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Abstract: 

In this thesis, we present a model that aims to support business activities conducted through a 
network of collaborations that generates value in different, mutually beneficial, ways for the 
participating organisations. Particularly, we propose a practical model for the theoretical 
representation of Digital Ecosystems, which supports four properties of `Interaction', `Balance', 
`Loose Coupling' and `Self-organisation'. The interaction model in this distributed environment 
should satisfy the long-running nature of business activities in a loosely coupled manner. 

The proposed model for distributed transactions focuses on the dependencies that arise due to 
the sharing of data within a transaction or the release of partial results and shows how these can be 
handled using a flexible lock scheme and using an extended log mechanism. The conceptual 
agent-based design presents a distributed coordination model which handles long-term business 
transactions. 

The temporary virtual networks formed by long-term business transactions that involve the 
execution of multiple services from different providers are used as the building blocks for an 
underlying scale-free business network. It is shown how these local interactions, which are not 
governed by a single organisation, give rise to a fully distributed networked architecture that 
reflects the dynamics of business processes in a loosely coupled manner when it respects local 
autonomy. An optimised recovery mechanism not only provides a forward recovery method for 
avoiding the (costly) full recovery procedure, but also is isolated from knowledge of the local state 
of participants and so respects their local autonomy. 

In order to provide a sustainable environment with high connectivity between participants of a 
digital ecosystem, the architectural design is based on dynamically formed permanent clusters of 
nodes; the so-called Virtual Super Peers (VSPs). This results in a topology that is highly resilient 
to failures. These failures can be categorised from purely transactional breakdowns to physical 
network disconnections. The self-recovery method is designed using time-out locks, which can 
save the consistency of the interaction model, and high connectivity and the self-organising 
method of creating Virtual Super Peers maintains the stability of the environment. 

Furthermore, the proposed architecture is capable of reconfiguring itself to adapt to the usage 
that is being made of it and respond to global failures of conceptual hubs or coordinators. This 
fosters an environment where business communities can evolve to meet emerging business 

opportunities and achieve sustainable growth within a digital ecosystem. 
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INTRODUCTION 

Napoleon Bonaparte (1769 -1821) is said to have referred to England as a nation of shopkeepers 
("L'Angleterre est une nation de boutiquiers"). He may be forgiven for underestimating the 
complexity of interconnectivity, robustness and sustainability of the English economy. But failure 
to isolate these small and medium economical units from the rest of Europe can be considered as 
evidence for the success of the British economy model. Furthermore the subsequent vigorous 
economic growth in UK and the tremendous growth in the number of inventions and businesses 
based on those inventions bear witness to this. The innovation, growth and sustainability of the 
economy have a direct relationship with the vitality and success of these small businesses. 

"Micro, small and medium-sized enterprises (SMEs) play a central role in the 
European economy. They are a major source of entrepreneurial skills, innovation and 
employment. In the enlarged European Union of 25 countries, some 23 million SMEs 
provide around 75 million jobs and represent 99% of all enterprises. " (European 
Commission, 2005) 

The innovations, affiliations, competition and collaborations of these enterprises relies on 
several factors from a healthy economy and this is one of the reasons, despite their crucial roles in 

other aspects of society, for support and considerable investment, provided in a large scale; 

"... support for SMEs is one of the European Commission's priorities for economic 
growth, job creation and economic and social cohesion. " (European Commission, 2005) 

Maintaining an optimised model for supporting these enterprise relationships needs a compound 
representation. One of the well-known metaphoric attempts for grasping this complexity is 
`business ecosystem' that describes the business environment as an economic community which 
"is supported by a foundation of interacting organizations and individuals--the organisms of the 
business world. " (Moore, 1993). 

With the introduction of the Internet and increased connectivity, "Digital Ecosystems" (Digital 
Business Ecosystems) have been introduced as an evolution of this model (Nachira, 2002a). In 
this context, Business has measured as "An economic community supported by a foundation of 
interaction organisation and individuals - the organisms of business world". (Nachira, Dini, & 
Nicolai, 2007). 

Inspired by the natural Ecosystems, Digital Ecosystems are seen as having four properties: 
`Interaction and engagement', `Balance', `Domain clustered and loosely coupled' and 
`Self-organisation' (Chang & West, 2006a). As a result, a Digital Ecosystem needs a 
self-organising digital infrastructure aimed at creating a digital environment for networked 
organisations that supports a loosely coupled business interaction between them when stability and 
sustainability of this dynamic environment is maintained. In contrast with conventional models 
(client-server, Peer-to-Peer or centralised service oriented architecture), a Digital Ecosystem is an 
open community without any centralised control (Chang & West, 2006a), (Chang, West, & 
Hadzic, 2006). The loose coupling and local autonomy of participants, with the lack of centralised 
control, will result in distributed coordination which creates a fully distributed environment 
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(Moschoyiannis & Darking, 2008). By supporting a loosely coupled transaction (interaction) 

model, fully distributed environment and avoid any centralised control or coordination, the 
European Commission has considered this conceptual model as the ideal framework for 

supporting Small and Medium Enterprises (Nachira, 2002a), (Nachira et al., 2007). 

As the distributed system is asynchronous, there is no fixed upper bound on how long it takes for 

a message to be delivered or how much time elapses between successive steps of a processor 
(Tanenbaum & Steen, 2008), (Attiya & Welch, 2004), (Kshemkalyani & Singhal, 2008). 
Therefore, modelling distributed algorithms is supposed to be independent of any particular timing 
parameter. Consequently for providing a loosely coupled business transaction (interaction) model, 
which aims to work in a sustainable network of participants, three challenges should be taken into 

account: `Asynchrony', `Limited local knowledge' and `Failures' (Tanenbaum & Steen, 2008), 
(Attiya & Welch, 2004). 

This thesis provides a loosely coupled distributed business transaction (interaction) model. The 

proposed (self-) recovery mechanism for solving failures respects the local autonomy of 
participants and at the same time optimises the cost of recovery. The abstract agent model for 

participants facilitates an asynchronous interaction model. Meanwhile the cluster based stability 
model takes into account the limited local knowledge of each participant; the conceptual 
repositories use a customised replication mechanism for increasing their local knowledge in order 
to increase the local stability of environment. The planned virtual super peers offer a dynamic 

method for maximising the sustainability of the global network without relying on any centralised 
infrastructure provider or applying any control. One of the important characteristics of the 

projected model is avoidance of single points of failure, which shows the resistance of the system 
against crisis or smart hackers' attacks. The solution is fully distributed and avoids any level of 
centralised coordination or control. In terms of the main requirements, the participants of such a 
model are considered as Small and Medium Enterprises (SMEs), but we believe that Large 
Enterprises could also benefit from such a model. 

This thesis is structured as follows. In Chapter 1, the history of `Digital Ecosystems' from 
introducing the conventional `business ecosystem' towards the necessity of defining a new 
conceptual framework as Digital Ecosystems, has been reviewed. The characteristics and 
requirements have been discussed in the last part of the chapter. As providing a distributed 
transaction model is the main part of requirements for a Digital Ecosystem, Chapter 2 provides a 
broad review of existing transaction models and discuss their characteristics in terms of 
long-running business transactions required for Digital Ecosystems. 

In Chapter 3, we outline the basic characteristics of Digital Ecosystems and their interaction 

model in terms of a loosely coupled service-oriented environment and then discuss transaction 
models that have been developed with conventional service-oriented architectures (web services) 
in mind. We argue that existing transaction models for web services are tailored to the needs of 
large-scale enterprises (LEs) and raise barriers to the adoption of such technology by SMEs. More 

specifically, such models rely on coordination frameworks that are not fully distributed and do not 
respect the loose-coupling of the underlying services. 

The proposed distributed transaction model for Digital Ecosystems is presented in Chapter 4. 
At the heart of this is the coordination model which has been customised for SMEs in a loosely 
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coupled, service oriented environment for Digital Ecosystems and relies on the designed log 

mechanism, along with the optimised lock system. The proof of consistency and details of its 
infrastructure has been discussed at the last part of this chapter. Chapter 5 provides the details of 
the recovery mechanism and the reaction of the model in opposition to failures. Meanwhile 
avoiding failures by using diversity in a Digital Ecosystem and designing a self-recovery 
mechanism for facing Network failures are the other issues that have been discussed. 

In Chapter 6, we describe the formal underpinning to analyse the distributed behaviour of our 
proposed coordination model for the Digital Ecosystem transaction model. Naturally, the next step 
is to look for network architectures that can support this collaborative software environment of the 
Digital Ecosystem, where collaboration is conducted based on the transaction model. We are 
concerned with such aspects in Chapter 7, which in a certain important sense pave the way for 
future extensions for implementation. The projected virtualisation levels, by using VSPs (Virtual 
Super Peers), provides a dynamic and sustainable model, which avoids any centralised control and 
tries to adapt itself to the dynamic behaviour of the environment. 

Chapter 8 provides a brief review about the implementation support for coordination aspects of 
the transaction model through the log mechanism that ensures local consistency and the 
sustainable environment for a Digital Ecosystem. This implementation is ongoing, with the 
involvement of various partners in the OPAALS project. The implementation has not been 
finalised at the time of writing. One may anticipate that by applying it in the actual business 

environment, various customisations may be applied and alter the final implementation. The 
Conclusion contains some concluding remarks and a brief discussion on future directions. 

THESIS AIMS & OBJECTIVES 

The main aim of this thesis is proposing a loosely coupled solution based on the context of 
digital ecosystems, and in particular the thesis concerns with services, transactions, and network 
support within the digital ecosystem initiative. 

Such a solution should provide a distributed coordination model with full consistency and 
recoverability properties, which is based on loosely-coupled service composition. Meanwhile the 
solution must support a dynamic topology that continuously adapts to reflect the actual usage of 
the network in terms of business transactions. 

The other important property is the resistance against fragmentation. Furthermore, the proposed 
solution ought to avoid a central point of command and control and shall not suffer a single point 
of failure. 
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SUPPORT PUBLICATIONS AND RESEARCH ACTIVITIES 

This work has been reflected in two European projects; in terms of primary analysis of 
transactional models and proposing a primary distributed transaction model in DBE (Digital 
Business Ecosystem 2004-2006; DBE/ EU FP6-ISTI Contract No 507953). And the finalised 
transactional model, its pattern behaviours and infrastructure for this business environment has 
been designed in OPAALS (2006-2009; OPAALS/ EU FP6 NoEl Contract No 034824). The 
author was working in the D24.5 work package in DBE and the result has been reported in 
(Razavi, Krause, & Moschoyiannis, 2006), which has been reviewed and accepted by EU 
reviewers. This report was the foundation for the 6"' objective of the next project work description 
(OPAALS). In OPAALS, the author is working in work package three (WP3) for analysing, 
designing and optimising the business transaction and P2P network in terms of a P2P Network 
(from Nov 2008 working as work package leader). The results have been published in several 
deliverable reports for EU reviewers and have been accepted and received complimentary 
feedbacks [(Razavi, Moschoyiannis, & Krause, 2007a), (Razavi, Moschoyiannis, & Krause, 
2007b)]. The list of support publications has been included after the main references and here other 
research activities of author has been provided. 

RELATED RESEARCH ACTIVITIES: 

Organising Track (and TPC) in IEEE DEST: 

Co-organising 'Cooperation and Connectivity in Digital Ecosystems' Track within the third IEEE 
International Conference on Digital Ecosystems and Technologies (IEEE-DEST 2009) and 
Co-organising 'Models of Open TRAnsactions in Digital Ecosystems (MOTRADE)' Track within the 

second IEEE International Conference on Digital Ecosystems and Technologies (IEEE-DEST 2008). 

Member of Technical Program Committee in 

" The Fourth International Multi-Conference on Computing in the Global Information 
Technology (ICCGI 2009). 

" ServP2P 2009 - Workshop on Service-Oriented P2P Networks and Grid Systems (at 9th IEEE 
International Symposium on Cluster Computing and the Grid). 

" The First International Conference on Advances in P2P Systems (AP2PS 2009). 

" The First International Workshop on Computational P2P Networks: Theory and Practice 
(ComP2P 2008). 

IEEE-IES TCII 

� Member of IEEE-IES Technical Committee on Industrial Informatics (TCII). 
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1 DIGITAL ECOSYSTEM AND CHALLENGES 

This chapter includes two sections. In the first section we review the history of the Ecosystem 
briefly as a metaphor for business and in that respect, the problems have been investigated (this 
material has been published in (Strammen-Bakhtiar & Razavi, 2008). In the second section, the 
modem term of Digital (Business) Ecosystems and its aims have been expressed. At the end of the 
chapter, we have tried to revisit the requirements of such architecture. 

1.1 BUSINESS ECOSYSTEMS & THE COMPLEXITIES OF A DIGITAL WORLD 

In 1993 James F. Moore in the article "Predators and Prey: The New Ecology of Competition" 

compared the business environment to an ecological system. He used the metaphor "business 

ecosystem" to describe the business environment as an economic community which "is supported 
by a foundation of interacting organizations and individuals--the organisms of the business 

world. " (Moore, 1993) 

The resemblance between the two systems is of course not complete and there are certain 
recognisable differences between the two, such as self optimisation (Hannon, 1997), conscious 
decision making (Lewin, 1999) or the intelligence of actors in the ecosystem (Iansiti & Levien, 
2004). 

Nevertheless, this comparison of economy to biology has been seen as extremely relevant and 
useful, not only because this comparison improves our understanding of the roles and 
interconnectedness of various actors in the business ecosystem, but also because of increasing 

connectivity and complexity of these systems. 

Of course, one can consider an economy to be a national business ecosystem (Rothschild, 1995) 

composed of many smaller systems, all of which are directly or indirectly interconnected. What 

many call an industry can now be considered to be either an ecosystem or a part of one. These 
business ecosystems are populated by (some loosely) interconnected organisms: businesses, 

consumers, the government and other stakeholders. 

As far as the business population of each business ecosystem is concerned, the majority is 

composed of Small and Medium size businesses (SMEs) along with a few large ones, the so called 
Keystones. Marco Iansiti and Roy Levin compare the role of these keystone companies to those of 
keystone species in nature (Iansiti & Levien, 2004). They argue that we live in an interconnected 

world, the landscape of which is made of a network of networks, with keystones at the hubs and 
niche players surrounding the hubs. 

Until recently the majority of attention of both academia and governments has been focused on 
these keystones, believing that what is good for the keystones is good for the business ecosystem 
and hence the nation. However, over time, it has become clear that, depending on government 
regulations and policies, these keystones can play either a positive or a negative role in the 
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business ecosystem. 

1.1.1 KEYSTONE: THE PROBLEMS OF DEFINITION AND BEHAVIOUR 

In nature a `Keystone' species is defined as "a species whose effect is large and 
disproportionately large relative to its abundance" (Power et al., 1996). It is also argued that 
Keystones help in determining or regulating the number and type of other species in their 
communities. It is generally believed that keystones play a positive and a necessary function in the 
ecosystem. This view is also shared by the majority of those who have rushed to adopt the concept 
for the study of business ecosystems. 

But the keystone concept has been adopted in both computer and business literature without 
actually questioning the correctness of the analogy. Even if, for the sake of the argument, we 
accept the analogy, we cannot ignore the arguments of the critics of the concept in its original 
context, namely the definition and role of keystones in ecology. For instance Payton et al. (Payton, 
Fenner, & Lee, 2002) argue that: 

The idea that some species may function as keystones has not been without its critics 
(Mills et al. 1993; Hurlbert 1997), who argue that while the concept has `developed 
tremendous currency and fashionability' it has also become increasingly ill-defined, and 
now means little more than `important for something' (Hurlbert 1997). In defence of this 
position, opponents cite the vagueness of keystone definitions and their inconsistent usage 
in the literature, and an implied dichotomy between keystone and non-keystone species 
that has not been demonstrated in nature. Hurlbert concedes that the notion was 
`appealing and harmless, but as a well-defined concept or phenomenon he concludes it 
'has had a stultifying effect on ecological thought and argument'. 

It is important to note that in nature a keystone species does not have the ability to freely relocate 
to another ecosystem, nor does it have the option of outsourcing parts of its activities. And most 
importantly, in nature a keystone species lacks the intelligence level of its namesake in business 
ecosystems. 

1.1.2 KEYSTONES: FROM INDUSTRIAL AGE TO INFORMATION AGE 

Technological innovations have always led to the creation of new companies by entrepreneurs 
who have tried to take advantage of those innovations to create a competitive advantage for 
themselves in the marketplace; which in turn necessitated the adaptation of those innovations by 
the older established companies. 

Digital Ecosystems -6- Amir reza Razavi 



Digital Ecosystem and challenges 

Business Ecosystems & the Complexities of a Digital World 

Until relatively recently, the rate of diffusion and adaption of new technologies was rather slow. 
Lack of speedy communication was one of the reasons behind this glacial diffusion rate. For 

example, new machines were invented and used in one part of the world without it being 
introduced and used in other parts. A good example of this is the printing press, which was 
invented in China a few hundred years prior to its "re-invention" in Germany in 1439. 

However, the Industrial revolution (1760-1840) (Toynbee & Jowett, 1887) reduced the distance 
between the continents. The improvements in steam engines (steam locomotive 1804), invention 

of the telegraph in 1830s and later the telephone in the 1860s effectively reduced distances 
between towns, countries and continents. This reduction in distance also opened new markets, 
allowing manufacturers and producers to increase production capacity, which in turn led to 
increasing size of these companies. 

Indeed the origins of the modern diversified corporations can be traced back to the creation of 
large corporations at the beginning of the last century, when mass-production (brought about by 
innovations in work methods and mechanical automation) allowed many companies to grow 
rapidly and prosper at a rate that had never been seen before in history. Companies such as Ford, 
General Motors, Standard Oil Company and others grew from small businesses to large 
corporations (keystones), whose turnover matched the GNP of many small nations. 

Until the early 1920s, these corporations were primarily single business units. Ford 

manufactured cars, while Standard Oil was concerned with oil exploration, extraction and refining. 
The driving force behind these corporations came from their owners who knew their businesses 

well and exercised total control. However changes in size and organisational forms required new 
strategies. 

In this era competition, by and large, was seen as "dominate or absorb" with one exception: the 

creation of cartels. "Price competition among large-scale rivals proved mutually destructive to 

profits and after a brief period of cut-throat competition, business enterprise turned to cartels, 
trusts and other monopolistic forms of organisation designed to eliminate price competition" 
(Dillard, 1967). Here the theories of Cournot (Coumot, 1960) (monopoly, duopoly, and 
oligopoly), first published in 1838, were put to work. This allowed the owners, the so-called 
"robber barons"(Josephson, 1962), to concentrate on increasing internal efficiency of their 

organisations. 

Part of this internal efficiency was achieved by focusing on economies of scale; i. e. to produce a 
product faster, better and cheaper than competitors, using mass-production (changes in the supply 
side). As the competition intensified and marketing and customer demand became more important, 

these companies began to change their focus to economies of scope (Chandler, 1990); that is, to 

producing "different products" faster, better and cheaper. 
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FIG. 1-1 ECONOMIES OF SCALE AND ECONOMIES OF SCOPE 

As can be seen, there is a marked difference between the economies of scope and economies of 
scale. Economies of scale spread fixed costs over a large number of units of production of the 
same product or enterprise, while economies of scope involve spreading the cost of a set of 
resources or skills over two or more products or enterprises. One should also note that economies 
of size and scope are not mutually exclusive. While economies of scope allow costs to be spread 
over several enterprises, the size of each enterprise can of course also be increased to achieve 
economies of scale. 

The improvement in internal efficiency was not limited to production technologies. The 
management practices, routines and business processes were also examined and improved. As 
businesses, especially manufacturers, sought ways to reduce their costs and improve their 
responsiveness, they adopted new concepts such as Just-In-Time (JIT) systems, which demanded a 
closer cooperation (i. e., timely access to information and products) between producer, suppliers 
and customers. 

Intranet and extranets were the answer to many of these problems. Intranets allowed big firms to 
create their own private internet, sharing the organisation's information or operations with their 
employees. Extranets (which can also be an extension or part of the Intranet) in turn allowed these 
firms to connect to suppliers, vendors, partners, and customers. 

Intranets and extranet were the result of the general work done in the late 60s and early 70s by 
the Advanced Research Projects Agency (ARPA) on the creation of the first internet connection 
(between UCLA and SRI International in Menlo Park, California); the start of the so called 
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ARPANET. By mid 1980s the internet had changed from NetWare Core Protocol (NCP) protocols 
to Transmission Control Protocol/ Internet Protocol (TCP/IP). In 1991, the European Organization 
for Nuclear Research (CERN) publicised its World Wide Web project, which laid the foundation 
for the following explosive growth of the internet. 

The creation of the Internet along with the rise of the mini- and micro-computers in the late 
1970s and Personal Computers (PCs) in the 80s facilitated the transition from the industrial era to 
the information era and the network economy. 

1.1.3 CHANGING THE FACE OF COMPETITION 

Intranets and extranets allowed companies to connect their offices, plants, suppliers and 
customers into closed networks. This allowed them a better overview of their operations while 
strengthening the coupling between themselves and their customers and suppliers. Indeed 
implementing JIT (Just-In-Time) without such networks would have been impossible. Similarly, 
outsourcing of many goods and services is extremely difficult without the existence of such 
networks. 

Until a few decades ago, creating such networks required large amounts of capital, specialised 
software, hardware and expertise. This made it a perfect tool for erecting entry barriers around 
industries. In addition these new technologies gave large corporations geographical independence. 
It allowed these corporations to relocate parts of their operations to low-cost countries, effectively 
reducing their operations' costs. It started with manufacturers and was followed by service 
companies. Some may see the advent of these ICT technologies as one of the main facilitators of 
globalisation. Today a large company can, for example, have its administration in London, its 
production facilities in Shanghai, and its accounts and billings in New Delhi. 

There are many reasons given for this relocation, chief among them being the pressures from 

global competition. This can partly be accepted for standardised low-value goods in the 
manufacturing industry. However it is rather difficult to accept this reason for service industries. 
For example the competition in utility such as gas or water is national or in some cases even 
regional. Moving British Gas customer services such as billings or customer enquiries to New 
Delhi does not look like the result of international competition in this sector in the UK. More 

plausibly, this is due to the result of increasing pressure from shareholders on the company's 
executives for higher returns. 
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FIG. 1-2 EMPLOYMENT IN UK MANUFACTURING (APPLEGATE, AUSTIN, & MCFARLAN, 2002) 

Whatever the case may be, the relocation or outsourcing of many services and manufacturing 
activities to low-cost countries has put a tremendous pressure on local SMEs, which traditionally 
have been the providers of many goods and services to the larger corporations. 

In addition, those SMEs that were directly competing with the large corporations also felt the 

pressure of these relocations and outsourcings. Not only could they not compete with the low-cost 

countries, where past of services or products were being produced, but they also lacked the 
distribution channels of the large companies. 

"Lacking the ability to share information with others, small suppliers, distributors, and 
consumers were disconnected, doing business on the margins in industries dominated by 
large players. Economists called these unconnected spaces in an organisation, market, or 
industry network holes. Those `holes' became a prime target for Internet entrepreneurs in 
the late 1990s. While the key technological innovations of the Industrial Economy enabled 
economies of scale and scope in production, the technological innovations of the Network 
Economy are improving economies of distribution, especially in relation to coordination, 
communication, and information sharing. " (Applegate et al., 2002) 

The Internet was seen as a solution to many of these problems. First, the Internet itself was and is 

a dynamic and exciting new area (it was and is considered) where large companies do not enjoy 
their traditional advantage of size. Second, the Internet itself was and is seen as a brand new 
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market ripe for new products (software and hardware). And finally SMEs see in the Internet the 
perfect opportunity to find and establish new connections to other businesses and customers. But 
as we shall see, the Internet has its own problems. 

1.1.4 FIRST MOVER ADVANTAGE AND SCALE-FREE NETWORKS 

After each technological innovation, a group of start-ups and SMEs move in to take advantage of 
the new opportunities. Technological evolutions usually give birth to new industries where 
start-ups and existing SMEs, because of their size (agility) enter first, becoming the first movers. 
First movers generally have the advantage of registering patents, establishing brand names, 
changing the economics of the market making it difficult for others to enter and compete and so on. 
In young industries, first movers have the ability to, in a very short time, become industry leaders 
or keystones. We have seen this with Microsoft and personal computer operating systems. 
Microsoft was one the few first movers in this segment. Microsoft managed very quickly to 
establish itself as the leading PC operating system provider and thereby create a quasi standard for 
PC operating systems, which was and is highly lucrative. To dominate and discourage others from 

entering the market, it bundled its operating system with the PCs, making it extremely difficult for 

others to compete. Even almost free operating systems such as Linux with compatible quality, and 
the same or better functionality, have had a hard time competing with the MS operating system. 
Using its operating system as the main platform (and a cash cow), Microsoft has tried to limit 
competition in other segments of the PC industry (e. g., office, internet browser, multimedia player 
etc. ). 

We have seen other first movers such as Yahoo and later Google (search engines), Adobe 
(readers) following the same strategy in other segments, trying hard to set standards or changing 
proposed standards to their advantage, although with less success than Microsoft. Nevertheless, 
the first mover advantage has been very rewarding for these companies, especially in the Internet. 
First movers have managed to become strong hubs with many links, becoming almost impervious 
to competition from smaller actors. 

The Internet is a network of computers. This network has no determined structure and expands 
in a random fashion. New nodes (computers) constantly connect and disconnect themselves to the 
network via links (vertices) to other computers. Studies (Barabäsi & Albert, 1999), (Barabäsi, 
Albert, & Jeong, 2000) have shown that the topology of this network is governed by a power-law 
distribution. This means that often a few nodes evolve in such a way as to attract a large number of 
links while many nodes continue to exist with only a few links. This is especially true for World 
Wide Web (WWW), where page links act as links to other pages and hence internet sites. This 

gives those nodes (with large number of links) and companies that own them a disproportionate 

power in the network. First movers have managed early on to become large hubs. SMEs in this 
sector have very little chance of becoming hubs. The entry barriers in this sector are getting higher 

and higher. If by chance or design an SME manages to acquire a number of links (e. g., 
Alibaba. com in China), it is bought (Alibaba was acquired by Yahoo) and integrated into the 
existing hub. 
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FIG. 1-3 DISTRIBUTION DEGREE IN SCALE-FREE NETWORK 

The power of these hubs is so strong that even large companies with sufficient financial 

resources and know-how such as Microsoft have trouble competing effectively in these segments. 
Similarly, as Microsoft used its size and financial resources (derived from its operating system) to 
spread its wings and expand into different segments, these hubs are also trying to establish 
themselves as Goliaths in other areas. 

As was mentioned earlier, first movers take advantage of their position and try to establish 
themselves as the industry leaders. As such, they constantly try to either set the industry standard 
or change the proposed standards to their own advantage. So here we see two distinct problems: 
the first being the structure of the networks where hubs try to dominate and the second being the 
question of standards being set for the creation of applications that will be running on those 
networks. 

1.1.5 SCALE-FREE NETWORKS; A SOLUTION OR MAJOR PART OF PROBLEM 

We have already mentioned that in scale-free networks, a few nodes become hubs, dominating 
the network. There are some arguments for the importance and thereby existence of hubs within a 
network, chief among them being that these hubs provide stable connections that are online all of 
the time. 

"Hubs, the highly connected nodes at the tail of the power law degree distribution, 
are known to play a key role in keeping complex networks together, playing a crucial 
role from the robustness of the network to the spread of viruses in scale free networks. 
Our measurements indicate that the clustering coefficient characterizing the hubs 
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decreases linearly with the degree. This implies that while the small nodes are part of 
highly cohesive, densely interlinked clusters, the hubs are not, as their neighbours have 
a small chance of linking to each other. Therefore, the hubs play the important role of 
bridging the many small communities of clusters into a single, integrated network. " 
(Ravasz & Barabäsi, 2003) 

There are several problems with having these hubs. The first is that they are costly to maintain. 
The second is that of increasing traffic and traffic congestion during peak time. To answer the 
increasing traffic, one has to keep increasing the capacity of the hub, leaving substantial free 

capacity in the off-peak times, which results in an increase in the overhead costs. In addition these 
hubs present major targets for intentional or unintentional attacks. Any disruption at these hubs 

will result in major fragmentation of the network. Meanwhile there is another relevant discussion 

about the digital age and its interaction model, which comes back to coordination. These two cause 
an unbalanced environment which despite discussions about fairness, will not provide the 
necessary sustainability in its environment and reliability for its interaction model. In the next 
section, we review the role of coordination in an interaction model and the state of the art in that 

respect. 

1.1.6 PROBLEM OF COORDINATION AND SERVICE-ORIENTED ARCHITECTURE (SOA) 

Having addressed the problem of scale-free networks and the emergence and influence of major 
players, we shall turn our attention now to the problem of coordination of information systems of 
different enterprises over the net. The ideal solution, as has been proposed and pursued, is to 
establish mechanisms that allow different businesses with different practices, equipment and 
technologies to seamlessly and effectively communicate with each other. One of the solutions that 
has received strong support from major players and other organisations has been the Service 
Oriented Architecture (SOA). 

We must remember that architecture is more of a mind-set or a development philosophy than 

anything else. As such, the concept has been around for a number of years and did not become 
interesting for major software developers and vendors until the emergence of Web Services (WS). 
A WS is defined as "a software system designed to support interoperable machine-to-machine 
interaction over a network". (Booth et al., 2004) 

The whole concept of SOA revolves around services and loose coupling. Services can be 
described as special functions that are accessible over standard Internet protocols and are 
independent from platforms and programming languages. Here the focus is on functionality, and 
not on the programming languages or methods used. We can for example call the viewing of an 
online bank statement, a service. Services unlike the old procedures or functions have no calls to 
each other embedded in them. Instead protocols are defined which describe how one or more 
services can talk to each other. The applications are created by a business process expert or 
software engineer who links and sequences services, in a process known as orchestration. 
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"The goal of SOA is to allow fairly large chunks offunctionality to be strung together to 
form ad hoc applications which are built almost entirely from existing software services. 
The larger the chunks, the fewer the interface points required to implement any given set 
of functionality; however, very large chunks of functionality may not be granular enough 
to be easily reused. Each interface brings with it some amount of processing overhead, so 
there is a performance consideration in choosing the granularity of services. The great 
promise of SOA is that the marginal cost of creating the n-th application is zero, as all of 
the software required already exists to satisfy the requirements of other applications. 
Only orchestration is required to produce a new application. " ("Service-oriented 
architecture - Wikipedia, the free encyclopedia, " n. d. ) 

An application is the orchestration of many services that have different dependencies on each 
other. This is often referred to as a work flow or business process, which usually means a 
collection of transactions. Transactions require data consistency and recoverability. An example of 
data consistency would be that regardless of a transaction deployment with any rate of 
concurrency, the results should be consistent. By recoverability, we mean that regardless of any 
failure, one can roll-back the transaction to its initial state. (Singh & Huhns, 2005) 

These two are the main responsibilities of the coordinator (Cabrera, Copeland, Feingold, R. 
Freund, T. Freund, Johnson, Joyce, Kaler, Klein, Langworthy, Little, et al., 2005). In theory, either 
party to the transaction can assume the role of coordinator. However the current systems place a 
heavy demand on computational complexity (Razavi et al., 2006), making it very difficult for the 

majority of SMEs to assume this role. Therefore, the current system requires that a third party with 
sufficient resources assumes this responsibly. Here we have to mention that the coordinator enjoys 
many privileges (Razavi et al., 2006) without the associated responsibilities (at least, the full 

responsibility of recovering a failure without involving participants). 

The role and function of the coordinator is determined by the WS-coordination protocol as 
defined in Windows Communication Foundation (WCF) (Cabrera, Copeland, Johnson, & 
Langworthy, 2004). This protocol is used by the two existing and competing industry frameworks: 
Business Transaction Protocol (BTP : supported by Oracle, Sun Microsystems, Choreology Ltd, 
Hewlett-Packard Co., IPNet, SeeBeyond Inc. Sybase, Interwoven Inc., Systinet and BEA System 
in term of OASIS Business Transaction Protocol (Furnis et al., 2004)) and Web Services 

transaction (WS-AtomicTransactions (Cabrera, Copeland, Feingold, Freund, Freund, Johnson, 
Joyce, Kaler, Klein, & Langworthy, 2005) and WS-BusinessActivities (Cabrera, Copeland, 
Feingold, Freund, Freund, Joyce, et al., 2005): supported by Microsoft, Hitachi, IBM, IONA, 
Arjuna Technologies and BEA Systems). 

Despite all claims and advertisements, both coordination protocols for business transactions 

violate loose coupling on one side and offer just one pattern of behaviour (clarifying the 

completion protocol in a transaction and determining the recovery method in respect to that 

protocol (Razavi, Moschoyiannis, & Krause, 2007c)) for participants of transactions on the other 
(Razavi, Moschoyiannis, & Krause, 2007d). 
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Violating loose coupling, is not only contrary to SOA, but also gives the coordinator the 
opportunity to estimate the local state of SMEs (in realistic terms, this tight coupling between 
coordinator and participants means the coordinator is aware of the local state of participants at any 
given time during or after the transaction). For instance in a business transaction between two 
businesses, where PayPal is the coordinator, PayPal can in-effect estimate during the transaction 
the income of both parties in the transaction. 

This tight coupling results in the participants (e. g. SMEs) losing their local autonomy (their local 

states of businesses will be visible to the coordinator). At the same time the pattern of behaviour 
supported by the coordinator framework (do-compensate (Furnis & Green, 2005)), forces 

participants to apply specific methods of fault recovery during a transaction failure (Fumis & 
Green, 2005), (Vogt, Zambrovski, Gruschko, Furniss, & Green, 2005), (Razavi et al., 2007a). This 
not only enforces a specific problem solving method in event of a failure (which is known by the 
companies supporting the protocols) but also imposes the responsibility of sorting the failure out to 
participants. 

By having an overview of the participants' recovery pattern behaviour and their local state, the 
coordinator can construct or simulate the participants' business models (Vogt et al., 2005), (Razavi 
et al., 2007a). 

We have seen that whenever there is an innovation there are a few players that take advantage of 
that innovation and establish themselves as the main actors within that industry. This happened in 
operating systems, office software, database and other sectors of the IT industry. Now a new 
opportunity is presenting itself: the coordination role. 

Many large companies are already jockeying for position to take advantage of this opportunity to 
establish themselves as the leading companies that provide coordination services. Considering the 
importance of coordination and the power that a major coordinator can gather onto itself, it would 
be wise to revisit and re-examine the coordination process. We can ill-afford the emergence of 
large monopolies or oligopolies here. 

1.2 PARADIGM SHIFT AND THE DIGITAL BUSINESS ECOSYSTEMS CONCEPT 

Because of the necessity for providing a new model, concept and definition, the research 
community, different organisations and governments have started to propose a new conceptual 
framework for digital ecosystems. In 2002, the first intuition has been proposed by Nachira in the 
European Commission (Nachira, 2002b). This important discussion paper has been finalised in a 
new conceptual framework (Nachira, 2002a), called Digital Business Ecosystems: 

"The synthesis of the concept of Digital Business Ecosystems emerged in 2002 by 

adding `digital' in front of Moore's (1996) "business ecosystem" in the Unit ICTfor 
business of Directorate General Information Society of the European Commission 
(Nachfra 2002a). " (Nachira, Nicolai, Dini, Le Louarn, & Leon, 2007) 
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In this conceptual framework, Business is considered as "An economic community supported by 

a foundation of interaction organisation and individuals - the organisms of business world". 
(Nachira et al., 2007). This economic community produces goods and services of value to 
customers, who themselves are members of the ecosystem". (Moore, 1993) A wealthy ecosystem 
sees a balance between cooperation and competition in a dynamic free market. (Nachira et al., 
2007). The European Commission has specified the explicit aims of such a Digital Business 
Ecosystem: 

"A Digital Business Ecosystem results from the structurally coupled and co-evolving 
digital ecosystem and business ecosystem. A network of digital ecosystems, will offer 
opportunities of participation in the global economy to SMEs and to less developed or 
remote areas. These new forms of dynamic business interactions and global 
co-operation among organisations and business communities, enabled by digital 

ecosystem technologies, are deemed to foster local economic growth. This will preserve 
local knowledge, culture and identity and contribute to overcome the digital divide. " 
(European Commission, 2008) 

This conceptual framework tries to solve the current challenges of businesses (recall 1.1.4 and 
1.1.5). That is why the projects funded by the EC have focused to provide a modern dynamic 
network to support business interactions of small and medium enterprises without relying on a 
large organisation of any sort: 

"The model of business ecosystem developed in Europe, [in contrast with Moore's 
conventional definition], is less structured and more dynamic; it is composed of mainly 
small and medium firms but can accommodate also large firms.... This model is 
particularly well-adapted for the service and the knowledge industries, where it is 
easier for small firms to reinvent themselves than, For instance, in the automotive 
industry. " (Nachira et al., 2007) 

Developing this conceptual framework has not been limited to Europe. The Digital Ecosystems 

and Business Intelligence Institute in Australia (DEBII, 2009) as a leading research institute on 
Digital Ecosystems studies, not only has developed and constituted Digital Ecosystems. One of the 
brightest descriptions of ecosystem in this term can be found in Chang and West approach: 

"There are four essences of ecosystems: (1) Interaction and engagement (2) 
Balance (3) Domain clustered and loosely coupled (4) Self-organisation" (Chang & 
West, 2006a). 

Digital Ecosystems -16- Amir reza Razavi 



Digital Ecosystem and challenges 

Paradigm shift and the Digital Business Ecosystems concept 

They describe these attributes as; 

`Interaction and engagement' has been described as inter-disciplinary interaction, when species 
need to interact between each other for social well-being and to engage with each other to find 
interesting things, to share their resources or defend themselves. 

"Balance" is assigned to the harmony, stability and sustainability within an ecosystem. If some 
species or parts of an ecosystem are getting disproportionally tensioned, dried, overheated, 
divided, the whole ecosystem may collapse. 

"Domain clustered and loosely coupled" clarifies the freedom of species to join to an ecosystem 
and mentions they are loosely coupled, taxonomic groups of which the members have similar 
culture, social habit, interests and objectives. Each species preserves the environment and is 
proactive and responsive for its own benefit. They are able to live together and support each other 
for sustainability. 

The "Self-organisation" points that each species is independent, self-empowered, self-prepared, 
undertakes self-defence, is self-surviving and undertakes self co-ordination through swarm 
intelligence. In case of natural disaster one cannot ask `where is the president', ̀ what logistics 
systems are provided' and so forth. 

1.2.1 SMALL AND MEDIUM ENTERPRISES, LOCAL AUTONOMY AND LOOSE COUPLING 

As with the DEBII (Digital Ecosystems and Business Intelligence Institute) vision (Chang, 
Quaddus, & Ramaseshan, 2006), the European Commission's projects have focused on loose 

coupling between participants of a Digital Ecosystem (Dini et al., 2008). Furthermore, the local 

autonomy of small and medium enterprises for deploying transactions has been persisted. In this, 
any collaboration (in terms of business transactions) will be based on demand of participants rather 
than on any external decision. In addition, the preservation of local autonomy and avoidance of 
any external control or pressure has been considered within the definition of requirements for any 
business transaction (Moschoyiannis & Darking, 2008), (Dini et al., 2008). We can see the 
similarity of these important requirements in DEBII's definition, when it focuses on a loosely 

coupled, demand driven environment when each participant (here digital species) has a specific 
objective (benefit or profit): 

"We define a Digital Ecosystem as a loosely coupled, demand driven collaborative 
environment where each digital species is proactive and responsive for its own benefit 

or profit" (Chang et al., 2006) 

Boley and Chang (Boley & Chang, 2007) has described loose coupling as a freely bound open 
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relationship between participants, when the term is opposite to a tightly coupled relationship 
(where each party is heavily dependent on one another and the roles are predefined). In terms of 
`Demand Driven', their definition illustrates the deference between the driving force coming from 
outside ̀push-in' rather than ̀ pull-in' (Chang et al., 2006). And by example, they have explained 
the importance of the real motivation from participants rather than a force from outside. As with 
their definitions, local autonomy in transactions focuses on a similar concept and tries to avoid 
interferer control or force from outside in any transaction (from its initiation to the actual 
execution). 

1.2.2 DIGITAL ECOSYSTEMS AND COMPARISON WITH SIMILAR CONCEPTS 

Conceptually the participants' interactions, their loosely coupled connection and local 

autonomy, sustainability of their environment and ability for self-organising are characteristics of 
a Digital Ecosystem (Moschoyiannis & Darking, 2008). This metaphoric similarity has been 
discussed in (Chang & West, 2006a) with "Interaction and engagement", "Balance", "Domain 

clustered and loosely coupled" and "Self-organisation". We have discussed this earlier in this 

section. In addition, one of the important clarifications of the Chang and West approach is when 
they determine the role of Agents (participants) and their digital environment (network) for 

presenting these characteristics; 

"Digital ecosystem(DES)= Eco-environment + Eco-agents" (Chang et al., 2006) 

The loose coupling and local autonomy of participants, in the lack of centralised control, will 
result in distributed coordination, which creates a fully distributed environment (Moschoyiannis & 
Darking, 2008). As coordination of the interaction has been performed and controlled by each 
participant independently, the business transaction can be triggered, executed and committed by 

any participant/agent (Krause et al., 2008). These characteristics make Digital Ecosystems 
different to conventional architectures: 

"Unlike the client-server architecture, where the communication is centralised and it 
is a command and control environment; Unlike the Peer-to-Peer architecture, where 
each agent has well defined roles, they can only be client or server, but not both; Unlike 
the Grid architecture, where it stitches partners together on resource sharing but 

cannot avoid counter free riding; Unlike the Web service network, where brokers are 
centralised, service requesters and providers are distributed, and this hybrid 

architecture does not guarantee trust and QoS - the Digital Ecosystem is an open 
community, and there is no centralised control or fix roles. " (Chang & West, 2006a) 
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1.2.3 DIGITAL ECOSYSTEMS AND TRANSACTIONS 

As we have seen, the distributed interaction model without any external control is one of the 
important characteristics of a Digital Ecosystem. Whilst SOA was introduced with promises of 
loose coupling, the actual interaction model of business transactions has imposed tight coupling 
between participants and coordinator. In addition, by involving the local states of participants the 
recovery model for these transactions not only violates the local autonomy of participants but also 
enforces a particular standard in the local design of participants (details can be found in chapter 3). 
Digital Ecosystems try to solve these contradictions in the transactional level when the 
environment is fully distributed and does not suffer a centralised control (Moschoyiannis & 
Darking, 2008). We have conceptualised this interaction model by a virtual set of participants 
(agents) in each transaction (which can be found in chapter 4). Boley and Chang have used the 
metaphoric concept of a `swarm' for formalising the Virtual Private Transaction Network; 

"A swarm is a set of agents which have common characteristics and are able to 
interact and engage directly or indirectly with each other. " (Boley & Chang, 2007) 

In (Chang & West, 2006a) the `Swarm Intelligence' concept offers a clearer specification for 

such agents and their interaction model; they identify two elements in Swarm Intelligent: `Species 

or Agents' and `Leading Species or Agent'. 

`Species or Agents' are described as an individual or an organisation, which is equivalent to 
participants in (Krause et al., 2008). Each of them has (in a business world according to their 
business model) its own niche or role to play. Furthermore each one has dual functions or roles; 
they can be client, and they can also be a server when they can just use the result of a service 
deployment or deploy their own services. They can carry out bi-directional communication, not 
just one way. 

A `Leading Species or Agent' is equivalent to the initiator of a transaction in (Razavi et al., 
2006). It has the same features and functionality as any other agent, but simultaneously facilitates, 
leads and directs the collaborative swarms (as with the interaction model in a business 
environment relying on an initiator, an actual transaction is initiated by an initiator). 

As there are many types of Interaction styles in Digital Ecosystems such as transaction based, 

social network based, state based, protocol based, computation/calculation based, swarm based 

etc., although the thesis is to address Transaction Based Interaction in Digital Business 
Ecosystems. The main reason for this is the focus on businesses. As the business activities have 
been modelled on long-running business transactions (recall 3.4), proposing a sustainable 
transaction based model for digital ecosystem is one of the main objectives of business community 
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(60'objective of OPAALS project). In the business world, any participant can initiate a transaction 
(being a Leading Agent), but loose coupling, local autonomy and at the same time, the 
sustainability of the network (environment) should be maintained. Avoidance of centralised 
control, resistance against failures, provision of a self-organised model which can recover itself in 
case of failure, and provision of an environment which has resistance against single points of 
failure are the main characteristics which we would like to reach in a digital ecosystem. All of 
these requirements are founded in the primary needs of any business, which is `Business 
Transactions'. The main dispute in term of business activities is whether it is possible to enable 
`Long-running Transactions' answering to this challenge without violating the main principles of 
the Digital Ecosystems' concept. In order to address this issue, we first (in the next chapter) 
present a brief review of established transactional responses to business activities (including 
Long-running transaction) problems. Then we analyse the main requirements of such a model 
based on Digital Ecosystem characteristics (chapter 3) and will discuss the main proposed 
transaction models for service oriented environment. The rest of this document will focus on 
proposing a model for a Digital Business Ecosystem. 

' http: //www. opaals. org/opaals. php 
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2 INTRODUCTION TO TRANSACTION MODELS 

This chapter demonstrates an introduction for transaction; these transaction models generally are 
optimised for different types of database applications. However, the fundamental difference 
between the traditional representation of Distributed Transactions for Databases and the 
representation of Distributed Transactions for Digital Ecosystems is the service-oriented aspect of 
Digital Ecosystems, specifically the loose coupling and local autonomy characteristics of it. We 
leave investigating these specifications and potential solutions for them to chapter 3, and will focus 
here on general transaction models. 

As we have seen in the previous chapter, businesses in digital ecosystems need to have an 
interaction model for their business activities. These business transactions should follow the 
digital ecosystem principles (such as loose coupling, distributed coordination, etc see chapter 1 for 

more detail). The conventional definition of a transaction (Date, 2003), (Gray & Reuter, 1993) is 
based on ACID properties (Atomicity, Consistency, Isolation and Durability, refer to 2.1). While 
ACID properties provide a good foundation for conventional database applications, they can 
present unacceptable limitations and reduce performance in advanced applications. 

These limitations have been categorised to three specific problems with conventional transaction 

models (Moss, 1985), (Kakeshita & Xu, 1992), (Haghjoo, Papazoglou, & Schmidt, 1993), 
(Elmagarmid, 1992): Long-lived transactions; Lack of partial results; and Omitted results. 

The necessity of change is derived from the nature of modern applications (such as business 

applications, CAD projects, etc) (Elmagarmid, 1992). For example, the specification of a 
transaction may allow it to be completed over a period of hours or even days (a "long-lived 

transaction"). In addition, the obligation for cooperation between transactions can be specified in a 
business process rule (a requirement for availability of "partial results"). Finally, the instability of 
the Internet environment can define a new requirement for keeping important results even when 
the connection between two platforms is lost ("omitted results"). In this chapter, the basic 

problems and general transaction models have been introduced, but a more detailed discussion 

which is focused on requirements for digital ecosystems and current practice in transactional 

models will be continued in chapter 3. 

