21 M Loughborough
7 University

Loughborough University
Institutional Repository

Transform domain texture
synthesis on surfaces

This item was submitted to Loughborough University’s Institutional Repository
by the/an author.

Additional Information:

e A Doctoral Thesis. Submitted in partial fulfilment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134,/14466

Publisher: © Rupesh Nathuram Shet

Please cite the published version.

https://dspace.lboro.ac.uk/2134/14466

B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

u Loughborough
University

University Library

Author/Filing Title SH .. &1 fﬁ,nf
Class Mark ...coocoieenvennnne l ..

Please note that fines are charged on ALL
overdue items.

0403819512

MR

TRANSFORM DOMAIN TEXTURE SYNTHESIS ON SURFACES

By

Rupesh Nathuram Shet

A doctoral thesis submitted in
partial fulfillment of the
requirements for the degree
of

Doctor of Philosophy

Department of Computer Science
Loughborough University

June 2008

© by Rupesh Nathuram Shet 2008
Supervisors: Dr. Eran Edirisinghe, Dr, Helmut Bez

Director of Research: Dr. Chris Hinde

Pilineiog Library

Dete /-7/ (foq

Class !

Acc ;
No. 0‘5@2‘6!‘?5—12/ '

ABSTRACT

Transform Domain Texture Synthesis on Surfaces
Rupesh N, Shet, June 2008.

In the recent past application areas such as virtnal reality experiences, digital cinema
and computer gamings have resulted in a renewed interest in advanced research topics
in computer graphics. Although many research challenges in computer graphics have
been met due to worldwide efforts, many more are yet to be met. Two key challenges
which still remain open research problems are, the lack of perfect realism in
animated/virtually-created objects when represented in graphical format and the need
for the transmission/storage/exchange of a massive amount of information in between
remote locations, when 3D computer generated objects are used in remote
visualisations, These challenges call for further research to be focused in the above
directions. Though a significant amount of ideas have been proposed by the
international research community in their effort to meet the above challenges, the
ideas still suffer from excessive complexity related issues resulting in high processing
times and their practical inapplicability when bandwidth constraint transmission
mediums are used or when the storage space or computational power of the display

device is limited.

In the proposed work we investigate the appropriate use of geometric representations
of 3D structure (e.g. Bézier surface, NURBS, polygons) and multi-resolution,
progressive representation of texture on such surfaces. This joint approach to texture
synthesis has not been considered before and has significant potential in resolving
current challenges in virtual realism, digital cinema and computer gaming industry.
The main focus of the novel approaches that are proposed in this thesis is performing
photo-realistic texture synthesis on surfaces. We have provided experimental results
and detailed analysis to prove that the proposed algorithms allow fast, progressive
building of texture on arbitrarily shaped 3D surfaces. In particular we investigate the
above ideas in association with Bézier patch representation of 3D objects, an approach
which has not been considered so far by any published world wide research effort, yet
has flexibility of utmost practical importance. Further we have discussed the novel

application domains that can be served by the inclusion of additional functionality

within the proposed algorithms.

I

ACKNOWLEDGEMENT

While pursuing one’s lifetime goals, many helpful and sympathetic hands come
forward to help, knowingly as well as unknowingly. Often only when the goals are

achieved, one becomes aware of that help.

I take this opportunity to express my deep sense of gratitude towards my supervisors
Dr. Eran A. Edirisinghe and Dr. Helmut E. Bez for their sincere support, patience, and
encouragement throughout my research and for their valuable guidance provided in
writing and completing this thesis. It is not often that one finds a supervisors and
colleagues that always find the time for listening to the little problems and roadblocks
that unavoidably crop up in the course of performing research. Their technical and
editorial advice was essential to the completion of this thesis and has taught me

innumerable lessons and insights into the workings of academic research in general.

I am also very much thankful technical and clerical staff members of Department of
Computer Science for their guidance towards the successful completion of this thesis.
I would also specially like to thank all members of the Digital Imaging Research Lab,
Loughborough University, and my friends Dhammike, Iffat, Sajeed, Amey for their

support and valuable guidance while completing my research project.

I have a deep regard for my wife, Jagruti and Son Miheer, Krish who has always been
supportive of me and provided me with immeasurable love and inspiration. Above all
I must thank my wife her for all the sacrifices made on my behalf during my studies. 1
am profoundly thankful to my parents for creating all the opportunities for me and for
their love, affection, and encouragement. I should express my sincere gratitude for my
parents-in-law and the rest of the family for their extensive love, support and

friendship.

Finally, and perhaps most importantly, I am forever indebted to my elder brother
Sandeep Shet and his wife Deepa who encouraged me to consider research study. I

wish to thank them for their support, understanding, endless patience and

encouragement when it was most required.

Further 1 wish to thank Greg Turk for providing the source code of his texture
synthesis algorithm on 3D surface. I wish to thank Vivek Kwatra, Muath Sabha and
Dhammike Wickramanayake for their valuable support and discussions throughout

my PhD research.

Rupesh Nathuram Shet 30" June 2008

TABLE OF CONTENTS

TITLE 1
ABSTRACT I
ACKNOWLEDGEMENT v
TABLE OF CONTENTS VI
LIST OF FIGURES AND TABLES X
ABBREVIATIONS AND NOTATIONS XV
LINE OF INVESTIGATION XVI
CHAPTER 1;
AN OVERVIEW 1
1.0 IntroduCHOM. ... v et ae i reree e e ee e e nes 1
1.1 Definition of TeXIUre........ooveiiiiiiiiiiiiiici e e e 2
1.2 Texture and Texture Synthesis.......oooviiiiiiiiiriniii 3
1.3 APPHCALIONS. .. it vtiiiiiie et e aa 4
1.4 Motivation of Research.ooiiiiiiiiirie e 5
1.5 Research Aim, Objectives and Contributions of the Thesis........... 6
151 Aim & ObJectives...ovieeriiririiriiimi e ieeeeeaerapn e 6
1.5.2 Contributions of Research...............cooooiiiiiiniie 7
B 1.5.3 Scholarly Contributions...........c.coovviiiieiiiiiiiiinnnnn 9
1.6 Organization of the Thesis........ccooiiieiieniiiiniiriiciiin e 10
CHAPTER 2:
LITERATURE REVIEW:TEXTURE SYNTHESIS AND 3D SURFACE
REPRESENTATION METHODS 11
2.0 IntroduchoN......oveisiiniiisriviiiiini e 11
2.1 Texture Synthesis on Planar Surfaces..........c.ccoeiiiiiiiiiinniennene 12
2.1.1 Parametric Model Based Approaches............cocviviinenennn, 12
2.1.2 Non- Parametric Model Based Approaches................vue 14
2.2 Texture Synthesis ont Arbitrary Surface.........coviveiiiiiiviiniivnnenn 22

