
On the development of a stochastic optimization

algorithm with capabilities for distributed computing

A Thesis Submitted to the

University of Surrey

for the degree of

Doctor of Philosophy

by

Siyu Yang

under the supervision of
Prof. Antonis Kokossis and Dr. Franjo Cecelja

The Centre for Process and Information Systems Engineering
School of Engineering, University of Surrey

Guildford GU2 7XH, United Kingdom

Siyu Yang

Abstract

In this thesis, we devise a new stochastic optimlsation method (cascade optimisation

algorithm) by incorporating the concepts from Markov process whilst eliminating the

inherent sequential nature that is the major deficit preventing the exploitation of advances

in distributed computing infrastructures. This method introduces partitions and pools to

store intermediate solution and corresponding objectives. A Markov process increases

the population of partitions and pools. The population is distributed periodically

following an external certain. With the use of partitions and pools, multiple Markov

processes can be launched simultaneously for different partitions and pools. The cascade

optimisation algorithm is suitable for parallel and distributed computing environments. In

addition, this method has the potential to integrate knowledge acquisition techniques (e. g.

data mining and ontology) to achieve effective knowledge-based decision making.

Several features are extracted and studied in this thesis. The application problems involve

both the small-scale and the large-scale optimisation problems. Comparisons with the

stochastic optimisation methods are made and results show that the cascade optimisation

algorithm can converge to the optimal solutions in agreement with other methods more

quickly. The cascade optimisation algorithm is also studied on parallel and distributed

computing environments in terms of the reduction in computation time.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 11

Sivu Yan

Acknowledgments

Firstly, I want to say a special thank you to my current supervisor, Prof Antonis Kokossis,

for sharing his idea and expertise, understanding, patience, and valued comments.

Secondly, I would like to acknowledge my previous supervisor, Dr Patrick Linke, for

sharing his ideas and expertise in the first half of this project. Of course, I would like to

appreciate my co-supervisor Dr Franjo CeceIja for valued comments and suggestions. I

would also like to thank Dr Andy Tate and Dr Aidong Yang for never-ending support,

patience as well as help with my work.

I would like to thank Du Du for his valued assistances with preparation and execution of

experiments on Grid computing environments. And I would also like to thank Daniel

Montolio-Rodriguez and Claudia Labrador-Darder for helping me to understand the basic

principles of process design.

Thanks to all my friends I have made during the past years, especially Dr Ying Gao, Dr

Athanasios 1. Papadopoulos, Suresh, Alexandra, for making postgraduate life more

enjoyable.

Finally, many thanks have to go to my family, my Mum and Dad, for their never-ending

support and encouragement. I am especially grateful to Mingyao Zhu for taking care of

me during the last period of the project.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing III

Siyu Yang

Table of Contents

ACKNOWLEDGEMENTS
... III

TABLE OF CONTENTS .. fv

LIST OF FIGURES ... Vil

LIST OF TABLES ... x

C14APTER I INTRODUCTION ... I

CHAPTER 2 OPTIMISATION AND TECHNIQUES ... 4

2.1 PROBLEMS
...

2.2 CLASSIFICATION OF OPTIMISATION PROBLEMS ...
5

2.3 OPTIMISATION METHODS ..
2.3.1 Deterministic methods ...
2.3.2 Stochastic methods ... 12

2.4 REMARKS ON OPTIMISATION AND OPTIMISATION METHODS ..
30

CHAPTER 3 OPTIMISATION AND COMPUTING .. 31

3.1 KNOWLEDGE ACQUISITION ..
31

3.2 PARALLEL AND DISTRIBUTED COMPUTING ...
32

3.3 GRID TECHNOLOGY AND APPLICATIONS ...
38

3.4 REMARKS AND DISCUSSIONS ...
40

CHAPTER 4 THE CASCADE OPTIMISATION ALGORITHM ... 42

4.1 NOTATION
...

42

4.2 BASIC CONCEPTS ...
44

4.3 EXPANDING PARTITIONS AND POOLS ..
55

4.4 OUTLINE OF THE CASCADE OPTIMISATION ALGORITHM
..

58

4.5 CASCADE OPTIMISATION ALGORITHM AS A NIARKOV PROCESS ..
60

4.5.1 Population growth ...
63

4.5.2 Development ofInflections ..
66

4.5.3 Termination criteria ...
69

4.6 THE CASCADE OPTIMISATION ALGORITHM: FORMULATION ..
71

4.7 REMARKS AND DISCUSSIONS ...
72

4.7.1 COPT
...

72

4.7.2 Analogies between COPT and SA
..

73

On the development of a stochastic optimisation algorithm with capabilities for distributed computing IV

Siyu Yang

4.7.3 Analogies between COPT and TS .. 75

CHAPTER 5 ALGORITHM IMPLEMENTATION AS A MASTER-WORKER PARADIGM 78

5.1 MASTER-WORKER ARCHITECTURE .. 78
5.2 MASTER AND WORKER TASKS IN COPT

.. 78
5.3 COMMUNICATION

.. 80
5.4 IMPLEMENTATION OF COPT

... 81
5.4.1 Implementation ofpartitions andpools ... 82
5.4.2 Implementation of Tsk .. 84

TM 5.4.3 Implementation of Tsk
... 85

5.4.4 Implementation of TskEP
... 86

5.4.5 Implementation of Tsk'P
.. 88

5.4.6 Implementation of Tsk"'c
.. 91

5.4.7 Relations between the tasks ... 92
5.5 COMPUTING IMPLEMENTATION ... 93
5.6 REMARKS AND DISCUSSIONS

.. 94

CHAPTER 6 EVALUATION AND VALIDATION
.. 95

6.1 FEATURES AND PROBLEMS .. 95
6.2 BENCHMARK PROBLEMS ... 95
6.3 WPLEMENTATION AND PERFORMANCE MEASUREMENTS ...

96
6.4 THE MANAGEMENT OF STOCHASTIC SEARCH ..

98

6.5 SIZE OF OPTIMISATION STRUCTURE ... 109
6.6 DEPTH OF SEARCH ... 112

6.7 TERMINATION CRITERIA .. 114

CHAPTER 7 LARGE-SCA11, E APPLICATIONS .. 127

7.1 PROBLEMS
...

127

7.2 BENCHMARK PROBLEMS ...
127

7.3 OPTIMISATION STUDIES
..

131

7.4 RESULTS
..

134

7.5 COMPARISON WITH OTHER METHODS ...
148

7.6 REMARKS AND DISCUSSIONS
..

150

CHAPTER 8 PARALLEL AND DISTRIBUTED COMPUTING ... 153

8.1 INTRODUCTION ..
153

8.2 METHODOLOGY ...
154

8.3 SYNCHRONOUS MODE AND ASYNCHRONOUS MODE ..
162

8.4 PARALLEL AND DISTRIBUTED APPLICATION ...
164

On the development of a stochastic optimisation algorithm with capabilities for distriibuted computing V

Siyu Yan

8.5 REMARKS AND DISCUSSIONS ...
169

CHAPTER 9 CONCLUSIONS AND RECOMMENDATION .. 171

9.1 CONCLUSION
... 171

9.2 ORIGINALITY
... 174

9.3 RECOMMENDATION OF FUTURE WORK .. 174

CHAPTER 10 REFERENCE
.. 176

On the development of a stochastic optimisation algorithm with capabilities for distributed computing VI

Siyu Yang

List of Figures

Chapter 2 Optimisation and Techniques
Figure 2.1 SA

... 15
Figure 2.2 TS

... 20
Figure 2.3 GA

.. 24
Figure 2.4 ACO

... 27

Chapter 4 The Cascade Optimisation Algorithm

Figure 4.1 Partitions G
..

47
Figure 4.2 Cascade optimisation algorithm flowchart

...
59

Figure 4.3 Cooling schedules ..
61

Figure 4.4 Pools and boundaries
..

67
Figure 4.5 COPT ..

72
Figure 4.6 SA ...

74
Figure 4.7 TS ...

76

Chapter 5 Algorithm implementation as a master-worker paradigm

Figure 5.1 Worker process ...
79

Figure 5.2 Master process ..
79

Figure 5.3 Information transferred ..
81

Figure 5.4 First implementation of the partitions and pools ..
82

Figure 5.5 Second implementation of the partitions and pools
83

Figure 5.6 Master storing M-W information into an output file
.....................................

88

Figure 5.7 Worker finding the solution file of point 3
..

88

Figure 5.8 Master storing W-M information into the partitions and pools
90

Figure 5.9 Worker generating new points and storing them in files
...............................

92

Figure 5.10 Relations of computer threads, tasks, and tables ..
93

Chapter 6 Evaluation and validation

Figure 6.1 Linear distributions ..
100

Figure 6.2 Concave distributions ...
102

Figure 6.3 Concave distributions with different r ...
103

Figure 6.4 Convex distributions
..

105

Figure 6.5 Convex distributions with different r ...
106

Figure 6.6 Performance with different distribution functions
108

Figure 6.7 Performance with different structure sizes ...
110

Figure 6.8 Perfon-nance with different search depths ..
113

On the development of a stochastic optimisation algorithm with capabilities for distributed computing Vil

SiyuYa ng

Figure 6.9 Perfon-nance with different Q.. 116

Figure 6.10 Performance with different nF 118

Figure 6.11 Standard deviations of the population of pools .. 119

Figure 6.12 Performance with different nST .. 121

Figure 6.13 Performance with different E ... 123

Figure 6.14 Performance with different nd .. 124

Chapter 7 Large-scale applications
Figure 7.1 Superstructure representation ... 129
Figure 7.2 Reactor representation/options ... 130
Figure 7.3 Three ranges with 6 pools .. 133
Figure 7.4 Performance with different distribution functions

....................................... 135
Figure 7.5 Performance with different structure sizes ... 136
Figure 7.6 Performance with different search depths

.. 138

Figure 7.7 Perfonnance with different Q.. 140

Figure 7.8 Performance with different nF 142

Figure 7.9 Performances with different nST ** ... 143

Figure 7.10 Performances with different E ..
144

Figure 7.11 Performance with different nd ..
145

Figure 7.12 Comparison between the performances of COPT and COPT
-

Sl 146
Figure 7.13 Comparison between the performances of COPT and COPT

-
S11 147

Figure 7.14 Comparison between COPT and TS ..
150

Chapter 8 Parallel and Distributed computing application
Figure 8. 1 Network structure of COPT ...

155

Figure 8. 2 Flow of input and output files
..

156

Figure 8. 3 Partitions and pools ..
157

Figure 8. 4 Data extraction from the master ...
158

Figure 8. 5 Data storage on the master ...
159

Figure 8. 6 Workers taking output files
..

160

Figure 8. 7 Workers finding solution files
..

161

Figure 8. 8 Workers storing new points into files
..

162

Figure 8. 9 Performance with different numbers of workers ..
167

Figure 8. 10 Parallel TS
..

168

On the development of a stochastic optimisation algorithm with capabilities for distributed computing Vill

Siyu Yang

Figure 8.11 Comparison between parallel TS and COPT
... 169

on the development of a stochastic optimisation algorithm with capabilities for distributed computing ix

iyu Yang

List of Tables

Chapter 4 The Cascade Optimisation Algorithm
Table 4.1 Available points in S .. 46

Chapter 5 Algorithm implementation as a master-worker paradigm
Table 5.1 Times for Tsk 85
Table 5.2 Time spent by using SQL queries ... 90
Table 5.3 Time spent by using the bulk insert task ... 90

Chapter 6 Evaluation and validation
Table 6.1 CPU times for the tasks ... 97
Table 6.2 Configurations of the master and the worker ..

98
Table 6.3 Standard deviations of F'ý III
Table 6.4 Increasing ratios ...

III
Table 6.5 Percentages of convergences ...

113
Table 6.6 Standard deviation of F"ý . ..

116

Chapter 7 Large-scale applications

Table 7.1 Choice of Pf , P, and P... 133

Table 7.2 Standard deviations of F... 137
Table 7.3 Increasing ratios ...

137

Table 7.4 Percentages of convergences ...
139

Table 7.5 Comparison between COPT and TS ..
149

Chapter 8 Parallel and Distributed computing application

Table 8.1 Configurations of the master and the workers ..
164

On the development of a stochastic optimisation algorithm with capabilities for distributed computing x

ýiyu Yang

Chapter 1 Introduction

Optimisation has evolved from the academic interest to technology that is broadly

applied to many fields. Classification of optimisation problems depends on different

characteristics, e. g. continuity, linearity and convexity. According to the linearity.

optimisation problems are classified into continuous problems or discrete problems.

Linear problems or non-linear problems are two subclasses in terms of the linearity of

problems. Optimisation problems can also be classified into convex problems that have

no local optimal solutions and non-convex problems that might involve local optimal

solutions according to their convexity properties. Depending upon the classification of

optimisation problems, different optimisation techniques are proposed. Deterministic

optimisation and stochastic optimisation are two major techniques differing in the way of

searching for the optimal solutions.

Deterministic methods involve linear programming, non-linear programming, mixed

integer linear programming, and mixed integer non-linear programming. Each of these

programming models is associated with a specific class of problems. The methods are

developed based on the properties of the problems and take advantage of different

mathematical and geometric theories. Simplex method and ellipsoid method are two

popular linear programming methods. Branch and Bound is often used to solve

non-linear problems. Traditional methods for discrete problems rewrite the problem to

linear or non-linear problems and involve Generalized Benders Decomposition and Outer

Approximation. Global optimisation methods have been recently used in the mixed

integer problems.

Stochastic optimisation methods apply a heuristic-based search system to make the

algorithm less sensitive to modelling errors. These methods are more suitable for

mputing 1

Sivu Yan

highly dimensional problems with inherent system noise than the classical deterministic

method. Large numbers of runs under varying initial conditions are utilized to

statistically guarantee the convergence of these methods. If these runs all converge to

the solutions that have identical or similar qualities, these solutions are considered to be

the global optimal solutions. In this case, stochastic methods can converge to global

optimal solutions even starting from different initial conditions. Numerous stochastic

methods are developed but four popular ones will be reviewed in Chapter 2.

Application problems are often high dimensional and have large search spaces. The

heuristic-based search system takes longer time to converge than the deterministic

optimisation methods. Current research on stochastic optimisation techniques focuses on

this problem. Parallel computing techniques have been proved to be an effective way

forward. With the developments of new distributed computing techniques, a large-scale

distributed computing environment can be implemented. Computers in this environment

are remotely connected via the Internet. However, the sequential nature within the

heuristic-search system prevents the stochastic methods from large-scale distributed

applications. In addition, some parallel applications have the computers running

synchronously so that the faster computers have to wait for the slower ones. Then the

computing resources are not fully exploited and the benefit in speeding up the

convergence is limited. A new stochastic optimisation method is proposed, which

incorporates the concept from the heuristic- search system but meanwhile minimizes the

limitations.

In Chapter 2, optimisation is described based on principle and classifications. The

optimisation techniques and corresponding classifications are also reviewed in this

chapter. The principles of deterministic optimisation and stochastic optimisation

techniques are elaborated along with their advantages and limitations. Four popular

stochastic optimisation methods are reviewed along with their properties. In Chapter 3, a

few concepts that can benefit optimisation are introduced. In Chapter 4, the new

stochastic optimisation algorithm is described from a conceptual point of view. In the

mputing 2

Siyu Yang

course of studies, two implementations are developed and explained in Chapter 5. To

evaluate and validate the algorithm, a few important features of the algorithm are studied

in small-scale optimisation problems in Chapter 6. These features involve the

management of the stochastic search,, the optimisation structure size, the depth of the

search, and the selection and coordination of the termination criteria. A few large-scale

problems are used to study these features in Chapter 7. In addition, search policies that

have impact on the perfon-nance are proposed and studied. Comparison with traditional

stochastic optimisation methods is performed on a complex application problem. The aim

of the comparison is to explore the advantages and limitations of the new method over

the stochastic methods. In Chapter 8, some adjustments on the implementation of the

new method are selected to meet the requirement of a parallel and distributed computing

application. In theory, the computation time should decrease as the number of

computing resources increases. The reduction of the computation time is studied in this

chapter. Results are also compared with those of the parallel Tabu Search to illustrate

the advantages of the new method when applied on parallel and distributed computing

envirorunents.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 3

Sivu Ya

Chapter 2 Optimisation and Techniques

2.1 Problems

The formulation of a mathematical optimisation problem is:

Given: f: S -> R, S c R"

sought: tx* EE SIf (x) ý! f (x*)Vx c Sl

where

(2.1)

S: a subset of the Euclidean space R" specified by the constraints

(equality or inequality),

x: the available point in space S,

f: the objective function,

x *: the optimal solution in space S.

In this thesis, the above formulation is denoted as:

min f (x) (2.2)
xes

In space S, there are some x'E S following:

N, (x) = ýx G S: llx - x'11: 9 Öý
(2.3)

xt =f (x') : ýg f (x), Vx e N, (x)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 4

Siyu Yang

where

x': the local optima in space S

6: a small positive value in [0, I].

2.2 Classification of optimisation problems

Optimisation problems can be divided into a number of different classes.

Firstly, optimisation problems can be classified into either continuous or discrete

problems. The problems are considered to be continuous if their variables are real and

continuous. Otherwise they are discrete problems. With discrete variables in the

problems, the formulation of the optimisation problems is outlined as follows:

min (xy) f
X'y

, 4X, Y)=o

S1. x Y)<o
x=V, yGY =- ý0,11"

where

x: the continuous variables,

y: the discrete variables,

f(x, y): the objective function,

h(x, y) and g(xy) : the equality and the inequality constraints.

(2.4)

Secondly, the problems can be classified into convex or non-convex problems depending

on the convexity of the search space and the objective function. The space is

considered to be convex if the closed line segment joining any two available points is in

the space. The formulation of the closed line segment is illustrated as:

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 5

Sivu Ya

Xseg -== tX IX= (1
-';

L)XI + AX2!
10:!

ý ý' < 11 X15X2 lE (2.5)

where

Xseg : the segment line

the end point of the line

X2 : the other end point of the line

,; L :a parameter associated with points in the line.

Based on Eq. 2.5, S is the convex set
ifXseg

(-- S. The objective function is considered

to be the convex function if it satisfies Jensen's inequality. The definition of Jensen 's

inequality is:

-'OXI + ýXd (1
-

ý')f (XI) + Ilf
(X2) XI ý X2 G Slo:! ý ý' <1 (2.6)

where

x, and X2 : two points in S

ý, :a parameter between 0 and 1.

The problems that satisfy the above conditions are considered to be convex and have a

unique global optimal solution. In contrast, the problems may have only local optimal

solutions if the space and the objective function do not satisfy the conditions above.

Optimisation problems can be classified into linear or non-linear problems depending on

the linearity of the objective function and the constraints. An optimisation problem is

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 6

ýiyu Yang

non-linear if its variables are non-linear or if its objective function is a non-linear
function. The variables are considered to be non-linear if the equality and the inequality

constraints are non-linear.

2.3 Optimisation methods

Optimisation methods systematically exploit the degree of freedom to minimize or

maximize an objective function subject to the constraints. Different optimisation

techniques have been developed and applied to a number of application problems. These

methods can be classified as deterministic optimisation methods and stochastic

optimisation methods.

2.3.1 Deterministic methods

Deterministic methods focus on topological and geometrical methods to solve the

optimisation problems. The development of deterministic methods evolves from linear

programming (LP), non-linear programming (NLP), mixed-integer linear programming

(MILP), and mixed-integet non-linear programming (MINLP).

(a) Linear programming

LP defines the methods to solve the linear optimisation problems. These problems

involve the linear objective function that is subject to the linear equality and/or the

inequality constraints. From the geometrical point of view, the linear constraints of

these problems define a convex polyhedron as the feasible region. Also because the

objective functions of these problems are linear, all local optimal solutions are

automatically global optimal solutions (Karush, 1939). The typical methods for linear

problems involve the simplex problem, and the ellipsoid method (Shor, 1972).
1

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 7

Siyu Yang

(i) Simplex method

From the geometric point of view, the constraints of the linear problem define a convex

polytope. The optimal solution is one of the polytope vertices. The simplex method

leverages this insight by rewriting the problems so that one of the vertices can be found

easily. Then the method explores the vertices along the edge of the polytope until a

local optimal solution is approached. This local optimal solution is also a global optimal

solution because of the convexity of the polytope. In the search, there might be

multiple adjacent vertexes that improve the optimal solution. Thus, the simplex method

applies a pivot rule to determine which vertex to select. An efficient rule can make this

method quickly converge to the optimal solutions. Otherwise, the algorithm will spend

long time to converge. Klee and Minty (1972) found that the simplex method may

visits all vertices before arriving at the optimal vertex.

(ii) Ellipsoid method

The ellipsoid method was the first algorithm developed to solve the linear programs. It

works by reducing the problem to a problem of feasibility. This method defines a

polytope that is bounded by ellipsoids. The volume of these ellipsoids decreases at each

iteration until the centres of the ellipsoids are in the polytope, or until the ellipsoids are

too small. Then the central points are the global optimal solutions. This method has

been proved to be the polynomial-time solvability of the linear programs and converge

much quicker than simplex method.

/L i

(VV Nonlinear programming

Optimisation problems, especially engineering ones, often involve non-linear

formulations either in the objective functions or in the equality or the inequality

constraints. Approaches for nonlinear problems involve Lagrange multiplier method,

iterative linearization method, iterative quadratic programming method, and penalty

mputing 8

Siyu Yang

function method. These methods apply Karush-Kuhn-Tucker (KKT) condition that

provides necessary conditions for a solution to be optimal. The overviews of Lagrange

multiplier method, generalized reduced gradient method, and sequential quadratic

programming method (an iterative linearization method and an iterative quadratic

programming method) are illustrated in the following sections.

(i) Lagrange multiplier method

The Lagrange multiplier method can be applied to nonlinear problems formulated by

multivariable objective function and constraints. It uses the Lagrange multiplier to locate

the optimal solution. The necessary condition for an extremum of an objective function is

that the partial derivative of its Lagrange function with respect to variables and the

multiplier must be zero. The algorithm then can easily find the optimum that is the same

as that of the Lagrange function. The Lagrange multiplier method is limited on a small

spectrum of NLP problems since it requires that the domain of a problem is an open set

and the objective function and constraints of the problem must have continuous first

partial derivative.

(ii) Generalized reduced gradient method

The generalized reduced gradient method is an iterative linearization method that firstly

linearizes the problem and successively applies linear programming techniques. At each

iteration, this algorithm linearizes the constraints and computes the reduced gradient to

determine the search components for variables. The objective function is improved by

changing the variables using these search components. Newton's method is then applied

to regain feasibility of variables with respect to original constraints. The algorithm is

considered to be in convergence if the search components can be arbitrarily reduced to

infinite small. A major disadvantage of the generalized reduced gradient method is the

requirement of feasibility of both the initial and the intermediated points. Thus, the

algorithm has to spend long time to converge.

mputing 9

Siyu Yang

(iii) Sequential quadratic programming

The sequential quadratic programming method is considered to be the most efficient and

powerful algorithm for NLP problems. In this method, the search direction is deten-nined

through minimizing the quadratic approximation of the Lagrangian function with linear

approximation of the constraints. At each iteration,, the Hessian matrix of the Lagrangian

function is required to be updated to determine the search direction through a quadratic

programming method. Schittkowski (1985) reported that the sequential quadratic

programming method outperforms other nonlinear methods in terms of efficiency and

accuracy over a large number of nonlinear problems.

(c) MLxed integer programming

Some complicated problems involve discrete binary variables that represent the existence

of process units and streams (Achenie & Biegler 1990, Kokossis & Floudas 1990). MILP

and MINLP are two techniques devised for these problems. Typical methods for these

problems involve Branch and Bound, Generalized Benders Decomposition and outer

Approximation.

(i) Branch and Bound

This method is an iterative algorithm. At each iteration, the branch step splits the search

space to different sub spaces. The Bound step computes the upper and lower bounds for

the global optimal solutions within the sub spaces. Then the algorithm discards the

sub spaces if their lower bounds are greater than the upper bounds of the others. The

recursion terminates when the search space is reduced to a single element or the upper

bound of the search space matches its lower space.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 10

Siyu Yang

(h) Generalized Benders Decomposition

The major concept of Generalized Benders Decomposition (Benders 1962, Geoffrion

1972) is to decompose the application problems into the primal and the master

sub-problems using the approximation methods. During the processing of this method.
the system alternates between the solutions of two sub-problems. The master problems

use non-linear duality theory and the Lagrange multipliers obtained in the primal

problems to anticipate the integer variables. In addition, the master problem also

generates the lower bound for the optimal. The primal problem set these integer variables

according to the anticipation and solving the non-linear problems to find the upper bound

for the optimal solutions. As the method proceeds, the lower bound increases and the

upper bound decreases. The optimal solution can be found if the two bounds are close

enough.

(iii) Outer Approximation

Based on the study of Benders and Geoffrion, Duran and Grossman (1986) proposed

another method that is similar to Generalized Benders Decomposition. In this method,

the application problems are also decomposed to the nonlinear and the mixed integer

linear problems to formulate the upper and the lower bounds on the solutions. However,

this method uses outer approximation (linearisation) of the nonlinear objective function

and the constraints around the primal solutions to generate the mixed integer linear

problems. This method is faster than Generalized Benders Decomposition method when

the application problems are small-scale but slower when the problems are large-scale

(Biegler et al., 1997).

Deterministic methods suffer from a number of shortcomings that restrict its applications

to complex engineering problems. In addition, the methods are highly sensitive to the

initialisation of variables, especially for the non-linear problems and the non-convex

problems. Starting from different initial solutions, these methods are likely to converge to

mputing 11

Siyu Yang

the different optimal solutions. So for the complex engineering problems, deterministic

methods are likely to converge to local optimal or non-optimal solutions or fall to

converge at all. In contrast,, stochastic optimisation methods can avoid these

shortcomings and will be reviewed in the following sections.

2.3.2 Stochastic methods

Stochastic methods refer to the minimization (or maximization) of the objective
functions in the presence of randomness in optimisation processes. Recently, stochastic

optimisation methods are becoming more and more popular in the engineering domain.

In contrast to deterministic methods, stochastic methods follow a statistical random

probabilistic driven search to explore the entire search space. In some cases, this random

search process can speed up the convergence and make the algorithm less sensitive to the

modelling errors. That is because the random search allows for the movements to

unexplored areas of the search space that may contain a good solution. The advantages

and disadvantages of stochastic methods have been reviewed by Arsham (1998),

Fouskakis and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and Fogel (2000),

and Spall (2003). In this thesis, four representative stochastic methods are reviewed

involving Simulated Annealing, Tabu search, an Evolutionary method (Genetic

Algorithm) and a new probabilistic computational optimisation method (Ant Colony).

(a) Simulated annealing

Simulated annealing algorithm (SA) is based upon the physical analogy of a cooling

crystal structure that attempts to arrive at some stable (globally or locally minimal

potential energy) equilibrium. Through a slow annealing procedure from a high

temperature to the freezing temperature, a crystal can be restructured to the form that has

the minimum energy level. This behaviour was simulated by Metropolis (Metropolis et al.