2.1 TRANSACTION; DEFINITION AND CONSTRAINTS 

The general term `Transaction' has been introduced by Gray (Gray, 1992) and is defined by the 
four properties contained in the ACID acronym. A transaction that is started when a system is in a 

consistent state may make the state temporarily inconsistent, but it must terminate by producing a 

new consistent state - Consistency is the C in ACID. This temporary inconsistency may not affect 

other concurrent transactions. This maintains the illusion that each transaction runs in Isolation - 
the I in ACID. This means that the inputs and consequent behaviour of some parts of the 
transaction processing system may be inconsistent, even though each transaction executed in 
isolation would be correct. It follows that concurrent execution should not cause application 
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programs to malfunction, which is the first law of concurrency control. Equally, if some operation 
within a transaction should fail, it should automatically undo all previous actions and return to the 
original consistent state. This property is Atomicity, the A in ACID. Also, none of the updates or 
messages of committed transactions should be lost - Durability is the D in ACID. 

Shared objects between concurrent transactions are the main challenge for a transactional 
environment. On one hand the concurrency control should support the concurrent activities. 
However, update of an object which it is accessed by another transaction can violate the 
consistency of the environment. Therefore concurrency control should be able to provide 
consistency and an acceptable level of isolation. Furthermore, recoverability of a transaction relies 
on these limitations too. When transactions are prevented from accessing inconsistent objects of 
other transactions, each transaction will be recoverable. Through many different approaches to 
supporting concurrent execution of transactions, a consensus on the use of locks as a preferred 
solution has emerged (Gray & Reuter, 1993), (Bernstein, Hadzilacos, & Goodman, 1987), 
(Ramakrishnan & Gehrke, 2003), (Gray, 1992). When implementing locking, we should take into 

account that concurrent execution should not have lower throughput or much higher response 
times than serial execution. The second law of concurrency control (Gray & Reuter, 1993) is to 
avoid high computational overheads. Use of the isolation theorem is the conventional way to apply 
the locking mechanism with acceptable performance. We will discuss this in the next section. 

2.1.1 ISOLATION THEOREMS 

A number of Isolation theorems are used to show the correctness of a transactional system by 

applying certain constraints (Gray & Reuter, 1993). The constraints will be explained in this 
section and their primary presentation will be shown; we will reference the proof of correctness of 
constraints, in the classical isolation theorems. Similar to most theorems in computer science, the 
formal presentation of isolation theorems have relied on sequences as their primary building block 

where S II S' indicates concatenation of Sequences S and S', the ith element of a sequence is 

represented by S[i] and S as a subsequence of sequence S is symbolized in a manner similar to set 

notation with S' _ (S[i] I predicate(S[i])) (shows S' is subsequence of S). 

In order to present a theoretical aspect of the model, we show the formal vocabulary that is larger 
than the standard read and write operations. A similar approach will be used in terms of 
long-running transactions in chapter 4 (by using the sub-transaction notation). 

The important point in conventional isolation theorems is applying suitable locks before 

accessing the objects (all possible resources); for avoiding violating consistent access, in terms of 
READ and WRITE objects, the SLOCK and XLOCK should be applied on the objects and these 
locks should be released when the dependency on the objects expires (SLOCK or shared lock will 
be used in term of reading objects and XLOCK or exclusive lock is used for writing on objects). 
Therefore, the model supports the major actions of READ, WRITE, SLOCK, XLOCK, UNLOCK 

on the objects, as well as generic actions BEGIN, COMMIT, ROLLBACK. READ and WRITE 
have the usual meaning: READ returns the named object's value to the user (program), while 
WRITE alters the named object's state. A transaction is any sequence of actions starting with a 
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BEGIN action, ending with a COMMIT or ROLLBACK action, and containing any other BEGIN, 
COMMIT, or ROLLBACK actions. Fig 2-1 demonstrates an example in terms of a conceptual 
transactional access to objects RI and R2. 

2 
Begin the Transaction 

.................. Begin T, 
I 

XLOCK R2 Locking Objects 
"""""""........... SLOCK Ri 

READ R, 
Accessing Objects 

.................. READ R2 

WRITE R2 

nlocking Objects 
.................. UNLOCK R2 

UNLOCK R, 

ommit thýTranwfio 
ommit Ti C (or rollback """'""""""1 

FIG. 2-1 A SAMPLE TRANSACTION 

Transactions are characterized symbolically by a sequence such as((t, a1, r1) Ii=1, ..., n). This 

means that the i`h step of transaction t preformed action ai on object ri. To simplify the transaction 
model, the actions will be defined in simpler manner. BEGIN, COMMIT, and ROLLBACK are 
defined in terms of other actions, so that only READ, WRITE, LOCK (SLOCK and XLOCK), and 
UNLOCK actions remain. 

A simple transaction is composed of READ, WRITE, XLOCK, SLOCK, and UNLOCK actions. 
Every transaction, T, can be translated into an equivalent simple transaction as follows (Gray & 
Reuter, 1993): 

(1) Discard the BEGIN action. 
(2) If the transaction ends with a COMMIT action, replace that action with the following 

sequence of UNLOCKS: 
<UNLOCK AI if SLOCK A or XLOCK A appears in Tfor any object/resource A>. 

(3) If the transaction ends with a ROLLBACK statement, replace that action with the 
following sequence of PUTs and then UNLOCKs: 

<WRITE AI if WRITE A appears in T for any object/resource A> I <UNLOCK AI if 
SLOCK A or XLOCK A appears in Tfor any resource A>. 

The idea here is that the COMMIT action simply releases Locks, while the ROLLBACK action 
must first undo all changes to the objects the transaction wrote and then issue the objects the 
transaction wrote and then issue the unlock statements. If the transaction has no LOCK statements, 
then neither COMMIT nor ROLLBACK will issue any UNLOCK statements, as that would risk 
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violating isolation. 

2.1.2 WELL-FORMED AND Two PHASED TRANSACTIONS 

A transaction is said to be well formed if all its READ, WRITE, and UNLOCK actions are 
covered by locks, and if each lock action is eventually followed by a corresponding UNLOCK 

action (Gray & Reuter, 1993), (Date, 2003). 

A transaction is defined as two-phase if all its LOCK actions precede all its UNLOCK actions. A 
two-phase transaction T has a growing phase, T[1J, 

..., TO], during which it acquires locks, and a 
shrinking phase, T[/+1], ..., T[n], during which it releases locks (Gray, 1992). The simplified Fig 
2-1 (focusing on the formal locks), has been shown in Fig 2-2 and the concept of well-formed and 
two phase is indicated. 

Two-Phase Well-formed 
TI XLOCK R2 -, 

C, 
D 

TI SLOCK Ri L.......... 
-J 

,,; 
-ý 

TI READ Ri -, 
TI READ R2 ............................... 01 
Ti WRITE R2 r, Z 

N 
TI UNLOCK R2 -; X, 

ö 
0 

T1 UNLOCK Ri 
L.......... 

-- 
ý X 

; 
s m °o N 
N 

FIG. 2 -2 Two PHASE AND WELL-FORMED LOCKING 

Now we can provide the definition of serial histories as one of the important concepts in the 
isolation theorems. First, a history is any sequence-preserving merge of the actions of a set of 
transactions into a single sequence for the set of transactions and is denoted H= ((t, a, r) iIi= 
1, ..., n). Each step of the history (t, a, r) is an action a by transaction ton object r (any resources). 
A history for the set of transactions [Tj} is a sequence, each containing transaction Tj as a 

subsequence and containing nothing else. A history lists the order in which actions were 
successfully completed. Serial histories are "one-transaction-at-a-time" histories. In serial 
histories, as no concurrency is induced there is not any inconsistency and no problem with viewing 
"dirty" data by other transactions. 

2.1.3 LEGAL HISTORY AND LOCK COMPATIBILITY 

As expected, a history should not complete a lock action on an object when that object is locked 
by another transaction. But if two or more transactions want to just read the content of an object, 
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they do not change the object version (state). This may not cause any conflict or access to dirty 
data (data/object which has been written by another transaction) but the transaction has not 
committed and may change the version of the object again. The table 1 shows the lock 
compatibility. The locking compatibility rules constrain the set of allowed histories. 

TABLE 1. LOCK COMPATIBILITY 

Share Yes No 

............ Exclusive No No 

Legal history: Histories that obey the locking constraints are called legal. In Fig 2-3, three 
histories are shown, where History 1 and 2 are legal and History 3 is not. 

History1. History2 History 3 
Ti XLOCK B Ti XLOCK B Ti XLOCK Bj 
Ti SLOCK A T2 SLOCK A T2 SLOCK A 
T1 READ A Ti SLOCK A Ti SLOCK A 
Ti READ B T2 READ A T2 READ A 3 
Ti WRITE B Ti READ A Ti READ A 
Ti UNLOCK B Ti READ B Ti READ B 
Ti UNLOCK A Ti WRITE B T2 XLOCK B' 
T2 SLOCK A Ti UNLOCK B T2 READ B 
T2 READ A Ti UNLOCK A T2 WRITE B 
T2 XLOCK B T2 XLOCK B T2 WRITE B 
T2 READ B T2 READ B T2 UNLOCK A 
T2 WRITE B T2 WRITE B T2 UNLOCK B 
T2 WRITE B T2 WRITE B Ti WRITE B 
T2 UNLOCK A T2 UNLOCK A Ti UNLOCK B 
T2 UNLOCK B T2 UNLOCK B Ti UNLOCK A 

FIG. 2-3 LEGAL HISTORIES AND ANOMALY 

In Fig 2-3, history I is a serial history. It is obviously legal, as each transaction will be run in 

sequence and no locks will conflict. History 2 is a non-serial legal history. There are no 
incompatible locks between Ti and T2 as T2 applies an XLOCK on object B only when T1 has 

performed an UNLOCK. Finally, history 3 is a non-serial and not legal history, as object B has an 
XLOCK by T1 but T2 applies an XLOCK on the same object, which is illegal according to Table 
1. As a consequence, we can see that Ti then performs a WRITE based on its earlier READ and 
overwrites T2's WRITE, which is the case of `Lost Updates' (this is one of the classic anomaly 
cases which is discussed in (Gray, 1992) and chapter 4). 

When we are able to use the non-serial and legal (consistent) histories, it is possible to increase 

the concurrency. As far as not conflicting in XLOCKs, the concurrency can be maximised. Fig. 2-4 
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shows a comparison between two histories of transactions Ti and T2. When in history 1, two 
transactions have to be executed one at a time, in history 2 until point c, two transactions can be 

concurrent (it is equivalent with history 2 in Fig 2-4). 

History I History 2 

TI XLOCK B 
T1 SLOCK A 
Ti READ A 
Ti READ B 
TI WRITE B 
TI UNLOCK B 
Ti UNLOCK A 

Transaction 

i 
t 

1/ 

i 

T2 SLOCK A 
T2 READ A 
T2 XLOCK B 
T2 READ B 
T2 WRITE B 
T2 WRITE B 
T2 UNLOCK A 
T2 UNLOCK B 
Transaction 

FIG. 2-4 SERIAL AND CONCURRENT HISTORIES 

Ti XLOCK B 
Ti SLOCK A 
Ti READ A 
Ti READ B 
T1 WRITE B 
T1 UNLOCK B 
T1 UNLOCK A 

T2 SLOCK A 
T2 READ A 
T2 XLOCK B 
T2 READ B 
T2 WRITE B 
T2 WRITE B 
T2 UNLOCK A 
T2 UNLOCK B 

ransactpn 2 

Based on Isolation theorems (Gray, 1992), (Date, 2003), any well-formed and two phase legal 
history is isolated and can fulfil the consistency of the transaction model. 

2.2 LONG-RUNNING TRANSACTION CHALLENGES AND GENERAL SOLUTIONS 

While the conventional transaction model can provide solutions for a huge range of applications 
(such as databases and ACID transaction based application), it has some limitations for advanced 
applications (Elmagarmid, 1992). CAD applications, business to business interactions, distributed 

computing and most of enterprise applications deal with transactions which have long durations. 
Based on the conventional model, these transactions will lock resources and limit access to them. 
Therefore other transactions cannot access to them during the life of the transaction. This waiting 
time will reduce the overall performance of the system dramatically, increase the probability for 
deadlock and violate the concurrency laws (the overall performance of concurrent transactions 

should not be less than a serial execution of them) (Gray & Reuter, 1993). This transactional 
problem is addressed by `Long-lived transactions'. 

Eliot Moss introduced the first revolutionary answer to the Long-lived transactions problem in 
1985 with the title of "Nested Transactions" (Moss, 1985). These Nested Transactions broke the 
atomicity of conventional transactions, but required the definition of new integrity rules instead. 
However, many problems remained unsolved. Different non-conventional transaction models 
were subsequently derived from the Nested-Transactions model, which changed the face of the 
transactional world. 

In the Nested transaction model, each transaction can have a tree structure (including many 
sub-transactions) and each node can share its results to the others in the same transaction (Fig 2-5). 
However, one Nested transaction cannot share its results with any of the other nested transactions. 
Therefore each nested transaction still was atomic and isolated as far as other nested transactions 
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were concerned and hence the ACID properties were still applied, although at a different level. 

FIG. 2-5 CONVENTIONAL NESTED TRANSACTION 

One of the important requirements in the distributed computing domain is the ability to access to 
information before transaction commit. In the conventional Nested Transaction model (Moss 

model), in order to maintain transaction consistency, an internal limitation has been applied and 
the interaction (sharing the results) is available only internally within a transaction. This means 
only the parent of a sub-transaction can receive the results of its child and all other transactions 
have to wait for commitment of the main transaction. In some applications, this can create a 
bottleneck, when other transactions need the result of that particular transaction. This will be more 
dramatic when we are dealing with several concurrent transactions and they need some results 
from each other. In these cases, the logic of application may need access to the results of 
uncommitted transactions but the transaction constraints do not allow such access. This problem 
arises through unavailability of `Partial Results' (Kakeshita & Xu, 1992), (Haghjoo & 
Papazoglou, 1992), (Elmagarmid, 1992). 

In addition, based on conventional nested transactions, if a Transaction is aborted (for any 
reason) all of its sub-transactions must also be aborted. This means all of the intermediate results 
produced up that point must be rolled back to the initial values. In most cases, the transaction 

abortion is followed up with a restart (that means the philosophy for abortion was another try to 

execute the transaction). But based on this model, there is not any differentiation between full 

abortion and restart, and in both cases, all sub-transactions will be rolled back and will be redone; 
this will cause a huge overhead and waste the resources of the environment (where successful 
operations could be kept until the transaction restart). This problem is known as ̀ Omitted Results' 
(Haghjoo et al., 1993), (Kakeshita & Xu, 1992). 
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2.3 DIFFERENT ANSWERS TO THE PROBLEM 

The Partial Result problem is perhaps one of the most complicated problems in the distributed 
computing and applications which are involved with long-lived transaction. In one hand, 

maintaining the consistency and integrity during sharing these partial results is a challenging task 
and on the other hand recovering a failed transaction can cause considerable complexity. Any 

solution can apply some extra limitations and need to provide addition infrastructure in 

architectural level. In general, two different approaches have been purposed to answer this 
problem: 

V Accepting Nested Transactions rules: In this category, the infra-structure of Nested 
Transactions has been accepted and consistency of transactions is maintained by applying the 
integrity rules of a Nested Transaction. In term of recoverability, the conventional 
recoverability is used and the log-based method is applied (Moss, 19s7). For solving partial 
results, each transaction should include all relevant transactions as sub-transactions. In this 
way, the partial results can be shared between these sub-transactions (rather than outside 
transactions). The best-known model in this approach area is Multidatabase (Nodine, 1993), 
(Nodine & Zdonik, 1994), (Xiao Weijun, Zhengding, Bing, & Sarem, 2001). 

V Open Nested Transaction: Open Nested transactional models use the main principle of 
conventional nested transaction (using the tree structure and nesting sub-transactions) but the 
constraints have been relaxed and by introducing new consistency rules some level of the 
partial results is allowed. Then based on the transaction model and its requirements, 
transactions are able to release some of their uncommitted results. In this case, the Integrity 
rules need to be completely different (as well as some additional structure for their models). 
Some of the well-known transaction models in this category are: Cooperative Transaction 

model ((Ramampiaro & Nygärd, 1999), (Haghjoo et al., 1993)); Multilevel Transaction 
Model (Deacon, Schek, & Weikum, 1994); Coordinating Transaction Model (Li, Xu, & Liu, 
2002); Extended-Saga Transaction Model (Garcia-Molina, Gawlick, Klein, Kleissner, & Salem, 
1991); Mega Transaction Model (Haghjoo, 1996); DOM Transaction Model (Elmagarmid, 
1992). 

In the rest of this section, briefly we will review these models but before reviewing these models, 
we start with Saga as one inspirational model which by introducing a compensation mechanism, 
has effected most of transactional models (including conventional nested transactions). 

2.3.1 SAGAS (AND EXTENDED SAGAS) TRANSACTION MODEL 

In the primary Sagas transaction model (Elmagarmid, 1992), (Garcia-Molina et al., 1991) the 
structure of a transaction is based on a linear, sequence of serial sub-transactions that are run one 
after the other. The important properties of these sub-transactions, is compensability. 
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Let transaction S (as a Saga transaction) include sub-transactions Ti, T2, T3, ..., Tn. Each 
sub-transaction Ti, as an atomic unit, has a corresponding compensation transaction, Ci. If any 
fault arises, the Compensating transactions will be run in the opposite sequential order (Figure 
2-2). 

T1 T2 T3 T4 

failure 

Cl C2 C3 C4 

Tn 

000 i4 

Cn 

FIG. 2-6 SIMPLE SAGA TRANSACTION MODEL 

The main ideas behind Saga have been reused in several models. Firstly, any Saga transaction 

can be imagined as an independent compensatable unit (although this assumption is not actually 
used in the Saga transaction model). This idea is used in Mega transaction (Haghjoo, 1996) and in 

recovery management of the Co-operative Model (Ramampiaro & Nygärd, 1999). Secondly, the 
linear structure of a Saga transaction model is used in the Coordination model (Li et al., 2002) and 
in the Mega transaction model (Haghjoo, 1996), (Razavi, 1999) as a scheduler (Serial scheduler). 

The structure of Saga (linear sub-transactions) can cover many different transactions in a 
distributed environment. However, in reality we cannot model every transaction as a series of 

compensatable sub-transactions (as the nature of some transactions is not compensatable) further 

more the linear structure does not allow different types of business activities to be modelled as 
transaction (Garcia-Molina et al., 1991). The extended-saga transaction model tries to solve these 

problems. By introducing a tree structure, extended-saga improves the model in several areas 
(mostly extended-saga is called ACTA; means actions in Latin), in Workflow technology (Eder & 

Liebhart, 1994), whereas distributed transactional component based applications in Enterprise 

JavaBeans use ACTA (M. Prochazka, 1999), (Marek Prochazka, 2001)). But the isolation of a 
Saga transaction is still is a major inhibitor to releasing partial results during the lifetime of a Saga 

transaction. Meanwhile concurrency inside of a transaction is limited too. Even in extended Saga, 

parallel sub-transactions cannot share their results and in an actual scenario, if there is a shared 

resource, they have to execute one after the other (serial/sequential execution). 

2.3.2 MULTI-LEVEL TRANSACTION MODEL 

The Multi-level Transaction model (Deacon et al., 1994) has the same structure as the Nested 

transaction model, but with an improvement for allowing some level of the partial result problem. 
A sub-transaction of a Multi-level transaction can release results to the same level in the other 
Multi-level transactions (Fig 2-7). 
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FIG. 2-7 MULTI-LEVEL TRANSACTIONS 

Therefore there is a virtual network (a graph structure) for the same level of children 
(sub-transactions). These important graphs try to give an "info-structure" to compensate for the 
lack of isolation and atomicity (compared with a conventional transaction model). The Multi-level 
transaction model has been used in several applications. 

In general, the nature of an application must be compatible with the Multi-level definition. 
Unfortunately, in several cases this limitation reduces usability of the model (or developers have to 
follow complicated instructions for creation of the necessary compatibilities and modifying their 
main application). Not only is the model dealing with considerably high overhead structures 
(global Multi-level graphs) even when the construction of parallel graphs may not be used at all, 
but also the need for deadlock control will cause another extra overhead in any practical situation 
(depending on the nature of the application and the value of releasing data in the same level). 

2.3.3 CONTRACT TRANSACTION MODEL 

The Contract Transaction Model (Elmagarmid, 1992), (Verharen & Papazoglou, 1998) is 
designed for controlling complicated and long calculations in specific environments such as CAD 

and Office automation. The Contract Transaction Model is one of the best-known models for 

several motivational ideas (even though it is little used now in practical situations). For example, 
one innovative feature is that when a failure occurs, Contract transaction tries to continue its 

running by finding alternative ways to proceed; `Forward Recoverable behaviours'. 

The Contract model gives permission for commitment of partial results before final commit of a 
Contract transaction (releasing partial results). Also it tries to warranty consistency and integrity 

with forward recovery. There are two types of sub-transactions: 
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V Compensating transactions: These transactions try to undo the effect of 
unsuccessful/unnecessary sub-transactions. 

V Contingency transactions: When a sub-transaction fails, this alternative can be run 
in an attempt to avoid an abort (forward recovery). 

The Contract model introduces contingency and Vital / Non-Vital transactions (with alternative 
sub-transactions) as two important ideas. Unfortunately, in a particular environment, structural 
limitations and huge overheads are the main problems for implementation of this model (even 
some sources categorize this model as just an extension to the conventional model that adds some 
control mechanism to several ACID transactions in the Contract of a bigger transaction) (Date, 
2003), (Limthanmaphon & Zhang, 2004). 

2.3.4 SPLIT TRANSACTION MODEL 

This model was introduced for supporting `Open-ended applications' like VLSI designs, 
CAD/CAM projects and so on. Any application with the following three properties is defined as an 
`Open-ended application' (and theoretically can be modelled by the Split transaction model): 

1. Uncertain Duration: The transaction life time can be hours or months; you cannot 
determine any specific time limitation on the run time. 

2. Uncertain Development: There is no prediction about operations and limitations on 
them. 

3. Interaction with other Concurrent Activities: Concurrent operations can affect each 
other and share their results at any time (not just after commit, which will not be at a 
specific time, based on property 1). 

The manager of the Split Transaction Model splits a transaction into two ordered transactions 
and divides the resources between them (Elmagarmid, 1992). To split transaction T into 
transactions A and B, where A is ordered before B, the following properties must be satisfied (for 
splitting resources): 

AwriteSet n BwriteSet c BwriteLast 

AreadSet n BwriteSet =0 
BreadSet n AwriteSet = ShareSet 
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The first property says if A and B write on an object, B must write after A. In other words A 

cannot write on B's output. The second property says A cannot see B's results. The third property 
says B may see some of A's results. These properties guarantee A is ordered before B. If ShareSet 

and BwriteLast are nil (in this sense, A and B are independent) A and B can be ordered anyway or 
they can be run completely individually. 

If ShareSet or BwriteLast are not nil (this is called a serialized situation), A can be ordered 
before B. In this order, objects in ShareSet must be unchanged (by A). On the other hand, B with 
using uncommitted A's data can commit. If A aborts, B must be aborted too (because B can read 
A's written data). The main aim of Split transactions is commitment of one of the Split 
transactions (A in this example) and releasing useful results for the main transaction which can 
continue without interruption. 

Split transaction is criticized for applying limited consistency rules and it may not be applicable 
in business activities. However, it introduces several important ideas that are used by the other 
models; 

1. Adaptive recovery: Tasks (application) will be committed by strings of (sub) 
transactions that will not be disaffected by some failures. 

2. Reduce Isolation: Releasing resources (data items) by committed parts of a transaction 
(partial commitment). 

3. Ordered access to resources. 

2.3.5 FLEX TRANSACTION MODEL 

A Flex Transaction is a composition of a task set. Each task is equivalent to a series of 
sub-transactions and it can commit successfully just when one of these sub-transactions is 

committed (0. Kuhn, Elmagarmid, & E. Kuhn, 1993). A Flex transaction will commit when all of 
its tasks finish successfully. In the Flex model, the main transaction can use a description of the 
dependencies between sub-transactions (task's sub-transactions). 

Three important dependencies in the Flex model are: `Failure Dependency'; `Success 
Dependency'; and, ̀External Dependency'. Failure and Success dependencies determine the order 
of running sub-transactions in different situations (failure and successful finishing). External 
dependency shows dependencies of sub-transactions to transactions that do not belong to the main 
transaction. These dependencies make the creation of a compensating mechanism possible. 

The Flex model was implemented in VPL (Vienna Parallel Logic) for the first time 
(Elmagarmid, 1992). 

2.3.6 COOPERATIVE TRANSACTION MODEL 
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The Cooperative transaction model (Haghjoo et al., 1993), (Ramampiaro & Nygärd, 1999) is 

used for several different structure / mechanisms. A Cooperative transaction model is a hierarchy 

of sub-transactions (similar to nested transaction) where there is a possibility for releasing 
data-items in sub-transactions before commitment of the main transaction (for reaching the result, 
cooperation between transactions is necessary and this cooperation is in effect the sharing of 
uncommitted data-items). 

The common architecture of Cooperative transactions enables release of partial results for other 
transactions (Fig 2-8). However, how they do this, what rules must be applied, which structure 
design is considered for concurrency control and recovery management and so forth, can be 
completely different in each customized model. 

0 

FIG. 2-8 COOPERATIVE TRANSACTION MODEL 

In real situations, for implementation of Cooperative model, different structures are selected. 
The limitation for applying the customized model (suitable for a specific application environment) 
for saving database consistency and integrity must be considered (Li et al., 2002). The important 

points of each Cooperative transaction models are the structure of: 

V Logs (data structure) for chains of dependent sub-transactions (those releasing 
data-items and/or using the other's released data items). 

V Recovery Management implementation; heavy and centralised recovery 
management which guarantee atomicity of transactions 
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V Concurrency control structure; a server manage the access right for shared 
data-items 

V Optimizing overheads and logs; the model has minimised the overhead (through 
centralised control) 

V Mechanisms for breaking loops/ deadlocks and any other illegal events; recording 
logs help the model for preventing deadlocks and resolving failures 

Despite the advantages of the cooperative transaction model, dependency to a centralised control 
is its bottleneck and it cannot be applied in a fully distributed environment (when avoiding single 
point of failure is the priority, as in a Digital Ecosystem). 

2.3.7 COORDINATING TRANSACTION MODEL 

The idea of categorising sub-transactions in the Cooperative Transaction Model (Li et al., 2002) 
inspired a new type of model, called the Coordinating transaction model. In the coordinating 
transaction model, sub-transactions are divided to two categories; Control nodes (sub-transaction) 

and executive nodes (sub-transactions). Control nodes can determine the order of 
running/termination of their children and/or how (validation/mechanism) they could release their 
results to their siblings or even to other transactions (partial results) (Dalal et al., 2003), (Li et al., 
2002). 

Coordinating transactions work based on grouping transactions with three types of management 
(in the commitment condition). Database consistency is achieved through the concept of 
scheduling transactions (grouping). There are two different notifications for `writing' 
(modification/creating). The written data items can be shared between group members, or can be 

private to modifiers (owners). Based on the idea of grouping transactions, different 
implementation models have been derived from the Coordinating transaction model, which can 
provide some level of distribution (flexibility for extending the distribution between coordinators 
is the major difference between coordinating transaction model and cooperative transaction 

model). 

2.3.8 MEGA TRANSACTION MODEL 

The Mega Transaction Model (Haghjoo, 1996) is an open-nested coordinating model that was 
introduced for special distributed environments (e. g. aircraft design projects, Open-ended 

projects). The structure of the model is a tree that consists of compositions of schedulers in the root 
and middle nodes, and executive / delegations (agents) in the leaves. Fig 2-9 shows an example of 
such a model; symbols are derived from chains of researches by (Haghjoo et al., 1993), (Haghjoo, 
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1996), (Verharen & Papazoglou, 1998), (Papazoglou, Dells, Bouguettaya, & Haghjoo, 1997), 
(Papazoglou, Delis, Haghjoo, & Bouguettaya, 1996). 

FIG. 2-9 MEGA TRANSACTION MODEL 

The possibility for using any composition of schedulers gives a powerful advantage to this 
model for covering a huge range of applications. Different derivations of this model have been 
implemented and customised for different requirements. Mega Transaction uses compensation as a 
part of Recovery Management (Haghjoo, 1996), (Razavi, 1999), and cooperation between 
different transactions is available in any level (by considering the integrated recovery manager). 
Delegation is considered as a blanket mechanism for providing heterogeneous facilities. The 

restriction of dependencies to the scheduler gives the opportunity for optimization (Papazoglou et 
al., 1997), (Haghjoo, 1996) but this causes some side effects for the coverage of real-time 
applications. Mega transaction could be considered as a wise counsel for designing customised 
Coordinating transaction models in different environments (which can be optimised based on 
requirements). 

2.3.9 DOM TRANSACTION MODEL 

This model is an improved Cooperative transaction model. It was designed in GTE (formerly 
General Telephone & Electronics Corporation) laboratories for the management of distributed 
object projects in a heterogeneous environment (Elmagarmid, 1992). Theoretically DOM 
(Distributed Object Management) transaction model can have different heterogeneous 
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components such as different types of Database structures (Relational and Object-Oriented data 
sets) and even non-Database parts (like different file/record based systems). 

DOM includes different structure blocks that can combine for creating more complex structures. 
Depending on requirements; these blocks can act like the conventional transaction model, a nested 
transaction model or even an open-nested transaction model. DOM provides these facilities 
through a structure that includes five different levels transaction: 

1. Top transactions: A Top transaction is a root of the (closed) nested transaction 
model. It is visible to the system where it is running, 'Top transactions' can be 
defined by the user or be the result of other transactions. They can be mixed by Multi 
transactions but they cannot release partial result by themselves (this can be done by 
Multi transaction). 

2. Multi transactions: These are for long-lived transactions and the accessing of 
information from external databases (over which DOM cannot have any control). 
Sub-transactions within a Multi transaction can potentially release their results 
outside of the Multi transaction (to the other transactions outside of the main 
transaction). Transactions in a Multi transaction can in turn be a Multi transaction or 
a Top transaction. 

3. Compensating transactions: There is a compensating transaction for each Top 
transaction in a Multi transaction. In fact the compensating transaction is a Top 
transaction that can undo the effect of other Top transactions. When a Multi 
transaction aborts, a compensating transaction of each committed Top transaction 
must be run. 

4. Vital and Non-vital transactions: Multi transaction components (sub transactions) 
can be Vital or Non-vital transactions. If a Vital transaction aborts the main Multi 
transaction must be aborted, but if a Non-vital transaction aborts, the main Multi 
transaction can continue. 

5. Contingent transactions: Contingent transactions can be alternatives for some main 
transactions in a Multi transaction. If a transaction aborts and has a Contingent 
transaction, the Contingent transaction will be run automatically. 

2.4 ANALYSIS PARAMETERS 

There are three different parameters in structuring the design of any transaction model: what is 
the main structure of model; which type of transactions are supported in the model; and, how it 
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supports/optimises distribution. In this section we try to provide a brief analysis on them. 

2.4.1 MODEL STRUCTURE 

At the first level, advanced transaction models are categorised into two different structural 
classes (Elmagarmid, 1992): 

1. Those models that try to solve the long-life problem by making a hierarchical structure of 
tasks (sub-transactions); The Cooperative model, Mega transaction, DOM are some 
models that are using a hierarchical structure, whereas Saga transaction, and Extended 
Saga use the second category. 

2. Those models that follow a linear structure of tasks (sub-transactions) . 
The main challenge in hierarchical structure are the implementation overheads which are 

conventionally controlled by a centralised server. Alternatively coordination models try to solve 
the problem by spreading coordination and avoiding a centralised control but generally their 
solution is involved with local states of participants (which cause huge complexity and it is against 
of some disciplines such as service oriented computing). 

On the other hand, the linear-based transactions (such as Saga) have less design complexity but 
they reduce transaction concurrency dramatically and as result the overall performance of the 
environment will be low, the probability for deadlock stays high and in most cases they may not be 
considered as a feasible solution for long-running transactions. 

Another categorization for model structure is the ability for supporting dynamic decisions in the 
model. This was the main reason for defining the Split model. Dynamic structure is one of the 
important factors for supporting heterogeneous environments and optimizing the network cost (if 
suitable structure can be defined as ADT/Abstract Data Type that could have possible 
implementations). 

2.4.2 TRANSACTION TYPES SUPPORT 

The variety of sub-transactions is one of the most important items, not only for model 
generalization, but also for the performance/flexibility of models in different environments. Some 

of these sub-transactions are `contingent transactions', `compensating transactions', 
`Vital/Non-Vital transactions'. 

Contingency helps transaction models to avoid some failures by selecting alternative 
sub-transactions or improving their performance by the abortion of slow transactions. The efficient 
usage of these sub-transactions is in coordinating models when there is a control node 
(Elmagarmid, 1992). 
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A compensating mechanism, not only may give the possibility of safe release of partial results to 
a transaction model, but also can help recovery management when failure occurs. In some models, 
the entire recovery procedure may rely on such transactions (as in the Saga model or DOM 
transaction model). 

Vital/Non-Vital transactions can give some type of priority to sub-transactions and improve the 
performance of a transaction model. This also improves robustness as abortion of the main 
transaction will not happen when a low priority (Non-Vital) sub-transaction aborts. 

2.4.3 DISTRIBUTION 

Distribution can be considered as an important measurement for transaction models. When a 
model is able to provide a fully distributed consistency and recovery model, the traffic complexity 
will reduce and at the same time, the necessary consistency processing will be spread among 
participants. Furthermore, the entire model does not rely on single point of failure. But this may 
cause additional complexity and needs for accessing the local state of each participant. The degree 
of distribution and level of delegation of tasks to participants can affect this complexity 

2.4.4 COMPARISONS 

This chapter has surveyed the major advanced transaction models, which try to solve the 
problems inherent in long-lived transactions. Not all of them can be directly applied in service 
oriented computing but they do provide basic definitions for them (in the next chapter we will 
focus on transaction models on SOC). On the other hand, as we have seen in chapter 1, the Digital 
Ecosystems requirements are not only for a service oriented environment, which should warranty 
the local autonomy of participants, but also by providing support for business activities should be 

able to provide a solution for long-life transactions, with the corresponding needs for releasing 
partial results, and cashing potentially useful results on failure of a transaction. 

We include a summary of their main properties in Table 2.1. 
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Transaction Model Structure Sub-transactions Distribution 

Conventional - - - 

Nested Transaction Hierarchical Contingency Central control 

Static Non-Vital 

Sagas Transaction Linear Compensating Locality 

Static 

Multi-level Limited Hierarchical Contingency Central Control 

Static 

ConTract Model Linear Contingency Not any specific 
method Static Non-Vital 

Compensating 

Split Linear - NA 

Dynamic 

Flex Hierarchical Contingency NA 

Dynamic Non-Vital 

Compensating 

Cooperative Hierarchical Contingency Mobility (migration) 

Static Non-Vital 

Compensating 

Coordinating Hierarchical Contingency NA 

Dynamic Non-Vital 

Compensating 

Mega Transaction Hierarchical Contingency Delegation 

Dynamic Non-Vital 

Compensating 

DOM Hierarchical Contingency open to design 

Dynamic Non-Vital 

Compensating 
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3 BUSINESS TRANSACTIONS IN A DIGITAL ECOSYSTEM 

The purpose of any business network, including Digital Business Ecosystems, is to enable 
networked organisations to engage in business transactions that realise their core business 
activities. Specifically digital ecosystems insist on distributed coordination of such transactions 
and support for loose coupling and local autonomy in the environment (Chang et al., 2006), 
(Razavi, Moschoyiannis, & Krause, 2008a), (Moschoyiannis, Razavi, Zheng, & Krause, 2008). If 
such a network is to support B2B (Business to Business) interactions between SMEs, in a digital 
ecosystem, it should be fully distributed (no central point of control for performing a transaction or 
network operation) and should also offer a consistency model for performing transactions. This 
means it should be highly resistant to failures -a stable environment where business transactions 
can be executed. 

Each business transaction is the result of peer-to-peer interactions, between several nodes 
(SMEs) of this network for reaching a specific target. These nodes are called participants; their 
logical components for involving in a transaction are their services. The context of a transaction 
clarifies the orchestration of services. The locality of services clarify the necessary interactions 
between participants for satisfying the business logic of the transaction. Therefore we are dealing 
with a service-oriented environment, which includes several overlapping networks of transactions. 

3.1 SERVICE-ORIENTED ENVIRONMENT AND THE DEPLOYMENT LAYER 

In simple terms Service-Oriented Computing (SOC) (Dillon, Wu & Chang 2007a), (Dillon, Wu 
& Chang 2007b), (Papazoglou, Traverso, Dustdar, Leymann, & Kramer, 2006), (Singh & Huhns, 
2005), (Chang & West, 2006a), aims to enable applications from different providers to be offered 
as services that can be used, composed, and coordinated in a loosely coupled manner. In this 
paradigm, services are fundamental elements for developing solutions. They are platform-agnostic 
computational elements that support rapid, low-cost composition of distributed applications. 
Services perform functions, which can be anything from simple requests to complicated business 

processes. The actual architectural approach of SOC is called SOA (Service-Oriented 
Architecture) and is particularly applicable when multiple applications running on varied 
technologies and platforms need to communicate with each other. In this way, enterprises can mix 
and match services to perform business transactions with minimal programming effort. SOA is a 
way of reorganizing software applications and support infrastructure into an interconnected set of 
services, each accessible through standard interfaces and messaging protocols. In this way, 
enterprises use composition of services to perform business transactions with minimal 
programming effort and provide a consistent environment. 

However, service composition has several distinct characteristics which distinguish it from 

classical workflow integration, conventional transactional implementation and software 
component integration. As SOA is a loosely coupled environment, service composition relies on 
parameters for invocation of a service (also called access interfaces), rather than working with the 
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local state of execution of the respective services. Additional complexity results from the fact that 
a variety of services, from different platforms, need to pass their results in a loosely coupled 
manner 

At the same time, the complexity of different types of service composition requires a consistency 
model at the deployment level. Meanwhile since the locality of services is distributed (in different 
participants / service providers or SMEs), the quality of service composition in a business 
transaction depends on the degree of connectivity that the underlying network exhibits. 

3.1.1 LOOSE COUPLING AND SERVICE REALIZATION 

In SOA services are considered as atomic units whose local structure, or run-time state, cannot 
be forced to be made visible or explored by other parts of the architecture. The use of 
loosely-coupled services is a basic premise in the service-oriented computing paradigm, which 
distinguishes between two broad aspects of services (Papazoglou, 2003), (Singh & Huhns, 2005) 
as shown in Fig. 3-1: service deployment, which is subjected to our transactional service 
composition, as opposed to service realization. 
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FIG. 3-1 REALIZATION AND DEPLOYMENT LEVELS IN SOC (PAPAZOGLOU, 2005) 

The service realization strategy involves choosing from an increasing diversity of different 

options for services, which may be mixed in various combinations. Our approach abstracts away 
from the service realisation level but at the logical level, what we consider is `there is a business 
function iif/)lenleuted iii software soruehow and this is the interface to it' (Papazoglou, 2003). 
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A service in SOA is designed in such a way that it can be invoked by various service clients and 
is logically decoupled from any service caller (loose coupling). This means there are no 
assumptions of any kind in the service as to what kind of service consumer is using it and for what 
purpose and in what context. In turn, the service callers are coupled with the service in as much as 
they know what the services are, how they can be used, and what they can accomplish. 

Therefore, at the service deployment level the interfaces of the services will be used to compose 
different services and accomplish the required behaviours and results in terms of business 
transactions. 

3.1.2 SERVICE COMPOSITIONS AND LONG-RUNNING TRANSACTIONS 

Based on the specification advocated in (Yang, Papazoglou, & van den Heuvel, 2002), (Singh & 
Huhns, 2005), (Papazoglou et al., 2006) service composition can be considered along the following 
dimensions: data, process, security, protocol. In this chapter we are concerned with providing P2P 
network support for distributed transactions and hence we will be concerned with the aspects of 
data and process composition. In general, security and protocol compositions are usually 
addressed on top of the transactional layer. 

In particular, process-oriented service composition is concerned with the following aspects: 

Order: indicates whether the composition of services is serial or parallel. 

Dependency: indicates whether there is any data or function dependency among the composed 
services. 

Alternative service execution: indicates whether there is any alternative service in the service 
composition that can be invoked - alternative services can be tried in either a sequential or a 
parallel manner. 

Following (Yang et al., 2002) these aspects can be seen within different types of service 
composition as follows. 

Data-oriented service composition: The data generated at the service realisation level are 
released in terms of different data-objects. In this service composition, these data can be shared 
and manipulated between participants of a single transaction or, where partial results are 
concerned, be shared by participants of other transactions. 

Sequential process-oriented service composition: This type of service composition invokes 
services sequentially. The execution of a component service is dependent on its previous service. 
These sequential dependencies can be based on commitment in which case we talk about 
Sequential with commitment dependency (SCD) where one cannot begin unless the previous 
service commits, or dependency on data which in this case we talk about Sequential with data 
dependency (SDD) where one service relies on other service's outputs as its inputs. 

Parallel process-oriented service composition: In this service composition, all the services 
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can be executed in parallel. There may be data dependencies between them in which case we talk 
about Parallel with data dependency (PDD) or there may be differences in how and when the 
services can be committed (depending on some condition) in which case we talk about Parallel 
with commit dependency (PCD). When there are no dependencies between the parallel services we 
talk about Parallel without dependency (PND). 

Alternative service composition: This type of service composition indicates that there are 
alternative services to be deployed and one of them is necessary. They are categorised to two 
different types: Sequential alternative composition (SAt) where there is an ordering for 
deployment of these services, and Parallel alternative composition (PAt), where there is no 
ordering (preference) between them and deployment of either service can satisfy the composition. 

Generally, one or more service compositions can satisfy the user request. It can be seen that due 
to order and data in service composition, there can be increased complexity in composing services 
especially when transactions require a number of different services from different networked 
organisations. This means that there is a need for a context and data consistency model (at the 
deployment level) which can provide the correctness of the results. 

A digital ecosystem for business can be modelled as a network of business transactions between 
the various participating organisations (e. g., SMEs) (Chang et al., 2006). Fig. 3-2 shows the 
network structure resulting from a number of service compositions which need to be deployed for 
performing business transactions. Furthermore, in terms of deployment of services and sharing 
their data (data dependency aspect of service compositions), the peer-to-peer interactions between 
the participants of each transaction should be supported by a reliable infrastructure which reduces 
the possibility of failure and provides effective recoverability for the transaction taking place. 

3.2 NETWORK OF BUSINESS TRANSACTIONS 

The aggregations of the business activities taking place between the different partners create 
several virtual business networks. When these business activities are conducted by means of 
long-term transactions which involve the execution of services from different service providers, 
these result in the creation of temporary networks interconnecting the participating organisations. 
These are typically separate disconnected networks resulting from transactions between 

participants, but overlaps may exist due to some participants being involved in more than one 
transaction in the same or different business domain of the digital ecosystem. 

Fig. 3-2 shows the conceptual unstructured network of a digital ecosystem. It can be seen in the 
figure that transactions can have overlapping sets of participants. 
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FIG. 3-2 A DIGITAL ECOSYSTEM 

In a digital ecosystem, each transaction and its participants, during the execution of the 
transaction, creates a temporary network. This network is supposed to achieve a specific goal 
(transaction goal) and provide some results. During the execution of the corresponding 
transaction, several services will be deployed. Based on the transaction logic, the underlying 
services will be deployed in a specific order and their results will be combined (according to the 
specific service compositions used in the transaction). All of these will be private to the 
participants of the transaction in question. The resulting network is called `Virtual Private 
Transaction Network' or in short form `VPTN'. Fig 3-2 shows a digital ecosystem which includes 
five VPTNs. 

The idea is to re-use the (possibly disconnected) VPTNs in providing a connected network for 
conducting business activities. In a digital business ecosystem, the main motivation of the 
participants (SMEs) is their business activities (transactions), and thus these sub-networks 
(VPTNs) are the major part of the system and their success or failure is a major factor for the 
usability of the ecosystem. For this reason, and before describing the specifics of our approach 
towards the P2P architecture that supports distributed business transactions in chapter 4, we 
describe our distributed transaction model focusing on the aspects that are relevant to the 
underlying supporting network. 
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3.3 CHALLENGES 

As each VPTN is formed by the execution of a transaction amongst the various participants, the 

very existence of the VPTN relies on the success of the transaction which in turn relies largely on 
the accessibility of its participants' services. The general term `Transaction' has been introduced 
by Gray (Gray, 1992), (Gray & Reuter, 1993) and as we have discussed, is defined by the four 

properties contained in the ACID acronym. In a transactional environment, consistency should be 

preserved even when a failure is encountered and the aborted transactions can be rerun. This main 
principle applies equally to long-running business transactions, whose execution is long-term in 

nature - anything from minutes to hours to days - and whose specification involves the 
deployment of a number of services from different service providers. For example, a transaction 
can include several service compositions and after deploying the data at the deployment level, the 
data can be accessed several times during the course of execution of the transaction and until it 

commits. Furthermore, the data may be required to be shared with another transaction before the 
first one commits, in what is often referred to as a case of partial results. The conventional ACID 

properties for transactions may not be applicable in such cases because the transaction life-cycle 

usually can be longer than that of conventional transactions. Also, partial results can violate the 
conventional isolation expectation of ACID transactions (Gray & Reuter, 1993), (Haghjoo, 1996), 
(Date, 2003). It transpires that adhering to ACID properties may be rather restrictive in a business 

context as a number of B2B (Business to Business) scenarios would for instance require the 

realisation of partial results. 

In what follows, we briefly outline current approaches towards relaxing ACID properties and 
highlight the potential weaknesses with respect to three main criteria: concurrency control (this 

can cover Consistency and Isolation), compensation and recovery (this covers Atomicity) and 
replication (for satisfying Durability). 

A consortium of companies came together under the umbrella of the Organization for Advance 
Structured Information Systems (OASIS) and developed the Business Transaction Protocol 
(BTP), which was aimed at B2B transactions in loosely-coupled domains such as Web services 
(Furnis et al., 2004). At the same time, others in the industry released other specifications: Web 
Services Coordination (WS-Coordination) (Cabrera, Copeland, Feingold, R. Freund, T. Freund, 
Johnson, Joyce, Kaler, Klein, Langworthy, Little, et al., 2005) and Web Services Transactions 
(WS-AtomicTransactions and WS-BusinessActivity) (Cabrera, Copeland, Feingold, R. Freund, T. 
Freund, Johnson, Joyce, Kaler, Klein, & Langworthy, 2005), (Cabrera, Copeland, Feingold, R. 
Freund, T. Freund, Joyce, et al., 2005). Recently, Choreology Ltd. has started to make a joint 

protocol which tries to cover both models and this effort has highlighted the caveats of each as 
mentioned in (Vogt et al., 2005), (Furnis & Green, 2005), (Razavi et al., 2006). 

