
Formal Verification of an OCCAM-to-
FPGA Compiler and its Generated Logic

Circuits

D. Pizarro De La Iglesia
Submitted for the Degree of

Doctor of Philosophy
from the

University of Surrey

UNIVERSITY OF

SURREY

Department of Computing

Faculty of Engineering and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2009

© D. Pizarro De La Iglesia 2009

Abstract

As custom logic circuits (e. g. field-programmable gate arrays, or FPGAs) have become

larger, the limitations of conventional design flows have become more apparent. For large

designs, verification by simulation is now impractical.

One solution to this challenge is hardware/software co-design, in which the desired logic

is specified using a high-level, or programming, approach. Here, the requirements are to

incorporate the parallelism from the original specification, as well as to accommodate

greater complexity through various abstraction techniques. Verification may be achieved
by simulation at an algorithmic level, or by formal proofs. However, verification by a

particular circuit runs into difficulties of state-space explosion in a state-based model-

checking scheme.

The research that is reported in this thesis has addressed the formal verification of a

compiler that generates FPGA circuits. Rather than proving the correctness of every

circuit generated by a compiler, the approach has been to validate the behaviour of the

compiler itself. The source language that has been used is a variant of OCCAM, which
incorporates fine-grained parallelism and message-passing along channels between

parallel processes. The syntax of an OCCAM program can be mapped onto an abstract

syntax tree, and each component of this tree can then be mapped into hardware. It is then

necessary to prove that the hardware for each component correctly implements its

specification, which can be performed by specifying each in CSP and model-checking

them to check for equivalence. The components must also be proved to compose

correctly, so that they may be plugged together in any way that satisfies the syntax of the

source language. Finally, the correct composition of components is enforced by the type-

checking of the compiler itself, using Java classes and inheritance to ensure that the CSP

for each of the components being checked is manufactured within the same Java methods

that create the hardware circuits.

The thesis discusses the proof strategy and shows how correctness can be justified. It

concludes with some examples of simple OCCAM programs that have been translated

into hardware and executed on real FPGA devices, correctly at the first attempt.

Contents

Abstract .. ii

Contents ..
iii

List of Figures ... xvi

List of Tables ... xxv

Acknowledgements ... xxvi

I Introduction ...
I

1.1 Thesis Contributions ..
2

1.2 Possible Utilisation ..
3

1.3 Thesis Outline ..
4

2 Literature Review ..
8

2.1 FPGA ...
8

2.1.1 Programming FPGAs ...
8

2.2 CSP ..
8

2.2.1 Processes and Events ...
8

2.2.2 External Choice: Determanistic Choice ...
8

2.2.3 Internal Choice: Non-determanistic Choice ...
8

2.2.4 Hiding .. 8

2.2.5 Boolean Guards ..
8

2.2.6 Let Within .. 8

2.2.7 Alphabetised Parallel ...
8

2.2.8 Shared Parallel ...
8

2.2.9 Interleaving ..
8

2.2.10 Congruence & Monotonicity ...
8

2.3 FDR ..
8

Contents

2.4 OCCAM ...
8

2.5 Clocked Logic .. 8

2.6 The 10-PAR Design Paradigm .. 8

2.7 SableCC ...
8

2.8 Comparison with Related Work ...
8

3 Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits 8

3.1 Modelling Logic Circuits ...
8

3.2 Modelling Logic Components ... 8

3.3 Why Use CSP? ...
8

3.4 Component Models in CSP ..
8

3.5 Circuit Models in CSP ...
8

3.6 Proving the Logic Circuit is Equivalent to a Low Level Specification 8

3.6.1 Performance Problems: State Space Explosion ...
8

3.6.2 Utilising CHASE to Achieve Viable Runtime Simulations 8

3.6.3 Implementation & Model Simplification ...
8

3.7 Experimental Results ...
8

3.8 Conclusion ...
8

4 Main Work ..
8

4.1 Premise for Work ...
8

4.1.1 Implementation Implications of Premise ...
8

4.2 Assumptions made within the Compiler and Proof Strategy 8

4.3 Project Overview ...
8

4.4 Logic Component Representation ..
8

4.4.1 Why Continue Using CSP? ..
8

4.4.2 Design Considerations & Implications ..
8

4.4.2.1 Combinatorial Logic ..
8

iv

Contents

4.4.2.2 Clocked Logic .. 8

4.4.2.3 Adapting 10-PAR to OI-SEQ .. 8

4.5 Proof Framework ... 8

4.5.1 Appendix D Overview -A Single-Type Super-Type Component 8

4.5.2 Appendix E Overview -A Single-Type Implemented Component 8

4.5.3 Alternative Single-Type Component Models .. 8

4.5.4 Special Multi Type Components ... 8

4.6 Proof/Compiler Integration .. 8

5 Results ... 8

5.1 Example 1: Commstime - Version I ... 8

5.2 Example 2: Commstime - Version 2 ... 8

5.3 Example 3: A Digital Clock Displayed on an LCD ... 8

5.3.1 Main ... 8

5.3.2 LCD PowerOnlnit ...
8

5.3.3 LCD Nibble ...
8

5.3.4 LCD_Delay ..
8

5.3.5 LCD DisplayTime ...
8

5.3.6 DigitalClock ...
8

5.3.7 DebounceHour and DebounceMin .. 8

5.3.8 Compiling to Hardware ..
8

6 Future Work & Conclusion ...
8

Appendix A Other Preliminary Work ...
8

A. 1 Occam Grammar Modifications .. 8

A. 2 AST Transformer Extensions ..
8

A. 3 Graphical Circuit Visualiser .. 8

A. 3.1 Auto Layout Simplification ... 8

V

Contents

A. 3.1.1 Algorithm 1 ... 8

A. 3.1.2 Algorithm 2 ... 8

A. 4 Circuit Simulator .. 8

Appendix B Logic Component CSP Models for Preliminary Work 8

B. 1 AND Gates ... 8

B. 1.1 AND Gate with 1-Input ... 8

B. 1.2 AND Gate with 2-Inputs .. 8

B. 1.3 AND Gate N-Inputs ... 8

B. 2 D-Type Flip-Flop ... 8

B. 3 GND ... 8

B. 4 Inverter ... 8

B. 5 OR Gates .. 8

B. 5.1 OR Gate with 1-Input ... 8

B. 5.2 OR Gate with 2-Inputs ...
8

B. 5.3 OR Gate with N-Inputs .. 8

B. 6 VCC ... 8

B. 7 XOR Gates ... 8

B. 7.1 XOR Gate with 1-Input .. 8

B. 7.2 XOR Gate with 2-Inputs .. 8

Appendix C Logic Component CSP Models for Main Work ... 8

C. I Developing the Models .. 8

C. 2 AND ... 8

C. 3 D-Type Flip-Flop ... 8

C. 4 GND ...
8

C. 5 Inverter (NOT) ... 8

C. 6 NAND ..
8

vi

Contents

C. 7 NOR ...
8

C. 8 OR .. 8

C. 9 T-Type Flip-Flop ... 8

C. 10 VCC ... 8

C. I 1 XOR ...
8

Appendix D Single Type Component Generic Specification Model Example 8

D. 1 Models & Specifications ..
8

D. 1.1 GenSpec 1: Valid Low Level Behaviour ...
8

D. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking 8

D. 1.3 GenSpec 3: Correct Component Driving ...
8

D. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit Deadlocking........ 8

D. 1.5 GenSpec 5: Annotating the Outer Layer ..
8

D. 1.6 GenSpec 6: Clock Cycle Higher Generic Specification 8

D. 2 Assertions: Linking the Models Together ..
8

D. 2.1 GenSpec Assertion 1: Initial Deadlock Check ...
8

D. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour 8

D. 2.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2 8

D. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2........... 8

D. 2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving
...............

8

D. 2.6 GenSpec Assertions 6: Properties of the Annotation Events
8

D. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4
8

D. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4
8

D. 2.9 GenSpec Assertions 9: GenSpec 4 is an Annotated GenSpec 2
........................

8

D. 2.10 GenSpec Assertion 10: GenSpec 6 Deadlock Free
8

D. 2.11 GenSpec Assertions 11: GenSpec 5 Annotates Outer Level Correctly...... 8

D. 2.12 GenSpec Assertions 12: GenSpec 5 Does Not Introduce Extra Behaviour8

vii

Contents

D. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden is Similar to

GenSpec 6 ...
8

D. 3 Conclusion & Evaluation ...
8

D. 4 Future Work ...
8

D. 4.1 Linking Clock Cycle Annotations to a Higher Level Specification 8

D. 4.1.1 GenSpec 7: Software Component Generic Spec Model 8

D. 4.1.2 GenSpec Assertions 14: Linking GenSpec 6 to GenSpec 7 8

D. 4.2 Model Simplifications ..
8

Appendix E Single Type Component Implemented Model Example 8

E. 1 Models & Specifications ..
8

E. 1.1 ImpSpec 1: Valid Low Level Behaviour ...
8

E. 1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking 8

E. 1.3 ImpSpec 3: Model of Implemented Logic ...
8

E. 1.4 ImpSpec 4: Annotation Only Specification ...
8

E. 2 Assertions: Linking the Models Together ..
8

E. 2.1 ImpSpec Assertion 1: Deadlock Freedom ...
8

E. 2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour............ 8

E. 2.3 ImpSpec Assertion 3: Expected 'IF' Component Behaviour is Deadlock-Free 8

E. 2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super Type...... 8

E. 2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as Expected

..
8

E. 2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce Deadlock. 8

E. 2.7 ImpSpec Assertion 7: Expected High Level Behaviour is Deadlock-Free........ 8

E. 2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected Higher

Spec ..
8

E. 3 Conclusions & Evaluation ...
8

E. 4 Future Work ...
8

viii

Contents

E. 4.1 Linking Clock Cycle Annotations to Higher Specification 8

E. 4.1.1 ImpSpec 5: Software Specification Model ... 8

E. 4.1.2 ImpSpec Assertion 9: Software Specification is a Refinement of Super

Type .. 8

Appendix F Multi-Type Component Generic Specification Model Example 8

F. 1 Models & Specifications .. 8

F. 1.1 GenSpec 1: Valid Low Level Behaviour ... 8

F. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking 8

F. 1.3 GenSpec 3: Correct Component Driving ..
8

F. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit Deadlocking........ 8

F. 1.5 GenSpec 5: Annotating the Outer Layer .. 8

F. 1.6 GenSpec 6: Clock Cycle Higher Generic Specification 8

F. 2 Assertions: Linking the Models Together ..
8

F. 2.1 GenSpec Assertion 1: Initial Deadlock-Free Check ..
8

F. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour 8

F. 2.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2 8

F. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2........... 8

F. 2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving 8

F. 2.6 GenSpec Assertions 6: Properties of the Annotation Events 8

F. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4 8

F. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4.......... 8

F. 2.9 GenSpec Assertions 9: GenSpec 4 is an Annotated GenSpec 2 8

F. 2.10 GenSpec Assertion 10: GenSpec 6 Deadlock-Free ... 8

F. 2.11 GenSpec Assertions 11: GenSpec 5 Annotates Outer Level Correctly 8

F. 2.12 GenSpec Assertions 12: GenSpec 5 Does Not Introduce Extra Behaviour....... 8

F. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden is Similar to

GenSpec 6 ...
8

ix

Contents

F. 3 Similarities to Single Type Component Specifications ... 8

F. 4 Conclusion & Evaluation ... 8

Appendix G Multi-Type Component Implemented Model Example 8

G. 1 Models & Specifications
.. 8

G. 1.1 ImpSpec 1: Valid Low Level Behaviour ... 8

G. 1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking 8

G. 1.3 ImpSpec 3: Model of Implemented Logic ... 8

G. 1.4 ImpSpec 4: Annotation Only Specification ... 8

G. 2 Assertions: Linking the Models Together .. 8

G. 2.1 ImpSpec Assertion 1: Deadlock-Free .. 8

G. 2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour 8

G. 2.3 ImpSpec Assertion 3: Expected Component Behaviour is Deadlock-Free 8

G. 2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super Type...... 8

G. 2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as Expected

.. 8

G. 2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce Deadlock. 8

G. 2.7 ImpSpec Assertion 7: Expected High Level Behaviour is Deadlock-Free........ 8

G. 2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected Higher
Spec .. 8

G. 3 Conclusions & Evaluation ... 8

G. 4 Future Work ... 8

G. 4.1 Linking Clock Cycle Annotations to Higher Specification 8

Appendix H Alternative Generic Specification Model Example 8

H. 1 Models & Specifications .. 8

H. 1.1 GenSpec 1: Valid Low Level Behaviour ... 8

H. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking 8

H. 1.3 GenSpec 3: Correct Component Driving ... 8

X

Contents

H. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit Deadlocking 8

H. 1.5 GenSpec 5: Correct Component Driving Annotating the Outer Layer 8

H. 1.6 GenSpec 6: Clock Cycle Higher Generic Specification
8

H. 1.7 GenSpec 7: Driving Clock Cycle Higher Generic Specification 8

H. 1.8 GenSpec 8: Annotating Clock Cycle Higher Generic Specification 8

H. 1.9 GenSpec 9: Software Higher Generic Specification .. 8

H. 1.10 GenSpec 10: Annotation Only Control Generic Specification 8

H. 2 Assertions: Linking the Models Together ..
8

H. 2.1 GenSpec Assertion 1: Initial Deadlock-Free Check ..
8

H. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour
8

H. 2.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2 8

H. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2........... 8

H. 2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving 8

H. 2.6 GenSpec Assertions 6: Properties of the Annotation Events 8

H. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4 8

H. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4.......... 8

H. 2.9 GenSpec Assertions 9: GenSpec 4 is an Annotated GenSpec 2 8

H. 2.10 GenSpec Assertion 10: GenSpec 6 Deadlock-Free
8

H. 2.11 GenSpec Assertions 11: GenSpec 5 Annotates Outer Level Correctly...... 8

H. 2.12 GenSpec Assertions 12: GenSpec 5 Does Not Introduce Unexpected

Behaviours ..
8

H. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden is Similar to

GenSpec 6
...

8

H. 2.14 GenSpec Assertions 14: GenSpec 10 Similar to GenSpec 5 8

H. 2.15 GenSpec Assertions 15: Linking GenSpec 6 to GenSpec 9 8

H. 3 Conclusion & Evaluation ...
8

Appendix I Alternative Implemented Model Example ...
8

xi

Contents

I. 1 Models & Specifications .. 8

1.1.1 ImpSpec 1: Valid Low Level Behaviour ... 8

I. 1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking 8

I. 1.3 ImpSpec 3: Model of Implemented Logic ... 8

I. 1.4 ImpSpec 4: Annotation Only Specification ... 8

I. 1.5 ImpSpec 5: Software Specification Model .. 8

1.2 Assertions: Linking the Models Together .. 8

1.2.1 ImpSpec Assertion 1: Deadlock-Free
.. 8

1.2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour............ 8

1.2.3 ImpSpec Assertion 3: Expected 'IF' Component Behaviour is Deadlock-Free 8

1.2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super Type...... 8

1.2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as Expected

.. 8

1.2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce Deadlock. 8

1.2.7 ImpSpec Assertion 7: Expected High Level Behaviour is Deadlock-Free........ 8

1.2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected Higher
Spec .. 8

1.2.9 ImpSpec Assertion 9: Software Specification is a Refinement of Super Type. 8

Appendix J Pattern Matched Selective Renaming Alternative 8

J. 1 Methodology .. 8

J. 2 Conclusion ... 8

Appendix K Simplified CSP Models Without Reset Feature ... 8

K. 1 Logic Components ... 8

K. 2 Super Type Specifications ... 8

K. 2.1 Control Flow Process ... 8

K. 2.1.1 Control Flow Process: Correct Control .. 8

K. 2.1.2 Control Flow Process: Low Level Specification .. 8

xii

Contents

1(2.1.3 Control Flow Process: Low Level Specification With Deadlocking 8

K. 2.1.4 Control Flow Process: High Level Specification 8

K. 2.2 Boolean Process ... 8

K. 2.2.1 Boolean Process: Low Level Specification With Deadlocking 8

K. 2.2.2 Boolean Process: High Level Specification ... 8

K. 3 Implemented "IF THEN ELSE" Component ..
8

K. 3.1 IF THEN ELSE: Low Level Specification .. 8

K. 3.2 IF THEN ELSE: Low Level Specification With Deadlocking 8

K. 3.3 IF THEN ELSE: High Level Specification ... 8

Appendix L Expected Run Time ..
8

L. 1 Generic: Control Flow Process ..
8

L. 1.1 Implemented: SKIP (Delay) ...
8

L. 1.2 Implemented: STOP (Deadlock) ..
8

L. 1.3 Implemented: S EQ ... 8

L. 1.4 Implemented: PAR ...
8

L. 1.5 Implemented: Assignment ...
8

L. 1.6 Implemented: Channel Declaration ...
8

L. 1.7 Implemented: Variable Declaration ...
8

L. 1.8 Implemented: IF (IF THEN ELSE) ...
8

L. 1.9 Implemented: While ...
8

L. 1.10lmplementation: Output Channel (Sending Along a Channel) 8

L. 1.11 Implementation: Input Channel (Reading from a Channel) 8

L. 2 Generic: Boolean Process ..
8

L. 2.1 Implemented: True ...
8

L. 2.2 Implemented: False ..
8

L. 2.3 Implementation: Boolean AND ...
8

xiii

Contents

L. 2.4 Implementation: Boolean OR .. 8

L. 2.5 Implementation: EQUAL ... 8

L. 2.6 Implementation: NOT EQUAL ... 8

L. 2.7 Implementation: LESS THAN ...
8

L. 2.8 Implementation: GREATER THAN ..
8

L. 3 Generic: Read ...
8

L. 3.1 Implementation: UINT Constant ...
8

L. 3.2 Implementation: Read for FlipFlopStorage Variable .. 8

L. 3.3 Implementation: Read for WatchedFlipFlopStorage Variable 8

L. 4 Generic: Store ..
8

L. 4.1 Implementation: Store for FlipFlopStorage Variable .. 8

L. 4.2 Implementation: Store for WatchedFlipFlopStorage Variable 8

L. 5 Generic: Variables ...
8

L. 6 Generic: Channels .. 8

Appendix M Esterel SCADE 6.0 - Design Verifier Problem .. 8

M. 1 A Simple Model Using Enumerated Types ...
8

M. 2 Breaking the Design Verifier ...
8

M. 3 Trying to Locate the Problem ..
8

M. 4 Conclusion ...
8

Appendix N OCCAM: Digital Clock ..
8

References ..
8

xiv

List of Figures

Figure 1: How the CSP proof fits with the hardware compilation 1

Figure 2: Pictorial representation of the Logic Circuit from Figure 5 on page 25 8

Figure 3: Simplified D-Type Flip-Flop Model .. 8

Figure 4: An Instantiation of a Two Input AND Gate ... 8

Figure 5: Example CSP of Running Logic Components in Parallel 8

Figure 6: Algorithmic Specification of the Logic Circuit from Figure 5 8

Figure 7: Simple Testing of the Generated Circuit .. 8

Figure 8: Initial T-Type Flip-Flop Model Developed .. 8

Figure 9 CSP specification of a 4-bit counter process ... 8

Figure 10 Initial OCCAM counter program .. 8

Figure I1 Single-value commstime program ... 8

Figure 12: Triple-value commstime program .. 8

Figure 13: Graphical representation of an "IF THEN ELSE" component 8

Figure 14: Simplified class diagram of a subset of components and their super types 8

Figure 15: Overview of CSP proof structure for a single component 8

Figure 16: CSP model of D-Type Flip-Flop used in chapter 3 .. 8

Figure 17: An Instantiation of a Two Input AND Gate ... 8

Figure 18: AND Gate CSP Model: 10-SEQ .. 8

Figure 19: An Instantiation of aD Type Flip Flop .. 8

Figure 20: D-Type Flip-Flop CSP Model: 10-PAR .. 8

Figure 21: A simple CSP definition of an 01-SEQ component ... 8

Figure 22: A CSP definition of an 01-SEQ component using channels 8

Figure 23: 10-SEQ and IO-PAR connected in a loop .. 8

Figure 24: OI-SEQ replaces 10-PAR in 10-SEQ/IO-PAR loop .. 8

xv

Figure 25: D-Type Flip-Flop CSP Model: 01-SEQ ... 8

Figure 26: Assertions demonstrating 01-SEQ is a refinement of 10-PAR 8

Figure 27: Overview of the relationship between the numerous models of an OCCAM

supertype ... 8

Figure 28: Overview of proof structure for an implemented component 8

Figure 29: Commstime written in OCCAM for conversion into hardware 8

Figure 30: Commstime hand translated into the AST for the compiler 8

Figure 31: Trace through for initialisation phase of Figure 29 commstime 8

Figure 32: Trace through of 6 cycle cyclical loop (N+9 to N+15) for Figure 29

commstime .. 8

Figure 33: Commstime passing three values round the loop ... 8

Figure 34: Trace through for initialisation of Figure 33 commstime 8

Figure 35: Trace 11 cycle cyclical loop (N+17 to N+28) for Figure 33 commstime 8

Figure 36: Optimised trigger & completion step through for initialisation of Figure 33

commstime .. 8

Figure 37: Trigger & completion step through of 6 cycle cyclical loop of Figure 33

commstime .. 8

Figure 38: Overview of the Digital Clock example ... 8

Figure 39: Example 3: Digital Clock, running on an FPGA development board 8

Figure 40 Screen Shot of the Graphical Circuit Visualiser .. 8

Figure 41 Example output from the first tidying algorithm ... 8

Figure 42 A graphical representation of how logic components are ordered for algorithm
I .. 8

Figure 43 An example output from the second tidying algorithm 8

Figure 44 A graphical representations how logic components are ordered for algorithm 28

Figure 45 A CSV file (shown in Excel) representing input waveforms to a circuit............ 8

Figure 46 Output waveform from a simulation ... 8

xvi

Figure 47: A pictorial example of a three input AND gate .. 8

Figure 48: A pictorial example of a three input OR gate ... 8

Figure 49: CSP Definition of a D-Type Flip-Flop from [Peel & Wong, 2004] 8

Figure 50: CSP Definition of a D-Type Flip-Flop from Appendix B, used in Chapter 3 ... 8

Figure 51: A Modified CSP Definition of a D-Type Flip-Flop - Version 1 8

Figure 52: Overview of the relationship between the numerous models of an OCCAM

supertype ... 8

Figure 53: Low Level Generic Control Flow Specification .. 8

Figure 54: Low Level Generic Control Flow Specification with Explicit Deadlocking 8

Figure 55: Generic Control Flow Specification - Correct Driving Limiter 8

Figure 56: Annotated Generic Control Flow Specification with Explicit Deadlocking...... 8

Figure 57: Generic Control Flow Annotate Outer Layer ... 8

Figure 58: Generic Control Flow Annotation Specification .. 8

Figure 59: Example of GenSpec Assertion I for Controll Flow Process 8

Figure 60: Example of GenSpec Assertion 2 for Control Flow Process 8

Figure 61: Example of GenSpec Assertion 3 for Control Flow Process 8

Figure 62: Example of GenSpec Assertion 4 for Control Flow Process 8

Figure 63: Example of GenSpec Assertions 5 for Control Flow Process 8

Figure 64: Example of GenSpec Assertions 6 for Control Flow Process 8

Figure 65: Example of GenSpec Assertion 7 for Control Flow Process 8

Figure 66: Example of GenSpec Assertion 8 for Control Flow Process 8

Figure 67: Example of GenSpec Assertions 9 for Control Flow Process 8

Figure 68: Example of GenSpec Assertion 10 for Control Flow Process 8

Figure 69: Example of GenSpec Assertion 11 for Control Flow Process 8

Figure 70: Example of GenSpec Assertions 12 for Control Flow Process 8

Figure 71: Example of GenSpec Assertions 13 for Control Flow Process 8

xvii

Figure 72: Example of Simplified Control Flow Annotation Specification 8

Figure 73: Example of how to link Annotation Spec to Simplified Spec 8

Figure 74: Overview of proof structure for an implemented component 8

Figure 75: Low Level 'IF' Component Desired Specification ... 8

Figure 76: Low Level 'IF' Component Generic Specification with Explicit Deadlocking.. 8

Figure 77: CSP Model of the Logic Circuit Segment of the Implemented 'IF' Component

.. 8

Figure 78: A Graphical Depiction of the Logic Segment for an'IF' Component 8

Figure 79: IF Component Annotation Only Specification ...
8

Figure 80: 'IF' Component Deadlock-Free Assertion ..
8

Figure 81: Super Type Component Limits the Behaviour of the Implementation 8

Figure 82: Expected'IF Component Behaviour is Deadlock-Free 8

Figure 83: Expected �IF' Component Behaviour is a Refinement of Super Type 8

Figure 84: Correctly Driven IF Component Behaves as Expected 8

Figure 85: Annotating outer level of 'IF component does not introduce deadlock 8

Figure 86: 'IF' Component High Level Behaviour is Deadlock-Free 8

Figure 87: 'IF Component Behaves Similarly to Expected Higher Behaviour 8

Figure 88: 'IF' Component Software Annotation Behavioural Specification 8

Figure 89: Higher Software Specification is a Refinement of the Super Type 8

Figure 90: Low Level Generic Data Storage Specification ...
8

Figure 91: Low Level Generic Data Storage Specification with Explicit Deadlocking...... 8

Figure 92: Generic Control Data Storage Specification - Correct Driving Limiter 8

Figure 93: Annotated Generic Data Storage Specification with Explicit Deadlocking....... 8

Figure 94: Generic Data Storage Annotate Outer Layer ... 8

Figure 95: Generic Data Storage Annotation Specification ..
8

Figure 96: Example of GenSpec Assertion 1 for Data Storage Specification 8

xviii

Figure 97: Example of GenSpec Assertion 2 for Data Storage Specification 8

Figure 98: Example of GenSpec Assertion 3 for Data Storage Specification 8

Figure 99: Example of GenSpec Assertion 4 for Data Storage Specification 8

Figure 100: Example of GenSpec Assertions 5 for Data Storage Specification 8

Figure 101: Example of GenSpec Assertions 6 for Data Storage Spec 8

Figure 102: Example of GenSpec Assertion 7 for Data Storage Specification 8

Figure 103: Example of GenSpec Assertion 8 for Data Storage Specification 8

Figure 104: Example of GenSpec Assertions 9 for Data Storage Specification 8

Figure 105: Example of GenSpec Assertion 10 for Data Storage Specification 8

Figure 106: Example of GenSpec Assertion 11 for Data Storage Specification 8

Figure 107: Example of GenSpec Assertions 12 for Data Storage Specification 8

Figure 108: Example of GenSpec Assertions 13 for Data Storage Specification 8

Figure 109: Assertions Demonstrating Similarities with Single Type Generic Interface

Specifications ..
8

Figure 110: Low Level 'FlipFlopStorage' Component Desired Specification 8

Figure 111: Low Level 'FlipFlopStorage' Component Generic Specification with Explicit

Deadlocking ..
8

Figure 112: CSP Model of the Logic Circuit Segment of the ̀ FlipFlopStorage'

Component ..
8

Figure 113: FlipFlopStorage Component Annotation Only Specification 8

Figure 114: 'FlipFlopStorage' Component Deadlock-Free Assertion 8

Figure 115: Super Type Component Limits the Behaviour of the Implementation 8

Figure 116: Expected Component Behaviour is Deadlock-Free ... 8

Figure 117: Expected Component Behaviour is a Refinement of Super Type 8

Figure 118: Correctly Driven Component Behaves as Expected .. 8

Figure 119: Annotating outer level of the component does not introduce deadlock 8

Figure 120: Components High Level Behaviour is Deadlock-Free 8

xix

Figure 121: Component Behaves Similarly to Expected Higher Behaviour 8

Figure 122: Low Level Generic Control Flow Specification .. 8

Figure 123: Low Level Generic Control Flow Specification with Explicit Deadlocking ... 8

Figure 124: Generic Control Flow Specification - Correct Singal Driver 8

Figure 125: Annotated Generic Control Flow Specification with Explicit Deadlocking.... 8

Figure 126: Generic Control Flow Annotate Outer Layer ... 8

Figure 127: Generic Control Flow Annotation Specification ... 8

Figure 128: Control Generic Control Flow Annotation Specification 8

Figure 129: Annotate Generic Control Flow Annotation Specification 8

Figure 130: Example of Simplified Control Flow Annotation Specification 8

Figure 131: Control Process for Annotation Only Control Flow Specification 8

Figure 132: Example of GenSpec Assertion I for Controll Flow Process 8

Figure 133: Example of GenSpec Assertion 2 for Controll Flow Process 8

Figure 134: Example of GenSpec Assertion 3 for Controll Flow Process 8

Figure 135: Example of GenSpec Assertion 4 for Control Flow Process 8

Figure 136: Example of GenSpec Assertions 5 for Control Flow Process 8

Figure 137: Example of GenSpec Assertions 6 for Control Flow Process 8

Figure 138: Example of GenSpec Assertion 7 for Control Flow Process 8

Figure 139: Example of GenSpec Assertion 8 for Control Flow Process 8

Figure 140: Example of GenSpec Assertions 9 for Control Flow Process 8

Figure 141: Example of GenSpec Assertion 10 for Control Flow Process 8

Figure 142: Example of GenSpec Assertion 11 for Control Flow Process 8

Figure 143: Example of GenSpec Assertions 12 for Control Flow Process 8

Figure 144: Example of GenSpec Assertions 13 for Control Flow Process 8

Figure 145: Linking GenSpec 10 to GenSpec 5 .. 8

Figure 146: Example of how to link Annotation Spec to Simplified Spec 8

xx

Figure 147: Low Level IF Component Desired Specification ... 8

Figure 148: Low Level 'IF Component Generic Specification with Explicit Deadlocking 8

Figure 149: CSP Model of the Logic Circuit Segment of the Implemented 'IF'

Component .. 8

Figure 150: A Graphical Depiction of the Logic Segment for an IF Component 8

Figure 151: IF Component Annotation Only Specification ... 8

Figure 152: 'IF' Component Software Annotation Behavioural Specification 8

Figure 153: IF Component Deadlock-Free Assertion .. 8

Figure 154: Super Type Component Limits the Behaviour of the Implementation 8

Figure 155: Expected 'IF Component Behaviour is Deadlock-Free 8

Figure 156: Expected ̀IF' Component Behaviour is a Refinement of Super Type 8

Figure 157: Correctly Driven 'IF Component Behaves as Expected 8

Figure 158: Annotating outer level of'IF' component does not introduce deadlock........... 8

Figure 159: IF Component High Level Behaviour is Deadlock-Free 8

Figure 160: 'IF' Component Behaves Similarly to Expected Higher Behaviour 8

Figure 161: Higher Software Specification is a Refinement of the Super Type 8

Figure 162: Graphical representation of simplified "IF THEN ELSE" component 8

Figure 163: CSP Model of "IF THEN ELSE" Component ... 8

Figure 164: Refactored correctly driven circuit ...
8

Figure 165: Assertions demonstrating low level specification equivalence 8

Figure 166: Hybrid Generic Control Flow Process ... 8

Figure 167: Hybrid Generic Boolean Process ...
8

Figure 168: Low Level 'IF Component Specification with Embedded Full Annotations... 8

Figure 169: Hybrid annotations behave identically to annotation only specification.......... 8

Figure 170: Check if Outer Annotation Behaviour from Hybrid Model is Allowed........... 8

Figure 171: Hybrid model with annotations renamed behaves identically to correctly

driven circuit ...
8

xxi

Figure 172: Overview of proof structure for pattern matched selective renaming

alternative ... 8

Figure 173: D-Type FlipFlop with no Reset function ... 8

Figure 174: Generic Control Flow Specification - Correct Driving Limiter 8

Figure 175: Low Level Generic Control Flow Specification .. 8

Figure 176: Low Level Generic Control Flow Specification with Explicit Deadlocking ... 8

Figure 177: Generic Control Flow Annotation Specification .. 8

Figure 178: Low Level Boolean Specification with Explicit Deadlocking 8

Figure 179: Generic Control Flow Annotation Specification .. 8

Figure 180: Low Level 'IF' Component Desired Specification ... 8

Figure 181: Low Level 'IF Component Generic Specification with Explicit Deadlocking 8

Figure 182: IF Component Annotation Only Specification ...
8

Figure 183: How to compute the completion time for a 'While' component 8

Figure 184: Sending and receiving started at the same time on a0 communication delay

channel ..
8

Figure 185: Sending started 1 cycle before receiving on a0 communication delay channel

..
8

Figure 186: Sending started 2 cycles before receiving on a0 communication delay

channel ..
8

Figure 187: Reading started I clock cycle before sending on a0 communication delay

channel ..
8

Figure 188: A simple SCADE model using enumerated types .. 8

Figure 189: Modifying Figure 188 to break the design verifier .. 8

Figure 190: Simplifying the model - Version 1 ...
8

Figure 191: Simplifying the model - Version 2 ...
8

xxii

List of Tables

Table 1: Model-Checking Performance of FDR .. 8

Table 2: Port ordering imposed by the Comparator for the tidying algorithms 8

Table 3: Signal ordering imposed by the Comparator for the tidying algorithms 8

Table 4: Definitions of enumerated type used in Figure 188 ... 8

Acknowledgements

I would like to show my appreciation towards my supervisor Dr Roger Peel for his
limitless patience and support, without whom I would not have contemplated starting this
thesis. Thanks must also be given to Professor Steve Schneider and Dr Helen Treharne for

their valuable feedback, support and discussions. Gratitude should also be given to
EPSRC, as without their funding none of this would have been possible.

On a more personal note, I would like to thank my parents for their emotional and
financial support, during both this PhD and the preceding MSc which lead to this

opportunity. Last, but far from least, I would also like to thank my fiance for her

understanding, care and consideration, especially when it came to organising holidays.

I Introduction

As the number of configurrble logic blocks (CiJ3s) that are contained within field

pn)grammable gate array (FPGA) devices continues to increase, this promotes the design

and development of larger and more complex systems. A problem then arises that, as the

size of systems increase, so does the complexity of the work required for the design and
configuration these devices. When FPGAs are traditionally designed, developed and
debugged at a low level, through specifying how individual logic blocks (AND gates, OR

gates, Flip-Flops, etc) arc connected together, the work that is required for traditional

verification and debugging involves numerous test vectors and complex simulations that

eventually become impractical.

FPGAs are built up from low level hardware components, so they are particularly suited
to systems or applications that contain fine grained parallel components. This thesis
focuses on methods for creating such fine grained parallel logic circuits from an OCCAM

(SGS-Thompson Microelectronics Ltd, 1991) specification. The work reported in this

thesis involvod the creation of an OC CAM-to-FPGA compiler that builds the logic

circuits through performing one-to-one mapping of OC('AM grammar fragments into

small segments of logic circuits, which arc then connected together in the manner dictated

by the application's specification. The compiler utilises the same code to generate both

the logic circuits and formal CSP (Communicating Sequential Processes) (Hoare, 2004J

models which describe this generation process and validntc the output (see Figure 1).

.O

Flgatro 1: How for (SP proof fist with the bardware compUafon

The form I C'SP models describe the behaviour% of 'Hall sections of logic circuits that

represent scgmonts of the OCCAM language (at various levels of abstraction) and the

relationship between these models, along with how these segments are combined together

to construct the overall circuit. This enables the compilation of an OCCAM spocißcation

Introduction

down into a hardware implementation with a guarantee that the behavioural properties of
the generated circuits will be as dictated by the specification, without the need to

explicitly model check the generated circuit. By proving the compilation process of an
OCCAM-to-FPGA software-to-hardware compiler, one avoids the state space explosion
that would arise if each generated circuit was model-checked. As the compiler has been

designed to utilise the same code to generate both the logic circuits and the CSP models,

we can verify that the compiler output matches the proofs, thus guaranteeing that

properties in the CSP hold true in the hardware circuits.

1.1 Thesis Contributions

This thesis makes a novel contribution to the area of hardware/software co-design through

the development of an OCCAM-to-FPGA compiler that takes a variant of the OCCAM

parallel programming language as its input and produces low level, fine grained parallel

hardware. Importantly, guarantees can be made about the behaviour of the resulting
hardware due to the way the compiler has been developed. By utilising this method of

hardware design, it enabled the production of a formally verified compiler that generates

logic circuits where the behaviour is guaranteed to be as specified. This guarantee of

behavioural properties, without the need to explicitly check each generated circuit,

enables one easily to design and develop larger and more complex systems. The design

and development of these systems are possible because one is working at a higher level of

abstraction (i. e. at the OCCAM software level as opposed to physical hardware). As the

compiler guarantees its output, one can formally verify an application at the software

level as opposed to the hardware level, thus the extra state introduced by the hardware

does not need to be explicitly checked. This is useful because the work involved in

proving the compiler is related to the size and complexity of the software specification

language (i. e. OCCAM), not the application being developed, and this proof only has to

be done once. As a result of this, the end user has the ability to utilise software design and

development methodologies to sub-divide their problem into as many layers of

abstraction or sub-components as desired, without having to worry about manually

verifying the generated hardware.

CSP (Communicating Sequential Processes, [Hoare, 2004]) is a process algebra that

supports modelling the behaviour of interacting processes that execute in parallel. In this

thesis, the components of circuits are modelled as individual processes and then run in

2

Introduction

parallel, thus giving a model of the circuit that can be analysed and provides the ability
for various properties to be checked. Although modelling a logic circuit in its entirety

means that desired and undesired behaviours and specific properties can be explicitly
checked [Peel and Cook, 2000], as the size of the application increases, so the state space

explosion caused by the fine grained parallel nature of the circuit becomes unavoidable,
thus resulting in this model checking approach becoming impractical. Even though this

technique becomes infeasible as the size and complexity of the application increases, it

does work for small circuits and as such this has formed the basis for the work of proving
the compiler's hardware generation process presented in this thesis.

The process of proving the compiler, and thus the automated method for converting

software into fine grained parallel hardware circuits, has been achieved by utilising the

grammatical structure of the OCCAM language to dictate how small segments of circuit

are composed together. CSP models have been used to describe small segments of logic

circuits corresponding to each grammatical construct, while proving that each segment of

circuit achieves the desired behaviour that the corresponding component requires. These

segments of circuit are then proven to be able to be composed together as specified by the

OCCAM grammar. The combination of these proofs enables the software specification to

be directly converted into a logic circuit through a one-to-one mapping, whilst

guaranteeing that the behaviour of the circuit is as specified.

Through guaranteeing that the logic circuits created by the compiler will always conform

to the supplied software specification, one avoids having to model-check each logic

circuit that is created. This is possible because the compiler has been designed in such a

way that the same code generates both the eventual logic circuits and the associated CSP

models and proofs. This design choice provides a guarantee that the models and proofs

that specify how the circuits were designed directly match how the compiler generates its

output. Thus, because the compiler itself generates the models and proofs, this ensures

that the proofs and compiler's actions match at all times.

1.2 Possible Utllisation

Designing and developing an application through the use of a software language, rather

than custom-designing parts in hardware, simplifies the ability to sub divide the parts of

the tasks that will run on a processor or be converted into hardware (software/hardware

3

Introduction

co-design). By having the whole application specified at the software level, combined

with the ability to convert this software specification into hardware, the component parts
may be reclassified from `running on a processor' to being ̀ converted into hardware', and

vice versa. This re-classification could depend upon the available resources and desired

performance requirements. The software components designated to be run on a processor

can be implemented in one of two ways - either on a host processor (e. g. a PC) or on a

special-purpose built processor on part of an FPGA [Page et al, 1998].

The process of designing hardware at the software level is particularly useful when
considering FPGAs that can have sections dynamically reprogrammed or restructured

while still running (reconfigurable computing, e. g. [Romer et al, 2000]). Working at a
higher level of abstraction than that of the electrical component level would simplify the

process of selecting how to split the application into blocks to be re-programmed onto the
FPGA chips, along with the conditions under which these reconfigurations should take

place. The most obvious direct benefit resulting from this thesis is the simplification of

programming FPGAs at a higher level of abstraction, leading to the automatic design and
development of the logic circuits and the formal verification of the validity of the

generated hardware.

13 Thesis Outline

Chapter 1 covers a brief introduction to the work covered in this thesis. It states that the

software to hardware compiler that has been developed generates both the logic circuits

and CSP proofs describing and proving how those logic circuits are generated. The proofs

are also tightly integrated into the compiler, guaranteeing that the behaviours of the

compiler and proofs are both consistent and valid.

Chapter 2 provides background information concerning the various technologies used in

this thesis. This covers topics such as the OCCAM programming language, the formal

process algebra CSP, FDR2 which is a tool to perform refinement and deadlock checks on
CSP models, digital logic, FPGAs and methods for programming them.

Chapter 3 is work that directly builds upon [Peel and Wong, 2004]. It automates the

previously hand generated process of modelling the overall behaviour of the logic

circuits, through modelling the individual hardware components of the circuit and running

them in parallel. The result of this work shows that although this technique is feasible for

4

Introduction

small logic circuits, the process does not scale. Model checking the generated CSP model

of the circuit, for various properties, rapidly suffers from state space explosion as the

circuit size increases. This problem arises because of the large amount of fine grained

parallelism that is unavoidable when modelling the circuits at the hardware level. Thus a

small increase in the amount of hardware a circuit uses will have a dramatic increase in

the amount of state space that has to be checked.

Chapter 4 utilises the fact that the work covered in chapter 3 is feasible for small circuits.
The compiler was completely redesigned and rebuilt, as part of this research, to take

advantage of this. Through utilising the grammatical structure of the OCCAM language to
dictate how an application is converted into hardware, the conversion of each

grammatical construct can be proven independently of one another. The small segments

of circuit for a grammatical construct can be modelled using the technique covered in

chapter 3, enabling it to be proven valid and correct. By modelling, and thus proving that

each component performs the task that it represents, it is possible to guarantee that

combining instances of these grammatical constructs in a one-to-one mapping to that of
the application's OCCAM specification, guarantees that the resultant circuit will behave

as required. This is achieved without having to explicitly check the generated circuit, thus

avoiding the state space explosion as the circuit size increases, as the amount of state that

is required to be checked is dependent on the size and complexity of the OCCAM

language, and not the application being converted. This is possible because the technique

only requires that each grammatical construct be proven once, and using type checking

and inheritance available within Java ensures that components can only be connected

together in structures allowed by the OCCAM grammar. As stated previously, the

compiler was required to be redesigned and re-implemented to be able to fully utilise this

technique, as the previous version did not contain well defined boundaries between

grammatical constructs. This redesign and reimplementation of the compiler took

advantage of tightly integrating the logic generation with the generation of the models and

proofs, which the technique covered in this chapter requires, thus enabling one to

guarantee the behaviour of the proofs and the compiler match.

Chapter 5 demonstrates a small example. Commstime is a program, comprising of four

parallel processes that circulate data values using channel communication. It presents the

OCCAM specification, the corresponding abstract syntax tree (AST) and an analysis of

how the grammatical constructs are nested, how they trigger each other (i. e. a

5

Introduction

demonstration of when components start and complete). An alternative implementation of

commstime is then presented (along with its trace), that utilises pipelining to slightly

reduce the cycle time of the program. A step through analysis is then presented,
demonstrating how optimising a single grammatical construct would improve the

performance of the application. This chapter also presents a larger example, a digital

clock that accepts user input to alter the time, whilst simultaneouslt displaying the time on

an LCD display.

Chapter 6 states that, as expected, the compiler worked first time. With the hardware

generation process of the compiler being formally modelled, the output logic circuits are

guaranteed to perform as expected. Thus as the CSP proofs have all been run through
FDR correctly, the only possible outcome was that the compiler would work first time.

Appendix A covers the other supporting work that has been performed in this research,
but is not critical to the comprehension of the main body of the work. This appendix
focuses mainly on the combined digital logic circuit simulator and graphical logic circuit

visualiser that were developed to aid the debugging of the initial compiler. This section

also explains the two custom-developed heuristics that the visualiser can utilise to

simplify the visual layout of the logic circuits within this tool.

Appendix B contains the CSP models of the low level hardware components that were

utilised for the work covered in chapter 3 and in [Peel and Pizarro, 20051. Appendix C, on
the other hand, contains the low level models representing the hardware components that

were used for the work covered in chapter 4. The reason why an alternative set of CSP

models was created for the work covered in chapter 4 was because, for the redeveloped

compiler to be proven to be correct, the models of the hardware components must also

model the reset functionality to be able to demonstrate that the compiler wired it up

correctly. The work in chapter 3 did not model the reset functionality in an attempt to help

to minimise the state space explosion.

Appendix D presents the CSP models and assertions to prove and define the allowed
behaviour for an example of a single type generic component (these component

categories are discussed in section 4.3 and 4.5). This appendix contains the various

models at numerous levels of abstraction (a hardware behavioural model, a higher

abstract behavioural model, a combined higher abstract and hardware behavioural model),

together with processes to manipulate the models and show consistency between them,

6

Introduction

along with various assertions to demonstrate and prove desired properties. This

component is the super type of the single type component presented in Appendix E.

Appendix E provides the CSP models and proofs for an example of a single type

component, which is a sub-type of the example given in Appendix D. This section

contains CSP models representing the generated hardware, along with the expected
behavioural models of that hardware. This section contains proofs that demonstrate that

this implemented grammatical construct is both in itself valid, and also a valid refinement
and sub-type of its super-type component contained in Appendix D.

Appendix F and Appendix G are similar to Appendix D and Appendix E respectively, but

where the components that they represent are multi-type components. These multi-type

components can be variables that have the ability to be both set and/or read from, or

channels where data can be transmitted and received. Apart from the CSP to represent the

various models and the relationships between them, this section also contains proofs to
demonstrate that the individual interfaces of these multi-type components are valid

refinements and implementations of their corresponding single type specifications. The

models contained within this section demonstrates and proves the properties of how

instances of these interfaces interact with each other.

Appendix H and Appendix I are similar to Appendix D and Appendix E, but where the

method for obtaining the higher behavioural abstract models has been adapted. Through

slightly modifying the method for annotating the hardware behavioural model, the higher

behavioural abstraction model can be tailored to give a more software-oriented

perspective, as opposed to the hardware-oriented view that is presented in Appendix D

and Appendix E.

Appendix J presents a simplified description of the proof framework which would be

possible if the reset functionality were not to be considered in the model. The reason why
the reset functionality causes the implemented proof framework covered in Appendix D

through to Appendix G and chapter 4 to be more complex than the work covered in this

section, is because a single higher behavioural abstraction event maps onto the

combination of multiple parallel low level hardware events. This causes a problem, as the

combination of separate multiple distinct parallel events cannot be mapped directly to a

single event. Also, as the hardware generation process of the compiler is required to

7

Introduction

connect the reset signals in the logic circuits it generates, to prove the generation process
the models used in the proofs, it must be able to contain and represent this behaviour.

Appendix K contains some supporting CSP models for the example that the speculative

work in Appendix J requires.

Appendix L defines the various clock cycle implementation times for the implemented

components and any dependencies upon any internal components that they require. It also
demonstrates graphically the timing for the on-chip channel communication that has been

implemented.

8

2 Literature Review

In this chapter, the literature that provided the motivation for the research is identified,

and an overview of the different languages used in the thesis: OCCAM and CSP together

with their supporting tools. Other approaches to hardware/software co-design are also

compared, which start with a description of the proposed system using a programming
language.

The research in this thesis is based upon [Peel and Cook, 2000], initially extending their

approach by automating the CSP model creation of the logic circuits (see chapter 3 and

[Peel and Pizarro, 2005]) which were previously hand crafted. These papers chose to

utilise OCCAM (see section 2.4) as the starting language to specify an application that is

converted into parallel hardware for programming onto an FPGA (see section 2.1) and

CSP (see section 2.2) as the formal algebra that is used to create the models and perform

the proofs. This is a natural combination, as OCCAM [SGS-Thompson Microelectronics

Ltd, 1995] was initially inspired by CSP [Hoare, 2004].

Similar work, covering the conversion of OCCAM or OCCAM-like languages into

hardware for programming onto FPGAs, has been attempted previously. Ian Page and

Wayne Luk built a prototype OCCAM to FPGA compiler in Prolog [Page and Luk,

1991], with the choice of using Prolog being that "the implementation and proof are very

close to each other". The utilisation of the phrase 'very close to each other'' combined

with the lack of any mention regarding integrating the proof directly into the compiler
does not guarantee that the implementation matches the proof, even though the theory of

how the compiler works may be proven. The framework presented in [Schenke and

Dossis, 1997], on the other hand, is a denotational semantics of the Handel-C language,

stating that "It is the ambition of the authors work to supply a transformational

framework in which an implementation relation can be defined between Handel and

hardware ... " (Handel-C is defined in [Agility Design Solutions Inc. 2007] and [Ian Page,

1997]). This framework demonstrates the theory that the compiler is built on, but it has

not been integrated into the compiler. Thus, it does not guarantee that the compiler

matches the proofs. If the compiler conforms to the rules, it will generate the hardware

correctly but no guarantee is given that this is the case. For example, whilst the code for

Literature Review

creating the hardware may contain a subtle bug, the current maturity of the tool helps to
build confidence that this is not the case, but it does not guarantee it.

Handel-C was initially based on OCCAM; its compiler was commercialised in early 1996

as the main product for "Embedded Solutions Limited" (which in 2000 was renamed to

Celoxica, who recently have sold the DK Suite that contains the Handel-C compiler to

Agility Design Solutions Inc). As the Handel-C hardware compilation tool has never been

promoted as being formally proven, one can assume that the proofs covered in [Schenke

and Dossis, 1997] were never integrated into the compiler. This conclusion is based on
the fact that tightly integrating the proof into the compiler impacts upon the design. The

paper states that "Handel is a language already used by hardware designers" and that this

technique has the "potential" for integration into hardware compilation systems, the

implication that it was not integrated into the compiler at the time of writing the paper can
be deduced. Integration of the technique into the compiler would have resulted in a

considerable refactoring of the compiler code, work that is both highly detailed and time

consuming. To the best of our knowledge, the Handel-C compiler remains unproven.

2.1 FPGA

A field-programmable gate array (FPGA) is a type of programmable logic chip. The

device is comprised of an array of configurable logic blocks (CLBs) that can be

connected together by a programmable connection framework, thus representing a

clocked digital circuit. Apart from being able to represent thousands of simple logic

blocks (`and' gates, 'or' gates, ̀flip-flops' etc) interconnected together, FPGAs can also

contain devices such as special data processing units, memory blocks and complete

processors such as the PowerPC [Xilinx, 2005].

2.1.1 Programming FPGAs

There are numerous ways to program FPGAs [Wain et al, 2006], with manufacturers

usually providing a basic schematic tool that takes a low level circuit, performs

optimisations and converts the result into a format for `place and routing' (i. e.

programming or configuring) of the FPGA chips. These tools, although they tend to

provide a graphical representation for the development and specification of a circuit,

usually generate low level circuit specifications or netlists e. g., Electronic Design

10

Literature Review

Interchange Format (EDIF) [EDIF Steering Committee, 1988] of the circuit to program

onto the FPGA. The problem with the task of designing, developing and reasoning about
circuits at this low level is that the required work tends to scale poorly and becomes much

more difficult as the complexity of the system being developed increases. As mentioned

previously, the use of simulations and test vectors [Riesgo et al, 1998] becomes

impractical as the circuit size increases.

The VHSIC Hardware Description Language (VHDL, [IEEE Std-1076,2002]) and
Verilog [IEEE Std-1364.1,2002] design languages were developed to simplify the design

and specification of digital hardware. They provide a way to specify a hierarchy of
modules through specifying the physical and/or behavioural characteristics of the logic

being built. JHDL [Bellows and Hutchings, 1998], like VHDL, is another hardware

description language. Each type of logic element is represented by a Java class, and Java

methods are used to specify how instances of these classes can be interconnected

together. Typically, the method utilised for testing HDL specified components and

evaluating their interactions is through simulation, checking every permutation of the

signals that can occur. This is a very demanding and computationally expensive process.
Even though VHDL is currently one of the main languages used to design FPGAs, as the

size and complexity of the systems one wishes to create increases, new development

methods and languages are going to be needed to help one cope with designing and
developing them.

SystemC [IEEE Std-1666,2005] is a C++ class library that has been built to have

hardware orientated constructs. It utilises a thread-like mechanism for parallelism, with

event methods to provide synchronised communications Alternatively, Handel-C

([Agility Design Solutions Inc. 2007] and [Ian Page, 1997]) is a programming language

with C-like features, but is similar to CSP in the fact that when two processes need to

exchange data they both have to perform the relevant I/O task synchronously. If both

processes are not ready to exchange that data, then one waits for the other. When both

processes have completed the data transfer, they can continue to perform their own tasks.

2.2 CSP

CSP (Communicating Sequential Processes) [Hoare, 2004] is a process algebra. Its main

use is in the description of parallel processes and their interactions. CSP, and its machine

11

Literature Review

readable form CSPM, can be manipulated to check events or prove various properties of
the system being modelled. To assist with performing this task, several automated tools

are available (e. g. FDR [Formal Systems Ltd, 2005], see section 2.3). The investigation of

various properties of parallel processes is achieved through examining all permutations of
how these parallel processes are serialised, with each specific ordering of the execution of

the events being a specific trace. It is through examining these traces that one can
determine if particular properties hold true or not, a fact that has been used within this

thesis to examine models that represent logic circuits and the software to hardware

conversion process.

2.2.1 Processes and Events

A process can be comprised of zero or many events, followed by another process. The

events represent actions or communications, specified as atomic names (e. g. on or ot'),

compound names (e. g. light. on or light. of/), or channel input/output events (e. g.
lightswitch? x or sendstate! x). Various algebraic operators can be used to build up and

specify more complex behaviours, and some of these are described below.

E. g. A process P that can do event a followed by event b, an infinite number of times, is

defined as:
P=8 ->b->P

2.2.2 External Choice: Determanistic Choice

External choice is a branching point, enabling a process to offer multiple choices of

events it is prepared to perform. The choice of which path gets executed is determined

externally from the process.

E. g. A process R that is defined as event a or b followed by process P, or event c followed

by process o, is defined as:
R-a -> P

C]
b->P
[]
c->Q

12

Literature Review

2.2.3 Internal Choice: Non-determanistic Choice

Internal choice is a branching point, where the process chooses which of the multiple
options to offer. This differs from external choice, where the process offers all the

available options.

E. g. A process R that is defined as a process that offers event a followed by process P, or a
process that offers event b followed by process o, is defined as:

Ra -> P
1-1

b ->Q

It should be noted that process R behaves the same as:
R- Z ->a ->P

[l
Z ->b ->Q

Where r (tau) is a hidden event.

2.2.4 Hiding

The hiding operator provides a mechanism to enable specific events to be hidden (i. e. to
be unobservable).

E. g. A process R that is defined as event a followed by process P, with a events hidden, is

defined as:
R- (a -> P) \ {a}

If process P does not contain any a events, then process R behaves as process P. If process

P does contain a events, then this is not the case, because the a events within this instance

of process P are also hidden. E. g. If P is defined as:
P-a -> b -> P

Then process R would behave as if it was defined as:
R-b -> R

2.2.5 Boolean Guards

Boolean guards provide a mechanism to only offer options under specified conditions.

E. g. A process R that is defined as the process P, guarded by the condition g, is defined as:
R. 9& P

This process will only offer to perform the process P, if the condition g evaluates to true.

13

Literature Review

2.2.6 Let Within

`Let Within' blocks enable the scoped definition of sets and processes, but not channels.

E. g. A process R locally defines a process s, which can only be used within process R, is

defined as:

let
S. a -> S

within S

The process s cannot be used outside process R, so the following defined process is

illegal, as process s has not been defined:
0-s

2.2.7 Alphabetised Parallel

Running two or more processes in alphabetised parallel, each process can only perform
the events specified for them, and they are also required to synchronise on the common

events in the alphabets.

E. g. A process R that is defined as process P and o run in parallel with their corresponding

alphabets, is defined as:
R- P[{a, b} II {b, c}]Q

This defines that process P can perform events a and b, process g can perform the events b

and c, with the processes requiring synchronisation on b events. If process P and o are
defined as:

P Q. cc -> b -> Q

Process R behaves the same as if it was explicitly defined as:
R. a-> c-> c -> b -> R

[]
C -> (a -> c -> R

[]
C -> a -> R)

2.2.8 Shared Parallel

Running two or more processes in shared parallel requires that the processes synchronise

on the specified events. All the processes can only perform the specified events, if all the

processes perform the event at the same time.

E. g. A process R that is defined as process P and Q run in parallel synchronising on event
b, is defined as:

Q R-P CI {b} 11

14

Literature Review

If Process P and Q are defined as:
P. a -> b -> P Q=c->c->b-> 0

Process R behaves the same as if it was explicitly defined as:
R-a->c->c->b->R

U
c -> (a -> c -> R

[)
C -> a -> R)

2.2.9 Interleaving

Interleaving two or more processes enables the processes to execute their events
independently of the each other. A trace, the sequence of events that have occurred, can
be built up from executing from any of the processes any of the possible events that they

can next perform.

E. g. A process R that is defined as processes P and Q interleaved, is defined as:

R-P III Q
If process P and Q are defined as:

P"a->b->SKIP Qc ->b -> SKIP

The possible traces for process R are:

<a>
C>

<a, b>
<a, c>
<c, a>
<c, b>
< a, b, c
< a, c, b>
< C, a, b>
<c, b, a>
< a, b, c, b>
< a, c, b, b>
< c, a, b, b>
< c, b, a, b>

2.2.10 Congruence & Monotonicity

The semantics are congruent if for all operators within the language (i. e. CSP), the result
can be computed from the the application of it on its component parts. i. e. "it is possible
to compute S[[P 0 QJJ in terms of S[[P]] and S[[QJJ" [A. W. Roscoe, 1998].

For the context of a process to be monotonic, if process P is contained within process Q,

then the context of P must also be contained in the context of Q. i. e.
"P QQ C[I'l Q C[QJ ""

15

Literature Review

2.3 FDR

FDR (Failures-Divergence Refinement) is a CSP refinement checking tool [Formal

Systems Ltd, 2005] produced to check and establish properties of CSP models. Through

testing for refinements of the system (see below), it can check to see if specific properties
hold true or not. It is able to systematically check all the possible states and transitions

that the system can reach and perform, being able to determine if the system is

deterministic, deadlock free (i. e. the CSP model can never reach a state where there are

no events to perform) and/or a valid trace refinement of another CSP model. This thesis

uses FDR to examine, analyse and compare against each other, the CSP models used to

represent the logic circuits and software to hardware compilation process.

A CSP process is a valid trace refinement of another process ('P [T- o', or 'Q is a trace

refinement of P'), if all the allowed orderings of events that can occur also exist in the

process it is being trace refined against (i. e. all traces that Q can produce are contained

within the traces that P can produce). A process is a failures refinement of another ('P [F=

o', or 'Q is a failures refinement of P'), if for all points within its traces, all sets of events

that it can refuse at that point are contained within the sets of events that are refused at the

corresponding point within the trace of the process it is a refinement of (i. e. for all points

within the traces that Q can perform, the sets of events that is can refuse to do are

contained within the sets of events that P can refuse when at the same point within its

traces). For a process to be a failures-divergences refinement of another ('P [Fn- o', or
'Q is a failures-divergence refinement of P'), apart from the set of traces and refusals
having to be contained within that of the process it is refining, the set of traces that dictate

when it can get into a livelock state (i. e. performing an infinite sequence of internal

events) is contained within the set of traces that the process it is refining can get into

livelock.

2.4 OCCAM

Occam is what is commonly referred to as a very fine grained parallel programming
language. It was initially developed by a team at INMOS in conjunction with the design

of the transputer processor [INMOS 72-TRN-048-03,1987], and it is based on C. A. R.

Hoare's CSP (see section 2.2) [Hoare, 2004].

16

Literature Review

Occam supports programming at a very fine grained level both the parallel and sequential

nature of a program. Communications between the parallel processes is achieved through

passing messages along channels. The static memory model with Concurrent Read,

Exclusive Write (CREW) parallel usage [Quinn, 1994] enables the software to be verified
free from parallel usage errors, which are errors that can occur when channels or variables

are written to or read-and-written to in parallel.

Apart from Occam being used as the initial basis of Handel-C, the principles of Occam

have also been implemented numerous times in Java libraries (e. g. JCSP [Austin, 1998]

and CTJ "Communicating Threads for Java" [Hilderink, Bakkers and Broenink, 2000].

CTJ was renamed from CJT "Communicating Java Threads" for legal reasons, thus it

may also be referred to in older work by it previous name). It is clear from this that the

conceptual principles and properties obtainable from the Occam and CSP programming

style are still considered a worthwhile avenue for practical exploration and utilisation.

2.5 Clocked Logic

Clocked logic is the particular type of logic currently produced by the compiler detailed

in this thesis. This particular type of logic utilises a global clock to control the progression

of signals through the circuit by controlling when flip-flops output their next signal. With

the possibility of non-clocked combinatorial logic (e. g. `and', `or' and `not' gates) also
being contained within the circuit, the maximum allowable clocking speed is dependent

on the time it takes for signals to propagate through these parts of the system. Although it

is permissible to have cycles of logic, forming loops, these loops should not normally be

solely made up of non-clocked logic in a fully-clocked design. If circuits contain non-

clocked cycles, then race conditions may occur within the circuit, a fact that is often

undesirable but can be used quite safely in components such as transparent latches.

2.6 The 10-PAR Design Paradigm

[Peel and Wong, 2004] determined that the physical behaviour of the components from

which clocked logic circuits are built behave in an 10-SEQ and 10-PAR manner
(combinatorial logic and clocked logic, respectively), with the combined behaviour being

that of the IO-PAR design paradigm covered by [Welch, Justo and Willcock, 1993].

17

Literature Review

Through combining 10-PAR and 10-SEQ components, various properties of the system
can be examined, such as deadlock freedom, thus guaranteeing no combinatorial loops.

Both 10-SEQ and IO-PAR processes run forever, inputting and outputting values on a
number of channels and performing computation on these values. An 10-SEQ component
receives its inputs in parallel before performing its outputs in parallel, whereas an 10-
PAR component sends and receives all its inputs and its outputs in parallel. With the IO-
PAR components inputting and outputting in parallel, any combination composed
together as a network is guaranteed to be deadlock-free. From an external point of view,
the network will be indistinguishable from a single 10-PAR component.

An 10-Rnet is a network containing 10-PAR and IO-SEQ components, with an I0-SPnet
being a special type of 10-Rnet. For a network to be an I0-SPnet it must contain no loops

consisting of only 10-SEQ components, and no paths from an external input to an

external output of only IO-SEQ components. Therefore externally the 10-SPnet is

indistinguishable from an 10-PAR component, and as such it is guaranteed to be

deadlock-fee.

2.7 SableCC

As stated earlier in Section 2, this thesis is motivated by Peel's original OCCAM

compiler which uses the SableCC [Gagnon and Hendren, 1998] parser generator.
SableCC is a parser generator with an object-oriented structure, written in Java. By

supplying it with a LALR 1 grammar (the OCCAM grammar required refactoring and the

addition of several annotations to comply with SableCC's requirements), SableCC can

automatically generate the parser and AST (abstract syntax tree) for a compiler. Through

the use of object-oriented techniques, the output that it produces is in a well-structured
format, with the class inheritance and naming conventions of the produced Java classes
being directly related to the production rules and annotations within the grammar. This

linkage of the output to the grammar means that both minor modifications and expansion

of the grammar can be achieved with minimal fuss and the changes in the output from

SableCC can be predicted from changes within the grammar.

The predictability of changes within SableCC's output means that it is particularly suited
for use with prototyping. This means that software written to utilise sections of the

generated parser that have not changed can continue to be used when modifications to the

18

Literature Review

grammar have been made. As the parser, abstract syntax tree (AST), and custom
executable code are separate from each other, the work presented in this thesis is

relatively independent of the parser generator being used.

2.8 Comparison with Related Work

This section highlights other related research that covers different aspects of the work
presented in this thesis. Firstly, the work covered in this section describes underlying
languages with formal semantics. This enables the analysis of the behaviour of the

software specification, which contrasts with the approach of my thesis, which concerns
itself with the production of verified hardware and the integrated method of validating it.

In this thesis, the models covered are used in the analysis of how the logic is created,

providing a proof of construction. Secondly, this section examines various tools that

contain verification functionality through model checking.

The work covered in [Butterfield & Woodcock, 2006], provides denotation semantics of a
`possible (very naive) hardware implementation" of Handel-C. This is achieved through

modelling the hardware as a finite state machine, whereby it is defined as a single fixed

function describing how the state changes. With the technique being created
independently from a practical tool (e. g. the Handel-C compiler), the technique enables

one to analyse how hardware may be created, but it does not guarantee that a tool builds

hardware in this manner and therefore can be considered foundation work. Whereby the

more recent work covered in [Perna & Woodcock, 2008] describes the "limited progress"
that has been made towards both an axiomatic semantic definition of Handel-C and

algebraic rules to describe the characteristics of a Handel-C program, with their work
tending to the unification of the various semantic models of Handel-C.

Augmenting existing tools with formal verification capabilities is common in several
industrial tools. For example, [Hamon, 2008] describes the Simulink Design Verifier, a

verification tool for Simulink enabling the user to automatically create test cases and

check for the existence of various behavioural properties. Similarly [Köhler and Kant,

2004], describes a verification tool for Esterel SCADE. Both verification tools have been

implemented using the Prover Plug-In [Sheeran, 2000], a product developed by Prover

Technology (hup: //vrover. com) based on StAlmarck's method of tautology checking using

propositional logic [Harrison, 1996] and [Sheeran & Sti3lmarck, 2000].

19

Literature Review

Augmenting a tool after it has initially been designed and developed with the ability to
formally model properties of a system, would require that the tool perform a translation of
a defined system from one representation to another. This means that an instantiation of
the internal data structure of the tool (uses to represent a system), would have to be

converted to the data structure that the proof tool requires so that properties of the model
could be checked. This unseen conversion from one data structure to another has the

potential to invalidate the formal verification if errors or bugs were to occur. In essence,
these errors can have two main effects, which are:

1. That behavioural properties (desired and/or undesired) which are specified by a
system, may not be represented within the model that is formally checked (i. e. the
formally checked model may not be the model that was specified in the tool, or
the resultant output of the tool).

2. That a defined system can cause the translation process to fail, resulting in not

obtaining a formal model to check. This is different from creating a correctly

specified model that cannot be analysed due to known limitations of the formal

verification process (e. g. due to state-space explosion).

It is the previously experienced difficulties caused by the second point specified above
that highlights the existence of the hidden conversion step and the presence of problems

with it. For example, the Design Verifier that is part of Esterel SCADE 6.0, which enables

the user to check for properties within a system that they have defined using the tool
(graphically and/or textually), can be made to fail to create a model for formal verification
(although the tool will both simulate it correctly and create the valid resultant output),
through defining a model that combines trivially together a collection of simple constructs
that the design verifier independently manages to process and analyse (see Appendix M

for a simple example).

The removal of the potential for error, within the integration of formal verification into a
tool, was part of the aim for the work tackled in this thesis, and it was achieved through

designing and developing the tool whilst taking into consideration the desire for tight

integration of the creation of the proof at the same time. The code within the software-to-
hardware compiler can directly build both the hardware circuit representation and the

formal model of that hardware to use in the proof, thus guaranteeing that they match, as

the data structure does not have to be manipulated or restructured. Even though this is a

20

Literature Review

sound and viable approach to take to this problem, it is uncommon as it requires a holistic

problem solving strategy, simultaneously taking into consideration all factors relating to

the problem.

21

3 Preliminary Work: Automatic CSP

Modelling of Generated Logic Circuits
The original concept of this research was to automatically model the output of a software-
to-hardware compiler which produces fine-grained parallel logic circuits. Due to the
results of the preliminary work obtained within this chapter, the research concept was
refined in chapter 4. Prior work had demonstrated that a formal model of a logic circuit
may be built, from which its behavioural properties can be examined and verified to be

correct, thus guaranteeing that the circuit performs the desired task.

The work reported in this chapter covers how the low level logic components are
modelled, along with how these models are utilised to produce a representation of the
hardware. This chapter also demonstrates how this representation of the hardware can be

utilised to validate the generated logic circuits. It also describes some of the limitations

that this technique suffers from, along with the early strategies utilised in an attempt to

manage these limitations.

Although this technique cannot sensibly scale up as the circuits become larger (due to the

modelling technique suffering from state-space explosion), the work explained in this

chapter is critical to that of the main body of the research covered in chapter 4.

3.1 Modelling Logic Circuits

As indicated in [Peel & Wong, 2004], a CSP model of a logic circuit can be created. This

can be achieved by running in parallel models that represent each of the logic components
in the circuit. The circuits' behaviour is explored by simulating the interactions of the
hardware components by modelling the circuits' net-list data structure. This provides a
formal model of the circuit, which is then examined to prove the existence (or lack) of
various properties.

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

Lchar 1

chan clock

D-Type
Flip Flop

vcc
(INST_2)

chan 2

INST_3

(INST 1)

than

CLK

T-Type
Flip Flop

(INST_4)
chan 5 0

Figure 2: Pictorial representation of the Logic Circuit from Figure Son page 8

3.2 Modelling Logic Components

The process of modelling the logic components (AND gates, OR gates, FLIP-FLOP's etc)
involves building individual processes to represent each component. Because clocked
logic circuits are being modelled, the components used fall within two distinct sub
categories, clocked and non-clocked logic. The strategy chosen to underpin the modelling

of these logic components is the 10-SEQ / IO-PAR model [Welch, Justo and Willcock,
1993], with the non-clocked components being 10-SEQ and the clocked ones IO-PAR.

3.3 Why Use CSP?

One of the initial reasons for utilising CSP to model the logic circuits, is because it was
used for the modelling of logic circuits by Peel & Wong [Peel and Wong, 2004]. Their

work involved hand crafting CSP models of the individual logic components and running
them in parallel, thus enabling them to specify logic circuits. The CSP model of a logic

circuit was then compared against a high-level CSP specification of the program's

algorithm. Using FDR2 [Formal Systems Ltd, 2005] various properties of the two circuit

models could be tested, enabling the circuits' validity and correctness to be verified. More

compelling reasons for the utilisation of CSP are covered later, in section 4.4.1.

23

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

3.4 Component Models in CSP

The CSP models used in this section of the research takes its inspiration from the models

used in the work covered by [Peel & Wong, 2004]. Figure 3 illustrates an 10-PAR

behavioural model of a D-Type Flip-Flop, where its inputs and outputs can occur in either

order during each clock cycle (i. e. between clock events).

D TYPE(clock, din, clout)
let

A (x)
gout !x -> din ?z -> clock -> A(z)
f]

d_in ?z -> gout !x -> clock -> A(z)
within A(0)

Figure 3: Simplified D-Type Flip-Flop Model

Appendix B contains the models of the low level logic components used within chapter 3,

although the work reported in chapter 4 uses an alternative implementation. The

alternative implementations are illustrated in Appendix C, with the reasoning behind the

adaptation of the models covered in section 4.4.2.

3.5 Circuit Models in CSP

For each logic component contained within the circuit, a CSP process was created as an
instance of the model that describes the behaviour of that component (e. g. Figure 4

illustrates both graphically and in CSP, an instance of an "AND" gate).

CSP Specification of an AND Gate
-- Declaration of signal channels that the gate
-- is wired to.
STATE - (0,11
channel chap inputl : STATE
channel chan_input2 STATE
channel chan_output STATE

-- Declaration of an instantiation of a tiro
-- input AND gate.
INSTAND -

AND GATE(chan_output,
<chan_inputi, chan_input2>

-- Alphabet of instantiated AND gate
ALPRA_INST_AND -

(I chap output, chan_inputi, chan_input2

A Graphical Depiction

chan_output

Flgare 4: An Instantiation of a Two Input AND Gate

These CSP processes were then run in parallel so that they synchronise on events which

they share with each other. This synchronisation was achieved by going through all the

24

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

processes and running them in parallel, synchronising on any events that the current

process shares with that of any of the preceding processes specified in the
"SYSTEM LIST". Figure 5 illustrates the CSP required to create instances of the logic

gates and connect them together for the segment of circuit presented in Figure 2 on page
8.

An alternative method for specifying the logic circuits is through writing an algorithmic

specification of the circuit. This algorithmic specification describes the relationship and
dependencies between the circuits' inputs and outputs. An example of this is illustrated in

Figure 6 for the circuit presented in Figure 2 and again in Figure 5.

-- Channel D. clarationi
STATE - {0,1}

channel char clock
channel chan_l, chan_2, chan_3, chan_4, chan_5 : STATE

-- Logla Components
ALPHA INST_1 - {I chan_clock, chan_3, chan_1
INST_1 - D_TYPE(chan_clock, chan_3, chan_1)
ALPHA INST 2- {I chan_2
INST 2- VCC(chan_2)
ALPHA_INST_3 - {I chan_2, chan_3, chan_4
INST_3 - AND_OATE(chan_4, <chan_2, chan_3>)
ALPHA INST 4- {I chan_clock, chan_3, chan_1
INST_4 -T TYPE(chan_clock, chan_4, chan_5)

-- The Circuit llodal
SYSTEM CIRCUIT - CIRCUIT PAR(SYSTSM LIST, SYSTEM-ALPHA)
-- Lie_t of Cagpoaoati Uaad & their Alphabat&
SYSTEM-LIST -< (INST 1, ALPHA_INST i), (INST_2, ALPHA_INST_2),

ý (INST_3, ALPHA
_INST

3), (INST_4, ALPHA_INST_4)

-- Chaanal" to/from Outside Circuit
SYSTEM

-ALPHA - tl chan_clock, chan_1, chan_5

-- Process Used to Run Casjponents in Parallel
CIRCUIT PAR(component_list, outer alpha)

let

-- Deadlock it no circuit components
A(<>) - STOP

-- If an* aogponent, run it biding inner abanaela
A(<(pl, al)>) -(pi \ diff(al, outer_alpha)
-- If aultiple amponent, run in parallel

A(<(p1, a1)>'<(p2, a2)>"p3) - A(<(B(p1, a1, p2, a2), union(a1, a2))>"p3)
-- Run two ac pon. nts in parallel
B(pl, al, p2, a2) - (p1 [I inter(al, a2) 11 p2)

within A(aorponent list)

Figure S: Example CBP of Running Logic Components In Parallel

25

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

-- Channel Declarations
STATE - (0,1}
channel Chan clock
channel chan_1 STATE
channel than 5 STATE

-- The Algorithmic Specification of the Logic Circuit
SYSTEM SPECIFICATION

let
-- Perform the 1O in parallel
A (x, y) -

chan_1 ?z -> chan_5 !y -> B(z, y, x)
q
than 5! y -> chan_1 ?z -> B(z, y, x)

-- Coe}pute the next cycles output
B(x, y, z) -

Chan clock ->
(z -- 1& A(x, 1-y)

11
Z -- 0&A (x, y)

within A(0,0)

Figure 6: Algorithmic Specification of the Logic Circuit from Figure 5

3.6 Proving the Logic Circuit is Equivalent to a Low Level

Specification

By creating a direct representation of the generated circuit (e. g. Figure 5) along with an

algorithmic specification of the desired behaviour (e. g. Figure 6), one can test and prove

various properties of the hardware using FDR2 (see Figure 7). '

-- Check that the modal of the specification is deadlock free
assert SYSTEM SPECIFICATION : [deadlock free [F])

-- Check that the model representing the circuit is deadlock free
assert SYSTEM_CIRCUIT : [deadlock free [F])

-- Check that the circuit and specification have the sage behaviour
assert SYSTEM! SPECIFICATION [FD- SYSTEM CIRCUIT
assert SYSTEM_CIRCUIT [FD- SYSTEM SPECIFICATION

-- If both the failure divergence refinement assertions hold true,
-- this guarantees that the the two previous deadlock free assertions
-- will return the saau results.

Figure 7: Simple Testing of the Generated Circuit

The basic testing involves ensuring that the model of the logic circuit generated is

equivalent to that of the specification containing the desired and expected behaviour. This

is achieved in FDR2 through the use of failures divergent refinement models. The

deadlock-free check done in FDR2 helps to ensure that the models do not contain any

race conditions or other undesirable properties, this is because the models were designed

and constructed so that occurrences of specific properties would cause them to deadlock.

26

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

3.6.1 Performance Problems: State Space Explosion

Even relatively simple OCCAM programs compiled into hardware produce large numbers

of flip-flops and logic gates. Since simulating these generated circuits requires us to

model the system at the hardware level, a straight mapping into CSP quite rapidly leads to

an uncontrollable state space explosion when specifications such as those in Figure 5 are

model checked. The main work reported in chapter 4 focuses on attempting to bypass this

state space explosion. The preliminary work in this chapter covers several simple
techniques in an attempt to manage or delay this problem:

Simplification of the logic component models (see section 3.6.3) helps to alleviate
the state space problem, although further techniques can also be used.

" The high quantity of fine grain parallelism, combined with the fact that we are

generating clocked logic (where we assume that the choice of clocking speed is

such to enable the circuit to stabilise between clock cycles) means that we can also

utilise `CHASE' compression and is discussed in section 3.6.2.

3.6.2 Utilising CHASE to Achieve Viable Runtime Simulations

To enable the simulation of the logic circuits to run within a viable time period, we started
by applying CHASE compression in FDR to the outer level of the CSP process that

represents each circuit. We can utilise CHASE, which selects one trace order for

interleaved tau events, due to how we model and combine the logic components to

represent the circuit in CSP.

When instances of the CSP representing each logic component in the circuit are joined in

parallel (see section 3.1), the (me grain parallelism contained in the hardware can cause

the CSP to have a vast numbers of interleaved events. The reason why we can avoid

checking every possible interleaved trace ordering is because CHASE works on the

hidden events that represent internal signals between logic components. The way we

chose to model the logic components (see section 3.2 and 4.4) causes each channel to

trigger once and only once in each clock cycle. If this were not the case, the model would

deadlock regardless of the interleaving order of the hidden events. Choosing any one

triggering order is sufficient for the CSP to operate, and CHASE achieves this.

27

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

3.6.3 Implementation & Model Simplification

Although modelling each of the logic components can be perceived as an individual task,

the fact that instances of these models are combined together to represent circuits has

implications that affect both their design and their implementation. Since the CSP models

of these components are exclusively used to create representations of the circuits that the

compiler generates, it is possible to guarantee several of their properties (see below) and
to utilise these to simplify the models, thus reducing the state space that is model checked.

" Clocked logic components only need to know the last states on their inputs before

the clock event (the low-to-high clock transition). Thus the ability to receive

multiple different input values in any one clock cycle can be removed from the

model as it is not needed, thereby reducing the state space of the models.

