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Abstract

Plants can be characterised by a range of attributes, and measuring these

attributes accurately and reliably is a major challenge for the horticulture

industry. The measurement of those plant characteristics that are most rel-

evant to a grower has previously been tackled almost exclusively by a com-

bination of manual measurement and visual inspection. The purpose of this

work is to propose an automated image analysis approach in order to provide

an objective measure of plant attributes to remove subjective factors from

assessment and to reduce labour requirements in the glasshouse.

This thesis describes a stereopsis approach for estimating plant height,

since height information cannot be easily determined from a single image.

The stereopsis algorithm proposed in this thesis is efficient in terms of the

running time, and is more accurate when compared with other algorithms.

The estimated geometry, together with colour information from the im-

age, are then used to build a statistical plant surface model, which repre-

sents all the information from the visible spectrum. A self-organising map

approach can be adopted to model plant surface attributes, but the model

can be improved by using a probabilistic model such as a mixture model

formulated in a Bayesian framework. Details of both methods are discussed

in this thesis.

A Kalman filter is developed to track the plant model over time, extend-

ing the model to the time dimension, which enables smoothing of the noisy

measurements to produce a development trend for a crop. The outcome of

this work could lead to a number of potentially important applications in

horticulture.
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Chapter 1

Introduction

1.1 Modern Horticulture

People unfamiliar with the horticulture industry can easily fail to appreciate

the scale of this modern industry. Aalsmeer Flower Auction, a short distance

outside Amsterdam, is the world’s largest flower auction site, where nineteen

million flowers and two million plants are sold every day. It is also the largest

trade building in the world, covering an area of almost one million square

metres 1, 1.5 times the area of the Pentagon [86].

In the UK, horticulture is an important industry. In 2007, the combined

amenity and production workforce was more than 300,000, and horticulture’s

contribution to the UK GDP was in excess of £15 billion per year 2. The

UK public spent £1.4 billion on ornamental plants and seeds, over £20 per

person per year on average 3. Horticulture consequently is highly significant

1Bloemenveiling Aalsmeer, http://www.aalsmeer.nl/00004.asp
2Figures were obtained from the Institute of Horticulture, UK
3Figures were obtained from the Horticultural Trades Association, UK
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for the UK economy.

Despite its rapid growth, the industry is under pressure from reduced

profits, environmental constraints and labour issues. The problem of quanti-

fying and measuring plant quality remains a challenge for the industry, and

customers and producers could even have different standards for plant qual-

ity [39]. The purpose of this thesis is to propose an automated image analysis

approach in order to provide an objective and unambiguous measure of plant

attributes to remove subjective factors from assessment and to reduce labour

requirements in the glasshouse. Two examples of labour-intensive tasks that

this work concerns are discussed below.

1.1.1 Crop Growth Monitoring

Crop growth monitoring is a demanding task, and crops are monitored through-

out growth to ensure that the product is on target for quality and delivery

schedule. Modern commercial glasshouses are large and highly automated,

but growth monitoring is still largely done manually. Currently, most crop

management decisions are based on experience, frequent visual inspection

of the crop and fairly crude methods, such as tracking plant heights us-

ing hand measurement on samples in growing crops [40]. Moreover, hand

measurement by sampling is both time-consuming in large glasshouses and

unreliable if done by unskilled labour.
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Rows of plants in carts

The auction floor where millions of flowers and plants are sold every day

Figure 1.1: Aalsmeer flower auction is the world’s largest flower auction
site. Image credit: Linda Nylind, Guardian News and Media Ltd.
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Figure 1.2: A glasshouse used by Coletta & Tyson Ltd, where thousands
of Pansy plants are produced.

Figure 1.3: A glasshouse used by DoubleH Ltd, where Chrysanthemum

plants are grown in pots on benches.
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Figure 1.4: A team of assessors in Roundstone Nurseries, who are assessing
Pansy plants at the marketing stage for adherence to the quality specifica-
tion.
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While direct visual inspection of crops will always be of vital importance

in large-scale commercial production, this conventional approach has a num-

ber of disadvantages. Certain areas of a crop can be difficult to reach by

human hands, for example, in the middle of a ten-metre wide growing bench.

This problem is becoming severe because of the increasing pressure to grow

more plants in a limited space with a consequent reduction in walkways.

Performing hand measurement requires taking plants out from the growing

bench, and it is known by growers that frequent human intervention can

affect the growing habits of these plant samples and their neighbours. More-

over, these hand measurements can only represent a small number of plant

samples, not all the plants in production. Finally, uncertainty and subjective

factors are associated with hand measurements. Routine monitoring cannot,

therefore, be fully implemented at present, although it is desirable from the

crop management point of the view.

1.1.2 Plant Quality Assessment

In common with other industries, a quality specification is detailed in a con-

tract between growers and their customers. The specification defines several

plant attributes, including size, colour and packaging. The complexity and

variability of living plants makes grading of plants in horticulture particularly

challenging, especially at the marketing stage, for adherence to the quality

specification. Quality assessment is a highly labour-intensive process, given

that tens of thousands of plants have to be assessed, and one which is in-

evitably limited by the subjective assessments of individual observers.
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Large-scale plant production is a highly technical operation, involving au-

tomated systems, controlled by state-of-the-art computer technology, along-

side traditional skills. Automated quality grading in glasshouses can be per-

formed under a highly controlled environment and simple procedures can

readily identify attributes such as the maximum plant height or spread [40].

There are some commercial systems discussed in Section 1.3 to measure the

plant height, but plant quality depends on more than just the height and

spread, which current imaging techniques deal with, and this thesis proposes

a more general modelling approach that allows analysis of plant quality at-

tributes such as flower and leaf area, plant uniformity and overall growth

habit. In the next section, the use of digital imaging techniques and some

examples of its use in the horticulture industry are discussed.

1.2 Digital Imaging Techniques

Over the last few years, the rate of development of digital imaging technology

has been dramatic. Powerful computers and digital cameras are now available

at remarkably low prices [97]. Networking and wireless technology is available

which can transfer digital information almost anywhere at any time [105].

Computer vision and image analysis algorithms have been developed that

can perform complex tasks on an almost routine basis, and this has led to

the use of digital imaging in a wide range of areas, including quality control

in industry [73, 113], biometric image analysis for identification purposes [58]

and routine monitoring and collection of information for security purposes

[110].
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The work presented in this thesis is analogous to automated visual in-

spection applications in factories. Some examples in this area include the

measurement of steel bars, inspection of computer screens, colour feature

estimation in the ceramic tile industry [73, 113]. According to Vernon [113],

automated visual inspection applications in industry are classified as follows:

Gauging is concerned with the measurement of dimensional characteristics

of parts;

Inspection is concerned with performing part verification, that is, deter-

mine whether there are any parts missing;

Sorting is concerned with the identification and the recognition of parts.

Parts are usually on a conveyor-belt system, and they can be simply

pushed into an appropriate bin.

1.3 Current Image Analysis Methods in Hor-

ticulture

In horticulture, some ‘gauging’ and ‘sorting’ applications have been devel-

oped, and a commercial system often has both features. However, the number

of techniques and systems to perform plant quality assessment is still limited,

and methods are fairly crude and simple. Edmondson et al. [39] investigated

using a single fixed camera to capture packs of Pansy and Viola plants, and

quantify the flower and leaf height from a side view. This is similar to some

commercial products. For example, the Anthurium sorting machine 4 uses

4GreenVision, http://greenvision.wur.nl
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Figure 1.5: An Anthurium sorting machine developed by GreenVision,
which uses six cameras to capture images of individual plants passing through
the line. Image credit: GreenVision http://greenvision.wur.nl

Figure 1.6: An autonomous robot for rose cutting suggested by Noordam
and other people at Wageningen University [85]. Image credit: GreenVision
http://greenvision.wur.nl
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six cameras to capture images of individual plants passing through the line,

which provides more data from the side than a single view. Another exam-

ple is the vision system made by WPS Horti Systems 5, which also places

cameras in a controlled environment to capture a side view.

There are some robotics applications for the purpose of harvesting, rather

than growth monitoring. Van Henten et al. [111] described the concept of an

autonomous robot for harvesting cucumbers in greenhouses, which has stereo-

scopic vision systems for 3D imaging of cucumbers and environment. The

vision system identifies a particular cucumber first, and then only matches

the features of the cucumber in order to estimate the distance from the robot.

An autonomous robot for rose cutting suggested by Noordam et al. [85] works

in a similar fashion. The complexity of image analysis techniques in these

systems lies in the area of object recognition and detection, while the work

presented in this thesis concerns with modelling and analysis of attributes

extracted from image data.

Visual appearance has been used in assessing the variety or cultivar of

crop samples. Davey et al. [31] proposed the use of image analysis as a tool

for assessing plant uniformity and variety matching. Horgan discussed shape

analysis techniques with or without landmarks to summarise the shape of a

plant and eigenimage analysis to summarise the colour variation in his review

of the statistical analysis of plant appearance [56]. These tools discussed

above are used for the purposes of variety classification, rather than crop

growth monitoring. A similar problem was approached by Nilsback and

Zisserman [83, 84], whose the objective is to classify flowers in images. In

5WPS Horti Systems, http://www.wpshortisystems.nl/
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Nilsback and Zisserman’s work [84], an approach to model and combine three

different aspects, namely shape, colour and texture, is proposed to distinguish

between different flower species. The technique has been demonstrated to

work under challenges such as variations in light, view point and scale, and

flower deformations, as well as the strong similarities between flower species.

To the best of the author’s knowledge, there is no such system or method-

ology at all in the area of crop growth monitoring in situ. If any cameras are

mounted inside the glasshouse, they are used for the purposes of surveillance

of the glasshouse rather than of those plants on the growing bench [38].

1.4 Aims of The Thesis

Automated systems can be developed for crop growth monitoring and plant

quality assessment in a glasshouse using the modelling and analysis tech-

niques proposed in this thesis. The hardware part is ‘off-the-shelf’ digital

cameras that can be flexibly mounted somewhere in the glasshouse, for ex-

ample, on a production grading line or on rails over the growing bench.

1.4.1 Crop Growth Monitoring

The monitoring of growing crops in a commercial glasshouse environment is

potentially important in a number of areas, including plant scheduling, plant

health and growth management. An overhead imaging technique using pairs

of stereoscopic images has been proposed in this thesis, and an example of

such a system developed at University of Warwick is shown in Chapter 2.

This system allows routine and consistent monitoring of the crop in situ at
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relatively low cost. Monitoring crop development on a day-to-day basis and

comparing with the development of similar crops grown previously can give

very precise estimates of time to marketing. Immediately prior to marketing,

plants can be imaged to estimate quality grades, which can then be used for

planning the marketing operation and predicting the labour requirements

for a grading line. The information could also be used for estimating the

final marketable value of a crop. Since monitoring growing crops in situ in a

glasshouse has not been implemented yet, there would be more opportunities

for horticultural applications when the system becomes available.

1.4.2 Plant Quality Assessment

The system discussed above is also suited to tasks where a large number

of plants of the same type pass through a grading line environment, which

allows automated assessment of plant quality to be carried out to prevent un-

satisfactory products from reaching the customer. In addition, an objective

measure can be provided for pots or packs of plants passing through a grad-

ing line. The information collected from this process can be used to provide

the customer with objective data for the specification, so that unambiguous

quality standards can be agreed. This information can also be used for stock

control and traceability.

1.4.3 Modelling and Analysis

This thesis provides methods to model uncertainty in image data as discussed

by Onyango et al. [88]. Image data are modelled in a Bayesian framework,
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which is based on mathematical foundations of probability theory. The plant

model also allows incorporation of information from sensors other than con-

ventional cameras, since the dimension of the image data can be increased.

The methodologies of modelling and analysis developed in this thesis could

be applied for a wide range of crops, including those in field, which were

examined by Bull et al. [20].

1.5 Contributions

The contributions of this thesis are therefore:

• A stereo algorithm to estimate plant height from stereoscopic images,

which enables the estimation of height information that cannot be easily

determined from a single image in an efficient and accurate manner.

• A probabilistic model for representing plant attributes and classifying

the image data via a Bayesian scheme, which can incorporate new data

into the existing model in a statistical manner.

• A Kalman filter approach for tracking the above probabilistic model

over time, which allows the investigation of trends in the image data

from a time-series point of view.

1.6 Equipment

All the experiments described in this thesis were run on a Red Hat Enterprise

Linux machine, which had one Intel Pentium IV 3.0G HZ CPU with 1GB
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RAM. For C/C++ implementations, the software libraries were OpenCV

v0.9.7 and OpenMesh v1.0.0. MATLAB v7.3.0 (R2006b) was also used to

develop algorithms. Three imaging setups were used, and they are described

in Chapter 2. The cameras used in these setups were Cannon PowerShot

Digital Camera, AXIS 210 Network Camera and IQeye705 Network Camera.

1.7 Thesis Organisation

The characteristics of plant quality and growth are based on two basic fea-

tures: geometry and colour. The colour is readily available from each image,

as well as the x-y position information. Height information cannot be eas-

ily determined from a single view, and a stereopsis approach is therefore

developed in Chapter 2 for estimating the plant height.

The estimated geometry, together with colour information from the im-

age, are then used to build a plant surface model, which represents all the

information from the visible spectrum. To this end, a neural network ap-

proach and a probabilistic model approach for plant model construction are

discussed in Chapter 3 and Chapter 4 respectively.

In Chapter 5, a Kalman filter is developed to track the plant model over

time. This extends the model to the time dimension, which enables smooth-

ing of the noisy measurements to produce a development trend for a crop.

Chapter 6 concludes the thesis and discusses the limitations of the work.

Possible applications and research opportunities in the future are also dis-

cussed.



Chapter 2

Measuring Plant Height from

Stereo Images

2.1 Introduction

Growers use the height of a growing plant as an important attribute for

tracking the development of a crop [80]. Measuring the height in a commercial

glasshouse is difficult, as discussed in Chapter 1, and the process is inevitably

limited by the subjective factors associated with individuals. This chapter

proposes a stereopsis approach for measuring plant height. The proposed

approach uses a stereoscopic pair of cameras to capture images of the plants

and then estimate the height of their flowers and leaves. Another aim of this

work is to estimate the plant geometry, which cannot be easily determined

from a single image.
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2.2 Approaches to Plant Height Measurement

2.2.1 Measuring Height from Side Views

There are commercial systems currently available for measuring plant height

from side views. The Anthurium sorting machine shown in Chapter 1 uses

six cameras to capture images of individual plants passing through the line.

Given six different views from the side, it is possible to recover the plant

structure, and therefore, the height can be measured. Another example is

the vision system made by WPS Horti Systems 1, which is similar to the

Anthurium sorting machine and uses cameras to capture images from a side

view.

Although this kind of height sorting machine is available on the market,

such systems are only applicable for plants grown in individual pots like

Anthurium and Poinsettia. For those grown in packs, such as Pansy, some

plants in the pack are occluded by others, and therefore cannot be seen from

the side view (see Figure 2.1). Consequently, estimating the characteristics

of these flowers is not possible. These systems also fail in situations where

it is difficult or impossible to collect horizontal images, for example, when

plants are grown on benches during production (see Figure 2.2).

1WPS Horti Systems, http://www.wpshortisystems.nl/
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Figure 2.1: An illustrative image of Poinsettia and Pansy. Note that there
is only one Poinsettia plant grown in a pot, while there are a number of
Pansy plants grown in a pack.

Figure 2.2: Poinsettia plants are grown on a bench during production at
Pinetops Nurseries. It is impossible to collect horizontal images and measure
height from a side view for every plant.
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2.2.2 Active 3D Vision

3D Laser Scanning

Many of the existing height measurement systems in the horticulture industry

concentrate on acquiring and analysing two-dimensional (2D) information [44].

A three-dimensional (3D) image contains more information than any 2D im-

age can possess, and a 3D representation provides more ‘natural’ viewing

conditions of objects in the image, as does the output of the human visual

system to the brain. Techniques for recovering 3D scene shape can be di-

vided into either ‘active’ or ‘passive’. Active techniques require an external

light source to project light onto the scene, the most common being laser

scanning. Commercial high resolution 3D laser scanners, such as the one

built by the National Research Council Canada [8], can simultaneously cap-

ture colour and geometry from real world objects. The scanner has been

used for scanning museum objects such as paintings [12] and archaeological

collections [8], and its maximum resolution configuration, in the scale of mi-

crometres, is sufficient to examine fine brush stroke details on paintings, as

well as tool marks on sculptures and archaeological objects. The laser light

does not harm objects and the scanning process is not affected by ambient

light. However, apart from the high cost, the use of lasers in glasshouse is

subject to safety regulations, since even relatively small amounts of laser light

can lead to permanent eye injuries. Moreover, the high resolution scanning

process can take hours to complete, and model building from the data using

the commercial licensed software may need hours of processing [12].



Chapter 2. Measuring Plant Height from Stereo Images 19

Structured Lighting

Another active approach is to make an inexpensive 3D scanner using the

structured lighting method [35]. The design is based on consumer electronic

technology, and usually includes a video projector to project structured light

patterns onto the object to be scanned and a digital still camera to acquire

images of the object under the structured light. Although it is less accurate

than the high quality laser scanner, the structured light system, with a typ-

ical accuracy of 0.1 millimetre, is less expensive and the scanning process is

faster [7]. The fundamental problem in the structured light system is shad-

owing and ambient lighting [34], which is a major problem in the glasshouse

environment. Furthermore, the colours of a plant’s different surfaces may

reflect the light differently, causing unexpected artifacts. With advances in

this technique in the future, structured lighting could become another feasible

approach to measure plant height in the glasshouse.

2.2.3 Passive 3D vision

Passive approaches do not need a special source of energy to illuminate the

scene. Common techniques include single-view, stereo, and multi-view 3D

reconstruction. Criminisi et al. [29] described how aspects of the affine 3D

geometry of a scene may be measured from a single perspective image. The

ideas can be seen as reversing the rules for drawing perspective images given

by Alberti [4], and it is assumed that images are obtained by perspective pro-

jection. However, using only one view for taking absolute measurements, for

example, units in the metric system, is not practical in the glasshouse envi-
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ronment, due to constraints on image features. Most of the images presented

in [29] are scenes containing planes and parallel lines. Although the method

is not restricted to these conditions, the structure of each Pansy plant (see

Figure 2.1) cannot be captured fully with a single view, and therefore this

approach is not applicable for the horticulture industry.

One widely used passive vision method is stereopsis, where imaging is

done by using a stereoscopic pair of cameras. This method works in a similar

fashion to the human visual system and imitates the stereopsis technique.

By having two images displaced from each other, the depths of objects can

be estimated using geometry if the camera focal lengths are known.

2.3 Stereoscopic Vision Setup

The system requirement for stereoscopic vision is a pair of cameras positioned

with overlapping fields of view. These cameras can be arranged in a number

of ways, but the most common and simple is placing two identical cameras

on a horizontal plane with optical and vertical axes parallel (see Figure 2.3).

This setup is known as the standard parallel camera setup [45]. It is also

possible to use a single camera to capture one view of a stationary scene and

then make another one after moving a short distance horizontally (see Figure

2.4 and 2.5).

The output directly computed from a pair of images is in the form of

relative displacements, also called disparities [76]. Let (x1, y1) and (x2, y2)

be two image points, and denote h∗ as the distance from the camera lens

centre to a world point. The distance between cameras, which is called the
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Figure 2.3: Parallel camera setup in a glasshouse at DoubleH Ltd. This
setup simultaneously captures two views, and this is particularly useful for
moving objects, for example, these plants passing through a grading line.
This setup can also be flexibly mounted anywhere in the glasshouse.