1955) as a meta-heuristic optimisation algorithm and firstly applied to real optimisation

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 12

Siyu Yang

problems by Kirkpatrick (Kirkpatrick et al., 1983) and Cerny (1985). SA was

successfully applied to continuous reactions and separation systems (Floquet, Pibouleau,,

& Domenech, 1997; Marcoulaki & Kokossis, 1999; Meta & Kokossis, 1997.1998:

Cardoso, Salcedo, Feyo de Azevedo, Barbosa, 2000), Batch distillation (Hanke & Li.

2000), the flowsheet optirazation (Painton & Diwekar, 1995; Chaudhuri & Diwekar,
'

1996,1997), batch scheduling (Das, Cummings, & LeVan 1990; Patel, Mah, & Karimi,

1991; Wang et. al 1999), energy networks (Dolan, Cummings, & LeVan, 1989,1990;

Maia, Vidal de Carvalho, & Qassim, 1995) and molecule design (Marcoulaki &

Kokossis,, 2000a, b)

The algorithm is recursive starting from an initial state at high temperature. Evolutions of

states are carried out using the Markov process towards both better states as well as

worse states according to the acceptance criterion. At each temperature, reversible state

transitions (homogenous Markov processes) are perfortned to equilibrate the system.

Temperatures are reduced according to a cooling schedule. Based on an acceptance

criterion,, transitions to the worse states are increasingly reduced with the decreasing

temperatures. SA is likely to converges to the global optimal solutions if the temperature

reduces according to Illogt, with T, close to 0 and t is infinite (T,: temperature at

iteration t). This convergence of SA can be proved by a statistical argument (Marcoulaki

& Kokossis, 1999; Aarts & van Laarhoven, 1985).

Markovprocess
In SA, successive transitions are performed from a current state to a new neighbouring

state following the Markov process. The definition of Markov process is:

A Markov process ({X,,)) is a stochastic sequence of events, it, here the

probability of any particular future behaviour of the process, when its current

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 13

Siyu Yang

state is known exactly, is not altered by additional knowledge concerning its past

behaviour (Trivedi, 1982).

The formulation of the Markov property (Taylor and Karlin, 1980) is:

Týx�-� j x� il
(2.7)

Týx�� i XO '01
... ,

X�-I = 'n-1
3

Xn V'k
3CS, Vn, k eN

where

S: the search space,

the states in the space,

n: the time sequence.

According to the literature of losifescu (1980), the transition matrix (jTj,
j
I) is a

stochastic matrix of non negative elements in which the sum of entries in each row i is

equal to unity. Each element (Ti, j) of the stochastic matrix stores the transition

probability from states i to other statesj. Figure 2.1 outlines the flowchart of SA.

14
On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yan

Figure 2.1 SA

Acceptance criterion

Optimal

Solutions

The new generated states are accepted or rejected according to the Metropolis criterion

(Metropolis et al., 1953). The major element in the Metropolis criterion is the

acceptance probability that is fonnulated as:

Pi = exp(-(fj - f) / T) Ij (2.8)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 15

Siyu Yan

where

P,,
J. : the acceptance probability for the transition from state i to statej,

f andfJ : the objective function values of state i and statej,

T: the annealing temperature.

Depending on Eq. 2.8, the Metropolis criterion can be fonnulated as:

P-= min(l, exp(-(fj - f) / T))
Ij (2.9)

Based upon Eq. 2.9, statej can be accepted with the acceptance probability (P,, j) equal to

I if fj is smaller than fi . In contrast, state j can be accepted with the acceptance

probability (Pi,
j

) less than I if fj is larger than f. One important feature of the

Metropolis criterion is that the acceptance probability for the transition to a worse state

(f, is larger than f) is nonzero. This feature can prevent the algorithm from being stuck

in local optimal solutions. As the temperature decreases, the acceptance probability of

accepting the worse states is reduced. When the temperature is close to zero, only the

better states can be accepted and SA becomes the Greedy algorithm (Black, 2005).

Cooling schedule

The cooling schedule involves several important parameters that include:

o Initial temperature.

* Decrement functions.

Final temperature

Length of the Markov process.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 16

Siyu Yang

The initial temperature is usually assigned a high value so that all generated states can be

accepted involving both the better ones and the worse ones. In contrast, the final

temperature is usually low close to the freezing temperature (T = 0) so that only the better

states can be accepted in transitions. The decrement function deten-nines the decrement of

the temperature at each iteration. In the analogy to a physical process, the system can be

easily equilibrated when the temperature is high. With the low temperature, the

equilibrium of the system is difficult to approach. An appropriate decrement function

allows the temperature to decrease quickly at the high temperatures and slowly at the low

temperatures. There are many different cooling schedules proposed and studied in the

literature. However, these cooling schedules are generally classified into the static

cooling schedules and the dynamic cooling schedules. In the former one, all parameters

are predefined and cannot be changed in the process. One of the static cooling schedules

is the exponential cooling schedule proposed by Kirkpatrick (Kirkpatrick et al, 1982),

T =aT t+l t

where

a: a constant close to, but smaller than 1.

(2.10)

In contrast, the dynamic cooling schedules have their parameters adaptively changed in

the process. A logarithmic cooling schedule is proposed by Aart and Van Laarhoven

(1985). The fon-nulation of the logarithmic cooling schedule is:

=T 1+
tI

T In(I + r) t
3cy'

(2.11)

where

CY t: the standard deviation of the state objectives at each iteration,

17
On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yang

r: a parameter to control the reducing rate of temperatures.

With a large r, the temperature is reduced quickly and SA could quickly converge to the

optimal solutions but with low solution qualities (which is measured by objective value).

In contrast,, with a small r. temperature is reduced slowly and SA has to spend long

computation time to converge to optimal solutions. The length of the Markov process can

also affect the performance. In general, SA requires the long Markov process at the low

temperatures to achieve the system equilibrium. SA uses either the static Markov

process or the dynamic Markov process. With the static Markov process, SA uses the

Markov process of the same length throughout. With the dynamic Markov process, SA

firstly uses the short Markov process when the temperatures are high, then the length of

the Markov process increases as the temperatures decrease. This is because at the high

temperatures the system is easy to equilibrate so that the short Markov process is selected.

However, at the low temperatures, the system is difficult to equilibrate so that SA uses a

long Markov process.

Termination criterion

The SA terminates if one of the following termination criteria (Marcoulaki & Kokossis,

1999; Meta, 1998) are met:

* The temperature falls below the freezing temperature.

0 No state can be accepted for a number of iterations.

The maximum number of iterations have been completed.

Remarks on Simulated Annealing

SA has been proved to be a robust optimisation method even for the complex problems

that have a large number of variables and local optima (Romeo et al., 1984; White, 1984)

ment of a stochastic optimisation algorithm with capabilities for distributed computing 18
On the develop

Siyu Yang

when compared with the low efficiency and limited reliability of the other global

optimisation methods (Dixon et al., 1975; Dixon et al., 1978; Masri et al., 1980; Pronzato

et al., 1984). However, it is computationally expensive and requires excessive time to

solve complex problems (Linke & Kokossis, 2003b). The most important issues are to

address the controls in the parameters, such as the initial temperature, the final

temperature, the decrement function, and the length of Markov process. SA has been

applied to heat exchanger networks (Dolan et al, 1990), separation (Floquet et al, 1994).

flowsheet optimisation (Painton & Diwekar, 1995), reactor network synthesis

(Marcoulaki & Kokossis 1999, Cordero et al. 1997) and liquid-liquid extraction

(Papadopoulos & Linke, 2004).

(b) Tabu search algorithm

Tabu search (TS) is a member of the family of local search methods. It uses both the

memory structure and artificial intelligence to enhance the performance (Glover, 1989,

1990ý 1993). Applications of TS are wide and cover the realms of resource planning,

telecommunications, VLSI design, financial analysis, scheduling, space planning, energy

distribution,, molecular engineering, logistics, pattern classification, flexible

manufacturing, waste management, mineral exploration, biomedical analysis,

envirom-nental conservation and scores of others. Similar to SA, TS is a recursive method.

At each iteration, a state transition is carried out from the current solution to one of its

best neighbour state. Figure 2.2 outlines the flowchart of TS.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 19

Siyu Yang

Initialize

randomly

Generate new states

-- ------------------
Exclude best

Select best state from Generate new
state

new states state upon FLM

NoT

Aspiration Yes
Tabu?

criterion rnet9
Intensification No

No Diversification9
Yes

Update the

best state
No

Termin ation Yes
Update RSM &

criterion met?
FLM

Figure 2.2 TS

RSMandFLM

Final the best

TS employs the memories to avoid the solution transitions that might lead to a visited

solution. There are two types of memory. One is the recent-based short-term memory

(RSM) and the other one is the frequency-based long-term memory (FLM).

RSM is incorporated into TS in the form of a Tabu list. It records the latest transitions

that have executed and assigns them with Tabu status. Then the Tabu transitions are

excluded to force the search away from the visited states and avoid the search being

entrapped into a cycle. The size of the Tabu list (L'-B) is a user-specified parameter. It

determines the number of recorded transitions. The Tabu list is updated at each transition

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 20

Siyu Yang

and the FIFO (first-in-first-out) discipline is used to limit its size. In contrast to the

short-term memory of the Tabu list, FLM enables TS to learn the experience from the

past transitions. It records the frequencies of the transitions that have already executed.
Depending on these frequencies, the search in TS has bias either to the promising regions

that involve the good solutions or to the regions that have never been visited before.

Intensification and Diversification

Depending on FLM, TS applies the Intensification and the Diversification search

schemes (Intensification and Diversification) to improve the performance. The idea of

Intensification is to pay more efforts on the promising regions where the good solutions

are likely to appear. With Intensification, TS can quickly converge to the optimal

solutions. In contrast to Intensification, Diversification leads the search away from the

regions that have been visited with a high frequency. Thus, the search can explore

un-visited regions. To use Intensification and Diversification, TS does Intensification for

a number of iterations (L IT) and switches to Diversification for a number of iterations

(L DV). Then TS conducts random transitions for a number of iterations (LRD). Deciding

the optimal ratio between the intensification period and the diversification period

(L IT IeV) is a challenge for the successftil implementation of TS.

Aspiration criterion

The main objective of RSM is to avoid the search re-performing the transitions that have

been performed in the recent past. However, some transitions with the Tabu status

might lead to some good unvisited states. To allow these transitions, it is necessary to

override the Tabu list. The Tabu list can be overrided when:

The best neighbour in the transition is better than the best state.

0 All neighbours in the transitions are Tabu.

a stochastic optimisation algorithm with capabilities for distributed computing 21 On the development of

Siyu Yan

Termination criterion

Glover et al. (1993) proposed the termination criteria that include:

The best state stays same for a certain number of iterations.

* Total number of the iterations is larger than the maximum number of

iterations.

TS terminates if either of these conditions are satisfied.

Remarks on Tabu Search

TS is an effective and efficient optimisation method. It can produce the optimal solutions

that significantly surpass those obtained by some other methods. However, there are also

some challenges in the study of TS.

First and foremost, it is a challenge to decide the size of the neighbourhood at each

iteration. If the size were too big, TS has to estimate a large number of neighbour states

at each iteration and spend long time. In contrast, TS can quickly converge but to the

states with the low qualities, if the size were too small. To find an appropriate

neighbourhood size, Wang (Wang et al., 1999) proposed a dynamic neighbourhood size

scheme. In such scherne,, the search starts with a small neighbourhood size. The size

keeps increasing as time wears on. The results presented by Wang (Wang et al., 1999)

indicated that TS with the dynamic neighbourhood size can converge to similar optimal

solutions to those obtained by TS with the large constant neighbourhood size.

T,
Secondly, deciding the size of Tabu list (L') is another challenge. When L" is too

small. TS might be entrapped in the non-optimal region since it executes too many

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 22

Siyu Yang

similar transitions. In contrast,, a big L' allows the search covering the whole search

space. However, the search is distracted by exploring the search space and can not

quickly converge to the optimal solutions. Based on the studies over the past decades. it

is shown that TS converges to the good optimal solution when LTB is set to 7 (Ashley,

2004).

Finally, it is also difficult to determine the optimal ratio between the Intensification

period and the Diversification period. However, current applications of TS follow a

common discipline. This discipline provides that TS uses more Diversifications at the

beginning to explore the entire search space. Then TS changes to more Intensifications to

probe into the promising regions to find the global optimal solutions. TS that observes

this discipline have been applied to the engineering problems that include plant process

design (Wang et al, 1999, Cavin et al, 2004), heat exchanger networks (Lin & Miller,

2004) and reaction/separation systems (Linke & Kokossis, 2003a).

Genetic algorithms

Genetic Algorithm (GA) is an evolutionary method that utilizes the technique inspired by

evolutionary biology such as inheritance, mutation, selection and crossover. GA has been

applied to a wide range of engineering problems that include dynamic control of

processes (Pham, 1998), molecular design (Venkatasubramanian et al, 1994) and so on.

Figure 2.3 presents the flowchart of GA.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 23

Siyu Yang

Figure 2.3 GA

Initial population
Firstly, a number of initial solutions are generated to form the first population. Then the

solutions in the population are interpreted into the chromosomes using the binary

representation.

Genetic operation

GA employs the operations inspired by the evolutionary biology to generate new

populations. These operations involve selection, crossover, and mutation.

Selection operation

The selection operation selects a sub-population from the population to produce offspring.

There are a number of different ways to select the sub-populations. These ways include

the tournament selection method, the roulette wheel selection method and so on. The

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 24

Siyu Yang

tournament selection method has been proved more efficient than other selection

methods.

Reproduction operations

The reproduction operation generates a new population. The operations include the

crossover operation and the mutation operation. The idea of the crossover operation is

that a biological system combines the genetic genes of the fittest individuals to generate

offspring and spread their genetic infon-nation over populations. There are numbers of

different crossover operations, e. g. the one-point crossover operation, the two-point

crossover operation, and the uniform crossover operation. On the other hand, the

mutation operation is analogous to the biological mutation. New information is

introduced into the population by this operation. A typical mutation operation probably

selects an arbitrary bit in an organism strings and changes it. The aim of the mutation

operation is to avoid being trapped in the local optimal solutions by introducing the

diversities in the evolution of populations.

Termination criterion
The convergence of GA is reflected by the tennination criteria that include:

* The number of iterations approaches a maximum number.

9 The best solution the stays same for a number of iterations.

Manual inspection of the population can also be used to check the convergence.

Remarks on Genetic Algorithm

GA is a population based mate-heuristic algorithm so that the performance of GA relates

to the size of population. With a large population, GA can converge to the good optimal

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 25

Siyu Yang

solutions but requires a long computational time. In contrast, GA can quickly converge

but to the optimal solutions with low qualities when the population is small. Carroll

(1996) and Goldberg et al., (1992) proposed a rule to estimate the magnitude of the

population. The formulation of this rule is:

1

k

where

1: the length of the chromosome string,

x the number of the possibilities for each chromosome,

ka parameter that defines the average length of the chromosomes

(2.12)

Although Eq. 2.12 gives a good approximation to the optimal population size,

population based optimisation methods still require a long computation time to evaluate

solutions at each iteration.

(d) Ant colony optimisation

Ant colony optimisation algorithm (ACO) is a new stochastic optimisation method

proposed by Dorigo (Dorigo, 1992). ACO has been applied to the engineering problems

that include batch scheduling (Jayaraman et al., 2000) and dynamic optimisation of

chemical processes (Rajesh et al., 2001). The basic idea of ACO is derived from the

behaviour of ants that try to find the shortest path from their nest to food sources. Figure

2.4 illustrates the flowchart of ACO.

On the development of a stochastic optimisation algorithm with capabilities for distriibuted computing 26

Siyu Yang

Figure 2.4 ACO

Initial pheromone

ACO firstly generates a set of initial solutions in different regions. Each region is

assigned a small pheromone value (ro) calculated based upon the formulation proposed

by Gambardella et al., (1999):

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 27

Siyu Yang

1

, ro =- (2.13) c

where

C: the best objective value.

Establish new solution
At each iteration, ants move to a new region according to a probability:

pi Ti j, kEEN (2.14) ITk

k

where

Pj: the probability for an ant moving to regionj,

r and rk : pheromones of regionj and region k.

Pheromone update

The pheromone of a region increases if an ant passes the region and lays some

pheromone. On the other hand, the pheromone of this region also evaporates as time

elapses. Bonabeau (Bonabeau, et al. 1999) proposed a pheromone-changing schedule.

The formulation of this schedule is:

rj.,, (I - p) ATj

TJ
't
(I - P)

where

Fitness imDrove

(2.16)
otherwise

Tj, j : the pheromone of regionj at time t,

Ahe evaporation rate.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 28

Siyu Yang

and

A4

A-cj Ar j

where

A -c I' : the unit pheromone that an ant i lays at regionj,

M. the number of ants in ACO.

Termination criterion

(2.17)

Conventionally, ACO terminates after a predefined maximum number of iterations

complete. However, it is difficult to find a suitable maximum number. Papadopoulos

and Linke (2004) proposed a new termination criterion providing that ACO terminates if

the standard deviation of the objectives stays small for a number of iterations. The study

reported that such termination criterion could save 86% of CPU time with no

compromise to the quality of the optimal solutions.

Remark on A CO

In ACO, the number of ants is a significant parameter. With a large number of ants, ACO

can converge quickly but to non-optimal or locally optimal solutions or fail to converge

at all .
On the other hand, ACO might not produce the expected synergistic effects of

cooperation due to pheromone decay (Bonabeau et al., 1999) when ACO employs a small

number of ants. Another important parameter is the evaporation rate (p).

Papadopoulos and Linke investigated the impact of p and find ACO can reach the best

convergence when p= 50%.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 29

Siyu Yang

2.4 Remarks on optimisation and optimisation methods

Optimisation aims to explore the best solutions to problems by exploiting the degrees of

freedom in order to maximise (or minimise) the objective function subject to the equality

and / or the inequality constraints. Optimisation problems can be classified based upon

the continuity, the linearity and the convexity of the objective function or the constraints.

A large number of optimisation methods have been proposed according to the

classification of optimisation problems. These methods include both detenninistic

methods and stochastic methods. The former ones use the topological or the

geometrical techniques to solve optimisation problems. By using these techniques,

deterministic methods can quickly converge to optimal solutions. However, with these

techniques, deterministic methods are limited to a small spectrum of problems, e. g. some

methods require the objective functions of application problems differentiable. In

addition, deterministic methods might converge to a local optimal solution when the

applications are complex and involve non-convex and non-linear formulations. In

contrast, stochastic methods follow a statistical random probabilistic driven search. With

the randomness in search, stochastic methods can fully explore the search space and

exclude the locally optimal solutions. However, with the random search, stochastic

methods require a long computation time to converge.

To solve these shortcomings, previous efforts focused either on the optimisation methods

themselves or applying advanced computing techniques. Recently, with the

development of advanced computing techniques, more and more attention is paid on

integrating these techniques to optimisation. In next chapter, a few of these computing

techniques are reviewed along with their applications to optimisation techniques.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 30

Siyu Ya

Chapter 3 Optimisation and computing

Different computing techniques have been applied to optimisation, aiming at exploiting

key features and guiding the search efficiently through a parallel use of knowledge

acquisition and distributed computing techniques.

3.1 Knowledge acquisition

Knowledge acquisition techniques transform the knowledge available in the world to the

forms that can be used by a knowledge-based system. It is also called knowledge

discovery that is defined by Fayyad et al., (1996) as the process of identifying valid,

novel, potentially useful, and understandable patterns in existing data. Data mining is an

important method in knowledge acquisition and was originally utilized in business

intelligence and financial analysis. With data mining methods, relationships within the

real world data can be identified so that non-statistician can help on decision making

(Monk & Wagner, 2006). Moreover, data mining methods can also extract the

information from the data generated in experiments. Two Crow Corporation (1999)

reviewed the different data mining techniques involving neural networks, decision trees

(classification trees), rule induction, K-nearest neighbour and memory-based reasoning,

logistics and so on. In addition, several standards for data mining techniques are

proposed, e. g. the CRISP-DM standard and the Java Data-Mining Standard.

Data mining methods have been applied to many different fields. In the medical field,

data mining techniques are broadly applied to the pharmaceutical development and the

construction of ecological models (Dzeroski et al., 1997). In the chemistry and chemical

engineering fields, data mining techniques are used in discovery of knowledge from the

chemical databases (Liang & Gan, 2001), in reaction data mining (Wang et al., 2001),

and in process modelling and OPtimisation applications (Nandi et al., 2003). Ashley and

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 31

iyu Yang

Patrick (2004) proposed a knowledge driven optimisation method in which the

optimisation technique combines with a knowledge acquisition method. This method

takes the form of TS and uses the classification tree data mining method to extract the

rules. Then the algorithm follows these rules and focuses on the high perfon-nance

regimes. The method has been proved successful for a number of illustrative engineering

problems. It outperforms the robust stochastic optimisation algorithm (TS) in terms of

the convergence speed. The study reported the usefulness of integrating the knowledge

acquisition into optimisation.

3.2 Parallel and distributed computing

Parallel computing is a form of computation in which many calculations are carried out

simultaneously. From the 1990s, parallel computing techniques had been applied on the

computing envirom-nent in which computers are connected via a network. Distributed

computing is a variation of parallel computing. With the distributed computing

techniques, the computers in the distributed environment work closely like a single

computer. The information is communicated via the network. Parallel computing and

distributed computing techniques have been applied to different problems, e. g.

engineering problems (Cox, 2002) and optimization problems (Foster et al, 1999; Foster

et al,, 2001).

In optimisation, parallel and distributed computing techniques can improve the

computation capability so that the optimisation method can solve previously unsolvable

complex problems. With the improved computation capability, optimisation methods can

quickly converge to the global optimal solutions. To apply parallel and distributed

computing techniques, the optimisation method firstly breaks the problem into several

independent parts so that multiple computers can execute these parts simultaneously.

Since stochastic optimisation methods use random probabilistic approaches to determine

the search direction, the relations between the current transition and the previous

transitions are not as strong as those in deterministic optimisation methods. Thus,

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 32

Siyu Yang

stochastic optimisation methods are more suitable for parallel computing techniques. In

the following sections, the applications of parallel and distributed computing techniques

to the four stochastic optimisation techniques (SA, TS, GA, and ACO) are reviewed in

terms of their classifications,, advantages and limitations.

(a) Parallel SimulatedAnnealing (SA)

Parallel computing techniques have been applied to SA in many different ways. These

applications can be classified into the parallel SA with serial transitions, the parallel SA

with parallel transitions, and the parallel SA with both serial and parallel transitions

depending on the information transition modes (Leite and Topping, 1999).

The parallel SA with only serial transitions requires that the method rigorously follows

the normal SA, so it is unlikely to produce a significant speedup on convergence.

However, such a scheme is still broadly used since the motivation of SA is derived from

the stochastic nature which requires multiple runs to improve the reliability of the results.

To implement this forin of parallel SA, each computer is assigned its own SA. The initial

points (the global information) are firstly distributed to the computers to initialise the SA.

Then the computers execute the SA independently with no information transferred

between them.

In contrast, the parallel SA with only parallel transitions is implemented as the

master-worker paradigm. The workers are assigned by different Markov processes. The

Markov processes are launched simultaneously. The master collects the objectives on the

workers and then returns the best objective to the workers after all Markov processes

finish a transition. This parallel SA might encounter bottlenecks and high communication

traffic when a large number of workers are employed and all transfer information with

the master at the same time.

The last form of parallel SA is the one with both serial transitions and parallel transitions.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 33

Siyu Yang

The master-worker computing framework is still selected. The workers do a number of

transitions in the Markov processes and then send their best objectives to the master. The

master then selects the best one of these objectives and distributes it to workers to restart

the Markov processes. Compared to the parallel SA with parallel transitions, this parallel

SA reduces the communication between the workers and the master. However, the

faster workers have to wait for the other workers to finish their work at each iteration.

Thus, the computational resources available in the environment are not fully exploited.

A parallel SA (hybrid parallel SA) was proposed by Mahfoud and Goldberg (1992). It has

become increasingly popular and can be found in variety Of applications. This parallel SA

combines SA with GA to introduce the population-based characteristics into an annealing

framework. To implement the hybrid parallel SA, the master-worker computing

structure is selected. The reproduction operations (the crossover and the mutation

operations) execute on different workers in parallel. The new generated populations are

evaluated on these workers and sent back to the master. The master collects the

populations from the workers. Then the master rearranges the populations and

broadcasts them back to the workers. The temperatures on the master are used to control

the convergence of the method. However, the hybrid parallel SA might encounter

bottlenecks and high communication traffic if the populations transferred between the

workers and the master are large or the environment involves large numbers of workers.

Parallel Tabu Search (TS)

Similar to the parallel SA, parallel computing techniques have been applied to TS in

different ways. These applications involve the parallel TS with parallelism in cost

function evaluation, the parallel TS with parallelism in problem decomposition, and the

TS with parallelism in solution domain explorations.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 34

Siyu Yang

The first parallel TS delegates evaluations of neighbours to different workers

(Chakrapani and Skorin-Kapov, 1993). The master-worker computing structure is used to

implement the parallel TS. The master searches the neighbours of the current points and

distributes them to the workers, while the workers evaluate these neighbours

concurrently and send the results back to the master. Since the most time expensive

tasks execute on the workers simultaneously, the computation time can be significantly

reduced. However, this parallel TS might encounter high communication traffic since the

information is transferred between the master and workers after each move.

The second parallel TS firstly decomposes the application problem to several sub

problems. These problems are distributed to the computers. The computers do TS in

parallel to solve these sub problems. The best objectives are exchanged between the

computers periodically. Glover et al., (1993) applied this form of parallel TS to vehicle

routing problems. Since the parallel TS has to firstly decompose the application problems,

it is a problem dependent method.

In the last form of parallel TS, the master-worker computing structure is still selected.

The workers do TS in parallel. The information that transfers between the workers and

the master is a set of parameters that include the length of the Tabu list, the number of

the neighbours and so on. To implement this parallel TS, the master generates a set of

parameters for each worker after a number of moves. These sets of parameters are sent to

workers to control the next moves. This parallel TS is suitable for multiple instruction

and multiple data parallel computing with distributed memory (Grainic et al., 1995a;

1995b). However, since the faster workers have to wait for the slower ones, the

computation resources cannot be fully exploited.

(c) Parallel Genetic Algorithms (GA)

Since GA is a population-based stochastic optimisation method, it can be easily

parallelised. Till now, parallel GA can be found in different applications (Baluja, 1994;

mputing 35

Siyu Yang

Mariusz and Riccardo, 1999; Cantýi-Paz, 1998). These parallel GA can be classified into

the ones with parallelism in evaluations and the ones with parallelism in population

(CantU-Paz, 1998).

In the first form of parallel GA, the master-worker computing structure is selected. The

workers evaluate the solutions and do mutation operations to generate new solutions in

parallel. The master performs the selection and the crossover operations and distributes

populations to the workers. In this parallel SA, workers take the most expensive time

tasks and execute them in parallel. The overall computation time can be reduced.

