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General Abstract 

Despite the abundance of research conducted into the effects of exercise on mucosal 

immunity the results remain controversial. Much of the inconsistencies arise from the 

exercise protocols, the participants studied and their nutritional status, as well as 

methodological and analytical differences. The purpose of this thesis was to examine the 

influence of some of these factors, and to investigate potential means of enhancing the 

mucosal immune response to exercise. In study 1 (Chapter 3) it was shown that a fed or 

fasted state 2 h prior to exercise had no effect on the s-IgA concentration or secretion rate 

during prolonged exercise. However, when participants were fed during exercise (Chapter 4), 

the secretion rate of salivary antimicrobial proteins lysozyme and a-amylase increased, but s­

IgA remained unchanged. These changes were likely due to the activation of mechanical and 

gustatory receptors leading to a reflex stimulation of protein secretion via the autonomic 

nerves, rather than changes in stress hOnliones, since cortisol did not change significantly 

during exercise. Study 3 (Chapter 5) extended these findings where it was demonstrated that 

chewing flavoured gum during exercise enhanced lysozyme and a-amylase secretion but 

resulted in a small reduction in s-IgA secretion rate. Salivary antimicrobial proteins are 

affected by the exercise intensity since both s-IgA and lysozyme secretion rate increased 

post -exercise following an incremental test to exhaustion, but not after exercise at 50% 

Y02max. Moreover, lysozyme secretion rate was also elevated following exercise at 75% 

Y02mru<, whereas s-IgA remained unchanged. These effects are thought to be mediated by 

increased sympathetic nervous system activity reflected by the concomitant increases in (l­

amylase and chromogranin A, rather than the hypothalamic-pituitary-adrenal axis. Resting 

mucosal immunity exhibits significant gender differences. In study 1 (Chapter 3) s-IgA 

concentration, secretion rate and osmolality were found to be lower in females than in males 

at rest. In addition, saliva flow rate was found to be lower in females compared with males in 



study 5 (Chapter 7). However, these differences did not appear to influence the salivary 

responses to acute exercise or exercise training. Chronic exercise training in elite male and 

female swimmers resulted in lower levels of s-IgA secretion rate following periods of intense 

training prior to competition compared with post-competition (Chapter 7), but these levels 

were not directly associated with reported episodes of respiratory illness. 

Key words: saliva flow rate, s-IgA, exercise, lysozyme, a-amylase, nutrition, gender, URTI 
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Chapter 1 Literature Review 

Chapter 1 - Literature Review 

1.1. Exercise and infection risk 

Upper respiratory tract infections (URTI) such as coughs, colds and sore throats, form the 

most common presentation to general medical practice (Graham, 1990). Such illness can have 

a substantial negative impact on the overall health and productivity of the general population, 

and can be even more serious for the elite athlete engaged in heavy training and competition. 

Any interruption of a tightly planned training schedule due to URTI could have serious 

adverse effects on performance, which may even mean the difference between success and 

failure (Pyne et al., 2001). 

The relationship between exercise and URTI has been modelled into the form of a "J"-shaped 

curve. According to this hypothesis, regular moderate exercise enhances immune responses, 

reducing susceptibility to URTI. In contrast, excessive prolonged exercise suppresses 

immunity initiating a brief period of vulnerability when the risk of URTI is increased 

(Nieman, 1994). Indeed, experimental studies conducted in animals have supported the 

concept that exhaustive exercise after inoculation with a pathogen leads to a more frequent 

appearance of infection and a higher fatality rate compared with sedentary animals, whereas 

more moderate training decreases the incidence (Davis et al., 1997). 

There are an increasing number of human research studies that have examined the 

relationship between exercise and infection risk. The evidence is primarily epidemiological in 

nature where the diagnosis of URTI is based upon responses to a questionnaire (defined from 

symptoms of sore throat, cough, runny nose, congested sinuses and headache), rather than 

clinical assessment (Barrett et al., 2002). In general, the evidence suggests that moderate 
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Chapter 1 Literature Review 

habitual exercise IS associated with decreased URTI incidence. For example, in one 

randomised, controlled study it was demonstrated that moderate exercise training in 

previously sedentary women, was associated with a significant reduction in URTI incidence. 

Forty-five min of exercise five times a week at 60% of the heart rate reserve reduced the 

number of URTI symptom days (Nieman et al., 1990b). Furthermore, Matthews et al. (2002) 

found that habitual physical activity was inversely related to the incidence of colds over a 12 

month period. 

In contrast, there is a growing body of evidence to suggest that heavy exercise and/or training 

increases the prevalence of URTI. The first study to quantify this in an athletic population 

was published by Peters and Bateman (1983) in which 140 runners were surveyed for 

symptoms of URTI before and after a 56 km ultramarathon. These were compared to age­

matched controls, living in the same household and sharing the same environmental 

conditions. During the two weeks following the race, 33% of the athletes exhibited symptoms 

of URTI compared with only 15% of the control subjects. These findings are consistent with 

a subsequent epidemiological study of over 2000 randomly selected runners competing in the 

1987 Los Angeles Marathon (Nieman et al., 1990a). When compared to their matched 

runners - who did not compete - it was found that the competitors were six times more likely 

to suffer from symptoms of URTI. Moreover, those runners who had the highest training load 

prior to the event (i.e. more than 96 km per week) were twice as likely to suffer from URTI 

as those with a relatively light training load (i.e. 32 km per week). 

However, a more recent study failed to confirm this in a group of marathon runners, where no 

association was found between training volume over a 6-month period prior to a race and the 

post-race incidence of self-reported URTI episodes. Furthermore, there was no difference in 

URTI incidence during the 3 weeks post-race compared with before (Ekblom et al., 2006). It 
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· Chapter 1 Literature Review 

was noted though that those with infections in the 3 weeks prior to the race had a higher 

reported incidence of URTI episodes than the illness free competitors after the race, 

suggesting a possible reactivation of viral illness. 

It is now widely accepted that following an acute bout of prolonged, intense exercise, many 

components of the immune system exhibit change (reviewed by Gleeson, 2007). This has 

been termed the 'open window' for infection and during this time, opportunistic viruses and 

bacteria may gain a foothold, increasing the susceptibility of infection (Nieman and Pedersen, 

1999). This period may last between 3 and 72 h depending on the immune parameter 

measured and the exercise protocol employed. Since many competitive athletes train at least 

daily, and often twice per day, it is possible that a chronic depression of immune function 

may result from the cumulative long-lasting acute effects of each successive bout 

(Mackinnon, 2000) 

1.2. Role of the immune system 

The function of the immune system is to protect against, recognise, attack and destroy 

elements that are foreign to the body. The immune system can be broadly separated into two 

divisions that work together synergistically: innate (natural or non-specific) and acquired 

(adaptive or specific). The innate immune system, the 'first-line of defence' comprises 3 

mechanisms with a common goal to restrict the entry of infectious agents into the body: (1) 

physical/structural barriers (skin, epithelial linings, mucosal secretions); (2) chemical barriers 

(pH of bodily fluids and soluble factors such as lysozymes and complement proteins); and (3) 

phagocytic cells (immune cells, e.g. neutrophils and monocytes/macrophages) (Gleeson et 

al., 2004b). The cells involved in innate immunity can recognise and act against foreign cells 

without prior exposure. However, innate immunity does not improve with repeated exposure. 
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Should the innate immune system fail to resist the micro-organism, the acquired immune 

system is activated. The acquired immune system consists of B-lymphocytes (produced in the 

bone marrow) and T-lymphocytes (mature in the thymus). Monocytes or macrophages ingest 

and process the invading protein, which is displayed or presented to the T -cells allowing 

them to initiate a response specific to that antigen. The T -helper cells produce cytokines that 

stimulate the proliferation of T -cells, and B-cells into plasma cells. The plasma cells then 

produce antibodies that are able to recognise the antigen and generate memory cells to enable 

the immune system to initiate a faster and more effective level of protection with subsequent 

exposure to the same agent. The T-cells also stimulate the innate cells: the macrophages, 

neutrophils and natural killer (NK) cells. The plasma cells produce the immunoglobulins; 

immunoglobulin A (IgA) is the principal antibody at mucosal sites (Gleeson, 2006). 

1.3. Salivary secretion 

Saliva is a clear, slightly acidic mucoserous exocrine secretion consisting of inorganic and 

organic compounds and usually more than 99% water. The average daily flow of whole 

saliva varies greatly between 0.5 Land 1.5 L which represents 20% of the total plasma 

volume (Chicharro et al., 1998). Thus, salivary flow is a highly individualised measurement. 

The secretion of saliva into the mouth originates from three pairs of major salivary glands: 

the submandibular (65%), parotid (20%) and the sublingual (7-8%) and numerous minor 

salivary glands (less than 10%) found in the lower lip, tongue, palate, cheeks, and pharynx. In 

humans, the parotid glands produce mainly serous saliva since the secretion lacks mucin, the 

minor glands produce mainly mucous saliva and the sublingual and submandibular glands 

produce mixed saliva (Humphrey & Williamson, 2001). The types of cells found in the 

salivary glands are acinar cells, various duct system cells and myoepithelial cells. Acinar 

cells, from which saliva is first secreted, determine the type of secretion produced from the 
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different glands. They are connected by intercalated ducts and the secreted saliva is drained 

to the oral cavity through striated and excretory ducts. During this passage, the concentrations 

of several electrolytes change due to active ion transport (Aps and Martens, 2005). 

Myoepithelial cells, which are long cell processes wrapped around acinar cells, contract on 

stimulation to constrict the acinar cells. This causes saliva to be squeezed out (Garret!, 1987). 

The secretion of saliva is under neural control by three principal mechanisms or stimuli 

including mechanical (the act of chewing), gustatory (with acid the most stimulating trigger 

and sweet the least stimulating), and olfactory (althougb a surprisingly poor stimulus) 

(Humphrey & Williamson, 2001). Stimulating high flow rates can drastically change 

percentage contributions from each gland, with the parotid contributing more than 50% of 

total salivary secretions compared with only 20% in the unstimulated state (Edgar, 1990). 

The value of saliva as a biological fluid for the detection of diagnostic and prognostic 

biomarkers has become increasingly well established. Sample collection is non-invasive, 

painless, and able to provide accurate and reliable assessments of immune status and the 

unbound, biologically active, form of certain hormones and drugs. Thus, it is considered a 

valuable tool for investigating the impact of exercise on stress and immune function. 

1.4. Salivary composition and mucosal immunity 

Saliva secretions protect the oral mucosa via a mechanical washing effect and play an 

important role in immunity as the first line of defence against potential pathogens invading 

the oral and nasal cavities. Saliva contains several antimicrobial proteins e.g. 

immunoglobulins, lysozyme and a-amylase, which play a critical role in defence against 
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infection and disease by interfering with microbial entry and multiplication (Bosch et al., 

2002). 

1.4.1. Immunoglobulin A 

Immunoglobulin A is the principal antibody representing the acquired immune system, which 

is secreted at mucosal surfaces (Gleeson & Pyne, 2000). IgA is a dimer whose monomers are 

held together by a polypeptide structure known as the J-chain containing the secretory 

component (SC), the cleaved part of polymeric Ig receptor (pIgR). There are two subclasses 

of IgA, IgAI and IgA2, the former accounting for 60-80% of IgA in the salivary glands. IgA 

is produced by plasma cells (differentiated B-cells) residing in the submucosa and is secreted 

via transport across the epithelial cells by the pIgR, which is inserted into the basal membrane 

(Mackinnon, 1999). IgA binds to this receptor and undergoes endocytosis and vesicular 

transport across the cell. At the apical surface secretory IgA is cleaved from the receptor and 

remains attached to the SC. The covalent binding of the secretory component acts to prevent 

the IgA from proteolysis (Gleeson, 2006). 

Immunoglobulin A seems to function as a multilayered mucosal defence: it prevents antigens 

and microbes from adhering to and penetrating the epithelium (immune exclusion), interrupts 

replication of intracellular pathogens during transcytosis through epithelial cells (intracellular 

neutralisation), and binds antigens on the lamina propria facilitating their excretion through 

the epithelium back into the lumen (immune excretion) (Larnm, 1998). It is therefore 

important to host defence against certain viruses that are not carried by the blood especially 

those causing URTI. Indeed, low levels of salivary IgA (s-IgA) are associated with a higher 

incidence of URTI (Hanson et al., 1983) and high levels of s-IgA are associated with a lower 

incidence ofURTI (Rossen et al., 1970). 
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1.4.2. Lysozyme 

Lysozyme represents the main enzyme of the non-specific innate mucosal immune defence. It 

has antimicrobial properties and functions to aid the destruction of bacterial cell walls by 

cleaving the polysaccharide component (Bosch et al., 2002). Lysozyme also acts to stimulate 

neutrophils and macrophages, and works with immunoglobulins to have further antimicrobial 

effects (lolles and lolles, 1984; West et aI., 2006). It is produced mainly by the 

submandibular and sublingual glands and it is secreted into saliva by mucous membranes and 

mononuclear cells entering the oral cavity through gingival crevices (Noble, 2000). 

Lysozyme has been shown to be lower in subjects prone to acute bronchitis infection caused 

by Haemophilus influenzae (Clancy et al., 1995). Furthermore, patients with chronic 

bronchitis who were less prone to acute exacerbations had a greater capacity to aggregate 

bacteria and were shown to have higher levels of lysozyme (Taylor et al., 1995). 

1.4.3. Alpha-amylase 

Alpha-amylase is an enzyme that breaks down starch into maltose and is also important to 

host defence by inhibiting the adherence and growth of certain bacteria (Scannapieco et al., 

1994). Alpha-amylase is synthesised locally by the acinar cells mainly from the parotid 

gland, accounting for 40 to 50% of the total salivary-gland produced protein (Noble, 2000). 

To date, the immunological significance of a-amylase in relation to URTI remains unclear. 

1.5. Regulation of salivary secretion 

The regulation of salivary antimicrobial proteins is via a short-term (minutes) mobilisation 

andlor a long-term (hours - days) modification of protein synthesis (Goodrich and McGee, 
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1998). This may be influenced by the two branches of the stress response: sympathetic 

nervous system (SNS) activity and the hypothalamic-pituitary-adrenal (HPA) axis. 

1.5.1. Sympathetic nervous system activity 

The salivary glands are innervated by both parasympathetic and sympathetic nerves. 

Generally, it is considered that sympathetic stimulation (via noradrenaline) leads to higher 

salivary protein concentrations (e.g. a-amylase), whereas increased rates of fluid output 

occur in response to parasympathetic stimulation (Chicharro et aI., 1998). However, 

parasympathetic stimulation can also affect salivary protein secretion, and protein secretion 

of some glands, such as the sublingual and some of the minor glands, may even be entirely 

under parasympathetic control. Thus, rather than acting antagonistically, it could be argued 

that the two branches of the autonomic nervous system may exert relatively independent 

effects in which the activity of one branch may synergistically augment the other (Bosch et 

ai.,2002). 

Studies carried out in rodents suggest that protein secretion is upregulated into saliva 

following autonomic nerve stimulation. Indeed, the secretion of s-IgA was increased rapidly 

(within minutes) by both parasympathetic and sympathetic stimulation (Carpenter et ai., 

2000), and adrenaline was shown to increase the entry of human IgA into saliva by rat 

salivary cells via increased mobilisation of the pIgR (Carpenter et ai., 2004). Parasympathetic 

and sympathetic stimulation in rats has also been shown to increase the secretion of other 

stored salivary proteins (e.g. peroxidase and a-amylase) into saliva, which occurs to a much 

greater magnitude than s-IgA (Carpenter et al., 2000). 
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Activation of the sympathetic nervous system leads to the release of catecholamines 

(adrenaline and noradrenaline) into the circulation. However, catecholamines measured in 

saliva are regarded as a poor index of sympathetic nervous activity (Kennedy et al., 2001), 

since they do not accurately reflect changes in circulating catecholamines (Schwab et al., 

1992). As a result, a-amylase has been identified as a potential surrogate marker of SNS 

activity in humans under a variety of stressful conditions. Studies have shown that acute 

psychological stressors increase salivary a-amylase activity (Bosch et al., 2002; Nater et al., 

2006). Moreover, these increases were positively correlated with serum noradrenaline 

(Chatterton et aI., 1996). Thus, the increase in sympathetic tone that occurs during 

psychological stress would be similar to that produced during exercise and suggests that 

exercise could similarly affect a-amylase secretion. Indeed, a bout of exercise has been 

shown to increase a-amylase activity (Chatterton et al., 1996). A five-fold increase in «­

amylase activity was found after a 60-min intermittent cycle exercise bout, of twenty 1-min 

periods at 100 % of maximum oxygen uptake (VOzma, ) separated by 2 min recovery at 30% 

VOzma< (Walsh et al., 1999). However, the use of a-amylase as a non-invasive measure of 

SNS activity requires further examination since its secretion is also increased by 

parasympathetic stimulation alone or in interaction with sympathetic stimulation (Asking and 

Proctor, 1989). 

Another potential marker of sympathetic nervous system activity is Chromogranin A (CgA). 

Chromogranin A is an acidic secretory protein found in a wide variety of hormone and 

neurotransmitter storage vesicles and is co-stored and co-released with catecholamines from 

the adrenal medulla and neuronal vesicles during exocytosis (Banks and Helle, 1965). In vitro 

experiments have also demonstrated that CgA exhibits antifungal and antibacterial properties 

(Stmb et aI., 1996; Lugardon et al., 2000). Salivary CgA concentration has been shown to 
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increase rapidly under psychosomatic stress (Nakane et al.. 1998). although the response of 

CgA to a bout of exercise is yet to be determined. 

1.5.2. Hypothalamic-pituitary-adrenal axis 

Whereas autonomic stimulation may rapidly affect the secretion of salivary proteins. slower 

effects have been reported for pituitary-adrenal hormones. Exercise or stress activates the 

hypothalamic-pituitary-adrenal axis. the end product of which is cortisol. Cortisol is well 

known for its modulatory effects on immune function (Fleshner. 2000). The potent synthetic 

glucocorticoid dexamethasone has been shown to cause a decline in the mobilisation of s-IgA 

24 h after a single injection (Wira et aI., 1990), and in the longer term this hormone may 

inhibit IgA synthesis by B cells in the submucosa (Saxon et al .• 1978). Cortisol has also been 

implicated in modifying other secretory proteins such as lysozyme production and its 

secretion into saliva (Perera et al.. 1997). Salivary cortisol has been shown to correlate highly 

with circulating levels of cortisol (Chicharro et aI., 1998) making it a reliable marker of HPA 

axis activity. 

Exercise stimulates SNS activity and the HP A axis to secrete stress hormones, thus increasing 

the body' s ability to meet the physical and metabolic demands of exercise. Prolonged intense 

exercise is associated with substantially increased secretions of catecholamines and 

glucocorticoids which have a strong influence on the immune system. This presents a 

potential pathway linking exercise. stress and infectious disease. 

1.6. Methods of saliva collection 

An important consideration when interpreting exercise studies on saliva flow rate and 

composition is the methods that were used to collect samples. There appears to be little 

10 



Chapter 1 Literature Review 

consistency across studies; some researchers have used cotton salivettes (Walsh et aI., 2002, 

Bishop et al., 2006), while others have used the passive drool (Li and Gleeson 2004; Sari­

Sarraf et al., 2007a) or even a suction tube to draw saliva from the floor of the mouth 

(Michishige et aI., 2006). This is noteworthy since it was reported that cotton salivettes 

reduced the concentration of s-IgA compared with passive collection of saliva (Strazdins et 

al., 2005). In addition, there may be a potential stimulatory effect on saliva production from 

introducing something foreign into the mouth, which may preferentially stimulate some 

glands more than others; although evidence to support this is lacking (Navazesh and 

Christensen, 1982). A previous study examined the reliability of the collection methods of 

spitting, draining, suction and swabs and it was found that the spitting and draining methods 

gave the most reproducible results (Navazesh, & Christensen, 1982). 

1.7. Methods of expressing s-IgA 

The methods of expressing s-IgA can also vary greatly making direct comparisons between 

studies difficult. S-IgA concentrations have often been expressed not only in absolute 

concentrations (Gleeson et al., 1999; Tharp and Bames, 1990), but also as a ratio to total 

salivary protein, (Blannin et al.. 1998. Mackinnon et al., 1987; Tomasi et al., 1982). albumin 

(Pyne et al.. 2000) or osmolality (Blannin et aI., 1998, Laing et aI., 2005). It has been 

suggested that expressing s-IgA relative to total protein is misleading since total protein 

secretion rate can increase during exercise (Blannin et al., 1998; Walsh et al., 1999; Sari­

Sarraf et al.. 2007a). However, expressing s-IgA relative to osmolality may be a valid 

measure when significant variations in saliva flow rate occur (Blannin et aI., 1998). This is 

because a reduction in saliva flow rate may have a concentrating effect on s-IgA resulting in 

an artificial increase in the s-IgA concentration for a given volume. It is now thought that the 

secretion rate of s-IgA (saliva flow rate multiplied by the s-IgA concentration) is the most 
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appropriate measure (Mackinnon and Hooper, 1994; Walsh et al., 1999, Blannin et al., 1998; 

Li and Gleeson 2004), since s-IgA secretion rate represents the total amount of s-IgA 

delivered to the mucosal surface per unit time and takes into account the saliva flow rate and 

IgA concentration, both of which are important for host defence (Mackinnon et al., 1993a). 

Indeed, the study by Li and Gleeson (2004) highlights these inconsistencies since it was 

shown that cycling at 60% Y02mru< for 2 h significantly increased the concentration of s-IgA 

but did not affect its secretion rate. These findings highlight the problems associated with the 

different methods of expressing s-IgA which are likely to confound the interpretation of 

results. 

1.8. Variability in s-IgA 

One of the major problems surrounding s-IgA research is the considerable variability that 

exists within and between individuals (Burrows et al., 2002, Francis et al., 2005). Francis et 

al. (2005) compared this in three populations: elite swimmers, active adults and a sedentary 

group and found that the within-individual and between-individual variability differed 

substantially in the three populations. For example, the within-subject variability was much 

greater in elite swimmers (47%) than the other active (23%) and sedentary (28%) groups. 

However, the elite swimmers were a more homogenous group, with lower between-subject 

variability (20%) compared with the active (54%) and sedentary (46%) group. The sources of 

variation are likely to be multifactorial in nature, including diurnal variation, nutritional status 

and psychological stress, but one of the major sources is the saliva flow rate (Gleeson, 2000), 

since this can be greatly affected by the hydration status of the individual and indeed 

exercise. Such a variation is important since it will impact on the design of studies i.e. the 

number of subjects needed and the ability to detect changes in mucosal immune status in 

response to exercise (Gleeson et al., 2004). 
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1.9. Exercise and saliva flow rate 

Several investigators have reported a marked decrease in saliva flow rate in response to short 

duration (less than 8 min). high intensity exercise (Engels et al., 2003; Fahlman et aI., 2001), 

although others have reported no change in saliva flow rate to brief bouts of exercise at sub­

maximal or maximal intensities (Dawes, 1981; Pilardeau et al., 1990). Several factors 

associated with high-intensity exercise such as removal of parasympathetic vasodilatory 

influences (rather than sympathetic mediated vasoconstriction), (Proctor and Carpenter, 

2007), or evaporation of saliva through increased ventilation (Pilardeau et al., 1992), have 

been proposed to explain this lower secretion in saliva flow rate. Prolonged exercise (> 90 

min) also results in a reduction in flow rate (Bishop et al., 2000, Li and Gleeson 2005; Sari­

Sarraf et al., 2007a; Walsh et at. 1999), which may be further attributed to dehydration 

occurring through sweat loss during exercise (Ford et aI., 1997; Walsh et aI., 2004). This is 

supported by evidence where the decrease in saliva flow rate was prevented by providing 

fluids to offset losses (Walsh et al., 2004). Changes in saliva flow rate following exercise are 

significant since they may not only affect the concentration of s-IgA, but more importantly, 

could lead to an increased risk of URTI. This is based on the finding that individuals 

suffering from xerostomia (dry mouth syndrome) have a substantially increased incidence of 

oral infections and more pathogenic bacteria in the buccal cavity (Fox et al., 1985). 