Chapter 2. Measuring Plant Height from Stereo Images 22

Figure 2.4: ‘Lightbox’ setup in a glasshouse at Warwick HRI. This setup
shifts a single camera to two different positions for two views, where the
Pansy plants remain stationary during the capture.
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Figure 2.5: Moving camera rig scanning a Pansy crop from above in a
glasshouse at Warwick HRI. This is similar to the idea behind the lightbox
setup, and moves a single camera to two different positions for two views.
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Figure 2.6: Model of the stereopsis process for parallel camera setup.

baseline [45], is denoted as s, while f represents the camera focal length. As

Figure 2.6 shows,

s

x2 − x1
=

h∗

f
(2.1)

to convert disparities into depths, it is necessary to measure the camera

focal length f and baseline s. The camera focal length in pixels, f , can be

computed using a checkerboard and the camera calibration toolbox [13].

For the parallel camera setup shown in Figure 2.6, the depth map H∗ can
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Figure 2.7: A stereoscopic pair of the checkerboard images captured using
the lightbox setup.

be computed from:

H∗ = f sD−1 (2.2)

where H∗ is the depth map containing distances in centimetres from the

camera to objects, f is the camera focal length in pixels, s is the baseline in

centimetres, and D is the disparity map in pixels.

Apart from the noise produced during the disparity computation, the

resolution of the depth measurement is also limited by the separation distance

between the cameras. Suppose we want to distinguish a point that is h1

metres away from the camera and another point h2 metres away, that is, to

achieve a resolution of (h1 − h2) metres. To distinguish between the change

in depth, let the required disparity difference be 1 pixel.

Rearranging equation 2.2 and substituting all variables,

f s

h2
−

f s

h1
= 1 (2.3)

Let α = h1 h2. ∆h is the change in depth between the two points, ∆h =
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h1−h2, which is also the resolution of the depth measurement for a particular

stereo setup. Equation 2.3 becomes

∆h =
α

s f
(2.4)

From equation 2.4, the wider displacement between the views, namely a

larger s, results in a smaller change in depth, and therefore the resolution

is better. However, the wide displacement between stereoscopic images in-

creases the occurrence of occlusions and missing data, and makes the size of

the system impractical, except for very short-range applications.

To measure the absolute height of objects, the depth mapH∗ is subtracted

from a reference depth h. The subtracted depth map H contains the height

measurements from where h is located.

H = h−H∗ (2.5)

2.4 Measuring Height from Stereoscopic Im-

ages

The depth from the camera to the objects is implicit in the relative displace-

ments between the left and right views of that scene. By comparing the

relative displacements of corresponding pixels in two images, a depth recov-

ery process can be initiated, leading to the reconstruction of the scene [6].

There are therefore two main steps to estimate the depth from stereoscopic
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Figure 2.8: Camera positions using the lightbox setup. This is estimated
by using pairs of the checkerboard images and camera calibration toolbox
[13]. Camera focal length in pixels can be also computed.
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images:

1. Identifying corresponding points in two stereoscopic images.

2. Computing depth, given the geometry of the two camera settings.

The second step is unambiguous and Section 2.3 has covered the topic. In

this section, we discuss the first step in detail.

The task of matching corresponding points is also known as the corre-

spondence problem. This problem has been extensively researched in the

vision community since Marr and Poggio’s work in 1976 [77]. Grimson ex-

tended this feature based approach, and proposed the ‘Marr-Poggio-Grimson’

algorithm [47]. This algorithm relies on features obtained by the Laplacian

of a Gaussian operator and zero-crossing estimation [45]. A coarse to fine

strategy to limit the search space of possible matches was also applied. The

feature based approach is suitable for images containing random dot stere-

ograms or objects with simple geometry, since a set of features can be easily

identified in both images.

Ohta and Kanade [87] proposed a dynamic programming paradigm to

locate the corresponding points in a 3D search space. Sun [106] proposed a

two-stage dynamic programming and the rectangular subregioning technique.

Similar to the feature based approach above, a coarse-to-fine scheme is used.

Figure 2.9 shows an example of stereoscopic images of a pack of Pansy

plants. The complex structure of small, thin branches and green leaves leads

to substantial shading effects and occlusions in the image, as well as many

low-texture areas. Much research effort has been devoted to solving these

issues [53, 98]. Recently, modelling the disparity image as a Markov Random
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Figure 2.9: A pair of stereoscopic images capturing a pack of Pansy plants
using the lightbox setup

Field (MRF) has become popular as a basis for many of the best stereo

algorithms in the Middlebury list [98]. MRF inference algorithms have been

proposed for stereopsis, which use graph cuts [69] and belief propagation [41].

Tappen and Freeman [108] compared the graph cuts algorithm and the belief

propagation algorithm on the same MRF’s, which have been created for

calculating stereo disparities.

The multiresolution model introduced in the following section is analo-

gous to the Bayesian framework using an MRF, and builds on the multi-scale

estimation ideas applied by many authors, for example, Wilson and Knutsson

[121], Jepson and Jenkin [60] and Chou et al. [27]. The estimates from the

coarser representation of the multiresolution model can be viewed as pri-

ors to the finer representation and this transition process can be described

as a Markov Chain [26]. It was pointed out by Wilson and Li [122] that

the MRF framework ensures the local consistency in the estimates through

neighbour interactions, whereas the multiresolution model accomplishes this

through interactions with the parents in scale. A multiresolution random
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field model was therefore introduced by Wilson and Li [122], which accounts

for interactions with both planar neighbours and parents in scale. The par-

ent weighting introduced in this chapter provides an alternative to Wilson

and Li’s model by interactions with the direct parent and the neighbours of

the parent. Moreover, the maximum a posteriori (MAP) estimate, which is

produced by a Kalman filter [24] in the multiresolution model, can be shown

to be equivalent to minimising the energy [108].

The aim of the proposed approach is to retrieve the global geometry, in-

stead of trying to refine depths for individual leaves and branches, as growers

require summary statistics for plant growth and marketing purposes. To this

end, the proposed stereo algorithm uses a multiresolution structure to reflect

the assumption that the plant surface is smooth. The use of the pyramid

structure discussed in this chapter also gives a significant speed advantage [1],

which is desirable for industry applications, while both graph cuts and belief

propagation approaches are computationally demanding [41].

Calway et al. [23] suggested a frequency domain approach in a multires-

olution framework for disparity estimation. Bowen et al. [15] extended this

approach by adding a Kalman filter to refine the estimates at each resolu-

tion. This thesis proposes a stereo algorithm in spatial domain and a parent

weighting technique to interact with the direct parent and the neighbours of

the parent.
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2.5 A Multiresolution Model for Stereopsis

2.5.1 The Quadtree Structure

In this section, a multiresolution approach that models the statistical struc-

ture of a signal on a hierarchy of scales is discussed. The motivation for

following such an approach originates from the observation that objects are

composed of different structures at different scales. Clippingdale [28] intro-

duced a multiresolution image model based on the quadtree data structure

(see Figure 2.10). In an N -level multiresolution model representing a two-

dimensional (2D) signal, each node in the tree has an associated random

variable x(i, j, n), n = {1, · · · , N}, representing relevant information of the

signal near the node (i, j) at that resolution n. Each node has four children

and one parent, and there is only one node x(1, 1, 0) at the coarsest level 0.

The connection between the parent node x(i, j, n − 1) and its children

x(i, j, n) is given by a transition operator I(i, j, n|n− 1), and the properties

of x(i, j, n) therefore depend on I(i, j, n|n− 1) and x(i, j, n − 1). Chou and

Willsky [26] showed that if the coarser representation of the multiresolution

model has been estimated, it can provide prior information as an aid to

estimating the finer representation. This is analogous to a linear state-space

model, in which each node evolves a state throughout different levels of the

tree [24]. x(i, j, n) then becomes a state variable of the node (i, j) at the

scale n, while x(i, j, n − 1) represents the previous state information at the

scale n − 1. For an N -level model representing a 2D signal, this process is
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expressed as follows,

x(i, j, n) = I(i, j, n|n− 1)x(i, j, n− 1) + v(i, j, n) (2.6)

where x(i, j, n) represents the signal associated with the node (i, j) at level

n, n = {1, · · · , N}, and x(i, j, n−1) is its parent at level n−1. The operator

I(i, j, n|n−1) controls the input of x(i, j, n−1). v(i, j, n) is the process noise

or innovations representing the details added at level n.

Suppose a linear observation model is used,

y(i, j, n) = A(i, j, n)x(i, j, n) + e(i, j, n) (2.7)

where y(i, j, n) is the noisy observation, which has the same dimension as

x(i, j, n). A(i, j, n) relates the state x(i, j, n) to the observation y(i, j, n).

e(i, j, n) is the measurement noise incurred during the observation [24].

In practice, A(i, j, n) may vary for different observations. Here A(i, j, n)

is assumed to be a constant, and it is set to 1, which means there is no scaling

difference between the noisy observation y(i, j, n) and the state x(i, j, n). The

transition operator I(i, j, n|n− 1) is also assumed to be the same across dif-

ferent levels. The process noise v(i, j, n) and the measurement noise e(i, j, n)

are assumed for simplicity to be additive white Gaussian noise,

v(i, j, n) ∼ N(0, q(i, j, n)) (2.8)

e(i, j, n) ∼ N(0, w(i, j, n)) (2.9)

where q(i, j, n) and w(i, j, n) are the process noise variance and measure-
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Figure 2.10: A 2-level model based on the quadtree data structure

ment noise variance respectively. Under these assumptions, the Kalman up-

date discussed below takes account of all the information contained in the

conditional probability density.

2.5.2 The Kalman Update

Given the noisy observation and the previous state information, the ques-

tion remains: how to combine them to produce an ‘optimal’ observation.

‘Optimal’ means that the estimate minimises the expected errors based on

prior knowledge. Posing this problem in the Bayesian framework results in

a MAP estimator of the state x(i, j, n) at the scale n, given the state model

shown in equation (2.6) and a set of noisy observations, y(i, j, n), described

in equation (2.7). For simplicity, the node position (i, j) is omitted. For ex-

ample, the state of the node (i, j) at time n, x(i, j, n), is expressed in vector
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form as x(n).

Applying Bayes’ theorem [62], the posteriori density p(x(n)|y(n)) can be

expressed as follows,

p(x(n)|y(n)) =
p(y(n)|x(n))p(x(n))

p(y(n))
(2.10)

=
p(y(n)|x(n))p(x(n)|y(n− 1))

p(y(n)|y(n− 1))
(2.11)

where the likelihood p(y(n)|x(n)), the prior p(x(n)|y(n − 1)), and the evi-

dence p(y(n)|y(n− 1)) are defined below,

p(x(n)|y(n− 1)) =

∫

p(x(n)|x(n− 1))p(x(n− 1)|y(n− 1))dx(n− 1)

p(y(n)|y(n− 1)) =

∫

p(y(n)|x(n))p(x(n)|y(n− 1))dx(n)

where p(x(n)|x(n − 1)) and p(y(n)|x(n)) are derived from the state model

(equation (2.6)) and the observation model (equation (2.7)) respectively.

Since the process noise and the measurement noise are assumed to be ad-

ditive white Gaussian, this naturally leads to the Kalman update process [115].

The Kalman update can be viewed as a linear blending of the noisy observa-

tion y(n) and the prior estimate x̂(n− 1) [18]. The equation for the Kalman

update is shown below,

x̂(n) = I(n|n− 1)x̂(n− 1) +G(n)ν(n) (2.12)

where ν(n) is the difference between the noisy observation y(n) and the
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prediction from the prior estimate x̂(n− 1),

ν(n) = y(n)− I(n|n− 1)x̂(n− 1) (2.13)

ν(n) can also be referred as the details to be added from the observation.

G(n), known as the Kalman gain, controls the input of ν(n). Given the

process noise covariance Q(n) and the measurement noise covariance W(n),

G(n) is calculated as follows:

P̂(n) = P(n− 1) +Q(n) (2.14)

G(n) = P̂(n)

[

P̂(n) +W(n)

]−1

(2.15)

where P(n−1) is the prior estimate error covariance. The posteriori estimate

error covariance P(n) is calculated by:

P(n) =

[

1−G(n)

]

P̂(n) (2.16)

If the measurement noise is small, G(n)→ I, which means more input from

the observation y(n) to the optimal state. On the other hand, if the process

noise is small, G(n) turns to a zero matrix, which means the previous state

x̂(n − 1) contributes more. In practice, 0 < |G(n)| < 1, and the optimal

state therefore contains a component from the previous state and one from

the observation.

In the field of stereopsis, the structure of disparities between stereoscopic

images can be captured through such a scale-recursive statistical model, in
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which x(n) represents the actual disparity and y(n) represents the measured

disparity. The next section discusses how to perform the disparity measure-

ment given a pair of stereoscopic images.

2.6 Disparity Estimation

2.6.1 Matching

An important cue to depth perception - disparities between stereoscopic im-

ages - can be measured by finding matching pixels, rather than relying on

features. The common matching cost functions are Sum-of-Squared Differ-

ences (SSD) and Sum-of-Absolute Differences (SAD) [98]. Denote l(i, j) and

r(i, j) as two points in the left and right gray-scale images respectively, SSD

and SAD between the two images are computed as:

SSD =
∑

i,j

[

l(i, j)− r(i, j)

]2

(2.17)

SAD =
∑

i,j

|l(i, j)− r(i, j)| (2.18)

The minimal value in SSD or SAD yields the corresponding point. A notice-

able difference between SSD and SAD is that SSD magnifies and penalises

larger errors while SAD does not.

Normalised cross-correlation [49] can also be used for matching. An effi-

cient way to compute cross correlation is based in the Fourier domain [89].

Denote l(i, j) and r(i, j′) as two blocks with the same size in the left and

right gray-scale images respectively, the correlation matrix C can be ob-
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tained from:

C = ℑ−1(ℑ(l(i, j))ℑ(r∗(i, j′))) (2.19)

where ℑ is the Fourier transform, ℑ−1 is the inverse Fourier transform and ∗

is the complex conjugate. The maximal value in C yields the corresponding

displacement. The corresponding position inferred from the coefficient ma-

trix needs to be adjusted due to wrap-around effects [90]. The images should

also be prefiltered by a Laplacian operator to whiten the image spectrum

[45].

Phase correlation [72] computes correlation based on phase information

in Fourier domain and therefore it is not sensitive to changes in image inten-

sity. Denote the phase difference between two images by ∆φ, the correlation

matrix C can be computed as:

C = ℑ−1(ej∆φ) (2.20)

The maximal value in C gives the corresponding point. A more robust phase

correlation method by restricting the position of the peak value was proposed

by Keller et al. [65].

For a more detailed discussion on the subject of matching, the reader is

referred to Scharstein and Szeliski’s paper [98], and the work by Hirschmuller

and Scharstein [53]. In this thesis, the matching cost function used for each

colour channel to compute dissimilarity sk(i, j), k ∈ {R, G, B} is identical

to the one proposed by Birchfield and Tomasi [10]. Let rl(i, j) and rr(i, j)

represent linearly interpolated intensity values around a pixel in the right
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image r(i, j),

rl(i, j) =
1

2

[

r(i, j) + r(i, j − 1)

]

rr(i, j) =
1

2

[

r(i, j) + r(i, j + 1)

]

The pixel dissimilarity computed for colour channel k, sk(i, j), is then ob-

tained by the following equation:

sk(i, j) = max

{

0, δmin(i, j), δmax(i, j)

}

(2.21)

where δmin(i, j) and δmax(i, j) are defined as follows:

δmin(i, j) = l(i, j)−min

{

rl(i, j), r(i, j), rr(i, j)

}

δmax(i, j) = max

{

rl(i, j), r(i, j), rr(i, j)

}

− l(i, j)

where l(i, j) represents a pixel in the left image. The maximum matching

cost, smax, is set to be 30, and this enables normalisation of the cost of

matching to an error score ranging between 0 and 1. The normalised error

score represents uncertainty of the matching, that is, how good the estimated

disparities are. Finally, the RGB pixel dissimilarities are summed for the

overall cost as follows:

s(i, j) = sR(i, j) + sG(i, j) + sB(i, j) (2.22)

Although a colourspace transformation such as CIE L*a*b* is assumed to
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improve the similarity matching, we have not observed noticeable changes

in the results. Similar findings regarding a colourspace transformation were

presented in [48, 101, 124], and Yang et al. [124] also used Birchfield and

Tomasi’s matching method.

For the parallel camera setup shown in Figure 2.6, the corresponding

points in both images lie on the same horizontal scan-line. The multiresolu-

tion model therefore expresses the connection between the point (i, j) in the

left image l and the corresponding one in the right image r as follows:

l(i, j) = r(i, j − x̂(i, j)) + υ(i, j) (2.23)

where x̂(i, j) is the estimated disparity between the two points, and υ(i, j) is

the residual error between the two images.

In practical applications, image noise and illumination changes are in-

evitable, and pixel-based matching is not robust under such circumstances

[70]. One way to improve this is to match corresponding regions instead of

individual pixels. Assuming pixels in a small region have the same disparity

value, the input image is divided into a number of blocks overlapped by 50%

and these blocks then match in the same way as the pixel-based methods.

Equation 2.23 then becomes,

l(i′, j′) = r(i′, j′ − x̂(i′, j′)) + υ(i′, j′) (2.24)

where (i′, j′) denotes the position of a block.
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2.6.2 Multiresolution Implementation

A pyramid scheme can be used to speed up the matching. In this thesis, a

Gaussian pyramid [22] is used as a representation of the pair of stereoscopic

images, and a bilinear interpolator acts as the transition operator. The

Gaussian pyramid is a hierarchy of low-pass filtered images of the original.

An N -level Gaussian pyramid, x(i, j, n), n = {1, · · · , N}, for an image M is

defined as follows,

x(i, j, N) = M(i, j)

x(i, j, n) =
∑

−2≤i′≤2
−2≤j′≤2

∆(i′, j′)x(2i+ i′, 2j + j′, n+ 1), 0 < n ≤ N

where ∆ is a Gaussian kernel, of which an example is given below,

∆ =

[

1 4 6 4 1

]T [

1 4 6 4 1

]

16× 16
(2.25)

2.6.3 Parent Weighting

Using the pyramid structure, the size of the search window remains constant

throughout different levels. Although this can speed up stereo matching, poor

results could be propagated by direct parent nodes through levels, leading

to false matches between images. To prevent this, a method to weight a set

of parent nodes to form an optimal predictor x̂(i, j, n − 1) is applied. The

proposed method takes account of inputs from neighbouring parent nodes

as well as the direct parent node. It initialises the weights ω(i, j, n − 1) for
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block (i, j) at level n by selecting ‘good’ parents from 8 nodes around the

direct parent, and the direct parent itself. This selection process can be done

by median filtering the errors associated with each parent node, which is

s(x, y, n−1), x ∈ {i−1, i, i+1}, y ∈ {j−1, j, j+1} for the child block (i, j).

After that, the weights are calculated as follows:

ω(x, y, n− 1) = smax − s(x, y, n− 1)

x ∈ {i− 1, i, i+ 1}, y ∈ {j − 1, j, j + 1}

(2.26)

ω(x, y, n− 1) =
ω(x, y, n− 1)

∑

x,y ω(x, y, n− 1)
(2.27)

where s(x, y, n−1) is the error from level n−1 for one of the selected ‘good’

parents, and smax is the maximum error in these ‘good’ parent nodes. The

weighted parent node is then derived as follows:

x̂(i, j, n− 1) =
∑

x,y

ω(x, y, n− 1)x̂(x, y, n− 1) (2.28)

where x̂(i, j, n− 1) is the disparity of the weighted parent node for the child

block (i, j).