VI

2.2.1 Parametric Model Based Approaches on Surfaces............. 23

2.2.2 Non- Parametric Model Based Approaches on Surfaces...... 26
23 Surfaces Representationvusvivivisiiniiiininiciiinnioimms s 33
2.3.1 3D Scanner Based Surface Representation Schemes......... 34
232 Geometric SUface.......ccccoiririeiieiie e, 36
24 Summaty and ConcluSiON......covvivienininivinn e s rerrsseeens 38
CHAPTER 3
RESEARCH BACKGROUND . 42
3.0 IntrodUCHion........ocevieiiieiieae e e e 42
31 WaveElels .o 43
3.1.1 The Continuous Wavelet Transform (CWT).................... 43
3.1.2 The Discrete Wavelet Transform (DWT)...........veevvnnnnn 44
3.1.3 Wavelet Families........coooeieiiiiiiiiiiiereciieeaee 46
3.1.4 Discrete Wavelet Transform on a Image............cocevennes 47
3.1.5 Inverse Discrete Wavelet Transform on a DWT
Decomposed TMage.....covivirivriineiernrneriinerineeiienin, 49
3.2 Embedded Zerotree Wavelet..........ccoooviiiiiiiiiiiinen 51
33 Three Benchmark Algorithms For Texture Synthesis.................. 53
3.3.1 Benchmark Algorithm L: Fast, Wavelet Transform Domain
Texture SyRthesis.....cociviiiiiiiiiiii e, 53
3.3.2 Benchmark Algorithm 2: Texture Synthesis Using
GraphCuts. e i e et rae et e aeeaas 59
3.3.3 Benchmark Algorithm 3: Texture Synthesis on Surfaces...... 65
34 Generation and Representation of Geometric Surfaces................. 68
341 BéZIer CUIVES...vvivnieiaiiiiiniiiciii et e v nienceennans 68
3.42 Bézier SUITaces......covvvriiiieriieiiri et 70
3.4.3 Rational Bézier Swrfaces........cccoeeiriiiniiiininiiiiiiaiinns, 72
3.4.4 An Example: The parametrisation of Ring Dupin Cyclides
by trigonometric functions............coovviviiiiiiiiiiiininiann 73
3.5 Summary and Conclusion.. ... 76
CHAPTER 4

PROGRESSIVE TEXTURE SYNTHESIS ON ARBITRARY SURFACE 78
4.0

B 41 oTs 13 (1A Lo WP 78

Vi1

4.1 Motivation of Work......ociviiviiiiiniiiiiiiii e e, 79
4.2 Proposed ApPpProach.......ccovveiiriiiiiiiii e 79
4.3 Experimental Results antd Analysis.........ooocoviiiiiiiiiiiinnninnn, 83
4.4 LIMBAtiONS. .vesre i ieet ettt ar et r b 86
4.5 Summary and Conclusion. vvverriiviiniiiriiracrerirresnenan 87
CHAPTER 5
MAX-FLOW/MIN-CUT APPROACH FOR PLANAR TEXTURE
SYNTHESIS 88
50 INEroduCHOn...civeiie i e et e e 28
5.1 Motivation of Work........o.cooiiiiiiiii 89
52 Proposed Algorithm...........ccoiiiiiiiiiiiiiinniii 90
5.2.1 Sub-Ordinate Pass of Patch Fitting............coceoeienninnn. 91
5.2.2 Refinement Pass of Patch Fitting..........cccveevviiininninnnnn 93
52.3 Featherilg.......occiiiiiiiiiiiiiiair v e era e ans 94
5.3 Experimental Results and Analysis......cococvvniiiiiniiiinnieniiineinn, 94
54 Summary and Conclusion...........ccocvvemmeivinneniiiiiiriiicie, 101
CHAPTER 6
. TEXTURE SYNTHESIS ON GEOMETRIC SURFACES 102
(X I (114 (V¢ Lt (o ¢ S O 102
6.1 Motivation of Work......oooriiriiiiii e 103
6.2 Texture Synthesis on Biquadratic Rational Bézier Patches............ 103
6.3 Texture Synthesis on a Geometric Surfaceoccovvvvvvrnnnnnnnnnnn.. 106
6.3.1 Using a Modified Graphcut Technique to Improve Bézier
Patch Seams......oooviiieiiiiiiiiicni e 107
6.4 Embedding Texture on Rational Bézier Patches...........coovvevinnn, 109
6.5 Progressive Texture Synthesis ona 3D Surface.........oveeveeriennnns 110
6.6 Experimental Results and Analysis.......ccoccviinveinininrevviennnnns, 110
6.7 Summary and ConchuSion. c.. v iiivrieiiriisar e e ereann 112
CHAPTER 7
CONTROL POLYGON BASED TEXTURE SYNTHESIS ON 3D
SURFACES 116
7.0 IntrodUCHOM. .veieie it 116
7.1 A Control Polygon Based Texture Synthesis on Bézier Patches...... 117

VIII

7.1.1 Projectinga3D Faceontoa2D Plane..........c.cooevvvivnnnn

7.1.2 Texture Synthesis on a Control Polygon Mesh................
7.1.3 Texture Projection on to a Smooth Surface....................
7.1.4 Experimental Results and Analysis........cooviiiinriiiinninnnn
7.2 Control Polygon Based Texture Synthesis on Bézier 3D Models....
72,1 ANOVEIVIEW......oviiniiniiiiii e cecena e
7.2.2 Bézier Patch File Format.......o.cooviiiiiiiiniiiiiniiinns
7.2.3 User Defined Tangential Vectors and their Propagation
724 Project3D Faceonto 2D Plane.......cccovvvviiiiiiiiiicininnn
7.2.5 Weighted Edge Blending based on Direction...................
7.3 Texture Mapping on Control Polygons............ocviviiiiiiiiiiiinnnn
7.4 Experimental Results and Analysis....
7.5 Summary and Conclusion,ocervrierrerrimrrieierrieierrereean
CHAPTER 8
CONCLUSION AND FUTURE RESEARCH
REFERENCES
APPENDIX
A Weight Computation Formulas........cooooiviiiiiiiiniiiinin e,
B Zoomed Texture Synthesis Results......ccoooiiiiiiiiiriiniaiiiiinennin,
C Publications.cociinrii e

IX

FIGURES

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.9

LIST OF FIGURES AND TABLES

TeXMIes SPECTIUIM. .. vivitiiiiiiii e eaen e e e s
Texture synthesis on a 2D, planner surface ..ooovevvniinininniinenn
Texture synthesis on a 3D surface......coovvvrievreriiniiiiiiiieinnnen
Classification of texture synthesis algorithms................co.oevvvns
Wavelet decomposition tTee.....oovvvevevrivniiiiiiiiee e,
Wavelet families............cocooii i
The three level discrete wavelet decomposition on sample texture
IMAZE. 1eviniiniiiii e
Reconstruction of “Brick” image using only 3rd level wavelet
coefficient information (a) Original texture image, reconstructed;
(b) only LL3 and HH3 (c) LL3 and LH3 (d) LL3 and HL3 (e)
LL3, HL.3 and LH3 (f) LL3, HL3,LH3 and HH3...
Effect of global thresholding. (a) Original images, (b)
reconstructed images with only 3% of information picked using
EZW from all the bands and all three levels.

