of points and store them in output files. 

The output files are associated with different workers. 

Step3. -Storage (Tsk'p) Read input files and inserts the new points into pools. 

Step 4. - Manage population (Tsk"') Develop the inflections of cascade following 

Definition 4.6. 

Step 5. - Check convergence (TskT' ) Check the convergence of COPT following the 

tennination criteria described in section 7.4.2 

Step 2,3,4, and 5 are independent and following different time schedules. On the other 

hand,, the worker processes execute Tskmc following: 

Step I. - Selection of initial points Fetch the output files from the master and read the 

initial point in the files. 
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Step 2. - Development of intermediate solutions Run Markov processes 

simultaneously to generate new solutions. 

Step 3. - Storage and management of solutions Store new solutions into input files and 

send them to the master. 

Figure 8.1 presents the network structure of COPT on parallel and distributed computing 

environments. 

IL - 

ww 

ID=N-1 ID=N 

Figure 8.1 Network structure of COPT 

M: master computer 

W: worker computers 

IN: input file 

0: output file 

ID: identities of worker computers (from I to N) 
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Each worker has a unique ID (worker ID) different to those of other workers. Solutions 

generated by workers are stored in the partitions and pools together with their differing 

worker IDs. The partitions and pools are implemented as tables, similar to those in 

section 5.4.1. Tables now involve an additional column that store the worker IDs. Input 

and output files are communicated between the master and workers. Figure 8.2 outlines 

the flow of input and output files in COPT 

w IN 

ID=l 

............... 
IN 

-------------- ------- 

w IN 
rD=N 

Figure 8.2 Flow of input and output files 

Input and output files are associated with different workers. The ID is appended in the 

name of input and output files so that workers and master can identify the files. The 

master extracts M-W information (as described in section 5.3) and puts it into output files. 

Workers store new solutions into input files with different names and send them, actually 

part of the files that involve W-M information as described in section 5.3, to the master. 

The master then places the new solutions into partitions and pools. 
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Partitions andpools 

Due to the presence of worker IDs, points in partitions are identified by point IDs and 

worker IDs. For example, point 3 is generated by worker 2 so that its worker ID and 

point ID are 2 and 3 respectively. Figure 8.3 presents the partitions and pools. 

oi teature cascade 
ipoint ID 

t effrD erm tur e worker 11) 

pool ID 
f 

Figure 8.3 Partitions and pools 
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3)OixLt ID 

worker ID 
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f 

The difference with the second forin of partitions and pools described in section 5.4.1 is 

the additional column (worker ID) in the cascade and M-W table. The worker ID and 

point ID are the primary keys in the cascade table. 

Data extraction and storage 

Data extraction and storage on the master are now implemented in different ways due to 

the presence of multiple workers. The differences are explained as follows: 

(i) Extraction on the master 

The master extracts M-W information from the partitions and pools and stores it in the 

M-W table. The information, different from that described in section 5.3, involves the 

worker ID. Then the master writes this information into output files. The output files 

are associated with different workers and appended by worker ID in names. Figure 8.4 

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 157 



Siyu Yang 

illustrates the data extraction from the master. Let us assume that three workers (1,2, and 
3) are present in the computing environment. 

Extraction 

Expert I 

I Fj-ýPcTt. 
4. 

_, 
Expa-rt3 

Figure 8.4 Data extraction from the master 

Similar to TskE, " described in section 5.4.4, the output file is named as Export. The 

master generates three output files (Export], Export2, Export3) associated with the three 

workers (1,2, and 3). 

(ii) Storage on the master 

Input files, different from the one in the second implementation described in section 5.4.5, 

are appended by worker ID in the name. The W-M inforination in the input files involves 

worker IDs. The master places the W-M information into the cascade table. Figure 8.5 

presents the data storage on the master. Similar to the description in (i), the environment 

has three workers (1,2, and 3). 
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Figure 8.5 Data storage on the master 

Input files (Import]X, Import2Y, and Import3Z) are generated respectively by workers 1, 

2,, and 3. Beside the worker ID, the input files are also appended with the point ID (X, Y, 

and Z are the point IDs ). This is similar to the second implementation described in 

section 5.4.6. The M-W information from the input files is stored into the cascade table 

by the master. 

