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Abstract 

This work aims at the development of methods that will allow systematic 

capitalisation on synergies across the chemical process development cycle. In an 

initial stage of the research, efforts have been focused towards the development of a 

conceptual process synthesis tool for the generation of novel design candidates to 

effectively and reliably screen reactive liquid-liquid extraction as a process synthesis 

option to compare its potential with that of other options. The primary aim is the 

identification of design trends as early as possible in the design process, to initialise 

and guide a posterior optimisation search with rigorous models. Next, the interest of 

the research is focused on the basic research and development issues required to 

realise an integrated approach in which key process design issues (the evaluation of 

catalyst performance, the design of reactors, the design of separation systems) can be 

addressed in parallel to the investigation of the chemistry from the earliest design 

stage, to arrive at the most economically viable and sustainable design via the shortest 

possible route. The developments focus on the conceptual design and evolution of 

designs for heterogeneously catalysed gas-phase reaction processes on the basis of 

available kinetic information. Building upon previous efforts in process synthesis, a 

multi-stage approach that relies on superstructure process representations has been 

developed. Throughout the multi-stage design cycle, information on the optimal 

operating envelopes is generated and can be fed back to the kinetics development 

team to guide additional experiments to ensure that kinetic models match the optimal 

regions in which the catalyst is to be used. The developments are demonstrated with 

industrially relevant applications. Novel processing schemes with significantly 

improved performances as compared to conventional process designs have been 

identified. 
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Chapter 5,6 And 7 And Appendixes A2 And A3 
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E void fraction of the catalyst bed - 
E mean void fraction of the fluidised or catalyst bed - 
EB hold-up of bubble phase - 

parameter for the equation found in Winterberg & 
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7 ratio of heat capacities - 
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B bubble & cloud phase 
B catalyst bed 
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COMPRESSOR compressor 
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f fluid 
g gas 
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ha, " r` Bi Biot number Xe, 
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CHAPTER 1. 

Introduction To The Research Problem 

1.1 Introduction 

One of the main objectives in process systems engineering is to develop methods that 

allow the engineer to discover process synthesis options and compare them with many 

others. During the past few decades the identification of profitable, sustainable and 

environmentally considerate options has relied on previous experience, and as a 

result, opportunities for identifying novel alternatives have been missed. In recent 

years, there has been a growing need for chemical engineers, not only to identify 

innovative process synthesis options but also to search these options and identify 

optimal designs. Many advances in process synthesis have been produced so far. The 

majority of these developments are focussed on the conceptual design around 

predefined synthesis options (e. g. reaction, separation, reactive/separation or heat 

integration). In contrast, efforts to develop tools for screening process synthesis 

options are very rare. Likewise, the lack of techniques for evolving the designs 

proposed by the conceptual design tools is also a fact. The successes of conceptual 

design tools in process synthesis have been significant only for simple systems. 

However, most industrially relevant systems are considerably more complex and 

cannot be addressed with existing technology. The current state of the art in the 

development and design of a chemical process is largely sequential. Specific design 



issues such as the evaluation of catalyst performance, the design of reactors or the 

design of separation systems are addressed as separate steps one at a time. The 

overall success of the design activity is hampered by the lack of systematic support 

tools to assist scientists (i. e. experimental model developers) and engineers involved 

in the design processes to identify innovative solutions reliably and quickly in the 

context of the overall design goal, i. e. to identify the best possible process system that 

is comprised of these subsystems. Methodological shortcomings are exemplified by 

the lack of coordination of kinetic model development, reactor design and process 

synthesis. More often than not, kinetic models are developed for operating regions 

that do not correspond to the optimal values identified later on in process synthesis, 

when the experimental studies have long been concluded. The result is either a 

compromised design dominated by kinetic model reliability issues or a project delay 

caused by additional experimental investigations. Technological shortcomings are 

exemplified by the limited capability of current conceptual process synthesis tools to 

treat complexity (i. e. they quickly fail when complexity increases). 

The existing lack of these systematic support tools impedes the effective 

communication between scientists and process engineers and obstructs the 

coordination of synthesis activities. Such coordination of synthesis activities is not 

within the scope of this research work. However, before it can be effectively 

approached, process design engineers must address: 

" The effective selection of the best synthesis option for a given system. 

The effective identification of optimal design candidates for the selected 

synthesis option. 
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The ultimate benefit of the coordination of synthesis activities would be an 

experimental model development in the context of the overall process design aim, 

resulting in the perfect match between chemistry and process design. Therefore, if 

reliable synthesis strategies are developed for such purpose, step changes in 

innovation are to be expected. 

1.2 Synthesis Strategy 

In order to identify the most promising synthesis options and design candidates to 

arrive to the optimal synergy between chemistry and process design, this research 

presents a multi-stage process synthesis approach (Figure 1.1), as an alternative to the 

current obsolete synthesis strategies. 
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Figure 1.1: Multi-stage process synthesis strategy. 

The approach starts at the highest level of abstraction with a conceptual screening 

stage, where the screening of process design options with highly conceptual tools is 

performed. Once the process design option is selected, a careful balance between the 

mathematical model complexity and the high-level conceptual designs involved is 

considered in the conceptual stage. At this stage, still highly abstract, the screening 

of a vast number of processing alternatives is performed and potential design 

candidates are selected. The further exploration of the design candidates may reveal 

system trade-offs. As the investigation goes on, the designs that show low 

performances or impracticalities are disregarded. Consequently, the combinatorial 
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size of the problem is reduced and the optimisation is focussed on the most promising 

areas. Subsequent synthesis stages (design stages) enrich the process models (i. e. 

addition of modelling detail). This is done to incorporate non-ideal behaviour in order 

to evolve the process designs into optimal schemes that can be easily reached in 

practice. The synthesis strategy requires high flexibility in the process representations 

to allow the progressive addition of detail in the models employed as the synthesis 

process continues. For such purpose, the presented strategy relies on superstructure 

representations. The approach also has a need for optimisation tools that can cope 

with the high non-linearities involved in the experimental models (e. g. kinetic models, 

phase-equilibrium models) and the large amounts of binary decisions to be made. 

Stochastic optimisation tools have proved in the past to be effective for such 

problems. 

The multi-stage synthesis strategy will allow the effective selection of the best 

synthesis option and the identification of the optimal design candidates for it. Having 

reached this point, the integration of the experimental modelling and the process 

design activities is ready to be approached. The presented strategy can enable at any 

stage a bidirectional flow of information between synthesis activities. The resulting 

information on the optimal operating regions from the process design activity can be 

communicated to the experimental development team. Experimental developers can 

update the experimental model on the new operating regions, and send it back to the 

process engineers. Then, process engineers can search again for optimal operating 

regions and the cycle can continue until the experimental model is validated in the 

optimal process regions in which it is to be used. 
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1.3 Research Contributions 

The research contributions presented in this work are summarised as follows: 

" Within the initial conceptual screening stage of the multi-stage synthesis 

strategy, this research work presents a tool for the conceptual screening of 

reactive liquid-liquid extraction (RLLE) as a process design option. The tool 

maps the information of the solvent phase onto the superstructure model of a 

single-phase reactor network. The mapping involves the overestimation of the 

transfer rate from the reactive to the solvent phase. The approach can deliver 

either much better performances than the single reactive system or similar 

ones to it. If the results of the conceptual screening prove to be promising, the 

next conceptual design stage can be justified and the results can be employed 

in the tedious initialisation of more detailed optimisations. Otherwise, the 

synthesis option is disregarded for not being promising enough and great 

amounts of time and resources can be spared in the design exercise. 

" The core development of this work is a decision support framework (DSF) 

extended across the conceptual stage and the design stage. Heterogeneously 

catalysed gas-phase reaction systems illustrate the developments. The DSF 

relies on the appropriate balance between the combinatorial complexities of 

process layouts and the level of detail of the process models employed. At the 

beginning of the synthesis exercise, the process structure is unknown and the 

combinatorial complexity is high. Therefore, simple models are employed. 

Towards the end, the knowledge that has emerged about the process structure 

is employed to reduce the structural complexity and more complexity in terms 

of process models can be afforded. 
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Within the conceptual design stage, a superstructure-based optimisation 

approach has been developed to address the shortcomings of current process 

synthesis methods when applied to complex systems. Process representations 

have been customised for heterogeneously catalysed gas-phase reaction 

systems. The representations include practical constraints that are found in 

practical applications. In this stage, a multi-level approach aims at the 

development of design performance targets and the identification of 

interactions between design performance and design complexity. 

Knowledge obtained in the first highly conceptual levels of process design can 

be used in later concreter stages. This is exploited in a multi-stage design 

strategy included within the design stage. The few designs resulting from the 

multi-level approach can be carefully explored by employing more detailed 

and computational demanding reactor models. The extra detail of the models 

employed allows for the evolution of the designs earlier identified. The 

evolution is an iterative process carried out in several stages. The solution of 

each stage becomes the starting point for the optimisation in the next stage. 

1.4 Thesis Structure 

Chapter 2 identifies the drawbacks of the current process design attitude and reviews 

the available literature related to previous works in: 

i) Reactor networks synthesis approaches. 

ii) Reaction-separation integration synthesis approaches. 
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iii) Reactive / separation integration synthesis approaches. 

iv) Reaction-separation and reactive / separation integration synthesis 

approaches. 

The need for new synthesis approaches is also discussed. 

Chapter 3 presents the key topics in which the network optimisation is based on: 

i) The generic reactor / mass exchanger unit. 

ii) The superstructure representation. 

iii) The stochastic optimisation method employed to explore the search 

space in the form of Tabu Search. 

Chapter 4 addresses RLLE as an example of the screening of process synthesis 

options that takes place at the beginning of the design exercise (conceptual screening 

stage). RLLE is screened making use of aggregated models to avoid unnecessary 

modelling details while capturing all the major trade-offs at the very initial stages of 

process design. A new network optimisation-based approach is presented. It allows 

quickly deciding whether the application of RLLE is a promising option for reactive 

equilibrium systems or for systems where reactions are inhibited by product 

formation. The approach is based on a new developed Liquid-Liquid Extraction 

transfer rate expression that over-predicts mass transfer from the reactive to the 

solvent phase. Two biochemical examples illustrate the approach. The applications 

prove that structured search strategies can speed up significantly the process synthesis 

development and produce improved results if compared with early works found in the 
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literature. 

Chapter 5 and 6 present the DSF developed to address the limitations of current 

process synthesis approaches so the coordination between the kinetic model 

development and the process synthesis can be approached in a future phase. The 

framework relies on a superstructure-based optimisation approach. Chapter 5 details 

the DSF section related to the conceptual stage. The process representations in 

which the DSF relies on are also described in here. The representations have been 

tailored for heterogeneously catalysed gas-phase reaction systems and include 

practical constraints that are found on practical applications. At this stage, the DSF 

relies on a multi-level synthesis approach. The multi-level synthesis approach aims at 

the development of design performance targets and the identification of interactions 

between design performance and design complexity. An application to a styrene 

production process is presented to illustrate the methodology. 

Chapter 6 details the DSF section related to the design stage. In this chapter, the 

multi-stage evolution of designs is outlined. The evolution allows the investigation of 

the optimal conceptual design candidates identified in the multi-level approach at 

different stages, where the level of detail of the process models increases from one to 

another. The aim is to progressively include non-ideal behaviour to evolve the 

process designs into options that can be easily achieved in practice. The styrene 

production process also illustrates the methodology. 

Chapter 7 presents an application of the DSF in the form of a heterogeneously 
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catalysed gas-phase selective oxidation of ethane. For this reaction system the 

experimental kinetic model has already been published. Novel processing schemes 

with significantly improved performances, if compared to conventional process 

designs, are identified with the presented approach. 

Chapter 8 concludes the research and discusses the advantages and benefits of the 

novel contributions. 

Finally, Chapter 9 recognises the limitations of this work and identifies directions for 

future developments in process design. 
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CHAPTER 2. 

Literature Review 

2.1 Introduction 

Much research has been done in process synthesis for the last 50 years (Westerberg, 

2004). Most of the existing synthesis techniques are of narrow application and simply 

focus on the conceptual design stage where predefined process options are explored to 

search for optimal designs (Figure 2.1). However, the previous conceptual screening 

of process options and the later evolution of the designs resulting from the conceptual 

design stage, have not yet received much attention in the process research community. 

Conceptual screening of process options 

Identification of potential process options 

Conceptual design 
Optimal reaction-separation and reactive/separation process designs 

i 
Evolution of designs 

Adapt optimal conceptual designs into reachable designs 

Figure 2.1: Optimal process design strategy. 



The conceptual screening of process options has been widely ignored despite being 

the step in which the most important design decision is considered (i. e. the selection 

of the most suitable processing option for a given system). Two of the few authors 

that have approached this high level screening stage are Linke & Kokossis (2007), 

who employ separation task units to search separation systems. The conceptual 

screening stage aims to introduce simple models that enable the exploration of major 

trade-offs rapidly and effectively. Rather than suggesting definitive process layouts, 

the conceptual screening can create insight into optimal mixing patterns, component 

separation, recycle policies, etc. The conceptual screening has not only the potential 

to identify possible improvements in process performances delivering potential 

process options for a system, but also can help the designer to accelerate the design 

exercise resulting in more profitable projects. Identified layouts can be then explored 

in the following conceptual design stage. 

Techniques that evolve the resulting design candidates from the conceptual design 

stage have not received much attention either. Therefore, there is a gap between the 

optimal designs identified in the conceptual design stage during research activities 

and those designs that are implemented in industry. The trade-offs identified in 

conceptual design stages may not be realistic and consequently, some extra model 

non-linearities may be required. Once the combinatorial size of the problem has been 

reduced by eliminating irrelevant design options in the conceptual design stage, more 

process modelling detail can be afforded without compromising computational 

effort s. 
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The next sections review the past and current developments in reactor network 

synthesis approaches and integrated approaches for reaction and separation systems. 

All the developments discussed are within the conceptual design stage of the 

presented methodology. Finally the need for new synthesis methodologies is 

highlighted. 

2.2 Reactor Network Synthesis 

2.2.1 Introduction 

Reactor networks are sets of reactors interconnected between them. Their 

optimisation still constitutes in process synthesis an ongoing process due to their vital 

importance for process performances. Approaches to optimal reactor network 

synthesis include the Attainable Region (AR), superstructure-based optimisation 

methods and combinations of both. The approaches involving superstructure 

representations use either deterministic or stochastic tools to optimise process designs. 

2.2.2 Attainable Region 

The AR is a graphical method based on vectors which is defined as the set of all 

possible outcomes that satisfies the constraints fixed for a given system and that can 

be reached using fundamental processes operating within the system (i. e. mixing, 

reaction and heat transfer). Initially, the relevant fundamental processes are chosen 

and the state variables selected and grouped together to form a vector. Next, the 

geometry of the units is chosen and the necessary conditions determined. A region is 
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then constructed and the boundaries of this region are interpreted as structures. The 

optimal solution is an active constraint on the limits of the constructed region. 

Early work on AR was conducted by Horn (1964) who was the first to present the AR 

concept. Glasser et al. (1987) applied the AR concept to different isothermal 

examples with constant density. Hildebrandt et al. (1990) applied the AR to 

adiabatic, non-constant density systems and constrained systems. Hopley et al. 

(1996) presented an application to an adiabatic example with kinetics that 

incorporated the Arrhenius equation. Their work was later extended by Nicol et al. 

(1997) to integrate optimal cooling strategies. The construction of the AR is 

performed through graphical methods and consequently it is limited to three- 

dimensional problems. The application of the AR concept to three-dimensional 

systems was first presented by Hildebrandt & Glasser (1990). To extend the 

applicability of the AR method to higher dimensional systems, some efforts on 

defining theoretically the region have been performed in the last decade. Feinberg & 

Hildebrandt (1997) established universal properties of the AR, whereas Glasser & 

Hildebrandt (1997) highlighted prospects of its application to more general systems 

than those employed up to the date. Later, Rooney et al. (2000) employed a new 

graphical approach to construct ARs with higher dimensions. 

Regardless of these developments, AR methods are still limited by modelling 

flexibility when they are applied to cases of high complexity such as the ones 

typically found in industry. Besides, they do not succeed in providing methodical 

comparison of different process design candidates as they only provide a single 
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solution for a given system. 

2.2.3 Superstructure Optimisation 

2.2.3.1 Introduction 

The term superstructure in process design stands for a mathematical model that 

embeds all possible combinations and physical connections of processing units. The 

units are connected through mixers and splitters. Superstructure-based optimisation 

applications are found in fields such as reactor networks, separation networks, 

reactive / separation networks, heat exchanger networks, etc. Process designs 

represented by superstructures can be optimised either by deterministic or stochastic 

techniques. 

2.2.3.2 Deterministic Methods 

Deterministic superstructure-based optimisation approaches were initially presented 

by Jackson (1968), who proposed a network of interconnected plug-flow reactors 

(PFR) with sinks, sources and side streams. Two decades later, Achenie & Biegler 

(1986,1990) applied non-linear programming (NLP) methods to solve the problem. 

Initially, they formulated an optimal control problem with a constant-dispersion 

model where a dispersion parameter was used to select a reactor type between the 

continuously stirred tank reactor (CSTR) and the PFR. Later, they introduced the 

recycle reactor module (RRM) and made use of the recycle ratio to determine the type 

of reactor employed: i) when the recycle ratio was approaching to zero a PFR was 

selected; ii) for recycle ratios close to 100 %, a CSTR was chosen. From a different 

point of view, they also proposed a synthesis target-based method to convert the 
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synthesis reactor problem into an optimal control formulation in which the control 

variables were the residence time density and the micro-mixing functions (Achenie & 

Biegler, 1988). Meanwhile, Kokossis & Floudas (1990,1991,1994) proposed a 

general superstructure formulated in the form of mixed-integer non-linear 

programming (MINLP). They applied their developments to isothermal reactor- 

separator-recycle systems and isothermal and non-isothermal reactor networks. In 

order to avoid differential equations and handle only algebraic systems, they 

approximated the PFRs to a series of equal volume sub-CSTRs. Later, Schweiger & 

Floudas (1999) presented a general framework for the optimisation of reactor 

networks using an optimisation approach where CSTRs and cross flow reactors 

(CFRs) were the generic units. The framework was formulated using differential and 

algebraic equations and the optimisation approach involved the application of a 

control parameterization method. Then, Esposito & Floudas (2002) proposed a 

deterministic global optimisation method tailored to the particular structure and 

characteristics of the isothermal reactor network synthesis problem. They modelled 

PFRs using differential-algebraic equations. To overcome the multiple local minima 

exhibited by this formulation, they made use of a branch and bound approach that 

follows the aBB method presented by Adjiman et al. (1998a, b). 

Although deterministic superstructure-based optimisation tools are much flexible in 

the representation of complex systems than AR approaches, they are still limited by 

mathematical and combinatorial complexities if highly non-linear kinetic and phase- 

equilibrium models are involved. These approaches present limitations to initialise 

straightforward the system under consideration and for complex systems, the resulting 

designs are likely to be out of the globally optimal domain. As in AR methods, they 
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only produce a single final design candidate and impede the identification of trade- 

offs for the system. Consequently, they do not provide either confidence in the 

quality of the solution or understanding of the significant features of the final designs. 

2.2.3.3 Stochastic Techniques 

The disadvantages of the deterministic optimisation techniques can be overcome with 

stochastic optimisation tools since they are able to treat problems with any degree of 

non-linearities and discontinuities. Stochastic studies acquire confidence on the final 

solution by performing sets of multiple runs that start from several initial points. 

Multiple final design candidates arise from the optimisation procedure and the 

identification of systems trade-offs becomes possible. These techniques have been 

successfully applied to process synthesis problems such as reactor networks, reaction / 

separation approaches or heat exchanger networks. 

Regarding reactor networks, Marcoulaki & Kokossis (1996,1999) searched single- 

phase reactor networks using stochastic techniques in the form of Simulated 

Annealing (SA). They delivered robust objective targets and a set of final design 

candidates with very similar performances. This approach was later extended to 

isothermal multi-phase systems (Mehta & Kokossis, 1997,1998), and non-isothermal 

multi-phase systems (Mehta & Kokossis, 1998,2000). These authors developed the 

shadow compartment concept and included it in a generic unit, which is the basis of 

their superstructure representation. The shadow compartment includes all possible 

design options from different combinations of contacting and mixing patterns that 

exist within and between different phases in the reactive units. The shadow 
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compartment is divided in sub-units for each phase present in the system. Mass can 

be transferred across phase boundaries. 

Although being an effective alternative to deterministic tools, stochastic methods 

require very long computational efforts to ensure finding the global optimum based on 

statistical facts. They also exhibit initialisation problems and convergence 

difficulties. In an effort to overcome such drawbacks, Ashley & Linke (2004,2005) 

introduced the concept of knowledge driven optimisation and employed systems 

knowledge in order to develop rules to guide and focus the optimisation search. Data 

mining techniques were used for this purpose. Tabu Search (TS) was the stochastic 

tool employed. 

2.2.4 Combined Methods 

The combination of the superstructure representation and the AR methods has been 

addressed by some authors to overcome the disadvantages of AR techniques. 

Balakrishna & Biegler (1992a, b) extended the work of Achenie & Biegler (1988) by 

proposing a multi-compartment mixing model that allowed the simulation of different 

mixing states ranging from the extremes of plug-flow to well-mix. They also 

projected a constructive targeting approach where a single isothermal reactor was 

initially selected and optimised using AR concepts. The superstructure was enriched 

by adding an extra reactor and then optimised. If a better solution was found the 

superstructure was further extended, otherwise the optimisation was terminated. In 

their second paper they energy-integrated non-isothermal reactors. Lakshmanan & 

Biegler (1996a, 1997) extended this concept by using for each stage, superstructure 
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units consisting of two different reactor types: CSTRs and differential side stream 

reactors (DSSRs). They improved the work of Balakrishna & Biegler (1992a, b) by 

avoiding suboptimal final designs for non-monotonic objective functions. AR 

properties were included in the mathematical model and the problem was solved with 

MINLP techniques. Rooney & Biegler (2000) combined MINLP and AR concepts to 

include model parameter uncertainty in reactor network synthesis. Despite these 

efforts, such approaches still contain the limitations of the deterministic optimisation 

methods. 

2.3 Reaction-Separation Integration Approaches 

Some authors have approached the reaction-separation systems integration. The 

forementioned Kokossis & Floudas (1991) presented a general MINLP superstructure 

formulation with two generic reactive units: CSTRs and PFRs. They included sharp- 

split separators and recycles that connected the separators with the reactive units. In a 

similar approach, Smith & Pantelides (1995) employed more detailed models in 

another MINLP formulation. Finally, Fraga (1996) applied dynamic programming 

techniques to a discretised reactor-separator synthesis problem. These works 

addressed single phase systems and therefore were not able to treat reactive / 

separation options. From another viewpoint, Feinberg (2002) identified future 

potential opportunities and likely limitations of the AR methods for reactor / mixer 

and reactor / mixer / separation systems. 
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2.4 Reactive / Separation Integration Approaches 

As in reactor networks optimisation, the techniques for approaching reactive / 

separation processes are graphical and superstructure-based optimisation approaches. 

Graphical efforts include the works of Barbosa & Doherty (1988), Okasinski & 

Doherty (1998) and Hauan et al. (2000a) in distillation of reactive mixtures; Samant 

& Ng (1998) and Hauan et al. (2000b) in extractive reaction processes; and Berry & 

Ng (1997) in reactive crystallisation processes. Regarding the application of the AR 

to reactive / separation synthesis problems, Nisoli et al. (1997) combined the AR 

approach for reactive systems with geometric methods to account for the feasibility of 

separations and proved that in the integration of reaction and separation, the 

composition space is not always attainable. These methods, although useful for 

illustration purposes and initialising rigorous simulations, fail to compare design 

candidates systematically. Besides, apart from being limited by dimensionality 

issues, they approach the integration of reaction and separation in a sequential 

manner. Initially, they focus on separation feasibility and then designs are build up 

around it. 

Efforts on superstructure reactive / separation representations approached with 

deterministic tools include the formulation of a reactive distillation synthesis problem 

as an MINLP by Ciric & Gu (1994). They employed a generalised Benders 

decomposition method to address it. Stein et al. (1999) developed a non-isothermal 

two-phase model with two types of generic units comprising the superstructure: a 

reaction-condensation unit and mixers / splitters. Balakrishna & Biegler (1993) 

formulated a reactive / separation model as a mixed integer optimal control problem 
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in order to optimise a species-dependent residence time distribution function, which 

led to a separation profile as a function of the species age. Lakshmanan & Biegler 

(1996b) integrated their reactor network synthesis algorithm with mass exchange 

network concepts within a combination of MINLP and AR concepts. As in 

Balakrishna & Biegler (1993), they provided design targets rather than design 

alternatives. Finally, on reactive distillation synthesis, Cardoso et al. (2000) 

optimised the same representation as Ciric & Gu (1994) with the stochastic technique 

SA. 

Tools to address reactive / separation synthesis problems share the same advantages 

and disadvantages as those that address reactor networks applications. 

2.5 Reaction-Separation And Reactive / Separation 

Integration Approaches 

Few efforts have addressed the integration of both reaction-separation systems and 

reactive / separation systems. Regarding deterministic superstructure-based 

optimisation approaches, Papalexandri & Pistikopoulos (1996) proposed a mass / heat 

transfer module for modelling a framework formulated as a MINLP problem, to 

address a prepostulated system (e. g. reactive distillation network). Ismail et al. (1999, 

2001) extended these initial developments into reaction- and reactive / distillation 

systems. Within the group of stochastic techniques, Linke (2001) and Linke & 

Kokossis (2003b) introduced a general framework for the selection of process designs 
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through simultaneous exploitation of reaction and separation options. The 

superstructure comprised two kinds of generic synthesis units: i) reactor / mass 

exchangers (RMX units) that follow the concept of the shadow compartment initially 

developed by Metha & Kokossis (1997,2000), and; ii) separation task units. In a 

separate effort, they compared the performance of the stochastic algorithms SA and 

TS in the context of the synthesis of reaction- and reactive / separation systems (Linke 

& Kokossis 2003a). They concluded that TS reaches optimal solutions faster than SA 

when applied to such synthesis problems. 

2.6 The Need For New Synthesis Approaches 

The systematic identification of optimal chemical process designs is a challenging 

task. Choosing a process option in the initial stages of process design is a 

complicated task because of the vast number of possible options, time constraints and 

the lack of conceptual support tools. Consequently, it is at the moment rather difficult 

to screen process alternatives rapidly and reliably to evaluate their potential with 

respect to other options. 

Despite the significant successes of conceptual process synthesis methods for simple 

systems in the past, most industrially relevant systems are considerably more complex 

and cannot be addressed with existing technology. Current conceptual process 

synthesis approaches still exhibit multiple limitations: 
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" Graphical methods are limited by modelling flexibility and dimensionality 

problems. Although helpful for illustration purposes, they fail to deliver 

systematic comparison of design candidates and their applications are to 

systems of reduced complexity. 

" Over the past decade, superstructure-based optimisation methods have been 

proposed to address the systematic identification of designs, by exploiting 

synergies between the reaction and separation system of a process (Linke & 

Kokossis, 2003a, b; Ismail et al., 2001; Smith & Pantelides, 1995). Such 

methods have been highlighted as key technologies to enable improved 

process efficiencies that would be required for a sustainable development of 

the chemical process industries (Tsoka et al., 2004). However, applications of 

these methods to complex systems (e. g. gas-phase heterogeneously catalysed 

reaction systems) are rarely found in industry and academia. The main 

reasons are the numerical problems associated with the mathematical 

complexity of the experimental models involved (e. g. kinetic and phase- 

equilibrium) and with the combinatorial complexity of the layouts implicated. 

Besides, the methods fail to handle practical constraints in practical 

applications. Deterministic optimisation-based methods are difficult to 

initialise, converge, and usually do not succeed to identify the global optimum. 

Moreover, they do not allow the systematic comparison of design candidates 

either. Stochastic techniques, although more robust and flexible than the 

previous ones, require long computational times to converge and still struggle 

to cope with highly non-linear experimental models. 
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Synthesis tools that attempt to lessen the gap between the optimal designs identified 

in the conceptual design stage and those that are implemented in industry are very 

rare. Once the combinatorial size of the problem has been reduced in the conceptual 

design stage, subsequent design stages offer the opportunity to add modelling detail to 

the process representations. By adding detail, the description of the selected designs 

would improve as designs would be evolved into more realistic ones without 

compromising the computational efforts. 

This thesis aims to develop robust and reliable process synthesis methods to address 

the current limitations of process synthesis and make possible step changes in 

innovation. 
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CHAPTER 3. 

Network Optimisation 

3.1 Introduction 

The developments presented in this research are focused on three synthesis problems: 

i) reaction; ii) reaction-separation; iii) reactive/separation. The starting point to 

approach such problems is the process representations presented by Linke & Kokossis 

(2003b). Most of their developments are located in the conceptual design stage of the 

optimal process synthesis strategy presented in Chapter 1, although few of them relate 

to the screening of process options. Their representations are based on building 

blocks that can take the form of pure reactor units, mass exchangers, reactive / mass 

exchangers or separators in the form of separation tasks. Based on these building 

blocks, a rich superstructure that includes raw material sources, product sinks and the 

interconnections between units and compartments of the units can be formulated. 

Their developments have proven to be robust and systematically highlight relevant 

structural characteristics that can help the engineer understanding bottlenecks and 

zones of structural flexibility in the process layout context. However, these 

representations are very generic and show few drawbacks: 

i) They do not support a conceptual screening of all the process options 

represented. 
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ii) They do not support the evolution of the final designs proposed in the 

conceptual design stage. 

iii) They do not support specific issues for particular applications. For 

instance, they show a lack of flexibility to model heat transfer issues for 

heterogeneously catalysed gas-phase reaction systems. 

To overcome the problems emphasized above, this work aims at the development of 

improved process representations. It also aims at the development of alternative 

synthesis methods to the current techniques. All the novel developments are 

presented in the following chapters except for the customisation of the optimisation 

algorithm, which is presented in this section. 

The next sections of this chapter provide a detailed description of the different 

features of the forementioned building blocks and superstructure network 

representations. The customisation of the algorithm employed to optimise the 

networks is described towards the end of the chapter. 

3.2 Generic Reactor / Mass Exchanger Unit 

3.2.1 Description 

The process synthesis representations presented in this work rely on basic synthesis 

units (Linke & Kokossis, 2003a) called generic reactor / mass exchanger (RMX) 

units. RMX units are employed for flexible representation of the elemental 

phenomena in chemical engineering: mixing, reaction, mass exchange and heat 
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transfer. They allow the compact representation of single-phase units (a reactor or a 

mass exchanger) or multi-phase units (a reactive / mass exchanger or any combination 

of the previous). The RMX unit (Figure 3.1) is made of compartments that define 

each of the phases present in the system. In each phase compartment different 

reciprocally excluding mixing patterns are included. Flow is fed into each phase 

compartment and when physically and technically possible, flows can cross phase 

boundaries. The mass flow across phase-boundaries is a result of phase equilibrium 

or diffusional transport. The outlet flow of a phase compartment can be recycled to 

itself, leave the RMX unit or be sent to the inlet of another phase compartment, again, 

when physically and technically possible. The mixing patterns represented in each 

compartment are well-mixed and plug flow. The plug flow behaviour typically 

modelled with differential equations is approximated, at early stages of the 

optimisation search, as a series of equal volume or equal catalyst load well-mixed 

units. Such approximation allows transforming the system into one that only contains 

algebraic equations (Kokossis & Floudas, 1990). 

Feed from other 
phase comoartment 

lass transfer 

Phase 
compartment 

Mixing patterns inside 
phase compartments 
  Well-mixed 
" Segregated flow 

Figure 3.1: RMX unit with three phases. 
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Each phase compartment consists of sub-units arranged in series / parallel layouts. 

The interconnection between sub-units is possible through splittern and mixers. For 

RMX units with multiple phases, each phase compartment has a corresponding 

shadow phase I compartment (Mehta & Kokossis, 1997,2000), which contains 

shadow matching sub-units (Figure 3.2). Mass transfer can only occur between 

matching sub-units. Each sub-unit is fed and the outlet flow can be recycled to itself, 

recycled to a previous sub-unit, sent to following sub-units or leave the unit. 

Phase compartment 

QA. 

AA 
--M 'El 

- Phase boundary 

Shadow phase compartment 

Figure 3.2: Connectivity inside a RMX unit with three sub-units and two phase compartments. 

3.3 Superstructure Representation 

3.3.1 Description 

The superstructure representations include several RMX units connected in every 

physical possible way through mixers and splitters. Temperature policies, size of the 

units (volume or catalyst load), number of units and policies of feeding, bypassing 

A shadow reactor is the term given to a pair of homogeneous reactors in different phases (Mehta & 
Kokossis, 1997,2000). 
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and recycling in the superstructure are degrees of freedom for the optimisation. 

Figure 3.3 shows a superstructure network representation with four RMX units 

including two phases in a co-current arrangement for all the units. The links between 

the phase boundaries represent exclusively the mass transfer links between matching 

sub-units of a phase compartment and its corresponding shadow phase compartment. 

Phase 
boundary 

Figure 3.3: Superstructure representation containing four RMX units and two phases arranged in co- 

current. 

The generality of the superstructure framework allows the identification of different 

structural design options that involve complex feeding and recycle / bypass strategies. 

In stochastic optimisation (see Section 3.4), the attainable solution space defined by a 

superstructure depends on its number of structural elements (here reactors, mass 

exchangers, reactive / mass exchangers). If the superstructure that contains the 

maximum number of possible structural units does not contain the required minimum 

number of structural elements required to represent the global optimal solution, the 
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method will lead to a sub-optimal solution. On the other hand, if too many structural 

elements are included in the superstructure, the size of the problem to be solved 

increases unnecessarily. Consequently, high computational efforts are required to 

obtain solutions, and convergence problems normally appear. The determination of 

the ideal superstructure size is a question still to be answered in process synthesis 

design and by no means within the scope of this work. 

3.3.2 Network Recycles 

Current process synthesis methods usually focus their efforts in single closely defined 

sub-problems of a flowsheet (e. g. reactor networks, separation networks, reactive / 

separation networks, etc. ). However, the overall goal of process synthesis is to 

identify the best design for a problem that embraces all the areas (sub-problems) of 

the flowsheet. In order to capture the synergies between different zones of the 

flowsheet this work makes use of network recycles. Figure 3.4 presents an example 

of a process flowsheet comprising reaction and separation zones that are connected by 

a network recycle. The reaction zone is represented by a superstructure consisting of 

three single phase RMX units. The network recycle connects the outlet flow of the 

separation zone with the first RMX unit. 

SEPARATION 

NETWORK RECYLCE / AREA 

I REACTION AREA 
III 

I 

FEED 

II 

PRODUCTS 

I 
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......................................... ........................................... 
.................... ........ ... ...... .......................... .................... ............. ... .... ........... ............................................ 

... ...... .... ........... ...... . .............. .................... 
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Figure 3.4: Superstructure representation with a network recycle. 
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3.4 Stochastic Optimisation Algorithm 

3.4.1 Introduction 

Stochastic optimisation techniques make use of randomness and statistical analysis to 

approach optimisation problems. A current state moves in a multi-dimensional space 

with a tendency to move towards directions that improve the objective function. Yet 

moving in directions against the improvement is also permitted. The transitions 

continuously occur until a termination criterion is met. The stochastic optimisation 

methods applied to reactor, reaction-separation and reactive / separation process 

synthesis are primarily Simulated Annealing (SA) and Tabu Search (TS). TS was 

firstly applied in the Chemical Engineering domain by Linke & Kokossis (2003a), 

who compared its performance to SA in the context of reaction-separation and 

reactive / separation process synthesis. They concluded that TS reaches optimal 

solutions faster than SA when they are applied to these synthesis problems. 

Accordingly, the selected stochastic tool to explore the superstructure representations 

is TS. 