Pixel quilting algorithm- (a) pasting blocks in raster scan order
(b) randomly picking blocks from the sample (¢) overlapping
randomly picked block, B2 with already pasted block, Bl. (d)
Cutting through minimum error boundary.ooooeiinnn.

Construction of the output texture. (a) First random block () and
its best match (), (second block) is placed on the top left hand
corner of the output texture together with the corresponding
coefficient blocks of the detailed components in all three levels.
(b) Selection of the best match for the first block with its
corresponding coefficient blocks from the input texture.............
The matching criteria..........cccoviviiiiiiinn
Image texture synthesis by placing small patches at various
offsets followed by the computation of a seam that enforces

visual smoothness between the existing pixels and the newly

Placed patch.c.ocovviiiiiiiiii

50

53

54

56
56

60

Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure

Figure

Figure

Figure

Figure

3.10

311

3.12

3.13
3.14

3.15
3.16
3.17
3.18

3.19
3.20

3.21

3.22

4.1

(a) Schematic showing the overlapping region between two
patches. (b) Graph fornmlation of the seam finding problem, with
the red line showing the minimum Cost Cut,ccoeeerveninrnennn
(Left) Placing a patch surrounded by already filled pixels. Old
seams (green) are partially overwritten by the new patch
(bordered in red). (Right) Graph formulation of the problem.
Constraint arcs to A force the border pixels to come from the old
image. Seam nodes and their arcs are not shown in this image for
CaLIEY, Lr it e
The process of synthesizing a larger texture from an example
input texture. After initialisation, new patch locations are found
depending on the seam costs within the refinement passes
(bottom 1eft). ... e
Turk’s texture synthesis algorithm...............ccoociiiii e
Turk’s Method (a): dense points on surface (b): vector field
creation on the surface (c) (d) (e) (f): multi-level texture
811 1 T S O U P ORI
Three different pixel neighbourhood searches.coovvinne.

Bézier curve using four control points.c.coeviviiiiiiiiiniain

Bernstein basis functions forn =3, i
n+1 % m+1 arrays of control points (n=3,m =3)
Resulting surface using #+1 x m+1 array of control points...
(a) Green Colour: Biquadratic control polygen point, Red Colour:
Smooth surface mesh generated using the control polygon (b)
Control polygon mesh (note that 9 control points generate 4
2100 PP
(a): The surface, (b): The trigonometric parametrisation of the
SUITACE. c e e ettt e e

(a)} Y4 cyclide comprising 4 positive weight quadratic rational
Bézier patches (b) 16 patch NURBS representation obtained from
LA 0f @ PAtCH. 1ot e

Proposed progressive texture synthesis and transmission

AlZOMIthIM. ... e e e e

X1

62

62

64
65

66
66
68
69

70
71

73

74

75

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

4.2
4.3

4.4
4.5

4.6

4.7

5.1
5.2

53
5.4
5.5
5.6

5.7
5.8

59
5.10

6.1
6.2

6.3

6.4
6.5
6.6
6.7

DWT and EZW based prioritisation scheme........................... 81
Single and multiple mappings of ‘point image locations’ between
the sample texture and 3D surface..........ocovviviiiiiiiiiiiinin, 82
Multi-resolution of Turk Algorithm.............ooviiiiiiiininn 83
Progressive texture synthesis on the bunny by the proposed
algorithm using texture sample-1.......cc.cooiiiiiiiinm... 84
Progressive texture synthesis on the bunny by the proposed
algorithm using texture sample-2.......covvveiiiiiinireriininiinenn, 85
Progressive texture synthesis on the bunny by the proposed
algorithm using texture sample-3.....covviviiiriiiiii 86
(a) Sample Texture (b): # level decomposed sample image......... 90
{a) Pixel image of overlapping region for block A and B (b)

Transform domain of overlapping region for block A and B........ 91

Difference Image........c..cooeivviiiiiii 92
CutonLow Level Band o.....oovviviviiniiiie 92
LL; with incorporated cut..........cccooiiiiiiiiiiiiii e, 92
Refinement of primary cut using corresponding bands and

neighbouring coefficients................coii 93
Final blended block........cooviviiiiiiiiii e 94

Comparison between edge blending and proposed transform
domain max-flow/min-cut algorithm.................oo 95
Comparison of synthesised texture qualities for the texture, ‘nut’. 96
Comparing the results of the proposed, Kwatra et al.’s and
Wickramanayake et al.”s, algorithms. ... 100
Texture synthesis on a single bi-quadratic rational Bézier patch.., 104

Proposed block diagram for texture synthesis on geometric 106

SUITACE. - veinii it e e e

Artefacts at Bézier patch edges.

... 107
Seam SEleCtiON. ...t 108
The Graphcut approach........ccoeviiiiiiiiiii i, 108
Refined Bézier patch edges.ovvvveviiiiiiiniii e 109
Texture Embedding......cocvvviiiieiiiniii i 110

XII

Figure

Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

6.8

6.9
6.10
7.1
7.2

7.3
7.4

7.5
7.6
7.7
7.8
7.9

7.10
7.1
7.12
7.13
7.14

715
7.16
7.17
7.18
7.19

(a): our pixel based algorithm (see chapter 4), (b) Our present

patch based algorithin,c.oociviiiiiii 112
Texture synthesis on a Sphere, Torus and Cyclide................... 114
Progressive texture synthesis ona cyclide....vovevininiiinnnnnn 115
3D faces to 2D faces. .o 118
Proposed biock diagram for texture synthesis on a Bézier control

foLe)T o) o P PP 119
Basic projection approach........occoviiiniiri i 121

(a) Synthesised texture on the control polygon (b} Projection

from control polygon to smooth surface.c.covvvevvenineniennn 122
Texture synthesis on a biquadratic surface..........o.covevivinnnnnn, 124
Progressive texture synthesis on a biquadratic surface. 125

Progressive texture on two, connected biguadratic surfaces........ 127
Logical flow of the proposed algorithm............coooeiiviiinininnn 128
(a) Green Colour: Biquadratic contro] polygonal points, Red
Colour: The smooth surface mesh generated using control

polygons (b) Control polygonal mesh (note: for 9 control points,

4 faces are generated.). ...cooiiiriiiiaii i 129
3D faces t0 2D fACeS. uiiiit i 132
Four direction of blending.........cooviveniiniiniciinicrn i, 133
Swap direction of blending..........ocooviiiiiiiii 134