In what follows we discuss certain important aspects in transactional models and highlight 

potential pitfalls of current transaction frameworks. 
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3.3.1 CONCURRENCY CONTROL 

For providing a consistent environment, during concurrent actions (service deployment and 
compositions), WS-* (WS-AtomicTransactions and WS-BusinessActivity) and BTP, are using the 
two-phase commit (2PC) protocol, which requires synchronisation for the phases. This is applied 
through a centralised coordination framework, based on WS-Coordination (Cabrera et al., 2004). 
Fig. 3-3 shows a simple example of the use of WS-Coordination for executing a transaction where 
the Initiator creates a coordination context and the Participants, based on their registered services, 
deploy their respective services. The synchronisation for concurrency control is done in a 
centralised manner. This causes a single point of failure as well as a single dependency on the 
provider(s) of the centralised coordinator framework. 

In addition, a more careful study of this coordination framework, such as that reported in (Furnis 

& Green, 2005), shows it to suffer from some critical decisions about the internal build-up of the 

communicating parties -a view also supported in (Vogt et at., 2005). The Coordinator and Initiator 

roles are tightly-coupled and the Participant contains both business and transaction logic. These 

presumptions are against the primary requirements of SOA, particularly loose-coupling of services 

and local autonomy, and thus are not suitable for a digital business ecosystem, especially when 
SMEs are involved. This is because smaller organisations tend to be more sensitive in revealing 
their local design and implementation precisely because this is often where their model lies 

(Razavi et al., 2007a), (Strommen-Bakhtiar & Razavi, 2008), (Singh & Huhns, 2005). 
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3.3.2 COMPENSATION AND RECOVERY 

In a highly dynamic environment of multiple services from different service providers there 
need to be procedures in place that allow cope with failure. When a failure occurs before a 
long-running transaction terminates its execution (before transaction commit) there is a serious 
risk of inconsistency due to the fact that released results of the transaction have not been finalised. 
`Recovery' is the procedure for addressing this problem. The mechanism, which has been used by 
WS-* and BTP is compensation. As the coordination protocol for long-running transactions only 
uses BACC (Business Activity with Coordinator Completion) protocol, in terms of success or 
failure, it is the Coordinator who can send the completed message after which the transaction 
transitions to the second phase (commit or abort) of the 2PC protocol. 

Behavioural patterns such as "validate-do" and "provisional-final" (Vogt et al., 2005), (Razavi 
et al., 2007c), (Furnis & Green, 2005), (Razavi et al., 2006) are not supported while the 
"do-compensate" pattern, which is supported, results in a violation of local autonomy, since access 
to the service realisation level is required. 
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FIG. 3-4 BACC PROTOCOL 

As a result of only supporting BACC and hence applying the "do-compensate" behaviour 

pattern, when a fault occurs, the transaction transitions to `Faulting' state (see BACC in Fig. 3-4), 

where only the Participant is involved. Since the control is with the Coordinator in this case 
(BACC), the Coordinator needs to have visibility of the Participant's states. Notice that after 
`Completed', the `Closing' and `Compensating' states are controlled by the Coordinator. This has 

the implication of the Coordinator needing all details of the Participant to perform the 

compensating procedures. This limitation results in breaking the autonomy of the local platform as 
it forces to prescribe the internal behaviour of the realisation level of services. Prescribing internal 
behaviour at the realisation level raises a barrier for SMEs as it inevitably leads to their 
tight-coupling with the Coordinator. 
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3.3.3 REPLICATION AND DURABILITY 

As synchronization is synchronised, the consistency log and recoverability (compensation) 
information, has to be stored in centralised coordinator. In addition, as there is not any 
infrastructure for checking other participants stability, and issuing the privacy of each transaction, 
the replication and archiving of data are done by a centralised backup in the coordinator (even 

when the archiving the information of other participants' transaction can violate the privacy and 
their local autonomy, this seems like the only option in the current protocols). 

It can be seen that there are a number of challenging aspects in providing support for 
long-running transactions so that the corresponding VPTNs can be used faithfully in determining 
the connected network supporting a digital ecosystem. In the next section, we describe a 
distributed transaction model that is designed to address such aspects and paves the way for using 
the emerging VPTNs as the main building block for the underlying P2P network for digital 
business ecosystems. 

3.4 SERVICE ORIENTED TRANSACTIONAL MODELS 

In this section, we provide a brief review of the transaction models which are currently used for 

service oriented environments. In 2001, a consortium of companies including Oracle, Sun 
Microsystems, Choreology Ltd, Hewlett-Packard Co., IPNet, SeeBeyond Inc. Sybase, Interwoven 
Inc., Systinet and BEA System, began work on the Organization for Advance Structured 
Information Systems (OASIS) Business Transaction Protocol (BTP), which was aimed at 
business-to-business transactions in loosely-coupled domains such as Web services. By April 
2002 it had reached the point of a committee specification, (Ceponkus et al., 2002) and (Furnis et 
al., 2004). 

At the same time, others in the industry, including Microsoft, Hitachi, IBM, IONA, Arjuna 
Technologies and BEA Systems, released their own specifications: Web Services Coordination 
(WS- Coordination) and Web Services Transactions (WS-AtomicTransactions and 
WS-BusinessActivities) (Cabrera et al., 2004). Recently Choreology Ltd. has started to make a 
joint protocol which tries to cover both models and by mentioning their problems in several 
detailed reports, tries to solve them (Furnis & Green, 2005). 

3.4.1 WS-PROTOCOLS (WS-x) 

WS-Protocols set consists of the three protocols; 

� WS-Coordination (Cabrera, Copeland, Feingold, Freund, Freund, Johnson, Joyce, Kaler, 
Klein, Langworthy, Little, et al., 2005), the most important of WS-protocols which it 
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defined as an extensible coordination framework and its coordinating (sub) transactions in 

any levels. 

� WS-AtomicTransactions (Cabrera, Copeland, Feingold, Freund, Freund, Johnson, Joyce, 
Kater, Klein, & Langworthy, 2005), leveraging WS-Coordination(WS-C) for use with 
systems aware of ACID properties. Actually it covers atomic transactions which follow a 
conventional commit protocol. 

� WS-BusinessActivities (Cabrera, Copeland, Feingold, Freund, Freund, Joyce, et al., 2005), 
designed for support of long-lived activities. It tries to provide enough foundations for 

applying long-term business activities in the transactional manner (which it is called 
WS-BusinessActivities). 

WS-AtomicTransactions and WS-BusinessActivities use WS-Coordination framework as the 

coordinator protocol. 

3.4.1.1 WS-COORDINATION SPECIFICATION 

In WS-Coordination specifications, three roles are described for communicating parties: 
Initiator, Participant and Coordinator. The entity aiming for a consensus among multiple Web 
Services is playing the Initiator role, the entity offering some service that needs to be coordinated 
during the interaction has Participant role and the Coordinator is an entity coordinating the 

communicating parties to achieve the consensus (Fig 3-5 shows a simple example of such a 
coordinator framework). 
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FIG. 3-5 COORDINATION ROLES AND MESSAGE EXCHANGES 

The message exchanges have to be introduced (in the specification body), which requires the 
`Activation' and `Registration' of participants. The CoordinationContext is acquired from the 
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Coordinator's Activation Service for the `Activation' phase. The CoordinationContext is attached 
to business messages being exchanged between the communicating parties, embedded in a SOAP' 
header. 

The aim in the registration phase is to form a logical connection between Coordinator and 
Participant which will be done by negotiation and exchanging endpoint addresses of the 
Coordinator's and Participant's protocol services (in this sense, the message flow over this logical 
connection depends on the coordination protocol being used and is not part of WS-Coordination 
specification. ). 

3.4.1.2 WS-A'1'OM1IICTR: INSACTIONS AND WS-B USINESSACTIVITY SPECIFICATION 

The WS-AtomicTransactions specification uses a conventional two phase commitment protocol 
for coordination (Bernstein & Newcomer, 1997). In contrast, the WS-BusinessActivity 

specification defines two different coordination protocols; the Business Activity with Coordinator 
Completion (BACC), and Business Activity with Participant Completion (BAPC). Fig 3-6 shows 
these possible protocols for coordinating WS-BusinessActivity. 

- ----- 

BACC protocol 

--------- 

FIG. 3-6 THE POTENTIAL WS-BUSINESSACTIVITY COORDINATION PROTOCOLS 

The differences between conventional 2PC and BAPC/BACC come back to the manner of their 
commitment; the first phase of BACC and BAPC, is used for exchange of business messages 
between the parties, then in case of BAPC, the end of the first phase occurs when the Completed 

message is sent from `Participant' to `Coordinator', indicating that the `Participant' has 

completed processing and stored all data persistently. The second phase is used for confirmation or 

SOAP, unt7w, lly de(lnt'd as Simple Object Access Protocol, is a protocol specification for exchanging structured information in the 

implementation of Web Services in computer networks. It relies on Extensible Markup Language (XML) as its message format, and usually relies 

on other Application Layer protocols (most notably Remote Procedure Call (RPC) and HTTP) for message negotiation and transmission. SOAP 

can form the foundation layer of a web services protocol stack, providing a basic messaging framework upon which web services can be built. 
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negation of results achieved during the first phase. 

The difference between BAPC and BACC is the procedures for business activities; the BAPC is 
designed for activities in which the decision about a transition from the first to the second phase 
can be made by the `Participant', but the BACC is designed for activities in which this decision is 

made by the Coordinator. 

Based on analysis of Vogt and Zambrovski (Vogt et al., 2005), WS-BusinessActivity can only 
support "do-compensate" behaviour patterns (Furnis & Green, 2005) for the Participants, because 
it supports BACC coordination protocol (See fig 3-6 and recall 3.3.2). In the "do-compensate", the 
`confirm state' has priority over the temporary states. But in the other behaviour patterns (such as 
"provisional-final" and "validate-do" (Furnis & Green, 2005)), the participant establishes a 
(temporary) "complete" state of the application data that will be changed to the confirmed state if 

and when the `Close' message is received. 

As a result of applying "do-compensate", WS-BusinessActivity is not able to transit to not 
`Faulting' state from `Close' state which means any action cannot be done on data when the 
system is in the close state! Forcing this limitation, by breaking the autonomy of local platforms 
and prescribing the internal behaviour to realisation level of services [see section 3.1.1] has 
despoiled one of the primary foundations of the SOA paradigm. 

On the other hand, the protocol authors made some decisions about the internal build-up of 
communication parties as described in (Cabrera et al., 2004). The tightly-coupled Coordinator and 
Initiator as well as Participant encapsulating both business and transactional logic are examples of 
that. These presumptions are against of SOA characteristics (loose coupled and highly dynamic 
(Papazoglou & Georgakopoulos, 2003), (Yang et al., 2002)) particularly the web-services' nature, 
especially when SMEs are involved in a transaction. 

The other side effect of the identical roles of `Close' in "do-compensate" pattern behaviour, is 

the wide limitations on alternative scenarios, which not only keep a tight rein on the coverage of 
business requirements, but also, by considering the highly dynamic nature of SMEs, they cannot 
be a candidate for the coordinator. By bearing in mind the designer assumption (tightly-coupled), 

necessity for stability, on one hand will force the system for choosing a few highly stable nodes as 
the coordinators which in the best case will produce a decentralised system (not fully distributed as 
the designers were promised (Cabrera et al., 2004)). On the other hand, SMEs' local autonomy has 
been violated and they cannot be candidates for Initiator as well as Participant roles. 

3.4.2 OASIS & BTP 

The Organization for the Advancement of Structured Information Standards (OASIS) has 
developed the Business Transaction Protocol (BTP) to provide a model for reaching the 

requirements of SOA design with emphasis on long-running collaborative business applications. 
BTP is designed to support long-term (running) transactions and a transaction concept that goes 
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beyond data-centric transactions (Ceponkus et al., 2002). 

3.4.2.1 1TP S'rtttUCTtURl: 

By using a nested transaction model (recall chapter 2) as its infrastructure, BTP has a transaction 
tree. In contrast to most of the transaction models, BTP uses an open-top commit (Dalai et al., 
2003) protocol (sometimes called a three phase protocol) which lets the application use an extra 
phase (as an intermediate phase) between phases. This ability is applied by expanding the range of 
available verbs "prepare", "confirm", "cancer', etc to include explicit control over both phases. 

3.4.2.2 BTP RA%SALTIONS TYPES: 

By using a tree structure BTP can mix different types of (sub) transactions. To address the 
specific needs of business transactions, BTP makes a separation in the categorization of (sub) 
transactions by introducing two types of extended transactions: 

Atom: The atom transaction type uses a classic two-phase commit protocol and the transaction 
is considered as the "logical unit of work" which achieves a consistent result. In this context, a unit 
of work can be a number of business actions which is measured as an ACID (recall chapter 2) 
transaction (as an important emphasised feature in BTP (Furnis et al., 2004) should either be 
completed together or reversed to a state as if not executed). The all-or-nothing semantics 
associated with the atom support precisely this style of interaction. Where a single party cannot 
make good on a business level agreement, or there is a technical failure that prevents that party 
from providing its service, the atom abstraction ensures that all parties involved in the interaction 

are freed frone their obligations (Dalal et al., 2003). 

Cohesion: By relaxing Atomicity (in ACID properties), a `Cohesion' transaction tries to 

overcome the long-term (long-running) transaction problem. It permits the terminator of 
transaction to confirm or cancel the selection of work based on the business model (high-level 
business rules). Actually, cohesion architecture tries to provide an abstraction for multiparty B2B 
interactions and it has a high reliance on business model ontology. Based on this logic, cohesion 
(in contrast with conventional transaction model) according to business model, can provide 
participants with different outcomes which some might confirm while others cancel. Cohesion's 

customised version of two-phase protocol, from the high level specifies (in intermediate level) 

precisely which participants to prepare and which to cancel. As during transaction life time, it 

might meet conditions that allow it to cancel or prepare some of its units, although the cohesion 
might take several hours or days to arrive at its confirm-set (the set of vital participants that must 
confirm to successfully termination of the transaction). When the confirm-set is determined, the 

cohesion collapses down to an atom, and this final phase all members of the confirm-set see the 

same outcome. In this way, the action of Cohesion is categorised as conventional nested 
transactional model [recall 2.2] with slightly flexible for commitment protocol but same view for 

Digital Ecosystems -52- Amir reza Razavi 



Business Transactions in a Digital Ecosystem 

Service Oriented transactional models 

the long-term transaction tree. 

3.4.2.3 BIT ROLES, ACTORS AND CAST 

A BTP role is specific to a particular relationship between software agents (known as BTP 

actors) participating in a business transaction. Two types of relationships exist between different 

roles in the BTP model; inferior and superior. Inferior (applicable on Atom/Cohesion) is 

responsible for reporting to the superior that it is prepared for the outcome, regardless of whether 
the associated operations' provisional effects can be confirmed or cancelled. Superior (applicable 

on coordinator/composer) is the party that coordinates the transaction. A superior gathers reports 
from its inferiors and must determine which to cancel or confirm. If the transaction is an atom, 
BTP's predefined rules require that every inferior be confirmed unless at least one has signalled 
that it wishes not to, in which case all will be cancelled. If the transaction is `cohesion', it will not 
rely on just the decision made by inferiors and it has to be a combination of the decisions made by 
inferiors and its own business rules which is highly dependent on the business model. 
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FIG. 3-7 BUSINESS TRANSACTION PROTOCOL GENERAL SCHEMA 

Therefore BTP as a nested transaction model, stresses each inferior has only one superior, but a 
superior can have multiple inferiors. The tree of such relationships could thus be wide, deep, or 
both. According to transaction's relative position in the transaction tree (a superior coordinates an 
inferior). This is important because an actor's role could change during a transaction and defer 
different behaviour for the same logical entity. 

Several other actors are introduced on BTP for handling more specific roles. One of the most 
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important actors as is superior for an atom is called a coordinator; it is responsible for supervision 
of the atomic two-phase completion protocol. For cohesion, the most significant superior is a 
composer; (a sub-coordinator (atom) or sub-composer (cohesion)). The other important actors are 
`transaction factory' (which is typically a Web service that creates the context for a business 
transaction and manages the coordinator associated with it), `initiator' (which starts a business 

transaction at an application element's request), `participant' (which is the entity that eventually 
does the real transaction work on behalf of the Web service), and `terminator' (is an application 
element that inculcates the coordinator of a business transaction to either confirm or cancel the 
transaction). In the next part, a classic simple scenario, which it is mentioned in several references, 
will show the main structure of the model. 

3.1.2 .} 5INiI'l 1: SCI: tiARIO: 

" Beginning a transaction: by sending a request (for a new business transaction) from 
initiator to a factory (transaction factory) a transaction begins, two different situations 
can arise: 

i If it is a new top-level transaction, the composer or coordinator will be the decider 
(the term given to the most senior coordinating entity for a transaction). 
If the new business transaction is made the direct inferior of an existing transaction 
(by specifying a superior transaction as its parent in the consequent begin message), 
the request creates a sub-composer or sub-coordinator that is ultimately controlled 
by its parent composer or coordinator. 

The factory sends a begun message to the initiator in reply to the begin request, indicating the 
related context for the new business transaction. 

Enrolling a participant in a transaction: For interaction in the transaction, the new 
transaction has to register what it is done by sending an enrol request to a superior to 
enrol an inferior and the superior answers with an enrolled message to point out that the 
inferior has been successfully enrolled in the transaction. 

Confirming a transaction-phase one: when association phase is finished, the first phase 
of 2PC confirmation protocol can be initiated by the terminator. A preparation message 
will be sent by the superior to its enrolled inferiors that have sent neither a cancelled nor 
a resign message; 

o If a coordinator or composer that has been requested to confirm has only one 
remaining inferior in the confirm-set, it can delegate the confirm-or-cancel 
decision to that inferior by sending a confirm_one_phase message, which avoids 
performing the two-phase exchange. 
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o If the inferior is able to proceed with the work asked of it, it sends a prepared 
message to its superior - either unsolicited or in response to the superior's 
prepare message - but only once the inferior has determined that the 
operations associated with it can be confirmed or cancelled as instructed by the 
superior. 

" Confirming a transaction - phase two: If the first phase of the completion is successful 
(that is, either all participants agree to confirm in the case of an atom, or the participant 
decisions plus business logic still allow confirmation for a cohesion), the terminator sends 
a confirm_transaction message to a decider to request confirmation of the business 
transaction, which then causes the confirm message to be propagated to each enrolled 
participant in the case of an atom, or to a subset of the enrolled participants (specified 
by the inferiors- list parameter of the confirm-transaction message) in the case of a 
cohesion. On receipt of a confirm message, an inferior sends a confirmed message once 
it applies the confirmation - whether in reply to confirm, after making an autonomous 
confirm decision, or in response to a confirm_one_phase. A decider sends a 
transaction_confirmed message to a terminator in reply to confirm transaction if all the 
inferiors in the confirm-set are able to complete their associated work (and, for a 
cohesion, all other inferiors cancel). 

3.4.3 BTP UNSOLVED CHALLENGES: 

The first version of BTP was not specifically about transactions for web services (the intention 

was it can be also used in other environments) (Ceponkus et al., 2002). Actually BTP defines the 
transactional XML protocol and must specify all of the service dependencies within the 

specification. Recently Choreology Ltd. has tried to point out and modify the model and consider 
possible connection between BTP and WS-Tx for customising the model for web services (Furnis 
& Green, 2005). The reflection of these works can be seen in the latest version of BTP too (Furnis 

et al., 2004). 

As mentioned in 3.4.2.2 BTP is a conventional nested transaction model, which means 
transactions can be nested and internally they can share uncommitted results but they are isolated 
for the transactions on the environment. That means the partial results cannot be covered in this 

model. 

The other important point is the relationship between superior (coordinator/composer) and 
inferior. As there is not any specific mechanism for alternative service composition in 
(specifically) composers and (with less side effect) coordinators, the relationship should be 

tight-coupled (as it is not mentioned directly in system specification) or the whole transaction will 
face a regular cascading roll back danger (as a very simple example, we can check the nature of 
SMEs which it is dynamic with loosely coupled binding which means accessibility and 
characteristics of provided services can be changed regularly, which means composer/coordinator 
had to be roll back and in the case of composer because it is not isolated from other composers of 
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the same transaction, it might shared some its results with them and all dependent composers had 
to be roll back/restart too). 

Another side effect of the last problem is the probability for dead-lock. As the reaction of the 
transaction to dead-lock was not mentioned (and even worse, the algorithm for detecting deadlock 
is not clear), the lack of consideration of this issues can be consider as an important weakness of 
the model. Even worse than that is that even if there was an internal structure for detection or 
prevention of deadlock with possibilities for regular abortions (rollback/restart) the probability for 
deadlock is high. 

There are more issues such as recovery management algorithm, fully distributed concurrency 
control and so forth which are unanswered in BTP. 

In the next chapter, we try to propose a model which follows the digital ecosystem principles and 
avoids the similar weakness of BTP and WS-x transactional model. 
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4 CONSISTENCY OF DISTRIBUTED TRANSACTIONS (VPTNS) 

As discussed in the previous chapter, current protocols in transaction frameworks targeted at 
supporting business activities between networked organisations provide a centralised solution, 
which not only violates the primary concept of SOC (loose-coupling) but also does not cover all 
aspects of their business activities and can not be accepted in Digital Ecosystems environment 
which is loosely coupled and focuses on local autonomy of participants. The current models 
enforce involvement of local states of participants in their recovery model and violate their local 
autonomy and they create tight dependencies which are susceptible to the risk that comes with a 
single point of failure in the framework. In contrast, our proposed model, from the very beginning 
and early prototypes, advocates a fully distributed solution and relies on the P2P interactions 
between the platforms (here, participants) (Razavi et al., 2006), (Razavi et al., 2007a). 

In this chapter, first we explore the conceptual design of such a Digital Ecosystem platform, 
which independently can provide SOA biding in a distributed manner, then will focus on the 
transaction specification of such a platform. The formal analysis of concurrency is the next 
section. Section 4 of this chapter provides details of necessary constraints and their proof. In the 
rest of the chapter we explain the provided structure for doing so. 

4.1 GENERAL INFRASTRUCTURE OF EACH PLATFORM 

As the kernel of each platform, we have designed a software agent which is responsible for 

coordinating the participant's business activities (transactions). This local agent also archives the 
information related to these activities (corresponding VPTNs) and improves the general 
connectivity of the network (its digital ecosystem), and in doing so it contributes to the so-called 
network growth (Razavi et al., 2007a). This is an important aspect when it comes to sustainability, 
especially in a fully distributed solution. This leads up to the primary requirement of a digital 

ecosystem (recall chapter 3) which is represented in Fig. 3-2 highlighting the fact that there is no 
centralised point of command and control in a digital ecosystem. 

4.1.1 SOA AND DIGITAL ECOSYSTEM PLATFORM 

As we discussed (recall chapter 3), SOA is the tangible architectural approach of SOC and is 
mainly applicable when multiple applications running on varied technologies and platforms need 
to communicate with each other. In this manner, enterprises can mix and match services to perform 
business transactions with minimal programming effort. SOA is a way of reorganizing software 
applications and support infrastructure into an interconnected set of services, each accessible 
through standard interfaces and messaging protocols. The basic SOA is not only about architecture 
of services, it is a relationship of three kinds of participants: the service provider, the service 
discoveror, and the service requestor (client). The interactions involve `publish', `find' and ̀ bind' 
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operations. (Papazoglou, 2003). 

In a typical service-based scenario a service provider hosts a network-accessible software 
module (an implementation of a given service). The service provider defines a service description 
of the service and publishes it to a client or service discovery agency through which a service 
description is published and made discoverable. The service requestor uses a find operation to 
retrieve the service description typically from a discovery agency, i. e., a registry or repository like 
UDDI3, and uses the service description to bind with the service provider and invoke the service or 
interact with service implementation (Papazoglou et al., 2006). 

As Digital Ecosystems insist on local autonomy of each participant, the theoretical design of 
each platform should rely on an independent platform. Conceptually we consider this platform, as 
a local agent (Razavi et al., 2007b). The primary needs of this agent are the find, publish and bind 
operations. For this reason, it requires a `Global repository' (which keeps the information about 
other participants' web services), `Web service promoter' for publicising its web services for other 
participants (it can be kept in their Global repository), `Web Service Information Investor' (for 
updating its Global Repository, according to the other Participants' local web services). Fig 4-1 

shows such a model. 

3 Universal Description, Discovery and Integration (UDDI) is a platform-independent, Extensible Markup Language (XML)-based registry for 
businesses worldwide to list themselves on the Internet. 
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FIG. 4-1 REPOSITORY IN DIGITAL ECOSYSTEM 

4.1.1.1 LOCAL WEB SERVICES INFORMER 

Digital Ecosystems are inherently operated in a heterogeneous environment which is 

service-oriented. On one hand, this environment is supposed to support any type of web service, 
with any protocol in a loosely-coupled manner (local autonomy for SMEs), and on the other hand, 
it should support a proper commit protocol for long-running transactions (business activities as 
discussed in chapter 3 and (Razavi et al., 2007a)). In order to provide the Initiator of a transaction 
with the basic view about the web service which is to be used on its transaction, as well as the 
limitations / restrictions of the particular web service, we need to gather information about the web 
service. This information can be provided by each web service after its creation in some 
description language such as WSDL and/or can be provided manually by the SME which provides 
the web service. 

Furthermore SMEs may change their web service protocol, parameters, etc, regularly and 
therefore the possibility for updating this information is necessary too. As a result, we need to 
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provide two interfaces for keeping this information in the local agent as the component also 
requires an interface to the local repository (Figure 4-2 shows this component of our local agent). 

-component> 
a] 

Local Web services Informer 

Local Service Repository 

FIG. 4-2 LOCAL WEB SERVICES INFORMER 

4.1.1.2 LOCAL SERVICE REPOSITORY 

The Local Service Repository keeps information about each local web services in the platform 
(SME). This information is some description of each web service (for example it can be a SDL or 
WSDL document) and any extra information such as availability, last updates and etc (which may 
help other SMEs to have a clearer picture of that particular web service), can be included too. In 
the first place (as a component-based approach), the Local Service Repository should provide an 
interface to the Local Web Services Informer, e. g. for accessing the local web service description 

records. The next interface provided by the Local Service Repository gives access to the Local 

coordinator to use the web service descriptions for creating and running a transaction. Any 

updates, modifications or even the creation of web services should be promoted (at least for other 
partners with whom they are collaborating while running a transaction). That is the main reason 
the Local Service Repository requires an interface to another component, namely the Web Service 
Promoter, whose purpose is to promote the web services for other agents (Fig 4-3). 

Local Web services Informer 
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Web service 
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«component» 

Local Coordinator 

Local Service Repository 

FIG. 4-3 LOCAL SERVICE REPOSITORY 
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4.1.1.3 WEB SERVICE INFORMATION INVESTOR 

The structure of the local agent we considered in Figure 4.1 looks symmetric for both the local 
and the global view towards web services. Therefore the Web Service Information Investor, as a 
symmetric component for the Web Service Informer, does a similar job but this time for global 
web services. It provides two interfaces for creating a new web services record and updating the 
current web services. In addition, it requires an interface to the Global Service Repository (the 

symmetric component for Local Service repository (Fig 4-4)). 

Global Service Repository 

-component» 
Fal 

Web service Information Investor 

FIG. 4-4 WEB SERVICE INFORMATION INVESTOR 

4.1.1.4 GLOBAL WEB SERVICE REPOSITORY 

As with the Local Web service Repository, the Global service repository provides two 
interfaces: one for the local coordinator to access the web services record descriptions and the 

other one for the web services Investor to make changes on the Global Service Repository. The 
first interface plays a critical role for the local coordinator in making the decision about the 

protocol and the method for applying it on the transaction model. At the other side of the local 

agent is another SME which may change its web services descriptions regularly and even service 
availability can be an issue too. The second interface is important too, as updating the Global 
Service Repository is crucial. 

On the other hand, the Global Service Repository should be able to inform the Web service 
promoter, as soon as any changes happen for its records. That is why it requires an interface to the 
Web service Promoter for doing that. Fig 4-5 shows this component. 
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FIG. 4-5 GLOBAL SERVICE REPOSITORY 

4.1.1.5 WEB SERVICES PROMOTER 

The Web service Promoter is an important part of the local agent, as it reflects the situation of the 
web services of a local agent and the web services of any other connected agents to that particular 
agent. This can be done by using two interfaces which are provided for Local Service Repository 

and Global Service Repository respectively. Meanwhile, the Web service Promoter requires two 
interfaces from the other agent to inform the latest situation of its local web services and any other 
web services which are communicating with it (Figure 4-6). 

Local Service Reposdory 

<ccomponent > 
El 

Web service Promoter Global Service Repository 

FIG. 4-6 WEB SERVICE PROMOTER 

In fact two interfaces for this component should be provided by the Web service Information 
investor of the other agent. Figure 4-7 shows this connection between Local agent A and Local 

agent B. When any changes happen for some records of the local or the global service repository, 
they use the Web service Promoter's interfaces. The Web service Promoter in turn can use the 
interfaces provided by the Web service Information Investor in Local agent B, and the Web service 
Information Investor at agent B can update its Global Service Repository if needed (because in 

some cases it could be done already). As a result, the Global Service Repository of agent B will use 
the same interfaces for the Web service Promoter at agent B and this will be done for any 
connected agent to Local agent B. In this way, any changes on connected agents can be updated 
quickly. 
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FIG. 4-7 WEB SERVICE PROMOTER ROLE BETWEEN TWO DIFFERENT AGENTS 

4.1.1.6 LOCAL COORDINATOR 

The kernel of the local agent is the local coordinator. Other components provide information for 

a local coordinator (on the local machine or even for a remote agent). The local coordinator 
facilitates our transaction model to be applied for complicated business activities (long-running 
transactions) as well as simple transactions. Generally, the Local coordinator requires an interface 
from the Local Service Repository for gathering the information about local web services which 
enables it to provide a recoverable and consistent mechanism for deploying transactions. This 

normally can be handled by a transaction context in response to a transaction request. Later in this 

chapter we will cover this (4-2). 

For communicating with another agent (its local coordinator), the local coordinator as well as 
providing an interface, requires an interface from the remote agent too. The Local coordinator also 
requires an interface from the Global Service Repository, especially when it acts as an Initiator of 
the transaction. This makes it possible to create the transaction script based on the knowledge of 
the other agents' web services. In the end, it requires the interface from its local web services to 
able to invoke them (see Fig 4-8). 

Local Service Repository 

-component- 
Ell 

Local coordinator 

C-kkW Swviw Repository 

Local web services 
deployment 

FIG. 4-8 LOCAL COORDINATOR 
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4.1.2 TRANSACTIONS AND COORDINATION IN DIGITAL ECOSYSTEM 

Fig. 4-9 shows the conceptual structure of the local software agent of each participant. The 
`local coordinator' component supposes to coordinate the service requests to and from the local 
platform. In other words, it deploys services of the platform, coordinates the transactions and 
archives their information in a repository, which can be considered as the `local service 
repository'. In this way, all participants of a transaction will keep the archived information of the 
transaction. 
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FIG. 4-9 THE STRUCTURE OF PARTICIPANT'S SOFTWARE AGENT 

The `local web service informer' component updates any changes of local services in the `local 

service repository' and relevant participants can be notified of the changes through the `web 

service promoter'. The links to other participants will be kept in the `global service repository'. 
Note that at this stage, participants of different VPTNs are connected to each other (in (Razavi et 
al., 2007a) this is called the birth stage of the underlying network). In order to reduce the 

possibility of failures (discussed in further detail in chapter 5) and increase the network stability 
(chapter 7), the network connectivity, i. e. the number of links to other participants, may change. 
These changes will be done by two components; the `web service information investor', for 

updating new links to the global repository and the `web service promoter', for promoting new 
links to other participants (in (Razavi et al., 2007b), (Razavi et al., 2007a) this is referred to as the 

growth stage). 
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By using two repositories (Local and Global service repositories) the local agent tries to provide 
detailed information about local web services, but also general information about other web 
services. This enables the Local coordinator to invoke its local web services based on different 
protocols and on the other hand, by using general information about other (remote) web services, 
in some sort of XML description, such as WSDL or SDL, it can create the transaction context (will 
be discussed in the next section). The Local Service Repository should be updated by the Local 
Web Services Informer (any changes or updates can be effected on Local Service Repository). 
Meanwhile the Local Service Repository can promote its services to other agents through the Web 
Service Promoter. 

The Global Service Repository can be updated by the Web service Information Investor and at 
the same time, can promote these web services (which are stored in Global Service Repository) to 
the other agents (any changes will be promoted too, and in this way other agents can update their 
Global Service Repository). Fig 4-10 shows how communications between components of agents 
can improve the performance, can keep all agents' repositories updated and can provide enough 
information for the Local Coordinator of agents to run transactions. 
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FIG. 4-10 OVERVIEW OF MULTI-AGENT ENVIRONMENT4 

4.2 TRANSACTION CONTEXT 

A transaction can be modelled as a nested structure of sub-transactions (Moss, 1985). These can 
be composite based on data or order (each sub-transaction acts like a service in the service 
composition framework discussion (Chapter 3, section 1; 3.1.1) and more details can be found in 

The image can be found in (Razavi et at., 2007c) and the main agent diagram is in Fig 4-9 
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composition framework discussion (Chapter 3, section 1; 3.1.1) and more details can be found in 
(Yang et al., 2002)). In that way, the lowest part will be services in each participant (the local 

coordinator shown in Fig. 4-8, can deploy them through one of its interfaces). Fig 4-11 shows such 
a structure where we have five services, which have been combined by different service 
compositions. The notation symbols used here are based on (Haghjoo & Papazoglou, 1992) and 
`Seq' is for Sequential, 'Par' for Parallel and `Alt' for alternative service compositions. 

This is called the transaction context and it is used to clarify the semantics of a transaction. We 
have described this semantics in (Razavi et al., 2007b) and (Moschoyiannis et al., 2008), also 

advocated a methodology for optimising this, in terms of behavioural properties of the interactions 
involved, in our previous works (Moschoyiannis, Razavi, & Krause, 2008). Meanwhile the details 

of this context. including the xml presentation of this example (given in Fig. 4-2), the xml schema 
for creating the tree and other infrastructural schemas relevant to this paper can be downloaded 
from (Razavi, 2009). Furthermore, the Java parser for the model components is also available 
through the same link. 

FIG. 4-11 TRANSACTION TREE 

As we have seen in chapter 3, in terms of service composition, it is possible to have different 
levels of data-dependency between sub-transactions of a transaction - what is referred to as a 
long-running transaction (Moss, 1985), (Singh & Huhns, 2005). In terms of concurrent execution 
of sub-transactions of a transaction, this may cause data-inconsistency which is considered as a 
violation of one of the very first requirements of a transaction (recall chapter 2 in ACID, which has 
been described in section 1). This is the first challenge for a digital ecosystem, which will be 

addressed after explaining the transaction context by an example. The remaining two challenges, 
Recoverability and Durability will be addressed in chapter 5 and chapter 7, analysing the 
distributed pattern behaviour is explained in chapter 6. 

As the first step, we look at a transaction (to be precise, a long-running transaction) as a set of 

sub-transactions, which may use each other's objects (data-items): 
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T= {ST1, ST2, """, ST ) 

4.2.1 SIMPLE SEQUENTIAL SCENARIO 

We start with a simple scenario and explore the structure with more details; the transaction 
context has been defined, as a nested transaction model, which has been presented as a recursive 
complex type in the xml schema. Figure 4-12 shows a simple sequential travel scenario where a 
travel agent tries to book the flight with an airline (here BA) and book a hotel room. 

Seq 

BA-FI ghtbooking TraveIodge-HoteIbook, ng 

FIG. 4-12 SIMPLE SEQUENTIAL SCENARIO (TRANSACTION TREE) 

Fig 4-13 shows the transaction context xml of the transaction tree of the example in Fig 4-12. The 
transaction 0001, includes three sub-transactions, where the main sub-transaction (010) is a 
sequential service composition of sub-transaction 011 and sub-transaction 012. 
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FIG. 4-13 TRANSACTION CONTEXT FOR FIG 4-3 

The actual execution of the transaction relies on the order of execution and this should clarify the 
distributed coordination of the execution. Fig 4-14 shows the sequence diagram of the transaction 
tree presented in Fig 4-12. 
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FIG. 4-15 LOCAL COORDINATOR INTERFACES WITH OTHER PARTICIPANTS COORDINATORS5 

In Fig 4-16 the Travel Agency (Initiator), sends the transaction context to the other participants 
of transaction (BA and Travelodge), their response to the initiator is the main trigger of the 
transaction, and the initiator can send the deployment service of the first service through the first 

participant's coordinator which it is BA coordinator. The BA coordinator will deploy the flight 

service and will get the result (Fig 4-16). 

The image can be found in (Ra: avi et al. 2007c) and the main agent diagram is in Fig 4-9 
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FIG. 4-16 BA DEPLOYS THE FLIGHTBOOKING SERVICE 

After BA deployed the FlightBooking service, based on the transaction context (Fig 4-11), it 

sends the service deployment message (with results and proper specifications) to the next 

participants' coordinator (Travelodge in this example). Fig 4-14, shows this message exchange. 
When the Travelodge coordinator receives the deployment message, it will deploy the hotel 

booking service and will get the result (Fig. 4-17). 
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FIG. 4-17 TRAVELODGE DEPLOYS THE HOTELBOOKINGSERVICE 

4.2.2 THE CONTEXT SCHEMA 

The transaction context derives from an xml `transaction context schema'. Fig 4-18 shows the 

context schema. Each transaction has a unique id as assigned by the transaction initiator. The 

transaction context schema presents a transaction tree where the root contains the main 

sub-transaction. A sub-transaction can be a simple web-service, delegation type, composition or 
data-composition. 

JJ 
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FIG. 4-18 TRANSACTION CONTEXT SCHEMA 

For presenting a nested structure of sub-transactions, we use a recursive structure which relies on 
a complex type that is called 'SubTransactionType'. Fig 4-19 shows the structure of 
SubTransactionType. As has been shown in the figure, a SubTransactionType includes a choice 
between four different elements `Composition', `WebService', `DelegationComposition' and 
`DataComposition'. Composition type is `ServiceComposition' which clarifies different 

compositions between services and sub-transactions of a transaction. WebService type is 
`DE-WebService' that shows the structure of services in a digital ecosystem. The 
Del egationComposition type is `Delegation' which can include any standard transaction structure, 
without any full check (this can leave us open for designing a converter between our transaction 
models and other transaction models standard in SOA). DataComposition type is `data-oriented' 

and determines different types of data dependencies in a transaction. 

SubTransactionType has an attribute for identifying it inside the transaction, which means this id 
is unique inside of the transaction (each sub-transaction will have a unique identity between other 
sub-transactions of the same transaction). As Delegation and DE-WebService type should have a 
straightforward structure, we focus on different compositions and the possible complexity of data 
dependencies. 
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<xsd: eomplexType name-"SubTransactlonType"> 
<xsd: cboice> 

<xsd: element name-"Compo. ition" type-"tns: ServiceComposition"/> 

<xsd: element fame- V bService" type""tn.: DE-Webservice"/> 
<xsd: element name-DelegationComposition" type-"tns: Delegation"/> 
<xad: element eame. "DataComposition" type-"tns: Data-Oriented"/> 

</xsd: choice> 
<x. d: attribute name-"SubTraneactionId" 
type-"tns: 3ubTranaIdType" use-"required"/> 

</xsd: complexType> 

FIG. 4-19 SUB-TRANSACTION TYPE 

4.2.2.1 SERVICE COMPOSITION 

Fig 4-20 shows the structure of the `ServiceComposition' type. It includes two elements and an 
attribute. The `SubTransaction' element provides the recursive structure which can offer 
composition between any number of sub-transactions. The data dependency between 
sub-transactions is clarified by the `DataDependency' element and composition type has been 
shown by `Composition Types' element. 

<xed: eomple: Type name-ServiceComposltlon"> 
<xsd: sequence> 

<xad: element nmie""SubTransactlon" maxOccurs""unbounded" type-"tns: SubTransactionType" min0ecurs-": "/> 
<xsd: element name-DataDependeacles" type-"tns DataDepeadencyType- maxoccurs""unbounded" mta ccurs-"0"></xad: elueent> 

</xsd: sequence> 
<xsd: attribute name-CompositionType" 
type-tns. CompositiofTypes" uses"required"/> 

</xsd: complexType> 

FIG. 4-20 SERVICE COMPOSITION 

Fig 4-21 shows the structure of `Composition Types' which clarifies the possible composition 
types. There are three different composition types; `Sequential', `Parallel' and `Alternative'. This 

covers the requirements of order-based service composition in the service oriented computing 
paradigm (3.1.2). In Sequential composition, sub-transactions are deployed in a sequential order 
(one after the other). In Parallel composition, sub-transactions are executed concurrently. And in 
term of alternative composition, just one transaction between all sub-transactions will be executed 
and the rest will wait for the result. If that sub-transaction is not successful, the others may have a 
chance for execution. When there is data dependency between sub-transactions of these simple 
service compositions, the complexity of the transaction can increase dramatically. 
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<xsd: simpleType name-CompositionTypes"> 

<xad: restriction> 
<xsd: simpleType> 

<xad: restrlction xmina: x3d-"http: //vav. 93. org/2001/XMLScbema" base-"xad: atrinq"> 
<xsd: enumeration value-"Sequential"> 

<xad: annotation> 
<xsd: documentatlon>Sequential Service Composition</xsd: documentation> 

</xed: annotation> 
</xsd: enumeration> 
<xsd: enumeration value-"Parallel"> 

<xsd: annotations 

<xsd: documentation>Parellel Service Composition</xsd: documentation> 

</xsd: annotation> 
</xsd: enumeretion> 

<xed: enueeration value-Alternative"> 
<xsd: annotation> 

<xsd: dooýntetien>Altecnative Service Composition</xsd: docueentation> 

</xed: annotation> 
</xed: enumeration> 

</xsd: restriction> 
</xsd: simpleTppe> 

</xsd: restriction 
</xsd: simpleType> 

FIG. 4-21 TYPE OF COMPOSITION 

4.2.2.2 DATA ORIENTED COMPOSITION 

In terms of data dependency between sub-transactions, we have to deal with two different 
dependencies. Firstly, between sub-transactions of the same transaction and the second category is 

about passing data item(s) between sub-transactions of different transactions. When a 
sub-transaction shares a data-item with another sub-transaction of the same transaction; this 
dependency is called `Internal Dependency'. And if two sub-transactions from different 
transactions share a data-item, we call the dependency ̀External Dependency'. 

Fig 4-22 shows the structure of `Data-Oriented' Complex type, which clarifies dependencies 

between sub-transactions of a composition. The first element has been used for simple description 

of the dependency and the second element is a `DataDependencyType', which can be either an 
internal dependency between sub-transactions or an external dependency. 

In the case of internal dependency, for identifying the involved parties, the id of the originator 

and dependent sub-transactions is sufficient. But for external dependency, transactions' and 

sub-transactions' id of originator and dependent data items is needed. 
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y Date-Oriented 

SpeCtC3 ns J"- 

p Dependencies -'- 

InternalDependencv . OrigrAa -S TrstsIdType Dependent = StbTranildType InlrrnMDependý 

v ExternalDependencv 

Origmator TransactionJD = TransldType SubTransactlonID = SrbTrar6Idiyps ý'-ý''ýYmous 

Dependent TransactionID - TransldType SubTransactionlD = SubTranstdType 

FIG. 4-22 DATA ORIENTED AND DEPENDENCIES 

4.3 CONCURRENCY AND DATA INCONSISTENCY 

One of the most important challenges is keeping the data consistency between sub-transactions 
(ST) when there is data-dependency. As we have shown in the previous section (4.2.2), in a digital 

ecosystem (as a service-oriented architecture), sharing data-items between sub-transactions is 

possible and can be done in terms of data dependency. This will bring a huge complexity which 
may not be solvable by using conventional transactional models (recall chapter 3) and may need 
some dramatic changes and application of the conventional theorems in a different way and inside 

of a long-running transaction. In this section we focus on a theoretical explanation of the problem. 

4.3.1 ISOLATION; STATIC AND DYNAMIC ALLOCATION 

The classic view of isolation considers the transaction in terms of inputs and outputs (Bernstein 

et al., 1987), (Gray & Reuter, 1993). In our approach, this means that sub-transactions have read 
(input) and write (output) operations. Write operations are understood as operations that affect the 

state of resources. This means it appropriate to consider read operations as inputs for 

sub-transactions and write operations as their outputs. Then isolation between two 

sub-transactions can be expressed as: 

Oin(ij u0, )= for all i#j EQ. 1 

Let Ii be the set of objects read by sub-transaction STS (its inputs), and 0i be the set of objects 

written upon by the sub-transaction STS (its outputs). Based on EQ. 1, the set of sub-transactions 
{STS), for all i, when their outputs are disjoint from one another's inputs and outputs, they can run 
in parallel with no concurrency anomalies. Hence, by applying EQ. 1 any sub-transaction scheduler 

can work. 

Conventionally, for applying EQ. I each sub-transaction should declare its input-output set and 
then a scheduler is able to compare the new sub-transaction's need to all running sub-transactions 
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and in case of a conflict, the initiation of the new sub-transaction would be delayed until the 
conflicting sub-transactions complete. This approach is called `Static allocation'. It has been 
argued. however, that the computational complexity of analysing the inputs and outputs before 
running transactions can cause a bottleneck on scalability (Elmagarmid, 1992), (Gray & Reuter, 
1993). 

The 'Dvnalnlc allocation' scheme has been introduced as an alternative approach. Under the 
prism of dynamic allocations sub-transactions can be viewed as sequences of operations on 
deployed objects. A particular object is subject to one operation at a time. Each operation of a 
sub-transaction is either read (using the object as the input for service deployment/composition) or 
write (over-writing/updating the object as the output of a service deployment/composition). 

4.3.2 CONCURRENCY CHALLENGES 

Objects go through a sequence of versions as they are updated by write operations. In contrast, 
read operations do not change the object version. If a sub-transaction reads an object, the 
sub-transaction depends on that object version. If the sub-transaction writes an object, the resulting 
object version depends on that sub-transaction. When a sub-transaction aborts and goes through 
the undo logic, all its write operations must be undone. This results in the object getting a new 
version, thus the `undo' looks like an ordinary new update. 

<°, 1> 
read--*. write 

read ST, 
ST, read <0,1> 
ST2 write <0,2> 

ST., write 

-°, 2> 

write ST, write-* read 

<°, v ST, write <0,2> 
2> ST2 read <0 ST2 read , 

<0,2> 

, 1> 
write-* write 

0 

rýý; ý Ali n write ST, ST, write <0,2> 
STz write <0,3> 0,2> 

STz write 

O, 3> 

FIG. 4-23 DEPENDENCY GRAPH 

Theoretically, a dependency graph can be read as a time sequence. In Fig 4-23, an edge from 
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sub-transaction ST, to ST2 indicates that ST, accesses an object later accessed by ST2, and at least 
one of these access operations created a new version. In that sense, ST, ran before ST2. In a purely 
sequential execution of the transaction - running ST, to completion, and only then running ST2 to 
completion - all dependency arrows will point from ST, to ST2. However, as the execution of the 
transaction depends on the semantics (transaction context), there can be different composition 
types; in parallel execution, the dependency arrows can form an arbitrary graph. This brings about 
the issue of cyclic dependencies, which should be avoided as they can give rise to concurrency 
anomalies. 

