Evaluating the uptake, intracellular fate and functional consequences of hepatocyte exposure to a range of nanoparticles, *in vitro.*

Helinor Jane Johnston

A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University for the award of Doctor of Philosophy

March 2009

ATTENEVIAU SEIGAN Resuerigi

Declaration

It is hereby declared that this thesis and the research work upon which it is based were conducted by the author, Helinor Johnston.

Helinor Johnston

Abstract

The liver is recognised as a potential target site for nanoparticle (NP) toxicity, as NPs have been observed to accumulate within this organ subsequent to exposure via injection, inhalation or instillation. The liver's unique structure has to be taken into consideration when evaluating NP toxicity, as a variety of cell types of distinct morphology and function are evident, and potentially affected by NP exposure. Of particular interest are hepatocytes, due to their abundance and importance to the maintenance of normal liver function, and macrophages due to their role in host defence.

The uptake and intracellular fate of fluorescent polystyrene particles (20nm and 200nm) by hepatocytes was evaluated (with exposure times of up to 60 minutes). Within the studies conducted comparisons of the response of primary rat hepatocytes, with C3A and HepG2 hepatocyte cell lines to NP exposure were made in order to investigate whether cell lines are a relevant model of hepatocyte behaviour. It was found that the uptake of particles by the primary hepatocytes, and both cell lines was size and time dependent. Specifically, it appeared that the internalisation of 200nm particles was limited, occurred at later time points (60 minutes), with the majority of particles evident at the cell surface. Polystyrene NPs (20nm) were internalised by cells after a 10 minute exposure time, after which NPs compartmentalised either within and/or between adjacent cells. The nature of the NP 'compartments', and therefore fate of internalised NPs was then investigated to determine if the compartments developed as a consequence of the mechanism of uptake, or due to the attempted elimination of NPs from cells. It was found that NPs were not contained within early endosomes or lysosomes. However it was apparent that polystyrene NPs were eliminated to a limited extent within the bile canaliculi of all cell types, and may accumulate within the mitochondria of cell lines after a 60 minute exposure, which warrants further investigation.

The impact of the PARTICLE_RISK particle panel [consisting of ultrafine carbon black (ufCB), CB, carbon nanotubes (CNTs), C_{60} (carbon fullerene) QD621 (positively charged quantum dots) and QD620 (negatively charged quantum dots)] on hepatocyte function was then determined. It was consistently observed that QD621 and QD620 were able to elicit the greatest extent of

toxicity, evidenced within their ability to deplete cellular GSH, induce cytotoxicity, initiate a pro-inflammatory response (indicated by an increase in IL-8 production) and decrease bile secretion, in the hepatocyte couplet, *in vitro* model. It was observed that the pattern of response was similar within the cell lines and primary cells.

Differentiated monocytic THP-1 cells (to represent the resident liver macrophages, Kupffer cells) were exposed to the PARTICLE_RISK particle panel to obtain conditioned medium (CM) that was exposed to hepatocytes, in order to gain insight into the ability of macrophages to influence NP mediated toxicity to hepatocytes. Firstly, the response of macrophages to particle exposure was considered and it was apparent that the toxicity that was observed within hepatocytes was paralleled within the response of differentiated monocytic cells (THP-1). Accordingly, QD621 were again proven to have the greatest toxic potential, with QD620 able to induce toxicity to a more limited extent. The exposure of hepatocytes to CM potentiated the toxicity observed when cells were exposed to particles alone, so that the pattern of response was comparable, but the extent of toxicity greater, and evident at earlier time points. It was apparent that QDs were able to induce an inflammatory response (characterised by TNF α and IL-8 production) within the liver that was primarily mediated by macrophages.

When considering the results from all experiments it is evident that some of the particles contained within the PARTICLE_RISK panel were more capable of eliciting toxicity within the liver, and that their toxicity can be ranked in the following order: $QD621>QD620>CNT=ufCB=C_{60}>CB$.