3.4.2 Tabu Search 

TS (Glover, 1986) is an iterative stochastic search method that incorporates 

techniques from artificial intelligence. TS applications are found in the synthesis of 

heat exchanger networks (Lin & Miller, 2004a, b), in batch plant process design 

(Cavin et al., 2004), and in reaction-separation and reactive / separation systems 

(Linke & Kokossis, 2003a, b). 
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At each iteration, a neighbourhood formed by a set of n random moves is explored 

around the current state (Figure 3.5). A move is an operation that alters the current 

state to another state. When moves are executed, the resulting states are simulated in 

order to search for improved performances with respect to the one that the current 

state has. A short-term memory is included in the form of a Tabu List which includes 

the latest moves. Reverse moves associated with them are rejected when applying the 

acceptance criteria. Like this, cycling in certain local optimum states is avoided. The 

state with the best objective function value in the latest explored neighbourhood 

becomes the initial state for the next iteration. In such a way, local optimum can be 

eluded as states with worse objective function values can be accepted and lead to 

states with more potential. Aspiration criteria are introduced to judge if a move is 

accepted despite being in the Tabu List. This condition permits taking into account 

moves in the list that may attain promising previously unvisited states. 

Initial solution 

Select moves randomly 

Generate new neighbourhood solutions and simulate 

Select best new solution No 

Yes No 

Tabu? Aspiration criteria satisfied? All Tabu? 

No Yes 
No 

Termination criteria met? 
Yes 

Yes 

FFinal solution 

Figure 3.5: Tabu Search algorithm. 

32 



Two termination criteria for the TS are adopted in this work: 

"A maximum number of iterations without objective improvement is 

completed. 

"A total maximum number of iterations is completed. This criterion is included 

to avoid excessive elevated CPU times. 

3.4.3 Mathematical Problem Formulation 

The non-linear constrained optimisation problems treated in this research can be 

described as: 

g(x)_<0 
Maximise f(x) s. t. h (x) =0 (Equation 3.1) 

XEX 

where: 

9 f(x) is the objective function that can be linked to multiple performance 

functions (e. g. resulting amount of desired product in the reactive system in 

the form of yield or selectivity, economic potential of the system, etc. ). 

0 g(x) are the inequality constraints that define specifications, bound process 

variables or constraints for feasible situations. 

" h(x) are the equality constraints that describe the performance of the system 

(mass balances). They can take the form of either algebraic equations or 

differential equations. 

"x are the process variables. 
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The non-linear system of equations is solved using the NEQLU from Chen & 

Stadtherr (1981). 

3.4.4 Constraint Handling 

The constraint handling detailed below only applies to the synthesis exercises 

presented in Chapter 5 and 6 (except where stated). 

Constraints are involved in practically all optimisation problems found in chemical 

engineering and their presence can lead to multiple local optima. Besides, ratios of 

feasible regions to search spaces are usually very small and consequently it is vital to 

have an effective strategy to handle constraints. In this work, such strategy has been 

tailored depending upon the constraint type: 

i) Components fed to the reactive system: Amounts of the components fed 

to the system depend on the network recycles. Therefore, after the 

simulation of every structure, solutions presenting violations on the 

component amount limits are not considered for the optimisation. The 

same rationale applies for the amount of components split in the separation 

sections and for the total flow that is recycled by the network recycles. 

ii) Longitudinal temperature profile values, catalyst load / volume of generic 

units, total catalyst load / volume of the network and streams split 

fractions2: When a violation on these limits exists, the value of the 

violated variable is assigned to be its closest upper or lower limit. 

Z This constraint handling strategy also applies to Chapter 4. 
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iii) Constraints regarding heat transfer processes: i) radial temperature profile 

feasibility (see Section 6.3.2); ii) feasibility of the heat exchange strategy 

(see Section 6.2.2). None of the previous strategies proved to be effective 

to handle these constraints and another strategy based on constraint 

violations (CVs) has been developed. CVs are not included as penalties in 

the objective function but have influence on guiding the optimisation 

search. The superstructures employed in this work can be formed by 

several generic units and each generic unit can show CVs. In such a case, 

for a single type of constraint, the maximum CV among all generic units is 

selected as the representative value for that kind of constraint. If multiple 

CV types are present in a superstructure, the overall CV is obtained by 

adding all the representative CV types. The search is directed towards 

feasible regions by giving preference to feasible solutions over infeasible 

solutions according to: 

9 Any feasible solution (without CVs) has preference over any 

infeasible solutions (with CVs). 

" If two infeasible solutions are compared, the one with lower CV has 

preference. 

" If two feasible solutions are compared, the one with higher objective 

function value has preference. 

3.4.5 Optimisation Degrees Of Freedom 

Tabu Search explores the search space of feasible solutions by performing a series of 

random moves (alterations on the current state). As a result, moves are associated 
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with the degrees of freedom of the optimisation. 

3.4.5.1 Generic Moves For All Superstructure Network Representations 

General moves for all the superstructure network representations presented in this 

work include moves regarding: 

" the addition / removal of generic units, 

" the change of type of a generic unit, 

" the change in size of a generic unit, 

9 the re-sizing of generic units while keeping the overall network size, 

9 the addition / removal of streams that interconnect generic units (recycles and 

bypasses), 

9 the change of source / sink position of the streams that interconnect generic 

units, 

" the change in the amount of the streams that interconnect generic units, 

" changes in temperature profiles for non-isothermal reactors, such as the 

change of the temperature profile direction (ascending / descending), or the 

modification of the parameters that define the temperature profile of a generic 

unit (see Section 5.2.2.4), 

the increase / decrease of the operating temperature for isothermal generic 

units (if temperature is a variable for optimisation). 
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3.4.5.2 Specific Moves For Heterogeneously Catalysed Gas-Phase Reaction 

Systems 

For the development of the decision support framework presented in Chapter 5 and 6, 

superstructure network representations have been tailored for heterogeneously 

catalysed gas-phase reaction systems. Some new moves have been added and tailored 

for these systems to explore them more effectively. An important feature in these 

systems is that the feed can be formed by several streams. For such cases, the feed 

streams can be split and fed separately to the superstructure. Another significant 

feature is that combined moves have proved to allow the search to visit new regions 

when stuck in local optima. The specific moves for heterogeneously gas-phase 

reaction systems are: 

" the general increase / decrease of the temperature of all the generic units that 

form the network, 

" the decrease / increase of the temperature of all units and the increase / 

decrease of the size of all the generic units, 

" the increase / decrease of the size of a generic unit and the decrease / increase 

of its temperature while increasing / decreasing the temperature of the rest of 

generic units, 

" in the case where the amount of a network feed stream is a variable for 

optimisation: 

o the change in its amount, 

o the increase / decrease of its amount and the addition / removal of 

another feed stream bypass, 
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o the increase / decrease of its amount and the decrease / increase in the 

temperature of a generic unit, 

o the increase / decrease of its amount and the decrease / increase in the 

temperature of all the generic units. 

For heterogeneously catalysed gas-phase reaction systems, generic units represent 

reactors with catalyst particles inside (see Sections 5.2.2 and 6.4.2). The reactors 

represented can be continuously stirred tank reactors (CSTRs), fixed bed reactors 

(FBRs), multi-tubular reactors (MTRs) and fluid bed reactors (FLBRs). Some reactor 

type dependant moves have also been included: 

" For all types of reactor: 

o Moves regarding the size of the catalyst particle (increase / decrease). 

9 For MTRs: 

o Moves regarding the diameter of tube of the reactor. The nominal 

sizes of the tubes considered for MTRs are found in Table 3.1. All the 

tubes have a schedule of 40. The generic units that represent FBRs and 

FLBRs are considered to be vessels rather than tubes. Their diameters 

are optimised without considering nominal sizes but finite steps on the 

sizes. 
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Table 3.1: Properties and dimensions for steel tubes with a schedule of 40. 

Diameter Nominal 

-DN- (mm) 
Nominal Pipe Size 

-NPS- (in) 
Diameter 

(mm) 
Thickness 

(mm) 
10 3/8 12.523 2.311 
15 1/2 15.798 2.769 
20 3/4 20.929 2.870 
25 1 26.645 3.378 
32 1 1/4 35.052 3.556 
40 1 1/2 40.894 3.683 
50 2 52.501 3.912 
65 2 1/2 62.713 5.156 
80 3 77.928 5.486 

o Moves regarding the number of reactor tubes. 

9 For FLBRs: 

o Moves regarding the void fraction of the catalyst bed. 
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CHAPTER 4. 

Rapid Screening Of Reactive-Extraction 

Processes 

4.1 Introduction 

Choosing a process option in the early stages of process design is challenging because 

of the large number of possible options, time limitations and a lack of conceptual 

support tools. Existing process synthesis tools are limited in several aspects: 

i) Graphical methods are limited by dimensionality problems and modelling 

flexibility. 

ii) Superstructure-based optimisation methods struggle to cope with highly 

non-linear kinetic and phase equilibrium models. 

As a result, it is presently not possible to screen rapidly and reliably most process 

alternatives to compare their potential with that of other options. 

This chapter presents a conceptual screening design tool to quickly assess the 

potential of reactive liquid-liquid extraction (RLLE) process options. RLLE is a 

process option with the potential to improve product yields for systems involving 

equilibrium reactions or reactions that are inhibited by product formation. The 
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developments presented by Linke & Kokossis (2003b) and by Pistikopoulos and 

collaborators (Papalexandri & Pistikopoulos, 1996; Ismail et al., 1999,2001) would 

typically consider the presence of two phases in the synthesis units when approaching 

the exploration of RLLE. As a consequence, even without being certain that the 

option is attractive from the synthesis point of view (i. e. whether it can deliver 

profitable designs or not), both techniques would require extremely long 

computational times to explore it. If the option proved to be unattractive at the 

termination of the conceptual design stage, remarkable amounts of time and resources 

would have been lost. The conceptual screening tool developed here aims to be 

located on top of the previous developments, in order to: 

9 Assist the designer in judging whether the process option has potential to 

improve process performances and therefore save time and resources if 

opposite. 

9 Extract knowledge about the process option (e. g. mixing patterns, bypassing 

and recycling policies, etc. ) to use it in the later conceptual design stage (e. g. 

initialising optimisations), once the likely potential of the process option has 

been proved. 

The tool proposes the mapping of the information regarding the solvent phase onto 

the superstructure model of a single-phase reactor network, in expense of an error 

when overestimating the transfer rate from the reactive to the solvent phase. The 

overestimated results can be very helpful if well-interpreted. The approach can 

deliver either much better performances than the single reactive system or similar 

ones to it. If the results of the conceptual screening prove to be promising, the next 
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conceptual design stage can be justified and the results can be employed in the tedious 

initialisation of more detailed optimisations. Otherwise, the synthesis option is 

disregarded for not being promising enough and great amounts of time and resources 

are spared in the design exercise. 

4.2 Synthesis Network Optimisation 

The mathematical formulation from Linke & Kokossis (2003b), from which the 

process representations for this application are developed, is found in Appendix 1. 

The basic elements of the superstructure network are the synthesis units. This section 

details the synthesis units and the superstructure generated from their combination. 

4.2.1 Synthesis Units 

The RMX units can represent here a reactor (CSTR or PFR), a reactive / separator or 

a mass exchanger. The latter two multi-phase options consider only counter-current 

contacting between the reactive and the mass separating agent (solvent) phases. 

Conceptual information regarding the design of the process in terms of feeding, 

bypassing, equipment volumes and mixing patterns for reactive phases is given by the 

approach. Information regarding the mass separating agent phase is mapped onto the 

superstructure model of a single-phase reactor network. Therefore, this phase is not 

physically represented in the RMX unit (Figure 4.1). The mapping is achieved using 

a transfer rate expression for liquid-liquid extraction (LLE) processes, which over- 

predicts possible mass transfer from the reactive phase to the solvent phase, based on 

its composition and solvent properties. Its development is detailed in the next section. 
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REACTOR - EXTRACTOR UNIT 

inlet stream outlet stream 

reactive phase phase -JL----------.................... 

solvent phase boundary 

0b `ý 
F> >0 > 

0 outlet splitter 

Q inlet mixer 

mass transfer from reactive to solvent phase 

Figure 4.1: Reactive-extractive unit representation. 

The mathematical formulation of the RMX units includes the balance equations 

around the mixers and splitters associated with the sub-units on which they consist. 

Previous to the formulation, some basic index sets for the superstructure elements are 

presented: 

RM {rm is a reactor / mass exchanger unit} 

F If is a raw material source} 

P {p is a product} 

SP {sp is a splitter} 

MI {mi is a mixer} 

CP {cp is a component} 

SK,,,, {sk is a well-mixed sub-unit in the unit an E RM } 

RX {rx is a reaction} 

Partitions of the previous basic index sets include the following subsets: 

RM {rm I 
rm E RM is an active RMX unit } 

SPA {sp I sp c SP is an active Splitter} 

MIA {mi I 
mi E MI is an active mixer} 
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FA {f IfEF is an active raw material source} 

pA {p IpEP is an active product) 

RXr, {rx I 
rx E RX is an active reaction in rm E RMA } 

SP` {sp I sp E SPA splits the outlet of rm E RM^ } 

SP IRM {sp I SP E SPA splits the outlet of sk c SK,,. of r E' MA } rm, sk 

MI, k 
{mi I 

mi E MIA is a mixer prior to sk E SK. of rm E RMA } 

MIM {mi I mi E MIA is a final product mixer of rm E RMA } 

Based on the previous sets, the rest of variables are: 

FFf, 
T,,, Cp 

{flowrate of component cp in fe FA through mi E MI, M, sk} 

OUTR�n, CP 
{flowrate of component cp through sp E SP, ' } 

OUTSKrrr,, 
Sk, cp 

{flowrate of component cp through sp E SP } rm, sk 

INRrn,, sk, cp 
{flowrate of component cp through miE MIS k} 

FSFf, m. Sk 
{fraction of the feed flowrates FFf,,,,, cp through mi E MIS k} 

SKP, 
m, Sk 

{fraction of OUTSK,.,,,, Sk, cp entering mi EMI. } 

SRR, 
T,,, m,, sk 

{fraction of OUTRr, cp entering M' C- MI, k} 

RXRx, 
m, sk {specific reaction rate of rx E RXA in sk E SK of rm E RMA } 

v, x, CP 
{stoichiometric coefficient for component cp E CP in rx E RXA } 

vR� {volume of the RMX unit} 

s, isk 
{hold-up of sk E SK } 

Next, the equations describing the well-mixed cells sk of the RMX units are 

presented. Inlet streams to the RMX units are raw material streams and outlet flows 
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from other units of the superstructure. Initially the balances of each mixer prior to the 

sub-units are: 

I FFf, 
R,, cp " 

FSFf rtn sk 
+ PREVsk + OUTR 

.,,; p , SRR 
m. rtn, sk 

fE F 

- 
1Rrm 

sk, cp =0 

(Equation 4.2) 
Vf c- F", cpE CP, skE SK,,,, rmE RMA 
PREVsk=1 =0 

PREVskESKrm\{1} = OUTSK,,,, 
sk-l, cp - 

(i 
- 

SKPrtn, 
sk-I 

) 

The balances of the sub-units are: 

INR +IV" RXR Erm, sk ' 
Vrm 

- OUTSK + Rn, sk, cp rx, cp x, im, sk SK m, sk, cp 
rxe RX ým 

MTR,,,,, 
sk, cp =0 (Equation 4.3) 

VcpE CP, SICE SK1 rmERMA, rxE RX 

The balances of the final product mixer are: 

I OUTSK,.,,,, 
sk, cp " 

SKP, 
m, Sk - 

OUTRcp =0 
ske SKrm 

(Equation 4.4) 

V cp c- CP, sk E SK1,,,, rm E RMA 

Finally, the constraints on the split fractions are: 

SRR.,,,, 
msk-1<0 

Vsk¬ SK,,,,, rmERMA 
(Equation 4.5) 

l FSFf, 
m,, sk -1= 0 

ske SKrm 

VfEF, sk E SK,,,,, rm E RM A 
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4.2.2 Superstructure Generation 

The synthesis units are connected in every possible physical combination in the 

reactive phase through mixers and splitters forming the superstructure representation 

(Figure 4.2). 

Reaction phase 

RMX un RMX unit RMX unit RMX unit 
Phase Phase 1 

..................... " 
.........:.. 

i ; 
c ..........................., " .......... 

Phase 1 

............ ......... q......... _..... _: 

Phase 1 

................ .................... .................................. ................................ ...................... ................. ........... .... _............... .......................: 

Phase 
boundary 

f MX iir: i? 
Ph 2 

RMX uni; 
f h" 2 

RMX unit 
Ph 2 

RMX unit 
Solvent 

...... Ph c ase ase ase an 

Separation phase 

" Splitters [] Mixers 

Figure 4.2: Superstructure representation for the RLLE approach. 

In order to represent such connectivities, partitions of the previous basic index sets 

include the next subsets: 

SPf {sp I sp E SPA splits a raw material stream fE FA } 

SPP {sp I sp E SPA splits a product stream pe P^ } 

MIP {mi I 
mi E MIA is a mixer of product pE P" } 

CPp {cp I 
cp e CP is a component in product p E: Pp' } 

CPf {cp I 
cp E CP is a component in SP C SPf } 

} CP, p"'' {cp I cp c- CP is a component in the outlet of spE SPmR-iM 
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All the variables employed in the superstructure formulation are defined over the 

previous index sets and subsets. The following set of variables includes the flow rates 

of each component through splitters and mixers: 

FDf, p 
{component flow rate through sp E SPf } 

INPR.. CP 
{component flow rate through mi E MI, P } 

INP ýP 
{component flow rate through mi E MIP } 

OUTPP 
CP 

{component flow rate through sp =SP P } 

The next set of variables includes the split fractions of streams connecting 

superstructure splitters to mixers: 

SFR f r,,, Sk 
{ fraction of FD f ,p entering MC:: MI Sk} 

SFPf 
p 

{fraction of FDf, CP entering mi E MI' } 

SRP, 
P 

{fraction of OUTRt1,, CP entering mi E MIp } 

SPRP 
m Sk 

{fraction of OUTPP, CP entering mi MIS 
Sk 

} 

Finally for the transfer rate: 

MTRrm 
Sk cP {rate of mass transfer from reactive phase to solvent phase of 

component cp e CP in sk E SKrm } 

The mathematical formulation for the superstructure is defined as follows; initially, 

the balance equations around mixers r"' E MIS k prior to RMX units are: 
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I FDf 
cp " 

SFR f" sk +I OUTR 
cp " 

SRR 
Sk + PREVsk + 

fe FA rme RMA 

OUTPP 
CP " SPR 

P , T� sk - 
INRrmsk 

cp =Q 
PE pA 

(Equation 4.6) 
VfE FA, cpE CP, skE SKr,,,, rmE RMA, pE pA 
PREusk_1 =0 

PREVskESK 
\(l) = OUTSKrm 

sk-l, cp 

(i 
- 

SKP 
Sk 

) 

For outlet mixers of RMX units mi E MI Pm : 

Z OUTSK, 
n, sk"c, " 

SKP, 
m"Sk - OUTR, 

n,,: P =0 
ske SKI 

(Equation 4.7) 
V cp E CP, sk E SK,.,,,, rm E RM^ 

For network product mixers mi E MI' : 

IFD 
f cP " 

SFPf 
p+ 

JOUTRcP 
" SRP, 

n,, p - 
OUTPp 

cp =0 
fe FA rE RMA 

(Equation 4.8) 

Vfc FA, CpE CP, rm E RMA, pE pA 

4.3 Transfer Rate 

The mapping of the information regarding the solvent phase onto the superstructure 

model of a single-phase reactor network is achieved with the help of a transfer rate 

expression for LLE processes. The expression allows removing the equations 

regarding the extractive phase from the system of equations to be solved. Therefore, 

the highly non-linear equations implied in LLE processes are eliminated. The 

resulting system of equations consists only of those equations regarding the reactive 

phase along with the transfer rate equations. Consequently, the size of the problem is 
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reduced approximately to that of a system where only reaction takes place, and 

quickly screening is therefore possible. 

The transfer rate expression over-predicts possible mass transfer from the reactive 

phase based on its composition and solvent properties (solvent losses are assumed to 

be negligible). This transfer rate expression has been developed in the presented 

research from the work of Zheng et al. (1998), where a transfer rate expression for 

liquid-liquid systems with constant interfacial area cell with laminar flow was 

presented. The expression for the mass transfer MTR of the extracted component cp 

in the RMX unit rm and in the well-mixed cell sk, is: 

" Carrier 

MTR = 
Foutrmsk KDcp ' Rrm, 

sk CCarrier 1_ exp 
Paramým, 

sk cp 
im, sk, cp rm, sk, cp, out Carrier 

1+ KD, 
p ' 

Rm, sk Fout., 
sk rm, sk 

(Equation 4.9) 

where Fo�t is the volumetric flow (m3/s) leaving the cell, KD is the partition ratio, R is 

the volumetric ratio between extractive and reactive phase, C is the concentration 

(kg/m3), 6 is the interfacial layer thickness (m), Carrier refers to the reactive phase 

and the Param. sk. cp 
is given by: 

Param,. 
m sk cp - -8.83.1 

O-5 " 
(1 

Oll 
Crm, sk 

40 
' 

(1071 

Srm, sk 

)0.38 
, 

(1 
O`Jmolar 

rm, sk cp 

ý. 28 

(Equation 4.10) 
1.64 -0.05 1.10 0 36 KDcp Fc1m, 

sk ' 
Fstm, 

sk " 
MWca 

where n is the viscosity of the phase (cP), Vmolar the molar volume (m3/kmol), F is the 

mass flow (kg/h) entering the cell, MW the molar weight (kg/kmol), C refers to the 

reactive phase and S to the solvent phase. 
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To obtain the Param.,, k,, P expression, a non-linear least squares regression has been 

developed in this research as follows. Initially, an extractive column modelled with 

detailed liquid-liquid equilibrium models is employed to rigorously simulate 24 

different cases. All cases are taken from the ternary systems found in Table 4.1. Four 

different solvent flows for each one of the systems ranging from 20 to 2500 kg/h are 

employed. Then, with the assumption of an over-prediction of the amount of 

component transferred between 5 and 100 % in at least 95 % of the sections of the 

column, the Paramrm. sk. cP values for the extracted components in the previous 

simulations are computed. With the resulting set of Param., sk,,, values, the regression 

is performed. 

Table 4.1: Systems used in the estimation of the Param,,. 
$k CP expression. 

System Extract Raffinate Solvent 
1 Acetone Toluene Propanediol 
2 Toluene Heptane Triethylene glycol 
3 Ethanol Water Butanol 
4 Acetic acid Water Cyclohexanol 
5 Acetic acid Water Propylacetate 
6 Benzene Hexane Ethylene-diamine 

In order to known the values of the properties of the system under consideration very 

few calculations are needed. The interfacial layer thickness calculation follows 

Bollen (1999), and is related to the viscosity of the mixture (llmixt) by: 

6(1. I) - lo-2.75 0.75 

rm, sk mixt 
rm. 5k 

(Equation 4.11) 

The viscosity of the mixture is assumed to depend on its molar composition (x): 

(fl 

ulixt rm, sk 
cp 

Cp 
X 

rm, sk, cp 

(ii 

rm, sk, cp 
(Equation 4.12) 
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The partition ratio KD is calculated as Pretel et al. (1994): 

KD 
Y p, c MWc 

`p ýr pS 
MWS (Equation 4.13) 

where the activity coefficients 7 are calculated at infinite dilution using the UNIFAC 

liquid-liquid equilibrium group contribution model. 

Six ternary systems (Table 4.2) were used to test the novel expression. Three 

different solvent flows ranging from 100 to 2500 kg/h were used for each of them. 

The transfer rates were overpredicted for all the cases. 

Table 4.2: Systems used to test the Paramr,, sk, cp expression. 

System Extract Raffinate Solvent 
Transfer rate 

overprediction 
1 Methanol Water Butanol 23,25,29 
2 Propionic acid Water Ethyl-acetate 30,31,34 
3 Toluene Methyl-cyclo-pentane Nitrobenzene 86,146,79 
4 Toluene Heptane Aniline 94,97,48 
5 Benzene Cetane Aniline 77,76,77 
6 n-Propanol Water Benzene 58! 93,6 

The overpredictions are for each one of the solvent flows tested. 
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4.4 Illustrative Examples 

4.4.1 Production Of Ethanol 

LLE is commonly used to recover ethanol from reactors where fermentations take 

place. Fournier (1986) considered improving the ethanol (EtOH) productivity by 

extracting it as it was being produced through glucose (Glu) by the following 

biological scheme: 

Glues EtOH + Cells (Equation 4.14) 

Linke (2001) optimised reaction-separation and reactive / separation superstructures 

for the ethanol extractive fermentation using dodecanol as solvent. The objective 

function for this case was set to: 

z 
J=N EtOH, s 

. 100 
NGlu, C ' Ns 

(Equation 4.15) 

where N is expressed in kg/h and NGI,,, c = max(NGI,,, c, Nmin) with Nn,;,, =1.0 kg/h. 

Kinetics (Fournier, 1986) are given by: 

rCe1 = 0.461 "C Gl°` "C Ceu 1-C EtOH 
0.36 

(Equation 4.16) 
C Gluc 0.315 87.5 

rG, UC = -9.452. rCe11 (Equation 4.17) 

rEtOH = 4.2 54 " rCe11 (Equation 4.18) 

A flow rate of 400 kg/hr of glucose in 1000 kg/hr of water is assumed as fresh feed. 

According to Fournier (1986), concentrations of ethanol higher than 87.5 kg/m3 
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completely inhibit the reaction. Dodecanol is the solvent selected as it does not 

inhibit cell growth (Fournier, 1986). 

Table 4.3 provides a comparison of the results obtained for the optimisation of two 

reference cases with those achieved by Linke (2001) using detailed equilibrium and 

mass transfer models. In both cases, the generic unit types were fixed and volumes, 

recycles and bypasses allowed changing. Volumes are practically identical, whereas 

CPU times for the novel approach presented are between three and four orders of 

magnitude smaller. As expected, the objective function values obtained in this work 

are higher for both cases. 

Table 4.3: Comparison of results'. 

Linke (2001) This work Structure (o Reaction -QExtraction) 
Objective 3.66 4.45 

Glu. conversions (%) 60.5 60.5 

CPU (sec) 1.50.103 4.48 

Units volume (m) 8.7 (reactor) 8.5 (reactor) Classic design, S=1680 kg/h 

1.3 (extractor) 1.5 (extractor) 

Objective 6.46 11.77 

Glu. conversions (%) 84.2 90.9 E(q- 
CPU (sec) 1.81.103 0.66 ,y 
Units volume (m) 10.0 10.0 

Extractive fermentor, S=1396 kg/h 

' CPU times correspond to the optimisation of volumes, recycles and bypasses of the system. Number of units, solvent flow and 

reaction and / or extraction options were preset. 

A complex network is optimised next. Up to three synthesis units are allowed in the 

network. The network volume is limited to ten cubic meters. A set of eleven runs 

each starting from different initial structures, is searched using TS. Dodecanol is also 

the selected solvent to perform the study Results are found in Table 4.4. The 
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conceptual structures found in this work (screening results) show a clear trend of 

counter-current contacting with reactive separation dominating at the inlet and 

separation at the outlet of the reactive phase. Recycles in the first and second reactor 

are identified in the solutions. The final design candidate is delivered in 

approximately four minutes of CPU time. These conceptual results can be used to set 

up posterior detailed time-consuming optimisations. Consequently for demonstration 

purposes, a detailed optimisation exploration has been carried out using the structures 

identified in the screening stage as the starting points. The detailed exploration 

consists of two sets of searches. These optimisations employ the process 

representations presented by Linke & Kokossis (2003b), which were initially 

developed by Linke (2001) and that can be found in Appendix 1. In these searches, 

the option of having in each unit, reaction, extraction or both integrated is explored. 

The number of generic units with the flow patterns of the initial structures is 

maintained whilst allowing modifications to the flow rates, volumes of the units, 

stream connectivity (depending on the case), and direction of the flow. In the first 

optimisation problem, the stream connectivity is only allowed to change in the 

reaction phase. The objective reached is 1090 (Table 4.4). In the second search, the 

stream connectivity is allowed to change in both phases. The optimised structure 

yields an objective function value of 1230. Both solutions outperform the structure 

identified by Linke (2001) who allowed the same modifications as in the second case 

and presents an objective function value of 959. Linke (2001) reported very long 

CPU times and convergence problems for this case due to the complex models 

involved. The new approach assisted to identify, quickly, clear design trends at early 

stages of process design, reducing the search space and delivering final structures that 

are close to the optimal solutions. For these reasons, the detailed computationally 
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expensive superstructure optimisations started closer to the final solutions and with 

reduced search spaces to be explored. As a result, they became focussed and robustly 

identified better performances. 

Table 4.4: Resulting structure for a complex network. 

Screening restults Optimal structure' (Q Reaction -Q Extraction) 

Average Max Min 

Objective 6.48.10- 6.48.10 6.48.10 

CPU (sec) 216.6 453.6 69.3 Volume (L) = 3.70 - 4.20 - 1.18 
Solvent = 500 kg/h 

Conversion >99.9% 

Detailed optimisation' 

Recycle - bypass reaction phase 

Objective = 1090 
Volume (L) = 2.48 - 6.16 - 1.34 
Solvent = 2240 kg/h 
CPU (h) = 194 
Conversion > 99.9% 

Recycles - bypasses both phases 
Objective = 1230 
Volume (L) = 4.33 - 5.13 - 0.54 
Solvent = 2363 kg/h 
CPU (h) = 210 
Conversion > 99.9% 

Best of 11 runs based on different initial structures. 

4.4.2 Growth Of Saccharomyces Cerevisiae 

The aim of this case study is to apply the novel approach to a highly complex 

biochemical system in order to show that within reasonable CPU times, RLLE, as a 

process design option, can be effectively screened. Lei et al. (2001) proposed a 

kinetic model that describes the growth of yeast on glucose and ethanol. The model 

consists on twelve reactions with highly non-linear reaction rates that are summarised 

in Figure 4.3. The reaction equations are in Table 4.5 and the related parameters in 

Table 4.6. 
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Figure 4.3: Saccharomyces Cerevisiae reaction path (Lei et al., 2001). 

Table 4.5: Rate expressions for Saccharomyces Cerevisiae growth reactions (Lei et al., 2001). 

Rate expressions 

r, = 
k,, 

Sglu 
Xa +k 

Ih 

Sglu 
X+ r6 = 

k6 
Snccte'd - 

k6 SEtOH 
Xa 

Sg, 
u 

+ KH Sglu + Klh Sacctald + K9 + K6c 
' s, 

, OH 

Sglu 

, u(K,, 
Sacctald + 1) + K, 

S°cc`dld Xa klc 

S 

= r 

Sglu 

7a 
Sglu + K7 

g 

kz SP'r 1X 

N+ 

K2 K21 
' Sglu +1a S 

r= 3 k8 Sacctztc 1X 
Sacctete + K5c 1+K 

5' 
Sglu 

P 

1. =k 
SPn 

X J3 a r= 9 
Ik Sgl° 

+k 
SEtOH 

9c 9 
s 

'r 
+ K3 S + K9 SEtOH + K9c 

l PS g u 

=k a«tald XX r 4JSa Acdh 

1 sglu X Xa +k 
9c 

Sacctnld + K4 1+ K9. sglu Sglu + K9 

S r0 = 

Sglu SEtOH 
k10 Xa + kloc Xz 

zcctatc 
r5 = k5 Xd + Sglu + K10 SEtOH + KI0 

Sýcctdtc + K5 

ks Sa"t4" 1 
X, 

ý d r,, II kX II Acdh 

S, cctat, + K5 I+ K5 ' Sglu 

r12 is not modelled with a kinetic expression since it is assumed that all NADH produced is converted into ATP 

instantaneously 
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Table 4.6: Parameters for the kinetics of Saccharomyces Cerevisiae growth (Lei et al., 2001). 

Parameter Value Parameter Value Parameter Value Parameter Value 

klh 0.584 k3 5.81 K6 0.034 K91 25 

K, h 0.0116 K3 5.0.10-' k6r 0.0125 k9e 3.99.10"3 

k1l 1.43 k4 4.80 K6e 0.057 klo 0.392 

K11 0.94 K4 2.64.10"4 k7 1.203 Klo 2.30.10-3 

kle 47.1 k5 0.0104 K7 0.0101 kloe 3.3910"3 

Kie 0.12 K5 0.0102 k8 0.589 Kloe 1.80.10-3 

Kt; 14.2 k5e 0.775 k9 0.008 kt, 0.02 

k2 0.501 K5e 0.10 K9 1.0.10-6 

K2 0.002 K5i 440 k9e 0.0751 

KZ; 0.101 k6 2.82 K9e 13 

Single-phase reactor networks were synthesised for this system by Ashley (2004). 

For comparison purposes, the same representation for the reactive phase used by 

Ashley (2004) is adopted here. The study starts from ten different initial structures, 

allowing a maximum number of units of four, a maximum unit volume of 30 litres 

and a maximum network volume of 50 litres. The Tabu searches are performed with 

a neighbourhood size of ten. The feed flow rates are the same as for Ashley (2004), 

which are taken from Lei & Jorgensen (2001): glucose 14 g/s, ethanol 0.13 g/s, 

biomass X 0.002 g/s, Xa 0.1 g"(g biomass X)-1, XAcdh 0.0075 g"(g biomass X)-1 in 1 

kg/s of aqueous solution. Ethanol is once more the desired product and its total yield 

the objective. Dodecanol is again the selected solvent to perform the study. 

RLLE as a process design option could be screened below 15 hours of average CPU 

time (Table 4.7). The searches of the RLLE network and of the single-phase reactor 

network employ very similar CPU times. Therefore, the suitability of the novel 

method to decide whether RLLE is a potential process design option is clearly proved. 

In a similar CPU effort, RLLE as a process design option was efficiently screened and 
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its potential effectively assessed. The search quickly proved that RLLE with 

dodecanol as solvent is not an attractive process design option for this case. The 

small improvement obtained in the maximum performance with respect to the single- 

phase reaction system, suggests that setting up and conducting posterior time- 

consuming detailed optimisation searches, do not need to be considered as no relevant 

improvement in performance is expected. 

Table 4.7: Results for Saccharomyces Cerevisiae case study. 

Average Max Min Optimal structure' 0 Reaction -o Extraction) 

Ashley (2004) 

Objective 5.08 5.16 4.91 rte- uiýý 

CPU (h) 14.79 34.73 3.14 Volume (L) 5.93 0.77 2.76 1.17 

This work 

Objective 5.08 5.24 4.84 

Volume (L) 2.54 4.67 17.3 0.53 
CPU (h) 14.39 29.38 3.85 

Solvent (kg/hr) 3002 

Best of 10 runs based on different initial structures. 
Z The highest average is obtained with 300 kg/hr of solvent. Sets of 10 runs have been performed with 10,50,100,300,700 and 
1000 kg/hr of solvent. The highest OFV is 5.29, which is obtained with a solvent flow of 700 kg/hr. 

4.5 Conclusions 

A novel approach to screen quickly and reliably RLLE networks has been presented. 

The approach is based on mapping the information regarding the mass separating 

agent (solvent) phase onto the superstructure model of a single-phase reactor network. 

The novel method has been applied to two biochemical examples of very different 

complexity. The approach has been proved to be highly computationally efficient as 

compared with typical reactive separation superstructure-based optimisation 

approaches that include complex and detailed liquid-liquid equilibrium and mass 
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transfer models. The accuracies of the approach appear to be adequate for high-level 

decision-making at early stages of process design. 
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CHAPTER 5. 

A Decision Support Framework For Synthesis Of 

Heterogeneously Catalysed Gas-Phase 

Reaction Processes: Systematic Identification 

Of Conceptual Process Designs 

5.1 Introduction 

The current sequential nature in the design of chemical processes impedes 

experimental engineers to have process design information when developing kinetic 

models. The kinetic modelling team elaborates a model that is given to the process 

synthesis engineers who identify optimal process designs with it (Figure 5.1). 

Optimisation results are likely to identify solutions in regions in which the 

experimental model has not been validated (i. e. temperature ranges, concentration of 

components). There is for that reason, either a design compromised by kinetic 

reliability or a project delay because some extra experiments must be performed in 

order to validate the model in the new regions identified, after the kinetic 

development has long been concluded. 
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Kinetic model development Sequential communication Process synthesis 

No process design information 
V 

No feedback 

Figure 5.1: Sequential communication between the kinetic model development and the process 
synthesis. 