1.10. Acute exercise and s.IgA responses 

Although there has been an abundance of research conducted on the s-IgA response to acute 

exercise in recent years, the results remain inconsistent (Table 1.1). Some have shown 

significant decreases post-exercise (Tomasi et al., 1982; Mackinnon & Jenkins, 1993; 

Nieman et al., 2002; Steerenberg et aI., 1997; Walsh et al., 2002), some have shown 

increases (Blannin et aI., 1998, Reid et aI., 2001, Williams et aI., 2001), and others have 
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shown no change (Mackinnon and Hooper, 1994; McDowell et al., 1991; Sari-Sarraf et al., 

2007b; Walsh et aI., 1999). The reasons for the inconsistencies are likely to range from the 

dissimilarity of exercise protocols, particpant groups, collection methods (whether the sample 

was stimulated or unstimulated), how s-IgA was expressed i.e. as a concentration, or 

secretion rate and the mode of exercise performed. 

Tomasi and colleagues (1982) were the first to report evidence of altered mucosal immunity 

following intense exercise. In a cohort of elite cross-country skiers, a 20% reduction in s-IgA 

concentration was observed after 2-3 h of competition. Similar findings were reported in elite 

male swimmers following a training session (Tharp and Barnes, 1990), and Gleeson and 

colleagues have consistently reported reductions (albeit small -10%) in s-IgA concentration 

following 2 h of intense swimming in Australian national standard swimmers (Gleeson et al., 

1995; Gleeson et aI., 1999). 

Several subsequent laboratory studies also reported decreases in s-IgA levels post -exercise. 

Mackinnon et al. (1989) found a 60% decrease in s-IgA concentration and a 65% decrease in 

the secretion rate immediately after 2 h high intensity cycling, which remained low for 1 h 

and then returned to baseline levels after 24 h. Moreover, McDowell and colleagues (1992) 

reported a 25% decrease in s-IgA concentration following an incremental treadmill run to 

exhaustion, which recovered at I h post-exercise. In these studies it was not stated whether 

fluid ingestion during exercise was restricted or ad libitum which could have had an impact 

on the saliva flow rate and resulting s-IgA secretion. 

In contrast, there is now growing evidence to suggest that exercise can result in significant 

increases in s-IgA concentration. Studies in well-trained cyclists showed a 17% increase in s­

IgA concentration following 2 h cycling at 70% V02max (Walsh et aI., 2002) and a 15% 
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increase following 2 h cycling at 65% Y02m" (Laing et al., 2005). However, when s-IgA 

was expressed as secretion rate, significant reductions (20-35%) were observed. In these 

studies the increase in s-IgA concentration post-exercise was likely due to the observed 

reduction in saliva flow rate (Walsh et al., 2002), which highlights the importance of 

accounting for changes in saliva flow rate when examining the s-IgA response to exercise. 

Studies examining the s-IgA responses to more moderate soccer-specific exercise (Sari-Sarraf 

et aI., 2007a; Sari-Sarraf et al., 2007b) and moderate cycling (Reid et al., 2001; Li and 

Gleeson, 2004) have consistently shown increases in the s-IgA concentration post-exercise. 

However, when this was expressed as a secretion rate, some reported increases (Sari-Sarraf, 

et aI., 2007a), while others reported no change (Sari-Sarraf, et al., 2007b; Li and Gleeson, 

2004). 
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Table 1.1. Effect of an acute bout of exercise on salivary IgA 

Study Participants Exercise Method of expressing s-IgA S-IgA response 

Blannin et al., (1998) Young males mixed Exhaustive cycling at 55% • Absolute concentration • 200% increase 
fitness VOZmax and 80% V02 .. " • Secretion rate • 60% increase 

• Relative to saliva protein • No change 

• Relative to saliva osmolality • 70% increase 

Gleeson et aI., (1995) Elite swimmers Training sessions • Absolute concentration • 10% decrease 

Laing et al., (2005) Trained male cyclists 2 h cycle at 60% V02m" • Absolute concentration • 15% increase 

• Secretion rate • 35% decrease 

• Relative to saliva osmolality • 25 % decrease 

Li and Gleeson (2004) Active men 2 h cycle at 60% V02m" • Absolute concentration • 25% increase 

• Secretion rate • No change 

Mackinnon and Hooper Recreational joggers Treadmill exercise at 55% and • Secretion rate • No change in either 
(1994) Competitive distance 75% VOZP"k for 40 min group 

runners (Recreational joggers) or 90 
min (Competitive runners) 

Mackinnon and Jenkins Active men 5 supramaximal 60 s bouts of • Absolute concentration • 15 % increase 
(1992) cycling 

• Secretion rate • 52% decrease 

• Relative to saliva protein • 21 % decrease 

Mackinnon et al., Competitive male 2 h cycling at 90% of • Absolute concentration • 60% decrease 
(1989) cyclists ventilatory threshold 

• Relative to saliva protein • 65% decrease 



........................... -------------------------------
Table 1.1. (continued) 

Study Participants Exercise Method of expressing s-IgA S-IgA response 

McDowell et al., Young active males 15-45 min at 50-80% • Absolute concentration • No change 

(1991) 
Y02m" treadmill test 

McDowell et al., Trained males Incremental treadmill test to • Absolute concentration • 25 % decrease 

(1992) exhaustion 

Nehsen-Cannarella et Elite female rowers 2 h moderate intensity training • Absolute concentration • 50% decrease 

aI., (2000) session 
• Secretion rate • 20% decrease 

Nieman et al., (2002) Trained runners Marathon race • Absolute concentration • 21 % decrease 

• Secretion rate • 25 % decrease 

• Relative to saliva protein • 31 % decrease 

Reid et aI., (2001) Physically active Incremental cycle test to fatigue • Absolute concentration • 30% increase 
participants 

• Secretion rate • No change 

Sari-Sarraf et al., Moderately trained men Single and repeated bouts of 45 • Absolute concentration • 56% increase 

(2007a) min intermittent exercise 
• Secretion rate • 15 % increase 

• Relative to saliva osmolality • 10% increase 

Sari-Sarraf et al., Moderately trained men Soccer-specific intermittent • Absolute concentration • 56% increase 
(2007b) exercise 

• Secretion rate • No change 

• Relative to saliva osmolality • No change 



....................... ----------------------------------, 

Table 1.1. (continued) 

Study Participants Exercise Method of expressing s-IgA S-IgA response 

Steerenberg et al., Competitive triathletes Race • Absolute concentration • No change 
(1997) • Relative to saliva protein • 40% decrease 

Tharp (1991) Junior male basketball Training and matches • Absolute concentration • 10% increase 
players 

Tharp & Barnes (1990) Highly trained male 2 h training session • Absolute concentration • 10% decrease 
swimmers 

Tomasi et al., (1982) Elite male and female 2-3 h race • Absolute concentration • 20% decrease 
cross country skiers 

• Relative to saliva protein • 40% decrease 

Walsh et al., (1999) Trained male games Intense intermittent exercise - • Absolute concentration • No change 
players 60min 

• Secretion rate • No change 

Walsh et al., (2002) Trained male cyclists 2 h cycle at 70% V02mox • Absolute concentration • 17% increase 

• Secretion rate • 19.5% decrease 
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1.10.1. Effect of exercise intensity on s-IgA 

Previous research conducted in athletes suffering from recurrent infections has shown that 

exercise of equal duration performed at 75% V02""" and 100% V02m"" were associated with 

a trend for a lower s-IgA concentration post-exercise, while levels increased slightly after 

exercise at 50% V02mru< (Williarns et al., 2001). It was concluded that there exists a positive 

association between the degree of immune suppression post-exercise and the exercise 

intensity level. However, McDowell and colleagues (1991) examined the effect of treadmill 

exercise at intensities ranging from 50-80% V02""" for durations of 15-45 min in a group of 

college men where no significant changes in s-IgA concentration were observed after 

exercise irr~spective of the exercise intensity. 

To add further confusion, Blannin et al. (1998) showed that exercise to exhaustion at a higher 

intensity (80% V02""") showed a 105% increase in the s-IgA secretion rate compared with 

15% increase during moderate intensity (55% V02ma,) exercise. However, these findings 

may have been influenced by the exercise duration, which was different between the two 

exercise intensities: -30 versus -160 min for the 80% V02_ trial and 55% V02ma, trial, 

respectively. 

1.11. Chronic exercise and s-IgA 

Exercise-induced changes in s-IgA may be cumulative over time since long-term exercise 

training has also been suggested to influence s-IgA levels, although the research is still 

limited to date (Table 1.2). Results are easier to interpret since studies are more uniform and 

the resting measures should not be affected by changes in the saliva flow rate or increases in 

salivary protein secretion associated with acute exercise. Longitudinal studies monitoring 

elite Australian swimmers over a 7-month training period showed decreased pre- and post-
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exercise s-IgA concentrations (Gleeson et aI., 1995; Gleeson et al., 1999), and the resting s­

IgA concentration fell by approximately 4.1 % for every month of training (Gleeson et al., 

1999). Additionally, in competitive swimmers, a decrease in both pre- and post-exercise s­

IgA a concentration was observed over a 3-month training period (Tharp and Barnes, 1990). 

Conversely, increases in pre-exercise s-IgA concentration were observed in another group of 

elite swimmers over 12 weeks of training (Gleeson et al., 2000). In this study, the swimmers 

had just returned from a 6-week rest period and the authors commented that there may not 

have been sufficient time to note any long-term negative change in immune parameters. More 

recently it was shown that both s-IgA concentration and secretion rate were reduced in a 

cohort of American Footballers during two periods of intense training and competition over a 

12-month period (Fahlman and Engels, 2005). However, given that saliva flow rate exhibits a 

seasonal variation (decreasing during the warmer summer months; Kavanagh et al., 1998; 

Whitham et al., 2006), this may affect the s-IgA concentration during long-term training 

studies. 

The effects of short periods of intense training on s-IgA are less clear. A short training season 

in elite kayakers resulted in reductions in pre-exercise s-IgA concentrations over 3 weeks 

(Mackinnon et aI., 1993a) and 4 weeks of training in female hockey players reduced the s­

IgA concentration, secretion rate and s-IgA to protein ratio (Mackinnon et aI., 1992). A 3-

week intense military training course induced no change in s-IgA concentration though it was 

reduced after the 5-day combat course (Tiollier et al., 2005). However, an increase in pre­

and post-exercise s-IgA concentration was observed in junior basketball players measured 3 

times over a 2-month training period (Tharp, 1991). 

Moderate exercise training has resulted in increases in s-IgA levels in elderly men and 

women during 12 weeks of exercise (75% heart rate reserve for 30 min 3 times per week) 
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(Klentrou et al., 2002). Salivary IgA concentration and s-IgA concentration-salivary albumin 

concentration ratio increased significantly in the exercise group in comparison to the control 

group. 

Collectively, the evidence from these studies suggests that intense training (> 3 months) in 

well-trained athletes may be associated with a chronic suppression of s-IgA levels. This is 

thought to be an accumulative effect of reduced s-IgA levels following prolonged bouts of 

intense exercise. Conversely, more moderate training, particularly in more sedentary groups 

could result in increased s-IgA. 
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Table 1.2. Effect of exercise training on salivary IgA. 

Study Participants Exercise Method of Expressing s-IgA S-IgA Response 

Fahlman and Engels, Competitive American 12-month training season • Absolute concentration • 38% decrease 

(2005) footballers 
• Secretion rate • 30% decrease 

Gleeson et aI., (1995) Highly trained swimmers 7-month training season • Absolute concentration • 16-17% decrease 

Gleeson et aI., (1999) 

Gleeson et al., (2000) Highly trained swimmers 12-week training cycle • Absolute concentration • 50% increase 

Klentrou et al., (1999) Sedentary elderly men 12-weeks moderate aerobic • Absolute concentration • 57% increase 
training 

• Relative to albumin • 13% increase 

Mackinnon et aI., (1992) Elite female hockey players 4-weeks of training • Absolute concentration • - 30% decrease in all 

• Secretion rate 
measures 

• Relative to saliva protein 

Mackinnon et al., (1993a) Elite male kayakers 3-month intensive training • Absolute concentration • 34% increase 

Tharp (1991) Junior basketball players 2-month seaSon • Absolute concentration • 15% increase 

Tharp and Barnes (1990) Highly trained swimmers 3-month training season • Absolute concentration • 22% decrease 

Tiollier et al., (2005) Military personnel 3-week intense training and • Absolute concentration • 40% decrease 
5-day combat course 
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1.12. Exercise and other salivary antimicrobial proteins 

Presently, the research investigating the influence of exercise on other salivary antimicrobial 

proteins is scant, although there have been several published findings of their response to 

psychological stress. Lysozyme concentrations have been shown to decrease in final year 

students during acute stress immediately prior to an exam, compared with one month after the 

end of all examinations (Perera et aI., 1997). Furthermore, lysozyme concentrations have also 

shown a negative correlation with perceived stress scores (Perera et al., 1997). In contrast, 

significant increases in the antimicrobial protein lactoferrin were found following an acute 

laboratory stressor (Bosch et ai., 2003). There is only one published abstract examining the 

effects of acute exercise on lysozyme following intense training sessions in elite swimmers 

(Koutedakis et al., 1996). In this study, significant reductions in salivary lysozyme 

concentration and secretion rate were reported post-exercise. These preliminary findings 

highlight the need for further well-controlled studies designed to investigate the responses of 

salivary antimicrobial proteins to both acute and chronic exercise. 

The response of a-amylase to exercise appears to be more consistent. Generally, it is reported 

that it increases following an acute bout of exercise (Bishop et al., 2000; Chatterton et al., 

1996; Walsh et aI., 1999), and this increase is related to the exercise intensity (Bishop et al., 

2000; Ljungberg et aI., 1997; Walsh et aI., 1999). These transient increases in a-amylase are 

likely to be induced by the increases in catecholamines and SNS activity with exercise 

(Dawes, 1981). However, the relevance of these findings in terms of URTI risk is not fully 

understood. 
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1.13. Salivary antimicrobial proteins and infection risk in athletes 

It is well known that individuals with IgA deficiency experience a higher incidence of URTI, 

and a significant relationship between s-IgA concentration and URTI incidence in the general 

population has been reported (Jemmott and McClelland, 1989). A decrease in salivary IgA 

levels has also been implicated as a possible causal factor for the increased susceptibility of 

athletes to URTI. In a much cited study by Gleeson and colleagues (1999), this was assessed 

in a cohort of elite swimmers during a 7-month training period. S-IgA concentration fell 

during this training period and an inverse correlation was found between reported infections 

and the pre-session s-IgA concentration. Mackinnon et al. (l993b) also reported that the 

levels of s-IgA in squash players decreased on days preceding illness, whereas the levels 

were higher on days that did not precede URTI. Significant associations have also been 

observed between URTI episodes and s-IgA secretion rate in American college football 

players over a 12-month competitive season (Fahlman and Enge!s, 2005).' An increase in s­

IgA in elderly subjects in response to moderate exercise was associated with a decreased 

incidence of URTI symptoms (Klentrou et al., 2002). 

However, several other investigations have been unable to replicate these findings. Following 

a marathon, when expressed as a ratio to total saliva protein, post-race levels were lower in 

those developing URTI. However, when expressed as absolute s-IgA concentration and s-IgA 

secretion rate no association was observed (Nieman et aI., 2002). Furthermore, no significant 

correlation between URTI and s-IgA was found in another cohort of swimmers over 12 

weeks (Gleeson et al., 2000), in elite female rowers over 2 months (Nehlsen-Cannarella et 

al., 2000) or in elite tennis players studied over 12 weeks (Novas et al., 2003). Given the high 

degree of variability in s-IgA for an individual, it would appear that s-IgA may only be a 

marginal predictor of short-term URTI risk (Pyne et al., 2000). Nonetheless, to date, this is 
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the only measure of immune function that has been directly linked to URTI susceptibility in 

athletes and thus, warrants further investigation. 

1.14. Circadian Variation of Salivary Components 

Many components of the immune system exhibit rhythmic changes (Shephard and Shek, 

1997) and circadian variations in s-IgA and a-amylase have been shown in a number of 

previous studies (Gleeson et aI., 2001; Hucklebridge et aI., 1998; Li and Gleeson, 2004). A 

significant decrease in s-IgA throughout the day is observed from its highest value in the 

early morning to its lowest value in the evening. In contrast, a-amylase secretion rate 

increases during the day (Li and Gleeson, 2004). Consequently, reports of a decrease in s-IgA 

and an increase a-amylase after prolonged exercise performed in the morning may not give a 

clear representation of whether the response was a result of the exercise per se, or a reflection 

of the circadian rhythm. The effects of a diurnal variation on the salivary responses were 

assessed following prolonged cycling (Li and Gleeson, 2004) and intensive intermittent 

swimming (Dimitriou et al., 2002), however, no influence of diurnal variations on the 

responses were found. 

1.15. Nutritional influences on mucosal immunity 

Several researchers have investigated the effects of certain nutritional supplements on the s­

IgA response to exercise but with varying success. The supplementation of ginseng (Engels et 

al., 2003), Vitamin C (Palmer et aI., 2003) and glutamine (Kreiger et al., 2004) appear to 

have little impact on s-IgA. More important perhaps is the effect of carbohydrate (CHO) and 

fluid intake (Bishop et aI., 2000; Costa et aI., 2005), bovine colostrum (Crooks et aI., 2006) 

and echinacea purpurea (Hall et aI., 2007). 
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1.15.1. Carbohydrate, exercise and s-IgA 

Carbohydrate ingestion during prolonged exercise has been shown to attenuate the rise in 

stress hormones such as plasma catecholamines and cortisol and appears to limit the degree 

of exercise-induced immune depression (Glee son and Bishop, 2000). In contrast, an athlete 

exercising in a CHO-depleted state experiences larger increases in circulating stress 

hormones and a greater perturbation of several immune function indices (Gleeson et al., 

2004b). 

Bishop et al. (2000) demonstrated that CHO and fluid intake during prolonged sub-maximal 

exercise were important in maintaining the saliva flow rate and s-IgA concentration (but not 

secretion rate) when compared with restricted fluid intake. However, there appears to be little 

effect of CHO ingestion during exercise on s-IgA when compared with placebo (Bishop et 

aI., 2000; Nehlsen-Cannarella et al., 2000; Nieman et aI., 2002). In the longer term, a high 

CHO diet appeared to enhance s-IgA levels post-exercise in ironman athletes (Costa et al., 

2005) and it was found that a 24 - 48 h period of combined fluid and energy restriction 

decreased the s-IgA secretion rate (Oliver et al., 2007). 

Since few studies have quantified the nutritional status of individuals, its effect on the 

immune response to exercise cannot be readily determined (Gleeson et al., 2004a). Moreover, 

it is thought that the nutritional status of an individual may be a contributing factor to the 

large variation of s-IgA observed within-individuals, since fasting saliva was reported to 

yield higher and more variable concentrations of s-IgA concentration than non-fasting 

samples (Gleeson et al., 1990; Gleeson et aI., 2004a). 
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1.16. Gender differences 

The majority of available literature has focused on male subjects or a mixed gender 

population. Very little research has been conducted on females alone (Fahlman et ai., 2001; 

Nehlsen-Cannarella et al., 2000). This may be important since significantly lower levels of 

resting s-IgA concentrations in females compared with males have been reported in elite 

swimmers (Gleeson et al., 1999). Whether these gender differences may influence the 

salivary responses to acute exercise or exercise training is yet to be determined. Furthermore, 

whether there are gender differences in resting s-IgA levels for other sporting populations 

remains unknown. 

1.17. Stimulated saliva flow 

Stimulating whole mouth saliva secretion can increase the flow rate up to 7 mL.min·1 

compared with 0.3 mL.min·1 in unstimulated saliva (Humphrey and Williamson 2(01). 

Navazesh & Christensen (1982) compared different methods of salivary stimulation: 

gustatory: citric acid drops, straight onto the tongue or onto hardened ashless filter paper, and 

masticatory: chewing polyvinyl acetate gum base for one minute. All three methods 

successfully increased saliva flow rates. However, despite controlling chewing rate at 20 jaw 

strokes per minute, the masticatory method was found to produce the most variable results 

which were most likely due to differences in force and duration of force when chewing. 

Stimulating saliva flow can also influence the composition of saliva produced. Proctor and 

Carpenter (2001) showed that chewing increased the s-IgA secreted into saliva by epithelial 

cell trancytosis. Salivary secretion was stimulated by chewing on a tasteless piece of 

polythene tube, which therefore only stimulated masticatory salivary secretion. Similar 

increases were also found in the secretion rates of total protein and a-amylase. Such changes 
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in the quantity and quality of saliva by chewing gum may have potential health benefits, not 

only for individuals suffering with xerostomia (dry mouth syndrome), but also for athletes as 

a measure of counteracting the reported post-exercise drop in s-IgA secretion rate. This was 

examined in one previous study where the effects of stimulated and unstimulated salivary 

flow on the s-IgA response to high intensity exercise were compared. Participants cycled at 

85% \'02max until volitional fatigue. Saliva secretion was stimulated by sucking a mint (taste 

stimulation only) for 1 min prior to saliva collection. S-IgA secretion rate was found to 

decrease with exercise but was higher in stimulated compared with unstimulated saliva 

(Gleeson et aI., 2003). 

1.18. Summary 

This chapter presents a review of the effect of exercise on salivary markers of stress and 

antimicrobial proteins. Specifically, it highlights the responses of s-IgA and lysozyme to 

exercise and how these changes may be related to the salivary markers of adrenal activation: 

cortisol and a-amylase. Exercise causes a marked increase in the activity of the SNS and the 

HP A-axis which can act to modify both the synthesis and translocation of antimicrobial 

proteins into saliva. However, whether this is in a positive or negative manner remains 

controversial. It is clear that the s-IgA response to acute and chronic exercise requires further 

attention and the response of other antimicrobial proteins to exercise are yet to be fully 

investigated. Therefore, the main objectives of the present research studies were to: 

1) Investigate the effect of pre-exercise nutritional status (fed versus overnight fasted) on 

the s-IgA response to prolonged cycling 

2) Investigate the effect of feeding versus fasting during prolonged exhaustive exercise 

on salivary antimicrobial proteins 
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3) Compare the effects of stimulated and unstimulated salivary flow on the s-IgA, 

lysozyme and a-amylase responses to prolonged exhaustive cycling 

4) Examine the effect of short duration cycling exercise at different intensities on 

salivary antimicrobial proteins and markers of adrenal activation 

5) Determine the effect of a 6-month period of training and competition on s-IgA and 

URTI incidence in elite male and female swimmers 

29 



Chapter 2 General Methods 

Chapter 2 - General Methods 

2.1. Ethical approval 

Approval of the study protocols included in this thesis was obtained prior to their 

commencement by the Loughborough University Ethical Advisory Committee. The aims and 

procedures were explained fully to each participant verbally and in writing. All participants 

were given an opportunity to ask questions before providing written informed consent 

(Appendix A), and were made fully aware that they were free to withdraw from the study at 

any time without providing any reason. 

Prior to beginning the study, the participants completed a health screen questionnaire 

(Appendix B) and a physical activity questionnaire (Appendix C) to confirm that they were 

suitable to take part. On each testing day, participants were required to complete a separate 

health questionnaire (Appendix D) to confirm that they were not experiencing any symptoms 

of illness. 