(iii) Extraction on workers 

Since the output files are associated with workers, workers take the specific output files 

from the master and read the M-W information from them. Figure 8.6 presents three 

workers (1,2, and 3) taking their output files from the master. 
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Figure 8.6 Workers taking output files 

The figure represents how workers (1,2,, and 3) take the output files (Exportll, Export2, 

and Export3) from the master. 

M-W information in output files involves worker ID and point ID, which help workers to 

find the corresponding solution files. Solution files, similar to the ones in the second 

implementation described in section 5.4, store variables and differ in names. Their names 

are appended by point ID (SoX where X is point ID). Figure 8.7 represents the three 

workers finding corresponding solution files. 
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Figure 8.7 Workers finding solution files 

As the figure illustrates, 

0 Exportl has worker ID =2 and point ID =Y so that worker A reads SoY in 

worker 2. 

0 Export2 has worker ID =I and point ID =X so that worker A reads SoX in 

worker 1. 

0 Export3 has worker ID =2 and point ID =Z so that worker A reads SoZ in 

worker 2. 

(iv) Storage on workers 

Then workers read the solution files and start Markov processes. The Markov processes 

follow the Metropolis criterion and generate new points. New points are stored in 
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solution and input files. Figure 8.8 illustrates workers storing new points into files. Two 

workers (I and 2) are represented in the figure. 

Worker 

Worker 2 

Import2l Import22 Import23 Import24 

Sol 

I 

So2 

I 

So3 So4 

Figure 8.8 Workers storing new points into files 

As the figure illustrated, 

0 Worker I generates points 1,2,3,4 and stores them in files importl I and 

Sol, import12 and So2, import13 and So3, import14 and So4. 

0 Worker 2 generates points 1,2,3,4 and stores them in files import2l and 

Sol, import22 and So2, import23 and So3, import24 and So4 files. 

8.3 Synchronous mode and asynchronous mode 

With multiple workers are employed, COPT can be executed either in synchronous or in 

asynchronous modes. 
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(i) Synchronous mode 

Workers are parallelized to run the Markov processes simultaneously in this mode. Since 

workers have different computational capacities, the faster worker has to wait for the 

slower ones before sending the input files. The worker tasks include: 

Selection of initial points 

Development of intermediate solutions 

(idle time as they waitfor the other workers) 

Storage and management of solutions 

Since the faster workers have to wait for the slower ones,, benefits in speeding up 

convergence are limited. 

(ii) Asynchronous mode 

Workers execute their own independent Markov processes and communicate information 

with the master independently. Worker tasks include: 

Selection of initialpoints 

Development of intermediate solutions 

Storage and management ofsolutions 
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In this mode, computation resources are more efficiently used and the computation time 

can be greatly reduced. 

8.4 Demonstration 

The distributed computing environment involves I master and 10 workers. The 

configurations of these computers are illustrated in Table 8.1. 

Table 8.1 Configurations of the master and the workers 

Master CPU Ram Memory 

Prise-sql Intel(R) Core(TM) 

2.13GHz 

2Gb 

Worker CPU Ram Memory 

BscgridOl-BscgridO6 Intel(R) Pentium(R) 

3GHz 

2Gb 

KhafreO 1 -Khafre04 Pentium III (Cascades) 

700OMHz 

512MB 

BscgridOl-BscgridO6 are 6 faster workers, while KhafreOl-KhafreO4 are 4 slower 

workers. The master and workers are connected via Internet. Information is transferred 

between the master and the workers or between the workers by FTP protocol. 