The weighting technique can be seen as an improved transition operator,

I(i, j, n|n− 1), which controls the input of the direct parent node. In effect,

the value in I(i, j, n|n− 1) is modified in a data dependent way: if the direct

parent is not ‘good’, the neighbouring parents contribute to form a ‘good’

one accordingly.
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(i−1 , j+1) (i , j+1)

(i+1 , j−1)(i−1 , j−1) (i , j−1)

(i+1 , j)(i , j)(i−1 , j)

(i+1 , j+1)

(i , j)

W(x,y,n−1)

Level n

Level n−1

Figure 2.11: An illustration of parent weighting. Parent weighting can be
seen as an improved state transition operator, which is modified in a data
dependent way.
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Table 2.1: Summary of the multiresolution stereo algorithm

1. Compute N -level Gaussian pyramid pairs for the left and
right images.

2. For the coarsest level 0, divide the left image into a number of
blocks and find the corresponding blocks in the right image.

3. For each block at level n where n = {1 . . .N},

(a) Find the weighted parent from level n− 1 to define the
centre of a small search window

(b) Find the corresponding block in this small search window

(c) Apply Kalman update for the optimal estimate

4. Interpolate disparities estimated to the original image size.

5. Convert the disparities into depths by triangulation.

2.7 Results

This section presents some of the results obtained by the multiresolution

stereo algorithm discussed in this chapter. The algorithm used a 5-level

Gaussian pyramid with blocks sized 16× 16 overlapped by 50%. The search

range was 5 as the maximum disparity was 75. The size of input images was

512×384, and all these images were rectified using the calibration procedures

[13].

Figure 2.13 shows the left views of two packs of Pansy and Viola, and

one pack of Cyclamen, captured during two growing stages. Also, an ob-

ject with known geometry, an inverted flowerpot, is displayed in Figure 2.12.

The proposed stereo algorithm (MR) is compared with standard absolute
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differencing method (AD), the belief propagation algorithm (BP) by Felzen-

szwalb and Huttenlocher [41] and the graph-cut method (GC) discussed in

Kolmogorov and Zabih’s paper [69]. All stereo algorithms were implemented

in C/C++.

The AD method adopted a Gaussian pyramid implementation without

Kalman update and parent weighting, which is useful to demonstrate the

importance of neighbourhood and parent-level interactions used in the MR

method. Both BP and GC methods were developed in a MRF framework,

and minimised the energy to produce a MAP estimate (see Section 2.4).

The BP method [41] used two parameters for data cost and discontinuity

cost respectively to formulate the energy function, while the GC method [69]

used one parameter to achieve energy regularisation.

2.7.1 Stereo Results on a Known-Geometry Object

In this section, the four stereo algorithms were tested by processing images

featuring a known-geometry object (Figure 2.12). The expected disparity

result should clearly show a near-cylindrical object slightly tapering to the

top. The AD method used the same window settings as the MR method, and

the search range was 75. Parameters for the BP method and the GC method

were empirically chosen after a number of experiments. The BP method used

30.0 as the truncation of data cost (DATA K), and 15.0 for the truncation

of discontinuity cost (DISC K). The regularisation parameter λ for the GC

method was 50, and the maximum iteration count was 3. Disparity results

are presented in Figure 2.12, and a summary of running time and height
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Table 2.2: Known-geometry object: comparisons of height and running
time

AD BP GC MR
Height (in cm) 29.4 29.2 29.4 29.2
Error (in cm) 0.2 0.0 0.2 0.0
Time (in sec.) 2.506 8.601 250.66 0.679

The hand measurement for the height of the inverted flowerpot was 29.2 cm

derived is presented in Table 2.2.

2.7.2 Stereo Results for Plants

For the plant images (Figure 2.13), the settings for all four stereo algorithms

were identical to those used earlier for the known-geometry object. As the

boundary information for the pack was available, that is, the position and size

of the pack, the background was cropped outside the boundary region. Dis-

parity results for all the flowers in Figure 2.13 are shown in Figures 2.14-2.18.

Height measurements H are computed from the disparity results using equa-

tion (2.4) with the intrinsic and extrinsic parameters computed by the cal-

ibration procedures [13]. The average flower height ĥ is then computed by

the following equation:

ĥ =
1

|λf |

∑

x∈λf

H(x) (2.29)

λf is a binary mask labelling each flower, and it is obtained by a supervised

multi-thresholding image segmentation method [113]. Figures 2.20-2.24 il-

lustrate the average flower height measurements ĥ converted for each stereo-

scopic pair. The error E between hand measurements hG and that estimated
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Left View (Base) Right View

AD BP

GC MR

Figure 2.12: Stereoscopic images and results using four stereo methods on
an inverted flowerpot with known geometry.
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Pansy Pansy Viola Viola Cyclamen

pack 1 pack 2 pack 1 pack 2

stage 1 stage 1 stage 1 stage 1 stage 1

Pansy Pansy Viola Viola Cyclamen

pack 1 pack 2 pack 1 pack 2

stage 2 stage 2 stage 2 stage 2 stage 2

Figure 2.13: Left views in the ten pairs of stereoscopic images for five
different packs of plants.

by the stereo algorithm ĥ is computed by:

E =
∣

∣

∣
hG − ĥ

∣

∣

∣
(2.30)

Table 2.4 presents the average absolute error, Ē, standard deviation of the

error, σ, maximum error value Emax, and the average running time required

to process all ten stereoscopic pairs.



Chapter 2. Measuring Plant Height from Stereo Images 48

Table 2.3: Plant packs: comparisons of average height measurements in
cm.

Human AD BP GC MR
Pansy, pack 1, stage 1 8 10.34 12.68 13.75 9.51

Pansy, pack 1, stage 2 11 7.84 12.77 13.77 10.55

Pansy, pack 2, stage 1 15 4.53 15.40 16.69 15.70
Pansy, pack 2, stage 2 16 10.47 16.10 17.25 16.16
Viola, pack 1, stage 1 13 14.68 13.46 14.84 13.44

Viola, pack 1, stage 2 16 16.56 13.38 14.69 13.89
Viola, pack 2, stage 1 12 13.06 12.67 13.94 10.33
Viola, pack 2, stage 2 14 14.89 12.60 13.88 14.12

Cyclamen, stage 1 11 11.43 11.79 14.47 11.58
Cyclamen, stage 2 13.5 11.05 12.59 14.48 12.88

Table 2.4: Plant packs: comparisons of the average error Ē, standard de-
viation of the error σ, maximum error value Emax, and the average time
required to process all ten pairs of images by four stereo methods.

AD BP GC MR
Time (in sec) 2.4503 9.8697 194.0180 0.6168

Ē (in cm) 2.86 1.38 2.11 0.84

σ (in cm) 3.08 1.38 1.58 0.68

Emax (in cm) 10.47 4.68 5.75 2.11
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Left View (Base)

AD BP

GC MR

Figure 2.14: Stereo results for Pansy, pack 1, stage 1
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AD BP

GC MR

Figure 2.15: Reconstructed views of Pansy, pack 1, stage 1
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Left View (Base)

AD BP

GC MR

Figure 2.16: Stereo results for Viola, pack 1, stage 1
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AD BP

GC MR

Figure 2.17: Reconstructed views of Viola, pack 1, stage 1



Chapter 2. Measuring Plant Height from Stereo Images 53

Left View (Base)

AD BP

GC MR

Figure 2.18: Stereo results for Cyclamen, stage 2
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AD BP

GC MR

Figure 2.19: Reconstructed views of Cyclamen, stage 2
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Legends (from left to right):
Blue, Hand measurement;
Cyan, Absolute Differencing (AD);
Green, Belief Propagation (BP);
Orange, Graph Cuts (GC);
Brown, Multi-Resolution (MR).

Figure 2.20: Average height measurements in cm for Pansy, pack 1. The
figure on the left is for stage 1, and the figure on the right is for stage 2.
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Legends (from left to right):
Blue, Hand measurement;
Cyan, Absolute Differencing (AD);
Green, Belief Propagation (BP);
Orange, Graph Cuts (GC);
Brown, Multi-Resolution (MR).

Figure 2.21: Average height measurements in cm for Pansy, pack 2. The
figure on the left is for stage 1, and the figure on the right is for stage 2.
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Legends (from left to right):
Blue, Hand measurement;
Cyan, Absolute Differencing (AD);
Green, Belief Propagation (BP);
Orange, Graph Cuts (GC);
Brown, Multi-Resolution (MR).

Figure 2.22: Average height measurements in cm for Viola, pack 1. The
figure on the left is for stage 1, and the figure on the right is for stage 2.
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Legends (from left to right):
Blue, Hand measurement;
Cyan, Absolute Differencing (AD);
Green, Belief Propagation (BP);
Orange, Graph Cuts (GC);
Brown, Multi-Resolution (MR).

Figure 2.23: Average height measurements in cm for Viola, pack 2. The
figure on the left is for stage 1, and the figure on the right is for stage 2.
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Legends (from left to right):
Blue, Hand measurement;
Cyan, Absolute Differencing (AD);
Green, Belief Propagation (BP);
Orange, Graph Cuts (GC);
Brown, Multi-Resolution (MR).

Figure 2.24: Average height measurements in cm for Cyclamen. The figure
on the left is for stage 1, and the figure on the right is for stage 2.
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2.8 Discussion

The proposed MR stereo algorithm produced the expected smooth disparity

map and was able to give a height estimation with no practical difference

from the ground truth (Table 2.2) for the stereo results featuring an object

with known geometry (Figure 2.12). Similar results were recorded by the

belief propagation method [41] (BP). The absolute-differencing method (AD)

produced noisy results for the sloping side, where occluded regions lie, while

the graph-cut algorithm [69] (GC) gave better estimates for these regions.

For the stereo results featuring flowers (Figure 2.14), GC produced noisy

results where occlusions occur. Although GC can produce smoother results

with a larger regularisation parameter, an increase in λ would lead to fusing

different depth layers together shown in the work by Song et al. [104]. The

AD method was not reliable, and some results were too noisy (Figure 2.16).

Better and more reliable disparity results were obtained by the BP and the

proposed MR method (Figure 2.17). The BP method delivered accurate

estimates for occluded regions, such as regions near the flower edges, while

the proposed MR method produced less sharp results. On the other hand, BP

produced isolated noise occasionally in low-texture areas, while the proposed

MR method produced smooth results.

The average errors to process all 10 pairs of stereoscopic images shown in

Table 2.4 also indicate that the BP and MR method were more reliable than

the GC and AD method. Chapter 1 have discussed the subjective factors

associated with human operators. Since there was only one height reading

provided for plants grown in packs in this thesis, it was not clear that which



Chapter 2. Measuring Plant Height from Stereo Images 61

plant the measurement was exactly taken. In addition to this, there was a

lack of multiple operators performing the same hand measurements, which is

similar in the commercial growing environment. Despite of these limitations,

this is only available reference to compare with.

Comparing the total running time required, the proposed MR method

was by far the most efficient approach. The average time required by the

MR method for a single set of stereoscopic images was only 616.8ms shown

in Table 2.4. This is 4 times faster than the AD method. The BP and GC

methods were much slower, requiring 9.870 and 194.018 seconds respectively

on average for a single pair of stereoscopic images.

The choice of parameters was fixed throughout the experiment. Although

parameters could be tuned for each stereoscopic pair, more human interven-

tion is required, which is difficult in horticulture industry. Compared with

the GC and BP methods, the proposed multiresolution stereo algorithm re-

quired tuning of at most three parameters (search range, window size and

pyramid levels), and these parameters can be easily configured once for a

particular camera setup to process different types of plant images. The GC

method required tuning of 6 parameters, of which 4 are regularisation param-

eters and 2 are common parameters (search range, the number of iterations).

The BP method required 3 common parameters (search range, the number

of iterations, the number of levels) and 4 regularisation parameters.
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2.9 Summary

An efficient stereo algorithm to estimate plant height has been discussed in

this chapter. The proposed algorithm uses a Gaussian pyramid to repre-

sent input images at different resolutions. For each block in each resolu-

tion, a weighting method developed to prevent the direct parent node from

propagating poor results. By using a Kalman filter updating at each level

together with the weighting method, results from neighbours and scales are

used to correct isolated wrong estimates. After that, the disparity results are

converted into depths by triangulation. It has been demonstrated that the

proposed stereo algorithm produces smooth depth maps for different plant

types using the same parameter settings. Among all the algorithms tested,

the proposed method was the most efficient, in terms of the running time,

and the most accurate, when compared with hand measurements.



Chapter 3

A Self-Organising Map Model

for Plant Surface Attributes

3.1 Introduction

The modern horticulture industry is scientifically managed, but the problem

of quantifying and measuring plant quality remains a challenge for the indus-

try [112]. The relative quality ranking of a few plants, in other words, “Is this

plant ‘better’ than that?”, can be made, but the absolute quality, “Does this

plant have a quality score of 4 out of 5?”, can be difficult to define for a partic-

ular plant without reference to a standard. Customers and producers could

even have different standards for plant quality [39]. Despite this ambiguous

definition, a set of plant attributes such as plant height and the amount of

flowers can be quantified, and these attributes have been used as marketing

specifications by commercial growers. In the previous chapter, a stereop-

sis approach to measure the plant height has been discussed. However, the
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measurement collected by the stereo algorithm contains noise. Furthermore,

although a naive multi-thresholding segmentation method [113] was used to

distinguish between flowers and leaves, little effort was made to model the

relevant plant attributes. This chapter presents details of a neural network

approach to address these two problems, and discusses how to model the

plant surface attributes.

Before discussing how to model the attributes, it is necessary to explore

the available plant data. From a stereoscopic pair of images, the colour

data and 2D position data are readily obtainable. The height data can be

estimated by a stereo algorithm, as discussed in Chapter 2. These measure-

ments can therefore be seen as a set of high dimensional surface points in a

3D coordinate system, in which each point is associated with a 6D vector as

follows,

x, y, z - 3D geometry

r, g, b - Colour

This is similar to the point clouds created by 3D scanners [66]. Since the

height, z, is estimated and may be noisy, there is an uncertainty associated

with every point, which is derived from the error score produced by the stereo

algorithm.

3.2 Plant Modelling

This section reviews some previous work in the area of plant modelling.

Anastacio et al. [5] introduced the idea of modelling the plant structure

based on user sketches. The proposed system can automatically construct



Chapter 3. A Self-Organising Map Model for Plant Surface Attributes 65

a 3D plant model, given some user sketches for the main plant body and

lateral organs. This provides an easy-to-use interface for digital illustration

production that creates 3D representations from preliminary drawings.

Quan et al. [91] proposed an image-based approach to model plants di-

rectly from dozens of images. The semi-automatic modelling system can re-

construct a realistic shape and capture the complexity of a real plant. Results

for plants like Poinsettia and Nephthytis have been presented to demonstrate

the realism of the modelling. Tan et al. [107] followed a similar image-based

modelling approach to modelling trees. There are a few improvements to

the work by Quan et al. [91], including a partial coverage of the tree instead

of a full 360◦ capture and pattern-based interpolation in occluded areas.

Xu et al. [123] presented a tree model constructed from sparse point clouds

produced by laser scanning, while image-based approaches [91, 107] recover

3D points from a set of images [75]. The image-based approach is also widely

used in both cinema and television [14]. Among others, Mullins and Bowen

[81] have shown that novel viewpoints can be generated from a fixed set of

views.

Most of the approaches discussed above focus on the virtual realism of

plants for visualisation purposes, which somewhat departs from the aim of

this thesis. It is inappropriate to capture the details of every plant in a com-

mercial glasshouse. This would not only increase the complexity of analysis

and comparison, but also decrease the efficiency of automated assessment.

The ideal model in this thesis therefore should represent the plants reason-

ably well and be relatively simple in terms of the model complexity.
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3.3 Self-Organising Map: a Neural Network

Approach

The Self-Organising Map (SOM) is one type of artificial neural network

model, introduced by Kohonen [67]. The basic configuration of the SOM

is a two-dimensional grid of cells denoted by {c1, c2, · · · , cK}. Each cell con-

tains a weight vector, which has six dimensions in this work, {r, g, b, x, y, z},

corresponding to the input data. Weight vectors are also known as neurons

from a neural network point of view. Every cell is connected to a number of

neighbours.

Yu [126] suggested the use of a SOM to reconstruct a surface from point

clouds. However, his method was also used for visualisation purposes as

discussed in Section 3.2. In this thesis, the purposes of applying the SOM

are therefore twofold:

1. Eliminating the noise in height estimates,

2. Representing essential plant surface attributes.

In effect, the SOMmodels the topological skeleton of the surface shape, which

can be used for representation and comparison purposes.

3.4 Competitive Learning

The SOM evolves by learning randomly-selected samples of input data over

a period of time. There are two main steps to form the basis of this self-

organising process:
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1. Locate the best-matching cell,

2. Update the weights of this cell and its neighbours towards the value of

the input data.

The Euclidean distance is commonly used to locate the best-matching cell.

Consider at the time t, a SOM with K cells c(j, t), j = {1, 2, · · · , K} and the

input data sample x(t). The best-matching cell c(b, t) can be located by the

following equation:

b = argmin
j

{‖c(j, t)− x(t)‖} (3.1)

where ‖ · ‖ denotes Euclidean distance, and b and j are positions of the cells

c(b, t) and c(j, t) in the SOM respectively. Under this competitive learning

scheme, every cell competes for a particular sample of the input data, and

the winner cell is given by equation (3.1). This is also known as the ‘Winner-

Take-All’ principle [64].

Having located the best-matching cell, c(b, t), all the cells in the SOM,

c(j, t), j = {1, 2, · · · , K}, are updated according to the update rule shown

below:

c(j, t+ 1) =















c(j, t) + α(t) [x(t)− c(j, t)] if j ∈ h(j, b, t)

c(j, t) otherwise

(3.2)

where α(t) is the learning rate and h(j, b, t) is the neighbourhood function.

Equation (3.2) shows that the SOM updates the winner cell c(b, t) as well as

its neighbours under the constraint h(j, b, t). This learning process repeats
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until each dimension of the SOM has a sufficiently accurate representation

for the input data.

3.5 The Neighbourhood function

The neighbourhood function controls how many cells around the winner up-

date at a given time. The larger the area where the neighbourhood function

has high values, the more rigid is the map. ‘Bubble’ is the simplest neigh-

bourhood function [67], which is constant over the neighbourhood of the

winner cell and zero elsewhere. Denote j and b as the positions of the cell

c(j, t) and the best-matching cell c(b, t) at the time t, t = {1, 2, 3, · · · ,∞}

respectively,

h(j, b, t) =















1 if b− σ(t) < j < b+ σ(t)

0 otherwise

(3.3)

A more smooth neighbourhood function incorporates a Gaussian kernel,

h(j, b, t) = exp

{

−
(j − b)2

2σ2(t)

}

(3.4)

where σ(t) represents the neighbourhood radius, and it typically decreases

with time. Since large neighbourhood radius makes the SOM more rigid, it

is usually used when t is small, that is at the start, and then is gradually

decreased to the final radius, which is usually set to 1. In this study, σ(t) is
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calculated as follows,

σ(t) =
1

log10(1 + t)
+ 1 (3.5)

3.6 The Learning Rate

The learning rate controls how fast the SOM learns, and is a decreasing

function of time t. At the start, the network is not well structured and the

SOM therefore quickly adapts to input data. In the later stages, since the

network has a reasonable structure, the input data cause less changes than

in the early stage. At a particular time t, t ∈ {1, 2, 3, · · · ,∞}, the learning

rate is calculated as follows,

α(t) =
α0

log10(1 + t)
(3.6)

where the initial value of α, α0, is set to 0.01.

In this work, the learning rate also takes account of uncertainty. Since

the estimates are noisy, the SOM learns these ‘bad’ samples slowly. From

equation (3.6),

α(t) =
α0 × [1− se(t)]

log10(1 + t)
(3.7)

where se(t) is the uncertainty for the input data sample x(t).
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Figure 3.1: Neighbourhood radius σ(t) decreases over time.