(a): Texture without blending (b): Texture with swap blending... 135
(a, b): Texture patterns synthesised over the 3D surface, Cup,

which depends on the direction of the marked tangential vector.., 137

Complete cycie of the proposed texture synthesis process.......... 141
Texture synthesis on Teapot and Cup..........coooiviniiiiiiinnnn, 141
Texture synthesis on a Torus, Cyclide and a Sphere.................. 142
Progresstve texture synthesis on the Teapot.........cc.covvevvivinnn. 143
Progressive texture synthesis on the Teapotcooeeiiniinenn.. 144

X

TABLES

Table 7.1 Arbitrary SUrfaceoocvviviiiiiiii e, 138
Table 7.2 Geometric stface. .. ovivii o v nenee 138

ABBREVIATIONS AND NOTATIONS

ID ONE DIMENSIONAL

2D TWO DIMENSIONAL

3D THREE DIMENSIONAL

ANN | APPROXIMATE NEAREST NEIGHBOURS
AFX | ANIMATION FRAMEWORK EXTENSION
DCT | DISCRETE COSINE TRANSFORM

STFT | SHORT TIME FOURIER TRANSFORM

WT WAVELET TRANSFORM

CWT | CONTINUOUS WAVELET TRANSFORM
DWT | DISCRETE WAVELET TRANSIFORM

EZzw | EMBEDDED ZEROTREE WAVELETS

FFT FAST FOURIER TRANSFORM

GFX | GRAPHICS FRAMEWORK EXTENSION

HH HIGH-HIGH

HL HIGH-LOW

LL LOW-LOW

LH LOW-HIGH

IDWT | INVERSE DISCRETE WAVELET TRANSFORM
IDCT | INVERSE DISCRETE COSINE TRANSFORM
MEBC | MINIMUM ERROR BOUNDARY CUT

MPEG | MOVING PICTURE EXPERTS GROUP

MRA | MULTI RESOLUTION ANALYSIS

MRF | MARKOV RANDOM FIELDS

SSD SUM OF SQUARED DIFFERENCES

SSE SUM OF SQUARED ERROR

TSVQ | TREE STRUCTURED VECTOR QUANTISATION
CCD | CHARGE -COUPLED DEVICE

DPCM | DIFFERENTIAL PULSE CODE MODULATION
SAT | SUMMED AREA TABLE

XV

LINE OF INVESTIGATION

The flowing diagram illustrates the areas that we have studied briefly in order to
achieve our goal Texture Synthesis on NURBS.

Texture
Mapping

Sample
Texture

2D 4

Bezier

Image 3D surfaced
Texture NURBS
Synthes

3D

object
Represe
riation

3D Texture
Synthesis

Bit
Stre:
Embedded Team

Coding

XVI

CHAPTER I An Qverview

Chapter 1

An Overview

1.0 INTRODUCTION

Digital technology has already taken over the entertainment market with new
developments in 3D modelling, animation, digital films (Finding Nemo, Cars, Shrek),
console based games, internet games, and PC based games. gaming, movie, and
television industries are widely relying on virtual multimedia production. Virtual
production technology has been developed to a level where it can be used to replace
some or all of the scenery in conventional television production. In using such 3D
environments, the modelling and rendering of scenes becomes a key part, which is
time consuming, costly and requires a large amount of computational power.
Rendering natural textures on computer generated models gives realism to 3D objects
in an application popularly known as ‘Texture Mapping® within the research
community. Therefore accurate and efficient texture mapping has become a vital part
of object realism. The above has been an important motivation to the texture

synthesis research presented in this thesis.

This chapter introduces the research problem, original contributions made by the
research and the structure of the thesis. To this effect, section 1.1 presents various
definitions of rexture quoted from the literature. Section 1.2 presents a categorisation
of texture and introduces the basic concepts of texture synthesis on 2D and 3D
surfaces along with examples of possible practical applications. Section 1.3 provides
an insight to applications of texture synthesis and section 1.4 details the motivational
factors and the need for the research presented in this thesis. Section 1.5 introduces
the specific objectives of the research and presents the original contributions made.

Finally section 1.6 details the thesis structure.

Transform Domain Texture Synthesis on Surfaces

CHAPTER 1 An Overview

1.1 DEFINITION OF TEXTURE

The word ‘Texture’ has been given various definitions in the computer graphics

literature. Several key definitions can be quoted as follows:

+ IEEE standard 610.4-1990 for image processing & pattern recognition [1]:
“Texture is an attribute representing the spatial arrangement of the grey

levels of the pixels in a region.”

+ R.C. Gonzalez & R.E.Woods: Digital Image Processing [2]: “We intuitively
view this descriptor as a measure of properties such as smoothness,

coarseness and regularity.”

+ AXKJain: Fundamentals of Image Processing [3]: “The term texture
generally refers to repetition of basic texture elements called texels. A texel
contains several pixels, whose placement could be periodic, quasi-periodic or
random. Texture may be coarse, fine, smooth, granulated, rippled regular,

irregular or linear.”

s Julesz (1960s-1980s) : Motivated by the question, “What features and the
statistics are characteristics of a texture pattern, so that texture pairs that
sShare the same features and statistics cannot be told apart by pre-attentive
human visual perception [129] *, texture is defined as an equivalent class of

images in 2D that share identical features.

More widely in the literature, “texture” is defined as an image containing repeating
patterns, with the possibility of random variations. This definition seems closer to
A.K.Jain’s [3] and holds well as the majority of natural surfaces consist of repeating
elements. This definition, although limited, is sufficient to describe many surface

properties.

Transform Domain Texture Synthesis on Surfaces 2

CHAPTER | An Overview

1.2 TEXTURE AND TEXTURE SYNTHESIS

In figure 1.1, we present examples of a variety of texture patterns that can be used to
describe a wide variety of surfaces such as, terrain, plants, minerals, walls, fur, skin
and some natural phenomena like weathering and corrosion. These texture samples
can be categorised in a texture spectrum ranging from stochastic to regular. In this
thesis, for ease of texture classification and detailed performance analysis of texture
synthesis algorithms, we define and use four texture categories namely, regular, near-
regular, irregular and stochastic [4] (see figure 1.1). These form a texture spectrum in
which the perceptual structural regularity varies continuously from regular to

randomness.