2.2. Protocol for the determination of maximal oxygen uptake (Y02ma,) 

Measurements of Y02ma< were conducted within 1-2 weeks before commencing the main 

trials. Participants performed a continuous incremental exercise test on an 

electromagnetically braked cycle ergometer (Lode Excalibur, Groningen, Netherlands) to 

volitional exhaustion to determine their maximal oxygen uptake (Y02ma<). Following a 3-min 

warm-up, participants began cycling at 70 W for Chapter 7 and 95 W for all other trials with 

increments of 35 Wevery 3 min. Verbal encouragement was provided to each participant to 

ensure maximal effort. Samples of expired gas were collected in Douglas bags (Harvard 
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Apparatus, Edenbridge, UK) during the third minute of each work rate increment and heart 

rate (HR) was measured continuously using short-range radio telemetry (Polar Beat, Polar 

Electro Ltd., Oy, Finland). An oxygen/carbon dioxide analyser (Servomex 1400, Crowbridge, 

UK) was used along with a dry gas meter (Harvard Apparatus, Edenbridge, UK) for the 

determination of VE, VO, and VCO,. From the VO, work rate relationship, the work rates 

equivalent to 65% V02ma, (Chapter 4), 50% and 75% V02max (Chapter 7) and 60% and 75% 

VO'max (Chapter 6) for each participant were interpolated. 

2.3. Familiarisation trials 

In Chapters 4, 5 and 6 participants performed a familiarisation ride prior to their main trials. 

The purpose of this was to familiarise them with the exercise protocol and to check that the 

correct relative exercise intensity (% V02max) was being performed. Participants cycled at the 

specific work rate and amount of time that was to be performed for each of the main trials. 

Expired gas samples were collected over a l-min period into Douglas bags after 10 min and 

30 min of exercise and then every 30 min thereafter. Heart rate and RPE were also measured 

every 15 min. Prior to all main trials the participants were familiarised with the saliva 

collection procedure. This enabled them to feel comfortable with the collection method and to 

establish individual flow rates and an appropriate collection time to ensure that an adequate 

volume (- 1.5 mL) of saliva was collected for analysis. 

2.4. Analytical methods 

2.4.1. Saliva sampling and analysis 

All saliva collections were made with the participants seated, leaning forward and with their 

heads tilted down. Participants were instructed to swallow in order to empty the mouth before 
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an unstimulated whole saliva sample was collected over a pre-determined time period into a 

pre-weighed, sterile vial. Care was taken to allow saliva to dribble into the collecting tubes 

with eyes open making minimal orofacial movement. Samples were then stored at -80°C until 

analysis. 

2.4.2. Determination of saliva flow rate 

Saliva volume was estimated by weighing to the nearest mg and the saliva density was 

assumed to be 1.0 g.rnL·1 (Cole and Eastoe, 1988). Saliva flow rate (mL.min'l ) was 

determined by dividing the volume of saliva by the collection time. 

2.4.3. Determination of salivary IgA concentration 

After thawing, the stored saliva samples were analysed for IgA using a sandwich-ELISA 

method similar to that described by Gomez et at. (1991). Briefly, flat-bottomed microtitration 

plates (Coming medium affinity plates, Sigma, roole Dorset) were coated with the primary 

antibody, rabbit anti-human IgA (1-8760, Sigma, Poole, UK) at a dilution of 1 in 800 in 

carbonate buffer, pH 9.6. After washing with phosphate buffered saline (PBS, pH 7.2) the 

plates were coated with blocking protein solution (2% w/v bovine serum albumin in PBS). 

Sample analysis was performed in duplicate using saliva samples diluted 1 in 1000 with PBS 

and a range of standards (Human colostrum IgA, 1-2636, Sigma) up to 500 mg.L·1
• A set of 

standards was incorporated into each micro-well plate, and all samples from a single subject 

were analysed on a single plate. The plates were incubated for 90 min at room temperature. 

Following a washing step, peroxidase-conjugated goat anti-human IgA (A-4l65, Sigma) was 

added and the plate was incubated for a further 90 min at room temperature. Following 

another washing step, the substrate, ABTS (Boehringer Mannheim, Lewes, UK) was added 

and after 15 min the absorbance was measured at 405nm. Salivary IgA concentration was 

32 



Chapter 2 General Methods 

determined by interpolation from the linear standard calibration curve. The intra-assay 

coefficient of variation for s-IgA concentration was 7.2%. 

2.4.4. Determination of a-amylase, cortisol, chromogranin A, lysozyme and osmolality 

Alpha-amylase activity was measured using a spectrophotometric method as previously 

described by Li and Gleeson (2004). Salivary cortisol (DX-SLV-2930, DRG Instruments, 

Marburg, Germany), Chromogranin A (CgA) (Cosmo Bio Co., Ltd, Japan) and lysozyme 

(Biomedical Technologies Inc., USA) concentration were analysed using commercially 

available ELISA kits. Osmolality was determined using a cryoscopic (freezing point 

depression) osmometer (Osmomat 030, Gonotec, GbBH, Berlin, Germany) calibrated with 

300 mOsmol.kg,1 NaCl solution. The intra-assay coefficient of variation for the analytical 

methods used in all studies combined were 2.4%, 1.3%, 7.9% and 8.2% for a-amylase, 

cortisol, CgA'and lysozyme, respectively. 

2.4.5. Determination of secretion rate 

The secretion rate of s-IgA, lysozyme, a-amylase and CgA was calculated by multiplying the 

saliva flow rate by the concentration of the measured analyte. 

2.5. Reporting of respiratory illness 

In Chapter 8 symptoms of URTI were recorded weekly by means of a questionnaire 

(Appendix E), adapted from the Wisconsin Upper Respiratory Symptom Survey (WURSS-

21; Barrett et al., 2002). This referred to symptoms of URTI exhibited during the previous 

week. A positive incidence of URTI was recorded when two or more symptoms were 

exhibited on two consecutive days, at least 1 week apart from a previous episode. 
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2.6. General statistical methods 

All statistical analysis was performed using SPSS 12.0 software for Windows (SPSS Inc., 

Chicago IL, USA). Data are presented as mean values and standard error of the mean (± 

SEM). Data were checked for normality, homogeneity of variance and sphericity before 

statistical analysis. If the data were not normally distributed, analysis was performed on 

logarithmic transformed data. In Chapter 8 data were analysed using a one-factor analysis of 

variance (ANOV A) with repeated measures design. Chapters 4, 5, 6 and 7 employed a two­

factor (trial x timepoint) repeated measures ANOV A. Significant differences were assessed 

using Student's paired (-test with Holm-Bonferroni adjustments for multiple comparisons. 

Single comparisons between trials were assessed using Student's paired (-tests with Holm­

Bonferroni adjustments. Statistical significance was accepted at P < 0.05. 
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Chapter 3 - Study 1: Influence of a fed or fasted state on the s-IgA response 

to prolonged exercise 

Abstract 

It has been previously suggested that the nutritional status of an individual can influence the 

levels of salivary immunoglobulin A (s-IgA) at rest, yielding higher and more variable 

concentrations in fasting saliva compared to non-fasting saliva (Gleeson et aI., 2004a). 

Prolonged, strenuous exercise has been associated with changes in the levels of this antibody 

(Gleeson et al., 2003a); however the influence of the fed or fasted state on the s-IgA response 

is unknown. Thus, the present study investigated the effect of a fed or fasted state on the s­

IgA response to prolonged exercise. Using a randomised cross-over design, 8 males and 8 

females of mixed physical fitness, mean ± SEM age 22 ± 1 yr, performed 2 h cycling on a 

stationary ergometer at 65% of their maximal oxygen uptake on one occasion following an 

overnight fast (FAST) and on another occasion following the consumption of a 2.2 MJ high 

carbohydrate meal (FED) 2 h before. Timed, unstimulated whole saliva samples were 

collected immediately before ingestion of the meal, immediately pre-exercise, at 5 min before 

cessation of exercise, immediately post-exercise and at 1 h post-exercise. The samples were 

analysed for s-IgA concentration, osmolality and cortisol and saliva flow rates were 

determined to calculate the s-IgA secretion rate. Carbohydrate oxidation was significantly 

higher (P < 0.05) and fat oxidation tended to be lower (P = 0.06) in FED compared with 

FAST. Saliva flow rate decreased during exercise from 0.50 ± 0.04 mL.min· l to 0.37 ± 0.03 

mL.min·] (P < 0.05), s-IgA concentration increased during exercise from 163 ± 20 to 232 ± 

24 mg.L·] (P < 0.05) but the s-IgA secretion rate remained unchanged, pre-exercise: 79 ± 11 

llg.min·], post-exercise: 74 ± 9 llg.min·1. There was a significant reduction in the s­

IgA:osmolality ratio from 2.3 ± 0.2 pre-exercise to 1.5 ± 0.1 post-exercise (P < 0.05). 
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Salivary cortisol increased from 9.9 ± 1.6 pre-exercise to 16.7 ± 2.9 nmol.L-1 post-exercise (P 

< 0.05). There was no effect of FED versus FAST on these salivary responses. The 

immediately pre-exercise values of s-IgA were 165 ± 27 and 161 ± 27 mg.L-1 in the FED and 

FAST trials, respectively. The s-IgA concentration and secretion rate were found to be 

significantly lower in females than in males across all time points (P < 0.05); however, there 

was no significant difference between genders in the saliva flow rate or the s-IgA:osmolality 

ratio. These data demonstrate that the nutritional status does not influence resting s-IgA or the 

s-IgA response to prolonged exercise. Furthermore, these data suggest a significant effect of 

gender on resting s-IgA levels without affecting the acute response to exercise. 

3.1. Introduction 

Mucosal secretions protect the oral mucosa via a mechanical washing effect and play an 

important role in immunity as the first line of defence against potential pathogens invading 

the oral and nasal cavities (Gleeson and Pyne 2000). The principal antibody present in 

mucosal fluids is immunoglobulin A (IgA) which functions to inhibit the colonisation of 

pathogens, bind antigens for transport across the epithelial barrier and neutralise viruses 

(Lamm, 1998). A reduction in the concentration of s-IgA has been implicated as a causal 

factor for the reported increased incidence of URTI during heavy training in athletes 

(Fahlman and Engels, 2005; Gleeson et al., 1999). Indeed, several studies have reported 

significant reductions in s-IgA levels following an acute bout of intense exercise (Gleeson et 

al., 1999, Nieman et al., 2002; Steerenberg et al., 1997; Tomasi et al., 1982) and it is thought 

that these effects are cumulative over time, since s-IgA concentration fell during a 7-month 

training period, and the pre-training levels were inversely correlated with symptoms of URTI 

(Gleeson et al., 1999). 
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The responses of s-IgA to exercise appear to be related to perturbations in sympatho-adrenal 

activation and resulting increases in circulating stress hormones. Carbohydrate (CHO) 

ingestion during exercise has been shown to attenuate the rise in stress hormones, whereas an 

athlete exercising in a CHO-depleted state experiences larger increases in circulating stress 

hormones (Glee son et al., 2004b). Bishop et al. (2000) demonstrated that the ingestion of a 

high CHO beverage during exercise helped to maintain saliva flow rate and s-IgA 

concentration when compared with restricted fluid intake; however, when compared with 

placebo, no effect of CHO on s-IgA concentration or secretion rate has been observed 

(Bishop et al., 2000; Nehlsen-Cannarella et aI., 2000; Nieman et al., 2002). 

The prior nutritional status of an individual may also influence s-IgA. Gleeson and colleagues 

(1990) reported that s-IgA concentration at rest was higher and more variable in fasting saliva 

compared with non-fasting saliva. Moreover, Oliver et al. (2007) reported that 48 h of energy 

and fluid restriction resulted in a fall in s-IgA secretion rate. 

The effects of nutritional status (fed vs fasted) on the s-IgA response to exercise remains 

unknown. However, some researchers have studied fasted participants (Bishop et aI., 2006; 

Blannin et aI., 1998), while others have studied fed participants (Gleeson et al., 1999; 

Gleeson et aI., 2000; Laing et al., 2005; Walsh et al., 2002). Given the apparent link between 

s-IgA and nutritional status at rest (Gleeson et al., 1990), understanding the impact of this 

factor on the s-IgA responses to exercise will have potential methodological considerations 

for further research studies as well as implications for the elite athlete. Thus, the present 

study examined the effects of a fed or fasted state on the s-IgA responses to prolonged 

cycling. A secondary aim was to assess whether gender would influence the levels of s-IgA at 

rest and during exercise. 
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3.2. Methods 

3.2.1. Participants 

Sixteen fit, healthy men and women (8 males and 8 females) volunteered to take part in the 

study. Their physical characteristics are outlined in Table 3.1. Following a preliminary 

Y02m" test and familiarisation ride, participants completed 2 main trials in a 

counterbalanced order, on separate occasions separated by at least I week. 

Table 3.1. Participant Characteristics (N = 16). 

Variable 

Age (yr) 

Body Mass (kg) 

Height (cm) 

Mean (± SEM) 

Males (n=8) 

22± I 

80.6 ± 5.8 

182 ± 1 

51.0 ± 3.6 

* Significantly different to Males (P < 0.05). 

3.2.2. Experimental procedures 

Females (n=8) 

22± I 

60.0±0.9 * 

165 ± 1* 

39.5 ±O.? * 

Participants reported to the laboratory at 09:00 h following an overnight fast (10-12 h). A 

resting fingertip blood sample was obtained using an autoclick lancet, and the blood glucose 

concentration was analysed using an Accutrend GC (Roche, Germany) glucose analyser. This 

was to confirm the participants were in a fasted state. Mean values were 4.4 ± 0.3 mmo1.L·1 

on the treatment days. Participants then consumed either: 3 cereal bars and 500 mL of a 

commercially available sports drink (FED; total energy content: 2210 kJ) or 500 mL of a 

dilute low calorie cordial drink (FAST; total energy content: 60 kJ). The nutritional content 

of the breakfast is outlined in Table 3.2. The participants were required to consume the 

38 



Chapter 3 Nutritional status, exercise and s-IgA 

breakfast within a IS-min time period. They then rested for 1 h 45 min before performing 2 h 

cycling at 65% VD,,,,,,, on a stationary cycle ergometer. The order of the trials was 

randomised. Body mass was measured pre- and post-exercise. Heart rate and RPE were 

obtained at 15-min intervals during and expired gas samples were collected every 30 min of 

exercise using a Douglas bag (Harvard Apparatus, Edenbridge, UK). Saliva samples were 

obtained upon arrival at the laboratory, immediately pre-exercise, 5 min before cessation of 

exercise, immediately post-exercise and 1 h post-exercise. Water ingestion was permitted ad 

libitum before, during and after exercise with the exception of the 10-min period prior to each 

saliva sample collection. During both experimental trials, the participants were instructed to 

remain fasted until the 1 h post-exercise sample had been collected. Fat and carbohydrate 

oxidation and energy expenditure were calculated by indirect calorimetry using 

stoichiometric equations (Frayn, 1983) and appropriate energy equivalents, with the 

assumption that the urinary nitrogen excretion rate was negligible. For the 24 h preceding 

each trial, the participants were requested to follow the same (pre-trial 1) diet and eating 

schedule before the subsequent trial. They were also requested to abstain from alcohol, 

caffeine and heavy exercise for 48 h prior to each trial. The environmental conditions of the 

laboratory were 25.4 ± 0.2°C and relative humidity of 41 ± 2%. 

Table 3.2. Participant Characteristics (N = 16). 

Variable Sports Drink (500 mL bottle) Cereal bar (37 g) 

Energy (kJ) 590 540 

Protein (g) 4 

Carbohydrate (g) 32 67 

Fat (g) 8 

Sodium (mg) 250 250 
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3.2.3. Saliva collection and analysis 

All saliva collections and analyses were performed as described in Chapter 2. 

3.2.4. Statistical analysis 

For comparison of the effects of nutritional status (FED vs FAST) and gender (males vs 

females) the data were examined using a 2 (trials) x 5 (times of measurement) repeated 

measures ANOV A for saliva flow rate, salivary IgA concentration, salivary IgA secretion 

rate, salivary osmolality and salivary cortisol concentration. Significant differences were 

assessed using Student's paired t-test with Holm-Bonferroni adjustments for multiple 

comparisons. Physiological variables, RPE and blood glucose were examined using Student's 

paired t-tests. Gender comparisons at pre-exercise in the fasted trial were made using 

Student's unpaired t-tests. Statistical significance was accepted at P < 0.05. 

3.3. Results 

3.3.1. Physiological variables and RPE 

Results for exercise intensity (% Y02m", ), HR, RPE and body mass changes are presented in 

Table 3.3. There were no significant differences between trials in any of the physiological 

variables. 
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Table 3.3. Mean (± SEM) physiological and RPE values obtained during each trial (N = 16). 

FED FAST 

% V02_ 65.8 (0.7) 65.1 (0.9) 

HR (beats. min") 154 (3) 151 (3) 

RPE 12 (1) 12 (1) 

Body Mass Change (kg) -0.2 (0.2) -0.2 (0.2) 

Fluid Intake (mL) 1203 (120) 1270 (155) 

Fluid Loss (L) 1.41 (0.16) 1.49 (0.18) 

Carbohydrate oxidation was significantly higher (P = 0.019) and fat oxidation tended to be 

lower (P = 0.060) in FED compared with FAST. Mean rate of energy expenditure was 

similar in both trials: FED: 44.9 ± 3.7 kJ.min·\ FAST: 43.3 ± 3.4 kJ.min· l
. 

I Table 3.4. Mean (± SEM) substrate oxidation rates and contribution to energy expenditure obtained 

during each trial. (N = 16). 

FED FAST 

Carbohydrate oxidation (g.min·') 2.26 (0.25) * 1.92 (0.19) 

Fat oxidation (g.min") 0.22 (0.05) 0.32 (0.03 

Energy derived from CHO (kJ.min·') 36.2 (4.0) * 30.8 (3.1) 

Energy derived from Fat (kJ .min·') 8.8 (1.8) 12.5 (1.2) 

% contribution from CHO 79 (5) 70 (3) 

% contribution from Fat 21 (5) 30 (3) 

* Significantly different from FAST (P < 0.05). 

41 



Chapter 3 Nutritional status, exercise and s-IgA 

3.3.2. Salivary variables 

Gender differences 

There were no effects of gender on the salivary responses to exercise. However, salivary IgA 

concentration, IgA secretion rate and osmolality were found to be significantly lower in 

females compared with males (P < 0.05; Table 3.5). There were no significant differences 

between genders in saliva flow rate and s-IgA:Osmolality ratio. 

Table 3.5. Effect of gender on mean salivary variables at baseline. Means (± SEM); Males N = 8, 

Females N = 8. 

Males Females 

Saliva flow rate (mL.min-' ) 0.39 (0.45) 0.36 (0.71) 

S-IgA concentration (mg.L-' ) 224 (38) 116 (20) ** 

S-IgA secretion rate (ug.min-1
) 85 (13) 38 (9) * 

Osmolality (mOsmol.ki' ) 94 (11) 47 (5) ** 

S-IgA:Osmolality 2.4 (0.3) 2.5 (0.4) 

* Significantly different compared with Males (P < 0.05; ** P < 0.01). 

Saliva Flow rate 

Saliva flow rate showed an initial increase from baseline to pre-exercise. Saliva flow rate 

then decreased significantly during exercise and returned to baseline at 1 h post-exercise 

(main effect of time: F 3. 46 = 13.928, P < 0.001). There was no effect of FED or FAST on this 

response (Figure 3.1). 
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Figure 3.1. The effect of a fed (FED) or fasted (FAST) state on the saliva flow rate response 

to exercise. Values are mean ± SEM (N = 16). 

Salivary IgA concentration 

Salivary IgA concentration increased with exercise (main effect of time: F 3. 39 = 8.226, P < 

0.001). but there was no effect of FED or FAST on this response (Figure 3.2). 
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Figure 3.2. The effect of a fed (FED) or fasted (FAST) state on the s-IgA concentration response to 

exercise. Values are mean ± SEM (N = 16). 
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Salivary IgA secretion rate 

The s-IgA secretion rate did not change significantly throughout the exercise protocol (Figure 

3.3). 
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Figure 3.3. The effect of a fed (FED) or fasted (FAST) state on the s-IgA secretion response to 

exercise_ Values are mean ± SEM (N = 16). 

Salivary osmolality 

Salivary osmolality increased with exercise (main effect of time: F 1.21 = 19_587, P < 0.001). 

Salivary IgA:Osmolality ratio decreased post-exercise (main effect of time: F 3.44 = 13.830, P 

< 0_001). There was no effect of FED or FAST on these responses (Table 3.6). 
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Table 3.6. Mean (± SEM) osmolality values and s-lgA:Osmolality ratio obtained during each trial 

(N = 16). 

Baseline Pre-ex Ex Post-ex 1 h post-ex 

Osmolality (mOsmol.kg") 

FED 77 (12) 71 (8) 144 (21) 148 (23) 69 (9) 

FAST 64 (6) 66 (8) 152 (25) 152 (24) 73 (11) 

s-lgA- to-osmolality ratio 

FED 2.6 (0.3) 2.2 (0.2) 1.7 (0.2) 1.5 (0.2) 2.4 (0.4) 

FAST 2.4 (0.3) 2.4 (0.3) 1.7 (0.2) 1.5 (0.2) 2.7 (0.3) 

Values are means ± SEM (FED, FAST, N = 16). 

Salivary cortisol 

Salivary cortisol increased post-exercise compared with pre-exercise (main effect of time: F 1. 

6 = 6.856, P = 0.040). There was no effect of FED or FAST on this response (Table 3.7). 

Table 3.7. Mean (± SEM) cortisol (nmoI.L") values obtained during each trial (N = 16). 

FED 

FAST 

Pre-ex 

10.44 (2.16) 

9.35 (1.44) 

Post-ex 

16.65 (3.74) 

16.60 (3.82) 
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3.4. Discussion 

The primary aim of this study was to examine the influence of a fed or fasted state on the s­

IgA response to prolonged cycling. This was based on previous reports from an Australian 

laboratory that fasting saliva samples yield higher and more variable s-IgA concentrations 

than non-fasting samples (Gleeson et al., 1990; Gleeson et al., 2004a). A secondary aim was 

to examine the effects of gender on the s-IgA responses, since this had not previously been 

investigated under controlled laboratory conditions. 

It has been previously suggested that fasting saliva samples yield higher and more variable s­

IgA concentrations than non-fasting samples at rest (Gleeson et aI., 1990; G1eeson et al., 

2004a). The present findings do not support this idea since none of the salivary parameters 

were affected by the pre-exercise nutritional status. Furthermore, the spread of the data -

indicated by the SEM - for this group of individuals under the two conditions were very 

similar. 

It is possible that the differences in s-IgA between fed and fasted states that have been 

previously reported (Gleeson et al., 1990) may be related to the amount of fluid ingested, 

since this can affect the saliva flow rate and resulting s-IgA concentration (Bishop et al., 

2000). Gleeson and colleagues (1990) did not report the saliva flow rate or whether fluid 

ingestion in the fasted state was controlled thus, the increase in s-IgA concentration observed 

may have been due to lack of fluid intake and dehydration. In the present study the quantity 

of fluid ingested before exercise was the same between conditions (500 mL); however, had 

this not been equal, it is possible that higher and more variable samples would result. 
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In addition, it is possible that the timing of the meal is important in determining the s-IgA 

response. The present study provided a high CHO meal 2 h before commencing the exercise 

as this is what is typically recommended for individuals engaging in physical activity 

(Williams and Serratosa, 2006). However, since the timing of meals was not reported in the 

previously cited study, a direct comparison cannot be made. Thus, future studies may attempt 

to address this. Nevertheless, from a methodological point of view, what these results suggest 

is that exercise performed in either a fed or fasted state (of approximately 10 h) would have 

little influence on the response pattern or variability of s-IgA. 