However, with a large number of workers in the environment, the communication traffic

between the workers and the master is high and the reduction on the overall computation

time is limited.

The second fonn of parallel GA distributes the population to the workers. The workers

run GA in parallel. This form of parallel GA can be further classified into the parallel GA

with distributed memories and the parallel GA with shared memory. In the first one, each

computer runs a GA on a sub population and transfers members in this population with

those in other populations from time to time. The division of population depends on

topology techniques such as the hypercube and the multi-dimensional mesh. This parallel

GA was firstly proposed by Cantfi-Paz (1998). In the second one, the sub populations are

in the same memory and the workers communicate with the memories periodically. Both

sub classification of this parallel GA might encounter high communication traffic since

the workers have to communicate frequently either with other computers or with the

shared memory.

Moreover, yet a further form of parallel GA combines GA with some stochastic

optimisation algorithms. Such parallel GA is named as the hybrid GA. Based on the

discussion in parallel SA, the studies on the hybrid GA focus on combining parallel GA

with SA.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 36

Siyu Yang

(d) ParallelAnt Colony (ACO)
Most of the parallel ACO follow the idea proposed by Randall and Lewis (2002). In this

idea, ants are distributed to different workers. The ants on the same computers are

regarded as those from the same colonies. The parallel ACO include the centralized

parallel ACO and the decentralized parallel ACO.

The centralized parallel ACO uses the master-worker computing structure. The master

collects pheromone from the workers and sends the specified solutions and new

generated pheromone to the workers. To implement this parallel ACO, ants are firstly

distributed to different colonies on the workers. The master then distributes each worker

an initial solution set and pheromone set. The workers then run ACO in parallel for

numbers of iterations and generate new solution sets. The master collects these solution

sets and pheromone sets and selects the best solutions and generates the new pheromone

set. Then the master sends them to the workers to run ACO again. Since the workers

have to communicate frequently with the master, the centralized parallel ACO might

encounter high communication traffic loading. Piriyakumar and Levi (2002) studied

this parallel ACO on the travel salesman problems and found that the communication

time could be reduced to some extent by decreasing the frequency of transferring the

information between the master and the workers. However, lessening communication

frequency could lead the algorithm to the optimal solutions with low qualities.

In contrast to the centralized parallel ACO, the decentralized parallel ACO runs

sequential ACO on individual computers. The information (the selected solutions and

pheromones) is exchanged between computers after a certain number of iterations.

Kruger and Middendorf (1998) studied this Parallel ACO on the salesman problems and

reported that the decentralized parallel ACO can achieve the optimal solution with high

solution quality (objective value of the solutions close to that of the global optimal

solution) and spend less time on communication than the centralized parallel ACO.

However, the decentralized parallel ACO might in some circumstances encounter high

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 37

Siyu Yang

communication traffic bottleneck since the faster workers cannot exchange the

information with the colonies on the slower workers until they all finish work. Another

reason is that the information transferred between computers is large when the

application problems are high dimensional that involve large numbers of variables.

The application of parallel computing techniques can undoubtedly improve the

computation capability. However, with the synchrony and sequential nature in the

conventional stochastic methods, computation resources cannot always be fully exploited.

Thus the benefit in speeding up the convergence is limited. In addition, the number of

available resources within a corporation is finite. With the development of advanced

technologies, the parallel and distributed computing applications are no longer limited to

the same location with a localised cluster of computers, but are instead being applied on

the Grid networks across the Internet.

3.3 Grid technology and applications

Grid computing techniques were first developed to enable resource sharing, job

dispatching and data mining in the decade from 1980s to 1990s (Foster & Kesselman,

1999). Recently, Grid computing techniques are used for many different objectives, e. g.

integrated networking, communication, computation and information and help executing

large-scale, resource intensive and distributed applications (Berman et al., 2003). In

Grid computing techniques, a Grid is described as an infrastructure that integrates

networking, communication, computation and information to provide a virtual platform

for resources sharing, message and command passing, data transfer and mining and task

scheduling and dispatching in the fields of business, government, science and industries.

Foster and Kesselman (1999) divided a Grid into 4 layers from bottom to top as follows:

Fabric layer, Core middleware layer, User level layer and Application layer.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 38

Siyu Yang

Fabric la er y

The Fabric layer provides the resources in Grid. The resources could be CPU power

resources, storage, database, network portal, operating systems, etc.

(ii) Core middleware layer

This layer defines the core communication and the authentication protocols required for

Grid-specific network transactions. The communication protocols enable the exchange of

data between the resources in the fabric layer, whilst the authentication protocols provide

the secure mechanisms for verifying the identity of administrators, users and resources.

User level layer

The user level lay is on top of the core middleware layer. It provides the protocols and

services for capturing interactions across resources. This layer is made up of

programming tools, resource brokers and deployment devices so that it can implement a

wide variety of sharing behaviours.

(iv) Application layer

The application layer is the highest layer in a Grid. It is designed for users. This layer

consists of the Grid programming models and the Grid application execution

environment. The former one is used for users to program the applications, whilst the

later one implements the remote controls in the Grid.

Grid computing techniques are firstly developed as meta-computing techniques involving

the applications established on Internet protocols. Grids provide application-oriented

frameworks with the emerging of Open Grid Services Architecture (OGSA) and shared

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 39

Siyu Yang

virtual systems. Users can access the resources remotely by using the information service

and the resource broker layers. End-users do not have to know where the tasks perform

and where the data is stored. Grid middleware are software packages that unify different

computing and data resources in a specified manner. With these packages, the resources
in a Grid can be accessed remotely by client software without incompatibility problems.

Globus is a middleware developed as a metacomputing infrastructure toolkit providing

capabilities and interfaces for communication, information, resource location5 resource

scheduling, authentication and data access (Foster & Kesselman, 1997).

In optimisation, Papadopoulos et al. (2005) applied modified TS on a simple Grid (a

cluster computer network) in which computers were connected via a local network.

Master-worker computing structure was selected in this application. The workers ran TS

in parallel and sent objectives to the master periodically. The master then calculated the

standard deviation of these objectives and broadcasted it to the workers. This standard

deviation determines whether the algorithm selects a random direction or selects the

user-defined direction. The user-defined direction is produced by analysing the

previous moves using a data mining method. Introducing the user-defined direction can

avoid the premature convergence of the optimisation method. Due to the high

communication traffic between the master and the workers,, this modified TS can gain at

most seven times speedup at most when applying it on distributed computing

enviromnents.

3.4 Remarks and discussions

Different computing techniques (e. g. knowledge acquisition, parallel computing, and

distributed computing) have been integrated in optimisation either to guide the search

efficiently or to produce high-throughput computation capacities. To guide the search,

optimisation applies knowledge acquisition techniques. However, most of the

conventional stochastic optimisation methods do not record and manage the intermediate

system infonnation. To produce high-throughput computation capacities, parallel and

distributed computing techniques are applied to optimisation. Because of the sequential

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 40

Siyu Yang

nature, it is difficult to apply parallel and distributed techniques to conventional

optimisation methods. Thus, the conventional optimisation methods have developed

passively exploitation of knowledge acquisition and parallel and distributed computing

techniques. In addition, most of the current parallelization follows synchronous mode in

which the faster worker has to wait for the slower ones before it starts work. This

parallelization suffers from high communication traffic amongst computational resources

and can only achieve small benefit in speeding up convergence. Thus, it is a challenge to

develop a fully distributed optimisation method in which the computational resources run

simultaneously but following asynchronous mode in which computers works as a single

computer.

A fully distributed optimisation algorithm that can capitalize on knowledge acquisition

techniques is proposed in our research. The concepts of this algorithm are explained in

detail in the next chapter.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 41

Sivu Yan

Chapter 4 The Cascade Optimisation Algorithm

A fully distributed stochastic optimisation algorithm is proposed by incorporating the

concepts from the Markov process of SA. It introduces conceptual partitions and pools

to store intennediate solutions and corresponding objective values. The partitions and

pools grow as the Markov process generates new intermediate solutions. Populations

within partitions and pools are distributed periodically according to an external criterion.

With the use of partitions and pools, multiple Markov processes can executes

simultaneously without interactions. Thus, the new algorithm is suitable for distributed

computing technique. The general formulation of optimisation problems takes the form:

, h(x, y) =0

min f (x, y) s1.1g(x, y) <0

xcXa 9i', y GY =- ý0,1ý"

where f(x, y)is the objective function, h(x, y)and g(x, y) are the constraints.

4.1 Notation

Anp,
l Domain of Dh nP

Density functions in A,,
P,, .

dz A profile of A,,
P,, ,

D Domain of an optimisation problem.

Dh Cascade of nP pools at time t.
np, t

Objective ftmction of an optimisation problem.

niin Minimumf in Pj,, at time t.
ill

(4.1)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 42

Siyu Yang

fim, ax

ft min

f, max

F

L 91

G

G1

G,,
p

Maximumf in P,,, at time t.

h Minimumf in DnP', at time t.

h Maximumf in Dn'P't at time t.

A superset of numerical functions, including objective function.

Markov process defined over time t.

Superset of partitions in D.

The highest partition.

The lowest partition.

Gj, l Partition j at time t.

hA numerical function in F.

hj, t
A numerical function of Pj,,

h SM A measure of object (D, P,)-

Hj,
l A probability measure of

A W".

i Index of solutions in partitionj. i=1,2 Mj

i. Index of partitions from top to bottom. j=1,2,..., nP

L The length of Markov process.

Mi. Number of available points in Gj,,

nP Number of partitions/pools

nF5 nST 9 nd Integer constants.

The highest pool.

P The highest pool. nP

pi,
t

Pooli at time t.

h
Qt The population of G, or Dnp,

t

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 43

Siyu Yang

Qj, t
The population of Gj,, or Pj,,.

A parameter in the cooling schedule used to determine the shape of
r

curve between T, and Tp

RA random number in [0,1]-

SQ'I Available point i in partition Gj,,.

S Available region of an optimisation problem.

t Sequence of time periods. t=0,1,...

T, The temperature associated with P,.

The temperature associated with P TIP nP

Tj Parameter associated with Pj and is called temperature here.

F-, A small value in [0,1].

4.2 Basic concepts

Let S be the feasible region of 4.1:

{(x, y) 1 h(x, y) =0A g(x, y): ýg 0, x cz X, y EEYI (4.2)

and D is the domain of 4.1:

D= f f(x, y) I V(x, y) c= S1 (4.3)

Let G be the superset of disjoint partitions inS, so that:

U (4.4)
i

with Gj being ordered sets of finite elements in S:

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 44

Siyu Yan

Gj -
ýSlj

ý
S2,

j ý' -*- sm,, j I s,, j cS i =1,2,..., Mj, j = 1,2,..., np (4.5)

Let F be a superset of numerical functions. For each hcF including the objective

function f of 4.1, s,, j cS can be mapped so that:

si, j
h> h(s,, j) = hi, j E-= 93

Defined over Gj5f can be used to map Gj to 94mi so that:

fj Gj f>f (Gj) =
tf (sj, j)ýj =

tfi,
j
ýj

and

fj I Gj f>fI (Gj) =
tf (sj,,)ýj Af (SQ) ý!! f (Sk,

j) Vi<k

(4.6)

(4.7)

(4.8)

Definition 4.1: A set P is a pool of G if El Gj cG so that P, is the domain of 4.7.
j

Definition 4.2: A set P is an orderedpool of G if 3GJ cG so that Pj is the domain of
j

4.8

Illustration 43:

Let the optimisation problem be:

f= X2 +X2 +y
min 12

XI +X2 =y

S-t- XI - X2Y <0 IXI

! IX2!, Y >0

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 45

Siyu Yang

with the feasible region:

S=ý(XIýX25Y)1 XI +X2 =Y A XI -X2Y<01'XIlX23Y>oý

Let A, B, C, D, E, F, Q H, I be available points in S, Table 4.1 presents these points.

Table 4.1 Available points in S

Point X1 X2 y

A 37.4 14.6 52

B 20.2 41.8 62

c 1.7 34.3 36

D 16.4 18.6 35

E 12.7 3.3 16

F 35.7 39.3 75

G 0.4 3.6 4

H 1.7 21.3 23

1 52.4 7.6 60

Let the superset of partitions G=f GI, G2 G31(-S with

G, = fA, B, Cl
G2

= {D, E, Fj
G3

=fI, H, GI

Figure 4.1 illustrates the partitions G.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 46

Siyu Yang

G,

G2

G3

Figure 4.1 Partitions G

According to f G,
,
G2and G3

are mapped into PI, P2 and P,

G, f)P, - 11665.8,2218.4,1215.11

G2 f)P2 =f 649.8,189.2,2894.1)

G3 f >P3 = {2863.9,479.5,17.11

Based on Definition 4.1 and 4.2, P, and P2are pools and P3 is an ordered pool.

Lemma A. - G is a a-algebra of G and P is a a-algebra of D
ji

Proof-

In both 4.7 and 4-8:

e0e Gj, OEEPj

Any union of countable many elements of G, or P, is an element of G, or P,

on the development of a stochastic optimisation algorithm with capabilities for distributed computing 47

Siyu Yang

9 The complement of any element of Gj in G or Pj in D is an element of G or

D.

Lemma B. - The objects (G, Gj) and (D, P,) are measurable spaces.

Proof-

From lemma A. Gj is a a-algebra of G and Pj is a cy-algebra of D. QED

Definition4.3: Q, is the population of Gj iff Qjistherankof Pj(G,). -

Q) = rank (G.)= rank (Pj) (4.9)

Let P, as defined in Definition 4.1. Let also an h-metric hj defined over P, as a

mapping from 93m --> 93 so that:

hph> h(Pj h(If,, j
ýj (4.10)

Lemma C. - Thefunction

mi

hsm (Pj) If (s,, j)I

is a measure of the object (D, P
J).

Proof-

hsn' is a ftinction: Pj h" ý-RU{oojwith values in the extended real numbers such

that:

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 48

Siyu Yang

h -vm (P,) ý! 0v Pi

h'm (U Pj) h" (Pj)
i

Let hcF and a set of nP pools P
, with their h, metrics. Let an ordered

combination D' so that: np

I, P ..., P h (p
np 21 np (4.12)

with

hj >hk Vj >k (4.13)

Definition 4.4. - A combination of nP pools P, is called a cascade if 3h cF so that

Dh follows 4.13. np

Illustration 4.2:

Let us apply h, on P, ,
P2 and

P3 of Illustration 4.1 so that

h, = h" (PI) = f(A) +f (B) +f (C) = 5099.3

h2 = h" (P2) =f (D) +f (E) +f (F) = 3733.2

h3= h" (P3) =f (G) +f (H) +f (I) = 3360.5

Based on Definition 4.4, the combination

h p, P D3
1 2IP31

is a cascade following

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 49

Siyu Yang

h, >h2 >h 3

Definition 4.5. - The cascade domain A
nPof

D, '
p

is defined as. -

np mi

Anp U Ifi,

j

I

j=l

Lemma E. - B(A np ,
f,,,) is a cy-algebra of

Anp
and

j) h sm (P

Hj =
np

j sm (P h j)
j=l

is a probability measure of A nP *

Proof-

B(A np , f,, j)
is a a-al gebra since

90c B(Anp ,
fj,

j
)

(4.14)

(4.15)

p , j)
is an element of A,,

p
Any union of countable many elements of B(A,

9 Each complement of B(A,,
P,

f,,
j) is also anelementof A,,

P.

H(A,,
p
) is a probability measure since

o H>O

0H has the countable addition property of h"

H (h sm)

o (A,,
P)=I

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 50

Siyu Yang

Illustration 4.3:

The domain of Dh in Illustration 4.2 is 3

A3 =f 2218.4,1665.8,1215.1
ý 2894.15 649.8,189.2,2863.9,479.5,17.11

Based on 4.15 and Illustration 4.2,, the probability measures of A3 are

h" (PI)
-- H, H(h' (Pl)) =:

5 099.3
-0.418 3

j" h sm (Pj) 12193

j=l
h' (P2)- H2 H(h" (P2))

-3733.2 = 0.306 3

sm (P 2ý. 'h) 12193

j=l
h' (P3) H3 H(h' (P3)) 3360.5

0.276 3

j) h SM (p 12193

J=l

Let D' a sequence of cascades and A, the domains of Dh
np, k P,

k np, k

Definition4.5. - Let d,, be the density probability function of A The d is a" rofille np, k 'zp

of Dh iff
np k

limdk = d-
k-4oo

Illustration 4-4:

Let the unconstraint optimisation problem be:

(4.16)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 51

Siyu Yan

min

Let the sequence of cascade Dh-::: Ip, associated with the sequence of 3, k J, k ý
P2,

k ý
P3,

k
I

partitions Gk
=

{Gl,
k 5

G2,
k 5

G3,
kj and

Go = {GI, o 3
G2,0

ý
G3�)= [{x, ý, ý2x, ý, {7x, l]

Usingf,

Dh=: [tx' 1, ý4x' 1, ý49x' ý]
3,0 111

Let partitions and pools expand by

9k : Si, j, k -)0. Si, j, k+l -

SQ, k

k+2

The Gl,
kIG2, kand

G3,
k are given by

xi xi xi
Gl,

k = {X�-

2'6' '(k+2)!

G =12x x,
X1 2x,

2, k 1ý 13 '(k+2)!

G3,
k = {7x,,

7x, 7x, 7x,
2'6 (k + 2)!

Usingf,

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 52

Siyu Yang

222

p Xi XI x] = ýX2

!)2
1, k 14 '36' '«k+2)

4X2 4X2 4X2 P2,
k =ý4 X12,111

)2 4' 36 «k + 2)!
49 -r-

2 49 r2 4C)y- 2
P3,

k= 09x,
,

'- "'
4

The domain of Dh IS 3, k

36 ((k +2 !)2

222
X2 X2

2
ýX2

Xi Xi x24,4,4x,

A, h
,=

{4x, - ju n. k1i,
4 '36' '«k+2)1)21U 4' 36 «k + 2) !)2

2 49 X2 49 X2 49X2

149x 14 36 '«k+2 !)2

Using the probability measure Hk as the density function dk
!,

dk(A,,
P, k

)= Hk(A,,
P, k 3

hsm (P,,
k

Lhsm(p j, k
J=l

with

k+2

X1
1: 1!

h'(pl,
k

1=1

!)2 ((k + 2)

k+2

4x 2

hsln (p2,
k 2 ((k + 2)!)

k+2
2 49xi 11!

1=1

!)2 ((k + 2)

hsm (p2,
k

3

Lhsm (pj,
k

hsm
3

L hsm(pj,
k

j=l

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 53

Siyu Ya

The profile of D' 3, k

d, = limd =[1
]J=I, [4

'[49- k-+oo
k(Anp, l

)

54 54]j=2 54_j=3

Definition 4.6: Let A' and A be the domains of D" and Dh respectively. D
h' is

nP nP nP nP nP

h iff defined as an inflection of Dnp

I
=A npnp

Illustration 4.5:

The partitions in Illustration 4.1 is

G=JGIýG2 !,
G3 I

with

G, =fA, B, Cl G2
=fD, E, Fl G3

= JI, H, GI

Let the partitions G' be

G, G3

with

ýA, Bý DI G, =: ýC, E, Il G= ýF, H, Gý
1

(4.17)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 54

Siyu Yang

Usingf, the cascades are

3=
ýPlý P2

ý
P31

D" = {P, ', P2, P3'1 3

with

jf(A), f(B), f(C) I P2= tf(D), f(E), f(F)l P3 = lf(l), f(H), f(G)l

and

P'=jf(A), f(B), f(D)j P2 '= jf(C), f(E), f(I)l P3 '= jf(F), f(H), f(G)j
I

Since,

A3
= ýf(A), f(B), f(C), f(D), f(E), f(F), f(G), f(H), f(I)I -- A3

is an inflection of Dh 3

4.3 Expanding partitions and pools

Let a Markov process

gL : S__>S
t

defined over a sequence of time periods t where L is the length of a Markov process.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 55

Siyu Ya

Let also

Gj, l = (s Q'I ,
SQ, 2)**, I si, j, f

)

so that

L (S ss
)ES k=1,2,..., t 91 i, j, k

(Si,

j, l+l I Q, t+2 5-1 i, j, i+L

and Gj,,
+L is given by:

Gj,
t+L ::::::

Gj,
l ugIL (SQ,

k
) (4.19)

with (s,,,,, +, ,
Si, j, t+2 1-5

Si, j, t+L
)observing Markov properties.

Let the sequence of pools Pj,,
+L

be defined over G,,,
+L . so that

Pj,
I+L

Pj,
l U If (Si,

j, t+l)l
f (SQ,

t+2)5***ý
f (Si,

j, I+L)l
(4.20)

Illustration 4.6:

Let the Markov process (L = 3) be

3
9t (Si,

j, k

(Si,

j, t+l ý Si, j, t+2 5 Si, j, t+3

)
Cz S

with

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 56

Siyu Yan

s
Si,

j, k

I, J, I+l ': t+2

Let the partitions

Si,
j, t+2 -":

S1.
I, t+l Si, j, t+3 -

Si, j, 1+2

t+3 't+4

Go =
IGI,

o 5
G2,0

5
G3,0

I

with

GI, 0 = ýx, G-G- 2,0 :: ýX2 1
3,0

ý X3

Usingf, the cascade is

Dh- 3,0

ýPI,
O ý

P2,0!, PI,
O

with

p :- {f (XI)l P2,0 ý ff (X2)1
1,0

3 Let gO map x, , so that

x' x' x'

xi

263 24

Go evolves to G3

G3 =
tG,,,,, G2,3 G3.3

I

p3,0 =

57
On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Sivu Ya

with

ýx x' x, xL,
1,3 15---

2'6 '24

Accordingly,

Dh= IP,,, P 3,3 ý 2,3 ý
P3,3

with

G2,3 =f X2) G3,3 =: I X3)

10 :::::: ff(xl)ýf(I I)JO)I P2,0 ":: ýWXOI P3,0 ff (X3)1

26 24

If d, is a profile, Dh will be in equilibrium with respect to d nz
iff

limd(A np, l
)= d-

1-+00

4.4 Outline of the Cascade Optimisation Algorithm

The procedure of the cascade optimisation algorithm is illustrated as follows:

(4.21)

Step 1: Select a number of pools to formulate a cascade (following Definition 4.1).

Step 2: Use a Markov process to increase populations in partitions and pools.

The Markov process maps a point in a partition to new points at each iteration. The new

points are placed into the partitions to increase their populations.

Step 3: Check whether the cascade follows Eq. 4.13 and develop the inflections

(following Definition -1.6) if required.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 58

Siyu Yan

Step 4: Check the convergence of the algorithm and iterate with Step 2

The convergence of the algorithm is determined by the termination criteria that address
the controls in:

* Population size

* Optimisation progress

* Population feature

The details of the tennination criteria will be explained in section 4.5.3. Figure 4.2

outlines the main steps of the algorithm.

No

Select partitions

and pools

Populate Markov

processes

Check the order

of the cascade

Develop an

inflection

Check convergence

Ten-ninate?

Yes

Figure 4.2 Cascade optimisation algorithm flowchart

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 59

Siyu Ya

4.5 Cascade optimisation algorithm as a Markov process

The cascade optimisation algorithm employs a Markov process to generate new points.

The Markov process is similar to that in SA. A global parameter is used as the pool

temperature that accounts for the level of uncertainty in each pool, as is the case of

temperature in SA. Each pool j is associated with a temperature (Tj) and pools are

sorted in decreasing T. . If the top (TI) and bottom temperatures (T,,
P)

are fixed, T.

is calculated on the basis of the following expressions:

T-T
f (j) 'P

I-n P

jr + T_
I

T I -T np

r I- np
(4.22)

The parameter r controls the convexity (concavity) of the function that is twice

differentiable in [1, W] with its second derivative:

T -T,, T" (j) p -r-2

np
(4.23)

With different r,, Eq. 4.22 can produce different cooling schedules. These cooling

schedules can be classified into three major categories:

e With r>1,
f T" (j).,: ý 0 the cooling schedules are a strictly concave functions.

e With r<1,
f T" (j) >0 the cooling schedules are strictly convex functions.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 60

Siyu Ya

* With r=I,
fT"(j)=o the cooling schedules are linear functions.

Figure 4.3 illustrates the three classes of cooling schedules

rý1

r1

1'1

r-- 1
1'1

Figure 4.3 Cooling schedules

Where X-axis denotes the index i and Y-axis denotes Tj -

On the development of a stochastic oPtimisation algorithm with capabilities for distributed computing 61

Siyu Yang

Illustration 4.7. -

To illustrate how T. controls and manages actions in the algorithm, let us now set up an

instance of the algorithm at t=0, using 4 partitions and pools:

Go =
JGj,

O!, G2,0, G3,05 G4,01

Let 4 points

12 X2 = 11 X3 =9 X4 =

be distributed in partitions, so that

GI, 0 = ýx, ý G2,0 = {X2) G3,0 = {X3 ý G4,0 = {X4)

Usingf, the cascade is

Dhpppp
4,0 :::::::: 1

11,0 ý 2,0 5 3,0 ý 4,0

Let T, -100, T4 = 1, and r=1. Based on Eq. 4.22, each pool is associated with a

temperature:

T= 100, T, = 67 ,
T, = 34, and T4

I

Let a Markov processes (L=3)

3)ES k=1,2,. --, t t
(Si,

j, k

(Sij,

f+I ý
Si,

j, 1+2 ý
Si,

j, t+3 gt

with

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 62

Siyu Yang

+
t+I

4.5.1 Population growth

The Markov process generates points and increases the population in the partitions and

pools. Similar to that in SA, the Markov process follows the Metropolis criterion:

P1,1+1 P(S,, j, t+l
I s,, j,,) =min 1, exp Tj

where

s,, j,, and s,, j,, +,: the current point and the new point,

f,, j,, and f,, j,, -,, : objective of s,, j,, and si, j,, +, ý

p,,, +,: the probability of accepting si, j,,,, -

Tj : the temperature associated with Pj,,.

With this criterion,, new points are accepted according to the rule:

si, j, t+l

si, j, t

if pl, t+l ý!

i p,,,,, f

(4.24)

(4.25)

where

R: a random number in [0,1].

As is apparent, the probability of accepting a new point is controlled by the pool

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 63

Siyu Yang

temperatures. When Tj is large (small), the Markov process follows a high (low)

probability and accepts more (less) points.