Figure 3.2: Shapes of the two neighbourhood functions. Left: ‘Bubble’
function, Right: Gaussian function.
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Figure 3.3: Learning rate decreases over time.

3.7 Tree-Structured SOM

The sequential learning process discussed above is very time consuming.

Kohonen [67] discussed the batch version of the sequential SOM, since all

the data samples x(t), t = {1, · · · , N}, are available prior to computation.

The ‘batch map’ is similar to the K-means algorithm. The nodes move to-

wards the centre of a portion of input data samples at each iteration, and a

few iterations usually suffice. Since there is no learning rate parameter, this

approach is particularly effective if the initial SOM is roughly ordered.

Another approach to speed up learning is the hierarchical tree structure

scheme [68, 109], which is analogous to the multiresolution model introduced

in Chapter 2. Under this tree scheme, the learning starts at the top of tree,

where there are only few cells. This can be seen as forming a codebook
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Table 3.1: Summary of the tree-structured SOM algorithm

1. Start the SOM with a 2× 2 network.

2. Assign each data sample to a cell.

3. Each cell is divided into 4 children.

4. In the next level, for each data sample,

(a) Find the best-matching cell from data samples assigned
in the parent cell,

(b) Update the best-matching cell and its neighbours,

(c) Re-assign the data sample to child cells.

5. Go back to Step 3

for each cell in the lower but larger SOM’s, and the subsequent networks

therefore only need to search the winner cell in the codebook instead of the

whole SOM. This approach provides a more natural progression, since it only

changes the way of searching the best-matching cell and does not change any

step in the sequential learning.

The tree structure also solves the initialisation problem. In theory, the

SOM can be initialised using arbitrary values for each node, and can be

organised within a few hundred initial iterations [67]. It is easy to construct

a good small SOM, since enough updates will be given to each node. This

take places at the top level under the tree scheme, where there are few nodes,

like a 2× 2 network for example. Such a well-ordered SOM from the above

level can be viewed as the initialisation to the SOM in the next level.
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3.8 Results

This section presents some results using the tree-structured SOM. The SOM

had 32 × 32 cells on a rectangular-grid, and the Gaussian neighbourhood

function discussed in this chapter was used. The number of iterations for the

learning process is 10000 at each level.

The input data have 65536 samples. For the Pansy data, Figures 3.4

(a), 3.4 (b) and 3.4 (c) show the r, g, b colour, the height data z, and uncer-

tainty se respectively. Figure 3.4 (d) shows the x, y positions of all the units

in SOM from the top view. Figure 3.5 and 3.6 show the x, y, z positions

and demonstrates how the tree-structured SOM evolves over different levels.

Figure 3.7 presents the SOM with colour data in a 3D plot. Figures 3.8 and

3.9 show the SOM representation for two other plants, Dianthus and Viola

respectively.

The log-likelihood value is computed for each SOM representation. The

SOM can be seen as a 1024-component Gaussian mixture model [71], in which

each component is a cell in the 32 × 32 SOM. Let xi, i = {1, 2, · · · , N}, be

data samples, and assume the component to which each data sample belongs

is given by a random variable yj , j = {1, 2, · · · , K}. The probability density

function for xi given yj is shown below:

pxi|yj
(xi|θ) =

1

(2π)D/2
|Σj |

− 1

2 exp

{

−
1

2
(xi − µj)

TΣ−1
j (xi − µj)

}

(3.8)

where µj and Σj are the mean and covariance for the component j, and D

is the dimension of the input data. In this thesis, each SOM cell is treated

as a component, and the mean µj is therefore equal to the weight vector
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cj , j = {1, · · · , K}. The covariance Σj is computed from the data assigned

to each cell cj. θ denotes the set of parameters, θ = {µ1 · · ·µK ,Σ1 · · ·ΣK}.

D is the data dimension.

Since the random variable yj is unknown, the density function for xi

can be computed by applying the definition of conditional probability and

summing over j,

pxi
(xi|θ) =

K
∑

j=1

πj pxi|yj
(xi|θ) (3.9)

where πj represents the mixture weight. The log-likelihood of the entire data

xi, i = {1, · · · , N} is then given by:

log (px(x|θ)) = log

(

N
∑

i=1

pxi
(xi|θ)

)

(3.10)

The log-likelihood value is negative, since 0 ≤ px(x|θ) ≤ 1, and values that

are more close to zero imply a better data fit. The Gaussian mixture model

is discussed in detail in Section 4.3.

Table 3.2 presents the log-likelihood value and the running time for the

plants Pansy, Dianthus and Viola. The variation in the log-likelihood values

indicates that the SOM fits the Pansy data better than Dianthus or Viola.

This is caused by the more arbitrary shape in Dianthus and Viola data,

which is represented as a smooth surface in the SOM.
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Table 3.2: Comparisons of the log-likelihood and the running time for
Pansy, Dianthus and Viola.

Plant Log-likelihood Value Time in Seconds
Pansy −1017960 6.089

Dianthus −1153788 6.688
Viola −1203239 6.203

(a) Colour data (b) Height data

(c) Uncertainty (d) SOM nodes
from the top view

Figure 3.4: Pansy data and SOM nodes.
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(a) 2× 2 (b) 4× 4

(c) 8× 8 (d) 16× 16

(e) 32× 32

Figure 3.5: Evolution of the tree-structured SOM over levels shown as a
3D surface plot.
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(a) 2× 2 (b) 4× 4

(c) 8× 8 (d) 16× 16

(e) 32× 32

Figure 3.6: Tree-structured SOM at different levels shown as a 3D surface
plot. The surface is textured with the mean colour for each cell.
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Figure 3.7: SOM representation for Pansy. The surface is textured with
the mean colour for each cell.

Figure 3.8: SOM representation for Dianthus. The surface is textured with
the mean colour for each cell.
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Figure 3.9: SOM representation for Viola. The surface is textured with the
mean colour for each cell.

3.9 Discussion

Applications using the SOM can be classified into two areas [125]:

1. Dimensionality-reducing mapping that is topology-preserving;

2. Classification of input data.

The results in the previous section have demonstrated that the SOM is good

as a mapping tool, since it preserves the global geometry as well as colour

information of the objects featured in the images. Incorrect heights estimated

by the stereo algorithm can be effectively eliminated and the complex visual

appearance is also simplified.

However, there are some issues when applying the SOM to classify in-

put data. The output of the SOM is identical to the K-means algorithm
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if the neighbourhood radius is 0, that is only the winner cell is updated.

The quality of the classification depends largely on the initial set of clus-

ters, and could be much poorer than the global optimum in practice [17].

The neighbourhood connection could also contribute to undesirable results,

and Figure 3.10 (a) presents such a case. Suppose there are two clusters in

the data, and samples are randomly drawn from the two distributions. The

SOM might have some cells outside the target distributions, because of the

connection between distant neighbours. If the SOM structure is adaptive,

the connection between neighbours can be broken. This scheme, known as

dynamically defined topologies [19, 67], would lead to two completely sepa-

rated SOMs in this example shown in Figure 3.10 (b), which describes the

two clusters better than the fixed topology does.

Another problem with SOM is the ‘Winner-Take-All’ learning principle.

If there are significant differences in variance of the data, some nodes may win

too much, and thus dominate selection and response. The result is that some

nodes may never win. Ahalt et al. [2] discussed the frequency-sensitive com-

petitive learning approach, which keeps a count of how frequently each unit

is the winner. Kohonen discussed the use of adaptive tensorial weights [67]

instead of the unweighted Euclidean metric, and some results presented have

shown that this can force each cell to be updated approximately as often as

the others.

Determining the final size of a SOM is ambiguous. In this thesis, the tree

structure is ‘grown’ from a 2 × 2 network. Although this does not require

any effort to configure at the start, the final size was determined after a

number of tests. The quality of the SOM for each level on the tree can be
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(a) (b)

Figure 3.10: Neighbourhood problem using SOM. Two separated SOMs
describe two clusters better than a single SOM with fixed topology does
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quantified in a number of ways [67], but the SOM might not be optimal in

certain regions. To address this problem, the SOM can be treated as a mesh,

and some mesh optimisation techniques [54, 55] can therefore apply.

SOM cannot form optimal Bayesian classifications unless the data are

uniformly distributed or well separated [125]. The classification can only be

binary for each cluster, since SOM is not a probabilistic model. In practice,

the distributions usually overlap, and their joint distribution can be described

by a mixture distribution [57]. In this case, data samples could belong to any

of the distributions, and a non-probabilistic model therefore is not applicable.

3.10 Summary

This chapter presents a neural network approach to modelling plant surface

attributes. The SOM can preserve the global geometry and colour informa-

tion in the image, and incorrect height estimates can be eliminated. However,

the fixed structure can cause issues in optimally representing the data, and

the choice of the final size is ambiguous. Furthermore, the SOM cannot

form optimal classification when overlapped distributions are present, since

it is not a probabilistic model and is similar to the K-means algorithm if no

neighbourhood update is used.



Chapter 4

Statistical Modelling of Plant

Surface Attributes

4.1 Introduction

Heuristic procedures, such as the self-organising map, can be used to model

plant surface attributes; nevertheless, the lack of a statistical basis appears to

be a major limitation. For example, classical questions, such as the number

of clusters, are theoretically impossible to solve. Using heuristic algorithms,

it is difficult to know which metric to apply, especially for high dimensional

data such as the plant image data presented in Chapter 3. Above all, these

method do not offer a probabilistic model of the data, and it is therefore hard

to know how ‘good’ the result is, for comparisons with other models, and for

making predictions and incorporating new data into the existing model. This

chapter presents a statistical approach to overcome these limitations.
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4.2 The K-means Algorithm

The K-means algorithm is a simple approach to modelling high dimensional

data, in which each centroid represents a number of samples. The algorithm

places K initial centroids into the data, and assigns each data sample to

the closest centroid. When all samples have been assigned, the K centroids

are updated according to a distance measure such as the Euclidean distance.

This process repeats until all the centroids no longer change significantly,

and this produces a separation of the data into clusters.

Although the K-means algorithm is simple and fast to iterate, it is a

gradient descent method and therefore incapable of finding a global optimum.

In other words, it will converge on a solution that minimises the distance

between centroids and data defined by the used distance measure. However,

due to the fact that the distance measure might be inadequate, the solution is

not guaranteed to be globally optimal. The K-means algorithm is sensitive

to the initial centroids, and without careful selection of initial centroids,

the result could be much poorer than the global optimum [17]. Since the

algorithm is fast, a common method is to run the algorithm several times

from different initial conditions and then determine the best solution.

The K-means algorithm and Self-Organising Map (SOM) are closely re-

lated. As discussed in Chapter 3, SOM produces identical results to the

K-means algorithm if no neighbourhood update is used. Since data are as-

signed in a ‘hard’ way by both methods, in other words, each data sample

either belongs to a cluster or not, optimal Bayesian classifications cannot be

produced unless the data are well separated [125].
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A Gaussian Mixture Model (GMM), discussed below, can resolve many

of these issues. It has been proven that a Gaussian mixture can approximate

arbitrary probability densities for general cases [120]. The GMM can be

readily updated in a Bayesian framework, and it can therefore allow the

current estimates to be conditioned on the previous. Since it is a probabilistic

model, it is possible to derive the probability that a particular data sample

belongs to a given cluster.

4.3 Gaussian Mixture Model: a Probabilistic

Model Approach

A probabilistic model offers a principled alternative to the K-means algorithm

and SOM. In the context of probabilistic modelling, the input data are viewed

as coming from a mixture of probability distributions. Compared with the K-

means algorithm, a mixture model offers a ‘soft’ assignment option. In other

words, the estimates are associated with a probability, which can determine

how well the data fit in a cluster.

Using the Gaussian Mixture Model (GMM), each cluster could be rep-

resented by a Gaussian distribution, and the entire data set is modelled by

a mixture of these distributions. The true density g(x) of a mixture can be

approximated as follows:

g(x) ≃ ĝ(x) =

K
∑

j=1

πjfj(x|θj) (4.1)

where the mixture weights πj satisfy
∑K

j=1 πj = 1, and θj denotes model pa-
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rameters. An individual distribution used to model a specific cluster is often

referred to as a component distribution. Suppose there are K components

in the input data xi, i = {1, · · · , N}, and each component is a Gaussian pa-

rameterised by its mean vector µj and covariance matrix Σj , j = {1, · · · , K}.

The density of component j is

fj(x|θj) = Nv(x|µj,Σj) (4.2)

=
1

(2π)D/2
|Σj|

− 1

2 exp

{

−
1

2
(x− µj)

TΣ−1
j (x− µj)

}

(4.3)

where D is the dimension of the input data, which is 6 in this thesis. A

sample of input data xi, i = {1, · · · , N}, can therefore be expressed as

xi ∼ Nv(µj,Σj) (4.4)

4.4 MGMM: Multiresolution Gaussian Mix-

ture Model

The Multiresolution Gaussian Mixture Model (MGMM) [120] discussed in

this section is analogous to the tree-structured SOM presented in Chapter 3.

The idea of using a MGMM comes from the assumption that the density of

interest is unknown at the start, but it can be estimated from some data. For

example, a Pansy can be modelled by a two-component mixture model, in

which one represents the flower and the other represents the leaf. The sam-

ple mean and covariance can therefore be computed for this two-component

mixture model. Then, a measure of goodness-of-fit can be applied to check
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if the model fits the data adequately. In some situations, this model would

fit well. If not, the component with poorer fit to the data can be split and

the goodness-of-fit test can be applied again to the new model. This recur-

sion forms a tree of Gaussians of decreasing variance, which has the property

of approximating the desired density of the data as the number of levels

increases [120].

The idea of hierarchical mixture modelling was also explored by many au-

thors [52, 92, 119]. Rasmussen [92] thoroughly analysed a Dirichlet process

mixture model with Gaussian components, and presented an implementation

using Gibbs sampling. Williams [119] described a hierarchical mixture model

in a tree-structured manner, and demonstrated the results on univariate data

using the Metropolis sampling algorithm. Heller and Ghahramani [52] pre-

sented prediction and hyperparameter optimisation procedures for a Bayesian

hierarchical model based on Dirichlet process mixtures, as a replacement of

the sampling technique, which, for example, is used in Williams’s work [119].

4.5 Estimation of Mixture Distributions

There are a number of approaches for estimating mixture distributions, of

which the well-known ones are maximum likelihood and Bayesian methods.

McLachlan and Peel [79] reviewed the literature on different approaches to

this problem, and gave detailed examination of each technique.

Dempster et al. [33] drew the attention to the use of the Expectation-

Maximisation (EM) algorithm to the problem of fitting mixture models by

maximum likelihood. The idea of the EM algorithm is to associate a com-
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plete data model to the incomplete structure that is observed in order to

simplify the computation of maximum likelihood estimates, and the problem

of fitting mixture models is a classic example that is simplified considerably

by EM’s maximum likelihood estimation from the missing data structure.

The EM algorithm has two steps, namely an ‘E’ step and an ‘M’ step. The

E step is to estimate the expected value of the unknown variables, given

the estimates of distribution parameters, while the M step is to estimate the

distribution parameters to maximise the likelihood of the data, given the

expected estimates of the unknown variables.

However, the EM algorithm is sensitive to starting values, and Seidel et

al. [100] have demonstrated how different starting strategies can lead to

different estimates using the EM algorithm. A more robust approach is to

apply stochastic techniques, such as Gibbs sampling, discussed below. The

EM algorithm can be viewed as a deterministic version of Gibbs sampling

[94], and both EM and Gibbs sampling are used for approximation with

incomplete data. EM operates on unknown variables using sufficient statistics

instead of sampling unknown variables as a Gibbs sampler does.

4.6 Gibbs Sampling: a Bayesian Approach

With the low cost of computation and rapid development in posterior sim-

ulation techniques, such as Markov Chain Monte Carlo (MCMC), Bayesian

methods for the analysis of data have become increasingly popular [79].

Given appropriate prior distributions, Bayes estimators for mixture mod-

els are well defined [36]. In a Bayesian framework, uncertainty concerning



Chapter 4. Statistical Modelling of Plant Surface Attributes 89

the model parameters is expressed by means of a probability distribution

over the possible values. The distribution is updated as new information

becomes available, and a MCMC sampling scheme can then be applied to

draw samples from the distribution in a stochastic manner.

Gelfand and Smith [43] discussed the practical implementation of the

Bayesian approach for estimation of mixture distributions in a wide variety

of statistical problems, and the use of Gibbs sampling in particular. Con-

sider a data sample from xi, i = {1, · · · , N}, from the Gaussian mixture

distribution:

xi ∼ Nv(x|µzi
,Σzi

) (4.5)

Robert [93] proposed that the class labels zi, zi ∈ {1, · · · , K}, which identify

the component to which each data sample belongs, can be seen as the missing

data part of the sample. Simulation conditional on zi is possible, if the so

called ‘conjugate structure’ is preserved [95], which means posterior has the

same form of distribution as prior. This implies using the conjugate densities

for the Gaussian mixture: Dirichlet for the mixture weights, Gaussian for the

means and inverse Wishart for the covariances. Appendix A provides further

details on this subject.

Given the missing data structure, the mixture model can be identified

from samples from posteriors by assuming conjugate priors. In the Gibbs

sampler described below, the missing data and model parameters are part

of a missing-data chain and a parameter chain, both of which are Markov.

The Gibbs sampler can therefore be implemented in two steps. In the first

step, the class labels are fixed and samples are drawn from the conditional
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distributions of the mixture parameters.

Step 1. Simulate

πj ∼ D(α∗j ) (4.6)

µj ∼ Nv(ǫ
∗
j , τ

∗
j Σj) (4.7)

Σ−1
j ∼ Wv(ω

∗
j , λ

∗
j ) (4.8)

Nv denotes the multivariate normal distribution, Wv denotes the Wishart

distribution, and D denotes the Dirichlet distribution.

α∗j = αj + nj (4.9)

ǫ∗j =
njx̄j + ǫjτ

−1
j

nj + τ−1
j

(4.10)

τ ∗j =
τj

τjnj + 1
(4.11)

λ∗j = λj + nj (4.12)

ω∗j = (ω−1
j + Sj +

nj

τjnj + 1
(x̄j − ǫj)(x̄j − ǫj)

T )−1 (4.13)

where αj, ǫj , τj, λj , ωj are parameters of the prior distributions for the jth

component. Parameters with a ∗ denote the posterior parameters. nj is the

number of observations in the jth component, j = {1, · · · , K}. x̄j is the

sample mean for the jth component, and Sj is the sample covariance,

Sj =

j
∑

i=1

(xi − x̄j)(xi − x̄j)
T (4.14)

In the second step, the mixture parameters are fixed, and the class labels are

drawn according to them.
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Step 2. Derive the missing data zi, i = {1, · · · , N}, from a simulated

standard uniform random variable ui, zi = j, if πi1 + · · · + πi(j−1) < ui ≤

πi1 + · · ·+ πij , where

πij ∝ πjLij (4.15)

Lij is the likelihood for each observation with µj and Σj for each class j, j =

{1, · · · , K}

Lij =
1

(2π)D/2
|Σj |

− 1

2 exp

{

−
1

2
(xi − µj)

TΣ−1
j (xi − µj)

}

(4.16)

Note that the posterior estimates are not just the sample means, but in-

clude the effect of the priors, avoiding some of the problems associated with

maximum likelihood estimation.

4.7 Model Split and Selection

The component j, j = {1, · · · , K}, with the worst data fit, for example,

the log-likelihood value, is assumed to contain more than one Gaussian, and

this component is therefore divided into sub-components. In effect, the data

allocated to the component j is a mixture of Gaussians. A simple yet effective

way of splitting the component j is shown below:

1. Initialise µ∗j and Σ
∗
j for sub-components by varying the mean and co-

variances of the component j.