N

_ OO WY

Regular

Near-regular Iiregular

Regular Textwre Spectimn Stochastic

t

Figure 1.1 Textures spectrum

A texture synthesis algorithm starts from a sample texture image and attempts to
produce a texture with a visual appearance similar to that sample, by repeated
placement of micro patterns of texture elements onto a surface, such that when
perceived by a human observer, the resulting texture appears to be generated by the

same underlying stochastic process (see figure 1.2).

A large number of solutions to the problem of texture synthesis have been presented
in the literature (see chapters 2 and 3), attempting to perform equally well for different
categories of texture samples. Unfortunately, creating a real-time, robust algorithm

that generally performs efficiently for all categories of texture has been proven to be

Transform Domain Texture Synthesis on Surfaces =]

CHAPTER | An Overview

difficult. Hence finding an efficient solution to the texture synthesis problem still

remains an open research problem.

Figure 1.2 and 1.3 illustrates examples of texture synthesis on 2D and 3D surfaces,

respectively.

Figure 1.2 Texture synthesis on a 2D, planar surface

Figure 1.3 Texture synthesis on a 3D surface

Transform Domain Texture Synthesis on Surfaces 4

CHAPTER | An Overview

1.3 APPLICATIONS

While creating a computer game, digital movie, or virtual reality production, texture
synthesis is an essential part of the associated computer graphics application, as it
gives realism to the scene. Samples for these applications can be obtained from a
variety of sources such as hand-drawn artwork, photographs of natural scenes or
artificially generated textures. Certain applications require the creation of a large area
of texture at a remote end and thus may benefit from data compression, i.e. instead of
first generating and subsequently sending/transmitting the information related to the
texture of the entire synthesised surface, simply send the information related to a
selected sample of texture and subsequently use it to synthesis the entire surface at the
receiver end. This way, large 2D surfaces and arbitrarily shaped 3D object surfaces
can be synthesised, maintaining the underlying pattern of the texture sample. This is
where the necessity of a texture synthesis algorithm, which enables the creation of

large areas of textured surfaces. originates.

Theoretically, texture synthesis enables rendering texture on any surface topology.,
without a visual appearance which indicates that the rendered texture is a repetition of
the texture pattern specific to the sample used. However a number of practical
challenges have to be met in fulfilling the above aspiration. Apart from its primary use
in surface rendering of artificially created scenes, texture synthesis provides a useful
solution to a number of other practical problem domains. These include, image
denoising, occlusion fill-in, bump mapping, animation applications such as ocean
waves, rising smoke, or a burning fire, and data compression of areas covering

grassland, forests, sky or a beach.

1.4 MOTIVATION OF RESEARCH

During the past decade, a number of texture synthesis algorithms on 3D surfaces, have
been introduced to the research community. However, the main focus of these
algorithms has been obtaining the highest quality of texture synthesis for a wide
variety of texture sample categories. Although vital, this research focus has often led
to the introduction of algorithms that are too slow for many practical applications.

With the rapid growth of the internet, heterogeneous networks providing for

Transform Domain Texture Synthesis on Surfaces 3

CHAPTER 1 An Overview

multimodal devices and the digital movie industry, the requirement of a faster texture
synthesis method is becoming inevitable. Despite ever increasing speed of computer
hardware, decreasing cost of RAM and storage space, researchers have not yet been
able to achieve real time texture synthesis on 3D surfaces. This highlights the fact that
the texture synthesis algorithms themselves requires to be made faster and more
efficient in the future, if one is to achieve real time texture synthesis on complex, 3D

surfaces.

Recently some attempts have been made in the literature to consider only the visually
significant information of a texture sample, in synthesis [5-12] on 2D surfaces. In
these attempts the visually significant information has been obtained by first
representing the spatial domain pixel information (i.e. pixel values themselves) in
transform domains such as Discrete Cosine Transform domain (DCT) and Discrete
Wavelet Transform (DWT) domain, and subsequently selecting only the visually
significant information (i.e. transform coefficients). Thus less information is used in
the searching and matching processes, increasing the speed of the texture synthesis
algorithm by a significant amount, maintaining the same or sometimes better quality
of synthesis. This research has already proven that it is possible to produce good

quality texture synthesis with only 10-20 percent of the total texture information.

In this research we extend the work of [5-12] above to texture synthesis on arbitrarily
shaped 3D surfaces. Though this research does not claim novelty in performing
texture synthesis in the transform domain that allows the design of faster synthesis
algorithms, a number of original contributions have been made in the application of
transform domain texture synthesis ideas to arbitrarily shaped 3D surfaces, as detailed
in the following section. Further, note that in the absence of a quantitative metric to
measure the quality of a synthesised texture, our claim to improved quality is based

purely on subjective judgment.

Transform Domain Texture Synthesis on Surfaces 6

CHAPTER 1 An Overview

1.5 RESEARCH AIM, OBJECTIVES AND CONTRIBUTIONS OF THE
THESIS

1.5.1 Aim & Objectives

The aim of this research is to “Design and implement novel algorithms for high
quality, high speed texture synthesis on 3D surfaces that will have functionality which
will extend their use into new application scenarios”. The specific research objectives
can be listed as follows:

e To study possible shortcomings of existing pixel domain 3D texture synthesis
algorithms and suggest novel ideas towards their improvement.

e To investigate possible application of wavelet domain 2D texture synthesis
algorithms to patch based 3D texture synthesis algorithms.

* To investigate the Bézier form of surface representation of arbitrarily shaped
3D objects and its use in the texture synthesis of such surfaces.

e To suggest how transform domain texture synthesis can be applied to the
Bézier form of surface representation, enabling an effective and efficient
method for 3D texture synthesis.

e To extend the above to progressive texture synthesis on 3D surfaces,
extending the algorithm’s practical use to application scenarios that are not
supported by existing texture synthesis algorithms (see pages 86 and 100).

e To identify the limitations of the proposed algorithms and propose future

directions of research.

1.5.2 Contributions of Research

The following original contributions have been made by the research presented in this
thesis. The conference and journal papers have been included in the Appendix C, and

are referenced as C1 to C5.

A. Introducing progressive texture synthesis capability to the popular “Texture
synthesis on a surface”, work of G. Turk. [62]
The main focus of this contribution was to introduce progressive texture synthesis

capability to Turk’s original work on texture synthesis of arbitrarily shaped 3D

Transform Domain Texture Synthesis on Surfaces i

CHAPTER 1 An Overview

objects. It was shown that this extended functionality will enable its use in many new

application domains/scenarios.

B. Improvement of D.S.Wickramanayake et al.’s [5, 39] work on Transform
Domain Edge Blending.
This work investigates the performance of the transform domain edge blending
algorithm proposed by D.S.Wickramanayake et al. [5, 39] in blending (i.e. defining
the boundary between two patches) texture samples of different characteristics and
proposed improvements based on its limitations. In particular the algorithm proposes
the use of a transform domain extension of the popular pixel domain, graph cut
algorithm proposed by Kwatra et al.[36], to enhance the performance of the original
edge blending idea of [12, 39]. The improved algorithm was demonstrated to be able

to blend textures of a wide variety of kinds at comparatively better quality.