Illustration 4.8:

Let us revisit the description presented in Illustration 4.7. Let the optimisation problem

be

min f =x'

The cascade at time 0 is

Dhppp 4,0 --,: f
'1,0 ý 2,0 ý 3,0 1

P4,0

with

P- {f (xl)ý = ý224ý 1,0
P2,0 -= ff (X2)1= f 12 11 P3,0 :::::::: ff (X3)I

-"::: 18 1)

P4,0 =: ff (X4)1=
{641

go' firstly maps x4to X5:

38

X4 go >x 5 =-+2=10 1

Based on Eq. 4.24,

po', --.,: 2.3E - 16

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 64

Siyu Ya

P<R and x is not accepted. ' maps x again to x: O'l 5 go 46

X4 X6 =8 +2=6
2

and

PI, 2 =1

PI, 2 ý! R and X6 is accepted. gO then maps X6 to X7 :

36

X6 go >x
7- -+2=4 3

and

P2,3 : -:: 1

R and x is accepted. A set of points are generated by g' 2,3 70

3
X4 9t > (X6!

1
X7

Go evolves to G3 :

G3
=

tGI,

3ýG2,3 5G3,3 ý
G4,3

I

with

GI,
3 =ýxlý G, 3=

{X' ý G��, = ýX31 G4,3 = ýX4
ý X6 e X7 1

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 65

Siyu Yan

Usingf, the cascade

h
4,3

pppp
1,3ý 2,35 3,31 4,31

with

{f (xl)1 = {144ý Eo
P2,0 =: = ff

(X2))=
f 12 11 p -= ff (X3)1=

{811 3,0 -

P4,0 -= ff (X4)3 f (X6)3 f (X7)1= f 64,3 6,161

It is obvious thatp,,,,, is large (small) when Tj is large (small). T, should be a large

value so that all points can be accepted and T
,, P

should be a small value so that only the

points better than the current ones are accepted.

4.5.2 Development of Inflections

The inflections are developed periodically following Definition 4.6. To develop the

inflections, Let F, nn and F, " be the maximum and minimum objectives in pools at

time t. Apparently, the n, pools have n, +I boundaries. Let us assume that the

cascade has nP +I pools associated with nP +I temperatures:

(Ti - Ti+l) ax fim f mm

j
- (TI T

p +j,
max F, -Fmin

t

,
max Each pooij is associated with two boundaries f
, and

(4.26)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 66

Siyu Yang

FI max
_Fmin)* (Tl j) + F, (4.27) _T max f

im,
in

(TI -TIP +F)
max

_Fmm fim, ax
(F,

t)* (TI - Tj+l)
+ F, max (4.28)

(TI - 7ý +,)

Points are distributed among pools following

f max min (4.29)
i",

ý!! f(Si,
i, t) > fi"t

Figure 4.4 presents the boundaries in the cascade

f max Fm'

Pool 1
A min

It

---------- ------------------------- f max
J't

Pool i3

---------- ------------------------ f min
i't

max
np, t

Pool np

min F min fnp,
t t

Figure 4.4 Pools and boundaries

Apparently

min =
max > min max (4.30) fi,

- 1,1
fi,

I-
fi,

"=
f", I"

so that

Vj <k (4.31)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 67

Sivu Ya

The inflections of the cascade can observe 4.13 if

Qj, f ýý' Qk, l V <k i (4.32)

Illustration 4.9:

Let us revisit Illustration 4.8, assuming the cascade has 5 pools associated with:

T =100
T2

= 75.25 ,
T3

= 50, T4
= 25.75, and T5

I !I

F rmn and F3 max
are: 3

inin = (X 2= 16 F ax =
(XI)2

= 144 7) 3rn

Based on Eq. 4.27 and Eq. 4.28, the boundaries for pools are

f max
= 144

1ý
7= 112 m" = 80 max

=48 1,3
f2",

3ý
f3,3

1,
f4],

3

f min
=1 12ý min

= 80!, min
-48

max
= 16 1,3

A,
3

f3,3
ý

f4],
3

Based on the boundaries, points are redistributed so that

f max ý> min
1,3 --":

f(Xl)>f(X2) fl,
3

f max in
21,3

: ý' f (X3 f2lm,
3

f max in
3,3

>f (X4)> f3m3

f max
41,3

>f (X5 >f (X6 f4m3m

The inflection is developed with the partitions:

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 68

Siyu Ya

GI,
3 =f X1 I X21 G2,3 = fX31 G3,3 = IX41 G4,3 =ý X6 !, X7

4.5.3 Termination criteria

Based on the discussion in section 4.4, the termination criteria address the controls in

(a) Population size

To control the population size, a minimum population (Qmý') and a maximum population

are proposed. Let Q, be the population of G or Dh, t. The termination I nP

criterion provides

0 The algorithm does not terminate if Q, is smaller than Q"'.

0 The algorithm terminates if Q, is larger than Q"' .

The first part of this criterion can avoid premature convergence. For example, if the

algorithm tenninates when another termination criterion is true but Q, is smaller

than Q' -Search is likely to stop at the non-optimal or the localy optimal solutions. The

second part provides that the algorithm terminates when the pools have a large number of

population. A large Q` ensures the convergence but requires long computation time.

Optimisation progress

The cascade optimisation algorithm also converges if the optimisation system does not

progress any ftu-ther (no better solution can be explored). Let c be a value between 0

and I and nF be an integer. The termination criterion provides that the cascade

optimisation algorithm terminates if :

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 69

Siyu Yang

F" I<
t+L

for nF iterations.

(c) Population feature

As the population is distributed in pools, the cascade optimisation algorithm might have

several features,, some of which reflect the convergence. Pool level and cascade level are

two of these features.

(1) Pool level

The cascade optimisation algorithm is considered to be in convergence if the pool level is

constant. The pool level is reflected on the standard deviation of the population of pools.

Let cyt be the standard deviation and n ST be an integer. The termination criterion

provides that the algorithm terminates if :

I(TI
- (TI+L

11
:5c

for nST iterations

(ii) Cascade level

The cascade level is reflected on the density function (d, (A,
P,,

)). The cascade is in

equilibriumif d, (A,,
P,,

) approximatestod, Letthechangeof d, (A,,
P,,

) be:

Id, - dj+L 11 -
ýýd, (Anp,

I+L
)- d, (A,,

P, t)ýý
(4.33)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 70

Siyu Yang

j1d, - dt+L 11 approaches 0 if the cascade is in equilibrium. Let ns, be an integer

ten-nination criterion provides that the cascade optimisation algorithm terminates if :

Id,
- dl+L 11 <C

for nd iterations.

4.6 The Cascade Optimisation Algorithm: Formulation

The

The cascade optimisation algorithm uses n, partitions (Gj,,) and pools (Pj,,). The set

of n, P,,, are combined as a cascade (D",). Given the top temperature (TI) and the nP

bottom temperature (T,,
P

), each Pj,, is associated with a pool temperatures (Tj)

following Eq. 4.22. The Markov process (g,) increases the population in

and Pj, .

The cascade optimisation algorithm (COPT) is outlined as:

Step I. - Place an initial point and its objectives into GI,, and P,,, -

Gj, l

Step 2. - Maps a point in Gj,, to new points. Place the new points and their

objectives to G,,, and Pj,,

Step 3: Check whether Dh
'I

follows Eq. 4.13 and develop an inflection if required. nP

Step 4. - Check the tennination criteria described in section 4.5.3 and iterate with Step

2.

------ 71 On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yang

4.7 Remarks and discussions

4.7.1 COPT

The partitions and pools are introduced into COPT to distribute populations. A Markov

process maps a point in a partition to new points at each iteration. The inflections of the

cascade are developed and the convergence of COPT is checked from time to time. The

layout of Figure 4.5 presents the structure of COPT.

Point +Tj

JI" P, G I New points

r ------------------ -
P21 G2,

L--------------------

:: o_- r --------------------
P31

Ij

L --------- ---------

-- ---------- I

G 4, P4ý1

L --------------------

No

Yes

Figure 4.5 COPT

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 72

Siyu Yang

Based on the structure, multiple Markov processes can be launched simultaneously so

that COPT can be effectively applied on parallel and distributed computing environments.

With the Markov process, it is closely related to the stochastic methods. The

similarities are illustrated in the following sections.

4.7.2 Analogies between COPT and SA

Let us consider a COPT structure featuring:

eA large number of partitions and pools

9A fixed population for each partition and pool

* No inflections

9 Population growth starting from the highest pool to the lowest pool

oA Markov process mapping the last accepted point that is generated at previous

iteration

The layout of Figure 4.5 is changed to that of Figure 4.6 that presents SA.

On the development of a stochastic optimisation algorithm with capabilities for distriibuted computing 73

Siyu Yang

P'l Gij
L -----------------------

P2, G21 III
I-----------------------

F

Gi,

-------- /\

Figure 4.6 SA

the last accepted point in G

Initially, a point and its objective are placed into the G and P,,, .gL maps this point I't 0

to new points following the Metropolis criterion. T, determine the acceptance

probability in this criterion. The new points and their objectives are placed into the GI,,

and P,,,. gLmaps SIL to new points. T2 determines the acceptance probability in the

Metropolis criterion. Points and their objectives are placed into the G,,, and P,.,.

The algorithm then iterates until when G,
P,,

and PýP, are filled by the new generated

points and their objectives. Analogies between COPT and SA are strengthened as they

both

mputing 74

s,

Siyu Yang

Use the Markov process that follows the Metropolis criteria.

e Have cooling stages (pools account for Tj

* Have cooling stages sorted in decreasing T, -

As is apparent, SA develops from the highest to the lowest cooling stages. With the

sequential nature in SA, it is not suitable for running on parallel and distributed

environments

4.7.3 Analogies between COPT and TS

Let us now consider the case of a COPT structure featuring:

9A fixed population for each partition and pool

e No inflections

e New points generated out of a small subset of each pool

The layout of Figure 4.5 is then changed to that of Figure 4.7 that presents TS.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 75

Siyu Yang

---- ----------- Point+RSM+FLM

PI'l New points
---------- -------- -

w
b

S -----------------------

G2.
t

P,

--------------- -- -

S2

I P3ý1 IC

Figure 4.7 TS

CL :a local search in which L neighbours are generated

Sb: the best point in G and J, i

(Sb
j):

5 f (si,
j)

vi

P Initially, a point and its objective are placed into G1, and I'l . CL generates L

neighbours of this point. The neighbours and their objectives are placed into G,,, and P,.,.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 76

Siyu Yang

C' again generates L neighbours of sb and places them and their objective into

G2,,
and P2,, - G,,, is the recent-based short-term memory (RSM) used to prevent CL

from generating the same points as the ones in the RSM. CL again generates the

neighbours of s2' and places them and their objectives into
G3,,

and P3,,. G2,, is the

RSM for this local search. TS keeps running until the neighbours of sb and their nP

0. ectives are generated and placed into G,,
P,,

and P,,
P,, .

The super partitions G, are

used as the frequency-based long-term memory (FLM). COPT performs

intensifications and diversifications based on the FLM. Analogies between COPT and

TS are strengthened as they both:

9 Have the neighbourhood (partitions account for the neighbourhoods).

9 Generate new points out of the point in the neighbourhood.

The local search starts every time from the best point of the neighbours. TS has the

sequential nature and is therefore not suitable for the parallel and distributed applications.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 77

Siyu Ya

Chapter 5 Algorithm implementation as a

master-worker paradigm

5.1 Master-worker architecture

The master-worker paradigm is common in parallel and distributed computing

applications that execute on the environments involving a single master and a numbers of

workers. The workers execute the computational tasks and the master dispatches the

tasks to the workers and collects results. The global information is transferred between

the master and the workers Periodically. To avoid bottlenecks and reduce the burden of

communication with the master, one has to build the workers as independent from each

other as possible.

5.2 Master and worker tasks in COPT

The Markov process increases the population of the pools. Multiple Markov processes

can be launched simultaneously to increase the population. To implement COPT, the

workers undertake the Markov process (Tskmc) that is the time expensive task. On the

other hand, the master implements the partitions and pools and executes the tasks that

include:

do Development of inflections (Tsk"f)

9 Checking the convergence of COPT (TskT')

78
On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yang

Tsk'"f and TskT' follow different time schedules. Figure 5.1 and Figure 5.2 outline the

worker process and the master process respectively.

0

Figure 5.1 Worker process

Figure 5.2 Master process

There are two tasks that transfer the infon-nation between the master and workers:

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 79

Siyu Ya

* Exporting information from the master to workers (TskE')

9 Importing information from workers to the master (TskP)

5.3 Communication

The information transferred between the master and workers involves:

e Infon-nation related to points (point-related infon-nation)

* Control commands for workers (command-related information)

The point-related inforination includes:

e M-W information that involves a selected point and its objective and transfers

from the master to workers

* W-M information that involves new points and their objectives and transfers from

workers to the master

The command-related information involves:

9 Initiation commands (i. e. start COPT)

* Termination commands (i. e. terminate COPT)

Figure 5.3 outlines the infonnation transferred in the course of COPT.

On the development of a stochastic optimisation algorithm with capabilities for distdbuted computing 80

Sivu Yan

Master Initiation Workers

m-w
---------- ------- >

<
W-m

Tenninatioý

I

Figure 5.3 Information transferred

Based on the figure, COPT develops from the top to the bottom.

Initially,

The master sends the initiation commands to the workers.

In the course of COPT,

Workers take the M-W information from the master.

Workers send the W-M information to the master.

Finally,

The master sends the termination command to workers,, if the termination

criteria are satisfied.

5.4 Implementation of COPT

COPT is implemented as the master-worker paradigm in two different ways. For

implementation, the computing environment firstly includes a master and a worker. In

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 81

Siyu Yang

the following sections, the implementations are explained in terms of the partitions and

inf -P skm' pools and tasks (Tsk T4""', TskE
,
Tsk'P, and T

5.4.1 Implementation of partitions and pools

The partitions and pools are developed by tables in a database. The database is

implemented on the master. pool ID and point ID are two columns that identify the

partitions/pools and the points in them. Let us revisit the notations described in Chapter

4. The pool ID and the point ID correspond to the index j and the index i.

Firstpartitions andpools method

In the first implementation, the database involves poolfeature, cascade, and partitions

tables. Figure 5.1 presents the partitions and pools.

pool feature
[X

pool ID
El

temperature

Figure 5.4 First implementation of the partitions and pools

The pool_feature and the cascade tables implement the pools. The first one stores the

pool temperatures (T,). It involves pool ID and temperature columns. The latter one

stores the objectives in pools. It involves point ID, pool ID and f columns. The f column

stores the objectives. The pool ID column is the candidate key connecting to that in the

pool_feature table. The partition table implements the partitions and stores the variables

mputing 82

Siyu Yang

of points. Beside the point ID column, the partitions table involves the columns that

store the variables. These columns are Var X where X is the index of the variables. In

Figure 5.4, three variables are stored in Par 1, Par 2, and Par 3 columns in the partitions

table. The point ID column is the primary key connecting to that in the cascade table.

The partitions table in this implementation stores the variables. If the application

problem has n variables, the partitions table should have n VarX columns. With a large

n employed, the table would grow quickly. In the end, the partitions table might become

too big to manage. The size of the M-W information and the W-M information is large

since they involve all the variables of the points. COPT therefore encounters bottlenecks

and high communication traffic. In addition, this database for a particular problem may

be not suitable for other problems since the numbers of the variables for these problems

may be different.

Second partitions andpools method

In the second implementation, the database does not have the partitions table. The

variables are stored in files (solution files) on the worker. The point-related information

does not involve the variables. An additional table is introduced to store the M-W

information. Figure 5.5 illustrates this partitions and pools.

iDool feature

3; 001 ID

t crim erm tux, e

-11'

3)0 i3lt ID

Teng er t-mr e
f

Figure 5.5 Second implementation of the partitions and pools

mputing 83

Siyu Yang

The database now involves pool_feature, cascade
-f , and M- W tables. The pool eature

table and the cascade table are the same as those in the first implementation. The M-W

table stores the M-W information and comprises point ID, temperature and f columns.
ID is another column that is the primary key identifying the different M-W infori-nations.

This database stores only the objectives so that it is small even if COPT is applied to

problems that have large numbers of variables. In addition, with the absence of the

partition table, the implementation is suitable for different applications. The M-W

information and the W-M information do not involve variables so that they become much

smaller than those in the first implementation.

5.4.2 Implementation of Tsk"'

Tsk"" develops inflections of the cascade by periodically referring to Definition 4.6.

The implementation of Tsk inI is illustrated as follows:

First implementation of Tsk "'

Tsk inf
is implemented on the worker. Tsk" runs after Tsk' at each iteration. The

worker calculates the boundaries (f "' and f
Min

ilt j'I Based on Eq. 4.22, the pool

temperatures (Tj) in the poo1jeature table, the maximum objective (Fm) and the

minimum objective (F, ') in the cascade table are also used in the calculation. Then the

master redistributes points based on these boundaries by updating the pool ID in the

cascade table. Tsk"' can be quickly executed even in a big table. Table 5.1 illustrates

the CPU time spent for Tsk"'f.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 84

Siyu Yan

Table 5.1 Times for Tsk"'

Size (rows) Time (s)

10 0.013

100 0.034

1000 0.166

10000 0.336

Based on this table, Tsk"' spends only 0.336 seconds when the cascade table involves
10000 rows.

Second implementation of Tsk "'

Tsk"' is now implemented on the master. The master calculates the boundaries of pools

and redistributes the points in the pools. Tsk"' executes on a computer thread and

follows independent time schedule. The time schedule for TW` in the first

implementation is not feasible because the master now cannot catch the time when

Tskmc finishes. To keep the order of the cascade Tsk inf
executes as frequently as

possible. A new schedule is proposed that COPT develops the inflections every time

after the pools has a new point.

on the worker.

Tsk" now is parallel with and independent of Tsk'

5.4.3 Implementation of TskT'

Based on the description in section 4.5.3, termination criteria are related to the population

in pools and the change of the best obj ective F, "' - Fn"r, the standard deviation
+L

of the populations (IICT, - GI+L ýj), and density function (11d, - d,
+L

1ý). TskT' checks these

values periodically and determines the convergence.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 85

Siyu Yang

First implementation of TskT'

Tsk ' is implemented on the worker. The worker extracts Q,, IFt nun
- FtrM

+L
Iý JJC7t -(3t+LIJ

and Jýd, -d, +j
from the partitions and pools and determines the convergence. Similar

to the first implementation of Tsk "f , TskT' use ODBC to extract these values. This

task is launched after Tskn'at each iteration.

Second implementation of TskT'

Similar to the second implementation of Tsk"f , TskT' is implemented on the master.

The master extracts Q,
ým Cyt+L 11 and ýjd, - dt 11 and determines the - FML IF, nlln

t+ +L

convergence. TskT' executes on a computer thread and follows a new time schedule.

The schedule is based on a new time unit that is defined as the penod in which a new

point is accepted and placed into partitions. The new schedule provides that the master

checks the convergence every time after L new points are placed into partitions.

5.4.4 Implementation of TskE1

TskEI selects the M-W information from partitions and pools and transfers it to the

worker. The implementations of Tsk'P is illustrated as follow:

First implementation of TskEP

TskEP is implemented on the worker and executes before Tsk' at each iteration.

With the partition table, the M-W information involves the variables of the selected

points. The worker takes the M-W infonnation and initializes the Markov processes.

Since the Markov process observes the Metropolis criterion that requires the pool

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 86

Siyu Yang

temperatures, the M-W information involves the pool temperatures. For example, if

TskE' selects the point 3 from partition 4, the objectives and variables where the point

ID is 3 and pool ID is 4 are selected from the cascade table and the partition table. The

temperature of pool 4 (T4) is also selected from poolfeature table. The worker selects

the M-W information from the master and starts Tsk"c. TskE' in this implementation is

not suitable for executing on the parallel and distributed computing environments. The

master would become too busy to deal with the queries from the workers when a large

number of workers intent to fetch the M-W informations at the same time.

Second implementation of TskEP

In this implementation, TskEP are separated into two subtasks that include:

e The master selects the M-W information and stores it in the output files.

* The worker takes the output files from the master and finds the corresponding

solution files.

The M-W information involves the objectives of the points and the temperature of the

pool where the points are selected. This information is firstly stored in the M- W table

and then transformed to the content in the output files (named as Export). Similar to

other tasks in the second implementation, this subtask executes on a computer thread

following a new schedule. Based on the schedule, this subtask executes every I second

so that the M-W information can be updated as frequently as possible. Figure 5.6

illustrates the master putting M-W information into an ouput file in TskEP .

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 87

Siyu Yang

III
point

0 rt

co Expýýt

Figure 5.6 Master storing M-W infon-nation into an output file

The other subtask executes on the worker. It takes the output files from the master and

finds the corresponding solution files to start Tskmc. To find the solution files, the

name of each solution file is appended by the point ID of the selected solution (SoX

where X is the point ID). The worker reads the point ID in the output files and finds out

the solution files. Figure 5.7 illustrates the worker finding the solution file.

rj, = Export 0- ý ýSUN

Figure 5.7 Worker finding the solution file of point X

The subtasks executes before Tsk"c at each iteration.

5.4.5 Implementation of Tsk"

First implementation of Tsk'P

Tsk 'I is implemented on the worker. The worker sends the W-M information to the

master and stores them into partitions and pools. The W-M inforination involves the

objectives and the variables of the new points that are stored in the cascade and the

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 88

Siyu Yan

partitions tables. The worker runs TskP every time after Tsk"c. Similar to the first

implementation of Tsk-P, TskP is not suitable for running on parallel and distributed

computing environments. The master might become too busy to deal with the queries

from the workers when a large number of workers are intent to send the W-M

information at the same time.

Second implementation of TskP

Similar to the second implementation of Tsk-ý'P, TskP is divided into two subtasks that

include:

9 The worker sends the input files to the master.

* The master reads the input files and puts the points in partitions and pools.

Variables are stored in the solution files on the worker. The W-M information

involves the objective and point ID of a point and is stored in the input files (named as

Import). Then the worker sends them to the master. The input files are associated with

the solution files and their names are also appended by the point IDs (Imporff where X is

the point ID).

In the second subtask, the master reads the input files and places the objectives in the

cascade tables as presented in Figure 5.8.

On th -e- development of a stochastic optimisation algorithm with capabilities for distdbuted computing 89

Siyu Ya

ri_E; i
--Th

-, importX ==*
, voiul lb

Figure 5.8 Master storing W-M information into the partitions and pools

The bulk insert task of Microsoft SQL server 2000 is used to store the W-M information.

It has been proven to be the quickest way to insert data. Table 5.2 shows the CPU time

spent for inserting different size data into database by using the traditional SQL queries.

Table 5.2 Time spent by using SQL queries

Size (Kb) Time (s)

10 1.234

100 3.437

1024 60.656

10240 665.359

It is obvious that increasing the data size increases the time. This method has to spend a

long time to insert a large amount of data into the database. For example, it has to spend

665.4 seconds to insert I OMb data into the database. As the queries execute on the

worker, the increasing time would increase the overall time spent for COPT. Table 5.3

illustrates the clock time spent by using the bulk insert task.

Table 5.3 Time spent by using the bulk insert task

Size (Kb) Time (s)

10 0.281

100 0.328

1024

10240

0.61

1.453

mputing 90

Siyu Ya

Based on the results, the bulk insert task is orders of magnitude quicker than SQL queries.

For example, the bulk insert task only spends 1.5 seconds for inserting I OMb data. In

addition , increasing the data size does not lead to an unacceptable increment on the time

spent.

Each of these subtasks has an independent time schedule. The first subtask follows a

schedule where the worker sends the input file every time after a new point is generated

and stored in the files (the solution files and the input files). On the other hand, the

second subtask executes as long as the master obtains a new input file.

5.4.6 Implementation of Tskmc

First implementation of Tsk"c

Tskmc is implemented on the worker. The worker runs the Markov process that follows

the Metropolis criterion.

Second implementation of Tskmc

The worker takes Tsk"c and follows the steps:

Step 1: Selection of initial solution extracts the output files and finds the

corresponding solution files based on the description in the second implementation of

TskEP in section 5.4.4. Then the worker reads the solutions in the files.

Step 2: Development of new solutions runs the Markov process following the

Metropolis criterion.

n of a stochastic optimisation algorithm with capabilities for distributed computing 91 On the developme t

Siyu Yang

Step 3: Storage of solutions stores the newly accepted solutions in the files (the

solution files and the input file).

Figure 5.9 illustrates the worker generating new points and storing them in files.

Figure 5.9 Worker generating new points and storing them in files

The worker generates four points whose point IDs are 1,2,3, and 4. Then the worker

stores these points in paired files namely: Importl and Sol, Import2 and So2, Import3

and So3, Import4 and So4 files respectively.

5.4.7 Relations between the tasks

In the first implementation, all tasks execute sequentially on the worker so that COPT is

difficult to be parallelized. In addition, with a large numbers of workers employed, the

master would become too busy to deal with the queries from the workers.

In the second implementation, the tasks (Tsk"" andTskT) execute on the master. TskE1

I
and Tsk P are separated into two subtasks where one executes on the master and the

other runs on the worker. All the above tasks are associated with specific tables and

follow different time schedule. Figure 5.10 presents the relation of computer threads,

tasks and tables.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 92

Sivu Yan

Tasks

------------------------ -- ------------------------------- --

Poo1jeature
cascade I Poo1jeature Tables

cascade
cascade

M-W

L----------------
--

cascade

Figure 5.10 Relations of computer threads, tasks, and tables

5.5 Computing implementation

The master runs on Windows 2000 server on which the partitions and pools are

implemented as the tables in database. The database is managed by Microsoft SQL server

2000. The worker runs on Windows XP professional on which the tasks are programmed

using Fortran programming language. In the first implementation, all tasks are coded

on the worker and executed sequentially. To communicate with and manage the database

on the master, the worker uses Fortran SQL library to call Open Database Connectivity

(ODBC). In the second implementation, the tasks (Tsk"f, TskT, Tsk`ý, and Tsk") are

implemented by intrinsic functions of the SQL server, running on independent computing

threads of the master. The worker now only undertakes Tsk"c which is coded by

Fortran prograMming language.

On the development of a stochastic optimisation algorithm with capabilities for distdbuted computing 93

Siyu Yan

5.6 Remarks and Discussions

There are two different implementations for COPT, in which the partitions and pools are

developed by the tables of a database. The database in the first implementation includes

the partition table that stores the variables of points. The size of the database, in such

case, increases quickly if the application problem involves a large number of variables.

The partitions and pools are not universal since the partition table has to change when

COPT is applied to different applications. In addition, the amount of information

transferred between the master and workers is large since it involves the variables. In

contrast,, the database in the second implementation does not involve the partition table.

The growth of the database is very small even if the application problem involves a large

number of variables. Without the partition table, the partitions and pools are suitable

for different applications. The information transferred between the master and the worker

is now much smaller than that in the first implementation.

COPT involves several tasks and is developed differently in the two implementations. In

the first implementation, the worker undertakes all tasks and runs them sequentially.

COPT does not follow the requirement of a master-worker paradigm. With a large

number of workers employed, the master would become too busy to deal the queries

from workers. In the second implementation, the master undertakes Tsk' and TskT' and

half of TskEPand TskP while the worker focuses on Tsk". The tasks on the master

are independent and follow different time schedules. COPT is implemented as the

master-worker paradigm and can be applied to the parallel and distributed computing

environments.