8.4 Parallel and distributed application 

(i) Performance and settings 

Following the studies described in Chapter 7, the performance is reflected on the solution 

quality and the computation time required to converge. The solution quality is the best 

objective in the pools (F" ). With workers on the Internet, it is difficult to find their 
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CPU time. The computation time is reflected on the clock time of the slowest worker. 

which is illustrated as: 

CL CL N 
=max [ Tl, 

j 
] 

=P, 
c 

T cL : computation time 

j: index of workers 

Npc: the number of workers 

T cL : the clock time of workerj Ij 

Besides, parameters (T,, 7ý 
P, 

r, nP and L) and the termination criteria are set the same 

as in the studies of section 7.5. 

(ii) Benefit in speeding up by increasing number of workers 

In theory, increasing the number of workers increases the computation capacity and 

decreases the computation time required to converge. Problems I and 2 described in 

section 7.2 are used to study the benefits when increasing the number of workers. 

Figure 8.9 illustrates the perfonnance 

mode 1: the synchronous mode 

mode 2: the asynchronous mode 
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Figure 8.9 Performance with different numbers of workers 

The results show that Npc does not have a significant impact on the solution quality. The 

computation time quickly decreases and then increases slightly as Npc increases. This is 

caused by the increasing communications overheads. The computation time now 

involves the communication time. With more and more workers, the communication time 

increases,, resulting in the increased clock time. In addition, the asynchronous mode can 

converge more quickly than the synchronous mode. Let us take the results of problem I 

for example. The computation time for the synchronous mode is twice as long as that for 

the asynchronous mode when using three workers. 

(W) Comparison with other methods 

Comparison between a parallel TS and COPT is performed to illustrate the advantage of 

COPT on distributed computing environments. Problem 3 described in section 7.2 is 

selected in this study. COPT is implemented as the asynchronous mode. The two 

methods run on the environment illustrated in Table 8.1. Referring to the studies by 

Ashley (2004), parameters and termination criteria of TS are fixed as: 

0 Tabu list that has a single entry is selected. 
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* Ten-nination criteria are set at un-improving 50 iterations or maximum of 500 

iterations. 

Figure 8.10 outlines parallel TS. 

Initial point.. 0- 

--------------------------------- 

Neighbourhood 

---------------------------- 

0*a00 

Figure 8.10 Parallel TS 

--------------------------------- 

Neighbourhood 

The parallel TS is implemented as a master-worker paradigm. It starts from an initial 

point (starting point). The master searches neighbours of this starting point and send 

them to workers for evaluation. Results are sent back to the master and the best 

neighbour is selected as a new starting point. The master searches neighbours of this 

starting point again and then sends them to workers for evaluations. The convergence of 

the algorithm is determined by the termination criteria. The performance of the 

algorithm is measured by the solution quality and computation time. The solution quality 

is the best objective (F"), whilst the computation time is represented by the clock time 

of the slowest worker. Figure 8.11 illustrates the comparison between parallel TS and 

COPT on a distributed computing environment. 
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Figure 8.11 Comparison between parallel TS and COPT 

Both the parallel TS and COPT can converge to the solutions with similar qualities. Their 

objectives are within 5.196 ± 0.0132, but the computation time for COPT is much smaller 

than that for the parallel TS. This is mainly caused by the synchronous worker processes 

in the parallel TS, where the faster workers have to wait for the slower one in the 

algorithm. In contrast, workers are parallel and independent of each other in the 

asynchronous mode of COPT. 

8.5 Remarks and discussions 

Stochastic methods have been suffering from long computation time. Current research 

focuses on applying parallel and distributed computing techniques to speed up 

convergence. However, the applications are limited to small-scale computing 

computation time 
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environments that have a small number of computers. With the parallel and 
independent tasks, COPT can be applied on the computing environments composed of a 
large number of distributed computers. 

COPT has been implemented in synchronous and asynchronous modes. The 

asynchronous mode has workers running in parallel and independent of each others so 

that this mode can obtain the most benefit in speeding up convergence. COPT in both 

modes on a distributed computing environment was studied on problems I and 2. 

Results illustrate that both modes converge to similar solutions and that the computation 

time decreases as the number of workers increases. However,, decrease in computation 

time is greater with asynchronous mode. 