To break the sequential nature of this practice and allow the existence of a 

bidirectional flow of information, it would help the kinetic model development to be 

guided towards the context of the overall design goal (e. g. integration of catalyst 

performance with reactor and separation systems design). The integration of the 

kinetic model development and the process synthesis activities (Figure 5.2), would 

seek for the perfect match between the regions identified by the optimisation and the 

regions for which the model is validated. However, before establishing an effective 

communication framework that integrates both systems, process synthesis engineers 

must address the identification of the best process design candidate. 

Kinetic model development 
C Continuous flow of Process synthesis information 

:)C 

Figure 5.2: Communication framework that integrates the kinetic model development and the process 

synthesis. 

For their technical and economic importance in the process industry, heterogeneously 

catalysed gas-phase reaction processes have been chosen to illustrate the 

developments presented in this work. Usually, economic reasons dictate that gas 
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reaction processes cannot involve systems where separators are placed between 

reactors (e. g. reactor-separator-reactor-separator-reactor). Only membrane 

separations are excluded from this statement. The reactions involved in gas reaction 

systems take place at very different conditions from which the separations occur. 

Reactions occur in the gas-phase at high temperatures whereas separations (except in 

membrane separation) require liquid phases. An intermediate separation between two 

reactors would require a gas cooling process and / or a condensing process, previous 

to the separation in liquid phase. Both processes involve expensive equipments and 

operations: 

i) For a total condensation, particularly expensive equipments would be 

needed (e. g. cryogenic exchangers). 

ii) For a partial condensation, the gases would be cooled in a heat exchanger, 

let-down in a pressure valve and finally flashed in a drum. 

Whatever the case, heating utilities and heat exchangers would be necessary after the 

separation process to evaporate the liquids again into gases, so they could be sent to 

the next reactor. Even without considering the cost of the actual separations, it is 

obvious that such systems are not economically viable for gas reaction processes. 

Only the use of reactor-separator-recycle systems appears to be economically viable 

for such processes. 

Reactor-separator-recycle systems are very complex in terms of possible 

combinatorial options. Process synthesis knowledge can be used to eliminate 

numerous impractical connections in this type of systems. However, even with such 

simplified representations, current process synthesis technologies cannot afford to 
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treat the full complexity of the kinetic models together with the full complexity of the 

process models (i. e. reactor models, separation models, etc. ). On one side, kinetic 

models enclose key information on how species are formed and consumed inside 

reactors and their simplification cannot be easily addressed while still capturing all 

major trade-offs. Such simplification still constitutes an unresolved research problem. 

On the other hand, process models can be simplified to plain models, which 

approximate the performances of complex models reasonably well. But even with 

such simplifications, existing process synthesis methods cannot handle the 

mathematical complexity inherent in the kinetic models, and cope with the 

combinatorial complexity of reactor-separator-recycle systems when complex cases 

are approached. Besides, the process representations in which they rely either 

embrace too many options that unnecessarily increase the numerical complexity of the 

system, or do not embrace options that proficiently represent how fundamental 

processes (i. e. heat and mass transfer) occur in these systems. Moreover, the 

representations are unable to handle practical process constraints found in practical 

applications (e. g. limitations in the maximum amount of heat that the exchange 

utilities can add/remove to/from the reactive system, limitations in the amount of 

oxygen concentration at high temperatures which can create explosions, etc. ). For all 

these reasons, the systematic identification of optimal design candidates for 

heterogeneously catalysed gas-phase reaction systems is nowadays virtually 

impossible. 

In order to approach the synthesis exercise of such reaction systems, this research 

presents a decision support framework (DSF) that relies on a superstructure-based 

optimisation approach. The DSF is extended across the conceptual stage and the 
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design stage introduced in Chapter 1. The DSF relies on the appropriate balance 

along the synthesis exercise between the number of options (i. e. combinatorial 

complexity) and the accuracy of the models employed. Due to the impossibility of 

reducing the complexity of the kinetic models, the synthesis strategy presented here 

only applies to process synthesis models. At the beginning of the synthesis exercise, 

the process structure is unknown and the combinatorial complexity is high. 

Therefore, simple models are employed. Towards the end, the knowledge that has 

emerged about the process structure is employed to reduce the structural complexity 

and the addition of more detail in terms of process models can be afforded. 

The current chapter presents the beginning of the synthesis exercise (high 

combinatorial complexity with simple process models). The synthesis developments 

presented here form part of the conceptual design stage. Compact process 

representations, in which the DSF (Figure 5.3) counts on, have been customised for 

heterogeneously catalysed gas-phase reaction systems and have been adapted to 

include practical constraints that are found in practical applications. The DSF also 

relies on a multi-level approach that aims at the development of design performance 

targets and the identification of interactions between design performance and design 

complexity. 
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Figure 5.3: Decision support framework within the communication framework that integrates the kinetic 

model development and the process synthesis (1). 

The knowledge obtained from the conceptual design stage can be used in later 

concreter stages. This is exploited in Chapter 6 where the balance of the numerical 

and combinatorial complexities along the synthesis process is at the other end: low 

combinatorial complexity with high model accuracy. The multi-stage synthesis 

strategy presented in Chapter 6 is extended across the design stages introduced in 

Chapter 1 (Figure 1.1). In the multi-stage strategy, the few designs resulting from the 

multi-level approach are carefully explored by employing more detailed and 

computational demanding reactor models. 

The following sections detail the process representations, the performance evaluation, 

the network optimisation and the multi-level approach employed for the DSF. 

Finally, a case study used to illustrate the developments is presented. 
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5.2 Process Representations 

5.2.1 Introduction 

The superstructure process representations employed by the DSF have been tailored 

for heterogeneously catalysed gas-phase reaction systems. To allow the screening of 

a large number of design options, conceptual process synthesis representations must 

be used to cope with: 

i) the large combinatorial size of the search space involved in reactor- 

separator-recycle systems; 

ii) the elevated mathematical complexity of the process models (i. e. reactor 

models, separator models); 

iii) the non-linearites of experimental kinetic models. 

The main design decisions that need to be made for heterogeneously catalysed gas- 

phase reaction systems include reactor design and operation, interactions via recycles 

between reaction and separation systems, and separation system design and operation. 

The reaction representations include combinations of generic units that embed options 

relating to mixing (plug flow or well-mixed), temperature policies, mass of catalyst 

and constraints regarding heat management and component concentrations. The 

energy management constraints are derived from physical limits that are present in 

different heterogeneously catalysed reaction system designs. Concentration limits are 

incorporated as design constraints and are set with respect to different components. 

Separation options can be represented in aggregated form to decompose the design 

problem. Energy and area targets are used to assess the performance of the heat 

exchanger network. 
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In the next section, a detailed explanation of the process representations is given. The 

representations are structured in reactor representations, separation representations 

and energy integration. 

5.2.2 Reactor Representation 

5.2.2.1 Reactor Modelling 

The models employed for the representation of catalytic reactors are: 

" Continuously stirred tank reactor (CSTR). 

" Approximation of the pseudo-homogeneous one dimensional plug-flow 

reactor (PFR) model without radial temperature profile approximation. The 

PFR approximation relies on assuming the plug-flow behaviour as the 

behaviour that a series of isothermal equal catalyst load sub-CSTRs (Kokossis 

& Floudas, 1990) would have. Fixed-bed reactors (FBRs) or multi-tubular 

reactors (MTRs) can be represented by this approximation. 

Theoretically, if catalyst pellets are considered, internal mass transfer limitations 

inside the pellets must be expected. However, as happens in all the cases considered 

in this work, internal diffusion processes are either neglected or have been lumped 

into the kinetic expressions (Sections A2.2 and A3.3). If internal diffusion cannot be 

neglected for the specific case study or is not lumped in the kinetic expressions, 

instead of a pseudo-homogeneous PFR model, a more detailed heterogeneous model 

that takes into account the diffusion in the catalyst pellet should be employed. Such 

situation has not been explored in this research. 
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5.2.2.2 Pressure Losses Inside Reactors 

The pressure losses inside the reactors vary depending on the type of reactor. The 

pressure losses for CSTRs are assumed to be a typical value of 0.5 bars. On the other 

hand, the pressure losses for the approximation of the pseudo-homogeneous one- 

dimensional PFR model without radial temperature profile approximation are 

considered to follow Ergun (1952). The Ergun expression models the pressure losses 

(P) along the length of the reactor (z) as: 

SP` Pg"U 
Sz dp 

(Equation 5.1) 

where f is the friction factor, pg is the gas density, uo is the superficial velocity and dp 

is the diameter of the catalyst particle. If the reactor is discretised in segments, the 

pressure losses can be represented as: 

z 
AP, 

= f. 
Pg u0 (Equation 5.2) 

Az dp 

Ergun proposed the following expression for the friction factor: 

1-c 
f= ra+b (1-s) 

E Re 

a =1.75 
(Equations 5.3) 

b=150 

where 6 is the void fraction of the catalyst bed and Re is the Reynolds number. 
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5.2.2.3 Reactor Constraints 

Certain constraints are particular to the heterogeneously catalysed gas-phase reaction 

systems. They can be divided in: 

" Concentration constraints: Limits on the amounts of specific components have 

been incorporated to avoid situations where excessive amounts of them can 

lead to dangerous scenarios (e. g. high concentrations of oxygen at elevated 

temperatures), produce fouling, etc. Concentration limits can be directly 

incorporated as constraints in the problem formulation. 

9 Temperature and heat transfer constraints: Heterogeneously catalysed gas- 

phase reactions normally occur at high temperature. Problems arise when heat 

needs to be removed from the system as fast as it is produced or when it needs 

to be supplied as fast as it is required. Temperature and heat management 

issues are addressed in more detail in Sections 5.2.2.4 and 5.2.2.5. For the 

appropriate management of heats and temperatures, the heat transfer 

phenomena occurring inside the catalytic reactors need to be addressed in 

depth. Detailed heat transfer representations for catalyst beds are the focus of 

Section 5.2.2.6. 

5.2.2.4 Reactor Temperature Profiles 

For each solution that the optimisation algorithm searches, temperature profiles are 

imposed to the reactors and then mass balances are converged (simulation step). 

CSTRs are considered to be isothermal whereas for those reactors with plug-flow 

behaviour, the longitudinal temperature profiles considered are: flat (isothermal), 

linear (increasing or decreasing), exponential, logarithmic and peaked (Figure 5.4). 
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The implementation of the longitudinal temperature profiles follows the work by 

Metha & Kokossis (2000). 
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Figure 5.4: Temperature profiles (Mehta & Kokossis, 2000). 

5.2.2.5 Reactor Heat Transfer Modelling - Heat Transfer Limits 

Practical constraints for heat transfer, developed from physical limits of catalytic 

reactors, are included in the reactor representations. In order to maintain the imposed 

temperature profile (see Section 5.2.2.4), the amount of heat to be exchanged between 

every reactor (qreactor) / section of reactor (qisc) and its utility media has to be 

physically reachable. To ensure that, once the simulation step is finished two heat 

balances are performed. First of all, a heat balance is carried out within the streams 

leaving and being fed to each reactor / section of reactor: 

" For a reactor: 

ncomp ncomp 

q= Iii h (T )- Ym h 
(T 

" rior ic. reactor rcactor reactor ic. m_rc: taur IC in_ reactor ,, 
_reactor Ic=l Ic=l 

(Equation 5.4) 
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0 For the first section of a reactor: 

ncomp ncomp 
q. _m "h 

(T )- Ym -h 
(Tin 

ic. isc=1 ic. isc=1 isc=t ic. in_reactor ic. in reactor reactor is=1 tc=1 

0 For a section of a reactor different than the first one: 

ncomp ncomp 
q, _ ým h- ým h ýT 

isc MAC ic. isc 

(T 
i. 

) 
ic. isc-1 ic. isc-1 isc-I 

1c=1 is=1 

(Equation 5.5) 

(Equation 5.6) 

where h;, is the enthalpy of each component, m; c is the molar flow of each component, 

Tin_reactor is the inlet temperature of the reactor, Treactor is the operating temperature of 

the reactor and Ti,, is the operating temperature of each section of reactor. 

Next, another heat balance is performed between each reactor / section of reactor and 

its corresponding utility media: 

" For a reactor: qreactor =U"A" 
(Treactor 

- T01111) (Equation 5.7) 

" For a section of reactor: q; sc =U-A. 
(T1 

- Tu,;,; ty _; Sc 
(Equation 5.8) 

where U is the overall heat transfer coefficient, A is the heat exchange area, Tutility is 

the temperature of the utility media for a reactor and T�t; i; ty_; S, is the temperature of the 

utility media for each section of reactor. 

After few manipulations, the utility temperature can be expressed as: 

" For a reactor: Tutility - Treactor -q 
reactor (Equation 5.9) 

U"A 

" For a section of a reactor: T-T- q`5, (Equation 5.10) 
uulrty _isc 

- isc U"A 

from where its value can be calculated, as the rest of variables in the equations are 

known: the temperature of the reactor / section of reactor is imposed; the heat 

exchanged per reactor / section of reactor is estimated in the first heat balance; the 
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heat exchange area can be calculated from the shape of the reactors; the overall heat 

transfer coefficient can be calculated as explained in the next section. 

If the temperature of the utility media for every reactor / section of reactor does not go 

beyond some defined limits (Figure 5.5), which are directly linked to the reactor types 

and features, the amount of heat exchanged is considered to be reachable. Therefore, 

the structure is feasible and included for the optimisation search. Otherwise, the 

structure is rejected and not taken into account for the optimisation. 

Upperlimit 

T111 
I Twrýy_.: 

c 

Lower limit 
--------- -ý ------- 

123456789 

sub-CSTR 

Unfeasible structure 

Upper limit 
--------------- 

Lower limit 
------------------- 

Feasible structure 

Figure 5.5: Heat exchange media temperature profiles for a PFR formed by 9 sub-CSTRs that exchanges 

heat with 9 heat exchangers. 

For the approximation of a pseudo-homogeneous one dimensional PFR model without 

radial temperature profile approximation, the temperature imposition method (Section 

5.2.2.4) assumes that the reactor exchanges heat with as many heat exchangers as sub- 

CSTRs employed for the PFR approximation (Figure 5.6). Such a scenario leads to a 

temperature profile of the utility media that does not follow a progression along the 

reactor, which can be physically achieved with a single heat exchanger (see in Figure 

5.5 the scattered points of TUt; l; ty_; Sc vs. sub-CSTR). Although this situation can be 

considered as an ideal case due to its lack of practicality from an industrial point of 

view (n heat exchangers are required to exchange heat with a single reactor), it allows 
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reducing the optimisation search area and focussing the efforts on promising regions 

disregarding the options that even in these ideal circumstances, still require 

impossible heat exchange scenarios. Other impossible scenarios identified are those 

in which a reactor exchanges simultaneously heat with a cooling and with a heating 

utility. 

TIC To,, 

Heat exchanger 
iI1IIIIj, 

1I1II1I ""l 

sub-CSTR (reactive media) 

Figure 5.6: Cooled PFR formed by 9 sub-CSTRs that exchanges heat with 9 heat exchangers. 

5.2.2.6 Reactor Heat Transfer Modellina - Heat Transfer Coefficient 

To calculate the overall heat transfer coefficient (U), the following expression is 

employed: 

II+ Stall 

+I 
U Ureactive 

media 'wall 
Uutility 

media 

(Equation 5.1 1) 

where b,,. aii is the thickness of the wall of the reactor tubes and X 'aii its conductivity. 

The overall heat transfer coefficient for the utility media (Uutility_niedia) is set to a 

typical value for its kind. The calculation of the overall heat transfer coefficient for 

the reactive media (Ureactive media) depends on the mixing pattern (CSTR or PFR): 

" CSTRs are assumed to have a conical section shape and their overall heat 

transfer coefficient for the reactive media is assumed to be 600 W/m2/K. A 

FLBR is a type of reactor that can be represented by a CSTR and has the best 

heat transfer properties. Since what it is intended to do is to set a maximum 

73 



limit on the heat exchanged, the heat transfer coefficient for the reactive media 

has been chosen to be 75 % of the highest value for a FLBR found in the 

literature (Kelkar & Ng (2000) suggest values between 50 and 800 W/m2/K). 

0 For PFRs (FBRs or MTRs), the overall heat transfer coefficient for the 

reactive media is calculated from Dixon (1996): 

1_1+ rt Bi+3 
U 

reactive media h, 3" ke 
r 

Bi +4 
(Equation 5.12) 

Following Konig (2002), the wall heat transfer coefficient (h, ) can be 

correlated to the effective radial thermal conductivity (2 e, r) of the bed using 

the Biot number (Bi) and the radius of the tube (r): 

Bi = 
h,, r` 

= 1.5 "N" Re-° 25 (Equation 5.13) 
'e, r 

where the aspect ratio (N) is: 

N= 
dý' (Equation 5.14) 

P 

and dt is the diameter of the tube and dp is the diameter of the catalyst particle. 

For the cases where the catalyst particles are cylinders, the diameter of the 

sphere of the catalyst particles is substituted by the equivalent diameter of the 

sphere of the catalyst particles (dp"): 

d" =d P. 

3" hP 
(Equation 5.15) 

PP2 dP 

where hp is the height of the catalyst particle. 
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Then, the effective radial thermal conductivity can be expressed as the sum of 

two terms: 

_of a'e, 
r , 

a'r + a'r (Equation 5.16) 

where 2, r° is the effective thermal conductivity due to conduction in the fluid 

and the solid phase and 2., f is the effective thermal conductivity due to 

convection. With the help of the fluid conductivity (a, f), the previous equation 

can be written in dimensionless form as: 

0 ke 
2i _), r + 

Pe0 h 
? 
If 

Xf Peh, 
r 

(Equation 5.17) 

where Peh, r is the Peclet number for radial heat conduction (oo indicates at 

sufficient high velocity) and Peh° is the fluid Peclet number for heat transfer, 

which can be expressed as: 

Pe0 
u° Pf CPf dv 

= Re Pr h- 
f 

(Equation 5.18) 

where uo is the superficial velocity, pf is the density of the fluid, Cpf is the 

fluid specific heat and Pr is the Prandtl number. 

Bauer & Schlünder (1978a) proposed the following expression for the Peclet 

number for radial heat conduction: 

Peter =8.2 - 1_ 
2 

(Equation 5.19) 

After omitting radiation and direct particle-to-particle heat transfer 

contributions and the system pressure influence, Bauer & Schlünder (1978b) 

found the following expression for the ratio x. ° /kf : 
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)ý, 
-(1- 1-E)+ 

2" 1-s B 1-K-' x B-1 
-B+1 %f 1-B"K' L1_B. 

K12 B 1-B"K IZ 

B=C f"1E Cf =2.5.1+ ' (for rings) (Equations 5.20) 
P 

Cf = 2.5 (for cylinders) Cf =1.25 (for spheres 

where d; is the inner ring diameter and the ratio of thermal conductivities of 

the solid and the fluid phase (K) can be considered to be 10 (Smirnov et al., 

2004). The void fraction (E) for randomly filled beds can be measured 

following Winterberg & Tsotsas (2000a) who proposed its calculation as: 

cýrý=sue 1+A"exp -B"It 
-r 

dP 

A=0.65_1 

B=0.6 

(Equations 5.21) 

where r accounts for the radial position inside the tube. For dense beds of 

cylinders with height of particle similar to length of particle, E;,,, takes values 

between 0.25 and 0.35 (Winterberg & Tsotsas, 2000a). The value selected in 

this work is c=0.3. oo accounts here for an infinite expanded bed. 

By integration, the average bed porosity is derived: 

rt ? js(r)rdr 

rt 
0 

(Equation 5.22) 
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5.2.3 Separation Representation 

If a detailed reactor network formulation is coupled with a detailed separation 

network formulation, the resulting combinatorial complexity of the system is 

enormous. In addition, the kinetic models involved in the reactor formulations 

enclose considerable non-linearities. Subsequently, if a full process synthesis model 

including the full combinatorial complexity and the full numerical complexity is 

formulated, the resulting problem is too complex to be solved with any of the existing 

optimisation approaches. This is exactly the case of the reactor-separator-recycle 

systems approached in this work. In these systems, both reactor and separator 

representations must be included in the model formulation as both impacts are 

essential on the process performance. Reactor systems have a very strong impact on 

the performance and consequently the ability to represent the reactions in the model 

should not be sacrificed. Separation systems are also important because they 

determine the trade-offs between separation costs, recycling costs, reactor cost and 

raw material conversion efficiency. Opportunely, information about optimal solutions 

for separation systems can be obtained much quicker in comparison to the ability to 

solve the reactor problems. As a result, one can benefit from the fact that separation 

synthesis problems are simpler to solve, and solve them multiple times in order to 

include the resulting information in aggregated form into the process synthesis model. 

This exercise can take place in a separate effort before the beginning of the synthesis 

exercise. 

The following methodology is a suggestion of how the separation synthesis 

calculations can be decoupled, but by not means, is the focus of this work (it is 

worthwhile to mention that the process representations for all the systems considered 
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from now onwards include both reaction and separation representations). The 

separation section could be represented as a sequence of separators in the form of 

simple input-output models (Linke & Kokossis, 2003b). In such models, the input to 

each separator fixes its output based on pre-set split fractions. By repeatedly solving 

the separation-sequencing problem for different feeds, a separation sequence cost 

could be developed as a function of the feed flow and feed composition. Optimal 

costs functions could be obtained if the separation sequence cost was to be developed 

by using separation synthesis methods. Since the components sent from the reaction 

section to the separation section are known for each problem, their flows and 

compositions could be estimated to narrow the ranges to be used in developing the 

cost function. 

5.2.4 Energy Integration 

The process heat exchanger network performance is assessed in different steps that 

allow measuring the performance of the complete network design, without having to 

carry out the actual design: 

1) Initially, the Problem Table algorithm is solved for each specific 

superstructure simulated. The algorithm presented by Linhoff & Flower 

(1978) identifies, within all the streams included for the heat integration 

(heating / cooling reactor utilities are excluded), sources of heat (hot 

streams) and sinks of heat (cold streams). The algorithm maximises the 

heat recovery in the heat exchange network and allows calculating the 

heating and cooling duties, not provided by heat recovery, which must be 

serviced by external utilities (energy targets). 
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2) The external utilities are selected according to the temperature at which 

they are required and their flows are estimated through heat balances. 

3) Next, the heat exchange area targets (Townsend & Linhoff, 1984) are 

predicted. The hot and cold composite curves, including the utilities, are 

divided into enthalpy intervals. The hot composite curve is one stream 

equivalent to all the individual hot streams in terms of temperature and 

enthalpy. Similarly, the cold composite curve is equivalent to all the 

individual cold streams in terms of temperature and enthalpy. The heat 

exchange area (AHXNETWORK) is targeted with: 

INTERVALS 
_K 

1 HOT_STREAMS_ Ig 
k 

COLD 
_STREAMS _J 

qjk 

- 
A i 

+ 
HXNETWORK 

k ATLM 
k i hi hi 

(Equation 5.23) 

where OTLM, k is the logarithmic mean temperature difference for the 

enthalpy interval k, q;, k is the stream duty on hot stream i in enthalpy 

interval k, cj, k is the stream duty on cold stream j in enthalpy interval k, 

and h; and hj are the film transfer coefficients for hot stream i and cold 

stream ý. 

4) Finally the minimum number of heat exchange units (HXUNITS) is 

calculated according to: 

HXUNlTS = 
(SABOVE 

PINCH -1) + 
(SBELOW 

PINCH -1) (Equation 5.24) 

where S refers to the number of streams and PINCH to the heat recovery 

pinch (Linhoff et al., 1979). The heat recovery pinch value and position 

correspond to an economic minimum temperature difference between the 

energy and the capital costs of the heat exchanger network. 
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The outputs of the energy integration are the heat exchange area, the number of units 

that form the network and the external utilities required. 

5.3 Performance Evaluation 

The optimisation objective function for process designs screening can be a function of 

any of the variables of the system. It can consider waste production minimisation, 

yield maximisation, conversion maximisation, etc. An alternative approach would be 

the development of indexes to assess the safety, controllability or environmental 

friendliness of a process. This work considers for the current application an objective 

function linked to the maximisation of the Economic Potential (EP). The EP 

considered here is a modified EP where just the capital and operational costs of the 

key equipments are included. When screening process design candidates, many 

operational units are not significantly different from one design to another (e. g. 

vessels of the flashes, distillation columns, absorbers, etc. ). For that reason, all these 

units are not considered in the EP function and only the equipments identified to be 

different among the designs are included in it. Besides, for those equipments that are 

not operational units and may vary in number (controllers, valves, pipes, etc. ), the 

difference of their impact on the EP function is assumed to be negligible. The key 

equipments identified may vary on the case study but usually they are: compressors, 

reactors, reboilers and condensers of distillation columns and the heat exchanger 

network. 
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The EP can be calculated as: 

EP = Product value - Operating cost - Capital cost " Annualization factor (Equation 5.25) 

where 

(1 
+ i) PBP 

Annualization factor =i ((i + i)PBP 
(Equation 5.26) 

-1 

in which i is the interest rate and PBP the payback period. 

In order to estimate the cost of the equipments at the same reference time (December 

2004), the Chemical Engineering Plant Cost Index (CECI) has been employed (Table 

5.1). 

Table 5.1: CECI (http: //www. eng-tips. com). 

Year CECI 
2000 394.1 
2001 394.3 
2002 395.6 
2003 402.0 

2004 - December 464.4 

5.4 Network Optimisation 

The network optimisation is performed according to the implementation of the 

stochastic tool Tabu Search, first introduced in Chapter 3. The solution obtained after 

each simulation is considered for the optimisation only when the component 

concentrations and the heat transfer flows from / to the reactors are within bounds 

(Figure 5.7). 
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Figure 5.7: Tabu Search algorithm for the multi-level approach. 

5.4.1 Synthesis Procedure 

The current applications of superstructure-based optimisation approaches only 

consider optimisations on the entire superstructure. The multi-level approach 

(Figure 5.8) developed here, carries out the optimal searches in structured steps to 

facilitate the understanding of the complexity of the system by the engineer and 

enable the reliable identification of potential improvements in process performance 

along with the process complexities associated. The approach includes two separate 
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levels. In the first level, the optimal performance of conventional base case 

structures is assessed. The second level is formed by two stages: i ) the 

Performance targeting stage; ii) the Increase search space stage. 

Conceptual screening of process options 
Identification of potential process options 

Conceptual design 
Optimal reaction-separation and reactive/separation process designs 

Base case structure 

Asses performances of designs 
with conventional reactors 

- -LEVEL 
1 

------ - 
6>_ 

-- -- ------------ 

Performance targeting increase search space 1� U 
Explore all possible interactions Starting from base cases, 
between feed streams, bypass increase: Identify improvement 

streams and recycle streams in objective with 

with multiple reaction zones 
Number of reactive units increasing complexity 

each of which can exhibit " Stream connectivity 
different mixing, heat 
management and catalyst mass 

LEVEL 2 
---------------- ýU ------------------------ 

F Final design candidates 

-3-- 

Evolution of designs 

Adapt optimal conceptual designs into reachable designs 

Figure 5.8: Multi-level approach. 
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In the Performance targeting stage (Level 2), all possible interactions between feed, 

bypass and recycle streams with multiple reaction zones are allowed. The full 

superstructure optimisation identifies the targeting performance limit. From the 

resulting optimal design candidates, insight into promising process features is 

obtained. These features are then systematically investigated by the optimisation of 

reduced superstructures in the Increase search space stage. In this stage, starting 

from the base case structures, the search space is increased by adding the identified 

potential process design features. Consequently, the design complexity is increased 

and the resulting improvement in process performance can be assessed. This stage is 

iterative and the understanding acquired in every iteration drives the search in 

subsequent searches. In each iteration, complexity (number of reactive units and / or 

number of stream connections) is increased and the resulting superstructure is 

optimised. 

5.5 Illustration Of The Methodology 

5.5.1 The Styrene Production Process 

A case study in the production of styrene is used to illustrate the methodology. 

Styrene is one of the most produced monomers worldwide (Yee et al., 2003) and is 

mainly used in the production of six resin families: polystyrene, acrilonitrile- 

butadiene styrene, styrene- acri lonitri le, styrene-butadiene rubber, styrene-butadiene 

latex and unsaturated polyester resins. Styrene can be produced commercially by 

dehydrogenation of ethylbenzene or via ethylbenzenehydroperoxide. In this work, the 

gas-phase heterogeneously catalysed dehydrogenation of ethylbenzene (Elnashaie et 
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al., 2001) is the selected production process. The feed in gaseous state (ethylbenzene 

with impurities along with steam) is heated before being fed to the reaction units 

(Figure 5.9). Classic approaches for designing chemical processes assume a fixed 

production rate of the desired product (here styrene). However, in this work the 

process is optimised given a fixed feed rate of ethylbenzene with impurities of 32 

kilotons/yr (Sheel & Crowe, 1969). The amount of the second feed (steam) will be 

determined by the optimisation search. Unreacted and produced components 

(ethylbenzene, styrene, toluene, benzene, ethylene, methane, steam, carbon monoxide, 

carbon dioxide and hydrogen) are cooled before entering the condenser. The 

condenser separates the condensable components (ethylbenzene, styrene, toluene and 

benzene) from the rest, which are purged. Condensable components are separated in 

a distillation sequence and benzene, toluene and styrene are the products of the 

process, whereas unreacted ethylbenzene is recycled to the first reactor. The objective 

of this application is to identify trends and key features of the system of reactors that 

enhance the overall process performance in terms of economic profit. Appendix 2, 

presents the data for the process, the kinetic model employed, the relevant process 

design features of the system and the capital and operational cost expressions along 

with the cost of the raw materials and products. 
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Figure 5.9: Superstructure representation for the styrene production process. 

5.5.2 Synthesis Procedure: Level 1 (Base Case Structures) 

The reactor used in industry for the production of styrene by dehydrogenation of 

ethylbenzene is typically the adiabatic reactor (Elnashaie et al., 2001). The process 

representations for such reactor have not been integrated in this work. However, in 

order to have an objective function value (OFV) of the typical industrial case, a 

reactor operating adiabatically has been optimised in terms of volume and inlet 

temperature. The optimal volume identified for this case is the maximum allowable 

and the optimal inlet temperature is 929 K. The design and operating conditions for 

the adiabatic reactor are presented in Table 5.2. 
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Table 5.2: Design and operating conditions for the adiabatic reactor (Sheel & Crowe, 1969) for the 

styrene production process. 

Design or operating conditions Value 
Reactor diameter 1.95 in 

Catalyst bulk density 2146 kg/rn3 
Catalyst particle diameter 4.7 mm 

Bed void fraction 0.445 
Inlet pressure 2.4 bar 

Inlet temperature To be optimised 

Apart from the adiabatic reactor, the base cases optimised in this stage are a CSTR 

and a MTR. The option of exchanging heat with either a heating or cooling media is 

explored in both cases. The OFVs for these two cases and the adiabatic reactor are 

presented in Table 5.3. Heating is the utility media identified for both CSTR and 

MTR. 

Table 5.3: OFV for the structures optimised in the base case structure step' for the styrene production 
process. 

Structure OFV $/ r CPU (hr) 
Adiabatic reactor 9.66 6.65 

PFR (MTR) 10.73 0.93 
CSTR 8.05 0.15 

1 OFVs are taken from the best cases out of ten converged optimisation runs. CPUs are average values. 

The MTR improves by 11 % the performance of the adiabatic industrial reactor 

whereas the CSTR worsens it by 17 %. 

5.5.3 Synthesis Procedure: Level 2 (Performance Targeting) 

In the Performance targeting step, 30 optimisation experiments are performed. All the 

experiments start from different initial feasible points, in which the superstructure is 

optimised without imposing structural constraints (i. e. reactor units can be added / 

deleted in the superstructure, bypasses and recycles between reactors can be 

identified, feeds can be distributed to any reactor zone present in the superstructure). 
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PFRs (FBRs and MTRs) and CSTRs are considered for the optimisation. The 

maximum OFV obtained is 11.37 MS/yr (Figure 5.10), which represents an 18 % 

improvement with respect to the adiabatic reactor. 

Figure 5.10: Resulting superstructure representation for the performance targeting step in the styrene 

production process. 

The analysis of all the experiments shows that: 

0 Multiple reactors are present in all the solutions. All the reactors for the cases 

with higher OFVs are PFRs (MTRs) except for approximately 10 % of them, 

where the superstructure consists of a PFR (MTR) followed by a CSTR. 

" Ethylbenzene side stream feeding is present in many of the final process 

design candidates. Superheated steam side stream feeding is not present in 

any of the final process design candidates. 

0 Internal recycles between reactors are present in a third of the final process 

design candidates. The OFVs for most of these structures are far from the 

maximum identified, and for the few ones that are close to the maximum OFV, 

the recycled fractions are very close to its lower limit (5 %). From experience, 
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it is concluded that this fact is due to the limitations of the search algorithm to 

treat discrete variables when solutions are close to constraints. 

" Bypasses are present in almost none of the final process design candidates. 

5.5.4 Synthesis Procedure: Level 2 (Increase Of Search Space) 

Targeted structures based on the analysis of results from the previous structures are 

investigated. Two structural limitations are imposed: 

" No reactor units can be added or deleted. 

9 No bypasses and recycles between reactors are allowed. However, feed 

bypasses to the reactors are possible. 

The case studies explored are: 

" PFR + CSTR. 

9 PFR + PFR. 

" PFR + PFR + PFR. 

The analysis of these designs shows that for the structure formed by a PFR and a 

CSTR, the volume of the CSTR becomes only 6% of the total network volume. 

Therefore, its influence on the OFV is small. The main reason for the improvement in 

the OFV if compared with the single PFR (Table 5.3) resides in the fact that 0.5 

M$/yr is saved in superheated steam due to the ethylbenzene side stream feeding 

identified. The two structures that consist of series of PFRs, in which there is also 

ethylbenzene side stream feeding, produce very similar results. For two PFRs in 
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series, the OFV improves with respect to the single PFR by 5.9 % whereas for the 

three PFRs in series, it is improved by 6.0 % (Table 5.4) and reaches the maximum 

objective identified in the targeting stage. 

Table 5.4: OFV for the structures optimised in the increase search space step' for the styrene 

production process. 

Structure OFV M$/ r CPU (hr) 
PFR + CSTR 11.13 2.87 

PFR + PFR (MTRs) 11.36 7.05 
PFR + PFR + PFR (MTRs) 11.37 12.47 

OFVs are taken from the best cases out of ten converged optimisation runs. CPUs are average values. 

In order to understand where the difference in performances between the one and the 

three PFRs structures are, the results for both cases are compared next. The benefit / 

detriment in Tables 5.5,5.6 and 5.7 is of the three PFRs structure with respect to the 

one PFR structure. For both cases, the results of the solutions with the best OFVs are 

presented. 

Table 5.5: Fixed costs for one and three PFRs in series for the styrene production process. 

Heat 
Structure External Feed Reactor exchange Compressor compressor network 

One PFR (MTR) structure (M$) 0.30 1.04 0.22 1.75 
Three PFRs MTRs) structure (M$) 0.25 0.75 0.32 1.65 

Benefit (+) / Detriment (-) (M$) +0.05 +0.29 -0.10 +0.10 
Annualized Benefit / Detriment (M$/yr) +0.018 +0.108 -0.038 +0.037 

Table 5.6: Product value, operational costs and heat absorbed per reactor section for one and three 

PFRs in series for the styrene production process. 

Product Raw External Feed 
Structure profit material Compression compression 

(M$/ ) (M$/ ) (M$/yr) M$/yr) 
One PFR (MTR) structure 29.17 16.11 0.11 0.47 

Three PFRs (MTRs) structure 28.77 15.42 0.08 0.32 
Benefit (+) / Detriment (-) (M$/yr) -0.40 +0.70 +0.02 +0.16 

Hot utility Cold utility Reactor heating Heat absorbed Structure M$/ ) (M$/yr) utility M$/ ) per reactors (W) 
One PFR (MTR) structure 0.00 0.01 0.52 2.99E+06 

Three PFRs (MTRs) structure 0.00 0.01 0.47 2.72E+06 
Benefit (+) / Detriment -) (M$/yr) 0.00 0.00 +0.05 - 
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Table 5.7: Selectivities, ethylbenzene conversion and SORT for one and three PFRs in series for the 

styrene production process. 