In the following chapter, COPT is studied on several simple problems in terms of the

impact of its important features and the selection and coordination of the termination

criteria. The performance of COPT reflects on the solution quality (measured by

objective value) and computation time.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 94

Siyu Yang

Chapter 6 Evaluation and validation

6.1 Features and problems

COPT has several features that can affect its performance. These features involve:

e The management of stochastic search

e The size of optimisation structure

e The depth and intents of search

* The selection and coordination of different termination criteria

The management of stochastic search relates to the inflection of COPT which is

implemented as redistributing the populations of pools. The distribution of population

may adopt different distribution functions. With the pool temperatures, the Markov

process follows different acceptance probabilities. The distribution function therefore

has an impact on the performances. The size of optimisation structure is determined by

the number of partitions (pools) (n,). As n, increases, the population of a partition

(pool) decreases so that the structure size has an apparent impact on the perfon-nance.

The length of Markov process (L) determines the depth of search. Compared to a short

Markov process, a long Markov process might explore the search space more easily.

The ten-nination criteria involve four different parts. The selection and coordination of

the termination criteria also have an impact on the performance.

6.2 Benchmark problems

COPT is applied to four test problems (Floudas, 1999). These problems arose in literature

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 95

Siyu Ya

studies involving a wide spectrum of problems including:

0 Quadratic assignment problems

0 Heat exchanger network synthesis problems

0 Phase and chemical equilibrium problems

0 Process design problems

The four test problems are listed as:

TP I is a non-convex quadratic problem

0 TP2 is a generalized geometric programming problem

0 TP3 is a twice differential nonlinear programming problem

0 TP4 is a quadratically constraint problem

The formulations of TP I- TP4 are given in the Appendix A.

6.3 Implementation and performance measurements

The performance of COPT is measured by its solution quality and the computation time

required to converge. The solution quality is accounted by the objective of the optimal

solution achieved (F"). The computation time is measured differently in the two

implementations. In the first implementation, the tasks are implemented sequentially on

the worker. The computation time is accounted by the worker's CPU time that is sum of

the CPU times for all tasks, so that:

5
CPU T CPU

Tt
t=l

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 96

Siyu Yang

Tcpu = the worker's CPU time

Tcpu = the CPU time for Tskmc I

Tý CPU = the CPU time for Tsk "'f

Tý CPU = the CPU time for TskT'

Týcpu = the CPU time for Tsk -4'p

T5 cpu = the CPU time for Tsk 'I

On the other hand,, Tsk"', TskT, and part of TskEPand TskP execute on the master

and are independent of Tskmc in the second implementation. The computation time is

the maximum of the CPU times for the tasks, so that

CPU CPU
5

,I TCPU T maxf T,
t t=2

Compared to the other tasks, Tskmc is the most time expensive one. Table 6.1 illustrates

5
CPU the comparison between Tcpu and I Tt COPT is applied to TPI and terminates

t=2

when the population of pools (Q,) approaches 1000.

Table 6.1 CPU times for the tasks

Tcpu 10.787

5

L Tt CPU 2.513
t=2

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 97

Siyu Yan

5
TcpU is Based on the above table,, T, u is about 5 times larger than I TICPU

.
Thus,

I
t=2

the overall computation time.

Depending up the discussions in Chapter 5, COPT is implemented on a computing

environment with a master and a worker. The configurations of the master and the

worker are presented in Table 6.2

Table 6.2 Configurations of the master and the worker

Master CPU Ram Memory

Prise-sql Intel(R) Core(TM)

2.13GHz

2Gb

Worker CPU Ram Memory

Grid I Intel(R) Pentium(R)

1.20GRz

512Mb

6.4 The management of stochastic search

Distribution functions can be influenced by the pool boundaries. These pool boundaries

are associated with the pool temperatures. The cooling schedule presented in Eq. 4.22

determines the pool temperatures. Since the parameter r controls the convexity

(concavity) of the cooling schedule, it might have impacts on distribution functions. With

different r values, three classes of cooling schedules are produced:

*Linear cooling schedule (r= I)

e Convex cooling schedules (r > 1)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 98

Sivu Yan

Go Concave cooling schedules (r < 1)

Each class of cooling schedules is associated with a form of distribution functions,

involving:

* Linear distribution

* Convex distributions

* Concave distributions

The distribution of population that follows the above distribution functions are illustrated

in the following sections.

(i) Linear distribution

The Linear distribution is associated with the linear cooling schedule. In the linear cooling

schedule, the temperature difference of adjacent pools is constant. Based on Eq. 4.26, the

difference of the boundaries of a pool (defined as pool size) is constant. The distributions

of population of ten pools at three periods are extracted and illustrated in Figure 6.1. The

three periods account for:

0 Initial phase (Q, - 100)

0 Intermediate phase (Q, =5 00)

0 Final phase (Q, = 1000)

Q, : the population of pools at time t

Q: the population size

j: index of a pool

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 99

Siyu Yang

200

150 ----- ---------------------- ----

100

Qt 100

Qj
50

0
0 2 6. 8 10 12

9 Qj I

Qt=1000

Figure 6.1 Linear distributions

Based on the above figures, the linear distribution tries to evenly distribute the population

into pools with no bias. With the use of inflection, each pool is distnbuted by

intennediated solutions within the same quality level (defined by its lower bound

rwn

,,, and upper bound f, 7), increasing from the top pool to the bottom pool. The

linear distribution produces the quality levels which can be distributed by almost the

same amount of intermediate solutions. The Markov process that starts from an

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 100

Siyu Yang

intermediate solution within a pool follows the acceptance probability controlled by the

corresponding pool temperatures. Thus, cascade optimisation algorithm that uses linear

distribution can execute the Markov process that follows different acceptance

probabilities and starts from the same number of intermediate solutions within different

quality levels.

(ii) Concave distribution

The concave distribution is associated with the concave cooling schedule. In the concave

cooling schedule, the temperature difference of adjacent pools follows:

Tj - Tj+l > Tk
- Tk+l VJ <k

Tj and Tk : the temperatures of poolj and pool k

Based on Eq. 4.26, the size of pools decreases from the top pool (pool 1) to the bottom

pool (poolnp). Figure 6.2 presents a concave distribution (with r---O. I) at the three

periods.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 101

Siyu Yang

6vv ct
ISO
100
50

0

1000

6

J

12

Figure 6.2 Concave distributions

As the figures illustrate,, the population of a higher pool (the top pool or a pool close to

the top pool) is larger than that of a lower pool (the bottom pool or a pool close to the

bottom pool). With the inflection, each pool is assigned by a quality level increasing

towards the bottom pool. With inflection under a concave distribution, the number of

intermediate solutions within a low quality level is larger than the number of intermediate

solutions within a high quality level.

The Markov process for a higher pool can launch from a large number of intermediate

solutions in the overall space. Such Markov process follows a high acceptance

probability and can easily explore the search space. With inflection, the promising areas

penetrate downwards to lower pools. In contrast, the Markov process for a lower pool

focuses on a small number of good intermediate solutions in promising areas. Such

Markov process now follows a low acceptance probability and searches deeply for the

optimal solution within the promising areas. Thus, the cascade optimisation algorithm

.-0 Qj

On the development of a stochastic optimisation algorithm with capabilities for distdbuted computing 102

iyu Yang

with concave distribution is likely to explore the search space and converge to the

optimal solution.

As r decreases,, the concavity of a cooling schedule increases. Two concave cooling

schedules are selected as:

0 The one with a small concavity (r--O. I)

0 The one with a large concavity (r= -10)

The corresponding distributions of population at the last period are extracted and

illustrated in Figure 6.3.

r--- 10

800

700

600

500

400

300

200
100

Figure 6.3 Concave distributions with different r

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 103

10

Sivu Ya

Based on the figures, the bias of distributions moves up towards the top pools (PI) as the

concavity increases. Finally, the most of the population is distributed to P,
-

(iii) Convex distribution

The convex distribution is associated with the convex cooling schedule. In the convex

cooling schedule, the temperature difference of adjacent pools follows:

Tj - Tj+l < Tk- Tk+l Vj <k

Based on Eq. 4.26, the size of pools increases from the top pool to the bottom pool.

Figure 6.4 presents a convex distribution at the three periods.

-- ----
01=500

300

250

............ 200
() -.............. ... 1 -0- Oj

150

100

50 4 ------ - -- --------- -- ------

0

0 2 4 6 8 10 12

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 104

iyu Yang

Q=1000

--o-

10 12

Figure 6.4 Convex distributions

The distribution of population has bias to lower pools. This bias becomes more and more

obvious as COPT proceeds. In contrast to concave distributions, the number of

inten-nediate solutions within a low quality level is smaller than the number of

intennediate solutions within a high quality level. The Markov process for a lower pool is

launched from a large number of good intermediate solution in promising areas, whilst

the Markov process for a higher pool focuses on a small number of points. In such case,

the search cannot easily explore the search space and is likely to be distracted by too

many intermediate solutions within high quality levels.

As r increases, the convexity of a cooling schedule increases. Two convex cooling

schedules are selected as:

0 The one with a small convexity (r = 2)

0 The one with a large convexity (r= 10)

The corresponding distributions of population at the last period are extracted and

illustrated in Figure 6.4.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 105

Siyu Yang

r=2

- ------------

--b- Q

800 1

700

600

500

400

300 i

200

loo

0
0

10 12

--o. - Qj

--4 -

Figure 6.5 Convex distributions with different r

The bias of distributions moves downward to the bottom pools (PP) as the convexity

increases. Finally, the most of the population is distributed to P,,
P .

To study the effect of r and the distribution functions, the cooling schedules with nine r

values from -10 to 20 are selected. The top pool temperature (T,) should be a large

value so that the Markov process launched from the top pool can accept all new points.

In contrast, the bottom pool temperature (7ý) should be a small value so that the Markov
P

process launched from the bottom pool can only accept the new points better than the

current points. So T, =I 00 and 7ý
P=0.01

are selected. A Markov process with the

fixed length (L=-10) is selected to generate new points. The set of experiments concludes

convergence on the basis of the Population of pools so that COPT terminates when the

46 8

r=10

--- -- -- -- -

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 106

10

Siyu Yang

population of pools (Q) approaches a maximum population (Q") (the complete set of

termination criteria are discussed in Section 6.7). The test problems are small-scale so

that the stochastic search can quickly generate a large population. Q'a' is assigned a

large value so that

2000

If the population is distributed in a large number of pools, the impact of distribution

functions can be easily extracted. So the number of pools is fixed as:

np = 100

10 statistical runs with different initial points are selected to test each distribution

function. The results are the averages of the 10 runs. Figure 6.6 presents the

perfonnances of COPT.

..............

....

3000

-15 -10 -5 05 10 15 20 25

r

.................. -

TP2 optimal solution (lower is better)

...............

20

is

505 10 is 20 25
-15 -10

ZVV

---- - ----------- ISO , ----- -- -- ----------------- -------------- -
CPU secs

-1 Imp * --*-I IMP
2 IMP 2-IMP

-- ----- -- ---------------------

-15 -10 -5 05 10 15 20 25

r

............

TP2 computation time

IMP 2_IMP

107 On the development of a stochastic optimisation algorithm with capabilities for distributed computing

TPI computation time

TP1 Solution quality (lower is better)

Siyu Yang

-*--I IMP A 21 MP

-is -10 -S 05 10 15 20 25

r
.................... -- ----------------- -

TP4 optimal solution (lower is better)

-15 -10 -5 5 10 15 x 25

.--

-46.5
CPU secs

--*-I IMP
L 2_IMP

TP4 computation time

Figure 6.6 Perfon-nance with different distribution functions

f. objective values

I-IMP: the first implementation

2_IMP: the second implementation

The distribution of population has an increasing bias moving toward to the bottom pool

as r increases. This bias decreases the solution qualities of COPT. Meanwhile, the

computation time decreases with this bias. In addition, the computation time for the

first implementation is larger than that for the second implementation. That is because

COPT that uses the second implementation launches the tasks simultaneously so that the

computation time is not sum of the CPU times for the tasks but the CPU time for

Tsk"" . Based on the results, adopting the concave distribution with r close to -2 can

give the best tradeoff between the solution quality and the computation time.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 108

.......... : (Y, ý-I.. - ". .
-15 -10 -5 05 10

...................

Siyu Yang

6.5 Size of optimisation structure

The size of optimisation structure is detennined by the number of pools (np). The

Markov process launched from a pool follows an acceptance probability. With a

large np,, the Markov process follows a large number of probabilities so that the search

might converge to the optimal solution. In theory, increasing np increases the CPU time

for Tsk"f and TskT. The computation time for the first implementation increases

with np. In contrast, the computation time for the second implementation is the CPU

timefor Tskmc. Theimpactof nP on computation time depends on the Tsk'.

TT, L, and Q"' are set the same as those in the study of distnbution functions. np

The concave distribution function (r=-2) is selected. Eight different structure sizes are

selected with nP from 5 to 500. Figure 6.7 illustrates the performances. Similar to the

study in distribution functions, the results are the average of 10 stochastic runs.

TP1 optimal solution (lower is better)

30DO -- -

0 100 200 300 400 500 600

-0-1 IMP
i 2-IMP

ý1 IMP
--d, - 2-IMP

I

600

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 109

TP1 computation time

Siyu Yang

.
TP2 optimal solution lower is better) TP2 computation time

30 250

25
200 T* - -----

20 --- -------------------------------- - ------
f 150

is CPU secs

--*, -I IMP 100
10 2 IMP IMP

--A, - 21MP

50

0 o..............
0 100 200 300 400 500 600 0 100 200 300 400 Soo 600

np n,

..........
TIP4 optimal solution lower is better)

............

........................ . TP4 computation time

-45.5 200
11 100 200 300 400 500 600 180

-46 - --.......... - 160
140 -- ------------ ---
120 -- -- ------------- --

-465 f CPU secs
100
80 -: --------------- ---------- -------------- - -19-1 IMP

-47 -4- 11MP 2 IMP
60 2 IMP
40

-47S 20
0 -7

-48 -0 100 200 300 400 500 600

np

------------------------------

np

...............

Figure 6.7 Performance with different structure sizes

Based on the figures, increasing structure size increases the solution qualities. The

incremental benefit diminishes as nP is larger than 100. Table 6.3 presents the standard

deviations of F" (a F min) in two ranges (nP < 100 and nP ý! 100) when using the

first implementation.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 110

Siyu Yan

Table 6.3 Standard deviations of F min

Test problems UFmin (nP <I 00 aFmin (nP ý! 100

TPI 109.164 0.539

TP2 4.019 0.00261

TP3 0.150 0.00248

TP4 0.297 0.000332

Let us take TP I for example. (T. -i- for nP < 100 is about 170 times larger than that for

np > 100.

The computation time increases with the structure size. That means that COPT with a

large optimisation structure size requires a long computation time to converge. To

check the degree of increment on computation time, an increasing ratio is introduced.

This ratio is measured by the percentage of the time difference between np =5 and

np = 500 over the time of np = 500 (r Ins). Table 6.4 illustrates the ratio for the two

implementations.

Table 6.4 Increasing ratios

Test problems r
Ins (I-IMP) r

Ins (2_IMP)

TP 1 0.814 0.632

TP2 0.632 0.419

TP3 0.808 0.683

TP4 0.762 0.668

As the table illustrates, the two implementations have large increasing ratios (the smallest

one is 42%). However. COPT can be applied on the parallel and distributed

mputing ill

Siyu Yang

computing environment so that the resulting increment can be reduced.

6.6 Depth of search

The depth of search is reflected on the length of Markov process (L). A long Markov

process can explore more points than a short Markov process. COPT with a long

Markov process can easily converge to the optimal solution but at the expense of a long

computation time.

To study the depth of search, parameters (T, 7ýp , r,. and Q") are set same as those

in the study of the size of optimization structure. nP = 100 is selected. Seven different

search depths are selected with L from 5 to 60. The results are the averages of 10

statistical runs. Figure 6.8 presents the perfonnances with different search depths.

..................... -
TPI optimal solution (lower is better)

10
9

8

7

6

5

4

3

...............................

.......... 2 .: I -ý -, 11 -. - I. - -. -

50

0 0

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

L

------------ -------

L

TP1 computation time

100
50

0
0 10 20 30 40 50

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 112

Siyu Yan

---------------- --

TP3 optimal solution (lower is better) TP3 computation time

I IMP
2_IMP

60 80

Figure 6.8 Performance with different search depths

Based on these results, COPT cannot achieve obvious benefit in solution quality by

increasing search depths. A percentage of convergences is introduced to test the benefits.

Let us take the results of TPI for example. Table 6.5 presents the percentages of

convergences (p"g).

Table 6.5 Percentages of convergences

L p cvg (I-imp) p cvg (2_IMP)

5 92.4% 94.6%

10 92.6% 93.4%

20 94.6% 99.6%

30 99.6% 98.5%

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 113

Siyu Yang

40 99.7% 100%

50 100% 99.6%

60 99.6% 99.7%

Based on the table, the search depth has a small effect on convergence (the minimum

pcvg = 92.4%).

For the first implementation, the computation time decreases firstly and then increases as

L increases. The computation time involves the CPU time for Tsk"c (Tlcpu) and

TskEP (T4cpu). Tlcpu is large when COPT uses a long Markov process. However,

Tcpu is small since M-W information is transferred to the worker only a few times. 4

The increasing search depth increases Tlcp' but decreases Tcpu Initially, the 4

decreasing rate of Tcpu is larger than the increasing rate of Tlcpu so that the 4

computation time decreases. Later on, the decreasing rate is smaller than the increasing

rate so that the computation time increases. For the second implementation, Tlcpu is the

computation time and cannot be affected by T4CPU
-So the computation time increases as

the search depth increases. Since the search depth does not have a significant impact on

the solution quality, the fixed search depth (L= 10) is selected for the following studies

6.7 Termination criteria

The proposed termination criteria involve:

(i) population size controls

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 114

Siyu Yan

This termination criterion proposes the minimum population (Qm") and the maximum

population (Q"'). It provides:

C OPT does not terminate if Q, is smaller than QmIn.

0 COPT terminates if Q, is larger than Q".

To study this termination criterion, parameters (T,, 7ýp , r, nP , and Q") are set same

as those in the study of search depth. The Markov process (L=10) are selected. Eight

Q, from 10 to 3000 are selected to terminate COPT. Figure 6.9 presents the

performances.

3 00 T

..
TP2 optimal solution (lower is better) TP2 computation time

60 Soo
450
400 ---- - -------- ----- -- ---------
350
300 -- ----- --- ---- CPU secs
250

--0-- 1
-1

mP 200 --a, - 1-IMP .
2 IMP -- --. - -A

2_IMP ý

100 -
so

.......... 0.. --- 0 SOO 1000 1500 2000 2500 3000 3500

Qt

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 115

500 1000 1500 2000 2SOO 3000 3500

Soo 1000 1500 2000 2500 3000 3500

oft

Siyu Yang

TP3 optimal solution (lower is better)

0-

-0.1
0 500- 1000 1500, , 2000 2500 3000-... 3500

-0-2

-0 ,3 f
-0.4

200

180

160

140

120
CPU secs

100

80

60

40

20

0

0

TP4 optimal solution (lower is better)

-44 200

--n -nn 1 nnn 1 ýnn I- I- IOU F

160
140
120 +

CPU secs
loo

80

60

40

20
0 lk

0

Figure 6.9 Perfonnance with different

--61-1 IMP
A 2-IMP

Based on the results, increasing Q, increases the solution quality. The incremental

benefit diminishes when Q, is larger than 1000. COPT can rarely converge to

non-optimal or local optimal solutions if Q, ý! 1000 - Table 6.5 illustrates the standard

deviations of F" ((T
F min) (Q, < 1000 and Q, ý! 1000) when using the first

implementation.

Table 6.6 Standard deviation of F'

Test problems a Fmin (Qt <1000) aFmm (Q' > 1000)

TP 1 567.229 1.292

TP2 18.311 0.418

TP3 0.167 0.000701

TP4 1.365 0.000772

TP3 computation time

.......

SOO 1000
1500 2000 2SOO 3000 3500

TP4 computation time

--*. -l IMP 2_IMP

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 116

500 1000 1500 2000 2500 3000 3500

Qt

Siyu Yang

Let us take TP I again for example. CrF min for Q, < 1000 is about 438 times larger

than that for Q, ý! 100. Thus, Q" is set to 1000. On the other hand, Qm' is set to

3000 to ensure that COPT converges to the optimal solution.

On the other hand,, the computation time increases with Q, . In addition, the difference

between the computation times for the two implementations also increases. That is

because for the first implementation the computation time involves the CPU times for

Tsk'P and TskP
.

These two CPU times increase since more and more W-M

information and M_W information are transferred as Q, increases.

(ii) Optimisation Progress controls

This termination criterion provides that COPT terminates if the best objective stays same:

F, nun F' l+L
1

:5E

for a number of iterations (nF). For the first implementation, F"' is checked every

time after the Markov process. For the second implementation, F' is checked every

time after L new points are placed into partitions. -=0.1 is selected to determine the

accuracy of the global optimal. Parameters (T,, T,,
P ,

r, L, np , and Q"') are set

same as those in the study of population size controls. Figure 6.10 presents the

performances with different nF *

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 117

Siyu Yang

-0-1 IMP :3
2 IMP

...
TP3 optimal solution (lower is better)

4-tou

400

350

300
CPU secs 250

200 1 Im P

....................... 150 :. F,., ý -- 2-IMP

100

50-
0

05 10 15 20 25

nF

Luu

180
160

CPU se
140

CS120

100

-45.5

-46

-46. S

-47

-47.5

-48

TP4 optimal solution (lower is better)

nF

5

--*-I IMP
A 2-IMP

80 .. IMP

-1
MP rn 42

40
20

. . .
....................... I -

0

. 0
5 10 15 20 25

nF

Figure 6.10 Performance with different nF

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 118

TP2 computation time

.................... - --

TP3 computation time

TP2 optimal solution (lower is better)

.............................

TP4 computation time

200 - -- -- - --- ---- ---- -- -- -- - ------------- --- --

Siyu Yang

Based on the results , increasing nF increases the solution quality. Meanwhile, the

computation time increases with the nF* Adopting nF= 10 can give the best tradeoff

between the solution quality and computation time.

(iii) Population feature control - pool level

The pool level is reflected on the standard deviation of the population of pools (orj

Figure 6.11 presents or, as COPT proceeds.

TP2 standard deviation

--41- ST

TP3 standard deviation

16

14

12

10

41

Soo 1000 1500 2000 2500 3000 3500

Q

TP4 standard deviation

Figure 6.11 Standard deviations of the population of pools

ST : the standard deviation

-. 6- ST

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 119

Siyu Yang

As the figures illustrate, a, decreases as COPT develops so that the population has the

decreasing pool level. A termination criterion related to the pool level is proposed. In

this criterion, COPT terminates if the standard deviation stays the same:

lat
- al+L

11 <E

for nST iterations. To study the effect of nST
ýE=

'is selected to determine the

accuracy of the standard deviation. Parameters (TI, T,,
p ,

r. L, np, and Q"') are kept

the same as those in studies of the previous termination criteria. Figure 6.12 presents the

performances with different nST
'

nsT

TP2 optimal solution (lower is better)

30

25

20 t

15

lo

5

0

0 5 10 is 20 25

nsT

--O-l IMP
A 2-IMP

TP2 computation time

450

400

350

300
'. PU secs

250

200

150

100 7
so

o

0

--O-l IMP
i 2JMP

nsT

nsT

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 120

5 10 is 20 25

Siyu Yang

IMP 2-IMP

Figure 6.12 Perforn-lance with different nST

The solution quality increases as nST increases. Meanwhile, the computation time also

increases. Based on the results, nST =I 0 gives the best tradeoff between the solution

quality and computation time.

(iv) Population feature control - cascade level

Another feature is the cascade level that relates to the density functions of pools. Based

on the discussion in Chapter 4, the cascade is considered to be in equilibrium if the

density function stays same:

Id, - dl+L 11 < -6

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 121

TP4 computation time

Siyu Yang

for n iterations. The cascade level of population in such case stays the same and d

COPT converges.

To study the effect of c, n. =3is selected. Parameters (T,, 7ý
p,

r, L, np,, and Qm')

are kept the same as the those in studies of the previous ten-nination criteria. With large

value of c close to one,, the termination criterion cannot respond to even a large

Idt - dI+L ýj so that COPT quickly converges but to a solution with a low quality. With a

small E close to 0, the termination criterion is sensitive to a small 11d,
- d,

+L
11 so that

COPT can converge to a good solution but spends a long time. Figure 6.13 presents the

performance with different E.

II-...............
TP1 computation time

......

--*--l IMP
a 2-IMP

30

25

20

15 4.

lo

5

0

0

TP2 optimal solution (lower is better)

£

--*-l IMP
A 2-IMP

TP2 computation fi me

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 122

0.2 0.4 0.6 0.8

Siyu Yang

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

TP3 optimal solution (lower is better) TP3 computation time

........... 200
180 0-2 0-4 Oý6 0,8
160
10 4

E

120
100

80
60
40 --------- -------
20

0 0.2 0.4 0.6 0.8

........................

----------- ---- ----
TP4 optimal solution (lower is better)

-45.5 200

0 180 0.2 0.4 0.6 0.8 1

-46 160
140
120

-46.5 CPU secs f 100
80

-47 IMP 60 A2 IMP
40

-47-5 20 1
0

-48 0 0.2

.........................

TP4 computation time

£

Figure 6.13 Performance with different e

As the figures illustrate, increasing e decreases the solution quality and the

computation time. Based on the result, c=0.3 is selected to approach the best tradeoff

between the computation time and solution quality. n, is another parameter in this

termination criterion. The performance when using the termination criterion with five n,

from I to 20 is extracted and illustrated in Figure 6.14.

nd

.............. .

fld

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 123

0.4 0.6 0.8 1

Siyu Yan

TIP2 optimal solution (lower is better) TP2 computation time

30 450

400
25 - ---- - ------- ------

350
20 300

f 250
15 -------- CPU secs

--*-1 IMP 200
10 --------------- - 2-IMP 150 --0-1 IMP

2 IMP

5
100

50
0 -- ---- 0

0 5 10 15 20 25 0 5 10 15 20 25
nd nd

0
-0.1
-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-45.5

46

-46.5

TP3 computation time

200
180

--O-l IMP A 2-IMP

Figure 6.14 Performance with different nd

The solution quality increases as nd increases. Meanwhile,, the computation time

increases. The tennination criterion with nd : '- 10 is adopted to give the best tradeoff

between the solution quality and computation time. The research related to the

population features is not complete. There might be some other preferred population

features to choose. These features should be investigated to relate the characteristics of

the problems.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 124

5 10 15 20 25

nd

Siyu Yang

6.8 Remarks and discussion

COPT has three important features that involve the management of stochastic search, size

of optimisation structure, and the depth of search. These features have impact on the

performance of COPT. The performance is measured by the solution quality and the

computation time. Based on the results, COPT with a convex distribution can converge to

good optimal solutions but require a long computation time. Increasing structure size

increases the solution quality and meanwhile increases the computation time. The

search depth does not have significant impact on solution quality but does on the

computation time. The termination criteria relate to the controls in the population size

controls, optimisation progress, and the population features. To control the population

size, a minimum population Qm' is proposed to prevent the algorithm from premature

convergence. The algorithm terminates when the population approaches a maximum

populationQ". Depending on the study of the small-scale problems, Q" and Qmax

were set to 1000 and 3000 respectively. To control the optimisation progress, the

algorithm ten-ninates if F, min
stay the same for a number of iterations (nF)*

Increasing nF can increases the solution quality and the computation time. Based on the

,LI:! ý 0.1 for 10 iterations can give the results,, terminating the algorithm when IF, ' - F, '

best tradeoff between the computation time and solution quality. To control the

population feature, we control both the pool level and the cascade level. The pool level

and the cascade level are measured by the standard deviation of population of pools (or,)

and the density function of the domain (a,) respectively. The algorithm tenninates if

(T a for a number of iterations (n or Ild, - d, +L or a number of 11
1- I+LIJ

!ý 0-'
ST

) 11
:5Ef

iterations (nd)* Increasing nST and nd increases the solution quality and the

computation time. The algorithm with a small c can converge to a good optimal

solution but require a long computation time. Depending on the study of the

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 125

Siyu Yang

small-scale problems, setting both nSTand nd to 10 and E to 0.3 can give the best

tradeoff between computation time and solution quality.