" The clocked components we utilise only alter their outputs on a low-to-high clock

transition. Therefore the clock low-to-high transition can be modelled as a single

event, as opposed to modelling both the high and low states.

" Each circuit utilises a single global reset that can only be triggered from outside

the circuit. Triggering the reset will cause the circuit to revert to its initial state.
Thus, the reset signal can be removed as its assertion simply starts the model

again. This is because no part of a circuit can carry state over the reset occurrence,

and therefore cannot alter the behaviour of its next instantiation. Also, the circuits
that the compiler currently generates cannot be self resetting (i. e. they can not

trigger their own reset).

The models that represent the logic components have undergone several iterations for two

main reasons (see Figure 8 and Figure 3), the first being that I was learning CSPM while I

was developing them, and the second was an attempt to reduce the state space that they

create. The model covered in Figure 8 was the initial version that I developed, but the

properties stated above were identified and the specified simplifications were applied,
thus resulting in the model covered in Figure 3 (which results in a model closely

resembeling that contained in [Peel & Wong, 2004]). Currently the logic component

models being utilised in this section of the work are specified in Appendix B, whereas the

main body of the work covered in section 4 utilises the models specified in Appendix C.

One of the main differences between the different models is that the reset functionality

was reintroduced back into the models for the main work covered in section 4, this was so

28

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

the models were a more direct representation of the logic circuits and the generation

process, so that if the compiler had an error that connected the reset signals incorrectly

(which it doesn't), it would be modelled in the CSP and identified.

channel internal-state : {O, 11
T_TYPE(clock, reset, d_in, clout)

let
-- Run the inputs and outputs in parallel (ZO-PAR)

A-((B [I {I internal_state, clock C)\ {ý internal_state ý})

-- Perform the outputs
B- internal_state ?z -> clout Iz -> clock ?_ -> B
-- Perform the inputs & dictate the nett clock cycles output value
C-

let

-- Zn Clock Low State
CA(x) -

Let
CAA = internal state !x ->

reset ?y -> d_in ?z -> CAB(y, z)
[] d_in ?z -> reset ?y -> CAB(y, z)

CAB(y, z) -
clock ?0 -> CAA
[]
clock ?1 ->

y == 1& CB(O)
[] y -- 0& CB(z)

within CAA

-- In Cloak High State
CB(x) = internal_state Ix ->

((111 y: {reset, d
_in)

0y?
_ -> SKIP

(clock ?0 -> CA(x)
[] clock ?1 -> CB(x)

within CA(O)
within A

Figure 8: Initial T-Type Flip-Flop Model Developed

3.7 Experimental Results

An example of the automated CSP generation and circuit proof can be demonstrated by

comparing three different implementations of the same task, together with a hand crafted
CSP specification. The chosen software task is a cyclical counter that outputs a stream of

consecutive integers along a channel. Figure 9 specifies the outputs directly.

SPEC -
out15 ý outl6 - out17 - outl8 - out19 - out110 - outill out112

outl13 ý Out114 - out115 - out10 - outli - out12 - outl3 ý out14 ý
SPEC

Figure 9 CSP speci6cadon of a 4-bit counter procea

29

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

The various implementations each output the same order of values but at slightly different

rates. Even though the implementations achieve the same task, the difference in

performance is caused by their differing structure and amount of parallelism which is

dependent on the OCCAM code that was used to compile the hardware along with the

efficiency of the generated logic.

The next implementation (CTR) is generated from a simple counter program (see Figure

10).
UINT4 Count:
CHAN OF UNIT4 d:
PLACE dl AT "d0", "dl', `d2", `d3', ORDY "dor', IRDY 'dir':
SEQ

count :-5
WHILE TRUE

SEQ
count :a count PLUS 1
dI count

Figure 10 Initial OCCAM counter program

Another implementation (CTIM1) is taken from Peter Welch's commstime benchmark

[P. H. Welch, 1988], with the sink process on channel ̀d' removed to allow the channel to

be placed onto the external interface (see Figure 11).

UINT4 Count:
CHAN OF UNIT4 d:
PLACE dl AT "d0", "d1', "d2", "d3', OR "dor", IR "dir":
CHAN OF UINT4 a, b, c:
PAR

SEQ -- prafLx and pale-on
a! 5
UINT4 V:
WHILE TRUE

SEQ
b? v
a! v

SEQ -- fan-out
UINT4 V..
WHILE TRUE

SEQ
a? v
PAR

C1v
d1v

SEQ -- 32orwMeat
UINT4 v:
WHILE TRUE

SEQ
a? v
bIv PLUS 1

Figure 11 Single-value commetlme program

Yet another implementation (CTIM2) uses a double-buffered commstime program to pass

three values round in parallel (see Figure 12). This enables the developed circuit to output

30

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

values along channel `d' at an improved rate. This is possible because the extra
parallelism is implemented in hardware, while it would only be simulated by interleaving

on a sequential processor.
UINT4 count:
CHAN OF UNIT4 d:
PLACE dl AT "d0", "dl', "d2', "d3", ORDY "dor", IRDY "dir":
MAN OF UINT4 a, b, c:
PAR

SEQ -- prefix and pass-on
UINT4 X, y:
SEQ

a15
a16
b? x
a17
WHILE TRUE

SEQ
PAR

b? y
alx

PAR
b? x
aly

SEQ -- fan-out
UINT4 v:
WHILE TRUE

SEQ
a? v
PAR

clv
d1v

SEQ -- increment-by-three
UINT4 V:
WHILE TRUE

SEQ
c? v
biv PLUS 3

Figure 12: Triple-value commaäme program

The different size and structure of the generated logic influences the amount of state the
CSP representation generates (see Table 1), as covered in [Peel & Pizarro 2005]. More

parallelism creates a larger state space, but with the potential for better performance on
the physical hardware.

Table 1: Model-Checking Performance of FDR

Process I Process
2

CSPM Source
Code Size (bytes)

Process Size
(states)

Trace Refinement
Time on 3.0 GHz
P4 (sec)

SPEC CTR 147k 16 + 876 3
SPEC CTIM1 388k 16 + 1972 23
SPEC CTIM2 511k 16 + 2418 62
CTIMI CTIM2 870k 1 1972+2418 93

31

Preliminary Work: Automatic CSP Modelling of Generated Logic Circuits

3.8 Conclusion

As was indicated previously (see section 3.6.1 and section 3.7), even though this method

of proving the generated hardware works, the proof is susceptible to state space explosion

which becomes more apparent as the size and complexity of the application being

converted increases. Even though techniques exist that can help minimise this problem,

these techniques help to delay the problem, not solve it. This realisation, along with the

fact that the proof strategy is viable if the circuits are kept small, has led onto the main
body of the work in chapter 4 where we attempt to avoid the state space explosion by

proving the process of creating the logic circuits.

32

4 Main Work

4.1 Premise for Work

Chapter 3 discussed a viable technique for modelling and proving small circuits which
becomes infeasible as the circuit size increases. It was deemed more appropriate to devise

a method to avoid the state space explosion rather than trying to ease or delay this

problem. Since the generated circuits are composed of logic components, there exist

patterns and structures within them. Identification of these patterns and structures would

enable one to simplify the proof of that logic circuit. Rather than focussing on trying to

search for and identify properties and patterns that exist by analysing the circuits, as the

circuits have been designed automatically (as opposed to evolved), the task of proving the
hardware compilation process of the compiler lends itself ideally to providing this

structural information.

As logic circuits are being generated from software specifications (written in OCCAM),

the initial specifications are definitively defined. The grammar and syntax of the OCCAM

language limits both the number of unique component types and how these components

can be combined together and thus interact. With the starting point for the software to

hardware conversion containing structural information, it makes sense to utilise this

source instead of trying to search for and extract the information after the logic circuit has

been generated, which is what the technique in chapter 3 outlined.

Through utilising structural information derived from the OCCAM language, it is

possible to simplify the CSP model of the corresponding circuit by replacing clusters of

internally modelled logic components with a CSP model that performs an identical task

but which contains less state space. Although this would enable the proof of correctness

of larger and more complex circuits, this is not what this work attempts to do. To do so

would have too large an impact on the end user of our compiler; some of the main

implications and restrictions that this might introduce would be:

Every generated logic circuit generated by the compiler having to be individually

checked, a time consuming task.

Main Work

" The number and size of models needing to be checked would increase as the size
and complexity of the software that is converted to hardware increases. Thus the
technique would be delaying any state space explosion instead of avoiding it.

" The user would be forced to write a CSP specification for each application that
they wish to convert into hardware, as the proof technique requires the comparison
of the modelled hardware against a specification.

Instead, as indicated, what this work does is to prove the method of generating the logic

circuits and not the individually generated hardware circuits that are output. This is done
by verifying the conversion of the individual OCCAM components into small segments
of logic, proving that their behavioural properties cover the function that they are
supposed to perform, while also ensuring that they can interact properly with all
grammatically allowed components. The mapping of the OCCAM grammar into

segments of logic circuit means, if one combines instances of these logic circuit segments
together so that they represent the OCCAM software code through a one-to-one mapping,
the generated hardware is guaranteed to perform as specified.

Proving the process of generating the logic circuits from a software specification is

possible, because the problem of ensuring that the generated circuit performs as specified
is completely independent from the problem of proving that the software specification

achieves a sensible task. It is only possible to determine if a software specification

achieves a sensible task if sufficient details of the problem it is trying to tackle are known.

This thesis documents the design, development and proofs of a compiler tool, so it is

impossible to know the exact details of what the compiler will be asked to compile. This

means that proving that the generated logic circuits perform a sensible task is completely

outside the scope of this project. As stated previously, what we can prove and guarantee is

that the generated hardware will perform as specified. Through proving the generated
hardware matches the specification, without any impact on whether the application

performs a sensible task, it provides the end user to freely select how (if at all) they may

wish to prove and determine the validity and correctness of his application. Proving that

the application tackles the end user's desired task can be done independently of the proofs
for the hardware generation, thus this can be done in whichever manner they deem most

appropriate, i. e. they are not forced to use CSP.

34

Main Work

4.1.1 Implementation Implications of Premise

The preliminary work covered in chapter 3 and Appendix A builds upon and integrates

with the OCCAM to logic circuit compiler developed by Dr R. M. A Peel [Peel & Cook,
20001. The logic circuit generation strategy utilised in that paper concentrates on creating
optimised logic circuits that run efficiently without clearly defined boundaries between

the segments of logic used in the conversion of the OCCAM software into hardware. This
lack of clearly defined boundaries results from the compiler generating optimisations in

the logic generation process at the interconnection boundaries for the OCCAM

components. This stylistic choice for the logic generation process complicates the proof
that the logic produced is always valid, due to the possibility that the OCCAM

components may produce different logic circuit segments depending on how they are
interconnected. However it does increase the performance of the generated circuits.

Through enforcing a more modular and constrained logic generation strategy, the aim of
this research has been to produce a compiler where the conversion of OCCAM

components into segments of logic circuit can be individually and independently checked
and verified. Although this strategy may initially produce less efficient and/or larger

amounts of logic, it should still be beneficial as the circuits generated by the compiler

would not need to be checked or proven. The use of peephole optimisations could then be

applied to a fully generated logic circuit. These optimisations could be allowed to cross
the interconnecting boundaries between segments of logic for the OCCAM components,

assuming the optimisations have been proven not to alter the behavioural properties of the

circuit. Also, pre-processing of the software application being converted, so that more

specialised segments of logic could be substituted where specific properties within the

application can be identified, might provide avenues that would enable the generated
logic to be better optimised.

The difference in the focus of the generation strategies that underpin the original compiler

meant that it was deemed more effective to prototype the work in this chapter by

developing a new compiler rather than retrofitting the new proof strategies onto the

existing code. Although I chose to redevelop the compiler, the technical information and
insight gained from the initial compiler development was easy to integrate into this new

version.

35

Main Work

4.2 Assumptions made within the Compiler and Proof Strategy

This section covers the assumptions made within the compiler design in this thesis:

The abstract syntax tree (AST), that the compiler generates the hardware from, is

assumed to be a correctly constructed representation for the target OCCAM

application.

oA non-formally-proven lexical tokeniser and syntax parser has been

created at the front-end of the compiler. This automatically generates the
AST from an application's OCCAM source code. It was built to simplify
the parsing of larger examples, instead of hand generating the AST.

o The structure of the AST is a direct one-to-one mapping of the
application's OCCAM source code, so it is realistic to assume that the
OCCAM can be parsed correctly and converted into a valid AST.

" The netlist data structure created by the compiler (representing the generated logic

circuit), is assumed to be correctly output to a file that is used by the FPGA place-
and-route configuration tools.

o Both the compiler's internal logic circuit data structure and the output file

represent the same netlist. The logic components and their
interconnections in his netlist map in a bi-directional one-to-one fashion
between these formats, and this is easy to verify.

" It is assumed that the tool, FDR2, that has been used to automatically check the
generated proofs, performs correctly.

o This a well established and stable tool, commonly used in the field of
formal methods.

" The choice of FPGA clocking frequency is sufficiently low to enable the circuit to

stabilise between clock cycles.

o This operational condition underpins every clocked digital circuit. The

FPGA development tools determine the maximum tolerable clock speed
for each circuit.

These assumptions only affect the context within which the compiler operates, and do not
detract from the assertions made in this chapter regarding its proof of correctness.

36

Main Work

4.3 Project Overview

This project focused on the production of an OCCAM compiler that generates fine

grained parallel clocked logic circuits, along with a formal proof for the generation of
these logic circuits. This proof guarantees that the hardware generated performs as

specified by the software specification, but does not prove that the software to be

converted performs a sensible task; to do the latter would require detailed knowledge of
why the application was written.

To avoid the state space explosion that is experienced when attempting to prove that a

circuit satisfies its behavioural specification as the size and complexity of the application
increases, this compiler utilises an object-oriented/modular approach. Generic super type

specifications have been created describing all the allowable behavioural properties that

the different implementable OCCAM components can perform; these are then used for

two distinct but interconnected purposes.

The first purpose is to test and prove that segments of logic that are used to represent the

OCCAM components in hardware are refinements of their corresponding super type

specification (e. g. in Figure 13 the segment of logic circuit for an "IF THEN ELSE"

component is a refinement of a "Control Flow Process", sharing the same interface

structure of start, clock and reset inputs and a finish output). This is required because the

second use for the generic specifications is as place fillers for internal components that

are required for a component to function. If the component being examined requires other
internal components to function, as in the "IF THEN ELSE" component seen in Figure 13

needing a boolean component and a "MEN" and "ELSE" control flow process

component, the model of the segment of logic circuit can be connected to the

corresponding generic specifications (e. g. the three yellow highlighted components in

Figure 13). These generic specifications are used as place fillers to provide the full range

of allowable behaviours that a correctly behaving internal component may perform. Some

of the generic specifications require that internal choice be utilised to enable them to

present all these possible behaviours.

37

Main Work

Start

Start

ý

Clock

-T Boolean Finish
Condition

State

NOT>O---*I
D

ý
D

Start r' 1i
"Else"

Control Flow
Process

Finish

OR

Figure 13: Graphical representation of an "IF THEN ELSE" component

Finish

t

Provided the segment of logic circuit for a component can be proven to be a refinement of

its super type, as long as any internal components are behaving correctly, then it can be

connected anywhere where its super type component may be used. This leads to a proof

of composition, enabling the OCCAM component to be connected together in a one-to-

one manner that directly mimics the grammatical structure of the software specification.

Although this defines and proves how the components fit together, it does not guarantee

that an individual OCCAM component performs its corresponding conceptual task (i. e.

whether a segment of logic for an IF component performs an IF statement), just that it is

the right shape.

Start

Reset

f
"MEN"

Control Flow
Process

Finish

38

Main Work

OCCAM Component

4,

, ---------

ý ý ý ý
ý PAR

Control Flow Process

Delay IF THEN
ELSE

E- -,
ý
ý
ý
ý
ý ý

--'--

i -------,
i

i
i
ý
i
i
ý

_r

i1

EQUALS

Boolean Process

Data Read

iý

TRUE FALSE

Figure 14: Simplified class diagram of a subset of components and their super types

Having a proof of composition, the remaining task is to prove that the segment of logic

circuit for each OCCAM component performs its required conceptual task. This is

achieved through the addition of extra events to the model, by running a CSP process in

parallel with it. These events annotate and depict at a software level what is occurring,

assigning meaning for specific occurrences of low level signals. These annotation events

are added in two distinct locations, the first by annotating the outer level of the CSP

model of the segment of logic circuit of each OCCAM component, annotating its

interface signals (signals that are used to trigger and drive the logic, along with the signals

that it returns). The second part is by adding extra events to the generic specifications,

describing the conceptual software behaviour that this component performs at its outer

boundary. The combination of these annotation events results in describing conceptually

at a software level how the segment of logic circuit being tested triggers and interacts

with any internal components that it utilises. Through hiding the annotation events, one is

left with a CSP model that is behaviourally identical to the proof of composition model

that was previously used, whereas hiding all the events other than the annotations

produces a model that describes at a conceptual level what the segment of logic does.

This conceptual model can then be compared with a hand crafted specification that

describes the desired and expected behaviour of each component, proving their

equivalence.

39

Main Work

r.........
'

----------- I

U
I
I
U
I
I
I
U

U
U
I

Hardware \;
Specification);

ý
ý

I
U
I
U

I
U
U
U
U
I
U
I
I
I
U
U
U
U ýý ý I. :L --------- --- S

.
I
I

U

I
U
a
a
I
 _............... _............... ___. _. _.. __... _.. _. :

.; .ý .ý
 ¬

.ý .F F

. Uf

 :
 _
 i
 '
 !
 ,
 _
 ;

 ý

I CSP Proof ýýýýýýUUUUUUUUUUUUýýýýýýýýýýýýauu"uý

-- Component Specification

i zouperiype

UI ;"
% ..:

Figure 15: Overview of CSP proof structure for a single component

It is through the combination of the proof of composition and the proof that each

component performs its relevant behavioural task, that the generated logic circuits can be

guaranteed to perform as specified without the need to have their behaviour exhaustively

checked against a behavioural specification. This makes use of CSP's congruence

properties for these components. Although, for small circuits, the size and complexity of

the proof would be greater than that of modelling and behaviourally checking the circuit

as a whole, the main benefit arises because each OCCAM component only has to be

checked once before it can be used in the compiler (and then it can be used repeatedly in

future generated circuits). This guarantees that all circuits which can be generated by the

compiler will perform as the source code specifies, thus avoiding the state space

U
U
U
U

U

U
U
.
U

. . ___. .. _...........

 so. U.... "a

40

Main Work

explosion when the software to be converted into hardware increases in size or
complexity.

4.4 Logic Component Representation

4.4.1 Why Continue Using CSP?

There are several reasons for continuing to use CSP in the main body of this work. Apart
from building upon the preliminary work that utilises CSP (see chapter 3), several other
factors contributed to the continued utilisation of CSP.

As the compiler proofs guaranteeing that the generated logic circuits perform as indicated
by the OCCAM software are self contained (i. e. the hardware generation process is

proven independently of any application that is converted), they can be completely
isolated from any tests, models or proofs that the end user may decide to perform on his

application. Although this compartmentalisation of the hardware generation proof from

any proofs of the software application, that in itself was not a reason to utilise CSP, it

does enable the choice of using CSP to have no impact or restriction upon how an end
user may wish to prove or test their application. Thus enabling the selection of whichever
formal language or proof methodology is desired, if the end user wishes to test or prove
their application.

CSP is a formal event-based algebra which enables the formal specification of how

parallel processes interact. As CSP is particularly suited to modelling processes, it can

equally be used to represent the same problem in varying degrees of abstraction. As we

can utilise CSP to represent models of specification in various levels of abstraction (both

hardware and software descriptions), there was no compelling reason to select a different

formal technique.

Selecting an alternative to CSP would either have caused the preliminary work covered in

chapter 3 to have to be redone or the creation of a formal proof to convert between

different formal methods. Both of these tasks would have been extra work that was
deemed not critical to the solution of the problem.

41

Main Work

4.4.2 Design Considerations & Implications

This thesis focuses on proving the construction process of generated logic circuits. The

modular approach underpinning the chosen strategy requires that models of the logic

components be sufficiently robust to accommodate features of the circuits that may not be

guaranteed, desired or expected. Some of the features stated below, such as if a logic

component is connected to itself, should never happen as the compiler has been designed

not to produce this condition. Although this is the case, the CSP models must also be

robust enough to deal with this because if a bug did exist within the compiler that

produced this, the CSP models and proofs must be able to represent it. This is also the

reason why this section of the work reintroduced the reset functionality back into the CSP

models (to be able to detect if the reset pins are connected incorrectly by the compiler), as

the work covered in chapter 3 removed it to try to help minimise the state space that had

to be examined. As such the model of the logic components used in chapter 3 (specified

in Appendix B), are not robust enough for the requirements of this section of the work.
For example, the model of a D-Type Flip-Flop (see Figure 16), cannot deal with all the

conditions specified below (i. e. if the output Q is connected to the input D, the model will

not behave correctly).

PROC ACTIVE_LIB_PDC(d, q, clock)
let

S(Y)
d? x -> qly -> C? l -> 8(x)
11

q! y -> d? x -> c? l -> S(x)
within S(0)

Figure 16: CSP mode! of D-Type Flp-Flop used in chapter 3

Although modelling each logic component can be perceived as an individual task,

because instances of these models are combined together to represent a circuit or segment

of circuit, this imposes conditions that affect the design and implementation choices

which were made.

"A signal (representing a wire connecting logic components) may be connected to

multiple pins of a logic component; thus the models have to be designed to deal

with this feature.

o The model of the component should be comprised of multiple processes

run in alphabetised parallel. This would enable common events in the

42

Main Work

model that represent the signals received on the input and output pins of a
component to synchronise.

o An alternative in some situations would be the application of peephole

optimisations that could alter the circuit to remove any connected pins on a
logic component without adversely affecting the overall behaviour of the

circuit.

" Loops of logic containing only combinatorial (non-clocked) logic should not be

allowed, as loops of non-clocked logic have the possibility of introducing race

conditions.

o If a loop is created and the possibility of a race condition exists, its

occurrence would be detected by the specific run-time instantiation of the

circuit (i. e. the specific signals being transmitted through the circuit).

o Non-clocked logic components are modelled as IO-SEQ, and models

containing loops of only these components are liable to deadlock. To

ensure that this occurrence can be detected, by forcing the models to
deadlock in FDR, the special case has to be considered where the loop

consists of only one 10-SEQ component (i. e. it is wired to itself). To

ensure that this will deadlock, the model of the component has to explicitly

check that its outputs (e. g. output Q of a flip-flop) is not connected to its

own inputs (e. g. input D of the same flip-flop), and explicitly deadlock if

this does occur. Clocked logic components modelled as 10-PAR are not

susceptible to deadlocking if they are connected in loops, but the
individual IO-PAR CSP models will also have to check to see if they are

connected to themselves. This is required to enable their corresponding
inputs and outputs to be synchronised together in FDR so they are

modelled correctly.

Only one driving pin should be connected to any signal (wire).

o If an attempt is made to drive a signal from multiple components or I/O

pins, contention could occur. This would only cause problems in a
hardware circuit if the different driving pins were trying to propagate
different signal states at the same time. If the signals that they are trying to

drive never differ from each other, then the hardware should not have a

43

Main Work

problem, although it is likely in this case that the logic is redundant and
thus may be optimised or removed.

o Running the processes representing the logic components in alphabetised

parallel on the CSP events that represent the signal names causes them to
deadlock if the processes attempt to drive different values. If the behaviour

of the circuit is such that multiple drivers of a signal always drive the same
state as each other, the CSP model of the logic circuit will be deadlock-

free. This condition is impossible to test for as CSP allows `many-to-

many' channel synchronisations, and multiple drivers that continuously

provide the same output do not cause a problem.

Clocked logic components that the compiler uses only alter their output states on a
low-to-high clock transition (e. g. D-Type Flip-Flops do this):

o The clock can be modelled as a single event per cycle representing a clock
low-to-high transition, thus helping to minimise the size of the state space

required to be checked for the proofs, as covered in chapter 3 and [Peel &

Pizarro 2005].

4.4.2.1 Combinatorial Logic

The components that fall under the 10-SEQ category (see section 2.6) are non-clocked

combinatorial logic functions (AND, OR, NOT, etc). 10-SEQ is particularly suited to

these components, because in any single clock period, outputs of these components are
directly related to the inputs received in that clock cycle. Figure 17 demonstrates how to

create an instantiation of the non-clocked 10-SEQ component (an AND gate), the relevant

channels are parsed as arguments to the process specified in Figure 18 that defines the
behaviour.

44

Main Work

CSP Specification of an AND Gate
-- Declaration of signal channels that the gate
-- is wired to.
STATE _ {0,1}
channel chaninputl : STATE
channel chan_input2 : STATE
channel chan_output : STATE

-- Declaration of an instantiation of a two
-- input AND gate.
INST AND

AND-GATE(chan_output,
<chan inputs, chan_input2>

-- Alphabet of instantiated AND gate
ALPHA INST AND .

{I chars output, chan_inputl, chap input2 I}

A Graphical Depiction

chan_inputl

Chan-output

Figure 17: An Instantiation of a Two Input AND Gate

-- Declaration of a ahannel used internally by the CSP specification. ! DR Will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal state : {0,1}

-- Instantiations of an AND Gl&TR calls this process and provides channels used
-- for its inputs and outputs as arguments. 'out' is a single channel to output
-- to. 'in list' is a list of channels to input from.

AND GATE (out, in_list) -
let

-- Check if this AND gate has any inputs.
A-

length(in list) _= 0&B
(]
length(in list) 1- 0&C

-- Specification of an AND gate with no inputs, it behaves as WED.
B- out l0 -> B

-- Check if the output of the AND gate feeds any of its inputs, deadlock the
-- specification if it does.
C=

inter({out}, set(in_liet)) {out} & STOP
H
inter({out}, eet(in list)) __ (} &D

-- AND gate specification.
D-

let

-- Manage the Inputs of the gate.
DA -

let

-- Inputting process managing a single pin.
-- "z' becomes the input channel to manage.
DAA(x) -

x? y -> internal stately -> out? _ -> DAA(x)
-- Run the inputs for all the input pins in parallel.
DAB(x) _

length(x) -- 1& DAA(head(x))
(l
length(x) >1&

DAA(head(x))
union(

inter((head(x)), set(tail(x))
U out I}) f)

DAB(tail(x))

45

Main Work

within DAB(in_list)
-- Manage the output of the gate.
DB -

let
DBA -

internal state? l -> DBC
[]

internal state? O -> DBB
DBB =

out !0 -> DBA
U
internal-state? - -> DBB

DBC -
out !1 -> DBA
[]
internal_atate? l -> DBC
U

internal_state? 0 -> DBB
within DBA

-- Connect the inputs and outputs together.
DC -

-- The ordering that the 'Internal
_State,

events occur does not
-- matter, so long as they all occur. This is guaranteed by the
-- structure of the internal processes running in parallel.
(DA

[I fl internal-state, out
DB
\ {I internal-State

within DC
within A

Figure 18: AND Gate CSP Model: 10-SEQ

46

Main Work

4.4.2.2 Clocked Logic

10-PAR can represent clocked logic (D-Type Flip-Flops, T-Type Flip-Flops, etc). For any
individual clock cycle, the output values are pre-determined and independent of the input

values (although the input values will have an effect on the output value for the following

clock cycle). It is because of this that these components can transmit their output values in

parallel with receiving values on their inputs.

CSP Specification of a D-Type Flip-Flop
-- Declaration of signal channels that the gate
-- is wird to.
STATE - (0,1}

channel chap clock : (1}
channel chan_reset : STATE
channel chan_input : STATE
channel chan_output : STATE

-- D. olaration of an instantiation of a
-- D Typ. Flip Plop.
INSTD .

D__TYPE_PLIP_FLOP_IOPAR
chan_clock, chan_reeet,
chan_input, Chan output

-- Alphabet of instantiated D Typ. Flip Flop
ALPHA_INST_DTYPS

chan clock, chan_reset,
chap input, chan_output

I)

A Graphical Depiction

chan_clock

chan_input

chap reset

INBT D

D Type
Flip Flop 1 F;

chan_output

Figure 19: An Instantiation of aD Type Flip Flop

47

Main Work

Declaration of a channel used internally by the CSP specification FDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal state : (0,11
channel internal_reset_state : {0,1}

-- Instantiations of aD TYPS FLIP PLOP calls this process and provides channels
-- used for its inputs and outputs as arguments. 'q_out' is a single channel to
-- output to. 'd in' and `reset' are single channels to input from. `clock' is
-- an event representing a low-to-high clock transition.
D_TYPR_FLIP_FLOP_IOPAR(clock,

let
-- cm eat

A-

clock,
internal-state,
internal-reset-state

1}, inter({) clout ý}, {ý din, reset

I) c(0)
\ (I internal state, internal-reset-state

-- Manage the inputs of the gate.
B-

let

-- Run the inputs in parallel.
BA -

(BB

I}

11)

reset a in J}, (t1 union({I clock 1}, inter(
BC i))) 11

-- Reset Input
BB - reset ?z -> internal_reset_state !z -> clock -> BB

-- D Input
BC - d_in ?z -> internal-state sz -> clock -> BC

within BA

-- Manage the output of the gate. 'x' is the current state to Output-
C(X)

gout sx ->
internal-reset-state ?1 -> internal-state ?_ -> clock -> C(O)
O

internal reset state ?0 -> internal state ?z -> clock -> C(z)

within A

-- Verity that the ordering of the 'internal-state' and 'in tsrnal_reset stat"
-- does not satter
channel teatO
channel testl, test2, testa : {0,1}
D

-TYPE -D TYPE FLIP FLOP IOPAR(teat0, testl, test2, teet3)
l aaaert chaae(D TYPE) [PD- D TYPE

FIgure 20: D-Type Flip-Flop CSP Model: IO-PAR

the ii{put" and

reset, d_in, clout)

outputs together.

The initial default output value for this object is 10', hence the
initial default value is passed to the process as an arg=ant parameter
'C(0)'.

The ordering that the 'internal
_state'

and 'Internal reset state'
events occur does not matter, to long as it occurs. This is guaranteed
by the structure of the internal processes running in parallel, and has
been verified by the assertion at the and of this example.

8

Iý union({I

48

Main Work

4.4.23 Adapting 10-PAR to 01-SEQ

To help to minimise the state space produced when modelling segments of logic, an
adaptation of 10-PAR was produced. This is where the outputs are performed before the
inputs and then followed by the clock, whereby the clock event acts as a barrier

synchronisation ensuring that all components progress from one clock cycle to the next.
This basic definition of the 01-SEQ concept can be seen in Figure 21, whereas Figure 22
is the definition reworked for the use of channels.

Although the utilisation of a barrier synchronisation event is not needed to ensure
deadlock freedom, it is needed to be able to check if the clock has been correctly
connected throughout the circuit. The utilisation of the clock as a barrier synchronisation,
for all 10-PAR components, helps to minimise the state space that FDR2 has to check.
The state is minimised because any 10-PAR components that may temporarily run ahead

of others (as stated in the IO-PAR definition, theorem and proof covered in [P. H. Welch,

1987]), are forced to progress from one cycle to the next, in unison with all the other IO-
PAR components. So long as the clock event is unique and not dependent on any of the

other events or signals within the system, the definition, theorem and proof of the 10-

PAR components covered in [P. H. Welch, 1987] is not invalidated. As previously

mentioned, the barrier synchronisation event will ensure that the 10-PAR components

progress from one cycle to the next in unison (which also happens to be the purpose of the

clock signal within the circuit). This should also explain the position and utilisation of the

clock event in the models used in [Peel & Wong, 2004] that this research builds upon.
3. a set of all possible ZO events
S. a met of input events
0. a set of output events
a. a barrier aynabroniaation event (e. g. a clock)

whore
(not 040"r (i, 3)) and (intter (I, 3) . i) and (intar (O, 3) - O)
(gpty (intar (I, O)))

and

OISEQ - (ICI x: O 0 (x -> SKIP)); (III x: I a (x-> SKIP)); a -> OISEQ

Figure 21: A simple CSP definition of an 01-SEQ component

49

Main Work

8. a let of all possible SO channels
Sa set of input channels for a comiponent
0"a set of output channels for a com1ponent
a. a barrier synchronisation event (e. g. a clock)
5"a net of default output events

where the following conditions hold trues
The input channels for a component are not in its output channels

espty(inter(Z, 0))

The input and output channels are valid 1O channels
(inter (1,1) - 1) and (in tar (O, E) - 0)

The default output events are a gat of events containing one event from the
expansions of each of the components output channels

X -c- (z Iz <- set((l aka <- o 1)),
Card(Z). Card(0),
b <- Z,
a<-0,
member(b, (I aI)),
d <- diff (Z, (b)),
not aber(d, (I a ý))

)

OISEQ - OISEQ2(z)
OISEQ2(A) _

(111 x: A ® (channel(x) I message(x) -> SKIP));

(ill x: I Q (x ?_ -> SKIP));

s -> (I-I Y: {xI x<-set({I aI a<-O1}), Card(X) - Card(O),
b <- X,
c <- 0,

member (b, {I c 1}),
d <- diff(X, {b }),

not member(d, {I c I}) }
0 OISEQ2(Y))

Figure 22: A CSP definition of an 01-SEQ component using channels

As the output states for a clocked component are static during a specific clock cycle (i. e.

they are not dependent on that cycle's input values), modelling the outputs occurring
before the inputs helps to reduce the state space that has to be checked because the

number of permutations for the 01-SEQ interleaving order is fewer than for the 10-PAR

model (the 10-PAR in Figure 23 is replaced by an 0I-SEQ, as shown in Figure 24).

r--p IasEQ ý0 10-PAR

Figure 23: 10-SEQ and IO-PAR connected in a bop

50

Main work

r--o 10-SEQ ý----ºI 01-SEQ

Flure 24: 01-SEQ replace. I0-PAR In I0-SEQ/I0-PAR Mop

An example of a D-Type Flip-Flop modelled in the OI-SEQ form can be seen in Figure
25.

51

Main Work

-- Declaration of a channel wed internally of the CSP . pecifiaation CIP will
-- not allow you to declare channels inside a let-within block, all channel.
-- must be globally defined.
channel internal state : (0,1)
channel internal_reset_state : {0,11
channel internal

-- Instantiations of aD TYP3 FLIP PLOP calls this process and provides channels
-- used for its inputs and outputs as arguments. 'bout' is a single channel to

-- output to. 'd in' and 'reset' are single channels to input from. 'clock' is

-- an event representing a low-to-high clock transition.
D_TYPB_FLIP_FLOP_OISBQ(clock, reset, d_in, q_out) -

let

-- Connect the inputs and outputs together.
A-

-- The ordering that the 'internal-state' and 'Internal reset state'
-- events occur does not matter, so long as it occurs. This is guaranteed
-- by the structure of the internal processes running in parallel. The
-- initial default output value for this object is '0', hence 'C(0)'.
(B

union({I clock,
internal,
internal_state,
internal-reset-state

I},
inter({I clout 1}, (I din, reset 11

I] C(0)
\ {) internal, internal_state, internal_reset_state I}

-- Manage the inputs of the gate.
B=

let
-- Run the inputs in parallel.
BA s

BB
union({I internal, clock

inter((I din 1}, {I reset I}))
II BC

-- Reset Input
BB = internal -> reset ?z -> internal_reset_state !z -> clock -> BB

-- D Input
BC - internal -> d_in ?z -> internal_ state !z -> clock -> BC

within BA

-- Manage the output of the gate. `x' is the current state to output.
C(x) = q-out !x -> internal ->

internal-reset-state ?1 -> internal-state ?_ -> clock -> C(O)

internal reset state ?0 -> internal state ?z -> clock -> C(z)

within A

Figure 25: D-Type Flip-Flop CSP Model: 01-SEQ

52

Main Work

Figure 26 demonstrates using FDR2, that the behaviour of the OI-SEQ component is a

valid trace refinement of an 10-PAR version. Thus demonstrating that the 01-SEQ

behaviour is contained within the 10-PAR behaviour.

-- 8. a set of all possible 10 events
-- i. a sat of input events

-- 0. a sat of output events
-- a. a barrier synchronisation sweat (e. g. a clock)

-- where
-- (not aeaber(a, 3)) and (inter(z, s) . X) and (inter(o, a) - 0) and
-- (empty (inter (z, O)))

IOPAR = (11) x: union(O, I) 0 (x -> SKIP)); a -> IOPAR
OISEQ = (111 x: O 0 (x -> SKIP)); (Ill x: I 0 (x-> SKIP)); a -> OISEQ

-- Check that the OISiQ model is a refinement of the OSPAR model
laBeert IOPAR IT. OISEQ

Figure 26: Assertions demonstrating 01-SEQ Is a refinement of 10-PAR

01-SEQ is useful for the specific style of clocked logic circuits that the compiler

generates as it helps to minimise the state space that FDR has to check by reducing the

number of interleaved orderings for parallel events, compared with the equivalent use of
I0-PAR. The condition for utilisation of 01-SEQ imposes a constraint that no loops

consisting of only these clocked logic components may exist to avoid the circuit model
deadlocking. This is acceptable because the compiler never generates these loops, this

condition may be verified because the component models are defined to behave as STOP

if they detect that their outputs are directly connected to their inputs, and an FDR check

can confirm that such a deadlock does not occur. For any OI-SEQ only loops consisting

of more than one component, the CSP models will naturally deadlock, it is only the

special case of loops of one component that has to be catered for.

4.5 Proof Framework

The proof of correctness of the compiler is complex, and involves many individual stages.
These can be broken down into three interrelated phases.

1. The first phase is a proof that individual OCCAM constructs, when converted into

segments of logic, can be connected together correctly in all possible

combinations as indicated by the OCCAM grammar - i. e. correct composition.

2. The second phase is to prove that the logic for each of the individual types of

OCCAM components performs its corresponding conceptual task.

53

Main Work

3. The third and final phase ensures that the creation of the logic circuit by the

compiler conforms to that which is indicated by the proof.

Examples of the various models and assertions used to demonstrate properties of points 1

and 2 can be found in Appendix D and Appendix E. These two appendixes respectively
show the models and checks that need to be performed for a single type super type
generic component and a single type implemented component.

There are currently six super type OCCAM components in our compiler; flow-control

constructs (such as SEQ, PAR, IF or channel communications), data-read constructs (such

as PLUS and numerical constants), data-store constructs, channel-read constructs,
channel-send constructs and boolean constructs (such as TRUE, FALSE or less than). The

reason that there are six types is due to the differing structural composition of their
boundary connectors. There are also specialised multi-types (see section 4.5.4) - e. g.
channels and variables - that provide access to two different types of interface constructs
(e. g. `channel-read and channel-send' or `data-read and data-send' respectively); this is
because they perform a mixture of these behaviours.

Instances of constructs can utilise components of any type internally to enable them to

perform the required task. For example, the "IF THEN ELSE" component utilises two
"Control Flow Processes" and a "Boolean Condition" as shown in Figure 13 on page 8.

Proving that these components can be composed together requires generic CSP

specifications to be written that depict the range of behaviours that are allowed to be

performed at the outer boundaries of the super type OCCAM components. These

specifications have two uses. For any specific OCCAM component that is being checked,
if it requires other OCCAM components internally, then a corresponding super type

generic specification can be used as the internal component. This enables the model of the
implementable logic to determine all the legal possible states that it could ever get into,

thus enabling a proof that it is a valid refinement of its super type generic component.
Through proving that the implemented component is a valid refinement of a generic super
type component, so long as any internal components used are also a valid refinement of
their type of component, it is possible to fit all combinations of the implemented

components together without invalidating or having to rerun any proofs. This

demonstrates that the hardware for the OCCAM components can be fitted together in a

manner that directly mimics the grammar of the language, because the logic of a verified

54

Main Work

OCCAM component can be placed wherever its generic super type specification could be

used (a property that is true because of congruence).

Although this proves that the composition of the logic circuits will be performed

correctly, further work has to be done to demonstrate that the logic performs the correct
high level behavioural task (e. g. that an "IF THEN ELSE" component when triggered

performs a Boolean test, with the result of the test determining which of the "THEN' or
"ELSE" blocks are triggered). To achieve this, extra annotation events have been added to

the specifications to describe the higher level meanings of the states that the signals are
in. Extra events were chosen to be added due to complications with achieving the same

result through selective renaming (see Appendix J). These annotation events can then be

compared by FDR against specifications that depict the desired and expected behaviours.

Performing these tests enables the determination at a higher conceptual level what

sequence of actions a component will perform and what conditions that these are
dependent on. This enables us to demonstrate that an implemented component will

correctly perform the high level behavioural task that it was designed to achieve (e. g. an

'IF THEN ELSE' block performs an 'IF THEN ELSE').

The combination of proving each individual implemented OCCAM component performs

the task that its grammar component represents, along with proving that the implemented

components can be connected together in a manner dictated by the OCCAM grammar,
has the resultant implication that the components will interact in a way that is dictated by

the software application code being converted into hardware. This provides a guarantee

that the hardware will perform the task that the initial software application dictates,

without having to check each individual circuit that the compiler could generate.

4.5.1 Appendix D Overview -A Single-Type Super-Type Component

This section details an overview of Appendix D, describing the CSP models it contains

and their relationship with each other. Figure 27 illustrates these relationships graphically,

representing a single, single-type super-type component. These specifications are

designed to be utilised in the FDR model-check proofs described in Appendix E and

section 4.5.2.

55

Main Work

ýý

OCCAM Supertype Model with
annotations hidden

IN

Equivalence (D. 2.12)

ý

*I

ý

1

I-

Hardware specification
deadlocks after incorrect
input (D. 1.2)

0ý

Process for annotating outer level (D. 1.5)

Correct Hardware
Specification (D. 1.1)

1 edekCheck (D2.1)

om (D. 2.2)

r

Refinement
D. 2.3)

Hardware specification deadlocks
after incorrect input, with inputs
limited (D. 1.211D. 1.3)

I
Iý Equivalence

I (D. 2.5)

1

Process to limit correct
inputs (D. 1.3)

IN
4-1

Annotated model
(D. 1.1 11D. 1.5)

Annotated
model with
hardware

signals
hidden

Equivalence
r(D. 2.12)

00

Deadlock Check (D. 2.4)

1

ý

Deadlock Check (D. 2.8)

Annotated low level
behaviour with inputs
limited m1 dim I 'Al

Refinement (D. 2.7)

Annotated low level behaviour,
deadlocks after incorrect input
(D. 1.4)

ei
Clock cycle generic annotation
specification (D. 1.6)

to
Y

1%

0

ro

Deadlock Check (D2.10)

Behaviour similar
to expected model
(D. 2.13)

i

'race Equivelance (D. 2.11)

Software component generic Hiding subset of annotations relating to clock
specificaiton (D. 4.1.1) cycle aspects, it behaves similarly to expected

model (D. 4.1.2)

N---,

Figure 27: Overview of the relationship between the numerous models of an OCCAM supertype

Annotated low
level behaviour
with annotations

hidden

ý I

N----ý

J

Equivalence
(D. 2.6)

Annotated low level
behaviour with low

level behaviour hidden
v

Hardware
specification
with inputs

limited
(D. 1.1I1D. 1.3)

56

Main Work

Appendix D. 1.1 contains an 01-SEQ specification that specifies the relationship between

its external control signals (i. e. clock, reset, start and finish). External choice is used to

allow for the different orderings of the start and reset signals, whereas internal choice is

used to provide the specification with the freedom for a finish signal to be generated zero

or more clock cycles after a start signal is received. This specification forces the correct

sequencing of these signals.

Appendix D. 1.2 provides a similar specification to D. 1.1, but where incorrect values are

allowed to be provided to the components inputs. The CSP specification then explicitly
deadlocks if any of these invalid inputs are encountered, thus resulting in the failure of

any FDR deadlock checks that this component is utilised in where this occurs.

Appendix D. 1.3 is a process that when run in parallel with a model, enforces the correct
input signals. This specification is similar to that presented in D. 1.1, but now the internal

choice that determined the state of the finish signal, is replaced with an external choice.

Appendix D. 1.4 is a process similar to D. 1.2, but containing extra semantic annotation

events. These annotation events label the states that the process can take, labelling the

outputs and the appropriate and inappropriate inputs. Hiding the annotation events results

in a process that is failures divergence equivalent to D. 1.2 (as covered in appendix D. 2.6).

Appendix D. 1.5 provides a process that when run in parallel with a model, adds outer

level semantic annotation events that label the states that the process performs. The

annotation events occur after the corresponding low level hardware events, although

Appendix H (specifically H. 1.5) provides an alternative, whereby the semantic annotation

events precede the corresponding low level signal events.

Appendix D. 1.6 contains a model built of only semantic annotations. These annotations

represent the allowed states that can occur at a clock cycle based level (i. e. the

NOTFINISHED state reflects one clock cycle in the hardware implementation).

Appendix D. 4.1.1 provides a model of semantic annotations, ignoring clock cycles. This

model gives a representation of the component that directly represents the software level

of abstraction (e. g. when a control flow process is started, it may or may not finish).

Appendix D. 2 contains the assertions that have to be proved for a super-type component.

This proves various properties of the models and their relationships with each other, thus

enabling the models to be used in the proofs contained in Appendix E.

57

Main Work

Appendix D. 2.1 provides a deadlock freedom check for the model in D. 1.1.

Appendix D. 2.2 utilises trace refinement to prove that the behaviour of D. 1.1 is contained
within D. 1.2. The trace refinement is only performed in one direction, as this allows for
D. 1.2 to contain extra behaviour than D. 1.1.

Appendix D. 2.3 uses trace refinement to demonstrate that D. 1.3 does not introduce extra
behaviour to a process it is run in parallel with, but it may limit that processes events.

Appendix D. 2.4 uses a deadlock freedom check to prove that D. 1.2 is correctly limited by
D. 1.3 (through running them in parallel). Success in this check illustrates that the process
is correctly driven, as the explicitly defined deadlocks in D. 1.2 are never triggered.

Appendix D. 2.5 utilises a pair of failures divergence refinements to ensure that D. 1.2
limited by D. 1.3 (through running then in parallel), has precisely the same behaviour as
that defined in D. 1.1.

Appendix D. 2.6 is a failures divergence equivalence check that proves that the model in
D. 1.4, with its annotation events hidden, behaves identically to the model in D. 1.2.

Appendix D. 2.7 provides a trace refinement illustrating that D. 1.3, does not add any extra
behaviour to the model contained in D. 1.4.

Appendix D. 2.8 uses a deadlock freedom check to prove that D. 1.3 limits the input events
of D. 1.4, so that the explicitly defined deadlocks do not occur.

Appendix D. 2.9 contains a bidirectional failures divergence equivalence check, proving
that if the annotation events are hidden from D. 1.4, it behaves identically to D. 1.2. This
illustrates that the model in D. 1.4 is identical to D. 1.2, but contains semantic annotation
events.

Appendix D. 2.10 provides a deadlock freedom check for the clock cycle semantic
annotation model contained in D. 1.6.

Appendix D. 2.11 is a bidirectional trace refinement used to prove that D. 1.5 annotates a
correctly performing process (e. g. D. 1.1), such that the sequence of generated annotation

events are the same as D. 1.6.

Appendix D. 2.12 contains a bidirectional failures divergence equivalence check. This

check proves that D. 1.5 only adds annotation events to a process it is run in parallel with
(e. g. D. 1.1), neither adding nor constraining the interface behaviour.

58

Main Work

Appendix D. 2.13 uses a failure divergence refinement check and a trace refinement check
to illustrate that the annotation events contained within D. 1.4 generate the same sequence
of semantic annotations as D. 1.6.

Appendix D. 4.1.2 contains a failure divergence refinement check and a trace refinement
check that links the clock cycle semantic annotation model (i. e. D. 1.6), to the software
semantic annotation model (i. e. D. 4.1.1).

4.5.2 Appendix E Overview -A Single-Type Implemented Component

This section details an overview of Appendix E, describing the CSP models it contains
and their relationship with each other and to the component's super-type. Figure 28
illustrates these relationships graphically, representing a single, single-type implemented

component. These specifications are the CSP proofs required to verify a low level
hardware component.

Appendix E. 1.1 specifies all the allowable signal transitions of the implemented low level
hardware components outer interface (e. g. the clock, reset, start and finish signals). The

chosen example is a component that implements an IF-THEN-ELSE statement.

Appendix E. 1.2 is similar to D. 1.2. Its basis is the E. 1.1 specification, but it has been

altered so that invalid inputs are allowed, with the incorrect inputs triggering explicitly
defined deadlocks.

Appendix E. 1.3 is an automatically generated model of the hardware created by the

compiler. It is comprised of a number of logic gates whose inputs are joined together by
CSP events, directly mimicking the logic net-list that represents the circuit. Figure 78, on

page 8, illustrates graphically this component's circuit.

Appendix E. 1.4 shows a clock cycle based semantic annotation model of this component.
It demonstrates how it drives the BOOLEAN check and the THEN and ELSE processes,

and also how they interact and affect each other every clock cycle.

Appendix E. 4.1.1 illustrates the semantic annotation model of this component.

Appendix E. 2 contain the FDR assertions that link the various CSP specifications of the

implemented component together, and to its super-type specifications covered in

Appendix D.

59

Main Work

OCCAM Hardware Conversion

l\

Equivalence CSP Model of Net List
disallowing incorrect
driving (E. 1.311D. 1.3)

Logic Net ý EDIF

Each individual component is
Modelled and run in parallel

CSP Model of Net (may contain D. 1.2)

List (E. 1.3)

Refinement (E. 2.2)1
Constrain input signals to disallow

correct outer level driving

Implementation Hardware
Specification (E. 1.1)

.i Deadlock Check (E. 2.1)

r-

Deadlock Check (E. 2.3)

efinement (E. 2.4)

Super Type Hardware
Specification (D. 1.1)

Hide low level events
and check annotations
perform similarly to
expected model (E. 2.8)

Implementation Clock Cycle Software Specification (E. 1.4)
Hide subset of annotation events
relating to clock cycle aspects

Implementation Software efnement E. 4.1.2
Specification (E. 4.1.1)

Annotate
outer layer

Correctly driven net-list
with outer annotations
((E. 1.3 J D. 1.3)JID. 1.5)

[Deadlock Check (E. 2.7)

r Super Type Clock
Cycle Software

Specification (D. 4.1.1)

Figure 28: Overvkw of proof structure for an implemented component

Appendix E. 2.1 performs a deadlock freedom check of the model of the circuit (E. 1.3),

with its inputs limited to being correctly driven (through running D. 1.3 in parallel). Firstly

this checks that there are no loops of non-clocked logic, as this would result in the CSP

model of the logic circuit deadlocking. Secondly, the deadlock freedom check guarantees
that the logic circuit correctly drives any internal components. Failure to drive an internal

component correctly will trigger the explicitly defined deadlock within the model, thus
illustrating if the condition is violated.

60

Main Work

Appendix E. 2.2 uses a trace refinement to ensure that running the circuit model in parallel
with D. 1.3 (thus limiting its inputs so it is correctly driven), guarantees that the
specification in D. 1.3 does not add any extra behaviour to the circuit.

Appendix E. 2.3 provides a deadlock freedom check, indicating that the boundary
behaviour of the component is deadlock free.

Appendix E. 2.4 uses a trace refinement to prove that the component is a valid sub-type of
its super-type.

Appendix E. 2.5 has a bidirectional failure divergence refinement check, that proves that
when the implemented component is driven correctly, its interface behaviour is identical
to the expected interface behaviour specified in E. 1.1.

Appendix E. 2.6 demonstrates that the hardware component annotated with the D. 1.5

specification, does not deadlock.

Appendix E. 2.7 is a deadlock freedom check on the high level clock cycle annotation
only specification (i. e. E. 1.4).

Appendix E. 2.8 uses trace refinement to ensure that the implemented component behaves

similarly to the allowed high level annotation specification

Appendix E. 4.1.2 contains trace refinement check that demonstrates that the annotation
specification of E. 4.1.1 is a valid sub-type of D. 4.1.1.

4.5.3 Alternative Single-Type Component Models

An example of an alternative style of annotating a single-type component can be found in

Appendix H and Appendix I. These appendices are similar to Appendix D and Appendix

E, but with the difference being that the control process that is used to ensure the models

are correctly driven when being analysed, uses internal choice to provide a valid input as

opposed to limiting the allowed inputs of the models. The method for annotating the outer
level of the models has also been adapted, whereby the semantic annotation events have

been added to the control process and occur before the corresponding signal events. This

adaptation results in the annotation only models having a more sequential style (e. g. an IF

statement starts before its Boolean check), as opposed to the previous method where

several annotation events are triggered in parallel (e. g. the IF statement and its Boolean

check start in parallel in the same clock cycle).

61

Main Work

Appendix J and Appendix K illustrate how much simpler the CSP models become if the

reset functionality is not introduced into the proof framework. These appendices also
demonstrate how removing the reset functionality, in this particular example, results in

the semantic annotation events corresponding to specific instances of events (as opposed

to a combination of specific instances of events), and how the process of connecting low

level hardware models to semantic annotation models can be simplified.

4.5.4 Special Multi Type Components

The proof strategy covered in section 4.5 can be used to prove nearly all of the OCCAM

components, with the exception of variables and channels (i. e. the multi type

components). The reason that they have to be handled differently is because channels and

variables perform two distinct functions; data can be assigned to a channel for

transmission along it and also can be received from it, whereas variables can be written to

and read from. These objects therefore maintain internal state that the proof models must

accommodate, which is further complicated by the fact that an implementation of one of

these components can have zero or multiple instances of each of their interface functions.

The proof methodology for these multi-type components is based on that of the single-

type components. Single-type specifications are generated for each of the different

conceptual interface functions that they can perform, along with an extra specification

that dictates how instances of these interface specifications interact and influence each

other. This gives a single-type component specification to use as an internal component in

any proofs for other single-type components, whilst also being able to prove that the

implemented logic that governs the interactions between these interfaces is valid and

behaves as expected. This enables us to prove that the correct conceptual task occurs

when the interfaces are accessed in parallel or sequentially, while still demonstrating that

each of the implemented interfaces is still a valid refinement of the interface specification.

An example of the CSP models and assertions for a multi-type generic super type

specification can be found in Appendix F, and an example of an implemented component

is contained in Appendix G.

62

Main Work

4.6 Proof/Compiler Integration

The basic concept of the integration between the proof and the compiler is that, apart
from generating the logic circuits, the compiler also composes together the CSP models to
generate the proof. Through the use of inheritance, interfaces and other standard object
oriented principles in Java, the compiler was designed and built with the concept of tight
integration with the model generation in mind. The use of interfaces enables the code of
the compiler that connects together the fragments of logic circuits representing the
OCCAM components also to connect fragments of logic circuits to other custom hand

crafted components. This functionality was designed for use in the generation of the CSP

models, enabling the fragments of logic circuit to be connected to super type generic
specifications that are substituted as place fillers for any required internal components.
This feature has the side effect that the compiler has the ability to cope with connecting
fragments of logic circuits that it generates with other components that may not have been

created by the compiler. This means that any circuits or components that have been

created through other design and development strategies have a simple avenue for

continued reuse and integration into the compiler.

The combination of inheritance and strong type checking enables the compiler to ensure
that OCCAM components which require other internal components can only be provided
with valid sub type components (supplied as method arguments). This results in the Java

type checker enforcing that the compiler can only compose together components that the
OCCAM language grammatically allows, thus enforcing the proof of composition is

upheld. The use of inheritance also results in the proofs for the implementable

components to be automatically checked against their correct corresponding super type

specifications (i. e. the super type that they physically inherit from); this is because the
CSP models obtained from the super type components are integrated into the automatic
construction of the proofs. If an implementable OCCAM component inherits from an
incorrect class, the CSP proof that the compiler generates will fail when checked. This is
because the compiler utilises the class structure to select the models encoded into

fragments of CSP in a similar way that it utilises the class structure to determine how it

converts components into hardware, thus ensuring consistency between the proofs that are

run through FDR and the logic circuits generated.

63

5 Results

The redeveloped compiler currently is approximately 2.4MB of Java, consisting of over
320 classes and 46000+ lines of code. It generates 4+ MB of CSP split over more than 70
files, all of which have been run through FDR. As indicated throughout this work, the
focus has been on guaranteeing the generation process of the logic circuits, thus ensuring
the circuit behaves as specified by its software specification. The examples that were

compiled to test the compiler were implemented on an FPGA and worked first time. The

timings have been measured from the hardware and verified against the expected values

computed by stepping through the application and using the rules stated in Appendix L.

5.1 Example 1: Commstl me - Version 1

The example that was used to test the compiler was commstime, as specified in Figure 29.

SEQ
CHAN OF UINT7 a:
CHAN OF UINT7 b:
CHAN OF UINT7 c:
CHAN OF UINT7 d:
PAR

SEQ
UINT7 vl:
al1
WHILE TRUE

SEQ
b7 v1
at vi

SEQ
üINT7 v2:
WHILE TRUE

SEQ
a? v2
PAR

c1 v2
dI v2

SEQ
UINT7 v3:
WHILE TRUE

SEQ
C? v3
bI v3 PLUS 1

SEQ
PLACED UINT7 v4 AT "v0", "vl", "v2", "v3", "v4", "v5", "v6":

WHILE TRUE
d? v4

Figure 29: Commsthne written in OCCAM for conversion into hardware

Results

/* instantiate an empty logic circuit and the start and finish signals
LogicCircuit cir - new LogicCircuit O;
LogicNet start = new LogicNet();
LogicNet finished - new LogicNet();
/* Declare the channels used in the specification */
OccamChannel_NotPlaced a= new OccamChannel_NotPlaced(cir, 7, "occamChannelA");
OccamChannel_NotPlaced b= new OccamChannel_NotPlaced(cir, 7, "occamChannelB");
OccamChannel_NotPlaced c= new OccamChannel_NotPlaced(cir, 7, "occamChannelC");
OccamChannel_NotPiaced d= new OccamChannel_NotPlaced(cir, 7, "occamChannelD");
/* Decaire the variables used in the specification */
F1ipFlopStorage vi = new FiipFlopStorage(7); vl. setLogicCircuit(cir);
FlipFlopStorage v2 - new PlipFlopStorage(7); v2. setLogicCircuit(cir);
PlipFlopStorage v3 - new F1ipFlopStorage(7); v3. setLogicCircuit(cir);
WatchedFlipFlopStorage v4 = new WatchedFlipFlopStorage(7, new String[]

{"vO", "vi", "v2", "v3", "v4", "v5", "v6"}); v4. setLogicCircuit(cir);
/* Instantiate the AST */
OccamSequence_Seq outerSEQ = new OccamSequence_Seq(new OccamProcess[] {

new OccamProcees_SingleChannelDeclaration(a),
new OccamProceas_SingleChannelDeclaration(b),
new OccamProcess_SingleChannelDeclaration(c),
new OccamProcess_SingleChannelDeclaration(d),
new OccamParallel_Par(new OccamProcess[] (

new OccamSequence_Seq(new OccamProcess[] {

new OccamProcess_Output_Channel(
a. getChannelSend(), new Occamßxpression_UINT_Constant(7,1)

new OccamProcess_SingleVariableDeclaration(vl),
new OccamProcess_While(

new OccamBooleanTrue0,
new OccamSequence_Seq(new OccamProcess[] {

new OccamProcess_Input_Channel(
b. getChannelRead(), vi. getDataStore()),

new OccamProcessOutput_Channel(
a. getChannelsend(), vi. getDataRead()) })) }),

new OccamSequence_Seq(new OccamProcess[] {

new OccamProcess_SingieVariableDeclaration(v2),
new OccamProcessWhile(

new OccamBooleanTrue (),
new OccamSequence_Seq(new OccamProcess[] {

new OccamProcess_Input_Channel(
a. getChannelRead(), v2 . getDataStore 0),

new OccamParallel_Par(new OccamProcess[] {
new OccamProcess_Output_Channel(

c. getChannelsend(), v2. getDataRead()),
new OccamProcess_Output_Channel(

d. getChannelSend(), v2. getDataRead()) }) })) }),

new Occamsequence_Seq(new OccamProcess[] {

new occamProcess_SingleVariableDeclaration(v3),
new OccamProcess_While(

new OccamBooleanTrue () ,
new OccamSequence_Seq(new OccamProcess[] {

new OecamProcess Input_Channel(
c. getChannelRead(), v3. getDatastore()),

new OccamProcess Output_Channel(
b. getChannelsend(),
new OccamDyadicOperand Plue

v3. getDataRead(),
new OccamExpression_UINT_Constant(7,1))) })) }),

new OccamSequence_Seq(new OccamProcese[] {

new OccamProcess_SingleVariableDeclaration(v4),
new OccamProcess_While

new OccamBooleanTrue (),
new OccamProcess_Input_Channel(

d. getChannelRead(), v4. getDataStore())) }) }) });

/" Generate the logic circuit "/
outersEQ. generateLogic(cir, start, finished);

Figure 30: Commstime hand translated into the AST for the compiler

65

Results

The specification was then hand translated into its corresponding AST, as illustrated in

Figure 30 on page 8, followed by the method call to instantiate the compilation into

hardware. This generated a logic net list structure contained within the "LogicCircuit"

component which was then output as EDIF (see cd: ex1), although this net list structure

can also be output as CSP to provide a full circuit specification if desired. The generated

EDIF was then passed to the "place and route" tools and programmed onto the FPGA.

...........
.................. . "¬

.............. _.. _Q...:.............
'..; ¬ ¬

.. ýwä wwý :'W wOý
..:
:..................

a:
; CO wa ; ̀ `

. __ ýý __. _........ _........... _... _. __ _. _ . _.. _.. _ _........ :........................... .: _....... _................. _..:: :..., , ..:. ý... __.... _..... ý.. _:.... _.. _.. ý_............ _.,: _:. ý::.... ý:..... -. -:.... -... _. ý AwUar. ta'wUx Ft zzw. 7

... :.................... _....... '-ý-- "- ---_--
ýAwU aý xWuxazzwau=

ý--
t

_ . _.. -ý --- 'F' ---- -s".. ýiiý,. _iwk=. r.... wn... i:. "- aý--.., n'ýr. o!:: ý! x:::! ý! t°: 14r.:::!! ýt°_: '! 4t. 'ýr_: ''ýý--xx+:::: iX! ý --ý
AWUar. ý rx WUx r1 zzWaA

.::....:::....:ý.... ------- ý-

:
-ý wWAwuaaawuxazz WO rt

... ." .., c................. _.. _. __........................... _.......
tz Ü

Figure 31: Trace through for initialisation phase of Figure 29 commstime

66

_ý. -- ";

y

........ _.....

_. "": . di ý" i':. i
'ý;

' JJ i3, wm i": i7
ýFi

fn : 3. F CJ2 :. ý_...... _.......... ý. ý ?

ýýýFFýý., ý"
: _,.... _.... i ý

3ri si
ý............... _"-. l .. F {T "ý ýýýý3

='

33
!: 33 1ý

; ... _.. _... ýý
_

IfF] 'i; E,

`i iij

ti`:
W_... =

"ýl ,

ý:

'C1 ° 'O !:
ý!

.+"
..

}3 3F. "h-
!tN

Al F34!; +! F i£'e i
i`" ý'"

iý'0! Fi
i3'iiti; Fx e a? ý

ý ii

-. _. _... _.
"
3ý

?' :ýi" '" 33AI

}ý
__:;

iA ýfj =jI i. "iý

..

Iz
3+:

n+ j:
. :" 01

...

"_....

_1` ý. 3 +3 F+ W 3ý +
...

of cn
O i; ;? FW W"

"¬¬: i i: '; - .. ý. -,:
Ü ii ;_ ýxHaw {; _' axHaw

'siiAýxHaw 3
.............. _.................. ___. _.. _.. _..: . _................. _. _.... _...... _......................................., i? ý; cn W 01 :; En w Of s cn w 03

Figure 32: Trace through of 6 cycle cyclical loop (N+9 to N+15) for Figure 29 commstime

Results

67

Results

The generated hardware that represents the application is triggered by a high state held for

a single clock cycle on the "LogicNet start" wire of the outer component. When this

occurs the hardware is triggered, the application performs its initialisation and the first

output value (i. e. data stored in v4) is generated after 9 clock cycles (see Figure 31), this is

followed by a new value after every further 6 clock cycles (see Figure 32). If this block of
hardware were to finish, which it does not because it contains a "while true" loop, the
hardware would have generated a high state on the "Logicxet finish" wire, held for a

single clock cycle. The "WatchedFlipFlopStorage v4" component represents a placed

variable with its corresponding signals connected to output pads, thus enabling the state

within the variable to be viewed from outside the circuit.

5.2 Example 2: Commstime - Version 2

Just like in section 3.7, the performance of commstime may be improved by refactoring

the application. The specification covered in Figure 33, when converted into hardware

(see cd: ex2) and triggered, outputs its first value after 10 clock cycles, the second after

another 4 and the third after a further 6. Subsequent values are output in cycles of every 6

and then 5 further clock cycles.

This example utilises a hand crafted lexical tokeniser and syntax parser to automatically

parse the OCCAM source code and generate the AST. Although the syntax parser takes

advantage of various features to help gain confidance in its AST generation (a formally

proven parser would be the ideal solution but is outside the scope of this project). As

stated in section 4.6, the Java type checking ensures that the subcomponents that the AST

is comprised of can only be composed together in a manner that the OCCAM grammar

allows. Although this helps to ensure that the AST the compiler utilises as its initial

starting point is grammatically allowed, it does not guarantee that it is free of parallel

usage errors (as this is a property of the OCCAM application).

68

Results

SEQ
CHAN OF UINT7 a:
CHAN OF UINT7 b:
CHAN OF UINT7 C:
CHAN OF UINT7 d:
PAR

SEQ
UINT7 vl:
UINT7 v5:
a11
a12
b? v5
a13
WHILE TRUE

SEQ
PAR

b? V1
aI v5

PAR
b? v5
ai v1

SEQ
UINT7 v2:
WHILE TRUE

SEQ
a? v2
PAR

c! v2
d! v2

SEQ
UINT7 v3:
WHILE TRUE

SEQ
C? v3
b! v3 PLUS 3

SEQ
PLACED UINT7 v4 AT "v0", "vl", "v2", "V3", "v4", "V5", "v6":
WHILE TRUE

d7 v4

Figure 33: Commstime passim three values round the loop

69

Results

:.. _.. _.....:
.. r. ý.... ý. a... cz..: ý!.. ý "ý s

JC"ý:?
yý; "

:. ý...., ý
e 3j7j

ý

13ý3ý

+
`/

jjj
ýti

ii iI

--3--f; --
IE 11

HI
ý ýj

.. __.. _...... _... _N... _: i; ambb m
___.. _.. __ý

-�.

ýi

ff....... µp _0 O; a "" e"1
ei

i"_

+

m L,.
_.. __... ý_. _...

_.. ».........
?i jQ i

ý....... -, ::,: :a: _. .. if

i: '+ .
4.

_ .. !iu!, . ._. 1

w! O '. ? uj

?3ý...:.
_. rv e!:.

_ýýiS.. .dbi'!:

}ý....... ___. ___. . }ý;
'rr""výrr. rc: am"ýruý: ý. "ýis . -

?'
{Y

?
pp

'W>? Nii"3mQý;
? @..........

_ :.......::. _:.. _.. _.. -5
i.

_
..... .:,,

ý
.. ". _. ý...... ý ..

'... _... _. _.: :::..............
i:
-.. --::::::?..; .. 7 ý.. _...... _...

_::::: ý: "..:: n. }a? Ne Cl ?..: N_rýw
.+... + rr .r rr w .. W ;? a iy__.. _ ._................................. ý_... _... _.... r. ... _

"... _... .. T...,,........,,,,,..., W, _.. r-
o ®. ýjuue^"yri.: MMK:: 7MN::: WIL:: 7MMfýMMK: a1M1ý::: Kttt::: Mii#::: ý:........ t.:: 1: _. ýIIIM"! r'.. O1r"

,

; gmUrlamm Uxa. zzma -{

. ý. _.... _.... __.... _...... _.... __.....! ý.. __-. _... y. _.

Iomuaaaw-: ----------
ý E........

_ _. _.. _.. _............ ýýýýý..

ý ý. ýý_
ýýýýý wa.. iFY.... ýi. -ý-wý-ýa...

Wii-"a'-"' 3

-ý- r,
amuaaam uzazzma A--W4

. _. _. ---- 3

! ýE 4..,,., ekm uzazzma
0

Figure 34: Trace through for initialisation of Figure 33 commstime

70

Figure 35: Trace 11 cycle cyclical loop (N+17 to N+28) for Figure 33 commstime

Results

71

Results

It should be noted that by optimising the channel communication logic, i. e. removing the

delay in the channel output (see section L. 6), it would be possible to construct the circuit

that outputs its first value after 10 clock cycles and all subsequent values outputs every

further 3 clock cycles (see Figure 36 and Figure 37). The initialisation stage could also be

optimised, and this could be achieved by declaring channels and variables in parallel, but

not in a PAR. This would reduce the time required for the initialisation phase and shorten

the time taken until the first value is output.

72

Results

?:..
??.

aax_...
_. ... " .: "-.. -ý ----:! t

-: ýº: ýý ý
ii: ?: _lF!:
": ----------;; ý=' ý---::: ý-ýý -- :? =F

} tr7äö°eb N °i:: ={{ Nr ¬ '""_ý ; ¬9>
3 _.. ý. "> ý-
i.. __.. __. _. - . _... i...... ------- _.... _..... i

--- . ý....,... ý...: s... ý_... ý_., ý r }; -. r -m^ Ü

.`_"i+
_. _ _... __. _. _...,? °ýv rofi ", ;fim_ý_. 31ý..

b;

w;

-I
3I

... ^ '- ""
?ý a

ý.

ý.....
i"

:. °La : -ý-_ ----

33
_. _.

-1

i
.? N3N" "" it m .

m] piý? a it ?f

.:.
'"..........
it .. ? 71 >m>E??: :ýSeý......

.... ý: ý
_

YiM.
'

...... ý :. iQi... _.. __1 . 3' ýE . y.... "
i, . .. _.....

_? r...... _. -.; :
!. ý

:
ý'"ý`_.

ý'..

YN4

"

-; '°';...

_ý ii ?'.?

"w

>

ýi?
_.:

u O
3i

---ý 'S' '-. _. -1^. arc:: ýW[ý: ruc:: ar¢:: a4
".

ý ""-mu-ý ýe ii"_IYa
......... _

r...
;?.. ::.. -

-.. ý... ?:??...

;
?e Cw ; ü> i ý: jý u> INWý >ý r wa Qýi....

........: all :Q VI 94 ?}W? QI: i....:
i____ý L.

it
i it

..... .. ?a;.. __.. _.......: -:: ":::: ý : --.: . _. _
'"............... i:.: r.:. -. "..: i: i: i:::::: 3

... wv
ý . _. _. _... _..: ý .:. ... " . m:

......... _...... _. ___. _.. _-_. _. _.. _... .,.,,...., n... y,... -... ý... ý.. ý... ý...,,,...

-- "". r, _W axac: xx ::: ure aac»: xrx: ý'
?" - ?Qwuaaamuxazzmabl-- --- r- -

_
;..... _.. _.... _ .. -------- - --"-S.

----,..:.....,. w... wl... ýw....,.. _., a. ý....... w:... wý.. ýl. -ý. -+ý. -s

amuaaxm uxazzma u"____- .ý

-- __ _. _ _. . _....... _. . _ý--ý: ý"ý- ------ M"Qo7uaaam
uxazzma

-ý-

-.. r-"rr-Y. r"""nw""+.. -"rn""w.. -".: wýwr"". r-_,

_-??
e-) w° ; Qu. 7axm uxazzma

w _..... _ý . -_ ý , ý.. ý -" ___. __......................
n -ý ".. -ý----,. +-.. -... ""'

Figure 36: Optimised trigger & completion step through for initialisation of Figure 33 commstime

73

Results

Figure 37: Trigger & completion step through of 6 cycle cyclical loop of Figure 33 commstime

5.3 Example 3: A Digital Clock Displayed on an LCD

This section presents a larger example application (see Appendix N). The application is

an implementation of a digital clock, on which the time is displayed on a liquid crystal

display (LCD). The clock has two input buttons that allow the displayed time to be

altered.

74

Results

The application runs on a Xilinx FPGA and performs a power on initialisation of a
Sitronix ST7066U graphics controller connected to an LCD, configuring it to

communicate via its 4-bit data interface mode, and instructing it where to display the

relevant characters. The application also samples two buttons which can be used to alter

the running clock time, whilst several internal parallel processes interact via channel

communications.
LCD Nibble LCD Delay

a
Main

LCD PowerOnlnit

.9

LCD_Diepla}rl'ime

ý
DigitaiClock

ý
DebounceHour

ý
DebounceMin

ý

Figure 38: Overview of the Digital Clock example

The developed application was broken down into the following segments:

" Main

" LCD PowerOnlnit

0

0

0

a

0

LCD Nibble

LCD_Delay

LCD_DisplayTime

DigitalClock

DebounceHour

" DebounceMin

5.3.1 Main

The segment of code, commented as "main", runs the LCD PonerOnXnit code, followed by
the following in parallel: LCD DiaplayTime, DigitalClock, Debounce8our and DebounceMin.

It also declares locally the channels that Debounaeuour and DebounceMin use to

communicate with the Digitalclock process, and the channels that Digi talClock uses to

communicate with LcD DiaplayTime.

75

Results

5.3.2 LCD_PowerOnlnlt

This segment of code contains the sequence of commands and the required time delay
between them, to perform the power on initialisation of the LCD graphics controller. This
initialises and sets the controller to communicate in its 4bit data-mode.

The process utilises channels to send the individual commands to the rcv Nsbble code to

output them to the LCD graphics controller. The process also communicates with the

LCD D. 1ay process, triggering it via channels so that the required delay allows the

commands to execute correctly.

5.3.3 LCD Nibble

This process contains an infinite (WHILE Taus) loop, listening on channels for commands it

is required send to the LCD graphics controller. When this process recieves a command,
it sets the corresponding data and command lines to send the correctly timed command to

the LCD graphics controller. The process then waits, before listening on its channels for

the next command to send. This is so that there is a correctly-timed delay between

individual commands.

5.3.4 LCD_Delay

This process contains an infinite (WHILE TRUE) loop. The process listens on a channel,

starting a timer when it is instructed to do so. When the timer completes, the process

communicates this fact back along another channel, before listening for when to start the

timer again.

5.3.5 LCD DlsplayTlme

This process contains an infinite (WHILE TRUE) loop. The process repeatedly listens on

several channels for the time that is required to be displayed on the LCD. When it

receives the time, it proceeds to send the required sequence of commands to the the

LCD äribbi* process to indicate the correct characters to output. The uD Di playTia.

process communicates with the um Da1ay process, inserting the correct delays between

the commands.

76

Results

5.3.6 DlgitaJClock

This process executes an infinite (WHILE raus) loop. The process continuously updates
running time, incrementing it every second. Every half a second, the process outputs the

current time to the r co Di playria . process, whilst also listening to channels from the

D. bouao Hour and D. bounc. Mia processes to indicate if the user is manually altering the
time (and adjusting it correspondingly).

5.3.7 DebounceHour and DebounceMin

These two processes both contain an infinite (wHrr. E Txus) loop. The processes perform
the same task, differing only by which user input button they sample and the channel they

use to communicate to the Digitalcloak process. The processes perform a simple
debouncing on the user input (connected from a push button) by indicating that the state is

a stable high input, if it has remained high for a specified period of time (i. e. a specific

number of clock cycles), otherwise the state is set as low.

5.3.8 Compiling to Hardware

The application was parsed by the compiler and the generated logic circuit contained over
104900 lines of EDIF (see CD: ex3). The logic circuit was then configured onto a Xilinx

Spartan-3E FPGA development board and run, a photo of the running hardware can be

see in Figure 39.

After correctly specifying the wiring between the FPGA and the LCD controller, this

circuit executed correctly the first time that it was run, again demonstrating the robustness

of the compiler.

77

Results

Figure 39: Example 3: Digital Clock, running on an FPGA development board

78

6 Future Work & Conclusion
The current implementation of the compiler has several obvious areas where further work
can be focused. These range from expanding the subset of the grammar that the compiler
supports, optimising the segments of logic used within the compiler, and adapting the
compiler to build asynchronous logic circuits. Although the compiler is a prototype
demonstrating a proof of concept, it shows the validity and viability of proving the

construction process of building logic circuits from a software specification. The compiler
can take OCCAM programs, from a limited subset of OCCAM, and compile them down
into hardware. This is achieved without the need to model or test the generated logic

circuits, as the process of generating the circuits has been proven to be correct.

By guaranteeing that all of the generated logic circuits produced by the compiler will
always behave as specified by the corresponding supplied software specification, the

extra state and complexity that is unavoidably introduced due to the conversion of the

software into fine grained parallel hardware, has effectively been isolated and removed.
Thus the process of converting a software specification into hardware does not increase

the difficulty or complexity that the end users would require for them to prove or verify
their software specification. Although this was the main focus for the project, which has

been successfully achieved, other benefits are also present, such as the ability to utilise
software design methodologies to simplify and speed up the process of building hardware

applications.

Appendix A Other Preliminary Work

A. 1 Occam Grammar Modifications

The work on the grammar involved two main areas, both of these in preparation for the

AST (abstract syntax tree) parser extensions. These were the expansion of the subset of
Occam grammar that the compiler supports, and modifications to the grammar to enable it

to be LALR1, which is a requirement for utilising SableCC [Gagnon, 1998].

A. 2 AST Transformer Extensions

With SableCC [Gagnon, 1998] being utilised to develop the parser and abstract syntax

tree (AST), the expanded grammar required the AST transformer to be expanded to

accommodate the new features. This enabled it to deal with the modified grammar and to

perform the circuit generation for the newly introduced grammar components. The

generated logic circuit is represented as an internal net-list structure that can be viewed
(see A. 3) and simulated (see A. 4), but also converted into a format (e. g. EDIF) suitable for

final output from the compiler to the Xilinx FPGA synthesis tools.

A. 3 Graphical Circuit Visualiser

To assist in the manual debugging of the generated logic circuits, I constructed a

visualiser that graphically depicts the internal logic circuit's net-list data structure that the

compiler generates. This is the data structure that is translated into the final format output

(e. g. EDIF) by the compiler.

The visualiser provides a simple layout with the components of the circuit stacked

vertically on the left hand of the screen, and the interconnections between them to their

right (see Figure 40). The tool enables the user to reorder the layout of the graphical

components (both the logic components and interconnections) manually or semi-

automatically with the assistance of two heuristic algorithms that I have developed. These

are described in section A. 3.1.