Contents

Section		Page
Acknowledge	ements	i
Abbreviation	S	ii
Publications		v
Chapter One	e : Nanotechnology, Nanoparticles and Nanotoxicology	y 1
1.1	The PARTICLE_RISK project	2
1.2	What is Nanotechnology?	3
1.3	The benefits and dangers associated with NP exploitation	4
1.3.1	Sources of NPs	5
1.3.2	Risk assessment of the impact of NP exposure on	6
	human health	
1.3.2a	The evaluation of risk	6
1.3.2b	The consideration of exposure levels when assessing risk	6
1.3.2c	NP production volume influencing risk assessments	7
1.3.2d	Risk/Benefit analysis	8
1.4	Current and expected examples of NP exploitation	8
1.5	The importance of NP physicochemical characteristics 11	
1.5.1	The impact of particle size on NP behaviour	11
1.5.2	The importance of aggregation or agglomeration to NP properties	12
1.5.3	NP behaviour is dependent on their shape and structure	13
1.5.4	The chemical composition of NPs is diverse	14
1.5.5	The importance of surface attachments to NP properties	14
1.5.6	Influence of charge on NP behaviour	14
1.6	Why is there concern regarding NP utilisation?	15
1.7	Susceptibility to the effects of NP exposure	17

1.8	Routes of NP exposure	17
1.8.1	Toxicity of NPs to the skin	18
1.8.2	Pulmonary toxicity of NPs	20
1.8.3	NP toxicity to the GIT	20
1.8.4	NP presence within blood	21
1.8.5	Elimination of NPs	21
1.8.6	Cell targets of NPs	22
1.9	What particles will be used to investigate NP toxicity to	24
	the liver?	
1.9.1	Quantum Dots	24
1.9.2	Carbon Nanotubes	25
1.9.3	Carbon Fullerenes	27
1.9.4	Ultrafine Carbon Black	28
Chanter Tu	why is there concern recording ND toxisity to the	20
Chapter Tw	<u>ivor</u> 2	30
2.1.	Why is it important to study the toxicity of NPs to the liver?	31
2.2.1	Blood supply to the liver	31
2.2.2	Redistribution of NPs from their site of deposition and	32
	accumulation within the liver	
2.3	Liver Structure	34
2.3	Cells required for normal liver function	34
2.3.1		35
2.3.2		36
2.0.0		00
2.4	Liver Ultrastructure	38
2.4.1	What cells are important to normal liver function?	38
2.4.1a	Hepatocytes	38
2.4.1b	Endothelial cells	39
2.4.1c	Kupffer cells	40
2 4 1d	Stellate Cells	41

2.5.1	The liver and the production of bile	42
2.5.2	Study of hepatobiliary function	43
2.5.2a	Isolated cells	43
2.5.2b	Hepatocyte cell lines	43
2.5.2c	Isolated rat hepatocyte couplet	44
2.6	Aims & Objectives	45
2.6.1	Aim	45
2.6.2	Objectives	45
2.6.2a	Determine the size and time dependent uptake, and the	45
	subsequent sub-cellular localisation of NPs in hepatocytes	
2.6.2b	Determine the ability of NPs to induce oxidative	45
	stress in hepatocytes	
2.6.2c	Investigate the ability of NPs to initiate an inflammatory	46
	response in the liver	
2.6.2d	Investigate the potential of NPs to induce cytotoxicity	46
2.6.2e	Evaluate the impact of NP exposure on bile secretion	46
2.6.2f	Determine the contribution of inter-cellular interactions	46
	to NP toxicity within the liver.	
2.6.3	Hypothesis	47
Chapter Th	ree: General Materials and Methods	48
3 1	Materials	<u>4</u> 9
311	Nanonarticles	49
312	Fauinment	49 49
313	Chemicals	49
0.110		10
3.2	Particle characteristics	49
3.3	Hepatocyte cell line cell culture	51
3.4	Determining cell viability and number	52