COPT on distributed computing environments was also studied on problem 3. Here 

results were compared with that of parallel TS and illustrate that COPT obtains more 

benefit in speeding up convergence when it is applied on parallel and distributed 

computing envirom-nents and therefore more fully exploits the computing potential of 

these environments. 
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Chapter 9 Conclusions and recommendation 

9.1 Conclusion 

Optimisation has been broadly applied to many fields. Classification of optim'sation 

problems is based on their different characteristics. Based on the classification, many 

optimisation techniques have been developed, consisting primarily of deterministic 

optimisation techniques and stochastic optimisation techniques. The deterministic 

methods take advantage of mathematical and geometric techniques to solve the 

application problems. These methods can quickly converge to highly precise optimal 

solutions. However, the deterministic methods suffer from computationally intensive use 

of derivative transfon-nations,, inexistence of mechanisms to highly non-convex domains 

and difficulties in the problem initialisation. Compared to the deterministic methods, the 

stochastic methods follow a statistical random probabilistic driven search to find the 

optimal solutions. This randomness can help the stochastic methods converge to the 

global optimal solutions from the local optimal solutions. It also can speed up the 

convergence and make the algorithm less sensitive to the modelling errors. However due 

to the inherent randomness in search, the stochastic methods cannot quickly converge to 

the global optimal solutions. Advanced parallel and distributed computing techniques 

have been used to reduce the computational time. The previous research on the parallel 

and distributed applications of stochastic optimisation methods has been reviewed and it 

was found that the existing parallel stochastic optimisation methods cannot fully exploit 

computational resources in the computing environment because of the synchrony they 

require within computers. 

A new stochastic optimisation method (COPT) was developed for the large-scale 

distributed computing environment. Such algorithm takes advantage of the Markov 

process, similar to that in SA. but eliminates its inherent sequential nature. COPT 
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introduces partitions and pools to store intermediate solutions and corresponding 

objective values. Populations in pools are inflected periodically to keep pools follow a 

specified order. Partitions and pools grow as the Markov process generates nexv 
intermediate solutions. With the partitions and pools, multi Markov processes can be 

launched simultaneously and COPT can be applied on parallel and distributed computing 

environments. Each pool is associated with a temperature decreasing from the top pool 

to the bottom pool. The Markov process started from a higher pool can accept more 

solutions than the one with the same length started from a lower pool. This temperature 

also helps COPT to inflect population of pools. COPT was implemented as a 

master-worker paradigm. Partitions and pools are implemented as the tables in database. 

In the course of the study, two different implementations were employed. 

Several important features were studied on both the small-scale problems and the 

large-scale problems. The features involved the management of stochastic search, 

optimisation structure size, the depth of search, and the selection and coordination of the 

termination criteria. The termination criteria were selected related to controls in 

population size, optimisation progress, and distribution features. The performance is 

reflected on the solution quality and the computation time. The management of stochastic 

search is reflected on the distribution function. Based on the results,, COPT with the 

concave distributions can achieve a better solution quality but at the expense of more 

computation time than that achieved with the convex distributions. The optimisation 

structure size is determined by the number of pools. Based on the results, increasing the 

number of pools increases the solution quality but meanwhile increases the computation 

time. The search depth is determined by the length of the Markov process. Based on these 

studies, the length of the Markov process does not have an apparent impact on the solution 

quality. On the other hand, increasing the length of the Markov process increases the 

computation time. Termination criteria related to the control in population size defines a 

minimum population and a maximum population. COPT does not terminate if the 

population of pools is smaller than the minimum population and terminate if the 

population of pools approaches the maximum population. Another termination criterion 
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related to the control in optimisation progress tests the best objective value in pools at 

each iteration. COPT terminates if the best objective value stay same for a number of 
iterations. The last termination criterion related to the controls in population features 

which involve pool level and cascade level. The pool level and cascade level are 

measured by the standard deviation of population of pools and the density function of 
domain respectively. With control in pool level, COPT ten-ninates if the standard 
deviation stays same for a number of iterations. With control in cascade level, COPT 

terminates if the density function stays same for a number of iterations. 