Styrene Benzene Toluene Ethylbenzene SOR inlet SOR outlet 
Structure selectivity selectivity selectivity conversion reactors reactors 

(%) (%) (%) (%) (%) (%) 
One PFR (MTR) 92.56 2.77 4.35 98.97 7.0 11 0 

structure . 
Three PFRs (MTRs) 90.28 3.10 6.30 99.17 7.0,7.1 8.9,8.3 

structure and 7.0 and 8.8 

SOR is the molar ratio of steam over reactant (see Appendix 2). 

The analysis of results shows that: 

" The ethylbenzene side feeding identified for the three PFRs structure results in 

a lower steam profile inside the reactors (SOR at the inlet of the three PFRs in 

series is at its lower bound), which increases the ethylbenzene conversion, the 

toluene and the benzene selectivity and reduces the styrene selectivity (Table 

5.7). 

" The side feeding also results in less steam feed required for the three PFRs in 

series with respect to the single PFR (from 194 to 126 mol/s) saving 

0.70$M/yr in buying steam, 0.16 M$/yr in its compression and requiring a 

smaller feed compressor (annualised value of 0.11 M$/yr). 

" The lower product profit for the three PFRs in series (-0.40 M$/yr, Table 5.6) 

is explained as follows. If the ethylbenzene conversion is multiplied by the 

selectivity of each component, the amount of component generated per mol of 

ethylbenzene fed to the process is obtained. For the three PFRs structure, 89.6 

% (90.28 x 0.9917) of all the ethylbenzene fed to the system is converted into 

styrene, whereas for the single PFR structure this value is 91.6 % (92.56 x 

0.9897). Due to the high price of the ton of styrene (988.94 $/ton), a decrease 

in this percentage of 2.0 reduces the styrene selling profit by 0.61 M$/yr. The 
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increase in the amount of ethylbenzene transformed into benzene and toluene 

improves their selling profit by 0.03 M$/yr and by 0.192 M$/yr respectively. 

" The higher conversion of ethylbenzene for three PFRs in series implies a 

lower amount of ethylbenzene recycled from the distillation section to the first 

reactor (from 17.5 to 14.1 mol/s) resulting in a smaller external compressor 

(annualised cost of 0.018 M$/yr) and in operational savings (0.02 M$/yr). 

9 The fewer heat absorbed in the reaction section (Table 5.6) for the three PFRs 

in series implies 0.05 M$/yr less costs on heating the reactors. The 

temperature profile for both structures is presented in Figure 5.11 and since 

the profiles cross each other, it cannot be concluded why there is less heat 

exchanged for the three PFRs in series. 

" Due to the cost expression employed, three reactors are more expensive than 

just one with the same overall catalyst load (see in Figure 5.11 the x-axis). 

" The inlet temperature to the reactive section is three degrees lower for the 

three PFRs structure. The outlet temperature of the third PFR in series is 22 

degrees higher than the outlet of the single PFR (Figure 5.11). These 

differences have positive effects on the heat exchange network as a smaller 

heat sink is required and a larger heat source is available. Therefore, a cheaper 

heat exchanger network is expected. 

" The cheaper heat exchanger network required for the three PFRs structure can 

be mainly explained as a combination of two factors: i) there is less recycle 

from the distillation section to the inlet of the reactor to be heated; ii) there is 

36 % less water to be fed and therefore to be heated. The overall effect is a 24 

% reduction of the heat exchange area. Besides, the three PFRs structure 
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requires four more heat exchangers than the single PFR structure. The 

combination of both facts results in a cheaper heat exchanger network 

(annualised benefit of 0.037 M$/yr). 
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Figure 5.11: Temperature profiles for one and three PFRs in series for the 

styrene production process. 

5.5.5 Optimal Conceptual Process Design Identified 

As a result of the conclusions extracted in the multi-level approach, the proposed 

optimal conceptual process design candidate is the structure formed by three PFRs in 

series with ethylbenzene feed distribution (Figure 5.12). 
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Figure 5.12: Optimal conceptual design candidate proposed as a result of the multi-level approach for 

the styrene production process. 

5.6 Conclusions 

A process design framework for heterogeneously catalysed gas-phase reaction 

systems has been outlined. The framework is based on process superstructure 

optimisation schemes and enables the identification of the performance limits of the 

system as well as the evaluation of the relationship between design complexity and 

performance. The framework leads to a number of potential design candidates that 

provide the design engineers with insight into the performance gains that can be 

expected by increasing design complexity. Once they have this information, the 

design engineers are able to decide on the level of complexity, and thus performance, 

they are prepared to afford. 

The design framework allows handling efficiently the mathematical complexity of the 

kinetic models involved in experimental modelling at early stages of process design. 

It also provides a solution to managing practical process constraints found in practical 
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applications. As a result, the screening of process candidates is enabled and the 

identification of optimal designs becomes possible. Reached this point, the 

integration of the experimental model development and the process synthesis systems 

is expected to become a reality. The communication between the two systems will 

enable the perfect match between the regions identified by the optimisation and the 

regions in which the model is validated. 

The application of the design framework to a case study in the styrene production 

process has been presented. The approach systematically identifies optimal process 

candidates for the kinetically complex system investigated and highlights the 

improvement that can be delivered by such an approach. Improvements up to 18 % in 

the OFV have been identified with respect to the standard industrial reactor layout. 

The structure consisting of three PFRs in series with ethylbenzene feed distribution, is 

the resulting optimal conceptual design identified by the multi-level approach. 

The developments regarding temperature profiles employed here, first introduced by 

Metha & Kokossis (2000) have proved in many applications to be effective for the 

screening of multiple design candidates. In this work, their developments are 

complemented with an upper design layer that accounts for reactor physical limits to 

produce more realistic designs. The approach proves to handle reliably operating 

temperature issues in combination with the complex kinetics involved in experimental 

modelling for the heterogeneously catalysed gas-phase reaction systems. However, 

having the temperature profiles fully controlled, as it is done in this approach, is not 

the case of practical implementations. The idea of having multiple heat exchangers 
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within a single reactor seems rather unpractical and uneconomical. Besides, heat 

issues appear to play a very important role in the designs for such systems, and radial 

heat transfer effects involved in catalytic fixed beds have not been taken into account. 

In order to assess the practical heating / cooling for PFRs, temperature and heat 

management issues need to be addressed. That is the main purpose of the next 

chapter, in which the multi-stage evolution of designs is presented. Once very few 

design candidates are proposed by the multi-level approach and the complexity of the 

superstructure has dramatically been reduced, the designs can be enriched by adding 

more detail into the models employed. With the re-assessment of the designs, 

practical cooling / heating strategies, which are attainable with common co-current 

schemes found in industry, are proposed. Radial heat transfer effects inside the 

catalyst beds are also accounted for. The new information on the designs will 

increase the confidence in the results, to better assist kinetic investigations once they 

are integrated with process design activities. 
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CHAPTER 6. 

A Decision Support Framework For Synthesis Of 

Heterogeneously Catalysed Gas-Phase 

Reaction Processes: Multi-Stage Evolution Of 

Reactor Designs 

6.1 Introduction 

The Decision Support Framework (DSF) introduced in Chapter 5 relies on a synthesis 

strategy to effectively approach the process design of heterogeneously catalysed gas- 

phase reaction systems. The strategy is based on effectively balancing the numerical 

and combinatorial complexities along the synthesis exercise. At the beginning of the 

exercise, the process structure is unknown and the combinatorial complexity is high. 

Therefore, simple models are employed. This early stage of the synthesis exercise is 

addressed in Chapter 5 with the multi-level approach. As the exercise progresses, the 

knowledge that has emerged about the process structure is employed to reduce the 

structural complexity, and more complexity in terms of the process models can be 

afforded. This is the core of the multi-stage strategy presented in this chapter. By 

employing more detailed and computational demanding reactor models in later design 

stages, the few optimal conceptual designs resulting from the multi-level approach 

can be explored thoroughly. The addition of modelling detail accounts for the extra 
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non-linearities that enable evolving the optimal conceptual designs into more realistic 

options. The evolution takes the form of an iterative process performed in multiple 

stages. The solution of each stage becomes the starting point of the next one. Even 

though the number of stages is not limited and the evolution could progress in as 

many stages as desired, results at the end of this chapter suggest that for these kind of 

reaction systems four stages are sufficient. For consistency reasons, the multi-level 

approach presented in Chapter 5 is referred from now on as Stage 1. The multi-stage 

evolution of process designs, in which the DSF relies on, is schematically shown in 

Figure 6.1. 

Continuous flow of Experimental model development 
c 

information Process synthesis 

Decision support framework I 

Process representations 

Synthesis procedure 
(Multi-stage evolution of designs): 
" Multi-level approach (Stage 1) 
" Stage 2 
" Stage 3 
" Stage 4 

Figure 6.1: Decision support framework within the communication framework that integrates the 

kinetic model development and the process synthesis (2). 

Figure 6.2 (introduced in Chapter 1) shows the location, within the proposed synthesis 

strategy, of each one of the stages in which the multi-stage evolution is based on. 
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Figure 6.2: Location of the stages involved in the multi-stage evolution of designs within 

the synthesis strategy. 

This research focuses the efforts exclusively on the evolution of the reaction 

representation. However, a similar approach could be applied for the separation 

representations. Improved aggregated models could be developed to include more 

precise information about the separation systems as the synthesis exercise progresses. 

In the next sections, the synthesis methodology followed in each stage is detailed. 

The explanation includes descriptions of the process representations and the network 

optimisation for each of the stages. The styrene production process is employed for 
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illustration purposes. 

6.2 Synthesis Procedure: Stage 2 

6.2.1 Introduction 

In Stage 1, the temperature profiles for the reactors modelled with the approximation 

of the pseudo-homogeneous one dimensional PFR model without radial temperature 

approximation were assumed to be fully controlled with several heat exchangers per 

reactor. Such control of the temperature profiles avoids solving heat balances at the 

same time as mass balances. By omitting this combination of efforts, fewer 

computational times are required and higher percentages of conversions are obtained 

in expense of inaccuracies. Such an approach is in agreement with the purpose of 

screening stages but is not the case of practical implementations. Generally, the 

temperature profiles proposed in Stage 1 cannot be reproduced with typical heat 

exchanging strategies found in industry. In order to suggest practical solutions to the 

heat exchange between the reactors and their utility media, a methodology that aims at 

producing temperature profiles for PFRs that can be attained with common co-current 

cooling / heating strategies is presented in Stage 2. 

6.2.2 Variations In Process Representations: Reactor Heat Transfer 

Modelling - Heat Transfer Limits 

The approach employed in Stage 1 rarely assigns temperature profiles that close heat 

balances for PFRs (this is not the case for CSTRs, as the management of heat transfer 
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limits already closes these balances). In order to obtain closed (or nearly closed) heat 

balances, a non-linear minimisation problem is solved after the simulation of each TS 

move. Its purpose is to indicate the magnitude of the gap between the current solution 

and a corresponding solution in which the heat balance would be closed. The 

formulation of the problem assumes co-current heat exchange strategies with single 

utilities for each reactor. Olbert & Corr (2007) present the advantages of co-current 

strategies over counter-current policies, which are summarized as higher throughputs, 

lower catalyst hotspot temperatures, desired increase in the heat exchange medium in 

the direction of the final reaction inside the catalyst fix beds and good temperature 

uniformity of the heat exchange medium over the reactor cross section. These 

features allow good horizontal temperature stratification and clearly defined operating 

states over the length of the catalyst tube space due to the lack of feedback by the heat 

exchange utility. 

The problem has the following objective: 

no scstr 

OBJ=min 
1E(2 
2 `q optim _ 

isc -q attainable_ isc 1 
isc=1 

(Equation 6.1) 

where isc refers to the index of the sub-CSTRs and gattainable and goptim are defined as: 

1. Attainable heat values (gattainable_isc): heats obtained for every sub-CSTR in 

Stage 2 following the methodology presented in Section 5.2.2.4: 

For the first section of reactor: 

ncomp ncomp 
Em "h 

(T )- 
m "h 

(Tin_ 

ýattainableisc=l - ýisc=l 
ic. isc=l ic, isc=l iu=1 ic, in_reactor ic, in_reactor reutor 

is=1 is=1 

For a section of reactor different than the first one: 

(Equation 6.2) 
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(Equation 6.3) 

- ic=i ic=1 

where m is the molar flow, h is the molar enthalpy, T is the operating 

temperature of the reactor and is refers to the components in the system. 

2. Optimised heat values (goptim isc) heats obtained for every sub-CSTR in 

Stage 2 as a result of the non-linear optimisation problem. 

First of all, the attainable heat values for each sub-CSTR are equalled to: 

gattainable 
_isc 

- 
tTuriliry 

_isc 
' murility ' CP utility (Equation 6.4) 

where T�t; hty_, S, is the utility temperature for a sub-CSTR, m�t; hty is the flow of the 

utility media and Cput; l; ry is its specific heat. 

The expression can be modified as follows: 

-g 
attainable-isc (Equation 6.5) ATuhh .. ty_isc - 

murility - CP 
utility 

When it is combined with the next equation: 

Tuäury 
_isc 

= Tuiiliry 
_isc-i 

+ ATutiliry 
_iso 

(Equation 6.6) 

the result is: 

, Iutility 

_ 
isc - Tutility 

_ 
isc -1 

+ 
gattainable 

- 
isc (Equation 6.7) 

m utility - Cp 
utility 
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At this point, if the mass of the utility media is inverted: 

L=1 (Equation 6.8) 
m utility 

the final expression becomes linear as the specific heat is a parameter: 

_q 
attainable 

_ 
isc 

Tutility 
_ 

isc 
Tutility 

_ 
isc-I +. I' 

Cp 
utility 

(Equation 6.9) 

Next, the optimised heat values for each sub-CSTR, which are found as a result of the 

minimisation problem, are defined as: 

goPCim_isc = U-Aisc -(Tisc -Tucuity isc (Equation 6.10) 

where U is the overall heat transfer coefficient and Ais, is the heat exchange area per 

sub-CSTR. This expression can be manipulated as follows: 

goPtim iss 
T; 

ýý - 
Turiiity 

- 
BSc =U. A ýSý 

(Equation 6.11) 

Finally, a constraint is imposed to guarantee a minimum temperature gradient 

between the reactor and its utility media (ATmin): 

For cooling utility : Tlsc - T�riliry 
_isc 

>- AT,,; 

For heating utiliy : Turil; ty _; S, - 
T; 

Sc > ATmin 
(Equations 6.12) 

The selection of ATmin depends on the phases exchanging heat and on the type of heat 

exchangers employed. 

The sets of equations represented by Equations 6.9,6.11 and 6.12 along with the 
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objective function (Equation 6.1), define the linear optimisation problem that is 

solved with a sequential quadratic programming (SQP) method integrated in the 

E04LTNF NAG Fortran Library Routine Mark 19. The outcome of the minimisation 

problem is the temperature profile and the mass of the utility media and the value of 

the objective function. 

Once the minimisation problem is solved for each move of the TS algorithm, a 

percentage heat value (%HV) is calculated. %HV gives a measure of how far away 

are the "current" temperature profiles that characterise the solution, from the 

temperature profiles that are "achievable" with a co-current heat exchange strategy. 

In other words, %HV is an indicator of the difference between the heat that is required 

to be exchanged for a given temperature profile and the feasible heat that can be 

exchanged with a co-current heating strategy. %HV is defined as: 

rrnmui1 Eno scstr (goptim 

_ 
isc - gattainable isc) 

2'2' 
no SCStT 

2 

%HV = 
i=1 

nscstr 
x 100 (Equation 6.13) 

j (abs(goptim 

_ 
isc 

)) 

i=1 

where no scstr is the number of sub-CSTRs. 

%HV values for CSTRs are always zero as their energy balances have already been 

closed in the previous stage. For PFRs, if the %HV is over a maximum limit, the 

structure will have a heat limit violation constraint (HLV) defined as: 

HLV = %HVcurrent - %HVmax imam limit (Equation 6.14) 
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On the other hand, if the current %HV is below the maximum limit, HLV will be 

zero. The maximum limit for %HV is a parameter that needs to be specified for every 

case study. For superstructures consisting of more than one reactor, the overall %HV 

for the superstructure is the highest %HV among all. The approach of the stochastic 

algorithm regarding constraints management has been presented in Chapter 3. 

6.2.3 Variations In Network Optimisation 

The TS algorithm employed in Stage 2 is shown in Figure 6.3. The same algorithm as 

in Stage 1, with the addition of the calculations for the linear minimisation problem 

and for the HLV, applies in this stage. 
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Figure 6.3: Tabu Search algorithm for Stage 2. 

6.3 Synthesis Procedure: Stage 3 

6.3.1 Introduction 

Stage 3 presents a tool to improve the approach towards handling temperature and 

heat transfer issues inside fixed catalytic beds 

Aspiration criteria satisfied? 

With this tool, radial temperature 
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gradients inside the beds are accounted for. 

6.3.2 Variations In Process Representations: Reactor Modelling 

For CSTRs, the same model as in Stage 1 and 2 is employed. Regarding PFRs, the 

approximation of the pseudo-homogeneous one dimensional PFR model without 

temperature radial profile approximation, is updated to the approximation of the 

pseudo-homogeneous one dimensional PFR with temperature radial profile 

approximation. 

The radial temperature profile inside the catalyst bed enclosed in a FBR or in a single 

tube of a MTR is approximated with a polynomial following Nagel & Adler (1971): 

z 
2+Bi(isc)" 1- R 

T(r, isc) = TK (isc)+ 12 
" 
(T, (isc) 

- TK (isc)) (Equation 6.15) 
2+Bi(isc)"(1-RI ) 

where r accounts for the radial coordinates, T1(isc) represents the temperature 

imposed in each sub-CSTR as explained in Section 5.2.2.4, TK(isc) is the temperature 

of the utility media corresponding to each sub-CSTR, which is obtained by the 

minimisation problem described in Stage 2, and Bi is the Biot number. The value 

proposed by Nagel & Adler (1971) for R1 is 0.707. This means that the imposed 

temperature value for each sub-CSTR is equivalent to the temperature found at 0.5 

times the radius of the reactor from its centre. 

If the reactor is being cooled, Equation 6.15 indicates that the highest temperature 

inside the bed for each sub-CSTR is at its centre: 
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T(O, isc) = TCENTER (isc) = T. (isc) = TK (isc)+ 2+ Bi(isc) 
Z 

(T, (isc)- TK (iscý) 
2+Bi(isc) 1- R 

(Equation 6.16) 

If this temperature is higher than the maximum temperature limit (TM, e, x LIMIT), the 

temperature limit violation constraint (TLV) for that sub-CSTR is defined as: 

TLV(isc) = T(O, isc) -T MAX 
_ 

LIMIT (Equation 6.17) 

When the temperature at the centre of the catalyst bed is lower than or equal to the 

maximum temperature limit, the TLV for that sub-CSTR is zero. If several sub- 

CSTR show TLV, the highest value among them is selected as the representative 

value for that reactor. Similarly, if several reactors show TLV, the highest value 

among them is selected as the value to represent the superstructure. 

The same rationale applies for the reactors being heated with the minimum 

temperature limit. The temperature at the centre of the bed will be the lowest if the 

reactor is being heated: 

T(O, isc) T (isc) T 1isc T 1isc +2+ 
Bi(isc) 

2, 
(T1(isc)- TK (isc)) 

CENTER IvIlN `K` 2+Bi(isc) 1-R1 

(Equation 6.18) 
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If this temperature is lower than the minimum temperature limit (TMIN_LNIT), the 

temperature limit violation constraint (TLV) for the sub-CSTR is defined as: 

TLV(isc) =T MIN UIIT - T(O, isc) (Equation 6.19) 

TMax_LIMIT and TMIN_LIMIT are parameters that need to be specified depending on the 

case study. The TLVs for CSTRs are always zero as no temperature gradients are 

assumed in their catalytic beds. 

6.3.3 Variations In Network Optimisation 

The TS algorithm for this stage is presented in Figure 6.4. In order to account for the 

possibility that radial temperature profiles in catalytic fixed beds go beyond their 

limits, calculations regarding these profiles and TLVs computations are added with 

respect to the previous stage. 
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6.4 Synthesis Procedure: Stage 4 

6.4.1 Introduction 

The flowsheet simulation can be approached either with modular or equation-based 

methods (Seider, 1999). In this research, an equation-based method has been used so 

far. As it will be explained in later sections, Stage 4 involves a combination of reactor 

models that include both differential algebraic equations (DAEs) and algebraic 

equations (AEs). As a result, systems of differential algebraic equations need to be 

solved. In order to continue relying on an equation-based method, a differential 

algebraic equation solver would be required. The implementation of such solvers can 

result in a genuine contribution of a Ph. D. thesis as they are not straightforward to 

implement. For being out of the scope of this work, an approach that combines a 

modular method, containing input-output models for the RMX units, along with an 

equation-based method is adopted here. Usually, in modular approaches, the input- 

output models remain unchanged while the simulation is being solved. However, in 

this work, in between the iterations performed by the NLE solver, the input-output 

models for the reactors are constantly updated by solving the DAEs / AEs that model 

each reactor. The adopted multipliers approach (Figure 6.5) is outlined below: 

" Step 1: given an input feed molar flow (Fin, ir, ic) for each component (ic) and 

RMX unit (ir) of the reaction superstructure from previous stages, calculate 

the related output molar flow (Faut,;,,;, ) solving the DAE / AE systems. 

" Step 2: calculate a set of two multipliers that represent the input-output 

relationship for each component and RMX unit comprising the reaction 

superstructure: 
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if (Fouc, 
ir, 1c ? 1.0) 

multiplier(ir, ic, l) = 
FO°t'ir, ic 
Fin, ir, ic 

multiplier(ir, ic, 2) =0 
elseif 

(FO�t, 
jr, ic _< 

1.0) 

multiplier(ir, ic, l) =0 
multiplier(ir, ic, 2) = F0�t, jr,; c 

endif 

(Equation 6.20) 

Two sets of multipliers are created to avoid values of a similar order of 

magnitude to that of the accuracy of the solver, as they would difficult the 

convergence of the system. 

9 Step 3: Solve the system of equations that includes the global mass balance 

(defined by network connections) and the mass balances around RMX units 

(defined by the multipliers input-output models) with the NLE solver. The 

solution of the system of equations produces a new OFV and a new feed molar 

flow for each component and RMX unit of the reaction superstructure. 

" Go to Step 1: The procedure is repeated iteratively until the OFV of two 

consecutive iterations does not change and the system is considered to be 

converged. 

With this approach, the problem can be solved for superstructures with any number of 

network connections and any detailed time-consuming reactor model types. 
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6.4.2 Variations In Process Representations - Reactor Modelling 

6.4.2.1 Introduction 

The reactor models for PFRs involved in Stage 4 are upgraded to the pseudo- 

homogeneous one dimensional PFR model with radial temperature approximation. 

Among the reactors that presented back-mixing in previous stages: 

" CSTRs are modelled in this stage with a FLBR cell model. 

" PFRs with significant internal recycles are modelled with both the pseudo- 

homogeneous one dimensional PFR model with radial temperature 

approximation and with the FLBR cell model. 

6.4.2.2 Pseudo-Homogeneous One Dimensional PFR Model With Radial 

Temperature Approximation 

The approximation of the radial temperature profile is also calculated following Nagel 

& Adler (1971). Such approximation is calculated along the reactor in n discretised 

points (n is equivalent to the number of sub-CSTRs used in previous stages). If 

temperatures are imposed to the reactor, as detailed in Section 5.2.2.4, the set of 

equations modelling the pseudo-homogeneous one dimensional PFR can be expressed 

as: 

6(u0 
* Cic) 

_ 
Sz - ric'PB (Equation 6.21) 

SP` 
=f"Pg'uo Sz dp 

(Equation 6.22) 

where u0 is the superficial velocity, r is the reaction rate, C is the concentration, is 

refers to each component, PB is the catalyst bed density, Pt is the pressure loss inside 
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the reactor, dp is the diameter of the catalyst particle, pg is the gas density, f is the 

friction factor (see Section 5.2.2.2) and z refers to the length of the reactor. 

The resulting DAE system is solved with the D02NMF NAG Fortran Library Routine 

Mark 19, which is a general-purpose routine for integrating the initial value problem 

for a stiff system of explicit ordinary differential equations: 

St =g(t, Y) (Equation 6.23) 

where y are the dependent variables that are functions of the independent variable t. 

6.4.2.3 Fluidised Bed Reactor Model 

The FLBRs employed in this stage are modelled with a cell model (Figure 6.6) based 

on the "Bubble Assemblage Model" (BAM) presented by Kato & Wen (1969). 

Cic, 
Bn ic, E 

n 

E 
n=N 

BUBBLE EMULSION 

CLOUD n="'' 

------------- 

---- ------ ------------- 
n=4 

n=3 

n_z 

Ub Umf n=l 

Figure 6.6: Cell model for FLBRs. 
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The model assumes an isothermal reactor and describes the fluidised bed as a two- 

phase system: a bubble & cloud phase (B) and an emulsion phase (E). The mass 

balance equation for the emulsion phase is: 

u, i, f 
AT (Cn 

E-Cc, E 
)+ kBE . vBP " 

(C p, 13 -CnE 
)+ Z molsn =0r,; o, e (Equation 6.24) 

.1 

where us is the minimum velocity of fluidisation, kBE is the mass transfer coefficient, 

AT is the cross sectional area of the reactor, VBP is the volume for the bubble phase, 

molsr are the mols generated or consumed, C is the concentration, is refers to each 

component and n refers to the cell index. 

The mass balance equation for the bubble & cloud phase is: 

(u-ut�f)"AT 
"(c- CAB)- kBE .vp . 

(CAB 
-CAE)+I mols° =0 (Equation 6.25) 

r, c, a J 

where u is the mean flow velocity. 

The minimum velocity of fluidisation is calculated according to Wen & Yu (1966): 

d3 
u= dPigPS 

29.52 + 0.0408 P Pg 
(pp 

- pgg 2_ 

29.5 
Z 

TI 9 

(Equation 6.26) 

where rig is the dynamic viscosity of the gas and g the gravity constant. 

All expressions related to the diameter of the bubble (db) follow Werther (1992). Its 

specific expressions are: 
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0.2 
vo 

db(�_]) =1.3' 
9 

U 
with vo= 

no orifices 

12 EB(n-1) 3 db(n-1) umf 
db(n#l) - 9.71 -3u with X= 280 " 

b(n-1) 9 

(Equations 6.27) 

where no_orifices is the number of orifices per square meter of the gas distributor. Ub 

is the velocity of the bubble based on fixed axis and 6B is the hold-up of the bubble 

phase, which follows Murray (1965): 

O. 8"(u-Umf) 
F- B(n) _ 

Ub(n) 
(Equation 6.28) 

The equations relating to the velocity of the bubble are (Werther, 1992): 

Ub(n) 0.8"(u-u"'f ` 
)+0.71 (g d P, 5 

- bý"ý (Equations 6.29) 
ý=3.2"dt0.33 

where dt is the diameter of the reactor tube. 

The volumes for the different phases (VBP, Vcp, VEP) also follow Murray (1965): 

" For the bubble phase: 

VBp(n) = 8B(n) " db(n) - AT 

" For the cloud phase: 

VCp(n) _ 
VBP(�) 

0.5 E 
0.71(gdb(n)) " -1 Umf 

where E is the void fraction of the fluidised bed. 

(Equation 6.30) 

(Equation 6.31) 
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" For the emulsion phase: 

VEp(�) = db(�) 
" AT 

- 
VBP(n) 

- 
VCp(n) (Equation 6.32) 

The bubble and cloud phase volumes are calculated separately in order to obtain the 

VEP by difference. 

The mass transfer coefficient follows Sit & Grace (1981): 

2 

U 
-f 

4"DG(ic) 
"E. ub(n) 6 

ksE(f,; 
c) _+ (Equation 6.33) 

L3t" 
db(n) db(n) 

The diffusion coefficient (DG(; c)) is calculated as Hirschfelder et al. (1954). 

The void fraction for the bed can take values between 0.15 and 0.6 (Kelkar & Ng, 

1998). According to Levenspiel (1998) the fraction u/u should be between 5 and 

30. This range has been widened in this work from 3 to 35 to widen the FLBR model 

applicability. 

6.4.3 Variations In Process Representations: Reactor Temperature 

Profiles 

FLBRs are operated at isothermal conditions, as heat transfer coefficients and 

effective thermal diffusivities are very large (Kato & Wen, 1969). 
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6.4.4 Variations In Process Representations: Reactor Heat Transfer 

Modelling - Heat Transfer Coefficient 

The overall heat transfer coefficient for the reactive media in a FLBR is assumed to 

be 600 W/mz/K as introduced in Section 5.2.2.6. 

6.4.5 Variations In Process Representations: Pressure Losses Inside 

Reactors 

As already shown in Section 6.4.2.2, the differential form of the Ergun expression for 

reactors showing plug-flow behaviour is solved as: 

SPA Pg U 
-=fSz dp 

(Equation 6.34) 

The loss of pressure for the FLBRs is calculated according to Wolf (2004): 

APFLBR = 1.2 
M"g 

AT 

where M is the catalyst load of the FLBR. 

6.4.6 Variations In Network Optimisation 

(Equation 6.35) 

The TS algorithm in Stage 4 is kept as in Stage 3 when PFRs are considered (Figure 

6.7). However, after each TS move simulation, if there is no violation of the heat and 

the temperature limits, the performance of the structure is re-assessed taking into 

consideration the radial temperature profile inside the reactors. When FLBRs are 

considered, the TS algorithm is kept as it was in Stage 1 (Figure 5.7). 

119 



Initial solution 

Select moves randomly 
ITS iteration i) 

r ----- --------------------------- ----------------------------------- -- 

Simulate move im from iter i 
NO All moves from iteration i 

completed ? 

YES 
iN 

Check 

E 
OUT 

concentration Reject structure 
limit 

IM IN I 
W 
C 

, 
i 

.2 
i 

O OUT Check heat o transfer limit 
Reject structure 

o 

O IN 0 i 

0 Check cooling Heat limit violation 
strategy 

CD 
Both inside 

limits? 
Check radial 

CID temperature profile Temp limit violation 
I" violation 

C 
(D Cý NO 

' NO All moves from iteration i 
completed ? Simulate with radial YES 

temperature profile 
' 

----- 

YES 

---------------- ----------- --------------------------------- -- 

149 Selectbestnew solution 
N o 

Tabu? 
Yes 

Aspiration criteria satisfied? 
No 

All Tabu? 

No Yes 
No Yes 

Termination criteria met? 

Yes 

Final solution 

Figure 6.7: Tabu Search algorithm for Stage 4 involving PFRs structures. 

120 



6.5 Illustration Of The Methodology 

6.5.1 Introduction 

The following section presents the evolution of the optimal conceptual process 

designs proposed as a result of the multi-level approach (Stage 1). The optimal 

conceptual design identified in Chapter 5 for the styrene production process is the 

three PFRs in series with ethylbenzene side feeding. For comparison reasons, the 

evolution of a single PFR is also presented. For all cases, the results correspond to the 

best solution obtained out of ten converged optimisation runs. 

6.5.2 Stage 2 

Table 6.1 presents the OFV for Stages 1 and 2. A reduction of the OFV in Stage 2 

was expected since the search space is smaller in this stage due to the new constraints 

imposed to the longitudinal temperature profile of the reactors. 

Table 6.1: OFV and CPU times in Stages 1 and 2 for the styrene production process. 

St t 
OFV M$/ r) CPU hr 1 

ruc ures Stage 1 Stage 2 Stage 1 Stage 2 
One PFR (MTR) 10.73 9.41 0.93 1.30 

Three PFRs (MTRs) 11.37 10.85 12.47 16.05 

CPU times are average values of all runs. 

For both structures the SOR (steam over reactant) is close to its lower limit in all the 

reactors (Table 6.2). 
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Table 6.2: Selectivities, ethylbenzene conversion and SOR for structures optimised in Stages 1 and 2 
for the styrene production process. 

Styrene Benzene Toluene Ethylbenzene SOR inlet SOR outlet 
Structure Stage selectivity selectivity selectivity conversion reactors reactors (%) (%) (%) (%) (%) (%) 

One PFR 1 92.56 2.77 4.35 98.97 7.0 11.0 
MTR 2 92.47 3.55 3.99 98.86 7.0 10.6 

Three 1 90.28 3.10 6.30 99.17 7.0,7.1 8.9,8.3 

PFRs and 7.0 and 8.8 
(MTRs) 2 89.04 4.08 6.54 99.18 7.1,7.0 9.8,9.6 

I- I and 8.1 and 8.5 

Product profits (Table 6.3) evolve according to the amount of ethylbenzene that is 

converted to each product. In Stage 2, the ethylbenzene conversion is lower for the 

single PFR structure (Table 6.2) and therefore more flow is externally recycled. As a 

consequence, the external compressor is more expensive to buy and operate (Tables 

6.3,6.4). Due to the existence of more external recycle, more steam must be fed to 

the reactive section while keeping the SOR at its lowest constraint in the inlet of the 

reactor. Therefore, the feed compressor becomes also more expensive. The 

ethylbenzene conversion for the three PFRs structure is practically the same in both 

stages and as a result the external recycle is kept almost constant. As a consequence, 

no changes in the external compressor cost are expected. An improved steam feed 

distribution along the catalyst load is identified and as a result seven mols/s less are 

fed to the system (126 mols/s for Stage 1 and 119 mols/s for Stage 2). This reduction 

allows saving on raw material costs and requires a cheaper feed compressor to 

purchase and operate. 
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Table 6.3: Product value, operational costs and heat absorbed in the reactors for the structures 
optimised in Stages 1 and 2 for the styrene production process. 

Structure Stage Product profit Raw material 
External Feed 

(M$/yr) (M$/yr) compression compression 
(M$/Yr) (M$/yr) 

OnePFR 1 29.17 16.11 0.11 0.47 
(MTR) 2 29.08 16.25 0.12 0.50 

Three PFRs 1 28.77 15.42 0.08 0.32 
(MTRs) 2 28.51 15.35 0.08 0.30 

Structure Stage Hot utility Cold utility 
Reactor 

heating utilit 
Heat absorbed 

er react (M$/yr) (M$/Yr) y p ors 
(M$/yr) (W) 

One PFR 1 0.00 0.01 0.52 2.99E+06 
(MTR) 2 0.00 0.01 0.26 1.52E+06 

Three PFRs 1 0.00 0.01 0.47 2.72E+06 
(MTRs) 2 0.04 0.01 0.28 1.59E+06 

The additional limitations imposed on the heat transfer between reactors and utilities 

for the transition from Stage 1 to Stage 2, result in less catalyst load being employed 

in both cases (Figure 6.8). Consequently, cheaper reactors are needed (i. e. smaller 

and with less heat exchange area), and less heat is absorbed from the reactors heating 

utility (Table 6.3). 

Table 6.4: Fixed costs in Stages 1 and 2 for the styrene production process. 

Structure Stage External Feed Reactors Heat exchange 
compressor compressor network 

One PFR (MTR) (M$) 1 0.30 1.04 0.22 1.75 
2 0.33 1.10 0.17 5.28 

Three PFRs (MTRs) (M$) 1 0.25 0.75 0.32 1.65 
2 0.25 0.72 0.25 3.12 

The extra constraints on the temperature profiles make the heat exchanger network 

(HXN) up to three times more expensive than in Stage 1 (Table 6.4). The inlet 

temperature of the reactors is 99 degrees higher for the single PFR structure and 100 

for the three PFRs in series, whereas the outlet temperatures tend to be similar (Figure 

6.8). These changes in temperatures along with the change in the amount of recycle 

and steam to be heated result in more expensive HXNs. 
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Figure 6.8: Temperature profiles for one and three PFRs in Stage I and 2 for the styrene production 

process: a) reactors, b) utilities. 

The approach presented in Stage 2 proves that heat issues are particularly important 

for heterogeneously catalysed gas-phase reaction systems when considering reactors 

that exchange heat with a utility media. This suggests that, when screening process 

designs, previous developments in process synthesis that took into account reactor 

heat transfer issues should be upgraded with new approaches that are able to include 

the interactions with the utility media. The results confirm that the interactions 

between the reactive section and other sub-systems of the process flowsheet must be 

taken into account. Modifications in the temperatures of the reactors can have 

significant effects on the cost of other sub-systems (e. g. HXN), which can have a 

large impact on the overall process performance. If these interactions are not 

3 PFRs - Reactors 
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considered, the search can be driven towards misleading optimal designs, as non- 

global optimal temperature regions for the reactors may be suggested. 