3.5	Statement of animal welfare	52
3.6	Isolation and culture of rat hepatocyte couplets	52
<u>Chapter Fc</u>	<u>our</u> : Investigating the uptake and intracellular fate of fluorescent polystyrene particles in hepatocytes <i>in vitr</i> o	55
4.1	Importance of studying the internalisation of NPs by liver cells	56
4.1.2	Cellular barriers to NP uptake	56
4.1.3	Internalisation pathways	58
4.1.3.1	Passive transport mechanisms	58
4.1.3.2	Transporter mediated active transport	59
4.1.3.3	Endocytosis	59
4.1.3.3.1	The intracellular events that dictate the fate of cargo	61
	internalised by endocytosis	
4.1.3.3.2	The importance of the early endosomes in dictating the	62
	fate of internalised substances	
4.1.3.3.3	The contribution of lysosomes to the degradation of	63
	internalised substances	
4.1.4.1	Clathrin-mediated endocytosis	64
4.1.4.2	Macropinocytosis	65
4.1.4.3	Phagocytosis	65
4.1.4.4	Caveolae dependent endocytosis	65
4.1.4.5	Clathrin and caveolae independent endocytosis	66
4.1.4.6.	Methods of investigating NP uptake	67
4.1.5	Evidence of NP internalisation by cells	69
4.1.6	Principles of immunofluorescent staining	74

4.1.7	Aim	75
4.2	Materials and Methods	76
4.2.1.1	Equipment	76
4.2.1.2	Materials	76
4.2.2.1	Evaluating the uptake of fluorescent polystyrene particles by HepG2 and C3A cell lines and IRHCs over time, using fixed cell imaging.	76
4.2.2.2	The live imaging of fluorescent polystyrene particle uptake by hepatocyte cell lines	77
4.2.2.3	Investigating the incorporation of 20nm fluorescent polystyrene NPs into early endosomes within cell lines and IRHCs	77
4.2.2.4	Evaluating the incorporation of fluorescent 20nm polystyrene NPs within lysosomes or mitochondria of cell lines and IRHCs	78
4.2.2.5	Evaluating the incorporation of fluorescent 20nm polystyrene NPs into the bile canaliculi of hepatocyte cell lines and IRHCs	78
4.3	Results	80
4.3.1	Evaluating the size and time dependent uptake of fluorescent polystyrene particles by hepatocytes	80
4.3.2	Investigating the uptake of polystyrene particles by hepatocyte cell lines using live Imaging	86
4.3.3	Revealing the fate of internalised 20nm fluorescent polystyrene NPs	88
4.3.3.1	Investigating the Incorporation of 20nm fluorescent polystyrene NPs within early endosomes	88
4.3.3.2	Evaluating the localisation of 20nm fluorescent polystyrene NPs within lysosomes	90
4.3.3.3	Determining the accumulation of 20nm fluorescent	92

	polystyrene NPs within mitochondria	
4.3.3.4	Investigating the elimination of 20nm fluorescent	94
	polystyrene NPs within bile	
4.4	Discussion	96
4.4.1	Justification for the use of fluorescent polystyrene particles	96
4.4.2.1	Size and time dependent uptake of fluorescent polystyrene particles by hepatocytes	96
4.4.2.2	Importance of serum to particle uptake	99
4.4.3	The fate of internalised 20nm polystyrene particles	100
4.4.3.1	Determining the incorporation of polystyrene NPs into early endosomes	101
4.4.3.2	Determining the potential for polystyrene NP accumulation within lysosomes	103
4.4.3.3	Evaluating the localisation of polystyrene NPs within mitochondria	104
4.4.3.4	Determining the elimination of polystyrene NPs within bile	105
4.4.4	Limitations of confocal microscopy & improvement of the experimental set up	107
4.4.5	Importance of developing <i>in vitro</i> models when assessing NP toxicity	108
4.4.6	Revealing the sub-cellular fate of fluorescent NPs using differential centrifugation	109
4.4.7	Conclusion	110
<u>Chapter F</u>	<u>Five</u> : Determining the impact of NP exposure on hepatocyte function	112
5.1	The importance of determining the functional	113