The present results show a significant reduction (- 50%) in saliva flow rate with exercise 

returning to baseline levels at 1 h post-exercise. A decrease in saliva flow rate with exercise 

is a consistent finding reported in many studies (Steerenberg et al., 1997; Mackinnon and 

Jenkins, 1993; Walsh et al., 2002; Blannin et al., 1998). Salivary secretion is predominantly 

under the control of the autonomic nervous system (Chicharro et al., 1998) and is dependent 

on both parasympathetic cholinergic nerves and sympathetic adrenergic nerves. It has been 

previously suggested that the reduction in saliva flow rate during exercise is a result of an 

increase in SNS activity inducing vasoconstriction in the arterioles supplying the salivary 

glands (Chicharro et al., 1998). However, since only sympathetic secretomotor. rather than 

vasoactive nerve fibres are activated under reflex conditions (Proctor and Carpenter, 2007), 

this would suggest that the exercise-induced reduction in saliva flow rate is related to a 

removal of parasympathetic vasodilatory influences. Indeed, the saliva flow rate was lowest 

at the time point during exercise when parasympathetic activity would be largely inhibited, 

and this started to recover upon cessation of exercise when parasympathetic innervation 

would return. Although parasympathetic nervous system activity was not directly examined 

in the present study, it is likely that the exercise intensity was sufficient to affect this activity 
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and based on this assumption; it is not surprising that significantly lower saliva flow rates 

were observed during exercise. 

Dehydration can also impact negatively on saliva flow rate (Bishop et aI., 2002; Walsh et al. 

2004), which usually occurs following body mass losses of -3% (Walsh et al. 2004). In the 

present investigation, fluid intake was permitted ad libitum, which resulted in small body 

mass losses (-0.5%) despite this, a decrease in saliva flow rate and an increase in osmolality 

was still observed. These findings contrast Bishop et al. (2000) and Walsh et al. (2004), 

where fluid intake (to match pre-determined sweat losses in the latter study) prevented the 

decrease in flow rate and increase in osmolality. This suggests a greater effect of neural 

acti vation on saliva electrolyte secretion and flow rate during exercise rather than dehydration 

per se. These findings may question the reliability of salivary osmolality as an indicator of 

hydration status post-exercise. 

Such a reduction in saliva flow rate can impair the mechanical washing effect of micro­

organisms from the oral cavity and may also limit the availability of salivary antimicrobial 

proteins such as s-IgA. This is supported by findings showing that people suffering from 

xerostomia (dry mouth syndrome) have a substantially increased incidence of oral infections 

and more pathogenic bacteria in the buccal cavity (Fox et al., 1985). It is therefore possible 

that a reduction in saliva flow rate resulting from exercise may lead to an increased risk of 

developing URTI. 

It is noteworthy that an initial increase in the saliva flow rate from baseline to the pre­

exercise time point (2 h after) was observed. This could be due to a diurnal variation since 

saliva flow rate increases throughout the day (Dawes, 1974). On the other hand, it may relate 

to an anticipatory increase in SNS activity and inhibition of parasyrnpathetic innervation, 
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thereby reducing the saliva flow rate (Blannin et al., 1999), which should be considered if a 

true baseline measure is to be obtained. 

Salivary IgA concentration increased significantly with exercise and this is in accordance 

with many studies involving prolonged cycling (Blannin et aI., 1998; Walsh et al., 2002; Li 

and Gleeson, 2004). However, it is likely that these increases are a result of the reduction of 

saliva flow rate and dehydration, commonly reported following sub-maximal cycling, rather 

than genuine alterations in the mucosal immune response (Walsh et aI., 2002). 

Significant reductions in s-IgA secretion rate post-exercise have been previously reported 

following prolonged cycling (Laing et aI., 2005; Mackinnon et aI., 1993; Walsh et al., 2002), 

though others have reported no change (Li and Gleeson, 2004). Although s-IgA secretion rate 

did not change significantly with exercise in the present study, a 25% reduction was observed 

during exercise compared with pre-exercise. However, whether this trend has any 

physiological significance in terms of URTI risk is yet to be determined. 

'A further method of expressing s-IgA is as a ratio to osmolality. This is worthwhile since 

unlike the total protein, osmolality (electrolyte) secretion rate does not change with exercise 

(Blannin et aI., 1998). Correcting s-IgA to osmolality ratio is recommended where significant 

changes in flow rate are observed (Blannin et aI., 1998). Few researchers have expressed s­

IgA as a ratio to osmolality; of those who have, some have reported decreases (Laing et aI., 

2005), while others reported no change (Walsh et al., 2002; Sari-Sarraf et aI., 2007b). A clear 

reduction in the s-IgA:Osmolality was observed post-exercise in the present study. This lends 

some support to a transient depression of mucosal immunity post-exercise, which returns to 

baseline levels following 1 h of recovery. However, since significant reductions in the other 
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measures of s-IgA were not demonstrated, this highlights the continual discrepancies of 

which measure to use when interpreting the effects of exercise on mucosal immune function. 

Carbohydrate (CHO) has been shown to attenuate the cortisol response during exercise and it 

has been shown that both CHO and fluid intake during prolonged sub-maximal exercise are 

important in maintaining the saliva flow rate and s-IgA concentration compared with 

restricted fluid intake (Bishop et al., 2000). The present study sought to examine the effect of 

a high CHO meal ingested 2 h before exercise on the salivary responses compared with a 

control low-energy beverage. Significant increases in salivary cortisol were observed post­

exercise; however, no significant effects of treatment on salivary cortisol were observed. 

Since alterations in mucosal immune function during exercise have been previously attributed 

to the elevation of stress hormones induding cortisol, it is perhaps not surprising that no 

differences in the s-IgA responses were observed between the two conditions. 

Lower values in resting s-IgA concentration in females compared with males have been 

previously demonstrated in elite swimmers (Gleeson et al., 1999); as well as the general 

population (Evans et aI., 2000). However, no previous study has reported whether this has an 

effect on the s-IgA response to acute exercise. Striking differences between genders were 

found in many of the salivary parameters measured. No differences in saliva flow rate were 

found between genders; however, significantly higher values of s-IgA concentration were 

observed in the males compared with the females. This is in accordance with the above 

findings (Evans et aI., 2000; Gleeson et aI., 1999); however, these researchers did not 

measure the s-IgA secretion rate or salivary osmolality. Our results extend these findings 

since higher values in these measures were also observed in the male group. Although there 

was no effect of gender on the acute response to exercise, differences in resting s-IgA levels 

between groups would have practical importance if exercise scientists are to use this 
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parameter as. a predictor of infection risk. If laboratories are to establish clinically significant 

ranges, such differences would need to be taken into consideration. 

The physiological significance of the observed gender differences are yet to be elucidated. It 

is known that sex hormones play an important role in the immune system at rest (Timmons et 

aI., 2005). However, Burrows et al., (2002) found no differences in s-IgA concentration, s­

IgA secretion rate or saliva flow rate in a group of highly trained female endurance athletes 

over three consecutive menstrual cycles. Moreover, there was no relationship between s-IgA 

concentration and progesterone. It is possible that the differences relate to the absolute 

training status of the participants (weight-specific V02ma, was 20% lower in females), as it 

has been previously shown that s-IgA concentration is higher in elite athletes compared with 

both active and non-active individuals (Francis et al., 2005). Finally, the diet of the 

participants may have differed between genders and thus, it is not known whether the 

differences were related to deficiencies in certain nutrients such as protein (Chandra, 1997; 

Gleeson et aI., 2004a). Given that females appear to be more resistant to viral infections than 

males in the general population (Beery, 2003), further research is required to investigate s­

IgA in different athletic populations to determine how it might be important in infection risk. 

In summary, the results from the present study show that prior nutritional status does not 

affect resting s-IgA levels, or their acute response to exercise. Additionally, these results 

demonstrate significant gender differences in resting s-IgA levels with no effect on the acute 

s-IgA response to exercise. 
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Chapter 4 - Study 2: Effect of feeding versus fasting during prolonged 

exhaustive exercise on s-IgA, lysozyme and (X-amylase 

Abstract 

The purpose of the present study was to investigate the effect of feeding versus fasting during 

prolonged exhaustive exercise on salivary antimicrobial proteins. Using a randomised cross­

over design and following a 10 - 12 h overnight fast, 24 fit healthy men (mean ± SEM: age 

23 ± 1 yr; height 179 ± 2 cm; body mass 73.8 ± 1.6 kg; Y02mox 56.6 ± 1.0 mL.kg·1.min·1) 

cycled for 2.5 h at 60% Y02ma, (with regular water ingestion) and then cycled to exhaustion 

at 75% Y02mox. Immediately before exercise, and at 55 min and 115 min during the 60% 

Y02.,., cycle participants received a placebo beverage of 300 mL of artificial sweetened and 

flavoured water (FAST) or a commercially available high CRG cereal bar intended for 

nutritional support of athletes (FED). Timed, unstimulated saliva samples were collected 

immediately before exercise, mid-exercise, at the end of the 2.5 h moderate exercise bout and 

immediately after the exhaustive exercise bout. The samples were analysed for s-IgA 

concentration, salivary lysozyme, a-amylase and cortisol and the saliva flow rates were 

determined to calculate the secretion rates. Time to exhaustion was 44% longer in FED 

compared with FAST (P < 0.05). Saliva flow rate did not change significantly during the 

exercise protocol. Exercise was associated with increases in the secretion rates of s-IgA, 

lysozyme and a-amylase (P < 0.01). Feeding during exercise caused a higher secretion rate 

oflysozyme (43% higher) and a-amylase (15% higher) compared with fasting (P < 0.05), but 

the s-IgA levels but were not different between the two treatments. Salivary cortisol increased 

post-exhaustion in the FAST trial only (P < 0.05). Increases in lysozyme and a-amylase 

suggest that ingesting a high CRG cereal bar during prolonged exhaustive exercise may 

acutely enhance oral immune protection. 
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4.1. Introduction 

Nutritional strategies are commonly employed by athletes not just to improve performance, 

but also to modify the exercise-induced immune response. Carbohydrate (CHO) ingestion 

before and during intense prolonged exercise has emerged to date as the most effective 

measure to attenuate the stress response which appears to limit the degree of 

immunodeppression (Nieman, 2007). Previous research has examined the influence of CHO 

ingestion compared with placebo on the s-IgA response to prolonged exercise, but such 

studies have shown little effect (Bishop et al., 2000; Nehlsen-Cannarella et aI., 2000; Nieman 

et al., 2002). In Chapter 4 it was shown that the feeding of a high CHO meal 2 h before 

exercise did not affect s-IgA. Moreover, Nieman et al. (2002) showed s-IgA concentration 

and secretion rate were unaffected by the consumption of a CHO beverage during exercise. 

However, in this case CHO was administered in the form of a beverage rather than as a meal. 

This could be significant in terms of mucosal immunity since eating elicits a large increase in 

salivary flow over and above resting levels (Hector and Linden, 1999), and mastication 

(chewing) has been shown to temporarily enhance the secretion of s-IgA into saliva (Proctor 

and Carpenter, 2001). 

Salivary IgA is only one of the many protective proteins secreted in the fluids covering the 

mucosa. Other secretory proteins important in mucosal defence include lysozyme and 

amylase. They are part of the innate immune system, produced locally in the mucous 

membranes and have antimicrobial and antiviral properties (Tenovuo, 1998). Previous 

research has shown that salivary lysozyme levels may be affected by psychological stress, 

where an inverse correlation between the perceived stress response (by means of a 

questionnaire) to an undergraduate examination and lysozyme levels was reported (Perera et 

al., 1997). The relationship between exercise and lysozyme is unclear at present although one 
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study reported decreased lysozyme concentration and secretion rate post-exercise in elite 

swimmers (Koutedakis et al., 1996). Generally it is accepted that a-amylase increases with 

intense exercise (Bishop et al., 2000; Li and Gleeson, 2004; Walsh et al., 1999), and that this 

effect is related to the exercise intensity (Ljungberg et ai., 1997). However, the influence of 

feeding versus fasting during exercise on these secretory proteins is presently unknown. 

Thus, the aims of the present study were to investigate the effect of ingestion of a 

commercially available high CHO cereal bar compared with a control low energy, artificially 

sweetened beverage during prolonged exhaustive exercise on salivary antimicrobial proteins 

and exercise capacity. 

4.2. Methods 

4.2.1. Participants 

Twenty four trained male volunteers (mean ± SEM: age 23 ± 1 yr; height 179 ± 2 cm; body 

mass 73.8 ± 1.6 kg; V02max 56.6 ± 1.0 mL.kg·l.min·l; HRmax 190 ± 2 beats.min·l) 

volunteered to participate in the study. Participants who regularly engaged in a high level of 

exercise (2 h per day at least three times per week), with cycling as one of their main sports, 

were recruited to participate. Following preliminary measurements, participants completed 2 

main trials, in a counterbalanced order, which were separated by at least 1 week. 

4.2.2. Experimental procedures 

Participants were asked to abstain from alcohol and chocolate intake for the 24 h prior to each 

visit to the lab and to refrain from strenuous exercise for two days prior to each visit. 

Participants completed a food diary for the 48 h period prior to the familiarisation trial and 
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were required to follow the same diet during the 48 h prior to each of the 2 main trials. The 

participants arrived at the laboratory at 8:30 h following an overnight fast (10-12 h). They 

were asked to sit quietly for 5 min, before giving a saliva sample. Immediately after the saliva 

collection a blood sample was obtained from an ear lobe, using an autoclick lancet, and the 

blood glucose concentration was determined using an Accutrend GC (Roche, Germany) 

blood glucose analyser. The participants were then asked to empty their bladders before body 

mass was measured wearing their shorts only. Participants then consumed either FED: a 

commercially available coconut flavoured cereal bar (Powerbar™, Nestle, Switzerland) 

consisting of carbohydrate (44.9 g), protein (5.4 g), fat (3.2 g), fibre (4 g), sodium (0.6 g), 

vitamins and minerals or FAST: a placebo beverage of 300 mL of artificial sweetened and 

flavoured water intended to not provide energy or nutritional ingredients. The participants 

were required to consume the food and drink within a 5-min time period. The order of the 

trials was randomised. They then performed 2.5 h cycling at 60% Y02max on a stationary 

cycle ergometer. Experimental supplementation of either the 300 mL of the beverage or 

cereal bar was administered at 55 and 115 min. In addition, 200 mL of water was consumed 

at the beginning of exercise and every 20 min during the exercise bout. Heart rate and RPE 

were measured at 20 min intervals and expired gas was collected at 30 min, 90 min and 114 

min of exercise using a Douglas bag (Harvard Apparatus, Edenbridge, UK). Ear lobe blood 

samples for the analysis of blood glucose were obtained at 65 and 125 min during the 

exercise and saliva samples were collected at 70 min and 130 min. It was ensured that fluid 

was not consumed during the 10 min before each saliva collection. Fat and carbohydrate 

oxidation and energy expenditure were calculated by indirect calorimetry using 

stoichiometric equations (Frayn, 1983) and appropriate energy equivalents, with the 

assumption that the urinary nitrogen excretion rate was negligible. Following completion of 

the 2.5 h cycling, the participants were given a 5-min rest before performing the ride to 

exhaustion trial at 75% Y02""" . Participants were instructed to maintain a pedal cadence of 
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more than 50 rpm while cycling, to remain seated at all times and to attempt to cycle for as 

long as possible. However, no form of verbal encouragement or information on time elapsed 

were given. Heart rate was recorded every 5 min during the exhaustion ride. 

Immediately after completion of the exercise to exhaustion, a final saliva sample was 

obtained and an earlobe blood sample was collected. Finally, body mass was measured again 

in shorts only. Mean laboratory temperature and humidity during the trials were 23 ± 0.5 QC 

and 32 ± 4 %, respectively. 

4.2.3. Saliva analysis 

All saliva collections and analyses were performed as described in Chapter 2. 

4.2.4. Statistical analysis 

A two-way ANOVA (2 conditions x 4 sample times) with repeated measures design was used 

to examine the salivary data. Significant differences were assessed using Student's paired {­

tests with Holm-Bonferroni adjustments for multiple comparisons. Physiological variables, 

blood glucose and RPE were examined using Students paired t-tests. Statistical significance 

was accepted at P < 0.05. 
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4.3. Results 

4.3.1. Physiological variables and RPE 

Values for physiological variables and RPE are presented in Table 4.1. The mean time to 

exhaustion was significantly longer in FED (1294 ± 141 s) compared with FAST (897 ± 122 

s; P < 0.05). There were no significant differences between trials for % V02""" HR, RPE 

and fluid loss, although body mass loss was greater in FED compared with FAST (P < 0.05). 

Blood glucose was significantly higher on FED trial compared with FAST (P = 0.005). 

Table 4.1. Effect of a fed (FED) or fasted (FAST) state on physiological variables and RPE during 

steady state exercise. Blood glucose measurements were made at 65 min and 125 min during exercise. 

Values are mean ± SEM (N = 24). 

FED FAST 

% V02mru< 58.8 (0.53) 59.0 (0.48) 

HR (beats.min· l
) 143 (3) 141 (2) 

RPE 12 (1) 12 (1) 

Body mass loss (kg) 0.90 (0.92) 0.53 (0.10) * 

Food intake (kg) 0.18 (0.00) 0(0.00) 

Fluid intake (L) 1.47 (0.08) 1.97 (0.08) * 

Fluid loss (L) 2.55 (0.10) 2.50 (0.11) 

Glucose (mM) 4.3 (0.1) 3.9 (0.1) 

* Significantly different to FED (P < 0.001). 

Carbohydrate oxidatil?n was significantly higher (P < 0.001) and fat oxidation was 

significantly lower (P < 0.001) in FED compared with FAST during the steady state exercise 

(Table 4.2). Mean rate of energy expenditure was similar in both trials: FED: 51.8 ± 1.0 

kJ.min·1, FAST: 50.9 ± 0.9 kJ.min-1 (Table 4.2). 
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Table 4.2. Mean (± SEM) substrate oxidation rates and contribution to energy expenditure obtained 

during each trial. (N = 24). 

FED FAST 

Carbohydrate oxidation (g.min·1
) 2.47 (0.08) * 2.08 (0.07) 

Fat oxidation (g.min·1
) 0.31 (0.03) * 0.45 (0.02) 

Energy derived from CHO (kJ.min·1
) 39.52 (1.26) * 33.26 (1.10) 

Energy derived from Fat (kJ.min·1
) 12.23 (1.18) * 17.69 (0.94) 

% contribution from CHO 76 (2) * 65 (2) 

% contribution from Fat 24 (2) * 35 (2) 

* Significantly different from FAST (P < 0.001). 

4.3.2. Salivary variables 

Saliva flow rate 

Saliva flow rate was similat between trials and did not change significantly during the 

exercise protocol (Figure 4.1). A trend for a higher saliva flow rate in FED compared with 

FAST approached significance (P = 0.061). 
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Figure 4.1. Effect of a fed (FED) or fasted (FAST) state on saliva flow rate. Values are mean ± SEM 

(N= 24). 
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S-IgA concentration 

Salivary IgA concentration increased with exercise between 70 min and post-exh (main effect 

of time: F 2. 47 = 3.732, P = 0.031). Although not significant (main effect of treatment: P = 

0.091), higher levels of mean s-IgA concentration in FAST compared with FED were 

observed across all time points (Figure 4.2). 
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Figure 4.2. Effect of a fed (FED) or fasted (FAST) state on s-IgA concentration. Values are mean ± 

SEM (N= 24). 

S-IgA secretion rate 

S-IgA secretion rate increased with exercise duration (main effect of time: F 2.50 = 7.413, P = 

0.001), but there were no differences between treatments (Figure 4.3). 
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Figure 4.3. Effect of a fed (FED) or fasted (FAST) state on s-IgA secretion rate. Values are mean ± 

SEM (N=24). 

Lysozyme concentration 

Salivary lysozyme concentration increased with exercise duration (main effect of time: F 2. 27 

= 28.164, P < 0.001), and was significantly higher in FED compared with FAST across all 

time points (main effect of treatment: F 1, 11 = 9.107, P = 0.012; Figure 4.4). 
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Figure 4.4. Effect of a fed (FED) or fasted (FAST) state on lysozyme concentration. Values are mean 

± SEM (N = 24). 
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Lysozyme secretion rate 

Lysozyme secretion rate increased with exercise duration (main effect of time: F 2, 20 = 

18,378, P < 0,001) and was significantly higher in FED compared with FAST across all time 

points (main effect oftreatment: F 1.11 = 7.496, P = 0,019; Figure 4,5) 
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Figure 4.5. Effect of a fed (FED) or fasted (FAST) state on lysozyme secretion rate, Values are mean 

± SEM (N = 24), 

Salivary a-amylase activity 

Salivary a-amylase activity increased with exercise duration (main effect of time: F 2,42 = 

96.388, P < 0,001), There was also a time x trial interaction in a-amylase (F 2. 56 = 10,254, P 

< 0.001), where salivary a-amylase was significantly higher in FED compared with FAST at 

the 70 min time point; Figure 4.6), 
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Figure 4.6. Effect of a fed (FED) or fasted (FAST) state on a-amylase activity. Values are mean ± 

SEM (N = 24). * Significantly higher than FAST at that time point (P < 0.01). 

Salivary a-amylase secretion rate 

Salivary a-amylase secretion rate increased with exercise duration (main effect of time: F 2, 50 

= 44.486, P < 0,001), There was also a trial x time interaction in amylase secretion rate (F 2, 

53 = 16.414, P < 0,001), where it was higher in FED compared with FAST at the 70 min and 

130 min time points (Figure 4.7). 
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Figure 4.7. Effect of a fed (FED) or fasted (FAST) state on a-amylase secretion rate. Values are 

mean ± SEM (N = 24). * Significantly higher than FAST at that time point (P < 0.001). 

Salivary cortisol 

Salivary cortisol increased post-exercise in the FAST trial only (interaction: F 2. 24 = 5.023, P 

= 0.013; Figure 4.8). 
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Figure 4.8. Effect of a fed (FED) or fasted (FAST) state on salivary cortisol. Values are mean ± SEM 

(N = 24). * Significantly higher than 70 min and 130 min (P < 0.05). 
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4.4. Discussion 

The main findings of the present study were that feeding a high CHO cereal bar during 

prolonged exhaustive cycling increased exercise capacity, attenuated the cortisol response but 

had no significant effect on s-IgA. In contrast, lysozyme and a-amylase were significantly 

higher in FED compared with FAST. 

It was previously reported that fasting saliva yields higher levels of s-IgA concentration than 

non-fasting saliva at rest (Gleeson et al., 2004a). However, the results in Chapter 4 did not 

support this finding since the feeding of a high CHO meal 2 h before exercise had no effect 

on the s-IgA response. It was speculated that the timing of the meal might explain in part 

these inconsistencies, and hence the present study sought to examine the effect of feeding 

during exercise on these responses. Although there was no significant main effect of 

treatment in s-IgA (P = 0.091), a definite trend can be seen in that mean s-IgA concentration 

was consistently higher in FAST compared with FED across all time points; a pattern similar 

to that reported by Gleeson and colleagues (1990). It is likely that the higher s-IgA 

concentration in FAST was a result of the concomitant reduction in saliva flow rate, since no 

differences in s-IgA secretion rate were observed between treatments. These results suggest 

that the timing of the meal may be an important factor when investigating the effect of 

nutritional status on s-IgA concentration at rest and during exercise. 