As the pools are associated with different temperatures, the Markov process follows 

different acceptance probabilities. The form of distributing acceptance probabilities in 

search can affect the performance of COPT. Search policies were proposed to detennine 

the form and implemented by clustering the pools to the floating range, the middle range, 

and the settling range. Each of these ranges is associated with a probability of selecting 

pools within these ranges. Based on the results, COPT can converge to the good solutions 

but require a long computation time if the middle range or the settling range has the 

larger probability than the floating range. 

Comparison with the stochastic methods was performed on a complex engineering 

problem. Results illustrated that COPT can converge to similar optimal solutions more 

quickly than the stochastic method. Finally, COPT was applied on the parallel and 

distributed computing environment. Some adjustments were needed on the 

implementation to observe the requirements of the parallel and distributed applications. 

In order to prove COPT's applicability on such computing environment, comparison with 

the performance of the parallel TS is selected. Results illustrated that in terms of 

convergence time COPT can outperform the parallel TS. 
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9.2 Originality 

The major contribution of this project to optImisation is the development of COPT that is 

suitable for a large-scale distributed computing environment and meanwhile storing 

system knowledge in the additional memory. COPT offers the major improvements over 

existing optimisation techniques as follows: 

Performs a robust optimisation for complex problems. Achieves quicker 

convergence than the stochastic optimisation method 

(ii) Able to be applied on the parallel and distributed computing environments and 

to fully exploit computational resources in these environments. 

(iii) Records system knowledge in the additional memory and has the potential to 

incorporate knowledge acquisition in future work. 

9.3 Recommendation of future work 

COPT has been developed in this thesis to address the limitations in the applications of 

existing stochastic methods when applied upon the distributed computing environment. 

The method is still in the early stages of development and is expected to improve through 

future work. The attention of future work should focus on two views as follows: 

(a) Distribute tasks to workers according to their capabilities 

In COPT, the workers run the Markov processes of the same lengths. The slower 

workers would generate much less points than the faster workers and the computation 

resources are not effectively utilized. In order to solve this problem, we must : 

(j) Distribute Markov processes of different lengths optimally amongst 

workers. 

The Markov processes of different lengths should be employed and distributed to 
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workers according to their computation capabilities. The faster workers should take the 

longer Markov processes, while the slower workers should take the shorter Markov 

processes. 

(ii) Distribute Markov processes of different partitions optimally amongst 

workers 

Because of the usage of Metropolis criterion, the Markov processes launched from the 

higher pools are more easily generate points than those launched from the lower pools. 

To use the computation resources efficiently, the slower workers should take the Markov 

processes that are launched from the higher pools and the faster workers in contrast 

should take the Markov processes that are often launched from the lower pools. 

a) Apply knowledge acquisition techniques 

As system knowledge is stored in memory, the knowledge acquisition techniques, such 

as Data Mining and Ontology, can be utilized to assess the knowledge at run time and 

guide the search so that COPT can converge to the global optimal solution more rapidly. 

Currently, Du (2008) is developing the knowledge based system for COPT using 

Ontology software. The research has already produced some impressive results. 
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Appendix A 

The four small-scale optimisation problems are illustrated as follows: 

Testproblem I 

mint(O. 00533- X12 +I1.669xl + 0.00889 - X22 + 10.333x2 + 0.00741 - x3 2+ 10.833x3)1 

0.01 x 
0.0676x 12 + 0.00953xlx2 - 0.00507xlx3 + 0.00953x2xl + 0.052lx2 2+0.0090 lx2x3 
0.00507x3xl + 0.0090lx3x2 + 0.0294A 2+A 

0.000766xl - 3.42e -5*A 
0.040357 

xl + x2 +A+A -> 
210 

Optimal objective is 3155.258 

Test problem 2 

min 
(0-0039 x x7 + 0.0039 x x8) x (495 x x4 + 385 x x5 + 315 x x6) 