The main conclusion of applying the transactional properties is that any dependency graph 
without cycles implies an isolated execution of the corresponding sub-transactions. So if the 
dependency graph does have cycles, then the sub-transactions were not executed in isolation. If the 
dependency graph has no cycles, then the sub-transactions can be topologically sorted to make an 
equivalent execution history in which each sub-transaction can be ran serially, one completing 
before the next began. This result in conventional transactions has been given in (Elmagarmid, 
1992), (Gray & Reuter, 1993) and implies that each sub-transaction ran in isolation, as if there was 
no concurrency. It also implies that there were no concurrency anomalies. 

It is not difficult to see that violation of the isolation property is related to the various 
dependency cycles. Similarly to conventional transactions, cyclic dependencies in long-running 
transactions are categorised into three generic forms: 

Lost updates: The first sub-transaction's write (deploying the data) is overwritten by the second 
sub-transaction which uses write based on the initial value of the object. 

In Fig 4-24, we show the conflict of these writes. The sub-transaction ST2 tries to update the 
object o, based on the previous version of the object (denoted by 1 in the figure), while 
sub-transaction ST, is updating the object based on the same object version (1). This means that 
ST2 may update the object without considering the sub-transaction ST1. One of the updates will be 

overwritten without being taken into account. This is referred to as lost update. 

1> 

<0,3> 
STi ST2 

0,2> 

<0,2> <0,3> 

ST2 read <0,1> 
ST, write <0,2> 
ST2 write <0,3> 

FIG. 4-24 LOST UPDATE 

Since ST, and ST2 are both using the object o, each write creates a dependency on the other 
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sub-transaction, denoted by the light-blue dashes in Figure 4-24 These two writes create a cycle of 
dependencies which results in an inconsistent state for the long-running transaction as a whole. 

Dirty read: A sub-transaction reads an object which has been written before by another 
sub-transaction which also writes to it after the read action. This means the first sub-transaction 
may find inconsistency in the object. This is equivalent with the Phantom Problem in DBMS 
(Date, 2003), (Bernstein et al., 1987) - in short, this refers to the case where a transaction (T) can 
read changes made to an object during an ongoing transaction, so the object can be changed further 
while the transaction (T) is in progress, and as a result the transaction (T) is vulnerable to be 
accessing inconsistent data. 

1> 

. <O2> 
ST2 write <0,2> 
ST, read <0,2> ST, 
ST2 write <0,3> 

. <° 

FIG. 4-25 DIRTY READ 

Figure 4-25 shows sub-transaction ST, accessing the object o, which is under ongoing changes 
by sub-transaction ST2. Therefore ST, may read inconsistent data from the object o, which in this 
example is the temporary version of the object (version 2), which is supposed to be finalised to 
version 3 only before sub-transaction ST2 commits (or aborts). In term of dependencies, when ST1 

reads the version 2 of object o it creates a dependency with ST2, denoted by the dashed line in 
Figure 4-25, but when ST2 writes on the object the opposite dependency is created, denoted by the 
solid line. As discussed earlier, it has been shown that this cycle of dependency leads the 
long-running transaction to an inconsistent state, meaning that in their life-cycle the two 
sub-transactions are working on two different values for the same object. 

Unrepeatable read: In this case, a sub-transaction reads an object twice, once before another 
sub-transaction's write action and for a second time after the write action (the second 
sub-transaction may write a new version and commit). This means that a sub-transaction changes 
the object (write) when another sub-transaction had ongoing access (read) to it and has not yet 
finalised its access. 

Digital Ecosystems -79- Amir reza Razavi 



Consistency of Distributed Transactions (VPTNs) 

Concurrency and Data Inconsistency 

1> 

<0,1>A 

ST1 
ST2 

<p, 2> . 

<0,2> 

sT, ST, read <0,1> 
srz ST2 write <0,2> 

0.2> ST, read <0,2> 

FIG. 4-26 UNREPEATABLE READ 

Figure 4-26 shows a simple scenario of unrepeatable read where ST, access to an object o and 
retrieves the version 1 of the object, but if there is a second attempt by ST, the result of read is 
different because during the execution of ST, the sub-transaction ST2 had access to the object 
(write) and changed it to a new version (here version 2). In terms of dependency, write on object o 
by ST2 after the first read of the object by ST, creates the read to write dependency, and the next 
read operation creates a write to read dependency between the same sub-transactions. This results 
in inconsistency on object o in the life-cycle of the two sub-transactions which belong to the same 
long-running transaction. 

These simple examples can be extended to more complicated scenarios when considering a few 
intermediate sub-transaction dependencies where the final dependency returns to the first 
sub-transaction. These cycles in dependency graphs are called wormholes (Gray & Reuter, 1993), 
(Elmagarmid, 1992). 

The isolation theorems are the classic method for showing the correctness of the transactional 

environment (Gray & Reuter, 1993), (Elmagarmid, 1992), (Moss, 1985). The main result of the 

study in isolation can be summarised as follows: a serial execution of transactions is always 
correct, when each transaction follows the commit or full rollback of the other one. Therefore, if 

we show a concurrent execution of transactions is equivalent to a serial execution, we may use the 
isolation theorem to deduce correctness of the transaction execution. 

The conventional isolation theorems use centralised synchronisation for applying the two-phase 
locking (2PL) scheme (Bernstein et al., 1987), (Date, 2003). 2PL and lock compatibility guaräntee 
the environment is free of any wormholes (Gray & Reuter, 1993). It also shows that an 
environment without wormholes is isolated, i. e. the transactions' execution is equivalent to a serial 
execution of them, and thus the system is consistent. 

Our approach advocates a fully distributed solution and hence for avoiding the centralised 

synchronisation we do not use 2PL. The implications of write operations are handled instead using 
dependency graphs. For any write operation in the semantics of a transaction (in service 
compositions with data dependency, section II, A, refer to PDD and SDD (J. Yang et al., 2002), 
(Singh & Huhns, 2005)) it the dependency graphs determines the access rights to the 

corresponding object. The necessary graphs can be propagated in VPTN. In short, by using the 
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dependency graphs we avoid the wormholes. 

Before introducing the dependency graphs, we give the definition of a wormhole, its theorem in 

our long-running transactional model and the proof for correctness of a wormhole-free 
long-running transaction. 

4.3.3 FORMAL DEFINITIONS 

For defining an execution of a long-running transaction we use the standard term history. A 
history of a long-running transaction is any sequence-preserving merge of the actions of a set of 
sub-transactions into a single sequence for the set of sub-transactions and is denoted by H= 
((st, a, o)i li = 1, ..., n). Each step of the history (st, a, o) is an action a by sub-transaction st on 
object o. A history for the set of sub-transactions {STj) is a sequence, each containing transaction 
STj as a subsequence and containing nothing else. 

In effect, a history lists the order in which actions were successfully completed. Serial histories 

are one-subtransaction-at-a-time histories. In serial histories as there is no concurrency, there is not 
any inconsistency and no problem with viewing inconsistent data by other transactions. 

As each action in the history changes the version of the object, we need to formalise the 
versioning definition before defining dependencies between sub-transactions in the history. The 

version of an object o at step k of a history is an integer and is denoted V(o, k). In the beginning, 

each object has version zero (V(o, 0)=0). At step k of history H, object o has a version equal to the 
number of writes of that object before this step. Formally, this means: 

V (o, k) = [(stj, apo j) EHli<k and aj= WRITE and oI = o} I. 

Note we will use capitalisation for operation from now on in order to make the notation more 
clear. 

Now we are able to define dependency in a history. Each history H for a set of sub-transactions 
{ST1} defines a threefold dependency relation DEP(H), defined as follows. 

Let STt and S72 be any two distinct sub-transactions, let o be any object, and let i, j be any two 

steps ofHwith i<j. Suppose step H[i] involves action al of ST1 on object o, step H[j] involves 

a2 of S72 on o, and suppose there is no write of o by any transaction between these steps (there is 

no (Sf, WRITE, o) in H [i + 1], ..., H[f -1]). Then DEP(H) is defined as: 

(ST, (o, V (o, j)), ST) E DEP(H) if 

a1 is a WRITE and a2 is a WRITE 

or 

a1 is a WRITE and a2 is a READ 
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or 

a1 is a READ and a2 is a WRITE. 

This classic definition captures all dependencies (WRITE- WRITE, WRITE-- READ and 
READ- WRITE). 

The dependency relation for a history of a long-running transaction defines a directed 
dependency graph. Sub-transactions are the nodes of the graph, and object versions label the 
edges. This means that if (ST, (o, j), ST) E DEP(H), then the graph has an edge from node ST to 
node ST' labelled by (o, j). It follows that two histories are equivalent, if they have the same 
dependency relation. 

4.4 WORMHOLE THEOREM FOR DE LONG-RUNNING TRANSACTIONS 

This theorem is a well-known theorem in isolation theorems. In what follows we describe how it 

can be adapted to determine wormhole-free transactions of the kind considered in our approach, 
i. e. long-running transactions. Hence, before using the classic theorem and its proof (Gray & 
Reuter, 1993) we introduce the equivalent concept and notation in long-running transactions, and 
then adapt the proof to long-running transaction. 

The dependencies in the history of a long-running transaction can define a time ordering of the 
sub-transactions. Conventionally this ordering is signified by «<H, (or simply by «< when 
the history is clear from context), and it is the transitive closure of «<. It is the smallest relation 
satisfying the equation ST «<H ST': 

if (ST, o, ST) E DEP[H] for some object version o, or 

(ST «<H ST" and (ST'; o, ST) E DEP[H] for some sub-transactions ST", and some object 
o). 

In terms of the dependency graph, we can say that ST «< ST'if there is a path in the 
dependency graph from sub-transaction ST to sub-transaction ST'. 

The «< ordering defines the set of all sub-transactions that run before or after ST; 

BEFORE(ST) = (ST'IST' «< ST) 

AFTER(ST) = [ST'IST «< ST') 
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If ST runs fully isolated (i. e., it is the only sub-transaction, or it read and write objects not 
accessed by any other sub-transactions), then its BEFORE and AFTER sets are empty, and it can 
be scheduled in any way. When a sub-transaction is both after and before another distinct 
sub-transaction (ST here), it is called wormhole transaction (ST' here): 

ST' E BEFORE(ST) n AFTER(ST) 

It is not hard to see that serial histories do not have wormholes - in a serial history, all the actions 
of one transaction precede the actions of another, i. e. the first cannot depend on the outputs of the 
second. 

Based on the wormhole theorem, a history is isolated if, and only if, it has no wormhole 
sub-transactions. On the other hand, the isolated histories have the unique property of having no 
wormholes. The theorem dictates that a history that is not isolated has at least one wormhole; 
ST «< ST' «< ST. 

In graphical terms we can say that if the dependency graph has a cycle in it, then the history is 

not equivalent to any serial history because some sub-transaction is both before and after another 
sub-transaction. Fig 4-24,4-25 and 4-26 demonstrate simple cases of such cycles. A wormhole in 

a particular history is a sub-transaction pair in which ST ran before ST' which ran before ST. A 
history is said to be isolated if it is equivalent to a serial history. 

4.4.1 ISOLATED HISTORY HAS NO WORMHOLE 

As the first part of the proof of this concept, the classical testimony of the wormhole theorem has 
been adopted to long-running transactions and the proof is an adaptation of that given by Gray in 
(Gray & Reuter, 1993). 

Theorem. An isolated history has no wormholes. 

This proof is done by contradiction. Suppose that in a long-running transaction, His an isolated 
history of the execution of the set of sub-transactions (STi Ii=1, ..., n). By definition, H is 

equivalent to some serial execution history of the same long-running transaction, denoted by SH 
(obviously for that same set of sub-transactions). Without loss of generality, assume that the 
sub-transactions are numbered so that SH = ST, II ST2 II ... II STn" This means SH is equivalent to 
starting with the execution of all actions in sub-transaction ST, (followed by) concatenated to the 
execution of all actions in sub-transaction ST2 (followed by) concatenated to ... execution of all 
actions in sub-transaction STn. 

Now suppose that H has a wormhole. We will show that it is impossible for it to be isolated. 
Having a wormhole means that there is some sequence of sub-transactions ST, ST, ST", ..., ST"' in 
H such that each is BEFORE the other (i. e., ST «<H ST), and the last is BEFORE the first (i. e., 
ST"' «<H ST). Let i be the minimum sub-transaction index such that STT is in this wormhole, 
and let STj be its predecessor in the wormhole (i. e., STj «<H STE). Since i is minimum, STj 

comes completely AFTER STi in the execution history SH, so that STj «<SH ST1 is impossible 
(recall that SHis a serial history). But since Hand SH are equivalent, «<H=«<SH; therefore, 
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STj «<SH STS is also impossible. This contradiction proves that if H is isolated, it has no 
wormholes, or, as we say, is a wormhole free history. 

4.4.2 WORMHOLE-FREE HISTORY IS AN ISOLATED HISTORY 

Now for the second part of the theorem we still need to show that a history without wormholes is 
isolated. In what follows we adapt the classic Wormhole theorem proof (Gray & Reuter, 1993) but 
for a long-running wormhole-free history. 

If a long-running transaction has n sub-transactions (the number of sub-transactions is n), then 
they appear in the history H of the long-running transaction. The induction hypothesis is that any 
n sub-transactions history H which is wormhole-free is isolated (this means H is equivalent to 

some serial history SH for that set of sub-transactions). 

If n<2, then any history of the long-running transaction is a serial history, since only zero or 
one sub-transaction appears in the history. In addition, we have already seen that any serial history 
is an isolated history. The basis of the induction, then, is trivially true. 

Suppose the induction hypothesis is true for n-1 sub-transactions, and consider some history 
H of n sub-transactions that has no wormholes. Pick any sub-transaction ST, then pick any other 
sub-transaction ST', such that ST «< ST', and continue this construction as long as possible, 
building the sequence Q= (ST, ST', ... 

). Either Q is infinite, or it is not. If Q is infinite, then some 
sub-transaction ST" must appear in it twice. This, in turn, implies ST" «< ST ", and hence ST" 
is a wormhole of H. But since H has no wormholes, Q cannot be infinite. The last transaction in Q, 

and let us call it ST*, has the property AFTER(T') since the sequence cannot be continued past 
ST'. 

Consider the history H' = ((sti, aj, oi) EHI stt * ST*). This says that H' is the history H with 
all the formal actions of transaction ST' removed. By the choice of ST*, 

DEP(H') = {(ST, (o, i), ST') E DEP(H)IST' * ST'}EQ. 2 

H' has no wormholes (since H has no wormholes, and DEP(H) ? DEP(H')). The induction 
hypothesis, then, applies to H. Hence, H' is isolated and has an equivalent serial history SH' _ 
STT II ST2 II ... 

IIST,, 
_1 

for some numbering of the other sub-transactions. 

The serial history SH = SH'IISTT = ST1IIST2II... IIST 
_1IIST' 

is equivalent to H. To prove this, 

we need to show that DEP(SH) = DEP(H). By construction, 

DEP(SH) = DEP(SH'IISTn) = DEP(SH)U{(ST', (o, i), ST*) E DEP(H)} EQ. 3 

Also, by definition, we have DEP(SH) = DEP(H). Using this to substitute equation EQ. 2 
into equation EQ. 3 gives: 
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DEP(SH) = 
{(ST, (0, i), ST) E DEP(H) IST' * ST"} 

U((ST', (o, i), ST*) E DEP(H)} 

= DEP(H) 

Thus, the identity DEP(SH) = DEP(H) is established, and the induction step is proven. 

The wormhole theorem is the basic result from which all the others follow. It essentially says 
"cycles are bad". Wormhole is just another name for cycle. The wormhole theorem can be stated in 
many different ways. One typical statement is called the Serializability Theorem: A history H is 
isolated (also called a serializable schedule or a consistent schedule) if, and only if, «s implies 
a partial order of the transactions. (Alternatively: if and only if it defines an acyclic graph, or 
implies a partially ordered set (Gray & Reuter, 1993)). This is the basis for our log system to create 
dependency graphs and avoid the bad cycle. 

4.5 INTERNAL DEPENDENCY GRAPH 

We have shown that by avoiding wormholes we can release results between sub-transactions of 
a long-running transaction. In doing so, we use the dependency graph to trace released data items 
(objects) between each participant. This graph is updated regularly and the cycle (wormhole) can 
be detected in each step. As this graph captures dependencies between sub-transactions of a 
transaction we call it Internal Dependency Graph (IDG). 

For clarifying the access-rights, inside of each participant we use a simple lock mechanism 
which is compatible with the conventional SIX Lock. The only difference with S/X Lock is the 
UN-Lock mechanism. Since participants are executing a sub-transaction and the result can only be 

visible in that particular long-running transaction, instead of unlocking the data we introduce an 
internal lock I-Lock which unlocks the data items in the context of a particular transaction. This 

means the data item will be available for other sub-transactions of the transaction, which are 
executing in other participants. As mentioned in the beginning of the section, the execution of a 
transaction will be done by the `local coordinator' of the participants. Fig 4-27 shows a simple 
example. 
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FIG. 4-27 LOCK AND IDG 

Fig. 4-27 shows part of a long-running transaction, where a parallel composition between 

service c1 and b1 has a data-dependency (recall the composition type PDD in Section II, A). We 
have assumed that service c1 is a service offered by participant P1 and service b1 is of participant 
P2. Based on the transaction context described in the beginning of this section (Section III, A), cl 
and bl can be deployed in the context of two sub-transactions (STci and STbi). When participant 
P1, deploys the service cl the service creates a data-item K as the output (notice that P1 uses 
X-Lock for writing/creating the object) and sub-transaction STcl commits and releases the result 
for other sub-transactions. To do this P1 uses I-Lock and pre-request for the object while the IDG 

can be created for the object. Our example illustrates the case where participant P2 needs the 
output of cl (STc1). It can use the result which has been released by I-Lock and if there is a 
dependency between the two sub-transactions present in the corresponding IDG (STcl «< 
STh 1), also shown in the figure, P2 uses S-Lock for reading K and proceeds to use it as the input in 

service b 1. Then P2 can again release it by using I-Lock on the data-item. Any subsequent usage of 
the data-item will be done by checking and updating the IDG. In this way, local coordinators can 
avoid any cycle (e. g., STcl «< SThi«<... «< STe1). 
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4.6 EXTERNAL DEPENDENCY GRAPH 

As the life-cycle of long-running transactions is long, occasionally, releasing results between 
these transactions before their termination (commit/rollback) can be valuable for a digital 
ecosystem (Moschoyiannis et al., 2008), (Razavi et al., 2006) in covering a range of B2B 
scenarios. However, these `partial results' can be costly - in case of abortion of the first 
long-running transaction we may face cascading abortion (Moschoyiannis et al., 2008), (Razavi et 
al., 2007d). This is why they should be used when it is necessary and there is possibility for 
forward recovery in case of abortion of the first transaction - this is further discussed in the next 
section. As the partial results are released before the actual commit of a long-running transaction, 
the mechanism for releasing them is called Conditional Commit. 

For conditional commit again we use a dependency graph in combination with the wormhole 
theorem. It is important to note that: 

" in the first place two long-running transactions had full invisibility towards each other, 
therefore the released data-item from the first long-transaction has to be read by the second 
transaction 

" as all the data-items are in the deployment level (recall discussion in chapter 3, section 1) 
they will be created by the transaction in the first place, that means the first operation on a 
data-item for any long-running transaction will be a write (in fact, it can take place in one of 
its sub-transactions but this is the primary assumption of SOA). 

Therefore in any conditional commit between transaction Ti and T2 there is a write - read 
dependency and as the first transaction is not fully committed, any write operation can create a 
wormhole (T1«<T2«<T1 in term of write - read -º write). That is why after releasing the 

partial result the data-item will be read-only and this cannot change until the first transaction 

commits. Note also that the second transaction cannot commit before the first one does and as a 
result it will have a commit dependency. 

For addressing this limitation, we define a C-Lock for the conditional commit of partial results 
and the dependency graph for releasing these data-items is called External Dependency Graph 
(EDG). In addition to capturing the dependencies on particular data-items released between 
transactions, this graph also captures the commit dependency. By using the EDG the second 
transaction can not commit unless it receives a confirmation from the first transaction that it has 

committed. Figure 4-28 shows an example of using conditional commit. 
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FIG. 4-28 EDG AND C-LOCK 

In Figure 4-28 transaction TI releases the partial result (data-item K) to transaction T2. As a 
result, the related External Dependency Graph (EDG) will be created by coordination of 
Participant Pl (one of Ti's participants which has done the last action on data-item K), and the 

graph is shared by P3 (one of T2's participants which is going to do the first read operation on 
data-item K). The important point is that the C-Lock has been used for data-item K and the lock 

will be inherited by any participants which are going to use the data-item. In this way, the 
data-item will remain `Locked' until the transaction, the one which has created the data-item 
(originator transaction; here is TI), commits. Meanwhile, in terms of abortion in the originator 
transaction, all dependent transactions should be rolled back. In the next section (subsection B and 
C) we describe the recovery procedure that needs to take place. 

4.7 XML REPRESENTATIONS AND SCHEMAS 

As the transaction context, relies on xml presentation (recall 4.2), for applying the theorem and 
the primary designing of logs (IDG and EDG), we use xml too. The rest of this chapter introduce 

the schema for such a presentation. These schemas can be downloaded from (Razavi, 2009). 
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4.7.1 INTERNAL DEPENDENCY GRAPH SCHEMA 

Based on the theorem, for avoiding wormholes the first necessity for internal dependency logs is 
the possibility for tracing dependencies. Fig 4-29 shows the root of internal dependency log, when 
the first element identifies the data-items which should be shared and the second element shows 
the chains of dependencies. 

<xsd element name" IntemalDependencyGraph" xmIns xsd='1 ttp I/www w3 org/2001MMLSchema"> 
<asd comple, T)pe> 

<xsd sequence> 
<xsd element name="Identity type="tns Object denfity'/> 
<xsd element name='InternaiDependenc " minOccurs=1" maxOccurs="1"t e= tns Dependency'/> 

<lxsd sequence> 3r r cependencyc apn pnthrn ependor yc, aph) 
</xsd complexType> mennry oeýecudennry 

<hsd element> Infe, napependenq Ckye, denry 

dennry Obre Uu t, ry 771. Deper-i y peperdercy 

FIG. 4-29 TRACING INTERNAL DEPENDENCY 

For identifying the data item, we use `Objectldentity' type (see Fig 4-30), which includes three 
elements; `Id' (a unique identity in scope of a transaction), `Creator' (to identify the 
sub-transaction which has created the data-item) and `DerivedFrom' (shows the relationship 
between the data-item and other data items in scope of a transaction). 

<xsd complexType name="Objectldentity' xmInsxsd="http /hvww w3 org/2001/XMLSchema"> 
<xsd sequence> 

<Sud element name="Id"type='xsd ant" P 
<xsd element name="Creator' type="tns SubTransaction" /> 
<xsd element narr e="DenvecFrom" type="t-is Object Identity" minOccurs="0"maxOccurs ="unbounded" /> 

</xsd sequence> , Ja try <hcsd complexTypo> i Id rnt 

I 

Creates StTra mach 
De-&rom ct ecUdenht 

J 

FIG. 4-30 OBJECT IDENTITY AND RELATED SCHEDULE HISTORIES 
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Fig 4-31 shows the structure of `Dependency' complex type. By using the recursive structure of 
this type, we can create the graph and trace the chains of dependencies for a data-item, in this way 
we can avoid any cycle in the graph. The dependency type has three elements; `Originator' 
(sub-transaction that share the data item), `SubjectedTo' (the modifications on the data-item) and 
`Accessedß ' (shows the next level of dependency on the object). 

<�sd complexType name="Dependency' xminsxsd="http//wwww3orgf2001/XMLSchema"> 
<xsd sequence> 

<xsd element name="Onginator" type='tnsSubTransaction"/> 
<x sd element name="DependecyType" /> 
<xsd element name="SubjectedTo" type='Ins ObjectType" /> 
<xsd element name ="Access edBy" tvoe="tns Dependency" minOccurs="0" max0ccurs="1"/> 

</xsd sequence> 
<Icsd complexType> 

-. tp-r. ]rC CbýettTrye 
a as *f fwrerA 1 

YW 

FIG. 4-31 RECURSIVE STRUCTURE AND CREATING IDG 

In fact the dependency on the object can grow by using `AccessedBy' element. In this way, not 

only the dependencies on the data-item is traceable and we can avoid wormhole, but also the 

chains of modifications are accessable (through `SubjectedTo' element which is an Object Type) 

and in term of failure the content of data item is recoverable step by step (failure and recovery is 

analysed in chapter 6). Fig 4-32 shows the structure `ObjectType'. 

<xsd complexType name= OhlectType'xnlns xsd='http // w3 orgf1001MMLSchema'> 
<xsd sequence' 

mod element name= Descnption" type="xsd string" mnOccurs='0' /> 
<xsd element narre - LatestConte#' /> 
<xsd element name- AffectedByCurrentContext" type='tns OblecUdentity' mnOccurs='0" maxOccurs='unbounded'/> 

<Ixsd sequence' 
<MSd complecType> 

I Descr ocr tpa ptan str ng 
LaýstCmtent 
nHecros yCurrentConte. Ob)audenbty 

Nmr ycvrentCOntest Cbjecddensty 

FIG. 4-32 RECORD OF CHANGES AND AFFECTING OTHER OBJECTS 
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Fig 4-33 shows the full structure of the internal dependency schema in Visual Studio NET 
(2003 version). In the implementation chapter, we use the relevant class diagram to show the 
structure of the parser and implemented module for it. 

FIG. 4-33 INTERNAL DEPENDENCY GRAPH STRUCTURE 

4.7.2 EXTERNAL DEPENDENCY GRAPH SCHEMA 

As with the Internal Dependency Graph Schema, the External Dependency graph should enable 
us to trace dependencies. But in this log mechanism, dependencies are between different 
transactions. Fig 4-35 shows the root of the external dependency log, when the first element 
identifies the originator of dependency, next element is a data-item which needs to be shared and 
the third element shows the dependencies to this data-item. 

-asd e'cment name='ErternaLDeaen den cyGra ph' rmins =sd='http Uv* ww7 orgr2001MMLSc he ma'> 
cosy complexType> 

exsdsequence- 
cxsd element name= 'Origin ator' type=Rns Transaction' /> 
<xsd element name='Ident ty' type='tns Objectldentity' 
<xsd element --e- E err n, al Cee endenc mnOccurs='1' maxOccurs='unbounded' type-'tns Dependency" f> 

Uxsd sequence' 
-txsd complexT, p. > c 

ýrrnaDependerKYGraph i(ErmrnaDperide^cYC+aph) 

Uxsd ele 
=t> drg^abý 

r1Ideet Ctbecudennry identity J 
exmrnaloepeneesr Dependency 

lr Kj iransatten dentiry Dby Udentry eerucependerey Dependency 

FIG. 4-34 TRACING EXTERNAL DEPENDENCY 

As we have seen in the theorem, an external dependency does not create the same read and write 
chains and the actual shared data-item will be read only. This means that the dependency will be 
between the originator of the data-item and other transactions which accessed to that data item. Fig 
4-36 shows `Dependency' complex type, when `SubjectedTo' shows the data item content and its 
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relationships with other data items, `AccessedBv' clarifies transactions which has accessed (read) 

the data-item. 

<xsd complexType name="Dependency' xmins xsd='http//wwww3 org/2001/XMLSchema"> 
<xsd sequence> 

<xsd element name="SubjectedTo" type='tns ObjectTgpe" 1> 
<xsd element name ='AccessedBy" type='YnsTransaction" mmOccurs="0" max0ccurs="unbounded" /> 

</xsd sequence> 
</xsd complexType> ý subject dTo obtectrype 

nccessedBy T-tm 

ub)ecMdTO Obp? ctTyp. 

1 

cessedBy Rransarý 

FIG. 4-35 CREATING EXTERNAL DEPENDENCY GRAPH 

The other element of the external dependency graph (Fig 4-35) is the identity of the data item. 
Because we are dealing with a distributed system, it is not feasible to consider a unique identity for 

each data item but we can identify the data item through the transaction which created it. Fig 4-37 

shows `Objectldentity' complex type, where the object identity has been clarified by three 

elements: an Id which will be unique for a transaction; the (transaction) creator of the data item; 

and the optional element is data item(s) which are related to this data item (if this data item is 
derived from them). 

<xsd complexType name= "Object Identdy"xmInsxsd="httpl/wwww3 org/2001/XMLSchema"> 
<xsd sequence> 

<xsd element name="Id"type='ksd nt" /> 
<xsd element name"Creator type="tns Transaction" /> 
<xsd element name-Denved=rom" type="tns ID btect Identity' min'3ccurs="0" maxOccurs="unbounded" /> 

</xsdsequence> 
ude<, nh <hcsdcomplexType> , id ýt 

t Creator Ta. t- 
DerIv rom Cep cudentey 

ea2v Tra, xtm Net vorn oh}ectldennty 

FIG. 4-36 IDENTIFYING OBJECT AND ITS AFFECTING OTHER OBJECTS 

The `Transaction' complex type is shown in Fig 4-36, which includes the transaction identity 

and its (involved) sub-transaction. The `Description' can provide extra information about the 
involvement of the transaction (which we have left for additional information about the parsing 

and possible compatibility issues). 
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<xsdcomplexTypename ='Transaction"xminsxsd=' ttp//wwww3org/200VXMLSchema"> 
<xsdsequence> 

<xsd element name="Transactionld" type="xsd integer" /> 
<xsd element name ="Descnption"type='xsdstrinq"/> 
<xsd element name="SubTransactionld" type=ksd integ&' /> 

</xsd sequence> LJW-t- 
<Ixsd corn plexType> r Tr r xtmid nmger 

Descriptor sung 
S,, OTrarisactioni] mager 

FiG. 4-37 IDENTIFYING EFFECTIVE TRANSACTIONS AND SUB-TRANSACTIONS IN EDG 

Fig 4-40 shows the full structure of the external dependency schema in Visual Studio NET 
(2003 version). In the implementation chapter, we use the relevant class diagram to show the 
structure of the parser and the implemented module for it. 

FIG. 4-38 EXTERNAL DEPENDENCY GRAPH STRUCTURE 
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5 FAILURES AND RECOVERABILITY 

Up to this point we have been concerned with correctness of our lock scheme used in 
long-running transactions for a Digital Ecosystem. Locks are typically used in transactional 
models for assurance of data consistency and integrity in a concurrent environment. The other 
important issue related to the self-organising ability of a Digital Ecosystem (Chang & West, 
2006a), is the self-recovery (or self-healing (Krause et al., 2008)) in terms of failure. 

Recovery Management is used to preserve atomicity in transaction models. Unfortunately, 
conventional lock mechanisms severely (and intentionally) limit concurrency in a transactional 
environment. Such lock mechanisms also limit recovery capabilities. The conventional recovery 
mechanism is managed by centralised servers or a third party coordinator in terms of a 
compensation mechanism (Cabrera, Copeland, Feingold, R. Freund, T. Freund, Joyce, et al., 
2005). Finally, existing recovery mechanisms themselves afford a considerable overhead to 
concurrency (for these issues recall chapter 2 and 3). This chapter provides an integrated solution 
for recovery management and concurrency control. These are considered as necessary features for 
the management of long-term transactions within "digital ecosystems" of small to medium 
enterprises (Razavi et al., 2007a). 

First we turn our attention to failures that may occur at both the transactional and the network 
levels, and then show how these can be addressed in recovering the system to a consistent state. By 
introducing the forward recovery mechanism, we try to reduce the cost of recovery and in the last 

section will focus on the relationship between connectivity and recoverability (this chapter is 

optimised version of our work at Communicating Process Architectures / CPA; (Razavi et al., 
2007d)). 

5.1 NETWORK FAILURE AND TRANSACTION FAILURES 

We have seen in Chapter 3, section 2 (3.2), that the network supporting a digital ecosystem can 
be conceptualised as the result of several business transactions where each transaction creates a 
private network, the so-called VPTN. 

Conceptually, we consider Du as all Digital Ecosystems, where Tu is all of the possible 
transactions in these Ecosystems and Pu all possible participants of the Ecosystem. Each 

transaction is the result of compositions of services from several participants. This can be 
described by the pair (t, Pt), where Pt is the set of participants which are involved in a transaction 

t. 

The universe of digital ecosystems comprises all of the possible transactions and their 
participants and can be defined as: 

Du ={(t, Pt)ItE TuAPtcPu} 

i 
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Network failure and transaction failures 

We define a Digital Ecosystem DE, as a subset of Du, where all of its participants, by engaging 
in its transactions, are connected. 

Each VPTN can be recognised by the transaction of its participants 

(t, Pt) 
where 

Pt = {Participants involved in Transaction t} 

In this paradigm, the maximum number of links which a participant may have is given by: 

IPtI-1 
In our transaction model, coordination of the underlying services is distributed and addresses 

both the order and the data dependencies, and hence the actual number of links is always less than 
this. It is given by: 

1S No of links fora node in (t, Pt) S IPtI -1 
EQ. 4 

But based on the definition of a digital ecosystem, VPTNs can have overlaps which make a 
connected network. Therefore, nodes can be involved in several VPTNs and as a result, they will 
have additional links through participants of different transactions. Thus, a participant RE Pt,, 
i=m.. n, which is involved in transactions: 

{tm, -, tn} 

will have links between: 
n 

m+nSNo of links of R<_ZIPtj-(m+n) 
i=m 

EQ. 5 

If R participates in different transactions it is through different participants. Studies show most 
business networks follow the power-law distribution degree [16], which means that a very small 
number of nodes are involved in the majority of the transactions (EQ 5), and even in each 
transaction they will have the maximum numbers of links (EQ. 4). 

Figure 13 shows a simple digital ecosystem, where `Participant 4' and `Participant 3', are 
involved in all of the VPTNs, and in each VPTN they get the majority of links. 
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FIG. 5-1 DIGITAL ECOSYSTEM OF CONNECTED VPTNS 

This has as a drawback that any problem in either `Participant 4' or `Participant 3' (or both) can 
cause serious disruptions in all VPTNs. Meanwhile a simple failure on `Participant 4' or 
`Participant 3' can fragment the network, which means that even if the involvement of 
`Participant 4' or `Participant 3' was restricted to alternative service composition, still the 
transactions may not be executed. Moreover, since `Participant 4' and `Participant 3' have 

obtained this important role based solely on their business transactions they may not be the best 

candidate for providing connectivity for the network. In other words, their emergence as a highly 

connected node has been driven by the volume of transactions they take part in and no other factor. 
This raises the question of whether it is desirable for a digital business ecosystem to rely on very 
few nodes in general. 

Before addressing such aspects, we show how each VPTN will react to a failure and how it can 
be recovered, how the cost of failure can be reduced, and how full abortion of the transaction can 
be avoided. Then, in section 5.4 we examine how the possibility for failures can be reduced all 
together. 
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5.2 RECOVERY PROCEDURE 

We start with the well-known `Rollback theorem' and build our recovery procedure around the 
concepts of degenerating the transactions and, of course, avoiding wormholes. 

Rollback Theorem: A transaction that unlocks an exclusive lock and then does a `Rollback' is 

not well formed and, is a potential wormhole, unless the transaction is degenerate. 

As the theorem is well known, we refer the interested reader to (Gray & Reuter, 1993) for the 
actual proof. The important point of the theorem is that we have to degenerate the transaction to 
effect rollback. For this purpose we can use the logs provided by the dependency graphs described 
in Section III and trace them. The only caveat is that the digital ecosystem network (of VPTNs) is 
distributed and therefore there is no centralised synchronisation. This entails that there is a risk for 

wormholes. 

5.2.1 TWO PHASE RECOVERY 

For avoiding wormholes, we have designed the recovery procedure in line with our consistency 
model (logs/locks) for concurrency control. Overall, Recovery Management in combination with 
the concurrency control procedure runs in two phases: 

1. Preparation phase: consists of sending a message (abort/restart) to the participants of all 
sub-transactions that puts them (and their data) into an isolated mode (preparing for 

recovery). This helps avoid any propagation of inconsistent data and possibility for 

creating wormhole during the actual rollback. 

2. Atomic Recovery Transaction routine: the recovery routine will be run as an atomic 
procedure that can rollback and cancel deployed services of sub-transactions by using 
correct data-items. 

Both phases in recovery management rely strongly on tracing the corresponding dependency 

graphs. This is where the necessary information is recorded for finding the changes on data-items, 
in different participants, and undoing them to bring the system back to a consistent state. Fig. 5-2 

shows a sample scenario that extends that presented earlier in Fig. 4-11 and can be downloaded 
from (Razavi, 2009). 
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FIG. 5-2 TRACING DEPENDENCY GRAPHS FOR RECOVERY 

According to Fig 5-12 a failure happens for Ti while participant P1 was trying to execute the 
transaction. The participant Pl has to stop any further progress on Ti and uses its EDG and IDG 
for informing about the failure on T1. As shown in the figure, participant P3 uses some results 
from PI for transaction T2, which means P3 has to start a similar procedure for transaction T2. 
This is the external dependency. Participant P3 now uses its IDG, which indicates that the 
participant P2 needs to be informed for stopping the potential execution of transaction TI (in this 
case, it will the sub-transaction STb 1 of transaction TI). In fact, it has to inform any dependent 
transaction or sub-transactions by checking its related graphs to cater for all internal dependencies. 
Now for stopping the transaction progress (isolation of Ti affection) upon failure, we need an 
internal structure inside of the local coordinator. 

5.2.2 1soi. n rI: n RECOVtRY 

We have seen that the first phase of Recovery Management tries to just isolate the damaged (or 
failed) part of the system by distributing a message that can isolate all worked data-items of 
transactions of sub-transactions. We have also seen that in the transaction model, the I-Lock and 
C-Lock are locks which release data-items which can be the most problematic part of transactions 
in recovery. Tracing the relevant IDG and EDG can reveal these vulnerable data-items. 

We introduce R-Lock as a fully isolated lock, which can be used just for rollback purposes. As 
part of tracing and stopping the progress of a failed transaction (and any affected transaction by the 
failed results of the transaction, in terms of partial results) we convert the data-items locks to 
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Forward Recovery, for reducing the recovery cost 

R-Lock. Figure 5-3 shows the complementary routines, which in combination with Figure 14 can 
show the first phase of the recovery. 

ý_ L. 1. ) IDG 

L: C, 6 ccord ^ntor Local coordinator 

Locking ns, de of -ý - 
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C-Lock---º R-Lock C-Lock 0 R-Lock 

Transfernny the R-Lock 
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Local coordinator Local coordinator 

--ý Locking inside of 
local coordinator 

I-Lock -F R-Lock I-Lock --ý R-Lock 
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Transferring the R-Lock 

and related IDG 

FIG. 5-3 R-LOCK AND ISOLATED RECOVERY 

After using R-Lock (Fig. 5-3) the second phase of the recovery routine can be seen in the context 
of conventional shadow-based recovery. As the local agent of each participant keeps transaction 
information, such as changes and updates (even the committed transactions will have been 

archived) in its local repository (recall 4.1.1.2 and Fig. 4-3 and Fig. 4-9), the previous content of 
data-items can be retrieved and the deployed services can be cancelled. It is important to notice 
that for doing this the participant does not need any external help of other participants or 
synchroniser, and theoretically the second phase can follow the first phase without waiting for 

confirmation from all other participants. 

However, a practical consideration has to do with what will happen if the failed transaction 

could not reach some of relevant participants. More generally, how can the possibility for full 

recovery be reduced, since it can be quite costly for the digital ecosystem? We attempt to address 
the second concern first. 

5.3 FORWARD RECOVERY, FOR REDUCING THE RECOVERY COST 

Full recovery can be costly in terms of resources, delays, business relations and so on. Further, 

we have seen that in a digital ecosystem dependencies may also exist across transactions so the 

effect of a recovered transaction may be magnified. For this reason it is desirable to avoid full 

recovery wherever possible. One way to do this is to design transactions with a number of 

alternative scenarios of execution. For doing so, we introduce `Forward Recovery' which is a 

mechanism for avoiding full recovery (Razavi et al., 2007d). The aim is during recovery failure to 
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explore whether there is any possibility for successfully terminating the transaction following a 
different execution path to the one originally deployed, instead of rollback of the whole execution 
tree. 

Forward recovery can be an option when there are alternative service compositions in the 
transaction (recall 3.1.2). By failing one sub-transaction of an alternative coordinator, that specific 
sub-transaction should be fully rolled back (but until the point of an alternative service 
composition) and then the alternative scenario can be tried by the participant's coordinator to 

commit the transaction with its other sub-transaction(s). 

Fig 5-4 shows an example in which transaction TI is using an alternative service composition 
(Alt), where there are two alternative paths; one following sub-transaction STI and one following 
ST2. So far, we used the bottom part of STI in Figure 11 and 12 to illustrate the release of a 
data-item inside of the transaction, and in Fig 5-3 and 5-4 for demonstrating the recovery 
procedure. If we assume STI is attempted to execute, if a failure happens (for example in Fig 5-3 

the relevant participant could not fulfil the execution of STcl), still we have the alternative path 

which is following sub-transaction ST2 (in the left of the alternative service composition type-Alt). 

For doing so, STI must rollback. As was shown in the Fig 5-3 and 5-4, by using IDG and EDG, 

the internal and partial result should be traced and rolled back. After this, instead of continuing the 
recovery procedure and aborting the Transaction Ti completely, the second path of alternative 
service composition can be executed (ST2). 

5.4 NETWORK CONNECTIVITY AND TRANSACTIONS 

As the digital ecosystem is a distributed environment, where each participant can work in a 
loosely-coupled manner, the probability for failure in the network is very high. These failures are 
directly related to network connectivity - when the network connectivity is low, the probability for 
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disconnection will be increased. We provide two mechanisms in our approach for addressing this 
challenging problem: 

" Reducing the probability for network failure 

" Providing the automatic procedure, in cases of unexpected network failures 

In the beginning of this section we have shown a simple comparison for the best and worst case 
of connectivity for each participant. For reducing the probability for network failure, we try to 
provide a growth model to increase the connectivity. This is discussed in further detail in Section 
V and VI. Here, we introduce a mechanism for unexpected network failures. 

When a participant involved in a transaction does not receive an expected response from another 
participant, it should be able to make decision despite that response. As the first assumption, each 
participant, in terms of the transaction context, considers an `Expected Response Time'. In each 
step of the long-running transaction execution, if a participant has not received any response 
during this time period, it automatically freezes the data-items related to the transaction. In this 
way, until the status of the transaction is clarified, the unnecessary execution of it will be 

suspended, the network resources will be saved and if there is failure, inconsistent data-items will 
not be spread in the VPTN and possibly the whole ecosystem. 

For this temporary freezing of the data-items we introduce T-Lock (`Time-out Lock'). The 
T-Lock is rather like giving a time-out before rollback of a data item. The access to the data item 

will be limited until a deadline (time-out). If during this deadline the other participant responds, the 

original lock will be restored, i. e. T-Lock will be converted to the original lock. Otherwise, after 
the time-out elapses the recovery procedure will be started. The `Expected Response Time' for 

participants also depends on the network parameters and can be fixed statically based on the digital 

ecosystem's network characteristics. The `Time-out' of the T-Lock is related to the transaction 

expected life time and it can be varied according to the transaction context. 
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6 BEHAVIOUR OF COORDINATION 

As discussed in the chapter 3, current protocols in transaction frameworks targeted at supporting 
business activities between networked organizations provide a specific pattern of behaviour, 
which not only violates the primary concept of SOC and Digital Ecosystems but also does not 
provide a truly distributed coordination model. 

In this chapter, a formal foundation is provided for analysing the behaviour of the proposed 
model of long-running transactions and the distributed orchestration of the underlying service 
compositions. The formal semantics of behaviour of long-running transactions is aimed at 
describing the behavioural patterns services should follow in order to guarantee successful 
commitment or compensation within the transaction flow manager. 

The proposed formal model for transactions, is based on Moschoyiannis, work and has been 
published at (Moschoyiannis, Razavi, & Krause, 2007), (Moschoyiannis et al., 2008) and 
(Moschoyiannis et al., 2008). It uses ideas taken from a variety of theories for describing the 
behaviour of communicating systems, from Shields' vector languages (Shields, 1979), (Shields, 
1985), (Shields, 1997) to Mazurkiewicz traces (Mazurkiewicz, 1977), (Mazurkiewicz, 1988) to 
event structures (Nielsen, Plotkin, & Winskel, 1981) to process algebras (Milner, 1980), (Hoare, 
1985). It draws upon a vector language-based description of behaviour, which allows monitoring 
or recording a number of communicating entities at the same time (groups of subtransactions), and 
has most recently been applied to modelling interactions between components of a (distributed) 
system in (Moschoyiannis, Shields, & Krause, 2005) and Moschoyiannis has explored the 
mathematic properties of the vector model (Moschoyiannis, 2005), (Moschoyiannis, 2004). 

As the result of collaborative work with Moschoyiannis, this theory is adopted here to underpin 
the local coordination required for long-running multi-service transactions in a digital ecosystem 
(Razavi et al., 2007c), (Razavi et al., 2007b), (Razavi, Malone, Moschoyiannis, Jennings, & 
Krause, 2007), (Moschoyiannis et al., 2007), (Moschoyiannis et al., 2008) and (Moschoyiannis et 
al., 2008). This chapter is focused on usage of the model for analysis of the pattern behaviour of 
transactional model (Appendix 1, provides the details of the formal model). 

6.1 DIGITAL ECOSYSTEMS: DISTRIBUTED AGENTS 

As the kernel of each platform, we have considered a software agent which is responsible for 
coordinating the participant's business activities (transactions). As we have seen this local agent 
also archives the information related to these activities (corresponding VPTNs) and improves the 
general connectivity of the network (its digital ecosystem), and in doing so it contributes to the 
so-called network growth (Razavi et al., 2007a). This is an important aspect when it comes to 
sustainability, especially in a fully distributed solution. This leads up to the main definition of a 
digital ecosystem (recall chapter 3) which is represented in Fig 6-1, highlighting the fact that there 
should be no centralized point of command and control in a digital ecosystem. 
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FIG. 6-1 LOCAL AGENT AND COORDINATION6 

Fig. 6-1 shows the structure of the local software agent of each participant. The `local 

coordinator' component coordinates the service requests to and from the local platform. In other 
words, it deploys services of the platform, coordinates the transactions and archives their 
information in the `local service repository'. In this way, all participants of a transaction will keep 

the archived information of the transaction. The `local web service informer' component updates 
any changes of local services in the `local service repository' and relevant participants can be 

notified of the changes through the `web service promoter'. The links to other participants will be 
kept in the `global service repository'. Note that at this stage, participants of different VPTNs are 
connected to each other [in (Razavi et al., 2007a) this is called the birth stage of the underlying 
network]. For reducing the possibility of failures and increasing the network stability (as will be 

explained at chapter 7), the network connectivity, i. e. the number of links to other participants, 
may change. These changes will be done by two components; the `web service information 
investor', for updating new links to the global repository and the `web service promoter', for 

promoting new links to other participants [in (Razavi et al., 2007a) this is referred to as the growth 
stage]. Fig 6-2 shows a diagram, where four agents are communicating; Agent A and B are 
Participating in a Transaction (recall chapter 4) and Agent D and C are involved in the network 
growth for increasing the connectivity (will be explain chapter 7). 