6.5.3 Stage 3 

The OFVs for the transition from Stage 2 to Stage 3 are presented in Table 6.5. For 

the single PFR, due to the fact that the temperature of the catalyst bed in Stage 2 is far 

away from its lower limit (temperature range: 861-881 K; lower limit: 400 K), a 

reduction in the OFV is not expected since each sub-CSTR of the reactor should 

operate in the worst of the cases at the same temperature in both stages. The same 

principle applies for the three PFRs in series. 

Table 6.5: OFV and CPU times in Stages 2 and 3 for the styrene production process. 

St t 
OFV $/ r CPU (hr)' 

ruc ures Stage 2 Stage 3 Stage 2 Stage 3 
One PFR (MTR) 9.41 9.94 1.30 1.11 

Three PFRs (MTRs) 10.85 10.93 16.05 19.47 
CPU times are average values of all runs. 

However, since the diameter of the catalyst particle and the diameter and number of 

reactor tubes, are degrees of freedom for the optimisation in Stage 3, an improvement 

of the OFVs could be expected. These design variables for Stages 1,2 and 3 are 

presented in Table 6.6. 

Table 6.6: Diameter of the catalyst particle and diameter and number of reactor tubes for Stages 1,2 

and 3 for the styrene production process. 

Diameter Diameter of tubes Number of 
catalyst (mm) / Nominal tubes that 

Structures Stage 
particle diameter of tubes form the 

(mm) (DN) reactors 
1 and 2 4.7 25 mm 30000 

One PFR (MTR) 3 2.2 DN=25 11000 
1 and 2 4.7 25 mm 30000 

Three PFRs (MTRs) 3 4.2 DN=25 10000 
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Two opposite effects on the reaction rates have been observed when the size of the 

catalyst particle is reduced. On one hand, the reduction increases the reaction rates 

enhancing raw material conversions, as better heat transfer is attained. On the other 

hand, it increases pressure losses along the reactor, which means that components 

partial pressures are lower and thus reaction rates decrease. In this case study, 

computational experimental observations indicate that the first effect has more impact 

on the process performance and optimisations always give preference to heat transfer 

issues over pressure losses. When reducing in Stage 3 the number of reactor tubes for 

the single PFR structure in order to decrease the reactor cost, heat transfer limitations 

appear and the catalyst size is reduced to improve heat transfer properties. That is not 

the case for the three PFRs structure as almost no heat limitations appear when 

decreasing the number of reactor tubes, and the size of the catalyst particle does not 

need to be modified much. Due to the changes in the catalyst particle and reactor 

tubes, the temperature profiles of the reactors and those of the utility media differ for 

the two stages and for both cases (Figure 6.9). 
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Figure 6.9: Temperature profiles for one and three PFRs in Stage 2 and 3 for the styrene production 

process: a) reactors, b) utilities. 

The ethylbenzene process conversion for the single PFR structure increases if 

compared with Stage 2 (Table 6.7), which means that less ethylbenzene is externally 

recycled. Consequently, the operational and fixed costs for the external compressor 

decrease (Tables 6.8,6.9). As another consequence, less steam must be fed to the 

reactive section to keep the SOR at its lowest constraint in the inlet of the reactor 

(Table 6.7). For that reason, the feed compressor and raw material costs are also 

minor. For the three PFRs structure, the results are practically the same for Stages 2 

and 3 except for the reactors fixed cost (Table 6.8). 
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Table 6.7: Selectivities, ethylbenzene conversion and SOR in Stages 2 and 3 for the styrene production 
process. 

Structure Stage 
Styrene 

selectivity 
(%) 

Benzene 

selectivity 
(%) 

Toluene 

selectivity 
(%) 

Ethylbenzene 

conversion 
(%) 

SOR inlet 
reactors 

(%) 

SOR outlet 
reactors 

(%) 
One PFR 2 92.47 3.55 3.99 98.86 7.0 10.6 
(MTR) 3 93.06 2.74 4.20 98.94 7.0 11.0 
Three 
PFRs 

2 89.04 4.08 6.54 99.18 7.1,7.0 
and 8.1 

9.8,9.6 
and 8.5 

(MTRs) 3 89.16 4.09 6.41 99.18 7.1,7.0 
and 8.1 

9.8,9.5 
and 8.5 

The reactors fixed costs are lower in both cases, despite containing more or the same 

catalyst load (Figure 6.9), due to the different diameter and number of reactor tubes 

(Table 6.6). Although reactors have substantially been modified in structural terms, 

they exchange similar heats with the utility media as in Stage 2 and therefore, similar 

utility reactor costs are required (Table 6.9). 

Table 6.8: Fixed costs in Stages 2 and 3 for the styrene production process. 

Structure Stage External 
compressor 

Feed 
compressor 

Reactors Heat exchange 
network 

One PFR (MTR) 2 0.33 1.10 0.17 5.28 
(M$) 3 0.31 1.06 0.11 4.71 

Three PFRs 2 0.25 0.72 0.25 3.12 
(MTRs) (M$) 3 0.25 0.72 0.12 3.10 

The HXN becomes cheaper for the single PFR structure because of a combination of 

different factors: 

i) There are lesser amounts of recycle and steam to be heated. 

ii) The reactor inlet and outlet temperatures are reduced 17 and 14 degrees 

respectively. 

Regarding the three PFRs structure, the recycled amount and the reactors inlet and 

outlet temperatures are very similar if compared to the previous stage. As a result, a 

similar HXN cost is obtained. 

128 



Table 6.9: Product value, operational costs and heat absorbed in the reactors in Stages 2 and 3 for the 

styrene production process. 

Product Raw External Feed 
Structure Stage profit material compression compression 

(M$/yr) (M$/yr) (M$/yr) (M$/yr) 

One PFR (MTR) 2 29.08 16.25 0.12 0.50 
3 29.23 16.15 0.11 0.48 

Three PFRs 2 28.51 15.35 0.08 0.30 
(MTRs) 3 28.53 15.35 0.08 0.30 

Hot utility Cold utility 
Reactors Heat absorbed 

Structure Stage (M$/Y. ) (M$/yr) heating utility per reactors 
(M$/Yr) (W) 

One PFR (MTR) 2 0.00 0.01 0.26 1.52E+06 
3 0.00 0.01 0.27 1.55E+06 

Three PFRs 2 0.04 0.01 0.28 1.59E+06 
(MTRs) 3 0.04 0.01 0.28 1.59E+06 

The approach developed in Stage 3 aims to account for the radial heat transfer effects 

of catalytic fixed bed reactors. It proves to be computationally efficient as similar 

CPU efforts are required for Stage 2 and 3 (Table 6.5) and to search the space 

robustly as no convergence problems are reported. With this tool, structural changes 

of the reactors can be screened and substantially different reactors can be identified. 

According to the author's experience, such screening is very difficult if not 

impossible to do with accurate models involving differential equations. The approach 

is expected to reveal much more significant differences in terms of reactor operational 

temperatures, if the reactors from design candidates identified in Stage 2 operate at or 

very close to their temperature limits. 

6.5.4 Stage 4 

The OFVs for the evolution of designs for Stages 3 and 4 are presented in Table 6.10. 

The change in the process models employed in Stage 4 does not necessarily imply 

improving or worsening the OFVs with respect to Stage 3. Consequently, the 

performances cannot be predicted beforehand. 
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Table 6.10: OFV and CPU times in Stages 3 and 4 for the styrene production process. 

Structures OFV $/ r CPU (hr )l 
Stage 3 Stage 4 Stage 3 Stage 4 

One PFR (MTR) 9.94 10.55 1.11 35.47 
Three PFRs (MTRs) 10.93 10.70 19.47 39.69 

' CPU times are average values of all runs. 

For both structures, in Stage 4, the initial simulations of the optimal designs identified 

in Stage 3, result in having a HLV. To improve heat transfer properties and remove 

the HLV, the search progresses towards the reduction of the nominal diameter (DN) 

of the reactors tubes (Table 6.11). 

Table 6.11: Diameter of the catalyst particle and diameter and number of reactor tubes for Stages 3 and 

4 for the styrene production process. 

Diameter Nominal Number of tubes 
Structures Stage catalyst particle diameter of tubes that form the 

(mm) (DN) reactors 
3 2.2 DN=25 11000 

One PFR (MTR) 4 2.7 DN=20 11000 
3 4.2 DN=25 10000 

Three PFRs (MTRs) 
4 2.2 DN=20 12000 

For the single PFR, once the DN of the reactor tubes is reduced, the diameter of the 

particle is increased with regard to Stage 3. The fact that no HLV appears after 

decreasing the DN indicates that heat transfer issues are not so limiting, and pressure 

losses can be reduced by increasing the catalyst particle size. Regarding the three 

PFRs structure, heat transfer issues are still limiting the performance after reducing 

the DN of the reactor tubes. Therefore, the size of the catalyst particle must be kept 

lower to improve heat transfer, despite producing more pressure losses. Due to the 

changes in the catalyst particle and reactor tubes, the reactors temperature profiles and 

those of the utility media vary as shown in Figure 6.10. 
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Figure 6.10: Temperature profiles for one and three PFRs in Stage 3 and 4 for the styrene production 

process: a) reactors, b) utilities. 

For the single PFR structure in Stage 4, the ethylbenzene process conversion increases 

if compared to Stage 3 (Table 6.12). Therefore, less external recycle is compressed 

and the operational and fixed costs of the external compressor are lower (Table 6.13. 

6.14). The SOR at the inlet of the reactor is not exactly at its lowest constraint, but 

the smaller recycle results in less steam fed to the reactive section and therefore in 

less raw material costs. Consequently, the feed compressor is also cheaper to buy and 

operate. 
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Table 6.12: Selectivities, ethylbenzene conversion and SOR in Stages 3 and 4 for the styrene 
production process. 

Styrene Benzene Toluene Ethylbenzene SOR inlet SOR outlet 
Structure Stage selectivity selectivity selectivity conversion reactors reactors (%) (%) (%) (%) (%) (%) 

One PFR 3 93.06 2.74 4.20 98.94 7.0 11.0 
MTR 4 91.75 3.26 3.86 99.15 7.2 12.2 

Three 3 89.16 4.09 6.41 99.18 7.1,7.0 9.8,9.5 
PFRs and 8.1 and 8.5 

(MTRs) 4 90.92 3.43 5.34 99.14 7.2,7.2 8.1,11.2 
and 8.8 and 9.5 

For the three PFRs structure, the ethylbenzene process conversion slightly decreases if 

compared to Stage 3, and more external recycle is compressed. Hence, the external 

compressor becomes more costly. The SORs at the inlet of each reactor are slightly 

higher than in previous stages, which combined with the bigger external recycle 

results in more steam fed to the system and in a more expensive feed compressor. 

Table 6.13: Fixed costs in Stages 3 and 4 for the styrene production process. 

Structure Stage External 
compressor 

Feed 
compressor 

Reactors 
Heat exchange 

network 

One PFR (MTR) (M$) 3 0.31 1.06 0.11 4.71 
4 0.26 0.98 0.11 3.85 
3 25 0 0.72 0.12 3.10 Three PFRs (MTRs) (M$) . 
4 0.26 0.81 0.17 3.92 

The different amounts of ethylbenzene recycled and steam fed, together with the 

changes in the temperature profiles (Figure 6.10), result in different HXN costs (Table 

6.13) 

For the three PFRs structure, the reactors are more expensive because they contain 

more catalyst load (Figure 6.10) despite being structurally very similar to the ones 

identified in the previous stage (Table 6.11). For the single PFR, the catalyst load and 

the reactor cost are the same as in Stage 3. 
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Table 6.14: Product value, operational costs and heat absorbed in the reactors in Stages 3 and 4 for the 

styrene production process. 

Product Raw External Feed 
Structure Stage profit material compression compression 

M$/yr) (M$/yr) (M$/yr) (MS; y r) 

One PFR (MTR) 3 29.23 16.15 0.11 0.48 
4 29.22 15.95 0.09 0.44 

Three PFRs 3 28.53 15.35 0.08 0.30 
MTRs 4 28.89 15.55 0.09 0.35 

Hot utility Cold utility 
Reactors Heat absorbed 

Structure Stage (M$/yr) (M$/Yr) heating utility per reactors 
(M$/yr) (W) 

3 0.00 0 01 0.27 1.55E+06 
One PFR (MTR) 

4 0.00 . 0.01 0.28 1.59E+06 
Three PFRs 3 0.04 0.01 0.28 1.59E+06 

(MTRs) 4 0.05 0.01 0.25 1.44E+06 

The change in the OFVs of Stage 4 cannot be predicted because the increase of 

modelling detail does not imply obtaining better or worst results. An interesting 

observation is that the DNs of the reactor tubes are reduced from 25 in Stage 3 to 20 

in Stage 4. This can be explained because the models employed in Stage 4 result in 

different heat transfer limitations than those employed in Stage 3. This also results in 

different reactor temperature profiles (Figure 6.10). The approach presented in Stage 

4 proves to be very computationally demanding (Table 6.10). 

6.6 Conclusions 

The multi-level approach (Stage 1) presented in Chapter 5 proved to handle the 

complex kinetics involved in the heterogeneously catalysed gas-phase reaction 

systems fast and reliably for process design screening purposes. Stage 1 provides 

good insights in terms of process design trade-offs (feeding, bypassing, mixing 

patterns, etc. ) and enables the reliable identification of potential process performance 
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improvements along with the process complexities associated. However, in terms of 

the temperature management, it was clear that the longitudinal temperature profiles 

proposed for the PFRs could only be reached if one had every single volume, in which 

the PFRs are discretised, under control. But having the temperature profiles fully 

controlled is not implemented in practice. The idea of having multiple heat 

exchangers within a single reactor seems rather unpractical and uneconomical. In 

order to assess the practical heating / cooling for such reactors, temperature and heat 

management issues needed to be addressed. For such purpose, the multi-stage 

evolution of designs has been presented in this chapter. 

The multi-stage evolution of designs occurs in several stages. Stage 2 has proved that 

heat issues are critical for heterogeneously catalysed gas-phase reaction systems. 

During the screening of non-isothermal reactor designs, the interactions with the 

utility media must be taken into account as the full control of each individual volume 

is neither practical nor economical. For the illustration example presented, the 

realistic heating schemes proposed have remarkably impacted the performances. The 

approach developed in Stage 3 searches the space robustly while including radial heat 

transfer effects in catalytic fixed beds. For the case study presented, structural 

changes in the reactors that deliver favourable heat transfer policies with the utility 

media have been efficiently identified. However, the additional changes included in 

the rigour of modelling do not have much impact on the performance. This 

conclusion is also applicable for the transition between Stage 3 and 4. Although the 

approach developed in Stage 4 allows performing the superstructure optimisation of 

highly complex process design schemes with time consuming reactor models, the real 

impact on process performance with respect to Stage 3 is minor. Consequently, it can 
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be concluded that once the practical heating / cooling strategy is realised, the OFV 

does not change much regardless the addition of detail in the models employed. 

However, for the case studied, Stage 3 is indispensable because it allows identifying 

key structural modifications in the reactors that make possible realistic heat transfer 

policies with the utility media. Besides, for those hypothetic cases that were 

constrained in Stage 2 by the temperatures in the catalytic fixed beds (i. e. Ti,, -Tupper 

limit or T; s, ý ý: =Tiower limit), Stage 3 would have a real impact on the performance by 

reducing / increasing the operating temperatures inside the units. The reduction / 

increase of temperatures would result in a decrease of reaction rates and thus product 

formation. 

At any stage of the evolution of designs, information on the optimal operating 

conditions is created. This information can be communicated to the kinetic 

development team to guide new experiments and validate the experimental models in 

the optimal regions in which the catalyst is to be used. Stages 2 and 3 have proved to 

be computationally proficient and robust. Therefore, they could be ready for the 

integration of the experimental kinetic development and the process design activities. 

The time consuming approach developed in Stage 4, could be used to test kinetic 

models at advanced stages of the experimental development. 

Finally, regarding the styrene production process, the evolution of the optimal 

conceptual design identified in Stage 1, the three PFRs structure, reveals after Stage 4 

an OFV enhancement of 11 % if compared to the adiabatic reactor typically found in 

industry. 
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CHAPTER 7. 

A Case Study In Acetic Acid Production 

7.1 Introduction 

The Decision Support Framework presented in Chapters 5 and 6 is employed here for 

the study of an acetic acid production process. The objective of the application is to 

identify trends and key features of the system that enhance the overall process 

performance in terms of Economic Potential (EP). Appendix 3 presents the data for 

the process, the kinetic model, the relevant process design features of the system and 

the capital and operational cost expressions along with the cost of the raw materials 

and products. 

Acetic acid can be produced by methanol carbonylation, acetaldehyde oxidation, 

methyl formate isomerisation, methane carbonylation, ethylene oxidation and 

fermentation. More than 60 % of the world production is through the methanol 

carbonylation (initially proposed by BASF in the mid 50s and later improved by 

Monsanto in 1970 and BP Chemicals in 1996). The study presented here accounts for 

the gas-phase heterogeneously catalysed selective oxidation of ethane over a 

MolVO. 25NbO. 12PdO. 00050x catalyst (Linke et al., 2002a, b). The feed in gaseous 

state (ethane and oxygen) is fed to the reaction units (Figure 7.1) to produce acetic 
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acid. Water, carbon dioxide and ethylene are the by-products formed. The reactive 

units are followed by a flash expansion to separate water and acetic acid from non- 

condensable components. The water / acetic acid stream is separated in a distillation 

column. Non-condensable components are treated in an absorber where the oxygen 

and the carbon dioxide are removed. The hydrocarbons are recycled to the reactive 

units. 

C02 

Network Recycle 

Figure 7.1: Superstructure representation for the acetic acid production process. 

In the following section, the multi-stage evolution of designs for the acetic acid 

production process is detailed. After that, the computational efforts involved in each 

stage are discussed and finally, the conclusions are presented. 
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7.2 Multi-Stage Evolution Of Designs 

7.2.1 STAGE 1: Multi-Level Approach Development And Results 

7.2.1.1 Introduction 

For this case study, the steps involved in Stage 1, which are the basis of the multi- 

level approach (see Figure 5.8), are summarised in: 

9 Step A) Base case structure: Establishment of two initial base cases. 

e Step B) Performance targeting: Establishment of a third base case in order 

to identify the maximum possible objective function value (OFV) that can be 

achieved. 

0 Step C) Increase search space - 1: Setting of targeted structures based on the 

analysis of results from Steps A and B. 

" Step D) Increase search space - 2: Setting of more targeted structures based 

on the analysis of results from Step C. 

The solutions presented are the best results out of ten converged optimisation runs 

(except where stated). 

Step A) Base case structure 

The two initial base cases, which employ conventional reactor schemes, are a single 

CSTR and a single PFR. 

The single CSTR is operated at 542 K and its OFV is -7.5 M$/yr. In this case, the 
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process selectivity is 61.0 %, the ethane conversion 10.2 % and the oxygen 

conversion 30.3 %. 

C02 

Ethane Water 

Oxygen 

Acetic acid 

Figure 7.2: Superstructure representation for the CSTR base case structure for the acetic acid 

production process. 

The EP for a single PFR is 8.5 M$/yr and its temperature follows a logarithmic profile 

with an initial value of 545 K and a final value of 570 K. The process selectivity is 

57.8 %, the ethane conversion 54.1 % and the oxygen conversion 82.0 %. 

Figure 7.3: Superstructure representation for the PFR base case structure for the acetic acid production 

process. 
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Std B) Performance targeting 

A third base case is established to identify the maximum achievable OFV. The base 

case is the result of the optimisation of 25 experiments, which all start from different 

initial feasible points. The superstructure is optimised without imposing structural 

constraints (i. e. reactor units can be added / deleted in the superstructure, bypasses 

and recycles between reactors can be identified, feeds can be distributed to any 

reactive zone present in the superstructure) The maximum OFV obtained for the 

optimisation is 22.5 M$/yr (Figure 7.4). 

The analysis of the experiments shows that: 

" Oxygen side stream feeding is present in many of the final process design 

candidates. 

" Ethane side stream feeding is present in less than half of the final process 

design candidates. 

" Internal recycles between reactors are present in most of the final process 

design candidates. 

9 Bypasses are present in almost none of the final process design candidates. 

" The reactive zones are mainly PFRs (multi-tubular), although they co-exist in 

some cases with CSTRs. 
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Figure 7.4: Resulting superstructure representation for the performance targeting step in the acetic acid 

production process. 

Step C) Increase search space -I 

Targeted structures based on the analysis of results from the previous steps are 

investigated. The case studies explored are as follows (all the PFRs are multi-tubular 

reactors): 

0 Structures with internal recycle: 

o PFR. 

o PFR + PFR. 

o CSTR + PFR. 

o PFR + CSTR. 

" Structures without internal recycle 

o CSTR + CSTR. 

o PFR + PFR. 

o CSTR + PFR. 

o PFR + CSTR. 
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Three structural limitations are imposed to all experiments: 

" No reactor units can be added or deleted. 

9 No reactor unit types can be changed. 

9 No bypasses between reactors are allowed. 

The analysis of the optimised designs shows that the most promising process design 

candidates are the ones in which: 

" side streams of oxygen feed are identified, and; 

" recycles between reactors are allowed. 

Step D) Increase search space -2 

Based on the analysis of results from the previous steps, new targeted structures are 

explored to study the following effects: 

" Effect of oxygen side feeding: In order to identify whether any relationship 

between oxygen feed distribution along the reactor and the OFV exists, three 

PFRs in series are optimised. 

" Effect of internal recycle: Due to the fact that high internal recycle flows are 

observed in Step C, new targeted studies are set to investigate the effect of 

lower internal recycle flows. The cases are: 

o PFR 

o CSTR + PFR 

o PFR + CSTR 
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o PFR + PFR 

o PFR + PFR + PFR 

9 Effect of diluting the feed: Two new studies are performed in order to assess 

the impact of different means of feed dilution on the OFV. The objective is to 

check whether the dilution effect of the recycle can be substituted by any 

other form of dilution. The new dilutions are achieved adding an extra feed 

stream to the reaction section (a single PFR). The extra feed, which is a new 

degree of freedom for the optimisation, consists of a pure component 

involved in the system (water or carbon dioxide). 

7.2.1.2 Analysis Of Results From The Targeted Structures (Steps C And D) 

Structures formed only by combinations of CSTRs and PFRs 

The comparison between structures formed only by PFRs and structures formed by 

CSTRs and PFRs (CSTR + PFR and PFR + CSTR), proves that the addition of back- 

mixing does not improve the OFV. 

Structures formed by one PFR, two PFRs and three PFRs in series 

In this section, the results obtained with the structures involving PFRs are discussed. 

Experiments with different internal recycle limits for the three structures have been 

performed. The OFVs, the ethane conversions, the process selectivity and the acetic 

acid production are shown in Figures 7.5,7.6,7.7 and 7.8. For recycle limits above 

750 mols/s there is no improvement observed for the single PFR. This case, which is 

not shown in the figures below, results in an OFV of 20.5 M$/yr, an ethane 

conversion of 74.8 % and a process selectivity of 67.3 %. For the two PFRs in series, 
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internal recycles are identified from the second reactor to the first and / or second 

reactor. Oxygen side streams are identified for all the cases. Ethane side streams are 

not identified for any case. For the three PFRs in series, the search identifies oxygen 

side feeding for all the cases. These side streams are present for all cases in the 

second reactor and in five out of six of the cases in the third reactor. Ethane side 

feeding is not identified for any case. For recycle limits above 500 cools/s, there is no 

improvement observed for the two and three PFRs cases. 
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Figure 7.5: EP (M$/yr) for the one, two and three PFRs structures for 

the acetic acid production process. 
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Figure 7.6: Ethane conversion for the one, two and three PFRs 

structures for the acetic acid production process. 
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Figure 7.7: Process selectivity for the one, two and three PFRs 

structures for the acetic acid production process. 
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Figure 7.8: Acetic acid production for the one, two and three PFRs 

structures for the acetic acid production process. 

Next, the effects of the internal recycle and the oxygen side feeding are discussed: 

" Effect of internal recycle: If the extreme cases (no internal recycle and highest 

internal recycle limit) for each set of structures (one, two and three PFRs) are 

individually compared: 

o For the one PFR structures, the presence of internal recycle rises the 

OFV up to 141 %, the process selectivity up to 16.3 % and the ethane 
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conversion up to 38.0 % (the highest internal recycle limit refers here 

to 750 mols/s). 

o For the two PFRs structures, the OFV rises up to 45.6 %, process 

selectivity up to 8.2 % and the ethane conversion up to 13.0 % (the 

highest internal recycle limit for this case is 500 mols/s). 

o For the three PFRs structures, the OFV rises up to 21.9 %, process 

selectivity up to 4.7 % and the ethane conversion up to 6.1 % (the 

highest internal recycle limit now is 500 mols/s). 

" Effect of oxygen feed distribution: 

o Higher OFVs are obtained for higher oxygen distribution along the 

reactive section (Figure 7.5). For the cases without internal recycle, 

the OFV improves with respect to the single PFR, 71 % and 112 % for 

the two and the three PFRs cases respectively. For the cases with an 

internal recycle limited to 500 mols/s, the OFV improves by 18.4 % 

and 22.7 % respectively. 

o Higher ethane conversions are obtained for higher oxygen distribution 

(Figure 7.6). For the cases without internal recycle, the ethane 

conversion increases with regard to the single PFR, 27.1 % and 37.6 % 

for the two and the three PFRs cases respectively. For the cases with 

an internal recycle limited to 500 mols/s, ethane conversions increase 

by 10.2 % and 12.1 % respectively. 

o Regarding process selectivity, at low internal recycle limits the highest 

selectivities are obtained for higher oxygen distribution (Figure 7.7). 

This trade-off progressively changes as more internal recycle is 
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allowed. For an internal recycle limited to 750 mol/s, the single PFR 

reaches a value of 67.3 % (not shown in Figure 7.7), which is the 

highest value obtained so far. 

o Oxygen conversions are kept in the range of 79-82 % for one PFR 

structures, between 80-86 % for the two PFRs structures and between 

83-85 % for the three PFRs structures. 

Next, the costs for the three sets of structures are discussed. For the single PFR case, 

the results for a structure with unlimited internal recycle are also included. This 

structure is employed later on, in the study of the different means of feed dilution and 

in the evolution of stages. For this case the internal recycle identified is 827 mols/s. 

The resulting OFV is the same as the case in which the recycle is limited to 750 mol/s 

(20.5M$/yr). The ethane conversion is 74.8 %, the process selectivity is 67.2 % and 

the oxygen conversion is 78.6 %. 

The capital costs for the three sets of structures are presented in Figures 7.9,7.10 and 

7.11. For each individual set of structures, the heat exchanger network (HXN) capital 

cost is progressively reduced at higher internal recycles because the required heat 

exchange area is reduced and the number of heat exchange units is kept constant. 

When no internal recycle is allowed, the area is higher than the case with the smallest 

internal recycle limit (75 mols/s). However, the number of heat exchanger units is 

smaller. The combined effect on the capital cost equation (Equation A2.3) generates 

a lower capital cost. The reactor fixed cost is constant as it depends on the volume, 

which is the maximum allowable in all the cases, and on the maximum pressure inside 
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the reactor, which is the same for all the cases (Equations A2.6, A2.7 and A2.8). 
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Figure 7.9: Fixed costs for one PFR with different 

internal recycle limits for the acetic acid 

production process. 
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Figure 7.11: Fixed costs for the three PFRs with 

different internal recycle limits for the acetic acid 

production process. 

For the single PFR structures, Figure 7.12 details the capital costs for the distillation 

and the compression. The higher the internal recycle limit is: 

" The more acetic acid and water are produced and as a result, the bigger (i. e. 

more expensive) the condensers and reboilers are. 

0 The bigger the internal compressor is. 

0 

Figure 7.10: Fixed costs for the two PFRs with 
different internal recycle limits for the acetic acid 

production process. 
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" The fewer amount is externally recycled and consequently, the cheaper the 

external compressor becomes. The external recycle is inversely proportional 

to the ethane conversion. 

" The more oxygen is fed to the system and therefore, the bigger the feed 

compressor becomes, as for all cases the oxygen feed is at its upper bound (13 

% of the total feed into the reactor -see Appendix 3-) 
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Figure 7.12: Compression and distillation fixed costs for one PFR with different 

internal recycle limits for the acetic acid production process. 

Similar behaviours are observed for the structures involving two and three PFRs. 

The operational costs for the three sets of structures are presented in Figures 7.13. 

7.14 and 7.15. Raw material costs refer to the oxygen and ethane costs. Utility costs 

group the hot and cold utility for the heat integration, the cooling water for the 

condenser and the steam for the reboiler of the distillation column. Compression 

costs gather the external and internal recycle and the feed compression. At higher 
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internal recycles: 

" More oxygen can be fed to the system and therefore higher raw material costs 

are obtained. 

9 More utility and compression costs are required. 
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Figure 7.13: Operational costs for one PFR with 
different internal recycle limits for the acetic acid 

production process. 

Figure 7.14: Operational costs for the two PFRs 

with different internal recycle limits for the acetic 

acid production process. 
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Figure 7.15: Operational costs for the three PFRs 

with different internal recycle limits for the acetic 

acid production process. 

For the single PFR structures, utilities and compression costs are detailed in Figure 

7.16. The bigger the compressors, the reboiler and the condenser of the distillation 

column are, the more expensive is to operate them. No hot utility is required for any 
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of the cases. All operational costs increase when increasing the internal recycle limit. 

except for the external compression cost. This cost decreases when the internal 

recycle limit grows because less flow is externally recycled. 
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Figure 7.16: Compression and utilities operational costs for one PFR with 

different internal recycle limits for the acetic acid production process. 

Similar behaviours are observed for the structures involving two and three PFRs. 

Un-reacted oxygen has been assumed during the whole study to be separated in the 

absorber. In the case where the oxygen was not separated but completely recycled. 

the raw material costs would impact the OFV with similar trade-offs for all the cases. 

For a single PFR, Figure 7.17 shows the OFV and the benefit obtained by recycling 

the oxygen for different internal recycle limits. 
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Figure 7.17: OFV and benefit from oxygen recycling for one PFR with different internal recycle limits 

for the acetic acid production process. 

Since the oxygen conversion follows the same trends and is higher for the structures 

formed by two and three PFRs in series, the influence of such a recycle in the OFV 

happens to be comparable but smaller. 

Structures with different feed dilution 

A comparison of the performances of three structures consisting of one PFR in which 

the feed is diluted by different means is presented. The three diluting agents 

considered are: 

" The internal recycle. The PFR with unlimited internal recycle is selected over 

the case with a limitation of 750 mols/s, as there is no interest in limiting the 

dilution. 

" Water that is fed to the reactor. 

" Carbon dioxide that is fed to the reactor. 
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The case in which carbon dioxide is selected as the diluting agent results exactly in 

the same performance as the single PFR without internal recycle. During the 

optimisation search, the amount of carbon dioxide is progressively reduced from the 

initial value to zero. Carbon dioxide has no effects on the kinetics of the system, 

other than reducing the partial pressures of the other components inside the reactor, 

thus reducing the production of acetic acid. 

Figure 7.18 shows the OFV, the process selectivity and the ethane and oxygen 

conversions for the structures where: 

9 No diluting agent is present (one PFR without internal recycle). 

9 Internal recycle (unlimited case) is the diluting agent. 

" Water is the diluting agent. 
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Figure 7.18: Results for structures with different dilutions for the acetic 

acid production process. 

The OFV is increased by 93 % (16.4 M$/yr) with respect to the single PFR without 

internal recycle (8.5 M$/yr) when the feed is diluted with water. However, this case 
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does not outperform the OFV of the single PFR with unlimited internal rec}cle (20.5 

M$/yr). The presence of water strongly accelerates the rate of the ethylene oxidation 

to acetic acid (Linke et al., 2002a) and produces the highest process selectivity 

observed so far (Figure 7.18). For this design option, the use of internal compressors 

is avoided and therefore, both capital and operational costs decrease. Howvever, a 

bigger external compressor is needed as the ethane conversion becomes lower. In 

addition, as more water must be separated from the acetic acid in the distillation 

column, higher operational and capital costs for both condenser and reboller are 

required. The overall impact of these costs on the performance indicates that this 

design option is not as appealing as the single PFR with unlimited internal recycle. 

7.2.1.3 Optimal Conceptual Process Designs Identified In Stage 1 

After the conclusions obtained in the previous analysis of results, the design 

candidates proposed at the end of Stage 1 are (Figure 7.19): 

" One PFR with unlimited internal recycle. Despite producing the same OFV 

than the case in which the internal recycle is limited to 750 mol/s, this case is 

preferred. The reason is that there is no interest in constraining the 

optimisation search by the internal recycle in the later evolution of stages. 

" Three PFRs without internal recycle and with oxygen side feeding. 
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Figure 7.19: Superstructure representation for the optimal conceptual designs proposed at the end of 

Stage 1 for the acetic acid production process. 

7.2.1.4 Observations And Insights 

In this section a comparison between the two optimal conceptual design structures 

suggested in Stage 1 is presented. A single PFR without internal recycle is also 

included in the discussion for comparison reasons. 

Figure 7.20 shows the reaction path for the oxidation of ethane to acetic acid. 
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Figure 7.20: Reaction path for the partial oxidation of ethane (Linke et al., 2002a). 

The information shown in Table 7.1 relates to the single PFR without internal recycle 

and is used to compare the different cases. The concentration values (C1) presented 

correspond to the concentrations at the beginning and at the end of the reactor. 

Reaction rates (r; ) and Os are average values for the whole reactive zone. 0 is the 

normalized surface coverage. 

Table 7.1: Concentrations and reaction rates for one PFR without internal recycle for the acetic acid 
production process. 

Variable Value Variable Value 
Cc2H6 (mol/m) 298 -i 262 6[oi�z) 1.23 * 10"1 
C02 (mol/m3) 45.0--) 8.0 rl (molls/kg cat) 5.3 1* 10-4 

Cc2H4 (mol/m) Constant 8.4 _ 
r2 (molls/kg cat) 2.72*104 

CcH3cooH (mol/m3) 0-9.0 _ r3 (molls/kg_cat) 1.34*104 
Cco2 (mol/m3) 0 -i 12.0 r4 (mol/s/kg_cat) 7.29* 10-4 
CH20 (moUm3) 0-) 28.0 r5 (mol/s/kg cat) 1.18*10-4 
°[(HOMxO) (OH)] 4.85* 10"5 _ 

r6 (mol/s/kg_cat) 2.48* 10-4 
0[OMxO] 8.63 * 10"' r8 (mol/s/kg_cat) 1.18 * 10-4 
O[onnx] 1.3 7* 10-1 r9 (mol/s/kg_cat) 1.44* 10-4 
O[oMzO) 8.98* 10"2 r10 (mol/s/kg_cat) 1.10* 10-4 

e[OMZC2H4] 7.87* 10"' rl l (mol/s/kg_cat) 1.97* 10-5 
0 HOMzOH 7.35*10 5 

. 298 - 262 indicates that at the beginning of the reactor, the concentration is 298 mourn3 whereas at the end it is 262 mol/m' 
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Table 7.2 shows the deviations observed between one PFR without internal recycle 

and: i) one PFR with internal recycle; ii) three PFRs without internal recycle. 

Table 7.2: Deviations observed between one PFR without internal recycle and: one PFR with internal 
recycle; three PFRs without internal recycle for the acetic acid production process. 

One PFR with recycle 
Three PFRs 
(side feeding of oxygen) 

Objective (M$/yr) 20.5 ( Increase 141 %) 18.0 (Increase 112 %) 
Process selectivity Increase 16.3 % Increase 9.74 % 
Ethane conversion Increase 38.3 % Increase 37.6 % 
Cc2H6 (mol/m) Decrease 19 % Decrease 11 % 

C02 (mol/m3) 

Same inlet value. Decrease of 30 % 
in conversion, which means that 
there is more oxygen along the 
reactor. 

Same inlet value. Instead of 
decreasing constantly, the 
concentration recovers the inlet 
value at fractions 0.30 and 0.46 of 
the reactor zone, due to the oxygen 
side feed streaming. 