C. Transform domain progressive texture synthesis on a Bézier surface.

Bézier surfaces provide the means for flexible representation of geometric surfaces.
By adjusting the surface parameters, Bézier surfaces can be easily redefined to fit
many geometric surface topologies. In this work the original DWT domain texture
synthesis ideas [12, 39] was used along with the improved form of edge blending (see
contribution 2) to synthesise texture on a single Bézier surface. Whilst inheriting the
advantages brought about by the use of transform domain texture synthesis such as
enhanced texture quality, progressive nature and speed, this contribution enables the
flexible adaptation of original ideas in DWT based texture synthesis to texture

synthesis on geometric surfaces.

D. A control polygon based texture synthesis approach that aims to achieve
significantly high speeds in 3D texture synthesis

In this work we propose the use of Bézier control polygons in texture synthesis.

Firstly the texture is synthesised on a control polygon (i.e. a close representation of

the actual surface) instead of on the actual 3D surface using a significantly improved

version of the texture synthesis algorithm outlined in contribution 3, above. This

texture is subsequently projected onto the actual surface that may consist of a number

of patches forming a geometric surface. We show that this approach provides wider

Transform Domain Texture Synthesis on Surfaces 8

CHAPTER 1 An Overview

applicability to the underlying texture synthesis process and flexibility of extension

towards creating animations of 3D objects.

E. Transform domain texture synthesis on NURBS

NURBS (Non-Uniform Rational Basis Splines) can be used to represent an arbitrarily
shaped 3D object. This work combines all previous contributions to enable fast,
efficient texture synthesis on arbitrarily shaped 3D objects. This approach takes into
account the possibility of using user defined tangential vectors to indicate the
preferred direction of texture pattern on a given surface. We show that the proposed
algorithm has wide applicability in areas such as CAD/CAM, digital movie

production and computer games etc.

1.5.3 Scholarly Contributions

Refereed Conference Papers

1. R. N. Shet, H. E. Bez, E. A. Edirisinghe, "A Control Polygon Based Texture
Synthesis on Bi-Quadratics Rational Bézier Patches", in 3" International
Conference on Computer Graphic Theory and Applications VISIGRAPP2008,
Jan 2008, ISBN: 978-989-8111-20-3, Page No: 45-52.

2. R. N. Shet, H. E. Bez, E. A. Edirisinghe, "Progressive Texture Synthesis on
Geometric Surfaces Parameterised by Bi-Quadratics Rational Bézier Patches"
in the Proc. of CVMPO07: 4th European Conference on Visual Media
Production, November 2007, ISBN CD 978-0-86341-843-3.

3. R.N. Shet, E. A. Edirisinghe, H. E. Bez, "A Wavelets Based Max-Flow/Min-
Cut Approach For Texture Synthesis" in The IET International conference in
Visual Information Engineering: Convergence in Graphic and Vision
(VIE2007), ISBN CD 978-0-86341-830-3.

4. R. N. Shet, E. A. Edirisinghe, H. E. Bez, "Progressive Texture Synthesis on
3D surfaces" in Proceedings of Sixth IASTED international conference on
Visualization, Imaging, and Image Processing (VIIP 2006), ISBN Hardcopy:0-
88986-598-1/CD:0-88986-600-7, pp.136-141.

Transform Domain Texture Synthesis on Surfaces 9

CHAPTER 1 An Overview

Submitted Journal Paper

1. R. N. Shet, H. E. Bez, E. A. Edirisinghe, "Texture Synthesis on 3D surfaces
using Bézier control polygons ", submitted to International Journal on Signal

Processing: Image Communication, Elsevier, June 2008.

1.6 ORGANIZATION OF THE THESIS

The thesis is organised into eight chapters as described below.

Chapter 1 provides an overview of the research domain, identifies open research
problems and provides a summary of the proposed solutions. The chapter provides the
research aim, identifies the specific objectives and clearly states the original

contributions made by the research presented in the thesis.

Chapter 2 presents details of the existing literature on 2D and 3D texture synthesis
algorithms and analyses their performance. The chapter further discusses in detail,
different 3D surface representation methods and identifies the advantages and

disadvantages of each method.

Chapter 3 concentrates on providing the background knowledge related to the
research context in which the novel texture synthesis algorithms have been proposed.
In particular the chapter details Discrete Wavelet Transforms (DWT), the Embedded
Zerotree Wavelet (EZW) based wavelet transform coefficient prioritisations scheme
that is used in this thesis to identify visually significant texture content and details of

four benchmark algorithms that are used for comparison purposes.

Chapters 4, 5, 6 and 7 provide information on original contributions made by the work
presented in this thesis to the field of texture synthesis on 2D and 3D surfaces. Each
chapter concludes with a discussion on the original contributions made by the

proposed algorithms and possible improvements.

Finally Chapter 8 concludes with an insight into the future directions of research.

Transform Domain Texture Synthesis on Surfaces 10

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

Chapter 2

Literature Review:

Texture Synthesis and 3D Surface Representation

Methods

2.0 INTRODUCTION

This chapter provides a brief overview of the existing research on texture synthesis

and the methods widely used for the generation of 3D models.

Due to the large amount of literature published in the texture synthesis research
domain, providing a complete survey of algorithms is beyond the scope of this thesis
(see [12, 13] for a complete survey). Therefore only the key algorithms/techniques
have been considered in the literature survey. For clarity and ease of presentation, we
classify the existing texture synthesis algorithms depending on the type of the surface,
i.e. whether planar (2D) or 3D, on which the texture is to be synthesised. All texture
synthesis algorithms could also be classified as parametric model based approaches
(see section 2.1.1) and non-parametric model based approaches (see section 2.1.2)
depending on the underlying mathematical model to be utilized. As the research focus
of this thesis is the non-parametric model based category (see figure 2.1), a
comprehensive analysis of the advantages and disadvantages of key papers in the area
of planar and 3D surface texture synthesis (see section 2.2) using this approach, have

been included and critically reviewed in this chapter.

The latter part of the chapter (see section 2.3) discusses the methods which are widely
used for 3D model generation. These methods are important as they provide the basis

of surfaces on which the texture is to be later synthesised.

Transform Domain Texture Synthesis on Surfaces 11

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

Texture
Synthesis

Figure 2.1: Classification of texture synthesis algorithms [Note: the paths in red

iMustrate the classification routes that have been the main focus of this thesis.)