6 The image can be found in (Razavi et al., 2007c) and the main agent diagram is in Fig 4-9 
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FIG. 6-2 LOCAL AGENTS COMMUNICATION DIAGRAM? 

6.2 TRANSACTION CONTEXT 

In previous chapters (Razavi et al., 2007c) we have described the use of a tree structure to 
represent transactions that involve the execution of services. This allows us to capture nested 
sub-transactions, the internal actions that need to take place in the course of execution of the 
transaction. To respect the loose-coupling of the underlying services, each participant provides its 

services and requests services of others through a coordinator component. Its purpose is to manage 
the communication between the different participants' platforms and the deployment of the 
corresponding services. 

Drawing upon the latest work on the SOC computing paradigm (Papazoglou et al., 2006), we 
have considered different composition types which allow for various modes of service interaction 
in our model (recall chapter 3 and consistency model has been analysed in chapter 4). Fig. 6-3 

shows a transaction tree with five basic services - al, a2 and a3 of a local platform with coordinator 
component CC 1, b1 of CC2, and cl of CC3 - whose order of execution is determined by the 

corresponding composition types [transaction context symbols are based on the notation that first 

appeared in (Haghjoo & Papazoglou, 1992)]. 

The image can be found in (Razavi et al., 2007c) and the main agent diagram is in Fig 4-9 
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We note that the example transaction given in Fig. 6-3 is the same example which can be found 
in previous chapters [recall chapter 4&5, similarly this is explored in (Moschoyiannis et al., 
2008)]. Primarily we have simplified the communications between coordinators and the 
abstraction of service deployment without considering acknowledgement or logs. This will be 

extended in this chapter to illustrate the key ideas as well as to show how these build on previous 
work in (Moschoyiannis et al., 2008), (Moschoyiannis et al., 2008). 

A transaction tree determines the Participants and the respective services required for 

performing a business activity. In this sense, it sets the context of the conversation to follow and is 
issued by the Initiator of the transaction. In previous chapters [and (Razavi, 2009)] we have 

provided a schema for describing transaction contexts. The derived XML description of the 

transaction tree of our example (given in Fig. 6-3) can be found and downloaded following 

(Razavi & Moschoyiannis, 2008). The service interactions implied by a transaction tree can be 

modelled using a UML interaction diagram. The sequence diagram in Fig. 6-3 shows the three 

coordinator components of the participants in the transaction and the required service invocations 

between them. It can be seen that the behavioural scenarios, as given by the corresponding 

The VP1L then a, symbolic and can be checked frone chapter 4 (section 4.2) or downloaded from 

http: //-personal cs surrey. ac. uk/personal/pg/A. Razayi/ppna/ 
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sequence diagram, determine the order of execution of the participating components' services. 

As mentioned earlier, in a transactional setting we also need to deal with faults that may arise at 
any stage during execution. These may be due to some service being unavailable (service failure or 
traffic bottleneck on the local platform) or some participant being temporarily disconnected (recall 

chapter 5) due to network failure. We have seen that a long-running transaction should either 
complete successfully or not take place at all. So as it has been shown, in the event of a failure, 

previous parts of the transaction that have already taken place should be 'undone' or be 

compensated for. We will analyse this behaviour, after explaining the execution script of the 
transaction. 

6.3 MODELLING THE SERVICE DEPLOYMENT OF A TRANSACTION IN A 
DISTRIBUTED COORDINATION ORCHESTRATION 

Based on definition, a distributed system is a collection of individual computing devices that can 
communicate with each other (Attiya & Welch, 2004). Conventionally in a distributed 
environment, each processor has its own semi-independent agenda, but for various reasons, 
including sharing of resources, availability, and fault tolerance, processors need to coordinate their 
actions. This may cause some algorithmic complexity which has been considered as the main 
difference with the parallel computing (Kshemkalyani & Singhal, 2008) and (Attiya & Welch, 
2004). 

Digital Ecosystems can be considered as a paradigm for distributing computing, as it promises 
on one side loose coupling between processors/participants (Chang & West, 2006b) which 
warranties the local autonomy (Razavi, Moschoyiannis, & Krause, 2009), and in the other side 
sustainability and balance (Nachira et al., 2007). (Boley & Chang, 2007) offers the usability of the 
system in the real world. Generally three challenges have been discussed for distributed systems: 
`Asynchrony', ̀ Limited local knowledge' and ̀ Failures' (Tanenbaum & Steen, 2008), (Attiya & 
Welch, 2004). 

`Asynchrony'; The absolute and even relative times at which events take place cannot always be 
known precisely. This is the main reason for the current complexity in our interaction model 
(chapter 4). In terms of consistency of a transaction, the only measurement for success of a 
transaction is based on modelling the chains of events and sharing of resources based on access 
rights in a canonical order and avoidance of behaviours which violate this (recall 4.3 and 4.4). In 

contrast with conventional models we could not consider a global synchroniser (which needs 
centralised synchronisation). 

In terms of `Limited local knowledge', as each computing entity can only be aware of 
information that is acquires, it has only a local view of the global situation. For obtaining this 

concept and facilitating the balance of the environment, we have considered two repositories 
(chapter 3) and designed a mechanism for link replication to increase the sustainability (chapter 8 

and chapter 5). For solving unexpected `Failures' in a digital ecosystem, we have designed a 
distributed recovery model (chapter 5), which even tries to cover unpredicted failures (recall 5.4) 

Digital Ecosystems -106- Amir reza Razavi 



Behaviour of Coordination 

Modelling the service deployment of a transaction in a distributed coordination orchestration 

and provides a mechanism for reducing the cost of recovery (recall 5.3). 

In the rest of this chapter, we provide an analysis of the patterns of behaviour of such a model 
and show its behaviours in different situations; from general service deployment, to reaction to 
failures and forward recovery. 

6.3.1 DISTRIBUTED EVENT MODELLING 

As the distributed system is asynchronous, there is no fixed upper bound on how long it takes for 
a message to be delivered or how much time elapses between successive steps of a processor 
(Tanenbaum & Steen, 2008), (Attiya & Welch, 2004), (Kshemkalyani & Singhal, 2008). As a 
result of this assumption, the modelling of the distributed algorithm should be independent of any 
particular timing parameter. 

Formally a system (or algorithm) consists of n processors po, """, pn-1; i is the index of processor 
pi. Each processor p; is modelled as a state machine with state set Q;. The processor is equivalent to 
a digital ecosystem participant and identified with a particular node in the topology graph. 
Furthermore each processor p; can send message or receive message by doing so it can affect or 
being effected by other processors. Based on this a configuration has been defined; a configuration 
is a vector C= (qo, 

..., qn_1) where q1 is a state of p1. The states of processor can change this can 
be effect the transmission channel (send messages to other processor) or being affected by the 
transmission channel (receiving messages from other processor). An initial configuration is a 
vector (qo,..., qn_1) such that where qi is an initial state of pi; which means each processor is in 

an initial state. Occurrences in a system are modelled as events, when events can be computational 
event (representing a computational step of processor pi, when the transitional function is applied 
to its current accessible state), or delivery event (representing a delivery message from processor 
p1 to processor pj). 

A well-known concept in such modelling is that of `execution segment' (Attiya & Welch, 2004); 

an execution segment a of a asynchronous message-passing system is a sequence of the following 
form: 

COP 
19 

Clo 
2' C2,3p 

".. 

Where each Ck is a configuration and each k is an event. If a is finite then it must end in a 
configuration. An execution is an execution segment CO, 1, C1, Z, C21 3,11 *t where Co is an initial 

configuration. A schedule (or history) has been associated to each execution which is the sequence 
of events in the execution, that is, 11 Z, 3, .... Conceptually the ideal situation is to have an 
admissible schedule; that is the result of an admissible execution. The admissible execution 
happens when none of the processors fail, they have an infinite number of computational events 
and the transmission channel does not fail to send any messages. 

As a Digital Ecosystem is a service oriented environment and insist on loosely coupled binding 
between participants, the computational events are deployment of services and for reaching an 
admissible execution, we have focused on our log-based mechanism (recall chapter 4). For 
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detecting, avoiding and recovering failures without being involved in an infinite computational 
model, the lock mechanism has been combined with the consistency model to design a recovery 
mechanism (recall chapter 5). For analysing such environment, we use a customised subset of the 
conventional distributed event modelling, introduced by Moschoyiannis (Moschoyiannis et al., 
2008). 

6.3.2 TRANSACTION SCRIPT 

In Appendix 1, we describe a formal language for pattern behaviour of our long-running 
transactions that allows to determine the patterns of interaction the underlying service invocations 

should follow in order to guarantee a successful outcome. 

A transaction T is associated with a set of coordinator components C and a set of actions M. Our 
interest is in the observable events on the coordinator components and thus actions can be 

understood as service invocations between the participating components, as shown for example in 
the scenario of Fig. 6-4. Hence, each component in C is associated with a set of actions which 
correspond to deploying (its own) or requesting (others) services. We denote this set by p (i), for 

each iEC, where p: C-)«(M) and require that Up (i) c: M. 
SEC 

As can be seen in Fig. 6-3, a transaction has a number of activation or access points, namely the 
interfaces of the coordinator components participating in the interaction. Thus, instead of 
modelling the behaviour of a transaction by a sequential process, which would generate a trace of a 
single access point, we consider a number of such sequences, one for each component, at the same 
time. This draws upon Shields' vector languages (Shields, 1997) and leads to the definition of the 
so-called transaction vectors. 

Transaction vectors. Let T be a transaction. We define VT to be the set of all functions v_: C--* 
M* such that v(i) ep (i)*. 

By u (i)* we denote the set of finite sequences over p (i). Mathematically, the set VT is the 

Cartesian product of the sets p (i)*, for each i. Effectively, transaction vectors are n-tuples of 

sequences where each coordinate corresponds to a coordinator component in the transaction 
(hence, n is the number of leaves) and contains a finite sequence of actions that have occurred on 
(coordinator of) that component. When an action occurs in the transaction, that is to say when a 
service is called on a coordinator component, it appears on a new transaction vector and at the 

appropriate coordinate. 
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FIG. 6-4 TRANSACTION SCRIPT9 

The idea is that the particular subset of transaction vectors, for a given transaction, expresses the 
ordering constraints necessary in the corresponding orchestration of the underlying services. For 
instance, in the transaction of Fig. 6-4, following action al, there is a choice between bl on the 
coordinator component CC2 and a2 on CC 1. Whenever bI happens, it is followed by a3 on 
component CC 1 whereas a2 is followed by cl and bl which happen concurrently on CO and 
CC2, respectively. Notice that the order structure in case of concurrent actions (as in bl and cl 
here) exhibits the characteristic structure of a finite lattice. This means that after the behaviour 
described by vector u= (ala2, A, A) both independent action vectors al and CO. take place, 
resulting in the behaviour described by vector v= (ala2, b1, cl), which is their least upper bound. 

Column vectors. Let T be a transaction and VT its set of transaction vectors. We define 

AT =La EVT \{T}: I ELF a(l)IS1} 

where IxI denotes the length of sequence x. We refer to elements ofAT as column vectors. 

The XML schema is symbolic and can be checked from Fig 6-5 or downloaded from 

http: //personal. cs. surrey. ac. uk/personal/pg/A. Razavi/ppna/ 
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Thus, column vectors are themselves transaction vectors, but have the additional constraint that 
each of their coordinates is either the empty sequence or a single action. For example, the vector 
(a], A, A) represents the occurrence of an action a] on the service associated with the first 
coordinate. 

We have seen that transaction vectors are essentially tuples of sequences. This can be exploited 
in defining operations on vectors in terms of well-known operations on sequences. Let us establish 
some notation. If x and z are sequences, we write x. z for the concatenation of x and z. As is well 
known this operation on sequences is associative with identity A, where A denotes the empty 
sequence. We also have a partial order on sequences given by xSz if and only if there exists a 
sequence y such that x. y = z, and this partial order has a bottom element A. 

We may now lift these well-known operations on sequences onto transaction vectors. This is 
done formally in the following definition. 

Operations on vectors. Let u, v c= VT be transaction vectors, we define 

" u. v to be the unique vector w such that w(l) = u(1). _v(1), 
for each 1 EL (concatenation) 

" y:! 9 v iff u(1) 5 v(1), for each 1EL (prefix ordering) 

" glb(u, v) to be the vector w such that w(l)=min(u(1), _v(l)), 
for each 1EL 

" lub(uu, v) (if it exists) to be the vector w such that w(1)=max(y(1), _v(l)), 
for each 1EL 

" if uSy, then we define v/u to be the unique element zE VT such that u. z =v 
(right-cancellation) 

Thus, the operation of concatenation on vectors is defined in terms of the concatenation of 
sequences appearing on their respective coordinates. For example, 

(a1, b,, A)"(a3, A, A) = (a, aA, A) 

The ordering amongst vectors is defined in terms of the usual prefix ordering operation on 
sequences appearing on their coordinates. For example, (al, b2, A) S (al a3, b2, A) since al S 

a1a3 and b2 <_ b2 and A<_ A. In other words, the second vector `wins' on the first coordinate 
(since it has a sequence of greater length in this coordinate) while the two vectors draw on all other 
coordinates. It is not hard to see that some vectors will be incomparable. It turns out that such 
vectors describe either parallel or alternative behaviours of the transaction in question, and this 

will be further discussed in the following sections. 

The operations g1bO and lub( give the greatest lower bound and the least upper bound, 

respectively of u, v c= VT, in the usual sense of lattices and domain theory (Davey & Priestley, 
1990). As we will see, these operations are central to the treatment of concurrency in our approach. 

The treatment of concurrency within our formal model of transactions thus takes up on 
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non-interleaving models of concurrency, which introduce additional structure into formal 
languages in order to describe non-sequential behaviour. The additional structure is given in terms 
of an independence relation over action symbols, which describes potential concurrency. 

In terms of our notation it is appropriate to say that the independence relation on the set of 
actions A of a transaction equates all, and only those, sequences over U (n, for each 1EL, which 
differ in the order of adjacent and independent actions. Note that when the independence relation is 

empty in the sets p (1), for each 1EL, no actions can be concurrent in the corresponding sequences 

p (1)ý, for each 1EL, which amounts to our understanding of sequential transaction processing 

systems. 

Drawing upon the extension of the independence relation i to behaviour vectors in (Shields, 
1997), the notion of independence between actions in Mazurkiewicz traces can be readily 
interpreted into transaction vectors in our approach. 

Independence. For u, vE Vc VT, we define 

u ind v< V1 EL: u(1) > A=> v(1) =A 

This definition says that two transaction vectors are independent if the behaviours they describe 

concern distinct services (correspond to activation on different leaves of the corresponding 
transaction tree). This means that the behaviours described by u and v may occur independently. 

The additional structure provided by the notion of independence allows to go round the lozenge 

once and always end up with the behaviour in which both actions happened concurrently (this can 
be seen in (Moschoyiannis et al., 2008). As we will see in the next section, this also applies to 
going backwards and allows compensating concurrently for concurrent forward actions. 

The order structure of the transaction language determines the pattern the underlying service 
interactions between the coordinator components in the transaction should follow. Starting with 
the empty vector, and following the pattern of Fig. 6-4, each subsequent action (or concurrent 

actions) take place in going forward until the transaction as a whole terminates successfully. In 

(Moschoyiannis et al., 2008), we have provided a schema for deriving the XML description of the 

order structure of a transaction language (Fig 6-5). These so-called transaction scripts describe the 
interactions between different coordinator components (recall Fig. 6-2) and determine the order in 

which the underlying services need to be deployed. Fig. 6-4 shows the transaction script generated 
from the vector-based behavioural description of the transaction in our approach and its XML 

schema has been shown in Fig 6-5. 
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<? xs. 1 version"11.0" encoding-"OTF-8"7> 

Document Transaction Script xml Schema 3 coordinators vector 
Created on Of March 2009,16: 07 
Author A Pazavt 

Description: Prepared for PhD Thesis 

- <xsd: schems xmins: xsd-"bttp: //avv. w3. org/2001/XNLSchema" 

targetNamespace-"http: //xml. netbeans. org/schema/FormaITransactionlodell" 

xmins: tns-"http: //xml. netbeans. org/schema/FormaiTransactionNodell- 

elementFormDeSaulta"iua1itied"> 

- <xsd: complexType name. ^Vectora"> 

- <xsd: sequenee> 
<xsd: element name-"TransactionVector" type_"tns: TransactionVectorType"/> 

<xsd: element name-FollovedBy" einOceura-"O" type-"tns: CompositionType"/> 

</xsd: sequenee> 
</xad: complexType> 
<xsd: eomplexType name. "CompoaitionType"> 

<xsd: choice> 

<xad: element name-"SequentialTransaction" type- tns: SequentialComposition"/> 
<xsd: element name. "AlternativeTransact ions" type"tna: AiternativeConpoa it ion"/> 
<xsd: element name. "Paralle1Tranaactions" type-"tns: Paralle1Compositlon"/> 

</xad: Cholce> 
</xad: complexType> 

- <xsd: eomplexType name. "SequentialComposttioa"> 

- <xad: aequence> 
<xsd: element name_"TransactlonVectore type-"tna: TranaactionVectorIype"/> 

<xed: element name-Fo1lovedBy" minOccurs-O" type-"tns: Composition'[ype"/> 

</xad: eequence> 

</xsd: complexType> 

<xsd: complexType Rome"" 1lternativeComposition"> 

<xsd: sequence> 
<xsd: element name-TransactionVector" type-"tns: Vectors" minOecurs""2" rsxOccurs""3"/> 

</xsd: sequence> 
</ xsd: eomplexType> 
<xsd: complexlype name""Pare11e1Composition"> 

<xsd: sequence> 
<xsd: element name""TransactionVector" type-"tns: TransactionvectorTypie I minOccurs-"2" max0ccurs-"3"/> 
<xsd: element name-"FolloredBy" type-"tns: Vectorm"/> 

</xsd: sequence> 
</xad: complexType> 

<xsd: eomplexType name-"TransactionVector2ype"> 
<xsd: sequence> 

<xsd: element name-"Coordinator" type-'tns: AccessPoint" maxOccurs-'3' minOCCur9-"3"/> 
</xsd: sequence» 

</xsd: complexType> 
<xsd: comp1exType nasse-"AccessPoint"> 

<xsd: sequence>_-- 
<xsd: element newt-"DeServices' type-tns: Actions' maxOccurs-"unbounded" minOecurs-"0"/> 
<xsd: element name-"Id" type-" tns: AcessPolntld"/> 

</xsd: sequence> 
</xsd: complexType> 
<xsd: complexType name-"ºctions"> 

<xsd: sequence> 
<xsd: element naam""ServlceDeecription" type-"xed: strinq"/> 

</xsd: sequence> 
<xsdcatttibate name-Id" type""xsd: strinq" use-"requited"/> 

</xsd: cosplexType> 
<xsd: eomplexType name-TransactionuVectorld"> 

<xsd: sequence> 
<xsd: element name-'Initiatorld' type-"tns: AcessPointld"/> 
<xsd: element name-"Localld" type-"xsd: atrinq"/> 

</xsd: sequence> 

</xsd: complexType> 
<xsd: element names"Transaccionscripts"> 

<xsd: complexType> 
<xsd: sequence> 

<xsd: elelsent name""TransactlonVectors" type-'tns: Vectors"/> 
<xsd: element names"TransactionId" type-"tns: TransactlonsVectorld/> 

</xsd: sequence> 
</xsd: complexType> 

</xsd: element> 
<xsd: simpleType name-AcessPolntld"> 

<xsd: restrictten base-'xad: strinq"/> 
</xsd: simpleType> 

</xsd: scbeme> 

FIG. 6-S TRANSACTION SCRIPT SCHEMA 

Digital Ecosystems -112- Amir reza Razavi 



Behaviour of Coordination 

Failures, Recovery and Pattern behaviours 

Transaction scripts reflect the corresponding transaction languages and hence describe the 
dependencies between services of different participants' coordinator components, in terms of the 
orderings of the underlying service invocations. This means that when the scripts are parsed they 
provide the full transaction history, resulting from the actual deployment of the transaction, but 
based on the associated formal semantics of the transaction. The XML schemas and further details 

on transaction scripts can be found (downloaded) following (Razavi & Moschoyiannis, 2008). 

6.4 FAILURES, RECOVERY AND PATTERN BEHAVIOURS 

So far we have described the use of vector languages (full details in appendix 1) in determining 
the patterns the underlying service compositions should follow in the course of a long-running 
transaction. In particular, by exploiting the order-theoretic structure of transaction vectors we have 
shown how all possible interaction scenarios can be captured, and analysed prior to deployment, in 
determining the set of allowed sequences of actions. In transactional terms, this allows to 
determine the history of the transaction based on the transaction semantics (Gray & Reuter, 1993). 
In practical scenarios, applications in a transactional environment should offer recoverability and 
consistency. These two central aspects are addressed in the following sections. 

6.4.1 EXECUTION HISTORY 

In our approach, the transaction history is captured in the order structure of the corresponding 
transaction language which is used to express forward behaviour and is reflected in the derived 

transaction scripts. As shown in Fig. 6-6 a transaction language which includes alternative actions 
will have different allowed execution paths. These start from the empty vector and lead to (one of) 
the largest vectors in the language. The largest vectors describe maximal behaviour of the 
transaction, in the sense that they do not describe an earlier part of behaviour than any other vector 
does. In the transaction language of Fig. 6-4 there are two maximal vectors, namely vi= (al a3, b 1, 
A) and v2= (a l a2, b l, cl). This means that one allowed sequence of execution is al - bi --º a3 
and the other is al - a2-* (b l concurrently with cl). Note that both allowed sequences end up in 

a maximal vector which corresponds to the behaviour exhibited when the transaction executes 
successfully until it terminates. Thus, in both cases the transaction produces a consistent state. In 

other words, transaction consistency is attained by reaching a maximal vector in the transaction 
language. 
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Execution history I 

a,, A, A) 
<al, A, A> 

(a,, b,, 
A \, 

a2, A, A)"" <aIa2, A, A> 

(a, a3, b,, A) "(a, az, b,, A) (a, a2, A, c, ) <ala2, b1, A> 

<a1a2, b1, c1> 
(a, a2, b,, c, ) 

Action vectors 
Execution history 2 

Action vectors 
<A, A, A> 

<al, A, A> Illlll > 
ý <a2,, A> <a2, A, A> 

<a1a2, A, A> i1l 
<A, b1, A> ) <A, A, ct> 

<A,, ct> 
<ala2, A, c1> 

<ala2, bl, cl> 

1 

ý( 
<A, bi, A> 

FIG. 6-6 EXECUTION HISTORY 

When the transaction is actually deployed, then only one of the allowed sequences of actions can 
occur. In our example, this would depend on how the choice between a2 and bl, after al has 

occurred, is resolved. Fig. 6-6 shows the case where a2 occurred after al, and hence the right 
branch of the Hasse diagram with the transaction language was actually deployed. It can be seen 
that each vector in turn is obtained by coordinate-wise concatenation with the appropriate action 
vector, according to the allowed sequence of actions along the particular execution path. 

This distinction between the set of all allowed sequences of actions and the allowed sequence of 
actions that actually takes place when the transaction is deployed is important when considering 
compensations. Naturally, when a failure makes further progress impossible, we would only want 
to compensate for actions that actually happened up to that point and not for every possible action 
in the transaction. We will refer to the actual path of execution during a run of the transaction as the 

execution history of the particular deployment of the transaction. In Fig. 6-6 it appears there are 
two execution histories but these are the result of concurrency (between bl and cl) and therefore, 
they are equivalent. This is because the series of concatenations with action vectors differ only in 

the order of the independent action vectors al = (A, bi, A) and cat = (A, A, cl), and consequently 
they correspond to the same allowed sequence of actions. 

Hence, the notion of independence is what allows us to identify equivalent behaviours in the 
presence of concurrency, something that is not possible when adopting an interleaving model, as 
done in (Butler, Hoare, & Ferreira, 2005). The benefit of being able to identify equivalent 
execution histories can perhaps be seen most clearly when it comes to compensation in transaction 
recovery, where as we will see it is only required to compensate once for all equivalent execution 
histories. 

6.4.2 RECOVERY AND ROLLBACK 

In this section we examine the formal approach to coordinating long-running transactions to 
handle compensations. This is to address occasions where some failure happens mid-way through 

execution in which case we need to have a way to express compensating sequences of actions that 
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need to take place in going 'backwards' while effectively undoing all previously successful 
forward actions. 

Execution history 1 
Action vectors 

<A, A, A> ..... 
<al, A, A> <a2, A, A> .. -"-- 

<al a2, A, A>_ ......................... 
Failed transacZibtt---- 

<a l a2, bl, / \> 
Inconsistency rie 

f 

<ala2, bl, cl> 
FIG. 6-7 FAILURE IN A TRANSACTION 

Consistent environment 
(the transaction vector Is empty) 

Deploy the transaction vector 

Transaction execution 

final vector equal to one 
Maximal vectors? 

When the deployment of a transaction stops before it reaches the maximal vector, there is a 
failure (transaction can not reach the commit and deploys all of its services), this has been shown 
in Fig 6-7. Based on atomicity, the transaction should be aborted. A cancellation operation on 
vectors is central to the handling of abortion (compensations) in the vector model. This is done by 
considering the usual operation of right-cancellation on sequences and then lifting it onto vectors 
(by applying it coordinate-wise) as follows. 

Right-cancellation. Let u, vEV. If u Sv, then we define u/v to be the unique element z such 
than u. z=v . 

The right-cancellation operator `/' says that if u is a transaction vector describing an initial part 
of the behaviour described by 

_y so that uS v_, then v/u is the `continuation' of u that extends it to 

v. This dictates that what takes a transaction vector and extends it to its successors is an action 
vector (e. g. service invocation between different participants) of the transaction. It means that 

vectors are built by a series of concatenations with action vectors, and this is used to model 
forward actions, and it also means that successive applications of right-cancellations can be used to 

express the series of compensating actions required whenever some failure occurs during 

execution. 

In other words, our approach uses (coordinate-wise) concatenation of vectors to model the 
occurrence of an action by 

u. a=v 

and, instead of introducing a separate notation and associated semantics for cancelling forward 

actions, we use right-cancellation to express the compensating action needed at each point in 

returning to the initial configuration. 
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Failed transaction Compensation 
Action vectors 
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<al, A, A> Operation 

>s the current vector <a1a2nn 
Transaction Failure --- ...... empty? ...... <a2, A, A> 

<a 1, n, n> Yes 
C Consistent environment Full Recovery . --. " ... _ ...... -- .............................. :. 

"", 
<nýnýný___ the transaction is fully cancelled 

FIG. 6-8 TRANSACTION RECOVERY 

Fig. 6-8 shows the case where a failure occurs after service a2 of component CC2 has been 
invoked. This means that it is no longer possible for the transaction to produce a consistent state by 
reaching the maximal vector (a1a2, b 1, c1), as dictated by the allowed sequence of actions in its 
execution history. Consequently, the transaction needs to be recovered and this implies returning 
to the (consistent) state the system was in before the transaction started. This is represented by the 
empty vector. In returning to empty vector, all previously successful forward actions need to be 
compensated for. This is done by successive applications of the '/' operation given earlier. 

The first application of right-cancellation moves the transaction back to (a 1, A, A) and the next to 
(A, A, A). Hence, the system is returned to the empty vector which is now the (only) consistent 
state. In this case we talk about full recovery of the transaction. It might be worth noting that in the 
case where failure happened after (ala2, bl, cl) our apporach would allow for the concurrent 
forward actions b1 and cl to be compensated concurrently. This is because the vector (a 1 a2, b 1, 

c 1) has two immediate predecesors, and hence the independent action vectors Cd = (A, b 1, A) and 
co, = (A, A, cl) that extended them to (ala2, bl, cl) would be called to be compensated for 

concurrently. In other words, 

`v/ al)/ g= (al a2, A, cl )/ a1 = (al a2, A, A) 

And also 

`v/ cg2)/ ar = (al a2, b1, A)/ a, = (al a2, A, A) 

6.4.3 FORWARD RECOVERY 

We have seen how right-cancellation can be applied to generate compensating sequences of 
actions for the full recovery of a transaction. Full recovery however, can be costly in terms of 
resources, delays, business relations and so on. Additionally, in a highly transactional environment 
dependencies may also exist across transactions so the effect of a recovered transaction may be 

magnified. For this reason it is desirable to avoid full recovery wherever possible. 

One way to do this is to design transactions with a number of alternative scenarios of execution; 
in other words, allow for multiple execution histories in the corresponding transaction script. In 

Digital Ecosystems -116- Amir reza Razavi 



Behaviour of Coordination 

Failures, Recovery and Pattern behaviours 

such cases, our approach comes with the provision for forward recovery which is a mechanism for 
avoiding full recovery. The aim is during compensation to explore whether there is any possibility 
for successfully terminating the transaction following a different execution history to the one 
originally deployed, instead of compensating for the whole execution history. 

This is possible in our approach because all the execution histories are captured in the 
transaction language. Hence, in recovering a given execution history which failed, after the next 
forward action(s) is compensated for we check whether the resulting vector is part of a different 

execution history. If this is the case, then we attempt to go forward by performing the 
concatenations in accordance with the allowed sequence of actions in that execution history, as 
described in Section 4.2. 
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FIG. 6-9 FORWARD RECOVERY 

As shown in Fig. 6-9, in going backwards, and while cancelling out one action (or a set of 
concurrent actions) at a time, we look each time whether there is an alternative path from the 
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vector we arrived on (after applying the compensating action(s)) leading to a maximal vector. 

6.5 COORDINATION AND TRANSACTION 

In this part we extend our approach to coordinating long-running transactions to handle 
compensations. This is to address occasions where some failure happens mid-way through 
execution in which case we need to have a way to express compensating sequences of actions that 
need to take place in going `backwards' while effectively undoing all previously successful 
forward actions the operation per coordinator is called right-cancellation, which it is equivalent to 
call a cancelation for a service [formal definition of this can be found in (Moschoyiannis et al., 
2008) and (Razavi et al., 2007b)]. Fig. 6 shows the case where a failure occurs after service a2 of 
component CC2 has been invoked. This means that it is no longer possible for the transaction to 
produce a consistent state by reaching the maximal vector (al a2, b 1, c1), as dictated by the allowed 
sequence of actions in its execution history. Consequently, the transaction needs to be recovered 
and this implies returning to the (consistent) state the system was in before the transaction started. 

Transaction Script 

(AAA) A2-, 

(a, A A) 

leý, 
N&-- \\ 
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I,, 
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We have seen how right-cancellation can be applied to generate compensating sequences of 
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actions for the full recovery of a transaction. Full recovery however, can be costly in terms of 
resources, delays, business relations and so on. Additionally, in a highly transactional environment 
dependencies may also exist across transactions so the effect of a recovered transaction may be 
magnified. For this reason it is desirable to avoid full recovery wherever possible. One way to do 
this is to design transactions with a number of alternative scenarios of execution; in other words, 
allow for multiple execution histories in the corresponding transaction script. In such cases, our 
approach comes with the provision for forward recovery which is a mechanism for avoiding full 
recovery. The aim is during compensation to explore whether there is any possibility for 
successfully terminating the transaction following a different execution history to the one 
originally deployed, instead of compensating for the whole execution history. 

This is possible in our approach because all the execution histories are captured in the 
transaction language. Hence, in recovering a given execution history which failed, after the next 
forward action(s) is compensated for we check whether the resulting vector is part of a different 
execution history. If this is the case, then we attempt to go forward by performing the execution in 

accordance with the allowed sequence of actions in that execution history. As shown in green box, 
Fig. 6, in going backwards, and while cancelling out one action (or a set of concurrent actions) at a 
time, we look each time whether there is an alternative path from the vector we arrived on (after 
applying the compensating action(s)) leading to a maximal vector. 

6.6 RESULTS AND COMPARISON 

In this chapter, we have described a formal model for analysing patterns of behaviour of Digital 
Ecosystem long-running transactions. The tuples-based behavioural description allows to capture 
the sequences of forward and compensating actions of each participant and at every stage in the 
course of execution of a transaction. Our formal approach to transaction semantics drives the 
recovery mechanism necessary to deal with failures during transaction deployment in a way that 
asserts transaction consistency. 

In one hand, in contrast with conventional pattern behaviour analysis such as BAPC or BACC 
(chapter 3), this formal model for analysing patterns of behaviour of Digital Ecosystem 
long-running transactions, shows the behaviour of distributed coordinators of transaction model, 
rather than a linear analysis based on 2 phase commit protocol. On the other hand, it proves the 
Transaction model proposed in chapter 4 and 5 models a loosely coupled interaction of 
participants (because there is not any scenario for relying on local states of any services of 
participants) and as a result does not suffer violating the local autonomy of participants. 

On the other hand, unlike other approaches to transaction semantics, such as (Butler et al., 2005), 
(Gray, 1992), concurrent actions are handled via a notion of independence and as a result 
concurrent forward actions are compensated for concurrently in our approach. We have shown 
how transaction languages capture the history of a transaction and this not only allows for the full 
recovery of a transaction in case of a failure, but also to attempt forward recovery wherever 
possible and avoid the sometimes costly abortion of the whole transaction. We have also 
highlighted the implementation aspects of the theory presented and further details can be 
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downloaded following (Razavi & Moschoyiannis, 2008). 

We have been concerned with transactions that involve the execution of our transaction model 
(chapter 4) and have focused on the orderings of the underlying service interactions. The 
specifications of this ordering, can be found in the variety of service compositions in a Digital 
Ecosystem (recall chapter 3 and 4). Another aspect concerns the translation of business 

requirements into the transaction tree and the UML model, which are currently our starting point. 
Preliminary analysis shows that the use of SBVR could be harnessed in expressing business logic, 
specifically in terms of (orderings of) the deployment of services and their resources. This is 

another possible direction for future work as it would make the transactional framework accessible 
to a wider audience and particularly smaller businesses. 
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So far, we have provided a loosely coupled interaction model in terms of business transactions; 
the recovery mechanism has been developed and can reduce the cost of recovering failures. For 
offering "Balance" which, like our recovery mechanism, is "Self-organising" (Chang & West, 
2006a), we need to provide a virtualisation for customising the business network. 

The aim of this chapter is to provide the stability of the environment (network) and facilitate 

e-business transactions between Small and Medium Enterprises (SMEs), in a way that respects 
their local autonomy, within a digital ecosystem. For this purpose, we distinguish transactions 
from services (and service providers) by considering Virtual Private Transaction Networks 
(VPTNs) and Virtual Service Networks (VSNs). These two virtual levels are optimised 
individually and in respect to each other. The effect of one on the other, can supply us with 
stability, failure resistance and small-world characteristics on one hand and durability, consistency 
and sustainability on the other hand. The proposed network design has a dynamic topology that 
adapts itself to changes in business models and availability of SMEs, and reflects the highly 
dynamic nature of a digital ecosystem. 

A number of different views exist on the development of sustainable digital ecosystems, from 
that of a collaborative environment for business activities, to software infrastructure for open 
e-business transactions, to the continuous creation of new business model categories and instants. 
All these different facets can challenge the current infrastructure of our software world. At the 
same time, the telecoms industry is moving towards the Next Generation Networks (NGNs), and 
this comes with yet another view of services and applications; the so-called Next Generation 
Services (NGSs) (Daho & Simoni, 2006). Our approach is trying to leverage these developments 
in creating a business environment which supports dynamic contexts for distributed long-lived 
transactions proposed for digital ecosystems in chapter 4,5 and 6. This chapter contains material 
that has been published in (Razavi, Moschoyiannis, & Krause, 2007e), (Razavi et al., 2008a) and 
(Razavi, Moschoyiannis, & Krause, 2008b). 

Current models which provide self-management capabilities at the service level (Martini, 
Baroncelli, & Castoldi, 2005), (Kristiansen, Hansen, & Licciardi, 2008), (Sahai et al., 2002), (Li & 
Mohapatra, 2004) and Quality of Service (QoS) at the virtualization levels (Daho & Simoni, 2006) 

can be seen to satisfy the primary requirements of such a "Digital Ecosystem" (DE) environment. 
However, there is little evidence that they can insulate the collaborative business activities for 
long-lived transactions from failure - one of the most important requirements for a DE for business 

- in the face of the highly dynamic business models of SMEs which cannot be expected to provide 
the necessary permanent platforms for a connected network. 

As a result, keeping the necessary information for coordinating long-lived transactions (Razavi 

et al., 2007c), can be rather challenging, but also the probability of fragmentation in the network 
cannot be averted. This can have severe consequences in a business environment, since 
fragmentation in the network of course directly affects the number of failed transactions (Razavi et 
al., 2007a). 
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In this chapter we propose a model that satisfies these requirements of a business network for 
SMEs in the context of digital ecosystems. We outline the main characteristics of such a business 
network and conventional solution in the first section. The second section is focused on the 
primary solution. Virtual Super peers have been proposed at the end of the next section and then 
discussed more fully in the third and fourth sections. 

7.1 VPTNs INTERCONNECTIVITY AND NETWORK CONNECTIVITY 

The purpose of a business network is to enable networked organisations to engage in distributed 
business transactions (Singh & Huhns, 2005), (Razavi et al., 2006), (Dini et al., 2008) that realise 
their core business activities. As we have seen in the previous chapters in terms of business 
transactions this means stronger interconnectivities for VPTNs. This is achieved when a 
transaction's participants can avoid failure at the supporting network level and/or alternative paths 
are reachable whenever service unavailability is experienced or failure occurs in one of the 
participants in alternative scenarios. This may lead us to increasing the local connectivity in each 
transaction, but the effect and side effect of changes will direct us to take into account a 
measurement for stability and apply any increases in terms of this measurement. This provides a 
dynamic and extensible method for creating a stable Digital Ecosystem that emerges through the 
long-running transactions that correspond to business activities between participating 
organisations. 

Meanwhile providing a level of virtualization for applying DE conceptual foundations is 

necessary (recall 3.2 for primary discussions). One of the important characteristics of Digital 
Ecosystems is dynamicity. By their very nature, SMEs are versatile and their business model needs 
to be refined or adapted on a regular basis. This can transform the business domain or the nature of 
a business over time. Furthermore, the direct regional effect on business activity timetables (and 

availability of SMEs) is another property that needs to be taken into account in a digital ecosystem. 
These are some of the factors that make it necessary for the business network topology of such an 
environment to be able to adapt itself dynamically (dynamic topology). It should also be noted that 
loose coupling is another important characteristic of DE, as SMEs need to preserve their local 

autonomy, which poses further challenges in covering the above requirements. 

For this reason the virtualization in our model is slightly different from that found in the general 
proposed models (such as (Daho & Simoni, 2006), (Martini et al., 2005), (Kristiansen et al., 2008), 
(Sahai et al., 2002), (Li & Mohapatra, 2004)). The business activities are at the top level of the 

model; business activities in terms of transactions which should be distributed (if we are to 

preserve the local autonomy of SMEs) and recoverable (self-healing). In previous chapters, we 
have introduced a transaction model with such characteristics whose design makes use of the 
inherent diversity of a digital ecosystem. The result of the interaction between participants of a 
transaction, which comes down to the composition of the corresponding services, provides a 
virtual connection which is useful for the design of the underlying network. This virtual network, 
shown as the first conceptual level of virtualisation in Fig 7-1, is private between transaction 

participants, and hence the term Virtual Private Transaction Network (VPTN). 
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The second conceptual level of virtualisation is concerned with links between SMEs (service 
providers and actual participants of business activities) which provides the structural materials for 
a business activity (transaction). These structural materials are `services'. We call such a virtual 
network a Virtual Service Network (VSN). Fig 7-1, shows the virtualisation levels of the DE 
business networks. 

q VPTNs 
irtual Private Transaction 

J 

7; 

Networks 
8 

VSN 
Z Virtual Service Network a) 

provides network connectivity 

Physical Network IZ 

Z' 
FIG. 7-1 VIRTUALIZATION IN DIGITAL BUSINESS ECOSYSTEMS 

Even though SMEs may be engaging in more than one transaction at a time, a VPTN is typically 
a fragmented (island) network which connects the participants of a specific business activity. 
Therefore, nodes in VPTNs are typically in the same business domain (or strongly relevant 
business domains). For this reason, VPTNs potentially may improve the `cluster coefficient' of the 
lower level (VSN) and in exchange VSNs can warranty the diversity for VPTNs (by providing 
reliable connectivity which makes alternative paths/scenarios feasible for a disconnected VPTN). 
This may protect business transactions against failure - using alternative paths and scenarios to 
avoid the costly abortions of long-running transactions is feasible as shown before and is referred 
to as forward recovery (more detail can be found in 5.3). It can be seen that one of the most 
important characteristics the VSNs should provide is `connectivity' - ensuring that there is a 
network of interconnected nodes. In 3.2, we have provided more formal definition for the network 
of a digital ecosystem, which can now be modelled as a connected part of VSNs that are 
aggregations of the business activities taking place between the different partners create several 
virtual business networks. In the rest of this chapter we focus on the digital ecosystem network 
rather than using conventional VSNs metaphor. 

7.1.1 LINK REPLICATION, AND CONNECTIVITY 

Increasing the connectivity between participants of a transaction prevents certain types of 
failures in the transaction, predominantly those which are the result of the network disconnections. 
At the same time, alternative scenarios in terms of alternative service compositions (Chapter 3, 

section 1- SAt and PAt) rely on available connectivity between alternative paths (between 
different participants) in the network. This means increasing VPTN interconnectivity helps to 
provide a better chance for forward recovery (recall discussion in 5.3 and 6.4.3), and as a result 
avoid a full recovery even when some participants failed to provide their services. Before 
describing how VPTN interconnectivity is dealt with in our framework, we present the general 
mechanism for link replication in the local software agent of each participant. 

Normally the connections (links) to other participants of the digital ecosystem have been 
established by the `global service repository', where the address of other service providers 
(participants) and the description of their services have been kept. For inserting (or modifying) a 
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new participant to the repository and its services, the `web service information investor' 
component will be involved. For introducing the participant to another participant the ̀ web service 
promoter' will be used. 

It can be seen that for increasing the connectivity we use three components of the 
component-based design of each participant. Figure 7-2 shows the relationships between these 
components of three participants (their software agents). Participant B (`Agent B'), receives all of 
the connections of Participant A (`Agent A') through its `web service information investor' when 
participant A ('Agent A') provides them through its `web service promoter'. Similarly, participant 
B ('Agent B') provides its connections (links to the other participants) to the `web service 
information investor' of participant C ('Agent C'). We call this procedure Link Replication. It is 
important to mention that it is possible to have partial link replication where there is no need to 
replicate or pass to other participants all of the connections of a given participant. 
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Web service Promoter 
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Global Service Repository 

a...., d....., h ý== 

Web service Promote 
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Global Service Repository 

............................................................................................................. 

FIG. 7-2 LINK REPLICATION 

7.1.2 FULLY CONNECTED VPTN AND DIGITAL ECOSYSTEM 

As we mentioned in chapter 5 (5.1 and 5.4) and the beginning of this chapter, one of the 
significant risks for the VPTNs of a digital ecosystem (transactions of the network) is 
disconnection between participants of a transaction which amounts to low connectivity inside the 
VpTNs. It seems the primary solution for the problem is to use the link replication procedure 
between the participants. By repeating link replication in each participant, within a limited time, all 
participants in a VPTN will be connected together. As a result we will have a fully connected 

Digital Ecosystems -124- Amir reza Razavi 



Stable Digital Ecosystem Network Structure 

VPTNs interconnectivity and network connectivity 

I -1 VPTN, in which, if built based on transaction t and participant Pt each node will have IPt 
links. 

Where this seems like an ideal solution for each VPTN the result can be devastating for the 
digital ecosystem and consequently the majority of transactions could be failed. As a digital 
ecosystem is a connected network through its transactions (chapter 3 section 2), the VPTNs have 
overlaps on some of the their participants (there are some intersections between different VPTNs' 
participants) and as mentioned in Chapter 4 section 1, studies show most business networks follow 
the power-low distribution degree (Barabäsi et al., 2000) which means: 

The digital ecosystem relies on very few participants (nodes) to stay connected 
And these small numbers of participants are involved in the majority of the transactions, i. e. 

these few participants will be in most VPTNs. 

Now if we apply link replication for each VPTN (VPTN1(t1, Pj whereVPTNN is VPTN of 
transaction ti and its participants are P 

1), each participant in the VPTN will have 

IPtil-1 

Therefore a participant R which is involved in transactions 

{tm,..., t,,. ) 
Will have up to 

n 
April 

- (m+n) 
i=m 

links. 

Based on the second point above (point `b'), very few participants are involved in the majority 
of transactions. Therefore by applying link replication in this way this small number of 
participants will have a very large increase of links. This increases their traffic dramatically and it 
is highly probable they collapse as a result, which means a potentially large number of transactions 
will be failed. More importantly, based on the first point above (point `a'), as the digital ecosystem 
relies on them to stay connected, the whole digital ecosystem will be fragmented. Figure 18 shows 
this situation which his generally rather difficult for a network to recover from. 

Digital Ecosystems -125- Amir reza Razavi 



Stable Digital Ecosystem Network Structure 

VPTNs interconnectivity and network connectivity 

.u 
Participant 4 ßy2 

Participant 3'- VP! N4 

z. + t r�Zi 
VPTN 4 in our sample DE 

FIG. 7-3 FULLY DISCONNECTED VPTNS 

On the left side of Fig 7-3 VPTN4 from the sample digital ecosystem presented in Figure 3-2, is 

shown, and on the right-side we can see the result of link replication on all participants of the 
VPTN4. As link replication in a similar way has been applied for all other VPTNs, participant 3 

and participant 4 which are involved in several transactions face the large increases of links which 
can bring traffic complexity. While the link replication itself seems quite useful for increasing 

connectivity, the way and on which participant it is applied can be crucial for the general 
performance of the digital ecosystem (and even each VPTN). 

Before investigating some measurements for a more careful application of link replication we 
try to review the other conventional approaches in network interactions. 

7.1.3 CONVENTIONAL PEER- TO-PEER SOLUTIONS 

The oldest solution to the problem of connectivity is to supply a powerful central coordinator 
that manages the whole network and keeps all information about all participants. However, this 

solution has the classic problem of a single point of failure as well as high cost for providing and 
maintaining the centralised unit. Note the cost increases as the number of nodes and associated 
network traffic increases. 

A popular solution to the connectivity problem which is used in several P2P networks (e. g. 
(Yang & Garcia-Molina, 2002), (Yang & Garcia-Molina, 2003)) consists of introducing an extra 
layer to the network, the so-called super peers. These are essentially decentralised servers, each 
managing a significant part of the network (number of participants), and have strong links to each 
other. The primary necessity for having super peers is providing stable nodes which are- online all 
of the time. This means super peers are expensive nodes with costly maintenance requirements. 
Furthermore, during peak time the pressure of high traffic can result in a bottleneck on super peer 
nodes. At off-peak times the powerful super peers will still need to be online and monitor the 
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whole network, thus processing redundant data and producing overheads waste. 

It should also be noted that the resources are used for facilitating network operation management 
tasks. When considering such a solution for a digital ecosystem environment involving SMEs, the 
question arises as to who is going to provide such nodes? Even if it were possible to find suitable 
SMEs willing to provide permanent nodes as super peers, these may change their business model 
and after some time may not find it useful to provide a permanent (and expensive) node anymore. 