consequences of hepatocyte exposure to NPs

5.1.2	Inflammation: a potential pathway for NP toxicity?	114
5.1.2.1	What is inflammation, and when does it cause damage?	114
5.1.2.2	Detecting inflammatory responses	116
5.1.2.3	NP mediated inflammation	116
5.1.3.1	Oxidative stress: a common cellular response to NP exposure?	118
5.1.3.2	Cellular defences against increased ROS production	119
5.1.3.3	How are ROS and oxidative stress detected?	120
5.1.3.4	Evidence of NP mediated oxidative stress	120
5.1.4	Involvement of transcription factor activation in NP mediated toxicity	124
5.1.5	The NP toxicity hypothesis	126
5.1.6	The ability of NPs to compromise cell viability	127
5.1.6.1	Mechanisms of cell death	127
5.1.6.2	Detecting cell death	127
5.1.6.3	NP mediated cytotoxicity	128
5.1.7	Liver mediated bile secretion	130
5.1.8	Aims and objectives	130
5.2	Materials & Methods	132
5.2.1	Materials	132
5.2.1.1	Equipment:	132
5.2.1.2	Chemicals	132
5.2.2.	Exposure of the C3A hepatocyte cell line and IRHCs to the PARTICLE_RISK panel	132
5.2.2.1	Standardisation of particle concentrations	132

5.2.2.2	Exposure of hepatocytes to particles	133
5.2.3.1	Determining the impact of NP exposure on the C3A	133
	hepatocyte cell line and IRHC intracellular GSH content	
5.2.3.2	Extraction and measurement of GSH from hepatocytes	134
5.2.4	Protein BioRad Assay	135
5.2.5.1	The LDH assay	135
5.2.5.2	Determining the impact of NP exposure on C3A cell viability, using the LDH assay	136
5.2.5.3	Investigating the adsorption of LDH onto the surface of NPs	137
5.2.6.1	The MTT assay	137
5.2.6.2	Determining the impact of NP exposure on C3A cell	137
	and IRHC viability, using the MTT assay	
5.2.6.3	Determining the interference of NPs with the MTT assay	138
5.2.7	Effect on NP exposure on bile secretion	139
5.2.8	Determining cytokine levels within hepatocyte supernatants	140
5.2.8.1	Detection of multiple cytokines simultaneously: Multiplex analysis	140
5.2.8.2	Determining PARTICLE_RISK particle mediated cytokine release from hepatocytes using multiplex analysis	141
5.2.8.3	Detecting cytokine production using ELISAs	142
5.2.9.1	Investigating the effect of particle exposure on IRHC morphology using SEM analysis	143
5.2.9.2	Determining the effect of particle exposure on IRHC ultrastructure using TEM analysis	144
5.2.10	Statistical analysis	144
5.3	Results	146

5.3.1.1	Investigating the effect of NP exposure on GSH levels	146
5.3.1.2	The impact of NP exposure on IRHC GSH levels	150
5.3.2	Impact of NP exposure on hepatocyte viability	153
5.3.2.1	Impact of NP exposure on C3A hepatocyte viability,	153
	using LDH release as an indicator	
5.3.2.2	LDH adsorption onto the surface of NPs	156
5.3.2.3	Impact of NP exposure on C3A hepatocyte viability, assessed using the MTT assay	157
5.3.2.4	Investigating the ability of NPs to interfere with the MTT assav	160
5.3.2.5	Impact of NP exposure on IRHC viability	162
5.3.3.1	Impact of NP exposure on C3A hepatocyte cytokine production	164
5.3.3.2	Evaluating NP induced MIP-2 production by IRHCs	166
5.3.4	Impact of NP s on bile secretion	169
5.3.5.1	Impact of NP exposure on IRHC morphology using SEM	171
5.3.5.2	Evaluating IRHC ultrastructure subsequent to NP exposure, using TEM	173
5.4	Discussion	176
5.4.1.1	Determining the impact of NP exposure on oxidative stress development within hepatocytes	176
5.4.1.2	Impact of serum presence on oxidative stress	177
5.4.1.3	Determining increases in cellular GSSG as an indicator of oxidative stress	177
5.4.1.4	Consequences of GSH depletion for normal hepatocyte function	178
5.4.2	Ability of NPs to impact on hepatocyte viability	178
5.4.2.1	Findings from the LDH and MTT assays: are the results	179