2.1 TEXTURE SYNTHESIS ON PLANAR SURFACES

Texture synthesis algorithms on planar surfaces can be broadly classified into two
groups, namely, A) Parametric model based approaches: use a number of parameters
to describe a variety of textures. [Note that this topic does not form a part of the
thesis. but is included in the literature survey for general discussion|. B) Non-
parametric model based approaches (see section 2.1.2), or ‘example based methods’,
which generate textures by directly copying pixels or patches from input/sample

textures.

2.1.1 PARAMETRIC MODEL BASED APPROACHES

The parametric model based approaches are a comparatively older type of approach,
invented during an era in which digital photographs could not be used to provide a
sample texture. With this approach it is possible to generate textures such as water, a
tree or a cloud, for e.g. using the summation and multiplication of Sine waves.
However, only a limited set of textures, which can be modelled accurately with

mathematical equations, can be synthesised. It also requires a substantial amount of

Transform Domain Texture Synthesis on Surfaces 12

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

trial and error runs, which have been widely considered as a major drawback that
needs further investigation. However the approach has advantages in that if a
mathematical equation can be used to accurately define a required texture, there will
not be any texture distortions. Further the outpul texture can be easily scaled in size,

efficiently stored and transmitted.

In the following sections different types of parametric model based approaches are

described briefly.

A. Reaction-Diffusion

Reaction-diffusion is a process first introduced by A. Turing [14] in which two or
more chemicals diffuse at an unequal rate over a surface, and react with one another
to form stable patterns such as spots and stripes. Various research projects have been
successfully completed in this area to demonstrate how a simple texture pattern can be
created by reaction-diffusion. In 1981 this research area was further explored by I.
Bard [15] and J. Murray |16], independently. Their work mainly focused on texturing
patterns on the coats of mammals; Bard managed to demonstrate the creation of deer
and giraffe spots, where as Murray demonstrated the creation of spots according to
size of an animal and took further efforts to demonstrale texturing patterns on

butterfly wings.

B. Cellular Texturing

Materials such as masonry, tiling, shingles are called cellular patterns. These patterns
are influenced by geometric features. In this approach the texture space is first divided
into cells and each cell position is subsequently textured individually to create

branching patterns, called cellular texture [17-18].

C. Weathering

Weathering is the process which causes decay, deterioration and change in appearance
of the material due to the effect of surrounding environment. A few examples are
corrosion of metals, efflorescence on stone and brick, fungal attacks on organic
materials. With advancement of research in texture synthesis driven by the need for
‘realism’, different approaches to modelling or rendering surfaces with weathering

effects have been introduced [19-21].

Transform Domain Texture Synthesis on Surfaces 13

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

All the above mentioned techniques can generate only a limited set of texture patterns,
such as the patterns on butterfly wings, spots, stripes, ice, rock, marble, stone. Hence
these approaches will not be able to support the synthesis of some texture patterns.
Thus. in spite of advantages such as lower memory usage and low-bandwidth
requirements, this is a major drawback of the parametric approaches to texture
synthesis and therefore calls for further research and investigation. Hence it is
necessary (o consider alternative approaches. In the next section we show that the

non-parametric model based approaches provide a viable alternative.

2.1.2 NON-PARAMETRIC MODEL BASED APPROACHES

[n this approach texture is created by using real world images as texture resources. In
the synthesising process, pixels or blocks of pixels of the sample image are used to
match a candidate pixel/block already synthesised and the process is continued until
the entire output texture area has been synthesised. These algorithms are broadly
categorised into two groups: pixel based approaches and patch based approaches.
These approaches can be used to create a complete texture map covering the entire
scene being textured, using multiple images as texture sources. Below are a complete
collection of these approaches, presented and reviewed in the order they have

evolved.

A. Pixel Based Approaches

In this approach the surface is synthesised gradually using pixels of the sample image.
rather than a collection of pixels, such as blocks. Given a pixel that has been
synthesised, a matching pixel (i.e. a pixel that will help maintain the smooth
continuity of the texture pattern) is sought from the sample texture. This process is
repeated until the entire output texture area is filled. In the literature many different
approaches have been used to match the adjacent pixels. They include the use of
image histograms, colour of neighbouring pixels, probability density function. etc.,
and are the key difference between the published literatures under this category of
texture synthesis algorithms. However, all these approaches are highly time
consuming and are often unable to capture global structure of the texture. Hence they

are not applicable to regular and stochastic types of texture. Nevertheless for the

Transform Domain Texture Synthesis on Surfaces 14

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

completeness of the literature survey, a briel survey of pixel based approaches is

presented below.

D. J. Heeger and J. R. Bergen [22)]

Heeger and Bergen focused on the synthesis of stochastic texture patterns and made
the first attempt to demonstrate texture synthesis in colour. This algorithm converts a
random noise image into a synthesised texture by matching the filter response
histograms at different spatial scales. Their approach is mainly based on the principle
(though not correct all the time) that all the spatial information characterizing a
texture image can be captured in the first order statistics of an appropriately chosen
set of linear filter outputs. The method consists of mainly two operations 1) Analysis
phase: where the texture image is analysed with a number of texture parameter values.
2) Synthesis phase; where synthesis is done on 2D or 3D surfaces using parameter
values. However this model captures an interesting set of texture properties though it
is not complete. This method is more efficient than many of the previously published
texture synthesis methods as the analysis phase is used to generate the parametric
values which are later used in the synthesising process. This is considered as the main

contribution of the approach.

J. 8. De Bonet [23]

This paper outlines a technique for treating input texture images as probability density
estimators from which new textures, with similar appearance and structural properties
can be generated. De Bonet used a multiresolution filter based approach, in which a
texture patch at a finer scale is conditioned on its ‘parents’ at the coarser scales. The
algorithm works by taking the input texture sample and randomizing it in such a way,
in order to preserve these inter-scale dependencies. Although this method is
applicable to a wide range of textures, it fails to exhibit perceptually correct behaviour
on smaller stochastic textures. The method is very sensitive to the choice of threshold

parameters, which if chosen incorrectly detrimentally affects the output texture.

Transform Domain Texture Synthesis on Surfaces 15

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

R. Paget and 1.D. Longstaff [24]

Paget and Longstaff introduced a top down approach, where the frequency
components of a texture are gradually introduced into a synthetic texture from low to
high frequency. This algorithm uses a different approach to classification of textures.
It captures the characteristics of the texture by setting up a unique statistical model. It
stands on the assumption that a model captures all the visual characteristics of that
texture if it is capable of synthesizing the texture visually indistinguishable from its
training texture. Based on this MRF model, they propose an algorithm with the multi-
scale synthesis, incorporating local annealing. Results show that this model is able to
produce realistic texture. The main disadvantage of this algorithm is heavy
computational cost. Although a multi-scale approach with local annealing improves
the implementation of the MRF model, the speed is yet very low. As the
nonparametric MRF model implemented in this algorithm captures sufficient high
order statistical characteristics of texture, it can be used for synthesizing natural

textures.