Perhaps even more importantly, the super peers solution results in a static topology for the 
network as these nodes are pre-selected and their role is pre-determined in the network. This is by 
no means satisfactory in a highly dynamic environment of a digital ecosystem where the idea is 
that the network topology changes continuously to adapt to its very usage and demands of the 
participating entities. The evolving nature of the DE is intended to reflect the congestion of 
network packages and nodes that change from time to time. 

On the other hand, models which provide self-management capabilities at the service level 
(Martini et al., 2005), (Kristiansen et al., 2008), (Sahai et al., 2002), (Li & Mohapatra, 2004) and 
Quality of Service (QoS) at the virtualisation levels (Daho & Simoni, 2006) can be seen to be 
another extreme solution for Digital Ecosystem environments. But the network resistance against 
failure on the collaborative business activities for long-lived transactions from failures, (in the face 
of the highly dynamic business models of SMEs) has not been solved, which cannot be expected to 
provide the necessary permanent platforms for a connected network. 

7.2 TOWARDS A CONNECTED DIGITAL ECOSYSTEM 

In this part, we try to provide a constructive solution for using the link replication mechanism to 
improve connectivity inside VPTNs and present the first step towards a stable digital ecosystem. In 

general, we can say the best candidates for link replication inside each VPTN and connecting 
VPTNs together are the most stable participants (nodes) in each VPTN. Connecting these 

participants and the link replication can be done by using the `Global Service Repository' of each 
candidate-participant from each VPTN (it has been shown in Fig. 7-3, Section 5.1). 

However, we cannot warranty full stability of the network and still cannot avoid the occasional 
fragmentations. Even in the best case, this is still is dependent on each candidate-participant's 
availability and if the total online time of all stable nodes cannot cover the full `active-time' of the 
network, the network will collapse for some period of time, precisely that in which all candidates 
are not available. Therefore, first we try to introduce a measurement for node stability, and then 
use this measurement in finding the stable participants in each VPTN to cover the network's 
`active-time'. Active time we refer to the time period when any none-zero number of participants 
are active and working - if the digital ecosystem is large, practically this has been considered 24 
hours (Razavi et al., 2007a), (Razavi et al., 2008a). 
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7.2.1 STABILITY MEASUREMENT FOR NODES 

Since we are dealing with connectivity as a means of avoiding disconnections and fragmentation 
of the network. we need a measurement for node stability. It would be unreasonable (and not 
feasible) to expect participants (nodes) to be online all the time and thus stability is determined on 
the basis of declared availability. 

For finding a more precise and computable measurement for node stability, we introduce the 
so-called Expected Availability Time (EAT). This is the time the node is expected to be available 
and online in the network. Figure 7-4 shows an example of EAT for a node in the network. 
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FIG. 7-4 EXPECTED AVAILABILITY TIME 
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The node stability is then calculated as the actual availability of the node against this expected 
time. These are typically different, since during its EAT the node may experience disconnections. 

This will reduce stability (reliability) of the corresponding node in the final selection. This 

notion of stability can be simply calculated as below: 

NodeStabiliti = 
EA T- DisconnectionPeriods 

EAT 

It can be seen that VodeStability <_ 1 and the closer NodeStability gets to 1 for a node, the more 
stable the node is (which can be understood as more reliable or predictable). As an additional 
parameter we have also considered a traffic limitation on the participants. If the infrastructural 
traffic reaches a specific percentage (`K') of a platform bandwidth, and this can be varied 
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depending on the ecosystem's business cluster, the participant is regarded as disconnected and this 
will increase its `Disconnection Periods'. This can be justified since the priority for each 
participant is its transactions and we do not want to overload the participants by infrastructural 
traffic and cause potential collapse and transaction failure. 

In any case when a participant is involved in some transactions it is still indirectly helping the 
infrastructure by its VPTN links. This is one aspect that distinguishes our model from other 
approaches that may use a mechanism similar to link replication but without considering the 
participant's situation, which has been discussed at subsection 7.1.1, of this chapter. 

In our latest simulation which is described in greater detail in chapter 8, the participant's 
bandwidth has been treated as a random number between 500kb to 4mb and the maximum 
percentage of the infrastructural traffic is %30 of the platform bandwidth but this can vary 
depending on the environment and average transactional traffic of VPTNs. 

For calculating the stability function of a participant in the first instance we use a VPTN 

neighbourhood voting algorithm (where each participants in a transaction calculates its other 
nodes of the VPTN during each transaction life-time) to finalise this. The average availability in 

overlapping transactions can determine the actual availability. 

We consider alternative methods for one of our implementation plans in Chapter 8, which relies 
on automatic calculation of availability inside of the coordinator of a transaction and this will be 

calculated based on overloading traffic more than `K' percentage of the participant bandwidth or 
disconnections from Internet. 

At the moment we have considered EAT as a part of SMEs business model which is given by 

each SME on joining the network. Hence, this is fixed or can only change on the account of the 
SME providing it. It should be noted that other approaches can be considered for calculating the 
EAT - for example, it is possible to use an algorithm based on their VPTNs' actual life time (their 

transaction life-cycle) or network neighbourhoods' estimations for calculating EAT which would 
allow it to vary over time. 

7.2.2 PERMANENT CLUSTERS AND VIRTUAL SUPER PEERS 

As mentioned before, in contrast with conventional super peers, we try in our network design to 

move towards a more dynamic architecture which does not rely on just a few permanent nodes. 
Central to our approach is finding permanent clusters on the network. More specifically, we are 
identifying aggregations of stable nodes, where node stability is determined as in the previous 

section. For doing so, the most stable nodes from different time zones must be chosen, in a way 
that they cover the digital ecosystem's `active-time' (for reasonably large ecosystem 24 hours). 

More specifically, we are trying to find permanent clusters through the most stable nodes. 

The important part in determining permanent clusters is discovering different aggregations of 
these time zones which can cover 24 hour availability. Any union of the stable nodes in the 

aggregations (which provides the full `active-tine' - 24 hour availability coverage) are actual 
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permanent clusters. Fig 7-5 shows the simple situation in which the most stable nodes have been 

selected from two sets of time zones which can cover 24 hour service availability to form 

permanent clusters. 

7.3 VIRTUAL SUPER PEERS 

By using stable nodes from permanent clusters, as shown in Fig 7-5, we can create Virtual Super 
Peers (VSPs) which are effectively permanent clusters of nodes in the network. These can provide 
the desired stability for the digital ecosystem. The strong connection between the virtual super 
peers themselves on one hand and the connection between them and their nodes decrease the 
probability for fragmentation. Depending on the level of reliability required for the network, it is 

possible to include further redundant stable platforms from each available time zone. For example, 
in Fig 7-5 we have included two stable nodes from one time-zone and three stable nodes from the 
other one (the green and creamy coloured signs show different time zones). 

able platforms from different time-zone 
baCh virtual super peer is aggregation of 

hich will cover 24 hours connection time 

"4( GN 41 �ý 

FIG. 7-5 PERMANENT CLUSTERS AND VIRTUAL SUPER PEERS 

In this manner, the good connectivity can cause more reliable transactions at the VPTNs level. 
Meanwhile the traffic is spread over the virtual super peers and there is less risk of bottleneck at 
peak time. Participants (nodes) within a virtual super peer need to keep information only about 
nodes in their cluster and about neighbouring VSPs so at off-peak time the amount of redundant 
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information processing is reduced dramatically as compared to the classical Super Peers solution. 

Since choosing stable participants (nodes) is done based on the stability measurement which is 

given by a function of EAT and the Disconnection Period of a node during EAT, whose value 
varies over time, is a dynamic process and hence it the virtual super peers are also formed 
dynamically. This means the topology can change from time to time and new nodes can be added 
to the permanent clusters as the structure of the virtual super peers changes. A node can become 

part of a virtual super peer, when its node stability increases and overcomes some threshold, and 
nodes that are super peers may not be able to cope with the increased number of connections they 

get, and possibly increased number of transactions they perform and lose their virtual peer status. 
Within a digital ecosystem for business, SMEs would be expected to invest at that time (in 
hardware, processing power, bandwidth etc. ) and become again part of a virtual super peer in 
future. It is in this sense that the topology evolves to reflect the usage and demands of the 

participants who benefit from and contribute to the `sustainability' of the network. 

Additionally, network congestion can change the maximum level of node stability (recall the 
discussion in sub-section 7.1 and 7.2.1) which in turn affects the selection of the most stable nodes 
in forming the permanent clusters. High congestion of packages can increase or decrease network 
reliability (higher traffic on few virtual super peers can potentially create a bottleneck and even 
cause fragmentation). In a digital business ecosystem, the best part of the traffic is the result of 
business activities which are effectively long-lived transactions. These have been virtualised in 
VPTNs and therefore, using the effect of VPTNs for making VSPs and their client nodes, can 
increase stability of each virtual super peer. 

Furthermore, we expect a reasonable cluster coefficient on the account of having VPTN as the 

main building block which we have seen is formed from a transaction. This means its participants 
are in relevant domains - by connecting them to several VSPs we actually increase the probability 
for that. We also expect a fair distribution degree on the account of propagating links to VSPs. 
This means that instead of being concerned with individual links for each node, aggregate links of 
VSPs come into play. 

Finally, reusing business activity results (or service-on-fly as result of composite services 
(Papazoglou, 2003) and (J. Yang et al., 2002)) and explorative service composition (Papazoglou et 
al., 2006) are other factors which can be considered for higher performance within a digital 
business ecosystem and can provide potential for creating so-called virtual vendors (Razavi et al., 
2006). 

7.4 THE DYNAMIC MECHANISM FOR CHOOSING VSPS 

In the first step, the most stable participant in each VPTN (participants of a transaction) should 
be selected for keeping vital information about the transaction and its participants. In this sense, 
the network provide a level of durability with minimum cost from participants and it provides a 
greater chance for forward recovery even in terms of failure in one of participants of a transaction. 
Effectively, this makes our mechanism described in Section 5.3, fully effective with regard to what 
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is referred to as (in purely transactional literature, the solved problem is called) omitted results, 
which is a problem relating to preserving as much progress-to-date as possible in the event of 
aborting a transaction (the details about complexity of the problem can be found in chapter 2 and 
our previous work (Razavi et al., 2007d)). 

In the next step, by connecting the most stable nodes of each VPTN together, the first level of 
strong connectivity and suitable nodes for VSPs are created. Fig 7-6 shows the internal structure of 
each VPTN and the connection between VPTNs. The internal structure of a VPTN contains a lot of 
information from the transaction level such as log structures, lock schemes for ensuring 
consistency in recovery mentioned above, local coordinator design, formal analysis of the required 
interactions and recoverability (Moschoyiannis et al., 2008), along with alternative scenarios for 
forward recovery (chapter 6 shows this behaviour analysis). Now by using the most stable node, 
we allow the optimisation in transactions to be performed and any waste of resources as the result 
of weak connectivity will be avoided. 
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node of the other VPTN 

FIG. 7-6 DYNAMIC MECHANISM FOR INCREASING STABILITY 

The direct effect of connecting VPTNs together is raising the cluster coefficient of the network. 
Conversely, connecting the most stable nodes of VPTNs together provides the opportunity of 
choosing the best candidate locally between these stable nodes for the permanent cluster. 
Choosing nodes of the permanent cluster in this way results in a virtual super peer that provides 
fair traffic distribution at the VSN level (each virtual super peer will take care of its local VPTNs). 
The main concept behind forming permanent clusters stays the same, i. e., selecting the most stable 
nodes from different time zones which can cover 24 hours online time. 

7.5 THE MODEL IN PRACTICE 
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As the most stable node in each VPTN is the best candidate for keeping the transaction 
information, the corresponding business activities will have increased levels of reliability. The fact 
that VPTNs are used initially in the design of the business network, and are connected through 
their most stable nodes which are determined dynamically, allows in most cases the candidate 
platform to avoid the full rollback or compensation of the transaction when some participants of 
the long-lived transaction get disconnected mid-way through its execution. This has been 

considered in the design of the recovery mechanism for the digital ecosystem (chapter 5). 

Another expectation of the proposed network infrastructure is reducing the possibility of 
fragmentation. We have seen that we are dealing with a highly dynamic transactional environment 
where there is no central point of control. The current model can fulfil the requirement at the 
theoretical level. It would however be desirable to be able to somehow guide the way this topology 
evolves. In the next section, we try to show a realistic simulation which can compare the 
theoretical behaviour and practical status of the network in different situations. Furthermore the 
current roadmaps and prototype implementations are described. 
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The first implementation of a Digital Business Ecosystem was relying on FADA nodes (Razavi 

et al., 2006), (TechIDEAS, 2007) as the core infrastructure for the network. Items (service proxies) 
are registered in any node of the FADA cloud, and they can be searched for starting from any node 
in the FADA cloud. The FADA nodes create a free graph, i. e., the topology is not enforced and not 
even known. As a result FADA nodes are relying on node-interactions (transactions) for creating 
links. In this sense, the network design we propose builds on the principles of FADA, but is 

extended with the design concept of dynamically formed Virtual Super Peers. 

As the first step, the class diagram of transaction context and consistency logs (EDG and IDG 
class diagrams) are presented and then the sample scenario and the roadmap of implementation by 
collaborating with IPTI (IPTI, 2009) have been presented. The RESTful frameworks as the next 
step and XMPP implementation by Teachldeas are the other sections of this chapter. Furthermore 
Appendix II and III include more details about implementation and collaboration with other 
researchers. 

8.1 SCHEMAS AND THE MODEL INFRASTRUCTURE 

The primary expectation of the implementation is to clarify the consistency model of the 
transaction. In chapter 4 we have shown the xml schema of transaction context and a sample xml 
scenario (section 4.2), meanwhile the xml schemas for IDG and EDG is provided at the end of 
same chapter (section 4.7). 

Here we provide a set of Java classes which represent foundation of parser the transaction 
context, IDG and EDG Schemas. These classes can be imported in any java project to adding the 
ability for creating the transaction tree, traverse it, add elements and specify their attributes. 
Meanwhile by using IDG and EDG for data dependencies between different participants, it is 

possible to use the proposed consistency model in this thesis. 

One may marshal or unmarshal the transaction context. Marshalling creates an XML document 
from a content tree, when unmarshalling an XML document means creating a tree of content 
objects that represents the content and organization of the document (The content tree is not a 
DOM-based tree. In fact, content trees produced through JAXB can be more efficient in terms of 
memory use than DOM-based trees). 

In the implementation, easily, you can call the marshal method. This method does the actual 
marshalling of the content tree. When you call the method, you specify an object that contains the 

root of the content tree, and the output target. For example, the following statement marshals the 

content tree whose root is in the collection object and writes it as an output stream to the xml file. 
The transaction context is `TransactionSample'. 
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File f= new java. io. File(t is. fName); 

try { 

javax. xml. bind. JAXBContext jaxbCtx - javax. xml. bind. JAXBContext. newinstance( 

TransactionSample. getClassO. getPackageO. getNameO); 

javax. xml. bind. Marshaller marshaller = jaxbCtx. createMarshallerO; 

marshaller. setProperty(javax. xml. bind. Marshaller. JAXB ENCODING, "UTF-8"); //NOII8N 

marshaller. setProperty(javax. xml. bind. Marshaller. JAXB_FORMATTED OUTPUT, Boolean. TRUE); 

marshaller. marshal(TransactionSample, f); 

marshaller. marshal(TransactionSample, System. out); 

this. fLenght=f. lengthO; 

} catch (javax. xml. bind. JAXBException ex) { 

// XXXTODO Handle exception 

java. util. logging. Logger. getLogger("global"). Iog(java. util. logging. Level. SEVERE, null, ex); //NOI18N 

Now, we can explore the actual class diagram of transaction context and the consistency model 
(Internal Dependency Graph and External Dependency Graph). 

8.1.1 TRANSACTION CONTEXT CLASS DIAGRAM 

As it has shown in Fig 4-18 the root of a transaction context schema is a tree (Transaction Tree), 

the root of which contains the main sub-transaction. A sub-transaction can be a simple 
web-service, delegation type, composition or data-composition. For presenting the nested 
structure of sub-transactions, we use a recursive structure which relies on a complex type that is 

called `SubTransactionType'. Fig 8-1 shows the actual class diagram of Transaction Context. 
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For applying the transaction concept, we first need to create the transaction. As is shown in Fig 

8-1, the root of transaction context, is Transaction Tree. Therefore we can define an object from the 
Transaction tree (Ti"ansactionSanrple). Two important elements of a transaction tree are its ID and 
Sub-transactions: 

private Transaction Tree TransactionSantple = new Transaction Tree 0; 

TransactionSample. setTransactionld(ralue); 

Tr"annsactionSample. sclSuuhTransaction(value); 

The Cla; s d agram has been made by Netbeans 6.1 based on its UML standard reengineering tools 

Digital Ecosystems - 136 - Amir reza Razavi 



Implementation Experiences and Roadmaps 

Schemas and the model infrastructure 

The Sub-transaction type must have an ID which is unique in the transaction context and 
between other sub-transactions of a transaction. Meanwhile the sub-transaction type must reflect 
the recursive structure of the transaction tree. This nested structure should be reflected in the 
composition of other sub-transactions. This will be done by setting the composition element, 
where the class for creating sub-transactions is 'Sub Transaction Type': 

private SubTransactionTipe SubTransactionSample = new Sub TransactionTypeQ; 

Sub TrunsactionSaniple. setSubTransactionId(value); 

Sub TransactionSampk. setComposition(value); 

For defining service composition objects, the `ServiceComposition' class has been defined (Fig 
8-1). This represents the recursive structure of the transaction tree; when Sub-transaction can have 

a service composition element, a service composition will compose several sub-transactions (it has 

sub-transaction element). A simple example of defining an object of ServiceComposition' can be 
found as below: 

private ServiceComposition ServviceContpositionSample = new ServiceCompositionO; 

ServiceCornpositionSample. subTransaction. set(iudex, Sub TransactionSample); 

8,1.2 IN"I'f: f: N ll. DI-. 'PENDENCY GRAPH CLASS DIAGRAM 

In chapter 4, we have shown, based on the theorem, for avoiding wormholes the first necessity 
for internal dependency logs is the possibility for tracing dependencies. The root of such a schema 
is the `internal dependency graph', when the first element identifies the data-item which is to be 

shared and the second element shows the chains of dependencies. Fig 8-2 shows the class diagram N 
of this consistency log. 
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protected CItject d? pandacyType 

Operations 

ubl¢ SubTransaction getCriginator( 
ubbc void selOaginator( SubTransacbon value ) 

ublic Object geiDependecyType( ) 

ublic void setDependecyType( Object value ) 

ublic ObjectType getSubjectedTo( ) 

ubhc void set5ublecledTo( ObjeclType value 
public Dependency getAccessedBy( ) 

public void setAccessedBy( Dependency value 

The root of the IDG class diagram (similar to the xml schema) has been known as the 
i, iternalDependenlcvvGraph, includes an identity and the internal dependency for keeping the 
dependencies to a particular data item: 

private InternalDependenc. t'Graph IDG_Sample = new InternalDependenc}'Graph(; 

IDG Sample. setldentitti"(ivalue); 

IDG Sumple. setlinter"nalDependency(value); 

The internal dependency in this graph is a dependency type. The structure of `Dependency', by 

using a recursive structure, creates the graph and traces the chains of dependencies for a data-item. 
In this way we can avoid any cycle in the graph. The dependency type has three elements; 
`Originator' (sub-transaction that share the data item), `SubjectedTo' (the modifications on the 
data-item) and ': 1 cccssedBi ' (shows the next level of dependency on the object). 

-[ 'l "i,, " ,i,.: "i � n'a' b, ir n made bti Netbeans t,. 1 ba, ed on its UML standard reengineering tools 
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private Dependency DependencySample = new Dependency(); 

DependencvSample. setAccessedßy(DependencySaniple); 

DependercvSample. setOriginator(SubTransaction value); 

Depemlentc. i-Sample. sctSubjectedTo(ObjectType value); 

8.1.3 EXTERNAL DEPENDENCY GRAPH CLASS DIAGRAM 

As we have explained in chapter 4 (4.6 and 4.7), partial results may be released before the actual 
commit of a long-running transaction. We have introduced a mechanism for releasing them; 
`Conditional Connnit'. The role of the 'External Dependency Graph' is crucial in this mechanism 
(recall section 4-6), and we have introduced an xml schema which provides traceability for these 
dependencies. Fig 8-3 shows the class diagram of this consistency log. 
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FIG. 8-3 EXTERNAL DEPENDENCY GRAPH CLASSES12 

The root of the external dependency graph is `ExternalDependencyGraph', where the first 

element identifies the data-item which is to be shared, the second element clarifies the owner of 
data-item (the identity of the transaction and its particular sub-transaction, which share the 
data-item) and the third element shows the chains of dependencies. 

Try, ' (. rý ýiý )Lr, inl h, i, 1-('n race by Netbeans b. 1 based on its UML standard reengineering tools 
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private ExternalDependencyGraph EDG_Sample = new ExternalDependencyGraphO; 

EDG_Sample. setldentity(value); 

EDG_Sample. setOriginator(Transaction value); 

EDG_Sample. externalDependency. set(index, DependencySample); 

The external dependency in this graph is a dependency type. The structure of `Dependency', is 

slightly different to the internal dependency graph, as always the dependencies are from a 
generator towards other transactions (recall 4-6). The current class diagram automatically avoids 
any recursion or loop, in this way we can avoid any cycle in the graph. Two important elements of 
dependency type are; 'SubjectedTo' (information and context of the shared data-item and any 
probable modifications) and `AccessedBy' (or Transaction shows transaction which accessed the 

object/data-item). 

private Dependency eDependencySample = new Dependencyo; 

eDependencySample. setSubjectedTo(ObjectType value); 

eDependencySample. Transaction. set(index, Transaction value); 

8.2 JXTA AND DE MODEL 

We have started to work with IPTI in Brazil ('Instituto de Pesquisas em Tecnologia e 
Inovacäo'(IPTI, 2009)) for providing an implementation of the model. The aim here is to exploit 
the characteristics of the transaction model, mostly in terms of interaction-based service 
composition and the fine-grained lock scheme, in supporting complex interactions within the 

collaborative platform guigoh ("guigoh - Social Network, " 2008) and improve its social network 
aspects. In the first instance we have been looking at reducing the traffic complexity of the 
interactions and adding provision for business services. 

The first implementation uses JXTA protocols, which are defined as a set of XML messages 
which allow any device connected to a network to exchange messages and collaborate 
independently of the underlying network topology ("jxta: JXTATM Community Projects, " 2007). 

The first prototype of this work, together with preliminary documentation, can be found in the 

opensource project 'flypeer' and can be downloaded from ("Flypeer - Dynamic P2P Infrastructure 

- Project Kenai, " 2008). Based on this model, by growth of participants, the dynamicity of VSPs 

comes into play and the consistency model can be fully distributed. At the moment, in 

collaboration with IPTI we have examined the transaction context, through sample 
service-oriented scenarios, where the main services are optimised for creating parallel, sequential 
and alternative compositions of virtual online conferences. This has included the fully distributed 

transactional communication (exchange of messages, initiating a transaction, and terminating the 
transaction). The P2P relationship between participants and their services has been supported in a 

I' 
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purely loosely coupled manner. 

In the next steps, we plan to extend the implementation prototype by considering more complex 
scenarios and introducing additional traffic complexity through incorporating more heavy 
services, such as voice, video streams. In addition, we are looking at introducing a larger number 
of transaction participants and work is in progress in integrating the user interface for monitoring 
the model. 

8.2.1 INTERNAL MODEL 

The core of the Peer-to-Peer (P2P) layer is based on the described model in this thesis 
(transactional model in chapter 4 and 5, the networked infrastructure in chapter 7 and distributed 
behaviour analysis in chapter 6), and the related papers can be found at (Razavi et al., 2009), 
(Razavi et al., 2007c), (Razavi et al., 2008a). 

The following is a short description of our work so far and, more importantly, the work we still 
need to implement. At the very core of the infrastructure there is a transaction module. This is 

where we are most focused now. Among others, we are considering three types of transactions: 

" Sequential: when actions occur one after the other; 

" Alternative: when one action occur and, if it fails, another one takes place; 

" Parallel: when two actions occur at the same time. 

With transactions working, we define the so called Virtual Private Networks (VPTNs), based on 
the nodes interacting through transactions. And these VPTNs will provide the base for building 
Dynamic Virtual Super Peers (DVSPs), which are the final goal of the infrastructure core. 

8.2.2 EXAMPLE SCENARIOS 

In parallel to the implementation, we are working on two small demonstrators, to help us keep 

the code working while doing several big changes: 

9 Travel agency: a simulation of a travel agency booking hotels and flights; 

" Chat: a small text chat client. 

Besides that, we have EvEsim ("Evesim - Digital Ecosystems Research, " 2007) working on top 
of our infrastructure for simulation and evaluation purposes. 

8.2.3 ADDITIONAL INTERNAL STRUCTURES 
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We have worked on a few internal structures that are quite important, yet they are not finalised 

and may change according to further research. So here they are: 

Peer state handling: defining how each peer will keep its internal state, such as current 
transactions, transaction's contexts, among other things; 

" Local and Remote Service Repositories: repository of the services provided by the local 
peer, as well as provided by remote peers; this is mapped to local and global service 
repository which has been introduced in chapter 3 and explored in the rest of this paper. 

" Business services interfaces: we are trying to define a user-friendly interface which shall 
provide an easy way for users to build services on top of the infrastructure. But this work 
is still in its primary steps. 

Meanwhile, some additional components are under customisation The important ones are listed 
below: 

Service Deployment: In this step, we are just embedding it in our test environment, but 

we have considered an evolutionary plan which will move towards a RESTful 
framework (8.3); 

" Applet / JS communication: We currently test the infrastructure running inside browsers, 
but not an eventual communication model; 

" Error handling: At the moment the classic failures are considered but during more 
extended tests, we will improve the error handling routines; 

8.3 RESTFUL FRAMEWORK 

We have considered the evolution of digital ecosystem towards a RESTfuI model as the next 
step of the current implementation (Razavi, Marinos, Moschoyiannis, & Krause, 2009). As this 
framework is in the early days, we have provided a brief explanation about the current work (more 
details can be found in Appendix II). 

8.3.1 REST AND TRANSACTIONS 

Representational State Transfer (REST) is a distributed computing architectural style that was 
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defined in 1999 by Roy Fielding (Fielding, 2000) based on the architecture of the World Wide 
Web. REST emphasises resources identified by names, a fixed number of methods with known 
semantics to manipulate those resources, hypermedia as a means of traversing the resources and 
statelessness in the interactions between client and server. REST has gained traction in addressing 
many common use cases for distributed systems. As is common with disruptive technologies, the 
use of REST over HTTP is evolving to compete with WS-* in increasingly advanced usage 
scenarios (Richardson & Ruby, 2007). Our work in this arena aims to be part of the next wave of 
REST evolution by defining a RESTful transaction model that is designed to operate over HTTP. 

While transactions are concerned with the constraints of maintaining the ACID properties, 
REST adheres to its own set of constraints. To create a truly RESTful transaction model, it is 
necessary to satisfy both the constraints of REST and the constraints relevant to the ACID 
properties of transactions. This is the primary contribution of this section. 

When two (or more) transactions access the same resource, they may produce two (or more) 
different versions of that resource (lost update), or simply they may work with the out-of-date 
version of the resource (dirty GET and unrepeatable GET). Fig 8-4 shows these three faulty 

scenarios, which are typically called wormholes as they lead the system to an inconsistent state. 

Unrepeatable GET 

<r, 1> 

T2 
<r, 2> 

<r, 2> 

T, GET r, 1> 
Ti PUT <f 2> 
Ti GET <t', 2> 

Lost Update 

-_ <r. l> _ 

<r, 2> 

<, 2> 

T2 GET 
Ti PUT 
Tz PUT 

<r, 3> 

<r, 2> 
-cr 2> 

FIG. 8-4 INCONSISTENT SCENARIOS 

Dirty GET 

<r, l> 

<r2> 
T, - Tz 

<r, 2> 

<r, 3> 
T2 PUT <r, 2> 
T, GET <r, 2> 
T2 PUT <r, 3> 

8.3.2 APPLYING THE ISOLATION THEOREMS TO REST 

One transaction instance T is said to depend on another transaction T' in a history H if T GET 
(reads) or PUT (writes) data-resources previously PUT (written) by T' in the history H, or if T PUT 
(writes) a resource previously GET (read) by T'. 

We can formalise such dependencies using a directed graph where nodes are ̀ transactions', arcs 
indicate ̀ transaction dependencies', and labels on arcs denote ̀resource versions'. 

The version of a resource r at step k of a history H is an integer and is denoted V(r, k). In the 
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beginning each resource has version zero (V(r, 0)=0). At step k of H, resource r has a version equal 
to the number of writes of that resource before step k. Formally: 

V(r, k) =I {(tj, aj, rf) EHj<k and aj = PUT and rf = r) I 

(The outer vertical bars represent the set cardinality function. ) 

Each history, H, for a set of transactions [Ti} defines a ternary dependency relation, denoted by 
DEP(H), as follows. 

Let Ti and 72 be any two distinct transactions, let r be any resource, and let i, j be any two steps 
ofHwith i<j. Suppose step H[i] involves action al of Ti on resource r, step H[/] involves a2 of 
72 on r, and suppose there is no PUT on r by any transaction between these steps (there is no 
(T', PUT, r) in H[i + 1], ..., H[j - 1]). Then DEP(H) is defined as: 

(T, (r, V(r, j)), T) E DEP(H) 

if al is a PUT and a2 is a PUT 

al is a PUT and a2 is a GET 

a1 is a GET and a2 is a PUT. 

PUT-- PUT, PUT- GET and GET- PUT dependencies. 

The dependency relation for a history defines a directed dependency graph, where transactions 
are the nodes of the graph, and resource versions are label on the edges. If (T, (r, j), T) E DEP(H), 
then the graph has an edge from node T to node T' labelled by (r, j ). Two histories are equivalent, 
if they have the same dependency relation. 

The dependency relation of a history defines a time order of the transactions. Conventionally this 
ordering is signified by «< and it is the transitive closure of «<H. It is the smallest relation 
satisfying the equation T «<H T' if (T, r, T') E DEP(H) for some resource version r, or 
T «<H T and (T", r, T') E DEP(H) for some transaction T" and some resource r. Whenever 
T «< T'there is a path in the corresponding dependency graph from transaction T to transaction 
T'. The «< ordering defines the set of all transactions that run before or after T as follows. 

BEFORE(T) _ {T'IT' «<T} 

AFTER(T) _ (T'IT «< T'} 

If T runs fully isolated (ex: it is the only transaction, or it GET and PUT resources not accessed 
by any other transactions), then its BEFORE and AFTER sets are empty (it can be scheduled in 

any way). When a transaction is both after and before the other distinct transaction, it is called 
wormhole transaction (T' here): 

T' E BEFORE(T) n AFTER(T) 

Therefore, a cycle in a dependency graph is a wormhole. Using a well-formed and two phase 
locking mechanism is a conventional method for avoiding wormholes. In the next section we 
introduce a locking mechanism which produces a history that is equivalent to a serial history (Gray 
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& Reuter, 1993). Serial histories do not present wormholes. 

8.3.3 A MODEL FOR RESTFUL HTTP TRANSACTIONS 

For an API to be characterized as RESTful, according to the hypermedia constraint, it must 
allow a client to interact with the service solely by being given a single entry URI and 
understanding of the relevant media types. This results in extremely loosely coupled systems with 
a minimum of assumptions. Additionally, it is desirable that the always-available and backwards 

compatible nature of the web is preserved and not be made unavailable by the introduction of 
locks. To accommodate these requirements, a number of resources and resource collections have 
been defined in addition to the resources that the transactions interact with. These resources are 
necessary for the transactions to take place in a RESTful environment. 

Lockable Resource (R) ,. t- A resource that locks can be applied to -, 
Operations: GET. [By XLOCK owner. PUT] 

Resource Lock Collection The collection of locks that apply to a particular 
(R-Lc) resource. Operations: GET, POST 

te T Lock Resource (R-L) ro. - The representation of a specific lock 
Operations: GET 

Conditional Resource Representation (R-C) The potential representation of a locked resource, once its lock is committed. Operations: GET, [By 
XLOCK owner. PUT, DELETE] 

Transaction Collection (Tc) -The collection of transactions on the server. 
Operations: POST 

Transaction Resource (T) The representation of a specific transaction. 
Operations: GET 

Transaction Lock Collection (T-Lc) ' "%ý'"'The collection of locks connected to a specific transaction: Operations: GET. [By transaction owner. 
DELETE] 

Owner Collection (Oc) The collection of owners of a specific transaction 
Operations: GET, [By transaction owner. POST] 

TABLE 2- RESOURCE TYPES AND ALLOWED OPERATIONS 

The resources required can be seen in the left column of Table 2, while the right shows the 

relevant HTTP operations available for each resource. 

(ý }ý R-Lc 

Tc) (R-L 

T) I (R-c 
Oc) (T-Lc 

FIG. 8-5 RESOURCE RELATIONS 
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Having defined all the resources, it is easy to see that a network arises. Fig 8-5 displays the 
interconnections of the resource graph (more extended version can be found in the Appendix II). It 

can be observed that having a URI for R is enough to locate all other resources in the network. The 
connection from Tc to T is different frone the other connections as there is no GET ability for the 
Tc resource. The URI of T is returned as a response to a POST operation on Tc performed by the 
transaction's owner. 

Ideally any resource that can be served by an HTTP server should be potentially lockable. This 
however would require the HTTP protocol to carry the metadata for the locking mechanism. Since 

we wish to preserve the HTTP protocol, we limit ourselves to a snippet of XML that is to be 
included in an XML representation of a resource which could look something like the following: 

oc kd n It", 

ýI1,1, rrl- _ _oIe: 
LOr" nrof= http: //ex a nip Ie org. ire ouree; locks/ 

clink rel="trans action_collecbon" href="http: //example. org/transactions, °'. " 
</lockable> 

Namespaces could also be utilized to avoid namespace collision but this would make the 
approach difficult to apply to other (e. g. JSON) representations which do not have support for 

namespaces. 

As it is expected, a history should not complete a lock action on a resource when that resource is 
locked by another transaction. But if two or more transactions want to just read (GET) the content 
of a resource. they do not change the resource version (state). This will not cause any conflict or 
access to dirty data (data/resource which has been PUT by another transaction) but the transaction 
has not committed and may change the version of the resource again (recall Fig. 8-5). Table 3 

shows the lock compatibility. The inferred rules constrain the set of allowed histories. Histories 

that satisfy the locking constraints are called legal histories. 

Mode of Preceding Lock 
o SHARE EXCLUSIVE 
au 

ÖZ 
SHARE YES No 

2i EXCLUSIVE No No 
Tahlc 

.,. 
I ock Compatibility 

8.3.4 Fu'ruRE. WORK 

We have provided a RESTful framework for business transactions by adapting the conventional 
locking mechanism to work within the architectural style of REST. We have shown that this 
locking mechanism is well formed and two-phase through the application of the Isolation 

theorems. Further details have been provided in Appendix II and the next step of this framework is 

applying our extended long-running lock mechanism to this model for covering more complicated 

transactions. 
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8.4 THE MODEL ON AN XMPP IMPLEMENTATION 

Our work on distributed coordination of long-running transactions involving the deployment of 
services started in the Digital Business Ecosystem (DBE) project. The support for a distributed 
transaction model initially targeted the DBE Studio' 3 which can be understood as a service 
container for search and deployment of services from various services providers, and specifically 
SMEs. The DBE Studio implemented by Techldeas 14 uses the so-called FADA network. 
Experience with FADA has shown the network to become unstable in certain respects. Subsequent 
analysis and further experimentation under the real DBE studio implementation revealed certain 
problems relating to connectivity and fragmentation. Our own simulations have also highlighted 
such aspects. 

Currently, the work led by Techldeas is steered towards using XMPP15 protocols and a first 
implementation of this is a new platform called Sironta'6. XMPP at its core is a technology for 

streaming XML over a network. Our transaction framework is concerned with optimising 
transactions in terms of the XML context, the consistency model for the interactions. In the 
OPAALS project17 there is a roadmap for integrating this work with Techideas' implementation 
in order to provide a customised infrastructure for the service-oriented platform Sironta. 

Th. 'Lll St, l, r, ,, in intet'rated Development Environment (IDE) for the Digital Business Ecosystem (DBE). It includes eclipse plugins that 

allow nus nes< '. erviceto be analysed, and corresponding software services to be defined, developed and deployed; 

http: //dbestudio sourceforge. net/ 

http: //techideas. es/ 

Extensible Messaging and Presence Protocol (XMPP) is an open, XML-based protocol originally aimed at near-real-time, extensible instant 

messaging IIM) and presence information (e. g., buddy lists), but now expanded into the broader realm of message oriented middleware; 
http /xmmpp. or 

http: //www. sironta. com/ 

"OPAALS is a global Network of Excellence formed around multi-disciplinary research into Digital Ecosystems. OPAALS research covers 

social science, linguistics, computer science, software engineering, and biology. Part-financed for four years by the European Union's 6th 

Framework Programme, OPAALS launched on Ist June 2006. The current partners in the network are listed below; http: //www. opaals. org/ 
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FIG. 8-6 XMPP IMPLEMENTATION FOR DIGITAL ECOSYSTEM 

Fig 8-6 outlines the general idea behind the integration of the two approaches which involves 

modelling XMPP servers onto customised SME's servers. In this case, the digital ecosystem 
infrastructure described in this thesis can act as an SME transactional cloud, which dynamically 

optimises itself to respond to the usage that is being made of it based on the transactions taking 

place between participating organisations. 
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In this thesis, a loosely coupled solution has been described in the context of digital ecosystems, 
and in particular we have been concerned with services, transactions, and network support within 
the digital ecosystem initiative. The structure of the interaction network within the architecture we 
have proposed emerges through the local interactions that take place in the context of long-running 
business transactions. 

Particular care has been taken to ensure that transaction and network (environment) support in 

our approach satisfies certain requirements that are pertinent to the adoption of digital ecosystems 
by SMEs. The absence of a central point of command and control (and by virtue of that, also 
governance), and consequently the absence of a single point of failure, the distributed 
coordination, the usage of loosely-coupled services, the resilience to fragmentation and smart 
attacks, and allowing for a dynamic topology that continuously adapts to reflect the actual usage of 
the network in terms of business transactions are the main features that figure prominently in the 
proposed digital ecosystems' design. 

In part, this has been achieved by considering a distributed model for the coordination of 
long-running transactions, and the provision for fine-grained lock schemes and recovery 
procedures. The transaction model feeds into the corresponding Virtual Private Transaction 
Networks (VPTNs) which are the main building block for the underlying network that supports 
these complex interactions between participating entities. 

The basic design feature of the digital ecosystem network has to do with the Virtual Super Peer 
(VSP) construct. These clusters of stable nodes are used instead of the conventional super peer 
solution and allow for creating a connected network without generating dependency on a single (or 
a few) network infrastructure provider(s). They are formed dynamically and this means the VSP 

solution also allows the network to reconfigure itself and withstand certain types of failure that 
typical scale-free networks find it difficult to recover from such as fragmentation or smart attacks. 

Some of the basic features of the VPTNs go beyond the domain of business transactions and are 
relevant in more general complex interactions for example involving knowledge services. For this 
reason we have focused on correctness of the transaction model. 

This is important not only because the VPTNs are the main building block for the underlying 
network but for other applications over digital ecosystem networks. For instance, a prerequisite for 

online collaborative editing of documents (or content more generally) is that changes made by one 
participant are visible to the rest and not overwritten by their concurrent edits. The proposed lock 

scheme, here considered within the transaction model, allows for such simultaneous editing on 
different parts of the document, and this is something that is being incorporated in the guigoh'8 or 

http: /Zwww. guigoh. com / has been deigned by IPTI 
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OKS'9, e-learning collaborative platform in collaboration with IPTI as outlined in chapter 8 (8.2). 

As mentioned before, a digital ecosystem is highly dynamic environment for a variety of reasons 
and failures of various types are to be expected. Therefore, our efforts so far have been targeted at 
providing a stable network that exhibits increased connectivity and resilience to fragmentation. 
For instance, time-zones and a pool of candidate nodes factor in the formation of VSPs and hence 
the proposed digital ecosystems' network design works best as the number of nodes increases. 
Further experimentation is under way with regard to a number of parameters in the proposed 
framework such as the minimum number of nodes that afford desired stability levels, the period of 
time needed for forming layers of VSPs and this is in addition to other considerations such as 
adapting efficient search algorithms into our framework. In terms of transactions, we are looking 
at other variable parameters such as the time-out in T-Lock and the overall execution period of a 
given transaction. Although these tend to be domain-specific, we are keen to exploit the 
interrelationship with the underlying network topology in providing a more stable environment for 
business activities and open collaboration. 

Another factor that adds to the dynamicity of a digital ecosystem for business is that nodes 
(especially when considering SMEs) may be joining or leaving the network continuously, and in 
some cases abruptly. The proposed model is essentially an unstructured network, which only 
inherits from the VPTN network structures. In this thesis we have only touched upon the issues of 
birth and growth. 

In addition, the network topology itself evolves continuously based on the dynamically formed 
VSPs. In order to get a handle on how the network topology evolves under the events of nodes 
joining and leaving the network, we have been looking at biological models of growth in living 
organisms. Of particular interest seems to be the study of molecular networks of lipids and proteins 
in (Rzhetsky & Gomez, 2001), (Gomez, Lo, & Rzhetsky, 2001) which exhibit scale-free 
characteristics and has interesting properties with respect to connectivity. 

Preliminary investigations show that these aspects are driven by the major evolutionary events in 
growth in molecular networks; namely domain duplication and innovation. We are currently 
examining ways to inform the reaction of the network, possibly in terms of the neighbouring 
nodes, to the event of a node joining the network or leaving. This can be coupled with the 
component-based design of the local software agent on each participating node, and this is 
certainly an aspect of the work that we are keen to investigate further. 

Conceptually, the proposed model satisfies the main properties of Digital Ecosystems. The 
Transaction model provides a practical framework for interaction and engagement of businesses. 
Despite their size they can use our coordination model as a loosely couple business interaction 
model which respect their local autonomy. This is the main reason for this model to be used for 
coordination model in OPAALS project (Razavi et al., 2007b). The self-organising procedure for 
creating Virtual Super Peers provides the sustainability of the environment through the stability 

"httD: //oks. ooaals. ora/ officially part of OPAALS project 
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function and satisfies Balance requirement (Chang & West, 2006a) of Digital Ecosystems. Further 
more for tolerating the dynamicity of environment, especially when the participants are Small and 
Medium Enterprises, the optimised recovery mechanism have been provided which offers a self 
recovery method that is able to avoid full recovery when there is an alternative path for the 
interaction. As ongoing activities, new criteria such as RESTful frameworks and detailed 

simulations have been considered for exploring the model in different environment (Appendix II 

and III). 

9.1 KEY CONTRIBUTION AND FUTURE PLANS 

The main contribution of this thesis is to provide a loosely coupled solution, based on the context 
of digital (business) ecosystems. Specifically, it has been concerned with services, transactions, 
and network support within the digital ecosystem initiative. The proposed coordination model 
enables businesses to trigger their business transactions, when the consistency and recoverability 
of transactions are sustained. In term of the infrastructural support, the proposed dynamic topology 
of the network provided a fully distributed solution for stable environment which is resistant 
against failure. 

The foremost features that figure prominently in this proposed digital ecosystems' design are: 

- The absence of a central point of command and control 

- The absence of a single point of failure 

- The distributed coordination model with full consistency and recoverability 
properties 

- The usage of loosely-coupled services, 

- The resilience to fragmentation 

- Allowing for a dynamic topology that continuously adapts to reflect the actual 
usage of the network in terms of business transactions 

As future plans, we can mention the continuous implementation paths of current research and 
multidisciplinary approach for infrastructure. Meanwhile other relevant approaches in term of 
deadlocks and potential overheads are another dimension for future work: 

- Extending the network topology by looking at biological models of growth in 
living organisms (Rzhetsky & Gomez, 2001), (Gomez, Lo, & Rzhetsky, 2001) 

- Contributing in three different implementation paths (JXTA, RESTful & 
XMPP) 
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- Exploring the formal modelling for analysing new criteria such as algorithm 
complexity, deadlock issue, etc. 
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10 APPENDIX I: FORMAL MODELLING FOR PATTERN BEHAVIOUR OF 
LONG-RUNNING TRANSACTIONS 

In chapter 6, the analysing pattern behaviour has been explored. For extending the formal model 
to investigate transaction pattern behaviour the vector language by Shields (Shields, 1997) and 
Moschoyiannis (Moschoyiannis, 2005) is adapted. The proposed model in this appendix, is 
Moschoyiannis' motivation, which during the collaboration with Razavi in OPAALS has been 
introduced: 

A. Razavi, S. Moschoyiannis and P. J. Krause. Report on formal analysis of autopoietic 
P2P network, together with predictions of performance. OPAALS project Deliverable 
D3.2,2007. 

" S. Moschoyiannis, A. Razavi, Y. Zheng and P. Krause (2008) Long-Running 
Transactions: semantics, schemas, implementation, In Proc. of IEEE Int'l Conf. on 
Digital Ecosystems and Technologies (IEEE-DEST 2008), IEEE Computer Society. 

" S. Moschoyiannis, A. Razavi, and P. Krause (2008) Transaction Scripts: making implicit 

scenarios explicit. In Proc. of ETAPS 2008 - Formal Foundations of Emebedded 
Software and Component-Based Software Architectures (FESCA'08), ENTCS, Elsevier 

The appendix is derived from OPAALS project Deliverable D3.2. 

10.1 TRANSACTION VECTORS: A LANGUAGE-BASED REPRESENTATION 

We may now start to describe the pattern actions of long-running transactions more formally. As 

mentioned before, our objective is to get a thorough understanding of the behaviour the underlying 
service composition need to exhibit for successful commit or compensation of the transaction as a 
whole. 

In our behavioural model of a transaction it suffices to use formal notation for the leaves only. 
The aggregation coordinators (nodes) are manifested in the structure of the resulting formal 

construction, and there is no need for additional notation. A transaction T, then, is associated with 
a set of leaves L which consists of a set of basic services S, a set of data-oriented coordinators D 

and a set of delegation coordinators Dlg. Hence, L= SUD UDlg. 

In this appendix we introduce a formal language for describing long-running transactions. The 

semantics is intended to describe the behaviour of a transaction in terms of its services at the 
deployment level, but not the low-level computations performed by the services themselves. Note 
that services are offered in a digital ecosystem for business from different service providers and it 
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is important that we defer from interfering with the local state of the service execution. The 

service-oriented architecture for distributed transactions reinforces our interest in all 
environmentally observable actions inside and outside a transaction. That means it is appropriate 
to consider that any action within the transaction model has no significant duration, in the sense 
that (i) it either occurs as a whole or not at all; (ii) it occurs either wholly before, or wholly after, or 
wholly in parallel with, every other action. 

A transaction may thus be associated with a finite set of events or significant events (Singh, 
1998) or actions that may occur (on its subtransactions) upon activation, e. g. service invocation, 
initialisation, commitment, service return, release result (return), termination, abort, etc. We 
denote this set of actions of a transaction by M. 