The present study found no significant changes in saliva flow rate with exercise. This is in 

contrast to the majority of published research, where reductions have often been reported in 

response to prolonged exercise (Bishop et al., 2000; Li and G1eeson 2005; Walsh et al. 2002; 

Sari-Sarraf et al., 2007b). Although a withdrawal of parasympathetic activity is thought to be 
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responsible for the reduction in saliva flow rate during exercise (Proctor and Carpenter, 

2007), it has been argued that it is the hydration status of the individual that has the greatest 

impact (Walsh et al., 2004). This group found a significant reduction in saliva flow rate 

during exercise when fluid intake was restricted; but when fluid provision was sufficient to 

offset fluid losses, no differences were observed. Our results corroborate this, since 200 mL 

of water was provided every 20 min which resulted in only small changes in body mass 

(-1 %), and suggests that this practice is successful in maintaining the saliva flow rate during 

prolonged exercise. 

A significant increase in s-IgA secretion rate was observed post-exercise. This is in contrast 

to research in trained individuals where decreases (Laing et al., 2005; Walsh et aI., 2002) or 

no change (Li and Gleeson, 2004) in s-IgA secretion rate have been previously reported in 

response to prolonged cycling. However, since the s-IgA concentration did not show a 

decrease in these studies, it is likely that the observed decrease in secretion rate post-exercise 

was a result of the decrease in saliva flow rate. 

It has been proposed that elevated levels of the stress hormone cortisol can depress certain 

aspects of immune function (Nieman, 2007), and it is thought to play a role in inhibiting s­

IgA mobilisation and/or production (Hucklebridge et aI., 1998). In the present study, salivary 

cortisol was measured as a surrogate marker of the levels in blood (Chicharro et al., 1998). A 

significant increase in cortisol was observed post-exhaustion in the FAST trial only, 

suggesting that ingestion of the cereal bars was successful in attenuating the cortisol 

response. Despite the higher cortisol concentration in the FAST trial, no inhibitory effect on 

s-IgA levels occurred. Although there was no inhibition of s-IgA in the short-term, this does 

not discount an involvement of cortisol in the longer-term, since previous studies have 
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reported an exercise-induced fall in s-IgA concentration between 2 and 24 h following 

particularly long bouts of exercise (Mackinnon et al., 1987; Gleeson et al., 2001). 

In contrast to the results for s-IgA, feeding a high CHO cereal bar during exercise resulted in 

increases in lysozyme concentration and secretion rate compared with fasting. Lysozyme is a 

cationic protein with wide antimicrobial activities (West et al., 2006) and its secretion is 

under strong neurohormonal control (Bosch et al., 2002). As noted above, cortisol 

concentration was similar between the two treatments during the steady state exercise and 

increased significantly in the FAST trial at the post-exhaustion time point only. Since 

differences in lysozyme levels· were already apparent during the steady state exercise, an 

involvement of cortisol in the acute regulation of this secretory protein seems unlikely. 

Moreover, although catecholamines were not measured in this study, the similar heart rate 

and RPE responses suggest no obvious differences in sympathetic activity between the two 

treatments. One possible explanation for the differences is that the ingestion of the cereal bars 

caused activation of mechanical and/or gustatory receptors which would lead to reflex 

stimulation of lysozyme protein secretion via the autonomic nerves (Pedersen et aI., 2002). 

Furthermore, since higher values in lysozyme remained evident at the post-exhaustion time 

point (30 min after the consumption of the final cereal bar), this would suggest that these 

effects are relatively long lasting. Further research may seek to address the time course of 

these effects as the results may have implications for future studies on salivary antimicrobial 

proteins involving food andlor fluid ingestion. 

Research investigating lysozyme in response to exercise is limited at present though 

lysozyme has been proposed as a potential marker of psychological stress (Perera et al., 

1997) and physical stress (Koutedakis et al., 1996) effects on the innate immune system. The 

present findings show a progressive increase in both the lysozyme concentration and 
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secretion rate with exercise duration. As discussed previously, it is unlikely that these effects 

are mediated by changes in the stress hormone cortisol. It is more likely that they are initiated 

by increases in SNS activity occurring at the onset of exercise, since it is known that the 

exocytosis of secretory proteins occurs rapidly (within 15 s) upon neuronal stimulation and 

with P.adrenergic stimulation in particular (Carpenter et al., 1998). These results are in 

contrast to those reported by Koutedakis et al. (1996) in elite swimmers and provide the first 

clear evidence of enhanced lysozyme levels in response to a bout of prolonged exhaustive 

exercise. 

Significant increases in a-amylase were also observed with exercise. Moreover, higher levels 

were observed in FED compared with FAST during the steady state exercise, although this 

difference disappeared following the time to exhaustion trial. Since the role of a-amylase is 

to break down starch (Scannapieco et al., 1994); it is not surprising that higher. levels were 

found in FED compared with FAST during steady state exercise, as this was when the cereal 

bars were consumed. Although these results show a positive, stimulatory effect of feeding on 

a-amylase activity, it also highlights a possible limitation for those attempting to use this 

measure as a marker of SNS activity when other stimulatory factors are present, since 

previous studies have suggested that a-amylase activity can be a predictor of plasma 

noradrenaline under a variety of stressful conditions including exercise (Chatterton et al., 

1996). This becomes even more apparent since one would expect blood catecholamines (and 

resulting surrogate markers of SNS activity) to be blunted with feeding. In this instance, the 

timing of the meal must be taken into consideration to prevent any additional stimulatory 

effect on a-amylase. 

The present study administered an artificially sweetened placebo drink to examine the 

additional effect of a high CHO cereal bar - intended for nutritional support of athletes - on 
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exercise capacity. Not surprisingly, the exercise duration was significantly longer in the high 

CHO (FED) trial compared with the placebo (FAST) trial. A limitation in doing this was that 

the participants consumed -500 mL more fluids in the FAST trial, which may potentially 

confound the results, given the potential impact of additional fluids on saliva quantity and 

quality. Although body mass losses in the FED trial were significantly greater than in the 

FAST trial (1.08 vs 0.53 kg, respectively), suggesting slight differences in hydration status, 

this did not appear to have a significant negative effect on any of the salivary variables 

measured. 

The fact that feeding enhanced lysozyme and a-amylase secretion but had no effect on s-IgA 

may be related to the way these proteins are stored and secreted into saliva. Both lysozyme 

and a-amylase are stored in secretory granules, which are released spontaneously upon 

autonomic stimulation. Unlike these proteins, s-IgA is secreted onto mucosal surfaces across 

epithelial cells via pIgR, which is activated by neuronal stimuli that may differ to other 

salivary proteins (Proctor and Carpenter 2001). Feeding during exercise appears to activate a 

reflex stimulation to enhance the secretion of the stored salivary proteins into saliva but has 

little effect on the transport and subsequent secretion of s-IgA. 

In summary, the present findings suggest that prolonged exhaustive cycling can increase the 

secretion of salivary antimicrobial proteins. In addition, these results show that the feeding of 

a high CHO cereal bar during exercise can result in further increases in lysozyme and a­

amylase, but has no effect on s-IgA. 
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Chapter 5 - Study 3: Effect of stimulating saliva flow on the changes in 

salivary secretion of IgA, lysozyme and a-amylase with prolonged 

exhaustive exercise 

Abstract 

A higher rate of upper respiratory tract infection experienced by some athletes may be due to 

an exercise-induced decrease in mucosal immune defences. Stimulating saliva flow during 

exercise may potentially increase oral immune protection. Therefore, the aim of the present 

study was to investigate the salivary secretion rates of immunoglobulin A (s-IgA), lysozyme 

and a-amylase in response to strenuous exercise in both stimulated and unstimulated saliva 

flow conditions. Twenty four fit, healthy, men (mean ± SEM age: 23 ± 1 yr; maximal oxygen 

uptake, VU'max: 56.6 ± 1.0 ml.kg·1.min·1) cycled for 2.5 h at 60% VO'max (with regular water 

ingestion) and then cycled to exhaustion at 75% VO'max. Timed collections of whole saliva 

were made immediately before exercise, mid-exercise, after completion of the 2.5 hour 

moderate exercise bout and immediately after the exhaustive exercise bout. After each 

unstimulated saliva collection a stimulated saliva flow sample was collected following 

chewing mint-flavoured gum for one minute. Saliva was analysed for s-IgA, lysozyme and a­

amylase and secretion rates were calculated. Saliva flow rate was -3 times higher when saliva 

flow was stimulated. Saliva flow rate decreased with exercise for stimulated saliva flow only 

(P<O.OI). Exercise was associated with increases in lysozyme and a-amylase concentration 

and secretion rates in saliva (P < 0.01). Stimulating saliva flow caused a higher secretion rate 

of lysozyme (> 2-fold higher) and a-amylase (> 3-fold higher) compared with unstimulated 

saliva flow (both P < 0.01). S-IgA concentration and secretion rate increased with exercise 

but were both lower in stimulated saliva compared with unstimulated (P < 0.05). Following 

the exhaustive exercise bout, s-IgA secretion rates were 129 ± 92 and 165 ± 97 !-Ig.min-1 in 
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the stimulated and unstimulated saliva flow conditions, respectively (P < 0.05). Stimulating 

saliva flow during exercise had positive effects on the quantity of saliva and on the 

antimicrobial proteins lysozyme and a-amylase, but resulted in a slightly lower secretion rate 

for s-IgA. Increases in lysozyme, a-amylase, and the saliva flow rate suggest that stimulating 

saliva flow during exercise by chewing gum may acutely provide increased oral immune 

protection. 

5.1. Introduction 

The study of the mucosal immune response to exercise frequently involves the collection and 

analysis of saliva samples. The most common method is by collecting an unstimulated 

sample usually by dribbling into a sterile plastic tube; however, some studies have chosen to 

stimulate saliva production by either by chewing gum (Horswill et al., 2006; Kreiger et ai., 

2004; Nevzesh et ai, 1982; Proctor and Carpenter., 2001) or sucking on flavoured mints 

(Gleeson et ai., 2003b). There is some evidence to show that these methods may result in 

differing salivary flow rates and composition. For example, stimulating saliva secretion by 

chewing can increase the flow rate by up to 3-fold compared with unstimulated saliva 

secretion (Hector and Linden, 1999), and this can also alter the secretion of certain salivary 

proteins (Proctor and Carpenter, 2001). It is therefore necessary to understand such 

differences between the two methods of collection and to be aware of these when collecting 

or interpreting results. 

There have been few studies investigating the effect of stimulated versus unstimulated saliva 

flow on the oral immune system. Proctor and Carpenter (2001) showed that stimulated saliva 

secretion by chewing on a tasteless piece of polythene tube increased s-IgA secreted from the 

parotid saliva gland compared with unstimulated saliva secretion, most likely via increased 
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epithelial cell transcytosis. Similar results were found for total protein and a-amylase 

secretion. These findings may have important implications for the s-IgA response to exercise, 

as stimulating saliva flow could increase s-IgA levels and reduce the risk of URTI. Indeed, 

Gleeson et at. (2003b) examined the effects of stimulated and unstimulated salivary flow on 

the s-IgA response to high intensity exercise. It was found that sucking a flavoured mint for 1 

min during exercise increased the s-IgA secretion rate. 

Since exercise may be associated with a reduction in saliva flow rate and/or the secretion of 

certain antimicrobial proteins, stimulating saliva flow by chewing may function to counteract 

these changes by increasing the oral immune protection and reduce the risk of developing 

URTI. Thus, the aims of the present study were to investigate the influence of stimulated 

saliva flow on salivary antimicrobial proteins by chewing flavoured gum during prolonged 

exhaustive cycling. 

5.2. Methods 

5.2.1. Participants 

The participants and preliminary measurements were as described previously in Chapter 4. At 

least 1 week following the preliminary measurements, participants visited the laboratory on 

one occasion for the main trial. 

5.2.2. Experimental procedures 

Participants arrived at the laboratory at 8:30 h following an overnight fast (10 - 12 h). They 

were required to sit quietly for 5 min before giving a saliva sample. The participants were 

then asked to empty their bladders before body mass was measured wearing their shorts only. 
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They then performed 2.5 h cycling at 60% V02ma, on a stationary cycle ergometer. Heart rate 

and RPE were measured at 20 min intervals and expired gas was collected at 30 min, 90 min 

and 114 min of exercise using a Douglas bag. Participants were given 200 mL of water every 

20 min during exercise; in addition they ingested 300 ml of flavoured water immediately 

before the exercise began, and again after 50 min and 110 min of exercise. Saliva samples 

were collected at rest, following 70 min and 130 min of exercise and immediately post­

exhaustion. It was ensured that no fluid was consumed in the 10 min prior to each saliva 

collection. 

Following completion of the 2.5 hours cycling, the participants were allowed a 5 min rest 

before commencing the ride to exhaustion trial at 75% V02""" with no verbal encouragement 

and no information on time elapsed. The time to exhaustion was 897 ± 122 s. A final saliva 

sample was obtained immediately after completing the exercise to exhaustion and body mass 

was measured. Mean temperature and humidity in the lab during the trial were 23 ± 0.5 DC 

and 32 ± 4 % respectively. 

5.2.3. Saliva collection 

The saliva collection was based on the method described in Chapter 3. An unstimulated 

(UNSTlM) sample was collected first which was immediately followed by 1 min of chewing 

sugar-free mint flavoured gum (Wrigley Orbit) at an even pace and force. Immediately after 

removing the gum the participants provided a second saliva sample (STIM) by dribbling into 

the tube for a further 1 min. 

72 



Chapter 5 Stimulated saliva flow, exercise and AMPs 

5.2.4. Saliva analysis 

Salivary JgA, lysozyme, a-amylase activity and cortisol were measured as detailed in 

Chapter 2. 

5.2.5. Statistical analysis 

A two-way ANOVA (2 conditions x 4 sample times) with repeated measures design was used 

to examine the salivary data. Significant differences were assessed using Student's paired t­

test with Holm-Bonferroni adjustments for multiple comparisons. Differences in HR between 

the steady state exercise and time to exhaustion trial were assessed using Student's paired t­

tests. Statistical significance was accepted at P < 0.05. 

5.3. Results 

5.3.1. Physiological variables and RPE 

Attainment of an average of 60% VO'max was achieved during the steady state exercise; 

where mean VOz was 60.1 ± 2.8% of V02"""'. Mean HR was 137 ± 11 beats.min- l and 174 ± 

9 beats.min- l during the steady state exercise and the time to exhaustion trial, respectively. 

Mean RPE measured during the steady state exercise was 12 ± 2 and the post-exercise body 

mass loss was 0.53 ± 0.10 kg. 

5.3.2. Salivary variables 

Saliva flow rate 

Saliva flow rate was significantly higher in STIM compared with UNSTIM across all time 

points (main effect of condition: Ft. 23 = 177.1, P < 0.001). Saliva flow rate decreased 
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significantly with exercise duration in the STIM trial only (interaction: F3, 56 = 10.37, P < 

0.001; Figure 5.1). 
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Figure 5.1. The effect of exercise on stimulated and unstimulated saliva flow rate. Values are means 

± SEM (N = 24). * Significantly lower than pre-exercise (P < 0.01). 

Salivary IgA concentration 

Salivary IgA concentration increased with exercise duration (main effect of time: F 3. 50 = 

4.448; P < 0.05) and was significantly higher in UNSTIM compared with STIM across all 

time points (main effect of condition: F 1.23 = 44.841; P < 0.001; Figure 5.2). 
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Figure 5.2. Effect of exercise on stimulated and unstimulated s-IgA concentration. Values are means 

± SEM (N = 24). 

Salivary 19A secretion rate 

Salivary IgA secretion rate increased post-exercise compared with baseline levels (main 

effect of time: F 3.46 = 9.810; P < 0.001) and was significantly higher in UNSTIM compared 

with STIM (main effect of condition: F 1,23 = 5.154; P < 0.05; Figure 5.3) 
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Figure 5.3. Effect of exercise on stimulated and unstimulated s-IgA secretion rate. Values are means 

± SEM (N = 24). 
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Salivary a-amylase activity 

Salivary a-amylase activity increased with exercise duration (main effect of time: F 3. 69 = 

107.769; P < 0.001), but there were no differences between conditions (Figure 5.4). 
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Figure 5.4. Effect of exercise on stimulated and unstimulated a-amylase activity. Values are means ± 

SEM(N=24). 

Salivary a-amylase secretion rate 

Salivary a-amylase secretion rate increased with exercise duration (main effect of time: F 3, 

49 = 45.986; P < 0.001). Salivary a-amylase secretion rate was significantly higher in STIM 

compared with UNSTIM (main effect of condition: F], 23 = 166.854; P < 0.001; Figure 5.5). 
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Figure 5.5. Effect of exercise on stimulated and unstimulated a-amylase secretion rate. Values are 

means ± SEM (N = 24). 

Salivary lysozyme concentration 

Salivary lysozyme concentration increased with exercise duration (main effect of time: F 3. 33 

= 23.970, P < 0.001), but there were no differences between conditions (Figure 5.6). 
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Figure 5.6. Effect of exercise on stimulated and unstimulated lysozyme concentration. Values are 

means ± SEM (N = 12). 
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Salivary lysozyme secretion rate 

Salivary lysozyme secretion rate increased with exercise duration (main effect of time: F 3, 33 

= 18.002, P <0.001) and was significantly higher in STIM compared with UNSTIM across all 

time points (main effect of condition: F 1.11 = 35.051, P < 0.001; Figure 5.7). 
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Figure 5.7. Effect of exercise on stimulated and un stimulated lysozyme secretion rate. Values are 

means ± SEM(N = 12). 

Cortisol 

There was a significant change over time in salivary cortisol which increased post-exhaustion 

(main effect oftime: F 2.19 = 12.734, P < 0.001; Figure 5.8) 
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Figure 5_8_ Effect of exercise on stimulated and unstimulated cortisol concentration. Values are 

means ± SEM (N = 12). 

5_4_ Discussion 

The main findings of the study were I) saliva flow rate decreased with exercise in STIM only 

2) saliva flow rate was - 3 fold higher in STIM compared with UNSTIM 3) s-IgA 

concentration increased post-exercise 4) s-IgA concentration and secretion rate were lower in 

STIM compared with UNSTIM 5) a-amylase activity and secretion rate and lysozyme 

concentration and secretion rate all increased with exercise 6) a-amylase and lysozyme 

secretion rates were higher in STIM compared with UNSTIM. 

A significant reduction in the saliva flow rate post-exercise was observed in the STIM trial 

only. Although this has been a commonly reported response to prolonged exercise (Bishop et 

al., 2000, Li and G1eeson 2005, Walsh et al. 2002; Sari-Sarraf et al., 2007b), other studies 

have found no effect of exercise on the saliva flow rate (Chapters 3 and 4). It has been 

previously suggested that dehydration plays a role in the reduction in saliva flow rate during 

exercise (Chicharro et al., 1998; Walsh et aI., 2004). In the present study the participants 
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were provided with 200 mL of fluid to consume every 20 min which resulted in a small net 

mean body loss of 0.53 ± 0.11 kg. This suggests that the participants were only marginally 

hypohydrated and is unlikely to have influenced the saliva flow rate (Walsh et al., 2004). It is 

possible that the decreased parasympathetic nervous system activity during exercise, causing 

a removal of vasodilatory influences (Procter and Carpenter, 2007), may limit the increase in 

flow rate with chewing. A further explanation is that the exhaustive nature of the exercise 

affected the force with which the participants chewed the gum. Although participants were 

instructed to chew at a regular rate and force for each saliva collection, it cannot be 

overlooked that the fatiguing nature of the exercise may have affected this. Since salivary 

production is directly related to the applied chewing force (Hector and Linden, 1999), a 

reduction in the amount of saliva produced could occur. This is an obvious limitation with a 

stimulated saliva flow collection. 

Salivary IgA concentration increased with exercise in both trials which is consistent with 

previous studies (Chapters 4 and 5). Furthermore, significantly lower values in STIM 

compared with UNSTIM were observed throughout the exercise protocol. This is in 

accordance with Proctor and Carpenter (2001), who reported a lower s-IgA concentration in 

whole-mouth saliva following chewing. These changes are likely to be a result of the 

increased saliva flow rate with chewing which acts to dilute the saliva. 

A significant increase in the s-IgA secretion rate was observed with exercise. This is in 

agreement with Blannin et al. (1998) who also reported increases following both short 

duration and long duration exercise to exhaustion. S-IgA secretion rate showed little change 

during the steady state exercise at 60% \l02nuu. However, following the ride to exhaustion at 

75% \l02nuu the s-IgA secretion rate increased by 50% in the UNSTIM trial and 26% in the 

STIM trial. This suggests that the effect of exercise on s-IgA secretion rate may be intensity 
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dependent. Indeed, Blannin et al. (1998) found a greater increase in s-IgA secretion rate 

following a higher intensity cycle to exhaustion (80% versus 55% Y02mox). However, other 

researchers have found no effect of intensity on s-IgA measures (McDowell et al., 1991). 

The transient increase in s-IgA secretion rate post-exercise is likely to be related to the 

increased SNS activity with exercise resulting in an increased secretion of s-IgA into saliva 

via trancytosis (Carpenter et al., 2000). An involvement of SNS activity with exercise can be 

identified by the increase in a-amylase activity since this has been proposed as a potential 

marker of SNS activity during stressful conditions (Chatterton et al., 1996). These findings 

suggest that increases in s-IgA secretion during exercise occur only in response to high levels 

of sympathetic nerve stimulation, a finding that has been previously confirmed in the rat 

model (Carpenter et a!., 2000). 

The present results show that s-IgA secretion rate was significantly lower in STIM compared 

with UNSTIM. These findings do not support Proctor and Carpenter (2001) who found that 

stimulating saliva flow by chewing increased the secretion rate of s-IgA from the parotid 

gland into saliva at rest. The differences in methods may account for these discrepancies. 

Proctor and colleagues stimulated saliva by chewing on a piece of polythene tube whereas the 

present study administered a commercially available flavoured chewing gum. The resulting 

differences between masticatory stimulation only, from chewing the polythene tube, and 

gustatory and masticatory stimulation combined when chewing the flavoured gum, may 

account for these inconsistencies. However, Gleeson et al. (2003b) also reported an elevated 

s-IgA secretion rate during exercise when sucking on a mint (gustatory stimulation only) for 

1 min prior to saliva collection. 

In addition to the different types of stimulation, it is possible that the secretion rate of s-IgA 

in STIM during exercise may have been affected by the reduction in saliva flow rate which 
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occurred in this trial. Such potential vanances highlight a further limitation of using a 

stimulated saliva collection in comparison to unstimulated saliva collection (Navazesh and 

Christensen, 1982). Thus, further research is required to determine the effects of the different 

methods of stimulating saliva on s-IgA secretion rate at rest and during exercise to clarify 

these inconsistencies. Although stimulating saliva flow appeared to have a detrimental effect 

on the rate of s-IgA secretion during exercise, the differences compared with the unstimulated 

condition were small and the impact of this in terms of URTI risk may have little 

consequence. 

Lysozyme concentration and secretion rate were increased with exercise duration. These 

findings are in accordance with those in Chapter 4 and suggest a temporary enhancement in 

this aspect of mucosal immunity with exercise. Stimulating saliva flow did not affect 

lysozyme concentration. This is in agreement with Rudney (1989) who reported that salivary 

lysozyme is unaffected by the flow rate. However, when lysozyme was expressed as a 

secretion rate, significantly higher values in STIM compared with UNSTIM were observed. 

Alpha-amylase activity and secretion rate were higher during STIM compared with UNSTIM 

and this confirms findings by Proctor and Carpenter (2001) who also found an increased 

secretion of a-amylase following chewing. Exercise also resulted in increases in this enzyme. 