All the above studies are based on the four small-scale problems. In next chapter,

COPT is studied on large-scale problems. Since the Markov process follows different

acceptance probabilities, the form of distributing acceptance probabilities in search

(search policy) is another important feature. The impact of search policies is studied as

well as the above features. The comparison between the performances of COPT and a

conventional stochastic method is explored on the application of a complex engineering

problem.

----------- ment of a stochastic optimisation algorithm with capabilities for distributed computing 126
On the develop

Siyu Yan

Chapter 7 Large-scale applications

7.1 Problems

In this chapter, the studies of COPT involve:

0 Features and termination criteria

0 Search policies

9 Performance on complex problems

The features and the termination criteria described in Chapter 6 are now studied in

engineering problems. The Markov Process follows different acceptance probabilities

determined by pool temperature. The form of distributing acceptance probabilities to the

Markov process might lead to different performance. For example, COPT that uses the

Markov process with a high acceptance probability might perfon-n differently with the

one that uses Markov process with a low acceptance probability. Search policies are

proposed to decide this form. The impacts of search policies on the perfon-nance of

COPT are studied in this chapter. COPT is also studied on complex problems, in

comparison with the stochastic methods (TS).

7.2 Benchmark problems

(a) Reaction engineering optimisation

Engineering problems applied in the studies include:

problem I

Problem I is lactose production that is the hydrolysis of lactose by P-galactosidase. It has

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 127

Siyu Yang

six components that include:

" P-galactosidase (that is the enzyme)

" lactose and glucose

" galactose with (x and P forms

" gluconic acid

" deactivated enzyme

This problem involves a main reaction where lactose is hydrolyzed into glucose and

P-galactosidase as a by-product, a reaction that deactivates the enzyme, as well as several

other side reactions which produces additional by-products. The kinetics include 4 linear

equations and one non-linear fraction. The objective is to maximize the outlet

concentration of Glucose. More details of this problem have been illustrated in Appendix

B. The optimal structure of reactor network for this reaction problem is a series of PFRs,

which is in agreement with published results (Marcoulaki and Kokossis, 1999).

Problem 2

Problem 2 is Van de Vusse reaction scheme that consists of a combination of parallel and

serial reactions (Marcoulaki and Kokossis, 1999; Kokossis and Floudas, 1990). This

reaction scheme includes 3 components that are represented by A, B, and C and 3

reactions. These reactions include a first-order main reaction that produces the desired

product, a first-order reaction in series with the main reaction and consuming the desired

product, and a second-order reaction in parallel with the main one. The kinetics includes

2 linear and I quadratic equations. The objective is to maximize the concentration of

component B. More details of this problem have been illustrated in Appendix B. The

optimal structure is composed by a CSTR (V==10.13 L) followed by a PFR (V=15.14 L).

Chitra and Govind (1985) found the same optimal configuration with a CSTR (V=l 1.211

L) followed by a PFR (V=16.81 L). Kokossis and Floudas (1990) found an optimal

configuration composed by a CSTR (V=l 1.382 L) followed by a PFR (V=16.811 L).
-7

____________7_Fýchasf
7n -al

gýo ri th -m-
on the development of a stochastic optimisatio with capZbýilities for dist6bulted computing 128

Siyu Yang

Process synthesis applications

The purpose of process synthesis applications is to design flow sheets using

superstructure schemes that include all different possibilities for mixing and processing.

A comprehensive superstructure is presented in Figure 7.1 (Papadopoulos & Linke,

2004). The superstructure consists of all possible combinations of n reactor units. The

reactor type is modelled as:

Ideal stirred tank reactors (CSTR)

Plug flow reactors (PFR)

Distributed side stream reactor (DSSR)

Figure 7.2 illustrates the reactor representation/options where PFR is approximated as a

cascade of equal volume sub-CSTRs (Kokossis & Floudas, 1990).

Fi
h. - IIiv1

-4 AA IIH...... H
Reactor IA AL Reactor 2 Reactor n

PI,

-------------L Recycle strearq I--------------
I-------------
L ----------------- ---------------- TI-i --------------

------------------- ------------------
L

I

I

Figure 7.1 Superstructure representation

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 129

Siyu Yang

Figure 7.2 Reactor representation/options

The use of the superstructure is presented in combination with reactions described in

problem 3 to optimise reactor efficiency and select the reactor types appropriate to

integrate. This superstructure problem has been solved by TS (Glover 1989,1990,1993)

and SA (Kirkpatrick et aL 1983, Aarts and van Laarhoven 1985) and GA (Holland, 1975).

Problem 3

Problem 3 is related to a Biocatalytic reaction process (Saccharomyces Cerevisiae

production). In the problem glucose is converted to ethanol at the presence of the

biocatalyst, namely Saccharomyces cerevisiae. The components of this problem involve:

0 intracellular glucose

intracellular pyruvate

0 intracellular acetaldehyde

0 acetate

0 intracellular ethanol

enzyme (Acetaldehyde dehydrogenase)

0 nicotinamide adenine dinucleotide

adenosine triphosphate

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 130

Siyu Yan

According to Lei, etal. (2001), this process can be characterised with 12 reactions that

can be divided into three groups. The first group comprises 3 reactions that lead to the

production of ethanol. The second group includes 3 reactions whi I 'ch complete with those

in the first group. The third group consists of 6 reactions representing the mechanism of

the growth of Saccharomyces cerevisiae. The kinetic model involves 10 nonlinear

fractions and I linear equation. The objective is to maximize the production of ethanol.

More details of this problem have been illustrated in Appendix B. Ashley (2004) reported

that the optimal configurations are the combinations of plug flow and mixing. In her

studies, both Tabu search and a rule-based search are used to explore the optimal

configurations. The best Tabu structure features a feed bypass, while the best rule-based

structure features a recycle.

7.3 Optimisation Studies

The experiments aim to explore the ability of the algorithm to cope with denoting

problems. The studies explored:

The efficiency of COPT to provide quick convergence to a good solution

The impact of COPT features on the performance

The implication of selecting different convergence criteria

(i) Performance and settings

The assessment is based on the solution quality and the computation time required to

converge. Using the expenence accumulated in Chapter 6, experiments made advantages

of the second implementation as described in section 5.4.1. A single worker and a single

master are involved in the computing environment with the configurations illustrated in

Table 6.2. The CPU time for Tskmc (Tlcpu) illustrated in section 6.3 represents the

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 131

Siyu Yang

computation time and the best objective (F"') in pools reflects the solution quality.

(ii) COPT features

The features of COPT include:

The management of stochastic search

The size of the optimisation structure

The depth and intents of search

Following the studies in Chapter 6, COPT terminates when the population of pools (Q,)

approaches a maximum Q max

(iii) Termination criteria

The termination criteria address controls in the population of intermediate solutions, the

optimisation progress, and the distribution of intermediate solutions in pools. In the

population control, COPT does not terminate if Q is smaller than a minimum Q" and

terminates if Q is larger than a maximum Qmx - In the optimisation progress control,

COPT terminates if IF, "' - F, "' 1:! ý e for n iterations. In the distribution control, +L F

COPT terminates if 11al - CF'I+L jj:! ý E for n, iterations or if

iterations.

(iv) Search policies

Ildt - dt+L jj:! ý E for nd

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 132

Siyu Yang

To study the impact of search policies with a, now, much large number of pools, pools

are clustered into floating, middle, and settling ranges. The floating range is related to

high probabilities to accept new solutions, while the settling range is related to the low

probabilities to accept new solutions. These ranges are associated with different

parameters. Figure 7.1 illustrates the three ranges with 6 pools.

Pool I

Pool 2

ooI3

Pool 4

I

Floating range (pf)

I
Middle range (p)

Pool 5

Settling range

Pool 5

Figure 7.3 Three ranges with 6 pools

The three parameters accounting for the probabilities to select pools from different

ranges are denoted by Pf , Pm ý and P, Choices of the parameters for seven different

cases are presented in Table 7.1.

icb : index of different combinations

Table 7.1 Choice of Pf , P., and P,

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 133

Siyu Ya

I cb Pf P, PS

1 0.75 0.125 0.125

11 0.5 0.25 0.25

0.33 0.33 0.33

IV 0.25 0.5 0.25

V 0.125 0.75 0.125

VI 0.25 0.25 0.5

Vil 0.125 0.125 0.75

7.4 Results

(a) Management of stochastic search

The management of stochastic search is related to the distribution of population of pools.

Following the experiences in Chapter 6, the distribution of population can adopts

different distribution functions that are associated with cooling schedules. Based on

Eq. 4.22, the cooling schedules are controlled by parameter r. To study the effect of

distribution function,, nine different r values are selected for the cooling schedules

(Tý = 100 and T,,
P = 0.0 1). The Markov process has the fixed length (L= 10). The

number of pools nP = 100 . Qmax = 1500 is selected. Ten statistical runs with different

initial reactor network structures are tested for each distribution function. Results

represent the averages of the tests. Figure 7.4 presents the COPT perfonnances.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 134

Siyu Yang

f - F-max

Tcpu

2066

CPU secs T-CPU

200

0

-15 -10 -5 05 10 15 20 25

r

(Problem 1)

F"'

3.8

F-max

-15 -10 -5 05 10 15 20 25
r

Tcpu

12 0

R F,

CPU secs T-CPU
6o

40

2e

0

-15 -10 -5 05 10 15 20 25

r

(Problem 2)

Figure 7.4 Performance with different distribution functions

F_max : the solution quality F"

T_CPU: the computation time T, "

Based on the results,, increasing r decreases the solution quality and also the computation

time. COPT with a concave distribution can converge to a good solution but requires a

long computation time. Adopting the concave distribution (r---2) can give the best

tradeoff between the solution quality and the computation time. The effect of r and the

distribution function on engineering problems is consistent with that on earlier

small-scale optimisation problems.

lopment of a stochastic optimisation algorithm with capabilities for distdbuted computing 135
On the deve

-15 -10 505 10 15 20 25

r

Siyu Yan

(b) Size of Optimisation Structure

Following the experiences in Chapter 6, the size of optimisation structure is reflected on

the number of pools. To study the effect of the number of pools, the parameters (T, j
nP

L, and Q`) are kept the same as in the study of distribution functions. The concave

distribution function (r = -2) is selected to give good performance. Different numbers

of pools ranging from 5 to 500 are selected. Results represent the average of 10

stochastic tests. Figure 7.5 illustrates the performance with different structure size.

F"'

2.8

2.7

2.6

2.5

2.4 F-max
2.3

2.2

2.1

2

0 100 200 300 400 500 600

np

Tcpu

800

700

600

500

CPU SeCS 400

300

200

100

0
0

--o- T-CPL

(Problem 1)

F"'

3.8

3.6

3.4

3.2

3s
F-max

2.8

2.6

2.4

2.2

2

0 100 200 300 400 500 600

np

TCPU

120

100

80

CPU secs 60 1 --o- T-CPU

40

20

0
0 100 200 300 400 500 600

n.

(Problem 2)

Figure 7.5 Performance with different structure sizes

------- - lopment of a stochastic optimisation algorithm with capabilities for distributed computing 136
On the deve

100 200 300 400 500 600

n,

Siyu Yang

Based on the results , increasing the structure size increases the solution qualities.

Consistent with the analysis in 6.5, the incremental benefit diminishes as np exceeds

100. The standard deviations of F" crF..,, (np<100 and npý! 100) are

presented in Table 7.1.

Table 7.2 Standard deviations of F"

Test problems 49 F-"
("P < 100 (TFmax (I?

p
ý! 100

1 0.158 0.0126

2 0.354 0.0400

Following the methods in section 6.5, the increasing ratios of computation time is

calculated and presented in Table 7.3.

Table 7.3 Increasing ratios

Test problems r
Ins

1 0.186

2 0.214

Based on the results, the increasing ratios are smaller than the ones produced on

small-scale problems (the largest one is 21% that is smaller than that (41%) illustrated in

table 6.4). The best tradeoff between the computation time and solution quality occurs

with 100 pools. This value of 100 pools is then selected for the following studies. Since

COPT can be applied on both parallel and distributed computing environments. the

resulting increment of computation time can be reduced.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 137

Siyu Ya

(c) Depth of search

Following the experiences in Chapter 6, the depth of search is reflected on the length of

Markov process. To study the depth of search, the parameters (TI, 7ý r, and Q max)

are kept the same as in the study of optimisation structure size and nP 100 Compared

to the studies on small-scale problems, a larger range of search depths are selected

ranging from 5 to 100. Figure 7.6 presents the performance.

F max

2.8

2.7

2.6

2.5

2.4 Fmax
2.3

2.2

2.1

2

0 20 40 60 80 100 120

L

Tcp"

1400

1200

1000

800

uru secs--- 1-, 7 - T-CPU I

400

200

0
0 20 40 60 80 100 120

L

(Problem 1)

3.8

3.7

3.6

3.5

3.4 Fmax

3.3

3.2

3.1

3

0 20 40 60 80 100 120

L

T CPU

140

120

100

80

CPU secs I-- T-CPU I
60

40

20

0
0 20 40 60

L

80 100 120

(Problem 2)

Figure 7.6 Performance with different search depths

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 138

Siyu Yang

The results show that with increasing L the solution quality firstly increases and then

decreases. However, both the incremental benefit and decremental loss are small. Table

7.4 presents the percentages of the convergences (p "9) for the problem 1.

Table 7.4 Percentages of convergences

L p cvg (%)

5 95.7%

10 97.2%

20 96.8%

30 98.6%

40 98.8%

50 99.5%

60 100%

70 99.3%

80 99.6%

90 99.0%

100 96.9%

Based on the results, the depth of search has a small impact on the convergence of COPT

(the minimum p"g = 95.7%). In contrast, the computation time increases as L increases

so COPT with a long Markov process requires a long computation time to converge.

Adopting the Markov process (L=50) can give the best tradeoff between the computation

time and solution quality and it is this value that is selected for the following studies.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 139

Siyu Yang

(d) Termination criterion

(i) Population size control

Following the studies in Chapter 6, the population size control is related to the control of

Qmm and Qm. To study this termination criterion, parameters (T,, T,,
P,

and

n,) are set the same as in the study of search depths. The Markov process (L=50) is

selected. Eight Q, from 10 to 3000 are selected to terminate COPT. Each result is the

average of 10 statistical runs. Figure 7.7 presents the performance.

Fmax

3

2.5

2

F-max

0 0 500 1000 1500

L

2000 2500 3000 3500

Zt)UU

2000

1500

CPI

secs I- T-CPU
1000

500

0 0 500 1000 1500

L

2000 2500 3000 3500

(Problem 1)

F

4

3.5

3

2.5

f21/ -*- F_max I

0.5

0

0 500 1000 1500

Q

2000 2500 3000 3500

Tcpu

250

200

150

T-CPU
100

50

0
0 500 1000 1500 2000 2500 3000 3500

(Problem 2)

Figure 7.7 Performance with different Q,

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 140

Siyu Yan

Based on the results, the increasing Q, increases the solution quality. The incremental

benefit diminished as Q, is larger than 1000. This is consistent with the study on the

small-scale problems described in section 6.6. COPT can rarely converge to

non-optimal or local optimal solutions if Q, ý! 1000 so that Q"" is set to 1000. On the

other hand, Q` is set to 3000 to ensure that COPT converges to the optimal solution.

(ii) Optimisation Progress controls

In this termination criterion, COPT terminates if I Fm" - Fm' for n iterations. +L F

c=0.1 is selected to determine the accuracy of the optimal solution. To study the effect

ofnF ý parameters (T, , 7ýp , r, nP, and L) are set same as those in the study of

population size control. Figure 7.8 presents the perfonnance when using different

nFfrom I to 20.

F

3

2.5

2

1.5 F-max

0.5

0
05 10 15 20 25

nF

T CPU

1800

1600

1400

1200

1000
CPU secs T-CPU

800

600

400

200

0
0 10 15 20 25

nF

(Problem 1)

------ ----

On - the development of a stochastic optimisation algorithm with capabilities for distributed computing 141

Siyu Yang

4

3.5

3

2 F-max

1.5
#/

I- ---

0.5

0
05 10 15 20 25

nF

Tcpu

200

180

160

140

120

CPU secsl, o T-CPU
80
60

40

20

0
05 10 15 20 25

nF

(Problem 2)

Figure 7.8 Performance with different nF

The results show that the solution quality is increased by increasing n,. Meanwhile, the

computation time also increases with increasing nF Adopting n, =I 0 can give the

best tradeoff between the solution quality and computation time. This is consistent with

the studies on small-scale problems illustrated in section 6.7.

(iii) Distribution control - pool level

Following the studies in section 6.7, the pool level is evaluated by the standard deviation

of the population of pools (aj COPT terminates if Ilq, -q,,, jj: 5c for n, iterations.

E=I is selected to determine the accuracy of the standard deviation. The parameters (TI ý

7ýp ,r, npand L) are kept constant. Figure 7.9 presents the perfonnance when using

different nST for the tennination criterion.

-- ----- ent of a stochastic optimisation algorithm with capabilities for distributed computing 142
On the developm

Siyu Yan

3

2.5

2

1.5

--e-

Fmax

1

0.5

0
05 10 15 20 25

nsT

Tcpu
1400

1200

1000

800

,
PU sees

600

400

200

0
0

- T-CPU

(Problem 1)

F max

4

3.5

3

2.5

f2 F-max
1.5

1

0.5

0
05 10 15 20 25

nST

T"p'

180
160

140

120

100
CPU secs

80
T-CPL

60

40

20

0
05 10 15 20 25

nST

(Problem 2)

Figure 7.9 Performances with different nST

The results show that the solution quality increases as nST increases. Meanwhile, the

computation time also increases. Based on the results, the termination criterion with

n ST= 10 is adopted to give the best tradeoffis between the solution quality and

computation time. This is consistent with the studies of pool levels in section 6.7.

(iv) Distribution control - cascade level

Following the experience in Chapter 6, the cascade level is evaluated by the change of

density function. In this termination criterion, COPT terminates if Ild d or t+Ljj:
5E fl

n iterations. To study the effect of cn=3 is selected. The parameters (TI, Tn
ddP

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 143

5 10 is 20 25

nST

Sivu Yan

r,, nP, and L) are kept constant. Figure 7.10 presents the performance when using z: -

different E from 0.1 to 0.9.

F. -

3

2.5

2

1.5

1

0.5

0.2 0.4 0.6 0 .8
c

- F-max I

TcPu

200
80

60

140

120

CPU secsioo

80

60

40

20

0
0 0.2 0.4 0.6 0.8

E

- T-CPU

(Problem 1)

F ax Tcpu

4 120

100
3

2.5
80

2 Fmax CPU secs 60 T-CPU

40

0.5 20

00-
0 0.2 0.4 0.6 0.8 100.2 0.4 0.6 0.8 1

EE

(Problem 2)

Figure 7.10 Performances with different E

The results show that increasing c decreases the solution quality and also the

computation time. Adopting E=0.3 can give the best tradeoffs between the computation

time and solution quality. Then E=0.3 is selected to study nd ,
Figure 7.11

illustrates the performance when using different values of nd from I to 20.

144 On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yang

3
2.8
2.6
2.4

2.2
f2 F-max

1.8
1.6
1.4
1.2

1
5 10 15 20 25

nd

Tcpu

1400

1200

1000

800
CPL secs

600
T-CPU

400

200

0
0 10 15 20 25

nd

(Problem 1)

3.8

3.6

3.4

3.2

3
f

2.8
F_max

2.6

2.4

2.2

2
05 10 15 20 25

nd

Tcpu

400

350

300

250

CPU secs 200 T-CPU

150

loo

50

0
05 10 15 20 25

nd

(Problem 2)

Figure 7.11 Performance with different nd

The results show that increasing nd can increase the solution quality. Meanwhile, the

computation time also increases. Adopting nd :- 10 can give the best tradeoff between

the solution quality and computation time. This is the same trend off as was found in the

study of nd in section 6.7.

(e) Search policies

Depending on the above study, the termination criteria selected are: COPT does not

terminate if Q, is smaller than 1000 and terminates if is larger than 3000, or if

max max :! ýO. I for 10 iterations, or if
- F+L

II(T
(Tt+L for 10 iterations, or if I F, I

On the development of a stochastic optimisation algorithm with capabilities for distdbuted computing 145

Siyu Yang

dl+L jj:! ý 0.3 for 10 iterations. Comparison between the perfon-nances of the normal

COPT and the COPT that uses the choices in Table 7.1 (COPT_S) is perfon-ned to study

the search policies. The parameters (T,, 7ý
P,

r, np,, and L) are set the same as in

the earlier study of tennination criteria. The results are the averages of 10 statistical runs

that use different initial structures. Figure 7.12 illustrates the comparison.

F max

2.73

2.72

2.71

2.7

2.69

f 2.68
COPTS

11- -- dd -- COPT
2.67

2.66

2.65

2.64

2.63
05 10

b

T CPU

1200

1000

800

COPTS
CPU secs600 COPT

400

200

0
05 10

iýb

(Problem 1)

Figure 7.12 Comparison between the perfon-nances of COPT and COPT-S I

For COPT_S, the solution quality increases with an increasing bias to the settling range.

Meanwhile the computation time increases with the bias. This reflects that COPT can

converge to a good solution if the search has a bias to the settling range. Compared to

the normal COPT, COPT_S can converge to a better solution with a bias to the middle

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 146

Siyu Ya

range or the settling range (choice IV- VII). However, COPT_S requires longer

computation time than COPT with the bias. Based on the figures, the choice VI

(p, -0.25, P2 =0.25, P3 =0.5) gives the best tradeoffs between the computation time

and solution quality.

The search policies are also studied in problem 2. Figure 7.3 presents the comparison

between the performances of COPT and COPT-S.

F max

3.7

3.65

3.6 -0-7

f 3.55
COPT-S

COPT

3.5

3.45

3.4
05 10

cb

T CPU

600

500

400

COPTS
CPU secSoo COPT

200

100

0
05 10

icb

(Problem 2)

Figure 7.13 Comparison between the performances of COPT and COPT_S 11

The conclusion is consistent with the study of problem 1. The solution quality increases

with an increasing bias on settling range. Meanwhile, the computation time increases.

The results show that the choice VI can give the best tradeoff between the computation

time and the solution quality.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 147

ýiyu Yang

7.5 Comparison with other methods

Comparison between the perfon-nances of COPT and a conventional stochastic method is

performed on a more complex problem (problem 3) than problem I and problem 2.

Parameters (T,, 7ý
P,

r, np , and L) and the termination criteria are set the same as in

the study of search policies. The search policy with choice VI is selected as the optimum.

Referring to the studies by Ashley (2004), parameters and ten-nination criterion of TS are

fixed,, so that:

e Neighborhood size is set to 7.

o The Tabu list that has a single entry is selected.

e Termination criteria are set at un-improving for 50 iterations or maximum of 500

iteration occurs.

COPT runs on the computing environment involving a master and a worker. The

configurations of the master and the worker are as in Table 6.2. TS runs on the worker.

The solution quality and computation time for TS are evaluated by the best objective ever

found and the worker's CPU time respectively. Table 7.5 illustrates comparison between

the performances of the two methods. These results are averages of 10 runs using

different initial structures.

is : index of initial network structure

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 148

Siyu Yang

Table 7.5 Comparison between COPT and TS

COPT TS

is F max Tcpu F max Tcpu

1 5.180
_
59765.432 5.187 116864.701

11 5.174 55009.087 5.172 100396.202

111 5.175 12142.612 5.200 24279.421

IV 5.174 34782.156 5.173 84837.643

V 5.167 43789.348 5.172 76189.532

vi 5.166 45721.413 5.201 69201.233

Vil 5.174 32142.265 5.166 50132.212

Vill 5.170 39123.574 5.201 66125.521

Ix 5.170 32152.613 5.190 55284.311

x 5.174
1

61923.557 5.180 125264.719

Depending on the table, the performances of the two methods are further illustrated in

Figure 7.4.

F

6

5.5

5

4.5
F-max (COPT)
F-max (TS)

4

3.5

3
05 10 15

is

149
On the development of a stochastic optimisation algorithm with capabilities for distributed computing

Siyu Yan

Tcpu

150000

120000

90vvv *L T COPT CPU secs
60000 T-TS

30000

0

46 10 12

s

Figure 7.14 Comparison between COPT and TS

F_max (COPT): the solution quality of COPT

F_max (TS): the solution quality of TS

T_CPU (COPT): the computation time for COPT

T_CPU (TS): the computation time for TS

Based on these results, we can say that COPT can achieve the same solution quality more

quickly than TS. For example, the computation time for COPT that uses the second

initial structure is twice as long as that for the TS.

7.6 Remarks and Discussions

COPT is studied on large-scale problems in this chapter. The impacts of the features are

consistent with the earlier studies on small-scale problems. COPT with concave

distribution can lead to better optimal solution but spend longer computation time than

that with convex distribution. Increasing structure size (the number of pools) increases

the solution quality and the computation time. The search depth (Markov process length)

does not have apparent impact on solution quality but the computation time. COPT with

a long Markov process requires a long computation time to converge. Based on the study

7
________ /

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 150

Siyu Yang

of large-scale problems, adopting r---2, nP = 100 ý L=50 can give the best tradeoff

between the computation time and solution quality. Similar to the study of small-scale

problems, the termination criterion related to the control in population size defines a

minimum population (Q') and maximum population (Qm"). Based on the results,

Q min
and Q"' are set to 1000 and 3000. COPT can also tenninate if F, min

stay the same

for a number of iterations (nF)* Increasing nF can increases the solution quality and

the computation time. Based on the results, ten-ninating the algorithm when

F max
-F

max 1:! ýO. I for 10 iterations can give the best tradeoff. The last termination I t+L

criterion related to the control in pool level and cascade level. To control the pool level,

the algorithm terminates if the standard deviation of population of pools stay same

(II(J-1 - UI+L [! ý 0- 1) for a number of iterations (nST)'On the other hand, to control the

cascade level, COPT terminates if the density function of the domain stay same

(Ild -d or a number of iterations (nd)* Increasing "STand nd increases the I t+L
jj:! ý E) fl

solution quality and the computation time. The algorithm with a small E can converge

to a good optimal solution but require a long computation time. Similar to the study of

small-scale problems, setting both nST and nd to 10 and c to 0.3 can give the best

tradeoff between computation time and solution quality.