Appendix A: Other Preliminary Work

Q
-Q Leple Vhusqssr). -

END NOW 9umwe ymutalbn C131
In [Ine Column - C°enpäclý ý One Cduem - Crum 1. One Cdumn --u

ass7
occC. LnpiCDFFC

cna_o_a
occc. LooicTFFC

out8_e C
occc. LopicCCm6

;
_nod95099 occc. L09lCSum

S91

R

Q

4

x node5888 öccc. LopicProd

z nod95997
occc. Lo9lcProd

, _node5096
occc. LopicSum

7Lnode5095
occc. Lo9icProd

x_node5994
occc. LoOicProd f

0

C? 0

I

Figure 40 Screen Shot of the Graphical Circuit Visuallser

A3.1 Auto Layout Simplification

My main two heuristics attempt to simplify the graphical depiction of the circuit through

altering the order that the components are presented on the screen, each with a slightly

different preference. Both of them attempt to reduce the number of times the lines

interconnecting the components cross over each other, but the second algorithm also

utilises the information concerning which components are driving the signals propagated

along the interconnections.

Both of the algorithms I have developed are designed specifically for the graphical layout

used, and they both follow a similar format. First, they order the logic components,

followed by ordering the ports on those components, finally ordering the interconnecting

signals between the ports. It is this relative ordering that determines the positions that the

components are drawn onto the screen.

81

Appendix A: Other Preliminary Work

Aä. 1.1 Algorithm 1

Being a semi-automatic heuristic, the user must first select which is the starting logic

component that should be at the top of the list (an input to the circuit, e. g. the clock, is

usually a good place to start - see Figure 41).
O

-e Loefc Vlwalisor n- 'd
Nfe New 9emwe Simulation 0134 ---

1:: OneColumn -Comact ZÖne COMM- - h Corný j 3: One Column - Compact Al: SmuktlOn Dfeplay

occaLOOicIPAD ý

wn co 4
uft0. LU01C FC

X. node5075
occc. LO0ýc8um

1{_node5073
occc. LOpicProd

noLem7 4
occc. Lopiclmert

x_Oode5074
otct. LOpicProd

ep7_I
occc. LopicCemE

x_notls5010
ocec. Lopic3um

>Lrwaasoai
occc. LOpmProtl

X-noda5038
octc. LOpicProd

noLcln7 4
occc. LOOTUmsrt

I x, node5104
IL occc. LopaProd

-ok
11 0

i

D

ý
ý

Figure 41 Example output from the first tidying algorithm

E

f-I

The algorithm proceeds to build up the order of logic components. The method of

selecting the order of logic components is derived from examining the interconnecting

signals (see Figure 42). To start, an empty set of interconnecting signals and an empty list

of logic components are created. As each logic component is added to the end of the list

(a process initially started by adding the initial logic component the user selected), the set

of interconnecting signals is updated to include all the signals connected to the ports of

this logic component. The set is then ordered by the number of logic components that it

interconnects, but which are not yet contained within the new list. Any signals that do not

connect to at least one logic component that is not currently in the new list are removed

from the set. The first element in the set (if there is one), is selected, a logic component

not contained within the new list that the signal connects to is selected at random and is

added to the end of the new list (causing this list of processes to repeat). This continues

until the set of interconnecting signals is empty. When it is empty, if all of the logic

82

Appendix A: Other Preliminary Work

components are not contained within the new list, the algorithm selects one of the

remaining components at random and adds it to the end of the list (causing the list of

processes to repeat), otherwise the new list contains the new order of logic components to
draw to the screen.

User selects logic components to start algorithm on
SETUP

" Create an empty LIST for logic components
" Create an empty SET for interconnecting

signals

Add selected logic component to end of the LIST

ý
Add the interconnecting signals connected to the
selected logic component to the SET

ý
Order the SET ascending based on the number of
unique logic components they connect to, which
are not currently in the LIST

i
Remove any interconnecting signals form the
SET that do not connect to any logic components
that are not currently in the LIST

From the first interconnecting
signal in the SET, randomly select
a logic component that the signal
connects to which is not currently
contained in the LIST

The LIST contains the new order

of logic components

Figure 42 A graphical representation of how logic components are ordered for algorithm I

83

Appendix A: Other Preliminary Work

Table 2: Port ordering imposed by the Comparator for the tidying algorithms

Position of Portl in interconnecting signal
TOP

Compare the vertical length of
the interconnecting signals
connected to the ports

aý >

ý
ý 0

w 0

Porti > Port2

Porti < Port2

Compare the number
of ports each port
connects to

. ý.

y
Porti = Port
2

°+

6

Portl > Port2

(Port! > Port
2

ý >. Port! < Port
2

Bottom
Porti < Port2

Compare the vertical length of
the interconnecting signals
connected to the ports

N
+i

I

ý
I

8

Porti > Port2

Port i< Port2

Compare the number
of ports each port
connects to

+I

0 e
... w 0
ý 3
c

04

Portl > Port2

. 1.

Portl < Port2

Porti > Port
2

I 9
Port i< Port
2

A
Portl = Port
2

Other

Porti < Port
2

Porti >Port
2

Port i= Port
2

84

Appendix A: Other Preliminary Work

The next stage of the algorithm involves ordering the ports on each of the logic

components. This is achieved through utilising an existing modified merge sort [JavaDoc

1.5.0 Comparator] supplied with a custom built comparator (see Table 2). The comparator
is used in the sorting process to determine if or when it should swap the location of two

objects.

The last stage of the algorithm is sorting the order of the interconnecting signals. This is

done in a similar way to how ports were ordered with a custom Comparator (see Table 3),

examining both the vertical length of the signals and the number of ports that each signal

connects to.

Table 3: Signal ordering Imposed by the Comparator for the tidying algorithms

Compute result of ((Signal 1 vertical length) - (SignaI2 vertical length))

+ve -ve Zero

Signall signal l m pare the number of ports that each signal connects to
> Signal2 < Signal2 Si 1 num - (SignsI2 num)

+ve -ve Zero

Signall
> SignaI2

Signall
< Si alt

Signall
= SiRnal2

A. 3.1.2 Algorithm 2

The second heuristic (see Figure 43) performs in a similar manner to algorithm 1, the

difference being derived from the ordering of the logic components generated. As

previously stated, this algorithm attempts to incorporate information concerning which

components are driving the signals propagated along the interconnections. This is done by

having an alternative comparator to sort the logic components.

85

Appendix A: Other Preliminary Work

0 -K Lnple VI.. IMer }>. --

END tlew gemere 9nutlaDOn Or34
ý.
,

1:: Ono Column - Cnmpecf '. Z: One Column - Compa One CWOm - Competl 6:: SknuYlbn Dleploy

..:. -_-
tlotk ----------------------------
otttLOpItIPAD

rari counLO
occaLopicTFFC UK F

0 x ndde5000
occc. LOpicPrdd

)LnodB5008
oocc. Lop¢SUm

not_cfn7_1
occcLOplctmen

; _nodc5011 oCCC. LO01cProd

1LnodoSO13
occc. LOOtcSum

evp7 1
occc. LOpicCom6

%_notls5065
oece. LOplcProtl

7(. noee5666
occc. LopIC6um

Y9f1 COWI(_i
Ott[LopItTFFC

4
I

i

i

i

i

r__.

Figure 43 An example output from the second tidying algorithm

a'? 19 e

F' II

Iý

86

Appendix A: Other Preliminary Work

User selects logic components to start algorithm on
SETUP

" Create an empty LIST for logic components
" Create two empty sets for interconnecting

signals, A and B

Add selected logic component to end of the LIST
ý

Add the interconnecting signals connected to the
selected logic component to the sets.
Signals from the output/bi-direction ports get
added to set A.
Signals from the input/bi-direction ports get
added to set B.

ý
Order the sets ascending based on the number of
unique logic components they connect to, which
are not currently in the T. TCT

ý
Remove any interconnecting signals form the
sets that do not connect to any logic components
that are not currently in the LIST

From the first interconnecting
signal in the set, randomly select
a logic component that the signal
connects to which is not currently
contained in the LIST

II Select a random logic
component not currently
contained within the
LIST

Figure 44 A graphical representations how logic components are ordered for algorithm 2

87

Appendix A: Other Preliminary Work

The algorithm proceeds to build up the order of logic components. The method of
selecting the order of logic components is derived from examining the interconnecting

signals (see Figure 44). Two empty sets (A and B) of interconnecting signals and an
empty list of logic components are created. As a logic component is added to the end of
the list (a process initially started by adding the initial logic component that the user has

selected), the sets of interconnecting signals are updated to include the signals connected
to the ports of the logic component. If a port is an output or bi-directional port for a logic

component, then the signal connected will be added to set A. If a port is an input or bi-

directional port for a logic component, then the signal connected will be added to set B.
The sets are then ordered by the number of logic components that they interconnect, but

which are not yet contained within the new list. Any signals that do not connect to at least

one logic component that is not currently in the new list are removed from the sets. The

first element in the set A (if there is one), is selected, a logic component not contained

within the new list that the signal connects to is selected at random and is added to the

end of the new list (causing this list of process to repeat). If set A is empty, then the

process is performed for set B. This continues until both sets of interconnecting signals

are empty. When they are empty, if all of the logic components are not contained within
the new list, the algorithm selects one of the remaining components at random and adds it

to the end of the list (causing the list of processes to repeat), otherwise the new list

contains the order new order of logic components to draw to the screen.

The algorithm then continues to order the ports and then the interconnecting signals, as

covered in A. 3.1.1.

A. 4 Circuit Simulator

I have integrated a logic simulator with the visualiser (see A. 3), that enables instances of
the circuit to be run and tested. By providing a waveform for the input ports into the

circuit as a CSV (Comma Separated Value) file (see Figure 45), the simulator can

compute the results which are a set of waveforms for the circuit (see Figure 46).

88

Appendix A: Other Preliminary Work

ý
ij) gle Eck f0ew Insert Pgmat Icols Data 1COrrdow lido

Ll..
--; cl J . ý`i 4,3, A ýý-

iaid
- 10 -BIU HE BFýý ý%

Al .¢ IPAO clock

SQiI

I

- 'o. E- 21 At ', "_ . 1i) mox - VA

I : a8 _8 or or - ý! * - $- a¬J

I<

Figure 45 A CSV file (shown in Excel) representing input waveforms to a circuit

Q -<{ Logic Vlsusdser I--
ENO Now Remove Simulation C134

In One Column . Compact 2: one column - Compact 3t1 One Column -Compact 4: Simu Wbn msplay

IOCtc. LOgICDFFC III'

Dch1 d Ir
occcln IcTFFC
0 OR
otcc. LogicDFFC

Q lC_nuoe5000

-ý nn occc. LO icOFFC

oO>t_rlccüoqeI cD5001

_nn
o FFC

I ch].
LOtlir occc ICTFFC

Trv1L.
oCqiCOqnL° actc. TFFC C nn rnoLtllf

occc. LO Iclmerl
I ýnotlo5079
oaaLo icPmd
Ix notle5080
ottGLO aProtl
IrLnode5091

nnII oece. Lu ICSum
IPAD tllr
oca. Lo iCIPAD

O ntl Elt

occc. Iclrnetl
0t(, Jlooe5079 ýnnn
occc. LogicPmtl

I cin7
occcLO icComb
I expT O
qCCC. LU iCCOme

o1LnoOB60OO
occc. LOO4OFFC

1 not c1n7ý1

i

--. ý"ý-_dx

1J-f

ý

ý i..

o' d' 0

, ýý uu

Li
i

L-F

J-

n
1

I

I

Figure 46 Output waveform from a simulation

Due to the fact that a simulator simulates a single instance of the circuit, and does not

exploring all possible states it can get into, the method of simulation involves transmitting

values along the interconnecting signals only if they change. When a value gets

transmitted along a signal, this triggers any logic components connected to it to be

simulated. The result of a simulated logic component can (if a value has changed) cause a

transmission along an interconnecting signal resulting in the relevant logic components

being triggered and simulated. This process helps to minimise the need for computing

values and segments of the circuit that remain unchanged from one clock cycle to another.

89

Appendix A: Other Preliminary Work

The result of the simulator can be produced in various output formats. Apart from

producing a CSV file (similar to the file used to specify the input waveforms), a graphical

representation of the waveforms can be viewed (see Figure 46) or specific signals of the

simulation can be viewed using the graphical visualiser (see A. 3) with the high/low values

of signals being depicted as red or black (see Figure 40, Figure 41 and Figure 43).

90

Appendix B Logic Component CSP Models

for Preliminary Work
This appendix contains the CSP models of the logic components utilised for the

preliminary work covered in chapter 3.

B. 1 AND Gates

B. 1.1 AND Gate with 1-Input

PROC_ACTIVE_LIB_AND1 (o, i0) a
let

I- io? x -> o! x -> I
within I

B. 1.2 AND Gate with 2-Inputs

PROCACTTý LIB_AND2 (o, i0, il)
lei-

0 (a, b)
a1 and b1& oll -> SKIP
[)

a== 0 or b== 0& 0l0 -> SKIP
I=

i0? x -> il? y -> O(x, Y); I
[)

il? y -> i0? x -> O(x, y); I
within I

B. 1.3 AND Gate N-Inputs

AND gates that contain three or more inputs currently are generated by utilising a tree of
AND gates, an example of a three input AND gate can be seen in Figure 47.

Appendix B: Logic Component CSP Models for Preliminary Work

Figure 47: A pictorial example of a three input AND gate

The CSP for this three input AND gate example is shown below.

channel chan_active lib_and3 a {0,1}
channel chan_active_lib_and3_b {0,1}

PROC_ACTIVE_LIB`AND3(o, i0, ii, i2) -
let

hid alpha active_lib and3 -
(I chan_active_libiand3_a, chan_active_lib_and3 b ýj

Si -
PROC__ACTIVE LI8__AND1(chan__active_lib__and3_a, i0)

S2 -
PROC`ACTIVB_LIB_AND2(chan__active_lib__and3 b, ii, i2)

8-
PROC_ACTIVE_LIB_AND2 (o,

chan_active lib and3 a,
than active lib and3 b)

within

(S1 ICI S2) (I hid alpha_active lib, and3 11 S
\ hid alpha_active_libband3

B. 2 D-Type Flip-Flop

PROC_ACTIVB_LIB_FDC (d, q, C)
let

8 (Y)
d? x -> qty -> c? l -> 8(x)
II
qty -> d? x -> c? 1 -> S(x)

within S(O)

B. 3 GND

PROC__ACTIVE LIB_GND(ground) -
let

I- groundl0 -> I
within I

s

92

Appendix B: Logic Component CSP Models for Preliminary Work

B. 4 Inverter

PROC_ACTIVE LIB_INV(i, o) _
1et

I=i? x -> o! (1-x) -> I
within I

B. 5 OR Gates

B. 5.1 OR Gate with 1-Input

PROC`ACTIVE LIB_OR1 (O, i0)
let

I. i0? x -> otx -> I
within I

B. 5.2 OR Gate with 2-Inputs

PROC^ACTIý LIß_OR2(o, i0, il) _
let

O(a, b)
a == 1 or b==1oll SKIP
(l

a0 and b == 0 o! 0 -> SKIP
I=

i0? x -> il? y -> O(x, Y); I
(l

il? y -> iO? x -> O(x, Y); I
within I

B. 5.3 OR Gate with N-Inputs

OR gates that contain three or more inputs currently are generated by utilising a tree of

three OR gates in a manner that is similar to that covered in section B. 1.3. An example of

a three input OR gate can be seen in Figure 48.

93

Appendix B: Logic Component CSP Models for Preliminary Work

3 Input OR Gate

N OR
01

OR

OR

Figure 48: A pictorial example of a three input OR gate

The CSP for a three input OR gate is show below.

channel chan_active
_libor3_a

(0,1}

channel chan_active_lib__or3_b (0,1)

PROC_ACTIVE_LIB`OR3(o, i0, il, i2) _
let

hid_alpha_active_lib or3 =
(I chan_active_lib_or3_a, chan_active_lib_or3_b

Si =
PROC_ACTIVE_LIB_ORl (chan_active_lib_or3_a, 10)

S2 =
PROC_ACTIVE_LIB_OR2(chan_active_lib_or3_b, ii, i2)

S=
PROC_ACTIVE_LIB_OR2 (o,

than active lib_or3_a,
than

_act
ive_1 ib_or3_b)

within

(S1 ýýý S2) [I hid_alpha_active_lib_or3 1] S
hid alpha_active lib_or3

B. 6 VCC

PROC_ACTIVE_LIB VCC(vcc)
let

I- vccli -> I
within I

B. 7 XOR Gates

B. 7.1 XOR Gate with 1-Input

PROC_ACTIVE_LIB-XOR1(o, i0)
let

I= i0? x -> olx -> I

94

Appendix B: Logic Component CSP Models for Preliminary Work

within I

B. 7.2 XOR Gate with 2-Inputs

PROC_ACTIVE_LIB_XOR2(o, i0, ii)
let

O (a, b)
a I. b&o! 1 -> SKIP
[l

a == b& 010 -> SKIP
I

y); I

y);

i0? x -> il? y -> O(x,
[l
il? y -> io? x -> O(x,

within I

S

I

95

Appendix C Logic Component CSP Models

for Main Work
The CSP models covered in this appendix are used to create the automatically generated
CSP representation of the logic net list used in the proof covered in chapter 4. The

processes defined here are instantiated (as shown in Figure 17 page 8 and Figure 19 page
8) and then run in parallel, thus mimicking the generated logic circuits with a one-to-one

mapping.

C. 1 Developing the Models

As stated in section 3.4, the reasons for adapting the models used in the work described in

chapter 3, is covered in section 4.4.2. This section will provide an example of how several

of the key points affect the design and construction of the models.
channel dff_out, dff_in (0,1

channel clock

DFF(state) -
dff outlstate -> dff in? next -> clock -> DFF (next)
[] __
dff in? next -> dff outlstate -> clock -> DFF (next)

DFLIPFLOP m DFF (0)

Figure 49: CSP Definition eta D-Type Flip-Flop from [Peel & Wong, 2004)

Figure 49 is a description of a d-type flip-flop, as defined in [Peel & Wong, 2004]. Figure

50 is the same model, packaged such that the supplied arguments are the channels that the

process utilises. This packaging is also utilised in the models that are defined in this

appendix, the following examples will demonstrate how the defined models may be

constructed through incremental changes.
PROC_ACTIVB_LIB_FDC (d, q, c) _

1et
S (Y) '

d? x -> q! y -> c? l -> S(x)
[]

q! y -> d? x -> c? 1 -> S(x)
within S(0)

Figure 30: CSP Definition of a D-Type Flip-Flop from Appendix B, used In Chapter 3

Appendix C: Logic Component CSP Models for Main Work

With the definition of the flip-flop covered in Figure 50 not being able to function

properly if the channels supplied for its input and output (d and q) are the same (e. g. the
flip-flop is connected to itself, or after the reset is added to the model, the same channel is
fed to both the reset and the d input). To fix this, there must be multiple internal processes
running in alphabetised parallel, enabling them to syncronise if they share common
events, but run interleaved when they do not. To achieve this correctly, an extra channels
must be introduced, thus enabling the processes to interact and communicate. The extra
events introduced are not and should not be identifiable outside the process representing
the flip-flop, thus the newly introduced events are hidden. The let-within block enables
the processes to be clustered logically together, as they represent newly created sub-

processes of the flipflop, but as the let-within blocks within FDR2 will not allow one to
define channels inside them, the introduced channels must be declared globally. These

modifications can be seen in Figure 51.
channel internal_atate 0,1

PROC__ACTIVE_LIB_FDC (d, q, c)
let

-- Run the Internal processes In parallel
FDC =

FDC_D
[(I d, c, internal_state q, c, internal_state

FDC_Q(0)
\ {I internal state

-- Process the Input
FDC D=d? x -> c? 1 -> internal_atatelx -> FDC_D
-- Process the output

FDC_Q(x) = qlx -> c? l -> internal_state? y -> FDC Q(y)
within FDC

11 1

Figure 51: A Modified CSP Definition of a D-Type Flip-Flop - Version 1

As the newly introduced events that enable the internal processes to communicate are
being hidden, furthermore, adding an extra input for the reset functionality produces a

model that behaves as that described in section C. 3.

Although the models covered in this appendix were initially based on those defined in

[Peel & Wong, 20041, they were not infect developed through incremental changes (as

described above). The models were developed in a holistic manner, taking into

consideration all the factors and concerns identified through an examination of the initial

model, and then recreating the models in a single step to solve, tackle and deal with them.

97

Appendix C: Logic Component CSP Models for Main Work

C. 2 AND

-- Declaration of a channel used internally by the COD Specification FDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal_state : {0,1}

-- Instantiations of an AND MTN calls this process and provides channels used
-- for its inputs and outputs as arguments. 'out' is a single channel to output
-- to. ýia liat, IN a lilt of chaaaal"
AND_GATE(out, in-list)

let

-- Check if thim AMID gate ham
A=

length(in_liet)
11

ss 0 &B

to input from.

any inputs.

length(in_liet) !-0
-- Specification of an
B out !0 -> B
-- Chock if the output
-- specification if it
C-

&C
AND gat* with no inputs, it bahavas as GND.

of the AND gate feeds one of the Inputs, deadlock the
does.

inter({out}, set(in list)
(l
inter({out}, set(in list)

-- AMW gate epaaifioation.
D

let

f __ {out} & STOP

{} &D

-- Manage the inputs of the gate.
DA -

let

-- 1& DAA(head(x))

length (x) >1&
DAA(head(x))
[union(

inter({head(x)},
{1 out j}
I]

DAB(tail(x))

DAS (x) "
length(x)
11

-- Run the inputs for all the input pins in parallel.

DAA (x) .
x? y -> internal-stately

-- 'x' beoomea the input channel to manag..
Inputting process managing a single pin.

within DAB(in_list)
-- Manage the output of the gate.
DB

let
DBA

internal_atate? l -> DBC
[]
internal state? O -> DBB

DBB --
out I0 -> DBA
II

internal-state?
- -> DBB

DBC

out I1 -> DBA
[]
internal_state? l -> DBC
II

internal state? 0 -> DBB
within DBA

-> out? -> DAA(x)

set(tail(x))),

98

Appendix C: Logic Component CSP Models for Main Work

-- Connect the inputs and outputs together.
DC =

-- The ordering that the *Internal
_state, events occur does not

-- matter, to long as they all occur. This is guaranteed by the
-- structure of the internal processes running in parallel.
(DA

[I {I internal_state, out
DB
\ ((internal_state

within DC
within A

C. 3 D-Type Flip-Flop

-- Declaration of a channel used Internally by the CSP Specification FDR will
not allow you to declare channels inside a let-within block, all channels

-- must be globally defined.
channel internal state : (0,1)
channel internal reset_state : (0,1)

-- Instantiations of aD Typs FLIP FLOP calls this process and provides channels
-- used for its inputs and outputs as arguments. 'q_out, is a single channel to
-- output to. 'd in' and 'reset' are single channels to input from. 'clock' is

an event representing a low-to-high clock transition.
D

-TYPE
FLIP PLOP(clock, reset, d_in, q_out)

let

-- Connect the inputs and outputs together.
A=

-- The ordering that the 'internal-state' and 'internal reset state'
-- events occur does not matter, so long as it occurs. This is guaranteed
-- by the structure of the internal processes running in parallel. The

initial default output value for this object is '0', hence `C(0)'.
(B

() union({) clock,
internal state,
internal reset state

III

inter([I clout J}, {J din, reset ý})
II

C(0)
\ {I internal-state, internal-reset-state

Manage the Inputs of the gate.
B

let

-- Run the Inputs in parallel.
BA

BB
[I union((clock 1}, inter({) d_in ý}, {l reset J})) ý)
BC

-- Reset Input
BB - reset ?z -> internal_reset_state Iz -> clock -> BB

--D Input
BC - d_in ?z -> internal_ state !z -> clock -> BC

within BA

-- Manage the output of the gate. %x' is the current state to output.
C (x)

q_out Ix ->
internal-reset-state ?1 -> internal state ?_ -> clock -> C(O)
[I
internal_reset_state ?0 -> internal state ?z -> clock -> C(z)

within A

99

Appendix C: Logic Component CSP Models for Main Work

C. 4 GND

-- Xnstantiations of a OW calls this process and provides the output channel
-- for its output as an argument. out, is a single channel to output to.
GND(out) = out 10 -> GND(out)

C. 5 Inverter (NOT)

-- Instantiations of an Inverter (IY0T G1Ta) calls this process and provides
-- channels used for its input and output as arguments. out, is a single
-- channel to output to. 'in' is a single channel to input fron.

NOT GATE(out, in) -
let

-- Check if the output of the NOT gate feeds the input, deadlock the
-- specification if it does.

A-

out -- in & STOP
11
out I. in &B

-- NOT gate specification.
B- in ?z -> out I (1-z) -> B

within A

C. 6 NAND

-- Declaration of a channel used internally by the CSP specification PDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal state : (0,1)

-- Instantiations of an NAHD G/&TE calls this process and provides channels used
-- for its inputs and outputs as arguments. 'out' is a single channel to output
-- to. 'in list' is a list of channels to input from.

NAND_GATS(out, in-list) -
let

-- Check if this NAND gate has any inputs.
A-

length(inlist) -- 0&B
(7
length(in list) 1- 0&C

-- Specification of a JMW gate with no inputs, it behaves as VCC.
B Out 11 -> B

-- Check if the output of the JUMV gate feeds one of the inputs, deadlock
-- the specification if it does.

c-
inter({out}, aet(in_liat)
[1
inter({out}, aet(in_list)

-- NAND pate apecL Haation.
D=

let

{out} & STOP

{j &D

-- Manage the inputs of the gate.
DA -

let

-- Inputting process managing a single pia.
-- `x' becomes the input channel to manage.

DAA(x) -
x? y -> internal stately -> out? -> DAA(x)

-- Run the inputs for all the input pins in parallel.
DAB (x) -

length(x) -- 1& DAA(head(x))

100

Appendix C: Logic Component CSP Models for Main Work

[]
length(x) >1&

DAA(head(x))
(union(

inter({head(x)j, set(tail(x))
out

DAB(tail (x))
}

within DAB(in_list)
-- manage the output of the gate.

DB
let

DBA =
internal_state? 1 -> DEC
[]

internal state? O -> DBB
DBB --

out !1 -> DBA
[]

internal_state?
_ -> DBB

DBC

out !0 -> DEA
[l
internal_state? l -> DBC
[l
internal state? O DBB

within DBA
-- Connect the Inputs and outputs together.
DC =

-- The ordering that the finternaI_state# events occur does not
-- matter, so long as they all occur. This Is guaranteed by the
-- structure of the internal processes running in parallel.
(DA

[I (I internal_state, out I} ý]
DB
\ (I internal-state

within DC
within A

C. 7 NOR

-- Declaration of a channel used internally by the CSP specification FDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal_state : {0,1}

-- Instantiations of an NOR GATE calls this process and provides channels used
-- for its inputs and outputs as arguments. out, is a single channel to output
-- to. 'in list' is a list of channels to input from.

NOR GATE(out, in-list) -
let

-- Check if this NOR gate has any inputs.
A=

length(in list) -- 0&B
[]
length(in_list) !-0&C

-- Specification of an NOR gate with no inputs, it behaves as GRID.
B- out !0 -> B

-- Check if the output of the NOR gate feeds one of the inputs, deadlock the
-- specification if it does.
C=

inter({out}, set(in list)) {out} & STOP
[]
inter({out}, set(in_list)) -- {} &D

101

Appendix C: Logic Component CSP Models for Main Work

-- NOR gate specification.
Da

let
-- Manage the inputs of the gate.
DA

let

-- Inputting process managing a single pin.
-- `x' becomes the input channel to manage.
DAA (x)

x? y -> internal_etate! y -> out? _ -> DAA(x)
-- Run the inputs for all the input pins in parallel.
DAB(x)

length(x) _. 1& DAA(head(x))
II
length(x) >1&

DAA (head (x))
[J union(

inter({head(x)}, set(tail(x))
out

I]
DAB(taillx))

within DAB(in_liat)
-- Madge the output of the gate.

DB
let

DBA
internal_state? 1 -> DBB
[]

internal state? O -> DBC
DBB =

out !0 -> DBA
[]

internal state?
_ -> DBB

DBC =
out !1 -> DBA
[]
internal_state? 1 -> DBB
[]
internal_state? O -> DBC

within DBA
-- Connect the inputs and outputs together.
DC i

-- The ordering that the 'Internal state, events occur does not

-- natter, so long as they all occur. This is guaranteed by the
structure of the internal processes running in parallel-

(DA

[I fI internal-state, out
DB

\ {I internal-state
within DC

within A

C. 8 OR

-- Declaration of a channel used internally by the CSP specification DAR will
-- not allow you to declare channels inside a let-within block, all channels

-- must be globally defined.
channel internal state : (0,1)

-- Instantiations of an OR GAra calls this process and provides channels used
-- for its inputs and outputs as arguments. 'out' is a single channel to output
-- to. 'In list' is a list of channels to input from.
OR_GATE(out, in-list)

let

102

Appendix C: Logic Component CSP Models for Main Work

-- Check if this OR gate has any inputs.
A-

length(in_ list) -- 0&B
[]
length(in list) l= 0&C

-- Specification of an OR gate with no inputs, it behaves as 0111D.
out t0 -> B

Check if the output of the OR gate f. ede one of the inputs, deadlock the
-- specification if it does.
C-

inter({out}, set(in_list)) {out} & STOP
[]
inter((out}, set(in list)) {} &D

-- OR gate specification.
D=

let

-- Manage the inputs of the gate.
DA =

let

-- Inputting process managing a single pin.
-- 'x' becomes the input channel to manage.

DAA(x) -
x? y -> internal stately -> out?

_ -> DAA(x)
-- Run the inputs for all the input pins in parallel.
DAB (x) _

length(x) -- 1& DAA(head(x))
II
length(x) >i&

(DAA(head(x))
union(

inter({head(x)}, aet(tail(x))
out I}

I]
DAB (tail W

within DAS(in_list)
-- llfanage the output of the gate.
DB -

let
DBA -

internal_state? 1 -> DBB
[]
internal_state? 0 -> DBC

DBB -
out l1 -> DBA
[]
internal_state?

_ -> DBB
DBC -

out l0 -> DBA
[]
internal_state? 1 -> DBB
[]

internal_atate? 0 -> DBC
within DBA

-- Connect the inputs and outputs together.
DC -

-- The ordering that the 'Internal
_state, events occur does not

-- matter, to long as they all occur. This is guaranteed by the
-- structure of the internal processes running in Parallel-
(DA

[I {I internal state, out I} I]
DB
\ {I internal_etate I}

within DC
within A

103

Appendix C. Logic Component CSP Models for Main Work

C. 9 T-Type Flip-Flop

-- Declaration of a channel used internally by the CSP specification PDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal state : (0,11
channel internal_reaet_atate : (0,1}

-- Instantiations of ar TYPI FLIP FLOP calls this process and provides channels
-- used for its inputs and outputs as arguments. 'a_ out, is a single channel to
-- output to. It in' and 'reset, are single channels to Input from. `clock' is
-- an event representing a low-to-high clock transition.

T TYPE_FLIP_FLOP(clock, reset, t_in, clout)
let

-- Connect the inputs and outputs together.
A

-- The ordering that the 'internal state' and 'internal_resetstate'
-- events occur does not matter, to long as it occurs. This is guaranteed
-- by the structure of the internal processes running in parallel. The
-- initial default output value for this object is '0', hence 'C(O)'.
(B

[) union({I clock,
internal state,
internal-reset-state

inter({I clout I}, {) t_in, reset I})

I)
c(0)
\ {I internal state, internal reset state

-- xanage the input. of the gate.
B"

let

-- Run the Input. In parallel.
BA -

(BB

i}

(I union({j clock}, inter({I din I}. {1 reset })) j]
BC

-- Reset Input
BB - reset ?z -> internal-reset-state !z -> clock -> BB

-- T input
BC t_in ?z -> internal_ state !z -> clock -> BC

within BA
-- Manage the output of the gets. 'x" is the current state to output.
C(x) -

q_out !x ->
internal_reset_state ?1 -> internal_state ?_ -> clock -> C(O)
[l
internal-reset-state ?0 ->

internal_state ?1 -> clock -> C(1-x)
(]
internal-state ?0 -> clock -> C(x)

within A

C. 10 vcc

-- Znstantiationa of a VCC calls thin process and provides the output channel

-- for its output as an argument. out, is a single chann01 to output to.

VCC(out) - out 11 -> VCC(out)

104

Appendix C: Logic Component CSP Models for Main Work

C. 11 XOR

-- Declaration of a channel used internally by the CSP specification PDR will
-- not allow you to declare channels inside a let-within block, all channels
-- must be globally defined.
channel internal-state : {0,11

-- Instantiations of an ZOR OATI calls this process and provides channels used
-- for its inputs and outputs as arguments. out, is a single channel to output
-- to. 'in list' is a list of channels to input from.
XOR_GATE(out, in-list) -

let
-- Check if this XOR gate has any inputs.
A-

length(inlist) _= 0&B
[1
length(in list) l- 0&C

-- Specification of an XOR gate with no inputs, it behaves as ORD.
B= out 10 -> B

-- Check if the output of the YOR gate feeds one of the inputs, deadlock the
-- specification if it does.
C=

inter({out}, set(in_liat)) {out} & STOP
11

inter({out}, set(in_list)) __ {} &D
-- XOR gate specification.

D-
let

-- Manage the inputs of the gate.
DA -

let

-- Inputting process managing a single pin.

-" 's' becomes the input channel to manage.
DAA (x) -

x? y -> internal-stately -> out? _ -> DAA(x)
-- Run the inputs for all the input pins in parallel.
DAB(x) -

length(x) -- 1& DAA(head(x))
[1

length(x) >1&
DAA(head(x))

[I union(
inter((head(x)}, set(tail(x))

out I}
)i1

DAB(tail(x))

within DAB(in_list)
-- Manage the output of the gate.

DB -
let

DBA -
out !0 -> DBA
C]
internal_atate? 1 -> DBC
C]

internal state? 0 -> DBA
DBB =

out !0 -> DBA
C]
internal-state?

-
DBB

DBC -
out I1 -> DBA
C]
internal_atate? 1 -> DBB
C]

105

Appendix C: Logic Component CSP Models for Main Work

internal_etate? O -> DBC
within DBA

-- Connect the inputs and outputs together.
DC

-- The ordering that the 'Internal
_state'

events occur does not
-- matter, so long as they all occur. We is guaranteed by the

-- structure of the internal processes running in parallel.
(DA

[I fl internal_state, out I} I]
DB
\ (I internal state

within DC
within A

106

Appendix D Single Type Component

Generic Specification Model Example
This appendix explains the CSP models required for a generic super-type component,
along with the assertions that need to be checked to link the models to each other (see
Figure 52). The models covered in this appendix describe in various levels of abstraction,
the behaviours that an implementable OCCAM component (which is a sub type of this

generic type) has to conform within (as covered in chapter 4), along with specifications
dictating the correct driving behaviours that a sub component may have to deal with.

Appendix D: Single Type Component Generic Specification Model Example

1 -ºI Process for annotating outer level (D. 1.5)

OCCAM Supertype Model with
annotations hidden

N-----ý

Equivalence (D. 2.12)

Correct Hardware
Specification (D. 1.1)

Deadlock Check (DI. 1)

Refinement (D. 2.2)

Hardware specification
deadlocks after incorrect
input (D. 1.2)

ýi

ý

le

0

it Equivalence
(D. 2.5)

Refinement
2.3)

Annotated model
(D. 1.1 lID. 1.5)

hardware

I Signals
hidden

Annotated
model with

Equivalence
ß(D. 2.12)

Hardware specification deadlocks
after incorrect input, with inputs
limited (D. 1.211D. 1.3)

N-1

J

rI

Process to limit correct
inputs (D. 1.3)

r

Annotated low level
behaviour with inputs
t; n� fM m1 AM 1 zi

Deadlock Check (D. 2.4)

ý

Deadlock Check (D. 2.8)

Refinement (D. 2.7)

Annotated low level behaviour,
deadlocks after incorrect input
(D. 1.4)

r 10 Clock cycle generic annotation
specification (D. 1.6)

d

ý

\1

Hardware
specification
with inputs

limited
(D. 1.111D. 1.3)

Annotated low
level behaviour
with annotations

hidden

r--ýI

4

t ock Check (D. 2.10)

N

N--,

Trace Equivelance (D. 2.11)

Software component generic FHiding subset of annotations relating to clock
specificaiton (D. 4.1.1) cycle aspects, it behaves similarly to expected

model (D. 4.1.2)

Figure 52: Overview of the relationship between the numerous models of an OCCAM supertype

Annotated low level
behaviour with low

level behaviour hidden

Behaviour similar
to expected model
(D. 2.13)

J

Equivalence
(D. 2.6)

108

Appendix D: Single Type Component Generic Specification Model Example

D. 1 Models & Specifications

The `internalChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. `I- 1') to enable `chase' compression to be applied if

desired. The ̀ internalChoice' event must be hidden for the specifications to be valid, but

if `chase' compression has been chosen, the event should only be hidden after ̀ chase' has

been applied, otherwise the specification becomes invalid.

D. 1.1 GenSpec 1: Valid Low Level Behaviour

This model specifies all the valid and allowable low level behaviour of this type of super
type component. The purpose is to describe the interface boundary behaviours, thus

enabling implemented components to refinement check against it proving their

behaviours are within the requirements for it to be a sub-type of this super-type.

PROC_PROCESS_DESIRED_GENERIC_SPEC(clock, reset, start, finish)
let

A
start? x -> reset? y -> C(x, y)
[1

reset? y -> start? x -> C(x, y)
B

start? O -> reset? y -> D(y)
[1

reset? y -> start? O -> D(y)
C(x, y)

y1& clock? l -> finishlO -> A
[]

y as 0&

x == 0& clock? 1 -> finishl0 -> A
[]
x1& clock? 1 ->

internalChoice -> finishll -> A

[] -- I-1
internalChoice -> finishlO -> B

D (Y)
y1& clock? 1 -> finiahl0 -> A
[]

y == 0& clock? 1
internalChoice -> finiahll -> A
t] -- I-I
internalChoice -> finiahl0 -> B

within finiahl0 -> A

Figure 53: Low Level Generic Control Flow Specification

This specification (see Figure 53) will only accept correct input driving signals, and will

return valid output result signals. Internal choice is utilised to enable it to specify all the

possible valid refinements.

109

Appendix D: Single Type Component Generic Specification Model Example

D. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 54) is based on the one covered in section D. 1.1, but with the

altered fact that it also accepts invalid driving input signals to be submitted to it. These
invalid input driving signals are followed by an explicitly defined `STOP', that will

explicitly deadlock the model should it ever be reached. Similar to the specification in

section D. 1.1, the returned output signals will be all possible valid permutations allowed
(internal choice is utilised to create those permutations, so long as it is driven correctly).

The reason why this model will accept invalid driving signals is to enable the model of

any component connected to it the opportunity to provide any driving signals it may

choose, this process will not limit or remove the possibility for the other component

models to provide invalid signals to this one as an option when they are run in

alphabetised parallel. The purpose of this is to enable possibility to check that if this

specification is used as an internal component, so long as the outer component is driven

correctly, this component will be driven correctly.

110

Appendix D: Single Type Component Generic Specification Model Example

PROC_PROCESS_GENERIC SPEC (clock,
let

A
start? x -> reset? y -> C(x,
(]

reset? y -> start? x -> C(x,
B

start? 1 -> STOP

reset, start, finish)

Y)

Y)

[]
start? O -> reset? y -> D(y)
[]
reset? y ->

start? O -> D(y)
[]
start? 1 -> STOP

C(x, y) _
y -- 1& clock? 1 -> finishlO -> A
H

Y0&
x0& clock? 1 -> finiehl0 -> A
[I
x1& clock? 1 ->

internalChoice -> finiahll -> A

[I--i-1 internalChoice -> finiahl0 -> B

D(y) _

y1& clock? 1 -> finishlO -> A
[I

y == 0& clock? 1 ->
internalChoice -> finishll -> A
[I -- I-I

internalChoice -> finishl0 -> B

within finishlO -> A

Figure 54: Low Level Generic Control Flow Specification with Explicit Deadlocking

D. 1.3 GenSpec 3: Correct Component Driving

This CSP model is used to limit a process so that it can only accept possible valid input

signals, this is to enable implemented sub-type components to have the outer layer of their

logic correctly driven when performing the checks and proofs. The aim for this is to

check an implemented component holds true to the assumption that so long as it is driven

correctly, it will correctly drive any internal components.

111

Appendix D: Single Type Component Generic Specification Model Example

PROC PROCESS_CONTROLL(clock, reset, start, finish)
let

A=

start? x -> reset? y -> D(x, y)
(]

reset? y -> start? x -> D(x, y)
B=

start? O -> reset? y -> E(y)
[]

reset? y -> start? O -> E(y)
C=

clock? 1 ->
finish! O -> B
(l

finishil -> A

D (x, y) .
y1& clock? 1 -> finishl0 -> A
[)

y == 0&
x -- 0& clock? 1 -> finish10 -> A
11

X =ý 1&C

E(Y) _
y == 1& clock? l -> finishlO -> A
(]

y== 0&C
within finishlO -> A

Figure 55: Generic Control Flow Specification - Correct Driving Limiter

D. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit

Deadlocking

This CSP model is the one covered in section D. 1.2, but with extra events added to
describe conceptually what is occurring. The aim of this is to enable a link between a low

level hardware model and a higher level conceptual meaning of the function the hardware

is performing. The added ̀ id' parameter added to the process is to provide a method to
distinguish between different instances of this process. The annotation events depicting

the states that are entered into from how this component is driven can only be specified

after the event has occurred, where as the output signals are controlled by this component

and so the corresponding annotation events can be performed before outputting the

signals. The reason why renaming can not be used to obtain a higher level conceptual

model of what is occurring, thus the required use of extra events depicting the

annotations, is because the same signal states can mean different things depending on the

state of the system (e. g. a start signal high state ̀ start? 1' can mean that this component
has been triggered, or that this component is being driven incorrectly and an error has

occurred).

112

Appendix D: Single Type Component Generic Specification Model Example

channel chan_contro11F1owAnnotatedSpec 1,21. {O, i
PROC_PROCESS ANNOTATED_SPEC(clock, reset, start, finish, id) _

let
A

start? x -> reset? y -> C(x, y)
(]

reset? y -> start? x -> C(x, y)
Ba

start? l -> annotation. ERROR. id -> STOP
(]
start? O -> reset? y -> D(y)
[]
reset? y ->

start? O -> D(y)
[]

start? l -> annotation. ERROR. id -> STOP

C(x, y)
y -- 1& annotation. RESET. id -> clock? l -> finiahl0 -> A
Il
Y == 0&

(x
[]

0& annotation. IDLE. id -> clock? 1 -> finishlO -> A

x1& annotation. START. id -> clock? 1 ->
internalchoice -> annotation. FINISH. id -> finishll -> A
[l -- J-J

internalchoice -> annotation. NOTFINISHED. id -> finishl0 -> B

)
D(y) =

Y== 1 & annotation. RESET. id -> clock? 1 -> finiah! O -> A
[]

y =c 0& clock? 1 ->
internalChoice -> annotation. FINISH. id -> finiahll -> A

[] -- 1-1
internalChoice -> annotation. NOTFINISHED. id -> finiahl0 -> B

within finishl0 -> A

Figure 56: Annotated Generic Control Flow Specification with Explicit Deadlocking

D. 1.5 GenSpec 5: Annotating the Outer Layer

This CSP model is used to annotate the outer layer of an implemented sub-type of this

component. The process allows correct input and output signals to be able to annotate and

describe that an error has occurred. No internal choice is used, as this should not restrict

or control a process, but only annotate what is occurring.

113

Appendix D: Single Type Component Generic Specification Model Example

PROC PROCESS ANNOTATE OOTER(clock, reset, start, finish)
let

A=
start? x -> reset? y -> C(x, y)
[l
reset? y -> start? x -> C(x, y)

B=
start? 1 -> annotation. ERROR. O -> STOP
(]

start? O -> reset? y -> D(y)
[]
reset? y ->

start? O -> D(y)
[]

start? 1 -> annotation. ERROR. O -> STOP

C(x, y)
y == 1& annotation. RESET. O -> clock? l ->

finishlO -> A
[]
finishli -> annotation. ERROR. O -> STOP

[)
Y== 0&

x0& annotation. IDLE. O -> clock? l ->
(finiah! 0 -> A

[l
finiahll -> annotation. ERROR. O -> STOP

[]
x1& annotation. START. O -> clock7l ->

finiehll -> annotation. FINISH. O -> A
(]

finiahl0 -> annotation. NOTFINISHED. O -> B

D(y)
y1& annotation. RESET. O -> clock? 1 ->

finishl0 -> A
[l
finishll -> annotation. ERROR. O -> STOP

[]
y == 0& clock? 1 ->

finiahll -> annotation. FINISH. O -> A
[]

finishlO -> annotation. NOTFINISHED. 0 -> B

within finish! O -> A

Figure 57: Generic Control Flow Annotate Outer Layer

D. 1.6 GenSpec 6: Clock Cycle Higher Generic Specification

This CSP model is an annotation only clock cycle based higher conceptual specification.
It is used as a comparison for the extracted annotations from the annotated low level

hardware models. The model is sufficiently small so that it is unlikely that `chase'

compression should be needed to be applied, which is why internal choice (i. e. 'I -I ') is

used instead of using an extra event to simulate internal choice.

114

Appendix D: Single Type Component Generic Specification Model Example

PROC_PROCESS HIGHER OüTER SPEC(id)
let

A

annotation. RESET. id -> A
[l
annotation. START. id -> B
[]
annotation. IDLE. id -> A

$a

annotation. NOTFINISHED. id -> C

i-i annotation. FINISH. id -> A
c.

annotation. RESET. id -> A
[7

annotation. NOTFINISHED. id -> C

1~i
annotation. FINISH. id -> A

within A

Figure 58: Generic Control Flow Annotation Specification

D. 2 Assertions: Linking the Models Together

To ensure consistency between all the models for a generic component, several assertions
have to be proven. The consistency between the models is required because the proof of

an implemented component can utilise several of these specifications.

D. 2.1 GenSpec Assertion 1: Initial Deadlock Check

This initial deadlock-free check (see Figure 59) of GenSpec I(see section D. 1.1) is to

provide a base comparison for future deadlock-free checking and trace refinement.

-- ahaaaal d. alarations
channel internalChoice
channel chan0 : (1}

channel chant, chant, chan3 : (0, i}

-- Create an instance of the model to check
-- The alpha PROC4 contains the low level channels used by this instance
alpha

_PROC4 - {I chanO, chant, chant, chan3 (}
PROC4 - PROC_PROCESS_DESIRED_GENERIC SPEC(chan0, chant, chant, chan3)

-- Hide the internalChoice event to ensure that PROC4 has internal choice
-- performing correctly if needed.

GEN_SPEC1 -(PROC4 \ {internalChoice}

-- Dadlock-free check the expected correct generic ca onent
assert GEN SPEC1 : [deadlock free [F]7

Figure 59: Example of GenSpec Assertion 1 for Controll Flow Process

115

Appendix D: Single Type Component Generic Specification Model Example

D. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour

This assertion (see Figure 60) demonstrates that GenSpec 2 (see section D. 1.2) contains
all the behaviour dictated by GenSpec 1 (see section D. I. 1), although this assertion allows
GenSpec 2 to provide extra behaviours.

-- channel declarations
channel internalChoice
channel chan0 : {1}
channel chani, chant, chan3 : {0,1}

-- Create an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes
alpha_PROC3 - {I chan0, chant, chant, chan3 1}
PROC3 = PROC_PROCESS_GENERIC SPEC(chanO, chant, chant, chan3)

alpha_PROC4 - {I chanO, chanl, chan2, chan3 11
PROC4 = PROC_PROCESS_DESIRED_GENERIC_SPEC(chanO, chant, chan2, chan3)

-- Side the internalChoice event to ensure that processes has internal choice
-- performing correctly if needed.

GEN SPEC1 =(PROC4 \ {internalChoice})
GEN SPEC2 =(PROC3 \ {internalchoice})

-- Check GenSpec 2 contalne the behaviour of GenBpec 1
assert GEN_SPEC2 [T- GEN_SPEC1

Figure 60: Example of GenSpec Assertion 2 for Control Flow Process

D. 2.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2

This assertion (see Figure 61) demonstrates that the GenSpec 3 controlling specification
(see section D. 1.3) does not introduce any new behaviour to the specifications it is being

run in parallel with. This still leaves the possibility of it limiting the events that can occur,

but does not guarantee any properties regarding this.

116

Appendix D: Single Type Component Generic Specification Model Example

-- channel declarations
channel internalChoice
channel chanO : {1}
channel chant, chant, chan3 : {0,1}

-- Create an instance of the models to aback
rho alpha PROC contains the low level channels used by the processes

alpha PROC2 - (I chanO, chanl, chant, chan3 1)
PROC2 - PROC_PROCESS_CONTROLL(chan0, chant, chan2, chan3)
alpha_PROC3 - {I chan0, chanl, chan2, chan3 1}
PROC3 - PROC_PROCESS_GENERIC_SPEC(chan0, chant, chan2, chan3)

-- Hide the internalChoice event to ensure that processes has internal choice
-- performing correctly if needed.
GEN SPECS - PROC2
GEN_SPEC2 -(PROC3 \ {internalChoice}

-- GenSpec2 limited by the control . pacification G*nSpe03
GEN SPEC2_WITH_CONTROLL - GEN SPEC2 [I alpha_PROC2 11 GEN_SPEC3

-- Check Genspec2 contains the behaviour of Genspec2 limited by GenSpeo3
assert GEN SPEC2 [T= GEN SPEC2 WITH CONTROLL

Flare 61: Example of GenSpec Assertion 3 for Control Flow Process

D. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2

This assertion (see Figure 62) demonstrates that GenSpec 3 (see section D. 1.3) removes
the possibility of driving the component it is run in parallel with, incorrectly. This does

not dictate that GenSpec 3 does not remove a correctly driving option.

-- channel declarations
channel internalChoice
channel chanO : {1)
channel chani, chan2, chan3 : {0,1}

-- Create an instance of the models to check
-- The alpha PROC contains the tow level channels used by the processes
alpha_PROC2 = (I chan0, chanl, chan2, chan3 f)
PROC2 - PROC_PROCESS_CONTROLL(chan0, chanl, chant, chan3)

alpha PROC3 - {I chan0, chant, chant, chan3 1}
PROC3 - PROC_PROCESS_GENERIC_SPEC(chan0, chant, chan2, chan3)

-- Side the internalChoice event to ensure that processes has internal choice
-- performing correctly if needed.
GEN_SPEC3 - PROC2
GEN_SPEC2 -(PROC3 \ {internalChoice}

-- Ganspecl limited by the control apeoification Ganspec3
GEN SPEC2_WITH_CONTROLL s GEN SPEC2 [j alpha_PROC2 j] GEN SPEC3

-- Check that Genspec3 removes the incorrect driving options from Genspecl
assert GEN SPEC2 WITH CONTROLL : (deadlock free (F]]

Figure 62: Example of GenSpec Assertion 4 for Control Flow Process

117

Appendix D: Single Type Component Generic Specification Model Example

D. 2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving

These assertions (see Figure 63) demonstrate that GenSpec 3 limits the process it is run in

parallel with, such that it only allows correct driving signals. These assertions also
demonstrates that GenSpec 3 does not introduce any extra behaviours and does not

remove any correct driving options, it is achieved through proving that GenSpec 3 run in

parallel with GenSpec 2 is indistinguishable to GenSpec 1.

-- abann. l d alaration"
channel internalChoice
channel chan0 : {1}
channel chant : {O, 1}
channel chan2 : {0,11
channel chan3 : (0,1}

-- Create an instance of the models to check
-- The alpha_PROC contains the low level channels used by the processes
alpha PROC2 - (J chano, chant, chant, chan3 1}
PROC2 - PROC_PROCESS CONTROLL(chanO, chant, chant, chan3)

alpha_PROC3 - (I chano, chani, chant, chan3 1)
PROC3 : PROC PROCESS GENERIC SPEC(chan0, chani, chant, chan3)

alpha_PROC4 - {I chan0, chanl, chant, chan3 11
PROC4 - PROC PROCESS_DESSRED GENERIC SPEC(chan0, chanl, chan2, chan3)

-- Side the internalChoice event to ensure that proceeeee bat internal choice
-- performing correctly i! needed.

GEN SPEC1 -(PROC4 \ {internalChoice})
GEN_SPEC2 -(PROC3 \ {internalChoice})
GEN SPECS - PROC2

-- QenBpec2 limited by the control specification G. nßpeo3
GEN SPEC2_WITH_CONTROLL - GEN_SPEC2 [I alpha_PROC2 J] GEN_SPEC3

-- Check that Genßpec3 in parallel with Genßpec2 is indistinguishable to
GonSpool
assert GEN SPEC1 [PD- GEN SPEC2_WITH_CONTROLL
assert GEN_SPEC2 WITH_CONTROLL [PD- GEN_SPEC1

Figure 63: Example of GenSpec Assertions 5 for Control Flow Process

D. 2.6 GenSpec Assertions 6: Properties of the Annotation Events

These assertions (see Figure 64) demonstrate that the annotation event contained within
GenSpec 4 do not introduce extra behaviours, but are only used to conceptually describe

what is occurring. This is achieved through hiding the annotation events, and proving that

the resultant process is indistinguishable to the GenSpec 2 model.

118

Appendix D: Single Type Component Generic Specification Model Example

-- channel declarations
datatype STATES -

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {0} I ERROR. {0} I IDLE. {0}

channel annotation : STATES
channel internalChoice
channel chan0 : {1}
channel chant, chant, chan3 : {0,1}

-- Create an instance of the models to check
-- the alpha PROC contains the low level channels used by the processes
alpha_PROCO - (I chanO, chani, chant, chan3 1}
PROCO - PROC_PROCESS ANNOTATED SPEC(chanO, chant, chant, chan3,0)
alpha_PROC3 - (I chanO, chant, chan2, chan3 1)
PROC3 - PROC_PROCESS GENERIC_SPEC(chanO, chant, chant, chan3)

-- Side the internalChoice event to ensure that processes has Internal choice
-- performing correctly if needed.
GEN SPEC2 -(PROC3 \ (internalChoice}
GEN SPEC4 -(PROCO \ (internalchoice}

-- Oenspea4 with the annotations hidden
GEN SPEC4_NOANNOTATIONS -(GEN_SPEC4 \ {ý annotations j})

-- Cheek that Oan9paa3 in parallel with Oenäpec2 is indistinguishable to
-- OsnSpeal
assert GEN_SPEC4 NO ANNOTATIONS [FD- GEN_SPEC2
assert GEN SPEC2 [FD- GEN SPEC4_NO ANNOTATIONS

Figure 64: Example of GenSpec Assertions 6 for Control Flow Process

D. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4

This assertion (see Figure 65) proves that the control process GenSpec 3 does not add

extra behaviours to the annotated generic specification GenSpec 4.

-- channel declarations
datatype STATES -

START. {0} (FINISH. {O} I NOTFINISHED. {O} I RESET. {0} I ERROR. {0} I IDLE. {O}

channel annotation : STATES
channel internalChoice
channel chanO : (i)

channel chant, chant, chan3 : {o, 1}
-- Create an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes
alpha PROC2 - {I chanO, chani, chant, chan3 1}
FROM - PROC_PROCESS_CONTROLL(chanO, chant, chant, chan3)
alpha_PROCO - {I chanO, chant, chant, chan3 1}
PROCO - PROC_PROCESS ANNOTATED SPEC(chan0, chanl, chant, chan3,0)
-- Side the isternalChoice event to ensure that processes has internal choice
-- performing correctly if needed.
GEN_SPEC3 - PROC2
GEN SPEC4 -(PROCO \ {internalChoice})
--

Öenßpec4 limited by the control specification OenBpec3
GEN_SPEC4_WITH_CONTROLL - GEN_SPEC4 [j alpha_PROC2 1] GEN SPEC3

-- Check OenSpec4 contains the behaviour of Qea8pec4 limited by GenSpec3

assert GEN_SPEC4 [T= GEN_SPEC4_WITH_CONTROLL

F pre 65: Example of GenSpec Assertion 7 for Control Flow Process

119

Appendix D: Single Type Component Generic Specification Model Example

D. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4

This assertion (see Figure 66) proves that the control process GenSpec 3 removes the
explicitly defined deadlocks from the annotated generic specification GenSpec 4.
-- channel declarations
datatype STATES .

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {0} I ERROR. {0} I IDLE. {0}
channel annotation : STATES

channel internalChoice
channel chano : {1}
channel chanl {0,1}
channel chan2 {0,1}
channel chan3 {0,1}

-- Create an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes
alpha_PROC2 - tI chan0, chani, chant, chan3 1}
PROC2 - PROC_PROCESS_CONTROLL(chan0, chant, chant, chan3)

alpha_PROCO - {I chan0, chani, chan2, chan3 1}
PROCO - PROC_PROCESS ANNOTATED_SPEC(chan0, chani, chan2, chan3,0)

Hide tho intarnaiChoice *vent to ansure that procassas has intarnal choice
-- parlorasing eorractly If naedsd.

GEN SPEC3 - PROC2
GEN SPEC4 -(PROCO \ {internalChoice}

-- GanBp. c4 lialta4 by the control apacification Garßpa03
GEN SPEC4_WITH CONTROLL - GEN SPEC4 [I alpha_PROC2 11 GEN SPECS

-- Check that Oenlpec3 reatoves the incorrect driving options from OenSpeo4
assert GEN SPEC4 WITH CONTROLL : [deadlock free [P])

Figure 66: Example of GenSpec Assertion 8 for Control Flow Process

D. 2.9 GenSpec Assertions 9: GenSpec 4 Is an Annotated GenSpec 2

These assertions (see Figure 67) demonstrate that if the annotation events contained

within GenSpec 4 are hidden, then GenSpec is indistinguishable to GenSpec 2.

120

Appendix D: Single Type Component Generic Specification Model Example

-- ohannal declaration,
datatype STATES =

START. {0} I FINISH. {0} NOTFINISHED. {0} I RESET. {0} I ERROR. {0} I IDLE. {0}
channel annotation : STATES

channel internalChoice
channel chan0 : {1}
channel chant : {0,1}
channel chant {0,1}
channel chan3 {0,1}

-- Create an instance of the models to check
-- The alpha PROC contains the low level cbannale used by the processes
alpha PROC3 - {1 chan0, chant, chan2, chan3 J}
PROC3 - PROC_PROCESS_GENERIC_SPEC(chanO, chant, chant, chan3)

alpha_PROCO = (I chanO, chant, chant, chan3 1}
PROCO - PROC PROCESS ANNOTATED SPEC(chan0, chant, chant, chan3,0)

-- Side the intornalChoioa event to ensure that processes has internal choice
-- performing correctly if needed.
GEN SPEC2 -(PROM (internalChoicel
GEN_SPEC4 -(PROCO \ {internalChoice}

-- Genspeo4 Frith hidden annotation events
GEN SPEC4 NO ANNOTATIONS =(GEN_SPEC4 \ {I annotation i},
-- Check that Q"nßpea4 with bidden annotation, it indiatinpui, habl" to GenBp602
assert GEN SPEC4_NO ANNOTATIONS [FD: GEN_SPEC2
assert GEN 8PEC2 [FD. GEN SPEC4_NO_ANNOTATIONS

Figure 67: Example of GenSpec Assertions 9 for Control Flow Process

D. 2.10 GenSpec Assertion 10: GenSpec 6 Deadlock Free

This assertion (see Figure 68) deadlock-free checks GenSpec 6 which helps to provide a
base comparison for future deadlock-free checking and trace refinement for the

annotations.

-- Channel daalarationa
datatype STATES -

START. {0} I FINISH. {0} I NOTFINISHED. {0} RESET {O} I ERROR. {0} I IDLE. {O}

channel annotation : STATES

-- Higb. r outer Bp. a
GEN SPEC6 - PROC PROCESS HIGHER OtTER SPEC(0)

-- Check that QenSpec6 is deadlock-free
assert GEN SPEC6 ; [deadlock free [F]]

Figure 68: Example of GenSpec Assertion 10 for Control Flow Process

D. 2.11 GenSpec Assertions 11: GenSpec S Annotates Outer Level Correctly

These assertions (see Figure 69) demonstrates that GenSpec 5 will annotate the outer

level of a correct process with annotation events that are similar to GenSpec 6. The

121

Appendix D: Single Type Component Generic Specification Model Example

assertions cant be failures divergent checked (` [FD=') because the events that represent the
low level signals which have been hidden, determine the initial state and thus the

annotation that occurs.
-- channel declarations

datatype STATES
START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {0} I ERROR. {0} I IDLE. {0}

channel annotation : STATES

channel internalChoice
channel chan0 {1}
channel chanl : {0,1}
channel chan2 {0,1}
channel chan3 : {0,1}

-- Create an inatanae of the models to check
-- The alpha PROC contain, the low level channels used by the process.,
alpha _PROC1 - (I chan0, chant, chant, chan3 11
PROC1 - PROC_PROCESS_ANNOTATE_OUTER(chan0, chant, chant, chan3)

alpha_PROC4 - {I chanO, chant, chant, chan3 1}
PROC4 - PROC PROCESS DESIRED GENERIC SPEC(chan0, chani, chant, chan3)

-- Side the int. rnalChoics event to ensure that processes has internal choice
-- performing correctly if needed.
GEN SPEC1 -(PROC4 \ {internalchoice}
GEN-SPECS - PROM
GEN SPEC6 - PROC_PROCES3 HIGHER OUTER SPEC(0)

-- Gensp. cl with annotation events added by Gensp. e 5 running in parallel
GEN SPEC1_WITH ANNOTATIONS -(GEN SPEC1 [I alpha_PROC1 11 GEN SPECS

-- The annotations only that were add. d to G. nspecl by Genspec 5
GEN SPEC1_ANNOTATIONS_ONLY - (GEN SPEC1_WITH_ANNOTATIONS \ alpha_PROC4

-- Check that G. nsp. c4 with hidden annotations is indistinguishable to G. nsp. c2
assert GEN_SPEC1_ANNOTATIONS_ONLY (T- GEN SPEC6
assert GEN SPEC6 [T- GEN SPEC1 ANNOTATIONS_ONLY

Figure 69: Example of GenSpec Assertion 11 for Control Flow Process

D. 2.12 GenSpec Assertions 12: GenSpec 5 Does Not Introduce Extra

Behaviour

These assertions (see Figure 70) demonstrates that GenSpec 5 does not add extra
behaviours, but only adds events that conceptually annotates the process it is run in

parallel with. This is shown by the fact that the process run in parallel with GenSpec 5,

with the annotations then hidden, is equivalent to the initial process by itself.

122

Appendix D: Single Type Component Generic Specification Model Example

-- channel declarations
datatype STATES

START. {0} I FINISH. {0} I NOTFINISHED. {O} I RESET. {O} I ERROR. {O} I IDLE. {0}
channel annotation : STATES

channel internalChoice
channel chanO : {1)
channel chani : {0,1}
channel chant : {0,1}
channel chan3 : {0,1}

-- Create an instance of the models to check
-- The alpha ? ROC contains the low level channels used by the processes
alpha_PROC1 = (I chan0, chant, chant, chan3 1}
PROCI = PROC PROCESS ANNOTATE OUTER(chan0, chant, chant, chan3)

alpha_PROC4 - {I chanO, chant, chan2, chan3 11
PROC4 - PROC_PROCESS_DESIRED GENERIC_SPEC(chanO, chant, chant, chan3)

-- Hide the internalChoice event to ensure that processes has internal choice
-- performing correctly if needed.

GEN SPEC]. .(PROC4 \ {internalChoice}
GEN SPECS - PROC1

-- GenSpecl with annotation events added by Gen9pec 5 running In parallel
GEN SPEC1_WITH ANNOTATIONS =(GEN_SPEC1 [I alpha-PROM J] GEN SPECS
-- The annotations only that were added to GenSpecl by Genspec 5

GEN SPEC1_HIDDEN_ANNOTATIONS = (GENSPECI WITH_ANNOTATIONS \ {I annotation i},
-- Check that G4wspea4 with hidden annotations is indistinguishabI0 to Gen6pea2
assert GEN_SPEC1_HIDDENANNOTATIONS [FD. GEN_SPEC1
assert GEN_SPEC1 [FD. GEN_SPEC1_HIDDEN_ANNOTATIONS

FIOure 70: Example of GeuSpec Assertions 12 for Control Flow Process

D. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden is Similar to

GenSpec 6

These assertions (see Figure 71) demonstrates that GenSpec 4 correctly driven with the

events that represent the low level signals hidden, performs in a similar manner to
GenSpec 6. The processes can not be failures divergent checked ('[FD. ') both ways

against each other, as the driving signal events (which are hidden) determine the initial

annotation state that occurs. The hidden events become taue events preceding the initial

annotations, which GenSpec 6 does not contain.

123

Appendix D: Single Type Component Generic Specification Model Example

-- cbann. I doclarationa
datatype STATES =

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET-{0} I ERROR. {0}
channel annotation : STATES

channel internalChoice
channel chan0 {1}
channel chant : (0,1}
channel chan2 {0,1}
channel chan3 (0,1)

i IDLE. {0)

-- Create an instance of the models to check
-- ma alpha_PROC contains the low level channels used by the processes
alpha_PROCO - {I chanO, chanl, chant, chan3 1}
PROCO - PROC_PROCESS ANNOTATED SPEC(chanO, chant, chant, chan3,0)

alpha_PROC2 - {I chan0, chant, chan2, chan3 1}
PROC2 - PROC_PROCESS_CONTROLL(chan0, chant, chant, chan3)

-- Bide the internalCboice event to ensure that processes has internal choice
-- performing correctly if needed.

GEN_SPEC3 - PROC2
GEN 8PEC4 -(PROCO \ {internalChoice}
GEN_SPEC6 = PROC_PROCESS HIGHER OUTER SPEC(0)

-- Gangpeo4 limited by the control specification GenSpec3
GEN SPEC4_WITH_CONTROLL -(GEN SPEC4 [) alpha_PROC2 1] GEN_SPEC3

-- asnspec4 limited by the control specification aanSpee3, annotation only
GEN SPEC4_ANNOTATIONS_ONLY = (GEN SPEC4_WITH_CONTROLL \ alpha_PROCO

-- Check that Genßpec4 with hidden signals Is aiailar to Genßpe06
-- These can not be failures divergent checked `[FDJ' both ways, as the low
-- level driving signals that precedes the corresponding annotation events and
-- determine their occurrences, are hidden.
assert GEN_SPEC4 ANNOTATIONS_ONLY [FD- GEN_SPEC6
assert GEN_SPEC6 [T= GEN SPEC4 ANNOTATIONS_ONLY

Figure 71: Example of GenSpec Assertions 13 for Control Flow Process

D3 Conclusion & Evaluation

The combination of the assertions covered in section D. 2 links various properties of the

various models covered in section D. I. This builds up confidence with the models

specified so that implemented components can both utilise them in their own proofs and
be checked against them. It provides processes so that a low hardware level model of the

components can be refinement checked against, a higher clock cycle based conceptual

specification to refinement check against, and a method to link the two types of models

together to show consistency between them.

124

Appendix D: Single Type Component Generic Specification Model Example

D. 4 Future Work

D. 4.1 Linking Clock Cycle Annotations to a Higher Level Specification

The models that have been created stop at a clock cycle conceptual model of what is

occurring, it is possible to link this model to a model that represents at a software level

what is happening. This may be useful as deadlock in software becomes live lock in
hardware, as it is impossible for digital clocked logic to be deadlocked (each logic

component will always output a value each clock cycle).

If this is desired, the annotation specification (see section D. 1.6) can be linked to a higher

and simplified specification through selectively hiding specific events so long as the

circuit is not reset. Resetting the circuit can be perceived as restarting the application, and

as such, restarting the CSP model. The idle state is also not allowed to occur, as we are

concerned with what this component does when it is triggered, as this would be when the

code that this hardware represents would have been called.

The reason why this simplified model was not fully implemented into the compiler was
that it was not deemed essential to demonstrate the validity of the concept of this work. It

was also deemed that the benefits gained would not warrant the required time required to

code up all the required segments.

D. 4.1.1 GenSpec 7: Software Component Generic Spec Model

This model (see Figure 72) provides a software level based model of a generic control
flow process. A process when started may or may not ever finish, and it can only be

restarted again if it does finish.

125

Appendix D: Single Type Component Generic Specification Model Example

Internal choice with STOP Is provided as an alternative to the FINISH event, this is because conaeptually when started, a control flow process does not
-- have to finish and is dependent on itself or other internal components to
-- determine if it does or not.
PROC_PROCESS HIGHER SIMPLIFIED SPEC(id)

let
A

annotation. START. id ->
(STOP

1-1 annotation. FINISH. id -> A

within A

Flgure 72: Example of Simplified Control Flow Annotation Specification

D. 4.1.2 GenSpec Assertions 14: Linking GenSpec 6 to GenSpec 7

These assertions (see Figure 73) demonstrate that properties of GenSpec 6 are similar to
GenSpec 7.

-- The annotation index value being used
annotation id -0

-- An instance of the annotation specification
GEN_SPEC6 - PROC_PROCESS_HIGHER OUTER SPEC(annotation_id)

-- Cheaking the annotation specification while ensuring that reset does
-- not occur (running in parallel with STOP), and hiding clock cycia annotations

EXPECTED_SIMPLIFIED ANNOTATION SPEC -
(GEN_SPEC6

11 {(annotation. RESET ý} I]
STOP
\ {I annotation. x I x<-{ IDLE, NOTFINISHED } ý}

-- The new . iaplitied epaaLZlcation to check against, Oenßpec7
SIMPLIFIED-ANNOTATION-SPEC - PROC PROCESS_HIGHER_SIMPLIFIED_SPEC(annotation_id)

-- Check that the two proceaeee are equivalent
assert EXPECTED_SIMPLIFIED_ANNOTATIONSPEC [FDA SIMPLIFIED_ANNOTATION_SPEC
assert SIMPLIFIED_ANNOTATION_SPEC [T- EXPECTED_SIMPLIFIBD_ANNOTATIONSPEC

Figure 73: Example of how to link Annotation Spec to Simplified Spec

D. 4.2 Model Simplifications

Although the models are valid and correct, I have noted that they can be partially

simplified. Through altering the design of the CSP process (see section D. 1.3) that is used
to ensure that components are driven correctly, it is possible to partially simplify the

complexity of the required models (see Appendix H for example simplification) making

them easier to mentally visualise. An example of this simplification is covered in

126

Appendix D: Single Type Component Generic Specification Model Example

Appendix H, as due to time restrictions full integrations of this simplification into the

compiler for all components was not possible.

127

Appendix E Single Type Component

Implemented Model Example

This section will cover and explain the CSP models required for an implemented

component, along with the assertions that need to be checked to link the models to each

other, thus demonstrating that an implemented component performs as required and

within the behaviours dictated by its generic super-type component (see Figure 74).

Appendix E: Single Type Component Implemented Model Example

OCCAM Hardware Conversion J
om EDIF

Each individual component is
modelled and run in parallel

JConstrain input signals to disallow
correct outer level driving Refinement (E. 2.23

Equivalence (E. 2.5 CSP Model of Net List
disallowing incorrect
driving (E. 1.3JJD. 1.3)

Deadlock Check (E. 2.1)

Implementation Hardware
Specification (E. 1.1)

headlock Check (E. 2.3)

finement (E. 2.4)

Super Type Hardware
Specification (D. 1.1)

Logic Net

CSP Model of Net
(may contain D. 1.2)

List (E. 1.3)

Hide low lever events
and check annotations
perform similarly to
expected model (E. 2.8)

Implementation Clock Cycle Software Specification (E. 1.4)
Hide subset of annotation events Deadlock Check (E. 2.7)

relating to clock cycle aspects

Implementation Software efinement E. 4.1.2 Super Type Clock
Cycle Software Specification (E. 4.1.1) Specification (D. 4.1.1)

J

Figure 74: Overview of proof structure for an implemented component

E. 1 Models & Specifications

The 'internaiChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. 'I- I') to enable 'chase' compression to applied if desired.
The 'internalChoice' event must be hidden for the specifications to be valid, but if 'chase'

compression has been chosen, the event should only be hidden after 'chase' has been

applied, otherwise the specification becomes invalid.

r

Annotate
outer layer

Correctly driven net-list
with outer annotations
((E. 1.3 ýýD. 1.3)j! D. 1.5)

129

Appendix E: Single Type Component Implemented Model Example

E. 1.1 ImpSpec 1: Valid Low Level Behaviour

This CSP model (see Figure 75) which is similar to the model defined in section D. 1.1,

specifies all the valid and allowable low level behaviour that this implemented component

may perform at its outer boundary. It may utilises internal choice to determine the

possible output behaviour it can perform, although it is not a requirement (e. g. boolean

true, boolean false, SKIP, STOP, all have well defined fixed behaviours that do not rely
on other internal components). It is useful to note that some implemented components

may have the allowable interface boundary behaviour that is identical to that of its generic

super type component (e. g. boolean comparisons, PAR), where as other components will
have an interface boundary behaviour that is a refinement of its super type component
(e. g. boolean true, boolean false, SEQ).

PROC_PROCESS_IF_DESIRED_SPEC(clock,
let

A=

start? x -> reset? y -> C(x, y)
[]
reset? y -> start? x -> C(x, y)

reset, start, finish} s

Bs

start? O -> reset? y -> D(y)
[]
reset? y -> start? O -> D(y)

C(x, y) -
clock? i -> finishl0 ->

y -- 1&A
11
Y == 0&

(x == 0&A
[]

x== 1 &B

D(y) ý
y ýe 1& clock? 1 -> finishl0 -> A
[1

y0& clock? 1 ->
internalChoice -> finishli -> A
[1--I_I

internalChoice -> finishl0 -> B

within finishl0 -> A

Figure 75: Low Level 'IF' Component Desired Specification

E. 1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 76) is similar to the model covered in section D. 1.2, the CSP

model is the model covered in section E. 1.1 but altered so that it will accept incorrectly

driven input signals followed by explicitly defined deadlocking (i. e. STOP).

130

Appendix E: Single Type Component Implemented Model Example

PROC_PROCESS_IF GENERIC SPEC(alock, reset, start, finish)
let

A

start? x -> reset? y -> C(x, y)
[]

reset? y -> start? x -> C(x, y)
Bs

start? l -> STOP
[]
start? O -> reset? y -> D(y)
[]
reset? y ->

start? O -> D(y)
[]

start? l -> STOP

C(x, y) -
clock? l -> finishl0 ->

y -- 1&A
[]
y--0&

x -- 0&A
[]

x1&B

D(y) _
y :"1& clock? 1 -> finish! O -> A
[]
y0& clock? 1 ->

internalChoice -> finishll -> A
[I -- I-I
internalChoice -> finishl0 -> B

within finiehl0 -> A

Figure 76: Low Level 'IF' Component Generic Specification with Explicit Deadlocking

E. 1.3 ImpSpec 3: Model of Implemented Logic

This CSP model (see Figure 77), is a model of the segment of logic that this component

represents and is achieved through modelling the individual logic components and

running them in parallel.

131

Appendix E: Single Type Component Implemented Model Example

-- Coaponenti used in the segment of logic being verified
alpha_PROC2 : {I chani, chan8, chanO, chan7 1}
PROC2 - PROC_PROCESS ANNOTATBD_SPEC(chan0, chant, chan7, chan8,
alpha_PROC7 - {l chan9, chan4
PROC7 - PROC_NOT(chan9, chan4)
alpha PROC1 = {I chani, chan6, chanO, chan5
PROC1 - PROC_PROCSgg ANNOTATND_$PBC(chan0, chani, chan5, chan6,
alpha_PROCS . {I chan6, chan8, chanl0 1}
PROC8 - PROC_OR(chanl0, <chan6, chan8>)
alpha_PROC9 - {I chan9, chan3, chan7 1}
PROC9 - PROC AND(chan7, <chan9, chan3>)
alpha_PROC10 - (I chan4, chan3, chan5 (}
PROC10 - PROC AND(chan5, <chan4, chan3>)
alpha_PROCO - {I chan4, chanl, chan3, chanO, chan2 I}
PROCO - PROC_BOOLEAN ANNOTATED_SPEC(chan0, chant, chant, chan3,

-- The outer level signals for the component being tested
SYSTEM INTERFACE - {I chant, chanO, chanl0, chant J}
-- The alphabet of signals used in the model of the logic

3)

a)

chan4,1)

SYSTEM_ALPHA - {I chan3, chanO, chan6, chan2, chan5, chan4, chan8, chan9,
chanl0, chant, chan7 1}

-- System Declaration of the internal logic coeponents and the signals they use
SYSTEM_LIST -< (PROC2, alpha_PROC2 (PROC7, alpha_PROC7

(PROC1, alpha_PROC1 (PROC8, alpha PROC8
(PROC9, alpha_PROC9 (PROC10, alpha_PROC10
(PROCO, alpha_PROCO

-- The logic model of the implemented aoa pon. nt. `IiPpBpe03'
SYSTEM

REPL(SYSTEM LIST) \ diff(SYSTEM ALPHA, SYSTEM INTERFACE)
\ (internalchoice}

-- sand to run the logic coaIponenta in parallel
REPL (p)

let
INNERI(pi, al, p2, a2) - pl [I inter(al, a2) f) p2
INNER2(<(p1, a1)>^<(p2, a2)>Ap3)"

null(p3) & INNERI(pl, a1, p2, a2)
[)

not null(p3) & INNER2(<(INNER1(pl, ai, p2, a2), union(a1, a2))>"p3
INNER3(<(pl, _)>

)- pl
within (null(p) & STOP

I)
length(p) .. 1& INNER3(p)
I)
length (p) >1& INNER2(p)

Figure 77: CSP Model of the Logic Circuit Segment of the Implemented 'IF' Component

A graphical depiction of the segment of logic circuit that this model represents can be

seen in Figure 78.

132

Appendix E: Single Type Component Implemented Model Example

I
sm Boolean

'TeeC
RrJa
lwý

3
T-ow

aK

I

9

II\.. 22 -61M
aK

w-

Proosss
"Then"

'Elas'

N

RNsh

Flgare 78: A Graphical Depiction of the Logic Segment for an 'IF' Component

E. 1.4 ImpSpec 4: Annotation Only Specification

Flnlsh

This CSP model (see Figure 79), is the expected behaviour of the 'IF' component from an
annotation only perspective, with annotation models of the internal component (i. e. the
boolean condition, the `then' process and the `else' process) having to be supplied. If the
internal annotation components supplied are the corresponding generic specifications, the
CSP model will demonstrate all the possible behaviours of the 'IF' component, describing
both how driving the component drives the internal components and the internal

components behaviour effects the outputs of this component. The reason why this model
was designed to take in processes representing the internal components is so that if the
supplied internal component specifications are a refinement of the corresponding generic
specification, they will limit the behaviour dictated in the 'IF' component to that which
describes what should conceptually occur in the hardware.