X10 

subject to 

- 0.5 x x9 xAx (0.8 x x7 + 0.33333333 3333333 x x8) + xI =0 

- 0.5 x x9 x x5 x (0.8 x x7 + 0.33333333 3333333 x x8) + x2 =0 

- 0.5 x x9 x x6 x (0.8 x0+0.33333333 3333333 x x8) + x3 =0 
V-x- 1 -0- 0- (V -x8 

-V 
-x9 )>0 

xI - 8.46527343 75 x xIO >0 

x2 - 9.65006510416667 x x10 >0 

x3-8.8716796875xx10 >O 

0.5xxl><x9-2.2x(8.4652734375xx10)1.33333333333333 >O 

0.5xx2xx9-2.2x(9.65006510416667xx10)1.33333333333333 >o 

0.5xx3xx9-2.2x(8.8716796875xx10)l-33333333333333 >O 

x4 - 0.0111771747883801 x x7 0.2 

x5 - 0.01376553 60411427 x x7 0.2 

x6 - 0.0155663872253648 x x7 0.2 

x4 - 0.0111771747883801 x x8 0.2 

x5 - 0.01376553 60411427 x x8 0.2 

x6 - 0.015 5663 8 72253 648 x x8 0.2 

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 185 



Siyu Ya 

Optimal objective is 5.541 

Test problem 3 

(x Ix (log(x I /x I 1) -6.05576803624071)+ x2 x (log(x2/x I I) - 17.1307680362407) 

+0x (log(x3/x I 1) -34.0207680362407)+ x4 x (log(x4/x I I) - 5.88076803624071) 

min +x5x(log(x5/xll)-24.6877680362407)+x6x(log(x6/xll)-14.9527680362407) 

+ x7 x (log(x7/xl 1) - 24.0667680362407) + x8 x (log( x8/xl 1) - 10.6747680362407) 

+x9x(log(x9/xll)-26.6287680362407)+xl0x(log(xlO/xll)-22.1447680362407) 

xl+2x x2+2x x3+x6+xlO=2 
A+ 2x x5+x6+x7=1 

x3+ 0+ x8+ 2x x9+ xlO= I 

-xl -x2-x3-x4-x5 -x6-x7-x8-x9- xlO+ xl I =0 
x 1, x2, x3,, A, A, x6,, x7,, A, x9 ý! 0.00 1 

, "I-timal objective is -0.675 , -/P 

Testproblem 4 (TP4) 

minfxl3 + xl4+ x15 + xl6+ xl7+ xl8j 
(xl 

- x2)2 + (x7 
- x8)' <- 1 

(xl 
- x3)2 + (x7 

_ X9)2 < 

(X, 
_ X4)2 + (x7 _X, 

0)2 <, 

(xl 
- x5)2 + (x7 

- xl lf 1 
(xl 

- x6)2 + (x7 
- xl 2) 21 

(x2 - X" 
)2 

-1 _ X9)2 < + (X8 

(x2 _ X4)2 + (X8 
_ X, 0)2 <- 1 

(x2 
- x5)2 + (x8 

- xl 1)2 < 

(x2 
- x6)2 + (x8 

- xl 2)2 < 

k lý 
) -2 x4) +9 _X, 

(»2 < (X 

(x-') 
- x5 

)2 
+ 

(X9 
_ X, 1)2 < 

(x. ) 
2 

x6) 
)2 < + (x9 

- xl 2- 

(x4 
- x5)2 + 

(X, () 
_ X, 1 )2 < 

(x4 
- x6)2 + (xl 0- xl 2)2 < 

(x4 
- x6) 

2 
+ (xl 1- xl 2)2 < 

- 0.5 x (x 1 x8 - x7x2) +x1')=0 

- 0.5 x (X2X9 - x8x' 3) +x 14 =0 

optimal objective is -47.707 
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Appendix B 

The brief descriptions of the Van de Vusse reaction, Lactose production, and the 

Biocatalytic (Saccharomyces Cerevisiae) schemes are illustrated as follows: 

Van de Vusse 

The Van de Vusse reaction scheme consists of a combination of parallel and serial 

reactions (Marcoulaki and Kokossis, 1999; Kokossis and Floudas, 1990). The general 

idea of Van de Vusse reaction is: 

KI K2 
A ppp 

T) 

r, = 
kICA K, =10.0s-1 

r2 = 
k2CB K2 ="OS-l 

Where 

A, B, and C are components, 
CA, CB, Cc are the concentrations of these components, 

r, , 
r2 , 

r3 are reaction rates of reaction 1,2, and 3. 