These actions take place on the leaves and therefore it seems appropriate to say that each leaf is 
in turn associated with a set of actions that may occur on that leaf, depending on its nature. We 

denote this set by p (1), 1 E L, and require that U" (1) c M. 
ZEL 

In any behaviour of a transaction T, each subtransaction on the leaves will be activated and 
experience a sequence of actions formed over the corresponding set p (1), 1eL. We may thus 
describe the behaviour of the transaction by assigning such sequences to each of its leaves. 

Definition 1. (Transaction vectors. ) Let T be a transaction. We define VT to be the set of all 
functions v: L-> M* such that v(l) ep (0*. We refer to elements of VT as transaction vectors. 

By p (0* we denote the set of finite sequences over p (1). Mathematically, the set VT is the 
Cartesian product of the sets u (0*, for each 1. Effectively, transaction vectors are n-tuples of 
sequences where each coordinate corresponds to a leaf in the transaction tree (hence, n is the 
number of leaves) and contains a finite sequence of actions that have occurred on that leaf. 

When an action occurs on a leaf of the transaction tree, that is to say when an action associated 
with some subtransaction takes place, it appears on a new transaction vector at the appropriate 
coordinate. For example, the vector 

(Si, A, A) 

describes that portion of behaviour of the transaction in which an action s, (e. g. service 
invocation) has taken place on the corresponding service allocated to the first coordinate. The 

vector 
ASS, s2, /ý ) 

describes that portion of behaviour in which both sj and s2 have happened on the corresponding 
services while the vector 
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(5153) S2, A 

describes an occurrence of sl and an occurrence of s3. on the service corresponding to the first 
coordinate, and an occurrence of s2 on that of the third coordinate. Nothing has happened on the 
service corresponding to the third coordinate. 

In this sense, each transaction vector provides a snapshot of behaviour in which the transaction 
has executed the actions appearing on the vector's coordinates - the vector tells us what actions 
have already occurred and on which part of the transaction tree. 

This vector-based description of behaviour allows recording the actions of a transaction as these 
occur on the multiple services involved in the execution of the transaction. Readers familiar with 
process algebras like CSP or CCS can understand each particular coordinate of the vector 
description as a sequential CSP process. In this sense, the transaction vectors can be understood as 
the Cartesian product of sequential processes describing each leaf in a transaction tree. 

It can be seen from the examples given above that there is already an ordering among actions on 
a particular subtransaction (e. g. s, followed by another si). This vector-based behavioural 
description of transactions can also capture the orderings between different subtransactions, which 
amounts to actions appearing on different vector coordinates. This requires however a more 
careful consideration of the mathematical properties of such vectors which we briefly describe in 

the following section. 

Before examining the mathematical properties of our construction so far, we introduce a specific 
kind of transaction vectors, which is used in our model to describe actions (events or activations) 
within a transaction. 

Definition 2. (Column vectors. ) Let T be a transaction and VT its set of transaction vectors. We 
define 

AT ={QEVT \{A,. }: 1EL=>Ia(l)1S1) 

where IxI denotes the length of sequence x. We refer to elements of A. as column vectors. 

Thus, the vectors of Definition 2 are themselves transaction vectors, but have the additional 
constraint that each of their coordinates is either the empty sequence or a single action. For 

example, the vector (s,, A, A) represents the occurrence of an actions, on the sub-transaction 

associated with the first coordinate. 

We will use the term transaction language to refer to a subset V of all possible vectors VT 
formed over a given transaction T. Hence, a transaction T comes with a language V, where VC VT. 

The idea is that the particular set of transaction vectors for a specific transaction expresses the 

ordering constraints necessary in the corresponding service orchestration. 
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10.2 ORDER-THEORETIC PROPERTIES OF TRANSACTION VECTORS 

In what follows we describe the basic order-theoretic properties of transaction vectors since this 
is what allows us to define operations on vectors. These are important in determining the 
coordination of the transaction in terms of its underlying service invocations. We will see how the 
order structure of sets of such vectors expresses ordering constraints on actions inferred by the 
execution of the various subtransactions inside a long-running transaction. 

We have seen that transaction vectors are essentially tuples of sequences. This can be exploited 
in defining operations on the vectors in terms of well-known operations on sequences. 

First, let us establish our notation. If x and z are sequences, we write x. z for the concatenation of 
x and z. As is well known this operation on sequences is associative with identity A, where A 
denotes the empty sequence. We also have a partial order on sequences given by x5z if and only 
if there exists a sequence y such that x. y = z, and this partial order has a bottom element A. It is also 
well-known that the operation `. ' is cancellative, which means that if x5z, then the sequence y 
such that x. y =z is unique. We shall denote this sequence by z/x. Finally, recall that if x, y, z are 
sequences such that x, y5z, then either xSy or y <_ x. 

We may now lift these well-known operations on sequences onto transaction vectors. This is 
done formally in the following definition. 

Definition 3. (Operations on vectors. ) For u, _v 
EVT, we define 

" u. v to be the unique vector w such that w(l) = u(l). _v(1), 
for each 1EL (concatenation) 

u: 5 v iff Y05 v(1), for each 1E L (prefix ordering) 

" glb(u, y) to be the vector w such that w(1)=min`(1), _v(1)), 
for each le L 

" lub`, v) (if it exists) to be the vector w such that w(1)=max(u(l), _v(l)), 
for each 1EL 

if us v then we define 
_v 

/u to be the unique zE VT such that u. z =v (right-cancellation) 

Thus, the operation of concatenation on vectors is defined in terms of the concatenation of 
sequences appearing on their respective coordinates. For example, 

(S1S3, S2, A)"(A, S4, A) = (SIS3, S2S4, A) 

Transaction vectors can be seen to be built up from the empty vector AT by a series of 
concatenations with column vectors (Definition 2) that represent actions. In fact, in describing the 
behaviour of a transaction we are interested only in those vectors describing (orderings of) actions 
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that we expect the transaction to engage in during the course of its execution. This is the subset of 
all possible transaction vectors, over a given T, we referred to as transaction language. 

For example, consider a transaction with three leaves (basic services) in which a service sl is 
intended to execute first, then a service s2 (which uses results of s 1, and is thus dependent on s 1) 
and after that execution continues with another service s3. This kind of (sequential) behaviour can 
be modelled by a series of concatenations. We assume the actions are labelled by the service name 
here, so we have actions al = (sl, A, A) for service invocation sl, a2 = (A, s2, A) for service 
invocation s2, and a3 = (A, A, s3) for service invocation s3. 

Initially nothing has happened. This is described by the empty vector AT = (A, A, A). 

Then, sl occurs. This is described in a vector v_ which is obtained by concatenating AT with the 
column vector representing the action s 1. Hence, we have 

nT. a1=(A, A, A). (sl, A, A)=(ss, A, A)=_v 

Then, s2 occurs. This is described in a vector u which is obtained by concatenating _v 
(the latest 

behaviour we have) with the column vector representing the corresponding action s2, here g1. 
Hence, we have 

v. 92 = (si, A, A). (A, s2, A) = (si, s2, A) =u 

Then, s3 occurs. This is described in yet another vector w which is obtained by concatenating u 
(the latest behaviour we have) with the column vector representing the corresponding action s3, 
here g3. Hence, we have 

u. a3 = (s1, s2, A). (A, A, s3) = (s1, s2, s3) =w 

In the next Section we shall impose conditions on transaction languages that ensure they 
comprise transaction vectors which are obtained in this way, and the coordination of the 

underlying services it determines corresponds to intended behaviour of the transaction only. 

The ordering amongst vectors is defined in terms of the usual prefix ordering operation on 
sequences appearing on their coordinates. For example, 

(s,, s2, A) <_ (s, s3, s2, A) since s, 5 s, s3 ands2 S s2 andA _< A 

In other words, the vector v_ ̀wins' on the first coordinate (since it has a sequence of greater 
length in this coordinate) while the two vectors draw on all other coordinates. It is not hard to see 
that some vectors will be incomparable. For example, 
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(s, s3, s2, A) and (s, s5, s2, A) 

or 
(s,, A, A) and (A, s2, A) 

It turns out that such vectors describe either parallel or alternative behaviours of the transaction 
in question, and this will be further discussed in Section 10.4. 

It is important to note that these two fundamental operations, concatenation and prefix-ordering, 
on transaction vectors are performed coordinate-wise in our model and this simplifies the 
mathematics of it and allows for relatively straightforward proofs. 

The operations g1bO and lubO of Definition 3 give the greatest lower bound and the least upper 
bound, respectively of R. _vE 

VT, in the usual sense of lattices and domain theory (Davey & 
Priestley, 1990). For example, for vectors v= (sl, s2, A) and u= (sl, A, s3) the glb`u, _v) 

is 

computed as follows, 

glb(u _v) = glb( (s1, s2, A), (s1, A, s3) )= (s1, A, A) 

since 
min(u(1), _v(1)) = Si 

min(u(2), _v(2)) =A 

min(u(3), 
_v(3)) =A 

Similarly, their least upper bound 1ub(u, v) is computed as follows, 

lub(u 
_v) = tub( (Si, s2, A), (s1, A, s3) )= (s1, s2, s3) 

since 
max(u(1), 

_v(1)) = s1 

max(u(2), v(2)) = s2 

max(u(3), 
_v(3)) = s3 

These operations are central to the treatment of concurrency in our approach and also have an 
important role to play in defining the properties that ensure the well-formedness of the behavioural 

description, as will be discussed in the next Section. 

The right cancellation operator `/' says that if u is a transaction vector describing an initial part of 
the behaviour described by y so that us _v, 

then v_ /u is the `continuation' of u that extends it to v. 
This operation is central to the treatment of compensations in our approach. It is also particularly 

useful, together with the ordering `a' (cf Definition 6), in deriving a transition relation that allows 
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to associate the vector-based description of behaviour with automata and asynchronous transition 
systems (Shields, 1985), in giving a state-based description of the interactions involved 
(Moschoyiannis et al., 2005). 

It can be shown (by an adaptation of the proof found in (Moschoyiannis et al., 2005), which is in 
turn based on that originally perceived in (Shields, 1997)) that a set of transaction vectors equipped 
with the operations of concatenation and prefix ordering of Definition 3 forms a monoid2° and a 

partial order. AT is used to denote the empty vector which has the empty sequence on each of its 

coordinates. 

Proposition 1. A set of transaction vectors VT is 

1. a monoid under'. ' and identity AT 

2. a partial order under < and bottom element AT 

Proof. 

For (1), it suffices to show that VT is closed under `. ' and that `. ' is associative. We argue 
coordinate-wise. Let u, vE VT and 1E LT. Since u(l), v_(l) e µ(l)* we have that u., (1) Eµ(1)*. 
Hence, u, vE VT, proving that VT is closed under ̀ . '. Now, for associativity, if u, v, wE VT, then 
for each 1E LT we have 

(u. (v. w))(I) = u(I). (v. w)(1) = (u(I). 
_v(I)). w(I) = (u. 

_v)(I). w(I) = ((u. v). w)(I) 

Since (u. (_v. w))(I) _ ((u. v). w)(I), for all IE LT, we have that u. (v. w) = (u. 
_v). w. so 'V is 

associative. 

For (2),. we need to show that ': 5 ' is reflexive, antisymmetric and transitive. Again, we argue 
coordinate-wise. Let u, _v, wE VT. Since u(1) <_ u(1), for all 1E LT, we have that u5u, giving 
reflexivity. If u _< y and also y <_ u, then 41) <_ Al), for all lE LT, and 1(1) 5 u(l), for all 1E LT, so 
we deduce that u(1) = _v(l), 

for all lE LT, which implies that u=v, proving antisymmetry. Finally, if 

u5 _v and v <_ w, then u(l) <_ 
_v(l), 

for all IE LT, and _v(1) 
<_ w(1), for all lE LT, so u(1) 5 w(1), for all 

1E LT, which in turn implies that u _< v, proving transitivity. 0 

We note that a transaction language Vc VT is not a monoid in general as it is not closed under `. ' 

unless it contains the empty vectorAT. We will see in Section 10.3 that this is the case in discrete 

(cf Definition 5) transaction languages. 

The incomparable vectors in the partial order (VT, S) allow to introduce a notion of 
independence between transaction vectors, which is central to expressing true-concurrency within 
our model. This builds on earlier work on describing parallel behaviour in Shield's behaviour 

vectors (Shields, 1997) where the notion of independence found in Mazurkiewicz traces 

2O Recall that a monoid is a semi-group with identity. 
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(Mazurkiewicz, 1988) is lifted onto vectors. This development is the topic of Section 10.4 where 
we are concerned with modelling concurrent actions of a long-running transaction. 

10.3 WELL-FORMEDNESS OF THE BEHAVIOURAL DESCRIPTION OF A 
TRANSACTION 

In describing the behaviour of transaction we are interested in the actions (activations) on its 

sub-transactions. These are captured in our model using column vectors (Definition 2). Thus, 
instead of considering all possible transaction vectors we would like to be concerned with those 
obtained by concatenations with column vectors only. This gives us the behaviour of the 
transaction in terms of activations or actions of its sub-transactions and can be used to enforce the 
coordination of the underlying services. 

We have seen that transaction vectors are obtained by coordinate-wise concatenation (Definition 
3), for example 

('xl, x2, x3)"(y1, Y2, Y3) - 
(x1Yl, x2Y2, x3Y3) 

In such a behavioural description of a transaction, transaction vectors can be seen to be built up 
from the empty vector by a series of concatenations with the column vectors (Moschoyiannis, 
2005), each of whose coordinates is either empty or contains a single event/action. 

For example, the column vector a= (s,, A, A) represents the activation of the leaf corresponding 
to the first coordinate. If sl is intended to occur only after both s3 and s4 have, then this is 
described in the transaction vector v= (s, , s3,54) which is obtained as 

u. R = (A, S3IS4)"(S1, A, A)= 
(S19S39S4) 

In order to ensure that vectors associated with a transaction are the result of concatenations with 
column vectors only, the set of transaction vectors must satisfy certain properties, namely 
discreteness and local left-closure. We introduce these properties next. 

In describing the behaviour of a transaction in terms of the coordination of its sub-transactions, 

we want to capture the fact that a system's computations always have a starting point, and ensure 
that only a finite number of events may occur within finite time. This turns out to be the case if 

whenever two vectors describe an earlier part of behaviour than a third, also on the set, then their 
least upper and greatest lower bounds are also in the set. This is formally put in the following 
definition. 

Definition 4. (Discreteness. ) Let Vc VT , then V is discrete if and only if, AT EV and 

whenever u, v, wEV such that u, v: 5 w then 
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(i) lub (m, v) EV 

(ii) glb(u, y) EV 

Note that lub (uu, v) EV is understood as asserting that lub (u, ! )is defined, i. e. the least upper 
bound of u, v exists. This property builds on the notion of consistently complete subsets, as 
discussed in (Shields, 1997), and further requires that the least upper and greatest lower bounds 
belong to the set. 

It can be seen that discreteness imposes a finiteness constraint in the sense that it excludes 
infinite ascending or descending chains of actions with respect to time ordering. It ensures that 

situations like those resulting in Zeno-type paradoxes will never arise. The famous Zeno 

paradoxes, in which the philosopher seeks to demonstrate the impossibility of motion, are 
examples of a non-discrete representation of system behaviour21. 

Consider a transaction T which involves the execution of two basic services, and let 

VT = {(A, A), (sis1, A), (A, s2s2), (sisi, s2s2)} 

We observe that VT is discrete (by checking against Definition 4). Indeed, VT is a lattice in which 
greatest lower bounds are computed coordinate-wise. However, the corresponding transaction 
language has the counter-intuitive property that although four actions have occurred, there are only 
two elements, namely (slsi , A) and (A, S2S2) to represent that portion of behaviour. The two 
vectors represent the second of the two actions only, at each service. We would like to eliminate 
such situations. 

In order to obtain a precise description of discrete behaviour, we further require that every 

occurrence of an action (e. g. service invocation, partial result, commitment) is recorded in the set 

of vectors associated with the transaction. This guarantees that any earlier part of behaviour is 

itself a behaviour and motivates the following definition. 

Definition 5. (Local left-closure. ) Let Vc VT ,lEL and x Eß(1) *. Then, V is locally 

left-closed if and only if, whenever vEV and A<x: 5 y(l), then there exists uEV such that uSv 

and u(1) = X. 

The above definition says that whenever there is a sequence of actions on some sub-transaction 
(or local coordinator) which is less or equal than some other sequence appearing in some 
transaction vector in V, then there is some other vector in V which describes an earlier part of 
behaviour and has that sequence on the corresponding coordinate. In fact, `local' comes from the 
fact the property is considered at the vector coordinate level and thus applies to individual 

21 Zeno's paradox with arrow and that involving Achilles and the tortoise are discussed in view of computer science In [Shi97j. The conclusion 

drawn from Zeno's arguments in this case is not that motion is impossible, but that the behavioural description used is not discrete. 
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sub-transactions or local coordinators and ̀ left-closure' reflects the fact that earlier parts of a given 
behaviour are themselves behaviours. 

Effectively, the local left-closure property is intended to resolve ambiguities that may arise from 

not having enough vectors in the transaction language to describe the course of the behaviour in 

question; not the start or the end, but the 'gaps' in between, as demonstrated in the example given 
prior to Definition S. This requires that every occurrence of an event is 'recorded' in the language 

of the transaction. This implies the presence of a distinct prime element in V for each occurrence of 
an action, and on each appropriate leaf of the transaction tree. 

Primes play a central role in the more general theory of parallelism (Shields, 1997) and in 

particular with respect to associating vector languages with behavioural presentations. For the 
purposes of the present report, and the adaptation of this theory in deriving a formal model for 
long-running transactions, it suffices to understand that, in this context, the notion of prime refers 
to transaction vectors which have a unique other vector immediately beneath them. Such an 
ordering among vectors in a transaction language V is based on the relation W a' which we define 

next. 

Definition 6 (Cover. ) Suppose that u, _v EVc VT. We shall say that v covers u in V, and we 

shall write u a,, _v, 
if 

1. u5_vandu# v 
2. ifz EVsuch that u5z: 5 v then z=u v z=v 

We will omit subscript V's when the language is clear from context. 

Intuitively, the covers relation'. <' provides an ordering among elements of V, in which one is 
'immediately beneath' the other, allowing no other vector in V to exist in between them. 

The set Prev(v), defined for vEV, is used to denote all vectors that are related to v by in V, 

or more simply the set of predecessors of the vector v. Hence, 

Prei() = {u EVI <v v 

A technical lemma shows that if u is an earlier part of v, but not a predecessor of v then there is 

some predecessor of v that is larger than u. 

Lemma 1. Suppose that : i, vcVc VT such that u5v 
Ad 

uav, then there exists we Prev(v) 

such that 

RSw. 

Proof. 
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Since the number of leaves in a transaction tree is finite, the set {z EVIuSz5 v} is finite. It is 
also non-empty since it contains u. Thus, it has a maximal element. Let w be the maximal element 
of this set, then wE Prev(_v). Q 

The following result relates the ` a' relation with the right-cancellation operator `/' of Definition 
3. 

Proposition 2. Suppose that u, _v EVc VT. If u<v then 
_v 

/u EAT. 

Proof. 

Since uav, we have that v/u# AT. we want to show that/ :u EAT. If v/u0 AT, then for some 
1E L, v(l) = u(l). wl. w2, where wi, w2 E>A. By local left-closure, (and take u(1). wi. w2 as x) there 
exists wEV such that w5v and w(l) = u(l). wI. 

Let z =1ub(u, w). Since V is discrete we have zEV, and also u5z. But now u(1) < u(l). wi = w(l) 
= z(l) and hence, u5z. Also, z(l) = w(1) = u(l). w1 and hence, zSv. This implies that is <z<v, 
which is a contradiction to u<v. Q 

This important result establishes that what takes a transaction vector and extends it to its 
successor is a column vector, representing an action of the transaction. This means that vectors in a 
normal transaction language are built by a series of concatenations with column vectors - in other 
words, the behavioural description is constructed by considering slices of behaviours that arise 
through the occurrence of actions as determined by the subtransactions of a transaction. 

To anticipate further, these results will be useful in the development concerning the 
t-decompositions in our mathematical framework, which are central to the handling of 
compensations in our approach. This is the topic of Section 2.3.7 and 2.3.8. 

Finally, to establish some terminology for the sequel, we say that the set of vectors Vs Vr 

associated with a transaction T is normal if and only if it is locally left-closed and discrete. This 
reflects the fact that the guarantees that accrue from these properties are embedded in the 
behaviour of the corresponding transaction. 

In fact, discreteness and local left-closure ensure the well-formedness of the behavioural 
description of a transaction in our model. The idea is that in checking against these properties we 
may determine whether the transaction will exhibit the desired behaviour when executed or on the 
contrary, other non-desirable scenarios of execution are still possible. This draws upon previous 
work on vector languages in (Moschoyiannis, 2005). 

10.4 SEQUENTIAL ACTIONS 

The prefix ordering (Definition 3) among transaction vectors can be viewed as an ordering on 
partial executions, where each vector corresponds to that portion of behaviour in which the 
transaction has already engaged in the actions appearing on its coordinates. 
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i 
This can be expressed more succinctly by saying that uSv in a transaction language means that 

u is an earlier part of behaviour leading to v. 

If in addition the transaction language is normal, i. e. discrete and locally left-closed, then we can 
say more than that. In particular, we have seen (Proposition 2) that whenever y covers u in a 
normal transaction language, then what takes u and 'stretches it up' to v is a column vector 
representing the occurrence of an action (in fact, the model can express the occurrence of a 
simultaneity class of actions, based on [Shi97], but we have abstained from going this far for the 
moment). This allows us to model dependent actions. That is, occurrence of one action depends on 
the previous occurrence of the other. Recall the example in Section 2.3.1 where service s3 feeds 

service s4. It is in this sense that we talk about actions occurring in sequence (one after the other). 

Suppose that during a long-running transaction a series of actions have already been executed 
and the resulting behaviour (up to that point) is described by a transaction vector u= (a 1, A, cl, A). 
Then, occurrence of al = (A, bl, A, A) followed by occurrence of a2 = (a2, A, A, dl) can be 

modelled by 

- first, concatenating vector u with al and 
- then concatenating the resulting vector v with 02 

In terms of our mathematical framework this amounts to operations u. ai =y and then v. a2 = w. 

Considering the Hasse diagram for the order structure of the corresponding transaction language 
V, where lines between vectors denote an ordering relation in which the topmost vector is greater 
than the lower one, this would result in the portion of the diagram shown in Fig 10-1. 

(ala2, bl, cl, A) 

(al, bl, cl, A) 

(al, A, cl, A) 

FIG. 10-1 AN ACTION 51 FOLLOWED BY AZ 

It is important to make the observation that the actual ordering between actions appearing in 
different coordinates of a transaction vector is determined by context - by what other vectors are 
included in the language. In other words, the relationship between transaction vectors and 

Digital Ecosystems -178- Amir reza Razavi 



Appendix 1 

FORMAL MODELLING FOR PATTERN BEHAVIOUR OF LONG-RUNNING TRANSACTIONS 

associated order theoretic structures is very much dependent on what other vectors are in the set V 
(unlike the behaviour vectors in (Shields & Laboratory, 1979), (Shields, 1997)where this 
relationship is independent of context). 

For instance, in transaction vector v= (a 1, b 1, c 1, A) we may immediately derive that the action 
al has happened on the leaf corresponding to the first coordinate, action bl has happened on the 
leaf corresponding to the second coordinate and action c1 has happened on the leaf corresponding 
to the third. To determine the relationship between these actions however, we need the rest of the 
language. 

The following discussion illustrates this by means a small example. 

Assume that V is given by the set 

V= {(A, A, A, A), (al, A, cl, A), (al, bi, cl, A), (ala2, bi, cl, di)} 

Notice that adding in (A, A, A, A) is essential, and in this case is also sufficient for making V 
discrete and locally left-closed. Now the presence of u= (al, A, cl, A) for which we have uu a v, 
tells us that action bl on the subtransaction corresponding to the second coordinate occurs only 
after both actions al and cl have taken place. 

Now suppose that the intended behaviour of the transaction prescribed that al must occur before 

c I. This is captured in the corresponding transaction language by adding in the vector (a 1, A, A, 
A). In the resulting language 

V={(A, A, A, A), (al, A, A, A), (al, A, cl, A), (al, bi, cl, A), (ala2, bi, cl, di)} 

which continues to be normal. The presence of w= (al, A, A, A) for which wa it dictates that 
al on the first coordinate occurs strictly before cl does on the service corresponding to the third 
coordinate. 

10.5 CONCURRENT ACTIONS 

Our approach towards modelling concurrent actions, actions that can happen in parallel, draws 

upon the concepts in Mazurkiewicz trace languages (Mazurkiewicz, 1977), (Mazurkiewicz, 1988) 

where the ordering of concurrent events is considered subjective and thus is not distinguished, in 

contrast to CSP trace theory where it is assumed that observations are sequential in nature leading 

to the interpretation that concurrent events occur in either order. 
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For systems that exhibit concurrency, different external observers may disagree on the ordering 
of concurrent events. This may be seen more clearly in Einstein's famous thought-experiment" 
involving two trains travelling at constant speed in opposite directions along a pair of parallel 
tracks. Observers 01 and 02 are sitting in the middle of each train. A third observer 03 is sitting 
on the embankment. At a given moment, the two observers on the trains are on a line at right angles 
to the third observer. At that moment, two bolts of lightning strike on either end of the first train in 
such a way that 03 sees them strike at exactly the same time. Observer 01 travelling towards the 
light coming from the strike on the front end of the train he is on, sees that light before he sees the 
light of the strike on the rear end of the train. Observer 02 travelling towards the light coming from 
the strike on the rear end, sees that light before she sees the light coming from the strike on the 
front end. 

Now from the point of view of observer 01 there are three distinct behaviours of the "system". 
One is when nothing has happened yet, another when he has seen the lightning bolt from the front 

end of the train, and another when he has seen both lightning bolts. Likewise, observer 02 has seen 
a behaviour in which nothing has happened yet, a behaviour where she has seen the lightning strike 
on the rear end and a behaviour where she has seen both lightning bolts. From the point of view of 
observer 03 there are only two distinct behaviours. One is when nothing has happened yet and the 
other is when both have. Thus, all four distinct behaviours can be observed for the same system; 
nothing has happened, one event has happened, the other event has happened, and both events 
have happened. 

The point to be made here is that observations on systems exhibiting concurrency largely depend 
on the relative position of the observer or the actual timing of execution. Such differences are 
non-objective and do not allow to infer the actual ordering between the events. On this basis, any 
particular ordering between concurrent events is irrelevant. On the contrary, the ordering between 
causally related events is objective (independent of the observer) and should be distinguished. 

Returning to the treatment of concurrency within our component model, this takes up on 
Mazurkiewicz traces (Mazurkiewicz, 1977), (Mazurkiewicz, 1988), which introduce additional 
structure into formal languages in order to describe non-sequential behaviour. The additional 
structure is given in terms of an independence relation, over action symbols (understood as events 
here), which describes potential concurrency. 

Definition 7. (Concurrent alphabet) Let A denote a (finite) set. A concurrent alhapbet is an 
ordered pair (A, i) where the binary relation ccA xA satisfies 

"aLbbt a(symmetry) 
"atb a# b (irreflexivity) 

This definition gives an independence relation on action symbols from a set (alphabet) A. 

22 This thought-experiment was given by A. Einstein to demonstrate the non-objectivity of contemporaneity In relativistic mechanics. It has 
been considered in view of concurrency in [Shi97] and our description of the experiment here Is based on that. 
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Symmetry requires that concurrency is always mutual while irreflexivity prohibits considering an 
action being concurrent with itself. 

Transaction vectors are essentially tuples of sequences, as discussed before. Thus, we find it 
useful to consider the extension of the relation i to sequences, based on (Mazurkiewicz, 1977). 

Given a concurrent alphabet (A, i), a relation =; '» can be defined on the set of all sequences over 
A, denoted by A*, by 

y3u, ve A*, 3 a, beA such that a i. bAx= uabv Ay= ubav x =; ') 

Let =, be the reflexive, transitive closure of By definition, _, is an equivalence relation23 

on A*. The set of all sequences in A* that are related by =-, to a sequence x r= A* is called the 

equivalence class of x. We denote the equivalence class of a sequence xE A* by <x>1. The set of 
equivalence classes of A with independence relation t is denoted by A, = {<x> ,Ixe A*). Any 

subset L of A, ' is called a Mazurkiewicz trace language. 

Therefore, the independence relation c on A gives rise to an equivalence relation E, on 
sequences formed over A. We make use of this construction in terms of sequences formed over the 
sets of actions µ(I), for each IEL, associated with a transaction. It might be instructive at this point 
to revisit the definition of an independence relation given in compensating CSP (Butler et al., 
2005). 

Intuitively, the equivalence relation on sequences of actions says that any two consecutive 
actions are allowed to permute, providing they are independent. Note that when the independence 
relation is empty in the sets µ(I), for each 1EL, no two actions can be permuted in the 
corresponding sequences µ(1)*, which amounts to our understanding of sequential systems (e. g. as 
described by processes in CSP (C. A. R. Hoare, 1985) and its extension with compensations in 
(Butler et al., 2005)). 

The equivalence relation on the set of actions A of a transaction equates all, and only those, 
sequences from IQ, for each 1eL, which differ in the order of concurrent events. Drawing upon 
the extension of the independence relation i to behaviour vectors in (Shields, 1997), the notion of 
independence between events in Mazurkiewicz traces can be readily interpreted into transaction 
vectors in our approach. 

Definition 8. (Independence) For u, vEVc : VT, we define 

u ind_v p VIEL: u(I)>A _v(I)=l1 

1 
23 Recall that an equivalence relation on a set is a binary relation that is symmetric, reflexive and transitive. 
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The intuition is that the behaviours described by u and v may occur independently. In the case of 
column vectors (recall Definition 2), independence captures the fact that actions appearing in one 
vector may occur independently of those appearing in the other. If in addition they occur 
consecutively, then they are concurrent. Thus, whenever two consecutive actions permute, their 
corresponding column vectors commute, i. e. a1. ä2 = a2. g1i and the resulting behaviours are 
concurrent. In fact, (A, ind) is a concurrent alphabet, in the sense of Definition 7. 

For example, suppose that a transaction with 3 leaves has experienced a fragment of behaviour 
described by u= (s I, A, A) and after that may engage in aI and a2 concurrently, where aI = (A, s2, 
A) and az = (A, A, s3). 

We make the observation that al ind g2 (recall Definition 8) and consequently, 

al. 92=(A, s2, A). (A, A, s3)=(A, s2, s3)=(A, A, s3). (A, s2, A)=82.21 

Thus, we have u. a1. a2=w=u. a2. al. 

Indeed, 

u. Q1=(ss, A, A). (A, s2, A)=(si, s2, A)=_V1 
and 

_v. 92=(si, s2, A). (A, A, s3)=(s1, s2, s3)=w 

We also have that 

u. 92=(s1, A, A). (A, A, s3)=(s1, A, s3)=y2 

and 

V2--9l 0 (s1, A, s3). ( A, S2, A) _ (s1, s2, s3) =w 

In the resulting behaviour w the actions sl and s3 are concurrent. The situation is depicted in Fig 
10-2. 
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(s 1, s2, s3) 

til = (s1, s2, A) (s1, A. s3) = Y2 

(s1, A, A) =U 

FIG 10-2 CONCURRENT ACTIONS IN A TRANSACTION 

Note that if the actions were not concurrent, then we would have the lower part of the diamond 
shape in the diagram but not the upper half. The upper half is obtained only when the column 
vectors corresponding to the actions in question commute (that is to say, equivalently, that they are 
independent) and represent actions that occur consecutively. Both these requirements have to be 
met for the actions to be concurrent. This is then reflected in the order structure of the 
corresponding transaction language by the presence of the vector forming the upper half of the 
diamond. This vector is the resulting common behaviour, after the concurrent actions have taken 
place. If either of these two requirements is violated, then the transaction would never exhibit the 
common behaviour described by E. The point to be made here is that independence alone does not 
guarantee concurrency. (The case of non-independence is more obvious. ) 

As depicted in Fig 10-2, the transaction as a whole experiences both actions (on each appropriate 
leaf) and the ordering is irrelevant. The corresponding concatenations result in a unique 
transaction vector (sitting on the top of the diamond) in which both actions have occurred in no 
particular order. The incomparable transaction vectors in the middle of the diamond (i. e. v1, v2) 
represent behaviour arising during concurrent execution. These two vectors are bounded above by 
the vector in which both concurrent actions appear (i. e. w). 

In terms of the order theoretic properties of transaction vectors discussed in previous sections, 
this vector is their least upper bound. In the example of Fig 10-2, we have 

lub(_vl, v2) = lub( (Si, s2, A), (si, A, s3)) = (s1, s2, s3) =w 
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Their greatest lower bound (sitting at the bottom of the diamond) is the vector in which none of 
the concurrent events have occurred but are both available. In our example, we have 

glb(_vl, _v2) = glb( (s1, s2, A), (s1, A, s3) )= (Si, A, A) =u 

We note that this non-interleaving representation of concurrent behaviour manifests itself in the 
structure of the automata associated with this kind of vector languages, as described in 
(Moschoyiannis et al., 2005). 

The fundamental difference in expressing concurrency should now be apparent. By departing 
from classic CSP concurrency, we are able to consider concurrency within a long-running 
transaction, and without the need to consider sequences of actions within a transaction as in 

compensating CSP (Butler et al., 2005). In CSP, and related process algebras, concurrency arises 
through composition. Here we have not yet been concerned with composing sequences from 

subtransactions of different transactions, though this may also produce concurrency. We are 
simply describing the case that subtransactions of the same transaction engage in concurrent 
actions, a phenomenon common in most B2B scenarios for example. The notion of composition 
within this vector language - based behavioural description has been described in (Moschoyiannis, 
2004). 

In what follows, we again discuss concurrent actions in connection to the context of the 
corresponding ctransaction language. Consider the transaction language 

V={ (A, A, A), (si, A, A), (Si, s2, A), (si, A, s3), (ss, s2, s3) } 

It can be easily checked that V is discrete and locally left-closed. Its order structure is (in part) 
depicted in Fig 10-2. We have that u< _vi and ua 21. Also, we have yi aw and v2 < E. We have 
seen that the actions s2 on the second leaf and s3 on the third are concurrent. 

Now consider the transaction language, 

V={(A, A, A), (si, A, A), (Si, s2, s3)} 

In this language, which is also discrete and locally left-closed, the actions s2 on the second leaf 

and s3 on the third are simultaneous rather than concurrent. This is because the transaction vector 
w= (s I, s2, s3) in which both actions have taken place is obtained directly from u= (s1, A, A) in 

which neither of the actions have occurred yet. Hence, what takes u and stretches it up tow is the 
column vector a= (A,, s2, s3) in which s2 and s3 are simultaneous actions. This case can be 

understood as cutting through the diamond of Fig 10-2. 

Next, consider the transaction language 

V= {(A, A, A), (Si, A, A), (ss, s2, A), (s1, A, s3) } 
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In this language, which is also discrete and locally left-closed, the actions s2 and s3 are neither 
concurrent nor simultaneous. The transaction in this case, after doing sl on the leaf corresponding 
to the first coordinate, has a choice between doing s2 on the second coordinate or s3 on the third. 
This case can be understood as having only the lower half of the diamond in Fig 10-2, and brings 
about the issue of alternative actions and mutual exclusion in a long-running transaction. This is 
discussed in the following section. 

10.6 ALTERNATIVE ACTIONS 

Based on the prefix ordering between transaction vectors in the set V we may also model a 
choice between actions. That is, actions which are mutually exclusive in that occurrence of one 
excludes occurrence of the other. 

In discussing concurrent actions in a long-running transaction, we saw that the two 
incomparable transaction vectors in the middle of the diamond represent concurrent behaviour. 
The fact that the two incomparable vectors are in the middle of the diamond implies that they are 
bounded above in the set (by the transaction vector sitting on top of the diamond). 

Whenever this latter requirement does not hold we may talk about events in conflict. In terms of 
pictures and associated Hasse diagrams, we are essentially getting rid of the upper part of the 
diamond and keeping the lower part, the branches of which represent a choice between doing one 
or the other action. In effect, this amounts to ensuring that the behaviours they represent is not (an 
early) part of the same behaviour. Therefore, in what follows we examine when two transaction 
vectors are not bounded above in a component language. 

Let us first consider the case where the column vectors in question are not independent. Then, 
they do not agree on the non-empty coordinates corresponding to the same leaves of the 
transaction tree. This entails that there is no causality between the two and at the same time it is not 
possible for both of them to occur (since they engage the same leaf of the tree). 

For example, the actions represented by al = (sl, A, A) and 0= (s4, A, A) could both be 

available (or possible to occur) when the transaction has already exhibited the behaviour described 
by a transaction vector, say, u. In other words, after u the transaction may engage in either aI or 0. 
Note that it cannot do both since sI and s4 (Si # s4) are actions associated with the same service 
(the one corresponding to the first coordinate). Considering the Hasse diagram for the order 
structure of the corresponding transaction language, this situation would result in the fragment of 
the diagram shown in Figure 2.18. 
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v_1= (s1, s2, A) (A, s2, s3) = _v2 

(A, s2, A) =u 

FIG. 10-3 ALTERNATIVE ACTIONS IN A TRANSACTION 

In further explanation, v1= (s 1, s2, A) is the behaviour resulting from occurrence of a1 while the 
vector vl = (s4, s2, A) is the behaviour resulting from occurrence of a2, after u. In terms of our 
mathematical framework, we have u. al = v1 and u. a1= vl but only one of these behaviours may 
take place during an execution of the long-running transaction in question. 

We now turn our attention to actions whose corresponding column vectors are independent 
(recall Definition 8. This case is a bit more subtle. In principle, independent column vectors 
represent actions which are in no way related to each other. For example, consider the actions 
given by column vectors al = (sl, A, A) and a2 = (A, A, s3). If they are both offered after the 
transaction has engaged in behaviour described by vector u, then they represent a choice between 
doing s1 on the leaf corresponding to the first coordinate and action s3 on the leaf corresponding to 
the third coordinate. Unless they are bounded above! 

To ensure that the two independent events are not bounded above, effectively, that they are not 
part of a subsequent common behaviour, they must not occur consecutively. In other words, the 
actions succeeding al must not be a2 and, dually, the action succeeding a2 (on the other branch) 
must not be al. Otherwise, they lead to a common behaviour w which inadvertently bounds vl and 
ys (forcing them to be concurrent as discussed before). 

The situation is depicted in Fig 10-4(i) where the actions s1 and s3 are alternative. Compare with 
Fig 10-4(ii) where the actions s1 and s3 are concurrent. 
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()() 

tit = (s1, s2, A) (A, s2, s3) = vz 

(A, s2, A) =u 

(i) 

(sl, s2, s3) 

_V1 = (s1, s2, A) (s1, A, s3) = y= 

FIG. 10-4 ACTIONS Si AND s3 ARE CONCURRENT IN (II) BUT NOT IN (I) 

10.7 COMPENSATION IN TRANSACTION VECTORS 

In this section we describe work in progress on the handling of compensations in our formal 

model for long-running transactions. We have seen that the occurrence of an action is recorded in a 
the vector description by (coordinate-wise) concatenation of the existing vector (or vectors), 
describing the behaviour of the transaction before the action occurred, with the column vector 
representing the action in question. 

We have also seen (Definition 3) that the right-cancellation operator `/' on vectors can be used to 
isolate the behaviour that arises in between vectors, so that if u is a transaction vector describing an 
initial part of the behaviour described by v_ so that u5v, then v/u is the `continuation' of it that 
extends it to 

_v. 
Further, in a normal (discrete and locally left-closed) transaction language we have 

seen (recall Proposition 2)) that if u is an immediate predecessor of v, i. e. uav in the sense of 
Definition 6, then the application of the right-cancellation operator on v produces a vector which is 

a column vector, i. e. it isolates the last action(s) that went into obtaining _v 
from H. 

The following result shows that the column vector v_ /u is unique. 
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Lemma 2. Suppose that v, wEVc VT such that vSw,, then there exists unique vector u r= V 

such that v. u = w. We denote this element by w/v. 
Proof. 

For each IEL, define u(1) = w(1). v(1). We have, for all 1EL, 

`"Ü(1) = 1(0. ( EM / v(1) )= w(1) 

so v. u = w. Furthermore, if u' EV such that v_. u' = w, then for each IEL, v(1). u(1) = w(1), so that 

u'(l) = w(1) / v(T) = u(1), and if = u, 

establishing uniqueness. 

This result together with the main result of Proposition 2 in previous Section allows us to define 
compensations by using the right-cancellation operator on vectors that differ only in an action (or, 
more generally, in a simultaneity class of actions). This can be done since the application of `/' on 
a vector undoes the last action that took place in obtaining the behaviour described by that vector. 

In this way our approach uses (coordinate-wise) concatenation to model the occurrence of an 
action (the activation of a service invocation point in the transaction), by 

u -=-ý v 

Instead of introducing separate notation and associated semantics for cancelling actions that 
have already taken place, the idea is to use we use right-cancellation on vectors to perform the 
compensation action, hence, 

vE--/=- 

which will be invoked if a failure later in the long-running transaction makes it necessary. In 
other words, the application of the right-cancellation operation on a vector v obtained by u, 
produces u, since 

_v/(v/u)=u 

In what follows we show that compensations performed in this way will cancel all forward 

actions (modelled using concatenation on vectors), leaving only vectors where actions for which 
their compensations have also been executed are no longer visible in the end result. 
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Intrinsic to the development of the theory for compensations in our vector model is the fact that 
vectors describing the behaviour of a long-running transaction can be seen to be built up from the 
empty vector by a series of concatenations with column vectors representing appropriate actions. 
Therefore, vectors are essentially formed by a series of concatenations with column vectors. We 
find it useful to describe this more formally now, since the subsequent application of the 
right-cancellation would remove (or undo) each action in turn. 

We have seen in Proposition 2, which is concerned with building up the vectors, the interaction 
between ̀ a' and ̀ /' - that is, if uav in a normal transaction language, then v/u is an action, 
represented by a column vector (Definition 2). The following proposition states a similar result for 
the interaction between ', < ' and ̀ . '. 

Proposition 3. Suppose that Vc VT is a normal transaction language, then 

1. AT Ev 
2. If uvEV such that u<v then there exists a EAT such that v=u. a. 

Proof. 

For (1). V#0, so there exists _v E V. By local left-closure (Definition 6) of V, for each leaf IE 
L, there exists EV such that w5v and mal) = A. By discreteness (Definition 5) of V, the 
greatest lower bound of the w, which must be AT, belongs to V. 

For (2). Let a=v/u, so that v=u. a. This means that a# AT. If I a(1) (>1, then we can find x, y 
E µ(l)* such that x, y#A and a=x. y. By local left-closure, there exists x r= V such that x5v and 
x(1) = u(O. x. Let w= glb(u, JJ. We have that w exists, w5v and w c= V by consistent completeness 
(of the definition of discreteness), since u, x <_ V. 

Now, u5 glb(u, xJ 5 v, which can be written as u5w5v, and w(1) = max(u(l)x(I)) = is(O. x so 
that u(n < w(O < 

_v(O. 
This implies that u<w<y, and we have a contradiction since it <v 

A corollary of Proposition 3 can give a formal description of the way transaction vectors are 
actually obtained. 

Corollary 1. Suppose that V C- V, is a normal transaction language and u, veV such that uSv 
(and also u# y), then there exists al, ..., an E AT such that 

I. U. pi... pn =V 

2. u. ol... a; E V, i=1.. n 
3. uau. al and u. al... ai_1 a u. al... a;, 1=2.. n. 

Proof. 
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If uav, then the corollary holds with n=1 and a1= y/u, by Proposition 3. 

Otherwise, there exists wEV such that u<w<v, by Lemma 1 (in Section 2.3.3). By 
induction, there exists al,..., ai_l E AT such that 

u. al,. an-1= w. al,. ai c V, i=1,.. n-1, 

and 

uau. al, andau. u. aj,... a;, i=2,..., n-1 

If we now let an = v_ / w, then by Proposition 3, an EAT, u. al... a, EV and u. ai... a,,. I a u. aI... a,,. 
This means that al, ..., a, have the desired properties. 

We may now formally define transaction vectors as series of concatenations with column 
vectors. 

Definition 9. (t-decompositions) Suppose that u, vEVc VT such that uSv. We shall define 

sequences such as ßi... a, in Corollary 1 as t-sequences from u to v_. In the case that u= AT, we 
describe such sequences as t-decompositions of v. 

Since the transaction vectors used in describing the behaviour of a long-running transaction are 
built up from the empty vector, they are t-decompositions. This means that the recursive 
application of the right-cancellation, on each action that has gone into obtaining the vector in 

question, cancels out the initial actions leaving only vectors containing no observable actions as a 
result, i. e. leaves the corresponding transaction language only with the empty vector AT, 
effectively returning the system to (an approximation of) the state it was before the long-running 
transaction started. 

It should be noted that in this thesis and Deliverable D3.1 (Razavi et al., 2007a) we have 
described an extended lock mechanism for recovery management and concurrency control. Thus, 
in our overall approach to long-running transactions in digital ecosystems we go beyond the 
assumption that a compensating action undoes the effects of its associated action. The 
corresponding locks, namely the internal lock (I_Lock), conditional-commit lock (C_Lock) and 
recovery lock (R Lock), together with the corresponding IDG and EDG graphs, show how the 
dependencies between subtransactions due to data sharing are handled. In addition, the time-out 
lock (T Lock) covers the cases of sequential alternative service composition and allows for 
forward recovery. Further details can be found in chapter 3,4 and 5 and (Razavi et al., 2007a), 
(Razavi et al., 2009). Such aspects have not been discussed in the corresponding formal setting, but 
work is in progress on their formal treatment. 
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10.8 MODELLING FORWARD AND COMPENSATING BEHAVIOUR OF A 

TRANSACTION 

In the previous section we described how the ordering relation between different vectors of a 
transaction reflects the orderings between activations of its sub-transactions. The vector-based 
description of behaviour in our formal model for long-running transactions makes it possible to 
express sequential, parallel and alternative behaviour of a transaction. 

We have seen that the ordering relation between transaction vectors is given in terms of the 
coordinate-wise prefix ordering relation ` _< ' of Definition 3. This turns the set of vectors 
associated with a transaction to a partially ordered set (V, <_) (recall Proposition 1). Since each 
vector describes the part of behaviour of the component in which the actions appearing in it have 
taken place, it is appropriate to say that whenever u<v, then u describes an earlier part of the 
behaviour described by y. Further, in a normal transaction language, if ua _v 

then the vector v 
describes the behaviour of the transaction in which a single action has (or concurrent actions have) 
occurred since u. 

Since (V, <_) is a partially ordered set some vectors may be incomparable. For example, consider 
the vectors u= (sl, A, A) and v= (A, s2, A) for which neither u <_ v or v: 5 u. Such vectors 
describe either alternative behaviour (there is a choice between the last actions that went into 
forming each) or concurrent behaviour (the last actions that went into forming each are 
concurrent). Any pair of incomparable vectors stands in one relation or the other, and this is 
determined by what other vectors are in the set of vectors associated with a given transaction. 