	comparable?	
5.4.2.2	NP interference with the MTT and LDH assays	180
5.4.3.1	The ability of NPs to impact on IRHC morphology, using SEM	182
5.4.3.2	Determining the impact of NP exposure on the	185
	ultrastructure of IRHCs, using TEM analysis	
5.4.4.1	NP induced hepatocyte cytokine production	187
5.4.4.2	Inflammatory diseases and susceptibility to NP toxicity	189
5.4.5	Impact of NP exposure on bile secretion	189
5.4.6.1	Why were only QDs able to exert toxicity to hepatocytes?	191
5.4.6.2	What is responsible for QD toxicity?	192
5.4.6.2a	The contribution of QD instability to their toxicity	193
5.4.6.2b	The importance of charge to QD toxicity	194
5.4.6.2c	QD characteristics responsible for their toxicity	195
5.4.7	Why do IRHCs appear to be less responsive to NP toxicity than cell lines?	196
5.4.8	Justification of particle concentrations used when	197
	assessing PARTICLE_RISK toxicity to hepatocytes	
5.4.9	Conclusion	198
<u>Chapter Six</u> :	Evaluating the importance of macrophage- hepatocyte interactions to NP toxicity within the liver	199
6.1	Importance of considering cellular interactions within the liver when evaluating NP toxicity	200
6.1.2.1	The contradictory roles exhibited by Kupffer cells within the liver	200

6.1.2.2	Consequences of Kupffer cell stimulation	201
6.1.2.3	Contribution of Kupffer cells to the toxicity of known hepatotoxins	203
6.1.2.4	Indirect mechanisms of Kupffer cell mediated hepatotoxicity	204
6.1.3	Investigating cell interactions within the liver	205
6.1.4	Importance of cell interactions to NP toxicity	206
6.1.5	Aim	207
6.2.	Materials and Methods	208
6.2.1	Materials	208
6.2.2	Standardisation of NP exposures	208
6.2.3	Obtaining macrophage conditioned medium: THP-1 cell subculture, and exposure of differentiated THP-1 cells to the PARTICLE_RISK particle panel	208
6.2.4	The impact of particle exposure on THP-1 cell viability, and cytokine release	209
6.2.5	Treatment of C3A cells with CM	209
6.2.6	Significance analysis	209
6.3	<u>Results</u>	210
6.3.1	Impact of NP exposure on THP-1 macrophage viability	210
6.3.2.1	Effect of NP exposure on TNF α release from THP-1 macrophages	213
6.3.2.2	NP induced IL-8 release from THP-1 macrophages	216

6.3.3	Ability of CM to induce oxidative stress in C3A hepatocytes	219
6.3.4	Impact of CM on hepatocyte viability: assessed using the LDH assay	222
6.3.5	Impact of CM exposure on IL-8 release from C3A hepatocytes	225
6.4	Discussion	228
6.4.1	Relevance of the model used	228
6.4.2	The impact of NP exposure on macrophage function	228
6.4.2.1	NP induced macrophage cytotoxicity	228
6.4.2.2	The inflammatory response associated with the exposure of macrophages to NPs	229
6.4.3	Importance of interactions between hepatocytes and macrophages to NP toxicity within the liver	232
6.4.3.1	The impact of CM exposure on hepatocyte GSH levels	232
6.4.3.2	CM mediated hepatocyte cytotoxicity	232
6.4.4	CM induced release of IL-8 from C3A hepatocytes	233
6.4.5	Protective effect of macrophages to QD620 mediated toxicity to hepatocytes	234
6.4.6	Contribution of NPs to CM effects	235
6.4.7	Conclusion	235
Chapter Sev	ven: General Discussion	237
7.1	How the toxicity of NPs to the liver was investigated	238
7.2	Evaluating the uptake and intracellular fate of	238

fluorescent polystyrene particles within hepatocytes in vitro

7.3	Comparing the toxicity of the PARTICLE_RISK particle panel	239
7.3.1	The impact of NP exposure on hepatocyte function	239
7.3.2	The impact of NP exposure on macrophage function	240
7.3.3	The ability of conditioned medium to impact on hepatocyte function	241
7.4	Do cell lines and primary isolated rat hepatocyte couplets behave similarly?	242
7.5	Attributes of NPs responsible for toxicity	243
7.6	Future Work	244
7.7	Conclusions	247
7.8	Relevance to man	248
References		250
Appendix		284
A1	Differential Centrifugation	285
A2	GSSG measurement	288
A3	Determining CYP2E1 activity within hepatocyte cell lines	289