In Van de Vusse reaction, the feed flow is 100 Us and contains pure component A, The 

objective of this reaction is to maximize the outlet concentration of B and meanwhile 

minimize that of C. The optimal structure for Van de Vusse consists of a CSTR (or an 

equally distributed DSSR) followed by serials of PFR, which has been proved by 

Koko ssi sand Floudas (1990) and Marcoulaki and Kokossis (1999). 
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Lactose Hydrolysis 

Another reaction problem is the hydrolysis of lactose by P-galactosidase. In this reaction, 

immobilized enzyme is utilized to convert the disaccharide lactose via hydrolysis into its 

monosaccharide component, glucose and galactose. This procedure of hydrolysis can be 

approximated with following model (Marcoulaki and Kokossis, 1999; Bakken et al., 1989; 

Bailey and Ollis, 1986). 

E+S<-> ES ->E+GL +ßG 

R, ý E+ aG <-> EaG 

r, = CEC*S(l + CaG/KaG +COG /KPG Y 

KEG= 0.003, KPG 
= 0.079 

E+ PG <-> EOG 

R2 PG <-> aG 

R3 GL --> GA 
R4 E --> Ed 

r2-50*(C* -C aG aG 

C -(CO+Co +C' -C)*K/(K+I) aG s aG PG 

0.111 
r3 = 0.083CGL 
r4 = 0.047CE 

Where 

E: enzyme (P-galactosidase), 

S: lactose, 

GL: glucose, 

G: galactose with (x and P forms 

GA- gluconic acid, 

Ed: deactivated enzyme, 

ri, r2, r3,, and r4: the reaction rates for four reactions (RI, R2, R3 
, and R4). 

. 10OL/min that includes 0.65 mol L-1 enzyme, 0.001mol L-1 (x galactose The feed flow is 

and 0.001 rnol L-1 P galactose. The objective is to maximize the outlet concentration of 

GL. The optimal structure of reactor network for this reaction problem is a series of PFRs, 
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which is in the agreement with published results (Marcoulaki and Kokossis, 1999). 

Biocatalytic problem 

The usage of biocatalyst can date back to thousands years ago In the production of beer 

and wine as well as food such as bread and cheese. Recently biocatalyst has been 

broadly used to pharmaceutical and agrochernical industries. Biocatalytic process is 

advantageous of mild temperature condition, low energy requirement, safety, pollution 

prevention, high selectivity and often-high product quality (Giomo and Drioll, 2000). 

However, the sensitivity of organism and enzyme to conditions, contamination, and 

motion makes the Biocatalytic process difficult to control. Furthermore, the complexity 

of Biocatalytic process makes its model highly non-linear and difficult to be optimised. 

In the study of cascade optimisation algorithm, we select one of Blocatalytic problem 

(Saccharomyces Cerevisiae) to demonstrate the applicability of the cascade optimisation 

to complex problems. Saccharomyces cerevisiae is a yeast organism used throughout 

food and drink industries. A number of catabolic and anabolic reactions are used for cell 

metabolism and biomass production starting from a substrate of glucose. The key interest 

of these reactions is to optimise and explore the condition under which ethanol is 

produced. The kinetic mode of Saccharomyces Cerevisiae as follows: 