Search policies are proposed to determine the form of distributing acceptance

probabilities in the search. The pools are clustered into floating, middle, and settling

ranges. Each range is assigned by a probability to select pools from this range. Based on

the results, the search policies appear to be an open problem that could benefit by

customization. The solution quality increases when there is an increasing bias to the

settling range. Meanwhile the computation time increases with this bias. The search

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 151

Siyu Yan

policy with choice VI (p, = 0.25, P2 = 0.25, P3 = 0.5) can give the best tradeoffs between

the computation time and solution quality. In addition, COPT is also studied on a

complex problem. The comparison between COPT and TS is performed and results

illustrate that COPT can converge to a solution with similar solution quality more

quickly than TS.

The previous computing environment includes only a single worker. However, the

parallel and distributed environment should have multiple workers. To apply COPT on

this environment,, the implementation requires some minor adjustments. In theory, the

convergence can be sped up by increasing the number of workers. In the next chapter the

benefits in speeding up convergence are studied and the benefits of COPT and stochastic

method are compared.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 152

Siyu Yang

Chapter 8 Parallel and Distributed computing

8.1 Introduction

COPT, in comparison to TS, SA, etc, has a large numbers of features that are parallel and

independent:

0 Each Markov process, previously part of a longer process, is now

independent.

0 The management of intermediate solutions between Markov processes can

be done in parallel with the development of solutions.

So COPT has obvious potential to distribute. Tasks to distribute include:

0 The development of new solutions (launch of Markov processes)

0 Communication with pools (analysis and management of intermediate

solutions)

The above tasks are related to Tsk"c described in section 5.2.

Tasks related to storage and management of solutions include:

Input data into pools

Export data from pools

Development of Inflections

Checking the termination

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 153

Siyu Yang

The above tasks are related to Tsk', ', TskEP
, Tsk"", TskT' described in section 5.2.

8.2 Methodology

Following the discussions in section 5.2, COPT has a master process and worker

processes. The master process is to:

Step 1: Initialization Select a number of partitions and pools.

initial points for workers (N workers have at least N initial points).

Generate a number of

Step2: Data extraction (TskE') Select a set of points and store them in output files.

The output files are associated with different workers.

Step3. -Storage (Tsk'p) Read input files and inserts the new points into pools.

Step 4. - Manage population (Tsk"') Develop the inflections of cascade following

Definition 4.6.

Step 5. - Check convergence (TskT') Check the convergence of COPT following the

tennination criteria described in section 7.4.2

Step 2,3,4, and 5 are independent and following different time schedules. On the other

hand,, the worker processes execute Tskmc following:

Step I. - Selection of initial points Fetch the output files from the master and read the

initial point in the files.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 154

Slyu Yang

Step 2. - Development of intermediate solutions Run Markov processes

simultaneously to generate new solutions.

Step 3. - Storage and management of solutions Store new solutions into input files and

send them to the master.

Figure 8.1 presents the network structure of COPT on parallel and distributed computing

environments.

IL -

ww

ID=N-1 ID=N

Figure 8.1 Network structure of COPT

M: master computer

W: worker computers

IN: input file

0: output file

ID: identities of worker computers (from I to N)

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 155

Siyu Yang

Each worker has a unique ID (worker ID) different to those of other workers. Solutions

generated by workers are stored in the partitions and pools together with their differing

worker IDs. The partitions and pools are implemented as tables, similar to those in

section 5.4.1. Tables now involve an additional column that store the worker IDs. Input

and output files are communicated between the master and workers. Figure 8.2 outlines

the flow of input and output files in COPT

w IN

ID=l

...............
IN

-------------- -------

w IN
rD=N

Figure 8.2 Flow of input and output files

Input and output files are associated with different workers. The ID is appended in the

name of input and output files so that workers and master can identify the files. The

master extracts M-W information (as described in section 5.3) and puts it into output files.

Workers store new solutions into input files with different names and send them, actually

part of the files that involve W-M information as described in section 5.3, to the master.

The master then places the new solutions into partitions and pools.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 156

Siyu Yang

Partitions andpools

Due to the presence of worker IDs, points in partitions are identified by point IDs and

worker IDs. For example, point 3 is generated by worker 2 so that its worker ID and

point ID are 2 and 3 respectively. Figure 8.3 presents the partitions and pools.

oi teature cascade
ipoint ID

t effrD erm tur e worker 11)

pool ID
f

Figure 8.3 Partitions and pools

- rl I
F-i -i)
3)OixLt ID

worker ID

Terrwerture

f

The difference with the second forin of partitions and pools described in section 5.4.1 is

the additional column (worker ID) in the cascade and M-W table. The worker ID and

point ID are the primary keys in the cascade table.

Data extraction and storage

Data extraction and storage on the master are now implemented in different ways due to

the presence of multiple workers. The differences are explained as follows:

(i) Extraction on the master

The master extracts M-W information from the partitions and pools and stores it in the

M-W table. The information, different from that described in section 5.3, involves the

worker ID. Then the master writes this information into output files. The output files

are associated with different workers and appended by worker ID in names. Figure 8.4

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 157

Siyu Yang

illustrates the data extraction from the master. Let us assume that three workers (1,2, and
3) are present in the computing environment.

Extraction

Expert I

I Fj-ýPcTt.
4.

_,
Expa-rt3

Figure 8.4 Data extraction from the master

Similar to TskE, " described in section 5.4.4, the output file is named as Export. The

master generates three output files (Export], Export2, Export3) associated with the three

workers (1,2, and 3).

(ii) Storage on the master

Input files, different from the one in the second implementation described in section 5.4.5,

are appended by worker ID in the name. The W-M inforination in the input files involves

worker IDs. The master places the W-M information into the cascade table. Figure 8.5

presents the data storage on the master. Similar to the description in (i), the environment

has three workers (1,2, and 3).

mputing 158

Siyu Yang

Storage

.................. ,

T Ampof tC SL S C- ade
1; Jint It

worker It

L--J Impoft2
P001 It

I

ý_j f

irn-p-oTt3 Z

Figure 8.5 Data storage on the master

Input files (Import]X, Import2Y, and Import3Z) are generated respectively by workers 1,

2,, and 3. Beside the worker ID, the input files are also appended with the point ID (X, Y,

and Z are the point IDs). This is similar to the second implementation described in

section 5.4.6. The M-W information from the input files is stored into the cascade table

by the master.

(iii) Extraction on workers

Since the output files are associated with workers, workers take the specific output files

from the master and read the M-W information from them. Figure 8.6 presents three

workers (1,2, and 3) taking their output files from the master.

mputing 159

Siyu Yang

w
ID=l

Expof t. 2 w
pp, ID=2

apcýt3 '-ý I

ID=3

Figure 8.6 Workers taking output files

The figure represents how workers (1,2,, and 3) take the output files (Exportll, Export2,

and Export3) from the master.

M-W information in output files involves worker ID and point ID, which help workers to

find the corresponding solution files. Solution files, similar to the ones in the second

implementation described in section 5.4, store variables and differ in names. Their names

are appended by point ID (SoX where X is point ID). Figure 8.7 represents the three

workers finding corresponding solution files.

mput'ing 160

Siyu Yang

Worker I Export] has worker

ID =2 and point scX

ID=Y

I-----------------

Worker 2 Export2 has worker

c
EY-P, Dft

ID =I and point

c ID=X

I-----------------

Worker 3 ExporL3 has worker

t3 "Cz
ID =2 and point

ID=Z

Figure 8.7 Workers finding solution files

As the figure illustrates,

0 Exportl has worker ID =2 and point ID =Y so that worker A reads SoY in

worker 2.

0 Export2 has worker ID =I and point ID =X so that worker A reads SoX in

worker 1.

0 Export3 has worker ID =2 and point ID =Z so that worker A reads SoZ in

worker 2.

(iv) Storage on workers

Then workers read the solution files and start Markov processes. The Markov processes

follow the Metropolis criterion and generate new points. New points are stored in

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 161

Siyu Yan

solution and input files. Figure 8.8 illustrates workers storing new points into files. Two

workers (I and 2) are represented in the figure.

Worker

Worker 2

Import2l Import22 Import23 Import24

Sol

I

So2

I

So3 So4

Figure 8.8 Workers storing new points into files

As the figure illustrated,

0 Worker I generates points 1,2,3,4 and stores them in files importl I and

Sol, import12 and So2, import13 and So3, import14 and So4.

0 Worker 2 generates points 1,2,3,4 and stores them in files import2l and

Sol, import22 and So2, import23 and So3, import24 and So4 files.

8.3 Synchronous mode and asynchronous mode

With multiple workers are employed, COPT can be executed either in synchronous or in

asynchronous modes.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 162

Siyu Ya

(i) Synchronous mode

Workers are parallelized to run the Markov processes simultaneously in this mode. Since

workers have different computational capacities, the faster worker has to wait for the

slower ones before sending the input files. The worker tasks include:

Selection of initial points

Development of intermediate solutions

(idle time as they waitfor the other workers)

Storage and management of solutions

Since the faster workers have to wait for the slower ones,, benefits in speeding up

convergence are limited.

(ii) Asynchronous mode

Workers execute their own independent Markov processes and communicate information

with the master independently. Worker tasks include:

Selection of initialpoints

Development of intermediate solutions

Storage and management ofsolutions

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 163

Siyu Yang

In this mode, computation resources are more efficiently used and the computation time

can be greatly reduced.

8.4 Demonstration

The distributed computing environment involves I master and 10 workers. The

configurations of these computers are illustrated in Table 8.1.

Table 8.1 Configurations of the master and the workers

Master CPU Ram Memory

Prise-sql Intel(R) Core(TM)

2.13GHz

2Gb

Worker CPU Ram Memory

BscgridOl-BscgridO6 Intel(R) Pentium(R)

3GHz

2Gb

KhafreO 1 -Khafre04 Pentium III (Cascades)

700OMHz

512MB

BscgridOl-BscgridO6 are 6 faster workers, while KhafreOl-KhafreO4 are 4 slower

workers. The master and workers are connected via Internet. Information is transferred

between the master and the workers or between the workers by FTP protocol.

8.4 Parallel and distributed application

(i) Performance and settings

Following the studies described in Chapter 7, the performance is reflected on the solution

quality and the computation time required to converge. The solution quality is the best

objective in the pools (F"). With workers on the Internet, it is difficult to find their

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 164

Siyu Yang

CPU time. The computation time is reflected on the clock time of the slowest worker.

which is illustrated as:

CL CL N
=max [Tl,

j
]

=P,
c

T cL : computation time

j: index of workers

Npc: the number of workers

T cL : the clock time of workerj Ij

Besides, parameters (T,, 7ý
P,

r, nP and L) and the termination criteria are set the same

as in the studies of section 7.5.

(ii) Benefit in speeding up by increasing number of workers

In theory, increasing the number of workers increases the computation capacity and

decreases the computation time required to converge. Problems I and 2 described in

section 7.2 are used to study the benefits when increasing the number of workers.

Figure 8.9 illustrates the perfonnance

mode 1: the synchronous mode

mode 2: the asynchronous mode

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 165

ýýyu Yang

computation time

Iuu

0 J-
........... - 0468 10 12

Np,

.....

(Problem 1)

.... -
solution quality

mode 1
mode 2

ýiyu Yang

computation time

160

140

120

100
T

80

mode 1 60
mode 2

40

10 12

Np,

(Problem 2)

Figure 8.9 Performance with different numbers of workers

The results show that Npc does not have a significant impact on the solution quality. The

computation time quickly decreases and then increases slightly as Npc increases. This is

caused by the increasing communications overheads. The computation time now

involves the communication time. With more and more workers, the communication time

increases,, resulting in the increased clock time. In addition, the asynchronous mode can

converge more quickly than the synchronous mode. Let us take the results of problem I

for example. The computation time for the synchronous mode is twice as long as that for

the asynchronous mode when using three workers.

(W) Comparison with other methods

Comparison between a parallel TS and COPT is performed to illustrate the advantage of

COPT on distributed computing environments. Problem 3 described in section 7.2 is

selected in this study. COPT is implemented as the asynchronous mode. The two

methods run on the environment illustrated in Table 8.1. Referring to the studies by

Ashley (2004), parameters and termination criteria of TS are fixed as:

0 Tabu list that has a single entry is selected.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 167

Siyu Yang

* Ten-nination criteria are set at un-improving 50 iterations or maximum of 500

iterations.

Figure 8.10 outlines parallel TS.

Initial point.. 0-

Neighbourhood

0*a00

Figure 8.10 Parallel TS

Neighbourhood

The parallel TS is implemented as a master-worker paradigm. It starts from an initial

point (starting point). The master searches neighbours of this starting point and send

them to workers for evaluation. Results are sent back to the master and the best

neighbour is selected as a new starting point. The master searches neighbours of this

starting point again and then sends them to workers for evaluations. The convergence of

the algorithm is determined by the termination criteria. The performance of the

algorithm is measured by the solution quality and computation time. The solution quality

is the best objective (F"), whilst the computation time is represented by the clock time

of the slowest worker. Figure 8.11 illustrates the comparison between parallel TS and

COPT on a distributed computing environment.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 168

Siyu Ya

40000

35000

30000

25000
T

20000

15000

10000

5000

0

TS
COPT

0268 10 12

Npc

Figure 8.11 Comparison between parallel TS and COPT

Both the parallel TS and COPT can converge to the solutions with similar qualities. Their

objectives are within 5.196 ± 0.0132, but the computation time for COPT is much smaller

than that for the parallel TS. This is mainly caused by the synchronous worker processes

in the parallel TS, where the faster workers have to wait for the slower one in the

algorithm. In contrast, workers are parallel and independent of each other in the

asynchronous mode of COPT.

8.5 Remarks and discussions

Stochastic methods have been suffering from long computation time. Current research

focuses on applying parallel and distributed computing techniques to speed up

convergence. However, the applications are limited to small-scale computing

computation time

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 169

ýiýyu Yang

environments that have a small number of computers. With the parallel and
independent tasks, COPT can be applied on the computing environments composed of a
large number of distributed computers.

COPT has been implemented in synchronous and asynchronous modes. The

asynchronous mode has workers running in parallel and independent of each others so

that this mode can obtain the most benefit in speeding up convergence. COPT in both

modes on a distributed computing environment was studied on problems I and 2.

Results illustrate that both modes converge to similar solutions and that the computation

time decreases as the number of workers increases. However,, decrease in computation

time is greater with asynchronous mode.

COPT on distributed computing environments was also studied on problem 3. Here

results were compared with that of parallel TS and illustrate that COPT obtains more

benefit in speeding up convergence when it is applied on parallel and distributed

computing envirom-nents and therefore more fully exploits the computing potential of

these environments.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 170

Siyu Yang

Chapter 9 Conclusions and recommendation

9.1 Conclusion

Optimisation has been broadly applied to many fields. Classification of optim'sation

problems is based on their different characteristics. Based on the classification, many

optimisation techniques have been developed, consisting primarily of deterministic

optimisation techniques and stochastic optimisation techniques. The deterministic

methods take advantage of mathematical and geometric techniques to solve the

application problems. These methods can quickly converge to highly precise optimal

solutions. However, the deterministic methods suffer from computationally intensive use

of derivative transfon-nations,, inexistence of mechanisms to highly non-convex domains

and difficulties in the problem initialisation. Compared to the deterministic methods, the

stochastic methods follow a statistical random probabilistic driven search to find the

optimal solutions. This randomness can help the stochastic methods converge to the

global optimal solutions from the local optimal solutions. It also can speed up the

convergence and make the algorithm less sensitive to the modelling errors. However due

to the inherent randomness in search, the stochastic methods cannot quickly converge to

the global optimal solutions. Advanced parallel and distributed computing techniques

have been used to reduce the computational time. The previous research on the parallel

and distributed applications of stochastic optimisation methods has been reviewed and it

was found that the existing parallel stochastic optimisation methods cannot fully exploit

computational resources in the computing environment because of the synchrony they

require within computers.

A new stochastic optimisation method (COPT) was developed for the large-scale

distributed computing environment. Such algorithm takes advantage of the Markov

process, similar to that in SA. but eliminates its inherent sequential nature. COPT

mputing 171

§iyu Yang

introduces partitions and pools to store intermediate solutions and corresponding

objective values. Populations in pools are inflected periodically to keep pools follow a

specified order. Partitions and pools grow as the Markov process generates nexv
intermediate solutions. With the partitions and pools, multi Markov processes can be

launched simultaneously and COPT can be applied on parallel and distributed computing

environments. Each pool is associated with a temperature decreasing from the top pool

to the bottom pool. The Markov process started from a higher pool can accept more

solutions than the one with the same length started from a lower pool. This temperature

also helps COPT to inflect population of pools. COPT was implemented as a

master-worker paradigm. Partitions and pools are implemented as the tables in database.

In the course of the study, two different implementations were employed.

Several important features were studied on both the small-scale problems and the

large-scale problems. The features involved the management of stochastic search,

optimisation structure size, the depth of search, and the selection and coordination of the

termination criteria. The termination criteria were selected related to controls in

population size, optimisation progress, and distribution features. The performance is

reflected on the solution quality and the computation time. The management of stochastic

search is reflected on the distribution function. Based on the results,, COPT with the

concave distributions can achieve a better solution quality but at the expense of more

computation time than that achieved with the convex distributions. The optimisation

structure size is determined by the number of pools. Based on the results, increasing the

number of pools increases the solution quality but meanwhile increases the computation

time. The search depth is determined by the length of the Markov process. Based on these

studies, the length of the Markov process does not have an apparent impact on the solution

quality. On the other hand, increasing the length of the Markov process increases the

computation time. Termination criteria related to the control in population size defines a

minimum population and a maximum population. COPT does not terminate if the

population of pools is smaller than the minimum population and terminate if the

population of pools approaches the maximum population. Another termination criterion

mputing 172

Siyu Yang

related to the control in optimisation progress tests the best objective value in pools at

each iteration. COPT terminates if the best objective value stay same for a number of
iterations. The last termination criterion related to the controls in population features

which involve pool level and cascade level. The pool level and cascade level are

measured by the standard deviation of population of pools and the density function of
domain respectively. With control in pool level, COPT ten-ninates if the standard
deviation stays same for a number of iterations. With control in cascade level, COPT

terminates if the density function stays same for a number of iterations.

As the pools are associated with different temperatures, the Markov process follows

different acceptance probabilities. The form of distributing acceptance probabilities in

search can affect the performance of COPT. Search policies were proposed to detennine

the form and implemented by clustering the pools to the floating range, the middle range,

and the settling range. Each of these ranges is associated with a probability of selecting

pools within these ranges. Based on the results, COPT can converge to the good solutions

but require a long computation time if the middle range or the settling range has the

larger probability than the floating range.

Comparison with the stochastic methods was performed on a complex engineering

problem. Results illustrated that COPT can converge to similar optimal solutions more

quickly than the stochastic method. Finally, COPT was applied on the parallel and

distributed computing environment. Some adjustments were needed on the

implementation to observe the requirements of the parallel and distributed applications.

In order to prove COPT's applicability on such computing environment, comparison with

the performance of the parallel TS is selected. Results illustrated that in terms of

convergence time COPT can outperform the parallel TS.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 173

, ýIyu Yang

9.2 Originality

The major contribution of this project to optImisation is the development of COPT that is

suitable for a large-scale distributed computing environment and meanwhile storing

system knowledge in the additional memory. COPT offers the major improvements over

existing optimisation techniques as follows:

Performs a robust optimisation for complex problems. Achieves quicker

convergence than the stochastic optimisation method

(ii) Able to be applied on the parallel and distributed computing environments and

to fully exploit computational resources in these environments.

(iii) Records system knowledge in the additional memory and has the potential to

incorporate knowledge acquisition in future work.

9.3 Recommendation of future work

COPT has been developed in this thesis to address the limitations in the applications of

existing stochastic methods when applied upon the distributed computing environment.

The method is still in the early stages of development and is expected to improve through

future work. The attention of future work should focus on two views as follows:

(a) Distribute tasks to workers according to their capabilities

In COPT, the workers run the Markov processes of the same lengths. The slower

workers would generate much less points than the faster workers and the computation

resources are not effectively utilized. In order to solve this problem, we must :

(j) Distribute Markov processes of different lengths optimally amongst

workers.

The Markov processes of different lengths should be employed and distributed to

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 174

Siyu Yang

workers according to their computation capabilities. The faster workers should take the

longer Markov processes, while the slower workers should take the shorter Markov

processes.

(ii) Distribute Markov processes of different partitions optimally amongst

workers

Because of the usage of Metropolis criterion, the Markov processes launched from the

higher pools are more easily generate points than those launched from the lower pools.

To use the computation resources efficiently, the slower workers should take the Markov

processes that are launched from the higher pools and the faster workers in contrast

should take the Markov processes that are often launched from the lower pools.

a) Apply knowledge acquisition techniques

As system knowledge is stored in memory, the knowledge acquisition techniques, such

as Data Mining and Ontology, can be utilized to assess the knowledge at run time and

guide the search so that COPT can converge to the global optimal solution more rapidly.

Currently, Du (2008) is developing the knowledge based system for COPT using

Ontology software. The research has already produced some impressive results.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 175

Sivu Ya

Chapter 10 Reference

Aarts, E. H. L., and van Laarhoven, P. G. M., (1985) Statistical cooling: a general approach to

combinatorial optimisation problems. Philips Journal of Research , 40,193.

Achenie, L. K. E., Biegler L. T., (1990) Superstructure based approach to chemical reactor

networks synthesis, Computer and Chemical Engineering, 22: 1159-1179.

Androulakis, 1. P., Maranas, C. D., Flouclas, C. A., (1995) aBB: A global optimisation method for

general constrained nonconvex problems, Journal of Global Optimisation, 7: 337-363.

Antonopoulos, N., Linke, P., and Kokossis, A. C., (2004) A prototype grid framework for the chemical

process industries, Chemical Engineering Communications, 28 2391

Arsham, H. (1998) Techniques for Monte Carlo Optimising, Monte Carlo Methods and Applications,

vol. 4, pp. 181-229.

Ashley, V. M., and Linke, P., (2004) A novel approach for reactor network synthesis using knowledge

discovery and optimisation techniques. Trans khemE, Part A, Chemical Engineering

Research and Design, 82(A8): 952-960.

Ashley, V. M., (2004) On the development of knowledge driven optimisation methods - application to

complex reactor network synthesis (Ph. D. thesis), UK, University of Surrey.

Badia R. M., Labarta J., Sirvent R., Perez J. M., Cela J. M. and Grima R., (2003) Programming Grid

Applications with GRID Superscalar, Journal of Grid Computing 1: 151-170, CEPBA-IBM

Research Institute, UPC, Spain.

Bailey, J. E., Ollis, D. F., (1986) Biochemical Engineering Fundamentals 2 nd Ed, McGraw Hill,

London.

Bakken, A. P, Hill Jr, C. G., Admundson, C. H., (1989) Hydrolysis of lactose in skim milk by

immobilised b-galactosidase in a spiral flow reactor, Biotechnology and Bioengineering 33:

1249-1275.

Baluja. S.. (1994) Population-Based Incremental Learning: A Method for Integrating Genetic Search

Based Function Optimization and Competitive Learning. Carnegie Mellon University

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 176

Siyu Yang

Technical Report. CMU-CS-94-163.

Bender, J. F., (1962) Partitioning procedures for solving mixed-variable programming problems,

Numerische Mathmatik, 4: 238-252.

Berman, F., Fox, G., Hey, T., (2003) The Grid: past, present future, In: Grid Computing Making the

Global Inftastructure a Reality, pp. 9-50, Wiley and Sons. ISBN 0470853190.

Biegler, L. T., Grossman, 1. E., Westerberg, A. W., (1997) Systematic Methods of Chemical Process
Design, Prentice Hall, London.

Black P. E., (2005) greedy algorithm in Dictionary of Algorithms and Data Structures [online], U. S.

National Institute of Standards and Technology, webpage: NIST-greedyalgo.

Bonabeau, E., Dorigo, M., and Theraulaz, G., (1999) Swarm Intelligence from Natural to Artificial

Systems, Oxford University Press, New York.

Brooks, R. J., and Tobias, A. M., (1996) Choosing the best model: level of detail, complexity and

model performance. Mathematical and Computer Modelling, 24(4), Pp 1- 14.

CantiI-Paz, E., (1997) Designing Efficient Master-Slave Parallel Genetic Algorithms, INGAL

Technical Report No. 97004.

Cantb-Paz, E., (1997) A survey of parallel GAs. IlliGAL R. 97003, A revised version of 1995. A

summary of research on parallel genetic algorithms, TR#95007.

Cardoso, Salcedo, R. L., Feyo de Azevedo, S., and Barbosa, D., (2000) Optimisation of reactive

distillation processes with simulated annealing, Chemical and Engineering Science 55,5059.

Carroll, D L. (1996) Genetic algorithms and optimizing chemical oxygen-iodine lasers, Developments in

Theoretical andApplied Mechanics, 18(3): 411-424

Cavin, L., Fischer, U., Glover, F., Hungerbuhler, K., (2004) Multi-objective process design in

multi-purpose batch plants using a Tabu search algorithm, Computer and Chemical

Engineering 28: 459-478.

Cerny, V. (1985) Thermodynamical approach to the traveling salesman problem: An efficient

simulation approach. Journal of Antonopoulos Optimisation Theory and Applications, 45- 1:

41-51.

Chakrapani, J., and Skorin-Kapov, J., (1993) Massively Parallel Tabu Search for the Quadratic

Assignment problem, Annals of Operations Research V41,327-341.

Chaudhuri, P. D., and Diwekar, U. M.. (1996) Process synthesis under uncertainty: a penalty function

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 177

Siyu Yan

approach. American Institute of Chemical Engineering Journal 42 (3), 742.

Chaudhuri, P. D., and Diwekar, U. M., (1997) Synthesis under uncertainty with simulators, Computers

and Chemical Engineering 21 (7), 733.

Chen, H., and Flann, S. N., (1994) Parallel Simulated Annealing and Genetic Algorithms: a Space of

Hybrid Methods. PPSN 1994: 428-438.

Chwif, L., Barretto, M. R. P., Santoro, M. C., (1998) Model reduction: Some results, Proceedings of

the The 31st Annual Simulation Symposium, Washington, DC, USA.

Cordero, J. C., Davin, A., Floquet, P., Pibouleau, L., Domenech, S., (1997) Synthesis of optimal

reactor networks using mathematical programming and simulated annealing, Computer and

Chemical Engineering, 21: S47.

Cox, A., and Rajamony, R., Parallel Programming Tools, Encyclopedia of Electrical and Electronics

Engineering, pp 111-123.