CC2H4 (moum3) Concentration 0.05 Concentration z- 4.32 
CCH3COOH (mou r) 15.0 4 21.0 04 18.6 
CC02(m01/m) 14.5420.8 0421.1 
CR20 (moUm) 36.6 -i 52.5 04 50.5 
A HOMxO ox Increase of 3 orders of magnitude Increase of 1 order of magnitude 
A OMxo Decrease 10 % Same values 
A oMX Increase 46 % Increase 1% 
A oMZo Increase 59 % Increase 34 % 
A OMzC2H4 Decrease 3% Decrease 1% 
A HoMZox Increase 81 % Increase 10 % 
A oMZ Decrease 22 % Decrease 18 % 

rl (mol/s/kg cat) Increase 40 % Increase 13 % 

r2 (mol/s/kg_cat) Increase 37 % Increase 26 % 

r3 (mol/s/kg_cat) 

Strong increase: Despite 
[C2Ha] -) 0, it is 1-2 orders of 
magnitude higher at the beginning of 
the reactor unit and increases 100% 
at the end, due to a [1120] increase. 

Increase 35 % 

r4 mot/s/kg cat) Increase 20 % Increase 7% 

r5 (mol/s/kg_cat) 

Strong increase: 1-2 orders of 
magnitude higher at the beginning of 
reactor unit. Increase 100% at the 
end 

Decrease 34 % 

r6 (mol/s/kg cat) Increase 27 % Same values 

r8 (mol/s/kg_cat) 

Strong increase: 1-2 orders of 
magnitude higher at the beginning of 
reactor unit. Increase 100 % at the 
end 

Decrease 34 % 

r9 mol/s/k cat) Increase 38 % Increase 17 % 

rrn molls/k cat Decrease 99 % Increase 20 % 

rl i mol/s/k cat) Increase 1 order of magnitude Decrease 36 % 
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There is a general increase in all 
reaction rates but r10. Regarding the 
reactions that produce directly acetic 
acid: 

r2: has increased; there is more 
concentration of oxygen along the 
reactor zone and values of O[OMzC2H4J 
are practically identical. 

r3: has substantially increased; 
although the value of C2H4 is 
maintained close to 0, the value of 
9[(HOMxO) (OH)] is increased 3 orders of 
magnitude. 

SUMMARY 

The formation of by-product CO2 
increases. However, inside the 
reactive zone, the increase in the 
concentration is smaller. That is an 
increase of 6 moUm3 instead of the 
12 mol/m3 for the single PFR 
without internal recycle. 

The formation of by-product H2O 
increases although the increase in 
the concentration inside the reactive 
zone is smaller. That is an increase 
of 16 moUm3 instead of the 28 
mol/m3 for the single PFR without 
internal recycle. 

There is a relevant increase in the 
reaction rates directly involved in 
the production of acetic acid (r2, r3). 
r1, which takes place before r2 also 
increases, whereas r6 that is the 
previous reaction to r3 keeps the 
same values. 

r2: there is much more 
concentration of oxygen along the 
reactor zone and values of 
°[OMZC2H4] are practically identical. 

r3: although the value of C2H4 
is reduced by 48 %, the value of 
O[ oMxo) (OH)] is increased 1 order of 
magnitude. 

Competitive reactions to r3 (r5 and 
r8) suffer an important decrease. 
Consumption of acetic acid to 
produce ethane (r4), slightly 
increases 

The formation of by-product CO2 
increases. Here, the increase in the 
concentration inside the reactive 
zone is bigger. That is an increase 
of 21 mol/m3 instead of the 12 
mol/m3 for the single PFR without 
internal recycle. The production of 
CO2 from ethane and ethylene (r9 
and r10) increase, whereas its 
formation from acetic acid (r11) 
decreases. 

The formation of by-product H2O 
increases. Here again, inside the 
reactive zone, the increase in the 
concentration is also bigger. That is 
an increase of 51 moUm3 instead of 
the 28 mol/m3 for the single PFR 
without internal recycle. 

* Increase / Decrease with respect to the PFR without internal recycle refer to the average values along the reactive zones 

Common features are observed for both cases with respect to the PFR without internal 

recycle: 

0 

0 

0 

The concentration of ethylene along the reactor zone is reduced. 

Both reaction rates producing acetic acid are increased (r2 and r3). 

Ethane is kept along the reactor zone more diluted and its conversion is for 

both cases nearly 75 % (74.8 % for the option with internal recycle and 74.5 % 
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for the three PFRs structure). Therefore, it cannot be concluded that the option 

with internal recycle generates more profits because less ethane is purged in 

the absorber and transformed to acetic acid. 

The main difference between the single PFR with internal recycle and the three PFRs 

without internal recycle is that the reaction rates r3, r5, r8 and r1 i are much higher for 

the first case. Although ethane and ethylene must be kept at lower concentrations by 

diluting the system in order to enhance the OFV, the concentration of ethylene is 

much lower for the first case. The concentration profiles for the acetic acid, carbon 

dioxide, water and oxygen follow different trends (Table 7.2). Figure 7.21 illustrates 

the rate improvements for the single PFR with internal recycle over the single PFR 

without internal recycle. 

[HOMZOH] 

Increase 38 % 

(9) 

increase af -/0 
(2) -02 

CH3000H 

(4) 

[ORKJ 

Increase 20 % 

(7) 

. 1120 
-1120 

MOMxO 

4- (HOM=a(OO] 

(8) 
1-2 orders of 

H2O IHW magnitude higher 

2 

lers of 
e higher 

Figure 7.2 1: Rate improvements for the single PFR with internal recycle over the single PFR without 
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7.2.1.5 Conclusions 

Back-mixing in the form of CSTRs is not a potential flow pattern for this case: 

" The OFV for a single CSTR is negative (-7.5 M$/yr). 

" For structures combining CSTRs and PFRs, the performances are not 

improved with respect to structures involving only PFRs. 

Regarding structures with only PFRs, two features enhance the performance: 

" The presence of internal recycle enhances the OFV of a single PFR up to 141 

% (from 8.5 to 20.5 M$/yr). The maximum OFV for any structure is 

approached asymptotically as the internal recycle limit is increased. 

" The presence of oxygen side feeding when more than one PFR is involved, 

improves the OFV if compared with a single PFR up to 112 % for the three 

PFRs structure and up to 72 % for the two PFRs structure (18.0 and 14.5 

M$/yr respectively). 

The sole effect of the internal recycle has more positive impact on the OFV than the 

sole effect of oxygen distribution. When both features are combined, performances 

approach the targeting performance (22.5 M$/yr). 

An interesting observation is as follows. From the reaction engineering textbook, a 

PFR with a big internal recycle would result in a similar performance as a CSTR. 

However, that is not the case here as a CSTR shows much worse performance than 

any PFR (multi-tubular reactor) with recycle. The reason for such different 

performances resides in the different operating temperatures attained. The high 

temperatures needed to carry out the oxidation reactions, which are reached in multi- 
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tubular reactors (MTRs), cannot be attained in a CSTR. The average operating 

temperatures in MTRs with recycles are circa 565 K, whereas the temperature reached 

in a CSTR is 542 K. On one side, the overall heat transfer coefficient is higher for 

CSTRs than for MTRs; on the other, the heat transfer area for CSTRs is much 

smaller than for MTRs. The multiplication of both values, at equal catalyst load 

(50000 kg), results in a much smaller UA value for a CSTR (circa 33 kW/K) than for 

a MTR (circa 220 kW/K). As a consequence, CSTRs cannot remove as much heat as 

MTRs, resulting in much lower operating temperatures and thus performances. 

The designs proposed at the end of the multi-level approach are the single PFR with 

unlimited internal recycle and the three PFRs without internal recycle and with 

oxygen side feeding. 

7.2.2 STAGES 2,3 And 4: Results 

7.2.2.1 Introduction 

In the next section, the evolution of the optimal conceptual process designs proposed 

at the end of Stage 1 is presented. For comparison reasons, the evolution of a single 

PFR without internal recycle is also presented. Afterwards, the results of experiments 

in which FLBRs have been used, are discussed. The results showed in this section are 

the best solutions out of ten converged optimisation runs (except where indicated). 
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7.2.2.2 One PFR Without Recycle 
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Figure 7.22: EP (M$/yr) for one PFR without internal recycle for the four 

stages for the acetic acid production process. 

The decrease in the OFV from Stage I to Stage 3 (Figure 7.22) was expected since the 

evolution of stages implies the reduction of the search area by new constraints. The 

reduction of 15.3 % in the OFV from Stage 1 to 2 is mainly due to the increase in the 

HXN fixed cost (2.71 M$; annualised increased cost = 1.0 M$/yr; Figure 7.23). In 

Stage 1, the constraints on the longitudinal temperature profile for the reactor are very 

relaxed. Therefore, the optimisation is able to identify designs that by adjusting such 

profiles minimise the HXN fixed cost. In Stages 2 and 3, tighter constraints on the 

longitudinal temperature profile of the reactor are gradually added. As a result, the 

HXN fixed cost cannot reach such low values without violating the new constraints. 

When comparing Stages 3 and 4, Stage 4 does not present extra constraints on the 

longitudinal temperature profile of the reactor. The flow streams remain similar and 

as a result the HXN fixed cost is the same for both stages. Another relevant change in 

the fixed costs for the different stages is in the cost of the reactor. The small 

reduction in its cost in the last two stages is due to the use of fewer tubes (Table 7.3). 
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A small reduction in the condenser and reboiler fixed costs is also observed for Stages 

2,3, and 4. These decreases are a consequence of the reduction of ethane conversion 

from 54.1 to 51.5,51.0 and 51.3 % (i. e. lower acetic acid and water production). The 

reduction in ethane conversion results in that approximately 30 mols/s more of ethane, 

leave the reactor in Stage 2,3 and 4 than for Stage 1. Since ethane is recycled 

through the external recycle, the external compressor is bigger and more expensive 

for these stages. 
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Figure 7.23: Fixed costs for one PFR without internal recycle for the four stages 

for the acetic acid production process. 

Regarding operational costs (Figure 7.24), the increase observed in the raw material 

cost is related to the increase of the external recycle. At higher recycles, more oxygen 

is feed as it always remains at its upper bound. which is 13 % of the total inlet molar 

flow to the reactor. However, the fixed cost of the feed compressor increases 

inappreciably. Both utilities and compression costs also vary insignificantly. 
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Figure 7.24: Operational costs for one PFR without internal recycle for the four 

stages for the acetic acid production process. 

The evolution of designs identifies in Stage 3 and 4 (Table 7.3): 

A nominal diameter (DN) of 20 for the reactor tubes. 

"A diameter of the catalyst particle smaller than for Stage 1 and 2 (4.5 mm). 

"A reduction in the number of reactor tubes with respect to Stage 1 and 2. 

Table 7.3: Reactor design parameters for one PFR without internal recycle for the four stages for the 

acetic acid production process. 

Average values: Stage I and 2 Stage 3 Stage 4 

Diameter of the tube 25mm ND=20 ND=20 

Diameter of catalyst particle 5mm 4.5mm 4.5mm 

Number of tubes 30000 29000 27000 

Figure 7.25 shows the evolution of the longitudinal temperature profiles of the reactor 

and the cooling media. STi refers to the temperature inside the reactor for Stage i, and 
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HXSTi refers to that of the utility media for the same stage. The X axis represents the 

discretisation points used for the calculations. In Stage 1, the temperature of the 

reactor follows a logarithmic profile (Tout - Tin = 25 K). As the evolution of stages 

progresses, the temperature tends to become progressively flatter and lower (Stage 2: 

Tout - Tin = 18 K; Stage 3 and 4: Tout - Tin =6 K). After Stage 3, the temperature of 

the reactor and the utility media remain practically the same. The extra modelling 

detail added in Stage 4, has nearly no impact on the OFV. 
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Figure 7.25: Reactor and utility temperature profile evolution for one PFR without 

internal recycle for the four stages for the acetic acid production process. 

In the case where the oxygen was not separated but completely recycled, the benefit 

in the raw material costs would follow similar trends and influence in a equivalent 
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manner the OFV for each one of the cases (Figure 7.26). The OFV for Stage 4 would 

reach 8.17 MS/yr. 

10 

9 

8 

7 

6 

5 

aq 
w 

3 

2 

1 

0 

1.4 

12 

N 

010 
ad 

0.8 
d 01 

x 0.6 
0 
E 
2 OA 

r 02 
a 

00 
Stage 1 Stage 2 Stage 3 Stage 4 

Figure 7.26: OFV and benefit from the oxygen recycling for one PFR without internal recycle for 

the acetic acid production process. 

Similar effects are seen for the PFR with unlimited recycle and for the three PFRs 

with oxygen side distribution (therefore no figures are presented later). 

7.2.2.3 One PFR With Recycle 
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Figure 7.27: EP (M$/yr) for one PFR with internal recycle for the four 

stages for the acetic acid production process. 
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The transition from Stage 1 to 2 (Figure 7.27) results in almost no impact on the OFV 

(decrease of 0.24 M$/yr). The temperature profile of the reactor in both cases is 

practically identical (Figure 7.30). However, only 8°C difference in the inlet 

temperature results in a HXN fixed cost increase of 1.3 M$ (annualised increase of 

0.48 M$/yr) for Stage 2 (Figure 7.28). The ethane conversion rises from 74.8 % for 

Stage 1 to 76.0 % for Stage 2, which results in an increase of acetic acid production, 

and thus in an extra 0.18M$/yr benefit. The remaining difference between OFVs of 

0.06 M$/yr is offset by the rest of the changes in the fix and operational costs. 
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Figure 7.28: Fixed costs for one PFR with internal recycle for the four stages for 

the acetic acid production process. 

The reduction of 22 % in the OFV from Stage 2 to 3 is due to several factors: 

1. The reduction of ethane conversion (from 76.0 % to 69.0 %) results in an 

increase of the internal recycle (Table 7.4) and consequently. in an extra 

cost of external compressor of 0.57 M$ (annualised cost of 0.21 M$/yr). 
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2. The increase of the internal recycle and the decrease of the diameter of the 

reactor tubes (Table 7.5), make the number of reactor tubes increasing 

considerably to keep low pressure losses. The compression costs only 

increase 0.3 M$/yr with respect to Stage 2 (Figure 7.29). The increase in 

the number of tubes results in an increase in the reactor fixed cost of 2.94 

M$, which represents an annualised increase of 1.1 M$/yr (Figure 7.28). 

3. The increase of the overall recycle makes the amount of oxygen fed to the 

system greater (it remains at its upper bound: 13 % of the total inlet flow 

to the reactor). This fact involves an extra cost of 1.0 M$/yr in raw 

material and 0.03 M$ in the feed compressor fixed cost. 

4. The HXN fixed cost increases 0.6 M$ (annualised increase of 0.2 M$/yr). 

5. The reduction of ethane conversion also results in a decrease of acetic acid 

production and thus of profits by 1.8 M$/yr. 

Table 7.4: Recycle flows for one PFR with internal recycle for the four stages for the 

acetic acid production process. 

Stage Internal recycle (mols/s) External recycle (mols/s) 

1 827 279 

2 754 266 

3 2695 344 

4 2001 344 

Table 7.5: Reactor design parameters for one PFR with internal recycle for the four 

stages for the acetic acid production process. 

Average values: Stage 1 and 2 Stage 3 Stage 4 

Diameter of the tube 25mm ND=20 ND=20 

Diameter of catalyst particle 5mm 4.5mm 4.5mm 

Number of tubes 30000 45000 41000 
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Figure 7.29: Operational costs for one PFR with internal recycle for the four 

stages for the acetic acid production process. 

As the evolution of stages progresses (Stage 1 to Stage 2 and 3), tighter constraints on 

the longitudinal temperature profile of the reactor are added, resulting in higher HXN 

fixed costs. The HXN fixed costs for Stages 3 and 4 should be very similar as no 

extra constraints on the longitudinal temperature profile of the reactor are added in 

Stage 4. However, the recycle flows (Table 7.4) have influence on the HXN fixed 

cost, which result in an overall increasing effect for the new stage (Figure 7.28). 

Besides, as less internal recycle flow needs to be compressed in Stage 4 (Table 7.4), a 

smaller (i. e. cheaper) internal compressor is needed. Since the total flow recycled is 

also smaller, the reactor cost is also reduced as fewer tubes are needed to keep high 

pressures inside the reactor (Table 7.5). For the same reason, less oxygen is fed and a 

cheaper feed compressor is required. The changes in the fix and operational costs 

related to the condenser and reboiler are unnoticeable for the transition from Stage 3 

to Stage 4. 
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The evolution of the longitudinal temperature profile of the reactor and of the utility 

media is presented in Figure 7.30. Here again, STi refers to the temperature inside the 

reactor for Stage i, and HXSTi refers to that of the utility media for the same stage. 

The X axis represents the discretisation points used for the calculations. Initially, the 

temperature of the reactor follows a logarithmic profile (Stage 1: To,,, - Ti, = 15 K). 

As the evolution of stages progresses, the temperature tends to decrease and flatter 

profiles are achieved (Stage 2: Tout - Ti,, =7K; Stage 3 and 4: To, t - Tj,, =3 K). Once 

again, no important changes in the temperature of the reactor and of the utility media 

are observed in Stage 4. The extra modelling detail added in Stage 4 has also 

practically no impact on the OFV. 
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Figure 7.30: Reactor and utility temperature profile evolution for one PFR with internal 

recycle for the four stages for the acetic acid production process. 
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7.2.2.4 Three PFRs Structure Without Internal Recycle 

In Stage 3, two different DNs for the reactor tubes are identified (Table 7.6). For the 

following discussion, Stage 3a and 4a make reference to DN=20, while Stage 3b and 

4b refer to DN=15. The results showed are the best solutions out of 14 converged 

optimisation runs for Stage 1 and 2, out of ten for Stages 3a and 4a, and out of four 

for Stages 3b and 4b. 

Table 7.6: Reactor design parameters for the three PFRs structure without internal recycle for the four 

stages for the acetic acid production process. 

Average values: Stage 1 and 2 Stage 3a Stage 3b Stage 4a Stage 4b 

Diameter of the tube 25mm ND=20 ND=15 ND=20 ND=15 

Diameter of catalyst particle 5mm 4.5mm 3.0mm 4.5mm 3.0mm 

Number of tubes 30000 25000 34000 27000 35000 

The small reduction of the OFV (0.66 M$/yr) that results from the transition between 

Stage 1 and 2 (Figure 7.31), is mainly due to the lower operating temperatures 

required in Stage 2 (Figure 7.34). Lower temperatures result in a lower ethane 

conversion (i. e. a higher external recycle). As a consequence, a lower production of 

acetic acid is obtained (0.56 M$/yr) and a higher oxygen raw material cost (0.23 

M$/yr) is required (Figure 7.33). The rest of the changes in the fixed and operational 

costs offset the remaining difference between OFVs of 0.13 M$/yr. 
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Figure 7.32: Fixed costs for the three PFRs structure without internal 

recycle for the four stages for the acetic acid production process. 
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Figure 7.33: Operational costs for the three PFRs structure without recycle for 

the four stages for the acetic acid production process. 

The reduction in the OFV of 37 % from Stage 2 to 3a and of 33 % from Stage 2 to 3b 

is due to different factors: 

1. The HXN fixed cost increases by 3.71 and 2.33 M$, as shown in Figure 

7.32, (annualised increased cost = 1.4 and 0.9 M$/yr) due to the increase, 

for both cases, of the number of heat exchange units (from 11 to 14), and 

of heat exchange area (from 5300 m2 to 10600 in Stage 3a and to 8200 m2 

in Stage 3b). 

2. The decrease of the number of reactor tubes (Table 7.6) in Stage 3a results 

in a 0.36 M$ cheaper reactor (annualised decreased cost of 0.1 M$/yr). Its 

increase in Stage 3b makes the reactor 0.69 M$ more expensive 

(annualised increased cost of 0.3 M$/yr). At the beginning of the search in 

Stage 3, the DNs of the reactor tubes are reduced to improve heat transfer 

properties. Then, the number of reactor tubes is balanced against the 
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pressure losses inside the reactors (more tubes mean a more expensive 

reactor but lower pressure losses, which implies smaller compressors). 

The loss of pressure is affected proportionally to the external recycle and 

inversely proportionally to the DNs of the reactor tubes. 

3. The reduction in acetic acid production due to the lower reactor operating 

temperatures (Figure 7.34), results in a loss of profit of 5.1 and 4.9 M$/yr 

respectively (ethane conversion descends from 72.3 % in Stage 2 to 60.5 

and 63.4 % in Stage 3a and 3b respectively). 

Once again, after Stage 3 the temperature of the reactors and of the utility media 

remain very similar (Figure 7.34). The extra modelling detail added in Stage 4, has 

almost no effect on the OFV. The small increase of the OFV in Stage 4b is mainly 

due to the reduction in the HXN cost as can be seen in Figure 7.32 (0.98 M$; 

annualised decrease of 0.36 M$/yr). 

Raw material and compression costs are proportional to the recycles present in each 

stage (Table 7.7). Utility costs are proportional to the amount of water and acetic acid 

produced in the reactive section. 

Table 7.7: External recycles for the three PFR structure without internal 

recycle for the four stages for the acetic acid production process. 

Stage External recycle (mols/s) 

1 287 

2 312 

3a 445 

3b 425 

4a 443 

4b 418 

The evolution of the longitudinal temperature profile of the reactors and of the utility 
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media is presented in Figure 7.34. Once again, STi refers to the temperature inside 

the reactor for Stage i, and HXSTi refers to that of the utility media for the same 

stage. The X axis represents the total catalyst load. 
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Figure 7.34: Evolution of the reactor temperature profiles for the three PFRs structure without internal 

recycle for the four stages for the acetic acid production process. 
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7.2.2.5 Experiments with Fluidised Bed Reactors (FLBR) 

At a first glance, the well-mixing behaviour presented by a CSTR or a PFR ývith high 

internal recycle ratio, could be assimilated to the well-mixing presented by FLBRs. 

The results obtained in earlier stages of the synthesis exercise for a single CSTR 

(Stage 1) and for a single PFR with unlimited internal recycle (Stage 2) are presented 

in Table 7.8. The different performance of the two cases has been explained in earlier 

sections. In order to explore the performance and behaviour of designs with FLBRs, a 

set of experiments, in which a FLBR cell model is used, are carried out. 

Table 7.8: Results for a CSTR (Stage 1) and for a PFR with unlimited internal recycle (Stage 2) for the 

acetic acid production process. 

OFV = -7.5 M$/yr 
CSTR model 

Mass of catalyst = 50000 kg 

Oxygen in feed = 38.70 mol/s (equivalent to 3.7 %) 
(Stage 1) 

Diameter of catalyst particle =5 mm 

Isotherm reactor at 542 K 

OFV = 20.3 M$/yr 

Mass of catalyst = 50000 kg 

PFR approximation model Oxygen in feed = 117.82 molls (equivalent to 13.0 %) 

Tube diameter = 25 mm 

(Stage 2) Diameter of catalyst particle =5 mm 

Number of tubes = 30000 

Logarithmic reactor temperature profile: Tm = 563 K, Tout = 570 K 

For the investigation of FLBR designs, initially single FLBRs with different number 

of tubes are investigated. After that, experiments are carried out with two and three 

reactors in series. Next, the effect of diluting the system with internal recycles is also 

explored. Later, changes in the density of orifices for the reactor gas distributor are 

also considered. Finally, a sensitivity study for the reactor cost function is presented. 
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In general, the literature has a lack of cost models for operational units. Particularly, 

reliable cost models for FLBRs are very difficult to obtain. For the set of experiments 

presented here, in order to eliminate from the OFV the influence of the FLBR fixed 

cost, the total reactive section fixed cost is assumed to be, except in the sensitivity 

study, the cost of a CSTR, which is five times that of a single FBR with the same 

catalyst load (see Appendix 2). This assumption is valid for every case regardless the 

number of reactors in the reactive section and the number of tubes in them. 

Single FLBRs formed by different number of tubes 

In this section the results obtained with single FLBRs with different number of reactor 

tubes are discussed. Figure 7.35 shows the performances obtained for a range of 

reactor tubes from 1 to 20. The OFV approaches asymptotically a value of -0.22 

M$/yr as the number of tubes increases, which indicates that these designs 

significantly underperform those involving PFRs. 
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Figure 7.35: OFV for single FLBRs with different amount of tubes for the 

acetic acid production process. 
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The HXN fixed cost (Figure 7.36) decreases at higher number of tubes as the HXN 

area is progressively reduced and the number of heat exchanger units is kept constant. 

The area is reduced because there is more driving force at higher number of tubes as 

higher reactor temperatures can be attained. Higher operating temperatures can be 

reached because the presence of more tubes increase the heat exchange surface of the 

reactor and more heat can be released (Table 7.9). The fact that the utility 

temperature is at its lower limit for all the cases (400 K), indicates that the systems are 

constrained by heat transfer issues. The rest of the costs vary inappreciably. 
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Figure 7.36: Fixed costs for single FLBRs with different number of tubes for the 

acetic acid production process. 

The oxygen feed increases when increasing the number of reactor tubes. Since the 

presence of oxygen favours the exothermic reactions, more oxygen can be fed to 

reactors with more tubes. Consequently, the raw material cost raises (Figure 7.37). 

Utilities increase as more acetic acid and water are produced. Compression costs vary 

unnoticeably. 
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Figure 7.37: Operational costs for single FLBRs with different number of tubes 

for the acetic acid production process. 

Table 7.9: Parameter designs for single FLBRs with different number of tubes for the acetic acid 

production process. 

Number of tubes 1 5 10 20 

Number of cells 21 21 20 19 

Height of reactor (m) 10.9 4.8 4.3 2.1 

Diameter of particle of catalyst (m) 6.26E-04 3.51 E-04 4.15E-04 220L04 

Diameter of tube (m) 2.25 1.5 1 1 

Operational temperature (K) 542 544 545 549 

Void fraction 0.6 0.6 0.5 0.5 

Oxygen in feed (%) 7.9 11.5 12.8 13 

Heat released per reactor (kW) 8.68E+03 1.27E+04 1.48E+04 1.53E+O4 

The process selectivity ranges between 65-68 %, the ethane conversion approaches 

asymptotically a value of 33 % and of 32 % for the oxygen conversion (Figure 7.38). 
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Figure 7.38: Ethane conversion, process selectivity and oxygen 

conversion for FLBR with different amount of tubes for the acetic acid 

production process. 

In the case where the oxygen was not separated but completely recycled, the benefit 

in the raw material costs would follow similar trade-offs and influence in a similar 

mode the OFV for each one of the cases (Figure 7.39). The benefit achieved for 

FLBRs with 10 and 20 tubes, is the biggest one observed so far due to the low oxygen 

conversions in FLBRs (Figure 7.38). Regardless these improvements, the design 

candidates still cannot compete against the ones involving structures with PFRs. 
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Figure 7.39: OFV and benefit from the oxygen recycling for single FLBRs with different amounts 

of tubes for the acetic acid production process. 
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Two and three FLBRs in series with 20 tubes 

In the previous section, it is observed that for single FLBRs, a reactor with 20 tubes in 

parallel is the best design. In this section, the impact on the OFV of increasing the 

number of reactors in series with 20 tubes each is assessed. The results obtained with 

two and three FLBRs are discussed. For comparison reasons, the results of a single 

FLBR are also included. Because equal gas distributors are employed for all the 

reactors, the diameter of the bubbles at the inlet of every reactor is the same, despite 

the reactor being placed in first, second or third position. 
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Figure 7.40: OFV for one, two and three FLBRs with 20 tubes in 

parallel for the acetic acid production process. 

The OFV produced by two FLBRs in series is of 6.2 M$/yr and of 6.1 M$/yr by three 

FLBRs (Figure 7.40). A small fraction of oxygen side feeding is identified for the 

two FLBRs (circa 9 %). No oxygen side feeding is identified for the three FLBRs. 

The asymptotic evolution of the OFV indicates that more units would not improve the 

performance. The improvement of the OFV for both cases with respect to the single 

FLBR is explained by the higher ethane conversions reached (Figure 7.41). Bigger 

heat exchange surfaces of reactor allow reaching higher operating temperatures in 
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both cases (Table 7.10) and thus higher ethane conversions (the surface for one FLBR 

is 264 m2, for two FLBRs is 454 m2 and for three FLBRs is 405 m2) 
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Figure 7.41: Ethane conversion, process selectivity and oxygen 

conversion for one, two and three FLBRs with 20 tubes for the acetic acid 

production process. 

Table 7.10: Parameter designs for one, two and three FLBRs in series with 20 tubes in parallel (1) for 

the acetic acid production process. 

FLBR in Diameter of Operational temperatures (K) Oxygen in Heat released per 

series tube (m) (% catalyst load - 50000 kg)) feed (%) reactor (kW) 

One 1.00 549(100%) 13.0 1.53E+04 

562(54%) 12.7 1.45E+04 
Two 0.75 

570(46%) 9.1 1.17E+04 

559(60%) 12.7 1.44E+04 

Three 0.75 564(27%) 8.0 6.75E+03 

570(13 %) 5.7 3.42F. +03 

The HXN fixed cost (Figure 7.42) is reduced as the number of FLBRs increases in the 

structure. For two FLBRs, the HXN area is reduced by 18 % and the number of heat 

exchangers is increased by one. For three FLBRs. the HXN area is reduced by 16 % 

but the number of heat exchangers is maintained. The combination of both changes 

results in lower HXN fixed costs. The area reductions are consequence of the higher 
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temperatures at which the hot streams leave the reactors (i. e. there is more driving 

force). Compression costs do not change appreciably. Distillation costs slightly 

increase as more acetic acid and water are produced. 
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Figure 7.42: Fixed costs for one, two and three FLBRs with 20 tubes in parallel 

for the acetic acid production process. 

Regarding operational costs, utilities increase as more acetic acid and water are 

produced (Figure 7.43). Compression costs change inappreciably. For two and three 

FLBRs, the amount of oxygen fed to the system decreases. This explains the decrease 

of the raw material cost (Figure 7.43). This behaviour is opposite to the one observed 

for structures formed by PFRs in series, where as the number of reactors increased 

also did the oxygen raw material cost. Such different behaviours are explained as 

follows: firstly, the ethane conversion increases here from 33 % for one FLBR, to 51 

% for two FLBRs and to 50 % for three FLBRs (Figure 7.41). Consequently, there is 

less accumulation of ethane in the system for the last two cases resulting in reduced 

external recycle flows. This same behaviour was observed for the structures 
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involving PFRs. Secondly, due to the fact that the oxygen feed approaches, for all the 

cases, its maximum percentage limit in the first reactor but not in the rest of reactors 

(Table 7.10), the total amount of oxygen entering the reactive system for the last two 

cases is smaller (101.2 and 94.0 mols/s with respect to 121.1 mols/s for the single 

FLBR). This was not the case for structures involving PFRs, where the oxygen feed 

was for all reactors at its upper limit. Interestingly, more oxygen is fed to the two 

FLBRs than to the three FLBRs. The oxygen feed is equally close to its constraint in 

the first reactor (12.7 % of the total feed). The higher ethane conversion achieved for 

the first case should result in less oxygen fed to the system. However, the small 

bypass fraction of oxygen fed to the second unit (circa 9 %) for the structure with two 

FLBRs, allows feeding more oxygen to the system. The inactive oxygen constraints 

observed for all the reactors in series (Table 7.10), are due to the fact that the systems 

are constrained by heat release issues. For this case study, the presence of oxygen 

favours the exothermic reactions taking place. Having the cooling utility temperature 

at its lower limit, constraints the amount of oxygen that can be fed to the units. 
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Figure 7.43: Operational costs for one, two and three FLBRs with 20 tubes in 

parallel for the acetic acid production process. 

The heat exchange area of the reactors is the design factor that most impacts the 

OFVs. Operating oxygen concentrations and temperatures are effects of the exchange 

area. As already mentioned, the areas for one, two and three FLBRs are 264,454 and 

405 m2 respectively. The higher area of two FLBRs allows releasing more heat in the 

reactive section (Table 7.10), which in parallel increases the acetic acid production, 

thus achieving higher performances. The difference in the area with respect to the 

three FLBRs is due to the longer overall height of the reactors (4.8 m for the two 

FLBRs compared to 4.3 m for the three FLBRs -Table 7.11-), despite resulting in less 

cells in total (36 for the two FLBRs compared to 51 for the three FLBRs). Such 

differences are consequence of the growth of the bubbles through the reactors 

(Section 6.4.2.3). The size of the bubbles must always be lower than the size of the 

tube. This constraint defines the resulting number of cells from the model, which at 

the same time defines the height of the reactor (i. e. the reactor heat exchange area). 

185 

Single FLBR Two FLBRs Three FLBRs 



The growth of the bubbles is a function of a multitude of non-linear functions and 

variables that make its understanding rather complex. The variables that affect the 

growth of the bubbles and that are different for these two structures are the diameter 

of the catalyst particle (Table 7.11), the viscosity and density of the gas (as a 

consequence of the pressure and temperature of the system and the component 

concentrations in each phase), the amount of flow fed to the system and the void 

fraction of the bed (Table 7.11). A much more exhaustive study would be required to 

understand how each variable affects the growth of the bubbles before conclusions on 

the heat exchange area of the reactors could be discussed. 

Table 7.11: Parameter designs for one, two and three FLBRs in series with 20 tubes in parallel (2) for 

the acetic acid production process. 

FLBR in Number of Number of Height of Void Diameter of particle of 

series tubes cells reactor (m) fraction catalyst (m) 

One 20 19 2.1 0.50 2.20E-04 

19 2.6 
Two 20 0.60 3.21 E-04 

17 2.2 

20 2.5 

Three 20 18 1.2 0.55 3.26E-04 

13 0.6 

Once again, in the case that the oxygen was not separated but completely recycled, the 

benefit in the raw material costs would follow similar trade-offs in all cases (Figure 

7.44). For the two and three FLBR in series, the OFVs would reach values of 7.9 and 

7.6 M$/yr respectively. These OFVs are close to the one obtained for a single PFR in 

Stage 4 (8.2 M$/yr) under the same conditions. However, the performances are still 

very far from the results obtained in Stage 4 for the single PFR with internal recycle 

and the three PFRs with oxygen feed distribution; even when the oxygen remaining at 

the outlet of the reactive units is not recycled but purged in the absorber (OFV = 16.1 
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and 12.2 M$/yr respectively). 
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Figure 7.44: OFV and benefit from the oxygen recycling for one, two and three FLBRs with 20 tubes 

in parallel for the acetic acid production process. 

Analysis of the effect of internal recycles 

The dilution of the system with internal recycles does not improve the OFV for any of 

the structures considered (one, two and three FLBRs). 

Analysis of the effect of the change of the gas distributor 

Experiments with different orifice densities for the gas distributor (range studied 600- 

1000 orifices/m2) show that this design parameter has no influence on the 

performance of the designs over a threshold of 800 orifices/m'` (i. e. above 800 the 

performances remain unchanged. ). Below 800 orifices/m2 lower performances are 

obtained. 

Sensitivity analysis of the reactor cost function 

A sensitivity study on the reactor cost function is carried out to illustrate the high 

dependence of results and conclusions on the cost functions employed when searching 
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for new process design options. The same set of experiments carried out for a FLBR 

with different number of reactor tubes (Figure 7.35) is also considered here. The 

reactor cost was then for all cases, the same and equal to a CSTR. For the analysis 

presented here, the reactor cost is substituted by a cost calculated according to: 

Re actor 
_ 

cos t(N 
_ 

tubes, K) =1_ tube 
_ 

reactor 
_ 

cost "1+N- 
tubes "K 
100 

1 
(Equation 7.1) 

where K takes different values and 1_tube_reactor_cost is the cost of a single tube 

FLBR (equal to a CSTR). 

Figure 7.45 shows the performances obtained with different values of K for single 

FLBRs for a range of tubes between I and 20. The figure also shows the OFV for 

cases where the FLBRs are priced as MTRs formed by 30000 tubes (as for PFRs in 

Stage I and 2). 
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Figure 7.45: OFV for a single FLBR with different amount of tubes for 

the acetic acid production process. 