List of figures

Figure		<u>Page</u>
Chapter One		
Figure 1.1	The different forms of nano-carbon	13
Figure 1.2	Routes of exposure, and potential fates of NPs	18
Chapter Tw	<u>o</u>	
Figure 2.1	The blood supply to the liver	32
Figure 2.2	Routes of exposure that lead to the exposure of	34
	the liver to NPs	
Figure 2.3	The liver lobule	36
Figure 2.4	The liver acinus	36
Figure 2.5	Zones of the liver acinus	37
Figure 2.6	The arrangement of cells within the liver	38
Figure 2.7	The hepatocyte couplet	45
Chapter Th	<u>ree</u>	
Figure 3.1	Couplet perfusion apparatus	53
Chapter For	<u>ur</u>	
Figure 4.1	Organisation of endocytic pathways leading to	62
	degradation	
Figure 4.2	The time dependent uptake of 20nm fluorescent	82
	polystyrene NPs by hepatocyte cell lines and	
	isolated rat hepatocyte couplets	
Figure 4.3	The time dependent uptake of 200nm fluorescent	83
	polystyrene particles by hepatocyte cell lines and	
	isolated rat hepatocyte couplets	
Figure 4.4	Confirming the uptake of 20 or 200nm polystyrene	84
	particles by C3A cells using Z stacks	
Figure 4.5	Confirming the uptake of 20 or 200nm polystyrene	85
	particles by C3A cells with xz and yz micrographs.	
Figure 4.6	The live imaging of fluorescent polystyrene particle	87
	uptake (20nm and 200nm) by C3A and HepG2 cells,	
	in the presence and absence of serum	

Figure 4.7	Investigating the incorporation of 20nm fluorescent	89
	polystyrene NPs into early endosomes of hepatocyte	
	cell lines and IRHCs	
Figure 4.8	Investigating the incorporation of 20nm fluorescent	91
	polystyrene NPs into the lysosomes of hepatocyte cell	
	lines and IRHCs	
Figure 4.9	Investigating the accumulation of 20nm fluorescent	93
	polystyrene NPs into the mitochondria of hepatocyte	
	cell lines and IRHCs	
Figure 4.10	The accumulation of the fluorescent bile acid CLF	95
	and 20nm fluorescent polystyrene NPs within the	

canalicular structures of hepatocyte cell lines and IRHCs.

Chapter Five

Figure 5.1	Determining the CVA of CLF	139
Figure 5.2	The principle of the multiplex cytokine kits	141
Figure 5.3	C3A cell GSH content after exposure to	149
	PARTICLE_RISK particles	
Figure 5.4	Hepatocyte couplet GSH content after	152
	exposure to PARTICLE_RISK particles	
Figure 5.5	C3A hepatocyte LDH release after exposure	155
	to the PARTICLE_RISK panel of particles	
Figure 5.6	C3A hepatocyte MTT activity after exposure	159
	to the PARTICLE_RISK panel of particles.	
Figure 5.7	Hepatocyte couplet MTT activity after exposure	163
	to the PARTICLE_RISK panel of particles.	
Figure 5.8	IL-8 release from C3A hepatocytes after exposure	165
	to the PARTICLE_RISK particle panel.	
Figure 5.9	PARTICLE_RISK particle induced MIP-2 release from	168
	hepatocyte couplets.	
Figure 5.10	Effect of PARTICLE_RISK particles on bile secretion	170
	by IRHC	
Figure 5.11	SEM analysis of IRHC morphology following exposure	172
	to the PARTICLE_RISK panel of particles	
Figure 5.12	TEM analysis of IRHC morphology following exposure	174

to the PARTICLE_RISK particles

Figure 5.13	TEM analysis of IRHC morphology following exposure	175
	to the PARTICLE_RISK particles at high magnification	
Figure 5.14	QD suspensions	194