2. Calculate the probabilities under µ∗j and Σ∗j for the data allocated to

the component j.
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In this thesis, the number of sub-components is set to 2, that is, the compo-

nent is divided into two for each split.

After splitting the model, a new model is available, and the following

question immediately arises, “Does the new model represent the data suffi-

ciently better than the original model?” In this thesis, the original model

splits itself, and the new model therefore always has more components to fit

the data. In this case, the data fit improves a certain amount. However,

this does not mean the new model is always better, since there are more

parameters and the complexity is increased. A criterion is therefore required

to balance the data fit and the model complexity.

This is well researched in the literature [21]. One approach is the Akaike

Information Criterion (AIC) developed by Akaike in 1974 [3], which is based

on the Kullback-Leibler information loss [74]. Another widely used alterna-

tive to AIC is the Bayesian Information Criterion (BIC) adopted by Schwarz

in 1978 [99]. The BIC can be seen as an approximation to the Bayes factors

for Bayesian model choice, although exact Bayesian model selection can be

much more complicated than BIC [42]. Wilson [120] discussed the use of a

log-Bayes factor criterion and minimum information criterion.

The formulas for the AIC and BIC are:

AIC = 2θ − 2 log(L) (4.17)

BIC = log(M)θ − 2 log(L) (4.18)

where L is the likelihood of observing the data given the model; θ is the num-

ber of parameters in the model, which describes the complexity of the model;
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Table 4.1: Comparisons of the log-likelihood and the model complexity for
BIC criterion and BIC with a log(K) penalty.

Number of Log-likelihood
Components Value

BIC 36 −1368832
BIC with log(K) penalty 18 −1438996

M represents the dimensionality and the number of data points. Lower val-

ues in both criteria imply the preferred model. It is also shown in equation

(4.17) and equation (4.18) that the AIC penalises model parameters less than

the BIC does.

The goodness-of-fit test used in this thesis is derived from the BIC, since

the BIC appears to favour the data fit and results in making too many com-

ponents in a number of experiments. A penalty, log(K), where K is number

of components, was added to avoid splitting into too many components,

α = log(M) log(K)θ − 2 log(L) (4.19)

In effect, this penalty gives more weight to model complexity than BIC does.

Results using this criterion are shown in Table 4.1 and Section 4.9.

4.8 Speed and Efficiency

Selectively updating using neighbouring components can improve the speed

of likelihood computation of the observations. For each data point xi, some

components, usually ‘far away’ from xi, have little or no connection at all.

Therefore, the likelihoods of xi for these components can be approximated



Chapter 4. Statistical Modelling of Plant Surface Attributes 94

to zero. In this study, the probability of each component j for xi is used as

a distance metric. For example, if xi has a probability of 0% to component

j, this means component j has no relationship with xi. In this study, the

threshold of probability is set to 0.001%, which keeps connections to possible

neighbouring components and discards ‘far away’ ones.

Determining the number of components is a very expensive operation at

the full scale. In this study, the number of components as well as µj and

Σj for each component j are estimated using a small portion of the data.

Then, only neighbouring Gaussians are used to selectively update at the full

scale. However, a lack of data can lead to weak likelihoods, which would not

correct some badly-estimated priors. Hence, in this study, an intermediate

scale is introduced to update the model structure and parameters.

Table 4.2 presents a summary of the Multiresolution Gaussian Mixture

Model used in this thesis.

4.9 Results

4.9.1 Modelling Results for a set of Gaussians Data

This section presents results of applying the Multiresolution Gaussian Mix-

ture Model (MGMM) to synthetic data. The data contain six 2D Gaussians.

Four of the Gaussians are placed at corners in the x-y image domain, while

two are in the middle and have the same mean but different covariances (a

‘cross’ shape). The total number of data samples is 65536, with around 10000

samples for each Gaussian.
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Table 4.2: Summary of the Multiresolution Gaussian Mixture Model

Step 1: Initial Guess

The model parameters µj and Σj for each class j, j = {1, . . . , K}
are initialised by K-means or training procedures.

Step 2: Gibbs Sampling

Apply the Gibbs sampling method to update model parameters.

Step 3: Model Split

Split the cluster which has a bad fit to the data.

Step 4: Model Selection

Compute the goodness-of-fit for the post-split model αnew and the
pre-split model αori. If αnew > αori, go back to Step 2; Else, return
the pre-split model as the output.

The MGMM was configured to start as a two-component model, with

both components starting from the location of the ‘cross’ in the middle. As

discussed in this chapter, a new component was added into the model if the

goodness-of-fit test on the model at that resolution was not satisfied. After

a number of empirical tests, αj , ǫj , and ωj were set according to components

in the parent model. τj and λj were set to 1 and 8 respectively [93]. The

number of Gibbs sampling iterations was set to 300, and Figure 4.1 presents

the number of changes in class labels against the number of Gibbs sampling

iterations. It was found in experiments that the number of changes in class

labels does not vary significantly beyond 200 iterations, and 300-iteration

ensures the convergence of the Gibbs sampler. The number of EM algorithm

was set to 30, and Figure 4.2 plots the log-likelihood values against the

number of EM iterations.
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Table 4.3: Comparisons of the log-likelihood and the running time for Gaus-
sians data. All four results had the same starting values, and two variations
of K-means algorithm were used to illustrate the ‘cross’ problem.

Number of Log-likelihood Time
Components Value in Seconds

Gibbs sampling 6 −253818 37.220
EM 6 −256188 3.872

K-means 5 −291037 0.759
K-means 6 −296737 0.793

Figure 4.3 shows how the MGMM works to identify the number of com-

ponents at the coarsest resolution. Figure 4.4 presents how the MGMM

develops over 3 resolutions. Figures 4.5 and 4.6 present the results using

Gibbs sampling and the EM algorithm respectively, while Figure 4.7 shows

the comparisons with the K-means algorithm. The K-means algorithm was

configured to have 6 centroids, identical to the number of Gaussians. It is

clear that the K-means with 6 centroids could not locate all components

in the data, which was caused mainly by the ‘cross’ problem. A better re-

sult was obtained by using the K-means with 5 centroids, but there was one

Gaussian missing.

Table 4.3 presents the log-likelihood value and the running time using the

four implementations. The procedure to compute the log-likelihood value for

the K-means is identical to the SOM discussed earlier, in which each centroid

represents the mean in the Gaussian mixture model and the covariance is

computed from the data assigned to each centroid.
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Figure 4.1: A plot of the number of changes in class labels against the
number of Gibbs sampling iterations for 2D ‘shape’ data.
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Figure 4.2: A plot of log-likelihood values against the number of EM iter-
ations for 2D ‘shape’ data.
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(a) 2 components (b) 3 components

(c) 4 components (d) 5 components

(e) 6 components

Figure 4.3: Evolution of the MGMM over different numbers of compo-
nents at the coarsest level. The dot and the circle represents the mean and
covariance respectively.
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The coarsest level

The intermediate level

The finest level

Figure 4.4: Evolution of the MGMM over levels. The dot and the circle
represents the mean and covariance respectively.
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Figure 4.5: Results of Gibbs sampling for the Gaussian data. The dot and
the circle represents the mean and covariance respectively.

Figure 4.6: Results of EM algorithms for the Gaussian data. The dot and
the circle represents the mean and covariance respectively.
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6 centroids

5 centroids

Figure 4.7: Results of K-means algorithms with different centroids for the
Gaussian data. The red dot represents the location of a centroid.
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Figure 4.8: ‘Shape’ data

Figure 4.9: Results of the Gibbs sampling for the ‘shape’ data. The dot
and the circle represents the mean and covariance respectively.
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Figure 4.10: Results of the EM algorithm for the ‘shape’ data.

Figure 4.11: Results of the EM algorithm with random starting values.
The dot and the circle represents the mean and covariance respectively.
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5 centroids 6 centroids

10 centroids

Figure 4.12: Results of the K-means algorithm for the ‘shape’ data. The
red dot represents the location of a centroid.
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4.9.2 Modelling Results for Shape Data

This section presents results of an example of more complicated synthetic

data. The 2D ‘shape’ data is no longer a set of Gaussians, which would

require more components from the model to fit. The ‘cross’ is featured,

together with a few other regular shapes. The total number of data samples

is 66593.

The MGMM was configured to start as a six-component model, in which

each shape had one component. The ‘cross’ is considered to have two compo-

nents, but overlapped with each other. Figure 4.9 presents the final formation

of the MGMM using Gibbs sampling, which had 2 components for each shape

except the ‘cross’. The need for more components for each shape is due to the

fact that the shapes are not Gaussians, although they can be approximated

by a number of Gaussians, which is demonstrated in Figure 4.9.

Figure 4.10 presents the formation of the MGMM using the EM algo-

rithm, which had the same initial configuration as Gibbs sampling. However,

to demonstrate the EM algorithm’s sensitivity to starting values, a random

configuration was applied and the result is shown in Figure 4.11. The ran-

dom configuration was applied to the MGMM using Gibbs sampling, and the

result did not vary significantly from the one shown in Figure 4.9.

The K-means algorithm with 6 centroids (Figure 4.7) could not locate

the exact position of the ‘cross’. The 5-centroid K-means algorithm (see

Figure 4.7) fitted each shape by one centroid by treating the ‘cross’, which

comes from two distributions, as a single distribution. Table 4.4 presents the

log-likelihood value for the two formations of the K-means and the MGMM.
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Table 4.4: Comparisons of the log-likelihood and the running time for 2D
‘shape’ data. Gibbs sampling method, EM and K-means with 6 centroids had
the same starting values. K-means with 5 centroids only used one centroid
instead of two for the ‘cross’ shape. Gibbs sampling and EM with random
starting values were also tested. K-means with 10 centroids also had random
starting values.

Number of Log-likelihood Time
Components Value in Seconds

Gibbs sampling 10 −762844 46.327
EM 10 −759701 11.990

K-means 6 −785153 0.789
K-means 5 −782128 0.764

Gibbs (Random) 10 −760425 46.142
EM (Random) 10 −769999 15.468

K-means (Random) 10 −772640 0.961

Table 4.5: Comparisons of the log-likelihood and the running time for Pansy

data. All four methods started with 3 components. K-means cannot change
its model structure, and SOM increased model complexity at a fixed rate for
each resolution. Gibbs sampling and EM automatically evolved to balance
model complexity and data fit.

Number of Log-likelihood Time Number of
Components Value in Seconds Iterations

Gibbs sampling 18 −1435433 104.600 300
EM 18 −1435698 67.823 30

K-means 3 −1624527 2.616 17
SOM 1024 −1017960 6.089* 10000

* SOM was implemented in C++, while the other three were in MATLAB.
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4.9.3 Modelling Results for Pansy Data

This section presents results for a pack of Pansy plants. The initial config-

uration of components for the MGMM are: one component for the yellow

part of the Pansy flower, one component for the black part of the flower and

one component for the leaves. The MGMM in the end had 18 components

in total, five of which represent the flowers; two components represent the

yellow flower part and three components represent black flower part. Com-

ponents developed from the yellow and black part of the Pansy are shown as

red. The other 13 components represent leaves, which are shown as green.

Figures 4.15 and 4.16 present the result using Gibbs sampling and the EM

algorithm respectively. Figure 4.17 presents the results of the K-means algo-

rithm. Three components were used, identical to the initial configuration for

the MGMM, and the model complexity remained the same since the K-means

algorithm cannot evolve itself. The result obtained by Gibbs sampling was

the best of the three, and the K-means algorithm produced the most noisy

estimates. Table 4.5 presents the log-likelihood value and the running time

using the three methods and the SOM results from Chapter 3. Although the

EM algorithm produced similar log-likelihood value as the sampling method,

a large part of the flower component is misclassified into leaves.

4.10 Discussion

The MGMM can produce good results in the case of overlapped distributions.

The result for the ‘cross’ in Figure 4.4 has demonstrated that the MGMM’s

ability to locate two distributions with the same mean but different covari-
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Figure 4.13: Pansy data

Figure 4.14: 18 Components in the MGMM using Gibbs sampling for the
Pansy data.
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Figure 4.15: Classification of the Pansy data using Gibbs sampling. Red
colour represents the flowers, and green colour represent the leaves.

Figure 4.16: Classification of the Pansy data using EM.
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Figure 4.17: Classification of the Pansy data using K-means. The black
dot represents the location of a centroid.

ances. The K-means method does not take account of the covariance, and

it therefore could not identify all the Gaussians in the data. The result for

the ‘shape’ data has demonstrated the MGMM can approximate arbitrary

probability densities, not only for the Gaussian case. The goodness-of-fit

test has also been shown to work, and it balances the data fit and the model

complexity.

The Pansy result has demonstrated the potential that the MGMM is a

tool to model the plant attributes for monitoring and grading purposes. Each

component in the MGMM represents a region of interest for a plant. The

mean µj for each component contains not only the geometry measurement

but also the colour measurement. The covariance Σj for each component

describes how variable the measurements in the component are. The pop-
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ulation, πj , represents how large the region of interest is, and an example

is the amount of Pansy flowers. The MGMM models the plant complexity

automatically, given simple training or initialisation at the start.

It can be seen from Tables 4.3 - 4.5 that the Gibbs sampling method

can give much better estimates of probability densities than the K-means.

There is a 13% increase in terms of the log-likelihood value for the Gaussian

data as well as the Pansy data, and a 3% increase for the ‘shape’ data.

Although the increased number of components in the mixture model should

result in a better data fit, this does not apply to the K-means. The K-means

algorithm cannot guarantee the convergence to the optimal data fit, since

this depends largely on the initial set of clusters [17]. The EM algorithm

can produce similar results to the Gibbs sampling method given a good

initial configuration, and the log-likelihood value did not vary significantly.

However, Gibbs sampling is more robust than the EM algorithm, since the

random configuration affected the EM algorithm more than the sampling

method, which resulted in a 2.7% decrease in the log-likelihood value in

Table 4.4. The SOM is expected to produce the best data fit, since it was

treated as a 1024-component model, which is a lot larger than the others.

In terms of the running time, the K-means is the most efficient approach.

The time required for running Gibbs sampling was much longer than the EM

algorithm.

The undesirable noise shown in the Pansy example is caused by incorrect

height estimates. This occurs in regions where the change of height is signifi-

cant, and occlusions are inevitable. Also in some of these regions, the colour

data cannot contribute much to noise removal, since the shadow has the same
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visual appearance as the black part of the flower for example. In this thesis,

the uncertainty se associated with each point did not have a noise model built

into the MGMM, unlike the learning rate in the SOM, and the height data

are therefore assumed to be 100% correct. The results could be improved by

taking the associated uncertainty into account by introducing a noise model

for height data. Another notable difference is that the MGMM only takes

account of the prior from the parent level, while the SOM is constructed from

the neighbours and the parents.

As discussed above, the sampling method is more robust than the EM

algorithm, however, the EM algorithm is much more efficient. The trade-

off between reliability and efficiency therefore should be determined for a

particular horticultural application. For example, the EM algorithm can be

used to produce rough estimates for a crop in a relatively short time. When

more precise estimation is required, the sampling method is a better choice.

4.11 Summary

The probabilistic model approach, MGMM, can solve many problems faced

by heuristic procedures, such as the self-organising map and the K-means

algorithm. It has been demonstrated in this chapter to approximate arbitrary

probability densities, and evolve itself to a certain size to balance the data

fit with the model complexity. Surface attributes, such as plant height and

the amount of flowers, are readily obtainable from the components in the

MGMM. Although much work in prior and likelihood construction is still

required to tune the MGMM, for example, to incorporate a noise model for
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height data, it has been shown the potential as a useful tool to model the plant

attributes for monitoring and grading purposes in the horticulture industry.

As demonstrated in this chapter, the sampling method is more reliable while

the EM algorithm is more efficient. Different horticultural applications have

their preference for reliability and efficiency, and the choice between the

sampling method and the EM algorithm should therefore be determined on

an individual basis.



Chapter 5

Monitoring Plant Growth Over

Time

5.1 Introduction

In Chapters 3 and 4, approaches to modelling plant attributes at a particular

time point have been discussed, but the relationship between plant attributes

at different times was not discussed. In this chapter, a Kalman filter approach

is presented for tracking a set of attributes over time, in order to characterise

the plant growth.

There are two reasons for examining this relationship. First, tracking

a model over time can help to investigate trends in the data from a time-

series point of view, and the model can be used to explain the behaviour of

the measurements, since the underlying plant growth process is incompletely

understood. In particular, growers often want to know if the measurements

on plants exhibit an increasing or decreasing trend, as well as when the plants
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are ready for marketing.

Secondly, tracking the plant model over time can be used to predict future

measurements from past ones. The prediction can be seen as prior knowledge

input into a Bayesian framework to form an optimal estimate of plant growth

at a particular point in time.

5.2 Plant Growth Monitoring

Plant growth monitoring is conventionally performed by individuals who have

special knowledge of a particular plant. However, in large-scale commercial

production, this conventional approach has a number of disadvantages as

discussed in Chapter 1.

Poinsettia growers, for example, are required to produce plants that ad-

here to tight specifications, and one of the most rigorous specifications is

plant height [80]. A Poinsettia tracker [51] was developed in 2001 for crop

scheduling, where the actual plant state is plotted against an ideal target

curve which encapsulates all crop and environmental characteristics. How-

ever, this tool is only used for the purposes of presentation and record. It

does not solve the problems of human hand measurement outlined above, and

the tool itself cannot produce measurements given a set of images, unlike the

approach proposed in this thesis. It is worth pointing out that there are no

other methods apart from the curve fitting approach used by the Poinsettia

tracker and the Kalman filter approach proposed in this thesis to compare

with.

A general statistical model for plant growth over time can be formulated
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as a regression model, in which the variables are functions of time and the

parameters are time-varying. The key to handling such a time-series model

is the state-space formation, with each state representing the variables and

parameters at a given time [37]. Since observations often contain a certain

amount of noise, a smoothing operation is required to minimise the errors

in the data. This problem can be tackled by following a moving average

approach [16] or a Wiener filtering approach [118]. Both approaches require

a windowing operation on the measurements, and then weighting the past

values to determine the present value.

Another approach is recursive processing, in which the key element is

the use of the results in the previous state to help estimate the result for

the current state. The best-known recursive method is Kalman filtering [63],

which is discussed in Section 5.4. The Kalman Update, briefly discussed in

Chapter 2, forms part of a scalar Kalman filter, where the prediction process

is replaced by the propagated estimates from the parent level. The discussion

of the Kalman filter in this chapter considers a more general case, and both

the process and the observation are modelled in vector form.

5.3 The State Space Formation

Assume that the development over time is determined by a set of states

x(t), t = {1, 2, · · · ,∞}, with which are associated a set of observations

y(t), t = {1, 2, · · · ,∞}. The aim of state-space analysis is to estimate the

properties of the states, given knowledge of the observations [18]. A process

model is used to describe the transition between two successive states, and
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the relationship between the states and the observations is specified by an

observation model.

5.3.1 The Process Model

The process model describes the state transition over time. A linear model

is shown below:

x(t) = A(t)x(t− 1) + b(t) + v(t) (5.1)

where x(t) is a vector, which contains all values in the state at the time

t. A(t) is a matrix representing the state transition, while the vector b(t)

represents the trend. The vector v(t) is the process noise, and is assumed to

be drawn from a multivariate Gaussian distribution shown below,

v(t) ∼ Nv(0,Q(t)) (5.2)

where Q(t) is the process noise covariance.

In general, the ‘true’ state, x(t), cannot be observed directly, although

it is considered to be generated by a Markov process [24]. The output of a

state x(t) can be observed, as discussed below.