This is a common finding amongst studies (Chatterton et a!., 1996, Walsh et al., 1999, 

Bishop et a!., 2000), and can be attributed to the increase in SNS activity with exercise 

(Chatterton et al., 1996). Both lysozyme and a-amylase have antimicrobial effects (Tenovuo, 

1998); thus, the finding of an increase in their secretion rate with exercise which is further 

enhanced by stimulating saliva flow suggests these factors have a beneficial effect on the oral 

immune system 
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It was speculated in Chapter 4 that the differences between the secretion of these proteins 

with feeding compared with fasting may be related to the way these proteins are stored and 

secreted into saliva. Lysozyme and a-amylase are stored in secretory granules which are 

released spontaneously upon autonomic stimulation (Bosch et al., 2002). However, s-IgA is 

secreted onto mucosal surfaces across epithelial cells via the polymeric immunoglobulin 

receptor (pIgR), (Proctor and Carpenter 2001). These findings show that the combination of 

masticatory and gustatory stimuli through chewing flavoured gum activate the secretion of 

stored salivary proteins into saliva (lysozyme and a-amylase) but do not enhance the receptor 

mediated secretion of s-IgA. 

A further explanation for the findings may be related to the relative contributions of the 

different salivary glands during unstimulated and stimulated saliva flow, since specific 

salivary glands have been shown to be activated by some stimuli more than others (Noble, 

2000). For example, mastication predominantly activates the parotid glands, which produce 

large amounts of a-amlyase. In contrast, strong taste stimuli activate the submandibular and 

sublingual glands (from which lysozyme is mainly produced) more than the parotid gland. 

Thus, the increase in a-amylase and lysozyme by chewing flavoured gum may be explained 

by the increase of salivary secretion from these specific glands. The relative contribution of 

salivary glands for s-IgA secretion is not clear. Crawford et al. (1975) reported s-IgA 

concentration to be four times higher in the minor salivary glands than parotid glands 

although other data suggest a low parotid s-IgA secretion rate is associated with high 

susceptibility to dental caries, suggesting a greater role of the parotid gland in s-IgA secretion 

(Brandtzeag, 1976). These uncertainties make it difficult to relate the changes in s-IgA 

secretion in stimulated and un stimulated saliva flow to the stimulation of specific glands. 
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In conclusion, these results suggest that prolonged exhaustive exercise at 60% and 75% 

V02max in trained men can result in increases in salivary antimicrobial proteins, which may 

be beneficial to oral immune status. Moreover, stimulating saliva flow during exercise has a 

further enhancing effect on a-amylase and lysozyme secretion but has little effect on s-IgA 

secretion rate. Although these findings highlight a possible benefit of chewing gum while 

performing strenuous exercise, the potential risk of choking while doing this should be 

considered. 
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Chapter 6 - Study 4: Effect of exercise intensity on salivary antimicrobial 

proteins and markers of stress in active men 

Abstract 

The present study investigated the effects of exercise intensity on salivary immunoglobulin A 

(s-IgA) and salivary lysozyme and examined how these responses were associated with 

salivary markers of adrenal activation. Using a randomised design, 10 healthy active men 

participated in 3 experimental cycling trials: 50% Y02,""" 75% Y02_ and an incremental 

test to exhaustion (EXH). The durations of the trials were the same as a preliminary 

incremental test to exhaustion (22.3 ± 0.8 min; mean ± SEM). Timed, unstimulated saliva 

samples were collected at pre-exercise, post-exercise and 1 h post-exercise. The EXH trial 

significantly increased the secretion rates of both s-IgA and lysozyme. Increases in lysozyme 

secretion rate also occurred at 75% Y02m" . No significant changes in saliva flow rate were 

observed in any trial. Cycling at 75% Y02_ and EXH significantly increased the secretion 

of a-amylase and Chromogranin A immediately post-exercise but higher values of cortisol at 

75% Y02""" and EXH compared to 50% Y02_ were observed at 1 h post-exercise only. 

These findings suggest that short duration, high intensity exercise increases the secretion rate 

of s-IgA and lysozyme despite no change in the saliva flow rate. These effects appear to be 

associated with changes in sympathetic activity and not the hypothalamic-pituitary-adrenal 

axis. 

6.1. Introduction 

To date, several studies have investigated the effects of exercise on s-IgA with many 

reporting reductions following intense exercise (Tomasi et aI., 1982; Steerenberg et aI., 1997; 

Fahlman et al., 2001), and increases following more moderate or lower intensity exercise 
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(Dorrington et al., 2003; Reid et ai, 2001). However, results from the previous chapters in 

this thesis do not support these findings. In chapters 4 and 5 significant increases in s-IgA 

levels were observed post -exercise and these effects appeared to be greater following the 

higher intensity exercise bout (75% YOzm,,) compared with the lower intensity exercise bout 

(60% YOz=). Furthermore, preliminary findings suggest that lysozyme is also increased 

with high intensity exercise (Chapters 5 and 6). Thus, it appears that the relationship between 

exercise intensity and mucosal immunity remains controversial. 

The responses of saliva flow rate and composition during exercise are influenced by 

sympathetic nervous system activity and the hypothalamic-pituitary-adrenal (HP A) axis. 

Generally it is considered that sympathetic stimulation (via noradrenaline) leads to higher 

salivary protein concentrations (e.g. a-amylase), whereas increased rates of fluid output 

occur in response to parasympathetic stimulation (Chicharro et al., 1998). In rodents, the 

secretion of s-IgA can be increased by both parasympathetic and sympathetic stimulation 

(Carpenter et aI., 2000) and adrenaline has been recently shown to increase the entry of 

human IgA into saliva by rat salivary cells via increased mobilisation of the polymeric Ig 

receptor (Carpenter et al., 2004). Since the levels of catecholamines appear to increase in 

direct relation to exercise intensity (McMurray et al., 1987), it may be speculated that this 

would have an impact on the salivary responses to exercise. 

Alpha-amylase has been previously identified as a marker of SNS activity during exercise 

(Chatterton et aI., 1996), and its secretion appears to be dependent on the exercise intensity 

(Bishop et al., 2000; Ljunberg et aI., 1997; Walsh et aI., 1999). However, the response of (J.­

amylase to exercise has been questioned since it can also be affected by parasympathetic 

activity (Bosch et aI., 2002), and as demonstrated in Chapters 4 and 5, by prior food ingestion 

and/or mastication during exercise. Another potential marker of SNS activity is salivary 
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Chromogranin A (CgA). It is co-stored and co-released with catecholamines from the adrenal 

medulla and neuronal vesicles during exocytosis (Banks and Helle, 1965). Salivary CgA has 

been shown to increase rapidly under psychological stress (Nakane et al., 1998); however, its 

response to exercise has yet to be determined. Since catecholamines measured in saliva are 

regarded as a poor index of sympathetic nervous activity (Kennedy et aI., 2001), a-amylase 

and CgA may serve as potential non-invasive tools for evaluating the relationship between 

the sympathetic nervous system and mucosal immunity following exercise at different 

intensities. 

Exercise also stimulates the release of cortisol from the adrenal cortex and salivary cortisol is 

considered a reliable index of HPA activity (Chicharro et aI., 1998). Cortisol has been 

suggested to play an important role in inhibiting s-IgA mobilisation andlor production 

(Hucklebridge et aI., 1998). Moreover, it has been implicated in inhibiting lysozyme 

production and secretion (Perera et al., 1997). Circulating cortisol is also dependent on the 

exercise intensity, where elevations occur following intensities above approximately 60% 

V02""" (Vim, 1996). 

The effect of exercise on the mucosal immune system appears to be influenced by the release 

of stress hormones such as catecholamines and cortisol, yet how these hormones relate to 

changes in mucosal immunity following exercise at different intensities remains unclear. 

Therefore, the primary aim of the present study was to investigate the s-IgA and lysozyme 

responses to constant duration exercise at 3 different intensities: 50% V02mox, 75% 

V02= and an incremental exercise test to exhaustion. A secondary aim was to assess the 

response of non-invasive salivary markers of adrenal activation during exercise at different 

intensities and to examine how these relate to the responses of salivary antimicrobial proteins. 
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6.2. Methods 

6.2.1. Participants 

Ten healthy males (mean ± SEM: age 23 ± 1 yr; height: 183 ± 2 cm; body mass 76.2 ± 2.2 

kg; Y02m" 51.4 ± 1.9 mL.kg·l.min- l
; HRmax 190 ± 2 beats.min- I

) volunteered to participate in 

the study. Following preliminary measurements, the participants completed 3 main trials in a 

randomised order separated by at least 3 days. 

6.2.2. Experimental procedures 

Participants reported to the laboratory at 11 :45 h. They were requested to abstain from 

drinking alcohol and taking medication in the 24 h preceding each experimental session. 

They were instructed to consume their normal breakfast including 500 mL of water at 9:00 h 

prior to each of the trials, and then repeat this breakfast for each of the subsequent trials. 

They were then asked to consume a further 500 mL of water 90 min before exercise in order 

to standardise hydration status. Upon arrival at the laboratory, participants were instructed to 

empty their bladder before body mass was measured. They then sat quietly for 5 min before 

an initial pre-exercise saliva sample was collected. The collection time for each participant 

was designed to ensure that a minimum volume of 1.5 mL was obtained. They were then 

randomly assigned to one of 3 exercise trials: Trial 1 was performed at a work rate equivalent 

to 50% YO,_, Trial 2 was performed at a work rate equivalent to 75% YO,"",x and Trial 3 

was a repetition of the incremental test to exhaustion (EXH). Each trial was for the same 

duration as the initial preliminary YO,_ test. The mean duration (± SEM) for the trials was 

22.3 ± 0.8 min. The participants began cycling at 12:00 h. Heart rate and RPE were recorded 

every 3 min during exercise and during the final minute before cessation of exercise. A saliva 

sample was collected immediately post-exercise and a final sample was obtained at 1 h post-
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exercise. A fingertip capillary blood sample was also obtained post-exercise to determine 

blood lactate concentration using an Analox PGM7 analyser (Analox, Stokesley, North 

Yorkshire, UK) and body mass was measured immediately after the post-exercise saliva 

sample had been collected. Water consumption was not permitted during exercise; however, 

participants were given 200 mL of water to consume immediately after the post-exercise 

saliva sample. No other fluid or food was permitted until after the final 1 h post-exercise 

saliva sample had been collected. The laboratory temperature and relative humidity were 23.4 

± 0.5 °C and 41 ± 2 %, respectively. 

6.2.3. Saliva collection 

Methods of saliva collection and analysis are detailed in Chapter 2. 

6.2.4. Statistical analysis 

Salivary data, HR and RPE were analysed using a 3 (trials) x 3 (times of measurement) 

repeated measures ANOV A. Body mass losses and blood lactate concentration were 

examined using a one-factor repeated measure ANOV A. Significant differences were 

assessed using Student's paired Hest with Holm-Bonferroni adjustments for mUltiple 

comparisons. Statistical significance was accepted at P < 0.05. 

6.3. Results 

6.3.1. Physiological variables and RPE 

Results for HR, RPE, body mass losses and blood lactate are presented in Table 6.1. Mean 

HR was significantly higher in the 75% V02mru< and EXH trials compared with the 50% 

V02max trial (main effect of trial; F 1. 12 = 77.4, P < 0.001). Only during the final stage of 
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exercise was HR significantly higher in the EXH trial compared with the 75% Y02m" trial (P 

< 0.05). Similarly, mean RPE was significantly higher with the 75% Y02ma, and EXH trials 

compared with the 50% Y02ma> trial (main effect of trial; F 2. 14 = 48.3, P < 0.001). Only 

during the final stage of exercise was RPE significantly higher in the EXH trial compared 

with the 75% Y02ma> trial (P < 0.05). Body mass losses were similar between trials. Post-

exercise blood lactate concentration increased significantly with exercise intensity (main 

effect oftrial; F 1.13 = 64.0 P < 0.001). 

Table 6.1. Effect of exercise intensity on heart rate, RPE, body mass loss and blood lactate 

concentration. 

Variable 

Heart Rate 
(beats.min,l) 

RPE 

Body mass loss 
(kg) 

Blood Lactate 
(mmol.L") 

Mean 

124 (1) 

10 (1) 

End 

128 (4) 

10 (1) 

0.3 (0.1) 

1.8 (0.3) 

75% Y02ma, EXH 

Mean End Mean End 

162(1)* 170(3)* 144 (1) * 1 186 (2)* 1 

14 (1)* 16 (1) * 13(1)*1 19(1)*1 

0.4 (0.1) 182 ± 1 

7.5 (0.6) * 0.3 (0.1) 

Values are means (± SEM) (N = 10). * Significantly different from 50% Y02ma, (P < 0.05). 

1 Significantly different from 75% Y02ma> (P < 0.05). 

6.4. Salivary variables 

Saliva flow rate 

Saliva flow rate did not change significantly throughout the experimental protocol (Table 

6.2). 
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Table 6.2. The effect of exercise intensity on saliva flow rate. salivary osmolality, S-IgA:Osmolality 

and lysozyme:Osmolality. 

Pre-exercise Post-exercise 1 h Post-exercise 

Saliva flow rate (mLmin'!) 

50% VOZmax 0.48 (0.09) 0.40 (0.07) 0.45 (0.07) 

75% VOZma, 0.41 (0.08) 0.43 (0.09) 0.50 (0.09) 

EXH 0.41 (0.10) 0.42 (0.09) 0.45 (0.09) 

Osmolality (mOsmol'kg'!) 

50% VOZma, 69 (6) 80 (7) ** 65 (6) 

75% VOZmax 68 (9) 108 (16) * 67 (7) 

EXH 72 (9) 129 (14) ** t 64 (6) 

s-IgA:Osmolality 

50% VOzma< 3.5 (0.4) 3.4 (0.4) 3.8 (004) 

75% VOZma, 3.3 (0.3) 2.8 (0.5) 3.4 (004) 

EXH 3.4 (004) 2.8 (004) 3.2 (0.3) 

lysozyme:Osmolality 

50% VOzma< 0.07 (0.02) 0.08 (0.02) 0.08 (0.02) 

75% VOzma< 0.07 (0.02) 0.11 (0.01) 0.09 (0.02) 

EXH 0.06 (0.01) 0.08 (0.01) 0.08 (0.02) 

Values are means (± SEM) (N = 10). * Significantly higher than pre-exercise (within trial), P < 0.05; 

** P < 0.01. t Significantly higher than 50% VOzma< at that time point, P < 0.01. 

Salivary IgA 

Salivary IgA concentration increased post-exercise which was independent of exercise 

intensity (main effect oftime; F 1, 10 = 7.7, P = 0.018; Figure 6.1), Salivary IgA secretion rate 

increased by 50% post-exercise in the EXH trial but returned to baseline at 1 h post-exercise 

(interaction; F 3,25 = 3.2, P = 0.042; Figure 6.2). 
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Figure 6_1. The effect of exercise intensity on s-IgA concentration. Values are means ± SEM (N = 

10). 
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Figure 6.2_ The effect of exercise intensity on s-IgA secretion rate. Values are means ± SEM (N = 

10). * Significantly higher than pre-exercise (EXH trial), P < 0.05. 

Salivary lysozyme 

Salivary lysozyme concentration increased post-exercise which was independent of exercise 

intensity (main effect of time; F 2. 17 = 25.6, P < 0.001; Figure 6.3). Salivary lysozyme 
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secretion rate increased by 160% post-exercise in the 75% V02=x and EXH trials returning to 

baseline at I h post-exercise (interaction; F 3, 25 = 4,9, P = 0,01), but there was no change in 

the 50% V02ma, trial (Figure 6.4), 
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Figure 6.3. The effect of exercise intensity on lysozyme concentration. Values are means ± SEM (N = 
10). 
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Figure 6.4. The effect of exercise intensity on lysozyme secretion rate. Values are means ± SEM (N = 

10). * Significantly higher than pre-exercise, P < 0.Dl, t Significantly higher than 50% V02m", trial 

at that time point, P < 0.05. 
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Salivary osmolality 

Salivary osmolality (Table 6.2) increased post-exercise in all trials (main effect of time; F 1.11 

= 54.3, P < 0.001) and was significantly higher at post-exercise in the EXH trial compared 

with the 50% V02max trial (interaction; F 2.22 = 7.5, P = 0.002). Salivary IgA to osmolality 

ratio did not change significantly during the experimental protocol. Salivary lysozyme to 

osmolality ratio increased post-exercise independent of exercise intensity (main effect of 

time; F 2 15 = 8.0, P = 0.006). 

Stress markers 

Alpha-amylase activity (Table 6.3) increased post-exercise which was independent of 

exercise intensity (main effect of time; F 1, 11 = 24.2, P < 0.001). Alpha-amylase secretion 

rate increased by about 60% post-exercise in the 75% VOZmax and EXH trials returning to 

baseline at 1 h post-exercise (interaction F 3, 27 = 3,9, P = 0.019), but there was no change in 

the 50% V02max trial. Salivary cortisol was unchanged immediately post-exercise but was 

significantly higher at 1 h post-exercise in the 75% VOZmax and EXH trials compared with 

the 50% V02max trial (interaction; F 2,17 = 9,0, P = 0.003; Table 6.3). 
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Table 6.3. The effect of exercise intensity on a-amylase activity, a-amylase secretion rate and 

salivary cortisol. 

Pre-exercise Post-exercise I h Post-exercise 

a-amylase activity (FmL") 

50% V02max 450 (54) 552 (77) 385 (61) 

75% V02max 372 (65) 674 (77) 418 (63) 

EXH 456 (65) 710(41) 370 (55) 

a-amylase secretion rate (Fmin· l
) 

50% V02ma, 226 (55) 200 (34) 176 (35) 

75% V02max 150(47) 264 (47) * 196 (42) 

EXH 191 (60) 272 (46) * 170(51) 

Cortisol (nmoIL·I
) 

50% 37.8 (4.5) 49.3 (2.8) 40.6 (2.8) 

75% 51.5 (2.8) 54.9 (4.5) 54.1 (4.1) t 

EXH 52.6 (5.3) 53.8 (6.0) 61.7 (6.4) t 

Values are means (± SEM) (N = 10). * Significantly higher than pre-exercise (within trial), P < 0.05. 

t Significantly higher than 50% V02",,, at that time point, P < om. 

Chromogranin A concentration increased by about 350% post-exercise in the 75% V02max 

and EXH trials returning to baseline at 1 h post-exercise (interaction; F 3.18 = 4.1, P = 0.025; 

Figure 6.5), but there was no change in the 50% V02_ trial. Similarly, CgA secretion rate 

increased by about 350% post-exercise in the 75% V02ma, and EXH trials returning to 

baseline at 1 h post-exercise (interaction; F 2.16 = 7.9, P = 0.019; Figure 6.6), but there was 

no change in the 50% V02m"" trial. 
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Figure 6.S. The effect of exercise intensity on CgA concentration. Values are means ± SEM (N = 8). 

* Significantly higher than pre-exercise (within trial), P < 0.05; ** P < 0.01. t Significantly higher 

than 50% Y02max at that time, P < 0.01. 
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Figure 6.6. The effect of exercise intensity on CgA secretion rate. Values are means ± SEM (N = 8). * 
Significantly higher than pre-exercise (within trial), P < om. t Significantly higher than 50% 

Y02mox at that time, P < 0.05. 
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6.5. Discussion 

The main findings of the present study were that a short duration incremental exercise test to 

exhaustion resulted in a temporary increase in the secretion rate of both s-IgA and lysozyme 

but did not affect the saliva flow rate. In addition, the lysozyme secretion rate was also 

elevated following exercise at 75% V02max. These changes appeared to be associated with 

increases in the levels of the stress markers a-amylase and CgA but not cortisol. 

The effect of exercise on saliva flow rate remains controversial. In Chapters 4 and 5 saliva 

flow rate remained unchanged with exercise and the results from the present study 

corroborate this. However, others have reported a marked decrease in saliva flow rate in 

response to 3 consecutive maximal Wingate tests (less than 8 min duration) (Fahlman et aI., 

2001; Engels et aI., 2003) or in response to prolonged (> 90 min) endurance exercise 

(Chapter 4; Bishop et al., 2000; Li and Gleeson 2005). The reasons for the discrepant 

findings may be two-fold. Firstly, there may be a threshold level of parasympathetic nervous 

system activity below which, the saliva flow rate decreases. Taking this into consideration, it 

is possible that the duration and/or intensities of exercise performed in this study were not 

sufficient to achieve this threshold. Secondly, Walsh and colleagues (2004) reported that 

dehydration had a greater involvement in the reduction in saliva flow rate than 

neuroendocrine regulation following prolonged strenuous exercise and a significant reduction 

in saliva flow rate was only observed when dehydration of at least 2% body mass loss 

occurred. Although salivary osmolality increased post-exercise in the present study, body 

mass losses were small and similar between trials (- 0.3 kg equating to 0.4% body mass). 

Therefore, based on the findings by Walsh and colleagues, it would seem that the trials did 

not induce dehydration sufficient to affect saliva flow rate. Moreover, the increases in 

salivary osmolality without a reduction in saliva flow rate or large body mass losses indicate 
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a greater effect of neural innervation of saliva electrolyte secretion rather than dehydration 

per se. This may question the reliability of salivary osmolality as an indicator of hydration 

status post-exercise. 

Previous research conducted in athletes suffering from recurrent infections has shown that 

exercise of equal duration performed at 75% VOz""", and 100% VOZmru< were associated with 

a trend for a lower s-IgA concentration post-exercise while levels increased slightly after 

exercise at 50% VOz""" (Williams et aI., 2001). A similar pattern was observed in children (8 

- 12 yr) when s-IgA was expressed as a ratio to albumin (Dorrington et al., 2003). From this 

work these researchers concluded that there exists a positive association between the degree 

. of immune suppression post-exercise and the exercise intensity level. The present study 

sought to re-examine these findings in a cohort of healthy active males. Contrary to the above 

findings, significant increases in s-IgA concentration and secretion rate were observed post­

exercise following the EXH trial. Due to the incremental nature of this trial, peak HR was 

only higher than the 75% VOZmax trial at the end of exercise. Furthermore, overall mean HR 

was significantly lower in EXH compared with 75% VOZmax. This suggests that it could be 

the peak intensity rather than the overall intensity which is important in influencing s-IgA 

secretion. 

An elevation in the s-IgA secretion rate following exercise indicates an increased availability 

of s-IgA present on the mucosal surfaces and not just a concentrating effect of the saliva as a 

result of a reduction in saliva flow rate. The regulation of s-IgA is via a short-term (minutes) 

mobilisation (trancytosis) modulated by sympathetic nerves and/or a long-term (days) 

modification of s-IgA synthesis (Goodrich and McGee, 1998). Proctor et al. (2003) reported 

that acute stimulation of ,B-adrenoreceptors in anaesthetised rats increased s-IgA secretion via 
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elevated trancytosis from the glandular pool in a dose-independent manner above a certain 

threshold. Therefore, it could be argued that in the short term, it is only very high intensity 

exercise that will induce sympathetic stimulation sufficient to increase the transportation of s­

JgA into saliva as was observed in the EXH trial. However, when this stimulus becomes more 

prolonged (as would occur in longer duration - though less intense - exercise) the amount of 

IgA available for transport might become depleted and result in a reduction in the secretion of 

IgA (Proctor et aI., 2003). Indeed, the different durations, intensities and types of adrenergic 

stimulation could help to explain the inconsistencies in the literature previously cited. Despite 

demonstrating significant changes in s-IgA concentration and secretion rate post -exercise, no 

significant changes at any intensity were observed when s-IgA was expressed relative to 

osmolality. This highlights once more the uncertainty of which is the most appropriate 

method for expressing s-IgA. 

The present study measured a-amylase and CgA as surrogate markers of sympathetic 

activity. Dawes (1981) reported that an elevated a-amylase activity could be induced by 

increases in plasma catecholamines and sympathetic nervous activity with exercise. 