Figure 79: IF Component Annotation Only Specification
channel Chan_PROC_PROCESS_IF_HIGHER_INNER_SPEC 0.. 2
channel chan_fin

_PROC
PROCESS_IF HIGHER INNER SPEC : {0,1}

channel char link_PROC_PROCESS_IF_HIGHER_INNER_SPEC
PROC_PROCES3 IF_HIGHERINNER SPEC(id, bool, bid, thenproc,

let
A

x: {bool, thenproc, elaeproc} ox
[ý { annotation. z. x,

annotation. y. bid,
annotation. w. v
I v<-{tid, eid},

x<-{bid, tid, eid},
y<-{BOOLEANR. EAD,

BOOLEANDONTREAD,
BOOLEANREADALLOWED,
BOOLEANTRUE,
BOOLEANFALSE},

z<-{RESET, IDLE),
w<-{START, FINISH, NOTFINISHED}

}
I)

B

aoebsaatiam of boolaaa aa"roaua

tid, elaeproc, eid)

133

Appendix E: Single Type Component Implemented Model Example

B-
ý C

[I {I annotation. RESET. x,
chan_link PROC PROCESS IF HIGHER INNER SPEC,
chan_fin_PROC_PROCESS_IF HIGHER_INNERSPEC,
chanPROC_PROCESS_IF_HIGHER

_INNER_SPEC I x<-{bid, tid, aid, id}

I]
D

I}

\ {I chars link_PROC PROCESS_IF_HIGHER INNER SPEC,
Chan_PROC PROCESS IF HIGHER INNER-SPEC,
chap fin_PROC_PROCESS_IP_HIGHER INNER SPEC

-- booloan part
C

let
CA

I}

((III z: {bid, tid, eid, id} ® annotation. R888T. z
[]
((((1 z: {bid, id} 0 annotation. IDLE. z -> SKIP

ý
[]

-> SKIP);

(Chan PROC PROCESS IF HIGHER INNER SPEC. 0 -> CA

(((annotation. BOOLEANREAD. bid -> SKIP)

III (annotation. START. id -> SKIP

((CB

[I {I

Chan PROC PROCESS IF HIGHER INNER SPEC. 1 ->

11
1}

E

CA

annotation. RESET. x,
chan_PROC PROCESS IF HIGHER INNER SPEC,
chan_link

_PROC_PROCESS_IF
HIGHER_INNER_SPEC,

chan_fin_PROC PROCESS IF HIGHER INNER_SPEC
I x<-{id, bid, tid, eid}

CB =
annotation. 80OULMDONTREAD. bid

Chan_PROC_PROCESS_IF_HIC3HER_INNER_SPEC. 0 ->
ahan_link PROC_PROCSSS IF_HIQHER INNER_SPEC ->
((III z: {bid, tid, eid, id} ® annotation. RESET. z

[]
chan_link _PROC

PROCESS IF HIGHER _INNER
SPEC

char fin PROC PROCESS IF HIGHER INNERR SPEC. 0

CC

(]
annotation. BOOLEANREADALLONED. bid ->

annotation. BOOLEANFALSE. bid ->
Chan

_PROC_PROCESS _IF_HIGHER _INNER_SPEC.
2 ->

char link PROC PROCESS IF HIGHER INNER SPEC

annotation. BOOLEANTROE. bid ->
chan_PROC_PROCESS IFHIGHER

_INNER_SPEC.
1 ->

ehan_link_PROC PROCESS IF HIGHER_INNER SPEC

(Ill
[]

-> SKIP)

-> CB

-> cc

-> CC

z: {bid, tid, eid, id} o annotation. RESET. z -> SKIP)

CA)

annotation. IDLE. bid -> chanlink_PROC PROCESS IF HIGHER
_INNER _SPEC ->

134

Appendix E: Single Type Component Implemented Model Example

within CA

let
EA -

annotation. NOTFINISHED. id ->
(Chan

_PROC_PROCESS_IF_HIGHER_INNER_SPEC.
0 ->

chan_link_PROC PROCESS_IF HIGHER_INNER SPEC -> EC
I1

Chan PROC PROCESS IF HIGHER INNER SPEC. 1 -> SKIP
11

Chan PROC PROCESS IF HIGHER INNER SPEC. 2 -> SKIP

chan_fin_PROC PROCESS IF HIGHER INNER SPEC. 1 -a
chan_link_PROC_PROCESS IF HIGHER INNER SPEC -> SKIP

11

chan_fin_PROC PROCESS_IF HIGHER INNER SPEC. 0 ->
chan_link_PROC_PROCESS_IF_HIGHER_INNER_SPEC -> CC

Chan link PROC PROCESS IF HINHER INNER SPEC -> EB

EB .
1+1 z: {bid, tid, eid, id} a annotation. RESET. z -> SKIP

[]
chap link

_PROC_PROCESS _IF
HIGHER INNER SPEC ->

chan_finPROCPROCESS
_IFHIGHER_INNER_SPEC.

0 ->
annotation. NOTFINISHED. id ->
char link PROC PROCESS IF HIGHER INNER SPEC -> EB

chan_fin_PROC_PROCESS
_IF_HIGHER_INNER_SPEC.

1 ->
annotation. FINISH. id ->
char link PROC PROCESS IF HIGHER INNER SPEC -> SKIP

EC x
III z: (bid, tid, eid, id} 0 annotation. RESET. z -> SKIP }

Il
-> chan_link

_PROC_PROCESS _IF_HIC3HER_INNER _SPEC chan_fin_PROC_PROCESS_IF_HIGHER
_INNER_SPEC.

0 -> EA
within EA

let
DA .

((ýH z: {bid, tid, eid, id} ® annotation. RESET. z -> SKIP); DA
(l
(! UI z: {tid, eid} 0 annotation. IDLE. z -> SKIP

(char PROC PROCESS IP HIGHER INNER SPEC. 0 -> DA
11

char PROC PROCESS IF HIGHER INNER SPEC. 1 -> DE

DB =
Chan_PROC_PROCESS_IF_HIGHER_INNER_SPEC. 0 ->

chan_link_PROC PROCEBS_IP_HIGHER_INNER_SPEC ->
((([if z: {bid, tid, eid, id} m annotation. RESET. z -> SKIP); DA

[7
! +1 z: {tid, eid} 0 annotation. IDLE. z -> SKIP

than_link
_PROC_PROCESS_IF_HIGHER

INNER SPEC ->
chan_fin_PROC_PROCESS_IF_HIGHER_INNER SPEC. C -> DB

1

1)
chan_PROC PROCESS IF HIGHER INNER_SPEC. 1 ->

chan_link PROC_PROCESS_IF HIGHER_INNER SPEC -> DF(tid, eid)
[I

char PROC PROCESS IF HIGHER INNER SPEC. 2 ->

135

Appendix E: Single Type Component Implemented Model Example

DA

chan_link_PROC_PROCESS_IF HI4HER_INNER SPEC -> DF(eid, tid)

DC(x) -
(fý) z: {bid, tid, eid, id} ® annotation. RESET. z -> SKIP
[l
annotation. START. x ->

chan_link PROC_PROCESS IF HIGHER INNER SPEC -> DD(x)
DD(x)

annotation. FINISH. x ->
chan_fin_PROC PROCESS_IF_HIGHER INNER SPEC. 1 ->
chan_link PROC PROCESS IF HIGHER INNER_SPEC -> SKIP

11
annotation. NOTFINISHED. x ->

chan_fin_PROC_PROCESS_IF_HIGHER_INNER_SPEC. 0 ->
chan_link PROC_PROCESS IF_HIGHER_INNER_SPEC ->
((III z: (bid, tid, eid, id} a annotation. RESET. z -> SKIP

1]
chan_link_PROC_PROCESS_IF HIGHER_INNER SPEC -> DD(x)

DE (x) _
117 z: {bid, tid, eid, id} 0 annotation. RESET. z -> SKIP

annotation. IDLE. x -> chan link
_PROC_PROCESS _IF_HIGHER _INNER_SPEC ->

Chan fin PROC PROCESS_IF HIGHER INNER SPEC. 1 ->
Chan link PROC PROCESS IF HIGHER INNER SPEC -> SKIP

11
than fin PROC PROCESS IF HIGHER INNER SPEC. 0 ->

chap link PROC PROCESS IF HIGHER INNER SPEC -> DE(x)

DF (x, y)
(DE(y)

chan_link_PROC_PROCESS_IF_HIGHER
_INNERSPEC, chan_fin_PROC_PROCESS_IP_HIGHER_INNER_SPEC,

annotation. RESET. z

i} ýa DC (x)

within DA
within B

I z<-{id, bid, eid, kid}

E. 2 Assertions: Linking the Models Together

E. 2.1 ImpSpec Assertion 1: Deadlock Freedom

The assertion stated in Figure 80 checks that the model of the segment of logic circuit is

deadlock-free. This check demonstrates two properties, the first is that there exists no
loops consisting of only clocked or non-clocked logic components (see section 4.4.2), the

second is that any internal components are guaranteed to be driven correctly so long as
the outer component is driven correctly. The guarantee that internal components are
driven correctly is possible because the models of the internal components are models that

136

Appendix E: Single Type Component Implemented Model Example

accept all possible inputs (both valid and incorrect), with the incorrect inputs being
followed by explicitly defined deadlock i. e. ̀ STOP' (see section D. 1.2). If the STOP's are
not reached, then invalid inputs to internal components have not been created or
propagated through.

-- chann. 1 daclarationa
channel internalChoice
channel chan0 : (1
channel chant, chant, chanlO : {0, i}

-- Create an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes
alpha_PROC6 - {I chani, chanO, chanl0, chant 1}
PROC6 - PROC PROCESS_CONTROLL(chan0, chant, chant, chanl0)

-- An implementation of the logic to check
SYSTEM_INTERFACE _ {I chant, chanO, chanl0, chan2 (}
IMP SPEC3 - SYSTEM
GEN SPEC3 = PROC6

-- Deadlock-frae check the expected correct generic component
assert (IMP_SPEC3 (I SYSTEM INTERFACE 11 GEN SPECS) [deadlock free [F]]

Figure 80: 'IF' Component Deadlock Free Assertion

E. 2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour

The assertion stated in Figure 81 demonstrates that the process that dictates allowable

correct driving input signals of the super type of this component, does only limit the

behaviour of this implemented component, thus ensuring that it does not introduce any

new behaviour.

-- channel daolarationi
channel internalChoice
channel chanO : {1}

channel chant, chant, chanlO : {0,1}

-- Create an instance of the aodela to check
-- The alpha PROC contains the low level channel. used by the procesae.
alpha_PROC6 - (I chani, chanO, chanlO, chant (}
PROC6 - PROC PROCESS CONTROLL(chan0, chant, chant, chanlO)

-- An iipl uantation of the logic to check
SYSTEMINTERFACE - {I chanl, chanO, chanl0, chan2
IMP_SPEC3 . SYSTEM
GEN_SPEC3 - PROC6

I}

-- Check that the control specification only limits the behaviour of the segment
-- of logic, and does not introduce new behaviour

assert IMP_SPEC3 [T- (IMP_SPEC3 (I SYSTEM-INTERFACE II GEN SPECS)

Figure 81: Super Type Component Limits the Behaviour of the Implementation

137

Appendix E: Single Type Component Implemented Model Example

E. 2.3 ImpSpec Assertion 3: Expected ̀ IF' Component Behaviour Is

Deadlock Free

The assertion stated in Figure 82 demonstrates that the expected boundary behaviour that
the model of the implementation of the logic circuit segment will be checked against is
deadlock-free. This is to provide better confidence in this models correctness as it will be

used in future checks.

-- Channel daolaration,
channel internalChoice
channel chano : {1}
channel chant, chant, chanlO : {0,1}

-- Craata an inatanoa of tho soda1a to chock
IMP SPEC1 - PROC PROCESS_IF DESIRED SPEC(ChanO, chanl,

assert IMP_3PEC1 : [deadlock free [F]]

chant, chanlO)

Figure 82: Expected 'IF' Component Behaviour Is Deadlock-Free

E. 2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super
Type

The assertion stated in Figure 83 demonstrates that the expected correct boundary
behaviour of the implemented component is a valid refinement of the expected boundary
behaviour of its generic super type component.

-- ebann. I daa2aratlono
channel internalChoice
channel chanO : {i}
channel chant, chant, chanlo : {0,1}

-- Create an Instance of the aiodala to ahaok
IMP_SPEC1 - PROC_PROCESS_IP_DESIRED SPEC(chan0, chanl, chan2, chanl0)
(3EN SPEC] .

PROC_PROCESS_DESIRED aENERIC_SPEC(chan0, chanl, chan2, chanl0)
\ {internalChoice}

assert GEN SPEC1 [T= IMP SPEC1

Figure 83: Expected 'IF' Component Behaviour Is a Refinement of Super Type

138

Appendix E: Single Type Component Implemented Model Example

E. 2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as
Expected

The assertions stated in Figure 84 demonstrate that the segment of logic circuit for this
implemented component, if driven correctly, behaves as expected.
-- Ob"" *I declarations
channel internalChoice
channel chanO : {1}
channel chant : {0, i}
channel chan2 (0,1}
channel chanl0 : {0,1}

-- Create an Instance of the models to check
IMP_SPEC1 - PROC_PROCESS

_IF
DESIRED SPEC(chanO, chanl, chant, chanlO)

-- Create an Instance of the models to check
-- The alpha

_PROC
contains the low level channels used by the processes

alpha_PROC6 - {I chant, chanO, chanlO, chant 11
PROC6 - PROC_PROCESS_CONTROLL(chanO, chant, chant, chanio)

-- An implementation of the logic to check
SYSTEM_INTERFACE - (I chani, chanO, chanl0, chant I}
IMP_SPEC3 - SYSTEM
GEN SPEC3 - PROC6

assert IMP_SPEC1 [FD=
((IMP

_SPEC3
[I SYSTEM_INTERFACE 1] GEN_SPEC3) \ (ý annotations ý})

assert ((IMP_SPEC3 [l SYSTEM_INTERFACE 1] GEN_SPEC3)
\ (I annotations
[FD- IMP SPEC1

Figure 84: Correctly Driven 'IF' Component Behaves as Expected

E. 2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce

Deadlock

The assertion stated in Figure 85 demonstrates that annotating the outer level of the
implemented component with the annotation process specified by its super type (i. e.
GenSpec 5, see Section D. 1.5), does not introduce any deadlocks.

139

Appendix E: Single Type Component Implemented Model Example

-- chana. 1 d ol. rationi
channel internalChoice
channel chan0 : {i}
channel chani, chant, chanlO : {0,1}

-- Create an instance of the models to check
IMP_SPEC1 - PROC PROCESS IF DESIRED SPEC(chanO, chani, chan2, chanlO)
-- Create an instance of the models to check
-- The alpha DROC contains the low level channels used by the processes
alpha PROC6 - (I chant, chanO, chanlO, chan2 1)
PROC6 - PROC_PROCESS_CONTROLL(chanO, chani, chan2, chanlO)

alpha_PROCS - {I chanl, chanO, chanl0, chan2 1}
PROCS - PROC PROCESS_ANNOTATE OUTER(chanO, chanl, chant, chanl0)

-- An implemi"ntation of the logic to chock
SYSTEM-INTERFACE - {I chant, chan0, chanl0, chant I}
IMP_SPEC3 - SYSTEM

GEN SPEC3 = PROC6
GEN_SPECS = PROCS

assert ((IMP_SPEC3 [I SYSTEM_INTERFACE 1] GEN_SPEC3)

(I SYSTEM_INTERFACE J] GEN SPECS
[deadlock free [F]]

Figure 85: Annotating outer level of 'IF' component does not Introduce deadlock

E. 2.7 ImpSpec Assertion 7: Expected High Level Behaviour is Deadlock-

Free

The assertion stated in Figure 86 demonstrates that the high level model describing the

expected behaviour of the implemented component is deadlock-free. This helps to build

confidence in the model for when using it in future checks.

-- Create an iaettaao of Cho model& to chock
IMP_SPEC4 = PROC PROCESS-IF_HIGHER_INNER_SPEC(0,

HIGHER
_SPECO_1,1, HIGHER_SPEC1_2,2,

HIGHER_SPEC2_3,3)

-- HLgh. r Proa"ss Instances
HIGHER_SPEC1_2 - PROC_PROCESS_HIGHEROUTER SPEC(2)
HIGHER_SPEC2_3 - PROC_PROCESS_HIGHER_OiTPER_SPEC(3)
HIGHER SPECO 1- PROC BOOLEAN HIGHER OUTER SPEC(1)

assert IMP_SPEC4 : (deadlock free(F]]

Figure 86: 'IF' Component High Level Behaviour is Deadlock-Free

140

Appendix E: Single Type Component Implemented Model Example

E. 2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected

Higher Spec

The assertions stated in Figure 87 demonstrate that the annotations obtained from the
implemented segment of logic circuit, performs in a similar manner to that of the

expected higher behavioural specification. The test can not be failure divergence checked
both ways (one has to be a trace refinement), this is due to the way annotations are added
to the outer layer. As the outer level input annotations occur after the corresponding low
level input signal events (i. e. the events that represent the wires), hiding these low level

signal events causes the high level model extracted from the implemented segment of
logic circuit to appear to have internal choice determining the high level conceptual input

states. The internal choice for the inputs does not really exist, but appears because the

events that do determine what occurs though external choice have been hidden (i. e. the

low level signals). Through altering the process of annotating the outer level of a

component (see Appendix H), it is possible to simplify the extracted model so that it

directly equivalent to the expected higher behaviour.

-- channel declarations
channel internalChoice
channel chan0 : (11
channel chani, chan2, chanlo : {o, i}

-- Create an instance of the models to check
IMP_SPEC1 - PROCPROCESS IP_DESIRED_SPEC(chan0, chant, chant, chanl0)

-- Create an instance_ o! -the
models to check

-- The alpha PROC contains the low level channels used by the processes
alpha_PROC6 - {I chant, chanO, chanl0, chant 1}
PROC6 - PROC_PROCESS_CONTROLL(chan0, chanl, chant, chanl0)

alpha_PROCS - (' chant, chan0, chanl0, chant j}
PROC5 - PROC PROCESS ANNOTATE OUTER(chan0, chant, chant, chanl0)

-- An implementation of tho logic to chock
SYSTEM INTERFACE = {I chanl, chanO, chanl0, chan2
IMP SP. EC3 = SYSTEM

GEN_SPEC3 . PROC6
GEN SPECS . PROCS

assert (((IMP SPEC3 [I SYSTEMINTERFACE 1] GEN SPEC3)
[) SYSTEM INTERFACE J] GEN SPECS

\ SYSTEM_INTERFACE
[FD- Imp Model_3

assert Imp Model 3 (T- (((IMP_SPEC3 [I SYSTEM_INTERFACE 1] GEN_SPEC3)
[! SYSTEM INTERFACE I] GEN SPECS
\ SYSTEM_INTERFACE

Figure 87: 'IF' Component Behaves Similarly to Expected Higher Behaviour

141

Appendix E: Single Type Component Implemented Model Example

E. 3 Conclusions & Evaluation

The combination of the assertions covered in section E. 2 links various properties of the
various models covered in section E. 1 together and also with some of the models covered
in section D. 1 (i. e. the models for its corresponding super type). This builds up
confidence with the implemented component through crosschecking various properties
hold true throughout the various models crated for it, along with the implementation
being a refinement of its super type component, thus allowing the implemented

component to be placed wherever its super type has been used.

E. 4 Future Work

E. 4.1 Linking Clock Cycle Annotations to Higher Specification

Similar to the work described in section D. 4.1, the CSP model covered in section E. 1.4

could be linked to a higher conceptual description of the component that gives the
sequencing of the required conceptual events at a software level, and not a hardware clock
cycle level.

E. 4.1.1 ImpSpec 5: Software Specification Model

This model (see Figure 88) provides a software level based model of the implemented

component. The external choice with `STOP' is to provide a clear indication of where the
internal components behaviour is expected to create possible deadlocking within this

model. The deadlocking at within this model is allowed to possibly occur under the

conditions where when an internal component is started, it never completes. Should this

condition arise, the 'IF' component will never finish, a simple example of this is if the
'then' component gets triggered and is a 'while(true)' loop, the 'while(true)' loop never
finishes, and so the 'IF' component would never finish.

142

Appendix E: Single Type Component Implemented Model Example

PROC_PROCESS_IF HIGHER SIMPLIFIED SPEC(id,

let
A

bool, bid,
thenproc, tid,
elseproc, eid) ý

annotation. START. id -> SKIP
III

annotation. BOOLEANREAD. bid -> SKIP

STOP
[)

annotation. BOOLEAKREADALLONED. bid ->
(annotation. BOOLEANTRUE. bid -> B(tid)

tl
annotation. BOOLBANFALSfi. bid -> B(eid)

B (x)

annotation. START. x ->
STOP
(I
annotation. FINISH. x ->A

C
x: {booi, thenproc, elaeproc} ® x)
annotation. BOOLEANREAD. bid,
annotation. BOOLEANREADALLOWED. bid,
annotation. BOOLEANTRUE. bid,
annotation. BOOLEANFALSE. bid,
annotation. START. y,
annotation. FINISH. y,

II A

within C

i}
Iy <-{tid, eid}

Figure 88: 'IF' Component Software Annotation Behavioural Specification

E. 4.1.2 ImpSpec Assertion 9: Software Specification is a Refinement of Super

Type

The assertion stated in Figure 89 demonstrates that the expected higher software

specification for the implemented component with its internal events hidden is a

refinement of its super types' software specification model. The example show happens to
be equivalent to its super type software specification model, but this is not a requirement

and is why it is not being tested for.

143

Appendix E: Single Type Component Implemented Model Example

-- Generic Boolean Higher Software Specification
PROC_BOOLEAN_HIGHER SIMPLIFIED_SPEC(id)

let
A

annotation. BOOLEANREADALLOWED. id ->
STOP

1-1
annotation. BOOLEANREADALLOWED. id ->

(annotation. BOOLEANTRUE. id -> A
[]
annotation. BOOLEANFAL3E. id -> A

Within A

-- Internal Coaponenta
BoolTeet - PROC BOOLEAN HIGHER SIMPLIFIED SPEC(l)
ThenProc - PROC_PROCESS7_HIGHER7SIMPLIFIED7_SPEC(2)
ElseProc - PROC PROCESS HIGHER_SIMPLIFIED SPEC(3)

-- Cemwonants to root:
IMP_SPECS - PROC_PROCESS_IF_HIGHER_SIMPLIFIED_SPEC(0,

BoolTest, 1,
EhenProc, 2,
E1seProc, 3)

GEN_SPEC7 - PROC_PROCESS
_HIGHER _SIMPLIFIED_SPEC(0) IMP_SPEC5_HIDDEN_INTERNALS

IMP_SPECS
\ diff({J annotations J},

{ annotations. x. 0 Jx <- { START, FINISH }}

-- Check that IapospeaS with internal events hidden IN a rOfiJm*mnt 01 -its
-- super type
assert GEN_SPEC7 (T- IMP-SPECS-HIDDEN-INTERNALS

Figure 89: Higher Software Specification Is a Refinement of the Super Type

144

Appendix F Multi-Type Component

Generic Specification Model Example

This section will cover and explain the CSP models required for a multi-type generic
super-type component, along with the assertions that need to be checked to link the
models to each other and to the corresponding single-type generic super-type components
for the interfaces.

F. 1 Models & Specifications

The ̀ internalChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. 'I _ I') to enable ̀chase' compression to applied if desired.
The ̀ intemalChoice' event must be hidden for the specifications to be valid, but if `chase'

compression has been chosen, the event should only be hidden after `chase' has been

applied, otherwise the specification becomes invalid.

F. 1.1 GenSpec 1: Valid Low Level Behaviour

This model specifies all the valid and allowable low level behaviour of this type of multi-
type super type component. The purpose is to describe the interface boundary behaviours,

thus enabling implemented components to refinement check against it proving there
behaviours are within the requirements for it to be a sub-type of this super-type.

This specification (see Figure 90) will only accept correct input driving signals, and will
return valid output result signals. Internal choice is utilised to enable it to specify all the

possible valid refinements.

Figure 90: Low Level Generic Data Storage Specification
channel chan_midPROC STORAGECOMPONENTDESIRED GENERIC SPEC: 0.. 2
channel chan_link_PROC_STORAGECOMPONENT DESIRED GENERIC SPEC
channel than_PROC_STORAGECOMPONENTDESIRED GENERIC_SPEC: (0.. 4)
channel than_readbits_PROC_STORAGECOMPONENT DESIRED_GENERIC_SPEC : {0.. 2). {0,11

channel chan_storebits_PROC STORAGECOMPONENT_DESIRED GENERIC_SPEC: {0.. 2). {0,11

PROC_STORAGECOMPONENT DESIRED_GENERIC SPEC(clock, reset, stores, reads) -
let

A=

Appendix F: Multi-Type Component Generic Specification Model Example

length (stores)
[l
length (stores)
[]
length(stores)
[l
length (stores)

B=
let

BA =
(((I

aa 0 and length(reads) $= 0&E

!=0 and length(reads)

__

S6 0 &B

0 and length(reads) !-0&C

1= 0 and length(reads) 1= 0&D

union
fl reset,

i}

}

clock,
chan_link_PROC_STORAGECOMPONENT DESIRED_GENERIC_SPEC

{ cheln PROC STORAGECOMPONENT DESIRSD_GBNERIC_SPfiC. y
1 y<-{3,4}

x: aet (stores) 0 BB (x)

reset. 1,
clock,
chan_link PROC_STORAGECOMPONENT_DESIRED GENERIC_SPEC,
Chan PROC STORAGECOMPONENT DESIRED GENERIC SPEC

i) chan_link PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC -> F
{1 chan link_PROC STORAGECOMPONENT_DESIRED GENERIC_SPEC,

I}
chap PROC STORAC3ECOMPONENT DESIRED GENERIC SPEC

BB((store, stored, data))_
let

BBA
BBB

11 {I

0

clock,
chan_link

_PROC_STORAGECOMPONENT_DESIRED _GENERIC _SPEC,
char mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC

I] BBC
\ {l chan mid PROC_STORAGECOMPONENT DESIRED_GENERIC SPEC

BBB
chan_mid PROC STORAGECOMPONENT_DESIRED GENERIC SPEC. 0 ->

x: set(data) a x? 0 -> SKIP

chan_mid PROC STORAGECOMPONENT_DESIREDGENERIC SPEC. 1 ->
x: set(data) a
x? 0 -> SKIP
[7

x? 1 -> SKIP

clock? 1 ->
chan_link PROC_STORAGECOMPONENT DESIRED GENERIC_SPEC -> BBB

BBC .
reset? 1 ->

store? O ->
chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 0 ->
SKIP

[l
store? 1 ->

char mid_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 1 ->

146

Appendix F: Multi-Type Component Generic Specification Model Example

SKIP

BBD

reset? O ->
store? O ->

chan_mid PROC_STORAGECOMPONENT_DESIRED GENERIC SPEC. 0 -> BBD
C)

store? 1 ->
Chan mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 1 ->
Chan_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 0 -> BBE

[]
store? O ->

chan_mid_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 0 ->
reset? 0 -> SKIP
[]
reset? 1 -> SKIP

BBD

store? 1 ->
chan_mid PROC STORAGECOMPONENT-DESIRED GENERIC SPEC. 1 ->

reset? O ->
chan_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. O -> BBE

11
reset? 1 -> BBD

BBD =
clock? 1 ->

char PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 3 -> SKIP
11

Chan PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 4 -> SKIP

storedlO ->
chan_link_PROC STORAGECOMPONENT_DESIRED GENERIC^SPEC ->
BBC

SBE "
clock? i ->

chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 ->
storedli ->
chap link PROC STORAGECOMPONENT DEBIRED GENERIC SPEC -> BBC

11
chan_PROC_STORAGECOMPONENTDESIRED

_GENERIC _SPEC.
4 ->

storedl0 ->
char link PROC STORAGECOMPONENT DESIRED GENERIC SPEC -> BBF

BBF
reset? 1 -> store? 0 ->

Chan mid PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 0 -> BBD
11

reset? O -> store? 0 ->
chan_mid PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC. 0 BBG

[l
store? 0 ->

chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 0 ->
reset?! -> BBD
[l
reset? 0 -> BBG

)
BBG =

147

Appendix F: Multi-Type Component Generic Specification Model Example

clock? 1 -> chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 4
storedl0 ->
chan_link PROC_STORAGECOMPONENT DESIRED_GENERIC SPEC -> BBF

within (storedl0 ->

within BA
C

let
CA =

(((I

chap link PROC STORAGECOMPONENT DESIRED GENERIC SPEC -> BBA

union
{I reset,

i;
clock,
Chan link PROC STORAGECOMPONENTDESIRED GENERIC SPEC

{ chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. y
I Y<-[3,4}

}

x: aet(reada) a CS(x)

[+ {+ reaet. 1,

II

clock,

Chan
_link

PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC,
char PROC-STORAGECOMPONENTDESIRED GENERIC SPEC

I)
chanlink PROCS'PORAGECOMPONENTDESIRED GENERIC

_SPEC -> F
{1 chan link_PROC STORAGECOMPONENT_DfiSIRED GENERIC_SPEC,

I}
chap PROC STORAGECOMPONENT DESIRED GENERIC SPEC

CB((read, readallowed, data)
let

CBA =
reset? l ->

read? O -> SKIP
(]

read? 1 -> SKIP

Css

[l
reset? O ->

read? O -> CBS
[]

read? 1 -> CBC

[]
read? O ->

reset? 0 -> SKIP
tl
reset? 1 -> SKIP

CBB

[]
read? 1 ->

reset? O -> CBC
[]
reset? 1 -> CB8

CBB =
clock? 1 ->

Chan _PROC
STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 -> SKIP

11

148

Appendix F: Multi-Type Component Generic Specification Model Example

cBC =
clock? 1 ->

chan_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 3
readallowed! 1 ->
((III X, Bet(data) 0 x! O -> SKIP

CBD
reset? 1 -> read? O -> CBB
[l

reset? O -> read? O -> CBE
I]
read? O ->

reset? 1 -> CBB
[]

reset? 0 -> CBE

CBE
clock? 1 -> chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 4 ->

readallowedl0 ->
((III x: set(data) ® x! o -> SKIP

readallowedl0 ->
(ýýý x: set(data) 0 x! o -> SKIP

char link
_PROC_STORAGECOMPONENT_DESIRED_GENERIC_

SPEC ->
CBA

[]
chanPROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC. 4 ->

readallowedl0 ->
((111 x: aet(data) a x! 0 -> SKIP

chan_link PROC STORAGECOMPONENTDESIREb-GENERIC SPEC -'
CBD ----

chap link PROC STORAGECOMPONENT DESIRED GENERIC SPEC -> CED

Chan_PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 4 -> SKIP

chan_link_PROC STORAGECOMPONENT DESIRED_GENERIC_SPEC ->
CBA

within (readallowedl0 ->
x: set(data) a x10 -> SKIP

(chan_link PROC STORAGECOMPONENT DESIRED-GENERIC-SPEC ->
CHA ---

)
r

within CA
D

let
DA =

((((j union
(I reset,

clock,
Chan link PROC STORAGECOMPONENT DESIRED GENERIC SPEC

{ chap PROC_STORAGECOMPONENT DESIRED
_GENERIC _SPEC.

y
I}

149

Appendix F: Multi-Type Component Generic Specification Model Example

Y<- 3,4
1

x: set(stores) a DB(x)

[union (
reset,
clock,
chan_link PROC_STORAGECOMPONENT DESIRED_GENERIC SPEC

{ Chan PROCSTORAGECOMPONENT DESIRED_GENERIC_SPEC. y
I} y<-{3,4}

f

I] ((ý union(
reset,
clock,
than link_PROC STORAGECOMPONENT_DESIRED_GENERICSPEC

}

{ chan_PROC_STORAGECOMPONENT DESIRED_GENERIC_SPEC. y
I y<-{3,4}

ý] x: aet(reada) 0 DC(x)

reset. i,
Chan

_PROC
STORAGECOMPONENT_DESIRED-GENERIC-SPEC,

chan_readbita PROC STORAGECOMPONENT DESIRED GENERIC_SPEC,
chan_storebits PROC_STORAGECOMPONENT DESIRED GENERIC-SPEC,
clock,
chap link PROC STORAGECOMPONENT DESIRED GENERIC SPEC

i) char link PROC STORAGECOMPONENTDESIRED GENERIC SPEC -> H

\ {ý chan_link_PROC STORAGECOMPONENT_DESIRED GENERIC_SPEC,
chan_readbitS_PROCSTORAGECOMPONENTDESIRED

_GENERIC
SPEC,

chap storebits_PROC_STORAGECOMPONENT_DESIRED GENERIC_SPEC,
chap PROC STORAGECOMPONENT DESIRED GENERIC SPEC

DB((store, stored, data)
let

DBA =
DBB

chan_mid PROC STORAGECOMPONENT DESIRED GENERIC SPEC,
chan_link_PROC STORAGECOMPONENT_DESIRED_GENERIC_SPEC,
clock

I]
DBC

I?

\ ti chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC
DBB

let
DBBA

chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. O ->
(III x: set(data) 0 x? O -> SKIP)

clockll ->
chan_link PROC STORAGECOMPONENT DESIRED_GENERIC_SPEC ->
DBBA

(1

150

Appendix F: Multi-Type Component Generic Specification Model Example

chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 1 ->
(DBBB(data)

DBBA

DBBB(x) _
length(x) 0& STOP
[]
length(x) 1& DBBC(head(x), length(data) - 1)
[]
length(x) >1&

DBBC(head(x), length(data) - length(x))
{chan_link

_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC, chan_mid_PROC STORAGECOMPONENT DEBIRED CdENERIC SPEC. 2,
clock. 1

il
DBRB (tail (x))

DBBC(x, y) _
x? 0 ->

chan_midPROC STORAGECOMPONENT_DESIRED GENERIC
_SPEC.

2 ->
chan_storebits_PROC STORAGECOMPONENT DESIRED_GENERIC SPEC. y. O ->
clock? 1 -> SKIP

[l
clock? l -> SKIP

(]
x? 1 ->

Chan
_mid_PROCSTORAGECOMPONENTDESIRED _GENERIC_SPEC.

2 ->
chan_atorebits_ PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC. y. 1 ->
clock? 1 -> SKIP

[]
clock? 1 -> SKIP

chan_link_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC ->
SKIP

within DBBA
DBC .

reset? 1 ->
store? O ->

chan_mid PROC STORAGECOMPONENT DESIRED GENERIC SPEC. O ->
SKIP

[]
store? 1 ->

chan_mid_PROC STORAGECOMPONENT DESIRED_GENERIC_SPEC. 1 ->
SKIP

DBD

[l
reset? O ->

store? O ->
chan_mid_PROC_STORAGECOMPONENT_DESIRED GENERIC SPEC. O ->
DBD

[]
store? 1 ->

chan_PROC_STORAGECOMPONENT_DESIRED GENERIC-SPEC-0

chan_mid_PROC STORAGECOMPONENT_DESIRED_GENERIC SPEC-1 ->
chan mid_PROC STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 2 ->
DBE

151

Appendix F: Multi-Type Component Generic Specification Model Example

[]
store? 0 ->

Chan
_mid

PROC STORAGECOMPONENT_DESIRED GENERIC SPEC. O ->
reset? 0 -> SKIP
[]
reset? 1 -> SKIP

DBD

[]
store? 1 ->

Chan
_mid_PROC

STORAGECOMPONENT DESIRED GENERIC SPEC. 1 ->
reset? O ->

Chan
_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC.

O ->
Chan

_mid_PROC
STORAGECOMPONENT_DESIRED GENERIC SPEC. 2 ->

DBE
[)
reset? 1 -> DBD

DBD
clock? 1 ->

char PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 3 -> SKIP
11

Chan PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 4 -> SKIP

atoredi0 ->
char link PROC STORAGECOMPONENTDESIRED GENERIC SPEC ->
DBC -

DBE
clock? l ->

chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 ->
atoredll ->
Chan-link_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC ->
DBC

[]

chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 4 ->
atoredlO ->
chan_link link_PROC_STORAGECOMPONENT- DESIRED- GENERIC-SPEC
DBF

DBF =
reset? 1 -> store? 0 ->

chan_mid_PROC_STORAGECOMPONENT_DESIREDGENERIC SPEC. 0 -> DBD
(1

reset? O -> store? O ->
chan_mid_PROC STORAGECOMPONENTDESIREDGENERIC SPEC. 0 -> DBG

(1
store? 0 ->

chan_mid_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 0 ->
reset? i -> DBD
11

reset? O -> DBG

DBG =
clock? 1 ->

chan_PROCSTORAGECOMPONENT DESIRED_GENERIC SPEC. 4

atoredl0
7>

chan_link PROC_STORAGECOMPONENT DESIRED_GENERIC-SPEC
DBF

within storedl0 ->
chan link PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
DBA ---~-

DC((read, readallowed, data))_

152

Appendix F: Multi-Type Component Generic Specification Model Example

let
DCA a

reset? 1 ->
read? O -> SKIP
[1

read? 1 -> SKIP

DCB

[l
reset? O ->

read? O -> DC$
U
read? 1 ->

chan_PROC STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 1 ->
DCC

[]
read? 0 ->

reset? 0 -> SKIP
[]

reset? 1 -> SKIP

DCB

read? 1 ->
reset? O ->

than PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 1 ->
DCC -----

[]
reset? 1 -> DCB

DCB =
clock? 1 ->

char PROC STORAGECOMPONENTDESIRED GENERIC SPEC. 3 -> SKIP

chan PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 4 -> SKIP

readallowedl0 ->
(III x: Bet(data) ® x10 -> SKIP

char link PROC STORAGECOMPOMMT DESIRED GENERIC SPEC -> DCA

DCC
DCD

Chan link PROC STORAGECOMPONENT DESIRED_GENERIC_SPEC,
readallowed,
Chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC,
reset,
read,
clock

II i} DCE

DCA

DCn =
let

DCDA
clock? l ->

153

Appendix F: Multi-Type Component Generic Specification Model Example

Chan_PROC-STORAGECOMPONENT_DESIRED_GENERIC SPEC. 4 ->
readallowedl0 ->
chan_link-PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
DCDB ----

(1
chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 ->

readallowedii ->
chan_link PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
SKIP -----

DCDB =
reset? 1 -> read? O -> clock? 1 ->

Chan
-PROC

STORAGECOMPONENT_DESIREDGENERIC SPEC. 3 ->
readallowedl0 ->
Chan

_link
PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->

SKIP -----

t)
reset? O -> read? O -> clock? 1 ->

chan PROC gToRAGRcoMpoNT DESIRED GENERIC SPEC .4 ->
readallowedl0 ->
Chan

_link_PROC
STORAGECOMPONENT DESIRED GENERIC SPEC -> DCDB _---

[l
read? O ->

reset? 1 -> clock? 1 ->
chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 ->
readallowedlO ->
chan_link-PROC STORAGECOMPONENT-DESIRED-GENERIC-SPEC ->
SKIP -

reset? O -> clock? 1 ->
chan_PROC_STORAGECOMPONENT_DESIRED-GENERIC_SPEC. 4 ->
readallowedl0 ->
chan_link PROC STORAGECOMPONENT DESIRED-GENERIC-SPEC ->
DCDB ---

within DCDA
DCE _

let
DCEA (x) _

length(x) 0& STOP
[I
length(x) 1&

chan_readbitaPROC STORAGECOMPONENT_DESIRED_GENERIC_SPEC. (
length(data) - length(x)
)? z ->

DCEB(head(x), z)
[]
length(x) >1&

chan_readbita_PROC_STORA(3ECOMPONENT_DESIRED_GENERIC_SPEC. (
length(data) - length(x)
)? z ->

DCEB(head(x), z)

[I
chan_link_PROC STORAGECOMPONENT DESIRED_GENERIC SPEC,
readallowed,
chan_PROC STORAGECOMPONENT_DESIRED_GENERIC_SPEC,
reset,
read,
clock

11
!}

DCEA(tail(x))

DCEB(x, Y)
chats PROC STORAGECOMPONENT DESIRED GENERIC SPEC. 4 ->

(I

154

c

Appendix F. Multi-Type Component Generic Specification Model Example

readallowedl0 ->
x10 ->
Chan

_link _PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC -> DCEC(x)
[]
Chan

_PROCSTORAGECOMPONENT_DESIRED_GENERIC_SPEC. 3 ->
readallowedll ->
x! y ->
Chan link_PROC_STORAGECOMPONENT_DESIRED_GENERIC-SPEC
SKIP

DCEC (x)
reset? 1 -> read? 0 -> clock? 1 ->

Chan_PROC STORAGECOMPONENT DES IRED_GENERIC SPEC. 3 ->
readallowedl0 ->
X10 ->
Chan

_link_PROC
STORAGECOMPONENT_DESIRED_GENERIC_SPEC ->

SKIP
(]
reset? o -> read? 0 -> clock? 1 ->

Chan
_PROC

STORAGECOMPONENTDESIRED GENERIC SPEC. 4 ->
readallowedlo ->
x10 ->
than link

_PROC_STORAGECOMPONENT
DESIRED_GENERIC_SPEC ->

DCEC(x)
I]
read? 0 ->

(reset? 1 -> clock? 1 ->
Chan PROC STORAGECOMPONENT_DESIRED GENERIC_SPEC. 3 ->
readallowedl0 ->
X10 ->
chan_link_PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC ->
SKIP

[7
reset? O -> clock? 1 ->

Chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 4 ->
readallowedl0 ->
X10 ->
Chan_link-PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
DCECW () ----

within clock? 1 -> DCEA(data)
within (readallowedt0 -> ((111 x: eet(data) a x10 -> SKIP

chart link PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
DCA ------

within DA
-- No Reads or Stores
Es

reset? O -> SKIP
[l

reset? 1 -> SKIP
l; (clock? l -> E

F=
let

FA .
reset? 1 -> clock? 1 ->

chan_PROC_STORAGECOMPONENTDESIRED GENERIC
_SPEC.

3 ->
Chan link PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
FA

U
clock? l ->

chan_PROC STORAGECOMPONENT_DESIRED
_GENERIC

SPEC. 3 ->
char link PROC STORAGECOMPONENT DESIRED GENERIC SPEC ->
PA

155

Appendix F: Multi-Type Component Generic Specification Model Example

[]
chan_PROC STORAGECOMPONENT-DESIRED-GENERIC-SPEC. O -a FB
11

Chan
_PROC

STORAGECOMPONENT DESIRED GENERIC SPEC. 1 -> FC
FB a---

clock? 1 ->
chan_PROC_STORAGECOMPONSNT-DESIRED

_GENERIC
SPEC. 3 ->

chan_link_PROC_STORAGECOMPONENT DESIRED_GENERIC_SPEC ->
FA

[]
chan_PROC STORl4(3ECOMPONENT_DESIRED_C3ENERIC_SPEC. 0 -> FD
[l

chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC-1 -> FD
PC -

clock? 1 ->
chan_PROC STORAGECOMPONENT_DESIRED GENERIC

_SPEC.
3 ->

chan_link_PROC_$TORAGECOMPONENT DESIRED GENERIC_SPEC ->
FA

t]
chan_PROC STORAGECOMPONENT_DSSIRED_GENERIC SPEC-0 -> FD
[]

chan_PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC. 1 -> FC
PD =

reset? 1 -> clock? 1 ->
ohan_PROC STORAGECOMPONENTDESIRED GENERIC SPEC .3 ->
chan_link PROC STORAGECOMPONENT DESIRED GENERIC_SPEC ->
FA

[)
clock? 1 ->

than-PROC_STORAGECOMPONENT_DESIRED
_GENSRIC_SPEC.

4 ->
chan_link_PROC STORAGECOMPONENT DESIRED GENERIC_SPEC ->
FD

U
Chan PROC STORAGECOMPONENT_DESIRED GENERIC SPEC. O -> FD
[]

chan_PROC STORAGECOMPONENT_DESIRED_GENERIC SPEC. 1 -> FD
within FA

let
GA =

length(stores) l= 0& GB(head(atorea))
[]

length(reads) !=0& GB(head(reads))
GB((

_, _,
data))_

[I (reset. 1 } ý] x: (0.. (length(data)-1)} e GC(x, 0)
GC(x, y) -

reset? 1 -> GC(x, 0)
[]

chan_readbita_PROC_STORAGECOMPONENT_DESIRED_GENERIC SPEC. xIy ->
GC (x, y)

[]
chan_etorebita PROC STORAGECOMPONENT DESIRED GENERIC SPEC. x? z ->

GC (x, z) -----

within GA
H=

F

[ý { reaet. l} j]
G

within chase(A)

156

Appendix F: Multi-Type Component Generic Specification Model Example

F. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 91) is based on the one covered in section F. 1.1, but with the

altered fact that it also accepts invalid driving input signals to be submitted to it. These
invalid input driving signals are followed by an explicitly defined `STOP', that will
explicitly deadlock the model should it ever be reached. Similar to the specification in

section F. 1.1, the returned output signals will be all possible valid permutations allowed
(internal choice is utilised to create those permutations, so long as it is driven correctly).

The reason why this model will accept invalid driving signals is to enable the model of
any component connected to it the opportunity to provide any driving signals it may

choose, this process will not limit or remove the possibility for the other component
models to provide invalid signals to this one as an option when they are run in

alphabetised parallel. The purpose of this is to enable possibility to check that if this

specification is used as an internal component, so long as the outer component is driven

correctly, this component will be driven correctly.

Figure 91: Low Level Gewerk Data Storage Specification with Explicit Deadlocking
channel char mid PROC STORAGECOMPONENT GENERIC SPEC: 0.. 2ý
channel chan_link_PROCC_STORAGECOMPONENT_GENERIC SPEC
channel chan_PROC STORAGECOMPONENT GENERIC_SPEC: {0.. 4}
channel chan_readbits_PROC STORAGECOMPONENT_GENERIC_SPEC: {0.. 2}. {0,1}

channel chan_storebite_PROC_STORAGECOMPONENT_GENERIC_SPEC: {0.. 2}. {0,1}
PROC_STORAGECOMPONENT GENERIC SPEC (clock, reset, stores, reads)

let
A=

length(stores) _= 0 and length(reads) 0&E
[]
length(stores) !=0 and length(reads) 0&B
[]

length(stores) _- 0 and length(reads) !-0&C
[]

length(stores) I. 0 and length(reads) !-0&D
B

let
BA =

(([ý union(
reset,
clock,
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC

I}

{ chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. y
y<-{3,4}

}

I] > (i {i
x: set(stores) ® BB(x)

11

reset. 1,
clock,
chan_link

_PROC_STORAGECOMPONENT
GENERIC_SPEC,

chan_PROC STORAGECOMPONENT GENERIC SPEC

157

Appendix F: Multi-Type Component Generic Specification Model Example

chan_link_PROC STORAGECOMPONENT GENERIC_SPEC -> F

\ {) chap link_PROC STORAGECOMPONENT_GENERIC SPEC,

I}
Chan_PROC STORAGECOMPONENT_GENERIC_SPEC

BB((store, stored, data)
let

BSA =
BBB
[+ {ý clock,

chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC,
chan_mid PROC STORAGECOMPONENT GENERIC SPEC

I] BBC
\ (I Chan_mid PROC_STORAGECOMPONENT_GSNSRIC_SPEC

BBB
Chan_mid PROC STORAGECOMPONENT GENERIC SPEC. 0

x: set(data)
x? 0 -> SKIP
U
x? 1 -> STOP

>

t

chan_mid_PROC STORAGECOMPONENT_GENERIC_SPEC. 1 ->
(ýH x: aet(data)

x? 0 -> SKIP
I)

x? 1 -> SKIP

clock? 1 ->
Chan link_PROC_STORAGECOMPONENT_GENERIC_SPSC ->
BBB

BBC .
reset? 1 ->

store? 0 ->
chan_mid PROC STORAGECOMPONENT GENERIC SPEC. O ->
SKIP

[J
store? 1 ->

than mid PROC STORAC3ECOMPONENT GENERIC SPEC. 1 ->
SKIP

BBD

reset? O ->
store? O ->

char mid PROC STORAGECOMPONENTGENERIC SPEC. O -> BBD
11

store? 1 ->
chan_mid_PROC_STORAGECOMPONENT_GENERIC_BPEC. 1 ->
char PROC STORAGECOMPONENT GENERIC SPEC. 0 ->
BBE ----

1)
store? 0 -> chan mid PROC_STORAGECOMPONENT_GENERIC SPEC-0 ->

reset? O -> SKIP
(1
reset? 1 -> SKIP

158

Appendix F: Multi-Type Component Generic Specification Model Example

BBD

[l
store? 1 -> dran mid PROC_STORAGECOMPONENT_GENERIC_SPEC. 1 -> reset? O -> chan_PROC'STORAGECOMPONENT_GENERIC SPEC. O BBE

[l
reset? 1 -> BBD

BBD =
clock? 1 ->

((chan_PROC STORAGECOMPONENT_GENERIC SPEC. 3 -> SKIP
[]

Chan
_PROC

STORAGECOMPONENT_GENERIC SPEC. 4 -> SKIP

atoredl0 ->
Chan_link_PROC_STORAGECOMPONENT_GENERICSPEC ->
BBC

BBE
clock? i ->

Chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
etored! i ->
chan_link_PROC_STORAGECOMPONENT GENERIC-SPEC ->
BBC

[J
Chn_PROC_STORßECOMPONTGqERIC SPEC .4 ->

storedl0 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
BBF

BBP =
reset? i ->

store? O ->
chan_mid_PROC_STORA ECOMPONENT_GENERIC_SPEC. 0 ->
BBD

p
store? 1 -> STOP

p
reset? O ->

store? O ->
chaa_mid_PROC STORAGECOMPONENT_QENERIC SPEC. 0 ->
BBG

(I
store? 1 -> STOP

(]
Store? 0 -> chan mid_PROC_STORAGECOMPONENT_GENERIC_SPEC. 0 ->

reset? 1 -> BBD
(]
reset? 0 -> BBG

I]
store? l -> STOP

BBG

clock? l ->
Chan_PROC_STORAGECOMPONENT_GENERIC SPEC. 4 ->
atoredl0 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
BBF

within storedl0 -> chan_link PROC_STORAGECOMPONENT_GENERIC_SPEC -> BBA
within BA

C.
let

159

Appendix F: Multi-Type Component Generic Specification Model Example

CA
(((ý union(

reset,
clock,
Chan link PROC STORAGECOMPONENT GENERIC SPEC

{ chap PROC_STORAGECOMPONENT_GENERIC_SPEC. y

)
tl {I

1 Y<-(3,4}

11 x: set(reads) 0 CH(x)

}
ý

I} ---

reset. 1,
clock,
chan_link PROCSTORAGECOMPONENT_GENERIC SPEC,
char PROC STORAGECOMPONENT GENERIC SPEC

I1
Chan link PROC STORAGECOMPONENT GENERIC SPEC -i F

{ý chan_link_PROC STORAGECOMPONENT_GENERIC SPEC,

I}
chan_PROC_STORAGECOMPONENT_GENERIC SPEC

CB((read, readallowed, data)
let

CBA
reset? l ->

((read? O -> SKIP
Il
read? 1 -> SKIP

CBB

(]
reset? O ->

read? O -> CBB
[]

read? l -> CBC

[)
read? O ->

reset? O -> SKIP
[1

reset? 1 -> SKIP

CBB

s

Q
read? 1 ->

(reset? O -> CBC
(]

reset? l -> CBB

CBB

clock? 1 ->
((chan_PROC STORAGECOMPONENT_GENERIC SPEC. 3 -> SKIP

[]
chan_PROC STORAGECOMPONENT_GENERIC SPEC. 4 -> SKIP

readallowedl0 ->
(III x: set(data) 0 xl0 -> SKIP

(chan_link_PROC_BTORAGECOMPONENT GENERIC BPEC -> CBA

160

Appendix F: Multi-Type Component Generic Specification Model Example

csc "
clock? 1 ->

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 -> readallowedil ->
((III x. set(data) ® x! 0 -> SKIP)

char link PROC STORAGECOMPONENT GENERIC SPEC -> CBA

[]
chan_PROC_8TORAGBCOMPONENT_GENERIC_BPEC. 4 -> readallowedl0 ->

((III x: eet(data) ® x10 -> SKIP)

(chan_link_PROC_STORAGECOMPONENTGENERIC SPEC -> CBD)

CBD
reset? 1 ->

read? O -> CBB
[]
read? 1 -> STOP

[]
reset? O ->

read? O -> CBE
[]
read? 1 -> STOP

[]
read? O ->

reset? 1 -> CBB
[]

reset? O -> CBE

read? l -> STOP
CBE -

clock? 1 ->
Chan

_PROCSTORAQECOMPONENT_GENERIC_SPEC.
4 ->

readallowe_dl0 ->
x: set(data) ® x! O -> SKIP)

chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC -> CBD

within (readallowedl0 ->
((III x: set(data) 6 x1O -> SKIP

chan_link_PROC STORAGECOMPONENT GENERIC SPEC -> CBA)

within CA
D=

let
DA =

((([1

[I

I}
{ chan_PROC_STORAGECOMPONBNT GENERIC SPEC. y

I y<-{3,4}

union (
reaet,
clock,
chan_link_PROC STORAGECOMPONENT_GENERIC_SPEC

}
ý] x: set(stores) ® DB(x)

union (
reset,
clock,

161

Appendix F: Multi-Type Component Generic Specification Model Example

>
I]

C tl

i}
than link PROC STORAGECOMPONENT GRNERIC SPEC

{ ehan_PROC_STORAGECOMPONENT_GENERiC_SPEC. y
ý y<-{3,4}

}

union
reset,
clock,
chap link PROC STORAGECOMPONENT GENERIC SPEC

}

{ chap PROC_STORAGECOMPONENT GENERIC_SPEC. y
Y<-(3,4T

ý] x: set(reads) 6 DC(x)

[ý {ý reeet. 2,

13

Chan
_PROC

STORAGECOMPONENT_GENERIC_SPEC,
Chan_readbite PROC_STORAGECOMPONENT GENERIC_SPEC,
Chan

_etorebita_PROC
STORAGECOMPONENTGENERIC SPEC,

clock,
Chan link PROC STORAGECOMPONENT GENERIC SPEC

Chan_lisk_PROC_STORAGECOMPONENT f3ENERIC_SPEC -> H

{ý Chan link_PROC STORAGECOMPONENT_GENERIC SPEC,

I}

chan_readbita_PROC STORAGECOMPONENT_GENERICSPEC,
chap storebit$_PROC_STORAGECOMPONENT_GENERIC_SPEC,
char PROC_STORAGECOMPONENT GENERIC_SPEC

DB((store, stored, data)
let

DBA
DBB

Chan
_mid

PROC STORAGECOMPONENTGENERIC SPEC,
chan_link_PROC_STORAGECOMPONENT_GENERIC SPEC,
clock

IJ
DBC
\ (I cban_mid PROC_STORAGECOMPONENT_GENERIC_SPEC I}

DBB
let

DBBA
chan_mid PROC STORAGECOMPONENT GENERIC SPEC. O ->

III x: eet(data) ®--

(x? o -> SKIP
1)

x? l -> STOP

(clock? 1 ->
chan_link_PROC_STORAOECOMPONENT_GENERIC_SPEC ->
DBBA

(]
chan_mid_PROC_3TORAOECOMPONENT_QENERIC_SPEC. 1 ->

DBBB(data)

162

Appendix F: Multi-Type Component Generic Specification Model Example

DBBA

DBBB (x)
length(x) _- 0& STOP
(1

length(x) -- 1& DBBC(head(x), length(data) - 1)
[1
length(x) >1&

DBBC(head(x), length(data) - length(x))
[ý (Chan

_link _PROC
STORAGECOMPONENTGENERIC SPEC,

chan_mid_PROC_STORAGECOMPONENT_GENERIC_SPEC. 2,
clock. 1

}

DBBB(tail(x))

DBSC(x, y)
x? O ->

Chan mid PROC STORAGECOMPONENT GENERIC SPEC. 2
chanstorebitSPROC STORAGECOMPONENTGENERIC SPEC. y. O ->
clock? 1 ->
SKIP

[l
clock? i -> SKIP

[l
x? 1 ->

chan_mid_PROC STORAGECOMPONENT_GENERIC_SPEC. 2 ->
chanetorebita_PROC_STORAGECOMPONEMT_GENERIC_SPEC. y. 1 ->
clock? 1 ->
SKIP

[l
clock? 1 -> SKIP

chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC -> SKIP

within DBBA
DBC

reset? 1 ->
store? O ->

Chan mid pp
SKIP

fJ
etore7l

ahan_mid PROC STORAGECOMPONENT_GENERIC_SPEC-1 ->
SKIP

DBD

[)
reset? O ->

store? O ->
chan_mid PROC STORAGECOMPONENT GENERIC SPEC. O ->
DBD

[)
Store? 1 ->

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. O

chan_mid_PROC STORAGECOMPONENT_GENERIC SPEC. 1 ->
chan_mid_PROC_STORAGECOMPONENT_GENERIC_SPEC. 2 ->
DBE

U

163

Appendix F: Multi-Type Component Generic Specification Model Example

store? 0 -> chan mid_PROC_STORAGECOMPONENT_GENERIC_SPEC. 0 ->
reset? 0 -> SKIP
1]
reset? i -> SKIP

DBD

(]
store? 1 -> chan_mid PROC_STORAGECOMPONENT_GENERIC_SPEC. 1

reset? O ->
chan_PROC STORAGECOMPONENT_GENERIC SPEC. O ->
chan_mid_PROC STORAGECOMPONENT_GENERIC_SPEC. 2 ->
DBE

(1
reset? 1 -> DBD

DBD

clock? 1 ->
chan-PROC STORAGECOMPONENT GENERIC SPEC. 3 -> SKIP
[l

Chan PROC STORAGECOMPONENT GENERIC SPEC. 4 SKIP

storedl0 ->
chan_link_PROC_STORADECOMPONENT_GENERIC_SPEC ->
DBC

DBE
clock? 1 ->

Chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
atored! 1 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
DBC

[]
Chan_PROC STORAGECOMPONENT_GENERIC SPEC. 4 ->

8toredl0 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
DBF

DBF .
reset? l ->

store? O ->
chan_mid_PROC_STORAGECOMPONENT_DENERIC_SPEC. 0 ->
DBD

U
store? 1 -> STOP

(]
reset? O ->

store? O ->
Chan

_mid_PROC_STORAGECOMPONENT_GENERIC_SPEC.
0 ->

DBG
(]
store? 1 -> STOP

(]
etore? 0 -> chars mid PROC_STORAGECOMPONENT_GENERIC_SPEC. 0 ->

(reset? 1 -> DBD
[]
reset? O -> DBG

store? 1 -> STOP
DBG -

clock? 1 ->
Chan PROC STORAGECOMPONENT GENERIC SPEC. 4 ->

164

Appendix F: Multi-Type Component Generic Specification Model Example

storedl0 ->
than-link_PROC_STORAGECOMPONENT-GENERIC-SPEC ->
DBF

within (storedl0 ->
char link PROC STORAGECOMPONENT GENERIC SPEC ->
DBA -----

DC((read, readallowed, data))
let

DCA -
reset? l ->

read? O -> SKIP
(l

read? l -> SKIP

DCB

[l
reset? O ->

(read? O -> DCB
[l
read? 1 -> chan PROC STORAGECOMPONENT GENERIC SPEC. 1 -> DCC

[]
read? O ->

reset? O -> SKIP
[]

reset? 1 -> SKIP

DCB

read? 1 ->
reset? 0 -> chan_PROC_STORAGECOMPONENT_GENERSC_SPEC. 1 -> DCC
[]

reset? 1 -> DCB

DcB =
clock? 1 ->

chan_PROC STORAGECOMPONENT_GENERIC_SPEC. 3 SKIP
I)

Chan PROC STORAGECOMPONENTGENERIC SPEC. 4 > SKIP

readallowedl0 ->
(III x: aet(data) a xl0 -> SKIP

(chan_link_PROC_STORAG&COMPONENT aBNERIC SPEC -> DCA)

DCC - t(DCD
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC,
readallowed,
Chan

_PROC_STORAGECOMPONENT_GENERIC
SPEC,

reset,
read,
clock

II DCE

DCA

)
DCD -

I}

165

Appendix F: Multi-Type Component Generic Specification Model Example

let
DCDA

clock? l ->
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 4 ->

readallowedlO ->
chan_link_PROC_STORAGECOMPONENT_GENERIC SPEC ->
DCDB

[]
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->

readallowedil ->
chan_link_PROC_STORAGECOMPONENTGENERIC SPEC ->
SKIP

DCDB
reset? 1 ->

read? O ->
clock? l ->
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowedl0 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC SPEC ->
SKIP

(]
read? 1 -> STOP

(3
reset? O ->

read? O ->
clock? 1 ->
ehan_PROC STORAGECOMPONENT_GENERIC SPEC. 4 ->
readallowedl0 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
DCDB

1)
read? 1 -> STOP

[]
read? O ->

reset? 1 ->
clock? 1 ->
Chan

_PROC_STORAGECOMPONENT_GENERIC
SPEC. 3 ->

readallowedlO ->
Chan

_link
PROC_STORAGECOMPONENTGENERIC SPEC ->

SKIP
[l

reset? O ->
clock? 1 ->
Chan_PROC STORAGECOMPONENT_GENERIC_SPEC. 4 ->
readallowed! O ->
Chan

_link
PROC STORAGECOMPONENT GENERIC_SPEC ->

DCDB

read? 1 -> STOP
within DCDA

DCE
let

DCEA (x)
length(x) -0& STOP
(]
length(x) _= 1&

chan_readbita PROC STORAGECOmPONENT_GENERIC SPEC. (

length(data) --length(x)
) ?z ->
DCES(head (x), z)

[l
length(x) >1&

chan_readbitsPROC STORAGECOMPONENT GENERIC_SPEC. (

length(da_ta) --length(x)

166

Appendix F: Multi-Type Component Generic Specification Model Example

)? z ->
DCEB(head(x), z)

chan_link
_PROC_STORAGECOMPONENT_GENERIC_SPEC, readallowed,

chan_PROC STORAGECOMPONENT_GENERICSPEC,
reset,
read,
clock

I) 1}
DCEA(tail(x))

DCEC(x, y)
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 4 ->

readallowedl0 ->
X10 ->
chan link PROC STORAGECOMPONENTGENERIC SPEC ->
DCEC (x) ----

[]
chan_PROC_STORAGECOMPONENT_GENERIC-SPEC. 3 ->

readallowedll ->
x! y ->
chan_link

_PROC_STORAGECOMPONENT_GENERIC_SPEC
->

SKIP
DCEC(x)

reset? 1 ->
read? O ->

clock? 1 ->
chan_PROC STORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowedl0 ->
X10 ->
chan_link PROC_STORAGECOMPONENTGENERIC SPEC ->
SKIP

[]
read? 1 -> STOP

1
[]
reset? O ->

read? O ->
clock? 1 ->
chan_PROCSTORAGECOMPONENT_GENERIC_SPEC. 4 ->
readallow_edl0 ->
X10 ->
chan_link

_PROC_STORAGECOMPONENT_GENERIC_SPEC
->

DCEC(x)
[]
read? 1 -> STOP

[]
read? O ->

reset? 1 ->
clock? 1 ->
chan_PROC STORAGECOMPONENT_GENERIC SPEC. 3 ->
readallowedl0 ->
x! 0 ->
chan_link PROC_STORAGECOMPONENT_GENERIC_SPEC ->
SKIP -

[]
reset? O ->

clock? l ->
char PROC STORAGECOMPONENT_GENERIC_SPEC. 4 ->
readallowedlO ->
X10 ->
chen_link PROC_STORAGECOMPONENT_GENERIC_SPEC ->
DCEC (x)

[]

167

Appendix F: Multi-Type Component Generic Specification Model Example

read? 1 -> STOP
within clock? 1 -> DCEA(data)

within (readallowed! O ->
((III x: set(data) 0 x! 0 -> SKIP

chap link PROC STORAGECOMPONENT GENERIC SPEC -> DCA

within DA
-- No Reads

reset? o
(1

reset? 1

>
, (

F:

or Stores

-> SKIP

-> SKIP

clock? 1 -> E)

let
PA

reset? 1 ->
clock? l ->
chan_PROC_STORAGECOMPONENT_GENERIC

_SPEC.
3 ->

chan link PROC STORAGECOMPONENT GENERIC SPEC ->
FA

(1
clock? l ->

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
char link PROC STORAGECOMPONENT GENERIC SPEC ->
FA

[]
chan-PROC-STORAGECOMPONENT

-GENERIC-SPEC.
0 -> FB

11
chan PROC STORAGECOMPONENT GENERIC SPEC. 1 -> PC

---- FB -
clock? 1 ->

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
chan_link_PROC_STORAGECOMPONENT_GENERIC_SPEC ->
FA

[]
chap PROC STORAGECOMPONENT GENERK SPEC. 0 -> FD
11

Chan PROC STORAGECOMPONENT GENERIC SPEC.. -> FD
FC -

-- --

clock? i ->
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
char link PROC STORAGECOMPONENT GENERIC SPEC ->
PA -----

(]
chan PROC STORAGECOMPONENT GENERIC SPEC. 0 -> FD
[] ----

chan PROC STORAGECOMPONENT GENERIC SPEC. 1 -> PC
FD .----

reaet? 1 ->
clock? 1 ->
chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 3 ->
chan_link_PROC_STORAGECOMPONENT GENERIC-SPEC ->
FA

(1
clock? 1 ->

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 4 ->
chan_link_PROC_STORAGECOMPONENTGENERIC SPEC ->
FD

[]
-> SPEC. O FD chan -PROC -STORAGECOMPONENT -

GfiNfiRIC
- [1

chan_PROC_STORAGECOMPONENT_GENERIC_SPEC. 1 -> FD
within PA

168

Appendix F: Multi-Type Component Generic Specification Model Example

Ci

H

a

let
GA =

length(storea) t= 0& GB(head(stores))
(]

length(reads) !=0& GB(head(reads))
GB((_,

_,
data))_

If { reset. l } (] x: {0.. (length(data)-1)} 0 GC(x, 0)
GC(x, y) _

reset? l -> GC(x, 0)
(l
chan_readbita_PROC_STORAGECOMPONENT GENERIC_SPEC. xly -> GC(x, y)
(]
chan_storebits_PROC_STORAGECOMPONENT_GENERIC_SPEC. x? z -> GC(x, z)

within GA

F

[I { reeet. 1} 1]
G

within chaee(A)

F. 1.3 GenSpec 3: Correct Component Driving

This CSP model is used to limit a process so that it can only accept possible valid input

signals, this is to enable implemented sub-type components to have the outer layer of their
logic correctly driven when performing the checks and proofs. The aim for this is to

check an implemented component holds true to the assumption that so long as it is driven

correctly, it will correctly drive any internal components.

Figure 92: Generic Control Data storage Specification - Correct Driving Limiter

channel chan_PROC_STORAGECOMPONENTCONTROLL: 0,1,2,3
channel chan_link_PROC_STORAGECOMPONENT_CONTROLL
PROC_STORAGECOMPONENT_CONTROLL(clock, reset, stores, reads)

let
A

(C(stores)
union({I clock, reset

{chan_link_PROC STORAGECOMPONENT_CONTROLL}

I]
E(reads)
\ (chan_link_PROC STORAGECOMPONENT_CONTROLL)

-- if there are no stores or reads
Ba

chan_link
_PROC_STORAGECOMPONENT_CONTROLL ->

reset? O -> clock? 1 -> B
[]
reset? l -> clock? 1 -> B

-- Stores
C(x)

length(x) am 0&B
II
length(x) >0&

D(head(x))
union((I clock, reset

(chan_link_PROC STORAGECOMPONENT CONTROLL}

169

Appendix F: Multi-Type Component Generic Specification Model Example

C(tail(x))

-- Controll CSP taken from DataStore object
-- with an extra event to ensure all outputs happen before new inputs
D((store, stored, databits)

let
DA -

chan_PROC STORAGECOMPONENT_CONTROLL. 1 ->
x: set(databits)
x? O -> SKIP
(]
x? l -> SKIP

t]
ChanPROC STORAGECOMPONSNT_CONTROLL. 2

(Tii
x: aet(databita) 0 x? O -> SKIP _,

(chan_PROC_STORAGECOMPONENT_CONTROLL. 0 -> DA)
DB

chan_link_PROC_STORAGECOMPONENT_CONTROLL ->
store? 0 -> chan_PROC STORAGECOMPONENT_CONTROLL. 2 ->

reset? 1 -> SKIP
(]
reset? O -> SKIP
DC

U
store? 1 -> chan_PROC_STORAGECOMPONENT_CONTROLL. 1 ->

reset? 1 -> DC
O
reset? 0 -> DD

()
reset? 0 ->

store? 1 -> chan_PROC_STORAGECOMPONENT_CONTROLL. 1 -> DD
O

store? 0 -> chan_PROC_STORAGECOMPONENT_CONTROLL. 2 -> DC

reset? 1 ->
store? 1 -> chan_PROC STORAGECOMPONENT_CONTROLL. 1 -> SKIP
(]

store? 0 -> chan_PROC_STORAGECOMPONENT_CONTROLL. 2 -> SKIP

DC

DC =
chan_PROC_3TORAGBCOMPONENT_CONTROLL. 0 -> clock? 1 ->

storedl0 -> DB
[J
etoredll -> STOP

DD -
chan_PROC_STORAGECOMPONENT_CONTROLL. 0 -> clock? 1 ->

Storedll -> DB
(1
stored! O -> DE

DE
chan_link

_PROC_STORAGECOMPONENT_CONTROLL
->

store? 0 -> chan_PROC STORAGECOMPONENT CONTROLL. 2 ->
reset? 1 -> DC
[]
reset? 0 -> DD

[]
__

170

Appendix F: Multi-Type Component Generic Specification Model Example

reset? O -> store? 0 -> chars PROC STORAGECOMPONENT CONTROLL. 2 -> DD
11

reset? 1 -> store? O -> than PROC STORAGECOMPONENT CONTROLL. 2 -> DC

DF -
storedl0 -> DB
Il
storedll -> STOP

chan_PROC STORAGECOMPONENT_CONTROLL
DA

)\ (I chan_PROC_STORAGEOOMPONENT CONTROLL
within DF

-- Reads
E (x) _

length(x) _= 0&B
[]
length(x) >0&

F(head(x))
union(clock, reset

{ chan_link PROC STORAGECOMPONENT CONTROLL}

11
E(tail (x))

-- Controll CSP taken from DataRead object
-- with an extra event to ensure all outputs happen before new inputs
F((read, readallowed, databits)

let
FA =

chan_link_PROC_STORAGECOMPONENT_CONTROLL ->
(read? x -> reset? y -> FD(x, y)

(]
reset? y -> read? x -> FD(x, y)

FH
chan_link_PROC_STORAGECOMPONENT_CONTROLL ->

(read? 0 -> reset? y -> FE(y)
(J
reset? y -> read? O -> FE(y)

FC -
readallowedll ->

III x: aet(databita)
x! 0 -> SKIP
t]

xli -> SKIP
FA

I]
readallowedlo -> ((III x: set(databits) 40

X10 -> SKIP
i]

xll -> STOP
); PB

FD (x, y) .
clock? 1 ->

y "" 1& FF
11

y =. 0&
(x -=

Hs)

11
X --

0& FF

1& FC

171

Appendix F: Multi-Type Component Generic Specification Model Example

clock? 1 ->
iys-1&FF

[]
jr :a0& FC

FF

readallowedll -> STOP
[)
readallowedl0 ->

I x: set(databite) a
x! 0 -> SKIP
1)
xll -> STOP

); FA

within FF
within A

F. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit
Deadlocking

This CSP model is the one covered in section F. 1.2, but with extra events added to
describe conceptually what is occurring. The aim of this is to enable a link between a low
level hardware model and a higher level conceptual meaning of the function the hardware
is performing. The added ̀ id' parameter added to the process is to provide a method to
distinguish between different instances of this process. The annotation events depicting

the states that are entered into from how this component is driven can only be specified
after the event has occurred, where as the output signals are controlled by this component
and so the corresponding annotation events can be performed before outputting the

signals. The reason why renaming can not be used to obtain a higher level conceptual
model of what is occurring, thus the required use of extra events depicting the

annotations, is because the same signal states can mean different things depending on the
state of the system.

Figure 93: Annotated Generic Data Storage Speclikation with Explicit Deadlocking
channel chan_mid PROC_STORAGECOMPONENT_ANNOTATED_SPEC: 0.. 2
channel chan_link

_PROC_STORAGECOMPONENT_ANNOTATED
SPEC

channel chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC: {0.. 4}
channel chan_readbits_PROC STORAGECOMPONENT ANNOTATED_SPEC: {0.. 2}. {0,1}
channel chan_storebits_PROC STORAGECOMPONENT ANNOTATED SPEC: {0.. 2}. {0,1}
PROC_STORAGECOMPONENT_ANNOTATED SPEC(clock, reset, stores, aid, reads, rid)

let
A=

length(stores) _= 0 and length(reads) 0&E
[l
length(stores) !=0 and length(reads) 0&B

length(stores) -- 0 and length(reads) !=0&C
0
length(stores) !=0 and length(reads) !=0&D

B=

172

Appendix F: Multi-Type Component Generic Specification Model Example

let
BA =

let
BAA

i) Chan link PROCSTORACiECOMPONENTANNOTATED SPEC -> P
{I chan_link_PROC STORA(3ECOMPONENT_ANNOTATED_SPEC,

length(stores) I. length(sid) & STOP

length(stores) _= length(sid) &
BAB(atorea, aid)
[t {+ reaet. 1,

clock,
chan_link PROC_STORAGECOMPONENT_ANNOTATED SPEC,
Chan_PROC_STORAGECOMPONENT_ANNOTATED SPEC

ý}

i} BAB (x, y) -

chap PROC STORAGECOMPONENT ANNOTATED_SPEC

length(x) :-1& BB(head(x), head(y))
[7
length(x) >1&

BB(head(x), head(y))
union(

reset,
clock,
char link PROC STORAGECOMPONENT ANNOTATEQSPEC

(chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. y
y< (3,4}

}

II BAB(tail (x),

within BAA

tail (y))

BB((store, stored, data), id
let

BBA .
BBB

clock,
chan_link

_PROC_STORAGECOMPONENT_ANNOTATED_SPEC, Chan mid_PROC STORAGECOMPONENT ANNOTATED SPEC

I)
BBC
\ {I than mid PROC_STORAGECONPONENT_ANNOTATED_SPEC

BBB
let

BBBA .
than mid PROC STORAGECOMPONENTANNOTATED SPEC. 0 -> JJ1 x: eet(data)

(x? O -> SKIP
[l
x? 1 -> annotation. ERROR. id -> STOP

tl
Chan

_mid_PROC
STORAdECOMPONENT_ANNOTATED_SPEC. 1 ->

BBBB(data, 0)

clock? 1 ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
SBBA

173

Appendix F: Multi-Type Component Generic Specification Model Example

BBBB(x, y) -
length(x) 0& annotation. ERROR. id -> STOP
[]
length(x) 1& BSBC(head(x), y)
[]

length(x) >1&
BBBC(head(x), y)
[ý { chan mid PROC_STORAGECOMPONENT_ANNOTATED`SPEC. z

z<-{1,2} }
II

BBBB(tail(x), y+l)

BBBC(x, y)
x? O -> BBBD(y, 0)
1)

x? 1 -> BBBD(y, 1)
BBBD (x, y)

chan_mid PROC STORAGECOMPONENT_ANNOTATED SPEC. 1 -> SKIP
(1

Chan mid PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 2 ->
annotation. DATABIT. id. x. y ->
SKIP

within BBBA
BBC =

reset? 1 ->
((store? 0 ->

chan_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
annotation. RESET. id ->
SKIP

Store? 1 ->
chan_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 1 ->
annotation. RESET. id ->
chan_mid PROC STORAGECOMPONENT ANNOTATED SPEC. 1 ->
SKIP

BBD

it
reset? 0 ->

store? O ->
Chan

_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC.
0 ->

annotation. IDLE. id ->
BBD

1)
store? 1 ->

Chan
_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC.