Chapter Six

Figure 6.1	Inter-cellular communication within the liver	202
Figure 6.2	THP-1 cell LDH release after exposure to the	212
	PARTICLE_RISK panel of particles	
Figure 6.3	TNF α release from THP-1 cells following exposure	215
	to the PARTICLE_RISK particle panel	
Figure 6.4	IL-8 release from THP-1 cells following exposure	218
	to the PARTICLE_RISK panel of particles	
Figure 6.5	C3A hepatocyte GSH content after exposure to CM	221
Figure 6.6	CM stimulated LDH release from C3A cells	224
Figure 6.7	CM induced IL-8 release from C3A hepatocytes	227

List of tables

<u>Table</u>		<u>Page</u>
<u>Chapter On</u>	<u>e</u>	
Table 1.1	The species and tissue origin of cell lines	23
Chapter Th	ree	
Table 3.1	PARTICLE_RISK particle characterisation	51
Chapter Fiv	<u>e</u>	
Table 5.1	Determining the adsorption of LDH onto the	156
	surface of PARTICLE_RISK particles	
Table 5.2	Determining the interference of the PARTICLE_RISK	161
	panel within the MTT assay.	
Chapter Sev	ven	
Table 7.1	The negative impact of the PARTICLE_RISK particle	240
	panel on hepatocyte function	
Table 7.2	The detrimental impact of the PARTICLE_RISK particle	241
	panel on macrophages	
Table 7.3	The detrimental impact of CM on hepatocyte function	242

Supplementary Data DVD

A supplementary data DVD has been provided that contains animations associated with the following figures:

- <u>Figure 4.6.</u> Confirming the uptake of 20 or 200nm polystyrene particles by C3A cells using Z stacks
- Figure 4.7. The live imaging of fluorescent polystyrene particle uptake (20nm and 200nm) by C3A and HepG2 cells, in the presence and absence of serum

•If the speed of the animations is too fast within the z stacks featured within figure 4.6, then I recommend pausing the movie, and using the 'clip position' tool to move through the different optical slices of the image.

•The z stacks were also converted into 3D projections, which can also be viewed within the supplementary DVD.

Acknowledgements

Firstly I would like to thank Prof Vicki Stone for her continued support throughout my PhD. Her guidance has been an integral part of completing my PhD and her knowledge of all things nano, and couplet colleting skills, really are impressive.

It was a pleasure to work with everyone within lab D28, however there are two people in particular who I would like to thank. My 'lab daddy' Dr Dave Brown has helped with many protocol related problems and I am sure our Girls Aloud outing and milkshake dancing will never be forgotten. I would also like to thank Dr Lesley Young, who has been a great help in the lab. I would also like to take this opportunity to say thanks to everyone in the lab for putting up with the many heli mixes, I know dizzy rascal was a fav!

Within the PhD 'G25' and 'F28' research offices, a number of people have participated in many helpful scientific discussions and also made it a joy to go into uni every day. There have been many 'good times' and 'great chats' throughout the 3 years, which on more than one occasion left me giggling, and avoiding flying paper balls in my corner! So thanks to Elisa, Martin, Cormac, Gayle, Fan, Min, Matt, and Will; I hope we'll all continue to be friends for many years to come. Also apologies to those in surrounding offices if the decibel levels got too high!

My family have supported me throughout my PhD and put up with the majority of my PhD related stresses, so thanks to Mum, Dad, Ali, Andrew Vicky, Gran and Nana.

Thanks to my London girlies; Alex, Clarey, Lauren, Nad, Shola, Jen, Holly and Amelia who always helped me de-stress when required. Also thanks to Millie, Fi, Ashley, Grace and Nadia who provided a lot of encouragement and support.

It has been a pleasure to work within the Life Sciences department at Napier University and partners within the PARTICLE_RISK project, I really could not have wished to work with a group of more helpful or nicer people.