If the incomparable vectors are bounded above - in other words, if they describe earlier parts of 
some common later behaviour - then they describe concurrent behaviours. If they are not bounded 

above, then they describe alternative behaviours. It is important to stress that this is determined by 

context, by what other vectors are included in the set for a transaction. 

This is illustrated in Fig. 10-5 which uses Hasse diagrams to depict the order structure of 
different sets of transaction vectors for a transaction with 3 leaves. It can be seen that s1 and s2 are 
sequential (s2 can only be activated after sl) in Fig. 10-5(i) while they are mutually exclusive 
(alternative) in Fig. 10-5(ii) and they are concurrent in Fig. 10-5(iii). 
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(n, A, A) 
I 

(A, A, A) (Sl, n, n) /\ 

(sl, s2, A) (sl, A, A) (A, s2, A) 
cn (ii) 

(A, A, A) 

(sl, A, A) (A, s2, A) 

(s1, s2, A) 
(iii) 

FIG. 10-5 ORDER STRUCTURE OF TRANSACTION VECTORS 

Notice that the set of vectors in case (i) does not include the vector (A, s2, A). This, in addition 

with the fact that (s,, s2, A)is included, implies that s2 can only happen after s1 has (sequential 

dependency). 

The set of vectors in case (ii) does not include (s1, s2, A). This has as a consequence that the 

vectors u =(s,, A, A) and v= (A, s2, A) are not bounded above in this case. Hence, the actions sl 
and s2 are independent but do not take place consecutively in this case (one immediately after the 
other). This implies that there is a choice between doing sf and doing s2 on the respective 
coordinates (alternative execution). 

In case (iii) where the vector (s1 s2, A) is included, the vectors are bounded above and this 
implies that they describe the concurrent execution of actions sl and s2 leading to the behaviour 

described by the vector (s,, s2, A). This is indicated by the familiar lozenge shape (or diamond) 

which marks the characteristic structure of a finite lattice (Davey & Priestley, 1990). The 
incomparable vectors sitting at the middle of the lozenge are both available after the same 
behaviour (that is (A, A, A) in this case) and occur consecutively leading to the behaviour 

described by the vector sitting at the bottom of the lozenge shape, i. e. (s, , s,, A). 

Fig. 10-5 might be instructive with regard to the subtle distinction between independence and 
concurrency. Independent events are concurrent only if they are both offered after the same 
behaviour (both enabled at the same time) and do occur one after the other (consecutively). 
Otherwise, they may be mutually exclusive or even sequential. 

It might also be worth pointing out that the lozenge shape in Fig. 10-5(iii) exhibits the 

characteristic structure of a finite lattice, which is a requirement of the discreteness property 
(Definition 4) in the case that the vectors u, v are independent. The vector at the bottom of the 

lozenge is the least upper bound of the vectors in the middle, while the vector at the top is their 

greatest lower bound. This shows that discreteness - in the case of independent vectors bounded 

above in the set - is a property inherently related to concurrency. 

For representing the pattern behaviour of the presented transaction model, we use a relavant 
example which uses partial results by applying EDG and IDG (see chapter 4 and 5). The left 
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transaction tree shown in Fig. 10-6 has 6 leaves. The services s1 and s, are to be executed in 
parallel (concurrently) followed by the data-oriented coordinator d1. If the partial result released 
by d, (see Fig. 10-6) does not meet the desired outcome, then s3 and s4 are executed in succession 
(sequentially) followed by d,. 

0 

K 

41b lb 

a"-a 

LI)CTTI. 
Tý 

. l-ý. ll 
ýý 

Zi, cý, 

FIG. 10-6 DATA ORIENTED AND PARTIAL RESULT BEHAVIOUR 

To model the behaviour of the transaction in our formalism, we assign each leaf to a vector 

coordinate (from left to right here). This results in the set of 6-tuples shown in the Hasse diagrams 

of Fig. 10-7. which describe all possible series of subtransaction activations in performing the 

transaction Ti (given in Fig. 10-6). 

In Fig. 10-7 there is a choice between the behaviour described in the diagram on the left and that 

on the right, and this reflects the sequential alternative scenarios of transaction T1. This choice is 
deterministic and will be resolved on the basis of whether d, satisfies the desired outcome. 
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FIG. 10-7 TRANSACTION VECTORS FOR Ti 

Notice the lozenge formed by s, and s, which execute in parallel (in both cases). Also, notice that 
the Hasse diagram on the left implies that (s,, s2, d1, s3, A, A) < (si, s2, d1, s3, s.,, A) which means 
that sa can only happen afters; has (sequentially). 

The Hasse diagram depicting the order structure of the transaction vectors for TI can be readily 
used for checking against discreteness and local left-closure. For discreteness (recall Definition 4), 

we concentrate on vectors which have more than one vector immediately underneath. Then, that 
vector together with its immediate predecessors (the vectors immediately below it) must constitute 
a finite lattice. This will be the case when the immediate predecessors are bounded above (least 

upper bound) and below (greatest lower bound) by some vector in the set. In our example, such a 
vector is (Si, s_, A, .A, . \, A) which has two distinct immediate predecessors, namely (si, A, A, 
A, A, A) and (A. S_.. \ .. \ ,A. A). These vectors are bounded above by (s j, s,, A, A, A, A) 

and are bounded below by (sr. s,, A, A, A, A ). Hence, the set VTI is discrete. 

For local left-closure (recall Definition 5), we look at each coordinate of the vectors. We 

concentrate on those which have a sequence of length greater than one. In such case, there must be 

some other vector in the set which, at the specific coordinate, has the same sequence but reduced 
by one. It can be readily checked diagrammatically that this is the case for the order structure 
depicted in Fig 10-7. 

Furthermore, in case some subtransaction fails, the vector-based description is used in providing 
compensations for long-running transactions, taking up on the "do-compensate" and "validate-do" 
behaviour patterns. We have seen that compensations are performed by applying the 

right-cancellation operator '' of Definition 3, which produces a unique vector, by Lemma 2. This 
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unique vector is the immediate predecessor of the vector whose last action is compensated for. 
With successive applications of the right-cancellation operator we effectively move backwards 

along the Hasse diagram of Fig 10-7, removing the last action each time from each vector. 

For example, consider the vector v= (s I, s2, dl, A, A, A). By applying Definition 9, with it = A,. 

we have that the t-decomposition of v is a1. -92, -93, where ai =(s 1, A, A, A, A, A), uz =(A, s2, A, A, 
A, A) and a3 = (A, A, d 1, A, A, A). If a failure occurs after the action associated with doing d 1, the 
actions s2 and sl also have to be compensated since they are dependent on dl. This is done by 

applying the right-cancellation operator as follows. 

First, we identify the last action that went into forming v. This is done by looking for vectors in V 

which are immediate predecessors of v. In this case it is vector u= (s 1, s2, A, A, A, A) for which 
u<v. By Proposition 2, we have that v/u is a column vector - in this case it is ai = (A, A, d 1, A, 
A, A). Hence, 

v/(v/u)=_v/a3=(s1, s2, dI, A, A, A)/(A, A, dl, A, A, A)=(sl, s2, A, A, A, A)=u 

Similarly, by application of `/' on vector u we have, 

Now, vector u= (s I, s2, A, A, A, A) is interesting in that it has two immediate predecessors, 
namely r= (s 1, A, A, A, A, A) andy = (A, s2, A, A, A, A). Despite it being involved in a diamond 
the same process applies. In this case, 

u/x=a2= (A, s2, A, A, A, A) and u/y=a1= (sl, A, A, A, A, A) 

Hence, we have 

U/(u/X)=u/q2=(ss, s2, A, A, A, A)/(A, s2, A, A, A, A)=y 

u/(u/Y)=u/a1=(sl, s2, A, A, A, A)/(sl, A, A, A, A, A)=X 
Note we are now in the middle of the diamond appearing in the Hasse diagram of Figure 2.2 1. 

We apply similar development to both x and y. The vector x has AT as its immediate predecessor, 
and x/ AT = a,. So doesy, for whichy / AT = a2. 

Hence, we have 

x/(X/nT)=X/p1=(sl, A, A, A, A, A)/(si, A, A, A, A, A) = (A, A, A, A, A, A)=nT 

and 

Y/(Y/AT)=Y/p2=(A, s2, A, A, A, A)/ (A, s2, A, A, A, A) = (A, A, A, A, A, A)! T 

In this way all actions that had occurred before failure, as described in vector v= (s 1, s2, dl, A, 
A, A), have been compensated for. It can be seen that there are no longer any visible observable 
actions, as illustrated by AT. 
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It might be instructive to compare with the way compensations are handled in the approaches 
discussed in chapter 3. In our approach there is no need for enforcing the sequence of actions to be 

performed in the reverse order. This is inherent to the way operations are defined on transaction 
vectors (right-cancellation, concatenation, ordering relations). Further, and perhaps even more 
importantly, no additional notation or formal construction is required in handling compensations 
for concurrent actions. In both compensating CSP (Butler et al., 2005) and the approach taken by 
(Bruni, Melgratti, & Montanan, 2005), require additional syntax and a separate semantics in order 
to perform compensations for sequential actions that are composed in parallel. Finally, note that 
there is no need to consider different sequences of actions within a transaction and compose them 
in order to model concurrency in our approach. Concurrency is handled in terms of actions 
themselves, and there is no need for all actions within a transaction to be independent. 

Therefore, in our approach given the tree structure of a transaction we may derive a formal 
description of its intended behaviour, in terms of activations of its subtransactions in terms of 
actions on the leaves (e. g. service invocations) and the coordination between them. The resulting 
behavioural patterns (see Fig. 10-5) can be analysed before run-time as a means of preventing 
certain anomalies (such as race conditions) which could result in unexpected behaviour when the 
transaction actually takes place (Moschoyiannis, 2005), (Moschoyiannis et al., 2007). We have 

also addressed compensations in an intuitive and relative straightforward manner which does not 
require further formal constructions - it is again based on (coordinate-wise) operations on 
transaction vectors. 

It might be worth pointing out that our formal description of the distributed transaction model 
here we have been concerned with modelling individual transactions, albeit in a way that allows to 
capture the release of partial results to other transactions. In other words, we have been mostly 
concerned with the dependencies within a transaction rather than between transactions. For the 
latter, it would appear that we need to consider the vectors from each and compose, in a principled 
way, in order to get the resulting inter-transaction behaviour. Previous work on composition within 
the vector-based representation of behaviour (Moschoyiannis, 2004) could be exploited in this 
respect. Further, we note that the properties discussed in this appendix, discreteness and local 
left-closure, are shown to be preserved under composition of vectors in Moschoyiannis, 2004), 
(Moschoyiannis, 2005), (Moschoyiannis et al., 2007). 
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11 APPENDIX II: RESTFUL TRANSACTION FRAMEWORK FOR DIGITAL 
ECOSYSTEM 

As RESTful interaction model has been considered as the evolution of the next step of the current 
implementation of digital ecosystem. Razavi and Marinos has started to provide a primary framework for 

the RESTful transaction model: 

" Razavi, A. Marinos, S. Moschoyiannis and P. Krause (2009) RESTful Transactions supported 
by the Isolation Theorems, The Ninth International Conference on Web Engineering (ICWE 
2009), San Sebastian, Spain (in the processed to be published). 

" Marinos, A. Razavi, S. Moschoyiannis and P. Krause (2009) RETRO: A Consistent and 
Recoverable RESTful Transaction Model, IEEE 7th International Conference on Web Services 
(ICWS 2009), Los Angeles, CA, USA (in the processed to be published). 

" A. Razavi, A. Marinos, S. Moschoyiannis and P. Krause (2009), Recovery management in 
RESTful Interactions, 3rd IEEE International Conference on Digital Ecosystems and 
Technologies, IEEE Computer Society, Istanbul, Turkey (in the processed to be published). 

This appendix provides a brief presentation of the framework (customised version of the above-third 
paper). 

11.1INTRO DUCTI0N 

Preservation of loose coupling and local autonomy within digital ecosystem can cause considerable 
algorithm complexity (Razavi et al., 2007a). Hence, there is a need for alternative frameworks to increase 
the feasibility of such requirements. REpresentational State Transfer (REST) was introduced by Roy 
Fielding (Fielding, 2000), to provide a formal description of the architectural style that had emerged in 
the World Wide Web. Simplicity and reliance on stateless resources, shifts the complexity from tightly 
coupled algorithms to loosely coupled resource interactions. However, the modelling of resource 
interactions to support recoverable transactions, in a way that offers consistency and isolation of 
concurrent transactions, is a crucial necessity for using REST in digital ecosystems. In this paper, we 
have provided a RESTful framework for recovery management which includes a locking concurrency 
control. This appendix is structured as follows. Section 2 provides the necessary literature for 
transactional challenges in related areas. Section 3 introduces the recovery model for REST. Section 4 

applies the locking mechanism in a RESTful framework. In section 5 the proof of correctness of 
constraints is applied. Finally Section 6 illustrates our approach with an example scenario. 

11.2 TRANSACTIONAL APPROACHES AND DIGITAL ECOSYSTEMS 
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The general term `Transaction' is usually defined by the four properties contained in the ACID 
acronym (Gray & Reuter, 1993). A transaction that is started when a system is in a consistent state may 
make the state temporarily inconsistent, but it must terminate by producing a new consistent state. 
Consistency is the C in ACID. Temporary inconsistency must not affect other concurrent transactions. 
This maintains the illusion that each transaction runs in isolation; the I in ACID. This means that the 
inputs and consequent behaviour of some may be inconsistent, even though each transaction executed in 
isolation would be correct. It follows that concurrent execution should not cause application programs to 
malfunction, which is the first law of concurrency control. Equally, the transaction should either run to 
completion, or if some operation within a transaction should fail it should automatically undo all 
previous actions and return to the original consistent state. This property is Atomicity, the A in ACID. 
Also, none of the updates or messages of committed transactions should be lost. Durability is the D in 
ACID. 

Despite concurrency in a transactional environment, the consistency should be preserved, and the 
aborted transactions can be rerun. The complication of digital ecosystem as a service-oriented 
architecture is a loosely coupled environment, that have been discussed in different approaches (recall 
chapter 3), (Razavi et al., 2007b), (Chang et al., 2006), (Singh & Huhns, 2005). Especially in term of WS 
standards, practical implementations have been purposed (Cabrera, Copeland, Feingold, Freund, Freund, 
Johnson, Joyce, Kaler, Klein, & Langworthy, 2005), (Furnis et al., 2004), (Cabrera, Copeland, Feingold, 
R. Freund, Freund, Johnson, Joyce, Kaler, Klein, Langworthy, Little, et al., 2005). The application of the 
transactional concept in WS-* adds considerable complexity to the required coordination framework 
(Furnis & Green, 2005), (Razavi et al., 2007c). This can be seen more clearly when analysing the pattern 
behaviour for the recovery model (compensation) (Razavi et al., 2007d), (Vogt et al., 2005). 

In our previous works (presented in chapter 4,5 and 6), (Razavi et al., 2007d), (Razavi et al., 2007c), 
(Razavi et al., 2009), we have provided general platform design, pattern behaviour, concurrency control 
and recovery management for a service-oriented environment, by focusing on specific requirements of 
Digital Ecosystems (recall chapter 1), (Nachira, 2002a), (Chang et al., 2006). Introducing 
Representational State Transfer (REST) as a distributed computing architectural style (Fielding, 2000), 
has created a new opportunity for achieving Digital Ecosystem requirements. In contrast with WS 
protocols, REST works directly with resources. This is in line with the semantics of the basic theorems in 
conventional transaction processing (Gray & Reuter, 1993). Transactions rely on read/write operations 
on objects, and RESTful HTTP, likewise, provides GET (equivalent to `read') and DELETE, POST, 
PUT (equivalents of `write') methods. Various approaches have been proposed for handling RESTful 
transactions. The traditional approach is to simply design a new resource that can be used to trigger the 
desired transaction on the server side. For example, when trying to transfer funds from one bank account 
to another, there could be a `transfer request' resource to which new `transfer requests' can be posted. 
While it can be very simple to implement at design time, it constrains users to the predictive ability of the 
developers at design time. Furthermore, in scenarios where a large or unpredictable variation of 
transactions may take place, it cannot be expected that all the necessary resources have been designed 
beforehand. This situation is similar to the static versus dynamic allocation debate found in the database 
and transaction literature (Bernstein & Newcomer, 1997), (Gray, 1992). The approach completely breaks 
down however, when a transaction exceeds the scope of a single provider, the case of distributed 
transactions. Other approaches such as (Khare & Taylor, 2004) suggest extending REST to include 
mutex locks, but this would necessitate extending HTTP as well. The alternative to these approaches is to 
introduce locks on resources by modelling them as resources themselves (Richardson & Ruby, 2007). 
While this approach looks much more capable, the details of its implementation and its extension into 
transactions have neither been fleshed out nor proven. In this paper we describe how this approach can be 
extended to produce a fully specified and theoretically robust RESTful transaction model. In (Razavi et 
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al., 2009) we have provided a primary framework for consistent RESTful transactions and in this paper 
we focus on Recovery issue. 

11.3 FROM GENERAL RECOVERY MODEL TO RESTFUL 

Conventionally in transaction management, Recovery procedure needs sophisticated API, with high 
algorithm complexity. Figure 1 shows the conventional paradigm of Recovery Management in the 
transactional environment (Gray & Reuter, 1993). 

Archive Manager 

Resource management 

(by mwii " vt a MnO tenxtvo 
ter~ such r SU. ) 

Lock Manager Log Manager 

Foe Manager Buffer Manager 

Media Manager 

Transaction 
Manager 

Operating system 
File System 

FiG. 11-1 CONVENTIONAL RECOVERY MANAGEMENT [(GRAY & REUTER, 1993)-PP495] 

In Fig 11-1, ̀ Log Manager' keeps step-by-step logs of operation of run-time transactions, when `Lock 
Manager' supports the consistency of concurrent transactions. The entry to `Log Manager' is created by 
`Transaction Manager', when a transaction has been created and logs will be archived ('Archive 
Manager') when the transaction commits. The Transaction will be built by using a script language or any 
semi structure language (such as SQL). The actual data-items and meta-data will be managed by 

operating system and distributed or stand-alone file systems. 

When a failure happens, ̀ Lock Manager' by isolating the written data-items, avoids spreading the 
failures between concurrent transactions. ̀Log Manager', offers necessary logs for rolling back the failed 
transaction, and the transaction entry can be deleted by `Transaction Manager'. This conventional 
framework needs complex API, where all components are tightly coupled. For providing loosely 
coupling (as one of the most important requirements of Digital Ecosystems), the extra complexity will be 

added to the usual complex recovery algorithm which may harm SMEs as the main participants of Digital 
Ecosystems (Razavi et al., 2007b). Fig 11-2 shows our RESTful approach, which instead of using API 
for each manager, introduces suitable resources to increase the feasibility of Recovery Management and 
Transactional implementations for SMEs. 
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FIG. 11-2 RESTFUL RECOVERY MANAGEMENT 

In the RESTful recovery management, interactions are represented by standard HTTP operations on 
resources. So a user applies GET to the resource to retrieve it. This also alters the nature of the managers. 
The Lock manager and the Transaction Manager are actually a Lock Collection per resource and a 
separate Transaction Collection. New transactions are POSTed to a transaction collection and new locks 
on a resource are POSTed to the lock collection of the resource. Since new locks have to reference the 
transaction they belong to, the locks that belong to a transaction can be accessed through the transaction 
lock collection. Each exclusive lock is accompanied by a shadow resource that will become the new 
representation of the resource when the transaction is finalised. That shadow resource can be 
manipulated as a regular resource via PUT and DELETE. When the transaction is finalised, the shadows 
become the normal resource representations but also the entire resource structure relevant to a 
transaction, including the initial state of the resources that were modified is archived. In this way, the 
RESTful paradigm has implemented the functionality of the managers into lightweight resources that can 
potentially be subject to transactions themselves. 

11.4LOCKS IN RESTFUL HTTP 

In order to handle concurrency challenges in HTTP, we introduce the concept of locks. This is done in 
a way that does not affect the always available and backwards compatible nature of the web 

11.4.1 LOCKING RESOURCES 

For an API to be characterized as RESTful according to the hypermedia constraint, it must allow a 
client to interact with the service solely by being given a single entry URI and understanding of the 
relevant media types. This enforces loose-coupling and elimination of assumptions. 

Lockable Resource (R): Ideally, any resource that can be served by an HTTP server should be 
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lockable regardless of serialization format. This however would require the HTTP protocol to carry the 
metadata for the locking mechanism. Since we wish to preserve the HTTP protocol, we opt for a 
fragment of XML that is to be included in an XML representation of a resource. This approach could 
potentially be extended to other formats such as JSON [5] but not to binary files such as images or zip 
archives. The information that should be in the fragment is the location of the lock collection and the 
location of the transaction collection. The inclusion of this fragment (Fig 11-3) makes any resource 
lockable. Namespaces could also be utilized to avoid namespace collision but this would limit the 

approach to serializations that support namespaces. 

<lockable> 
<link rel="lock_collection" href="http: //example. org/resource/locks/"> 
<link rel="transaction_collection" href="http: //example. org/transactions/"> 

</lockable> 

FIG. 11-3 (R) XML FRAGMENT 

Lock Resource (R-L): The lock resource is represented by a dedicated media type and should contain 
the elements in Table 1. 

ResourceURl: a link back to the resource that this lock affects_,,,,, 
TransactionURI: a link to the transaction that controls the lock. 
Type 'S'. or "�X" depending on the type of the lock. "; ý.. rý 
PrevLockURl: a link to the previous lock in the lock sequence. 
Timestam : Server's timestam when the lock was granted:. 
Duration: Indicates the interval that the lock has been granted for. 

-ConditionalResourceURI: A link to the representation of the resource that will 7-' 

come into effect once the lock is committed. 
TABLE 4- ELEMENTS OF R-L 

The type element can take one of two values, X or S, corresponding to the available lock types. X 
stands for XLOCK: eXclussive Lock, and S stands for SLOCK: Shared Lock. To place a new lock, the 
server must authenticate the user as the owner of the transaction that is referenced by the lock. The length 

of time of effectiveness that is granted to a lock is dependent on the maximum length of time that the 
server is prepared to grant a guarantee to the client. Once the duration of the lock expires, the lock is 

aborted. The result of the GET operation does not change until a lock of type X is committed. In this 
sense, the locks and transactions are transparent to the GET which on commit reacts as if a simple PUT 

was applied. This was a specific design objective. PUT and DELETE operations return a `405 Metlhud 
Not Allowed' HTTP response for the duration of a lock's effect. GET requests should still return 
successfully. This behaviour maintains backwards compatibility, with the understanding that if a client 
requires further guarantees on the future state of the resource, the client should seek to place a lock. In all 
other cases, the semantics of GET are unaffected, as a GET on a resource does not guarantee that the state 
will remain unchanged for any period of time. 

11.4.2 WELL-FORMED COLLECTIONS OF LOCKS 

As expected, a transaction cannot lock a resource that is locked by another transaction. But if two or 
more transactions want to GET the content of a resource, they are not going to change the resource state. 
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This will therefore not cause any conflict or access to data which has been PUT to a resource by another 
transaction, but the first transaction has not committed and may change the version of the resource 
again). Table 2 shows the lock compatibility. The inferred rules constrain the set of allowed histories. 
Histories that satisfy the locking constraints are called legal histories. 

Mode of Preceding Lock 

o SHARE EXCLUSIVE 

° SHARE YES No 
z 

0 EXCLUSIVE No No 

TABLE 5- LEGAL LOCK SEQUENCES 

Resource Lock Collection (R-Le): The R-Lc contains locks in sequences that follow the 

compatibility rules stated in Table 2, rendering the transaction well-formed. The lock collection is 

represented as an Atom Feed (Hoffman & Bray, 2006). Since ATOM does not support sequencing 
entries, we use the `PrevLockURl' element of the lock resource to create a linked list of locks that can be 

represented as an ATOM Feed. The client can retrieve the lock collection via GET to determine if the 
resource is locked. An empty feed indicates an unlocked resource. New locks can be submitted to the 
resource collection via the POST method. 

GET Returns the resource's collection of locks. 
POST Adding a new lock to the related resource 

TABLE 6- AVAILABLE OPERATIONS FOR R-LC 

11. STwo PHASE LOCKING AND RECOVERABILITY 

So far our model provides a well-formed locking mechanism. However, to provide a consistent 
RESTful Transaction Model, we need to provide a wormhole-free locking mechanism, clarify the scope 
of each transaction with respect to the locking mechanism and facilitate recoverability in the model. In 

this section, we demonstrate why two phase locking has been chosen to offer a consistent environment, 
as it is wormhole-free, and then we extend the model to provide two phase locking and recoverability. 

11.5.1 Two PHASE LOCKING IS WORMHOLE FREE 

As has been described in 11.4, our model provides a well-formed locking system for GET and PUT. 
We now show that by adding two-phase locking, the model becomes wormhole-free (Gray & Reuter, 
1993). We showed in `Lock Resource (R-L)' (section 11.4.1), that each transaction can use two different 

types of Locks for its resources (SLOCK for GET and XLOCK for PUT). Therefore in H= 
((t, a, r)i Ii = 1, ..., n) we can consider two extra actions for 'a': SLOCK; and, XLOCK. Meanwhile as 
these locks at some point should be released, we have UNLOCK as another action for `a'. Based on 
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`Two-Phase Locking', each transaction can use locking in two phases. In the first phase (Growth), it can 
acquire locks for resources (SLOCK or XLOCK) and in the second phase (Shrink), it releases them. 
These two phases should not have any overlap. When the transaction starts to UNLOCK a resource, it 

cannot lock any more resources under any circumstances. So, unlocking resources means that the 
transaction is either successfully committing or aborting. Now, we want to show that if all transactions 
are well-formed and two-phase, any legal history will be isolated (wormhole-free). the proof relies on 
contradiction. Suppose H is a legal history of the execution of a set of transactions, each of which is 

well-formed and two-phase. For each transaction, T, define SHRINK(7) to be the index of the first 

unlock step of T in history H, formally: 

SHIRINK(T) = min(iIH[i] = (T, UNLOCK, r) for some resource)) 

Since each transaction T is non-null and well-formed, it must contain an UNLOCK step. Thus SHRINK 
is well defined for each transaction. 

Transaction (T) : The transaction resource is represented by a dedicated media type (e. g. 
application/vnd. rctro-transaction+xml). It should contain the elements in Table 4. 

TransactionCollectionURl 
OwnerURI 
TransactionLockCo llec tion U RI 
'1'ransactionStatus (Active I Committed I Aborted 

TABLE 7- ELEMENTS OF T 

These 3 elements identify the collections of information vital to the execution of a transaction. When 
the transaction is created its status is set to `Active'. The owner of the transaction can GET the transaction 
resource as a means of locating these collections and reviewing its status. Deleting a transaction with 
active locks will result in the transaction being committed. Its status will change to `Committed' when 
the commitment process is complete. A committed transaction and its related resources cannot be altered 
after the transaction is committed as the resources now serve as an archive of the transaction. If the lock 

collection of a transaction is deleted, the status of the transaction becomes `Aborted'. 

Transaction Collection (Tc): The transaction collection is a resource where new transactions are 
submitted via the POST operation which creates a new transaction and returns the URI for its 

representation. The resource itself cannot be accessed via GET as the clients that need to know the 
location of a specific resource are informed at the time of POSTing. 

Transaction Lock Collection (T-Lc) : The transaction lock collection contains links to the locks that 
belong to a specific transaction, formatted as an Atom feed. Clients cannot abort single locks directly but 

must do so by Deleting the T-Lc which aborts all the locks of a transaction, leaving the transaction void 
and is equivalent to aborting the transaction. 

GET Returns the collection of locks relevant to a transaction 
DELETE Aborts all the locks of the relevant transaction. This can only 

be performed by an owner of the transaction and results in the 
transaction being aborted. 

TABLE 8- AVAILABLE OPERATIONS FOR T-LC 

11.5.2 RECOVERABILITY 
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Based on the Rollback Theorem, a transaction that unlocks an exclusive lock and then performs a 
`Rollback' is not well-formed and can potentially cause a wormhole unless the transaction is 
degenerated. As the theorem is well-known, we refer the interested reader to (Gray & Reuter, 1993) for 
the actual proof. The important point of the theorem is that we have to degenerate the transaction to effect 
rollback. For this purpose, our model does not store potential updates on the actual resources but works 
on the shadow of the locked data, called a conditional resource representation. 

Initial Resource Representation (R-L-IR): A resource that is of identical media type as the locked 

resource and stores the initial state. The initial representation is archived together with the lock to 
represent the change caused by the commit of the lock and enable rollback. 

GET Returns the representation that was the initial state of the resource 
before locking 

TABLE 9- AVAILABLE OPERATIONS FOR R-C 

Conditional Resource Representation (R-L-CR): A resource that is of identical media type as the 
locked resource. The conditional resource representation is essentially the state that will be applied to the 
resource once the XLOCK is committed. 

GET Returns the representation that will be committed if the relevant 
XLOCK is committed. 

PUT Creates a new conditional state that will replace the current state of 
the locked resource once the linking XLOCK is committed. 

DELETE Deletes the conditional state. If the XLOCK is committed, there will 
be no write action performed. 

TABLE 10 - AVAILABLE OPERATIONS FOR R-C 

11.5.3 OPERATION COVERAGE 

In a database environment, a transactional workflow is nearly identical to its non-transactional 
counterpart, differing only by the fact that it is executed in a transactional context. The database platform 
can then infer the implications on locking that are implied. In a RESTful environment, this luxury does 

not exist, as statelessness is a stated goal. It therefore is not possible to simply start a transaction and 
perform all the operations we wish to and assume transactional guarantees. Each operation must be 

performed in a manner that explicitly places it in the transactional context. Due to the differing semantics 
of each HTTP operation, this must be applied separately for each type. GET and HEAD operations are 
positioned in the transactional context, as long as the requested resources are locked (S or X) by the 
containing transaction. In order for a PUT in its update incarnation to be within a transaction, it needs to 
be applied to the conditional representation of the XLOCK of the resource. The lock must belong to the 
containing transaction. Similarly, a DELETE can be performed by deleting the conditional 
representation. A PUT that aims to create a resource is similar to an updating PUT. The difference is that 
the lock refers to a resource that does not exist. Any updates to the conditional representation of the 

resource will become the initial state of the newly created resource at the time of commitment of the 
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transaction. These patterns aim to expand the scope of the covered operations and remain intuitive while 
remaining within the statelessness constraint of REST. POST operations are not yet covered as they 
require a new top-level activity for the transaction, different from a lock. Additionally the URL that the 
server creates becomes a data dependency for the transaction. POST operations are currently outside the 
scope of our model, as they require significant additions that will be the focus of future work. 

11.5.4 MODEL OVERVIEW 

Having defined all the resource types, it is easy to see that an interconnected network arises. Fig. 11-4 
displays the interconnections of the resource graph. It can be observed that having a URI for R is enough 
to locate all other resources in the network. The connection from Tc to T is different from the other 
connections as there is no GET ability for the Tc resource, as for security reasons no user can receive a 
list of all current transactions. The URI of a given T is only returned as a response to the initial POST 

operation on Tc performed by the transaction's owner. 

FIG. 11-4 RESOURCE HYPERMEDIA CONNECTIONS 

Table 8 summarizes all the relevant resource types that comprise our model together with a short 
description and a list of the allowed operations. 

Lockable Resource (R) 

Resource Lock Collection 

(R-Lc) 
Lock Resource (R-L) 

Conditional Resource Representation (R-L-('R) 

Initial Resource Representation (R-L-IR) 

Transaction Collection (I c) 

Transaction Resource (T) 

Transaction Lock Collection ('I'-I. c) 

A resource that locks can be applied to 
Operations: GET, [By XLOCK owner: PUT] 
The collection of locks that apply to a particular 
resource. Operations: GET, POST 
The representation of a specific lock 
Operations: GET 
The potential representation of a locked resource, once its lock is committed. Operations: GET, By XLOCK 

owner: PUT, DELEAT] 
The potential representation of a locked resource, once its lock is committed. Operations: GET, [By XLOCK 
owner: PUT, DELETE] 
The collection of transactions on the server. 
Operations: POST 
The representation of a specific transaction. 
Operations: GET 
The collection of locks connected to a specific transaction. Operations: GET, [By transaction owner: DELETE] 

TABLE 11 - RESOURCES AND OPERATIONS 
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11.6EXAMPLE SCENARIO 

A transaction, such as in fig 11-5, can be aborted at any point by the client. Throughout the course of 
the lock's validity, the data of the locked resources (R1, R2) remain safe from alteration from the 
transaction itself or from external clients. When the transaction is aborted, all conditional representations 
are deleted with no effect on the actual state of the resource. In fig 11-6 an example of a transaction 
committing can be seen. On commit, the conditional representation of an active XLOCK becomes the 
new version of the locked resource. The transaction resource as well as all other relevant resources need 
not be deleted but can be archived for future rollback as they constitute an effective recording of all the 
changes made by the transaction. They also include the state previously in effect through the R-L-IC 
resource and therefore can be used to reverse the changes if needed. 
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Client Operation Resource Response Description 
A GET R2 200 OK GETting R2 to extract location of TC and R2-LC 
A POST <new transaction> TC 201 CREATED {Location: Ti} Creating a new transaction 
A POST <LOCK {type: X}> R2-LC 201 CREATED {Location: R2-L1) POSTing an XLOCK to R2-LC 
A GET Rl 200 OK GETting RI to extract location of R1-LC 

A POST <LOCK {type: S}> R1-LC 201 CREATED {Location: R1-L1} POSTing an SLOCK to R1-LC 
B PUT <new version> R1 405 Method Not Allowed Another client attempting to modify R1 
A GET Rl 200 OK GETting the locked representation of Rl 
A GET R2 200 OK GETting the locked representation of R2 
A GET R2-Ll 200 OK GETting R1-L1 to extract location of L3-CR 
A PUT <new version> R2-Ll-CR 201 CREATED Creating a conditional Representation of R2 

A GET T1 200 OK GETting Ti to extract location of T1-LC 
A DELETE TI-LC 200 OK Abort: Deleting R2-L1-CR and Unlocking Rl and R2 

FIG. 11-5 EXAMPLE OF A TRANSACTION ABORTING 

Client Operation Resource Response Description 
A GET R2 200 OK GETting R2 to extract location of TC and R2-LC 
A POST <new transaction> TC 201 CREATED {Location: Ti) Creating a new transaction 
A POST <LOCK {type: X}> R2-LC 201 CREATED {Location: R2-L1} POSTing an XLOCK to R2-LC 
A GET R1 200 OK GETting R1 to extract location of R1-LC 
A POST <LOCK {type: S}> R1-LC 201 CREATED (Location: R1-L1} POSTing an SLOCK to R1-LC 
B PUT <new version> R1 405 Method Not Allowed Another client attempting to modify R1 

A GET RI 200 OK GETting the locked representation of Ri 
A GET R2 200 OK GETting the locked representation of R2 
A GET R2-L1 200 OK GETting R1-L1 to extract location of Ll-CR 
A PUT <new version> R2-L1-CR 201 CREATED Creating a conditional Representation of R2 
A DELETE Ti 200 OK Commit: R2-L1-C becomes R2 and R1 and R2 unlock 

FIG. 11-6 EXAMPLE OF A TRANSACTION COMMITTING 

11.7 FUTURE WORK 

We have provided a RESTful framework for Recovery management which includes a locking 
concurrency control. Our locking mechanism protects the write-access to resources in one hand 
and offers the safe copy of resources for transactional access which easily is recoverable. This 
work can be considered as the necessary primary step for using RESTful transaction in Digital 
Ecosystem. Supporting Long-running transaction, purposing more user friendly interface 
languages (instead of pure RESTful script for Resource Management) and analysing complexity 
of traffic are expected future extensions to this work. 



12 APPENDIX III: SIMULATIONS AND IMPLEMENTATION OF DIGITAL 
ECOSYSTEMS 

This appendix includes two sections; the first section is the result of collaborative work of 
OPAALS' team with Zheng for implementing the first version of Digital Ecosystem Transaction 
model: 

" S. Moschoyiannis, A. Razavi, Y. Zheng and P. Krause (2008) Long-Running 
Transactions: semantics, schemas, implementation, In Proc. of IEEE Int'l Conf. on 
Digital Ecosystems and Technologies (IEEE-DEST 2008), IEEE Computer Society. 

" P. Krause, A. Marinos, S. Moschoyiannis, A. Razavi, Y. Zheng, T. Kurtz, et al. (2008). 
Full Architecture Definition for Autopoietic P2P Network Version 1. Project Acronym: 
OPAALS, European Community, Framework 6, Contract No: 034824. 

The second section is a primary result of one of the early simulation of Digital Ecosystem. 

12.1 A SCENARIO WITH SEQUENTIAL SERVICE DEPENDENCY 

We have used JAX-WS 2.1, Java 5, and Netbeans IDE 5.5.1 in our implementation framework. 
The JAX-WS is a new standard for message passing, it supports both synchronous and 
asynchronous message passing by the polling model and the call-back model, respectively. In the 
polling model, the client continuously polls the service response. In the call-back model, the client 
creates a call-back handler. JAX-WS is shown to perform better than JAX-RPC in certain aspects 
(Mundlapudi, 2006). Furthermore, JAX-WS supports static and dynamic generation of web 
service client stubs. 

In our implementation, the JAX-WS call-back message passing and dynamic client stub 
generation are used. The call-back message passing is suitable for asynchronous message passing, 
which is important for long-running transactions. The dynamic WS client creation enables web 
service invocation chains. Three participants are required in order to make a service X work: 1) X 
web service; 2) X TransactionAgent web service; 3) the client stubs for the X web service. The 
dependencies between web services are captured in an XML file, as discussed before. 

From the transaction vector schema, we can create different transaction scenarios (as an XML 
file). The generated xml file shows the various states of a transaction for a specific scenario. We 
have designed a software agent coordinator which can perform the coordination of the service 
invocations as prescribed by the transaction vector language in a fully distributed manner. As a 
case study we analyse a simple transaction, with a sequential service composition, which involves 
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the interactions shown in the sequence diagram of Fig. 12-1. 
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FIG. 12-1 A SIMPLE TRANSACTION WITH A SEQUENTIAL SERVICE COMPOSITION 

Our simple transaction scenario involves two participants, located at two different SMEs (Hotel 

and Taxi services). The initiator agent has an AgentHelper that communicates with the 
TransactionAgents. The transaction involves four players: HotelTransactionAgent (HTA; local 

coordinator of the Hotel), HotelService (webservice of the hotel), TaxiTransactionAgent (TTA; 
local coordinator of taxi), and TaxiService (webservice of the taxi). The AgentHelper plays the 
Initiator role and it starrts the transaction by sending messages (setting the transaction context) to 
both HTA and TTA. This specifies the first web service should be deployed on the first access 
point (HTA) and the second will be deployed only after receiving the successful confirmation of 
the first (sequential service composition). 

The following information about the required distributed coordination can be derived: 1) the 
AgentHelper will know that after it initiates the HTA and TTA, it needs to wait for a response from 
the TTA for the final preparation status; 2) the HTA will know that it depends on TTA so it needs 
to send a message to TTA asking for final preparation status; 3) the TTA will know that it gets a 
request message from the HTA and then sends its response message back to the AgentHelper for 
the final preparation status. 

Fig 12-2 shows the performance analysis of the case study in terms of CPU performance, 
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memory usage, and thread usage when the client performs a commit transaction. The Netbeans 
5.5.1 source is available following (Razavi & Moschoyiannis, 2008). 
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FIG. 12-2 RUN-TIME BEHAVIOUR OF THE SCENARIO 

12.1.1 CONCLUDING NOTE 

In this section we have been concerned with the distributed coordination of the service 
compositions involved in long-running transactions in DEs, and have described schemas which 
can be used to derive XML representations of the underlying formal model (transaction vectors) 
and guide the implementation of the proposed transaction model. This was illustrated with a 
simple example involving sequential service dependencies in a transaction between three 
participants. 

When talking about service composition, in SOA terms but also more generally, we need to take 
into account dependencies that may arise due to: (i) ordering (of service invocations) and, (ii) data 
dependencies due to exchange or sharing of results. In this section we have dealt with 

Digital Ecosystems 
-210- Amir reza Razavi 



Appendix 3 

Simulations and Implementation of Digital Ecosystems 

dependencies that arise due to ordering. In previous work, reported in detail in Deliverable D3.2 of 
OPAALS (Razavi et al., 2007b), and subsequently published in (Razavi et al., 2007c), we have 
described an extended lock scheme that is used to handle data dependencies in a transactional 
setting with the desired capabilities. 

Similarly, dealing with the order of service compositions in long-running transactions comes 
with a need for coordinating the required service invocations in a principled manner. This is not 
only relevant for ensuring that the set-up of the transaction includes no more than the desired 
behavioural scenarios (we have more to say on this in the closing paragraph of this section) but is 

necessary for the complete specification of a long-running transaction, in terms of expressing both 
forward and compensating behaviour. So in addition to modelling the sequences of service 
invocations required for a successful outcome, it is also necessary to be able to model the 
sequences of compensating actions required when some forward action of the transaction fails 
(compensating behaviour). We have not dealt with compensating behaviour in this section, and 
therefore refer the reader to Deliverable D3.2 of OPAALS (Razavi et al., 2007b) which deals with 
this additional dimension of a multi-service transaction setting and gives a detailed account of how 
we go about handling failures in our model. 

Our model for long-running transactions, to the extend it has been described in this section, 
provides a way of expressing the service coordination implied in a given transaction along with a 
schema representation for the formal modelling of such coordination, which can be used to derive 
XML descriptions of the required orderings on service invocations, the so-called transaction 
scripts. This aspect of the OPAALS distributed transaction model can be extended in interesting 

ways. In particular, we have been concerned with the refining the initial specification of a 
transaction, which may be given as a UML model of service interaction scenarios, to ensure that 
the actual order in which services are invoked respects the required orderings of service 
invocations in the specification. Our ideas on the gradual elaboration of behavioural scenarios in 
long-running transactions can be found in (Moschoyiannis et al., 2008). 

12.2SIMULATION AND EXPECTATION 

This section is a primary result of one of the early simulation of Digital Ecosystem: 

" Razavi, S. Moschoyiannis, and P. Krause (2008) A Self-Organising Environment for 
Evolving Business Activities, The First International Workshop on Computational P2P 
Networks: Theory & Practice (ICWMC 2008 // ICCGI 2008 // ComP2P), 2008, July 27 - 
August 1,2008 - Athens, Greece. 

We focus on the final result, in comparison with a conventional implementation of Digital 
Ecosystem; for current comparison is with a conventional unstructured FADA network (Razavi et 
al., 2006), (TechIDEAS, 2007)). 
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12.2.1 ANALYSING THE RESULT 

In the first step, by using the frequency distribution of links per node we try to clarify the 
distribution of links among nodes. This enables us to compare similar snapshots of nodes for 
FADA and our network in a similar situation. 

For clearer comparison, we use cumulative frequency analysis to examine the network situation 
during a critical situation. For example, in the next section we investigate the impact in case of 
failure of crucial nodes on the network, and specifically its connectivity. Despite of the facility for 

comparison between two different types of networks and questioning the topology reaction in a 
decisive situation, this can steer us to formulate the confidence statements (as the indication for the 
reliability of network) as future work. 

12.2.2 A LON\ E: ', T10NAI. DIGITAL ECOSYSTEM 

FADA (TechIDEAS, 2007) as a conventional implementation of a digital ecosystem is a 
scale-free network, which is relying on a few hubs. The effect of this for SMEs is an inevitable 
bottleneck at peak time. As a simple example Fig. 3-2 shows how the core infrastructure may 
indeed rely on a few hubs. This not only causes high traffic on peak time (and as a result instability 

of hubs during this time), but also the possibility of fragmentation and creating islands in the 
network grows. Especially when we take into account the regular unavailability of SMEs based on 
their business model and regional working hours. Fig. 12-3 shows the relationships between the 
number of nodes (on the vertical axis) and the number of links (horizontal axis). Clearly, a few 

number of nodes have the most number of links (high degree) while the majority of nodes have just 

a few links (and these few links mostly end up to a high degree node). 
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FIG. 12-3 DISTRIBUTION DEGREE OF A CONVENTIONAL DIGITAL ECOSYSTEM 

Based on Fig 12-3, in a conventional Digital Ecosystem, a few number of nodes have the most 
links (8 nodes have more than 2500 links) and majority of nodes have a few links (more than 4000 

nodes with less than 5 links). As a result the network has to rely on a few hubs which may not be 

the most reliable nodes. Conceptually, they have been hubs because of the high number of business 

transactions which they participate in - the result is close to chapter 7 estimation. 

As a typical scale-free network whose distribution degree follows a power law distribution, any 
failure (or high traffic complexity) on hubs can cause immediate disruption at the transactional 
level (abortion of the majority of transactions) and fragmentation of the network. These problems 

are addressed in our current design and the use of virtual super peers shows significant 
improvement on the infrastructure of the digital ecosystem. As demonstrated in the next section, 
the dynamic topology of the network can react in response to failures or attacks on the virtual hubs. 

12.2.3 DYNAMIC VSPS MODEL FOR A DIGITAL ECOSYSTEM 

By using a dynamic measurement for choosing nodes in VSPs, the dependency on a few nodes 
with higher distribution degree decreases dramatically. Fig. 12-4 shows an example of a DE where 
links are propagated on different nodes. 
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FIG. 12-4 DISTRIBUTION DEGREE OF DGITAL ECOSYSTEM WITH VSPS 

Our primary results with the same number nodes (5000), shows spectacular shift in comparison 
with the typical FADA infrastructure (compare with Fig. 12-3) when more than 800 nodes have 

more than 350 links (nodes which made virtual super peers) and even their neighbouring nodes 
(which have node stability measurement close to 1) have large number of links (about 900 nodes 
with more than 300 links). These become good candidates for joining the virtual super peers by 

substituting existing member nodes during failures or attacks on current VSPs. As a result, using 
Virtual Super Peers and relying on node stability, rather than the business activity, provides a fairer 
distribution degree. As depicted in Fig. 12-4 Considerable numbers of nodes have higher number 
of links. 

12.2.4 FAILURES AND REACTIONS 

Fig. 12-5 shows the result of a simulation of 800 simultaneous failures to all VSPs nodes (nodes 
in permanent clusters forming Virtual Super Peers). These nodes lose all of their links and then 
only through performing a few business transactions they rejoin the network. As a result of these 
failures they have very weak stability (NodeStability close to 0). Therefore, despite of their 
transactions they will not receive link replications and still have a low number of links (less than 
75 in the simulation of Fig. 12-5). 

Meanwhile their neighbourhood nodes have been substituted in the VSPs structure and their 
links increased (Fig. 12-5 shows this effect). But the interesting point is that still the network has 

not suffered any fragmentation. We may experience some longer response time on business 
transactions execution but the Digital Ecosystem does not suffer the full failure. Typically, such a 
severe attack resulting in this type of simultaneous failures would cause several fragmentations. 
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FIG. 12-5 DISTRIBUTION DEGREE AFTER FAILURE ON VSPS 
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