1
annotation. STORE. id ->
Chan

_mid_PROC
STORAGECOMPONENT ANNOTATED SPEC. 2 ->

Chan PROC STORAGECOMPONENT ANNOTATED SPEC. 0 ->
BBE -

store? 0 -> chan_mid_PROC STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
reset? O -> annotation. IDLE. id -> SKIP
0
reset? 1 -> annotation. RESET. id -> SKIP

BBD

(1
store? 1 -> than mid_PROC_STORAGECOMPONENT ANNOTATED SPEC. 1 ->

(reset? O ->
annotation. STORE. id ->
than mid PROC STORAGECOMPONENT ANNOTATED SPEC. 2 ->

174

Appendix F: Multi-Type Component Generic Specification Model Example

Chan PROC STORAGECOMPONENT ANNOTATED SPEC. 0 ->
BBE -

[]
reset? 1 ->

chan_mid_PROC_STORAGECOMPONENT ANNOTATED SPEC. 1 ->
annotation. RESET. id ->
BBD

BBD =
clock? 1 ->

((char PROC STORAGECOMPONENT ANNOTATED SPEC. 3 -> SKIP
U
chan_PROC STORAGECOMPONENT ANNOTATED SPEC. 4 -> SKIP

storedl0 ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
BBC

BBE
clock? 1 ->

chan_PROC STORAGECOMPONBNT_ANNOTATED_SPEC. 3 ->
annotation. STORED. id ->
storedll ->
Chan link PROC STORAGECOMPONENT ANNOTATED SPEC ->
BBC -

[]
chan_PROC_STORAGECOMPONENTANNOTATED_SPEC. 4 ->

annotation. NOTSTORED. id ->
atoredlO ->
than link PROC STORAGECOMPONENT ANNOTATED SPEC ->
BBF -----

BBF
reset? 1 ->

store? O ->
chan_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
annotation. RESET. id ->
BBD

[]
store? 1 -> annotation. ERROR. id -> STOP

[]
reset? 0 ->

c store? O ->
char mid PROC STORAGECOMPONENTANNOTATED SPEC. 0 ->
BBG -

[]
store? 1 -> annotation. ERROR. id -> STOP

[l
store? 0 ->

chan_mid_PROC_STORAGECOMPONENT ANNOTATED_SPEC. 0
(reset? l -> annotation. RESET. id -> BBD

[]
reset? O -> BBG

[l
store? 1 -> annotation. ERROR. id -> STOP

BBG
clock? 1 ->

chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 4 ->
annotation. NOTSTORED. id ->
storedtO ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATEDSPEC ->
BBF

within stored! O -> Chan link PROC STORAGECOMPONENT_ANNOTATED_SPEC -> BBA

175

Appendix F: Multi-Type Component Generic Specification Model Example

within BA
Cs

let
CA

let
CAA

length(reads) I- length(rid) & STOP
[]
length(reads) _- length(rid) &

CAB(reada, rid)
(I {I reaet. 1,

III}

clock,
chan_link_PROC_STORAGECOMPONENT_ANNOTATED SPEC,
Chan PROC STORAGECOMPONENT ANNOTATED SPEC

chan_lirik PROC_STORAC3ECOMPONENT_ANNOTATED_SPEC -> F
)\ {I chan link_PROC STORAaECOMPONENT ANNOTATED_SPEC,

I}
CAB (x" Y) _

length (x)
11

1 y<-{3,4}

length(x) >1&
C8(head(x), head(y))
(union(

reset,
clock,
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC

{ chap PROC STORAGECOMPONENTANNOTATED_SPEC. y

chap PROC_STORAGECOMPONENT_ANNOTATED_8PEC

-- 1& CB(head(x), head(y))

}

II CAB(tail(x), tail(y))

within CAA
CB((read, readallowed, data), id)

let
CBA

reset? 1 ->
read? O -> SKIP
[]

read? l -> SKIP

(annotation. RESET. id -> CBB 1
O
reset? o ->

read? O -> annotation. IDLE. id -> CBB
[l

read? 1 -> annotation. READ. id -> CBC

[l
read? O ->

reset? O -> annotation. IDLE. id -> SKIP
[l

reset? i -> annotation. RESET. id -> SKIP

CBB

[J
read? 1 ->

(reset? O -> annotation. READ. id -> CBC

176

Appendix F: Multi-Type Component Generic Specification Model Example

[]
reset? 1 -> annotation. RESET. id -> CBS

CES
clock? 1 ->

Chan PROC STORAGECOMPONENTANNOTATED SPEC. 3 -> SKIP
11

chan_PROC_STORAGECOMPONENT_ANNOTATED SPEC. 4 -> SKIP

readallowedl0 ->
(III x: set(data) 0 x10 -> SKIP

(char link PROC STORAGECOMPONENT ANNOTATEb SPEC -> CBA)

CBC =

let
CBCA =

clock? l ->
chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->

annotation. READALLOiPBD. id ->
readallowed! 1 ->
(CBCB (data, 0)

chan_link PROC_STORAGECOMPONENT_ANNOTATEb_SPEC ->
CBA

(]
chan PROC STORA(3ECOMPONENT_ANNOTATED_SPEC. 4 ->

annotation. DONTREAD. id ->
readallowedl0 ->

x: aet(data) @ x! 0 -> SKIP

(chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
CBD

CBCB (x, y) .
length(x) .. 0& annotation. ERROR. id -> STOP
[]
length(x) _: 1& CBCC(head(x),
[]

length(x) >1&
(CBCC(head(x), y)

III CBCB(tail (x), y+1)

Y)

CBCC(x, y)
annotation. DATABIT. id. y. 0 -> x! 0 -> SKIP

within CBCA
CBD

reset? 1 ->
read? O -> annotation. RESET. id -> CBS
[)

read? 1 -> annotation. ERROR. id -> STOP

[)
reset? O ->

read? O -> CBE
U
read? 1 -> annotation. ERROR. id -> STOP

[l
read? O ->

(reset? 1 -> annotation. RESET. id -> CBB

177

Appendix F: Multi-Type Component Generic Specification Model Example

t]
reset? 0 -> CBE

(1
read? 1 -> annotation. ERROR. id -> STOP

CBE .
clock? 1 ->

chan_PROC STORAGECOMPONENT_ANNOTATED SPEC. 4 ->
annotation. DONTREAD. id ->
readallowedlo -> ((III x: aet(data) ! x! o -> SKIP

(chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC -> CBD

within (readallowedl0 ->
((ill x: set(data) a x! 0 -> SKIP

chap link_PROC STORAGECOMPONENT ANNOTATEQ SPEC -> CBA

within CA
D=

let
DA -

let
DAA =

t

}

DAB
(union (

reset,
clock,
chap link PROC STORAGECOMPONENT ANNOTATED SPEC

t dran PROC_STORAGECOMPONENT ANNOTATED_8PEC. y
I y<-{3,4}

DAD

[) {ý reset. 1,
chan_PROC_STORAf323COMPONENT_ANNOTATED_SPEC,
chan_readbits PROC_STORAGECOMPONENT ANNOTATED_SPEC,
chan storebite_PROC_STORAaECOMPONENT ANNOTATED_SPEC,

clock,
chan_link PROC_STORAGECOMPONENT ANNOTATED_SPEC

(}

iý { chan link PROC_STORAGECOMPONENT_ANNOTATED_SPEC -> H}
)\ {ý chan_link

_PROC
STORAGECOMPONENT ANNOTATED SPEC,

chan_readbite_PROC STORAGECOMPONENT ANNOTÄTED SPEC,
chan_etorebita_PROC_STORAGECOMPONENT ANNOTATED-SPEC,
chan PROC_STORAGECOMPONENT ANNOTATED_SPEC

ý}
DAB

length(stores) I- length(aid) & STOP
q
length(stores) _- length(sid) & DAC(stores, sid)

DAC(x, z) -
length(x) =a 1& DB(head(x), head(z))
0

length(x) >1&
DB(head(x), head(z))

union(
reset,
clock,
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC

11

178

Appendix F: Multi-Type Component Generic Specification Model Example

{ chan PROC_STORAGECOMPONENT_ANNOTATED_SPEC. y
y<-{3,4}

Jý
DAC(tail(x), tail(z))

DAD =
length(reads) != length(rid) & STOP
0
length(reads) _= length(rid) & DAE(reade, rid)

DAE(x, z) _
length(x) _= 1& DC(head(x),
11

length(x) >1&
DC(head(x), head(z))
Iý union(

(I reset,

I}

clock,

head(z))

chan_link PROC_STORAGECOMPONENT_ANNOTATED_SPEC

{ chan_PROC_STORA(3ECOMPONENT_ANNOTATED_SPEC. y
ý y<-{3,4}

}

II DAE(tail(x), tail(z))

within DAA
DB((store, stored, data),

let
DBA =

DBB

(I (1

id)-

chan_mid PROC STORAGECOMPONENTANNOTATED SPEC,
chan_link_PROC_STORAGECOMPONBNT_ANNOTATED_SPEC,
clock

II
11 DBC

\ {I chan_mid PROC STORAGECOMPONENT ANNOTATED_SPEC
DBB -

let
DBBA -

chan_mid_PROC STORAGECOMPONENT_ANNOTATSD_SPEC. 0 ->
((11 x: set(data) ®

(x? 0 -> SKIP
[)

x? l -> annotation. ERROR. id -> STOP

1

i

ý

clock? i ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
DBBA

[]
chan_mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 1 ->

(DBBB(data)

DBBA

DBBB (x)
length (x)
II

-- 0& annotation. ERROR. id -> STOP

179

Appendix F: Multi-Type Component Generic Specification Model Example

DBBC(x, y) .
t(x? 0 ->

chanmidPROC STORAGECOMPONENTANNOTATED SPEC. 2 ->
Chan_storebits_PROC STORAGECOMPONENT__ANNOTATED_SPEC. y. 0 ->
annotation. DATABIT. id. y. 0 ->
clock? 1 ->
SKIP

U
clock? 1 -> SKIP

length(x) _= 1& DBBC(head(x), length(data) - 1)
(]
length(x) >1&

DBBC(head(x), length(data) - length(x))
[' { chan_link_PROC STORAGECOMPONENT ANNOTATED_SPEC,

chan_mid PROC_STORAGECOMPONENT_14NNOTATED_SPEC. 2,
clock. 1

}
11

DH$H(tail(x))

[)
x? 1 ->

chan_mid PROC STORAGECOMPONENT ANNOTATED SPEC. 2 ->
chan_storebits_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. y. 1 ->
annotation. DATABIT. id. y. 1 ->
clock? 1 ->
SKIP

[7
clock? 1 -> SKIP

(chan, link_PROC_STORAGECOMPONENT ANNOTATED_SPEC -> SKIP

within DBSA
DBC

reset? 1 ->
store? O ->

chan_mid PROC STORAGECOMPONENT ANNOTATED_SPEC. O ->
SKIP

1]
atore? i ->

Chan
_mid_PROC

STORAQECOMPONENT ANNOTATED_SPEC. 1 ->
SKIP

annotation. RESET. id -> DBD

[]
reset30 ->

store? 0 ->
chan mid PROC STORAGECOMPONENT_ANNOTATED SPEC. O ->
annotation. IDE. id ->
DBD

[]
store?]. ->

Chan PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
chan_mid PROC STORACýECOMPONENT_ANNOTATED_SPEC. 1 ->
annotation. STORE. id ->
chan_mid_PROC STORAGECOMPONENT_ANNOTATED SPEC. 2 ->
DBE

n
store? 0 -> chan_mid PROC_STORAOECOMPONENT_ANNOTATED_SPEC. 0 ->

((reset? 0 -> annotation. IDLE. id -> SKIP

180

Appendix F: Multi-Type Component Generic Specification Model Example

[l
reset? 1 -> annotation. RESET. id -> SKIP

DBD

U
store? 1 -> chan mid_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 1 ->

reset? O ->
char PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
annotation. STORE. id ->
char mid PROC STORAGECOMPONENT ANNOTATED SPEC. 2 ->
DBE

[]
reset? 1 -> annotation. RESET. id -> DBD

DBD ý
a

clock? l ->
Chan PROC STORAGECOMPONENT ANNOTATED SPEC. 3 -> SKIP
11

char PROC STORAGECOMPONENT ANNOTATED SPEC. 4 -> SKIP

atoredl0 ->
chan_link PROC STORAGECOMPONENT_ANNOTATED_SPEC ->
DBC

DBE
clock? 1 ->

chan_PROC STORAGECOMPONENT
_

ANNOTATED_SPEC. 3 ->
annotation. STORED. id ->
storedll ->
char link_PROC_STORAGECOMPONENT ANNOTATED_SPEC ->
DBC

[]
chan_PROC_STOR. AGECOMPONENT_ANNOTATED_BPEC. 4 ->

annotation. NOTSTORED. id ->
storedlO ->
chan link_PROC STORAGECOMPONENT_ANNOTATED_SPEC ->
DBP

DBF .
reget? 1 ->

store? 0 ->
chan_mid_PROC STORAGECOMPONENT_ANNOTATED_SPEC. 0 ->
annotation. RESET. id ->
DBD

(]
store? 1 -> annotation. ERROR. id -> STOP

tl
reset? O ->

store? O ->
chan_mid_PROC STORAGECOMPONENT ANNOTATED SPEC. 0 ->
DBG

H
store? l -a annotation. SRROR. id - STOP

U
store? 0 -> chan_mid_PROC_STORAGECOMPONENT__ANNOTATED_SPEC. 0 ->

reset? 1 -> annotation. RESET. id -> DBD
[)

reset? O -> DBG

[1
store? 1 -> annotation. BRROR. id -> STOP

DBG

181

Appendix F: Multi-Type Component Generic Specification Model Example

clock? l ->
chan_PROC STORAGECOMPONENT_ANNOTATED SPEC. 4 ->
annotation. NOTSTORED. id ->
etoredl0 ->
chan_link_PROC_STORAGECOMPONENT ANNOTATED-SPEC ->
DBF

within (storedt0 ->
chan_link_PROC STORAGECOMPONENT ANNOTATED SPEC ->
DBA

DC((read, readallowed, data), id
let

DCA =
reset? 1 ->

read? O -> SKIP
[l

read? 1 -> SKIP

annotation. RESET. id -> DCB

[]
reset? o ->

read? O -> annotation. IDLE. id -> DCB
[]
read? 1 ->

Chn_PROCSTORAßECOMPONENTANOTATED SPEC. 3. ->
annotation. READ. id ->
DCC

read? O ->
reset? 0 -> annotation. IDLE. id -> SKIP
U

reset? i -> annotation. RESET. id -> SKIP

DCB

[]
read? l ->

reset? O ->
chan_PROC_STORAGECOMPONENTANNOTATED SPEC. 1 ->
annotation. READ. id ->
DCC

[]
reset? 1 -> annotation. RESET. id -> DCB

DCB =
C10Ck? 1 ->

((Chan_PROC_8TORAGECOMPONENT_ANNOTATED 6PEC. 3 -> SKIP
[1
chan_PROC STORAGECOMPONENT_ANNOTATED SPEC. 4 -> SKIP

readallowedl0 -> (III x: aet(data) ® x10 -> SKIP)

(than link PROC STORAGECOMPONENT ANNOTATEb SPEC -> DCA

DCC =
((DCD

[1 11 chan_link PROC_STORAGECOMPONENT_ANNOTATED_SPEC,
readallow_ed,
chan_PROC STORAGECOMPONENT_ANNOTATED_SPEC,
reset,
read,

182

Appendix F: Multi-Type Component Generic Specification Model Example

II DCE

DCA

if
clock

DCD
let

DCDA =
clock? l ->

Chan
_PROC_STORAGECOMPONENTANNOTATED_SPEC.

4 ->
annotation. DONTREAD. id ->
readallowedl0 ->
chan_link PROC STORAGECOMPONENT ANNOTATED SPEC ->
DCDS ----

1]
Chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->

annotation. READALLOWED. id ->
readallowedll ->
chan_link_PROC STORAGECOMPONENTANNOTATED SPEC ->
SKIP

DCDB
reset? 1 ->

read? O ->
annotation. RESET. id ->
clock? 1 ->
chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->
readallowedl0 ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
SKIP

[l
read? l -> annotation. ERROR. id -> STOP

[]
reset? O ->

read? O ->
clock? l ->
chap PROC STORAGECOMPONENT_ANNOTATED SPEC. 4 ->
annotation. DONTREAD. id ->
readallowedl0 ->
chan_link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
DCDB

[]
read? 1 -> annotation. ERROR. id -> STOP

[]
read? O ->

reset? 1 ->
annotation. RESET. id ->
clock? l ->
Chan_PROC_STORAGECOMPONENT_ANNOTATED SPEC. 3 ->
readallowedl0 ->
chan_link PROC_STORAGECOMPONENT ANNOTATED_SPEC ->
SKIP

[3
reset? O ->

clock? 1 ->
chan_PROC_STORAGECOMPONENT_ANNOTATED SPEC. 4 ->
annotation. DONTREAD. id ->
readallowedl0 ->
chan_link PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->
DCDB

[]
read? 1 -> annotation. ERROR. id -> STOP

183

Appendix F: Multi-Type Component Generic Specification Model Example

within DCDA
DCE

let
DCEA(x)

length(x) 0& annotation. ERROR. id -> STOP
[1

length(x) 1&

char_readbits_PROC_STbRAGECOMPONENT ANNOTATED SPEC. (
length(data) - length(x)

?z -> DCEB(head(x), z, (length(data) - length(x)))

[]
length(x) >1&

chan_readbita_PROC STORAGECOMPONENT ANNOTATED SPEC. (
length(data) --length(x)

?z -> DCEB(head(x), z, (length(data) - length(x)))

char link PROC_STORAGECOMPONENT_ANNOTATED_SPEC,
readallowed,
chan_PROC STORAGECOMPONENT_ANNOTATED_SPEC,
reset,
read,
clock

I)
1]

DCEA(tail(x))

DCEB (X, y, z)
Chan

_PROC_STORAGECOMPONENT_ANNOTATED_SPEC.
4 ->

readalloweci! 0 ->
X10 ->
Chan

_link _PROC_STORAGECOMPONENT
ANNOTATED_SPEC ->

DCEC (x)
[)
Chan _PROC_STORAGECOMPONENT_ANNOTATED_SPEC.

3 ->
readallowedll ->
annotation. DATABIT. id. z. y ->
x! y ->
Chan

_link
link_PROC_STORAGECOMPOKENT_ANNOTATED- SPEC

SKIP
DCEC(x)

reset? 1 ->
read? 0 ->

clock? i ->
Chan PROC STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->
readallowedlO ->
X10 ->
Chan

-link_PROC_STORAGECOMPONENT_ANNOTATED_SPEC
->

SKIP
[]
read? 1 -> STOP

t]
reset? O ->

read? O ->
clock? 1
chan_PROC STORAGECOMPONENT_ANNOTATED SPEC. 4 ->
readailowedl0 ->
xl0 ->
chan_link

_PROC
STORAGECOMPONENT_ANNOTATEDSPEC ->

DCEC(x)
t]
read? 1 -> STOP

184

Appendix F: Multi-Type Component Generic Specification Model Example

tl -
read? 0 ->

reset? 1 ->
clock? 1 ->
Chan PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->
readallowedl0 ->
X10 ->
Chan

_link
PROC_STORAGECOMPONENT_ANNOTATED_SPEC ->

SKIP
[]
reset? O ->

clock? 1 ->
Chan

_PROC_STORAGECOMPONENT_ANNOTATED_SPEC.
4 ->

readallowed! 0 ->
x! 0 ->
chan_link_PROC_STORAGECOMPONENT ANNOTATED_SPEC ->
DCEC(x)

read? 1 -> STOP
within clock? l -> DCBA(data)

within (readallowedl0 ->
((ICI x: set(data) ® x10 -> SKIP

(chap link_PROC STORAGECOMPONENT ANNOTATED_SPEC -> DCA)

within DA
-- No Reads or Stores
E-

reset? 0 -> SKIP
[]

reset? l -> SKIP
); (clock? l -> E

let
FA -

reset? 1 -> clock? l -> chan_PROC_STORAGECOMPONENT_ANN0TATED_SPEC. 3
chan_link PROC_STORAGECOMPONENT_ANNOTATED_SPEC -> PA

[]
clock? l -> chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->

chan_link_PROC_STORAGECOMPONENT ANNOTATED_SPEC -> FA
I]

chan_PROC STORAGECOMPONENT ANNOTATED SPEC. O -> PB
I]

chan_PROC STORAGECOMPONENT_ANN0TATED_SPEC. 1 -> PC
PB -

clock? i -> chan_PROC_STORAGECOMPONENT_ANNOTATED_SPEC. 3 ->
chan_link PROC_STORAGECOMPONENT ANNOTATED_SPEC -> PA

I]
chan_PROC STORAGECOMPONENT_ANNOTATED_SPEC. O -> PD
[]

chan_PROC STORAGECOMPONENT ANNOTATED SPEC. 1 -> PD
PC -

clock? 1 -> chan_PROC_STORAGECOMPONENT_ANNOTATED SPEC. 3 ->
chan_link PROC_STORAGECOMPONENT_ANNOTATED_SPEC -> PA

I]
than_PROC_STORAGECOMPONENTANNOTATED SPEC-0 -> FD
11

Chan PROC STORAGECOMPONENTANNOTATEb SPEC. 1 -> PC
PD -----

reset? l -> clock? l -> chan_PROC_STORAGECOMPONENT_ANN0TATED_SPEC. 3 ->
than link PROC STORAGECOMPONENT ANNOTATED SPEC -> FA

Il -----
clock? 1 -> chan_PROC_STORAGECOMPONENT_ANN0TATED_SPEC. 4 ->

char link PROC STORAGECOMPONENT ANNOTATED SPEC -> FD
11

Chan PROC STORAGECOMPONENT ANNOTATED SPEC. O -> PD

185

Appendix F: Multi-Type Component Generic Specification Model Example

(]
chan_PROC STORAGECOMPONENT ANNOTATED_SPEC. 1 -> FD

within FA
Gs

let
GA =

length(stores) !=0& GB(head(stores))
(]
length(reads) !=0& GB(head(reads))

G8(
_,

data))_
[I { reset. 1 } !]x: {0.. (length(data)-1)} ® GC(x, 0)

GC (x, y) _
reset?]. -> GC(x, 0)
(l
chan_readbits_PROC_STORAGECOMPONENT ANNOTATED_SPEC. xty -> GC(x, y)
(1

chan_etorebite_PROC STORAGECOMPONENT_ANNOTATED SPEC. x? z -> GC(x, z)
within GA

H=
F

(({ reset. 1} (]
G

within chase(A)

F. 1.5 GenSpec 5: Annotating the Outer Layer

This CSP model is used to annotate the outer layer of an implemented sub-type of this

component. The process allows correct input and output signals to be able to annotate and
describe that an error has occurred. No internal choice is used, as this should not restrict

or control a process, but only annotate what is occurring.

Figure 94: Generic Data Storage Annotate Outer Layer

channel Chan_PROC_STORAGEcOMPONNT ANNOTATE OUTER: (0,1,2,3,4,5

channel chan_link_PROC_STORAGECOMPONENT_ANNOTATE_OUTER
PROC_STORAGECOMPONENT ANNOTATE_OUTER(clock, reset, stores, aid, reads, rid)

let
A=

C(stores, aid)
tý union({I clock, reset

{ Chan_link_PROC STORAGECOMPONENT ANNOTATE OUTER }

I) E(reads, rid)
\ (chan_link

_PROC
STORAGECOMPONENT_ANNOTATEOUTER}

-- if there are no stores or reads
B-

chan_link
_PROC

STORAGECOMPONENT ANNOTATE OiiTER ->
reset? O ->ýclock? 1 -> B
[]

reset? 1 -> clock? l -> B

-- Stores
C (x, Y)

length(x) -- 0&B
[]
length(x) >0&

D(head(x), head(y))
union(clock, reset

{ chan_link_PROC_STORAGECOMPONENT_ANNOTATE OUTER }

186

Appendix F: Multi-Type Component Generic Specification Model Example

]
C(tail(x), tail(y))

-- Controll CSP taken from DataStore object
-- with an extra event to ensure all outputs happen before new inputs
D((store, stored, databits), id) s

let
DA

than PROC STORAGECOMPONENTANNOTATE OUTER. 1 -> DR(databits)
11

chan_PROC STORAGECOMPONENT_ANNOTATE_OUTER. 2 ->
(ýý) x: set(databita) e

x? O -> SKIP
[)

x? l -> annotation. ERROR. id -> STOP

s

(chan PROC STORAGECOMPONENT ANNOTATE OUTER. O -> DA)
DH (x) -

-- --

length(x) 0& annotation. ERROR. id -> STOP
j]
length(x) 1& DI(head(x), length(databits)-1)
j)
length(x) >1&

DI(head(x), length(databits)-length(x))
chan PROC STORAGECOMPONENT_ANNOTATE_OUTER. y

DH(tail(x))
y<-{4,5} i

DI (x, y) -
x? 1 ->

chan_PROC
i_STORAGECOMPONENT

ANNOTATE_OUTER. 4 ->
annotaton. DATABIT. id. y. 1 ->
SKIP

U
Chan PROC STORAGECOMPONENT ANNOTATE OUTER. 5 -> SKIP

t]
x? o ->

chan_PROC STORAGECOMPONENT_ANNOTATE_OiTfER. 4 ->
annotation. DATABIT. id. y. 0 ->
SKIP

H
chan_PROC_STORAGECOMPONENT_ANNOTATE_OUTER. 5 -> SKIP

DB
chap link

_PROC_STORAQECOMPONENT_ANNOTATE_OUTER
->

store? 0 -> chan_PROC_STORAGECOMPONENT_ANNOTATE OUT'ER. 2 ->
reset? 1 -> annotation. RESET. id -> SKIP
[)
reset? O -> annotation. IDLE. id -> SKIP

DC

(]
store? 1 -> chan_PROC_STORAQECOMPONENT_ANNOTATE _OUTER.

1

(reset? 1 ->
annotation. RESET. id ->
chan_PROC_STORAAECOMPONENT__ANNOTATE_OUTER. 5 ->
DC

[1
reset? O ->

annotation. STORE. id ->
chan_PROC STORACGECOMPONENT_ANNOTATE_OUTER. 4 ->
DD

} 11

187

Appendix F: Multi-Type Component Generic Specification Model Example

p
reset? O ->

store? 1 ->
chan_PROC STORAGECOMPONENT__ANNOTATE_OUTER. 1 ->
annotation. STORE. id ->
chan_PROC_STORAGECOMPONENT_ANNOTATE_OUTER. 4 ->
DD

[]
store? O ->

chan_PROC_STORAGECOMPONENT_ANNOTATE_OUTER. 2 ->
annotation. IDLE. id ->
DC

[]
reset? 1 ->

store? 1 ->
chan_PROC_STORAGECOMPONENT_ANNOTATE_OUTER. 1 ->
annotation. RESET. id ->
chan_PROC-STORAGECOMPONENT ANNOTATE OUTER. 5 ->
SKIP -_

[]
store? O ->

Chan_PROC_STORAGECOMPONENT_ANNOTATE OUTER. 2 ->
annotation. RESET. id ->
SKIP

ý
DC

DC -
chan PRO STORAGECONPONENT ANNOTATE OUTER. 0 -> clock? 1 ->

atoredl0 -> DB
[]
®toredll -> annotation. ERROR. id -> STOP

DD s
chan_PROC_STORAC3ECOMPONENT_ANNOTATE_OUTER. 0 -> clock? 1 ->

(etoredll -> annotation STORED. id -> DB
[]
storedl0 -> annotation. NOTSTORED. id -> DE

DE
Chan

_link_PROC_STORAGECOMPONENT_ANNOTATE_OUTER ->
store? 1 -> annotation. ERROR. id -> STOP
[l

store? O ->
Chan_PROC_STORAGECOMPONENT_ANNOTATE_OUTER. 2 ->
reset? y ->
DG(y)

[J
reset? y ->

store? 0 ->
Chan_PROC STORAGECOMPONENTANNOTATE-OUTER. 2 ->
DG(y) --

(]
store? 1 -> annotation. ERROR. id -> STOP

DF -
atoredl0 -> DB
[]

atoredll -> annotation. ERROR. id -> STOP

chan_PROC_STORAGECOMPONENT__ANNOTATE_OUTER
DA

)\ chan_PROC_STORAGECOMPONENT ANNOTATE_OUTER
DG (Y) ý

188

Appendix F: Multi-Type Component Generic Specification Model Example

I == 1
(l
y == 0

within DF
-- Reads
E (x, y) _

& annotation. RESET. id -> DC

& DD

length(x) -0&B
[]
length(x) >0&

F(head(x), head(y))
[I union((I clock, reset { chan_link PROC_STORACiECOMPONENT_ANNOTATE_OUTER

II E(tail(x), tail(y))

}

-- Controll CSP taken from DataRead object
-- with an extra event to ensure all outputs happen before new inputs
F((read, readallowed, databits), id)

let
PA

-> chan_link
_PROC_STORAGECOMPONENT_ANNOTATE-OUTER read? x -> reset? y -> FD(x, y)

1)
reset? y -> read? x -> FD(x, y)

FB
than link PROC STORAGECOMPONENT_ANNOTATE_OUTER ->

read? 0 ->
reset? 1 -> annotation. RESET. id -> clock? 1 -> FF
[7
reset? O -> clock? 1 -> PC

[l
reset? 1 -> read? O -> annotation. RESET. id -> clock? 1 -> FF
(1
reset? 0 -> read? O -> clock? 1 -> PC

FC =
readallowedll -> annotation. READALLOWED. id

(PG(databita)

FA
)

[l
readallowedl0 -> annotation. DONTREAD. id -> III x: aet(databita) ®

xi0 -> SKIP
[J

xll -> annotation. ERROR. id -> STOP

)
FB

PD (x, y)
Yý=1 & annotation. RESET. id -> clock? 1 -> FF
[l

Y == 0&
x -= 0& annotation. IDLE. id -> clock? 1 -> FF
11

X --

FE (y) _
Y"1
11

y =a 0

FF :

1& annotation. READ. id -> clock? 1 -> FC

& annotation. RESET. id -> clock? 1 -> FF

& clock? 1 -> FC

readallowedll -> annotation. ERROR. id -> STOP

i},

189

Appendix F: Multi-Type Component Generic Specification Model Example

[l
readallowedl0 -> III x: aet(databita) ®

x! 0 -> SKIP
fl
x! 2 -> annotation. ERROR. id -> STOP

PA

FG(x) _
length(x) 0& annotation. ERROR. id -> STOP
[)
length(x) 1& PH(head(x), length(databits) - length(x))
[l
length(x) >1&

PH(head(x), length(databits) - length(x))
III
FG (tail (x))

FH (x, y)
x! 0 -> annotation. DATABIT. id. y. 0 -> SKIP
(3
x! i -> annotation. DATABIT. id. y. 1 -> SKIP

within FF
within chase (A)

F. 1.6 GenSpec 6: Clock Cycle Higher Generic Specification

This CSP model is an annotation only clock cycle based higher conceptual specification.
It is used as a comparison for the extracted annotations from the annotated low level
hardware models.

Figure 9S: Generic Data Storage Annotation Specification
channel chan_mid_PROC_STORAGECOMPONENT HIGHER OUTER_SPEC: 0.. 2
channel chan_link

_PROC_STORAGECOMPONENT_HIGHER_OUTER _SPEC channel chan_PROC STORAGECOMPONENT HIGHER OUTER SPEC: {0.. 4}
channel chan_readbits PROCSTORAGECOMPONENTHIGHER OUTER SPEC: {0.. 2}. {0,1}
channel char storebits_PROC STORAGECOMPONENT_HIGHER OUTER SPEC: {0.. 2}. {0,1}
PROC_STORAGECOMPONENT HIGHER_OUTER_SPEC(bitLength, Did, rid)

let
A=

length(sid) _= 0 and length(rid) 0& SKIP
(]

length(rid) I. 0 and length(rid) 0&B
(]
length(rid) _- 0 and length(rid) !-0&C
(]

length(sid) !=0 and length(rid) !-0&D
B=

let
BA =

([ý {ý annotation. RESET,

chanPROC STORAGECOMPONENT_HIGHEROUTER SPEC. 2,
chan__PROC STORAGECOMPONENT HIGHER_OUTER_SPEC. 3,
chan_link PROC_STORAGECOMPONENT_HIGHEROUTER SPEC

Il
ý] x: eet(sid) 0 BB(x)

chan_link PROC_STORAGECOMPONENT_HIGHEROUTER SPEC,

char PROC STORAGECOMPONENT HIGHER OUTER SPEC,

190

Appendix F: Multi-Type Component Generic Specification Model Example

I}
II

BD
BB (x) _

(! III y: eet(sid) ® annotation. RESET. y -> SKIP); BB(x)

annotation. IDLE. x ->
-> than link

_PROC_STORAGECOMPONENT_HIGHER _OUTER
SPEC

Chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 2 -> SKIP
11

Chan PROC STORAGECOMPONENTHIGHER OUTER SPEC. 3 -> SKIP

annotation. RESET

ý
(char link PROC STORAGECOMPONENT HIGHER OUTER SPEC -> BB(x)

[l
annotation. STORE. x ->

chan_PROC STORAGECOMPONENT_HIGHER_OUTER_SPEC. 0
111 ya{0.. (bitLength-1)}

annotation. DATABIT. x. y. 0 -> SKIP
tl
annotation. DATABIT. x. y. 1 -> SKIP

chan_link
_PROC

STORAGECOMPONENT HIGHER OUTER SPEC ->
chan_PROC STORAGECOMPONENT_HIGHER OUTER_SPEC. 2 ->

annotation. STORED. x ->
chan_link PROC_STORAGECOMPONENT HIGHER_OUTER_SPEC ->
SB(X)

1)
chan_PROC_STORAGECOMPONENT_HIGHER OUTER_SPEC. 3 ->

annotation. NOTSTORED. x ->
Chan link_PROC_STORAGECOMPONENT RIGHER_OUTERSPEC ->
BC (x)

BC (x) -
y: aet(aid) ! annotation. RESET. y -> SKIP); BB(x)

I]
chan_link

_PROC_STORAGECOMPONENT_HIGHER_OUTER
SPEC ->

chan_PROC STORAGECOMPONENT_HIGHER OUTER_SPEC. 3

annotation. NOTSTORED. x ->
chan_link PROC_STORAGECOMPONENT HIGHER_OUTER_SPEC ->
BC (x)

-- Storeage
BD =

chan_link
_PROC_STORAGECOMPONENT

HIGHER OUTER SPEC ->
chan_PROC STORAGECOMPONENT_HTGHER OUTER_SPEC. 2
chan_link PROC_STORAGECOMPONENT HIGHER

_OUTER
SPEC ->

BD
t]
chan_PROC STORAGECOMPONENT_HIGHER OtTfER_SPEC. 0 -> BE
[]

y: set(sid) ® annotation. RESET. y -> SKIP BD
BE

chan_link PROC STORAGECOMPONENT HIGHER OUTER SPEC ->
chan_PRÖC STORAGECOMPONENTHIGHER OIITER_SPEC. 2 ->
chan_link_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC ->
BD

U
chan_PROC STORAf9ECOMPONENT HIaHER_OUTER SPEC. 0 -> BF

BF a
y: aet(sid) a annotation. RESET. y -> SKIP); BD

(l
chan link PROC STORAßECOMPONENT HIGHER OUTER SPEC ->

191

Appendix F: Multi-Type Component Generic Specification Model Example

chan_PROC_STORAßECOMPONENT_HIC3HER_OUTER_SPEC. 3 ->
chan link_PROC_STORAC3ECOMPONENT_HIC3iiER_OUTER_SPEC ->
BF

[7
chan_PROC STORAGECOMPONENTHIGHER OUTER SPEC. 0 -> BP

within (BA \ {ý Chan
_link_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC, chap PROC STORAGECOMPONENT HIGHER OUTER SPEC

I}

let
CA

[ý {ý ennotation. RESET,

i}
chap link PROC STORAGECOMPONENT HIGHER OUTER SPEC

1] x: eet(rid) a CB(x)
CB(x) _

((ýý) y: aet(rid) a annotation. RESET. y -> SKIP); CB(x)
[]

annotation. IDLE. x ->
chan_link_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC ->
chan_link_PROC_STORAGSCOMPONENT HIGHER_OUTER SPEC ->
CB (x)

[]
annotation. READ. x ->

chan_link PROC_STORAGECOMPONENT_HIGHER_ODTER SPEC ->
CC (x)

CC (x) _
annotation. READALLOP1ED. x ->

y: {0.. (bitLength-1)} a annotation. DATABIT. x. y. 0 -> SKIP

chan_link_PROC STORAGECOMPONENT_HIGHER OUTER SPEC -> CB(x)

within CA \ {ý chan_link_PROC_STORAGECOMPONENT_HIGHER OUTER_SPEC
D=

let
DA =

((([) union({I annotation. RESET,
chan_link _PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC

{ chan_PROC_STORAGECOMPONENT_HIGHER OUTER SPEC. y
I y<-{2,3}

}

f) x: filet (Bid) ® DB(x)

union({l annotation. RESET,
char link PROC STORAGBCOMPONBNP_HIGHER OUTER SPEC

I}
{ chan_PROC_STORAGECOMPONBNT_HIGSHER OUTER SPEC. y

y-c'{2.3}
}

I] [I union({ annotation. RESET,
chap link PROC STORAGECOMPONENT_HIGHER OUTER SPEC

11

{ chanPROC_STORAGECOMPONENT-HIGHER OUTER SPEC. y
I y_< {2,3}

}

x. -set(rid) 0 DB(x)

[ý {' cban link PROC STORAGECOMPONENT HIGHER OUTER SPEC,

192

Appendix F: Multi-Type Component Generic Specification Model Example

17

DJ ý ýci

i} -- Store
DB(x) -

ChanPROC STORAGECOMPONENT_HIGHER
_OUTER _SPEC, chan_atorebita_PROC STORAGECOMPONENT HIGHER

_OUTER _SPEC, char readbits_PROC_STORAGECOMPONENT_HZGHER_OUTER_SPEC,
annotation. RESET

11

than link_PROC STORAGECOMPONENT_HIGHER_OUTER SPEC,
chap PROC_STORAGECOMPONENT_HIGHEROUTER SPEC,
chan_etorebitaPROCSTORAGECOMPONENT_HIGHER OUTER SPEC,
chan_readbita_PROC STORAGECOMPONENT HIGHER_OUTER_SPEC

chan_link PROC STORAdECOMPONENT_HIf3fIER_OUTER
_SPEC ->

(7(_ ýjý y: union(set(sid), set(rid)) ® annotation. RESET. y -> SKIP

DS (x)

[]
annotation. IDLE. x ->

chan_link
_PROC_STORAGECOMPONENT_HIGHER

OUTER SPEC ->
chan_PROC STORAGECOMPONSNT HIGHER_OUTER_SPEC. 2 -> SKIP
Q

Chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 3 -> SKIP

; DS (x)

(]
annotation. STORE. x ->

Chan_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC. 0 ->
((III y: {0.. (bitLength-1)}

annotation. DATABIT. x. y. 0 ->
chap storebits_PROC STORAGECOMPONENT_HIGHER OUTER_SPEC. y. 0 ->
SKIP

i]
annotation. DATABIT. x. y. 1 ->

chan_storebits PROC_STORAG$COMPONENT HIGHER OIITER_SPEC. y. 1 ->
SKIP

-> chan_link
_PROC_STORAGtECOMPONENT

HIGHER
_OUTER-SPEC

chan_PROC_STORAGECOMPONENT_HI(3HER_OUTER SPEC. 2 ->
annotation. STORED. x ->
DB (x)

[)
chan_PROC STORAGECOMPONENT_HIGtHER ODTER_SPEC. 3 ->

-> annotation. NOTSTORED. x
DD(x)

DD (x) -
Chan_link PROC_STORAGECOMPONENT_HIGHER_OUTER SPEC ->

(((Ill y: union(set(sid), set(rid)) 0 annotation. RESET. y

DB (x)

[]
chan_link PROC_STORAaECOMPONENT_HIQHER_OUTER_SPEC ->

chin
_PROC

STORAC3ECOMPONENT_HIC3HER OUTER_SPEC. 3 ->
annotation. NOTSTORED. x ->
DD (x)

-> SKIP

193

Appendix F: Multi-Type Component Generic Specification Model Example

-- Reads
DE (x) -

chan_link
_PROC

STORAGECOMPONENT_HIGHER OUTER SPEC ->
(((ITI y: union(set(sid), set(rid)) a annotation. RESET. y -> SKIP

DB (x}

U
annotation. IDLE. x ->

chan link
_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC ->

chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 2 -> SKIP
11

chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 3 -> SKIP

; DS (X)

H
annotation. READ. x ->

chan_PROC 8TORAGECOMPONENT HIGHER OUTER SPEC. 1 ->
((([ý union(

{ Chan_PROC_STORAGECOMPONENTHIGHER OUTER SPEC. y,
annotation. READALLOWED. x,
annotation. DONTREAD. x,
chan_link_PROC STORAGECOMPONENT_HIGHER OTTTER SPEC

I y<-{2,3}
}

{) annotation. RESET

y: {O.. (bitLength-1)}

Chan
_readbits_PROC_STORACECOMPONENT

HIGHER_OTTfER SPEC. y. 0 ->
DG(x, y, 0)

(]
than_readbite_PROC_STORAGECOMPONENT HIGHER_OUTER_SPEC. 7.1

DG (x, y, 1)

)
[I union({ chan_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC. y,

annotation. READALLOWED. x,
annotation. DONTREAD. x,
chan_link_PROC-STORAGECOMPONENT_HIGHER_OUTER_SPEC
I y<-{2,3j

}

{ý annotation. R8S8T (}

DE (8)

1]
DF(x)

DF(X) :
y: union(aet(aid), aet(rid)) ® annotation. RESET. y -> SKIP

[l
chan_link PROC STORAGECOMPONENT HIGHER_OUTER SPEC ->

chan_PROCSTORAGECOMPONENT
HIGHER_OUTER SPEC. 2 ->

annotation. READALLOWED. x ->
SKIP

[l
chan_PROCSTORAGECOMPONENT HIGHER_OUTER_SPEC. 3 ->

annotation. DONTREAD. x ->
chan link PROC STORAGECOMPONENT HIGHER oUTER_SPEC ->
DF(x)

194

Appendix F: Multi-Type Component Generic Specification Model Example

DG(x, Y, Z) _
Chan

_link
PROC_STORAGECOMPONENT HIGHER_OUTER SPEC ->

chan_PROC STORAGECOMPONENT_HIGHEROUTER SPEC. 2 ->
annotation. READALLOWED. x ->
annotation. DATABIT. x. y. z ->
SKIP

[l
chan_PROC STORAGECOMPONENT_HIGHER OUTER_SPEC. 3 ->

annotation. DONTREAD. x ->
Chan

_link
PROC STORAGECOMPONENT HIGHER OUTER SPEC ->

DI (x)

DI (x) -

(III Y: union(aet(aid), set(rid)) ® annotation. RESET. y -> SKIP
Cl

chan link
_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC ->

chan_PROC STORAGECOMPONENT_HIGHER_OUTER_SPEC. 3 ->
annotation. DONTREAD. x ->
chan_link PROC STORAGECOMPONENT HIGHER OUTER SPEC ->
DI (x) -----

-- Storeage
DJ :

([ý {I annotation. RESET x: {0.. (bitLength-1)} ® DK(x, 0))
[t {ý annotation-RESET

DL
DK (x, y) :

((III y: union(set(sid), set(rid)) it annotation. RESET. y -> SKIP

DK W, 0)

l

[]
chan_readbits_PROC STORAGECOMPONENT HIGHER OUTER SPEC. x. y -> DK(x, y)
C]
chan_atorebits_PROC STORAGECOMPONENT_HIGHER OUTER_SPEC. x. 0 -> DK(x, 0)
C]

chan_storebite PROC STORAGECOMPONENT HIGHER_OUTER_SPEC. x. 1 -> DK(x, 1)
DL =

-> chan_link
_PROC_STORAGECOMPONENT_HIGHER _OUTER _SPEC

-> (chan_link_PROC_STORAGECOMPONENT_HIGHER_OUTER-SPEC
chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 2 ->
DL -----

(]
char PROC STORAGECOMPONENT HIGHER OUTER SPEC. 0 -> DM
11

chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 1 -> DN
11
((III y: union(set(aid), set(rid)) 0 annotation. RESET. y -> SKIP

DL

DM =
chan_link PROC_STORAGECOMPONENT_HICüiER_OUTER SPEC ->

chan_PRÖC_STORApECOMPONENT_HIQHER_OUTER_SPEC. 2 ->
DL

[]
char PROC STORAGECOMPONENTHIGHER OUTER SPEC. 0 -> DO
11

Chan
_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC.

1 -> DO
DN

chan_link PROC_STORAGECOMPONENT_HIGHER
_OUTER

SPEC ->
Chan PROC STORAGECOMPONENTHIGHER OUTER SPEC. 2 ->
DL

[1

195

Appendix F: Multi-Type Component Generic Specification Model Example

Chan_PROC STORAGECOMPONENT HIGHER OUTER SPEC. 0 -> DO
13

Chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 1 -> DN
DO ------

((Hýy: union(set(aid), set(rid)) ® annotation. RESET. y -> SKIP

DL

[]
chan_link_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC ->

Chan PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC. 3 ->
chan'link PROC STORAGECOMPONENT HIGHER OUTER SPEC ->

[l
Chan PROC STORAGECOMPONENT HIGHER OUTER SPEC. 0 -> DO
11

Chan_PROC_STORAGECOMPONENT_HIGHER_OUTER_SPEC. 1 -> DO
within DA

within A

F. 2 Assertions: Linking the Models Together

To ensure consistency between all the models for a generic component, several assertions
have to be proven. The consistency between the models is required because the proof of

an implemented component can utilise several of these specifications.

F. 2.1 GenSpec Assertion 1: Initial Deadlock-Free Check

This initial deadlock-free check (see Figure 96) of GenSpec I(see section F. 1.1) is to

provide a base comparison for future deadlock-free checks and trace refinements.

196

Appendix F: Multi-Type Component Generic Specification Model Example

-- aha=al d. alarationi
channel internalChoice
channel chano {1}
channel chani : {0,1}
channel chant {0,1}
channel chan3 : {0,1}
channel chan4 : (0,1)
channel chan5 : {0,1}
channel chan6 : {0, i}
channel chan7 : {0,1}
channel chan8 (0,1}
channel chan9 : {0,1}
channel chanlO : (0,1)
channel chanil : (0,1)
channel chanl2 (0,1)
channel chanl3 {0,1}
channel chanl4 {0,1}
channel chanl5 {0,1}
channel chanl6 : {0,1}

channel chanl7 : {0, i}

-- Create an Instance of the miodel to check
- The alpha_PROC6 contains the low level channels used by thii iastance

alpha PROC6 -{I chan8, chan0, chanl2, chanl3, chanl5, chani, chan17, chanll,
chan2, chan4, chan9, chan5, chan7, chanlO, chanl6, chanl4,
chan3, chan6 (}

PROC6 - PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanlO, chanll, <chanl2, chan13>
(chan14, chaniS, <chan16, chan17>

-- Side the iaternalChoice event to enaurs that PROC6 has 'ate=al choice

-- performing correctly if needed.
GEN SPEC1 =(PROC6 \ {internalChoice}

-- Deadlock-free check the expected correct generic cappoaent
assert GEN SPECI : [deadlock free [P]]

Figure 96: Example of GenSpec Assertion 1 for Data Storage Specification

F. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour

This assertion (see Figure 97) demonstrates that GenSpec 2 (see section F. 1.2) contains

all the behaviour dictated by GenSpec 1 (see section F. 1.1), although this assertion allows

GenSpec 2 to provide extra behaviours.

197

Appendix F: Multi-Type Component Generic Specification Model Example

-- chann. 2 d. clarationa
channel internalChoice
channel chan0 : {1}
channel chant : (0, i}
channel chant to, i}
channel chan3 {0,1}
channel chan4 {0,1}
channel chan5 (0,1}
channel chan6 {0,1}
channel chan7 {0,1}
channel chan8 (0,1}
channel chan9 {0,11
channel chanlO {0,1}
channel chanli to, i}
channel chanl2 : {0,1}
channel chanl3 : (0,1}
channel chanl4 : {0,1}
channel chants {0,1}
channel chanl6 : (0,1}
channel chanl7 {0,1}

-- Create an instance of the atodels to check
The alpha_PROC contains the loan level Channels used by the Processes

alpha_PROCS chan8, chan0, chanl2, chan13, chanl5, chanl, chanl7, chanll,
chant, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 1}

PROCS - PROC_STORAGECOMPONENT_GENERIC_SPEC(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanhl, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

ý
>

alpha_PROC6 = (ý chan8, chanO, chanl2, chanl3, chanl5, chani, chanl7, chanii,
chan2, chan4, chan9, chanS, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC6 a PROC STORAGECOMPONENT_DESIRED_GENERIC SPEC(

chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanli, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chnnl7>

-- Aida the iaterna1Cboiaa event to ensure that proaeasea hat internal choice

-- performing correctly if needed.
GEN SPEC1 =(PROC6 \ (internalChoice})
GEN SPEC2 -(PROCS \ (internalChoice})

-- Check Ganspec 2 contains the behaviour of GenSpao 1

assert GEN SPEC2 [T- GEN SPEC1

Figure 97: E: ample of GenSpec Assertion 2 for Data Storage Specification

F1.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2

198

Appendix F. Multi-Type Component Generic Specification Model Example

This assertion (see Figure 98) demonstrates that the GenSpec 3 controlling specification
(see section F. 1.3) does not introduce any new behaviour to the specifications it is being

run in parallel with. This still leaves the possibility of it limiting the events that can occur,
but does not guarantee any properties regarding this.

-- chaanal d. claratioai
channel internalChoice
channel chan0 : {i}
channel chant, chant, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanlO,

chanli, chanl2, chanl3, chani4, chanl5, chanl6, chanl7 : {0,1}

-- Create an instance of the models to check
-- The alpha_PROC contains the low level channels used by the processes
alpha_PROC4 chane, chan0, chanl2, chanl3, chanl5, chani, chanl7, chanll,

chant, chan4, chan9, chan5, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC4 = PROC_STORAGECOMPONENT CONTROLL(
chanO,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chane, chan9>

< (chanl0, chanil, <chanl2, chanl3>
(chanl4, chaniS, <chanl6, chanl7>

),

>

alpha_PROCS = {ý chan8, chan0, chanl2, chanl3, chanl5, chanl, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanio, chanl6, chan14,
chan3, chan6 1}

PROCS - PROC_STORAGBCOMPONfiNT_GENERIC_SPEC(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanii, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

ý

-- Ride the internalC'hoiae event to ensure that proaaMaea haa internal ahoiae

-- performing correctly if needed.
GEN SPEC3 - PROC4
GEN_SPEC2 -(PROCS \ (internalChoice}

-- QanBpaa? Iiaitad by the control . pacification /ian8p. o3
GEN SPEC2_WITH_CONTROLL - GEN SPEC2 (I alpha_PROC2 11 GEN SPEC3

-- Chaalt QanBpac2 contain. the bahavioer Of QanBpac? lisitad by QanBpaa3

assert GEN SPEC2 [T. GEN_SPEC2_WITFi CONTROLL

Figure 98: Example of GenSpec Assertion 3 for Data Storage Specification

199

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2

This assertion (see Figure 99) demonstrates that GenSpec 3 (see section F. 1.3) removes
the possibility of driving the component it is run in parallel with, incorrectly. This does

not dictate that GenSpec 3 does not remove a correctly driving option.
-- channel declarations
channel internalchoice
channel chanO : (1}
channel chant, chan2, chan3, chan4, chanS, chan6, chan7, chan8, chan9, chanl0,

chanll, chanll, chanl3, chanl4, chanl5, chanl6, chanll : (0,1}

-- Create an instance of the models to check
The alpha PROC contains the low level channels used by the processes

alpha_PROC4 (l chan8, chan0, chanll, chanl3, chanl5, chant, chanll, chanil,
chant, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 !}

PROC4 = PROC_STORAGECOMPONENT CONTROLL(
chan0,
chant,
< (chant, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanll, <chanl2, chanl3>
(chan14, chanl5, <chanl6, chanl7>

alpha PROCS = {ý chan8, chanO, chanl2, chanl3, chanl5, chanl, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 1}

PROCS = PROC_STORAGEC'OMPONENT GENERIC SPEC(
chano,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanli, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

>

-- Hide the internalChoiae event to ensure that processes has internal ahoiae
-- pertorsring correctly it needed.
GEN_SPEC3 - PROC4
GEN_SPEC2 -(PROCS \ {internalChoice}

-- GanBpoas Ziatitad by the aontroZ apaciliaation 0an8pac3
GEN SPEC2_WITH_CONTROLL - GEN SPEC2 (I alpha_PROC4 11 GEN_SPEC3

-- Chock that GaaBpsc3 rrrovaa the incorrect driving options from GonSpac2
assert GEN_3PEC2 WITH CONTROLL : (deadlock free [F))

Figure 99: Example of GenSpec Assertion 4 for Data Storage Speciflcadon

F. 2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving

These assertions (see Figure 100) demonstrate that GenSpec 3 limits the process it is run
in parallel with, such that it only allows correct driving signals. These assertions also

200

Appendix F: Multi-Type Component Generic Specification Model Example

demonstrates that GenSpec 3 does not introduce any extra behaviours and does not

remove any correct driving options, it is achieved through proving that GenSpec 3 run in

parallel with GenSpec 2 is indistinguishable to GenSpec 1.

201

Appendix F: Multi-Type Component Generic Specification Model Example

-- channel declaration-&
Channel internalChoice
channel chano : {i}
channel chanl, chan2, chan3, chan4, chan5, chan6, chan7, chane, chan9, chanlO,

chanli, chanl2, chanl3, chanl4, chanl5, chanl6, chanl7 : {0,1}

Create an instance of the swdels to check
The alpha_PROC contains the low level channels need by the processes

alpha_PROC4 - {I chan8, chan0, chan12, chan13, chanl5, chant, chanl7, chanll,
chant, chan4, chan9, chan5, chan7, chanlO, chanl6, chan14,
chan3, chan6 1}

PROC4 - PROC STORAGECOMPONENT_CONTROLL(
chano,
chant,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, cchan8, chan9>

< (chanl0, chanil, <chanl2, chanl3>
(chanl4, chani5, <chanl6, chanl7>

alpha PROCS = {ý chane, chanO, chanl2, chanl3, chanl5, chanl, chanl7, chanli,
chan2, chan4, chan9, chan5, chan7, chani0, chanl6, chanl4,
chan3, chan6 (}

PROCS = PROC_STORAGiECOMPONENT GSENERiC SPEC(
chanO,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, cchan8, chan9>

< (chanl0, chanil, <chanl2, cbanl3>
(chanl4, chanl5, <chanl6, chanl7>

alpha_PR0C6 - {l chan8, chan0, chanl2, chanl3, chanl5, chani, chanl7, chanll,
chan2, chan4, chan9, chanS, chan7, chanl0, chanl6, chanl4,
chan3, chan6 11

PROC6 = PROC_STORAßECOMPONENT DESIRED C3ENERIC SPEC(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chanB, chan9>

< (chanl0, chanil, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

-- Side the internalChoiae event to ensure that processes has internal choice
-- perfozsing correctly if needed.
GEN SPEC1 -(PROC6 \ {internalChoice})
GEN SPEC2 -(PROCS \ {internalChoice})
GEN_SPEC3 - PROC4

-- Gen8psc2 lialtsd by the control specification Genepec3
GEN SPEC2_WITH_CONTROLL - GEN SPEC2 [I alpha_PROC4 11 GEN_SPEC3

-- Check that Gsn8psc3 In parallel with Gsnßpec2 is India tinguishable to
-- GenBpecl

assert GEN_SPEC1 [FD. GEN_SPEC2_WITH_CONTROLL
assert GEN_SPEC2_WITH_CONTROLL [FD. GEN SPEC1

Figure 100: Example of GenSpec Assertions 5 for Data Storage Specification

202

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.6 GenSpec Assertions 6: Properties of the Annotation Events

These assertions (see Figure 101) demonstrate that the annotation event contained within
GenSpec 4 do not introduce extra behaviours, but are only used to conceptually describe

what is occurring. This is achieved through hiding the annotation events, and proving that

the resultant process is indistinguishable to the GenSpec 2 model.

-- channel dealaratIons
allowedIDS - 10. . 41
datatype STATES -

START. allowedIDS ý FINISH. allowedlDS I NOTFINISHED. allowedIDS
RESET. allowedIDS ý ERROR. allowedIDS I IDLE. allowedIDS I STORE. allowedIDS
STORED. allowedIDS ý NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLOWED. allowedIDS I DONTREAD. allowedIDS ý
DATAHIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES
channel internalChoice
channel chan0 : {1}
channel chanl, chan2, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanlO,

chanli, chan12, chanl3, chanl4, chani5, chanl6, chanl7 : {0,1)

-- Create an instance of the aodals to chock
The alpha PROC contains the low level channels used by the processes

alpha_PROC1 - {I chan8, chanO, chanl2, chanl3, chanl5, chant, chanl7, chanil,

chant, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,

chan3, chan6 1}
PROC1 : PROC_STORAGECOMPONENT_ANNOTATED_SPEC(

chan0,
chant,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

<1,2
< (chanl0, chanil, <chanl2, chanl3>

(chanl4, chanl5, <chanl6, chanl7>

<3,4 >

alpha_PROCS = {ý chan8, chanO, chanl2, chanl3, chanl5, chanl, chanl7, chanil,

chan2, chan4, chan9, chanS, chan7, chanl0, chanl6, chanl4,

chan3, chan6 1}
PROC5 . PROC_STORAGECOMPONENT_GENERIC_SPEC(

chan0,
chanl,
< (chan2, chan3, <chan4, chan5>), (chan6, chan7, <chan8, chan9>) >,
< (chanlO, chanil, <chanl2, chanl3>), (chanl4, chanl5, <chanl6, chanl7>)>

-- Sid, the intarnalChoiaa vent to ensure that processes has internal choice

-- performing correctly If needed.
GEN SPEC2 -(PROCS \ {internalchoice}
GEN SPEC4 -(PROC1 \ {internalchoice}

--
fiansp, c4 with the annotations hidden

GEN SPEC4_NO_ANNOTATIONS -(GEN_SPEC4 \ {(annotations ý})

-- Check that GenSpsa3 in parallel with Genßpec2 is indistinguishable to

-- GenSpool
assert GEN SPEC4`NO ANNOTATIONS [FD- GEN SPEC2

assert GEN SPEC2 [FD- GEN SPEC4 NO ANNOTATIONS

Figure 101: Example of GenSpec Assertion 6 for Data Storage Spec

203

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4

This assertion (see Figure 102) proves that the control process GenSpec 3 does not add
extra behaviours to the annotated generic specification GenSpec 4.

-- 0-h-nnol declarations
allowedlDS - {0.. 4}
datatype STATES -

START. allowedIDS FINISH. allowedIDS I NOTFINISHED. allowedlDS
RESET. allowedIDS (ERROR. allowedIDS I IDLE. allowedIDS I STORE. allowedIDS
STORED. allowedlDB ý NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLOiPED. allowedIDS I DONTREAD. allowedIDS
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

channel internalChoice
channel chan0 : {1}
channel chant, chant, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanlO,

chanll, chanl2, chanl3, chanl4, chanl5, chanl6, chanl7 : (0,1)

-- Create an lnetance of the imodels to check
-- The alpha P80C contains the low 1ew1 channels usad by the processes
alpha_PROC4 = {ý chan8, chan0, chanl2, chanl3, chanl5, chani, chanl7, chanli,

chan2, chan4, chan9, chan5, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC4 - PROC_BTORAf88COMPONfiNT_CONTROLL(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanlO, chanii, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

alpha_PROC1 . {ý chan8, chanO, chanl2, chanl3, chanl5, chani, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,

chan3, chan6 1}
PROC1 - PROC_STORAC3ECOMPONENT_ANNOTATSD_SPEC(

chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chane, chan9>)

<1,2
< (chanl0, chanli, <chanl2, chanl3>), (chan14, chanl5, <chanl6, chanl7>) >,
<3,4 >

-- Side the interaalCholae event to ensure that processes has internal ahoiae
-- performing correatly if needed.

GEN_SPEC3 - PROC4
GEN_SPEC4 -(PROM \ (internalChoice}

-- Gen8peo4 liaited by the control epecitication Gon8pe03
GEN_SPEC4_tiPITH_CONTROLL - GEN SPEC4 (I alpha_PROC4 (] GEN_SPEC3

-- Check Gen8pec4 oontaiai the behaviour of Gea8pec4 11aited by GenSpec3

assert GEN_SPEC4 IT. GEN_SPEC4_PiITH CONTROLL

Figure 192: Example of GenSpec Assertion 7 for Data Storage Specification

204

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4

This assertion (see Figure 103) proves that the control process GenSpec 3 removes the
explicitly defined deadlocks from the annotated generic specification GenSpec 4.

-- channel diolarationa
allowedIDS - {0.. 4}
datatype STATES -

START. allowedIDS ý FINISH. allowedIDS I NOTPINISHED. allowedIDS
RESET. allowedIDS ý ERROR. allowedIDS I IDI, E. allowedIDS I STORE. allowedIDS
STORED. allowedlDS (NOTSTORED. allowedlDS I READ. allowedIDS
READALLOWED. allowedIDS I DONTREAD. allowedIDS ý
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

channel internalChoice
channel chanO : {i}
channel chani, chan2, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanl0,

chanll, chanl2, chanl3, chanl4, chanl5, chanl6, chan17 : (0,1}

-- Create an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes
4lpha_PROC4 - (I chan8, chanO, chanl2, chanl3, chanl5, chani, chanl7, chanil,

chant, chan4, chan9, chan5, chan7, chanl0, chan16, chanl4,
chan3, chan6 1}

PROC4 - PROC_STORAGECOMPONENT CONTROLL(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanli, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

alpha_PROC1 = (' chan8, chan0, chanl2, chanl3, chanl5, chani, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 (}

PROCi - PROC STORAC3ECOMPONENT ANNOTATED SPEC(
chan0, ---

chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

<1,2 >,
< (chanl0, chanll, <chanl2, chanl3>

(chanl4, chanl5, <chanl6, chanl7>

<3,4 >

Side the internalChoiae event to ensure that processes has internal choice
-- performing correctly if needed.

GEN 8PEC3 . PROC4
GEN 8PEC4 -(PROC1 \ (internalChoice)
-- GenSpea4 limited by the control specification Oenspec3
GEN SPEC4 WITH_CONTROLL - GEN_SPEC4 [I alpha_PROC4 1] GEN_SPEC3

-- Check that Oanspec3 removes the incorrect driving options from OenSpaa4

assert GEN 8PEC4 WITH CONTROLL : [deadlock free fFll

Figure 103: Example of GenSpec Assertion 8 for Data Storage Specification

205

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.9 GenSpec Assertions 9: GenSpec 4 is an Annotated GenSpec 2

These assertions (see Figure 104) demonstrate that if the annotation events contained
within GenSpec 4 are hidden, then GenSpec is indistinguishable to GenSpec 2.

-- channel daclaratiana
allowedlDS - {0.. 4}
datatype STATES -

START. allowedIDS ý FINISH. allowedlDB I NOTFINISHED. allowedIDS ý
RESET. allowedlDS ERROR. allowedIDS I IDLE. allowedlDS I STORE. allowedlDS
STORED. allowedIDS ý NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLO1aED. allowedIDS I DONTREAD. allowedIDS ý
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

channel internalChoice
channel chan0 : {1}
channel chani, chan2, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanl0,

chanii, chanl2, chanl3, chanl4, chanl5, chanl6, chanl7 : {0,1}

-- Create an instance of the aodele to check
-- The alpha PROC contains the low level channels used by the processes
aipha_PROCS ((chan8, chanO, chanl2, chanl3, chanl5, chant, chanl7, chanll,

chant, chan4, chan9, chan5, chan7, chanl0, chan16, chan14,
chan3, chan6 11

PROCS = PROC STORAGECOMPONENT GENERIC SPEC(
chan0,
chant,
< (chan2, chan3, <chan4, chan5>),

(chan6, chan7, <chan8, chan9>)

ý I < (chani0, chanil, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

alpha_PROC1 = (ý chan8, chanO, chanl2, chanl3, chanl5, chanl, chanl7, chanll,
chan2, chan4, chan9, chan5, chan7, chanl0, chan16, chan14,
chan3, chan6 1}

PROC1 = PROC_STORAC3ECOMPONENT_ANNOTATED_SPEC(
chan0,
chanl,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

<1,2 >,
< (chanl0, chanil, <chanl2, chanl3>

(chanl4, chanl5, <chanl6, chanl7>

<3,4 >

-- Bide the internalchoice event to ensure that processes has internal choice

-- performing correctly i! needed.
GEN SPEC2 -(PROCS \ {internalChoice})
GEN SPEC4 -(PROC1 \ {internalChoice})

--
Öen8pec4

with hidden annotation events
GEN SPEC4_NOANNOTATIONS -(GEN SPEC4 \ {I annotation I})

-- Check that Oenspec4 with hidden annotations is indistinguishable to Gen2pec2

assert GEN SPEC4_NO_ANNOTATIONS [FD- GEN SPEC2
assert GEN_SPEC2 (FD- GEN SPEC4 NO ANNOTATIONS

Flure 104: Example of GenSpec Assertions 9 for Data Storage Specification

206

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.10 GenSpec Assertion 10: GenSpec 6 Deadlock-Free

This assertion (see Figure 105) deadlock-free checks GenSpec 6 which helps to provide a
base comparison for future deadlock-free checks and trace refinements for the

annotations.

-- Channel declarations
allowedIDS - {0.. 4}
datatype STATES -

START. allowedIDS ý FINISH. allowedlDS I NOTFINISHfiD. allowedIDS
RESET. allowedIDB ERROR. allowedIDS I IDLE. allowedIDS I STORE. allowedIDS
STORED. allowedIDS (NOTSTORED. allowedIDS I READ. allowedIDS (
READALLOWED. allowedIDS I DONTREAD. allowedIDS ý
DATABIT. allowedlDB. {0.. 2}. {0,1}

channel annotation : STATES

-- Higher Outsr 8p"a
GEN SPEC6 - PROC_STORAGECOMPONENT HIGHER_OUTER_SPEC(2, <1,

-- Chock that G. näpoc6 is deadlock-fraa
assert GEN SPEC6 : [deadlock free [F]]

2>, <3,4> i

Figure 105: Example of GenSpec Assertion 10 for Data Storage Specification

i

F. 2.11 GenSpec Assertions 11: GenSpec 5 Annotates Outer Level Correctly

These assertions (see Figure 106) demonstrate that GenSpec 5 will annotate the outer
level of a correct process with annotation events that are similar to GenSpec 6. The

assertions can not be failures divergent checked ('[PD. ') because the events that represent
the low level signals which have been hidden, determine the initial state and thus the

annotation that occurs.

207

Appendix F: Multi-Type Component Generic Specification Model Example

-- channel doclaratickne
allowedIDS - {0.. 4}
datatype STATES =

START. allowedlDS (FINISH. allowediD3 (NOTFINISHED. allowedIDS
RESET. allowedIDS ERROR. allowedIDS I IDLE. allowedIDS (STORE. allowedIDS
STORED. allowedIDS (NOTSTORED. allowedIDS I READ. allowedIDS (
READALLOIPED. allowedIDS I DONTREAD. allowedIDS
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

i

channel internalChoice
channel chan0 : {1}
channel chani, chan2, chan3, chan4, chanS, chan6, chan7, chan8, chan9, chanl0,

chanil, chanl2, chanl3, chanl4, chanl5, chanl6, chan17 : {o, 1}

-- Create an instance of the models to check
The alpha PROC contains the low level channels used by the proaesses

alpha_PROC3 chan8, chan0, chanl2, chanl3, chanl5, chant, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanlO, chanl6, chan14,
chan3, chan6 1}

PROC3 = PROC_STORAGECOMPONENT_ANNOTATE_OUTER(
chan0,
chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>
>,

<1,2
< (chanl0, chanil, <chanl2, chanl3>

(chanl4, chanl5, <chanl6, chanl7>

<3,4 >

),

alpha_PROC6 = {ý chan8, chan0, chanl2, chanl3, chani5, chani, chanl7, chanii,
chan2, chan4, chan9, chan5, chan7, chani0, chanl6, chanl4,
chan3, chan6 1}

PROC6 - PROC_STORAGECOMPONENT_DESIRED_GENERIC_SPEC(
chan0,
chanl,
< (chan2, chan3, cchan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanil, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

-- Hide the internalChoica event to ensure that processes has internal choice
-- perforasing correctly if needed.

GEN SPEC1 .(PROC6 \ {internalChoice})
GEN_SPECS s PROC3
GEN SPEC6 - PROC STORAGECOMPONENT HIGHER OUTER SPEC(2, cl, 2>, <3,4>

-- GenBpacl with annotation events added by Genßpoc 5 running in parallel
GEN_SPEC1 WITH

_ANNOTATIONS .(GEN_SPEC1 [I alpha_PROC3 1] GEN_SPECS

-- Tha annotations only that ware added to Genßpecl by GenSpsc 5
GEN SPEC1 ANNOTATIONS ONLY - (GEN SPEC1_WITH_ANNOTATIONS \ alpha_PROC6)

-- Check that Genipec4 with hidden annotations is indistinguishable to Ganßpoa2

assert GEN_SPEC1 ANNOTATIONS ONLY [T= GEN_SPEC6
assert GEN_SPEC6 [T- GEN_SPEC1 ANNOTATIONS ONLY

Figure 106: Example of GenSpec Assertion 11 for Data Storage Specification

208

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.12 GenSpec Assertions 12: GenSpec 5 Does Not Introduce Extra

Behaviour

These assertions (see Figure 107) demonstrates that GenSpec 5 does not add extra
behaviours, but only adds events that conceptually annotates the process it is run in

parallel with. This is shown by the fact that the process run in parallel with GenSpec 5,

with the annotations then hidden is equivalent to the initial process by itself.

209

Appendix F: Multi-Type Component Generic Specification Model Example

-- channel declarations
allowedIDS . {0.. 4}
datatype STATES -

START. allowedlDB FINISH. allowedIDS I NOTFINISHED. allowedIDS
RESET. allowedIDS ý ERROR. allowedIDS I IDI, E. allowedIDS I STORE. al2owediDS
STORED. allowedIDS NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLO¢PED. allowedIDS I DONTREAD. allowedIDS (
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

I

channel internalChoice
channel chan0 : {1}
channel chant, chan2, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanl0,

chanii, chanl2, chanl3, chanl4, chanl5, chanl6, chanl7 : {0, i}

-- Create an instance of the models to check
The alpha PROC contains the low level channels used by the processes

alpha_PROC3 - {ý chan8, chanO, chanl2, chanl3, chanl5, chani, chanl7, chanii,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 1}

PROC3 - PROC STORAGECOMPONENT ANNOTATE_OUTER(
chan0,
chani,
< (chant, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

<1,2 >,
< (chanl0, chanil, <chanl2, chanl3>

(chanl4, chanl5, <cbanl6, chanl7>

<3,4 >

alpha_PROC6 chan8, chan0, chanl2, chanl3, chanl5, ahani, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 1}

PROC6 = PROC_STORAC3ECOMPONENT_DESIRED OENERIC SPEC(
chan0, '

chani,
< (chan2, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanl0, chanll, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

-- Side the 1ntarnalChoice event to ensure that processes has internal choice
-- perEoreing correctly if needed.
GEN SPEC1 -(PROC6 \ {internalChoice}
GEN SPEC5 - PROC1

-- Gonspecl with annotation events added by Oenlpec 5 running in parallel
GEN_SPEC1_WITH

_ANNOTATIONS -(GEN_SPEC1 [I alpha_PROC3 11 GEN SPECS
-- The annotations only that were added to Oentpecl by OenSpae 5

GENSPECI_HIDDEN ANNOTATIONS : (GEN SPECl_WITH_ANNOTATIONS \ {I annotation i})
-- Chock that G4nSp. 04 with Kidd n aaaotatioai is indiatiapuiihabl" to GavSp0o2
assert GEN_SPEC1_HIDDEN_ANNOTATIONS [FD= GEN_SPEC1
assert GEN SPEC1 [FD= GEN SPEC1 HIDDEN_ANNOTATIONS

Figure 107: Example of GenSpec Assertions 12 for Data Storage Specification

210

Appendix F: Multi-Type Component Generic Specification Model Example

F. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden Is Similar to

GenSpec 6

These assertions (see Figure 108) demonstrates that GenSpec 4 correctly driven with the

events that represent the low level signals hidden, performs in a similar manner to

GenSpec 6. The processes can not be failures divergent checked ('[PD. ') both ways
against each other, as the driving signal events (which are hidden) determine the initial

annotation state that occurs. The hidden events become taue events preceding the initial

annotations, which GenSpec 6 does not contain.

211

Appendix F: Multi-Type Component Generic Specification Model Example

-- ehann01 declarations
allowedIDS - {0.. 4}
datatype STATES -

START. allowedIDS ý FINISH. allowedIDS I NOTFINISHED. allowedlDS ý
RESET. allowedIDS ý ERROR. allowedIDS I IDLE. allowedIDS I STORE. allowedIDS
STORED. allowedIDS NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLOOPED. allowedIDS I DONTREAD. allowedIDS ý
DATABIT. allowedIDS. {0.. 2}. {0,11

channel annotation : STATES
channel internalChoice
channel chanO : {1}
channel chanl, chan2, chan3, chan4, chan5, chan6, chan7, chane, chan9, chanl0,

chanli, chan12, chan13, chanl4, chanl5, chanl6, chanl7 : {0,1}

-- Create an instance of the models to check
-- The alpha-PROC contains the low level channels used by the processes
alpha_PROC1 . {ý chan8, chanO, chanl2, chanl3, chanl5, chani, chanl7, chanll,

chan2, chan4, chan9, chan5, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC1 e PROC_STORAC3ECOMPONBNT_ANNOTATfiD_SPEC(
chan0,
chani,
< (chan2, cheui3, <chan4, chan5>), (chan6, chan7, <chan8, chan9>) >,
<1,2 >,
< (chanl0, chanli, <chanl2, chanl3>), (chanl4, chanl5, cchanl6, chanl7>) >,
<3,4 >

alpha_PROC4 chan8, chanO, chanl2, chanl3, chanl5, chanl, chanl7, chanil,
chan2, chan4, chan9, chan5, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC4 . PROC_STORAGECOMPONENT_CONTROLL(
chanO,
chani,
< (chan2, chan3, <chan4, chan5>), (chan6, chan7, <chan8, chan9>) >,
< (chanl0, chanli, <chanl2, chanl3>), (chanl4, chanl5, <chanl6, chanl7>)>

-- Ride the internalChoiae event to ensure that processes has internal choice
-- performing correctly if needed.

GEN SPECS - PROC4
GEN SPEC4 -(PROM \ {internalChoice}
GEN SPEC6 - PROC_STORAGECOMPONENT HIGHER OUTER_SPEC(2, cl, 2>, <3,4>

-- Gmspoc4 limited by the control specification Oenspe03
GEN SPEC4_WITH

_CONTROLL =(GEN SPEC4 [I alpha_PROC4 1] GEN_SPEC3

-- Genspe04 limited by the control specification Genspeo3, annotation only
GEN_SPEC4_ANNOTATIONS_ONLY - (GRN SPEC4_WITH_CONTROLL \ alpha_PROC1

-- Check that 0enfipec4 with hidden signals is similar to Oenspeo6
-- These can not be failures divergent checked 'fFDJ' both ways, as the low

-- level driving signals that precedes the corresponding annotation events and
-- determine their occurrences, are hidden.
assert GENSPEC4 ANNOTATIONS ONLY [FD= GEN_SPEC6
assert GEN_SPEC6 [T= GEN SPEC4 ANNOTATIONS ONLY

Figure 108: Example of GenSpec Assertions 13 for Data Storage Specification

F. 3 Similarities to Single Type Component Specifications

Apart from the models and assertions covered in section F. I and F. 2, similarities between

this multi type generic component specification and single type generic specifications that

represent its interfaces (both the different types of interfaces it can provide, along with its

212

Appendix F: Multi-Type Component Generic Specification Model Example

ability to provide multiple instances of those types). The specification for the multi type

component has the models of the single type interface specifications incorporated directly
into its self, this is because this component is concerned with the interactions between
instances of these interfaces, and as such the main aim of the following assertions is to

provide confidence that this is achieved.

Figure 109: Assertions Demonstrating Similarities with Single Type Generic Interface Specifications

-- e8aaaal declaratioaa
allowedIDS - {0.. 4}
datatype STATES .

START. allowedIDS ý FINISH. allowedIDS I NOTFINISHED. allowedIDS
RESET. allowedlDB ý ERROR. allowedIDS I IDLE. allowedIDS I STORE. allowedIDS
STORED. allowedIDS NOTSTORED. allowedIDS I READ. allowedIDS ý
READALLOWED. allowedlDS I DONTREAD. allowedlDS ý
DATABIT. allowedIDS. {0.. 2}. {0,1}

channel annotation : STATES

I

channel internalChoice
channel chan0 : (1}
channel chant, chant, chan3, chan4, chan5, chan6, chan7, chan8, chan9, chanlO,

chanil, chanl2, chanl3, chanl4, chanl5, chanl6, chanl7 : {0,1}

-- Croats an instance of the models to check
-- The alpha PROC contains the low level channels used by the processes

alpha_PROC4 tI chan8, chanO, chanl2, chanl3, chan15, chant, chanl7, chanll,
chan2, chan4, chan9, chanS, chan7, chanlO, chanl6, chanl4,
chan3, chan6 1}

PROC4 : PROC STORACGRCOMPONENT_CONTROLL(
chan0,
chant,
< (chant, chan3, <chan4, chan5>

(chan6, chan7, <chan8, chan9>

< (chanlO, chanli, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chani7>

>

alpha_PROCS s {ý chane, chan0, chanl2, chanl3, chanl5, chani, chanl7, chanll,
chan2, chan4, chan9, chan5, chan7, chanl0, chanl6, chanl4,
chan3, chan6 I}

PROC5 - PROC_STORAGECOMPONENT_GENERIC_SPEC(
chanO,
chani,
< (chan2, chan3, cchan4, ChanS>

(chan6, chan7, cchan8, chan9>

< (chanl0, chanll, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

- The ainQla typo interface components
alpha

_INTERFACE
1- {) chanO, chani, chan2, chan3, chan4, chan5

INTERFACE
_1

-
PROC_DATASTORE_GENERIC

_SPEC(chanO,
chani, chan2, chan3, <chan4, chan5>

INTERFACE 1_WITH_CONTROLL
INTERFACE-1
I) alpha_INTERFACE_1

PROC DATASTORE CONTROLL(chanO, chanl, chan2, chan3, <chan4, chan5>

213

Appendix F: Multi-Type Component Generic Specification Model Example

alpha_INTERFACS_2 chanO, chanl, chan6, chan7, chan8, chan9
INTERFACE

_2 .
PROC_DATASTORE_aENERIC SPEC(chan0, chanl, chan6, chan7, <chan8, chan9>

INTERFACE
_2_WITH

CONTROLL =
INTERFACE_2
[) alpha_INTERFACE2

PROC DATA8TORS_CONTROLL(chan0, chani, chan6, chan7, <chan8, chan9>

alpha-INTERFACE-3 = (ý chan0, chanl, chanlO, chanll, chanl2, chanl3
INTERFACE_3 -

PROC_DATASTORE GENERIC SPEC(chan0, chani, chanl0, chanil, <chanl2, chanl3>
INTERFACE

_3_WITH
CONTROLL =

INTERFACE_3

[j alpha_INTERFACE3 jj
PROC DATASTgRE_CON_TROLL(chan0, chani, chanl0, chanll, <chanl2, chanl3>

alpha_INTERFACE_4 = (ý chan0, chanl, chanl4, chanl5, chanl6, chanl7
INTERFACE_4 =

PROC_DATASTORE OENERIC_SPEC(chan0, chanl, chanl4, chanl5, <chanl6, chanl7>
INTERFACE_4_iýITH_CONTROLL =

INTERFACE 4
[I alpha_INTERFACE4

PROC_DATASTORE_CONTROLL(chan0, chanl, chanl4, chanl5, <chanl6, chanl7>

-- rh* collection of single type interface camponeats
MULTIINTERFACES

_KITH
CONTROLL -

(INTERFACE
_1_WITH

CONTROLL, alpha_INTERFACE 1),
(INTERFACE_2_WITH CONTROLL, alpha_INTERFACE_2),
(INTERFACE_3_WITS CONTROLL, alpha_INTERFACE_3),
(INTERFACE_4_WITH CONTROLL, alpha INTERFACE_4)

COMBINE INTERFACES(clock, reset, interfaces)
let

A- reset?
_ -> clock. l -> A

B(< (xp, xa), (yp, ya) >Az)'
length(z) "0&(xp [J inter(xa, ya) 1] yp
[]
length(z) >0&

B(< ((xp (I inter(xa, ye) 1] yp), union(xa, ya)) >"z
within B(< (A, (ý clock, reset '}) >" z)

-- Nod. 1.
GEN SPEC2 -(PROCS \ (internalChoice}
GEN SPECS - PROC4
GEN SPEC2WITH CONTROLL - GEN SPEC2 (I alpha PROC4 (] GEN_SPEC3
INTERFACES_ - CO_MBINE_INTERFACES(chan0, chani, MULTI INTERFACEB WITH_CONTROLL)

Prove that the correctly driven multi type generic specification is a

-- refinement of multiple correctly driven single type components run in

-- parallel
assert INTERFACES [T- GEN 8PEC2_WITH_CONTROLL

-- Prove that the correctly controlled single type interface components
-- behaviour is covered in the behaviour of the multi type generic aoMgponent
-- This is done for each of the instances of the interfaces
assert (GEN

_SPEC2_WITH
CONTROLL \ diff(alpha_PROCS, alpha_INTERFACE_i))

[T- INTERFACE_i_WITE_CONTROLL

assert (GEN SPEC2_WITH CONTROLL \ diff(alpha_PROCS, alpha_INTERFACE_2))

[T- INTERFACE_2_WITH_CONTROLL

assert (GEN SPEC2_WITH
_CONTROLL

\ diff(alpha_PROCS, alpha_INTERFACE_3))

[T- INTERFACE
.3

WITH CONTROLL

214

Appendix F: Multi-Type Component Generic Specification Model Example

assert (GEN SPEC2_WITH
_CONTROLL

\ diff(alpha_PROCS, alpha_INTERFACE_4)
[Ts INTERFACE 4 WITH CONTROLL

F. 4 Conclusion & Evaluation

The combination of the assertions covered in section F. 2 links various properties of the

various models covered in section F. I. This builds up confidence with the models
specified so that implemented components can both utilise them in their own proofs and
be checked against them. It provides processes so that a low hardware level model of the

components can be refinement checked against, a higher clock cycle based conceptual

specification to refinement check against, and a method to link the two types of models
together to show consistency between them. The assertions covered in section F. 3

demonstrate that the multi type generic component specification is a refinement of a

combination of single type generic specifications, this enables parts of this components

outer boundary to be utilised and substituted where the corresponding generic single type

specifications were utilised.