5.3.2 The Observation Model

The observation model, also known as the measurement model, describes the

process of observing the output of the state. Similar to the process model

used in this thesis, a linear observation model is used. If a vector y(t) is the
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noisy observation for a state x(t), the model equation is shown below:

y(t) = H(t)x(t) + e(t) (5.3)

where the matrix H(t) maps the state space into the observation space. The

vector e(t) is the measurement noise, which is drawn from a zero-mean white

Gaussian process.

e(t) ∼ Nv(0,W(t)) (5.4)

where W(t) is the measurement noise covariance.

H(t) in equation (5.3) accounts for certain variables in the state vector

that cannot be observed. However, in this thesis, it is assumed that each

state can be completely observed, and there is no scaling difference between

each state and its observation. The observation model is therefore simplified

into the following form,

y(t) = x(t) + e(t) (5.5)

Using the state-space formation, the Kalman filter discussed below is a re-

cursive technique to solve the minimum mean-square error filtering problem.

5.4 Kalman Filter: State-Space Filtering

The Kalman filter has been the subject of extensive research since Rudolf

Kalman published his paper in 1960 [63]. It has been used successfully in a

wide range of applications, from financial forecasting [117] and economic ap-

plications [50], to GPS navigation [46], missile guidance [103] and helicopter
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control [96]. In effect, the Kalman filter is a set of equations that enables re-

cursive estimation of the state, given a process model, an observation model

and a series of noisy measurements. The process model is assumed to be

driven by additive Gaussian noise, while the measurements are also assumed

to be corrupted by additive Gaussian noise with known covariance. The ob-

jective of the Kalman Filter is to update knowledge every time an observation

becomes available. The filter operates in a ‘Predict-Update’ cycle, in which

the state is predicted using the process model and the predicted state is then

updated with a noisy measurement.

In the ‘Predict’ stage, the state estimate x̂(t) and its noise covariance

P(t) at the time t are predicted from the state at the time t− 1.

x̂(t) = A(t)x̂∗(t− 1) + v(t) (5.6)

P(t) = A(t)P∗(t− 1)AT (t) +Q(t) (5.7)

where x̂(t) and P(t) are the predicted state and covariance respectively. Val-

ues with ∗ denote the posteriors.

The ‘Update’ stage can be viewed as a linear blending of the noisy obser-

vation y(t) and the predicted estimate x̂(t). The equations to compute the

posterior estimate x̂∗(t) and its noise covariance P∗(t) are shown below:

x̂∗(t) = x̂(t) +G(t)

[

y(t)− x̂(t)

]

(5.8)

P∗(t) =

[

I−G(t)

]

P(t) (5.9)

where G(t), known as the Kalman gain, controls the input of the innovation,
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Table 5.1: Summary of the Kalman filter

The ‘Predict’ Stage:

x̂(t) = A(t)x̂∗(t− 1) + v(t)

P(t) = A(t)P∗(t− 1)AT (t) +Q(t)

The ‘Update’ Stage:

G(t) = P(t)
[

P(t) +W(t)
]−1

x̂∗(t) = x̂(t) +G(t)
[

y(t)− x̂(t)
]

P∗(t) =
[

I−G(t)
]

P(t)

which is the difference between the observation y(t) and the prediction x̂(t).

Given the measurement noise covariance W(t), G(t) is calculated as follows:

G(t) = P(t)

[

P(t) +W(t)

]−1

(5.10)

If G(t) → I, more input comes from the observation y(t) to the state es-

timate, while the prediction x̂(t) contributes more to the estimate if G(t)

becomes a zero matrix. Like the ‘scale-space’ Kalman filter discussed in

Chapter 2, the Kalman gain is a matrix, which can be used to take account

of correlations between state variables.

5.5 Parameter Configuration

This section presents a simple example of synthetic data using the Kalman

filter and demonstrates the effect of changing parameters of the filter. The

core parameters that affect the filter performance are: the process noise



Chapter 5. Monitoring Plant Growth Over Time 122

covariance Q(t) in equation (5.7), the measurement noise covariance W(t) in

equation (5.10) and the initial state covariance P∗(0). It is common practice

to assume the noise covariance matrix to be diagonal, due to the lack of

sufficient information to evaluate its off-diagonal terms [116].

From equation (5.7), the state noise covariance P(t) is large if Q(t) is

large, which indicates an inadequate process model. For large P(t), the

Kalman gain G(t)→ I and the inadequate process model therefore has less

input to the state estimate. Due to this connection between P(t) and Q(t),

the Kalman gain can be expressed as a ratio of process to measurement noise,

which is shown below,

G(t) ∝ Q(t)W−1(t) (5.11)

To demonstrate the effect of these noise covariances on the performance of the

Kalman filter, consider a simple example of synthetic data. Although some

authors [24, 115] have presented 1D scalar examples, this thesis presents an

example in vector form on 2D x−y position data. The series has 20 samples

in total, and the state equation for this series is shown below,

x(t) =



















[

1 1

]T

, if t = 1

x(t− 1) +

[

1 1

]T

, otherwise

(5.12)

Figure 5.1 presents the values of the ‘true’ states x(t) to be estimated in the

x-y domain.

The ‘true’ value of each state allows computation of the RootMean Square
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Figure 5.1: 2D x− y position data

(RMS) difference, which indicates the quality of the estimates.

RMS =

D
∑

i=1

√

√

√

√

1

T

T
∑

t=1

[

x̂(t)− x(t)

]2

(5.13)

In practice, this kind of ground truth data is not available, nor is the process

model; nevertheless, it is useful for the toy example here.

Figure 5.2 presents the noisy observations y(t), which is obtained accord-

ing to the equation (5.5). The process noise e(t) is synthetically generated

from a Gaussian distribution with mean µ = 1 and standard deviation σ = 1.
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Figure 5.2: Noisy observations of the 2D position data. Black cross: the
noisy observations, Red letter X: the ‘true’ states.
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5.5.1 The Process Noise Covariance

The process noise determines the characteristics of the uncertainty in the

process model. In this example, three values are selected for the process

noise covariance Q(t).

Q1(t) =







1 0

0 1






(5.14)

Q2(t) =







0.01 0

0 0.01






(5.15)

Q3(t) =







0.000001 0

0 0.000001






(5.16)

The other two parameters are set as follows,

W(t) =







0.1 0

0 0.1






(5.17)

P∗(0) =







1 0

0 1






(5.18)

Figure 5.3 presents the results. Table 5.2 presents the RMS values with

different Q(t). For large Q(t), there is more input from the observations,

and the state estimates are therefore more noisy. The estimates become

smoother as the process noise decreases, which is a result of more input from

the predicted estimates using the known process model.
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Q1(t)

Q2(t)

Q3(t)

Figure 5.3: Effect of varying the process noise covariance. Blue circle: the
Kalman estimates, Red letter X: the ‘true’ states.
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5.5.2 The Measurement Noise Covariance

The measurement noise quantifies the uncertainty in the observations. Three

values are used for W(t).

W1(t) =







1 0

0 1






(5.19)

W2(t) =







0.1 0

0 0.1






(5.20)

W3(t) =







0.01 0

0 0.01






(5.21)

The other two parameters are set as follows,

Q(t) =







0.01 0

0 0.01






(5.22)

P∗(0) =







1 0

0 1






(5.23)

Figure 5.4 shows the results, and Table 5.2 presents the RMS values. The

effect of changing the measurement noise covariance W(t) is opposite to the

one that varies the process noise covariance Q(t). For small W(t), the effect

is similar to the one with large Q(t), in which there are more noisy estimates,

although the variation in Q(t) affects less than W(t) does.
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W1(t)

W2(t)

W3(t)

Figure 5.4: Effect of varying the measurement noise covariance. Blue circle:
the Kalman estimates, Red letter X: the ‘true’ states.
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5.5.3 The Initial State Noise Covariance

The state noise represents the uncertainty in the state estimate, and it can

be used to derive a scalar value indicating the overall performance of the

filter [24]. This performance criterion is shown below,

J =
1

T

T
∑

t=1

tr(P∗(t)) (5.24)

where tr represents the trace of the covariance matrix P∗(t), and T is the

total number of states. Lower values indicate better filter performance, and

the state estimate therefore always has a greater value than the ‘true’ state.

Jtrue < Jestimate (5.25)

Jazwinski [59] has shown that the effect of initial state noise can be neglected

as more data are processed. The state noise therefore approaches to zero

given enough data, which implies that the estimate converges to the ‘true’

value. To demonstrate this, let

P∗1(0) =







10 0

0 10






(5.26)

P∗2(0) =







1 0

0 1






(5.27)

P∗3(0) =







0.1 0

0 0.1






(5.28)
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and

Q(t) =







0.01 0

0 0.01






(5.29)

W(t) =







0.1 0

0 0.1






(5.30)

The effect of different values for P∗(0) is shown in Figure 5.5 and Table

5.2. The initial state noise makes a minor difference in the early part of the

processing, where large P∗(0) leads to more input from the observations and

less from the predicted estimates. However, as shown in Figure 5.5, after

processing three data samples, the effect of different values in P∗(0) becomes

negligible, and the state noise covariance P∗(t) converges to the same steady-

state value as expected. This is important, since the initial statistics of the

state noise are rarely known in practice.

Both the process model and the ‘true’ states are known in this example,

but they could be difficult to determine in practice. In the next section, the

Kalman filter for tracking plant attributes is developed.
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P∗1(0)

P∗2(0)

P∗3(0)

Figure 5.5: Effect of varying the initial state noise covariance. Blue circle:
the Kalman estimates, Red letter X: the ‘true’ states.
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Figure 5.6: Effect on the state noise by using different initial state noise
covariances. Dashed line: P∗1(0), large P∗(0). Solid line: P∗2(0), intermediate
P∗(0). Dash-dot line: P∗3(0), small P

∗(0).
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Table 5.2: RMS performance comparisons of the Kalman filters with dif-
ferent noise covariances

Conditions Variables RMS
fixed W(t) and P∗(0) Q1(t) 1.7585
fixed W(t) and P∗(0) Q2(t) 0.9352
fixed W(t) and P∗(0) Q3(t) 0.8596

fixed Q(t) and P∗(0) W1(t) 0.6874
fixed Q(t) and P∗(0) W2(t) 0.9352
fixed Q(t) and P∗(0) W3(t) 1.3353

fixed W(t) and Q(t) P∗1(0) 0.9539
fixed W(t) and Q(t) P∗2(0) 0.9352
fixed W(t) and Q(t) P∗3(0) 0.8552

5.6 Kalman Filter for Plant Attributes

This section presents the results of using the Kalman filter to track a set

of plant attributes over time. This set of image data captures a number of

growing Pansy plants twenty-one times over two months, three times a week,

starting from the early potting stage to the marketing stage. The hand mea-

surements on the leaves’ and flowers’ heights were carried out twice a week,

and cover two-thirds of the captures. The image data were collected using the

moving camera rig described in Chapter 2, and all the visual characteristics

of the plants were captured. The attributes are extracted using the MGMM

approach discussed in Chapter 4 for three main classes, which are ‘flowers’,

‘leaves’ and ‘others’ (soil and box edge, for example). Each class includes

a set of attributes: height, population (the amount of flowers or leaves, in

other words) and colour. In the early growing stage, Pansy has only leaves,

with flowers appearing near the marketing stage.

Figure 5.7 presents the relationship between the number of days since the



Chapter 5. Monitoring Plant Growth Over Time 134

early potting stage and the time t used in this thesis. To apply the Kalman

filter, all the attributes for each main class at time t = {1, · · · , 21} are formed

as a 5 × 1 vector of measurements, which contains height, population and

colour (R,G,B). However, for simplicity of presentation, each attribute is

discussed separately below. All the parameters of the Kalman filter can be

incorporated into a profile for a particular plant, which can be re-used. In this

thesis, the parameters were derived from the result of one Pansy plant (also

known as Plant 1), and they were then used for processing three other plants

(also known as Plant 2, Plant 3 and Plant 4). The process, measurement, and

initial state noise were determined through a series of experiments similar to

those in Section 5.5.

5.6.1 Height

The leaf height was computed by averaging all the mean heights in the com-

ponents of ‘leaves’ in the Gaussian mixture model, which is analogous to

what an expert does to measure the height by hand. The characteristics

of plant height variations over time can be modelled using a linear Kalman

process model. Figure 5.8 presents a set of hand measurements on the leaf

height of a Pansy plant (Plant 1), and a linear Kalman process model to

fit the measurements. The equation of the Kalman process model is shown

below:

x(t) = 1.1x(t− 1) + 0.01 t = 1, 2, · · · , 21 (5.31)

It can be seen in the Figure 5.8 that this process model sufficiently describes

the evolution of the plant height.
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Figure 5.7: A plot of days since the early potting stage against the time t.
Black circle: the image measurements. Red letter X: the hand measurements.
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Figure 5.8: A linear Kalman process model to represent the leaf height over
time. Black curve: the linear model, Red letter X: the hand measurements.
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Figure 5.9: Tracking the leaf height over time for Plant 1 by Kalman filter.
Blue curve: the tracked height. Black circle: the noisy observations. Red
letter X: the hand measurements.
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Figure 5.10: Tracking the leaf height over time for Plant 1 by curve fitting.
Purple curve: the tracked height. Black circle: the noisy observations. Red
letter X: the hand measurements.
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Figure 5.11: Tracking the leaf height over time for Plant 1, Plant 2, Plant
3, Plant 4 by Kalman filter. Red solid line: Plant 1, Blue dotted line: Plant
2, Magenta dash-dot line: Plant 3, Green dashed line: Plant 4.
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Figure 5.12: Hand measurements on the leaf height for Plant 1, Plant 2,
Plant 3, Plant 4. Red solid line: Plant 1, Blue dotted line: Plant 2, Magenta
dash-dot line: Plant 3, Green dashed line: Plant 4.
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Figure 5.13: Tracking the flower height by Kalman filter. Blue curve: the
tracked height, Red letter X: the hand measurements.
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Figure 5.9 presents how the Kalman filter tracks the leaf height extracted

with the model shown in (5.31). A cubic curve fitting procedure was used

to fit the data in a similar manner as a Poinsettia tracker [51] does, and

Figure 5.10 presents the results. Table 5.5 shows the RMS values for the

hand measurements and the MGMM measurements.

The same Kalman filter procedures were applied to three other Pansy

plants (Plant 2, Plant 3 and Plant 4), and Figure 5.11 presents the results.

The corresponding hand measurements are shown in Figure 5.12.

The number of measurements on the flower height is four, which is too

small to apply the Kalman filter. The process model is therefore considered

as a bad model with a larger noise, which is 50 times more than the leaf

height. Figure 5.13 presents the results.

5.6.2 Population

The leaf population is calculated by summing the mixture weights of the

components for ‘leaves’. The model used here assumes that there is minor

change of population between the time t and t−1. This allows population to

either increase or decrease, due to the fact that the population is a percentage,

not an absolute measurement, unlike the height. The equation of the linear

process model is shown below:

x(t) = x(t− 1) t = 1, 2, · · · , 21 (5.32)

Figure 5.14 presents tracking the leaf population with the model shown in

(5.32), while Figure 5.15 presents tracking the population of ‘other’ objects
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Figure 5.14: Tracking the leaf population by Kalman filter. Blue curve:
the tracked population, Black circle: the noisy observations.

(for example, soil and box) with the same model.

5.6.3 Colour

In this thesis, each input image is contrast-enhanced by applying a Gamma

correction procedure [45]. As a result, the colour data are different from the

original observation. To address this problem, the RGB (Red, Green, Blue)

colour vectors were converted into the HSV (Hue, Saturation, Value) colour

space [45]. The linear model used here is the identical to the one shown

in Equation (5.32). The Hue value refers to a pure colour without lighting
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Figure 5.15: Tracking the population of other objects by Kalman filter.
Blue curve: the tracked population, Black circle: the noisy observations.
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Figure 5.16: Tracking the leaf colour by Kalman filter. Blue curve: the
tracked colour, Red letter X: the noisy observations.
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or shading, and the change of the Hue therefore represents the variation of

the pure colour. Figure 5.16 presents the change of the Hue for ‘leaves’ over

time. This result is used to show the potential use of the colour attribute

for applications in plant growth monitoring, which is discussed in the next

section.

5.7 Discussion

From the results presented in the previous section, the Kalman filter success-

fully smooths noisy measurements and it can produce a development trend

that correlates well to the actual growth of the plants. The difference be-

tween the smoothed results and the raw measurements can be used as a tool

to indicate abnormalities of the plants in the image. For example, the raw

height measurements decrease at the time t = 3 and t = 6 in Figure 5.9. The

Kalman filter smooths these two unexpected measurements and produces a

trend reflecting the fact that plants grow continuously with time. However, at

these two points in time, the image data were collected shortly after watering

and applying pesticides respectively (see original snapshots in Figure 5.17).

These operations are known to cause a short-term stress effect, that changes

the plant’s growth habit and make plants appear ‘shorter’. Another cause of

the noise in the measurement comes from the way of calculating the average.

In this work, a simple averaging operation was applied, which works well if

all the components have similar statistical population. However, a piece of

leaf that is different from the others could be represented by one component,

while a few leaves with similar characteristics might be represented by an-
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Table 5.3: Height comparisons between the hand measurements and
Kalman estimates for the leaves heights at the time t = 3 and t = 6

Human Kalman Human Kalman
Time at t = 3 Estimates at t = 3 at t = 6 Estimates at t = 6

(cm) (cm) (cm) (cm)
Plant 1 1.7 1.57 1.8 2.47
Plant 2 1.8 1.99 1.9 2.50
Plant 3 1.7 1.32 1.8 1.83
Plant 4 1.8 1.97 1.9 2.52

Avg. 1.75 1.71 1.85 2.33
Std. Dev. 0.0577 0.3254 0.0577 0.3340

other component. The average between the two components is therefore not

the average of all leaves. A better approach is the weighted-average method

by taking account of the statistical population.

The inconsistency of the human operator contributes to a difference be-

tween the hand measurements and the estimates. According to the hand

measurements on the leaf height, which are shown in Figure 5.9, the height

of the plant did not change much between the time t = 3 and t = 6. However,

the plants certainly grew substantially during these days (see Figure 5.17).

Therefore, the tracked estimates appear to represent growth better. Table

5.3 presents the height measurements by hand and the Kalman estimates at

the time t = 3 and t = 6. The human hand measurements should there-

fore not be considered as the ‘ground truth’ data in Section 5.5, although

they are the only available reference in this thesis. The limitations of hand

measurement have been highlighted in Chapter 1.

Table 5.4 presents the results of the population measurements around the

time t = 17, while Figure 5.18 presents snapshots. The increase of ‘others’
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Table 5.4: Comparisons of the population measurements at the time t =
16, t = 17 and t = 18

Population t = 16 t = 17 t = 18
Flowers 0% 0% 1.65%
Leaves 95.25% 92.56% 92.72%
Others 4.75% 7.44% 5.63%

Table 5.5: RMS performance comparisons between the fitted curve and
Kalman estimates for the leaf height.

Hand Measurements MGMM Measurements
Curve Fitting 0.5761 0.5402

Kalman Estimates 0.5474 0.5155

at t = 17 was mainly caused by assuming there is no flower in the image

until time t = 18. The well-developed flowers visible at the time t = 17 are

therefore considered as ‘others’.

In this thesis, the noise covariance matrix includes only diagonal terms,

which is a common practice, and this leads to the use of a diagonal matrix

solely describing the variances of each attributes. However, off-diagonal terms

should also be considered, since there may exist some known correlation

between the attributes [102]. For example, the increase in height could be

linked to the increase of population.

It can be shown in Table 5.5 that the Kalman filter produces estimates

that correlate better to hand measurements and MGMM measurements than

a curve fitting procedure does. Furthermore, the results using the curve

fitting procedure appear to be over-smoothed, and could be inappropriate to

represent plant growth in practice.
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There were only three measurements in a week, and the total number of

states here is 21. This would be likely to increase in practice, since automated

monitoring could be performed at least on a daily basis. In that case, the

Kalman filter would work better since more data would be processed [24].