As previously shown in Figure 7.35, the OFV approaches asymptotically a value of 

-0.22 M$/yr when all reactors have the same cost and equal to a single tube FLBR (K 

= 0). For all other values of K lower than 40, maximum performances are obtained 
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when the FLBR consists of ten tubes in parallel. The same occurs when the reactors 

are priced as MTRs. For K= 40, the maximum occurs for a FLBR formed by five 

tubes in parallel. It is obvious from observation, the strong impact that the reactor 

cost function has on the OFVs, which proves that crude cost functions can 

compromise results and conclusions at early stages of process design. Even for the 

hypothetic case in which the reactor fixed cost was zero, the 20 tube FLBR would still 

not outperform the structures formed by PFRs, as it would reach an OFD' of 

0.84M$/yr. 

Conclusions regarding design candidates involving FLBRs 

From the analysis of results, the main conclusions obtained after comparing different 

design candidates with FLBRs are: 

" The heat exchange area of the reactor is the design factor that most impacts the 

performance of FLBRs. The utility temperature for all reactors is at its lower 

limit, which indicates that the reactors are limited by heat transfer issues. The 

area can be increased by increasing the number of reactor tubes and the 

number of reactors in series. For bigger heat exchange surfaces, higher 

operating temperatures and oxygen feed ratios can be reached. Both factors 

result in higher ethane conversions. 

9 Despite that for more tubes per reactor the height of the reactor is reduced as 

the catalyst amount is equally divided per tube, the number of cells per reactor 

is practically constant. This indicates that bubbles grow at different rates for 

different number of reactor tubes. 
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" The use of the same gas distributor in every reactor enables the bubbles to go 

back to their initial size when entering new units. This permits the bubbles 

flowing longer distances as their size is periodically reduced and kept longer 

below the diameter of the tube. 

" The increase in the density of perforations of the gas distributor (range = 800 ± 

200 perforations/m2) has no impact on the performance over a threshold (800 

perforations/m2). Under the threshold values, lower performances are 

obtained. 

9 FLBRs with internal recycles do not improve the OFV of any equivalent 

structure without recycle. 

" Regarding the catalyst particle diameter, it has been observed from 

computational experimentation that smaller particles improve heat transfer. 

However, below a certain value, the diameter has practically no impact on the 

process performance as it cannot improve anymore the heat transfer. No clear 

identification of the optimum diameter of the catalyst particle is obtained. For 

the best designs, it ranges between 0.22 and 0.33 mm. These sizes are one 

order of magnitude higher than the ones presented by Linke et al. (2002b), 

despite imposing similar sizes to the ones they suggest for the initial solutions 

from which the optimisations start. The reason is that a lower density of 

catalyst is employed here (600 kg/m3 with respect to the 3100 kg/m3). Both 

works (Linke et al. (2002b) and the current research) suggest designs falling in 

the region A of the Geldart classification and very close to the limit with 

region B. 
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" Regarding the void fraction of the bed, higher values improve heat transfer 

properties as they result in longer reactor tubes (i. e. higher heat exchange 

areas). All final designs are at or very close to the maximum fraction allowed 

inside the FLBR. 

9 There is a need for accurate cost functions when searching for new process 

design candidates, as they significantly impact OFVs. 

The conclusions obtained after comparing designs involving FLBRs with designs 

involving other types of reactor are: 

9 For this case study, the well-mixing behaviour of CSTRs and the back-mixing 

degree of PFRs with high internal recycles are not equivalent to the degree of 

well-mixing present in the FLBRs. 

" Design candidates involving FLBRs present poorer performances than 

structures involving PFRs mainly because they are much more limited by heat 

transfer issues. 

7.3 Computational Experience 

The use of network recycles, introduced in Section 3.3.2, requires a two-step approach 

to solve effectively the system of equations derived from the superstructure 

representation (this approach applies for all stages except for Stage 4). In the first 

step ("without external recycle"), the system of equations is formed by those 

equations that define the reactor network and the separation section without including 
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the network recycle. The solution of this sub-system is the initial solution required by 

the non-linear solver algorithm to solve the full system of equations including the 

network recycle ("with external recycle"). 

The tables found below for Stages 1,2 and 3 show average values for: 

0 1. CPU times. 

" 2. Number of function evaluations. 

" 3A. Percentage of convergence of the step without external recycle. 

3B. Total percentage of convergence of steps without and with external 

recycle. 

" 4. Percentage of the function evaluations that having converged in both steps 

are inside the internal recycle limit. 

" 5. Percentage of the function evaluations that having converged in both steps 

are inside the internal recycle limit and within the oxygen limit. 

" 6. Percentage of the function evaluations that having converged in both steps 

are inside the internal recycle limit, within the oxygen limit and within 

temperature limits (see Section 5.2.2.5). 

9 7. For Stages 2 and 3, percentage of the function evaluations that having 

converged in both steps are inside the internal recycle limit, within the oxygen 

limit, within temperature limits and in which the temperature minimisation 

problem has been successful (see Section 6.2.2), which does not mean that is 

within the limits. 
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" Percentage of cases assessed by the search algorithm (equal to the overall 

percentage of convergence of both steps, times the percentage of the function 

evaluations that having converged in both steps are inside all limits and where 

applies, in which the temperature minimisation problem has been successful). 

For Stage 4, the tables show the same information but with two modifications: 

" 3. The percentages regarding to 3A and 3B are substituted by one single 

percentage of convergence as the multipliers method approaches the system of 

equations in a single step (see Section 6.4.1). 

9 7. The function evaluations that having converged are inside the internal 

recycle limit, within the oxygen limit, within temperature limits and in which 

the temperature minimisation problem has been successful, only applies for 

PFRs structures. 

All sets of experiments include ten runs except for the three PFRs structure without 

internal recycle that includes: 14 runs for Stage 1 and 2; ten runs for Stage 3a and 4a; 

four runs for Stage 3b and 4b. All simulations except where indicated were 

conducted using an Intel XEON 2.0 GHz processor. 
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Table 7.12: Computational experience for structures with one PFR for Stage 1 for the acetic acid 
production process. 

Structures with 

one PFR Recycle limit (mols/s) 

Average values 0 75 125 250 500 750 no 0- CO2 0- H2O 
Average limit dilution dilution 

1. CPU time (h) 2.3 1.8 2.0 2.0 1.8 1.9 3.0 2.7 3.2 2.3 
2. Function 
evaluations 

27300 23198 30678 26282 29748 30539 30800 34021 30992 29284.2 

3A. Converged 
without external 97.72 99.27 99.96 99.89 99.80 99.83 99.78 99.98 99.96 99.58 
recycle (%) 

3B. Converged with 
external recycle (%) 

96.97 98.31 99.61 99.77 99.33 98.76 98.43 99.97 99.93 99.01 

4. Cases converged 
within internal recycle - 80.22 68.44 78.48 74.90 76.48 - - - 75.70 
limits (%) 

5. Cases converged 
within 02 limit (%) 

77.68 73.71 66.87 70.61 69.04 70.59 79.14 77.52 78.22 73.71 

6. Cases converged 
within temperature 73.27 71.90 66.01 69.80 68.74 70.25 74.56 74.59 75.47 71.62 
limit (%) 

Solutions assessed by 71.05 70.68 65.75 69.64 68.28 69.38 73.39 74.57 75.42 70.91 
search algorithm (%) 

Table 7.13: Computational experience for structures with two PFRs for Stage 1 for the acetic acid 

production process. 

Structures with two PFRs Recycle limit (mols/s) 

Average values 0 75 125 250 500 750 Average 

1. CPU time (h) 7.0 7.6 8.0 7.9 6.4 7.9 7.46 

2. Function evaluations 28291 33943 31776 30543 28675 28106 30222.3 

3A. Converged without external recycle 95.94 95.99 95.87 95.54 95.26 94.40 95.50 
(%) 

3B. Converged with external recycle (%) 95.55 95.01 94.75 94.14 93.13 92.23 94.14 

4. Cases converged within internal 
- 84.73 83.15 86.35 87.65 90.86 86.55 

recycle limits (%) 

5. Cases converged within 02 limit (%) 73.77 70.93 71.52 73.96 78.74 78.33 74.54 

6. Cases converged within temperature 60.43 65.13 66.00 69.02 76.62 74.87 68.68 
limit (%) 
Solutions assessed by search algorithm 57.74 61.88 62.54 64.98 71.36 69.05 64.65 
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Table 7.14: Computational experience for structures with three PFRs for Stage 1 for the acetic acid 
production process. 

Structures with three PFRs Recycle limit (mols/s) 

Average values 0 7 125 250 500 Average 

1. CPU time (h) 30.1 25.9 24.7 37.7 35.2 30.7 
2. Function evaluations 52411 44541 41579 54245 51112 48777.6 
3A. Converged without external recycle (%) 93.99 92.68 93.02 92.28 90.85 92.6 
3B. Converged with external recycle (%) 91.88 89.22 88.89 88.40 86.95 89.1 
4. Cases converged within internal recycle limits (%) 82.10 79.67 77.93 84.82 81.1 
5. Cases converged within 02 limit (%) 76.86 76.42 77.54 75.39 77.24 76.7 
6. Cases converged within temperature limit (%) 68.87 73.56 75.28 73.61 71.18 72.5 

Solutions assessed by search algorithm (%) 63.28 65.63 66.92 65.07 61.89 64.57 

For Stage 1, the increase in CPU efforts responds to the increase of the combinatorial 

size of the problem. Due to the complexities of the highly non-linear kinetic models 

involved, the bigger the search space is: 

" The more frequently the non-linear solver fails to converge (see rows 3B in 

the tables shown above). 

" The less percentage of solutions can be assessed by the search algorithm; the 

change from two PFRs to three PFRs structures is insignificant (see last rows 

in the tables presented above). 

Table 7.15,7.16,7.17 and 7.18 show the computational experience for the three 

structures involved in the evolution of stages. 
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Table 7.15: Computational experience for Stage 1- three final design candidates for the acetic acid 
production process. 

Average values 1PFR 
1PFR with recycle 

without limit 
3PFR 

1. CPU time (h) 2.3 3.0 30.12 
2. Function evaluations 27316 30750 52411 
3A. Converged without external recycle (%) 97.72 99.78 94.00 
3B. Converged with external recycle (%) 96.97 98.43 91.88 
4. Cases converged within internal recycle limits (%) 

- 100.00 - 
5. Cases converged within 02 limit (%) 77.68 79.14 76.86 
6. Cases converged within temperature limit (%) 73.27 74.56 68.87 
Solutions assessed by search algorithm (%) 71.05 73.39 63.28 

Table 7.16: Computational experience for Stage 2 for the acetic acid production process. 

Average values 1PFR 
1PFR with recycle 

without limit 
3PFR 

1. CPU time (h) 2.2 2.9 32.2 

2. Function evaluations 22517 25553 54710 

3A. Converged without external recycle (%) 99.86 99.98 96.27 

3B. Converged with external recycle (%) 99.84 99.00 94.88 

4. Cases converged within internal recycle limits (%) - 100.00 - 

5. Cases converged within 02 limit (%) 72.42 79.50 81.39 

6. Cases converged within temperature limit (%) 70.79 77.52 72.99 

7. Cases converged with successful temperature profile 
70.79 77.52 72.99 

optimisation problem 

Solutions assessed by search algorithm 70.68 76.74 69.25 

CPU times and percentage of convergence are very similar for Stage 1 and 2 (rows 1 

and 3B). The temperature profile optimisation problem in Stage 2 succeeds to 

converge for all the cases (same values for rows 6 and 7). The percentage of solutions 

that can be assessed by the search algorithm is similar in both stages (last rows). 
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Table 7.17: Computational experience for Stage 3 for the acetic acid production process. 

Average values 1PFR 
1PFR with recycle 

without limit 

3PFR 

(DN=20) 

3PFR 

(DN=15) 
1. CPU time (h) 1.1 2.4 19.5 21.9 
2. Function evaluati ons 11414 21796 34295 34576 
3A. Converged without external recycle (%) 99.73 99.28 95.33 96.86 
3B. Converged with external recycle (%) 99.33 98.05 93.64 95.30 
4. Cases converged within internal recycle limits (%) 

- 100.00 - - 
5. Cases converged within 02 limit (%) 74.53 67.63 80.40 83.34 
6. Cases converged within temperature limit (%) 70.33 62.56 59.34 59.87 
7. Cases converged with successful temperature 

profile optimisation problem 
70.33 62.56 59.34 59.87 

Solutions assessed by search algorithm 69.86 61.34 55.57 57.06 

As in Stage 3 the search area is considerably reduced, the CPU times are lower with 

respect to the previous stages. The percentage of convergence is very similar to the 

previous two stages. The temperature profile optimisation problem succeeds to 

converge in all the cases. The percentage of solutions that can be assessed by the 

search algorithm is reduced with respect to previous stages for the PFR with internal 

recycle and for the two cases of the three PFRs structure. For these cases, the search 

tries to push the structure above the oxygen and temperature limits: 

" For the PFR with internal recycle, the "Cases converged within 02 limit (%)" 

(row 5) decreases from 79.50 to 67.63 and the "Cases converged within 

temperature limit (%)" (row 6) from 77.52 to 62.56. 

For the three PFRs structure the "Cases converged within temperature limit 

(%)" (row 6) decreases from 72.99 to 59.34 and 59.87. 
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Table 7.18: Computational experience for Stage 4- PFRs structures for the acetic acid production 
process. 

Average values 1PFR 
1PFR with recycle 

without limit 

3PFR 

(DN=20) 

3PFR 

(DN=15) 

1. CPU time (h) 42.51 35.98 91.14 56.50 
2. Function evaluations 1537 1661 1542 2227 
3. Converged (%) 45.90 56.68 53.97 35.06 
4. Cases converged within internal recycle limits (%) 

- 100.00 - - 
5. Cases converged within Ol limit (%) 66.47 66.72 88.38 90.04 
6. Cases converged within temperature limit (%) 66.47 62.16 76.30 71.61 
7. Cases converged with successful temperature 

profile optimisation problem 
66.27 62.02 76.19 71.61 

Solutions assessed by search algorithm 30.42 35.15 41.12 25.11 

In Stage 4, the use of the multipliers approach implies the use of an iterative method 

to solve the system of differential equations for structures involving PFRs, which is 

highly-time consuming if compared with previous stages. The temperature profile 

optimisation problem does not succeed to converge in all the cases although it does 

for most of them. The percentage of solutions that can be assessed by the search 

algorithm is considerably reduced mainly because the percentage of convergence is 

much lower for all the cases with respect to previous stages (rows 3 for Stage 4 and 

3B for previous stages). For each case, the number of function evaluations that have 

been assessed by the algorithm is between 4675 (1537 x 10 runs x 0.3042 -from 

Table 7.18-) and 6340 (1542 x 10 runs x 0.4112), except for the 3PFR DN=15 that is 

2236 (2227 x4 runs x 0.2511). Such a high number of function evaluations in such a 

small search space permits thinking that the global optimum has been found. 
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Table 7.19: Computational experience for Stage 4- single FLBR structures for the acetic acid 
production process. 

Average values 1 tube 5 tubes 10 tubes '_0 tubes 
1. CPU time (h) 55.83 60.60 69.96 66.17 
2. Function evaluations 23025 12234 14797 8076 
3. Converged (%) 86.38 67.48 64.56 56.28 
4. Cases converged within internal recycle limits (%) 

- _ 
5. Cases converged within 02 limit (%) 99.80 96.80 93.11 93.35 
6. Cases converged within temperature limit (%) 99.80 96.79 93.10 93.35 
Solutions assessed by search algorithm 86.21 65.31 62.38 5154 

The percentage of solutions that can be assessed by the search algorithm when using 

the FLBR model for single units is reduced from 86 % to 53 % as more tubes in 

parallel are employed. This percentage mainly depends on the convergence ratio and 

in less extent on the closeness of the solutions to the oxygen limit. Table 7.9 gives an 

idea on how far from the oxygen limit the search has been performed, showing the 

percentage of oxygen in the feed for the final structures. Due to the iterative nature of 

the multipliers approach, CPU times are also very high for cases in which FLBRs are 

involved. 

Table 7.20: Computational experience for Stage 4- one, two and three FLBRs in series with 20 tubes 

in parallel for the acetic acid production process. 

Average values 1 reactor 2 reactors 3 reactors 

1. CPU time (h) 66.17 49.95 48.35 

2. Function evaluations 8076 13204 17044 

3. Converged (%) 56.28 70.12 69.53 

4. Cases converged within internal recycle limits (%) - - - 
5. Cases converged within 02 limit (%) 93.35 90.90 85.84 

6. Cases converged within temperature limit (%) 93.35 90.90 85.84 

Solutions assessed by search algorithm 52.54 63.74 59.69 

If FLBRs in series are employed, the amount of converged solutions increases by 14 

in both cases. The complexity of the system and the number of function 
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evaluations (row 2) increase with respect to a single FLBR. Computational times 

cannot be compared because a different computer (Pentium D920 2.80GHz) was 

employed to run these sets of optimisation runs. 

7.4 Conclusions 

The partial oxidation of ethane to acetic acid has been studied from the process 

synthesis point of view. 

Results from the multi-level approach (Stage 1), show that back-mixing in the form of 

CSTRs is not an interesting flow pattern for this case. On one side, the OFV for a 

single CSTR is negative (-7.5 M$/yr); on the other, for combinations of CSTRs and 

PFRs, the structures do not improve the performances of those with just PFRs. 

Regarding structures with only PFRs, two features have proved to have a positive 

impact on the performance: 

" The presence of internal recycle enhances the OFV of a single PFR (8.5 

M$/yr) up to 141 % (20.5 M$/yr). The maximum OFV for any given structure 

is approached asymptotically as the internal recycle limit is increased. 

" The presence of oxygen side feeding when more than one PFR is involved, 

improves the OFV of a single PFR up to 112 % (18.0 M$/yr) for the three 

PFRs structure and 72 % (14.5 M$/yr) for the two PFRs structure. 

The single effect of the internal recycle has more positive influence on the OFV than 

the single presence of oxygen distribution. If both features are combined, the 
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performance enhancement is even higher and OFVs approach closely the targeting 

performance (22.5 M$/yr). 

The evolution of stages proves that the assessment of heat and temperature issues in 

the field of superstructure-based optimisation reactor networks requires an improved 

approach from those employed in the past. In Stage 2, the practical heating / cooling 

for PFRs is assessed without compromising the computational effort. The approach 

proposed in Stage 3, allows including radial heat transfer phenomena in the PFR 

models. Although they can determine whether designs are realistic or not, radial 

effects are normally ignored in reactor networks approaches because they need of 

highly time consuming two-dimensional models. Results in this stage prove that the 

simple approach used, is an excellent approximation of the system modelled by 

differential equations. Besides, the method is highly computationally efficient. The 

approach described in Stage 4 allows solving PFR models based on differential 

equations (and FLBR models based on cell units) within superstructure-based 

optimisation approaches. Although the approach has been able to solve very complex 

systems from the mathematical point of view, the elevated computational efforts 

required indicate that efforts in the future must be done to speed up the time of 

computation and increase convergence ratios. Besides, the extra detail added to the 

process models in the transition from Stage 3 to Stage 4 results in minor impacts on 

the OFVs. 

At the end of Stage 4, the single PFR with internal recycle outperforms the single PFR 

without internal recycle by 129.1 %. The three PFRs without internal recycle and 
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with oxygen feed distribution outperform the single PFR without internal recycle by 

60.3 % for Stage 4a and by 73.8 % for Stage 4b. Besides, the OFVs have decreased 

with respect to Stage 1 as follows: 

9 For the single PFR without internal recycle: 17.8 %. 

9 For the single PFR with internal recycle: 21.6 %. 

" For the three PFRs without internal recycle and with oxygen feed distribution: 

37.4 % for Stage 4a and 32.1 % for Stage 4b. 

The active constraints in all the solutions involving PFRs are: 

9 The maximum mass of catalyst allowed per superstructure. 

" The maximum temperature allowed inside the reactor. 

" The purity and recovery of acetic acid. 

" The maximum concentration of oxygen allowed at the inlet of the reactor. 

" The maximum internal recycle amount allowed. 

The designs including single FLBRs have proved to have much less potential than 

designs including only MTRs. All the FLBR designs considered in this work are 

limited by heat transfer issues. The fact that the temperature of the utility is at its 

lower limit for all cases confirms it. As a consequence, the reactor heat exchange area 

is the design factor that most impacts the performance of FLBRs. The area can be 

increased by increasing the number of reactor tubes and the number of reactors in 
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series. Higher heat exchange surfaces allow reaching higher ethane conversions by 

increasing operating temperatures and oxygen feed flows. 

All designs including FLBRs have as active constraints: 

" The maximum mass of catalyst allowed per superstructure. 

" The minimum temperature of the cooling utility. 

9 The purity and recovery of acetic acid. 

" Few designs also have as constraint the maximum concentration of oxygen at 

the inlet of the reactor. 
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CHAPTER 8. 

Conclusions 

8.1 Introduction 

This thesis has proposed a process synthesis strategy based on a transition of design 

stages. Different stages represent different layers of abstraction in the complexity of 

the models that characterise reaction-separation and reactive / separation systems. 

The process design exercise starts at a highly conceptual level where the screening 

and selection of synthesis options are performed. The approach is followed by a 

multi-level design method, where the synthesis option selected is explored, trade-offs 

are identified and optimal conceptual process designs suggested. Finally, the 

proposed optimal designs are iteratively evolved into more accurate designs by using 

more detailed models. 

The major contributions of this work are: 

1. A conceptual screening tool for the reactive liquid-liquid extraction as a 

process design option, which is based on mapping the information 

regarding the solvent phase onto the superstructure of a single-phase 

reactor network. 
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2. A decision support framework that addresses the incapacities of existing 

process synthesis approaches to effectively manage the numerical and 

combinatorial complexities that arise from combining experimental kinetic 

models and reactor-separator-recycle systems, for heterogeneously 

catalysed gas-phase reaction processes. The aim of the framework is to 

establish the reliable and robust systematic process design identification 

followed by the evolution of designs. The ultimate aim is to make possible 

the integration of experimental modelling and process design activities. 

8.2 Discussion Of The Proposed Developments 

8.2.1 Screening Of Reactive Liquid-Liquid Extraction Processes 

The rapid screening of a synthesis option to compare its potential with that of other 

options is the first stage of the synthesis exercise. The identification of trade-offs for 

potential synthesis options can help speeding up the synthesis exercise, by aiding the 

initialisation of later time consuming optimisations with rigorous models. Such 

reduction of time and efforts can result in more profitable projects. To illustrate this 

fact, this thesis presents an approach to screen fast and reliably reactive liquid-liquid 

extraction as a process design option. The approach is based on mapping the 

information regarding the mass separating agent (solvent) phase onto the 

superstructure model of a single-phase reactor network, with the help of a novel 

transfer rate expression for liquid-liquid extraction processes. The method has been 

applied to two biochemical examples of very different complexity. The approach has 
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proved to be highly computationally efficient as compared with classic reactive 

separation superstructure-based optimisation approaches that involve liquid-liquid 

equilibrium and mass transfer models that are usually very complex and detailed. The 

precision of the approach appears to be satisfactory for high-level decision-making at 

initial stages of process synthesis. 

8.2.2 Decision Support Framework 

The decision support framework developed in this work aims to be a helpful tool in 

the near future to allow the computationally effective high-level coordination of 

process design and kinetic investigation activities. Initially, the framework relies on a 

multi-level approach that identifies the maximum performance of a system regardless 

its complexity, allows the engineer to understand what design trends improve process 

performances, and permits the engineer matching the increase of complexity of the 

designs with the enhancement of the objective function values. The approach eases 

the understanding of the bottlenecks of the system and suggests different optimal 

conceptual designs for the engineer to judge. The treatment of heat and temperature 

management issues in the multi-level approach appears to be very ideal. Accordingly, 

efforts have been focussed on the development of alternative and more accurate ways 

to manage heat transfer complexities without compromising computational times. 

These developments are the basis of the multi-stage approach, in which during 

successive stages the level of detail of the reactor models is increased. The increase 

in the level of detail aims to capture progressively non-ideal behaviours to evolve the 

initial process designs into designs that can be reached in practice. In Stage 2, 

temperature profiles for the reactors that can be attained with common co-current 

cooling / heating strategies found in industry are suggested. Therefore, practical 
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solutions to the heat exchange between the reactors and their utility media are 

proposed. Such developments overcome previous drawbacks in non-isothermal 

reactor network applications where unreachable and / or unrealistic profiles were 

proposed. In Stage 3, the radial heat propagation effects for catalytic fixed bed 

reactors are included in a highly effective computational approach. Stage 4 deals with 

highly accurate and time-consuming reactor models. Cell models and differential 

equation based models are employed to effectively optimise complex layouts. 

Although, four stages illustrate the methodology proposed, more successive stages 

could enrich further the process designs. However, it has been observed that after 

Stage 3, there is not much justification in increasing the level of modelling detail, as 

further stages result in very similar performances and require much more 

computational efforts. 

The first three stages have proved to be highly computationally efficient and robust, 

and therefore could be employed in the integration of kinetic development and 

process design activities. The computational efforts of Stage 4 are prohibitive. Its use 

in the integration of design activities appears not to be appropriate if the screening of 

design candidates is the purpose. However, the new approach developed in this stage, 

allows successfully performing superstructure optimisation with highly complex 

process design schemes and reactor models. It could be used to test kinetic models at 

advanced phases of their development in order to increase confidence in the results. 

All stages rely on superstructure process representations that have been developed for 
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heterogeneously catalysed gas-phase reaction systems and include practical 

constraints found in practical applications. The reactor representations incorporate 

combinations of ideal and non-ideal reactor models. The constraints included in the 

formulation relate on one hand, to the limitation of the amount of components that can 

create fouling, dangerous operating scenarios, induce to unwanted side reactions, etc. 

On the other hand, they relate to temperature and heat management issues in the 

reactive section. Separation options are represented in aggregated form to decouple 

the synthesis problem and keep it at solvable complexity. Energy integration between 

process streams allows the effective screening of many heat exchange network design 

options. The presence in the process representation of reaction options, separation 

options, energy integration and network recycles, allows approaching the synthesis 

problem from a broad perspective. As a consequence, the synergies between sub- 

systems of the process are captured, and the optimal solutions are identified in the 

context of the overall design goal. 

At any stage of the multi-stage design procedure, information on the optimal 

operating conditions is generated and could be communicated to the kinetic 

development team. Such information could be used to guide new experiments in 

order to validate the models in the optimal regions in which the catalyst is to be used. 

The integration of experimental modelling and process synthesis activities could 

become available in the near future. 
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CHAPTER 9. 

Future Work 

9.1 Introduction 

This thesis has presented the development of methods that allow the systematic 

exploration of the chemical and process development cycle and methods for the quick 

and reliable screening of process design options. Both developments identify 

innovative process design schemes with significant improvement in the performances 

if compared with conventional process designs. However, like in any work at a 

research stage a number of limitations exist. The limitations identified and the areas 

of future research suggested are detailed in the following sections. 

9.2 Reactive-Separation Approaches 

As illustrated in the approach to reactive liquid-liquid extraction, many other reactive- 

separation options could be tackled mapping the separating agent phase onto the 

superstructure model of a single phase reaction network. Such developments can 

achieve a significant reduction of computational efforts and deliver more profitable 

projects for cases in which time consuming simulations involve: 
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i) Complex detailed mass transfer and phase-equilibrium models. 

ii) Elevated combinatorial complexity of the options available. 

Following the presented rationale, similar approaches should be developed for 

synthesis options such as reactive-distillation, reactive-membrane separation, 

reactive-absorption, etc. For the specific approach presented in this work, many other 

components and groups of components could be used for the regression of the Param 

expression, in order to capture the chemical-physical phenomena involved in reactive 

liquid-liquid extraction for a wider range of mixtures. 

9.3 Separation Representations 

The separation representations presented in this work are an area of improvement. 

Separation representations should be developed further and tested. Specifically the 

energy integration would be an issue as separation operations usually require most of 

the energy employed in a process. The energy used cannot be integrated with the rest 

of the process easily if the decoupling of these systems takes place and they are 

approached in separate efforts. Every sequence forming the separation representation 

should come with information on the energy used and at least an estimate of the 

potential for integration of these units with the rest of the process. Besides, the cost 

function of the separation representation could be approached in a similar manner as 

the synthesis strategy presented in this work. It could be conceptual at the beginning 

of the synthesis exercise and include more information and detail towards the end of 

it. 
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9.4 Ideal Fluidised Reactor Model 

The development of an ideal and conceptual reactor model that truly captures the 

complexities of interfacial transfer, phase equilibrium and multi-phase flow present in 

fluidised bed reactors is a major problem identified in this research. On one side, the 

simplest two-phase fluidised bed models are far too complex to effectively screen 

different options at early stages of process design. Their application to 

superstructure-based optimisation approaches involves prohibitively high 

computational efforts. On the other hand, ideal reactor models such as the CSTR or 

the PFR are inadequate for reliably predicting fluidised bed reactor behaviours. 

Consequently, a conceptual fluidised bed reactor model able to capture reliably trade- 

offs of the chemical-physical phenomena occurring inside the reactor would be of 

enormous benefit to the process design community. On top of that, the fluidised bed 

reactor can be considered as the simplest multi-phase reactor and the idea of 

considering other more complex multi-phase reactors for the reliable and quick 

screening of process design options appears nowadays to be impossible. Kelkar & Ng 

(1998,2000) have developed a systematic approach for screening multi-phase 

reactors at early stages of process design. However, in their own words the approach 

is still not able to capture the complexities of hydrodynamics in fluidised bed reactors. 

9.5 Cost Models 

The degree in which the optimisation results reproduce reality relies extremely on the 

ability of the cost models, used for developing the objective function, to reproduce it. 

Cost functions are more inclusive than typical reactor design objectives such as 
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conversions, selectivities or yields, since they take into account cost effects of reactors 

and cover a wider range of equipments. There are methods that correlate the cost of 

equipments to past acquisitions (e. g. Guthrie, 1974) but their use is not 

straightforward and they are unsuitable for screening purposes. Similarly, there are 

computer programs to estimate costs that are not adequate for screening intentions. 

The appropriate cost data for screening design candidates is in the form of cost 

functions that are not easily available in the literature for all equipments. Besides, the 

confidence on their validity is usually low since the spread of data for same types of 

equipment is wide. As a result, the process economics can be misrepresented by 

using inaccurate cost functions and the quality of the optimisation solutions 

compromised. The availability to the process design community of reliable cost 

functions for a wider range of equipments is of crucial importance if novel designs 

that yield better performances are to be considered industrially. 

9.6 Simulation Solvers 

Alternative numerical solvers for flowsheet simulation could be tested for the later 

stages of the synthesis process where differential and algebraic equations are 

involved. The multipliers approach presented provides a flexible approach to solve 

complex systems where differential equations and cell reactor models with multiple 

connections between reactors are present. However, it fails in approximately 15 to 45 

% of the cases assessed and therefore, there is some potential for improvement. 

Numerical solvers able to treat differential equations at the same time as algebraic 

equations should be employed as they could result in more robust results in terms of 
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numerical solutions. Their implementation can be very challenging for the 

mathematical complexities involved. 

9.7 Computational Efforts 

Although the computational efforts required to solve the complex mass transfer and 

phase-equilibrium models have been partially tackled in this work, there is still 

immense room for improvement. It is obvious that, future developments in computer 

performance will speed up the complex optimisation processes. However, current 

developing tools allow bypassing computational burdens with innovative ideas. 

Distributed computing applications are with no doubt one of the key routes for that 

purpose. Recently, Yang et al. (2005) presented a novel optimisation scheme for 

large-scale size distributed computing environments that will facilitate data analysis 

and knowledge extraction in the course of optimisation. Their developments include 

concepts from Simulated Annealing. The novel optimisation scheme consists of 

several solution groups associated with a system temperature, which is employed to 

assess the solution quality of each group. The solutions in the groups are created by 

performing alterations in the form of temperature Markov processes on existing 

solutions that are already placed in them. Because the Markov processes are 

independent from each other, they can be executed in large-scale distributed 

computing environments, continuously generating solutions that are stored in a 

database. As the optimisation goes on, the solutions are reassigned to the groups. 

The resulting group accumulates the set of optimal solutions. Since the solutions are 

stored in a database, knowledge regarding key individual features that enhance 
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performances is accessible to be extracted. With that purpose, Labrador-Darder et al. 

(2007) have developed a novel approach for the extraction, interpretation and 

exploitation of design knowledge in process synthesis. They combine knowledge 

models in the form of ontologies and clustering tools to analyse the solutions of 

superstructure optimisation. The developments are based on the dynamic evolution of 

the knowledge models. The superstructure is optimised and updated employing the 

knowledge models at different stages. The transition between stages represents the 

transition between layers of abstraction. The initial stages contain the most abstract 

knowledge models and the superstructure representation embeds all possible 

connections between units. As the optimisation evolves, the superstructures are 

customised and result in simpler layouts, whereas the knowledge models are 

constantly enriched. Therefore, detailed models can be employed in later stages of 

the optimisation. The analysis of solutions is addressed with the development of a 

multi-dimensional vector that includes information on the different features of the 

superstructure representation and that can be processed with a customised clustering 

method. 
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APPENDIX 1 

Multi-Phase Process Representations 

The mathematical formulation presented by Linke & Kokossis (2003b) regarding 

RMX units is as follows. 

A1.1 Synthesis Units 

The RMX unit mathematical formulation includes the balance equations around the 

mixers and splitters associated with the sub-units that form the RMX units. Previous 

to the formulation, some basic index sets for the superstructure elements are 

presented: 

RM {rm is a reactor / mass exchanger unit} 

S {s is a fluid phase state} 

FS {f is a raw material source in sES} 

PS {p is a product in sES} 

SPS {sp is a splitter in sES} 

MIS {mi is a mixer in sES} 

CPS {cp is a component in sES} 

SK,,. {sk is a well-mixed sub-unit in sES of rm E RM } 

RXS {rx is a reaction in s c- S} 
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Partitions of the previous basic index sets include the following subsets: 

RMA {rm I 
rm e RM is an active RMX unit} 

s^ Is Is ES is an active fluid state} 

Fs {f IfEF is an active raw material source in sE SA } 

Ps {pI pEPis an active product in SESA} 

SpA {sp I sp E SP is an active splitter in sE SA } 

MI5 {mi I 
mi c- MI is an active mixer in sE S" } 

RXs r, 
{rx I rx E RX is an active reaction in sE SA of rm E RMA } 

SPS m; {sp I sp E SPs splits the outlet of sE SA in rm E RJ A} 

} SPsIrm 
sk {sp I sp c= SP, ' splits the outlet of sE S^ in sk c- SKS,,.,,, of rm E RM' 

MI Sk 
{mi I 

mi E MIS is a mixer in s c- S" prior to sk E SKS 
m, of rni E RM A} 

} MIDI {mi I mi E MIS is a final product mixer in sE S" of rm E RMA 

Based on the previous sets, the rest of variables are: 

FFs f, CP {flowrate of component cp in fE Fs through mi E MI s, rM Sk 
} 

OUTRS, 
cp 

{flowrate of component cp in sE SA through sp E SP �' 
} 

OUTSKs, 
r,, Sk, cp 

{flowrate of component cp in sE S" through sp E SP''Sk } 

} INRs,, 
-nisk, cp 

{flowrate of component cp in sE SA through mi E MIM,,, 

FSFF. f, rmsk 
{fraction of the FFs, f, n,,,, through mi E MI 

,, A 
} 

} SUs, 
nn, sk 

{fraction of OUTSKs, rm, sk, cp entering mi E MIs, ' 

SRR 
5,,,,, ,,,,, Sk 

{fraction of oUTR sI ,p entering mi E MI $k 
} 

, rm 

RXRs. rx. rsk 
{specific reaction rate of rx E RXS, n, 

in sk E SK,,,,, of rni Rý1A } 
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9 ýP 
{stoichiometric coefficient for cp E CP in rx E RX rm 

} 

vg 
rM 

{volume of sE SA in rm E 'p MA } 

Es, m), sk 
{hold-up of sk E SKs, m 

} 

Next, the balance equations describing the well-mixed cells sk of the RMX units are 

presented. Inlet streams to the RMX units are raw material streams and outlet flows 

from other units present in the superstructure. Initially the balances of each mixer 

prior to the sub-units are: 

IFFS 
f,,.,,, _cp " 

FSFS f ,.,,, sk + PREVsk +I OUTR 
s, m,, Cp " 

SRR 
s,,,,,,, n,, sk feF s"ES 

-IRsrmskcp =0 

Vf EF", cpE CP, skE SK,,,,,,, rmE=-RMA'Se SA 
PR Vsk_I =0 

P vskeSKs 
\{I} = OUTSKS 

Im, sk I, cp 

(i 
- 

SKPS 
m sk-I I 

The balances of the sub-units are: 

IRs 
rm sk cp 

+IVs 
rx cp " 

ERs 
rx rm, sk 

6s, 
rm, sk 

Vs'`"' 

" OUTSKs, 
rm, sk, cp 

s, 

I 

rE RX rm 
ISK 

S, r 

+ MTR 
s*, s, rm, sk, cp =0 

S*es\{s} 

,SESA 
V cp E CP, sk E SK 

s, , TTm E RM A, 
rx E RX S 

rm 

(Equation Al. 2) 

(Equation Al. 3) 

224 



The balances of the final product mixer are: 

OUTSKS, 
rm, sk, cp " 

SKPS., 
r,, sk - 

OUTRS,,,, 
cp =0 

ske SKs rm 

S 

Finally, the constraints on the split fractions are: 

ZSRRSI, 
m, sk -1 <0 

s"E SS 

VskE SK, rmERMA, SE SA 

FSFs, f, rm, sk -1=0 
ske SKrm 

VfE F, skE SK, rmE RMA, SE SA 

A1.2 Superstructure Generation 

(Equation A1.4) 

(Equation A1.5) 

The synthesis units are connected in every possible physical combination in the 

reactive phase through mixers and splitters forming the superstructure representation. 