Furthermore, a previous study found a significant correlation between salivary a-amylase and 

plasma noradrenaline concentration following exercise (Chatterton et al., 1996), although 

others have failed to confirm this (Nater et al., 2006). Significant increases in both a-amylase 

activity and a-amylase secretion rate were observed post-exercise although only the secretion 

rate was significantly affected by the exercise intensity. A significant increase in both the 

concentration and secretion rate of CgA was found post -exercise and both were influenced by 

the exercise intensity. These findings lend further support to an increased involvement of 

sympathetic activity in the high intensity trials, which may function to increase the 

mobilisation of IgA into saliva. What these results also suggest is that both the concentration 
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and secretion rate of salivary CgA warrant further investigation as a potential index of 

sympathetic nervous activity during exercise. 

Although the levels of cortisol were affected by the exercise intensity, differences occurred 

only at the I-hour post-exercise time point. This is not surprising since the appearance of 

cortisol in the circulation normally occurs after a lag-period that in some cases may be more 

than I h (Viru and Viru, 2004). Since cortisol concentration did not change immediately post­

exercise an involvement of the HPA axis in the regulation of s-IgA immediately after 

exercise seems unlikely. However, the effects on s-IgA may be more delayed and occur 

between 2 - 24 h following exercise (Mackinnon et al., 1987; Gleeson et aI., 2001). 

Lysozyme increased post-exercise in the 75% V02mx< and EXH trials. These findings are in 

accordance with Chapters 4 and 5 but contrast those reported by Koutedakis and colleagues 

(1996) where significant decreases in the lysozyme concentration and secretion rate 

following an intense training session in elite swimmers were found. The differences in 

participant training status and the absolute intensity and duration of the training seSSlOn 

performed might account at least in part for these contrasting findings. 

The regulatory factors governing salivary gland secretion of lysozyme are largely unknown at 

present. Previous authors have attributed reductions in lysozyme levels in response to 

psychological stress to an increased secretion of glucocorticoids. These may inhibit the 

production and secretion of lysozyme leading to lower concentrations present in saliva 

(Perera et al., 1997). Since the observed changes in the present study are unlikely to be 

attributable to glucocorticoids, it seems plausible that the elevations in lysozyme following 

short duration high intensity exercise may be mediated in a similar manner to IgA. Hence, 

increases could be related to perturbations in sympathetic nervous activity (Bosch et aI., 
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2002), resulting in a transient increase in mobilisation of lysozyme into saliva. Moreover, 

since similar elevations in lysozyme were also observed in the 75% \rOZm" trial, it is 

possible that the threshold of sympathetic nervous activity to increase mobilisation may be 

lower for that of lysozyme than s-IgA. Although increases in salivary antimicrobial proteins 

may suggest a temporary enhancement of immune function, the significance of this in terms 

of infection risk is currently unclear and thus, the clinical relevance of these findings remains 

unknown. 

In conclusion, the data from the present study indicate that a short duration incremental 

exercise test to exhaustion can result in temporary increases in the secretion rate of both s­

IgA and lysozyme without affecting saliva flow rate. Furthermore, an increase in the 

lysozyme secretion rate also occurred post-exercise at 75% \r02m"". These results appear to 

be associated with increases in the secretion rate of CgA and a-amylase. Collectively, these 

findings suggest that sympathetic stimulation during intensive exercise appears to be great 

enough to increase s-IgA and lysozyme transport into saliva without the affecting the saliva 

flow rate. 
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Chapter 7 - Study 5: Salivary IgA and respiratory illness in elite male and 

female swimmers during a 6-month period of training and competition 

Abstract 

The purpose of the present study was to examine the impact of a 6-month period of training 

and competition on mucosal immunity and respiratory illness in a cohort of 12 elite male and 

female swimmers. Unstimulated, timed saliva samples were collected at rest on 8 occasions 

over a 6-month period leading up to and during an international swimming competition for 

the analysis of salivary immunoglobulin A (s-IgA) and salivary osmolality. In addition, 

symptoms of respiratory illness were recorded on a weekly basis. There were no significant 

changes in saliva flow rate, s-IgA concentration or the ratio of s-IgA to osmolality (P> 0.05) 

throughout the training study period. There was a significant main effect of time for s-IgA 

secretion rate (P < 0.05), which was significantly lower at week 22 (pre-competition) 

compared with week 26 (post-competition). Lower levels of s-IgA secretion rate were also 

observed at week 7 (pre-trials) and week 17 (post-intensified training) compared with week 

26, although these did not quite reach significance (P = 0.054). Significant differences in 

gender were found in all the salivary measures with females demonstrating lower levels than 

males. However, the responses of these measures to the training period did not differ between 

genders. Symptoms of respiratory illness were highest during week 8 of the study (post-trials) 

where 7 swimmers (3 male and 4 female) reported ill. However, this did not appear to be 

directly related to lower s-IgA levels. These results suggest that a 6-month season of swim 

training and competition may result in significant changes in the s-IgA secretion rate but not 

the s-IgA concentration. Significant differences in gender exist in resting salivary 

composition but these are not differently affected by swim training. 

102 



---------------------------------------------------------------------------------

Chapter 7 S-IgA, URTI and training in athletes 

7.1. Introduction 

Over the past decade there has been a proliferation of research investigating the effects of 

exercise on immune function and infection risk in athletes. The perceptions remain that 

athletes report a higher incidence of upper respiratory tract infections (URTI) during periods 

of heavy training and competition and this is thought to be related to perturbations in certain 

aspects of immune function (Nieman, 1994, Nieman et a!., 1990a, Peters, 1997). It is now 

widely accepted that the immune system exhibits change following both acute exercise and 

chronic training, but a direct link between these changes and infection risk has yet to be 

convincingly established. 

Secretory immunoglobulin A (IgA) represents the first line of defence against infectious 

agents related to URTI. IgA has the capacity to inhibit the colonisation of pathogens, bind 

antigens for transport across the epithelial barrier and neutralise viruses (Lamm, 1998). It is 

well known that individuals with IgA deficiency experience a higher incidence of URTI and a 

significant relationship between salivary IgA (s-IgA) concentration and the incidence of 

URTI in the general popUlation has been reported (Jemmott and McClelland, 1989). 

Numerous studies have investigated how the levels of s-IgA are affected by exercise although 

the results have been inconsistent to date. Following acute exercise, some have reported that 

s-IgA concentration was depressed (Tomasi et al .• Mackinnon et al., 1987. Tharp and Barnes. 

1990). whereas others have reported either no change (McDowell et al .• 1991, Walsh et al., 

1999) or even elevations (Blannin et aI., 1998; Tharp. 1991). 

Longitudinal studies have shown that the changes may be cumulative over time since resting 

s-IgA concentration was shown to fall with each additional month of training in elite 

swimmers (Gleeson et al.. 1999). Similar findings were reported in American college 

103 



Chapter 7 S-IgA, UR TI and training in athletes 

footballers: during a 12-month football season reductions in both the concentration and the 

secretion rate of s-IgA were observed during the most intense periods of training. In contrast, 

Gleeson et al (2000) reported small but significant increases in s-IgA during a 12-week 

training cycle leading up to competition in elite swimmers. 

Some studies have successfully linked changes in s-IgA to the reported incidence of URTI in 

athletes. A significant inverse association between pre-training s-IgA concentration and the 

numbers of reported infections was found in elite swimmers (Gleeson et al., 1999). 

Furthermore, Fahlman and Engels (2005) found an inverse correlation with the s-IgA 

secretion rate and respiratory illness in American footballers. However, others have not been 

able to repeat these findings. No correlation between URTI and s-IgA concentration was 

found in a different cohort of swimmers over 12 weeks (Gleeson et al., 2000), in a group of 

elite female rowers over 2 months (Nehlsen-Cannarella et al., 2000) or in elite tennis players 

studied over 12 weeks (Novas et al., 2003). The differences in these findings could be related 

to the limited duration of these studies or the method of expressing s-IgA. In the earlier 

studies, s-IgA was expressed as a concentration. However, more recently researchers have 

chosen to represent it as a secretion rate or as a ratio to osmolality. Expressing s-IgA relative 

to osmolality may be a valid measure when significant variations in saliva flow rate occur 

(Blannin et al., 1998). However, it is thought that the secretion rate of s-IgA may be more 

appropriate since it represents the amount of s-IgA present on the mucosal surface as both the 

saliva flow rate and IgA concentration are important for host defence (Mackinnon et aI., 

1993a). This was supported by Fahlman and Engels (2005) who concluded that the secretion 

rate may be the most useful clinical biomarker to predict the incidence of URTI. However, 

further research into this area is required before any general consensus can be arrived at. 
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The majority of published research into the effect of exercise on the immune system has 

mainly focused on male athletes overlooking potential differences in gender. Indeed, 

significant gender differences in s-IgA concentration have been reported in elite swimmers 

with females exhibiting lower values than males both at rest and post-exercise (Glee son et aI., 

1999). It is not known whether the same can be said for other methods of expressing s-IgA or 

whether the s-IgA response to training is the same. Whether this factor might explain some of 

the inconsistencies in the literature remains to be investigated. Therefore, this study sought to 

extend previous findings to determine a) the effects of a 6-month season of training and 

competition on measures of mucosal immunity in elite male and female swimmers and b) 

whether the selected markers of mucosal immunity were related to reported episodes of 

URTI. 

7.2. Methods 

7.2.1. Participants 

Twelve elite swimmers (7 male and 5 female) were recruited to participate in the present 

study. All were members of the British Swimming National team, ranked in the top 3 in their 

event nationally and the top 100 internationally. Their physical characteristics are outlined in 

Table 7.1. 

105 



Chapter 7 

Table 7,1, Participant Characteristics (N = 12) 

Variable 

Age (yr 

Mass (kg) 

Height (m) 

Mean (±SEM) 

Males (N = 7) 

22± 1 

79.4 ± 2.4 

1.90 ± 0.01 

Females (N = 5) 

21 ± 1 

62.5 ± 3.0* 

1.70 ± 0.01 * 

* Significantly different to Males (P < 0.05). 

7,2,2, Study design 

S-IgA, URTI and training in athletes 

The swimmers were monitored on 8 occasions during a 6-month period of training and 

competition leading up to and during the Commonwealth Games in Melbourne, Australia in 

March 2006. At the beginning and end of each training cycle a timed, un stimulated saliva 

sample was collected from each swimmer. The collections were made at rest, between 7:30 h 

and 8:00 h, at least l-h post-prandially and a minimum of 18 h after the previous training 

session. At the beginning of each training week, a log recording symptoms of URTI 

(Appendix E) was completed. This referred to any symptoms exhibited during the previous 

week. A positive episode of URTI was recorded when two or more symptoms were exhibited 

on two consecutive days, at least I-week apart from a previous episode. 

7.2.3. Training loads 

All types of training were incorporated into the study. A typical week consisted of 20 - 25 h 

of pool training and 6 - 8 h of dry-land training involving core strength and flexibility work. 

The subjective rating for the training sessions was defined and controlled by the British 

Swimming Head Coach and Team Physiologist. Individual training intensities were based on 

the swimmers' personal best times and maximum heart rate recorded during an incremental 
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swim test performed one-month previously. A schematic illustration of the experimental 

protocol is displayed in Figure 7.1. The sample time point and the type of training performed 

are described below: 

1) Week 1: Baseline values at the beginning of October before swimmers commenced 

intensified training phase 

2) Week 5: Data point at the end of October following 4 weeks of intensified training 

3) Week 7: Data point at mid-November following 1 week of taper prior to the 

Commonwealth Games Trials 2005 

4) Week 9: Data point at the end of November. This was in-between the Commonwealth 

Games Trials and a second National Swim Meet 

5) Week 11: Data point at mid-December. This was post-competition and prior to the 

next phase of intensified training 

6) Week 17: Data point at the end of January following 5 weeks of intensified training 

7) Week 22: Data point at the end of February 2 weeks prior to the Commonwealth 

Games 2006 

8) Week 26: Data point at the end of March 1 week after the Commonwealth Games 

2006 

Training Volume 

The data for training volumes (average distances swum) and training intensity are presented 

in Figure 7.2. The mean training volume throughout the study period was similar between 

genders; 56 ± 6 km.wk'! and 54 ± 5 km.wk'l for males and females. respectively. 
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7.2.4. Saliva collection and analysis 

All saliva collection and analysis were performed as described previously in Chapter 2. 

7.2.5. Statistical Analysis 

The group data were analysed using a one factor repeated measures ANOVA and for the 

effects of gender, a two factor repeated measures ANOV A was employed. Post hoc t-tests 

with Holm-Bonferroni correction were applied where appropriate. Correlations between s­

IgA secretion rate and symptoms of URTl were assessed using Pearson correlation analysis. 

Statistical significance was accepted at P < 0.05. 

7.3. Resnlts 

7.3.1. Reported symptoms of URTI 

Symptoms of URTl were highest during week 8, immediately after the Commonwealth 

Games Trials, where 7 swimmers exhibited symptoms (Figure 7.3). The mean number of 

reported episodes of UR Tl per swimmer over the 6-month study period was similar between 

genders, 3 ± I and 4 ± 2 for males and females, respectively. 
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Figure 7.3. The incidence of reported symptoms ofURTI during the 6-month training stndy (N= 12). 

7.3.2. Salivary variables 

Saliva flow rate 

There were no significant changes in saliva flow rate throughout the study period (Figure 

7.4). There was a significant main effect of gender, saliva flow rate was lower in females 

compared with males (h 80 = 11.268, P = 0.001). 
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Figure 7.4. Mean (± SEM) values for saliva flow rate during the training study (Mean N = 12, Males 
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S-IgA concentration 

S-IgA concentration did not change significantly during the study period (Figure 7.5). There 

was a significant main effect of gender; s-IgA concentration was significantly lower in 

females compared with males (F1, 80 = 62,829, P = 0.000). 
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Figure 7.5. Mean (± SEM) values for s-IgA concentration during the training study (Mean N = 12, 

MalesN= 7, Females N= 5). 
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S-IgA secretion rate 

There was a significant main effect of time for s-lgA secretion rate (F4,43 = 3,395, P = 0.018) 

(Figure 7.6). It was significantly lower at time point 7 (pre-competition) compared with time 

point 8 (post-competition; P = 0.028). Lower values at time point 3 (pre-trials) and 6 (after 5 

weeks of intensive training) compared with time point 8 approached significance (P = 0.054). 

There was a significant main effect of gender for the secretion rate which was significantly 

lower in females compared with males (Fl, 80= 59.159, P = 0.000). 
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Figure 7.6. Mean (± SEM) values for s-lgA secretion rate during the training study (Mean N = 12, 

Males N = 7, Females N = 5). * Significantly lower than sample point 8, P < 0.05. 

Salivary osmolality 

Salivary osmolality did not change significantly throughout the study period (Figure 7.7) 

There was a significant main effect of gender for osmolality which was lower in females 

compared with males (Fl, 80 = 27.852, P = 0.000). Similarly, there were no significant 

changes over time in the s-IgA:Osmolality but there was a significant main effect of gender 

(Figure 7.8). S-lgA:Osmolality was significantly lower in females compared with males (Fl, 

80= 5.592, P = 0.017). 
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7.3.3. Predictors of infection 

The initial baseline s-IgA secretion rate for each swimmer did not predict the number of 

reported URTI episodes during the training period (r = 0.028, P > 0.05). Furthermore, there 

was no association between the mean the s-IgA secretion rate for individuals over the training 

period and URTI episodes (r= 0.38, P> 0.05). 

7.4. Discussion 

The present investigation was a longitudinal study designed to investigate the changes in s­

IgA over a 6-month period of training and competition in preparation for and during the 

Commonwealth Games 2006 in elite male and female swimmers. A further aim was to 

examine the possible relationship between s-IgA and reported episodes ofURTI. 

. The findings show significant changes in s-IgA secretion rate but not s-IgA concentration 

during the 6-month period, which were lower following intensified training periods prior to 

competition compared with post-competition. Significant gender differences were also 

observed in all the selected measures of saliva composition with females exhibiting lower 

values compared with males. Despite these differences, the salivary responses to the training 

and competition were the same between genders. The highest number of reported URTI 

episodes were reported during week 8 of the study which followed the lowest measured 

levels of s-IgA secretion rate. However, the initial baseline levels of s-IgA were not 

predictive of reported URTI episodes. 

There is little published research examining the effects of a training season on s-IgA secretion 

rate, since most researchers in the past have reported values of s-IgA concentration alone 

(Gleeson et al., 1999, Mackinnon et al., 1987; Tharp and Bames, 1990). Fahlman and Engels 
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(2005) reported lower levels of s-IgA secretion rate in a cohort of 75 male American college 

footballers following two 6-week periods of high intensity training and competition, but 

which recovered during periods of recovery and rest. However, Whitham et al. (2006) 

reported no significant change in s-IgA secretion rate during a 20 week training study in 

Parachute Regiment trainees, despite decreased saliva flow rate at week 20 (June) compared 

with baseline (January). The results of the present study followed a similar pattern to 

Fahlman and Engels, (2005), where values tended to be lower following periods of 

intensified training, prior to competition compared with post-competition, where they seemed 

to recover. Indeed, previous research on acute exercise has suggested that the mucosal 

immune response may be affected by the exercise intensity (Fahlman et al., 2001; Mackinnon 

et al., 1987; Mackinnon and Jenkins, 1992; Tomasi et al., 1982), but the relationship between 

s-IgA and chronic training is less clear. Significant increases in s-IgA concentration have 

been reported following 12-weeks of moderate intensity training in previously sedentary 

adults (Klentrou et al., 2002) and after a 12-week training period in elite swimmers (Gleeson 

et al., 2000). In contrast, studies of a longer duration have reported decreases in s-IgA 

concentration after a 4-month training period in elite swimmers and a downward trend during 

a 7-month season in another group of elite male and female swimmers (Gleeson et al., 1999). 

However, none of these groups measured s-IgA levels post-competition or reported s-IgA 

secretion rate. Clearly further work is required in this area which examines all the available 

methods of expressing s-IgA before a general conclusion can be drawn. 

It is noteworthy that in the present study significant differences in s-IgA secretion rate were 

only observed between the pre-Commonwealth Games (week 22) and post-Commonwealth 

Games (week 26) time points and not with the initial baseline values. One possible factor to 

account for this finding was that the levels may have been slightly suppressed at the 

beginning of the training study by psychological stress and anxiety of the training and 
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competition that lay ahead. Indeed, chronic psychological stress and anxiety have been 

repeatedly associated with reductions in s-IgA (Deinzer and Schuller, 1998; Jemmott and 

Magloire, 1988), and this may also have partly accounted for the lower levels in s-IgA 

secretion rate observed prior to competition. In addition to this, the majority of the swimmers 

had been involved in some basic endurance training before joining the squad at the beginning 

of the study, which may also have affected their baseline s-IgA levels. Thus, this data point 

may not represent a true baseline level, a finding that has also been reported previously in 

swimmers (Gleeson et al., 2000). 

The main limitation of the present study was that no control group was examined. Thus, one 

cannot be sure that the measures were not influenced by seasonal fluctuations. For example, 

saliva flow rate is known to be lower during the wann summer months (Whitham et al., 

2006), and this could in turn affect the s-IgA concentration and/or secretion rate. 

Furthermore, there exists a seasonal variation in URTI incidence, which is generally higher 

during the winter (Matthews et al., 2002). The present study was conducted in the winter 

months when saliva flow rate was unlikely to be affected. However, it is not known whether 

the increased reported symptoms of UR TI during week 8 of the study where a result of the 

training intervention or representative of a seasonal variation. 

The present study found no significant changes in the concentration of s-IgA throughout the 

training period. This is in contrast to previous reports which found consistent changes in the 

concentration following a period of training in elite swimmers (Gleeson et al., 1999; Gleeson 

et al., 2000; Tharp and Bames, 1990). Since the s-IgA secretion rate was not measured by 

these groups, a direct comparison cannot be made. However, our findings show that it was 

only the secretion rate of s-IgA (and not the concentration) that was sensitive to the training 

stimulus. A change in the s-IgA secretion rate may be a significant finding since it represents 
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the amount of s-IgA available on the mucosal surfaces for protection against infectious agents 

and takes into account the concentration of s-IgA and the saliva flow rate, both of which are 

important for host defence (Mackinnon et al., 1993a). In addition to s-IgA concentration, no 

differences were observed when s-IgA was expressed relative to osmolality. Taken together, 

these findings highlight the disparities that occur when measuring these aspects of muscosal 

immunity in response to training, and raise the question over their utility as markers ofURTI 

risk in athletes. 

A further significant finding in the present investigation was the striking differences found 

between genders. In all of the salivary measures females consistently exhibited lower values 

when compared with males. However, their responses to the training stimulus were the same. 

GIeeson and colleagues (1999) reported a significantly lower s-IgA concentration in elite 

female swimmers compared with their male counterparts with no apparent difference in 

URTI incidence, and the present results extend these findings. A lower saliva flow rate and 

indeed s-IgA secretion rate measured in females may not be surprising since it has been 

shown that females possess smaller salivary glands than males (Inoue et al., 2006). The lower 

values in osmolality and s-IgA concentration may initially suggest that the females produced 

a more dilute saliva which could be related to their hydration status. However, the s-IgA 

relative to osmolality values were also lower in females, which seems to suggest a lower level 

of mucosal immunity in females compared with males within this cohort of swimmers. 

The reasons for the observed gender differences are unknown at present. It is known that sex 

hormones play a role in modulating certain aspects of immune function at rest (Timmons et 

al., 2005). However, Burrows et al. (2002) found no differences in mucosal immune status in 

female endurance athletes over three consecutive menstrual cycles. Moreover, no relationship 

was found between s-IgA concentration and progesterone levels. It is possible that the 
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absolute training status of the swimmers (men being faster than women) may have influenced 

the results, since Francis et al. (2005) reported increased values of s-IgA concentration in 

higher trained athletes compared with moderately trained athletes. On the other hand, the 

differences may be related to the relative training load performed. Although the training 

intensity was different and relative to each individual based on personal best times and 

maximum heart rates, the absolute volume performed was similar. Since immune function is 

affected by high volumes of training (Nieman, 2000), it is possible that this volume of 

training placed a higher demand on the female athlete, resulting in an increased physiological 

and/or psychological stress which may in tum impact negatively on s-IgA. Future 

investigations designed to measure the levels of stress (quantitatively or qualitatively) during 

a training period may provide more of an insight into this idea since negative associations 

between the levels of stress hormones and s-IgA have been previously found (Hucklebridge 

et al., 1998). One important point arising from these findings is that such differences should 

be considered if normative levels for the prediction of infection risk in elite athletes are to be 

established. The importance of this finding in terms of infection risk cannot be determined 

from such a small sample size and although the females did report a higher number of 

reported URTI episodes on average, this difference was not significant. 

A negative association between s-IgA levels and URTI symptoms has been previously 

established in elite swimmers (Gleeson et al., 1999; Tharp and Barnes, 1990) and American 

footballers (Fahlman and Engels, 2005). However, others have been unable to find an 

association (Gleeson et al., 2000; Nehlsen-Carmarella et al., 2000; Novas, 2003), and the 

results from the present study corroborate this. The failure to link perturbations in immune 

function to infection incidence following heavy training and/or competition may largely be 

due to the difficulty of measuring immunity in groups of athletes large enough to have 

sufficient statistical power to detect an effect. This is something that is often outside of the 
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control of the researcher. During the study period, the highest number of URTI symptoms 

was reported in the middle of the training period following the first competition. This 

occurred two weeks after the lowest values in s-IgA secretion were recorded. Since s-IgA 

was not measured in the week in between these two time points, one cannot exclude the 

possibility that the levels of s-IgA may have remained low or dropped even further during 

this time leading to an increased susceptibility of URTI as was observed. Mackinnon et al. 

(l993b) found that lower levels of s-IgA preceded infection by 48 h and this highlights the 

necessity of regular sampling if a direct link between these two factors is to be established. 