Given more data, parameters are tuned after each run, and the filter’s reliance

on the guessed parameters, such as initial state noise, becomes negligible.

The variations within a crop, for example, which part of the crop grows

faster, is another factor of interest in plant monitoring. As discussed above,

the lack of fit, in other words, the difference between smooth estimates and

raw measurements, can indicate abnormalities. The variances of the fitted

data can be obtained from the covariances within each component in the

MGMM. Together with the lack-of-fit method, the variations within a crop

could be captured. The analysis of colour in this thesis is performed by using

the Hue value in the HSV space to quantify ‘pure colour’ variation over time.

This could be improved by using a statistical colour model, which has a

probability distribution for modelling colour features such as the histogram

counts [61].
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Input Image t = 3 Input Image t = 6

Height Image t = 3 Height Image t = 6

Figure 5.17: Original images collected at the time t = 3 and t = 6 and
corresponding height images. In each image, top row, Plant 1 and Plant 2;
bottom row, Plant 3 and Plant 4.
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t = 16

t = 17

t = 18

Figure 5.18: Input images at the time t = 16, 17, 18.
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5.8 Summary

This chapter has presented a Kalman filter approach for tracking a set of

attributes over time for monitoring plant growth. The key to tracking at-

tributes over time is the state-space formation. Once in the state space, the

Kalman filter predicts and updates the state as more observations are avail-

able. The effect of various parameters on the filter’s performance has also

been shown with an example on synthetic data. It has been demonstrated

that the Kalman filter successfully smooths the noisy measurements and can

produce a development trend for a crop.



Chapter 6

Conclusions

This thesis proposes various approaches for height measurement, plant data

modelling, and tracking to achieve automated crop growth monitoring and

plant quality assessment in a commercial environment. This final chapter

presents a summary of the thesis, and concludes the work. The drawbacks of

the proposed approaches are also discussed, together with some suggestions

for further research.

6.1 Summary

6.1.1 Plant Height Measurement

The height of a growing plant is an important attribute for quantifying plant

growth. A stereopsis approach is used to obtain the implied geometry in

a stereo pair of images, since the x-y position data are readily available

from each image except the height z. There are commercial systems already

available on the market to measure plant height from side views, but they are
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only applicable for plants grown in individual pots. Current active techniques

for 3D imaging like laser range scanning tend to be more expensive, slower

and more intrusive than a stereopsis approach, and they are therefore not

applicable for the horticulture industry.

The proposed stereopsis technique is a passive vision approach, which

does not interrupt the normal operation in a commercial glasshouse. The

scanning rate is fast, which ensures efficiency. The core hardware is either

one or two cameras, which reduces the complexity of the system and enables

a flexible mounting anywhere in the glasshouse. Finally, the stereopsis sys-

tem only requires ‘off-the-shelf’ products as core components. Until further

advances in active vision techniques are made, the stereopsis approach is the

most suitable method for collecting image data for horticultural applications.

An efficient stereo algorithm to estimate plant height has been discussed.

The algorithm uses a Gaussian pyramid to represent input images at dif-

ferent resolutions. For each block in each resolution, a weighting method

developed for an optimal parent node is applied to prevent the direct par-

ent node from propagating poor results. By using Kalman filter updating

at each level together with the weighting method for selecting an optimal

parent, results from neighbours and scales are used to correct isolated wrong

estimates. It has been demonstrated in Chapter 2 that the proposed stereo

algorithm produces smooth depth maps for different plant types using the

same parameter settings. Among all the algorithms tested, the proposed

method was the most efficient, in terms of the running time, and was the

most accurate, when compared with hand measurements.
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6.1.2 Modelling of Plant Attributes

Given the estimated geometry and colour data from images, two approaches

to modelling plant surface attributes have been presented. The plant surface

modelling discussed in this thesis is concerned with plant attributes, rather

than visual appearance. To this end, a Self-Organising Map (SOM) ap-

proach was adopted. As demonstrated in Chapter 3, this neural network ap-

proach can preserve the global geometry and colour information in the image,

while eliminating incorrect height estimates. However, the fixed structure can

cause issues in optimal data representation, and the choice of the final size is

ambiguous. Furthermore, the SOM cannot form optimal classification when

overlapped distributions are present, since it is not a probabilistic model and

is identical to the K-means algorithm if no neighbourhood update is used.

Although the SOM is particularly useful for mapping the image data, a

probabilistic model such as Multiresolution Gaussian Mixture Model (MGMM)

can solve many of the problems faced by the SOM. In Chapter 4, it has been

demonstrated that arbitrary probability densities can be approximated and

evolved to a size which balances data fit and model complexity. Surface

attributes, such as the plant height and the amount of flowers, are readily

obtainable from the components in the MGMM. Furthermore, this paramet-

ric model is formulated in a Bayesian framework, which allows knowledge

(that is, model parameters) to be updated from past experience and latest

observations. This is a very similar process to what a human operator does,

and its potential has been shown for modelling plant attributes for horticul-

ture monitoring and grading purposes.
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6.1.3 Tracking Plant Attributes Over Time

A Kalman filter can be used to track both the plant model and the associated

statistical ‘knowledge’ (for example, noise models), and the key to track the

model over time is the state-space formation. The Kalman filter predicts

and updates the state as more observations become available. The effect

of various parameters upon the filter’s performance has also been demon-

strated using an example with synthetic data. It has been demonstrated

that the Kalman filter successfully smoothens the noisy measurements and

can produce a development trend for plant images.

The Kalman filter is a parametric model, which enables the parameters

to be tuned for a particular crop and then re-used. Another feature is that

the filter can give not only the general growth trend, but also produces a

lack of fit using the difference between the smooth estimate and raw model

estimate, which may indicate some unexpected problems in a crop. The

covariance within each component in the MGMM can be used to indicate the

variance of fitted data. Together with the lack-of-fit approach, the variation

within a crop can be captured. This is very appealing, since it can indicate

abnormalities of plants in a small area due to conditions such as irregular

watering, spraying operations, or pests and diseases.
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6.2 Limitations and Further Work

Although this thesis has presented modelling and analysis techniques and

demonstrated their effectiveness and practicality in horticulture, there are

still a number of limitations that could be removed.

6.2.1 Stereopsis

The most important drawback of the proposed stereo algorithm in Chapter

2 lies in the simplicity of the occlusion handling, which assumes a smooth

surface. This approach works well for an image containing numerous plants,

in which each plant can be seen as a smooth object. However, it is limited for

images capturing a single plant. Rapid changes of depth occur frequently in

this kind of image, due to the complex nature of plant branches and leaves. In

this case, the proposed algorithm would produce a smooth change of depth,

which does not strictly reflect the actual plant shape.

Since there are only two views of a scene, information is either ‘there’ or

‘not there’. Humans have a remarkable ability to judge depth from a single

monocular image. This is done using monocular cues such as texture, occlu-

sion and known object shapes. Similar techniques can be applied for stereo

by using segmentation cues for example [114]. Marr [76] maintained that

the basis for segmentation must be embedded in the early visual processes

as general constraints, together with the geometrical consequence of the fact

that surfaces coexist in 3D space. Nakayama et al. [82] further discussed the

use of segmentation in relation to machine vision.
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6.2.2 Multiresolution Gaussian Mixture Model

Currently, prior knowledge in the MGMM comes from the parent level, but

another three sources of information could be used to aid estimation. The

first source of knowledge is the uncertainty associated with each point gener-

ated by the stereo algorithm. As discussed in Chapter 4, this uncertainty was

not built into a noise model for the MGMM, unlike the learning rate in the

SOM, which leads to the assumption that the height data were 100% correct.

A notable difference between the MGMM and the SOM is that the MGMM

only uses the prior from the parent level, and does not use any neighbours,

while the SOM is constructed from both the neighbours and the parents.

Finally, knowledge about the model could come from the tracked Kalman

estimates over time, which extends the prior knowledge to a time dimension.

Chapter 4 has presented a model selection criterion derived from the

Bayesian Information Criterion (BIC), which balances data fit and model

complexity. There is plenty of scope for further research in this area. The

BIC can be seen as an approximation to the Bayes factors for Bayesian

model choice, although exact Bayesian model selection can be much more

complicated than BIC [42]. Wilson [120] discussed the use of log-Bayes factor

and minimum information criteria. A better selection criterion should take

account of preferences in different scenarios, similar to a decision problem [9].

For example, plants with well-developed flowers should be associated with a

more complicated model than those that have just been potted.
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6.2.3 Kalman Filter

The process and observation models presented in Chapter 5 are linear. At-

tributes such as population and colour, however, exhibit a more sophisticated

trend over time. Although the Kalman filter has been shown to work well

even with simple linear models, these models can be non-linear, and an ex-

tended Kalman filter [24] can then be applied.

The noise covariance matrix only has diagonal terms, which is common

practice, but this leads to the use of a diagonal matrix solely describing the

variances of each attributes. Off-diagonal terms should also be considered,

due to the fact that correlation between the attributes may exist [102, 116].

Another possible improvement is the use of tracked Kalman estimates as

prior knowledge for other techniques. This has already been discussed above

for the Gaussian mixture model, but the tracked estimates may also be fed

into the stereo algorithm [78]. This would enable the stereo algorithm to

update the tracked estimates under a Bayesian scheme, given a new pair of

images.

6.2.4 High-Dimensional Data Analysis

This thesis has presented techniques for extracting a set of plant attributes

and tracking them over time. In practice, a quality score is usually defined

to represent the plant quality in general. This score that classifies plants

into different grades could be derived from all the attributes using a high-

dimensional data classifier, such as a support vector machine [30].

In addition to the quality score, the detection of pests and diseases could
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be achieved by examining the outliers in the data. Some symptoms of pests

and diseases can only be identified by examining a number of attributes.

Consider the Chrysanthemum stunt viroid for example, which is probably

present in all Chrysanthemum growing regions [32]. The symptoms of this

disease include reduced flower size, flower break or bleaching (that is, a re-

duction in colour intensity), and a reduction of up to 50% in overall height

in mature plants. A plant suffering from these symptoms could be identified

as an outlier compared with other healthy plants.

6.2.5 Other Sources of Information

Given the technique developed to analyse high-dimensional data, the num-

ber of data dimensions could be increased by incorporating information from

other sources. In this thesis, all the image data were collected from con-

ventional digital cameras, which give images similar to those seen by human

eyes. Thermal imaging could be used to provide temperature information,

which is not available from the visible spectrum (see [11] for an application

in civilian law enforcement), and more recently applications were developed

in plant physiology [25].

Researchers have already treated chlorophyll fluorescence as a tool in

plant physiology, and interpretation of fluorescence signals can provide valu-

able information on stress effects [25]. Following the similar procedure sug-

gested above for thermal imaging, a chlorophyll fluorescence sensor could be

added into the existing structure to provide another dimension of data.
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6.3 Concluding Remarks

This thesis has investigated techniques for modelling and analysing plant im-

age data. There is much work yet to be done; nevertheless, the outcomes of

this thesis could lead to a number of potentially important applications in

horticulture such as crop growth monitoring. Furthermore, the methodolo-

gies of modelling and analysis developed in this thesis for ornamental plants

grown in glasshouses could be applied to a wide range of other plants, includ-

ing field crops and fruit crops, such as potato, sweet corn and strawberry.



Appendix A

A Brief Introduction to

Bayesian Mixture Modelling

A.1 Gaussian Mixture Model

Recall that in a Gaussian Mixture Model g(x) described in Chapter 4, data

are modelled by a mixture of probability distributions. The density of g(x)

can be approximated as follows:

g(x) ≃ ĝ(x) =

K
∑

j=1

πjfj(x|θj) (A.1)

where the mixture weights πj satisfy
∑K

j=1 πj = 1. Suppose there are K

components in the input data xi, i = {1, · · · , N}, and each component is

a Gaussian parameterised by its mean vector µj and covariance matrix Σj ,
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j = {1, · · · , K}. The density of component j is

fj(x|θj) = Nv(x|µj,Σj) (A.2)

=
1

(2π)D/2
|Σj |

− 1

2 exp

{

−
1

2
(x− µj)

TΣ−1
j (x− µj)

}

(A.3)

where D is the dimension of the input data. A sample of input data xi,

i = {1, · · · , N}, can therefore be expressed as

xi ∼ Nv(µj,Σj) (A.4)

A.2 Missing Data Structure

Robert [93] proposed that the class labels zi, zi ∈ {1, · · · , K}, which identify

the component to which each data sample belongs, can be seen as the missing

data part of the sample, since it is not observed.

In a Bayesian framework, given an appropriate prior density p(θj) for the

parameter θj , the posterior density can be expressed as follows:

p(θj|xi) ∝ L(θj)p(θj) (A.5)

= C−1
∑

i

L(θj)p(zi|θj)p(θj) (A.6)

where L(θj) denotes the likelihood formed on the data xi, and p(zi|θj) denotes

the conditional density of zi given θj . The normalising constant C is obtained

by:

C =

∫

∑

i

L(θj)p(zi|θj)p(θj) dθj (A.7)
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If ‘conjugate prior’ is specified for a missing data structure zi, simulation

conditional on zi is then possible.

A.3 Conjugate Priors

In Bayesian methods, prior is usually chosen so that the posterior belongs to

the same form of distribution as the prior. Prior and posterior chosen in this

way are said to be conjugate. For example, given a Gaussian likelihood,

p(x|θ1) = Nv(µ1,Σ1) (A.8)

and choosing a Gaussian prior,

p(θ1) = Nv(µ2,Σ2) (A.9)

the posterior is still Gaussian as shown below,

p(θ1|x) = Nv(Σ1Σ
−1µ1 + Σ2Σ

−1µ2,Σ
−1) (A.10)

where Σ is the sum of Σ1 and Σ2:

Σ = Σ1 + Σ2 (A.11)

For the Gaussian mixture, this implies using the following conjugate densi-

ties: Dirichlet for the mixture weights, Gaussian for the means and inverse
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Wishart for the covariances.

πj ∼D(α1, · · · , αK) (A.12)

µj ∼Nv(ǫj , τjΣj) (A.13)

Σ−1
j ∼Wv(ωj, λj) (A.14)

The Wishart distribution Wv(ωj, λj) is defined as follows:

Wv(ωj, λj) =
|U|(λj−v−1)/2exp

{

−tr(ω−1
j U/2)

}

2vλj/2|ωj|λj/2Γv(λj/2)
(A.15)

where λj represents degree of freedom. U is a v × v positive-definite matrix

of random variables, and Γv is a multivariate gamma function defined as

follows:

Γv(λj/2) = πv(v−1)/4
v
∏

j=1

Γ(λj/2 + (1− j)/2) (A.16)

A.4 MCMC: Posterior Simulation

The posterior distribution can be approximated by Markov Chain Monte

Carlo (MCMC) sampling methods, which construct a Markov chain with

stationary distribution equal to the posterior distribution. By sampling,

Monte Carlo estimates can be obtained for the expectations of a probability

distribution. Let θ be a set of random variables, θ = {θ1, · · · , θK}, which

characterise a process described by a probability distribution function f(θ).

The expectation of the distribution, E(f(θij)), j = {1, · · · , K}, can be ap-
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proximated by samples from f(θ) shown below:

E(f(θij)) ≈
1

N

N
∑

i=1

f(θij) (A.17)

where θij is the i-th sample, and N is the number of samples. It can be shown

from equation (A.17) that a sufficiently large number of sampling iterations

ensures accurate approximation. However, a set of suitable starting values

reduces the number of iterations, which is often applied in practice.

Gibbs sampling is an established MCMC sampling method [93]. As shown

in Chapter 4, the use of Gibbs sampling leads to a missing-data Markov chain

and a model parameter Markov chain, which iteratively simulating from the

conditional distribution of a vector of parameters while fixing all the others.
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Abstract

Plants are characterised by a range of complex and vari-

able attributes, and measuring these attributes accurately

and reliably is a major challenge for the industry. In this

paper, we investigate creating a surface model of plant from

images taken by a stereo pair of cameras. The proposed

modelling architecture comprises a fast stereo algorithm to

estimate depths in the scene and a model of the scene based

on visual appearance and 3D geometry measurements. Our
stereo algorithm employs a coarse-fine strategy for dispar-

ity estimation. We develop a weighting method and use

Kalman filter to refine estimations across scales. A self-

organising map is applied to reconstruct a surface from

these sample points created by the stereo algorithm. We

compare and evaluate our stereo results against other pop-

ular stereo algorithms, and also demonstrate that the pro-

posed surface model can be used to extract useful plant fea-

tures that can be of importance in plant management and

assessing quality for marketing.

1. Introduction

This paper introduces a novel multiresolution surface

model to represent plant characteristics from a pair of stereo

images. Plants such as pansy and poinsettia can be char-

acterised by a number of quality attributes that affect cus-

tomer acceptance. The measurement of those plant charac-

teristics that are most relevant to a grower is a challenging

problem, which has previously been tackled almost exclu-

sively by a combination of manual measurement and visual

inspection [1]. This is a highly labour-intensive process,

given that tens of thousands of plants have to be assessed,

and one which is inevitably limited by the subjective assess-

ments of individual observers. The purpose of our work is

to automate this process to reduce labour requirements, and

to remove subjective factors from the assessment. Our ap-

proach is to use a stereo pair of cameras to capture images

of plants and then to model the chief visual characteristics

of the plants, including height, leaf and flower areas and

colour.

Currently, there is no method available for automated

monitoring of plant growth remotely, and there are limited

systems for monitoring plants under controlled conditions

at marketing. Although the idea of automated monitoring

has been suggested by many authors, there are currently no

methods for monitoring crops in the manner we are sug-

gesting. Ehret et al. [1] gave a general review of automated

monitoring of greenhouse crops, and discussed applications

of digital imaging plants in greenhouses, but did not present

any practical results. In this paper, we present a modelling

system that can be used either remotely or under controlled

conditions, and results for a selection of ornamental plants

growing in packs. The hardware part of our modelling sys-

tem is a stereo pair of ‘off-the-shelf’ digital cameras that

can be mounted in a glasshouse for remote monitoring or

on a production grading line. This is readily accomplished,

cheap and causes minimal disruption to the normal opera-

tions of growers. Moreover, the use of conventional cam-

eras allows capture of colour information, which is useful

in assessing plant quality. The proposed modelling archi-

tecture is divided into two parts: a) a high-speed stereo al-
gorithm to estimate depths in the scene; b) a model of the
scene based on visual appearance combined with geometry

information.

Stereopsis has been extensively researched in the vision

community during the last two decades, and recently, en-

ergy minimisation using methods like graph cuts [2] and

belief propagation [3] have become popular as a basis for

many of the best stereo algorithms in the Middlebury

list [4]. Figure 1(c)-(j) show a selection of stereo images
of ornamental plants, and the complex structure of small,



thin branches and green leaves leads to substantial occlu-

sions in the image. Handling occlusions is still an active

research area, and some papers have described energy min-

imisation techniques [2, 3, 4] to regularise the depth results.

Instead of trying to refine estimated depths for individual

leaves and branches, our approach is to model the global

geometry of the plant. To this end, we develop our stereo

algorithm using a multiresolution pyramid structure by as-

suming the plant surface is smooth. The use of the pyramid

structure also gives a significant speed advantage (see [5]).

We present our results against other popular stereo algo-

rithms (Section 3), and prove our method is most efficient
and reliable for plant images.

Another challenge of plant images is large colour varia-

tion within each part of the object (e.g. flower, leaf, back-

ground and etc.). We can see from the pansies shown in

Figure 1(c) that parts of some yellow flowers are black and
there is white residue visible on the green leaves due to a

fungicidal spray. Such large colour variation in the image

causes problems in discriminating each class of the objects.