Abbreviations

α	alpha
AFM	atomic force microscopy
ARE	antioxidant response element
ATP	adenosine triphosphate
ß	beta
BSA	bovine serum albumin
BSP	bromosulphophthalein
C ₆₀	carbon fullerene
Ca	calcium
CaCl ₂	calcium chloride
СВ	carbon black
CCl ₄	carbon tetrachloride
CdSe	cadmium selenide
CdTe	cadmium telluride
CM	conditioned medium
CME	clathrin mediated endocytosis
CNT	carbon nanotube
CO ₂	carbon dioxide
COPD	chronic obstructive pulmonary disease
CLF	cholyl lysyl fluorescein
CVA	canalicular vacuole accumulation
CYP450	cytochrome P450
dH ₂ O	distilled water
DCFH	dichlorofluorescin
DCFH-DA	2,7-dichlorofluorescein diacetate
DLS	dynamic light scattering
DNA	deoxyribonucleic acid
DEP	diesel exhaust particles
DPPC	dipalmitoylphosphatidylcholine
DTT	dithiothreitol
ECV	endosomal carrier vesicle
EDTA	ethylenediaminetetraacetic acid
EEA-1	early endosome antigen 1
ELISA	enzyme linked immunosorbant assay
EM	electron microscopy
ER	endoplasmic reticulum
FCS	fetal calf serum
FFF	field flow fractionation

Abbreviations (continued)

GIT	gastroIntestinal tract
H_2SO_4	sulphuric acid
HBSS	hanks balanced salt solution
HO-1	heme oxygenase
Hr	hour
HPLC-MS	high performance liquid chromatography
HRP	horse radish peroxidise
ICP-MS	inductively coupled plasma mass spectroscopy
i.t	intra-tracheal
i.v.	intravenous
IRHC	isolated rat hepatocyte couplet
IL	interleukin
LCD	liquid crystal display
LAMP-1	lysosome associated protein 1
Μ	molar
m	metre
MEM	minimum essential medium
mins	minutes
ml	millilitre
mМ	millimolar
mRNA	messenger ribonucleic acid
MTT	2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl- 2H-tetrazolium bromide
MgCl ₂	magnesium chloride
MWCNTS	multi walled carbon nanotubes
MRP2	multridrug resistant protein 2
mm	millimetre
NaCl	sodium chloride
NaOH	sodium hydroxide
Na/K ATPase	sodium/potassium pump
NADH	β-nicotinamide adenine dinucleotide
NF- kß	nuclear factor kappa beta
NADPH	nicotinamide adenine dinucleotide phosphate
NEM	N-Ethylmaleimide
nm	nanometre
NP	nanoparticle
NO	nitric oxide
OPT	o-phthaldialdehyde
PAH	polycyclic aromatic hydrocarbons

Abbreviations (continued)

PBS	phosphate buffered saline
PEG	polyethylene glycol
Pen/Strep	penicillin streptomycin
PM	plasma membrane
PMA	phorbyl myristate acetate
POC-R	perfusion, open and closed cultivation
P-gp	p-glycoprotein
QD	quantum dot
RBC	red blood cell
RES	reticuloendothelial system
ROS	reactive oxygen species
SA	surface area
SARs	structure activity relationships
SEM	scanning electron microscopy
Strep-PE	streptavadin phycoerythrin
SWCNTS	single walled carbon nanotubes
TEM	transmission electron microscopy
TNF	tumour necrosis factor
TiO ₂	titanium dioxide
UV	ultraviolet
UVR	ultraviolet radiation
ufCB	ultrafine carbon black
w/o	without
ZnS	zinc sulphide
4HNE	4 hydroxynoneal
8-O-H-G	8hydroxyguanosine
μg	microgram
μl	microlitre

Publications

- Stone V, Johnston H and Clift MJD (2007). Air Pollution, ultrafine and nanoparticle mediated toxicology: cellular and molecular interactions. *IEEE Trans Nanobioscience* 6; 331-340
- I was also involved in the DEFRA funded CELL PEN report (2008) *In Press.* This report investigated the mechanisms of nanoparticle translocation across cell membranes.