Crainic, T. G., Toulouse, M., and Gendreau, M., (1995a) Synchronous Tabu Search Parallelization

Strategies for Multicommodity Location-Allocation with Balancing Requirements. OR

Spektrum 17(2/3), 113-123.

Crainic, T. G., Toulouse, M., and Gendreau, M., (1995b). Parallel Asynchronous Tabu Search for

Multicommodity Location-Allocation with Balancing Requirements. Annals of Operations

Research 63,277-299.

Crainic, T. G., Toulouse, M., and Gendreau, M., (1997) Towards a Taxonomy of Parallel Tabu Search

Algorithms, INFORMS Journal on Computing 9(l), 61-72.

Das, H., Cummings, P. T., and LeVan, M. D., (1990) Scheduling of serial multiproduct batch

processes via simulated annealing. Computers and Chemical Engineering 14 (12), 13 5 1.

Dixon, L. C. W., Szeco, G. P. (1978) (EDs.) Toward Global Optimization 2, North-Holland,

Amsterdam.

Dixon, L. C. W., Szeco, G. P., (1975) (EDs.) Toward Global Optimization. North-Holland,

Amsterdam.

Dolan, W. B., Cumming, P. T., LeVan, M. D., (1990) Algorithmic efficiency of simulated annealing

for heat exchanger networks. Computer and Chemical Engineering, 14: 1039.

Dolan, W. V., Cummings, P. T., and LeVan, M. D., (1989) Process optimisation via simulated

annealing: application to network design. American Institute of Chemical Engineering

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 178

Siyu Ya

Journal 35 (5), 725.

Dolan, W. V., Cummings, P. T., and LeVan, M. D., (1990) Algorithmic efficiency of simulated

annealing for heat exchanger networks. Computer and Chemical Engineering 14 (10), 1039.

Dorigo, M. (1992) Optimization, Learning and Natural Algorithms (PhD thesis), DEI, Politech-nico di

Milano, Italy.

Dorigo, M., Di Caro G., and Gambardella, L. M., (1999) Ant Algorithms for Discrete Optimization.

Artificial Life, 5 (2): 137-172.

Duran, M. A., Grossman, 1. E., (1986) An outer-approximation algorithm for a class of mixed-integer

nonlinear programs, Mathematical Programming, 36: 307-339.

Du, D.,, Yang, S., Kokossis. A. C., and Linke, P., (2007) Experience on gridification and

hyperinfrastructure experiments in optimization and process synthesis, I 7th European

Symposium on Computer Aided Process Engineering, 27-30 May Bucharest, Romania: Elsevier,

7-9

Dzeroski, S., Grbovic, J., Walley, W., Kompare, B., (1997) Using machine I earning techniques in the

construction of models. 11. Data analysis with rule induction, Ecological Modelling, 95: 95-111.

Cant6-Paz, Erick. 1998. A survey of parallel genetic algorithms. Calculateurs Paralleles. Vol. 10, No.
2. Paris: Hermes.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P., (1996) From Data Mining to Knowledge

Discovery: An Overview, In Advances in Knowledge Discovery and Data Mining, eds. U.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1-30. Menlo Park, Calif: AAAl

Press.

Floquet, P., Pibouleau, L., Domenech, S., (1994) Separation sequence synthesis: how to use simulated

annealing procedure, Computer and Chemical Engineering 18: 114 1.

Floquet, P., Pibouleau., L and Domenech, S., (1994). Separation sequence synthesis-how to use

simulated annealing procedure, Computers and Chemical Engineering 18,114 1.

Foster, I., and Kesselman, C., (1997) Globus: a metacomputing infrastructure toolkit, International

Journal ofSupercomputer Applications, 11: 115-128.

Foster, T., Gillespie, K., McClelland, R., et al (1999) Risk factors for suicide independent of

DSM-111-R Axis I disorder. Case--control psychological autopsy study in Northern

Ireland. British Journal ofPsychiatry, 175,175-179.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 179

Siyu Yang

Foster, I., Kesselman, C., Tuecke, S., (2001) The anatomy of the Grid: enabling scalable virtual

organizations, International Journal of Supercomputer Applications and High Performance

Computing, 15: 200-222.

Fouskakis, D. and Draper, D. (2002) Stochastic Optimization: A Review, International Statistical

Review, vol. 70, pp. 315-349.

Frantz, F. K., (1995). A taxonomy of model abstraction techniques, In: Proceedings of the] 995 Winter

Simulation Conference, ed. Institute of Electrical and Electronics Engineers Piscataway, New

Jersey.

Fu, M. C. (2002), Optimization for Simulation: Theory vs. Practice (with discussion by S. Andrad6ttir,

P. Glynn, and J. P. Kelly), INFORMS Journal on Computing, vol. 14, pp. 192-227.

Gambardella, L. M., Taillard, E. D., and Agazzi, G., (1999) MACS-VRPTW: A multiple ant colony

system for vehicle routing problems with time windows. In D. Come, M. Dorigo, and F.

Glover, editors, New Ideas in Optimization, pages 63-76. McGraw Hill, London, UK.

Geoffrion, A. M., (1972) Generalised Bender decomposition, Journal of Optimisation Theory and

Applications, 10: 237-260.

Giorno, L., Drioli, E., (2000) Biocatalytic membrane reactors: applications and perspectives, Trends

in Biotechnology, 18: 339-349.

Glover, F., (1989) Tabu search- Part 1, ORSA Journal of Computing, 1: 190.

Glover, F., (1990) Tabu search- Part 11, ORSA Journal of Computing, 2: 4.

Glover, F., (1993) A user's guide to Tabu search, Annals in Operational Research, 41: 3.

Glover, F., Taillard, E., Laguna, M., de Werra, D., (1993) Tabu search, the Annals of Operations

Research, vol. 41.

Goldberg, D. E., Deb, K., and Clark, J. H., (1992) Genetic Algorithms, Noise, and the Sizing of

Populations, in: Complex Systems, Complex Systems Pub., Inc., vol. 6 pp. 333-362.

Gosavi, A., (2003) Simulation-Based optimisation: Parametric Optimisation techniques and

Reinforcement Learning, Kluwer Academic, Norwell, M4.

Hanke. M., and Li. P. (2000). Simulated annealing for optimisation of bath distillation processes.

Computers and Chemical Engineering 24 (1), 1.

Innis G. and Rexstad E. 1983 Simulation model simplification techniques, Simulation, 41 (1), Pp7-15.

losifescu, M., Scutaru, H., On six-dimensional canonical realisations of the so (4,2) algebra, J Math

on the development of a stochastic optimisation algorithm with capabilities for distributed computing 180

Siyu Yang

Phys. 21 (1980) 2033-2045.

Jayaraman, V. K., Kulkami, B. D., Karale, S., Shelokar, P. (2000). Ant colony framework for optimal

design and scheduling of batch plants, Computers and Chemical Engineering, 24(8). 190 1.

Karush, W., (1939). Minima of Functions of Several Variables with Inequalities as Side Constraints.

M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois.

Karlin, S., and Taylor, H. M., (1975). A First Course in Stochastic Processes, 2nd ed., Academic Press,

New York.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., (1983) Optimisation by simulated annealing, Science

220ý 671.

Klee V. and Minty G. J. (1972). How good is the simplex algorithm?. In: Shisha, 0. (eds) Inequalities

111, pp 159-175. Academic, New York

Kokossis, A. C., Floudas, C. A., (1990) Optimisation of complex reactor network -1. Isothermal

operation, Chemical Engineering Science, 45(3): 595-614.

Kruger, F., Merkle, D., and Middendorf, M., (1998) Studies on a Parallel Ant System for the BSP

Model; Unpub. Manuscript.

Lei, F., Jorgensen, S. B., (2001) Estimation of kinetic parameters in a structured yeast model using

regularisation. Journal ofBiotechnology, 88: 223-237.

Lei, F., Rotboll, M., Jorgensen, S. B., (2001) A biochemically structured model for Saccharomyces

cerevisiae, Journal ofBiotechnology, 88: 205-211.

Leite, J. P. B., and Topping, B. H. V., (1999) Parallel simulated annealing for Structural Optimisation,

Computers & Structures, 73 (1-5): 545-564.

Leitold, A., Hangos, K. M., Tuza, Zs.: Structure simplification of dynamic process Models. Computers

and Chemical Engineering, 25: pp. 1633-1646 (200 1)

Liang, Y., Gan, F., (2001) 'Chemical knowledge discovery from mass spectral database. 1. sotope

distribution and Beynon table', Analytica Chimica Acta, 446: 115-120.

Lin, B., Miller. D. C., (2004). Tabu search algorithm for chemical process optimisation, Computer and

Chemical Engineering 28: 2287-2306.

Linke, P., and Kokossis. A. C., (2003a) On the robust application of stochastic optimisation

technology for the synthesis of reaction/separation systems, Computers and Chemical

Engineering, 27: pp 733-758.

on the development of a stochastic optimisation algorithm with capabilities for distributed computing 181

Sivu Yan

Linke, P., and Kokossis, A. C., (2003b) Attainable reaction and separation processes from a

superstructure-based method, AIChE Journal, 49: 1451-1470.

Luna, J. J., (1993) Hierarchical relation in simulation models, Winter Simulation Conference 1993:

132-137

Mahfoud, S. W., and Goldberg, D. E., (1992) A Genetic Algorithm for Parallel Simulated Annealing.

PPSN 1992: 303-312.

Maia, L. 0. A., Vidal de Carvalho, L. A., and Qassim, R. Y. (1995) Synthesis of utility systems by

simulated annealing, Computer and Chemical Engineering 19 (4), 48 1.

Marcoulaki, E. C., and Kokossis, A. C., (1999) Screening and scooping complex reaction networks

using stochastic optimisation, American Institute of Chemical Engineering Journal 45 (9),

1977.

Marcoulaki, E. C., and Kokossis, A. C., (2000) On the development of novel chemicals using a

systematic synthesis approach. 1. Optimisation framework, Chemical and Engineering

Science 55 (13), 2529.

Mariusz, N., and Riccardo, P., (1999) Dynamic dernes parallel genetic algorithm Third International

Conference on Knowledge-Based Intelligent Information Engineeing Systems, 31" Aug- V

Sept 1999, Adelaide, Australia.

Mehta, V. L., and Kokossis, A. C., (1997) Development of novel multiphase reactors using a

systematic design framework, Computer and Chemical Engineering 2 1, S325.

Mehta, V. L., and Kokossis, A. C., (1998) New generation tools for multiphase reaction system: A

validated, systematic methodology for novelty and design automation, Computer and

Chemical Engineering, 22: S 119.

Mehta, V. L., and Kokossis, A. C., (2000) Nonisothen-nal Synthesis of Homogeneous and Multiphase

Reactor Networks, AIChE Journal 46,2256.

Metropolis, N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E., (1953) Equation of

calculations by fast computing machines. J Chemical Physics, 21,1087.

Michalewicz, Z., and Attia, N., (1994) Evolutionary optimisation of constrained problems, World

ScientifIC Publishing, River Edge, NJ, pp-98-108.

Nandi, S., Badhe, Y., Lonari, J.. Sridevi, S., Rao, B. S., Tambe, S. S., Kulkami, B. D., (2004) Hybrid

process modeling and optimization strategies integrating neural networks / support vector

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 182

Siyu Yang

regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst', Chenzicul

Engineering Journal, 97: 115-129.

Painton, L. A., and Diwekar, U. M., (1995) Stochastic annealing for synthesis under uncertaint,,.

European Journal of Operations Research 83,489.

Papadopoulos, A. I., Linke, P., (2004) On the synthesis and optimisation of liquid-liquid extraction

process using stochastic search method, Computer and Chemical Engineering 28: 2391-2406.

Papadopoulos, A. I., Ashley, V. M., Linke, P., (2005) Grid computing in integrated computing-aided

solvent and process design, In proceeding of 71h world congress in chemical engineering

(WCCE 7), Glasgow, U. K.

Patel, A. N., Mah, R. S. H., and Karimi, 1. A., (1991) Preliminary design of multiproduct

noncontinuous plants using simulated annealing, Computer and Chemical Engineering 15 (7),

451.

Pham, D. T., and Wagner, M., (1998) A geostatistical model for linear prediction analysis of speech.

Pattern Recognition 3](12): 1981-1991 (1998)

Piriyakumar, D. A. L., and Levi P., (2002) A New Approach to Exploiting Parallelism in Ant Colony

Optimisation, International Symposium on Micromechatronics and Human Science(MHS),

pp7.

Pronzato, L., Walter, E., Venot, A, Lebruchec, J. F. A., (1980) general purpose global optimizer:

Implementation and applications. Math. Comput. Simul. 26, pp 412-422.

Rajesh, J., Gupta, K., Kusumakar, H. S., Jayaraman, V. K., Kulkarni, B. D. (2001) Dynamic

optimization of chemical processes using ant colony framework. Computers and Chemistry,

25(6), 583.

Raman, R., Grossman, 1. E., (1994) Modelling and computational techniques for logic based integer

programming, Computing and Chemical Engineering, 18: 563-578.

Randall, M., and Lewis, A., (2002) A parallel implementation of ant colony optimisation, Journal of

Parallel and Distributed Computing, 62(9): 1421-1432

Robinson, S. (1994) Simulation Projects: Building the Right Conceptual Model, Industrial

Engineen . ng, 26 (9)1.34--36.

Romeo, F., A. Sangiovanni Vincentelli , And Sechen C. (1984) Research on simulated annealing at

Berkeley. In Proceedings of the IEEE International Conference on Computer Design, ZCCD

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 183

Siyu Yang

84JEEE New York, pp 652-657.

Shor, N. Z.
, (1970) Utilization of the operation of space dilatation in the minimization of convex

functions, Kibernetica, v6, pp. 6-12.

Schittkowski, K., (1985) NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear
Programming Problems, Annals of Operations Research, Vol. 5, pp 485-500.

Simon, H. A. (1964) The architecture of complexity, General Systems Yearbook, 10: 63-76.

Spall, J. C. (2003) Introduction to Stochastic Search and Optimisation: Estimation. Simulation, and

Control, Wiley, Hoboken, NJ. Pp 1024-1025.

Trivedi, K. S., (1982) Probability and Statistics with Reliability, Queueing, and Computer Science

Applications. Prentice-Hall, Englewood Cliffs, NJ.

Two Crows Corporation (1999) Introduction to Data Mining and Knowledge Discovery (Third

Edition), Two Crows Corporation.

Venkatasubramanian, V., Rengaswarny, R., Kavuri, S. N., and Yin K., (2003) A review of process fault

detection and diagnosis part 11: qualitative models and search strategies. Computers and

Chemical Engineering 27: 313-326

Wang, C., Quan, H., and Xu, X., (1999) Optimal design of multiproduct batch chemical processes

using Tabu Search, Computer and Chemical Engineering 23,427.

Webster et al., (1984) Determining the level of detail in a simulation model -A case study, Computers

and Industrial Engineering, 8(3/4): 215-225.

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 184

Sivu Yan

Appendix A

The four small-scale optimisation problems are illustrated as follows:

Testproblem I

mint(O. 00533- X12 +I1.669xl + 0.00889 - X22 + 10.333x2 + 0.00741 - x3 2+ 10.833x3)1

0.01 x
0.0676x 12 + 0.00953xlx2 - 0.00507xlx3 + 0.00953x2xl + 0.052lx2 2+0.0090 lx2x3
0.00507x3xl + 0.0090lx3x2 + 0.0294A 2+A

0.000766xl - 3.42e -5*A
0.040357

xl + x2 +A+A ->
210

Optimal objective is 3155.258

Test problem 2

min
(0-0039 x x7 + 0.0039 x x8) x (495 x x4 + 385 x x5 + 315 x x6)

X10

subject to

- 0.5 x x9 xAx (0.8 x x7 + 0.33333333 3333333 x x8) + xI =0

- 0.5 x x9 x x5 x (0.8 x x7 + 0.33333333 3333333 x x8) + x2 =0

- 0.5 x x9 x x6 x (0.8 x0+0.33333333 3333333 x x8) + x3 =0
V-x- 1 -0- 0- (V -x8

-V
-x9)>0

xI - 8.46527343 75 x xIO >0

x2 - 9.65006510416667 x x10 >0

x3-8.8716796875xx10 >O

0.5xxl><x9-2.2x(8.4652734375xx10)1.33333333333333 >O

0.5xx2xx9-2.2x(9.65006510416667xx10)1.33333333333333 >o

0.5xx3xx9-2.2x(8.8716796875xx10)l-33333333333333 >O

x4 - 0.0111771747883801 x x7 0.2

x5 - 0.01376553 60411427 x x7 0.2

x6 - 0.0155663872253648 x x7 0.2

x4 - 0.0111771747883801 x x8 0.2

x5 - 0.01376553 60411427 x x8 0.2

x6 - 0.015 5663 8 72253 648 x x8 0.2

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 185

Siyu Ya

Optimal objective is 5.541

Test problem 3

(x Ix (log(x I /x I 1) -6.05576803624071)+ x2 x (log(x2/x I I) - 17.1307680362407)

+0x (log(x3/x I 1) -34.0207680362407)+ x4 x (log(x4/x I I) - 5.88076803624071)

min +x5x(log(x5/xll)-24.6877680362407)+x6x(log(x6/xll)-14.9527680362407)

+ x7 x (log(x7/xl 1) - 24.0667680362407) + x8 x (log(x8/xl 1) - 10.6747680362407)

+x9x(log(x9/xll)-26.6287680362407)+xl0x(log(xlO/xll)-22.1447680362407)

xl+2x x2+2x x3+x6+xlO=2
A+ 2x x5+x6+x7=1

x3+ 0+ x8+ 2x x9+ xlO= I

-xl -x2-x3-x4-x5 -x6-x7-x8-x9- xlO+ xl I =0
x 1, x2, x3,, A, A, x6,, x7,, A, x9 ý! 0.00 1

, "I-timal objective is -0.675 , -/P

Testproblem 4 (TP4)

minfxl3 + xl4+ x15 + xl6+ xl7+ xl8j
(xl

- x2)2 + (x7
- x8)' <- 1

(xl
- x3)2 + (x7

_ X9)2 <

(X,
_ X4)2 + (x7 _X,

0)2 <,

(xl
- x5)2 + (x7

- xl lf 1
(xl

- x6)2 + (x7
- xl 2) 21

(x2 - X"
)2

-1 _ X9)2 < + (X8

(x2 _ X4)2 + (X8
_ X, 0)2 <- 1

(x2
- x5)2 + (x8

- xl 1)2 <

(x2
- x6)2 + (x8

- xl 2)2 <

k lý
) -2 x4) +9 _X,

(»2 < (X

(x-')
- x5

)2
+

(X9
_ X, 1)2 <

(x.)
2

x6)
)2 < + (x9

- xl 2-

(x4
- x5)2 +

(X, ()
_ X, 1)2 <

(x4
- x6)2 + (xl 0- xl 2)2 <

(x4
- x6)

2
+ (xl 1- xl 2)2 <

- 0.5 x (x 1 x8 - x7x2) +x1')=0

- 0.5 x (X2X9 - x8x' 3) +x 14 =0

optimal objective is -47.707

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 186

Siyu Yang

Appendix B

The brief descriptions of the Van de Vusse reaction, Lactose production, and the

Biocatalytic (Saccharomyces Cerevisiae) schemes are illustrated as follows:

Van de Vusse

The Van de Vusse reaction scheme consists of a combination of parallel and serial

reactions (Marcoulaki and Kokossis, 1999; Kokossis and Floudas, 1990). The general

idea of Van de Vusse reaction is:

KI K2
A ppp

T)

r, =
kICA K, =10.0s-1

r2 =
k2CB K2 ="OS-l

Where

A, B, and C are components,
CA, CB, Cc are the concentrations of these components,

r, ,
r2 ,

r3 are reaction rates of reaction 1,2, and 3.

In Van de Vusse reaction, the feed flow is 100 Us and contains pure component A, The

objective of this reaction is to maximize the outlet concentration of B and meanwhile

minimize that of C. The optimal structure for Van de Vusse consists of a CSTR (or an

equally distributed DSSR) followed by serials of PFR, which has been proved by

Koko ssi sand Floudas (1990) and Marcoulaki and Kokossis (1999).

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 187

Sivu Ya

Lactose Hydrolysis

Another reaction problem is the hydrolysis of lactose by P-galactosidase. In this reaction,

immobilized enzyme is utilized to convert the disaccharide lactose via hydrolysis into its

monosaccharide component, glucose and galactose. This procedure of hydrolysis can be

approximated with following model (Marcoulaki and Kokossis, 1999; Bakken et al., 1989;

Bailey and Ollis, 1986).

E+S<-> ES ->E+GL +ßG

R, ý E+ aG <-> EaG

r, = CEC*S(l + CaG/KaG +COG /KPG Y

KEG= 0.003, KPG
= 0.079

E+ PG <-> EOG

R2 PG <-> aG

R3 GL --> GA
R4 E --> Ed

r2-50*(C* -C aG aG

C -(CO+Co +C' -C)*K/(K+I) aG s aG PG

0.111
r3 = 0.083CGL
r4 = 0.047CE

Where

E: enzyme (P-galactosidase),

S: lactose,

GL: glucose,

G: galactose with (x and P forms

GA- gluconic acid,

Ed: deactivated enzyme,

ri, r2, r3,, and r4: the reaction rates for four reactions (RI, R2, R3
, and R4).

. 10OL/min that includes 0.65 mol L-1 enzyme, 0.001mol L-1 (x galactose The feed flow is

and 0.001 rnol L-1 P galactose. The objective is to maximize the outlet concentration of

GL. The optimal structure of reactor network for this reaction problem is a series of PFRs,

188

Siyu Yang

which is in the agreement with published results (Marcoulaki and Kokossis, 1999).

Biocatalytic problem

The usage of biocatalyst can date back to thousands years ago In the production of beer

and wine as well as food such as bread and cheese. Recently biocatalyst has been

broadly used to pharmaceutical and agrochernical industries. Biocatalytic process is

advantageous of mild temperature condition, low energy requirement, safety, pollution

prevention, high selectivity and often-high product quality (Giomo and Drioll, 2000).

However, the sensitivity of organism and enzyme to conditions, contamination, and

motion makes the Biocatalytic process difficult to control. Furthermore, the complexity

of Biocatalytic process makes its model highly non-linear and difficult to be optimised.

In the study of cascade optimisation algorithm, we select one of Blocatalytic problem

(Saccharomyces Cerevisiae) to demonstrate the applicability of the cascade optimisation

to complex problems. Saccharomyces cerevisiae is a yeast organism used throughout

food and drink industries. A number of catabolic and anabolic reactions are used for cell

metabolism and biomass production starting from a substrate of glucose. The key interest

of these reactions is to optimise and explore the condition under which ethanol is

produced. The kinetic mode of Saccharomyces Cerevisiae as follows:

Sght I>S
PYr + 0.33NADH

s pyr
2 >C02 +1.67NADH

Spyr 3>0.67Sacetald+0.33CO2

Sacetald 4
4s

acetate+ 0.5NADH
Sacetate 5 ý-' C02 + 2NADH
Sacetald + 0.5NADH '4 SEtOH

Sghl 7
40.913Xa+0.087CO2 + 0.1 19NADH

Sacetate 840.77'Xa
+ 0.222CO2 + 0.40 INAD

On the development of a stochastic optimisation algorithm with capabilities for distributed computing 189

ýIýyu Yang

a9
)" XAcdh

x 10
> deg radation a

XAcdh
> deg radation

NADH + 0.502 12
io A TP

Where

Sght : intracellular glucose concentration,

Spyr : intracellular pyruvate concentration,,

Sacelald: intracellular acetaldehyde concentration.)

Sacetate : acetate concentration,

S: intracellular ethanol concentration Doff

x: biomass concentration,,
Xa: percentage of biomass that is active cell material,

XAcdh : proportion of activity of the protein caused by the enzyme

Acetaldehyde dehydrogenase,

NADH: nicotinamide adenine dinucleotide,

A TP: adenosine triphosphate.

Except for reaction 12 in which NADH immediately generate A TP if sufficient oxygen is

present, reaction rates for the remaining II reactions are:

velopment of a stochastic optimisation algorithm with capabilities for distributed computing 190
On the de

SiYu Ya

k1l -
Sglu

Xa+ klh
Sglu

Xa+ kle
-s

9/U
Saceiald Xa

sglu + KI, sglu + Klh sg,, (K,
I
Sacelald+l) +K le

r2 = k2
S

pyr x

S
pyr+

K2 K21 Sglu +Ia

4

r3 =k
Sglu

x
3s

glu
4

+K3
a

r4 = k4
Sacetald

-
XaXAcdh

Socelald+K4

r5 k5
-

Sacetate
Xa + k5e

Sacetate I
Xa

Sacelate+K5 Sacetate+K5e I+K5iSglu

Sacetald -
k6rSEtOH

v
6 `6

S
acetald+K6+K6eSEtOH

r7 =k7
Sglu

Xa

sglu + K7

"'

r8 = k8
-

Sacelate I
Xa

Sacetate+K5e I+K5i Sglu

rg = kg -
Sglu

i- k9e
SDOH Sacetate

Xa + kgc
Sglu

Xa

sglu + Kg SEtOH+K9e Kgisglu +1 sglu + Kg

rjo -- kl 0-
Sglu

Xa+ k10e
SEIOH

Xa

sglu + Klo SEtOH+KI0e

r, , : -- kl IXAcdh

where

ri: the reaction rate of reaction i.

The kinetic constants are shown in the following table.

Kinetic constants for Saccharomyces cerevisiae

Constant Value Constant Value Constant Value

k1h 0.584 k4 4.80 K7 0.0101

K, h
0.0116 K4 0.000264 k8 0.589

on the development of a stochastic optimisation algorithm with capabilities for distributed computing 191

Siyu Yan

kl, 1.43 k5 0.0104 kg 0.008

KI, 0.94 K5 0.0102 Kg I. ox 10'

kl e 47.1 k5e 0.775 kge 0.0751

Kle 0.12 K5e 0.10 K9e
13

Kli 14.2 K5i 440 Kgi
25

k2 0.501 k6 2.82 kgc
0.00399

K2 0.002 K6 0.034 klo
0.392

K2i 0.101 k6r 0.0125 Klo 0.0023

k3 5.81 K6e 0.057 k10e
0.00339

K3 5.0x10-7 k7 1.203 KlOe
0.0018

kl, 0.02

The detailed explanation of this model is written in the literature (Lei et al. 2001). The

feed flow involves: glucose 14 g/s, ethanol 0.13 g/s, biomass X 0.002 g/s, Xa 0.1 g,

XAcdh 0.0075 g, and water 984.86 g/s (Lei and Jorgensen, 2001). The objective of

Saccharomyces Cerevisiae reaction problem is the production of ethanol. Ashley (2002)

studied this Biocatalytic system using the superstructure optimisation along with both a

numerical optimisation algorithm and TS. Similar optimal structures are reported which

are the combinations of plug flow and mixing.

on the development of a stochastic optimisation algorithm with capabilities for distributed computing 192