Sght I>S 
PYr + 0.33NADH 

s pyr 
2 >C02 +1.67NADH 

Spyr 3>0.67Sacetald+0.33CO2 

Sacetald 4 
4s 

acetate+ 0.5NADH 
Sacetate 5 ý-' C02 + 2NADH 
Sacetald + 0.5NADH '4 SEtOH 

Sghl 7 
40.913Xa+0.087CO2 + 0.1 19NADH 

Sacetate 840.77'Xa 
+ 0.222CO2 + 0.40 INAD 
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a9 
)" XAcdh 

x 10 
> deg radation a 

XAcdh 
> deg radation 

NADH + 0.502 12 
io A TP 

Where 

Sght : intracellular glucose concentration, 

Spyr : intracellular pyruvate concentration,, 

Sacelald: intracellular acetaldehyde concentration. ) 

Sacetate : acetate concentration, 

S: intracellular ethanol concentration Doff 

x: biomass concentration,, 
Xa: percentage of biomass that is active cell material, 

XAcdh : proportion of activity of the protein caused by the enzyme 

Acetaldehyde dehydrogenase, 

NADH: nicotinamide adenine dinucleotide, 

A TP: adenosine triphosphate. 

Except for reaction 12 in which NADH immediately generate A TP if sufficient oxygen is 

present, reaction rates for the remaining II reactions are: 
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k1l - 
Sglu 

Xa+ klh 
Sglu 

Xa+ kle 
-s 

9/U 
Saceiald Xa 

sglu + KI, sglu + Klh sg,, (K, 
I 
Sacelald+l) +K le 

r2 = k2 
S 

pyr x 

S 
pyr+ 

K2 K21 Sglu +Ia 

4 

r3 =k 
Sglu 

x 
3s 

glu 
4 

+K3 
a 

r4 = k4 
Sacetald 

- 
XaXAcdh 

Socelald+K4 

r5 k5 
- 

Sacetate 
Xa + k5e 

Sacetate I 
Xa 

Sacelate+K5 Sacetate+K5e I+K5iSglu 

Sacetald - 
k6rSEtOH 

v 
6 `6 

S 
acetald+K6+K6eSEtOH 

r7 =k7 
Sglu 

Xa 

sglu + K7 

"' 

r8 = k8 
- 

Sacelate I 
Xa 

Sacetate+K5e I+K5i Sglu 

rg = kg - 
Sglu 

i- k9e 
SDOH Sacetate 

Xa + kgc 
Sglu 

Xa 

sglu + Kg SEtOH+K9e Kgisglu +1 sglu + Kg 

rjo -- kl 0- 
Sglu 

Xa+ k10e 
SEIOH 

Xa 

sglu + Klo SEtOH+KI0e 

r, , : -- kl IXAcdh 

where 

ri: the reaction rate of reaction i. 

The kinetic constants are shown in the following table. 

Kinetic constants for Saccharomyces cerevisiae 

Constant Value Constant Value Constant Value 

k1h 0.584 k4 4.80 K7 0.0101 

K, h 
0.0116 K4 0.000264 k8 0.589 
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kl, 1.43 k5 0.0104 kg 0.008 

KI, 0.94 K5 0.0102 Kg I. ox 10' 

kl e 47.1 k5e 0.775 kge 0.0751 

Kle 0.12 K5e 0.10 K9e 
13 

Kli 14.2 K5i 440 Kgi 
25 

k2 0.501 k6 2.82 kgc 
0.00399 

K2 0.002 K6 0.034 klo 
0.392 

K2i 0.101 k6r 0.0125 Klo 0.0023 

k3 5.81 K6e 0.057 k10e 
0.00339 

K3 5.0x10-7 k7 1.203 KlOe 
0.0018 

kl, 0.02 

The detailed explanation of this model is written in the literature (Lei et al. 2001). The 

feed flow involves: glucose 14 g/s, ethanol 0.13 g/s, biomass X 0.002 g/s, Xa 0.1 g, 

XAcdh 0.0075 g, and water 984.86 g/s (Lei and Jorgensen, 2001). The objective of 

Saccharomyces Cerevisiae reaction problem is the production of ethanol. Ashley (2002) 

studied this Biocatalytic system using the superstructure optimisation along with both a 

numerical optimisation algorithm and TS. Similar optimal structures are reported which 

are the combinations of plug flow and mixing. 
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