Although s-IgA secretion rate tended to be lower following periods of intense training, 

without a control group, it is difficult to ascertain whether these levels were below a critical 

'healthy' level, which would subsequently leave them more susceptible to URTI. Moreover, 

every attempt was made to accurately classify symptoms of URTI by questionnaire, however, 

viral load was not measured directly and hence, one cannot be certain that the reported 

symptoms were entirely representative of an infectious challenge. 

Although a significantly lower s-IgA secretion rate was found prior to the Commonwealth 

Games compared with afterwards, only one swimmer reported an episode ofURTI during the 

meet. This may indicate that the levels recorded as a group were not at a critical level, which 

would leave them more susceptible to illness. This can be reassuring for the coaches since 

URTI has been shown to have a negative impact on performance (Pyne et al., 2001). 

In summary, the present data demonstrate that s-IgA secretion rate tends to be lower after a 

period of high intensity training leading up to competition and recovers post-competition. 

However, s-IgA concentration and s-IgA to osmolality ratio remain unaffected. Females 

exhibit lower values of saliva flow rate, osmolality, s-IgA concentration and secretion rate at 

rest compared with males but their response to the training stimulus appears to be the same. 
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Reported symptoms of respiratory illness were highest during week 8 of the study - following 

the period when s-IgA secretion rate was lowest; but the initial baseline values of s-IgA 

secretion rate did not directly predict the number of infections for each individual swimmer. 
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Chapter 8 - General Discussion 

Despite the abundance of research conducted into the effect of exercise on mucosal immunity 

the consensus remains unclear. Much of the inconsistencies arise from the design of the 

protocols, the participants studied and their nutritional status, and methodological and 

analytical differences. The purpose of this thesis was to address some of these factors and to 

investigate potential methods of enhancing the immune response to exercise. 

8.1. Nutritional status 

Gleeson and colleagues reported that the nutritional status of an individual can affect resting 

s-IgA levels with fasting saliva yielding higher and more variable s-IgA concentrations than 

non-fasting saliva (Gleeson et al., 1990; Gleeson et al., 2oo4a). This was examined further in 

this thesis where firstly the effects of a fed or fasted state prior to exercise were compared. 

The results showed that the ingestion of a high CHO breakfast 2 h before exercise had no 

effect on saliva flow rate, s-IgA concentration and secretion rate and it was concluded that 

exercise performed in either a fed or fasted state (of approximately 10 h) would have little 

influence on the absolute levels or the response pattern of s-IgA. It was speculated that the 

differences in the findings could be related to the timing of the meal and/or hydration status 

of the individual. Thus, in Chapter 4 the influence of feeding versus fasting during exercise 

on s-IgA was investigated; with the additional measurement of the salivary antimicrobial 

proteins lysozyme and a-amylase. No significant effects of nutritional status on the s-IgA 

response to exercise were found. In contrast, feeding the high CHO cereal bars during 

exercise resulted in a significant increase in lysozyme and a-amylase compared with fasting. 

Carbohydrate is known to blunt the cortisol response during exercise and appears to limit the 

degree of immunodepression (Nieman, 2007). However, since higher values of cortisol in the 
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fasted state compared with the fed state were only observed at the post -exhaustion time point, 

it was unlikely that cortisol played a role in these immune responses. The salivary glands are 

innervated by parasympathetic and sympathetic nerves (Chicharro et al., 1998), and it is 

possible that the ingestion of cereal bars during exercise activates mechanical and/or 

gustatory receptors leading to a reflex stimulation of protein secretion via the autonomic 

nerves. Moreover, since higher values in lysozyme and a-amylase remained evident post­

exhaustion, it suggests that these effects are relatively long lasting. 

The design of the study was such that it prevented the effects of feeding on the salivary 

responses to be separated from masticatory stimuli alone or in combination with gustatory 

(flavoured) stimuli. Although both trials would have elicited a certain amount of gustatory 

stimuli, the fact that the flavours were not identically matched, may have confounded the 

responses. Thus, future research should attempt isolate these effects as well as from the 

effects of CHO, to examine which may have the most potentially beneficial effects during 

exercise. 

8.2. Exercise and saliva flow rate 

The results in this thesis show that an acute bout of exercise can differently affect the saliva 

flow rate. In Chapter 3 a significant drop in the flow rate was observed with exercise which 

recovered to baseline levels at 1 h post-exercise and these findings are consistent with many 

studies (Bishop et ai., 2000; Li and Gleeson 2005; Sari-Sarraf et ai., 2007b; Walsh et al., 

2002). In contrast, saliva flow rate was unaffected by exercise in Chapters 4, 5 and 6, which 

is in accordance with other studies (Bishop et al., 2000; Walsh et al., 2004). 
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It has been previously demonstrated that dehydration has the greatest impact on saliva flow 

rate during exercise (Walsh et al., 2004), which seems to occur after losses of -3% body 

mass. However, in the present studies, body mass losses were small « 1.5%), indicating that 

the participants consumed sufficient fluids to offset most of their body mass losses. This 

suggests that the reduction in saliva flow rate observed in Chapter 3 was a result of changes 

in autonomic nervous system activity and removal of parasympathetic vasodilatory 

influences, rather than dehydration per se. Indeed, the saliva flow rate was at its lowest point 

during exercise when parasympathetic nervous system activity would have been inhibited, 

and this started to recover upon cessation of exercise when parasympathetic activity would 

have returned. 

The fact that saliva flow rate decreased in Chapter 3 and did not change in Chapters 4, 5 and 

6 may be related to the different exercise intensities and durations employed between studies, 

as well as the timing of the samples. This is evident as the largest drop in saliva flow rate was 

found during the final 5 min of the 2 h bout of exercise at 65% V02mru<, rather than 

immediately post-exercise when it started to recover (Chapter 3). This suggests that there 

may be a threshold level and/or duration of parasympathetic innervation below which, saliva 

flow rate decreases. 

A further interesting finding was that salivary osmolality increased post-exercise without a 

significant change in body mass (Chapters 3 and 6) or a change in saliva flow rate (Chapter 

6). This suggests that in addition to the saliva flow rate, the autonomic nervous system exerts 

a control on electrolyte secretion during exercise in the absence of dehydration. These results 

contrast those by Bishop et al. (2000) and Walsh et al. (2004) where fluid intake (to match 

pre-determined sweat losses in the latter study) prevented the decrease in saliva flow rate and 

increase in osmolality. Such a finding may question the reliability of salivary osmolality as a 
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marker of hydration status (or in relation to s-IgA concentration) post-exercise. Clearly, the 

regulatory factors governing saliva flow rate during exercise remain controversial and further 

research is warranted to examine these factors before a consensus can be drawn. 

The maintenance of saliva flow rate during exercise is important since it has been suggested 

to be the single salivary defensive factor that significantly affects oral health (Rantonen and 

Meurman, 2000). The finding that individuals suffering from dry mouth syndrome have an 

increased incidence of URTI (Fox et aI., 1985) supports this notion. 

8.3. Acnte exercise and salivary antimicrobial proteins 

The s-IgA response to acute exercise was fairly consistent across studies. The results showed 

an increase in s-IgA concentration following exercise. Since s-IgA concentration is affected 

by the saliva flow rate, it is generally thought that these increases represent a drying of the 

mouth with dehydration rather than genuine alterations in the mucosal immune response. 

Hence, this factor was accounted for by expressing s-IgA as a secretion rate (saliva flow rate 

x concentration) and thus reflected the total amount of s-IgA available at the mucosal surface. 

With the exception of Chapter 3, significant increases were found in the s-IgA secretion rate 

post -exercise which returned to baseline levels at 1 h post -exercise. The increases in s-IgA 

secretion rate can be explained by the increase in SNS activity during high intensity exercise 

as this has been shown to increase the mobilisation of IgA into saliva by transcytosis (Proctor 

et aI., 2003). S-IgA secretion rate did not change significantly in Chapter 4, although a 

decrease of 25% during exercise compared with pre-exercise was observed. Furthermore, a 

significant decrease in the s-IgA:osmolality ratio was found post-exercise. In this study, 

significant decreases in the saliva flow rate occurred with exercise. Taken together these 

results suggest that decreases in s-IgA secretion rate occurring with exercise are a result of 
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the reduction in saliva flow rate rather than s-IgA secretion per se. However, when the saliva 

flow rate is maintained (Chapters 5, 6 and 7); the secretion rate tends to increase. 

Salivary lysozyme and a-amylase appeared to follow the same pattern as s-IgA. Increases 

were consistently observed with exercise in both their concentration and secretion rate 

(Chapters 5, 6 and 7). Although the regulatory mechanism(s) governing secretion of these 

proteins is less clear, it is assumed that these changes are mediated in the same manner as s­

IgA, resulting from increases in SNS activity with exercise (Carpenter et al., 1998). 

Collectively, these findings suggest that an acute bout of exercise, with regular fluid ingestion 

can result in a temporary enhancement of mucosal immune status. These findings challenge 

previous reports of a depressed mucosal immunity following intense exercise (Fahlman et aI., 

2001; Mackinnon & Jenkins, 1993; Steerenberg et al., 1997; Tomasi et al., 1982) and 

highlight the complexity of this measure of immunity in response to exercise. 

8.4. Exercise intensity 

The responses of antimicrobial proteins to exercise appear to be influenced by the exercise 

intensity. This was initially demonstrated in Chapter 6 where s-IgA secretion rate showed 

little change during the moderate exercise intensity (60% V02max), but increased by - 35% 

following exercise at the higher intensity (75% V02"",,). These effects were examined in 

more detail in Chapter 7. The results showed significant increases in both s-IgA and 

lysozyme post-exercise following an incremental test to exhaustion, which returned to 

baseline at 1 h post-exercise. Moreover, lysozyme was also elevated following exercise at 

75% V02max, whereas s-IgA remained unchanged. The increases in salivary proteins 

following the higher intensity trials reflect the elevated SNS activity, and also suggest that the 
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threshold of SNS activity to increase lysosyme may be lower than that for s-IgA. Taken 

together, these findings suggest that mucosal immunity may be temporarily enhanced 

following exercise at high intensities but does not change following more moderate short 

duration exercise. 

s.s. Stress markers 

The regulation of mucosal immunity during exercise is thought to be influenced by the 

release of stress hormones such as catecholamines and cortisol. The measurement of stress 

hormones in saliva aims to provide an easy non-invasive measure of SNS activity and the 

HP A axis activation without inducing further stress associated with blood drawing. Salivary 

cortisol has been shown to correlate highly with circulating levels (Chicharro et aI., 1998); 

however, catecholamines measured in saliva are regarded as less reliable (Kennedy et al., 

2001). Thus, this thesis measured a-amylase and salivary chromogranin A as surrogate 

markers of SNS activity. In Chapter 7 these markers of adrenal activation were specifically 

compared in response to short duration exercise at 3 different intensities. Alpha-amylase 

activity and secretion rate increased with exercise but only the secretion rate was affected by 

the intensity. However, both the concentration and secretion rate of chromogranin A was 

significantly affected by the exercise intensity. 

The increases in these stress markers occurred in relation to increases in lysozyme and s-IgA 

and hence support the idea that the changes in salivary antimicrobial proteins during exercise 

are mediated by changes in SNS activity. These findings also suggest that both the 

concentration and secretion rate of chromogranin A warrant further investigation as potential 

indexes of SNS activity during exercise, which should compare them to circulating levels of 

blood catecholamines. 
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Increases in cortisol with exercise occurred between 90 - 120 min after the onset of exercise 

and at intensities of 65% Y02""" and above (chapters 4, 5, 6 and 7). This is not surprising 

since the appearance of cortisol in the circulation is reported to occur after a lag-period that in 

some cases may be more than I h (Viru and Viru, 2004), and following intensities above 60% 

Y02ma,. Since the changes in salivary antimicrobial proteins occurred more rapidly, within 

25 min of exercise (Chapters 5, 6 and 7), an involvement of the HPA axis in the regulation of 

their secretion seems unlikely. However, the effects on s-IgA may be more delayed and occur 

between 2 - 24 h following exercise (Mackinnon et al., 1987; Gleeson et al., 2001). 

8.6. Chronic exercise and s-IgA 

The present findings show that chronic exercise training and competition in a squad of elite 

male and female swimmers can affect the s-IgA secretion rate but have little impact on the s­

IgA concentration. Clear trends were found in the s-IgA secretion rate which was lower 

following periods of intense training and higher post -competition. These findings are in 

accordance to those reported by Fahlman and Engels (2005) who suggested that the s-IgA 

secretion rate is the most useful clinical biomarker of immune status in athletes. However, 

these findings are in contrast to the results following acute exercise presented in this thesis 

where significant increases were observed post-exercise. As discussed previously, the 

immediate effects of exercise on s-IgA are likely to be mediated by increased SNS activity 

with exercise. However, stimulation of the HPA axis by exercise (the end product being 

cortisol) may exhibit a more delayed response. Indeed, the synthetic glucocorticoid 

dexamethasone has been shown to cause a decline in the mobilisation of s-IgA 24 h after a 

single injection (Wira et al., 1990), and in the longer term cortisol may inhibit IgA synthesis 

by B cells in the submucosa (Saxon et al., 1978). Thus, the lower levels in s-IgA secretion 
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rate found following intensive training could be explained by a chronic elevation of cortisol 

levels. 

Although there was no significant correlation between s-IgA and URTI symptoms, it was 

observed that the highest number of reported symptoms was preceded by the lowest s-IgA 

secretion rate. The failure to link perturbations in s-IgA to URTI may be due to the limited 

number of elite athletes in the squad, and is a major limitation in conducting research in this 

group of individuals. Moreover, the differences between genders in the measurements would 

also add to the variability making an association difficult to detect. Finally, the lack of control 

group in this study prevents us from ascertaining whether the changes were a result of the 

exercise training or simply reflecting a seasonal variation. Nevertheless, the results lend some 

support to a chronic effect of exercise training on mucosal immunity and highlight the need 

for further well-controlled studies that should look to examine other salivary antimicrobial 

proteins. 

8.7. Gender differences 

Significant gender differences in s-IgA, males being higher than females, in the general 

population have been previously reported (Evans et aI., 2000). Furthermore, lower s-IgA 

concentrations in females compared with males were observed in elite swimmers at rest 

(Gleeson et al., 1999). Thus, in both Chapters 4 and 8 a female group was incorporated into 

the study design. The results showed significantly lower levels of s-IgA concentration, 

secretion rate and osmolality in females compared with males (Chapters 3 and 7). In addition, 

in Chapter 7 the saliva flow rate was also found to be lower in females. Although these 

differences were apparent at rest, they did not appear to influence the salivary responses to 

exercise, or exercise training. 
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The precise reason for these gender differences is unknown at present. Sex hormones appear 

play an important role in some aspects of the immune function (Timmons et aI., 2005), 

however, their significance in modulating mucosal immunity is less certain (Burrows et al., 

2002). Other possible explanations may include the absolute training status (Francis et al., 

2005), training volume (Nieman, 2000) and nutritional status (Chandra, 1997; Gleeson et al., 

2004b). Despite the uncertainty surrounding these mechanisms, such a finding is of practical 

importance since it may have implications on the future design of studies, and should be 

considered if clinically normal ranges are to be identified. Moreover, whether these findings 

are important in infection risk needs to be evaluated since they contrast with reports that 

women are generally more resistant to viral infections than men (Beery, 2003). 

8.8. Stimulating saliva flow 

Stimulating saliva flow either by eating food or chewing flavoured gum during exercise was 

shown to enhance certain aspects of mucosal immunity (Chapters 5 and 6). In Chapter 5 it 

was demonstrated that eating a commercially available cereal bar every 60 min during 

exercise increased the secretion of lysozyme and a-amylase into saliva but did not affect s­

IgA. These findings were extended in Chapter 6 where it was shown that chewing flavoured 

gum during exercise enhanced lysozyme and a-amylase secretion rates but resulted in a small 

reduction in the s-IgA secretion rate. 

Eating food and/or chewing gum causes the activation of masticatory and gustatory receptors 

which initiates a reflex stimulation of protein secretion via the autonomic nerves (Pedersen et 

al., 2002). The fact that lysozyme and a-amylase were affected but s-IgA showed little or no 

change may depend on their different secretory pathways. Lysozyme and a-amylase are 
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stored in membrane secretory granules and are released spontaneously upon neuronal 

stimulation (Bosch et aI., 2002). However, s-IgA is secreted onto mucosal surfaces via 

transport across the epithelial cells by the polymeric Ig receptor, which is activated by 

neuronal stimuli that may differ to those of other salivary proteins (Proctor and Carpenter 

2001). 

In addition, the increase in lysozyme and a-amylase by chewing may be explained by the 

increase in salivary secretion from specific glands. For example, mastication particularly 

activates the parotid glands which produce large amounts of a-amylase, whereas strong taste 

stimuli activate the submandibular and sublingual glands from which lysozyme is mainly 

produced. 

As with Chapter 4, a limitation of these findings is that it is not possible to distinguish 

whether the differences between stimulated and unstimulated saliva flow were due to 

masticatory or gustatory stimuli alone or in combination. In order to separate these 

mechanisms, it would be interesting to compare the effects of chewing flavoured gum 

compared with chewing tasteless polythene tube on the salivary responses to exercise. 

The finding of an increase in the secretion rates of lysozyme and a-amylase with exercise 

which is further enhanced by stimulating saliva flow suggests these factors have a beneficial 

effect on the oral immune system. At present, there have been no studies that have directly 

related the levels of these proteins in saliva to a reduced risk of URTI and given the present 

findings, this may be of interest. 
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8.9. Conclusions 

The main conclusions arising from this thesis are: 

1) The prior nutritional status (fed versus fasted) of an individual does not affect resting 

s-IgA levels or the s-IgA response to prolonged exercise. 

2) Ingestion of cereal bars during exercise can increase the secretion of lysozyme and a­

amylase into saliva but does not affect s-IgA. 

3) Stimulating saliva production during exercise by chewing flavoured gum enhances 

lysozyme and a-amylase secretion but results in a small decrease in s-IgA secretion. 

4) The responses of salivary antimicrobial proteins to exercise are affected by the 

relative exercise intensity. S-IgA secretion increases following short-duration 

incremental exhaustive exercise but remains unchanged following exercise at 75% 

and 50% VO,""". Lysozyme increases following exercise at both 75% V02""" and to 

exhaustion. These responses appear to be associated with increases in SNS activation 

but not cortisol. 

5) S-IgA secretion rate is affected by chronic exercise training resulting in lower values 

prior to competition compared with post-competition, whereas s-IgA concentration 

and s-IgA to osmolality remain unchanged. S-IgA secretion rate does no appear to be 

directly linked to reported symptoms of URTI. 

6) Females exhibit lower values of saliva flow rate, osmolality, s-IgA concentration and 

secretion rate at rest but this does not affect the response to an acute bout of exercise 

or chronic exercise training. 
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----------

INFORMED CONSENT FORM 

(to be completed after Participant Information Sheet has been read) 

The purpose and details of this study have been explained to me. I understand that this study 
is designed to further scientific knowledge and that all procedures have been approved by the 
Loughborough University Ethical Advisory Conunittee. 

I have read and understood the information sheet and this consent form. 

I have had an opportunity to ask questions about my participation. 

I understand that I am under no obligation to take part in the study. 

I understand that I have the right to withdraw from this study at any stage for any reason, and 
that I will not be required to explain my reasons for withdrawing. 

I understand that all the information I provide will be treated in strict confidence. 

I agree to participate in this study. 

Your name .............................................................................................. . 

Your signature ....................................................................................... .. 

Signature of investigator ........................................................................ . 

Date ........................................................................................................ . 

155 



Appendix B - Health Screening Questionnaire 

156 



HEALTH SCREEN FOR STUDY VOLUNTEERS 

Name ................................................................................... . 

It is important that volunteers participating in research studies are currently in good health 
and have had no significant medical problems in the past. This is to ensure (i) their own 
continuing well-being and (ii) to avoid the possibility of individual health issues confounding 
study outcomes. 

Please complete this brief questionnaire to confirm fitness to participate: 

l. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise YESD NOD 

(b) attending your general practitioner YESD NOD 

(c) on a hospital waiting list YESD NOD 

2. In the past two years, have you had any illness which require you to: 

(a) consult your GP YESD NOD 

(b) attend a hospital outpatient department YESD NOD 

(c) be admitted to hospital YESD NOD 

3. Have you ever had any of the following: 

(a) Convulsions/epilepsy YESD NOD 

(b) Asthma YESD NOD 

(c) Eczema YESD NOD 

(d) Diabetes YESD NOD 

(e) A blood disorder YESD NOD 

(f) Head injury YESD NOD 

(g) Digestive problems YESD NOD 

(h) Heart problems YESD NOD 

(i) Problems with bones or joints YESD NOD 
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G) Disturbance of balance/coordination YESD NOD 

(k) Numbness in hands or feet YESD NOD 

(1) Disturbance of vision YESD NOD 

(m) Ear / hearing problems YESD NOD 

(n) Thyroid problems YESD NOD 

(0) Kidney or liver problems YES D NOD 

(p) Allergy to nuts YESD NOD 

4. Has any, otherwise healthy, member of your family under theage of 35 died suddenly 
during or soon after exercise? 

YESD NOD 

If YES to any question, please describe briefly if you wish (eg to confirm problem was/is 
short-lived, insignificant or well controlled.) 

...................................................................................................... 

...................................................................................................... 

...................................................................................................... 

Thank you for your cooperation! 
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Appendix C - Physical Activity Questionnaire 
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Loughborough University 

School of Sport and Exercise Sciences 

PHYSICAL ACTIVITY QUESTIONNAIRE 

Name: ................................................................................................................................ . 

Date of birth: ...................................................................................................................... . 

Email address: .................................................................................................................... . 

Telephone number: ............................................................................................................ . 

The following questions are designed to give us an indication of your current level of 
physical activity. 

Are you currently ENDURANCE TRAINING? YESD NOD 

If yes, how many days each week do you usually train? .......................... . 

How many minutes does each session last? .......................... . 

Which type of exercise do you perform (ex: running, cycling)? 

................................................................................................ 

Are you currently doing WEIGHT TRAINING? YESD NOD 

If yes, how many days each week do you usually train? .......................... . 

How many minutes does each session last? .......................... . 
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Appendix D - Health Qnestionnaire 
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Loughborough University 

School of Sport and Exercise Sciences 

HEALTH QUESTIONNAIRE 

Please complete the following brief questions to confirm your fitness to participate in today's 
session: 

At present do you have any problems for which you are: 

1) On medication, prescribed or otherwise? YESD NOD 

2) Seeing your general practitioner? YESD NOD 

Do you have any symptoms of ill health, such as those associated with a cold or other 
common infection? 

YESD NOD 

If you have answered yes to any of the above questions, please give further details below: 

Would you like to take part in today's experiment? YESD NOD 

Signature ......................................... . Date ......................... . 
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Weekly illness log 

Name: ......................................................... Date: ................................... . 

Note if you have felt any of the symptoms, no matter how insignificant they may appear. 

Place a tick in the corresponding box if a symptom is present. If a symptom is not present 
please leave the rest of the line blank. 

If the symptom was light, moderate or severe write "L", "M" or "S" in the corresponding 
box. 

If a symptom is present, write the number of days that it persisted. 
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Fever 

Persistent muscle soreness or tenderness (> than 8h) 

Sore throat 

Scratchy throat 

Catarrh (runny or viscous fluid) in the throat 

Runny nose 

Plugged nose 

Cough 

Repetitive sneezing 

Joint aches and pains 

Weakness/fatigue 

Loss of appetite 

Loss of sleep 

Inability to train/compete 

Headache 

In the past 7 days have you (please tick as appropriate): 

a) Taken any medication? YES 0 NOD 

If yes, please specify ......................................................................................................... . 

b) Seen your doctor/GP? YES 0 NOD 

Other illness not on form, please report ............................................................................. . 
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