215

Appendix G Multi-Type Component
Implemented Model Example

This section will cover and explain the CSP models required for an implemented
component, along with the assertions that need to be checked to link the models to each
other, thus demonstrating that an implemented component performs as required and
within the behaviours dictated by its generic super-type component.

G. 1 Models & Specifications

The `internalChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. 'I -I') to enable ̀ chase' compression to applied if desired.
The ̀ internalChoice' event must be hidden for the specifications to be valid, but if `chase'

compression has been chosen, the event should only be hidden after `chase' has been

applied, otherwise the specification becomes invalid.

G. 1.1 ImpSpec 1: Valid Low Level Behaviour

This CSP model (see Figure 110) which is similar to the model defined in section F. 1.1,

specifies all the valid and allowable low level behaviour that this implemented component
may perform at its outer boundary. It may utilises internal choice to determine the
possible output behaviour it can perform, although it is not a requirement (e. g. boolean
true, boolean false, SKIP, STOP, all have well defined fixed behaviours that do not rely
on other internal components). It is useful to note that some implemented components
may have the allowable interface boundary behaviour that is identical to that of its generic
super type component (e. g. boolean comparisons, PAR), where as other components will
have an interface boundary behaviour that is a refinement of its super type component
(e. g. boolean true, boolean false, SEQ).

Figure 110: Low Level 'FdpFlopStorage' Component Desired Specification
channel char mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC: 0.. 2
channel chan~link

_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC channel Chan_PROCFLIPFLOPSTORAGECOMPONENT DESIRED
_SPEC

(0.. 4}

Appendix G: Multi-Type Component Implemented Model Example

channel chan_readbits_PROC_PLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC: [0.. 2). [0,1)
channel chan_atorebits_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC: {0.. 21. {0,11

PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC(clock,
let

A=
length(stores)
[]
length(stores)
[]
length(stores)
[J

length(stores)
Bs

let
BA

((

-- 0 and length(reads)

!-0 and length(reads)

-- 0 and length(reads)

!=0 and length(reads)

.ý o&
sa 0&

I_ o&
I_ o&

reset, stores, reads)

E

B

C
D

tl
union(

{j reset,
clock,
chanlink_PROC_FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC

{ chan_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. y
ý y<-{3,4}

}

I}

)
I]

)
[I tl

x: set(atores) a BB(x)

i}

reset. 1,
clock,
chan link PROC FLIPFLOPSTORAQECOMPONENT DSSIRED_SPSC,
Chan_PROC FLIPFLOPSTORA(dECOMPONENT DSSIRED_SPEC

i1
chan_link_PROC_FLIPFLOPSTORA(dECOMPONENT_DSSIRED_SPEC

F

\ (ý chanlink PROC FLIPPLOPSTORAGECOMPONENT_DESIRE SPEC,

i}
char PROC_FLIPFLOPSTORAGECOMPONENT_DESIREA_SPEC

BB((store, stored, data)
let

BBA =
(BBB

(I clock,

I}

tl
chan_link_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC,
chan_mid PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC

II
BBC
\ {ý chan_mid PROC FLIPFLOPSTORAGECOMPONENT DESIRED

_SPEC ý}
BBB =

((chan_mid PROC FLIPP'LOPSTORAGECOMPONENT_DESIRED__SPEC. 0 ->
(Ifs x. set(data) 0 x? O -> SKIP

[)
chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 1 ->

x: set(data) ®
(x? 0 -> SKIP

[)
X? 1 -> SKIP

217

Appendix G: Multi-Type Component Implemented Model Example

clock? 1 ->
char link PROC_FLIPPLOPSTORAGECOMPONENT DESIRED SPEC ->
BBB)

BBC =
reset? 1 ->

store? O -> chan_mid PROC
` -> FLIPFLOPSTORAGECOMPONENT DESIRED SPEC. O SKIP

[l
store? 1 -> chan_mid PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. 1 -> SKIP

BBD

reset? O ->

store? O -> chars mid PROC PLIPFLOPSTORAGECOMPONENTDESIRED SPEC. O -> BBD
11

store? 1 ->
Chan

_mid
PROC FLIPFS, OPSTORAGECOMPONENT_DESIRED_SPEC. 1 ->

Chan
_PROC

FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
BBE

[1
store? 0 ->

chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
reset? 0 -> SKIP
t7
reset? 1 -> SKIP

BBD

(]
store? 1 ->

chap mid PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC. 1 ->
(reset? O ->

Chan_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. O ->
BB8

U
reset? 1 -> BBD

BBD -
clock? 1 ->

chan_PROC FLIPFLOPSTORAGECOMPONENT__DESIRED_SPEC. 3 ->
SKIP

1]
chan_PROC FLIPFLOPSTORAGECOMPONENT DESIRED SPEC. 4 ->

SKIP

storedl0 ->
chap link PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC ->
BBC -

BBE i

clock? 1 ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
atoredtl ->
chan_link_PROC_PLIPFLOPSTORAGECOMPONENTDESIRED SPEC
BBC

11

218

Appendix G: Multi-Type Component Implemented Model Example

chan_PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. 4
storedl0 ->
chap link PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC ->
BBF

BBF
reset? 1 ->

store? O ->
chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. O ->
BBD

H
reset? 0 ->

store? O ->
Chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. O ->
BBG

[]
store? 0 -> Chan mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->

reset? l -> BBD
[l
reset? O -> SBG

BBG
clock? 1 ->

Chan
_PROC_FLIPFLOPSTORAGIECOMPONENT_DESIRED_SPEC.

4 ->
storedtO ->
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
BBF

within storedlO ->
chan_link_PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC ->
BSA

within BA
C=

let
CA

(([I
union

{I reset,

I}
clock,
ehern link PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC

{ Chan
_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC.

y
Y<-{3,4}

}

11 x: aet(reada) 0 CB(x)

reaet. 1,
clock,
Chan link PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED _SPEC,
Chan_PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC

I}
than link PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->

p

chan link
_PROC

PLIPFLOPSTORAGECOMPONENT_DESIREDSPEC,
char PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC

I}
CB((read, readallowed, data)

let
CBA "

reset? 1 ->
read? O -> SKIP
[l

read? 1 -> SKIP

219

Appendix G: Multi-Type Component Implemented Model Example

CBB

reset? 0 ->
read? O -> CBB
[l
read? 1 -> CBC

[l
read? O ->

reset? 0 -> SKIP
[l

reset? 1 -> SKIP

WB

[]
read? 1 ->

reset? 0 -> CBC
[]

reset? 1 -> CBB

CBB

clock? 1 ->
chan_PROC_FLIPFLOPSTORAGBCOMPONENTDESIRED SPEC. 3 ->

SKIP
[]

chanPROC_FLIPPLOPSTORAGECOMPONENTDESIRED SPEC. 4 ->
SKIP

readallowedl0 ->
(III x: aet(data) 0 x10 -> SKIP }

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC -> CBA

CBC =
clock? 1 ->

chan_PROC PLIPPLOPSTORAGECOMPONENT_DESIRED SPEC. 3 ->
readallowedti ->
((III x: aet(data) G x! O -> SKIP

chan_link_PROC_FLIPFLOPSTIORAGECOMPONENT DESIRBDSPEC -> CSA

it
ChanPROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. 4 ->

readallowedl0 ->
x: Bet(data) ® x! 0 -> SKIP

Chan_link_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC -> CBD

CBD
reset? 1 -> read? O -> CBB
11
reset? O -> read? O -> CBE
11
read? O ->

reset? 1 -> CBB
11

220

Appendix G: Multi-Type Component Implemented Model Example

reset? O -> CBE

CBE
clock? 1 ->

Chan_PROCFLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->
readallow_ed! O ->
((III x. -met(data) a x! 0 -> SKIP

chan_link_PROC FLIPFLOPSTORAGECOMPONENT DESIRED SPEC -> CBD

within CA

let
DA s

((t [ý union(
reset,
clock,
chan_link_PROC_FLIPP'LOPSTORAGECOMPONENT_DESIRED_SPEC

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC -> CBA

11

i}
{

11

I}

Chaa_PROC_FLIPFLOPSTORAC3ECOMPONENT_DESIRED_SPEC. y I y<-(3,4)

ý)x: aet (atorea) 0 DB (x)

[ý union(
reset,
clock,
chap link_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC

{ chan_PROC FLIPFLOPSTORAQECOMPONENT_DESIRED_SPEC. y I y<-{3,4}}

ý

reset,
clock,
than-link-PROC FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC

I}
{ Chan_PROC FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC. y) y<-{3,4}

ý] x: aet(reade) 0 DC(x)

(I

I}
I] chan_link_PROC_FLIPFLOPSTORAOECOMPONENT_DESIRED_SPEC ->

H

) {I
chan_link_PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC,

I chan readbita PROC FLIPFLOPSTORAC3ECOMPONENT DESIRED SPEC,

within readallowedlo ->
((III x: set(data) ® x! o -> SKIP)

([ý union(

[I

}

}

reset. 1,
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC,
chan_readbita PROC FLIPFLOPSTORAGECOMPONENT_DESIRED SPEC,

chan_atorebite PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC,
clock,
chan link_PROC FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC

221

Appendix G: Multi-Type Component Implemented Model Example

char storebits_PROC FLIPFLOPSTORAGECOMpONENTDESIRED SPEC,
chan_pROC FLIPFLOPSTORAGECOMPONENT DESIRED SPEC

{I

I}
DB((store, stored, data)

let
DBA =

DBB

(I
Chan mid PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC,
Chan chan_link

_PROC
FLIPPLOPSTORAGECOMPONENT DESIRED SPEC,

clock

i} I)
DBC

chan_mid PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED'SPEC
ý}

((

)

{

DBB m
let

DBBA
Chan_mid_PROC FLiPFLOPSTORAC3ECOMPONENT_DESIRED SPEC. O

x: aet(data) ® x? 0 -> SKIP

clock? 1 ->
chan_link PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC
DBBA

(]
chan_mid PROC PLIPFLOPSTORA(3ECOMPONENT_DESIRED_SPEC. 1

(DBBB(data)

DBBA

DBBB (x)
length (x)
(]
length (x)
(1

0& STOP

1& DBBC(head(x),

length(x) >1&
(DBBC(head(x),

[1 {

}

length(data)

_,

_,

_,

length(data)

- length(x))

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC,
chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 2,
clock. 1

I]
DBBB(tail(x))

DBBC(x, y) -
((x? 0 ->

1)

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED SPEC. 2 ->
chan_atorebita_PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC. y. 0 ->
clock? 1 ->
SKIP

[7
clock? 1 -> SKIP

x? 1 ->

chan_mid_PROC_PLIPFLOPSTORAdECOMPONENT_DESIRED
_SPEC.

2 ->
chan_atorebita_PROC FLIPFLOPSTORAQECOMPONENT DESIRED SPEC. y. i ->
clock? 1 ->
SXIP

U

222

Appendix G: Multi-Type Component Implemented Model Example

clock? 1 -"id-p-

chan_link_PROC_PLIPPLOPSTORAGECOMPONENT DESIRED SPEC -> SKIP

within DBBA
DBC

reset? 1 ->

ii store? 0 ->
char mid PROC PLIPFLOPSTORAGECOMPONENT DESIRED SPEC. 0 ->
SKIP

[]
Store? 1 ->

Chan mid_PROC_FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC. 1 ->
SKIP

DBD
)

reset? O ->

store? 0 ->
chap mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
DBD

1)

store? 1
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0
chan_midPROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 1 ->
chan_mid_PROC FLIPFLOPSTORAGECOMPONENTDESIRED_SPEC. 2 ->
DBE

U
store? O ->

chan_mid_PROC_PLIPFLOPSTORAOECOMPONENT_DESIRED_SPEC. 0 ->
reset? O -> SKIP
[]
reset? 1 -> SKIP

DBD

U
store? 1 ->

chap mid PROC PLIPFLOPSTORAOECOMPONENT_DESIRED_SPEC. 1 ->

reget? 0 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
chan_mid PROC PLIPFLOPSTORAGECOMPONENT DESIRED SPEC. 2 ->
DBE

[]
reset? 1 -> DBD

DBD
clock? 1 ->

than_PROC_PLIPPLOPSTORAGECOMPONENTDESIRED SPEC. 3 ->
SKIP

[]
Chan_PROC_FLIPPLOPSTORAGECOMPONENT DESIRED SPEC. 4 ->

SKIP

Ietoredl0 -ý

223

Appendix G: Multi-Type Component Implemented Model Example

chan_link PROC FLIPFLOPSTORAC3ECOMPONENT DESIRED SPEC ->
DBC

DBE
clock? 1 ->

chan_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPfiC. 3 ->
atoredll ->
chan_link PROC_FLIPFLOPSTORAC3ECOMPONENT_DESIRED_SPEC
DBC

1]
Chan _PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC. 4 ->

Storedl0 -> _
Chan

_link
PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC ->

DBF

D8F
reget? i ->

store? 0 ->
chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
DBD

1]
reset? 0 ->

store? 0 ->
chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 0 ->
DBG

t]
store? O ->

chan mid_PROC_FLIPFLOPSTORAGECOMPONENT__DESIRED_SPEC. 0 ->
(reset? 1 -> DBD

[]
reset? O -> DBG

DBG -
clock? 1 ->

chan_PROC FLIPFLOPSTORAGECOMPONENi'_DESIRED_SPEC. 4 ->
atoredlO ->
Chan

_link_PROC
FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->

DBF
within

atoredl0 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENf_DESIRED_SPEC ->
DBA

DC((read, readallowed, data))
let

DCA
reset? l ->

read? O -> SKIP
[]

read? l -> SKIP

DCB

[]
reset? O ->

read? O -> DCB
[]
read? 1 ->

char_PROC_PI, IPFLOPSTORAGECOMPONENT DESIRED SPEC. 1 ->
DCC

read? O ->
reset? O -> SKIP
11

224

Appendix G: Multi-Type Component Implemented Model Example

reset? 1 -> SKIP

DCB

[]
read? 1 ->

reset? O ->
Chan_PROC_FLIPHLOPSTORADECOMPONENTDESIRED SPEC. 1 ->
DCC

[)
reget? 1 -> DCB

DCB
clock? l ->

chan_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
SKIP

(l
Chan_PROC_FLIPPLOPSTORAGECOMPONENT_DESIRED SPEC. 4 ->

SKIP

readallowedl0 ->
x: set(data) a x! 0 -> SKIP

chan_link PROC_PLIPPI. OPSTORAf3ECOMPONENT_DESIRED SPEC -> DCA

ý

{I

i}

DCC -
((DCD

[I
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC,
readallow_ed,
chan_PROC_FLIPPLOPSTORAGECOMPONENT_DESIRED_SPEC,
reset,
read,
clock

II DCE

DCA

DCD a
let

DCDA
clock? l ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->
readallowedlO ->
Chan link_PROC_FLIPFLOPSTORAGECOMPONENT DESIRED SPEC ->
DCDB

(]
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->

readallowedll ->
Chan

_link_PROC_FLIPFLOPSTORAGECOMPONENT
DESIRED_SPEC

SKIP

DCDB =
reset? 1 ->

read? O ->
clock? 1 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
readallowedl0 ->
chan link PROC FLIPFLOPSTORAGECOMPONENT DESIRED SPEC ->

225

Appendix G: Multi-Type Component Implemented Model Example

SKIP
(]
reset? o -> read? 0 -> DCDC
(]
read? o ->

reset? 1 ->
clock? 1 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
readallowed! o ->
chan_link PROC_FLIPPLOPSTORAGECOMPONENT DESIRED_SPEC ->
SKIP

U
reset? 0 -> DCDC

DCDC -
clock? 1 ->

chan_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->
readallowed! o ->
chan_link_PROC_FLIPPLOPSTORAGECOMPONENT DESIRED SPEC ->
DCDB

within DCDA
DCE -

let
DCEA (x)

length(x) 0& STOP
[]

length(x) 1&
chan_readbits_PROCFLIPFLOPSTORAGECOMPONENT DESIRED_SPEC.

(length(data) - length(x))? z ->
DCEB(head(x), z)

(]
length(x) >1&

(
chan readbitsPROCFLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC.

(length(data) _ length(x))? z ->
DCEB(head(x), z)

chars link
_PROC

FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC,
reads1lowed,
chan_PROC FLIPFLOPSTORAGECOMPONENT DESIRED SPEC,
reset,
read,
clock

I}

i) DCEA(tail(x))

DCEB (x, y) _
chan_PROC_FLIPFLOPSTORAC3ECOMPONENT_DESIRED_SPEC. 4 ->

readallowedl0 ->
xt0 ->
chan_link_PROC_FLIPFLOPSTORAOECOMPONENT DESIRED-SPEC ->
DCEC(x) -

[1
Chan _PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC.

3 ->
readallowedJO ->

X10 ->
Chan

_link _PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC
->

DCED(x, y)
[1
readallowedll ->

x! y ->
Chan

_link
PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC ->

SKIP

reeet? 1 ->

DCEC (x) -

226

Appendix G: Multi-Type Component Implemented Model Example

read? 0 ->
clock? 1 ->
Chan

_PROC_PLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC.
3 ->

readallowedl0 ->
X10 ->
Chan

_link_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
SKIP

[]
reset? O ->

read? 0 ->
clock? 1 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->
readallowedl0 ->
X10 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
DCEC(x)

[]
read? O ->

reset? l ->
clock? i ->
Chan

_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC.
3 ->

readailowedl0 ->
X10 ->
Chan

_link
PROC FLIPFLOPSTORAGECOMPONENT DESIRED_SPEC ->

SKIP
[]
reset? o ->

clock? i ->
Chan

_PROC
PLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->

readallowedl0 ->
X10 ->
Chan

_link _PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC
->

DCEC(x)
}

DCED (x, y) -
reset? i ->

read? 0 ->
clock? 1 ->
chan_PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC. 3 ->
readallowedl0 ->
X10 ->
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_DESIREDSPEC ->
SKIP

[)
reset? O -> read? O -> clock? 1 -> DCEB(x, y)
U

read? O ->
reset? 1 ->

clock? 1 ->
chan_PROC PLIPFIAPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
readallowedl0 ->
x10 ->
Chan

_link_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC
->

SKIP
()

reset? O -> clock? 1 -> DCEB(x, y)

within clock? 1 -> DCEA(data)
within

readallowedl0 ->
x: aet(data) " x10 -> SKIP

(chan_link_PROC_FLIPPLOPSTORAGECOMPONENT DESIRED_SPEC -> DCA

within DA
-- No Reads or Stores

227

Appendix G: Multi-Type Component Implemented Model Example

reset? o -> SKIP
[]

reset? 1 -> SKIP
); (clock? i -> E)

Fs

let
FA

reset? 1 ->
clock? 1 ->
chan_PROC FLIPFLOPSTORAGECOMPONENTDESIREDSPEC. 3 ->
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
FA

[]
clock? 1 ->

CÄar1_PROC FLIPFLOPSTORAGECOMPONENT__DESIRED SPSC. 3 -> than
_link

PROC FLIPFLOPSTORAGßCOMPONENT_DSSIRED_SPEC ->
FA

[]
chan_PROC FLIP FLOPSTORAGECOMPONENT DESIRED SPEC. O -> FB
[]

chan_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 1 -> FC
FB s

clock? 1 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENTDESIRED_SPEC. 3 ->
chan_link_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
FA

[]
Chaz1_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED

-
SPEC-0 FD

[)
chan_PROC FLIPFLOPSTORAGECOMPONENT_DESIRED SPEC. 1 -> FD

FC =
clock? 1 ->

Chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
FA

[]
Chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. O -> FD
0

Chan_PROC FLIPPLOPSTORAGECOMPONENT DESIRED_SPEC. 2 -> PC
FD ý

reset? 1 ->
clock? 1 ->
chan PROC_PLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 3 ->
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC ->
PA

[l
clock? 1 ->

Chan_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. 4 ->
char link PROC FLIPFLOPSTORAGECOMPONENTDESIRED SPEC ->
PI)

(l
chan_PROC PLIPPLOPSTORAGECOMPONENT_DESIRED SPEC. O -> PD
(l

Chan PROC PLIPPLOPSTORAGECOMPONENT DESIRED SPEC. 1 -> PD
within FA_

G:
let

GA =
length(stores) !=0& GB(head(etores))
(l
length(reads) !=0& GB(head(reads))

GB(
_,

data)).
(I { reset. 1 } +l x: {0.. (length(data)-1)} ® GC(x, 0)

GC(x, y) ý
reset? 1 -> GC(x, 0)
(l

chan_readbits_PROC_PLIPPLOPSTORAG$COMPONENT DESIRED_SPEC. xty ->
GC (x, y)

-

228

Appendix G: Multi-Type Component Implemented Model Example

[]
chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT_DESIRED_SPEC. x? z -> GC(x, z)

within GA
H.

F

[I { reset. 1 } 11
G

within chase(A)

G. 1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 111) is similar to the model covered in section F. 1.2, the CSP

model is the model covered in section G. 1.1 but altered so that it will accept incorrectly
driven input signals followed by explicitly defined deadlocking (i. e. STOP).

Figure 111: Low Level 'FlipFlopStorage' Component Generic Specification with Explicit Deadlocking

channel chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC: 0.. 2
channel Chan

_link_PROC
FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC

channel Chan
_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC

{0.. 4)
channel chan_readbits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC:
(0.. 2). {0,1)
channel chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC:
{0.. 2). {0,1)

PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC (clock, reset, stores, reads)

let
A

length(stores) -- 0 and length(reads) -= 0&E
1)
length(stores) 1- 0 and length(reads) 0&B
[1
length(stores) _- 0 and length(reads) 1- 0&C
[)
length(stores) 1- 0 and length(reads) l- 0&D

B=
let

BA =

[I {I

L

union (
reset,
clock,
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_ SPEC

I}

{ chan PROC_FLIPFLOPSTORAC3ECOMPONSNT_C3TNERIC_SPEC. y
I y<-{3,4}

}
ý] x: set(stores) 0 BB(x)

reset. 1,
clock,
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
Chan_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC

I}

229

Appendix G: Multi-Type Component Implemented Model Example

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_OENERIC_SPEC -> F

\ {ý chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,

I}
char PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC

BB((store, stored, data))
let

BHA "

{I clock,

I}
II

BBC
{l chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC
0

BBB
((

_ -> Ch 11 mid PROC FLIPpLOPSTORAGECOMPQNT GENERIC_SPEC. 0
11 x: set(data) 0

x? 0 -> SKIP
11

x? 1 -> STOP

(l
chanmid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1

JJl x: eet(data)
x? 0 -> SKIP
[]

x? 1 -> SKIP

clock? 1 ->
chan_link_PROCFLIPFLOPSTORAGECOMPONENT GENERIC_SPEC ->
BBB

}
BBC

reset? 1 ->

store? O -> chan mid PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. O SKIP
[l
store? l -> chan mid PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 SKIP

BBD

[]
reset? O ->

store? O -> chan mid PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC. 0 -> BBD

store? 1 ->
chan_midPROCFLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 ->
chan PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC. 0 ->

BBB

[1
Chan link_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC SPEC,
Chan mid PROC_FLIPFLOPSTORAGECOMPONENT GENERIC SPEC

230

Appendix G: Multi-Type Component Implemented Model Example

BBE

[]
store? 0 ->

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_OENERIC_SPEC. 0 ->
reset? 0 -> SKIP
(3
reset? 1 -> SKIP

BBD

[]
store? i ->

chan_mid_PROC_FLIPFLOPSTOR. AGECOMPONENT_GENERIC_SPEC. 1 ->
reset? 0 ->

Chan PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC. 0 ->
BBE

(1
reset? l -> BBD

BBD
clock? i ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3
SKIP

[]
Chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->

SKIP

storedl0 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_iENERICSPEC ->
BBC

BBE _
clock? i ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT C3ENERIC_SPEC. 3 ->
etoredll ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
BBC

t]
chan_PROC_FLIPFLOPSTORACiECOMPONENT_C3ENERIC_SPEC. 4 ->

storedlO ->
chan_link_PROC_FLIPFLOPSTORA(3ECOMPONENT_(3ENERIC_SPEC ->
BBF

BBF
reset? 1 ->

store? O ->
chap mid_PROC FLIPFLOPSTORAGECOMPONENT_iENERIC_SPEC. 0 ->
BBD

[]
store? 1 -> STOP

reset? 0 ->
store? 0

231

Appendix G: Multi-Type Component Implemented Model Example

chap mid PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC-0 -> BBG
11

store? l -> STOP

[]
store? 0

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC-0 ->
reset? 1 -> BBD
[1

reset? 0 -> BBG

_,

[l
store? 1 -> STOP

BBC;
clock? 1 ->

Chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->
storedlo ->
Chan-link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_ SPEC ->
BBF

within storedlo ->
Chan-link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
BBA

within BA
C=

let
CA =

(((I
union(

{I reset,

J)

clock,
chap link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC

{ char PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. y

}
I y<-{3,4}

) i)
rI {ý

x: aet(reada) 0 CB(x)

I}

reset. 2,
clock,
chan_link PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
Chan PROC_FLIPFLOPSTORAGECOMPONENT QENERIC SPEC

I]
char link PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC ->

F

{l chan_link_PROC FLIPFLOP3TORA4ECOMPONENT_ßENERIC_3PEC,
Chan_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC SPEC

CB((read, readallowed, data))
let

CBA
reset? l ->

read? o -> SKIP
[]
read? l -> SKIP

CBB

I}

232

Appendix G: Multi-Type Component Implemented Model Example

[1
reset? 0 ->

read? O -> CBB
[]

read?]. -> CBC

[J
read? O ->

((reset? O -> SKIP
[l

reset? 1 -> SKIP

CBS

[]
read? l -> (reset? O -> CBC

H
reset? 1 -> CBB

CBB
clock? 1 ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
SKIP

(1
chan_PROC_FLIPFLOPSTORAOECOMPONENT_4ENERIC_SPEC. 4 ->

SKIP

readallowedl0 ->
(ICI x: set(data) a x10 -> SKIP

Chan_linh_PROC FLIPFLOPSTORA6FsCOMPONENT (3ENERIC_SPEC -> CBA

CBC .
clock? l ->

char PROC_FLIPPLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowedll ->
((III x: aet(data) a x! 0 -> SKIP

char link_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC -> CBA

[l
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->

readallowedl0 ->
x: aet(data) a x10 -> SKIP

chan link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC -> CBD

CBD -
reset? 1 ->

233

Appendix G: Multi-Type Component Implemented Model Example

read? 0 -> CBB
[]

read? 1 -> STOP

[]
reset? O ->

read? O -> CBE
[]
read? 1 -> STOP

}
[]
read? O ->

reset? 1 -> CBB
[]
reset? O -> CBE

[]
read? l -> STOP

CBE .
clock? l ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->
readallowedl0 ->
((ýIx: set(data) ® xIO -> SKIP

chan_link_PROC FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC -> CBD

within readallowedlO ->
((JJJ x: set(data) 0 x10 -> SKIP

chap link PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC -> CBA

D

{I

I}

within CA
7

et
DA -

(((11 union(
reset,
clock,
chart link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC

{ chan PROC_FLIPFLOPSTORAC3SCOMPONBNT_ßENERIC_SPSC. y I y<-{3,4}

reset,
clock,

x: set (stores) ® DB (x)

[union(

chap link PROC FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC
11

{ chan_PROC_FLIPFLOPSTORAQECOMPONENT_QENERIC_SPEC. y I yc-{3,4}}
}

I)
[(union (

reset,
clock,

}

234

Appendix G: Multi-Type Component Implemented Model Example

i}
chap link PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC

{ Can
_PROC

FLIPFLOPSTORAQECOMPONENT QENERIC_SPEC. y I y<-{3,4}

ý] x: set(reads) ® DC(x)

{I

I}

tl
reset. 1,
chan_PROC_FLIPFLOPSTORAGECOMPONENTGENERIC

_SPEC, chan_readbits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC SPEC,
chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
clock,
chap link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC

}

II chan_lixilc_PROC FLIPFLOPSTORAC3ECOMPONENT_l3ENERIC_SPEC ->
H

\ {I
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
chan_readbits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
chan PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC

DB((store, stored, data))-
let

DBA -
DBB

II
chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
chan_link_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
clock

I} II
DBC
\ {j chan mid_PROC FLIPFLOPSTORAGECOMPONENT_C3ENERIC_SPEC

I}
DBB

let
DBBA

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC SPEC. 0 ->
III x: set(data)

x? 0 -> SKIP
1]
x? l -> STOP

clock? 1 ->
chan_link_PROC_FLIPFLOPSTORACiECOMPONENT_DENERIC_SPEC -ý
DBBA

[l
chan_mfd_PROC_FLIPFLOPSTORACdSCOMPONENT_GfENERIC_SPEC. 1 -ý

(DBBB(data)

DEBA

235

Appendix G: Multi-Type Component Implemented Model Example

{

DBBB(x) -
length(x) 0& STOP
[)
length(x) -- 1& DBBC(head(x), length(data) - 1)
[l
length(x) >1&

{ DBBC(head(x), length(data) - length(x))
[I

Chan
_link _PROC_FLIPFLOPSTORAßECOMPONENT_QENERIC_SPEC, Chan mid_PROC_FLIPFLOPSTORAQECOMPONENT CiENERIC_SPEC. 2,

clock. i

I)
DBBB(tail(x))

DBBC(x, y)
((x? o ->

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 2 ->
chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC SPEC. y. C ->
clock? 1 ->
SKIP

[l
clock? 1 -> SKIP

[]
x? 1 ->

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 2
chan_storebits_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC. y. 1 ->
clock? 1 ->
SKIP

[]
clock? 1 -> SKIP

char link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC -> SKIP

within DBBA
DBC

reset? 1 ->
CC

store? o ->
chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 0 ->
SKIP

[]
store? 1 ->

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 ->
SKIP

DBD

[]
reset? 0 ->

store? O ->

236

Appendix G: Multi-Type Component Implemented Model Example

chan_mid_PROC_FLIPFLOPSTORAßECOMPONENT_(3ENERIC, SPEC. 0 ->
DBD

(1
store? 1 ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 0 ->
Chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 ->
char mid PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC. 2 ->
DBE ----

[l
store? O ->

chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 0 ->
reset? 0 -> SKIP
(l
reset? 1 -> SKIP

D8D

[]
store? 1 ->

char mid PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 ->

reset? O ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 0 ->
chan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 2 ->
DBE

[l
reset? l -> DBD

DBD
clock? l ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
SKIP

[)
ChanPROCFLIPFLOPSTORAGECOMPONENT_GENERIC SPEC. 4 ->

_ SKIP -

-> storedlO
chan_link_PROC_FLIPFLOPSTORAC3ECOMPONENT_aENERIC_SPEC ->
DBC

DBE ý
clock2l ->

chan_PROC_FLIPFLOPSTORAC3ECOMPONENT_ßENERIC_SPEC. 3 ->
storedll ->
chan_link_PROC_FLIPFLOPSTORA(3ECOMPONENT_dENERIC_SPEC ->
DBC

[]
chan_PROC_FLIPFLOPSTORACiECOMPONENT_(3ENERIC_SPEC. 4

storedlO ->
chan link_PROC_FLIPFLOPSTORAC3ECOMPONENT_C3ENERIC_SPEC -ý
DBF ,

DBF
reset? 1 ->

237

Appendix G: Multi-Type Component Implemented Model Example

store? 0 ->
chan_mid_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 0 ->
DBD

[1
store? 1 -> STOP

[]
reset? 0 ->

[store? 0 -> chan mid PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC. 0 DBG
11
store? 1 -> STOP

}
[]
store? O ->

chan_mid_PROCFLIPFLOPSTORAGECOMPONENT_GENERIC SPEC. 0 ->
reset? 1 -> DBD
[]

reset? 0 -> DBG

[l
store? l -> STOP

DBG -
clock? l ->

chan_PROC_FLIPFLOPSTORAGBCOMPONENT_GENERIC_SPEC. 4 ->
storedl0 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
DBF

within
storedlO ->

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
DBA

DC((read, readallowed, data)
let

DCA
reset? l ->

((read? O -> SKIP
[J
read? 1 -> SKIP

DCB

[]
reset? O ->

read? 0 -> DCB
1]

read? 1 ->
chan_PROC_FLIPFLOPSTORAOECOMPONENT_GENERIC_SPEC. 1 ->
DCC

Il
read? O ->

reset? O -> SKIP
[l

reset? l -> SKIP

DCB

238

Appendix G: Multi-Type Component Implemented Model Example

[]
read? 1 ->

reset? O ->
Chan PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC. l ->
DCC

[l
reset? 1 -> DCB

DCB "
clock? 1 ->

chan_PROC_FLIPFLOPSTORAßECOMPONENT_f3ENERIC_SPEC. 3 ->
SKIP

[I
chan_PROC-FLIPFLOPSTORAGECOMPONENT GENERK SPEC. 4 ->

SKIP

readallowedl0 ->
(III x: set(data) a x10 -> SKIP

chap link_PROC FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC -> DCA

{I

i}

DCC
DCD

(I
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
readallow_ed,
chan_PROC_PLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
reset,
read,
clock

i] DCE

DCA

DCD =
let

DCDA -
clock? l ->

Chan_PROC_FLIPFLOPSTORAßECOMPONENT_ßENERIC_SPEC. 4 ->
readallowedl0 ->

-> chan_link-PROC-FLIPFLOPSTORAßECOMPONENT-C3ENERIC-SPEC
DCDB

[]
chan_PROC_FLIPFLOPSTORAßECOMPONENT_ßENERIC_SPEC. 3

readallowedll ->
chan_link_PROC FLIPFLOPSTORAßECOMPONENT_C3ENERIC SPEC ->
SKIP

DCDB
reset? l ->

read? O ->
clock? 1 ->

239

Appendix G: Multi-Type Component Implemented Model Example

chan.
_PROC

FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowedl0 ->
chan_link

_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC SKIP
[I

read? 1 -> STOP

{l
reset? O ->

{ read? O -> DCDC
[l

read? 1 -> STOP

[]
read? O ->

->

reset? 1 ->
clock? 1 ->
Chan

_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC.
3 ->

readallowedl0 ->
Chan link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC ->
SKIP --_

[]
reset? O -> DCDC

read? 1 -> STOP
DCDC

clock? 1 ->
chan_PROCFLIPFLOPSTORAQECOMPONENT_QENERIC_SPEC. 4 ->
readallow_edi0 ->
chan_link_PROC FLIPFLOPSTORAQECOMPONENT QENERIC_SPEC ->
DCDB

within DCDA
DCE -

let
DCEA(x) _

length(x) 0& STOP
[l
length(x) 1&

chan_readbits_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC.
(length(data) - length(x))? z ->

DCEB(head(x), z)
O
length(x) >1&

chan_readbita_PROCFLIPFLOPSTORA(3ECOMPONENT_C3ENERIC_3PEC.
(length(data) _- length(x))? z ->

DCEB(head(x), z)

{I

i}

[I
chan_link

_PROC
FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC,

readallowed,
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC,
reset,
read,
clock

II DCEA(tail (x))

240

Appendix G: Multi-Type Component Implemented Model Example

DCEB (x, y) _
chan_PROC_FLIPFLOPSTORAC3ECOMPONENT_QENERIC_SPEC. 4 ->

readallowedl0 ->
x10 ->
Chan link PROC FLIPFLOPSTORA(3ECOMPONENT_ßENERIC_SPEC ->
DCEC(x)

(1
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->

readallowedl0 ->
x10 ->
chan_link PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC ->
DCED(x, y_

[]
readallowedll ->

xty ->
chantlink_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC ->
SKIP

l
DCEC (x)

reset? 1 ->

read? O ->
clock? 1 ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowed! O ->
x! 0 ->
chan_link PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC
SKIP _---

[l
read? 1 -> STOP

[]
reset? O ->

read? O ->
clock? i ->
Chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->
readallowed! O ->
x! 0 ->
chan_link

_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
DCEC(x)

[l
read? 1 -> STOP

I]
read? O ->

reset? 1 ->
clock? 1 ->
Chan_PROCFLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallow_edl0 ->
x10 ->
chap link_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC ->
SKIP

I I
reset? 0 ->

clock? 1 ->
Chan_PROC_FLIPFLOPSTORAGECOMPONENTGENERIC_SPEC. 4 ->
readallowedl0 ->
x10 ->
than link PROC FLIPFLOPSTORAGECOMPONENT GENERIC-SPEC

241

Appendix G: Multi-Type Component Implemented Model Example

DCBC(x)

[]
read? 1 -> STOP

DCED(x, y)
reset? 1 ->

read? 0 ->
clock? 1 ->
than PROC PLIPFLOPSTORAGECOMPONENT GENERIC SPEC. 3 ->
readallowedl0 ->
x10 ->
Chan link

_PROC_FLIPFLOPSTORAGECOMPONENT
GENERIC SPEC -> SKI P

[J
read? i -> STOP

(]
reset? O ->

(read? O -> clock? 1 -> DCEB(x,
[]

read? 1 -> STOP

[]
-> read? O

c

Y)

reset? 1 ->
clock? i ->
chan_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
readallowedl0 ->
x10 ->
char link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_ SPEC ->
SKIP

[3
reset? O -> clock? l -> DCEB(x, y)

[]
read? 1 -> STOP

within clock? l -> DCEA(data)
within

readallowedio ->
x: set(data) ® x10 -> SKIP

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT GENERIC SPEC -> DCA

within DA
-- No Reads or Stores
E

reset? O -> SKIP
{l
reset? 1 -> SKIP

); { clock? 1 -> E
F

let
FA "

reset? l ->
clock?]. ->
chanPROC_FLIPFLOPSTORAGECOMPONENT_GENERIC _SPEC.

3 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC ->
FA

242

Appendix G: Multi-Type Component Implemented Model Example

[l
clock? 1 ->

chanPROCFLIPFLOPSTORAGECOMPONENTGENERIC SPEC. 3
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC -> FA

[]
chan_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_ SPEC. 0 -> FB
[I
chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 -> FC

FB =
clock? 1 ->

char PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC. 3 ->
char link_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC SPEC -> FA

[]
chan_PROC_FLIPFLOPSTORAC3ECOMPONENT_ßENERIC_SPEC. 0 -> FD
[]
chan_PROC_FLIPFLOPSTORAGECOMPONENT_dENERIC_SPEC. 1 -> FD

FC =
clock? 1 ->

chanPROC FLIPFLOPSTORAßECOMPONENTGENERIC SPEC. 3 ->
chan_link_PROC_FLIPFLOPSTORAOECOMPONENT_aE_NERIC_SPEC ->
FA

[1
chan_PROC FLIPFLOPSTORAGECOMPONENT GENERIC SPEC. 0 -> FD
[l
chan_PROC FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 1 -> FC

FD -
reset? l ->

clock? l ->
chap PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 3 ->
chap link_PROC FLIPFLOPSTORAGECOMPONENT GENERIC_SPEC ->
FA

11
clock? l ->

Chan_PROC_FLIPFLOPSTORAGECOMPONENT_GENERIC_SPEC. 4 ->
Chan link PROC FLIPFLOPSTORAGECOMPONENTGENERIC SPEC ->

(]
char PROC_FLIPFLOPSTORAaECOMPONENT_4ENERIC SPEC. O -> FD
Cl

chan_PROC FLIPFLOPSTORAf3ECOMP0NENT_aENERIC_SPEC. 1 -> FD
within FA

let
GA -

length(stores) !. 0& aB(head(stores))
(]
length(reads) I= 0& GB(head(reads))

GB(
_,

data))-
[I { reset. 1 } ý] x: {0.. (length(data)-1)} ® GC(x, 0)

aC (x, y) -
reset? 1 -> GC(x, 0)
[]

chan_readbits_PROC_FLIPFLOPSTORAaECOMPONENT_aENERIC_SPEC. xIy
GC (x, y)

[l
chan_storebits-PROC_FLIPFLOPSTORAaECOMPONENT_aENERIC_SPEC. x? z ->

GC (X, z)
within GA

H-

243

Appendix G: Multi-Type Component Implemented Model Example

F
[I { reset. 1}

G
within chase(A)

G. 1.3 ImpSpec 3: Model of Implemented Logic

This CSP model (see Figure 112), is a model of the segment of logic that this component
represents and is achieved through modelling the individual logic components and

running them in parallel.

Figure 112: CSP Model of the Logic Circuit Segment of the 'FlipFlopStorage' Component

-- CoMponants used in the segment of logic being verified
alpha

_PROCS = {1 chaniS, chan33, chan29 1}
PROCS - PROC_AND(chan33, <chanl8, chan29>)
alpha_PROC6 - {1 chanl8, chan46, chan49 1}
PROC6 - PROC_AND(chan46, <chan49, chanl8>)
alpha_PROC7 - {I chanli, chanl2, chan22 1}
PROC7 = PROC_AND(chanl2, <chanii, chan22>)
alpha_PROC8 - (I chan36, chan30, chan20, chan26
PROCB - PROC_OR(chan2O, <chan26, chan30, chan36>)
alpha

_PROC9 = {I chan43, chanl4, chan0, chanl 1}

PROC9 - PROC_DTYPE(chan0, chanl, chanl4, chan43)
alpha_PROC10 = {I chan40, chan45, chan32 1}
PROC10 = PROC_OR(chan45, <chan32, chan40>)
alpha

_PROC11
- {) chan0, chani, chan3l, chan50

PROC11 - PROC_DTYPE(chan0, chanl, chan3l, chan50)
alpha_PROC12 - {I chan28
PROC12 - PROC_f3ND(chan28)
alpha_PROC13 - {I chan44
PROC13 = PROC C3ND(chan44)
alpha_PROC14 = {I chanO, chanl0, chani, chan37
PROC14 - PROC_DTYPE(chan0, chani, chanl0, chan37)
alpha_PROC15 - {I chanO, chani, chan33, chan23 1}

PROC15 - PROC_DTYPE(chan0, chani, chan33, chan23)
alpha_PROC16 - (I chan48, chan29
PROC16 - PROC_NOT(chan48, chan29)
alpha

_PROC17 - (I chan2l, chan0, chan6, chanl
PROC17 - PROC_DTYPE(chanO, chani, chan6, chan2l)
alpha_PROC18 - {I chan4l, chan33, chan32 1}
PROC18 - PROC_AND(chan32, <chan4l, chan33>)
alpha_PROC19 = {I chanl4, chan49, chan28, chanl0
PROC19 - PROC_OR(chan49, <chan28, chanl0, chanl4>)
alpha

_PROC20
- {I chan27, chanl9, chan3l 1}

PROC20 - PROC_OR(chan3l, <chan27, chanl9>)
alpha_PROC21 - {I chan49, chan30, chan38 1}

PROC21 - PROC_AND(chan30, <chan38, chan49>)
alpha_PROC22 - {I chan45, chanO, chani, chan22
PROC22 = PROC_DTYPE(chan0, chani, chan45, chan22)
alpha_PROC23 - {1 chan40, chan35, chan22 1}

PROC23 - PROC AND(chan40, <chan35, chan22>)
alpha_PROC24 - {I chanii, chan37, chan2S 1}

PROC24 - PROC_AND(chanil, <chan25, chan37>)
alpha_PROC25 - {I chan24, chan27, chan33 1}

PROC25 - PROC AND(chan27, <chan24, chan33>)
alpha_PROC26 - (I chan34
PROC26 - PROC C3ND(chan34)
alpha_PROC27 - {I chan42, chanO, chani, chan2
PROC27 - PROC DTYPE(chan0, chani, chan2, chan42)
alpha_PROC28 ý {I chan39
PROC28 - PROC C3ND(chan39)

244

Appendix G: Multi-Type Component Implemented Model Example

alpha PROC29 : chanii, chanl3, chan50
PROC29 - PROC AND(chanl3, <chanli, chanSO>)
alpha

_PROC30 a {I chanl5, chanSO, chanl7 1}
PROC30 a PROC AND(chan17, <chanl5, chanSO>)
alpha_PROC31 a {I chan2l, chan7, chan23 1}
PROC31 = PROC AND(chan7, <chan23, chan2l>)
alpha PROC32 a {I chan47, chan6, chan29, chan2
PROC32 a PROC XOR(chan29, <chan47, chan2, chan6>)
alpha PROC33 a {I chanl8, chan2O
PROC33 a PROC_NOT(chanl8, chan20)
alpha_PROC34 a {I chanl9, chan35, chanSO
PROC34 - PROC AND(chan19, <chan35, chan50>)
alpha PROC35 - {I chan47 +}
PROC35 a PROCCiND (chan4 7)
alpha PROC36 a {I chanl5, chanl6, chan22
PROC36 - PROC AND(chanl6, <chanl5, chan22>)
alpha_PROC37 - {I chanl5, chan43, chan25 1}
PROC37 - PROC AND(chanl5, <chan25, chan43>)
alphaPROC38 a (I chan36, chan48, chan38 1}
PROC3_ = PROC AND(chan36, <chan38, chan48>)
alpha_PROC39 - {I chan8, chan4l, chan4, chan39
PROC39 = PROC_OR(chan4l, <chan39, chan4, chan8>)
alpha_PROC40 - {' chan42, chan3, chan23 1}
PROC40 - PROC AND(chan3, <chan23, chan42>)
alpha PROC41 a {+ chan35, chan33
PROC41 - PROC NOT(chan35, chan33)
alphaPROC42 = {I chan46, chan0, chanl, chan25 I}
PROC42 = PROC DTYPE(chan0, chani, chan46, chan25)
alpha_PROC43 - {) chan0, chan20, chan26, chani 1}
PROC43 a PROC DTYPE(chan0, chanl, chan20, chan26)
alpha_PROC44 - (I chan44, chan6, chan38, chan2 1}
PROC44 = PROC OR(chan38, <chan44, chan2, chan6>)
alpha PROC45 = {I chan24, chan34, chan9, chan5 11
PROC45 - PROC_OR(chan24, <chan34, chanS, chan9>)

-- The outer level signals for the component being tested
SYSTEM INTERFACE -

chanl5, chanli, chanl2, chanl6, chanO, chan6, chanl0, chanS, chanl7, chan2,
chan8, chan3, chanl4, chanl3, chani, chan4, chan7, chan9

I}
-- The alphabet of signals used in the model of the logic
SYSTEM ALPHA - fl chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

i}

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanil, chan45, chan46, chan47, chanl6, chan48, chan4,
chani, chan49, chanO, chan50, chan8, chan5

-- 8yst. m Declaration
SYSTEM LIST a

of the internal logic coaponenta and the Signal. they use

(PROCS, alpha_PROCS
(PROC6, alpha PROC6
(PROC7, alpha_PROC7
(PROCS, alpha_PROCB
(PROC9, alpha_PROC9),
(PROC10,
(PROC11,
(PROC12,
(PROC13,
(PROC14,
(PROC15,
(PROC16,
(PROC17,
(PROC18,
(PROC19,
(PROC20,

alpha_PROC10
alpha_PROC11
alpha_PROC12
alpha_PROC13
alpha_PROC14
alpha_PROC15
alpha_PROC16
alpha_PROC17
alpha_PROC18
alpha_PROC19
alpha PROC20),

245

Appendix G: Multi-Type Component Implemented Model Example

(PROC21, alpha_PROC21
(PROC22, a2pöa_PROC22
(PROC23, alpha_PROC23
(PROC24, alpha_PROC24
(PROC25, alpha_PROC25
(PROC26, alpha_PROC26
(PROC27, alpha PROC27
(PROC28, alpha_PROC28
(PROC29, alpha_PROC29
(PROC30, alpha_PROC30
(PROC31, alpha_PROC31
(PROC32, alpha_PROC32
(PROC33, alpha_PROC33
(PROC34, alpha_PROC34
(PROC35, alpha_PROC35
(PROC36, alpha_PROC36
(PROC37, alpha_PROC37
(PROC38, alpha_PROC38
(PROC39, alpha_PROC39
(PROC40, alpha_PROC40
(PROC41, alpha_PROC41
(PROC42, alpha_PROC42
(PROC43, alpha_PROC43
(PROC44, alpha_PROC44
(PROC45, alpha_PROC45

-- The logic model of the iapleoented coaponent. X pOpec31
SYSTEM

REPL(SYSTEM LIST) \ diff(SYSTEM_ALPHA, SYSTEMINTERFACE)
\ (interna1Choice}

-- Used to run tbe logic components in parallel
REPL(p)

let
INNERI(pl, al, p2, a2) - pi [I inter(al, a2) 1] p2
INNER2(<(pl, alº>"<(p2, a2)>"p3)-

null(p3) & INNER1(pl, al, p2, a2)
[]

not null(p3) & INNER2(<(INNERI(p1, ai, p2, a2), union(ai, a2))>"p3
INNER3(<(p1,

_)>
)- p1

within (null(p) & STOP
[]
length(p) -- 1& INNER3(p)
[]
length(p) >1& INNER2(p)

G. 1.4 ImpSpec 4: Annotation Only Specification

This CSP model (see Figure 113), is the expected behaviour of the 'FlipFlopStorage'

component from an annotation only perspective, with annotation id values for each of the

interfaces along with the bit width of the storage having to be supplied. The CSP model

will demonstrate all the possible behaviours that the 'FlipFlopStorage' component can

perform, thus describing how driving the components interfaces interacts and affect each

other.

246

Appendix G: Multi-Type Component Implemented Model Example

Flure 113: FHpFlopStorage Component Annotation Only Specification
channel ehan_mid_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC: 0.. 2
channel chan_link_PROC_FLIPPLOPSTORAGECOMPONENT_HIGHER_SPEC
channel chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC (0.. 4)
channel chan_readbite_PROC FLIPFLOPSTORAGECOMPONENT HIGHER SPEC: (0.. 2). (0,1)
channel chan_etorebite_PROC FLIPFLOPSTORAGECOMPONEN_T HIGHER_SPEC: (0.. 2). (0,1)
PROC_FLIPFLOPSTORAGECOMPONENT HIGHER SPEC(bitLength, aid, rid)

let
A=

length(rid) _= 0 and length(rid) 0& SKIP
[]
length(rid) !-0 and length(rid) 0&B
11
length(rid) -- 0 and length(rid) !=0&C
C)
length(rid) !=0 and length(rid) !-0&D

B-
let

BA =
([ý {ý annotation. RESET,

chan_link PROC_FLIPFLOPSTORAGECOMPONENT__HIGHER_SPEC

f} ý) x: set(sid) 0 BS(x)

[I (l chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC,
annotation. RESET

11
1}

BD
88 (x) _

y: set(sid) Q annotation. RESET. y -> SKIP); B8(x)
[1

annotation. IDLE. x ->
chan_link PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC ->
chan link PROC FLIPFLOPSTORAGECOMPONENT__HIGHER_SPEC ->
BS (x)

[1
annotation. STORE. x ->

chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. O ->
((III y: {O.. (bitLength-1)} ®

annotation. DATABIT. x. y. o -> SKIP

[]
annotation. DATABIT. x. y. 1 -> SKIP

chan_link
_PROCFLIPFIAPSTORAGECOMPONENT

HIGHfiR_SPEC ->
Chaa_PROCFLIPFLOPSTORAGECOMPONENT_HIGHER SPEC-4

annotation. NOTSTORED. x ->
chan link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC
BC(x)

(J
ohan_PROC PLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 3

annotation. STORED. x ->
Chan

_link_PROC_PLIPFLOPSTORAGECOMPONENT_HIGHER
SPEC ->

BB (x)

BC (x) _
y: set(sid) 0 annotation. RESET. y -> SKIP); BB(x)

[]
chan_link _PROC_FLIPFLOPSTORAGECOMPONENT'_HIGHER

SPEC ->
chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 4

annotation. NOTSTORED. x ->
chan_link

_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC
->

BC(x)
BD -

247

Appendix G: Multi-Type Component Implemented Model Example

y: set(sid) 0 annotation. RESET. y -> SKIP); BD
[]

char PROC FLIPFLOPSTORAGECOMPONENT HIGHER SPEC. 3 -> BD
(]
chan PROC FLIPPLOPSTORAGECOMPONENT HZGHER SPEC. 0 -> BE

BE .----
chan-PROC-FLIPFLOPSTORAGECOMPONENT-HIGHER-SPEC. 3 -> BD
(7

chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 0 -> BF
BF :

y: aet(aid) ® annotation. RESET. y -> SKIP); BD
(7
chan PROC FLIPFLOPSTORAGECOMPONENT HIGHER SPEC. 4 -> BF
() ----

chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 0 -> BF
within BA \ {I chan link_PROC FLIPFLOPSTORAGECOMPONBNT_HIGHER

_SPEC,

I}
chap_PROC_FLIPFLOPSTORAGECOMPONENT HIGHER SPEC

C=
let

CA .
[ý {) annotation. RESET,

i}
chan_link_ PROC_FLIPFLOPSTORAG3ELbMPONENT_HIG3HER_SPEC

II x: set(rid) ® CB(x)
CB(x) _

((lif y: set(rid) ® annotation. RESET. y -> SKIP); CB(x)
[]

annotation. IDLE. x ->
chan_link

_PROC_FLIPFLAPSTORAGECOMPONENT_HIGHER
SPEC ->

chan_link_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC ->
CB (x)

[]
annotation. READ. x ->

chan_link PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC ->
CC (x)

CC (x) _
annotation. READALLOWED. x ->

({ ýý) y: (0.. (bitLength-1)} ® annotation. DATABIT. x. y. 0 -> SKIP

chan link PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC -> CB(x)

within CA \ {ý chan_link_PROC FLIPFLOPSTORAßBCOMPONENT HIGHER_SPfiC ý}

let
DA

tl

[union (
annotation. RESET,
Chan link PROC FLIPFLOPSTORAGECOMPONENT_HIGHERSPEC

I}
ý chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. y

Y<-(2,3}
}

I] x: eet(aid) ® DS(x)

union({l annotation. RESET,
chap link PROC FLIPFLOPSTORAGECOMPOHENT_HIGHER SPEC

11

{ chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. y

y<-{2,3}
}

I] [I union((I annotation. RESET,
chan link PROC PLIPFLOPSTORAGECOMPONENT_HIGHER SPEC

248

Appendix G: Multi-Type Component Implemented Model Example

}

II ý ý ýci

{ chap PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. y
I Y<-{2,3}

x: set(rid) ® DD(x)

Iý {ý chan_link PROC_FLIPFIAPSTORAGECOMPONSNP_HIGHER SPEC,
chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHERSPEC,
chan_storebits_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC,
chan_readbita_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC,
annotation. RESET

1)

chan_link_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC,
chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC,
chan_storebits_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC,
Chan readbita PROC PLIPPLOPSTORAGECOMPONENT HIGHER SPEC

I) -- Store
DB (x)

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->
(((III y: union(set(sid), set(rid)) 0 annotation. RESET. y -> SKIP

DB (x}

[l
annotation. IDLE. x ->

-> chan link PROC_PLIPPLOPSTORAGECOMPONENT_HIGHER-SPEC

Chan_PROC PLIPPLOPSTORAGECOMPONENTHIGHER SPEC. 2 -> SKIP
[l

char PROC PLIPPLOPSTORAGECOMPONENT HIGHER SPEC. 3 -> SKIP

DB (x)

f]
annotation. STORE. x ->

chan_PROC F'LIPFLOPSTORA(3ECOMPONENT_HIQHER SPEC. 0 ->
y: {0.. (bitLength-1)} ®

annotation. DATABIT. x. y. 0 ->
Chan

-atorebita_PROC_FLIPFLOPSTORAßECOMPONENT_HI(3HER_SPEC.
y. 0 ->

SKIP
(1
annotation. DATABIT. x. y. 1 ->

chan_atorebits_PROC FLIPFLOPSTORAGBCOMPONENT_HIGHER_SPEC. y. l ->
SKIP

chan_link
_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER

SPEC ->
than PROCFLIPFLOPSTORAGECOMPONENT HIGHER_SPEC. 2 ->

annotation. STORED. x ->
DB(x)

(l
Chan_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC. 3 ->

annotation. NOTSTORED. x ->
DC (x)

DC(x) -
chan_linkPROC_FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC ->

(((IU y: union(aet(aid), set(rid)) 6 annotation. RESET. y -> SKIP

249

Appendix G: Multi-Type Component Implemented Model Example

DB (x)

[)
chan_link_PROCFLIPFLOPSTORAGECOMPONENT_HIGHER-SPEC ->

chan PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 3 ->
annotation. NOTSTORED. x ->
DC(x)

-- Reads
DD (X) s

chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->
(((III y: union(aet(aid), set(rid)) 0 annotation. RESET. y -> SKIP

DD (x)

[]
annotation. IDLE. x ->

chan_link
_PROC_PLIPFLOPSTORAGECOMPONENT_HIGHERSPEC ch

->
an_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC. 2 -> SKIP

[)
chan_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC. 3 -> SKIP

DD (x)

[)
annotation. READ. x ->

chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 1 ->
((([j union(

{ chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. y,
annotation. READALLOPiED. x,
annotation. DONTREAD. x,
chan link_PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC
I y<-{2,3)

}
annotation. RESET

y: {0.. (bitLength-1)} ®

chan_readbits PROC_FLIPFIAPSTORAGECOMPONENT_HIGHER_SPEC. y. O -> DG(x, y, 0)
t]

chan readbits_PROC_FLIPPIAPSTORAGECOMPONENT_HIGHER_SPEC. y. 1 -> DG(x, y, 1)

union(
char PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. y,
annotation. READALLOWED. x,
annotation. DONTREAD. x,
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC
I y<-12,3)

{

}
{l annotation. RESET ýj

DF(x)
)
DD

(x1

DE(x)
117 y: union(set(sid), set(rid)) ® annotation. RESET. y -> SKIP

(I
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHERSPEC ->

Chan PROC FLIPFLOPSTORAGECOMPONENT HIGHER_SPEC. 3 ->

250

Appendix G: Multi-Type Component Implemented Model Example

annotation. DONTREAD. x ->
than link

_PROC_FLIPPLOPSTORAGECOMPONENT
RIGHER_SPEC ->

DE (x)
DF(x)

Y: union(set(sid), set(rid)) a annotation. RESET. y -> SKIP
[]

Chan
_link _PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->
Chan_PROCFLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 2 ->

annotation. READALLOWED. x ->
SKIP

1]
Chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 3 ->

annotati"on. DONTREAD. x ->
Chan

_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->
DE (x)

DG(x, y, z) _
chan_link PROC_PLIPFIAPSTORAGECOMPONENT_HIGHER SPEC ->

Chan_PROC_PLIPFLOPSTORAGECOMPONENT_HIQiER_SPEC. 2 ->
(annotation. READALLOWED. x -> annotation. DATABIT. x. y. z -> SKIP

[]
annotation. DONTREAD. x -> DH(x, y, z)

[l
chan PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 3 ->

annotation .
DONTREAD. x ->

chan_link PROC_FLIPFIOPSTORAGECOMPONENT HIGHER_SPEC ->
DI (x)

DH(x, y, z) a
chan_link PROC FLIPFLOPSTORAGECOMPONENTHIGHER _SPEC -> IIIýY: union(set(aid), aet(rid)) @ annotation. RESET. y -> SKIP

[]
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->

chan_PROC_FLIPFIAPSTORAGECOMPONENT_HIGHER SPEC. 2 ->
(annotation. READALLOiPED. x -> annotation. DATABIT. x. y. z -> SKIP

[]
annotation. DONTREAD. x -> DH(x, y, z)

DI (x)

[l
chan_PROCFLIPFLOPSTORAGECOMPONENT HIGHER SPEC. 3 ->

annotation. DONTREAD. x ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENTHIGHER SPEC ->
DI(x)

((ý! ý y: union(aet(eid), set(rid)) 0 annotation. RESET. y -> SKIP
(]

chan_link
_PROC_FLIPFIAPSTORAGSCOMPONENT_HIGHSR

SPEC ->
ChanPROC FLIPFLOPSTORAGECOMPON6NT HIGHER_SPEC. 3 ->
annotation. DONTREAD. x ->
chan_link PROC_FLIPFLOPSTORAGßCOMPONENT_HIGHER SPEC ->
DI (x)

-- Storeage
DJ .

([ý (I annotation. RESET 1] x: {0.. (bitLength-1)} ® DK(x, 0)
Iý () annotation. RESET

DL
DK(x, y) ý

((III y: union(set(sid), set(rid)) ® annotation. RESET. y -> SKIP

DK (x, 0)

(1
than readbits PROC FLIPPLCPSTORAGECOMPONENT_HIGHER SPEC. x. y ->

251

Appendix G: Multi-Type Component Implemented Model Example

(x, DK Y)
[]
chan_atorebita PROC_FLIPFIAPSTORAGECOMPONENT HIGHER_SPEC. x. 0 -> DK(x, 0)
[l
chan etorebitaPROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. x. 1 ->

DIC(x, 1)
DL -

Chan
_link _PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC ->
chan_linkPROCFLIPFLOPSTORAGECOMPONENTHIGHER SPEC ->

chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 2 ->
DL

[)
Chan -

PROC-FLIPPLOPSTORAGECOMPONENT-HIGHER-SPEC. 0 -> DM
[]

Chan PROC FLIPFLOPSTORAGECOMPONENT HIGHER SPEC. 1 -> DN
---- [1

((III y: union(aet(aid), aet(rid)) 0 annotation. RESET. y -> SKIP

DL

ý
DM .

chart link PROC_PLIPPLOPSTORAGECOMPONENT_HIGHERSPEC ->
chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 2 ->
DL

[]
Cha1i_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 0 -> DO

p
chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. 1 -> DO

DN =
Chaa_link_PROC_FLIPFLOPSTORAGECOMPONENT HIGHER SPEC ->

Chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 2 ->
DL

I]
Chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER_SPEC. O -> DO
[]

Chan_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 1 -> DN
DO =

((III y: union(set(sid), set(rid)) 0 annotation. RBSET. y -> SKIP

DL

[7
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHERSPEC

Chan PROC FLIPFLOPSTORAGECOMPONENT HIGHER SPEC. 3 ->
chan_link_PROC_FLIPFLOPSTORAGECOMPONENT_HIGHERSPEC ->
DO

[]
Chan PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 0 -> DO
q

chan_PROC FLIPFLOPSTORAGECOMPONENT_HIGHER SPEC. 1 -> DO
within DA

within A

G. 2 Assertions: Linking the Models Together

G. 2.1 ImpSpec Assertion 1: Deadlock-Free

The assertion stated in Figure 114 checks that the model of the segment of logic circuit is

deadlock-free. This check demonstrates two properties, the first is that there exists no

252

Appendix G: Multi-Type Component Implemented Model Example

loops consisting of only clocked or non-clocked logic components, the second is that any
internal components are guaranteed to be driven correctly so long as the outer component
is driven correctly. The guarantee that internal components are driven correctly is possible
because the models of the internal components are models that accept all possible inputs
(both valid and incorrect), with the incorrect inputs being followed by explicitly defined
deadlock i. e. `STOP' (see section D. 1.2). If the STOP's are not reached, then invalid
inputs to internal components have not been created or propagated through. The
demonstrated multi type implemented component does not utilise other internal

components, this check is here to provide the functionality for enabling the development

of other multi type components which may require this feature.

-- Obann*l daalärations
channel internalChoice
channel chan0 : {1}
channel chanl8, chanl9, chan20, chan2l, chan13, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanll, chan4S, chan46, chan47, chanl6, chan48, chan4,
chanl, chan49, chan50, chan8, chan5 : (0,1}

-- Crsats an iastanco of the modals to absOk
-- The alpha pROC contains the lov level cbannals used by the procassas
alpha_PROC6 = {ý chanl5, chanll, chanl2, chanl6, chanO, chan6, chanl0, chan5,

chanl7, chan2, chan8, chan3, chanl4, chanl3, chanl, chan4,
chan7, chan9

PROC6 - PROC_S41DRAC38CUMPONENT_CONTROLL(
chan0, chani,
< (chan2, chan3, cchan4, chan5>)

(chan6, chan7, cchan8, chan9>)

< (chanl0, chanll, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

l

-- An iaVlmantatian of the logic to aboak
SYSTEM_INT$RFACE -

{) chanis, chanil, chanl2, chanl6, chanO, chan6, chanlO, chan5, chanl7, chan2,
chan8, chan3, chanl4, chan13, chani, chan4, chan7, chan9

I}
ZMP_8PEC3 - SYSTEM
CiEN 8PEC3 - PROC6

-- Deadlock-tree aback the expected correct generic aaypoaeat
assert (IMP_SPEC3 (I SYSTEM INTERFACE 11 GEN SPEC3) : [deadlock free [F]7

Figure 114: 'FIIpFlopStorage' Component Deadlock-Free Assertion

253

Appendix G: Multi-Type Component Implemented Model Example

G. 2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour

The assertion stated in Figure 115 demonstrates that the process that dictates allowable
correct driving input signals of the super type of this component, does only limit the
behaviour of this implemented component, thus ensuring that it does not introduce any
new behaviour.

-- ahann01 daclarationi
channel internalChoice
channel chan0 : {1}
channel chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanll, chan45, chan46, chan47, chanl6, chan48, chan4,
Chani, chan49, chan50, chan8, chanS : (0,1}

Create an instanoe of the modole to check
-- rho alpha_PROC contains the low level channels used by the processes

alpha_PROC6 - {j chanl5, chanll, chanl2, chanl6, chan0, chan6, chanlO, chan5,
chanl7, chan2, chan8, chan3, chanl4, chanl3, chanl, chan4,
chan7, chan9

1} PROC6 - PROC STORAaBCOMPONENT CONTROLL(
chanO, chani,
< (chan2, chan3, <chan4, chan5>)

(chan6, chan7, <chan8, chan9>)

< (chanl0, chanii, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>)

-- An iaWIaontatiao of tho logic to chock
SYSTEM INTERFACE -

(I chanl5, chanll, chanl2, chanl6, chan0, chan6, chanl0, chan5, chanl7, chan2,

i)
chan8, chan3, chanl4, chanl3, chani, chan4, chan7, chan9

IMP_SPEC3 - SYSTEM
GEN SPECS . PROC6

-- Check that the control specification only limits the behaviour of the aagaant
-- of logic, and does not introduce new behaviour
assert IMP_SPEC3 [T- (IMP SPEC3 [I SYSTEM INTTBRFACE 11 GEN SPEC3)

Figure 115: Super Type Component Limits the Behaviour of the Implementation

G. 2.3 ImpSpec Assertion 3: Expected Component Behaviour Is Deadlock-

Free

The assertion stated in Figure 116 demonstrates that the expected boundary behaviour

that the model of the implementation of the logic circuit segment will be checked against

254

Appendix G: Multi-Type Component Implemented Model Example

is deadlock-free. This is to provide better confidence in this models correctness as it will
be used in future checks.

-- channel declarations
channel internalChoice
channel chanO : {1}
channel chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanll, chan45, chan46, chan47, chanl6, chan48, chan4,
chanl, chan49, chan50, chane, chan5 : {0,1}

-- Create an Instance of the mod*lo to chock
IMP_SP8C1 - PROC FLIPFIAPSTORAGSCOMPONSNT_DßSIRED_SPSC(

chan0, chani,
< (chan2, chan3, <chan4, chan5>)

(chan6, chan7, <chan8, chan9>)

< (chani0, chanil, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

>

assert IMP_SPEC1 : [deadlock free [F]]

Figure 116: Expected Component Behaviour Is Deadlock-Free

G. 2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super

Type

The assertion stated in Figure 117 demonstrates that the expected correct boundary

behaviour of the implemented component is a valid refinement of the expected boundary

behaviour of its generic super type component.

255

Appendix G: Multi-Type Component Implemented Model Example

-- channel d*cIarations
channel internalChoice
channel chan0 : {1}
channel chan18, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanii, chan45, chan46, chan47, chanl6, chan48, chan4,
chanl, chan49, chanSO, chan8, chan5 : {O, 1}

-- Create an iaatanae of the aodela to Check
IMP_SPEC1 - PROC_FLIPFLOPSTORAGECOMPONENTDESIRED SPEC(

chan0, chant,
< (chan2, chan3, <chan4, chanS>)

(chan6, chan7, <chane, chan9>)

< (cbanlO, chanll, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

GEN SPEC1 .
PROC_STORA(; ECOMPONENT_DESIRED_GiSNERIC_SPEC(

chanO, chani,
< (chan2, chan3, <chan4, chan5>)

(chan6, chan7, <chan8, chan9>)
>

< (chanl0, chanli, <chanl2, chanl3>
(chan14, chanl5, <chanl6, chanl7>

ý {internalChoice}

assert GEN_SPEC1 [T. IMP_SPEC1

Figure 117: Expected Component Behaviour Is a Refinement of Super Type

G. 2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as

Expected

The assertions stated in Figure 118 demonstrate that the segment of logic circuit for this

implemented component, if driven correctly, behaves as expected.

256

Appendix G: Multi-Type Component Implemented Model Example

-- abannel daolarationAr
channel internalChoice
channel chano : {1}
channel chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanli, chan45, chan46, chan47, chanl6, chan48, chan4,
chani, chan49, chan50, chan8, chan5 : (0,1}

-- Craat" an initanoa of the aodel" to check IMP SPEC1 - PROC_P'LIPFLOPSTORAC3ECOMPONENT DESIRED SPEC(
chan0, chani,
< (chan2, chan3, <chan4, chan5>)

(chan6, chan7, <chane, chan9>)

< (chanl0, chanll, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7>

'- Croats an instance of the modals to chock
-- The alpha F1toC contains the low level channels used by the processes
alpha_PROC6 . {ý chanl5, chanil, chanl2, chanl6, chanO, chan6, chanio, chanS,

chanl7, chant, thane, chan3, chanl4, chanl3, chani, chan4,
chan7, chan9

PROC6 : PROC_STORAGBCOMPONBNT CONTROLL(
chanO, chant,
< (chan2, chan3, <chan4, chan5>)

(chan6, chan7, <chan8, chan9>)

< (chanl0, chanii, <chanl2, chanl3>
(chanl4, chanl5, <chan16, chan17>

-- An iWlNimtation of the logic to chick
SYSTEM INTERFACE -

{I chanl5, chanii, chanl2, chanl6, chanO, chan6, chanl0, chan5, chanl7, chan2,

I}
chan8, chan3, chanl4, chanl3, chani, chan4, chan7, chan9

IMP SPSC3 - SYSTEM
GENT SPSC3 a PROC6

assert IMP_SPEC1 [PD.
((IMP_SPEC3 [I SYSTEM INTERFACE I) GEN SPECS) \ {ý annotations ý))

assert ((IMP_SPEC3 (I SYSTEM INTERFACE 1) GEN_SPEC3)
\ {I annotations j)

__
) [FD- IMP SPEC1

Figure 118: Correcäy Driven Component Behaves as Expected

G. 2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce

Deadlock

The assertion stated in Figure 119 demonstrates that annotating the outer level of the
implemented component with the annotation process specified by its super type (i. e.
GenSpec 5, see Section F. l . 5), does not introduce any deadlocks.

257

Appendix G: Multi-Type Component Implemented Model Example

-- channel dealaratiousa
channel internalChoice
channel chanO : {1}
channel chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanl0, chan28, chan29, chan2, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chanl7, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanli, chan4S, chan46, chan47, chanl6, chan48, chan4,
chani, chan49, chan50, chan8, chan5 : {O, 1}

-- Create an instance of the model& to aback
IMP SPEC1 s PROC PLIPPLOPSTORAOECOMPONENT DESIRED SPEC(

chano, chani,
c (chan2, chan3, <chan4, chan5> (chan6, chan7, <chan8, chan9>) >,
< (chanlO, chanii, <chanl2, chanl3>), (chanl4, chanl5, <chanl6, chanl7>)>

-- Create an instance of the models to check
-- The alpha PROC contain, the low level ahannala nand by the processes
alpha PROC6 chanl5, chanil, chan12, chanl6, chan0, chan6, chanl0, chan5,

chanl7, chant, chan8, chan3, chanl4, chanl3, chant, chan4,
chan7, chan9

i} PROC6 . PROCSTORAGECOMPONENT CONTROLL(
chanO, chani,
< (chan2, chan3, <chan4, chan5> (chan6, chan7, <chan8, chan9>) >,
< (chanlO, chanli, <chanl2, chanl3>), (chan14, chanl5, <chanl6, chanl7>

alpha_PROCS = tý chanl5, chanii, chanl2, chanl6, chanO, chan6, chanl0, chan5,
chanl7, chan2, chan8, chan3, chanl4, chanl3, chani, chan4,
chan7, chan9

I)
PROCS - PROC STORAC3TsCOMPONBNT ANNOTATfi_OUTBR (

chan0, chani, _

< (chan2, chan3, <chan4, chan5>
(chan6, chan7, <chan8, chan9>)

<1,3 >

< (chanl0, chanii, <chanl2, chanl3>
(chanl4, chanl5, <chanl6, chanl7> }

<5,7 >

-- An implementation of the logic to check
SYSTEM-INTERFACE .

{I chanl5, chanll, chanl2, chanl6, chan0, chan6, chanl0, chan5, chanl7, chan2,

I}
chan8, chan3, chanl4, chan13, chanl, chan4, chan7, chan9

TMP SPEC3 - SYSTEM

dEN_SPEC3 - PROC6
GEN

-SPECS - PROCS

assert ((IMP_SPEC3 [I SYSTEM-INTERFACE 11 GEN-SPEC3)
(I SYSTEMINTERFACE J] GEN SPEC5

: [deadlock free [F]]

Fldure 119: Annotating outer level of the component does not introduce deadlock

258

Appendix G: Multi-Type Component Implemented Model Example

G. 2.7 ImpSpec Assertion 7: Expected High Level Behaviour is Deadlock

Free

The assertion stated in Figure 120 demonstrates that the high level model describing the

expected behaviour of the implemented component is deadlock-free. This helps to build

confidence in the model for when using it in future checks.

-- Create an . instanoa of the imodels to check
IMP SPEC4 - PROC_FLIPFIAPSTORAGSCOMPaNENT_HIC3HER_SPfiC(2, <1,3>, <5,7>

assert IMP SPEC4 : [deadlock free EP]]

FIQnre 120: Components High Level Behaviour Is Deadlock-Free

G. 2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected

Higher Spec

The assertions stated in Figure 121 demonstrate that the annotations obtained from the

implemented segment of logic circuit, performs in a similar manner to that of the

expected higher behavioural specification. The test can not be failure divergence checked
both ways (one has to be a trace refinement), this is due to the way annotations are added

to the outer layer. As the outer level input annotations occur after the corresponding low

level input signal events (i. e. the events that represent the wires), hiding these low level

signal events causes the high level model extracted from the implemented segment of

logic circuit to appear to have internal choice determining the high level conceptual input

states. The internal choice for the inputs does not really exist, but appears because the

events that do determine what occurs though external choice have been hidden (i. e. the

low level signals). Through altering the process of annotating the outer level of a

component (see Appendix H), it is possible to simplify the extracted model so that it

directly equivalent to the expected higher behaviour.