More partitions of the previous basic index sets include the next subsets: 

SPS f {sp I sp E SPA splits a raw material stream fE Fs } 

} SP Pp { sp I SP E SP A splits a product stream pE pA 

MIPp {mi I 
mi E MI" is a mixer of pE Ps } 

CPs 
p 

{cp I 
cp E CP is a component in pE PS } 

CPS f {cp I 
cp e CP is a component in sp E SPS } 

CP, ̀; {cp I cp E CP is a component in the outlet of sp E SP 1} 
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All the variables employed in the superstructure formulation are defined over the 

previous index sets and subsets. The following set of variables includes the flow rates 

of each component through splitters and mixers: 

FDs f cP {component flow rate through SP E SPs f} 

INPRS �T,, cp 
{component flow rate through mi e MI m, } 

INPS, p, p {component flow rate through mi E MIPP } 

OUTPS, p cP {component flow rate through sp E SP p} 

The next set of variables includes the set of split fractions of streams connecting 

splitters to mixers of the superstructure: 

SFRS, f,, n,, sk 
{fraction of FDs f ýp entering miE MI, 

Sk 
} 

SFPs fp {fraction of FD, 
,f Cp entering mi E MIPp } 

SRPs, r, p 
{fraction of OUTRs, r, cp entering miE MI' } 

SPRs, p, rm, sk 
{fraction of OUTPS, p, cp entering mi¬ MI ,, Sk 

} 

Finally for the transfer rate: 

MTRs", s, n,,, sk, cp 
{rate of mass transfer from phase s*E s to phase s*E s\ {s*} of cp E cP 

in sk E SKs 
n� 

} 

Following the shadow compartment concept (Mehta & Kokossis 1997,2000), mass 

transfer rates MTRS,, 5,, 7,,, Sk, cp are calculated as functions of mixing patterns and flow 

directions in the compartments of states s and s*. The existence of mass transfer links 
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between the different compartments of the RMX units is a degree of freedom for the 

optimisation. 

The mathematical formulation for the superstructure is defined as follow. Initially, 

the balance equations around mixers mi E MI n, 
Sk prior to RMX units are defined as: 

FD 
5f ,P" 

SFR 
5f ,m sk +I OUTRSCP " SRR 

5 r,,, r, r, sk + PREVsk + 
feFA rmE= RMA 

OUTPS 
P CP " 

SPRs, P, rm, sk - 
""'Rs, 

rm, sk, cp =0 

PE Ps 

(Equation Al. 6) 

Vf E F", cpE CP, skE SKS,. 
ý,,, rme RM", p E P", sS SA 

PREusk_1 =0 

PREVskESKS 
rm\{1} 

= OUTSKs, 
tw, sk-l, cp * 

(1 
- 

SKPs, 
rm, sk / 

For outlet mixers of RMX units mi E MIS 

I OUTSKs,, 
n,, Sk, cp " 

SKPs, 
m,, sk - 

OUTRs,, 
cp =0 

skE SKs, rrn 

(Equation A1.7) 

VcpE CP, skE SKS,,,,, rmE RMA, SE SA 

For network product mixers mi E Ml': 

I FDs f cp " 
SFPs. f, P +: OUTRS,,,, 

cp " 
SRPS, 

rm, p - 
OUTPS, 

P Cp =0 
fe FsA rt RM'4 

(Equation A1.8) 

VfE F", cpE CP, rmERMA, pE PA, s¬ SA 
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APPENDIX 2 

Problem Data For The Styrene Production 

Process 

A2.1 Relevant Process Design Features 

A2.1.1 Feeding 

" Two streams form the feed: ethylbenzene with impurities and steam. Both 

streams can be fed together to the first reactor or separately distributed 

amongst the different reactor zones. Table A2.1 presents the ethylbenzene 

feed with impurities employed in this work (Sheel & Crowe, 1969). 

Table A2.1: Feed for the styrene production process. 

Component Value kmol/h 
Ethylbenzene (Eb) 36.87 

Styrene (St) 0.67 
Benzene (Bz) 0.11 
Toluene (Tol) 0.88 

Steam To be optimised 

A2.1.2 Connectivity 

0 Internal recycles are defined as those that are possible between reactor zones 

before the condensers (see Figure 5.9). 

9 The external recycle departing from the distillation sequence is fed exclusively 

to the first reactor. 
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A2.1.3 Pressure 

0 The inlet pressure to the first reactor is Pin = 2.4 bars. 

9 The feeds are assumed to be compressed from 1 to 2.4 bars. 

9 The pressure suction for the external recycle compressor is 0.4 bar, which is 

the pressure at which the distillation sequence operates. 

A2.1.4 Catalyst 

" There is a maximum limit of catalyst of 10895 kg per structure (Elnashaie et 

al., 2001). 

" The maximum total mass of catalyst in complex superstructures, i. e. with more 

than one reactor present, is the same as the one for a single reactor 

superstructure. 

9 Catalyst particles are assumed to be cylinders with the same height and length 

(4.7 mm). 

A2.1.5 Reactors 

" The overall reaction is: 

CZHSCHZCH3 '>C6H5CHCH2 + side _ 
products (Equation A2.1) 

" The wall thickness for all reactors is 2.10-3 m (Chapter 5). Where the nominal 

diameter of the tubes is optimized (Chapter 6), the wall thickness varies. 

" The wall conductivity for all reactors is 15 W/m/K (stainless steel). 
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9 The temperature within the reactor is maintained between 400 and 1000 K. 

A2.1.6 Utilities for Reactors 

" Uutility_media is 1325 Btu/ft2/h/K (7523 W/m2/K) for molten salt as cooling 

medium which corresponds to the 25 % lowest value of the range for the 

HITEC® molten salt. 

" U, tiiity_media is assumed to be 3500 Btu/ft2/h/K (19873 W/m2/K) for molten salt 

as heating medium. The maximum value for the HITEC® molten salt is 2900 

Btu/ft2/h/K for the range of temperatures 575 to 790 K. A higher value for the 

heat transfer coefficient has been selected here due to the higher temperature 

values at which the heating media operates (850-1200 K approximately). 

" The upper limit for the utility temperature is 1200 K, whereas the lower limit 

is 422 K. 

A2.1.7 Optimization 

" Classic approaches for designing chemical processes assume a fixed 

production rate of desired product (here styrene). However, in this work the 

process is optimised given a fixed feed rate of ethylbenzene with impurities of 

32 kilotons/yr (Sheel & Crowe, 1969). The amount of the second feed (steam) 

will be determined by the optimisation. 

" The objective function to be maximised is the Economic Potential (EP). 

0 The interest rate is set to 5% and the payback period to 3 years. 

" The AT,,,;,, for the linear minimisation problem of Stage 2 (Chapter 6) is 15 K. 
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" %HV maximum limit is 5. 

A2.1.8 Separation 

9 The condensed fractions in the condenser are assumed to be 100 % for the 

styrene, 99.5% for the ethylbenzene, 99% for the toluene and 98 % for the 

benzene. This assumption proves to be very accurate if the partial condenser 

is modelled as in Tarafder et al. (2005). The exit temperature of the condenser 

is set at 333 K at a pressure of 1.9 bar. The solubility of non-condensable 

gases in the organic phase is negligible, and the organic compounds 

(ethylbenzene, styrene, benzene and toluene) are totally immiscible in water. 

" Short-cut distillation methods are employed to model the distillation columns. 

It is assumed that this case study is a retrofit scenario in terms of reactors, in 

which the separation section is already in place when the synthesis exercise 

begins. The equations employed are the Fenske equation to calculate Nmin 

(Fenske, 1932), the Underwood algorithm (Underwood 1932-1948) to 

calculate R,,;,, and the Gilliland correlation in the Eduljee form (Eduljee, 1975) 

to calculate the reflux. 

9 In the first distillation column after the condenser, the recovery fractions for 

the light key component (toluene) and for the heavy key component 

(ethylbenzene) are assumed to be 99.9 %. 

9 In the benzene / toluene distillation column, no other component is fed. The 

recovery fraction for the toluene is assumed 99.9 % and its purity in industry 

normally is 99.7 %. 
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" In the ethylbenzene / styrene distillation column, no other component is fed. 

The recovery fraction for the styrene is assumed 99.7 % and its purity in 

industry normally is 99.7 %. The amount of ethylbenzene recovered in the 

column and recycled to the first reactor will be obtained by a short-cut design 

method. However a fraction recovered by the column must be in advanced 

specified to close the recycle. The percentage of recovery for the 

ethylbenzene fed to the column is assumed to be 99.9 %. The calculated and 

estimated values are compared to test whether errors are within a specified 

tolerance. If the error is not within the tolerance, the structure is rejected and 

not considered in the optimisation process. The scaled error is defined as: 

fraction calculated - 0.999 
- 0.001 <- <_ 0.001 (Equation A2.2) 

0.999 

" It is assumed that the reflux is in all the distillation columns 1.1 times the 

minimum reflux. 

" All the streams leaving and arriving to the columns are considered for the heat 

integration. 
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A2.1.9 Steam To Oil Ratio 

" The molar ratio of the steam to ethylbenzene, SOR (steam over reactant), is set 

above seven (Yee et al., 2003) to prevent coke formation on the catalyst 

surface and to eliminate coke deposits from the catalyst surface. With the 

coke deposits removal, the catalyst is regenerated. SOR is usually restricted in 

industrial practice below 20 (Yee et al., 2003) because higher values affect the 

economics of the process. Extra energy is required to produce the excess 

steam and to condense it after the reactor. 

A2.2 Kinetic Model 

The kinetics for the catalytic dehydrogenation of ethylbenzene to produce styrene 

(Table A2.2, Figure A2.1) are taken from the ATHENA Process Simulation 

Framework case study (Silvaco International, 1994): "Catalytic production of 

styrene". The kinetic constants follow the Arrhenius expression. 

Table A2.2: Kinetics for the catalytic dehydrogenation of ethylbenzene. 

Rate equation A; E; /R (K) 

1 rl k1P 
ethylbenzene /_P 

styrene P hydrogen 
jKeb 

= 1.51286 10925 

r2 =k2P ethylbenzene 
5.6197 x 10+5 25000 

r3 =k3P ethylbenzene P hydrogen 1.3446 11000 

r4 = k4PsteamPethylene 9.3016 x 10"1 12500 

r5 =k 5 PsteamP methane 
5.3163 x 10-2 7900 

r6 =k6P steam P carbon _ 
monoxide 

(, 

3) 1.6769 x 109 8850 

'Where the equilibrium constant Keb for reaction 1 takes the form: Keb=exp[-(122725-126.3*T-0.002194*T2)/8.314*T 
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C6H5CH3 + CH4 

(s)+H2O 

(3)) 

(1) C6H5CHCH2 
C6H5CH2CH3 

`2'1 C6H6 + C2H4 

H2 

+H2O 
(4) 

CO + H2 

+H20 
(6) 

C02 + H2 

777 
O 

CO + H2 

Figure A2.1: Kinetic path for the styrene production process. 

For the same kinetic parameters as the ones employed here, Abdalla et al. (1994), 

Elnashaie and Elshishini (1994), and Yee et al. (2003) have compared the 

performances obtained with two different reactor models: 1) a pseudo-homogeneous 

one dimensional PFR model without radial temperature profile approximation; 2) a 

more detailed heterogeneous model that takes into account the diffusion in the catalyst 

pellet. All studies concluded that both models showed very similar performances due 

to the fact that mass transfer does not limit the reactions in the system. These 

conclusions were reached for catalyst particles with equal or bigger diameter, than the 

ones employed here. Therefore, models based on a pseudo-homogeneous PFR model 

that does not take into account diffusion in the catalyst pellet, can be employed here 

without experiencing inaccuracies. 
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A2.3 Capital And Operational Costs 

A2.3.1 Heat Exchanger Network 

The capital cost for the heat exchanger network can be estimated from Luyben (2001) 

and the assumption that all heat exchangers have the same area (Ahmad et al., 1990): 

0.65 

HXCOST - HX UNITS 0.0073 "A TWO 
HX 

UNITs 
(Equation A2.3) 

The cold utility is taken by cooling water that is fed to the system at 300 K and leaves 

at 319 K (Biegler et al., 1997). The specific heat (Cpw) is 7.53.10-2 kJ/gmol K and the 

cost is 2.47.10-7 $/gmol (Biegler et al., 1997). The flow is calculated from the heat 

balance: 

' 
_UTILITY 

F COOLING_ WATER = 
COLD 
CPW' TOUT -Tyr, 

(Equation A2.4) 

The hot utility is given either by oil or by a furnace. The price of the oil is $60/kW yr 

(Pettersson, 2005). The price of the fuel for the furnace is 174 $/kW yr (Tantimuratha 

et al., 2000) and the fixed cost of the furnace (Tantimuratha et al., 2000): 

FURNACECOST = 3.211.10-4 " HOT_ UTILITY 07 (Equation A2.5) 

A2.3.2 Reactors Cooling/Heating Media 

Reactors are not heat integrated with the rest of the process because of practical 

controllability issues. The heat exchange media employed is molten salt. If the 

reactor requires heating, the cost of the molten salt is taken as the cost of the hot 
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utility employed (174 $/kW yr). If the reactor requires cooling, the cost of the molten 

salt is taken as zero because it would recover high grade heat that could be used in the 

generation of steam. The generated steam could be sold and therefore be a benefit. 

Results in Chapter 5 and 6 show that only heating utility is required. 

A2.3.3 Catalyst Cost 

It has been observed that all the optimal design candidates contain at least 70% of the 

maximum catalyst load allowed. With a catalyst estimate price of 7 $/kg for 

oxidation reactions (Dubois, 2006), the maximum difference in catalyst load between 

design candidates (30%), would result in a maximum difference catalyst cost of 0.02 

M$ every time the catalyst is replaced. According to Meima & Menon (2001), it is 

typically replaced every 1-2 years, which results in a difference cost of 0.02-0.01 

M$/yr. Due to these small maximum differences in annual costs and for simplicity 

reasons, the catalyst cost is not included in the development of the objective function 

value. 

A2.3.4 FB Rs 

The cost of the FBR is calculated as the cost of a pressure vessel (Turton, 2005): 

FBRCOST = Fp " 
(10KI+K2-log(VOLUMEREACTOR) + K3 - log(VOLUMEREAC ORZ 

)) (Equation A2.6) 

where: 

F- 
(P,,, + 1.0) " D, (Equation A2.7) 

P 2.0. (850-0.6"(P,,, +1)) 1))]+ 0.0.0.0063 

where D, is the diameter of the vessel and Pmax the maximum pressure in the vessel. 
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The parameters take the following values: 

K1= 3.49 

K2 = 0.38 

K3 = 0.09 

A2.3.5 CSTRs And MTRs 

(Equations A2.8) 

CSTR and MTRs are priced multiplying a factor (5 and 30 respectively) by the price 

of a FBR with the same catalyst load. To calculate these two factors, initially a 

correlation (cost vs. volume) is obtained for CSTRs with ASPEN Icarus (considering 

a stirred vessel), whereas for MTRs it is assumed that the cost is twice that of a 

tubular heat exchanger with the same heat transfer area (Luyben, 2001). Then, the 

ratios cost CSTR 
and cost MTR 

cost P13K cost 1113K 

catalyst load (Table A2.3). 

are calculated assuming for all reactors the same 

Table A2.3: Ratios for the cost of CSTRs and MTRs. 

Catalyst load (kg) cost CSTR cost MTR 
cost FBR cost FBR 

9000 5.9 34.8 
10000 5.7 33.9 
20000 4.5 27.5 

Finally, factors of 5 and 30 are chosen as representative values. The multiplying 

factor of 30 is assuming MTRs of 30000 tubes. When MTRs with different number 

of tubes are used, the cost is obtained as: 

" If number of tubes > 30000: 

Re actor 
_ 

cos t= Re actor 
_ 

cos t(30000 tubes " 
number_ of 

-_tubes 
30000 

(Equation A2.9) 

237 



" If 30000 > number of tubes > 20000: 

Re actor 
_ 

cos t= Re actor 
_ 

cos t(30000 tubes 

9 If number of tubes < 20000: 

Re actor 
_ 

cos t= Re actor 
_ 

cos t(30000 tubes . 
number of 

_ 
tubes 

20000 

A2.3.6 Compressors 

(Equation A2.10) 

(Equation A2.11) 

The compression is assumed to be an adiabatic compression of an ideal gas with 75% 

efficiency. The formula for the capital cost of a compressor (Luyben, 2001) is: 

COMPRESSORCOST - 0.00433 " WCOMPRESSOR 0.82 (Equation A2.12) 

where: 

(Y-Y 1ý 

W_ 
FR " 'Y "R' TSUCTION PDISCHARGE 

-1 (Equation A2.13 ) COMPRESOR - (y 
-) 

0'75 -1 PSUCTION 

where -y is the ratio of heat capacities, R is the constant of ideal gases and Fr is the 

flow to be compressed (gmoUs). For the compression cost, the price of electricity is 

$0.07 kWh (Luyben, 2001) and it is calculated (Luyben, 2001) as: 

COMPRESSIONUTmITY = 0.613.10-3 " WcoNDxESSOR (Equation A2.14) 

The compressor work takes the same formula as before. 

A2.3.7 Distillation Columns 

The vessels of the distillation columns are assumed not to differ from one process 
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design candidate to another and therefore are not priced. The condensers and 

reboilers are heat integrated. 

A2.3.8 Raw Material And Product Values 

The prices for the raw components (ethylbenzene and superheated steam) and for the 

products are taken from Yee et al. (2003). 

Table A2.4: Raw material and product values. 

Component Value $/ton 
Ethylbenzene 429.51 

Styrene 988.94 
Benzene 394.30 
Toluene 367.91 
Ethylene 0.0 
Methane 0.0 

Superheated steam 19.98 
Carbon monoxide 0.0 

Carbon dioxide 0.0 
Hydrogen 0.0 

A2.4 Selectivity And Conversion Definitions 

According to Yee et al. (2003), the molar selectivities and the ethylbenzene molar 

conversion are defined as: 
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Styrene selectivity = 
ST°Iltlet - ST"et 

" 100 (Equation A2.15) EBinlet - EBoutiet 

Benzene selectivity = 
BZoutlet - BZjnlet 

" 100 (Equation A2.16) 
inlet EB ) 
inlet outlet 

TOLoutlet 
Toluene selectivity =- 

TOL; rjet 100 (Equation A2.17) 
EB met - EB 

outlet 

Ethylbenzene conversion = 
EB'niet - EB°utlet 

EBmet " 100 (Equation A2.18) 
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APPENDIX 3 

Problem Data For The Acetic Acid Production 

Process 

A3.1 Relevant Process Design Features 

A3.1.1 Feeding 

Two streams form the feed: ethane and oxygen. Both streams can be fed 

together to the first reactor or separately distributed amongst the different 

reactor zones. 

A3.1.2 Connectivity 

" Internal recycles are defined as those that are possible between reactor zones 

before the flash separation (Figure 7.1). 

0 The external recycle departing from the flash separation is fed exclusively to 

the first reactor. 

A3.1.3 Pressure 

0 The inlet pressure to the first reactor is Pi,, = 16 bars. 

" The feeds are assumed to be compressed from 12 to 16 bars. 
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" The pressure suction for the external recycle compressor is calculated 

assuming a loss of pressure APOR =1 bar from the last active reactor. That is 

for the materials flowing through heat exchangers and the flash operation. 

Therefore the suction pressure for the outlet compressor is calculated as: 

P no reactors 
OC = Pin - LJR=1 APR 

- AP 
OR (Equation A3.1) 

A3.1.4 Catalyst 

" There is a maximum limit of catalyst of 50000 kg per structure. 

9 The maximum total mass of catalyst in complex superstructures, i. e. with more 

than one reactor present, is the same as the one in a single reactor 

superstructure. 

" Catalyst particles are assumed to be cylinders with the same height and lenght 

(s mm). 

A3.1.5 Reactors 

" The overall reaction is: 

CZH6+O2 < >CH3000H+side _products 
(Equation A3.2) 

" The wall thickness for most reactors is 2.10-3 in. For the stages where the 

nominal diameter of the tubes is optimised, the wall thickness varies. 

" The wall conductivity for all reactors is 15 W/m/K (stainless steel). 

0 The cooling / heating stream of the reactor is not integrated in the Problem 

Table algorithm. 
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The number of orifices per square meter of the distributor of the fluidised bed 

reactors (FLBRs) is 800. 

A3.1.6 Utilities 

9 Utility media is 400 W/mz/K (for oil as cooling or heating media as in Linke 

et al., 2002b). 

" The upper limit for the heating utility temperature is 700 K, whereas for the 

cooling utility the lower limit is 400 K. The temperature within the reactor is 

maintained between 450 and 570 K. The upper limit is set after Linke et al. 

2002b. 

A3.1.7 Optimisation 

" The process is optimised given a fixed feed rate of ethane (50 ktons/yr). The 

amount of the second component fed (oxygen) is determined by optimisation. 

" The objective function to be maximised is the Economic Potential (EP). 

" The interest rate is set to 5% and the payback period to 3 years. 

" The ATmin for the linear minimisation problem of Stage 2 (Chapter 6) is 15 K. 

" %HV maximum limit is set to 5. 

A3.1.8 Separation 

0 There is an assumed loss of 5% of the hydrocarbons present in the stream 

treated in the absorber. 
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" The acetic acid purity in the bottom product of the distillation column is set to 

99.9 % and its recovery to 99 %. 

" It is assumed that the number of theoretical plates in the distillation column is 

40 (Smejkal et al., 2005). 

" Separation systems are represented in aggregated form to keep the 

superstructure model at solvable complexity. This is achieved through cost 

expressions developed using separation systems approaches. This expressions 

capture the cost separations for given stream compositions and flow rates. For 

this case the separation system is a single distillation column in which acetic 

and water are separated. It is assumed that this case study is a retrofit scenario 

in terms of reactors, in which the separation section is already in place when 

the synthesis exercise begins. To develop the cost expressions, shortcut 

methods are employed. The equations used in the shortcut calculations are the 

Fenske equation to calculate N17,1n (Fenske, 1932), the Underwood algorithm 

(Underwood 1932-1948) to calculate Ri1zjn and the Gilliland correlation in the 

Eduljee form (Eduljee, 1975) to calculate the reflux. The vessel of the 

distillation column has not been valued since it is assumed not to vary 

significantly from one process design candidate to another. Therefore, only 

the condenser and the reboiler have been valued to develop the cost 

expressions. Initially, the separation synthesis problem is repeatedly solved 

for several cases. Since the components passed from the reaction section to 

the separation section are known, their flows and compositions can be 

estimated to narrow the ranges to be used in developing the cost functions. 

The range of flows in which the cost functions have been developed is: a) 

acetic throughput: 11-31 mols/s; b) water throughput 24-124 mols/s. The 
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solutions of the separation synthesis problem provide the flows and 

temperatures at the top and bottom of the column. Next, heat balances are 

performed. Then, heat flows and temperatures are used to calculate the capital 

and operational costs of the condenser and the reboiler for each case. Finally, 

with the capital and operational costs for the condenser and reboiler for each 

case, regressions can be done to obtain equations in the form of. 

NO 
_ 

COMPONENTS B IC 

DISTILLATION CAPITAL, COST =A fl (Throughput 
1C (mo1 / s) 

IC=1 

NO 
_ 

COMPONENTS BIc 

DISTILLATION OPERATIONAL COST =B' fJ (Throughput 
Ic (mol /s) 

IC=1 

(Equations A3.3) 

For this case study, the fixed cost function developed is: 

DISTILLATION FIX _COST 
(106$) = 30.84.10-3 " Acetic 

_ 
throughput 41.85-10-3 

Water 
_ 

throughput 606.9-1o-3 

(Equation A3.4) 

The average and maximum deviation for the 58 points employed to develop 

the function are 0.14 and 0.69 % respectively. The operational cost function 

is: 

DISTILLATIONoPEi, TIoNAL cosT 106$) = 30.35.10-3 " Acetic 
_ 

throughput' 3.98.1-3 

Water 

_ 
throughput 934.4 10-3 

(Equation A3.5) 

In this case, the average and maximum deviation are 0.51 and 1.89 % 

respectively. 

" The heats from the reboiler and the condenser are not taken into account for 

the Problem Table Algorithm because of practical controllability issues. 
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A3.2 Explosion Limits 

The gaseous phase reactions take place at high temperatures (450 - 570 K) where 

high concentrations of oxygen are likely to cause explosions. To avoid them, the 

amount of oxygen at the inlet of every reactor zone has been limited to 13% (Smejkal 

et al., 2005). Since oxygen is only consumed and not produced when reaction takes 

place, its concentration cannot increase inside the reactor zones; thus, it is sufficient to 

limit the amount of oxygen at the inlet of the reactors. 

A3.3 Kinetic Model 

The kinetics for the partial oxidation of ethane to produce acetic acid (Table A3.1 

A3.2) are taken from Linke et al. (2002a). The kinetic constants follow the Arrhenius 

expression. 

Table A3.1: Kinetics for the partial oxidation of ethane (1). 

Rate equation Kinetic constant at 539 K E, or OHadg 

ri = k1Pc2H6 e[0M o] k, =1.665.10-9 mot (s kg Pa)-' 99.7 KJ mot-' 
2 

r2 = k2po2 e[OMZC2H4 ] k2 =1.251.10-9 mol (s kg Pa)-' 92.6 KJ mo1-' 

OXOH)] r3 = k3Pc2H40[(HOM k3=1.254.10-5 mol (s kg Pa)-' 144 KJ " mot-' 
,, 

r4 = k4po28[QM ] k4 =1.713.10-8 mot (s kg Pa)-' 123 KJ mot-' 
Z 

r5 = kSPo2 e[OM,. ] k5=4.453.1 0-9 mot (s kg Pa)-' 85.2 KJ mol-' 

k 
r6 -k6PC H 

e[OMI -/ C H ] e[OM 
k6 =6.633.10-$ mol (s kg Pa)-' K6 -137 KJ mot-' 

4 a ý z 2 6 =2.484-10-4 Pä' -176 kg mot-' 

k 
r7 = k7PH200[0MZ] - 

ý7 
e[xoMZox] 

k7 =- 
K7 =1.359.10' Pa' 

- 

-220 kg " mot-' 

k k8 =2.634.10-9 mot (s kg Pa)-' 25.7 KJ " mol"' 
r8 = k8PH20e[OMXO] -y K8 

e[(HOMxOXOH)] 
61 Kg =5.396.10 Pä ý 

-38.8 kg mol 

r9 = k9PC2H6e[oMZo] k9 =3.363.10-10 mot (s kg Pa)-' 123 KI " mot-' 

r10 = kiopc2H O[OM O] k10 =2.019.10-8 mot (s kg Pa)-1 43.3 KJ mot-' 
Z 

r11 = k, lPHOacO[OMZO] 
k11 =2.892.10"9 mot (s kg Pa)-' 105 KJ " mot-' 
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Table A3.2: Kinetics for the partial oxidation of ethane (2). 

Kinetic parameters 
e[(HOMxOXOH)] = ksp0 PH20 /(k3po2PC, H4 + k8P02 PH20 + k3k8 /k5pC2H, PHZo + ks / KsP02 ) 
e[oMXo]_(k3Pc2H, +ks/Ks)P02/(k3Po2pC2H4 +k8p0 PH20 +k3k8 /k5pc2H4PH2o+ks/KsPo, 
0[oM,, ]=1- 0[(HOM,, 

0XoH)] - 0[oM,, 
0] 

0[oMZo] = kapo2 (k2K6Po2 + k6) /[(k2K6p02 + k6) " (klpc2H6 + k9Pc2H6 + k, oPC2H4 + k, IPHOac) + 
K7PH20(k2K6klPC2H6po2 + k2K6k9PczH6Poz + k2K6k, opo2PC2H, + k2K6k11P02PHOac + k6klpcAH6 
k6k9Pc2H6 + k6k, opcH4 + k6K, IPHOac) + K6(k4klPc2H6Po2 + k6klpC2H6PczH, + k6k9pc H6PCZH4 + 

2 k6kio(PC2H4) +k6k1IPC2H4PHOac)+k4Poz(k2k6P0Z +k6)] 

e[OM cx]= K6(k4k1Pc H Po + k6k1Pc H Pc H+ 
k6k9PC 

H6PC + k6klo(Pc )2 + z242 62 2 62 42 2H4 2H4 

k6k11PC2H4 PHOac) /[(k2K6POZ + k6) - k1PC2H6 + k9PC2H6 + kloPcZH4 + kl lPHOac) + K7PH20 ' 
(k2K6k1Pc2H6P02 + k2K6k9Pc2H6Poz + k2K6kloPC2H4PoZ + k2K6k11P02PHOac + k6k1Pc2H6 + 
k6k9PC2H6 + k6klopcZH4 + k6k11PHOac) + K6(k4k1PC2H6PoZ + k6k1Pc2H6Pc2H4 + k6k9Pc2H6Pc2H4 + 
k6klo(PC2H4 )2 + k6k11PC2H4PHOac) + k4PO2 (k2K6PO2 + k6)] 

e[HOMzOH] = K7PH2o (k2k6klPc2H6 PO2 + k2K6k9PczH6 Poe + k2K6ktopo2 PcZH, + k2K6kt iPo2 PHOac + 
k6klPcZH6 + k6k9Pc2H6 + k6kioPc2H, + k6k1 IPHOac) /[(k2K6P02 + k6) - (k'PcZH6 + k9PcZH6 + 
k, oPc2H4 + k, IPHOac) + K7PH20 (k2K6klPc2H6 Poe + k2K6k9Pc2H6 Poe + k2K6kioPc2H4P0Z + 
k2K6k, IPHOacPO2 + k6klPc2H6 + k6k9Pc2H6 + k6kioPcZH4 + k6k, IPHOac) + K6(k4klPc2H6Po2 + 

k6klpcZH6Pc2H, + k6k9Pc2H6Pc2H4 + k6kio(PcZH, )2 + k6k, iPc2H6PHOac) + k4PO2 (k2K6Po2 + k6)] 

e[OMZ ]-1- e[OMzO] - e[OMZC2H4 ]- e[HOMzOH] 

For this specific application Linke et al. (2002a) showed that internal diffusion 

processes can be neglected for particle diameters lower than 1 mm at T< 580 K. 

Therefore, they assumed for this system a shell catalyst with an external catalyst layer 

of less than 500 pm thickness. This corresponded to a loading of catalyst support 

with active component of about 20-50 wt% for the assumed range of catalyst particle 

diameters of 3-5 mm. As a result of this assumption, internal diffusion was not taken 

into account in the reactor models. Their mass of catalyst per reactor volume was 600 

kg/m3 for the assumed 50 wt% catalyst on inert support material. All these 

assumptions are considered here. 
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A3.4 Capital And Operational Costs 

The cost expressions are the same as the ones for the styrene production process 

except for the following cases. 

A3.4.1 Reactors Heating/Cooling Media 

Reactors are not heat integrated with the rest of the process because of practical 

controllability issues. The heat exchange media employed is oil. If the reactor 

requires cooling, the cost of the oil is taken as zero because it would recover high 

grade heat that could be used in the generation of steam. The generated steam could 

be sold and therefore be a benefit. If the reactor requires -heating, the cost of the hot 

oil is taken as the cost of the hot utility (60 $/kW). Results in Chapter 7 show that 

only cooling utility is required. 

A3.4.2 Catalyst Cost 

It has been seen that all the reactor networks approach the maximum catalyst load 

allowed. Therefore, the catalyst price is not included in the study as it would have the 

same influence in all the process design candidates. 

A3.4.3 CSTRs And MTRs 

The multiplying factors are 5 for CSTRs and 25 for MTRs according to the ratios 

cost CSTR cost MTR 
and (Table A3.3), which are obtained as for the styrene 

cost FBR cost FBR 

production process but for a wider range of catalyst load 
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Table A3.3: Ratios for the cost of CSTR and MTR. 

Catalyst load (kg) cost CSTR 
cost FBR 

cost NITR 

cost FBR 
9000 5.9 34.8 
10000 5.7 33.9 
20000 4.5 27.5 
30000 4.1 23.9 
40000 3.8 21.4 
50000 3.6 19.6 

A3.4.4 Distillation Column 

The cost expressions developed to represent separation systems in aggregated form 

only consider the condenser and the reboiler. The vessel of the distillation column is 

assumed not to differ from one process design candidate to another. To develop the 

cost expressions the following expressions for capital and operational costs have been 

employed. The capital cost for the condenser follows the same expression as for heat 

exchangers: 

CONDENSERCOST = 0.0073 "A0.65 CONDENSER (Equation A3.6) 

The assumptions to calculate the area of the condenser are found in Biegler et al. 

(1997). The following heat balance can specify the area: 

__ 
gCONDENSER 

`CONDENSER 
U. OTLM 

(Equation A3.7) 

The heat exchanged in the condenser is taken by cooling water which has the same 

specification as the cold utility for the styrene production process. The flow is 

calculated from the heat balance: 
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FCOOLING_WATER = 
gCONDENSER 

CPW TOUT 

- 
COOLING- WATER - 

TIN_ 
COOLING- WATER 

(Equation A3.8) 

The capital cost for the reboiler also follows the same expression as for the heat 

exchangers: 

REBOILERCOST - 0.0073 " AREBOILER M5 (Equation A3.9) 

The assumptions to calculate the area of the reboiler are found in Biegler et al. (1997). 

The area can be specified as: 

AREBOILER 
g REBOILER 

-l 
U' (TSTEAM 

- 
TREBOILER ) (Equation A3.10) 

The cost of the steam at 11.5 bar is 11.17 $/ton (Biegler et al., 1997) and the enthalpy 

of vaporisation (AHvap) is 35870 J/gmol. The flow needed is calculated from the 

following heat balance: 

STEMM = 
gREBOILER 

OH vAp 

A3.4.5 Raw Material And Product Values 

(Equation A3.11) 

The prices for the raw components and for the product (Table A3.4) are taken from 

Smejkal et al. (2005) and Biegler et al. (1997). 
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Table A3.4: Raw material and product values. 

Component Value $/ton 
Ethane 72.0 
Oxygen 50.0 
Steam 11.17 

Carbon dioxide as product 0.0 
Acetic acid 730 

A3.5 Selectivity And Conversion Definitions 

The ethane and oxygen conversions and the process selectivity are defined as: 

O2 
in process - 

02 
out process Oxygen conversion =" 100 (Equation A3.12) 

O2 
in process 

Ethane conversion = 
C2H6ý 

process - C2H6out 
process 

" 100 (Equation A3.13) 
C2H6m 

process 

Re actor selectivity = 
CH3COOH 

out reactor 
" 100 (Equation A3.14) 

C 2H 6 in reactor -C 2H 6 
out reactor 

The reactor selectivity refers to the system formed by the reactors and the internal 

recycles. Out reactor refers to downstream of the internal recycle leaving the last 

reactor. C2H6;,, reactor refers to the ethane fed to the process plus the ethane externally 

recycled that gets into the first reactor. 
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