In this paper, we propose a surface model that can effec-

tively simplify the colour data.

This rest of the paper is organised as follows: Section 2
describes details of methods we used to model plants. The

results of modelling are shown in Section 3, and Section 4
discusses the results. Section 5 concludes the paper and out-
lines plans for the further work.

2. Methods

2.1. Overview

Our proposed modelling architecture comprises two

parts: a) a high-speed stereo algorithm to estimate depths
in the scene; b) a model of the scene based on visual ap-
pearance combined with geometry information.

The stereo algorithm we develop uses a multiresolution

Gaussian pyramid [5]. The input images are first divided

into a number of blocks overlapped by 50% in each level.
And for each block in each resolution, a weighting method

for an optimal parent node is applied. Within a small search

window around the optimal parent node, an adopted match-

ing cost function by Birchfield and Tomasi [6] is applied

to find the corresponding blocks. After matching the corre-

sponding blocks, a Kalman filter [7] is used to update the

matching results based on estimations in the current and

previous levels, and the disparity results are then interpo-

lated to the next level. Finally, we convert the disparity re-

sults into depths by triangulation.1 We discuss these steps

in details in Section 2.2.

Having estimated the surface geometry, we model the

1After calibrating the camera setup [8], it is straightforward to convert

the disparity results into depths by triangulation.

data to represent the plant in the scene. The surface data

has a number of resolutions, and each resolution includes

(R,G,B) colour information and (X,Y,Z) geometry informa-

tion obtained from the stereo algorithm. Since the depths

estimated contain errors due to many occlusions in the

scene, the surface model must minimise the effects of the

outliers. We can see from Figure 1 that plants have complex

structures as well as ambiguous visual appearances. More-

over, growers require summary statistics for plant growth

management and marketing purposes. Consequently, a

method to simplify the surface data is required. We inves-

tigated the use of a Self-Organising Map (SOM) [9] to re-

construct a surface for each resolution of the data, and more

details are shown in Section 2.3.

2.2. The Multiresolution Stereo Algorithm

2.2.1. Matching. An important cue to depth perception -

disparities between stereo images - can be measured by

finding matching pixels [10]. The task of matching is

also known as the correspondence problem. The com-

mon matching cost functions are squared or absolute dif-

ferencing. It is possible to efficiently compute correla-

tion in the frequency domain using the fast Fourier trans-

form producing similar results to the squared differenc-

ing method. Normalised cross-correlation in the spatial

domain [11], which is invariant to local changes of inten-

sity and illumination, can be applied. Phase-matching [12]

is another alternative. For a more detailed review on this

subject, see Scharstein and Szeliski’s paper [4]. The match-

ing cost function we used for each colour channel to com-

pute dissimilarity {DR, DG, DB} is identical to the one
proposed by Birchfield and Tomasi [6]. The maximum

cost of {DR, DG, DB} is set to be 30, and this enables
us to normalise the cost of matching to an error score e

ranging between 0 and 1. The RGB pixel dissimilarities
{DR, DG, DB} are then summed for the overall costDa.

Da = DR + DG + DB (1)

For the ideal parallel camera setup or the calibrated

setup [8], the corresponding points in both images lie on

the same horizontal scanline. Therefore, the displacement

of a pixel in the left image Li,j and the corresponding one

in the right image Ri,j can be expressed as:

Ri,j = Li,j−d + Vi,j (2)

where d is the disparity measured between two pixels, and

Vi,j is a noise factor depending on the error score ei,j . How-

ever, it is not unusual for multiple points in the same scan-

line to have identical pixel values. One way to improve this

is to match corresponding regions instead of individual pix-

els. Assuming pixels in a small region have the same dispar-

ity value, we can divide the image into a number of blocks

overlapped by 50% and then match these blocks.



2.2.2. Multiresolution Representation. The main prob-

lem with many matching methods is to deal with local min-

ima in the search window. To effectively limit the size of the

search window, one can follow a multiresolution pyramid

approach [5]. The corresponding pixels between stereo im-

ages are first found in the highest level of the pyramid, and

then refined by adding innovations further down the pyra-

mid. This is expressed using a state-space approach:

d(n) = I(n|n + 1) × d(n + 1) + w(n) (3)

where d(n) is the disparity image data at level n of the

pyramid, I(n|n + 1) is an interpolator between level n and
level n+1, andw(n) represents innovations or details to be
added at level n. Using the pyramid structure, the chances

of falling into local minima are reduced. The size of the

search window is effectively limited, and it remains con-

stant throughout different levels. Another appealing feature

of the multiresolution approach is efficiency. The compu-

tational costs are reduced greatly compared with using the

original images directly. In this work, we use a Gaussian

pyramid [5], and a bilinear interpolator for propagating dis-

parity results to the next level.

2.2.3. The Optimal Parent. As the search window is

small for every level in the pyramid, poor results could be

propagated by direct parent nodes through levels, leading to

false matches between images. To prevent this, a method

to weight a set of parent nodes to form an optimum esti-

mate is applied. The method we propose takes account of

inputs from neighbouring parent nodes as well as the direct

parent node. The method initialises the weights wi,j,n|n+1

for block (i, j) at level n by selecting ‘good’ parents from 9
nodes around the direct parent (including the direct parent

itself). This selection can be done by median thresholding

on the errors ex,y,n+1 associated with each parent node. Af-

ter that, the weights are calculated as follows:

wx,y,n|n+1 = emax − ex,y,n|n+1 (4)

wx,y,n|n+1 =
wx,y,n|n+1∑
x,y wx,y,n|n+1

(5)

where x = {i − 1, i, i + 1}, y = {j − 1, j, j + 1} for the
child block (i, j), ex,y,n|n+1 is the error interpolated from

level n + 1 to n for one of the selected good parents, and

emax is the maximum error in these good parent nodes. The

optimal parent node can then be inferred as follows:

di,j,n|n+1 =
∑

x,y

dx,y,n|n+1 × wx,y,n|n+1 (6)

ei,j,n|n+1 =
∑

x,y

ex,y,n|n+1 × wx,y,n|n+1 (7)

where di,j,n|n+1 and ei,j,n|n+1 are disparities and errors re-

spectively in the optimal parent node for the child block

(i, j).

2.2.4. The Kalman Filter. Given disparities and errors as-

sociated from the coarser resolution, we can combine the

results previously estimated and the results from the current

resolution to form optimal results using a Kalman filter [7].

The Kalman gain Gi,j,n is calculated using:

Gi,j,n =
ei,j,n|n+1

ei,j,n|n+1 + ei,j,n

(8)

Denoting di,j,n and ei,j,n as the disparities and errors re-

spectively for block (i, j) at level n, the Kalman updating
process works as follows:

di,j,n = di,j,n|n+1 + Gi,j,n × {di,j,n − di,j,n|n+1} (9)

ei,j,n = ei,j,n|n+1 + Gi,j,n × {ei,j,n − ei,j,n|n+1} (10)

In this work, we assume the Kalman gain Gi,j,n to be a

constant for each block (i, j) at level n.

2.3. Surface Modelling

The basic configuration of the SOM we used is a two-

dimensional grid of cells denoted by {C1, C2, · · · , Cm}.
Each cell contains a model vector, which has six dimen-

sions (R,G,B,X,Y,Z) identical to the input data. The SOM

evolves by learning random-selected samples of input data.

For each sample x(t), the SOM chooses the best cell Cb(t)
to match the data. This can be formulated as:

||Cb(t) − x(t)|| = min
i

||Ci(t) − x(t)|| (11)

Then, the ‘winner’ cell Cb(t) and its neighbours Ci(t) up-
date depending on the stage of the learning process. This

learning process is shown below:

Ci(t + 1) = Ci(t) + hCb(t){x(t) − Ci(t)} (12)

where hCb(t) is the neighbourhood function, and it is similar

to a smoothing kernel that is time-variable and its location

depends on the position of the ‘winner’ cell Cb(t). This
learning process repeats until each dimension of the surface

model has a sufficiently accurate representation for the data.

At the end of the learning process, the SOM surface model

preserves the global geometry as well as colour information

of the object featured in the image. Using this approach,

incorrect depths estimated by the stereo algorithm can be

effectively eliminated and the complex visual appearance is

also simplified. In this work, an incremental-learning SOM

implementation was used [13].

3. Results

This section presents some of the results obtained from

our stereo and surface modelling methods discussed in this

paper. Figure 1(c)-(j) show images capturing four packs of



different plants, large pansies, small pansies, dianthus and

viola. Also, an object with known geometry, an upended

flowerpot, is displayed in Figure 1(a)-(b). The size of input
images is 512 × 384, and all these images were rectified
using calibration procedures in [8].

We compared our multiresolution stereo algorithm

with the Pixel-to-Pixel algorithm (P2P) by Birchfield and

Tomasi [14]. In addition, the stereo algorithm with graph-

cut optimisation (GC) discussed in Scharstein and Szeliski’s

paper [4] was also evaluated. Input images for these two

methods are grey-level, while our algorithm takes colour

images as input.

3.1. Stereo Results of a Known-Geometry Object

Firstly, we tested and evaluated our stereo algorithm by

processing images featuring a known-geometry object (Fig-

ure 1(a)-(b)). The expected disparity result should clearly
show a near-cylinder-like object slightly tapering to the top.

Our stereo algorithm used a 4-level Gaussian pyramid with

blocks sized 16 × 16 overlapped by 50%, as well as tech-
niques discussed in this paper. The search range used in

our method was 9 as the maximum disparity was 70. For
the P2P algorithm, default parameters were used. The

graph-cut method used Birchfield-Tomasi’s matching cost

function [6] and a smoothness weight of 50, without any
penalty cost. The gradient-dependent smoothness cost for

the graph-cut method was 8 in all experiments. Disparity
results are presented in Figure 2. A summary of the run-

ning time and height measured by a human operator and

measurements derived from the stereo results in Figure 2 is

presented in Table 1.

Running Time Height

(in seconds) (in cm)

Human ∗ 29.2
P2P 1.9 30.0
GC 1164.9 29.2
MR 0.8 29.2

Table 1. Comparisons of the running time and

height measured from Figure 2

The height is measured from the bottom to the top of the flowerpot.

3.2. Stereo Results for Plants

For the plant images (Figure 1(c)-(j)), the settings for
our stereo algorithm were identical to those discussed in

Section 3.1. However, even after testing various parameters,
the P2P stereo algorithm could not produce any reasonable

solution, and therefore was excluded. We present two re-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1. 5 pairs of stereo images: An upended

flowerpot - (a), (b); Large pansies - (c), (d); Small

pansies - (e), (f); Dianthus - (g), (h); Viola - (i), (j)



Base Image GC

P2P MR

Figure 2. The stereo results of an upended flow-

erpot with known geometry

Top-Left: The base image; Top-Right: Results produced by the

graph-cut method; Bottom-Left: Results produced by the P2P al-

gorithm; Bottom-Right: Results produced by our proposed mul-

tiresolution algorithm.

sults from the graph-cut algorithm proposed by Scharstein

& Szeliski with different smoothness (20 and 50) and
penalty costs (4 and 2). The graph-cut method also used the
matching cost function proposed by Birchfield and Tomasi.

As the boundary information of the pack holding the

plant was available (i.e. the position and size of the pack),

background was cropped outside the boundary region. Re-

sults for the large pansies in Figure 1(c)-(d) is shown in
Figure 3, and the small pansies in Figure 1(e)-(f) is in Fig-
ure 4. Results for the dianthus (Figure 1(g)-(h)) and the
viola (Figure 1(i)-(j)) are presented in Figure 5 and Figure
6 respectively.

3.3. Surface Modelling Results of Plants

Using our stereo results obtained in Section 3.2, we
model the plant surface by using a Self-Organising Map

(SOM). The SOM we used had a 32× 32 hexagonal grid of
neurons and a Gaussian neighbourhood function [13]. Fig-

ure 7 presents the surface models for large pansies, small

pansies, dianthus and viola shown in Figure 1.

3.4. Running Time

Our stereo algorithm is written in C, and the Linux ma-

chine running these experiments has one Intel Pentium 4
3.0G HZ CPU with 1GB RAM. The running time of our
stereo algorithm for each pair of stereo images in Figure 1

was less than 1 second, including reading and writing im-
ages. The C code for the P2P algorithm took around 2 sec-
onds, while the C++ code for the graph-cut method used

about 20-25 minutes for each parameter setting. Table 1

Base Image GC1

GC2 MR

Figure 3. The stereo results of the large pansies

Top-Left: The base image; Top-Right: Results produced by the

graph-cut method with a smoothness cost of 20 and a penalty cost
of 4; Bottom-Left: Results produced by the graph-cut method with
a smoothness cost of 50 and a penalty cost of 2; Bottom-Right:
Results produced by our proposed multiresolution algorithm.

Base Image GC1

GC2 MR

Figure 4. The stereo results of the small pansies

Top-Left: The base image; Top-Right: Results produced by the

graph-cut method with a smoothness cost of 20 and a penalty cost
of 4; Bottom-Left: Results produced by the graph-cut method with
a smoothness cost of 50 and a penalty cost of 2; Bottom-Right:
Results produced by our proposed multiresolution algorithm.



Base Image GC1

GC2 MR

Figure 5. The stereo results of the dianthus

Top-Left: The base image; Top-Right: Results produced by the

graph-cut method with a smoothness cost of 20 and a penalty cost
of 4; Bottom-Left: Results produced by the graph-cut method with
a smoothness cost of 50 and a penalty cost of 2; Bottom-Right:
Results produced by our proposed multiresolution algorithm.

Base Image GC1

GC2 MR

Figure 6. The stereo results of the viola

Top-Left: The base image; Top-Right: Results produced by the

graph-cut method with a smoothness cost of 20 and a penalty cost
of 4; Bottom-Left: Results produced by the graph-cut method with
a smoothness cost of 50 and a penalty cost of 2; Bottom-Right:
Results produced by our proposed multiresolution algorithm.

Large pansies Small pansies

Dianthus Viola

Figure 7. The plant surface models

The geometry data is obtained from our stereo results in

Section 3.2.

shows the running time using the three methods to process

images in Figure 1(a)-(b). The C code for the SOM [13]
spent about 50 seconds on the surface modelling. We are
developing a multiresolution SOM and the time required

would be comparable to our stereo algorithm.

4. Discussion

For the stereo images featuring an object with known ge-

ometry (Figure 2), our stereo algorithm produced the ex-

pected smooth disparity map and was able to give a height

estimation with no difference from the one measured by a

human operator (Table 1). The P2P algorithm by Birch-

field and Tomasi [14] gave better estimates for the sloping

side, where occluded regions lie. The best result was ob-

tained by the graph-cut method discussed in Scharstein and

Szeliski’s paper [4]. For real plant images, however, the

P2P method produced very noisy results, and therefore was

excluded. The graph-cut method produced either under-

smoothed results (GC1) with noisy estimates clearly visi-

ble, or over-smoothed results (GC2) leading to fusing differ-

ent depth layers together. Figure 8 illustrates reconstructed

views of the large pansies from the stereo results shown

in Figure 3. We can see from the over-smoothed results

(GC2) in Figure 8 that the shapes of yellow pansy flowers

and leaves are flat planes without any height variation. In

comparison, our stereo algorithm gave better estimates that

are much like the real plants captured. Table 2 presents the

average height of the whole plant computed from our stereo

results and results by the graph-cut method, and measure-

ments made by a human operator are shown in Table 3.

Furthermore, when using the graph-cut method, the choice



of parameters was difficult and the running time was in the

order of minutes. Our proposed multiresolution stereo algo-

rithm produced disparity results within a second, and it only

required to change at most three typical parameters (search

range, window size and pyramid levels). These parameters

can be easily configured once for a particular camera setup

to process different types of images, e.g. flowerpot images

in Section 3.1 and plant images in Section 3.2.

The expected results of our stereo algorithm are obtained

by applying all the following methods: a) Matching cost
function for colour images is used. b) Multiresolution rep-
resentation is used. The coarse level can deliver a reason-

able estimate to the next level, as well as a global effect

of the smooth results. c) The optimal parent node is used
to prevent the direct parent node from propagating poor re-

sults. By using this approach together with the Kalman fil-

ter updating at each level, results from neighbours as well

as inter-scanlines can be used to correct isolated wrong es-

timates.

It is clear from Figure 7 that the plant surface model

we proposed can reduce the complexity of colour informa-

tion. Therefore, a supervised multi-thresholding image seg-

mentation method [10] can be used to distinguish between

flower and leaf. Many features of interests can be measured

from the surface models presented in Figure 7. For example,

the average flower and leaf height of the pansies, almost ex-

clusively measured by human operators in industry, can be

easily extracted (see Table 3).

The average height measurements are presented mainly

to validate our approach, and our surface model can quan-

tify a lot visual information (e.g. colour, shape, uniformity

and etc.) besides geometry measurements. Table 4 shows

the flower area measured in percentage from our models

shown in Figure 7, and the measurement of this feature over

time could be used for plant growth management and crop

scheduling. Besides features from the finest resolution of

the model, we can also use attributes from other resolutions.

For example, Figure 9 shows a plane, the coarsest resolution

of the model, representing the height variation of the plant.

We can see the evidence of a sloping surface of the pack, a

feature which is important in grading and assessing packs

for marketing.

5. Conclusions

In this paper, a novel system to model a plant surface

from a pair of stereo images has been presented. The

proposed surface modelling architecture comprises a high-

speed stereo algorithm to infer geometry information in the

scene and a model of the scene based on the visual appear-

ance combined with the geometry information measured.

Compared with the Pixel-to-Pixel stereo algorithm [14]

and the graph-cut method [4], we have demonstrated that

Base Image GC1

GC2 MR

Figure 8. Reconstructed views of the large pan-

sies

The geometry data is obtained from the stereo results in Figure 3.

Average height (in cm)

from stereo methods

GC1 GC2 MR

Large pansies 13.6 14.2 11.5
Small pansies 8.5 8.9 6.3
Dianthus 13.2 13.4 8.6
Viola 12.3 12.3 11.6

Table 2. Comparisons of the average height of

plants measured from our stereo results and the

graph-cut method

Our Model Human

Measurements Measurements

(in cm) (in cm)

Flower Leaf Flower Leaf

Large pansies 14.8 11.0 15 13
Small pansies 7.1 5.9 7 5
Dianthus 13.2 7.4 ∗ ∗
Viola 13.2 10.6 ∗ ∗

Table 3. Comparisons of the average height of

plants measured by our surface models against a

human operator



Large pansies Small pansies Dianthus Viola

12.7% 31.2% 21.2% 40.5%

Table 4. Comparisons of the flower area of plants

measured in percentage by our surface models

Figure 9. The coarsest resolution of the surface

model for the large pansies

The geometry data is obtained from the coarsest resolution

of the stereo results in Figure 3.

our stereo algorithm produces smooth depth maps as ex-

pected for four examples of different plant types. Among

the three algorithms tested, our method was also the most

efficient one in terms of the running time.

Our proposed SOM surface model preserves the global

geometry of the plant, as well as visual colour information.

We have demonstrated that by using the proposed surface

model, we can extract many useful plant features from dif-

ferent resolutions, which could be used for a large number

of important industry applications in many areas such as

plant growth management, crop scheduling and assessing

packs for marketing.

The error e we used in the stereo algorithm only consid-

ers the cost of matching. In some cases, false matches could

yield small cost. Therefore, some penalty methods similar

to the graph-cut method [4] should apply. In this paper,

the effects of lighting and shading are not discussed, which

could be a major issue for matching. We are analysing im-

ages captured under extreme lighting conditions to test the

robustness of the stereo algorithm. As the time required to

run the SOM is long compared with the stereo algorithm,

we are investigating a multiresolution approach to construct

the SOM. We are also looking at extracting more important

plant features from the surface model.
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