259

Appendix G: Multi-Type Component Implemented Model Example

-- chanaýl daclaratioaý
channel internalChoice
channel chano : {1}
channel chanl8, chanl9, chan20, chan2l, chanl3, chan22, chan23, chan24, chan25,

chan7, chan26, chan27, chanlO, chan28, chan29, chant, chan30, chan9,
chan3l, chanl2, chan32, chan33, chan34, chan17, chanl4, chan35, chanl5,
chan36, chan37, chan38, chan39, chan6, chan40, chan4l, chan3, chan42,
chan43, chan44, chanli, chan45, chan46, chan47, chanl6, chan48, chan4,
chani, chan49, chanSO, chanS, chan5 : {0,1}

-- Craata an 1natanaa of tha awdala to ahoak
IMP_SPBC1 - PROC_FLIPFLOPBTORAGiECOMPONBNT D88IR8D_SPBC(

chan0, chani,
< (chan2, chan3, <chan4, chan5> (chan6, chan7, cchan8, chan9>) >,
< (chanl0, chanli, <chanl2, chanl3> (chani4, chanl5, <chanl6, chanl7>

-- Croats an Instance of the imodelAr to check
-- She alpha pROC contains the low level channels used by the processes
alpha PROC6 . {ý chanl5, chanii, chanl2, chanl6, chanO, chan6, chanl0, chan5,

chanl7, chan2, chan8, chan3, chan14, chanl3, chani, chan4,
chan7, chan9

I}
PROC6 - PROC_6TORAaBCOMPONSNT CONTROLL(

chan0, chani,
< (chan2, chan3, <chan4, chan5> (chan6, chan7, <chan8, chan9>) >,
< (chanl0, chanli, <chanl2, chanl3> (chanl4, chanl5, cchanl6, chanl7>)>

alpha_PROCS = {ý chaniS, chanil, chanl2, chani6, chanO, chan6, chanlO, chan5,
chanl7, chan2, chan8, chan3, chanl4, chanl3, chani, chan4,
chan7, chan9

I}
PROCS - PROC STORAQECOMPONENT_ANNOTATE_OUTER

chan0, chanl,
< (chan2, chan3, <chan4, chan5>). (chan6, chan7, <chan8, chan9>) >,
<1,3 >,
< (chanlO, chanil, <chanl2, chanl3> (chanl4, chanl5, <chanl6, chanl7>) >,
<5,7 >

-- An tWldontation of the logic to aboak
SYSTEM INTERFACE -

chanl5, chanli, chanl2, chanl6, chanO, chan6, chanlO, chanS, chanl7, chan2,
chan8, chan3, chanl4, chanl3, chanl, chan4, chan7, chan9

I}
IMP SPECS - SYSTEM

GEN SPEC3 - PROC6
GEN SPECS - PROCS

assert (((IMP_SPEC3 [I SYSTEM-INTERFACE 1] C; EN_SPEC3)
[+ SYSTEM INTERFACE 11 GEN-SPECS
\ SYSTEM INTERFACE

[FD. Imp_Model 3
assert Imp Model_3 IT. (((IMP_SPEC3 (I SYSTEMINTERFACE 1) GEN_SPEC3)

SYSTEM INTERFACE -) GEN SPEC5
\ SYSTEM-INTERFACE

figure 121: Component Behaves Similarly to Expected Higher Behaviour

260

Appendix G: Multi-Type Component Implemented Model Example

G. 3 Conclusions & Evaluation

The combination of the assertions covered in section G. 2 links various properties of the
various models covered in section G. 1 together and also with some of the models covered
in section F. 1 (i. e. the models for its corresponding super type). This builds up confidence
with the implemented component through crosschecking various properties hold true
throughout the various models crated for it, along with the implementation being a
refinement of its super type component, thus allowing the implemented component to be

placed wherever its super type has been used.

GA Future Work

G. 4.1 Linking Clock Cycle Annotations to Higher Specification

Similar to the work described in section D. 4.1, the CSP model covered in section G. 1.4

could be linked to a higher conceptual description of the component that gives the

sequencing of the required conceptual events at a software level, and not a hardware clock
cycle level.

261

Appendix H Alternative Generic
Specification Model Example

This section will cover and explain the simplified CSP models required for a generic
super-type component, along with the assertions that need to be checked to link the
models to each other. The main modification arises from the process that controls the
driving of a component supplying the driving signals, instead of just limiting what signals
can be accepted. This modification also affects the method of annotating the outer layer of
a component, which will have the effect of simplifying the higher level clock based

annotation specification of implemented components, thus causing the annotation of the

start signals preceding the start signals of internal components, and not being specified as
occurring in parallel which the current implementation indicates. The main benefit of this
is that when the annotations are simplified to the software based CSP model, it will more
directly mimic the application source code and becomes more apparent when proving an
implemented component. The adaptation of the processes also causes some miner
modifications of the assertions that are required for the proof to hold true, along with the
introduction of a `NOTRESET' annotation.

H. 1 Models & Specifications

The `internalChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. 'I -. I') to enable 'chase' compression to applied if desired.

The 'internalChoice' event must be hidden for the specifications to be valid, but if 'chase'

compression has been chosen, the event should only be hidden after 'chase' has been

applied, otherwise the specification becomes invalid.

H. 1.1 GenSpec 1: Valid Low Level Behaviour

This model (see Figure 122) specifies all the valid and allowable low level behaviour of

this type of super type component. The purpose is to describe the interface boundary

behaviours, thus enabling implemented components to refinement check against it,

Appendix H: Alternative Generic Specification Model Example

proving there behaviours are within the requirements for it to be a sub-type of this super-
type.

PROC_PROCESS DESIRED_GENERIC_SPEC(clock, reset, start, finish) -
let

A

start? x -> reset? y -> C(x, y)
[]

reset? y -> start? x -> C(x, Y)
B

start? O -> reset? y -> D(y)
[]

reset? y -> start? O -> D(y)
C (x, y) -

y =- 1& clock? 1 -> finishl0 -> A
[]
y =- 0&

x -= 0& clock? i -> finishl0 -> A
[]

x -- 1& clock? 1 ->
internalChoice -> finishll -> A
[] -- 1-I
internalChoice -> finishl0 -> B

D (Y) .
y =" 1& clock? 1 -> finishlO -> A
Il

y == 0& clock? 1 ->
internalChoice -> finishli -> A
[) -- I-1
internalChoice -> finish! 0 -> B

within finiehlO -> A

Figure 122: Low Level Generic Control Flow Specification

This specification will only accept correct input driving signals, and will return valid

output result signals. Internal choice is utilised to enable it to specify all the possible valid

refinements.

H. 1.2 GenSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 123) is based on the model covered in section H. 1.1, but

altered to also accepts invalid driving input signals to be submitted to it. These invalid

input driving signals are followed by an explicitly defined ̀ STOP', that will explicitly

deadlock the model should it ever be reached. Similar to the specification in section

H. 1.1, the returned output signals will be all the valid possible permutations allowed

(internal choice is utilised to create those permutations, so long as it is driven correctly).

The reason why this model will accept invalid driving signals is to enable the

263

Appendix H: Alternative Generic Specification Model Example

demonstration that the driving control process will only provide correct valid driving

signals.

PROC_PROCESS_GENERIC_SPEC(clock, reset, start, finish)
let

A
start? x -> reset? y -> C(x, y)
U
reset? y -> start? x -> C(x, y)

B=
start? 1 -> STOP
(]
start? O -> reset? y -> D(y)
[]
reset? y ->

start? O -> D(y)
l]

start? 1 -> STOP

C(x, y)
y1& clock? l -> finishl0 -> A
11
yý=0&

(xý.

)
D(Y) -

Y .:
[)

0& clock? 1 -> finishlO -> A

[I
X :s1& C10Ck? 1 ->

internalChoice -> finishil -> A
[I -- 1-1
internalChoice -> finiehl0 -> B

1& clock? 1 -> finishlO -> A

y -- 0& clock? l -> internalChoice -> finish!]. -> A
t)--I-1
internalChoice -> finiehl0 -> B

within finishlO -> A

ý

Figure 123: Low Level Generic Control Flow Specification with Explicit Deadlocking

H. 1.3 GenSpec 3: Correct Component Driving

This CSP model (see Figure 124) is used to provide the valid input driving signals to an
implemented sub-type component while testing is performed. It uses internal choice to

achieve this, and has external choice to enable both correct and incorrect output signals to

occur. The invalid output signals are followed by an explicitly defined deadlock ̀ STOP',

which combined with deadlock-free checks will enabled the component being tested to be

proven to only output valid signals if it is correctly driven.

264

Appendix H: Alternative Generic Specification Model Example

PROC_PROCESS_DRIVER(clock, reset, start, finish)
let

A
start !1 ->

reset !1 -> D

1`1
reset 10 -> C

start !0 ->
reset !1 -> D
1-1

reset 10 -> D

reset !1 ->
start !1 -> D
1-1

start !0 -> D

reset !0 ->
(start !1 -> C

1`1
start 10 -> D

B-
start 10 ->

reset 11 -> D
1-1
reset 10 -> C

reset 11 -> start 10 -> D
1-1

reset 10 -> start 10 -> C
C-

clock? 1 ->
finish? 0 -> B
(]
finish? 1 -> A

clock? 1 ->
finish? O -> A
[]
finish? 1 -> STOP

within finiehlO -> A

Figure 124: Generle Control Flow Specification - Correct Siegal Driver

H. 1.4 GenSpec 4: Annotated Low Level Behaviour with Explicit

Deadlocking

This CSP model (see Figure 125) is derived from the one covered in section D. 1.2, but

containing extra events added to describe conceptually what is occurring. The aim of this
is to enable a link between a low level hardware model and a higher level conceptual

meaning of the function the hardware is performing. The added 'id' parameter added to

265

Appendix H: Alternative Generic Specification Model Example

the process is to provide a method to distinguish between different instances of this
process. The annotation events depicting the states that are entered into from how this

component is driven can only be specified after the event has occurred, where as the
output signals are controlled by this component and so the corresponding annotation
events can be performed before outputting the signals. The reason why renaming can not
be used to obtain a higher level conceptual model of what is occurring, thus the required
use of extra events depicting the annotations, is because the same signal states can mean
different things depending on the state of the system (e. g. a start signal high state ̀start? 1'

can mean that this component has been triggered, or that this component is being driven
incorrectly and an error has occurred).
channel chan_controllplowAnnotatedSpec 1,2). [0,1F
PROC_PROCESS_ANNOTATBD_SPEC(clock, reset, start, finish, id)

let
A=

start? x -> reset? y -> C(x, y)
[]
reset? y -> start? x -> C(x, y)

$a
start? 1 -> annotation. ERROR. id -> STOP
[]
start? O -> reset? y -> D(y)
[)
reset? y ->

(start? O -> D(y)
[)

start? 1 -> annotation. ERROR. id -> STOP

C (X, y) a
y -- 1& annotation. RESET. id -> clock? 1 -> finishlO -> A

0
y .: 0&

(x -- 0& annotation. IDLB. id -> clock? 1 -> finiahl0 -> A
f)
x == 1& annotation. START. id -> clock? 1 ->

internalChoice -> annotation. FINISH. id -> finishtl -> A
[) -- (-I

internalChoice -> annotation. NOTFINISHED. id -> finisht0 -> B
1

D(y) _
y -- 1& annotation. RESET. id -> clock? 1 -> finishl0 -> A
[]

y -- 0& annotation. NOTRESET. id -> clock? 1 ->
internalChoice -> annotation. FINISH. id -> finishll -> A

n -- I-1
internalChoice -> annotation. NOTFINISHED. id -> finishl0 -> B

within finiehlO -> A

Figure 125: Annotated Generic Control Flow Specification with Explielt Deadlocking

266

Appendix H: Alternative Generic Specification Model Example

H. 1.5 GenSpec 5: Correct Component Driving Annotating the Outer Layer

This CSP model (see Figure 126) is used to annotate the outer layer of an implemented

sub-type of this component. The process is modified from the specification in section
H. 1.3, it provides the correct input signals preceded by any relevant annotations, and
accepts both correct and incorrect output signals, post fixing any corresponding
annotation events that are required after they have occurred.
PROC_PROCESS ANNOTATED_DRIVER(clock,

let
A=

annotation. START. O ->
(start !1 -> reset 10 -> C

1-1 reset !0 -> start I1 -> C

I-I
annotation. IDLE. O ->

(start !0 -> reset 10 -> D

1-1 reset 10 -> start 10 -> D

annotation. RESET. 0 ->
start 11 -> reset I1 -> D

1-1
start 10 -> reset I1 -> D

1-1
reset 11 -> (start I1 -> D

1-1 start 10 -> D

8
annotation. RESET. O ->

(start 10 -> reset 11 -> D

reset I1 -> start !0 -> D

annotation. NOTRESET. 0 ->
(start 10 -> reset 10 -> C

1-1 reset 10 -> start 10 -> C

reset, start, finish)

C- clock? 1 ->
finish? O -> a nnotation. NOTFINISHED. O -> B
(]

finish? 1 -> annotation. FINISH. O -> A

D- clock? 1 ->
finish? O -> A
(]

finish? 1 -> annotation. ERROR. O -> STOP

within finiehl0 -> A

Figure 126: Generic Control Flow Annotate Outer Layer

267

Appendix H: Alternative Generic Specification Model Example

H1.6 GenSpec 6: Clock Cycle Higher Generic Specification

This CSP model (see Figure 127) is an annotation only clock cycle based higher

conceptual specification. It is used as a comparison for the extracted annotations from the

annotated low level hardware models. The model is sufficiently small so that it is unlikely
that 'chase' compression should be needed to be applied, which is why internal choice
(i. e. 'I- I') is used instead of using an extra event to simulate internal choice.
PROC PROCESS_HIßHER OUTER SPEC(id)

let
A

annotation. RESET. id -> A
[]

annotation. START. id -> B
tl
annotation. IDLS. id -> A

B C

annotation. NOTFINISHED. id -> C
1-1

annotation. FINISH. id -> A
C=

annotation. RESET. id -> A
[]

annotation. NOTRESET. id ->
(annotation. NOTFINISHED. id -> C

i-i annotation. FINI9H. id -> A

within A

Figure 127: Generic Control Flow Annotation Specification

H. 1.7 GenSpec 7: Driving Clock Cycle Higher Generic Specification

This CSP model (see Figure 128) is the driving component for the annotation only

specification GenSpec 6. The combination of these two specifications run in parallel can
be used as a basis to perform checks and comparisons against.

268

Appendix H: Alternative Generic Specification Model Example

PROC PROCESS HIGHER CONTROLL OUTER SPEC (id)
let

A=
annotation. RESET. id -> A
1-i

annotation. START. id -> B

i-i annotation. IDLE. id -> A
B=

annotation. NOTFINiSHED. id -> C
[]

annotation. FINISH. id -> A
C=

annotation. RESET. id -> A

i-i annotation. NOTRESET. id ->
annotation. NOTFINISHED. id -> C
U

annotation. FINISH. id -> A

within A

i

Figure 128: Control Generic Control Flow Annotation Specification

H. 1.8 GenSpec 8: Annotating Clock Cycle Higher Generic Specification

This CSP model (see Figure 129) is the annotated driving component for the annotation
only specification GenSpec 6. The combination of these two specifications run in parallel
can be used as a basis to perform checks and comparisons against.
PROC PROCESS_HIGHER ANNOTATED OUTER SPEC(id) _

let
A

annotation. RESST. 0 -> annotation. RESET. id -> A

i-i annotation. START. o -> annotation. START. id -> B

i-i annotation. IDLE. O -> annotation. IDLE. id -> A
8ý

annotation. NOTFINISHED. id -> annotation. NOTFINISHED. 0 -> C
[l

annotation. FINISH. id -> annotation. FINISH. O -> A
Ca

annotation. RESET. O -> annotation. RESET. id -> A
1-1
annotation. NOTRESET. 0 -> annotation. NOTRESET. id ->

annotation. NOTFINISHED. id -> annotation. NOTFINISHED. O -> C
(l

annotation. FINISH. id -> annotation. PINISH. O -> A

within A

FIgure 129: Annotate Generic Control Flow Annotation Specification

269

Appendix H: Alternative Generic Specification Model Example

H. 1.9 GenSpec 9: Software Higher Generic Specification

This model (see Figure 130) provides a software level based model of a generic control
flow process. A process when started may or may not ever finish, and it can only be

started again if it has finished.

internal choice with STOP Is provided am an alternative to the FINISH event,
this is because conceptually when started, a control flow process doom not

-- have to finish and is dependent on itself or other internal components to
determine if it does or not.

PROC PROCESS_HIGHER SIMPLIFIED_SPEC(id)
let

A=
annotation. START. id ->

STOP

1-1
annotation. FINISH. id -> A

within A

Figure 130: Eumple of Simplified Control Flow Annotation Specification

H. 1.10 GenSpec 10: Annotation Only Control Generic Specification

This model (see Figure 131) provides a process to drive the annotation only specifications

using internal choice to select the possible valid driving states.

PROC PROCESS_CONTROL_ANNOTATED_ODTER_SPEC
1et

A
annotation. RESET. O -> A

1"1
annotation. BTART. O -> B

1-1
annotation. IDLS. O -> A

B.
annotation. NOTFINI8H8D. 0 -> C
[l

annotation. FINi8H. 0 -> A
C=

annotation. RBSET. O -> A
1-1

annotation. NOTRESET. O ->
annotation. NOTFINISHED. 0 -> C
[7

annotation. FINISH. 0 -> A

within A

Figure 131: Control Process for Annotation Only Control Flow Specification

270

Appendix H: Alternative Generic Specification Model Example

H. 2 Assertions: Linking the Models Together

To ensure consistency between all the models for a generic component, several assertions
have to be proven. The consistency between the models is required because the proof of
an implemented component can utilise several of these specifications.

H. 2.1 GenSpec Assertion 1: Initial Deadlock-Free Check

This initial deadlock-free check (see Figure 132) of GenSpec 1 (see section H. 1.1) is to

provide a base comparison for future deadlock-free checks and trace refinements.
-- abannol daalarationa
channel internalChoice
channel chanO : {1}
channel chani : {0,1}
channel chan2 : {0, i}
channel chan3 : {0,1}

-- Create an instance of the modal to check
-- The alpha PROC4 contains the low level channels used by this instance
alpha_PROC4 - {1 chanO, chant, chant, chan3 1}
PROC4 - PROC PROCESS DESIRED GENERIC SPEC(chan0, chani, chant, chan3)

-- Side the internalCboice event to ensure that PROC4 has internal choice
-- performing correctly if needed.
GEN SPEC1 -(PROC4 \ {internalchoice}

-- Deadlock-tree check the eapeated correct generic aoajponant
assert GEN 8PEC1 : [deadlock free [F]]

Ftgnre 132: Example of GenSpec Assertion 1 for Controll Flow Process

H. 2.2 GenSpec Assertion 2: GenSpec 2 Contains GenSpec 1 Behaviour

This assertion (see Figure 133) demonstrates that GenSpec 2 (see section H. 1.2) contains

all the behaviour dictated by GenSpec I (see section H. 1.1), although this assertion allows
GenSpec 2 to provide extra behaviours.

271

Appendix H: Alternative Generic Specification Model Example

-- channel declaration,
channel internalchoice
channel chan0 : {i}
channel chani {0, i}
channel chant : {0, i}
channel chan3 : {0,1}

-- Create an inatanaa of the models to check
-- rho alpha PROC"s aontaint the low level channels used by the processes
alpha PROC3 = (I chanO, chant, chant, chan3 11
PROC3 = PROC__PROCSSS_GENERIC_SPEC(chan0, chant, chant, chan3)

alpha_PROC4 - {I chanO, chani, chant, chan3 1}
PROC4 - PROC PROCESS DESIRED GENERIC SPEC(chanO, chant, chant, chan3)

-- Side the iaternalchoiae scant to ensure that processes has internal choice
-- perfominy correctly if needed.
GEN SPEC1 -(PROC4 \ {internalChoice})
GEN_SPEC2 -(PROC3 \ {internalChoice})

-- Check Genßpea 2 aontalna the behaviour of SmSp"a 1
assert GEN_8PEC2 (T= GEN SPEC1

Flare 133: Example of GenSpec Assertlon 2 for Control) Flow Process

H. 2.3 GenSpec Assertion 3: GenSpec 3 Compatible with GenSpec 2

This assertion (see Figure 61) demonstrates that the GenSpec 3 controlling specification
(see section D. 1.3) does not introduce any new behaviour to the specifications it is being

run in parallel with. This still leaves the possibility of it limiting the events that can occur,
but does not guarantee any properties regarding this.

-- channel declarations
channel internalChoice
channel chanO : {1}
channel chanl, chan2, chan3 : {0,1}

-- Create an Instance of the models to chock
-- The alpha DROC's contains the low level ahann"1s used by the process. m
alpha_PROC2 - {I chanO, chanl, chant, chan3 11
PROC2 - PROC_PROCESS DRIVER(ehanO, chant, chant, chan3)
alpha_PROC3 - {I chan0, chant, chant, chan3 1)
PROC3 - PROC PROCESS GENERIC SPEC(chanO, chant, chant, chan3)

-- Ride the int"rnalCholce event to aneure that prows... has internal choice

-- p"rforaiing corr"atly if needed.
GEN SPECS - PROM
GEN_SPEC2 -(PROC3 \ {internalChoice}

-- Oanlp"c2 driven by the controll spscifiCatiom 04nSp003
GEN SPEC2 DRIVEN - GEN_SPEC2 (I alpha_PROC2 1] GEN SPECS

-- Check Osnlp"c2 contains the behaviour of OoSpoo2 driven by O"näp"a3

assert GEN SPEC2 (T- GEN SPEC2 DRIVEN

Figure 134: Example of GenSpec Assertion 3 for Controll Flow Process

272

Appendix H: Alternative Generic Specification Model Example

H. 2.4 GenSpec Assertion 4: GenSpec 3 Removes Deadlock from GenSpec 2

This assertion (see Figure 135) demonstrates that GenSpec 3 (see sectionH. 1.3) does not
incorrectly drive the component it is run in parallel with. This does not dictate that
GenSpec 3 does not supply all the possible correct driving signals (although it does).
-- channel doolarations
channel internalChoice
channel chan0 : {1}
channel chant {0,1}
channel chant : (0,1}
channel chan3 : (0,1}

-- Create an instance of the model& to check
-- She alpha PROC's Contains the low level chars ale used by the prow. /. s
alpha PROC2 - {I chano, chant, chant, chan3 1}
PROC2 - PROC_PROCESS DRIVER(chan0, chani, chant, chan3)

alpha
_PROC3 - {I chan0, chant, chan2, chan3 1}

PROC3 - PROC_PROCESS_GENERIC_SPEC(chan0, chant, chant, chan3)

-- Side the internaIChoics event to ensure that processes has internal choice
-- psrtorswing correctly if needed.
GEN

NSPECS - PROC
GE_SPEC2 -(PROC3 \ {internalChoice}

-- Gon8poc2 driven by the aontroll ipeaillcation GNnBp"c3
GEN SPEC2_DRIVEId = GEN_SPEC2 [I alpha_PROC2 j] GEN SPEC3

-- Chock that Gan8psa3 doss not invoke the incorrect driving options in Osntpsc2
assert GEN SPEC2_DRIVEN : [deadlock free [F]]

Figure 135: Example of GenSpec Assertion 4 for Control Flow Process

11.2.5 GenSpec Assertions 5: GenSpec 3 Removes Only Incorrect Driving

These assertions (see Figure 136) demonstrate that GenSpec 3 drives the process it is run
in parallel with, such that it only provides correct driving signals. These assertions also
demonstrates that GenSpec 3 does not introduce any extra behaviours and provides all

possible correct driving signals, and is achieved through proving that GenSpec 3 run in

parallel with GenSpec 2 covers all the traces contained in GenSpec 1. The processes can't
be failure divergent checked ' (Pn=' both ways, as the driving control process uses internal

choice to provide all the possible driving input signals and determine which ones occur,

where as the generic specifications (i. e. GenSpec 1) uses external choice to allow the

components driving it to dictate what state it should enter (by supplying the

corresponding sequence of input signals).

273

Appendix H: Alternative Generic Specification Model Example

-- channsi daalarations
channel internalChoice
channel chan0 : {1}
channel chani : {0, i}
channel chan2 : (0,1}
channel chan3 : (0,1)

Crate an instance of the modals to check
The alpha PROC'a contains the low level channels used by the processes

alpha PROC2 - {I chanO, chani, chant, chan3 1}
PROC2 - PROC PROCSSS_DRIVER(chan0, chant, chant, chan3)

alpha
`PROC3 - {I chanO, chani, chant, chan3 1)

PROC3 - PROC_PROCESS_GENERIC_SPEC(chan0, chant, chan2, chan3)

alpha PROC4 - fi chan0, chant, chant, chan3 1}
PROC4 - PROC_PROCESS_DESIRED_GENERIC_SPEC(chan0, chani, chant, chan3)

-- Hide the internalChoice event to ansute that processes has internal choice
-- performing correctly if needed.

GEN SPEC1 -(PROC4 \ {interna2Choice})
GEN_SPEC2 -(PROC3 \ {internalChoice})
GEN SPECS - PROC2

-- G. nßpec2 driven by the aontrol epeciticatioa 0400603
GEN SPEC2_DRIVEN - GEN SPEC2 [I alpha_PROC2 11 GEN SPEC3

Check that GenSpec3 in parallel with Geaspeo2 is produces all traces covered
-- by Genßpecl
assert GEN_SPEC1 [T- GEN_SPEC2_DRIVEN
assert GEN SPEC2 DRIVEN [FD- GEN SPEC1

Figure 136: Example of GenSpec Assertions 5 for Control Flow Process

H1.6 GenSpec Assertions 6: Properties of the Annotation Events

These assertions (see Figure 137) demonstrate that the annotation event contained within
GenSpec 4 do not introduce extra behaviours, but are only used to conceptually describe

what is occurring. This is achieved through hiding the annotation events, and proving that

the resultant process is indistinguishable to the GenSpec 2 model.

274

Appendix H: Alternative Generic Specification Model Example

-- channel declarations
datatype STATES =

START. {0} I FINISH. {0} NOTFINISHED. {0} I RESET. {0} I ERROR. {0} I IDLE. {0}

channel annotation : STATES
channel internalChoice
channel chanO : {1}
channel chant, chant, chan3 : {0,1}

Create an instance of the models to check
rho alpha PROC's contains the low level channels used by the processes

alpha
_PROCO -

{I chan0, chani, chant, chan3 1}
PROCO - PROC_PROCESS ANNOTATED_SPEC(chan0, chant, chan2, chan3,0)
alpha PROC3 - {I chan0, chani, chan2, chan3 1}
PROC3 - PROC PROCESS GENERIC SPEC(chan0, chant, chant, chan3)
-- Bide the internalcboice event to ensure that processes has internal choice
-- performing correctly if needed.
GEN_SPEC2 -(PROC3 \ {internalChoice})
GEN SPEC4 -(PROCO \ {internalChoice})
-- Genspec4 with the annotations hidden

GEN SPEC4_NO_ANNOTATIONS -(GEN_SPEC4 \ {I annotations ý})

Check that Genspec3 in parallel with Genspec2 is indistinguishable to
-- Genspeol
assert GENSPEC4NO ANNOTATIONS [PD- GEN_SPEC2
assert GEN__SPEC2_[6- GEN_SPEC4_NO_ANNOTATIONS

Figure 137: Example of GenSpec Assertions 6 for Control Flow Process

H. 2.7 GenSpec Assertion 7: GenSpec 3 Compatible with GenSpec 4

This assertion (see Figure 138) proves that the control driving process GenSpec 3 does

not add extra behaviours to the annotated generic specification GenSpec 4.

-- aha="l d. alarationa
datatype STATES -

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {0} I NOTRESET. {0}

ERROR. {0} I IDLE. {0}
channel annotation : STATES
channel internalChoice
channel chan0 : {1}
channel chant, chan2, chan3 : {0,1}

-- Create an instance of the models to chock
The alpha pROC's contains the low level channels used by the processes

alpha_PROC2 . (I chan0, chant, chant, chan3 1)
PROC2 - PROC_PROCESS

_DRIVER(chan0,
chant, chant, chan3)

alpha_PROCO - (I chan0, chant, chant, chan3 1)

PROCO - PROC PROCESS ANNOTATED SPEC(chan0, chant, chant, chan3,0)

-- Ride the internaldboiae event to ensure that processes has internal choice
-- performing correctly if needed.
GEN_SPEC3 - PROC2
GEN SPEC4 -(PROCO \ (internalChoice}

-- Gensp"c4 drivan by the control specification Genspec3

GEN SPEC4 DRIVEN - GEN_SPEC4 [I alpha_PROC2 1) GEN_SPEC3

-- Check Gansp"c4 contains the behaviour of Genfpeo4 limited by Gangpoc3

assert GEN SPEC4 [T- GEN SPEC4 DRIVEN

Figure 138: Example of GenSpec Assertion 7 for Control Flow Process

275

Appendix H: Alternative Generic Specification Model Example

H. 2.8 GenSpec Assertion 8: GenSpec 3 Removes Deadlock From GenSpec 4

This assertion (seeFigure 139) proves that the control process GenSpec 3 does not drive
the annotated generic specification GenSpec 4 into a state that is deadlocked (this also
includes the explicitly defined deadlocks ̀STOP').

-- channel declarations
datatype STATES

START. {0} I FIINNIISH. {0} I NOTFINISHED. {0} I RESET. {0} NOTRESET. {0}
ERROR. 0 IDLE. { O)

channel annotation : STATES
channel internalChoice
channel chanO : {i}
channel chant, chant, chan3 : {0,1}

-- Create an instance of the yodels to check
-- The alpha PROC"s contains the low level channels used by the processes

alpha_PROC2 - (I chanO, chant, chant, chan3 J}
PROC2 - PROC_PROCESS DRIVER(chanO, chant, chant, chan3)
alpha PROCO - (I chanO, chanl, chant, chan3 1)
PROCO - PROC PROCESS ANNOTATEDSPEC(chanO, chant, chan2, chan3,0)

-- Ride the internalahoioe event to ensure that processes has internal choice
-- performing correctly If needed.
GEN SPECS - PROC2
GEN SPEC4 -(PROCO \ (internalChoice}

-- GenSpec4 driven by the control specification Gen8pec3
GEN_SPEC4_DRIVEN - GEN SPEC4 (I alpha_PROC2 11 GEN SPEC3

Check that OanSp o3 ramov a the inoorr of driving options from OsnBpaa4
assert GEN SPEC4 DRIVEN : (deadlock free [F]]

Flgare 139: Eumple of GenSpec Assertion 8 for Control Flow Process

HIS GenSpec Assertions 9: GenSpec 4 Is an Annotated GenSpec 2

These assertions (see Figure 140) demonstrate that if the annotation events contained

within GenSpec 4 are hidden, then GenSpec is indistinguishable to GenSpec 2.

276

Appendix H: Alternative Generic Specification Model Example

-- channel declarations
datatype STATES -

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {O} I NOTRESET. (0)
ERROR. {0} I IDLE. {0}

channel annotation : STATES
channel internalChoice
channel chano : {1}

channel chant, chant, chan3 : {0,1}
-- Create an Instance of the aodels to check
-- The alpba PPOC"s contains the low level channels used by the processes
alpha_PROC3 - (I chanO, chant, chant, chan3 1)
PROC3 - PROCPROCESS GENERIC_SPEC(chan0, chant, chan2, chan3)
alpha_PROCO - (j chan0, chan2, chan2, chan3 j)
PROCO - PROC PROCESS ANNOTATED SPEC(chan0, chant, chan2, chan3,0)
-- Side the internalChoiae event to ensures that processes has internal choice
-- performing correctly If needed.
GEN SPEC2 -(PROC3 \ {internalchoice})
GEN SPEC4 -(PROCO \ {internalChoice})
--

5enSpec4
with hidden annotation events

GEN SPEC4 NO_ANNOTATIONS -(GEN SPEC4 \ {j annotation ý})

-- Check that Gengpec4 with hidden annotations Is indistinguishable to G. ntpea2
assert GEN_SPEC4 NO ANNOTATIONS [FD- GEN_SPEC2
assert GEN SPEC2 [FD- GEN_SPEC4_NO_ANNOTATIONS

Flure 140: Example of GenSpec Assertions 9 for Control Flow Process

11.2.10 GenSpec Assertion 10: GenSpec 6 Deadlock Free

This assertion (see Figure 141) deadlock-free checks GenSpec 6 which helps to provide a
base comparison for future deadlock-free checks and trace refinements for the

annotations.

-- Channel declarations
datatype STATES -

START. {0} I FINISH. {0} I NOTFINISHED. {0} RESET. {0} NOTRESET. {0}

ERROR. {0} I IDLE. {0}

channel annotation : STATES

-- Higher Outer Spec
GEN_SPEC6 - PROC PROCESS HIGHER OUTER SPEC(0)

-- Check that QonSpaa6 is deadlock-free
aeaert GEN SPEC6 : [deadlock free [F]]

Figure 141: Example of GenSpec Assertion 10 for Control Flow Process

H. 2.11 GenSpec Assertions 11: GenSpec 5 Annotates Outer Level Correctly

These assertions (see Figure 142) demonstrates that GenSpec 5 will drive a component

correctly and annotate the outer level of the process with annotation events that are

similar to GenSpec 6.

277

Appendix H: Alternative Generic Specification Model Example

-- chaanal declarations
datatype STATES

START. {0} I FINISH. {0} I NOTFINISHED. {0} I RESET. {0} I NOTRESET. {0}
ERROR. {0} I IDLE. {0}

channel annotation : STATES

channel internalChoice
channel chan0 : {1}
channel chant : {0,1}
channel chan2 : (0,1}
channel chan3 {0,1}

-- Create an Instance of the models to shack
-- The alpha PROC"s contains the low level channels used by the processes
alpha_PROC1 - {I chanO, chant, chant, chan3 1)
PROC1 - PROC PROCESS ANNOTATED DRIVER(chan0, chant, chant, chan3)

alpha
_PROC3 - (1 chanO, chani, chan2, chan3 1}

PROC3 - PROC_PROCE9S_GENERIC_SPEC(chanO, chant, chan2, chan3)

-- Hide the internalChoics scant to ensure that processes has internal choice
-- psrforaing correctly if needed.
GEN SPEC2 -(PROM \ (internalChoice}
GEN_SPEC5 - PROC1
GEN SPEC6 - PROC PROCESS HIGHER OUTER SPEC(0)

-- Gensp. ai with annotation . vents added by Ganlpsa 5 running in parallel
GEN SPEC2_WITHANNOTATIONS -(GENSPEC2 [I alpha PROC1 11 GEN SPECS

-- Tb. annotations only that were added to Genspeal by Genspan 5
GEN SPEC2_ANNOTATIONS ONLY - (GEN SPEC2_WITH_ANNOTATIONS \ alpha_PROC3

-- Check that G. nspec2 controlled correctly and annotated has annotations that
-- are siailar to Gsn0pec6

assert GEN_SPEC2 ANNOTATIONS ONLY [T- GEN_SPEC6
assert GEN_SPEC6 [T- GEN SPEC2 ANNOTATIONS_ONLY

Figure 142: Example of GenSpec Assertion 11 for Control Flow Process

H. 2.12 GenSpec Assertions 12: GenSpec S Does Not Introduce Unexpected

Behaviours

These assertions (see Figure 143) demonstrates that GenSpec 5 does not introduces

unexpected behaviours, but only correctly drives a component and adds events that

conceptually annotates at the outer layer the process it is run in parallel with. This is

shown by the fact that the process run in parallel with GenSpec 5, with the outer

annotations then hidden, is equivalent to the component correctly driven by GenSpec 3,

and that hiding the low level signals leaves only the expected annotations.

278

Appendix H: Alternative Generic Specification Model Example

-- channel daalarationo
datatype STATES -

START. {0.. 1} ' FINISH. {0.. 1} NOTFINISHED. {0.. 1} I RESET. {0.. 1} I
NOTRESET. {0} I ERROR. {0.. 1} I IDLE. {0.. 1}

channel annotation : STATES

channel internalChoice
channel chanO {1}
channel chant : {0,1}
channel chant {0,1}
channel chan3 {0,1}

-- Annotation alphab. ta
alpha_inner - { annotation. x. 1 I x<-{RESET, NOTRESET, START, IDLE, NOTFINISHED, FINISH}
alpha_outer -

{ annotation. x. 0 I x<-{RESET, NOTRESET, START, IDLE, NOTFINISHED, FINISH}

-- Create an instance of the models to check
-- The alpha DROC"s contains the low level Channels used by the processes
alpha PROCO - {I chan0, chani, chant, chan3 1}
PROCO - PROC PROCESS ANNOTATED SPEC(chan0, chant, chant, chan3,1)

alpha_PROC1 - {I chanO, chant, chant, chan3 11
PROC1 - PROC PROCESS ANNOTATED DRIVER (chan0, chani, chan2, chan3)

}
}

alpha_PROC2 - {1 chanO, chanl, chant, chan3 1}
PROC2 - PROC_PROCESS_DRIVER(chanO, chant, chan2, chan3)

-- Kid* the Int. rnalChoice event to ensure that procoaaae has internal choice
-- performing correctly if naadad.

GEN SPEC3 . PROC2
GEN SPEC4 -(PROCO \ (internalChoice}
GEN SPEC5 a PROC1
GEN_SPEC6 - PROC_PROCESS_HIGHER_OUTER_SPEC(1)
GEN SPEC? - PROC_PROCESS_HIGHER CONTROLL OTfER_SPEC(1)
GEN-SPECS - PROC_PROCESS_HIGHERANNOTATED OUTER SPEC (1)

-- Gsnäpec4 driven by Genßpec 3
GEN SPEC4 DRIVEN BY 3-(GEN_SPEC4 [I alpha_PROCO GEN_SPEC3

-- Gen8pec4 driven and annotated by GenSpec 5
GEN SPEC4_DRIVEN BY 5-(GEN SPEC4 [I alpha_PROCO ß] GEN SPECS

-- Gen8pec4 driven and annotated by Genapec 3 with outer annotations hidden
GEN SPEC4_DRIVEN

_BY
5_HIDDEN OUTER -(GEN SPEC4_DRIVEN BY_5 \ alpha_outer

-- Gan8pe04 driven and annotated by GenSpec 5 with low level signals hidden
GEN SPEC4_DRIVEN BY_5_HIDDEN SIGNALS -(GEN_SPEC4_DRIVEN BY_5 \ alpha_PROCO

-- GanSpec6 driven and annotated by GenSpec 8
GEN SPEC6_ANNOTATED GEN_SPEC6 11 alpha_inner 11 GEN-SPECS

-- Check that Genßpec4 driven by GsnBpec5 with the outer annotations hidden is

-- indistinguishable to Gea8pec4 driven by GenSpec3
assert GEN SPEC4_DRIVEN BY_5_HIDDEN OIITER [PD- GEN 8PEC4_DRIVEN BY 3
assert GEN_SPEC4_DRIVEN BY 3 [FD- GEN SPEC4_DRIVEN BY_5_HIDDEN OUTER

-- Check that GenSpec4 driven by Genßpec3 with the low level signals hidden is

-- indistinguishable to Genapec6 driven by Gen8pec8
assert GEN_SPEC4_DRIVEN

_BY_5_HIDDENSIGNALS
[FD- GEN SPEC6_ANNOTATED

assert GEN SPEC6 ANNOTATED [FD- GEN SPEC4_DRIVEN_BY_5 HIDDEN_SIGNALS

Figure 143: Example of GenSpec Assertions 12 for Control Flow Process

279

Appendix H: Alternative Generic Specification Model Example

H. 2.13 GenSpec Assertions 13: GenSpec 4 With Signals Hidden Is Similar to
GenSpec 6

These assertions (see Figure 144) demonstrates that GenSpec 4 correctly driven with the
events that represent the low level signals hidden, performs in a similar manner to
GenSpec 6, and indistinguishable from GenSpec 6 when correctly driven.

-- channel aaalaratione
datatype STATES -

START. {0.. 1} FINISH. {0.. 1} I NOTFINISHED. {0.. 1} I RESET. {0.. 1}
NOTRESET. {0} I ERROR. {0.. 1} I IDLE-{0.. 1}

channel annotation : STATES

channel internalChoice
channel chano {1}
channel chant
channel chant (0,1}
channel chan3 (0,1}

-- Annotation alptzabata
alpha_inner

{ annotation. x. i I x<-{RESET, NOTRESET, START, IDLE, NOTFINISHED, FINISH}
alpha outer -

{ an_notation. x. 0 I x<-{RESET, NOTRESET, START, IDLE, NOTFINISHED, FINISH}

-- Create an instance of the aodels to aback
-- The alpha PROC's aontains the low level channels used by the processes
alpha_PROCO - {) chan0, chani, chant, chan3 !j
PROCO - PROC_PROCES3 ANNOTATBD_SPEC(chanO, chani, chant, chan3,1)

}
}

alpha PROC2 - {I chano, chant, chant, chan3 11
PROC2 - PROC_PROCESS_DRIVER(chanO, chant, chan2, chan3)

-- Sido the intornalChoice event to ensure that processes has internal choice
-- performing correctly if needed.
GENSPEC3 - PROC2
GEN SPEC4 -(PROCO \ {internalChoice)
GEN SPEC6 - PROC_PROCESS_HIGHEROUTER SPEC(1)
GEN SPEC? - PROC PROCESS_HIGHER CONTROLL_ODTER_SPEC(1)

-- Gan8pac4 driven by Ganßpec 3
GEN SPEC4_DRIVEN BY 3-(GEN SPEC4 [I aipha_PROCO 11 GEN_SPEC3
--

ýanRpac4 driven and annotated by GenSpec 5 with low level signals hidden
GEN SPEC4DRIVEN BY_3_HIDDEN SIGNALS -(GEN SPEC4_DRIVEN BY 3\ alpha_PROCO
-- GanBpa_c6 driven by GanSpec 7
GEN SPEC6_DRIVEN -(GEN_SPEC6 [I alpha_inner 11 GEN SPECS

-- Check that Ganßpec4 driven by GanSpac3 with the low level signals hidden is
-- indistinguishable to Genßpoc6 driven by Ganßpoc7
assert GEN_SPEC4_DRIVEN BY_3_HIDDENSIGNALS [FD- GEN_SPEC6_DRIVEN
assert GEN_SPEC6_DRIVEN [FD- GEN_SPEC4_DRIVEN BY_3_HIDDEN_SIGNALS

Figure 144: Example of GenSpec Assertions 13 for Control Flow Process

280

Appendix H: Alternative Generic Specification Model Example

H. 2.14 GenSpec Assertions 14: GenSpec 10 Similar to GenSpec 5

The assertions stated in Figure 145 demonstrate the similarity of GenSpec 5 to GenSpec
10, more specifically that if you hide the events that represent the low level signals (i. e.
the wires), they are identical.

GEN SPEC10 . PROC PROCESS_CONTROL. ANNOTATED OUTER_SPEC

FlOnre 145: Linldn0 GenSpec 10 to GenSpec 5

H. 2.15 GenSpec Assertions 15: Linking GenSpec 6 to GenSpec 9

These assertions (see Figure 146) demonstrate that properties of GenSpec 6 are similar to
GenSpec 7. This proves the link between the clock cycle based higher annotation
specifications and the software based higher annotation specification (non-clocked).

-- The annotation index value being used
annotation id a0

-- An instance of the annotation specification
GEN SPEC6 ! PROC_PROCESS HIGHER_ODTER SPEC(annotation_id)

-- Checking the annotation specification while ensuring that reset does
-- not occur (running in parallel with 970D), and hiding clock cycle annotations
EXPECTED

_SIMPLIFIED-ANNOTATION-SPEC (GEN SPEC6
[1 {1 annotation. RESET I} IJ
STOP
\ {I annotation. x I x<-{ IDLE, NOTPINISHED, NOTRESET } ý}

-- The new simplified specification to aheak against, Onnspea7
SIMPLIFIED

-ANNOTATION
SPEC = PROC PROCESS_HIGHER SIMPLIFIED_SPEC(annotation_id)

-- Check that the two processes are equivalent
aasert EXPECTED SIMPLIFIED_ANNOTATIONSPEC (FD- SIMPLIFIED_ANNOTATION_SPEC
aaaert SIMPLIFIED ANNOTATION_SPEC (T= EXPECTED_SIMPLIFIED_ANNOTATIONSPEC

Figure 146: Example of how to link Annotation Spec to Simplified Spec

H. 3 Conclusion & Evaluation

The combination of the assertions covered in section H. 2 links various properties of the

various models covered in section H. I. This builds up confidence with the models

specified so that implemented components can both utilise them in their own proofs and
be checked against them. It provides processes so that a low hardware level model of the

components can be refinement checked against, a higher clock cycle based conceptual

281

Appendix H: Alternative Generic Specification Model Example

specification to refinement check against, and a method to link the two types of models
together to show consistency between them.

The modifications that have been applied, thus causing the work to differ from that

covered in Appendix D, causes the higher level models to be modelled in a more serial
manner. Where as previously the models were annotated such that it was more directly

mimicking the hardware, components that triggered other internal components when
started appeared to start in parallel. The changes have resulted in the annotations
mimicking more closely how the initial software appears, thus the annotation model now
appears such that the component is triggered just before the internal component is

triggered (but within the same clock cycle). This change more closely resembles a model

of the software language, where the internal component can only be triggered after the

command it is contained within has been triggered (e. g. the test for an 'IF' block is only

performed afters the 'IF' block has been reached).

282

Appendix I Alternative Implemented

Model Example

This section will cover and explain the CSP models required for an implemented

component for the future work described in Appendix H, along with the assertions that

need to be checked to link the models to each other, thus demonstrating that an
implemented component performs as required and within the behaviours dictated by its

generic super-type component. This work is the same as that covered in Appendix E, with
the main exception of the parts covered in sections I. 1.4, some other minor modifications
have been added to the models through the introduction of the 'NOTRESET' annotation.
This was required so that when an annotated model of a component that has its internal

signal events hidden (i. e. when the annotated model of the segment of logic circuit is

compared against ImpSpec 4), the model performs correctly when it has been started, has

not finished, and has not been reset.

1.1 Models & Specifications

The 'internalChoice' event that may appear within the code examples has been utilised
instead of internal choice (i. e. 'I -I') to enable 'chase' compression to applied if desired.

The 'internalChoice' event must be hidden for the specifications to be valid, but if 'chase'

compression has been chosen, the event should only be hidden after 'chase' has been

applied, otherwise the specification becomes invalid.

I. 1.1 ImpSpec 1: Valid Low Level Behaviour

This CSP model (see Figure 147) which is similar to the model defined in section D. 1.1,

specifies all the valid and allowable low level behaviour that this implemented component

may perform at its outer boundary. It may utilises internal choice to determine the

possible output behaviour it can perform, although it is not a requirement (e. g. boolean

true, Boolean false, SKIP, STOP, all have well defined fixed behaviours that do not rely

on other internal components). It is useful to note that some implemented components

Appendix G: Multi-Type Component Implemented Model Example

may have the allowable interface boundary behaviour that is identical to that of its generic
super type component (e. g. Boolean comparisons, PAR), where as other components will
have an interface boundary behaviour that is a refinement of its super type component
(e. g. boolean true, boolean false, SEQ).

PROC_PROCESS_IF_DESIRED_SPEC(clock, reset, start, finish)
let

A

atart? x -> reset? y -> C(x, y)
[1

reset? y -> start? x -> C(x, Y)
B-

start? O -> reset? y -> D(y)
[l

reset? y -> start? O -> D(y)
C(x, y) -

clock? 1 -> finiehl0 ->
y -- 1&A
[l

y--0&
x--0&A
(1
x--1 &B

D(y)

y a: 1& clock? 1 -> finishl0 -> A
II
y aa 0& clock? 1 ->

internalChoice -> finishll -> A
[] -- I-I
internalchoice -> finishlO -> B

within finishlO -> A

Figure 147: Low Level 'IF' Component Desired Specification

1.1.2 ImpSpec 2: Low Level Behaviour with Explicit Deadlocking

This CSP model (see Figure 148) is similar to the model covered in section D. 1.2, the

CSP model is the model covered in section E. 1.1 but altered so that it will accept

incorrectly driven input signals followed by explicitly defined deadlocking (i. e. STOP).

284

Appendix G: Multi-Type Component Implemented Model Example

PROC_PROCESS IF_G{ENERIC SPEC(clock, reset, start, finish)
let

A=
start? x -> reset? y -> C(x, y)
[]

reset? y -> start? x -> C(x, y)
B=

start? 1 -> STOP
I]
start? 0 -> reset? y -> D(y)
II
reset? y ->

start? O -> D(y)
II

start? l -> STOP

C(x, y) _
clock? 1 -> finishlO ->

y1&A
(]
y == 0&

(x :s0&A

18B
[]

X --

D (Y) _
y == 1& clock? 1 -> finishlO -> A
[l
y =- 0& clock? l ->

internalChoice -> finishll -> A
[] -- 1-1
internalChoice -> finishl0 -> B

within finishlO -> A

Figure 148: Low Level 'IF' Component Generic Specification with Explicit Deadlocking

I. 1.3 ImpSpec 3: Model of Implemented Logic

This CSP model (see Figure 149), is a model of the segment of logic that this component

represents and is achieved through modelling the individual logic components and

running them in parallel.

Figure 149: CSP Model of the Logic Circuit Segment of the Implemented 'IF' Component

-- Components used in the segment of login being verified
alpha PROC2 - {I chant, chan8, chanO, chan7 1}
PROC2 - PROC_PROCESB ANNOTATED_SPEC(chanO, chant, chan7, chan8,3)

alpha_PROC7 - {I chan9, chan4
PROC7 - PROC NOT(chan9, chan4)

alpha_PROC1 - {I chani, chan6, chanO, chan5 1}

PROC1 - PROC_PRACSSB ANNOTATED_SPEC(chan0, chanl,

alpha_PROCB - {I chan6, chan8, chanl0 1}
PROCB - PROC_OR(chanl0, <chan6, chan8>)

alpha_PROC9 - {I chan9, chan3, chan7 1}
PROC9 - PROC AND(chan7, <chan9, chan3>)

chan5, chan6,2)

285

Appendix G: Multi-Type Component Implemented Model Example

alpha
_PROC10 - {I chan4, chan3, chan5 1}

PROC10 - PROC AND(chan5, <chan4, chan3>)

alpha PRoco = (I Chan4, chant, chan3, chanO, chant 1}
PROCO - PROC BOOLEAN ANNOTATED SPEC(chan0, chanl, chant, chan3, chan4,1)

-- Th. outer level atgnalm for the component being teat"d
SYSTEM INTERFACE - (I chant, chan0, chanjO, chan2 1)
-- The alphabet of aignala uaad in th* nodal of th" logic
SYSTEM ALPHA - {ý chan3,
chan0,
chan6,
chan2,
chan5,
chan4,
chan8,
chan9,
chanlO,
chani,
chan7

-- 9yatea D. claratton of the internal logic couponenta and tha aignala they uaa
SYSTEM_LIST -< (PROC2, alpha_PROC2
(PROC7, alpha PROC7
(PROC1, alpha PROC1
(PROC8, alpha_PROCS
(PROC9, alpha_PROC9
(PROC10, alpha_PROC10
(PROCO, alpha_PROCO)>

-- The logic model of the implemented aoa'onent. `IwpSyea3'
SYSTEM =

REPL(SYSTEMLIST) \ diff(SYSTEM ALPHA, SYSTEM_INTERFACE)
\ {internalchoice}

-- Used to run the logic ao, ponanta in parallel
REPL (p) _

let
INNER1(pl, ai, p2, a2) - pl [(inter(al, a2) 11 p2
INNER2(<(pl, ai)>ý<(p2, a2)>"p3)_

null(p3) & INNERI(pl, ai, p2, a2)
[]

not null(p3) & INN8R2(<(INNER1(pl, al, p2, a2), union(a1, a2))>"p3
INNER3(c(pl, _)>

)= pi
within (null(p) & STOP

II
length(p) -= 1& INNER3(p)
[]

length(p) >1& INNER2(p)

A graphical depiction of the segment of logic circuit that this model represents can be

seen in Figure 150.

286

Appendix G: Multi-Type component implemented Model Example

Figure 150: A Graphical Depiction of the Logic Segment for an 'IF' Component

I. 1.4 ImpSpec 4: Annotation Only Specification

This CSP model (see Figure 151), is the expected behaviour of the 'IF' component from

an annotation only perspective, with annotation models of the internal component (i. e. the
boolean condition, the 'then' process and the 'else' process) having to be supplied. If the
internal annotation components supplied are the corresponding generic specifications, the
CSP model will demonstrate all the possible behaviours of the 'IF' component, describing
both how driving the component drives the internal components and the internal

components behaviour effects the outputs of this component. The reason why this model
was designed to take in processes representing the internal components is so that if the

supplied internal component specifications are a refinement of the corresponding generic

specification, they will limit the behaviour dictated in the 'IF' component to that which
describes what should conceptually occur in the hardware.

Figure 151: IF Component Annotation Only Specification
channel chan_PROC_PROCESS

_IF_HIGHER _INNER _SPEC
: 0.. 2

channel chan_fin_PROC PROCESS IF_HIGHER_INNER SPEC : {0,1}
PROC_PROCESS_IF_HIGHER_INNER_SPEC(id, bool, bid, thenproc, tid, elaeproc, eid) ý

let
Aý

III x: (bool, thenproc, elaeproc} ®x
[ý { annotation. z. x,

annotation. y. bid,
annotation. w. v

v<-{tid, eid),
x<-{bid, tid, eid},
y<-{BOOLEANREAD,

BOOLEANDONTREAD,
BOOLEAN READALLOBTED,
BOOLEANTRTTE,
BOOLEANFALSE},

z<-{RESET, NOTRESET, IDLE},
W<-(START, FINISH, NOTFINISHED}

}

II B

-- combination of boolran and prooarr
B=

287

Appendix G: Multi-Type Component Implemented Model Example

annötation. RESET. id ->
i III x: {bid, tid, eify 0 annotation. RESET. x -> SKIP

Li
annotation. IDLE. id -> III x: {bid, tid, eif} ® annotation. IDLE. x -> SKIP
Il

annotation. START. id ->
(C

II {I clan PROC PROCESS_IF HIGHER INNER SPEC,

II

chan_fin_PROC PROCESS
_IF_HIGHER_INNER_SPEC, annotation. RESET. id,

annotation. NOTRESET. id
11

annotation. BOOLEANREAD. bid ->
annotation. BOOLEANDONTREAD. bid ->

chan_PROC PROCESS IF HIGHER INNER SPEC. 0 -> D
U

annotation. BOOLEANREADALLOWED. bid ->
annotation. BOOLEANFALSE. bid ->

ahan_PROC PROCESS_IF HIGHER INNER SPEC. 2 -> E
[]

annotation. BOOLEANTRIIE. bid ->
chan_PROC PROCESS_IF_HIGHER_INNER_SPEC. 1 -> E

s

-- Then & aI. " prnos.. "e
c=

let
CA =

Ili x: (tis, eid} . annotation. IDLE. x -> SKIP
III

annotation. NOTFINISNED. id -> SKIP }

chan_PROC PROCESS IF HIGHER INNER SPEC. O -> CB
11

chan_PROC PROCESS_IF_HIGHER INNER SPEC. 1 -> CC(tid, eid)
U

chan_PROC PROCESS_IF HIGHER INNER SPEC. 2 -> CC(eid, tid)

CB .
annotation. RESET. id -> III x: {tid, eidj m annotation. RESET. x -> SKIP
O

annotation. NOTRESET. id -> CA
CC(x, y) .

let
CCA "

((CCB

[I 11 chan_fin_PROC PROCESS_IF HIGHER INNER SPEC,
annotation. RESET. id,
annotation. NOTRESET. id

11
1}

ccc

chanfin_PROC PROCESS
_IF_HIQHLR

INNER-SPEC,
annotation. RESET. id,
annotation. NOTRBSET. id

iI i}
CCE

l
tl {I

288

Appendix G: Multi-Type Component Implemented Model Example

CCD
annotation. RESET. id -> annotation. RESET. x -> SKIP
[]

annotation. NOTRESET. id ->
annotation. FINISR. y ->

chan_fin_PROC PROCESS_IF_HIGHER_INNER SPEC. 1 -> SKIP
[]

annotation. NOTFINISHED. y ->
Chan fin PROC PROCESS IF HIGHER INNER SPEC. O -> CCD

CCE

annotation. RESET. id -> annotation. NOTFINISHED. id -> SKIP
[]
annotation. NOTRESET. id ->

Chan
_fin_PROC_PROCESS _IF_HIGHER _INNER_SPEC.

1. ->
annotation. FINISH. id -> SKIP

(1
Chan

_fin_PROC_PROCESS_IF_HIGHER_INNER_SPEC.
0 ->

annotation. NOTFINISHED. id -> CCD
1

CCB
annotation. RESET. id -> annotation. RESET. y -> SKIP
I]
annotation. NOTRESET. id -> annotation. IDLE. y ->

chan_fin_PROC PROCESS_IF_HIGHER INNER SPEC. O -> CCH
(]

chan_fin PROC PROCESS_IF HIGHER INNER_SPEC. 1 -> SKIP

CCC a
annotation. RESET. id -> annotation. RESET. x -> SKIP
I)

annotation. NOTRESET. id -> annotation. START. y ->
annotation. FINISH. y ->

ehan_fin_PROC PROCESS_IF HIGHER_INNER_SPEC. 1 -> SKIP
(]

annotation. NOTFINISHED. y ->
chan_fin_PROC PROCESS_IF_HIGHER INNER_SPEC. 0 -> CCD

within CCA
within CA

-- Sent of Boolean Process
D

annotation. RESET. id -> annotation. RESET. bid -> SKIP
U

annotation. NOTRESET. id ->
annotation. BOOLRANDONTRRAD. bid ->

Chan_PROC PROCESS_IF HIGHER INNER SPEC. 0 -> D
11

annotation. BOOLEANREADALLOWED. bid ->
annotation. BOOLEANFALSE. bid ->

char PROC PROCESS IF HIGHER INNER SPEC. 2 -> E
11

annotation. BOOLEANTRUE. bid ->
dran PROC PROCESS IF HIGHER INNER SPEC. 1 -> S

E
annotation. RESET. id -> annotation. RESET. bid -> SKIP
[)

annotation. NOTRESET. id -> annotation. IDLE. bid ->
than fin PROC PROCESS IF HIGHER INNER SPEC. 1 -> SKIP
11

chap fin PROC PROCESS IF HIGHER INNER SPEC. 0 -> B

within (A\ {ý chan_PROC_PROCESS_IFHIGHER INNER SPEC,
chan_fin_PROC_PROCESS IF HIGHER INNER SPEC 11)

289

Appendix G: Multi-Type Component Implemented Model Example

I1.5 ImpSpec 5: Software Specification Model

This model (see Figure 152) provides a software level based model of the implemented

component. The external choice with `STOP' is to provide a clear indication of where the
internal components behaviour is expected to create possible deadlocking within this

model. The deadlocking at within this model is allowed to possibly occur under the

conditions where when an internal component is started, it never completes. Should this

condition arise, the 'IF' component will never finish, a simple example of this is if the

`then' component gets triggered and is a `while(true)' loop, the `while(true)' loop never
finishes, and so the 'IF' component would never finish.

PROC_PROCBSS_IP_HIC3HSR_SZMPLIFIBD_SPBC(id,
bool, bid,
thenproc, tid,
elseproc, eid) ý

let
A

annotation. START. id -> SKIP
III

annotation. aOOLEANREAD. bid -> SKIP

STOP
[J

annotation. BOOLENREADALLOWED. bid ->
annotation. BOOLEANTRUE. bid -> B(tid)
[1
annotation. BOOLEANFALSE. bid -> B(eid)

B (x) _
annotation. START. x ->

STOP
[)
annotation. FINISH. x ->A

c.
cc III

(I {I

11
I}

A

x: {bool, thenproc, eleeproc} ! x)
annotation. BOOLBANREAD. bid,
annotation. BOOLEANREADALLO9fED. bid,

annotation. BOOLEANTRUE. bid,
annotation. BOOLEANFALSE. bid,
annotation. START. y,
annotation. PINISH. y,
1y <-{tid, eid}

within C

Figure 152: 'IF' Component Software Annotation Behavioural Specification

290

Appendix G: Multi-Type Component Implemented Model Example

I. 2 Assertions: Linking the Models Together

1.2.1 ImpSpec Assertion 1: Deadlock Free

The assertion stated in Figure 153 checks that the model of the segment of logic circuit is
deadlock-free. This check demonstrates three properties, the first is that there exists no
loops consisting of only clocked or non-clocked logic components, secondly is that any
internal components are guaranteed to be driven correctly so long as the outer component
is driven correctly, and thirdly is that the component deal with all valid inputs of its super
type component. The guarantee that internal components are driven correctly is possible
because the models of the internal components are models that accept all possible inputs
(both valid and incorrect), with the incorrect inputs being followed by explicitly defined
deadlock i. e. `STOP' (see section H. 1.2). If the STOP's are not reached, then invalid
inputs to internal components have not been created or propagated through. The control
process used to drive the implemented component is the control process from its super
type. As the control process (see section H. 1.3) utilises internal choice to provide all the
possible valid driving signals, if the deadlock-free assertion holds true then the
implementation is guaranteed to be able to process all patterns of driving signals that it

may receive, along with the guarantee that it will not produce incorrect output signals.

-- aha=al d. alaratione
channel internalChoice
channel chanO : {1}
channel chant (0,1}
channel chant : (0,1}
channel chanlO {0,11

-- Create an instance of the aodels to check
-- The alpha PROC contains the low level channels used by the processes
alpha_PROC6 - ((chant, chano, chanlO, chant (}
PROC6 - PROC PROCESS CONTROLL(chanO, chant, chant, chanlO)

-- An implementation of the logic to aback
SYSTEM_INTERFACE - ((chant, chanO, chanl0, chant
IMP SPEC3 - SYSTEM
GEN_SPEC3 - PROC6

-- Deadlock-free check the earpeated correct generic coWJonent
aeaert (IMP_SPEC3 [I SYSTEM INTERFACE 11 GEN SPEC3) : [deadlock free [F])

Figure 153: 'IF' Component Deadlock Free Assertion

291

Appendix G: Multi-Type Component Implemented Model Example

1.2.2 ImpSpec Assertion 2: Super Type Control Only Limits the Behaviour

The assertion stated in Figure 154 demonstrates that the process that dictates and provides
the allowable correct driving input signals of the super type of this component, does only
limit the behaviour of this implemented component, thus ensuring that it does not
introduce any new behaviour.

-- abannal daalarationa
channel internalchoice
channel chan0 : (1}
channel chani : (0,1)
channel chant : (0,1}
channel chanl0 : (0,1}

-- create an tnetana" of the modals to ch"ak
-- The alpha PROC contains the low level channels used by the proa"sses
alpha PROC6 - {I chani, chan0, chanl0, chant J}
PROC6 - PROC_PROCESS_CONTROLL(chanO, chant, chant, chanl0)

-- An iaqplanentation of the logic to chick
SYSTEM INTERFACE - (I chani, chanO, chanl0, chant (}
IMP_SPEC3 - SYSTEM
GEN-SPECS = PROC6

-- Check that the control apeoification only limit. the behaviour of the segment
-- of logic, and doem not introduce nay behaviour

assert IMP_SPEC3 [T. (IMP_SPEC3 [I SYSTEM_INTERFACE 11 GEN SPECS)

Figure 154: Super Type Component Limits the Behaviour of the Implementation

1.2.3 ImpSpec Assertion 3: Expected 'IF' Component Behaviour Is

Deadlock Free

The assertion stated in Figure 155 demonstrates that the expected boundary behaviour

that the model of the implementation of the logic circuit segment will be checked against
is deadlock-free. This is to provide better confidence in this models correctness as it will
be used in future checks.

-- ah-al daalarationa
channel internalChoice
channel chan0 {i}
channel chani : (0,1}
channel chant : {0, i}
channel chani0 : {0, i}

-- Create an instance of the aodela to check
IMP SPEC1 - PROC PROCESS IF DESIRED SPEC(chan0, chanl, chan2, chanl0)

aaaert IMP SPSC1 : [deadlock free [F]]

Figure 155: Expected 'IF' Component Behaviour is Deadlock Free

292

Appendix G: Multi-Type Component Implemented Model Example

1.2.4 ImpSpec Assertion 4: Expected Boundary Behaviour Refines Super

Type

The assertion stated in Figure 156 demonstrates that the expected correct boundary
behaviour of the implemented component is a valid refinement of the expected boundary
behaviour of its generic super type component.

-- channel declarations
channel internalMoice
channel chan0 {1}
channel chani {0, if
channel chant : {0, i}
channel chanl0 : {0,1}

-- Create an instance of the modals to chock
IMP_SPEC1 - PROC_PROCESS_IP_DESIRED_SPEC(chan0, chant, chant, chanl0)
GEN_SPEC1 -

PROC_PROCESS_DESIRED_GENERIC_SPEC(chan0, chant, chan2, chanl0)
\ {internalChoice}

assert OEN SPEC1 (T= IMP_SPBCI

Figure 156: Expected IF, Component Beiwvlour ie a Refinement of Super Type

I. 2.5 ImpSpec Assertions 5: Correctly Driven Implementation Behaves as
Expected

The assertions stated in Figure 157 demonstrate that the segment of logic circuit for this

implemented component, if driven correctly, behaves as expected. Trace refinement
(` IT. ') is used instead of failures divergent ('[? D-') because the process used to drive the

model of the segment of logic utilises internal choice to provide all possible allowed
driving signals, where as the model of the expected behaviour uses external choice for the

input signals because the input signals are provided by an outside source.

293

Appendix G: Multi-Type Component Implemented Model Example

-- channel daalarationi
channel internalChoice
channel chan0 : {1}
channel chant {0, ij
channel chant (0,1}
channel chanl0 {0, i}

-- Create an inatanaa of the models to check
IMP_SPEC1 - PROCPROCESS IF_DESIRED

_SPEC(chanO,
chant, chant, chan10)

-- Create an instance of'-the models to check
-- The alpha PROC contains the low level channale used by the processes

alpha_PROC6 - {j chanl, chan0, chan10, chan2 11
PROC6 - PROC_PROCESS CONTROLL(chanO, chant, chant, chanl0)

-- An i, plaantation of the logic to check
SYSTEM_INTERFACE - {I chani, chan0, chanl0, chant
IMP_SPEC3 - SYSTEM
GEN SPECS - PROC6

assert IMP_SPEC1 [T-
((IMP 8PEC3 [I SYSTEM INTERFACE 1] GEN SPECS) \ (ý annotations

assert ((IMP
_SPEC3

[I SYSTEM INTERFACE IT GEN_SPEC3)

\ (I annotations
(T- IMP SPEC1

11)

Figure 157: Correctly Driven 'IF' Component Behaves as Expected

1.2.6 ImpSpec Assertion 6: Annotation Outer Level Does Not Introduce

Deadlock

The assertion stated in Figure 158 demonstrates that using the annotated control to

annotate the outer level of the implemented component, with this process being specified
by its super type (i. e. GenSpec 5, see Section D. 1.5), does not introduce any deadlocks.

-- channel declarations

channel intemalChoice
channel chan0 : {1}
channel chani : {0,1}
channel chant (0,1}
channel chanlO : {0,11

-- Create an instance of the aodela to check
iMP_SPEC1 - PROC_PROCESS_IF_DESIRED_SPEC(chanO, chant, Chant, chanlO)

-- Croat* an instance of the models to check

-- the alpha PROC contains the low level channels used by the proceaaea
alpha _PROCS -

{I chant, chanO, chanlO, chant 1}
PROC5 - PROC PROCESS ANNOTATE OUTER(chanO, chant, chant, chanlO)

-- An iaplaaantation of tho logic to ch*ck
SYSTEM INTERFACE - (I chant, chanO, chan10, chant
IMP_SPEC3 - SYSTEM

GEN 8PEC5 - PROCS

assert (IMP_SPEC3 [I SYSTEM_INTERFACE 11 GEN SPEC5) : [deadlock free [F]]

Figure 158: Annotating outer level of 'IF' component does not introduce deadlock

294

Appendix G: Multi-Type Component Implemented Model Example

1.2.7 ImpSpec Assertion 7: Expected High Level Behaviour Is Deadlock-

Free

The assertion stated in Figure 159 demonstrates that the high level model describing the

expected behaviour of the implemented component is deadlock-free. This helps to build

confidence in the model for when using it in future checks.

-- Create an Instance of the models to aback
IMP_SPEC4 = PROC_PROCESS_IF_HIC3iIER_INNER_SPEC(0,

HIC3HER_SPECO_l, 1,
HIGHER_SPEC1_2,2,
HIGHER SPEC2 3,3)

-- 8igb. r Process ximstances
HIGHER_SPEC1_2 = PROC_PROCESS_HIGHER_OUTER_SPEC(2)
HIGHER_SPEC2_3 = PROC PROCESS HIGHER_OUTER_SPEC(3)
HIGHER SPECO_1 = PROC BOOLEAN HIGHER_OUTER_SPEC(1)

assert IMP_SPEC4 [deadlock free[PI]

Figure 159: 'IF' Component High Level Behaviour Is Deadlock-Free

1.2.8 ImpSpec Assertions 8: Component Behaves Similarly to Expected

Higher Spec

The assertions stated in Figure 160 demonstrate that the annotations obtained from the

implemented segment of logic circuit, performs in a similar manner to that of the

expected higher behavioural specification. The test can not be failure divergence checked

both ways (one has to be a trace refinement), this is due to the way annotations are added

to the outer layer. As the outer level input annotations occur after the corresponding low

level input signal events (i. e. the events that represent the wires), hiding these low level

signal events causes the high level model extracted from the implemented segment of

logic circuit to appear to have internal choice determining the high level conceptual input

states. The internal choice for the inputs does not really exist, but appears because the

events that do determine what occurs though external choice have been hidden (i. e. the

low level signals). Through altering the process of annotating the outer level of a

component (see Appendix H), it is possible to simplify the extracted model so that it

directly equivalent to the expected higher behaviour.

295

Appendix G: Multi-Type Component Implemented Model Example

-- ahaana1 doolarationa
channel internalChoice
channel chan0 {1}
channel chanl {0,1}
channel chant {0,1}
channel chanl0 : (0,1}

-- Create an Inatanaa of the models to check
IMP SPEC1 - PROC PROCESS IF DESIRED SPEC(ChanO,
-- Craat" an iaataaca of tha aodal" to chock

chani, chan2, chanlO)

-- The alpha DROC aoatsina tha low laaal ahaanala
alpha PROC6 . {I chanl, chan0, chanl0, chan2 11
PROC6 - PROC PROCESS CONTROLL(chan0, chanl, chan2,

alpha_PROCS . (I chani, chanO, chanlO, chan2 '}
PROCS - PROC_PROCE$S ANNOTATE_OIITBR(chan0, chanl,

-- An ialplasantation of the logic to aboak

used by

chanl0)

the proasssss

chant, chanlO)

SYSTEMINTERFACE _ (1 chani, chan0, chanlO, chan2
IMP SPEC3 = SYSTEM

GEN_SPEC3 - PROC6
GEN SPECS - PROC5

assert (((IMP SPECS [I SYSTEMINTERFACE 1] GEN SPECS)

assert

SYSTEM INTERFACE 11 GEN SPECS
\ SYSTEMINTERFACE

[FD. IMP-Model-3
Imp Model_3 [T- (((IMP_SPEC3 (I SYSTEM-INTERFACE 1] GEN_SPEC3)

SYSTEM INTERFACE t] QEN SPEC5
\ SYSTEMINTERFACE

Figure 160: 'IF Component Behaves Similarly to Expected Higher Behaviour

I. 2.9 ImpSpec Assertion 9: Software Specification is a Refinement of Super

Type

The assertion stated in Figure 161 demonstrates that the expected higher software

specification for the implemented component with its internal events hidden is a

refinement of its super types' software specification model. The example show happens to

be equivalent to its super type software specification model, but this is not a requirement

and is why it is not being tested for.

296

Appendix G: Multi-Type Component Implemented Model Example

-- Canaric Boolean Siphar 9ott»aro Spacitication
PROC BOOLEAN_HIGHBR SIMPLIFIED_SPEC(id)

let

A
annotation. BOOLEANREADALLOWED. id ->

STOP
1-1

annotation. BOOLEANREADALLOWED. id
(annotation. BOOLEANTRUE. id ->

Within A

_,
A

U
annotation. BOOLEANFALSE. id -> A

-- Znterna2 CoaWonente
BoolTest = PROC BOOLEAN HIGHER SIMPLIFIED SPEC(l)
ThenProc = PROCPROCESS HIGHERSIMPLIFIED

_SPEC(2) ElseProc - PROC_PROCESS_HIGHER_SIMPLIFIED SPEC(S)

-- CoNpoa. nta to That
IMP_SPEC5 . PROC_PROCESS IF_HIGHER_SIMPLIFIED_SPEC(0,

BoolTeet, 1,
EhenProc, 2,
ElaeProc, 3)

GEN_SPEC7 - PROC_PROCESS_HIGHER_SIMPLIFIED_SPEC(0)
IMP_SPEC5_HIDDEN_INTERNALS

IMP SPECS
\ diff(annotations

{ annotations. x. 0 Ix <- { START, FINISH }}

-- Cheek that lapoSpeaS with internal events hidden it a refinement of it"
-- super type

assert GEN_SPEC7 [T- IMP-SPECS-HIDDEN-INTERNALS

Figure 161: Higher Software Specification is a Refinement of the Super Type

297

Appendix J Pattern Matched Selective
Renaming Alternative

This section of work covers a methodology to circumvent the lack of ability to perform
event renaming constrained by pattern matching. The ability to perform pattern matched
event renaming would simplify the process of annotating and extracting the conceptual
meanings for occurrences of events within a low level model, without the need to refactor
and modify the models.

Currently the technique has not been adapted to deal with describing the conceptual
meanings that are dependent on the combination of multiple parallel events. The "IF
THEN ELSE" component has a combination of parallel events sent along its start and
reset channels determining if the process starts, has been reset, or an error has occurred
due to incorrect driving. It is due to this feature why the example that is demonstrated is a
simplification of the "IF THEN ELSE" component with the reset functionality removed
(see Figure 162 and Figure 163). A further requirement for this technique to work
properly is that internal OCCAM components can not directly utilise the same signals of
that which are used at the boundaries for the components they He within and results in the
an addition of a single input OR gate added into the logic circuit (see Figure 162 for the

yellow OR gate). This is required so that when the refactored model of the logic circuit
has selective low level events replaced with annotation events, the CSP can synchronise
correctly on the events. If the internal OCCAM components utilised the same events as
the boundary components they lie within, instances of the low level events would be

renamed to different annotation events in different models, thus greatly complicating the

process of integrating them together. The addition of extra single input OR gates has no
adverse effect of the logic circuits being created for two reasons, the first is that from a

clock cycle perspective the extra OR gate does not introduce clock cycle delays. The

second reason why the extra OR gate does not impact on the design is that it is easy to

optimised away after the whole logic circuit has been generated, thus it has no impact on
the speed that the clock will be able to run at.

Appendix J: Pattern Matched Selective Renaming Alternative

Start

OR

Start

Clock

Boolean inish
Condition

1-F

State

ý NOT

ý
AND Start

Control Flow
Process

Star

Control Flow
Process

Finis r1
! D7

Finish

Figure 162: Graphical representation of simplified "IF THEN ELSE" component

Finish

T

299

Appendix J: Pattern Matched Selective Renaming Alternative

-- CoMPoäoat" used in the eequeat of logic being verified
alpha

_PROC2 = {I chan8, chan0, chan7 11
PROC2 = PROCPROCESS

_GENERIC _SPEC _
NORESET(chan0, chan7, chan8)

alpha_PROC7 = {) chan9, chan4
PROC7 = PROC_NOT(chan9, chan4)
alpha

_PROC1 = if chan6, chan0, chanS
PROC1 = PROC_PROCESS

_GENERIC _SPEC
NORESET(chan0, chan5, chan6)

alpha_PROCB = {I chan6, chan8, chanl0 1}
PROCB - PROC OR(chanl0, <chan6, chan8>)
alpha_PROC9 = {I chan9, chan3, chan7 1}
PROC9 - PROC AND(chan7, <chan9, chan3>)
aipha_PROC10 - {I chan4, chan3, chan5 11
PROC10 - PROC AND(chan5, <chan4, chan3>)
alpha_PROC11 = {I chanli, chan2 f)
PROC11 = PROC OR(chanil, <chan2>)
alpha_PROCO : {I chan4, chan3, chanO, chanll
PROCO - PROC BOOLEAN GENERIC SPEC NORESET(chan0, chanil, chan3, chan4)

-- The outer 1"val signals for the cc ponant being tested
SYSTEMINTERFACE _ {+ chan0, chanl0, chant 1}

-- The_alphabet of signals used in the nodal of the logic
SYSTEM-ALPHA {) chan3, chan0, chan6, chant, chan5, chan4, chan8, chan9,

chanl0, chanli, chan7
I}

-- Syataa Declaration of the internal logic components and the signals they use
SYSTEM_LIST -< (PROC2, alpha_PROC2
(PROC7, alpha_PROC7
(PROC1, alpha PROC1
(PROC8, alpha_PROC8
(PROC9, alpha PROC9
(PROC10, alpha_PROC10
(PROC11, alpha_PROC11
(PROCO, alpha_PROCO)>

-- The logic model of the iapleaented component. 'ZagpSpec3'
SYSTEM-WITH-INTERNALS = REPL2(SYSTEM_LIST) \ {internalChoice }

-- Used to run the logic components in parallel
REPL2(p)

let
INNERI(pl, al, p2, a2) = pl (Iinter(a1, a2) (] p2
INNER2(<(pl, al)>"<(p2, a2)>*p3)

null(p3) & INNERI(p1, a1, p2, a2)
[]

not null(p3) & INNER2(c(INNERI(p1, a1, p2, a2), union(a1, a2))>4p3
INNER3(<(pl,

_)>
)= pi

within (null(p) & STOP
[]
length(p) _. 1& INNER3(p)
[]

length(p) >1& INNER2(p)

Figure 163: CSP Model of "IF THEN ELSE" Component

300

Appendix J: Pattern Matched Selective Renaming Alternative

J. 1 Methodology

The alternative methodology to pattern matched event renaming requires the creation and
linkage (through assertions) of various models. The initial stage involves the specification
defining the expected low level behaviour of the model of the segment of circuit (see
Figure 164). This specification can be perceived as a refactored model containing the
same behaviour as that of the segment of logic circuit constrained with being correctly
driven (see Figure 165).

Figure 164: Refactored correctly driven circuit
channel chan_PROC_PROCESS_IF_REFACTORED_SPEC_NORESET 0.. 5
channel chan_link PROC PROCESS IF REFACTORED_SPEC NORESET {0.. 3}
PROC PROCESS IFREFACTORED_SPEC NORESET

clock, start, finish,
boolproc, boolstart, boolfin, boolatate,
thenproc, thenstart, thenfin,
elseproc, elsestart, elsefin,
negation

let
-- Perform checks on the input parameters
A-

inter({ start, finish}

{ boolstart, boolfin, boolstate, thenstart, thenfin, elsestart,
elsefin

}
> -- t} &B

(]
inter({ start, finish}

{ boolstart, boolfin, booletate, thenstart, thenfin, elaeatart,
elsefin

}
!_ {} & STOP

Perform the model
Run the internal components in parallel with the remainder of the IF
component

B=
(([ý {I clock 1} 1] x: {boolproc, thenproc, elseproc} ®

x\ {internalChoice}))
[ý {+ boolstart, boolfin, boolstate, thenstart, thenfin,

elsestart, elsefin
I?

I] E

ý
C

let
CA

(((thenfin? O -> SKIP

III
el®efin? O -> SKIP

(finiahl0 ->
atart? O ->

boolstart! O ->
chap PROC PROCESS IF REFACTORED SPEC NORESET. O ->

301

Appendix J: Pattern Matched Selective Renaming Alternative

CA
(1

start? 1 ->
boolstartll ->
Chan PROC PROCESS_IF_REPACTORED_SPEC NORESET. 1 ->
CB

CB =
(((thenfin? 0 -> SKIP)

III (elsefin? 0 -> SKIP

£inishl0 -> start? 0 -> boolstartl0 ->
Chan PROC PROCESS IF REFACTORED SPEC NORESET. 2 -> CB
11

than PROC PROCESS IF REFACTORED SPEC NORESET. 3 -> CC
11

char PROC PROCESS IF REFACTORED SPEC NORESET. 4 -> CD

CC
chan_link_PROC_PROCESS_IF_REFACTORED_SPEC_NORESET. O ->

thenfin? O ->
Chan

_link _PROC_PROCESS_IF_REFACTORED_SPEC_NORESET.
1 ->

finish! O ->
start? O ->
boolstartIO ->
chan_PROC_PROCESS_IF_REFACTORED_SPEC_NORESET. 5 ->
CC

[l
thenfin? 1 ->

chan_link
_PROC_PROCESS_IF_REFACTORED_SPEC_NORESET.

1 ->
finishil ->

start? O ->
boolstart! O ->
Chan PROC PROCESS IF REFACTORED SPEC NORESET. 0 ->

(1
start? 1 ->

boolstartil ->
Chan-PROC-PROCESS_IF_REFACTORED_SPEC NORESET. 1 ->
CB

cD =
chan_link_PROC_PROCESS_IF REFACTORED_SPEC_NORESET. 2 ->

elsefin? 0 ->
Chan link PROC_PROCESS_IF REFACTORED SPEC_NORESET. 3 ->
finishl0 ->
start? O ->
boolstart! O ->
chan_PROC_PROCESS_IF_REFACTORED SPEC NORESET. 5 ->
CD

elsefin? 1 ->
Chan link PROC-PROCESS-IF-REFACTORED_SPEC_NORESET. 3
finishll ->

start? O ->
boolstart! O ->
Chan_PROC_PROCESS_IF_REFACTORED SPEC NORESET. 0 ->
CA

[]
start? 1 ->

boolstartli ->

302

Appendix J: Pattern Matched Selective Renaming Alternative

Cban_PROC PROCESS IF_REFACTORED_SPEC NORESET. 1
CB

)
within CA

D
let

DA -
boolfin? 0 ->

boolatate? 0 ->
negation. 1 ->

(((thenetartlO -> SKIP

III
elaeetartl0 -> SKIP

(chan_PROC PROCESS_IF_REFACTORED SPEC NORESET. 0 -> DA
[l

chan_PROC_PROCESS_IF_REFACTORED_SPEC NORESET. 1 -> DB
}

[]
(((thenstart! O -> SKIP

III
negation. 1 -> elsestartl0 -> SKIP

ý
(char PROC PROCESS IF REFACTORED SPEC NORESET. 0 -> DA

11
chan_PROC PROCESS_IF_REFACTORED_SPEC NORESET. 1 -> D8

DB
boolfin? 0 ->

boolstate? 0 ->
negation. 1 ->

(((thenetartl0
III
(elsestartl0

-> SKIP)

-> SKIP)

Chan_PROC PROCESS_IF REFACTORED SPEC NORESET. 2 -> DS

[]
(((thenatartlO -> SKIP

III
(negation. 1 -> elsestartlO -> SKIP

Chan_PROC PROCESS_IF_REFACTORED_SPEC NORESET. 2 -> DB

O
boolfin? 1 ->

(boolatate? 0 ->
negation. 1 ->

(((thenatartlO -> SKIP
III
(elaeatartll -> SKIP

chan_PROC PROCESS_IP REPACTORED SPEC NORESET. 4 -> DD

(((thenstart! O -> SKIP

III
303

Appendix J: Pattern Matched Selective Renaming Alternative

ý

(negation. 1 -> eleeatartll -> SKIP)

-> DD) (chan_PROC PROCESS_IF_REFACTORED_SPEC_NORESET. 4

[l
boolatate? 1 ->

negation. 0 ->
(((thenstartll -> SKIP

III

elaestartl0 -> SKIP

chan_PROC_PROCESS_IF_REFACTORED_SPEC NORESET. 3 -> DC 1

(]
(((thenatartll -> SKIP

III
(negation. 0 -> elsestartl0 -> SKIP

(Chan_PRAC PROCESS_IF REFACTORED_SPEC NORESET. 3 -> DC)

DC -
-> boolfin? O

boolstate? O ->
negation. 1 ->

(((thenstartl0 -> SKIP

It'
(eleestartlO -> SKIP

ý

Chan PROC PROCESS IF REFACTORED SPEC NORESET. 5 -> DC
11

Chan PROC PROCESS IF REFACTORED SPEC NORESET. O -> DA
[1
Chan PROC PROCESS IF REFACTORED SPEC NORESET. 1 -> DB

[7
(((thenetartl0 -> SKIP

III (negation. l -> eleeatart! O -> SKIP

char PROC PROCESS IF REFACTORED SPEC NORESET. S -> DC
11

char PROC PROCESS IF REPACTORED SPEC NORESET. 0 -> DA
1]

Chan PROC PROCESS IF REFACTORED SPEC NORESET. 2. -> DB

DD .
boolfin? O ->

boolstate? O ->
negation. I ->

(((thenstartl0 -> SKIP)
III

elsestartl0 -> SKIP

i Chan_PRAC PROCESS_IF_REFACTORED_SPEC NORESET. S -> DC
[]

Chan PROC PROCESS IF REFACTORED_SPEC_NORESET. O -> DA

304

Appendix J: Pattern Matched Selective Renaming Alternative

11
chan_PROC PROCESS_IP REPACTORED_SPEC NORESET. 1 -> DB

(]
(((thenstartl0 -> SKIP

III
negation. 1 -> elsestartl0 -> SKIP

chan_PROC PROCESS_IF REFACTORED SPEC NORESET. 5 -> DC
[]
chan_PROC PROCESS

_IF
REPACTORED SPEC_NORESET. 0 -> DA

[]
chan_PROC PROCESS_IF_REFACTORED_SPEC_NORESET. 1 -> DS

E_
CC

1

within DA

(C

[I {I chan_link PROC_PROCESS_IF_REFACTORBD_SPBC_NOR. ESET I} I]

FIIia) {I chan link_PROC PROCESS_IF_REFACTORED_SPEC NORESET I}

chan_PROC PROCESS_IF REFACTORED SPEC NORESET
D

)\ (ý chan_PROC_PROCESS_IF REFACTORED_SPEC NORESET
F=

chan_link
_PROC_PROCES3_IF_REFACTORED

SPEC_NORESET. 0 ->
elsefin? 0 ->

-

chan link PROC PROCESS IF REFACTORED SPEC NORESET. 1 ->
F-------

G
chan_link

_PROC_PROCESS_IF_REFACTORED_SPEC_NORESET.
2 ->

thenfin? O ->
Chan link PROC PROCESS IF REFACTORED SPEC NORESET. 3 ->
G

within A

SYSTEM_INTERFACE a (I chanO, chanlo, chant 11
SYSTEM_CONTROL - PROC PROCESS_CONTROLL_NORESET(chan0, chant, chanlO)
SYSTEM WITH CONTROL

(SYSTEM WITH INTERNALS [I SYSTEM_INTERFACE I) SYSTEM CONTROL)
LOW LEVEL SPEC : PROC PROCESS_IF_REFACTOREDSPEC NORESET(

chan0, chant, chanl0,
PROCO, chanll, chan3, chan4,
PROC1, chan5, chan6,
PROC2, chan7, chan8,
chan9

assert LOW_LEVEL_SPEC [FD- SYSTEM WITH_CONTROL
assert SYSTEM WITH CONTROL [FD= LOW LEVEL SPEC

Figure 165: Assertions demonstrating low level specification equivalence

305

Appendix J: Pattern Matched Selective Renaming Alternative

The methodology involves adapting the specifications through replacing selected events
with annotation events, thus describing the conceptual meaning for specific instances the
events have. See Figure 168 for the modified "IF" component specification, Figure 166
for the modified generic control flow process specification and Figure 167 for the
modified generic boolean process specification. Renaming in its current state can not be

used to achieve these models, as all occurrences of a low level event may not
conceptually mean the same thing and thus global replacing can not be used on a process.

-- This process was modttiad from PROC PROCESS DBSIRRD QENIRIC SPEC NORMS8T
-- Sea Pigur. 173 an page 8-----
PROC-PROCESS GENERIC HYBRID SPEC-NORBSBT(clock, start, finish, id)

let
A=

annotation. START. id -> clock? 1
internalChoice -> annotation. FINISH. id -> A
[l -- I-I
internalChoice -> annotation. NOTFINISHED. id -> B

U
annotation. IDLE. id -> clock? 1 -> finishl0 -> A

B
start? 1 -> STOP
[]
start? O -> clock? 1 ->

internalChoice -> annotation. FINISH. id -> A
[] -- I-1

internalChoice -> annotation. NOTFINISHED. id -> B

within finiah! O -> A

Figure 166: Hybrid Generic Control Flow Process

-- Täis prOC. ss was aodifi. d from PROC BOOLEAN GBNXRIC SPBC NORBS1T
S.. Figur. 178 ca pay. 8

PROC_BOOLEAN GENERIC HYBRID SPEC_NORESET(clock, bool_read, bool_readallowed,
state, id) _

let
A-

bool readallowedl0 -> atatel0 -> B
B

annotation. IDLB. id -> clock? 1 -> A
[]

annotation. BOOLEANRBAD. id -> clock? 1 -> D
D-

internalChoice -> annotation. BOOLEANDONTREAD. id -> atatel0 -> E
[l -- I-I
internalChoice -> annotation. BOOLEANREADALLOBIED. id ->

internalChoice -> annotation. BOOLEANFALBE. id -> B
U -- I-I

internalChoice -> annotation. BOOLEANTRLJE. id -> B

B
bool_read? 1 -> STOP
[l
bool_read? O clock? 1 -> D

within A

Figure 167: Hybrid Generic Boolean Process

306

Appendix J: Pattern Matched Selective Renaming Alternative

Figure 168: Low Level 'IF' Component Specification with Embedded Fait Annotations
channel than PROC_PROCESS_IF_HYBRID_FIILL_SPEC_NORESET 0.. 5
channel chan_link PROC_PROCESS_IF HYBRID FULL SPEC_NORESET : f0.. 31
PROC_PROCESS IF HYBRID FULL SPEC_NORESET(

clock, start, finish, id,
boolproc, booletart, boolfin, boolstate, bid,
thenproc, thenetart, thenfin, tid,
elseproc, elsestart, elsefin, eid,
negation

let

-- Perform checks on the input parameters
A=

inter((start, finish)

{ boolatart, boolfin, boolstate, thenstart, thenfin, elsestart,
elsefin

}
== {} ýB

[1 inter({ start, finish}

{ boolstart, boolfin, boolatate, thenatart, thenfin, elseatart,
elaefin

}
I- {} & STOP

-- Perform the model

-- Run the internal components in parallel with the remainder of the IF
-- component
B=

clock (} ý] x: {boolproc, thenproc, eleeproc}
x\ {internalChoice}))
clock, boolstart, boolfin, boolstate, thenstart, thenfin,
elsestart, elsefin,
annotation. START. x,
annotation. FINISH. x,
annotation. NOTFINISHED. x,
annotation. IDLE. y,
annotation. BOOLEANREAD. bid,
annotation. BOOLEANDONTREAD. bid,
annotation. BOOLEANREADALLOWED. bid,
annotation. BOOLEANFALSE. bid,
annotation. BOOLEANTRÜE. bid

i} iý EC=

let
CA =

I x<-{tid, eid}, y<-{bid, tid, eid}

(((thenfin? O -> SKIP
III

elaefin? O -> SKIP

finiahl0 ->
annotation. IDLE. id ->

annotation. IDLE. bid ->
Chan

_PROC
PROCESS

_IF
HYBRID FULL SPEC NORESET. 0 ->

CA

annotation. START. id ->
annotation. BOOLEANREAD. bid ->
chan_PROC PROCESS_IF_HYBRIDFULL SPEC_NORESET. 1 ->
CB

307

Appendix J: Pattern Matched Selective Renaming Alternative

CC

CB
!((thenfin? O -> SKIP

III (elsefin? O -> SKIP

annotation. NOTFINISHED. id -> start? O -> boolstartlO ->
char PROC PROCES3 IF HYBRID FULL SPEC NORESET. 2 -> CB
11

chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 3 -> CC
11
Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 4 -> CD

chan_link_PROC_PROCESS_IF_HYBRID_FULL_SPEC_NORESET. O ->
annotation. NOTFINISHED. tid ->

Chan
_link _PROC_PROCESS _IFHYBRID _FULL _SPEC _NORESET.

1 ->
annotation. NOTFINISHED. id_->
start? O ->
annotation. IDLE. bid ->
Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 5 ->

[]
annotation. FINISH. tid ->

Chan
_link

PROCPROCESS
_IF_HYBRID_FULL_SPEC

NORESET. 1 ->
annotation. FIN_ISH. id ->

annotation. IDLE. id ->
annotation. IDLE. bid ->
Chan

_PROC
PROCESS IF HYBRID FULL_SPEC_NORESET. O ->

CA
[l
annotation. START. id ->

annotation. BOOLEANREAD. bid ->
Chan

_PROC_PROCESS_IFHYBRID
FULL_SPEC_NORESET. 1 ->

CB

CD -
chan_link PROC_PROCESS

_IF_HYBRID _FIILL
SPEC NORESET. 2 ->

annotation. NOTPINISHED. eid ->
Chan link PROC PROCESS IF HYBRID FULL SPEC NORESET-3
annotation. NOTFINISHED. id ->
start? O ->
annotation. IDLE. bid ->
ahan_PROC PROCESS_IP_HYBRID FULL_SPEC NORESET. S ->
CD

[]
annotation. FINISH. eid ->

char link_PROC PROCESS
_IF

HYBRID_FULL SPEC NORESET. 3 ->
annotation. FINISH. id ->

annotation. IDLE. id ->
annotation. IDLE. bid ->
chan_PROC PROCESS_IF_HYBRID FULL SPBC_NORESET. 0 ->
CA

U
annotation. START. id ->

annotation. BOOLEANREAD. bid ->
chan_PROC PROCESS_IF HYBRID FULL SPEC NORESET. 1 ->
CB

within CA

D=

308

Appendix J: Pattern Matched Selective Renaming Alternative

let
DA =

boolfin? 0 ->
boolstate? O ->

negation. 1 ->
(((annotation. IDLB. tid -> SKIP)

III (annotation. IDLE. eid -> SKIP

11
chan_PROC PROCESS_IP HYBRID FQLL SPEC NORESET. 1 -> DB

(chan_PROC PROCSSS_IF_HYBRID FULL SPEC_NORESET. O -> DA

[1 ((! annotation. IDLE. tid -> SKIP

III negation. 1 -> annotation. IDLE. eid -> SKIP

(Chan_PROC PROCESS_IF HYBRID FULL_SPEC NORESET. O -> DA
[]

chan_PROC PROCESS_IF HYBRID FULL_SPEC_NORESET. 1 -> DB

DB =
annotation. BOOLBANDONTRSAD. bid ->

boolstate? O ->
negation. 1 ->

!((annotation. IDLB. tid -> SKIP
III

annotation. IDLE. eid -> SKIP

(chan_PROC PROCESS_IF_HYBRID FULL_SPEC_NORESET. 2 -> DB

U
(((annotation. IDLE. tid -> SKIP

III
negation.) -> annotation. IDLE. eid -> SKIP

Chan- RO(: LPROCESSý_IF_HYBRIEý_FULL_SPEC_NORESET. 2 -> DB

[]
annotation. BOOLEANREAD. bid ->

annotation. BOOLEANFALSE. bid ->
negation. 1 ->

(((annotation. IDLE. tid -> SKIP
III

annotation. START. eid -> SKIP

11

(chan_PROC PROCE33_IF HYBRID_FULL SPEC_NORESET, 4 -> DD

[l
(((annotation. IDLE. tid -> SKIP

III
negation. i -> annotation. START. eid -> SKIP

3
(chan_PROC PROCESS_IF HYBRID PULL SPEC_NORESET. 4 -> DD)

)

309

Appendix J: Pattern Matched Selective Renaming Alternative

annotation. BOOLEANTRUE. bid ->
negation. 0 ->

(((annotation. START. tid -> SKIP

III
(annotation. IDLE. eid -> SKIP

(Chan_PROC PROCESS_IF HYBRID FIILL SPEC_NORESET. 3 -> DC)

(((annotation. START. tid -> SKIP
III
(negation-0 -> annotation. IDLE. eid -> SKIP }

Chan_PROC PROCESS_IP HYBRID F'IILL_SPEC NORESET. 3 -a DC)

DC
boolfin? 0 ->

boolstate? 0 ->
negation. 1 ->

(((thenstartl0 -> SKIP

III (annotation. IDLE. eid -> SKIP

chan_PROC_PROCESS-IF HYBRID_FULL SPEC NORESET. 5 -> DC
[]

char PROC PROCESS IF HYBRID FULL SPEC NORE8ET. 0 -> DA
11

Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 1 -> DB
}

c1 (((tbenstartlO -> SKIP
III

negation.]. -> annotation. IDLE. eid -> SKIP

chan PROC PROCfiSS_IF_HYBRID_FIJLL_SPEC_NORESET. 5 -> DC
[l

Chan
_PROC_PROCESS_IF_HYBRID_FULL_SPEC

NORESET. O -> DA
Q

chan_PROC PROCESS_IF_HYBRID FULL_SPEC_NORESET. 1 -> DB

DD =
boolfin? 0 ->

boolstate? O ->
negation. l ->

(((annotation. IDLE. tid -> SKIP

III
(eleeetartl0 -> SKIP

(chan_PROC PROCESS_IF_HYBRID FULL SPEC_NORESET. 5 -> DC
[l
chap PROC PROCESS_IF_HYBRID_FULL_SPEC NORESET. O -> DA
[l

chan_PROC PROCESS_IF_HYBRID FULL SPEC_NORESET. 1 -> DB

[l
(((annotation. IDLE. tid -> SKIP

III

310

Appendix J: Pattern Matched Selective Renaming Alternative

(negation. 1 -> eleestartSO -> SKIP)

(Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. S -> DC
11

Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 0 -> DA
13

Chan PROC PROCESS IF HYBRID FULL SPEC NORESET. 1 -> DB

}
within DA

(((C
chan_link_PROC_PROCESS_IF_HYBRID_FULL_SPEC_NORESET

(F III a)
i {+ chan_link_PROC PROCESS_IF_HYBRID FULL SPEC NORESET

chan_PROC PROCESS_IF_HYBRID_FULL_SPEC NORESET ý} I]
D
\ {ý chan PROC_PROCESS IF HYBRID FULL_SPEC_NORESET

char link
_PROC_PROCESS_IP_HYBRID_FULL_SPEC_NORESET.

0 ->
elaefin? 0 ->
chan_link_PROC_PROCESS IP HYBRID FULL SPEC NORESET. 1 ->
F

chan_link
_PROC_PROCESS_IF_HYBRID_FIILL_SPEC_NORESET.

2 ->
thenfin? O ->
char link PROC PROCESS IF HYBRID FULL SPEC NORESET. 3 ->
G

within A

I} H
I}

The specification covered in Figure 168 can be perceived as a hybrid combination of

events modelling low level hardware and its higher level conceptual meanings. The

purpose of this model is to provide an avenue to link the model of the segment of logic

circuit (when driven correctly), to the desired annotation only model describing

conceptually the task it is trying to perform. Connecting these two models together is

achieved through linking both of them to the hybrid model through the use of assertions

and the process to do so it is broken down into three sections. The first part involves

demonstrating that the annotations contained within the hybrid model behaves identically

to that of the higher level full annotation only model so long as the low level events are
hidden (see Figure 169).

311

Appendix J: Pattern Matched Selective Renaming Alternative

SYSTEM_INTERFACE chanO, chanlO, chant

HPROCO - PROC BOOLEAN GENERIC HYBRID_SPEC NORESET(
chanO, chanll, chan3, chan4,1)

HPROCI - PROC PROCESS GENERIC HYBRID_SPEC NORESET(
chanO, chan5, chan6,2)

HPROC2 - PROC PROCESS GENERIC HYBRID_SPEC_NORESET(
chano, chan7, chan8,3)

APROCO - PROC BOOLEAN HIGiEiER ODTER SPEC NORESET(1)
APROCI - PROC_PROCESS_HI6HER_Oi7TER_SPEC(2)
APROC2 - PROC PROCESS_HIQHER_Oi1TER_SPEC(3)

HYBRID SPEC = PROC_PROCESS
_IF

HYBRID_FQLL_SPEC_NORESFs'T(
chanO, chan2, chanlo,
HPROCO, chanll, chan3, chan4,1,
HPROC1, chan5, chan6,2,
HPROC2, chan7, chanS, 3,
chan9

HYBRID SPEC_NO INTERNALS -
HYBRID SPEC \ {I chanll, chan3, chan4, chan5, chan6, cahn7, chan8, chan9

HYBRID SPEC ANNOTATION ONLY . (HYBRID SPEC NO_INTERNALS \{ SYSTEMINTERFACE

ANNOTATION_ONLY_SPEC = PROC_PROCESS
_IF_FtTLL_SPEC _NORESET(0, APROCO, 1, APROC1,2, APROC2,3)

assert HYBRID SPEC ANNOTATION ONLY [FD= ANNOTATION ONLY_SPEC
assert ANNOTATION ONLY SPEC [FD= HYBRID SPEC ANNOTATION_ONLY

Figure 169: Hybrid annotations behave identically to annotation only specification

The second part involves demonstrating that the outer level annotations from the

annotation only model (having the annotations for the internal components hidden),

behaves within the allowed behaviour for a generic control flow process (see Figure 170).

312

Appendix J: Pattern Matched Selective Renaming Alternative

SYSTEM INTERFACE chan0, chanlO, chant 11
APROCO - PROC_BOOLEAN_HIGHER_OUTER_SPEC_NORESET(1)
APROCI - PROC_PROCESS_HIGHER OUTER_SPEC(2)
APROC2 - PROC PROCESS HIGHER OUTER SPEC(S)

ANNOTATION
_ONLY _SPEC = PROC_PROCESS

_IF_FTJLL_SPEC _NORE$ET(0, APROCO, 1, APROC1,2, APROC2,3)
\{ OUTER_ANNOTATION ONLY SPEC = ANNOTATION-ONLY-SPEC

annotation. IDLE. 1,
annotation. BOOLEANREAD. 1,
annotation. BOOLEANDONTREAD. 1,
annotation. BOOLEANREADALLOWED. 1,
annotation. BOOLEANFALSE. 1,
annotation. BOOLEANTRUE. 1,
annotation. IDLE. 2,
annotation. START. 2,
annotation. NOTFINISHED. 2,
annotation. FINISH. 2,
annotation. IDLE. 3,
annotation. START. 3,
annotation. NOTFINISHED. 3,
annotation. FINISH. 3
}

assert PROC PROCESS HIGHER ODTER SPEC(0) [PD= OTJTER ANNOTATION ONLY_SPEC

Figure 170: Check If Outer Annotation Behaviour from Hybrid Model ie Allowed

The third part involves demonstrating that the hybrid model with the annotation events

renamed back to the corresponding low level hardware events, behaves identically to the

correctly driven circuit (see Figure 171).

313

Appendix J: Pattern Matched Selective Renaming Alternative

SYSTEM
, _INTERFACE - chan0, chanl0, chant

SYSTEM CONTROL - PROC_PROCESS_CONTROLL_NORESET(chan0, chan2, chanl0)

HPROCO = PROC_BOOLEAN_GENERIC HYBRID_SPEC_NORESET(
chanO, chanli, chan3, chan4,1)

HPROC1 - PROC_PROCESS_GENERIC_HYBRID_SPEC_NORESET(
chan0, chanS, chan6,2)

HPROC2 - PROC_PROCESS_GENERIC_HYBRID_SPEC_NORESET(
chanO, chan7, chan8 3)

APROCO - PROC_BOOLEAN_HIGHER_OUPER_SPEC_NORESET(l)
APROC1 - PROC_PROCESS_HIGHER_OUTER_SPEC(2)
APROC2 - PROC PROCESS HIGHER OUTER SPEC(S)

HYBRID SPEC = PROC_PROCESS
_IF

HYBRID_FDLL_SPEC_NORESET(
chan0, chan2, chanl0,0,
HPROCO, chanll, chan3, chan4,1,
HPROC1, chan5, chan6,2,
HPROC2, chan7, chan8,3,
chan9

f
HYBRID SPEC RENAMED .

HYBRID SPEC
It annotation. IDLE. O <- chan2.0,

annotation. START. O <- chan2.1,
annotation. NOTFINISHED. O <- chanl0.0,
annotation. FINISH. O <- chan10.1,
annotation. IDLE. 1 <- chan11.0,
annotation. BOOLEANREAD. 1 <-chanll. l,
annotation. BOOLEANDONTREAD. 1 <-chan3.0,
annotation. BOOLEANREADALLOt4ED. 1 <- chan3.1,
annotation. BOOLEANFALSE. 1 <- chan4.0,
annotation. BOOLEANTRIIE. 1 <- chan4.1,
annotation. IDLE. 2 <- chan5.0,
annotation. START. 2 <- chan5.1,
annotation. NOTFINISHED. 2 <- chan6.0,
annotation. FINISH. 2 <- chan6.1,
annotation. IDLE. 3 <- chan7.0,
annotation. START. 3 <- chan7.1,
annotation. NOTFINISHED. 3 <- chan8.0,
annotation. FINISH. 3 <- chan8.1

11)

FULL_SYSTEM_WITH_CONTROL
(SYSTEM-WITH-INTERNALS [SYSTEM INTERFACE I SYSTEM_CONTROL

assert FULL SYSTEM WITH CONTROL [PD- HYBRID SPEC RENAMED

assert HYBRID SPEC RENAMED [FD= FULL SYSTEM WITH_CONTROL

Figure 171: Hybrid model with annotations renamed behaves identically to correctly driven circuit

Ideally the process of linking the hybrid model back to the low level implementation

model would not be needed to be performed. If pattern matched selective renaming was

allowed (possibly through expanding CSP to combine regular expressions to pattern

match and select which events a renaming is applied to), it would be possible to

automatically generate the hybrid model from the segment of logic circuit modelled, thus

guaranteeing that the hybrid model derives its behaviour from the implementation being

examined.

314

Appendix J: Pattern Matched Selective Renaming Alternative

occaM
Hardware Conversion

Logic Net

Each individual component is
modelled and run in parallel

CSP Model
of Net List

Constrain input signals to disallow
incorrect outer level driving

Equivalence
i so

Implementation
Hardware

Specification

r

Specification
modified by

hand, changing
specific low level

events to
annotation events

f

CSP Model of Net
List disallowing
incorrect driving

ýJ

EDIF

Refinement of

r Super Type
Hardware

L Specification

Selective
pattern
matched
event
renaming Y 1

Hybrid
Specification

Equivalence

I Rename annotations

Hide low level events

r

ý

Implementation
Clock Cycle

Software
Specification

r

Implementation
Software

Specification

I-

Hybrid Specification
with annotations

renamed as low level
events

Refinement of Equivalence Clock Cycle
Software Model

Hide subset of
annotation events

Software
Model

Equivalence
t

Super Type
Clock Cycle

Software
¼,

Refinement of
/

Super Type
Software

Specification

Figure 172: Overview of proof structure for pattern matched selective renaming alternative

315

Appendix J: Pattern Matched Selective Renaming Alternative

Figure 172 illustrates diagrammatically for this section of work, the structure of how the
CSP models representing the hardware at various levels of abstraction are used in the
proof, and relate to each other. The section highlighted in yellow is the area of the proof
structure that differs from that used in the main body of the work (chapter 4 and
Appendix D to Appendix G), along with the slightly modified method illustrated in
Appendix H and Appendix I. This yellow section is a simplification of the proof structure,
and was presented at the cost of the robustness of the model (i. e. not checking the reset
functionality), in an attempt to simplify the presentation of the structure that the proof
framework uses to prove individual grammatical constructs.

J. 2 Conclusion

It is through the combination of the proofs that integrate the various models together that

a segment of logic circuit can be demonstrated to be a valid implementation. This
demonstration of the validity of a components implementation, combined with a proof of

composition (achieved through proving implementations are a refinement of a super type

specification and so can be replaced wherever that super type specification was used),

provides an avenue to prove the process of generating the complete logic circuit (without

the need to model the complete circuit).

316

Appendix K Simplified CSP Models

Without Reset Feature
This section contains the modified models for the proof of the "IF THEN ELSE"

component that has the reset functionality removed (see Appendix J).

K. 1 Logic Components

The removal of the reset functionality from the models has no effect on the combinatorial
logic (e. g. AND gates, OR gates, NOT gates, etc), but requires a slight adaptation to the

clocked logic components (see Figure 173). The D-Type Flip Flop is modelled in an 01-

SEQ manner.

-- Instantiations of aD 2YP3 FLIP FLOP calls this process and provides channels
-- used for its inputs and outputs as arguments. 'Q_out' is a single channel to

output to. 'd in, is a single channel to input from. 'cloak' is

-- an event representing a low-to-high clock transition.
D_TYPE_FLIP FLOP_NORESET(clock, din, q_out)

let

-- Check if the output is connected to the input.
A-

inter((I q_out din & B(O)
(]
inter({I q_out 1}, {j din 1}) !- {} & STOP

B (x) -
q_out !x -> din ?y -> clock ?1 -> B(y)

within A

Figure 173: D-Type FiipFiop with no Reset function

K. 2 Super Type Specifications

K. 2.1 Control Flow Process

This section contains the modified models that specify a super type control flow process

that the proof in Appendix J builds upon.

Appendix K: Simplified CSP Models Without Reset Feature

K. 2.1.1 Control Flow Process: Correct Control

This CSP model (see Figure 174) is used to limit a process so that it can only accept
possible valid input signals, this is to enable implemented sub-type components to have

the outer layer of their logic correctly driven when performing the checks and proofs. The

aim for this is to check an implemented component holds true to the assumption that so
long as it is driven correctly, it will correctly drive any internal components.
PROC PROCESS_CONTROLLNORESET(clock, start, finish)

l_
A=

start? x ->
(x -- 0& clock? l -> finishl0 -> A

[)
x == 1&B

B= clock? l ->
finishl0 -> start? O -> B
[)
finishll -> A

within finishl0 -> A

Figure 174: Generic Control Flow Specification - Correct Driving Limiter

K. 2.1.2 Control Flow Process: Low Level Specification

This model (see Figure 175) specifies all the valid and allowable low level behaviour of

this type of super type component. The purpose is to describe the interface boundary

behaviours, thus enabling implemented components to refinement check against it

proving there behaviours are within the requirements for it to be a sub-type of this super-

hpe
PROC_PROCESS_DESIRED_GENERIC_SPEC_NORESET(clock, start, finish)

let
A

start? x -> clock? 1 ->
x0& finishlo -> A
[)

x =- 1&
internalChoice -> finishll -> A
(1 -- 1-1
internalChoice -> finish! 0 -> S

B=

c
start? O -> clock? 1 ->
interna]Choice -> finishll -> A
[l -- I-I
internalChoice -> finishlO -> B

within finiahl0 -> A

Figure 175: Low Level Generic Control Flow Specification

318

Appendix K: Simplified CSP Models Without Reset Feature

K. 2.1.3 Control Flow Process: Low Level Specification With Deadlocking

This CSP model (see Figure 176) is based on the one covered in section K. 2.1.2, but

altered so that it also accepts invalid driving input signals submitted to it. These invalid

input driving signals are followed by an explicitly defined ̀ STOP' that will deadlock the

model should it ever be reached. Similar to the specification in section K. 2.1.2, the

returned output signals will be all possible valid permutations allowed (internal choice is

utilised to create those permutations, so long as it is driven correctly).

The reason why this model will accept invalid driving signals is to enable the model of

any component connected to it the opportunity to provide any driving signals it may

choose, this process will not limit or remove the possibility for the other component

models to provide invalid signals to this one as an option when they are run in

alphabetised parallel. The purpose of this is to enable possibility to check that if this

specification is used as an internal component, so long as the outer component is driven

correctly, this component will be driven correctly.
PROC_PROCESS GENERIC SPEC NORESET(clock, start, finish)

let
A

start? x -> clock? l ->
(x == 0& finishl0 -> A

[l
X s: 1&

internalChoice -> finishil -> A
[l -- I-(
internalChoice -> finiahl0 -> B

B
start? 1 -> STOP
(1
start? O -> clock? 1 ->

internalChoice -> finishll -> A
[] -- I-1
internalChoice -> finishlO -> B

within finishl0 -> A

Figure 176: Low Level Generic Control Flow Specification with Explicit Deadlocking

K. 2.1.4 Control Flow Process: High Level Specification

This CSP model (see Figure 177) is an annotation only clock cycle based higher

conceptual specification. It is used as a comparison for the extracted annotations from the

annotated low level hardware models. The model is sufficiently small so that it is unlikely

319

Appendix K: Simplified CSP Models Without Reset Feature

that ̀ chase' compression should be needed to be applied, which is why internal choice
(i. e. 'I - I') is used instead of using an extra event to simulate internal choice.
PROC_PROCESS HIGHER OUTER SPEC(id)

let
A=

annotation. START. id -> B
[l

annotation. IDLE. id -> A
$a

annotation. NOTFINISHBD. id -> B
1-1

annotation. FINISH. id -> A
within A

Figure 177: Generic Control Flow Annotation Specification

K. 2.2 Boolean Process

This section contains only two of the modified models that would be required to fully

specify a Boolean super type specification, this is due to the fact that the proof covered in
Appendix J only utilises these two models as internal component place fillers.

K. 2.2.1 Boolean Process: Low Level Specification With Deadlocking

This CSP model (see Figure 178) is the low level behaviour altered so that it also accepts
invalid driving input signals submitted to it. These invalid input driving signals are
followed by an explicitly defined ̀ STOP' that will deadlock the model should it ever be

reached. The specification returns all possible valid permutations of allowed output
signals so long as it is driven correctly, internal choice is utilised to create those

permutations.

The reason why this model will accept invalid driving signals is to enable the model of

any component connected to it the opportunity to provide any driving signals it may
choose, this process will not limit or remove the possibility for the other component
models to provide invalid signals to this one as an option when they are run in

alphabetised parallel. The purpose of this is to enable possibility to check that if this

specification is used as an internal component, so long as the outer component is driven

correctly, this component will be driven correctly.

320

Appendix K: Simplified CSP Models Without Reset Feature

PROC BOOLEAN_ßBNBRIC_SPEC NORESET(clock, bool_read,
let

A-
bool readallowed: 0 -> atatel0 -> B

B B. -

bool_read? x -> clock? 1 ->
x -- 0&A
11

X ss 1&D

bool_readallowed, state)

D
internalChoice -> bool readallowedl0 -> statelO -> E

[1 -- I-I -
internalChoice -> bool_readallowedll ->

internalChoice -> etatel0 -> B

[1 -- i_1
internalChoice -> atate! 1 -> B

E
bool_read? 1 -> STOP
(1

bool_read? O -> clock? 1 -> D
within A

Figure 178: Low Level Boolean Specification with Explicit Deadlocking

K. 2.2.2 Boolean Process: High Level Specification

a

This CSP model (see Figure 179) is an annotation only clock cycle based higher

conceptual specification. It is used as a comparison for the extracted annotations from the

annotated low level hardware models. The model is sufficiently small so that it is unlikely

that `chase' compression should be needed to be applied, which is why internal choice

(i. e. 'I- I') is used instead of using an extra event to simulate internal choice.
PROC_BOOLEAN_HIGHER_OUTER_SPEC_NORESET(id)

let
A=

annotation. IDLE. id -> A
[)

annotation. BOOLEANREAD. id -> B
B.

annotation. BOOLBANDONTREAD. id -> B

1-1
annotation. BOOLEANRBADALLOIPED. id ->

(annotation. BOOLEANFALSE. id -> A

i-i annotation. BOOLBANTRUS. id -> A

within A

Figure 179: Generic Control Flow Annotation Specification

321

Appendix K: Simplified CSP Models Without Reset Feature

K. 3 Implemented "IF THEN ELSE" Component

This section contains modified models from the "IF THEN ELSE" component, with the
reset functionality removed.

K. 3.1 IF THEN ELSE: Low Level Specification

This CSP model (see Figure 180) which is similar to the model defined in section K. 2.1.2,

specifies the valid and allowable low level behaviour that this implemented component
may perform at its outer boundary. It may utilises internal choice to determine the

possible output behaviour it can perform, although it is not a requirement (e. g. boolean

true, boolean false, SKIP, STOP, all have well defined fixed behaviours that do not rely

on other internal components). It is useful to note that some implemented components

may have the allowable interface boundary behaviour that is identical to that of its generic
super type component (e. g. boolean comparisons, PAR), where as other components will
have an interface boundary behaviour that is a refinement of its super type component
(e. g. boolean true, boolean false, SEQ).

PROC_PROCESS_IFDESIRED SPEC NORESET(clock, start, finish)
let

A=
start? O -> clock? l -> finisht0 -> A
O

start? l -> clock? l -> finiaht0 -> B
Bs

atart? 0 -> clock? 1 ->
internalChoice -> finiahll -> A
(J -- 1-1
internalChoice -> finiahl0 -> B

within finishi0 -> A

Figure 180: Low Level jr 'Component Desired Specification

X. 3.2 IF THEN ELSE: Low Level Specification With Deadlocking

This CSP model (see Figure 181) is similar to the model covered in section 1(2.1.3, the

CSP model is the model covered in section K. 3.1 but altered so that it will accept
incorrectly driven input signals followed by explicitly defined deadlocking (i. e. STOP).

322

Appendix K. Simplified CSP Models Without Reset Feature

PROC PROCESS IF GENERIC SPEC NORESET(clock, start, finish)
let

A

start? x -> clock? l -> finish! 0 ->
x e= 0&A
[7

x==1&B

Ba

start? 1 -> STOP
[]
start? O -> clock? 1 -> internalChoice -> finishll -> A

[] -- 1-1
internalChoice -> finishl0 -> B

within finishlo -> A

Figure 181: Low Level 'IF" Component Generic Specification with Explicit Deadlocking

K. 3.3 IF THEN ELSE: High Level Specification

This CSP model (see Figure 182), is the expected behaviour of the 'IF' component from

an annotation only perspective, with annotation models of the internal component (i. e. the
boolean condition, the `then' process and the `else' process) having to be supplied. If the
internal annotation components supplied are the corresponding generic specifications, the
CSP model will demonstrate all the possible behaviours of the 'IF' component, describing

both how driving the component drives the internal components and the internal

components behaviour effects the outputs of this component. The reason why this model

was designed to take in processes representing the internal components is so that if the

supplied internal component specifications are a refinement of the corresponding generic

specification, they will limit the behaviour dictated in the 'IF' component to that which
describes what should conceptually occur in the hardware.

Figure 182: IF Component Annotation Only Specification

channel chan_PROC PROCESS_IF_FUI, L SPEC_NORESET : 0.. 5}
PROC PROCESS IF FULL SPEC NORESET(

id, boolproc, bid, thenproc, tid, eleeproc, eid

let
-- Perform checks on the input parameters
A=

inter({ id }, { bid, eid, tid }) __ {} &B
[l
inter({ id }, { bid, eid, tid }) !_ {} & STOP

-- Perform the model
-- Run the internal components in parallel with the remainder of the IF
-- component
B=

323

Appendix K: Simplified CSP Models Without Reset Feature

x: boolproc, thenproc, elaeproc ®
x\ {internalChoice})
annotation. START. x,
annotation. FINISH. x,
annotation. NOTFINISHED. x,
annotation. IDLE. y,
annotation. BOOLEANREAD. bid,
annotation. BOOLEANDONTREAD. bid,
annotation. BOOLEANREADALLOT9ED. bid,
annotation. BOOLEANFALSE. bid,
annotation. BOOLEANTRIIE. bid
I x<-{tid, eid}, y<-{bid, tid, eid}

ý}

II E

C
let

CA =
annotation. IDLE. id ->

annotation. IDLE. bid ->
char PROC PROCESS IF FULL SPEC NORESET. 0 ->

[]
annotation. START. id ->

annotation. BOOLEANREAD. bid ->
Chan PROC PROCESS IF FULL SPEC NORESET. 1 ->

CB .
annotation. NOTFINISHED. id ->

chan_PROC_PROCESS_IF_FiJLL_SPSC_NORESET. 2 -> CB
[]
chan PROC PROCES9 IF FULL SPEC NORSSET. 3 -> CC
[] ------

chan_PROC PROCESS_IF_FULL SPEC NORESET. 4 -> CD

CC a
annotation. NOTFINISHED. tid ->

annotation. NOTFINISHED. id ->
annotation. IDLE. bid ->
chan_PROC_PROCESS_IF_FULL_SPEC NORESET. S ->
CC

Il
annotation. FINISH. tid ->

annotation. FINISH. id ->
annotation. IDLE. id ->

annotation. IDLE. bid ->
chan_PROC PROCESS_IF_FULL SPEC_NORESET. 0 ->
CA

[l
annotation. START. id ->

annotation. BOOLEANREAD. bid ->
chan_PROC PROCESS_IF PULL SPEC_NORESET. 1 ->
CB

CD ý
annotation. NOTFINISHED. eid ->

annotation. NOTFINISHED. id ->
annotation. IDLE. bid ->
chan_PROC PROCESS_IF_FULL SPEC NORESET. S ->
CD

[l
annotation. FINISH. eid ->

annotation. FINISH. id ->
annotation. IDLE. id ->

annotation. IDLE. bid ->
chan_PROC_PROCESS_IF_FOLL_SPEC_NORESET. 0
CA

324

Appendix K. Simplified CSP Models Without Reset Feature

within CA

D
let

DA
(((annotation. IDLE. tid -> SKIP

III

annotation. IDLE. eid -> SKIP

[]
annotation. START. id ->

annotation. BOOLEANREAD. bid ->
Chan PROC PROCESS IF FULL SPEC NORESET. 1 ->

Chan PROC PROCESS IF FULL SPEC NORESET. O -> DA

char PROC PROCESS IF FULL SPEC NORESET. 1 -> DB

DB
annotation. BOOLBANDONTREAD. bid ->

(((annotation. IDLE. tid -> SKIP

chan_PROC PROCESS_IP_FULL_SPEC NORESET. 2 -> DB

H
annotation. BOOLEANREAD. bid ->

annotation. BOOLEANFALSE. bid ->
(((annotation. IDLE. tid -> SKIP

III (annotation. IDLE. eid -> SKIP)

III (annotation. START. eid -> SKIP }

)

(chan_PROC PROCESS_IF_FIILL SPEC_NORESET. 4 -> DD)

[l
annotation. BOOLEANTRIIE. bid ->

(((annotation. START. tid -> SKIP

III annotation. IDLE. eid -> SKIP

(char PROC PROCESS IF FULL SPEC NORESET. 3 -> DC)

DC
annotation. IDLE. eid ->

chan_PROC PROCESS_IF_FULL_SPEC NORESET. S -> DC
[]

char PROC PROCESS IF FULL SPEC NORESET. O -> DA
11

Chan PROC PROCESS IP FULL SPEC NORESET. 1 -> DB

DD .
annotation. IDLE. tid ->

Chan
_PROC

PROCESS IF FULL SPEC NORESET. 5 -> DC
11

Chan PROC PROCES9 IF FULL SPEC NORESET. 0 -> DA
11

Chan PROC PROCESS IF FULL SPEC NORESET. 1 -> DB

within DA

325

Appendix K: Simplified CSP Models Without Reset Feature

(C

[I [I chap PROC PROCESS_IP PULL SPEC NORESET I} ý]
D
\ [I chap PROC_PROCESS_IPFULL SPEC NORESET J}

within A

326

Appendix L Expected Run Time

To detennine the timings for expected output of a software application that has been
converted into hardware, the following rules stated in this section can be applied while
stepping through an instance of the application.

L. 1 Generic: Control Flow Process

This super type specification for control flow process is allowed to take one or more
clock cycles to complete.

L. 1.1 Implemented: SKIP (Delay)

This component takes one clock cycle to complete.

L. 1.2 Implemented: STOP (Deadlock)

This component never completes.

L. 1.3 Implemented: SEQ

This component takes the sum total of the time that all its internal processes take to
complete, i. e. it completes after the all its internal processes have completed running
sequentially.

L. 1.4 Implemented: PAR

This component takes the same as the longest of its internal components take to complete,
i. e. it completes when all its internal components have completed with them running in
parallel.

L. 1. S Implemented: Assignment

This component takes the sum total of the time its internal ̀ Read' and ̀ Store'
components take to complete (see sections L. 3 and L. 4 respectively), i. e. it completes
after the read and store have sequentially finished (in that order).

Appendix L: Expected Run Time

L. 1.6 Implemented: Channel Declaration

This component takes one clock cycle to complete.

L. 1.7 Implemented: Variable Declaration

This component takes the storage time for the variable (see section L. 5), to complete.

L. 1.8 Implemented: IF (IF THEN ELSE)

This component takes the summation of the length of time for it internal 'Boolen Process'
(see section 0) and its corresponding ̀THEN' or `ELSE' process (dependent on if the test

returns true or false respectively).

L. 1.9 Implemented: While

This components time to completion is dependent on the specific result of its internal

`Boolean Process' component each time the loop is triggered, combined with the length

of its internal `Control Flow Process' if result of the test was true, see Figure 183.

While
Start

Perform

Boolean Process

Result:

Finish

Result:

J

Finish / Completed

/I-

Perform

Control Flow

Figure 183: How to compute the completion time for a While' component

L. 1.10 Implementation: Output Channel (Sending Along a Channel)

This component takes the summation of the length of time for its internal `Read'

component, along with any channel communication delay. The channel communication
delay is comprised of any delay due to the need to wait for the other side of the channel to

328

Appendix L: Expected Run Time

be ready, and also any delay for communication across the channel medium. This channel
communication delay will be explained further in section L. 6.

L. 1.11 Implementation: Input Channel (Reading from a Channel)

This component takes the summation of the length of time for any channel
communication delay, along with the delay due to its internal `Store' component. The

channel communication delay is comprised of any delay due to the need to wait for the
other side of the channel to be ready, and also any delay for communication across the

channel medium. This channel communication delay will be explained further in section
L. 6.

L. 2 Generic: Boolean Process

This super type specification for a `Boolean Process' is allowed to take one or more clock
cycles to complete.

L. 2.1 Implemented: True

This component takes one clock cycle to complete.

L. 2.2 Implemented: False

This component takes never completes.

L. 2.3 Implementation: Boolean AND

This component takes the same as the longest of its internal ̀ Boolean Process'
components take to complete.

L. 2.4 Implementation: Boolean OR

This component takes the same as the longest of its internal ̀ Boolean Process'
components take to complete.

L. 2.5 Implementation: EQUAL

This component takes the same as the longest of its internal ̀ Boolean Process'
components take to complete.

329

Appendix L: Expected Run Time

L. 2.6 Implementation: NOT EQUAL

This component takes the same as the longest of its internal ̀Boolean Process'
components take to complete.

L. 2.7 Implementation: LESS THAN

This component takes the same as the longest of its internal ̀ Boolean Process'
components take to complete.

L. 2.8 Implementation: GREATER THAN

This component takes the same as the longest of its internal 'Boolean Process'
components take to complete.

L. 3 Generic: Read

This super type specification for a `Read' is allowed to take one or more clock cycles to

complete. Specific implementations of variables can have differing times to completion
and allows for implementation of off chip storage of variables, which might take multiple
clock cycles to access.

L3.1 Implementation: UINT Constant

This component takes a single clock cycle to complete.

L3.2 Implementation: Read for FlipFlopStorage Variable

This component takes a single clock cycle to complete.

L. 3.3 Implementation: Read for WatchedFlipFlopStorage Variable

This component takes a single clock cycle to complete.

L. 4 Generic: Store

This super type specification for a `Store' is allowed to take one or more clock cycles to

complete. Specific implementations of variables can have differing times to completion

330

Appendix L: Expected Run Time

and allows for implementation of off chip storage of variables, which might take multiple
clock cycles to set.

L. 4.1 Implementation: Store for FlipFlopStorage Variable

This component takes a single clock cycle to complete.

L. 4.2 Implementation: Store for WatchedFlipFlopStorage Variable

This component takes a single clock cycle to complete.

L. 5 Generic: Variables

The current implemented variables are all on chip and are achieved by utilising flip flops

to keep the data (e. g. FlipFlopStorage component). The `WatchedFlipFlopStorage'

component is identical to that of the `FlipFlopStorage' component, but it has the values
from the flip flops used to store the data values connected to output pads so that the

values can be examined from outside the circuit.

Sections L. 3.2 and L. 3.3 specify the `Read' interfaces for the implemented variables

respectfully (i. e. for the `FlipFlopStorage' and `WatchedFlipFlopStorage' components),

where as sections L. 4.1 and L. 4.2 specify the `Store' interfaces.

L. 6 Generic: Channels

Currently I have impleneted three different channels, these are ̀ Channel NotPlaced',
'Channel

_PlacedInput' and 'Channel
_PlacedOutput'.

These three types of channels are
basically all the same, apart from the placed input channel having its 'Channel Output'
placed to the outside of the chip, and the placed output channel having its 'Channel Input'
placed to the outside of the chip, thus allowing data to be supplied or extracted
respectfully from or to the circuit via channels.
The medium that the current implemented channels use is digital logic (i. e. it does not
communicate over a network, etc). Because of this, the communication delay stated in
sections L. 1.10 and L. 1.11 is 0. Examples for the timings that two ends of a channel have

on the completion timings of each other is demonstrated in Figure 184, Figure 185

and Figure 187, where as increasing the communication delay (i. e. the number of clock
cycles for information to pass from one side of the channel to the other) would impact
and increase the completion time. It should be noted that the logic that logic that
represents the channel communication has not been optimised fully, although it still is a

331

Appendix L: Expected Run Time

viable implementation. This can be seen in Figure 184, Figure 185 and Figure 187,
by the channel output taking one extra clock cycle to terminate than the start of the
channel input.

C1oc1ý (N) C1oc1ý C1oc1ý

............ -. -. ___...... _i ý_ .. ý . Channe

1..................... _. Start .
Pi Read

.................. _.........

Start

i

e E6

Figure 184: Sending and receiving started at the same time on a0 communication delay channel

Cloc1S (N) Clocý Cloclf

............................... _....... _............. ý _..... Channe 8!

_yý . _. ý_........, Start 4
-1-'l Read

...................... _.. _

I
1
I
I
1
I
1

........... __ ..

r

Channel Input
............................

ý

-. __........ _.......: i ý--.:
-º' Store ý

............................. ý Fý

Figure 185: Sending started 1 cycle before receiving on a0 communication delay channel

ý
ý
�

... :

ý
ý

ý
k

ý
............ _ I

ý
:........ _ 6

I Innut
-º Store

...........................:

332

Appendix L: Expected Run Time

C1oc1ý (N) C1oc1ý

. Channel .. _

Start ii Read
............ r.. _. ý. __. __. _.

t
I
I
I
I
I
I

i

Clocý Cloc4

___.... . .. __... k, ý

_ .. _ tý
ý t

Store -! `
1

I
1

Channel Input
__.. ý

II
Figure 186: Sending started 2 cycles before receiving on a0 communication delay channel

Cloc1S (N) Clock Clod Clock
1
I
I
I
I

........................ _........................
........ _..... __.. ---........... _... ... _......... Channel Input

i Start
F

ý

ý

f

...............

E

e.

Store -- ..

Ifi
III

Figure 187: Reading started 1 clock cycle before sending on a0 communication delay channel

ý
wý

.Ej

Channel
Start

Read

Start

333

Appendix M Esterel SCARE 6.0 - Design

Verifier Problem

This appendix provides a simple example illustrating the inconsistency of the SCADE

design verifier's ability to analyse a model, even though the SCADE tool can compile and

simulate the model. SCADE is a model based development environment dedicated to

safety critical embedded software, produced by Esterel Technologies (http: //www. esterel-

technologies. com).

M. 1 A Simple Model Using Enumerated Types

The model illustrated in Figure 188 (that utilises the enumerated types defined in Table

4), is a simple example. Two inputs (of different types) are taken as inputs and compared

against constants, these results are then passed to an AND gate, whereby the result is

passed as the output.

Irp22 NhiErunerdecirvPel

EN1 B,
MyEn. mardedTYPe1 f 1-J

bod > AtpLt1
_ WEnmerdedTYPe2
/r

EN2 B;
MyEnmeaedTYpe2

Figure 188: A simple SCADE model using enumerated types

Placing a `proof objective' on the output enables the design verifier to analyse the model,

although an example can easily found whereby the output is false.

Table 4: Definitions of enumerated type used in Figure 188

Name of Type Definition
MyEnumeratedTypel enum {EN1_A, EN1_B}

MyEnumeratedrype2 enum {EN2_A, EN2_B}

Appendix M: Esterel SCADE 6.0 - Design Verifier Problem

M. 2 Breaking the Design Verifier

Through a simple modification of the model illustrated in Figure 188, whereby ̀ Input2' is

replaced with a constant (see Figure 189), one can produce a model that the design

verifier can not analyse. Placing a `proof objective' on the output and attempting to
analyse the model results in the design verifier producing a "Not_found" error. It should
be noted however that the tool can compile and simulate the model.

EN1 A:
MyErvnerdedTYPel J-ý bcd

EM
-B

ý""",

NTyEn. merdedTypa2

EN2 B; MyEnmeae7TYPe2

ErnmeratedTYR'l

ý i

ma > a2PLt1

Figure 189: Modifying Figure 188 to break the design verifier

M. 3 Trying to Locate the Problem

Having identified a model whereby the SCADE tool can compile and simulate it, but the

design verifier can not analyse it, one can then break the model down into simpler

segments in an attempt to identify the section that is causing the error.

Replacing one subsection of the model with a `true' constant, we get the model illustrated

in Figure 190. When a `proof objective is placed on the output, the design verifier can

analyse the model. Although this may appear to suggest that the problem is located in the

section of the model that was removed, this is not the case.

tnua

-> OLIP-t,
Irp11 rvtyEnmer3edTypa2

EN2 81
MyEnmerdedTYPL-2 I

Figure 190: Simplifying the model - Version 1

Through replacing an alternative section of the model with a `true' constant, we get the

model illustrated in Figure 191. When a `proof objective' is placed on the output, the

design verifier can analyse the model. This could be interpreted as suggesting that the

problem is located not in the first part that was removed but the second.

335

Appendix M: Esterel SCADE 6.0 - Design Verifier Problem

EN1}1

EN B

EnunerdediYpel

MyErunrrattiTVpe1 bool ý U. tpLt1

true s

M. 4 Conclusion

Figure 191: Simplifying the model - Version 2

With the two different models (Figure 190 and Figure 191) suggesting the cause of the

problem exists in different sections of the model, which, if any of these theories is

correct? Without the ability to examine the source code of the SCARE tool and the
integrated Prover Plug-In [Sheeran, 2000] that underpins its design verifier [Köhler and
Kant, 2004], it is impossible to specify the exact cause of the bug. Even though this is the

case, it is possible to reason about the construction of the tool, thus identifying possible

causes or areas of concern.

With the SCADE tool being able to compile and simulate the models (Figure 188 to

Figure 191), this suggests that the problem is not located in the internal data structure that

represents the model. If one assumes that Stalmarck's method of tautology checking using

propositional logic ([Harrison, 1996] and [Sheeran & StAlmarck, 2000]) that underpins

the Prover Plug-In [Sheeran, 2000] is sound, one is lead to believe that the location of the

error or bug is contained within how the tool was developed.

As the Prover Plug-In was developed by a third party (the product is utilised by several

companies and tools), a sensible assumption would be that it contains its own internal

data structures. It is highly unlikely that the SCADE compiler utilises this data structure

as its internal representation, a theory that is supported by the fact that the SCADE

compiler was designed and developed independently of the Prover Plug-In. This is clearly

illustrated by the fact that [Köhler and Kant, 2004] describe the augmentation of the

SCADE compiler with the formal proof tool. So, under the assumption that there are at

least two internal data structures that represent the model, a process must exist to translate

the SCADE internal data structure into one that the Prover Plug-In formal verification

tool can utilise. I believe that this is the most likely location for the error or bug, but as

previously indicated, I can not ascertain as to whether this is correct, without access to the

SCADS source code.

336

Appendix N OCCAM: Digital Clock
SEQ

PLACED UINT1 afd AT "SF D":
afd :-1
CHAN OF UINT1 chanLCDRS:
CHAN OF UINT4 chanSFD:
CHAN OF UINT1 atartDelay:
CHAR OF UINT1 delayFinished:
PAR

-- rCD Nibble

-- When a acarand is received on the ebanl. CDRB and chanSFD channels,
-- send the corresponding co-and, correctly timed, to the LCD controller
sEQ

PLACED UINT4 sfd AT "SFD_8", "SFD 9", "SFD_10", "SFD_11":
PLACED UINT1 lade AT "LCD E":
PLACED UINT1 lcdre AT "LCD RS":
PLACED UINT1 lcdrw AT "LCD_RW":
UINT2 holdcom:
DINTS comdelay:
WHILE TRUE

SEQ
PAR

comdelay 0
holdcom :. 0
chanLCDRS ? lcdrs
chanSFD ? afd

SKIP
lcde 1
WHILE holdcom <> 3

holdcom :- holdcom PLUS 1
SKIP
lcde :-0
SKIP
WHILE comdelay <> 16

comdelay := comdelay PLUS 1
-- andOfs LCD Nibble
-- LCD Delay

-- Crates a delay of the correct length between the parts of a nibbled
-- command
SEQ

UINT1 junk:
UINT11 waitcom:
WHILE TRUE

SEQ
atartDelay ? junk
WHILE waitcom <> 666

waitcom :- waitcom PLUS 1
PAR

waitcom :-0
delayFiniahed I1

-- dndOfl LCD Delay
-- main
-- Runs the LCD power on initialisation, followed by the gain body of the
-- application
SEQ

-- LCD Poweronrni t
SEQ

UINT1 junk:
UINT7 initWait:
WHILE initWait <> 103

Appendix N: OCCAM: Digital Clock

SEQ
etartDelay I1
initWait :- initWait PLUS 1
delayFinished ? junk

PAR
chanLCDRS 10
chanSFD 13

SEQ
atartDelay 11
delayFinished ? junk
startDelay 11
delayFiniehed ? junk
startDelay I1
delayFinished ? junk

PAR
chanLCDRS 10
chanSFD 12

SEQ
startDelay I1
delayFinished ? junk

PAR
SEQ

chanLCDRS 10
chanLCDRB 10

SEQ
chanSFD 12
chanSFD 18

SEQ
startDelay 11
delayFinished ? junk

PAR
SEQ

chanLCDRS 10
chanLCDRS 10

SEQ
chanSFD 10
chanSFD 16

SEQ
etartDelay 11
delayFinished ? junk

PAR
SEQ

chanLCDRS 10
chanLCDRS 10

SEQ
chanSFD 10
chanSFD 1 14

SEQ
etartDelay I1
delayFinished ? junk

PAR
SEQ

ChanLCDRS 10
chanLCDRB 10

SEQ
chanSFD 10
chanSFD 11

WHILE initWait <> 41
SEQ

startDelay 11
initWait :- initWait PLUS 1
delayFinished ? junk

initWait :-0
-- EndOt: LCD_Porss'OIIIa. i t
SEQ

CHAN OF UINT4 chanTimeHl:
CHAN OF UINT4 chanTimeHO:
CHAN OF UINT4 cbanTimeMl:

338

Appendix N: OCCAM: Digital Clock

CHAN OF UINT4 chanTimeSO:
CHAN OF UINT4 chanTimeSi:
CHAN OF UINT4 chanTimeSO:
CHAN OF UINT1 buttonlState:
CHAN OF UINT1 button2State:
PAR

-- Digital Cloak
SEQ

UINT4 timeHl:
UINT4 timeHO:
UINT4 timeMl:
UINT4 timeMO:
UINT4 timeSi:
UINT4 timeSO:
UINT1 incH:
UINT1 incM:
UINT23 counter:
WHILE TRUE

SEQ
SEQ

PAR
chanTimeHl ! timeHl
chanTimeHO ! timeHO
chanTimeSl I timeMl
chanTimeMO I timeMO
chanTimeSi ! timeSi
chanTimeSO ! timeSO
buttoniState ? incH
button2State ? incM
WHILE counter <> 8333331

counter :" counter PLUS 1
PAR

counter :-0
IF

incH =1
timeHO := timeHO PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
incM -1

timeMO :. timeMO PLUS 1
TRUE

SEQ
SKIP
SKIP

PAR
IF

timeHl =0
IF

timeHO = 10
PAR

timeHO timeHO MINUS 10

timeHl :=1
TRUE

SEQ
SKIP
SKIP

TRUE
IF

timeHO -3
PAR

timeHO :- timeHO MINUS 2
timeHi 0

TRUE
SEQ

SKIP

339

Appendix N: OCCAM: Digital Clock

SKIP
SEQ

SKIP
IF

timeMO - 10
PAR

timeMO :-0
timeMl :- timeMi PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
timeMl =6

timeMi :=0
TRUE

SEQ
SKIP
SKIP

SEQ
PAR

chanTimeHl I timeHi
chanTimeHO I timeHO
chanTimeHl ! timeMi
chanTimeMO I timeMO
chanTimeSi I timeSi
chanTimeSO I timeSO
buttoniState ? incH
button2State ? incM
WHILE counter <> 8333326

counter := counter PLUS 1
PAR

counter 0
timeSO := timeSO PLUS 1

PAR
IF

incH -1
timeHO :. timeHO PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
incM -1

timeMO := timeMO PLUS 1
TRUE

SEQ
SKIP
SKIP

IF
timeSO - 10

PAR
timeSO 0
timeSi timeSi PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
timeSl .6

PAR
timeSi :-0
timeMO :- timeMO PLUS 1

TRUE
SEQ

SKIP
SKIP

IF

340

Appendix N: OCCAM: Digital Clock

timeMO - 10 OR timeMO - 11
PAR

timeMO timeMO MINUS 10
timeMl :. timeMl PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
timeMi -6

PAR
timeMi 0
timeHO timeHO PLUS 1

TRUE
SEQ

SKIP
SKIP

IF
timeRl =0

IF
timeHO - 10 OR timeHO . 11

PAR
timeHO timeHO MINUS 10
timeHl := timeHl PLUS 1

TRUE
SSQ

SKIP
SKIP

TRUE
IF

timeHO -3 OR timeHO -4
PAR

timeHO :- timeHO MINUS 2
timeHl :-0

TRUE
SEQ

SKIP
SKIP

-- EndOft DigitalClock

-- DabounceNdur

-- Debounoa and aajWle tha Input for inarfaaing the hour.
SEQ

PLACED UINT1 button ON "inCH":
UINT1 buttonsampled:
PLACED UINT1 currentState AT "buttonH":
UINT1 nextState:
UINT1 stable:
UINT22 count:
PAR

stable :. 1
buttonsampled s- button

WHILE TRUE
SEQ

PAR
buttoniState I currentState
WHILE count <> 3124999

PAR
buttonSampled :- button
Count :- count PLUS 1
IF

nextState <> buttonSampled
stable :-0

TRUE
SEQ

SKIP
SKIP

PAR
count :ý0

341

Appendix N: OCCAM: Digital Clock

stable :=1
IF

stable 1
current8tate nextState

TRUE
currentState 0

SEQ
SKIP
nextState buttonSampled

-- 3ndOf: Debounc. Hour
-- DebounceNin
-- Debounce and eaaple the input for increasing the minutes
SEQ

PLACED UINT1 button ON "incM":
UINT1 buttonSampled:
PLACED UINT1 currentState AT "buttonM":
UINT1 nextState:
UINT1 stable:
UINT22 count:
PAR

stable :=1
buttonSampled :- button

WHILE TRUE
SBQ

PAR
button2State I currentState
WHILE count <> 3124999

PAR
buttonSampled := button
count := count PLUS 1
IF

nextState <> buttonSampled
stable :-0

TRUE
SEQ

SKIP
SKIP

PAR
Count 0
stable :-1
IF

stable -1
currentState nextState

TRUE
currentState 0

SEQ
SKIP
nextState :- buttonSampled

-- 3ndOfz Debouna Nin

-- LCD Diiplay2ia.
SEQ

UINT4 timeHl:
UINT4 timeHO:
UINT4 timeMl:
UINT4 timeMO:
UINT4 timeSi:
UINT4 timeSO:
UINT1 junk:
UINT15 counter:
WHILE TRUE

SEQ
PAR

counter :-0
chanTimeHi ? timeHl
chanTimeHO ? timeHO
chanTimeMl ? timeMi
chanTimeMO ? timeM0
chanTimeS1 ? timesl

342

Appendix N: OCCAM: Digital Clock

chanTimeSO ? timeSO
SEQ

PAR
SEQ

chanSFD 13
chanSFD i timeHl

SEQ
chanLCDRS 11
chanLCDRS 11

startDelay I1
delayFiniahed ? junk
PAR

SEQ
chanSFD 13
chanBFD 1 timeHO

SEQ
chanLCDRS 11
chanLCDRS i1

startDelay i1
delayFinished ? junk
PAR

SEQ
chanSFD 13
chanSFD 1 10

SEQ
chanLCDRS 11
chanLCDRS 11

startDelay 11
delayFiniahed ? junk
PAR

SEQ
chanSFD 13
chanSFD I timeMi

SEQ
chanLCDRS 11
chanLCDRS 11

atartDelay 11
delayFinished ? junk
PAR

SEQ
chanSFD 13
chanSFD I timeMO

SEQ
chanLCDRS 11
chanLCDRS 11

atartDelay 11
delayFinished ? junk
PAR

SEQ
chanSFD 13
chanSFD 1 10

SEQ
chanLCDRS 11
chanLCDRS I1

atartDelay 11
delayFiniahed ? junk
PAR

SEQ
chanSFD 13
chanSFD 1 timeSi

SEQ
chanLCDRS 11
chanLCDRS 11

startDelay 11
delayFinished ? junk
PAR

SEQ
chanSFD 13

343

Appendix N: OCCAM: Digital Clock

chanSFD ! timeSO
SEQ

chanLCDRS 11
chanLCDRS 1

startDelay !1
delayFiniahed ? junk
PAR

SEQ
chanLCDRS !0
chanLCDRS 10

SEQ
chanSFD 10
chanSFD !2

WHILE counter <> 26666
counter :- counter PLUS 1

3adOtf LCD Di playTims

344

References

References

" Agility Design Solutions Inc. 2007, Handel-C Language Reference Manual. From
httv: //www. aailitvds. com

" David Arnow and Gerald Weiss, 2000, Java An Object-Oriented Approach, Addison-
Wesley, ISBN 0-201-61272-0

" Paul Austin, 1998, Java Communicating Sequential Processes - Design ofJCSP
Language Classes, From http: //www. cs. kent. ac. uk/proiects/ofa/jcspO-
5/design/langdes. pdf see also http: //www. cs. kent. ac. uk/projects/ofa/icsn0-5/ and
http: //www. cs. kent. ac. uk/vroiects/ofa/icsD/

" Avison and Fitzgerald, 1997, Information Systems Development: Methodologies,
Techniques and Tools (Second Edition), McGraw-Hill, ISBN 0-07-709233-3

" J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, Y. Manoli, 2008, A Field

Programmable Analog Array (FPAA) for reconfigurable instantiation of continuous-

time filter, Presentation at CDNlive! EMEA Student Design Contest, 2008,

http: //www. imtek. de/content/ydf/Dublic/2008/becker cdc. pdf

" Peter Bellows and Brad Hutchings, 1998, JHDL - An HDL for Reconßgurable

Systems, From http: //www jhdl. org/papers. html

J. Glenn Brookshear, 2000, Computer Science an Overview (Sixth Edition), Addison-
Wesley, ISBN 0-201-35747-X

" Andrew Butterfield and Jim Woodcock, 2006, "A Hardware Compiler Semantics for

Handel-C", in Proceedings of the Third Irish Conference on the Mathematical
Foundations of Computer Science and Information Technology (MFCSIT 2004)

Dublin, Ireland ENTCS Vol 161, pp73-90, August 2006.

b-tip: //dx. doi. org/l0. I016/i. cntcs. 2006.04.026

Deitel and Deitel, 1999, Java How to Program (Third Edition), Prentice Hall, ISBN

0-13-012507-5

Alan Dennis and Barbara Haley Wixom, 2000, System Analysis and Design, John

Wiley & Sons Inc, ISBN 0-471-24100-8

345

References

" EDIF Steering Committee. 1988. EDIF Reference Manual Version 2.0.0. Washington,

DC: Electronic Industries Association. ISBN 0-7908-0000-4

" David Flanagan, 1997, Java in a Nutshell (Second Edition), O'Reilly, ISBN 1-56592-

262-X

Formal Systems (Europe) Ltd. Oxford. 2005, Failures Divergence Refinement - the
FDR User Manual. Version 2.82. From httn: //www. fsel. com

" Etienne M. Gagnon, 1998, "SableCC, an Object-Oriented Compiler Framework"

(Thesis), School of Computer Science, McGill University, Montreal

" Etienne M. Gagnon, and Laurie J. Hendren, 1998. "SableCC, an Object-Oriented

Compiler Framework", Proceedings of the Technology of Object-Oriented Languages

and Systems, pages 140-154, August 03-07,1998. From

http: //sablecc. org/documentation. html

" Hall, Tyson Stuart, 2004, "Field-Programmable Analog Arrays: A Floating-Gate

Approach", Georgia Institute of Technology,

httv: //smartech. gatech. edu/handle/I 853/5071

" Gregoire Hammon, 2008, "Simulink Design Verifier - Applying Automated Formal

Methods to Simulink and Stateflow", AFM'08. Third Workshop on Automated

Formal Methods, 14 July 2008, Princeton, New Jersey, John Rushby and Natarajan

Shankar (Editors), SRI International, Computer Science Laboratory, Menlo Park CA

94025 USA

" J. Harrison: 1996. "The StAlmarck Method as a HOL Derived Rule". Theorem

Proving in Higher Order Logics, Springer-Verlag LNCS vol. 1125,1996.

" Gerald Hilderink, Andre Bakkers and Jan Broenink, 2000, "A Distributed Real-Time

Java System Based on CSP", The Third IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, ISORC 2000, Newport Beach,

California, pp. 400-407, March 15-17,2000. From

httn: //www. ce. utwente. nl/iavavv/information/CTJ/DRTJSBCSP. Rdf see also

http: //www. ce. utwente. nl/iavapp/

C. A. R. Hoare, 2004. "Communicating Sequential Processes", Electronic Version.

From http: //www. usingcsp. com (first published in 1985 by Prentice-Hall

International, ISBN 0-13-153289-8)

346

References

" Ellis Horowitz and Sartaj Sahni, 1976, Fundamentals of Data Structures, Computer
Science Press, ISBN 0-71678-042-9

" Robin Hunter, 1999, The Essence of Compilers, Prentice Hall, ISBN 0-13-727835-7

" IEEE Std-364.1,2002, IEEE Standard for Verilog® Register Transfer Level
Synthesis, Std 1364.1-2002, Print-ISBN 0-7381-3501-1, PDF-ISBN 0-7381-3502-X

" IEEE Std-1666,2005, IEEE Standard SystemC® Language Reference Manual, IEEE

Std 1666-2005, Print-ISBN 0-7381-4871-7 SH95505, PDF-ISBN 0-7381-4870-9

SS95505, From httn: //standards. ieee. org/getieee/1666/index. html see also
http: //www. systemc. org/

" IEEE Std-1076,2002, IEEE Standard VHDL Language Reference Manual, Std 1076-

2002, Print-ISBN 0-7381-3247-0, PDF-ISBN 0-7381-3248-9

" INMOS 72-TRN-048-03,1987, Transputer Architecture Reference Manual, 72-TRN-

048-03, From: http: //www. transputer. net/fbooks/tarch/tarch. pdf

" JavaDoc, 1.5.0, Comparator, From:
http: //lava. sun. com/j2se/1.5.0/docs/api/i ava/util/Collections. html#sort(i ava. util. List,

20i ava. util. Comparator)

" He Jifeng, I. Page and J. P. Bowen, 1993, Towards a provable correct hardware

implementation of OCCAM, in G. J. Milne and L. Pierre (eds.), Correct Hardware

Design and Verification Methods, SpringerVerlag, LNCS 683, pp 214-225,1993

" Kohler and Kant, 2004. Use of Formal verification For the Software Development in

the Automotive Area, Presented at the Symposium on Formal Methods for

Automotive & Transportation, Esterel-Technologies, http: //www. esterel-
technolog, es. com/technology//WhitePapers/

" Laura Lemay and Charles L. Perkins, 1996, Teach YourselfJava in 21 Days,

Sams. net, ISBN 1-57521-030-4

" Mathstar, 2007, Field Programmable ObjectArray"t ArrixTmFamily, v1.02,
httU2: //www. mathstar. coria/Architecture. t)hg#Documentation

" Mathstar, 2007, Product Data Sheet & Design guide: ArrixTMFamily, v1.02,

httD: //www. mathstar. com/Architecture. phADocumentation

347

References

" Khalid A. Mughal and Rolf W. Rasmussen, 2000, A Programmers Guide to Java
Certification, Addison-Wesley, ISBN 0-201-59614-8

" Ian Page, 1997. Hardware Software Co-Synthesis Research at Oxford, In Proc. lEE

Vacation School on Hardware/Software Co-design. IEE, July 1997.

httD: Hciteseer. ist. psu. edu/r)age96hardwaresoftware. htmi

" Ian Page et al. 1998, "Advanced Silicon Prototyping in a Reconfigurable

Environment", in Peter H. Welch and AndreW. P. Bakkers, eds, Proceedings of
WoTUG-21: Architectures, Languages and Patterns for Parallel and Distributed

Applications, pages 81 - 92, IOS Press, Amsterdam, 1998, ISBN 90-5199-391-9.

From hM: //www. doc. ic. ac. uk/-ii)ajze/DaRers

" I. Page and W. Luk, 1991, Compiling OCCAM into FPGAs, in FPGAs, W. Moore and
W. Luk (editors), pp. 271-283, Abingdon EE&CS Books, 1991.

" RM. A. Peel and B. M. Cook, 2000. "Occam on Field Programmable Gate Arrays -
Fast Prototyping of Parallel Embedded Systems" in H. R. Arabnia, editor, The
Proceedings of the International Conference on Parallel and Distributed
ProcessingTechniques and Applications (PDPTA'2000), pages 2523-2529, CSREA
Press, June 2000. ISBN 1-892512-51-3

"KM. A. Peel and Wong Han Feng Javier, 2004, "Using CSP to Verify Aspects of an
OCCAM-to-FPGA Compiler", Ian East, Jeremy Martin, Peter Welch, David Duce

and Mark Green, editors, Communicating Process Architectures 2004, pages 339-352,

IOS Press, ISBN 1-58603-458-8

"RM. A. Peel and D. Pizarro de la Iglesia, 2005. "Automatically Generated CSP

Provides Verification for Occam-derived Logic Circuits". in H. R. Arabnia, editor, The

Proceedings of the international conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'05), pages 180-186, CSREA Press, June 2005.

ISBN 1-932415-58-0.

" Michael J. Quinn, 1994. Parallel Computing Theory and Practice (Second Edition),

McGraw-Hill, ISBN 0-07-113800-5

" T. Riesgo, Y. Torroja, E. de la Torre, J. Uceda. 1998, Quality Estimation of Test

Vectors and Functional Validation Procedures Based on Fault and Error Models,
Design, Automation and Test in Europe (DATE). Paris (France), 1998

348

References

" Romer, Andreas, Enzler, Rolf, Cottet, Didier and Tröster, Gerhard. 2000,

Reconfigurable FPGA processor. Swiss Federal Institute of Technology (ETH)

Zurich, Electronics Laboratory (2000). http: //e_

collection. ethbib. ethz. ch/view/eth: 27114

" A. W. Roscoe, 1998, The Theory and Practice of Concurrency, Prentice Hall, ISBN

0-13-674409-5

" M. Schenke and M. Dossis, 1997, Provable correct hardware compilation using

timing diagrams, oxford University Laboratory, UK, 1997

" Robert Sedgewick, 1990, Algorithms in C, Addison-Wesley, ISBN 0-201-51425-7

" SGS-Thompson Microelectronics Ltd, 1995. "OCCAM 2.1 Reference Manual". From

http: //www. wotug. org/occam/

" M. Sheeran, 2000, Prover plug-in documentation, ESPRIT LTD Project Prosper

(26241), part of deliverable D4. lb (Prover Technology AB, 2000).

htt R: //www. dcs. gla. ac. uk/vrosper/vub/prover Rs

" M. Sheeran and G. StAlmarck, 2000, "A tutorial on StAlmarck's proof procedure for

propositional logic". Formal Methods in System Design, Volume 16, Number 1,

January 2000.

" Kathy Sierra and Bert Bates, 2003, Sun Certified Programmer & Developer for Java

2, McGraw-Hill, ISBN 0-07-222684-6

" Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin and Christine

Kitchen, 2006, An overview of FPGAs and FPGA programming; Initial experiences

as Dares bury, httD: //www. cse. scitech. ac. uk/disco/oublications/FPGA overview. ndf

" P. H. Welch, 1987, Emulating Digital Logic Using Transputer Networks (Very High

Parallelism = Simplicity = Performance), Volume 1: Parallel architectures on

PARLE: Parallel Architectures and Languages Europe, pages 357-373, Eindhoven,

The Netherlands, 1987, Springer-Verlag, UK. ISBN 0-087-17943-7.

" P. H. Welch, 1988, An occam approach to tnsputer engineering, Proceedings of the

3rd Conference on Hypercube Concurrent Computers and Applications,

" P. H. Welch, G. R. R. Justo, and C. J. Willcock, 1993. "High-Level Paradigms for

Deadlock-Free High-Performance Systems". R. Grebe et al, editors, Transputer

349

References

Applications and Systems '93, Proceedings of the 1993 World Transputer Congress,

volume 2, pages 981-1004, Aachen, Germany, September 1993. IOS Press,

Netherlands. ISBN 90-5199-140-1.

" Xilinx. 2005 "Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet". Version 4.5. From httn: //direct. xilinx. com/bvdocs/publications/ds083. pdf

350