A. Efros and T. K. Leung [25]

Efros and Leung mainly focused on preserving local structure as much as possible in
texture synthesis. They assumed a Markov random field model for the texture
synthesis by repeatedly matching the neighbourhood around the target pixel in the
synthesised image with the neighbourhood around all pixels in the input texture, the
process starts from a seed pixel and grows outward. Neighbourhood matching is done
by computing the Gaussian weighted normalised sum of square difference (SSD),
between already synthesised pixels and the pixel neighbourhood of each candidate
match from the sample texture. The degree of randomness of synthesis is controlled
by a single parameter. However the algorithm inherits the so-called stability problem
due to use of the sequential non-parametric Markov chain type approach. In other
words the sequential nature of the algorithm may lead to a pixel neighbourhood that is
highly dissimilar to any neighbourhood in the original image. Thus, the algorithm
may become unstable resulting in synthesis artefacts. Instability depends on the
choice of the local neighbourhood size. It is expected that the use of large

neighbourhood or the employment of muitiresolution analysis will a provide solutions

Transform Domain Texture Synthesis on Surfaces 16

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

to this problem. Nevertheless, similarity measures from large neighbourhoods may

not be effective, especially for highly irregular textures.

L.-Y. Wei and M. Levoy [26]

Wei and Levoy proposed an algorithm with significant changes to previous
approaches, with the aim of enhancing the synthesised texture quality and speed. They
used an approach similar to that of the Markov random model based approach, but
used scanline neighbourhood searching in the synthesis process. Additionally they
introduced the use of Tree-Structured Vector Quantization (TSVQ) to quickly search
for the nearest neighbour. This pre-processing stage results in an increase of
algorithmic complexity in the search for the best matching pixel. However it has been
shown that the overall process is speeded up maintaining the same quality of texture
synthesis as compared to the method of Efros and Leung’s. Further the algorithm is
extended to a multiresolution synthesis process using coarse-lo-fine progression. It
has been demonstrated that [26] the results obtained when using a smaller search
neighbourhood within the multi-resolution approach is comparable to the results
obtained when a relatively larger neighbourhood is used when using a single

resolution texture synthesis process.

M. Ashikhmin [27]

The method proposed by Ashikhmin improves the quality of the synthesised texture
and speed of processing only for specific classes of texture. The algorithm provides a
solution to the time consuming procedure of exhaustive nearest neighbourhood
search. To measure the best perceptual similarity a novel approach was proposed.
While synthesizing neighbouring pixels, instead of an exhaustive search, only valid
candidates of neighbourhood pixels from the input image were selected to synthesise
the next pixel. From this it can be assured that each of its defined neighbours
corresponds to a pixel within the input image. While searching for a limited

neighbourhood of pixel locations, it results in a speed gain.

Transform Domain Texture Synthesis on Surfaces 17

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

8. Zelinka and M. Garland [28]

Zelinka and Garland approached texture synthesis differently; instead of using nearest
neighbourhood comparison during the synthesis process, they created a k nearest
neighbour lookup table as a part of the input texture analysis stage. This table was
subsequently used to make random jumps during their sequential texture synthesis
stage. No neighbourhood comparison was done during the synthesis process, which is

fundamental in the intended algorithmic speedup.

M. Tran and A. Datta [29]

Tran and Datta’s method focused on avoiding the blurring of texture features due to
the use of a fixed sized neighbourhood and the acceleration of neighbourhood search.
It is noted that Wei & Levoy’s and Ashikhmin’s methods are based on a fixed
neighbourhood search, which results in dominant artefacts in the output image. In
order to attempt to overcome this problem, Tran & Datta used a variable size
neighbourhood search. In this approach the pixel difference between the matching
neighbourhood from the sample texture and synthesis pixel is first calculated and
compared with an initial threshold. If the matching error is above the threshold the
neighbourhood size is doubled. with the ultimate hope of finding a better match. To
accelerate neighbourhood matching the authors have used the approximate nearest

neighbours (ANN) [121] approach.

M. Sabha, P. Peer and P. Dutré [30]

Sabha et al.’s method focuses on reducing high frequency discontinuities present in
pixel based synthesis algorithms. The algorithm is forced to select at least one of the
pixels from the direct neighbourhood pixels in each causal neighbourhood, in order to
match within a predetermined threshold. This enhances the speed of the overall
texture synthesis algorithm due to the high probability of a direct neighbourhood
match. They have also used the Kd-tree approach [122] to enhance the searching

process. This algorithm provides a visually pleasing result.

Transform Domain Texture Synthesis on Surfaces 18

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

B. Patch Based Approaches

This is the latest approach to texture synthesis, which was first introduced in the year
2000. This approach overcame some of the drawbacks of the pixel based approach,
such as the low processing speed and the inability to capture global structure of the
texture. In patch based approaches, instead of using one pixel, a collection of pixels
which is known as a ‘patch’ is used as the basic processing element. The key papers

proposing patch based approaches to texture synthesis are reviewed below:

Y. Q. Xu, B. N. Guo, and H-Y. Shum [31]

Xu et al.”s paper is considered the birth of "patch-based" texture synthesis algorithms,
Instead of copying one pixel at a time from an input image, they copied entire patches,
Le. a specific collection of adjacent pixels. The algorithm randomly transferred
patches from an input texture onto an output texture lattice, smoothing the resulting
edges between overlapping patches with a simple cross-edge filtering technique. The
random selection of adjacent patches often resulted in visible patch boundaries and

thus the algorithm worked well only for a very limited set of stochastic textures.

L Ling, C E Lin, Y. Xing, B. Guo, and H-Y. Shum [32]

[n this paper Ling et al. proposed a method that is an extension to their previous work.
The texture patches were sampled in relation to the local conditional MRF density,
which resulted in a reduction of artefacts in patch boundaries. The search for
matching patches was optimised by using a Principle Component Analysis (PCA) of
the input texture and a quad tree pyramid based ANN search, In addition a
‘feathering’ (alpha-blending) [34] approach was used to address the problem of
constrained texture synthesis, and achieve better visual quality at the patch
boundaries. This algorithm produced good quality texture synthesis results for both
constrained and unconstrained texture patterns, with considerable gain of speed, as

compared to previous algorithms,

Transform Domain Texture Synthesis on Surfaces 19

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

A.Efros and W. T. Freeman [33]

Efros and Freeman used an approach similar to that of Ling et al. However instead of
using ‘feathering’ (alpha-blending) [34] to blend patches they used an optimised
Minimum-Error Boundary Cutting (MEBC) algorithm at the edges. Although the
MEBC approach makes the algorithm computationally expensive, it results in an

optimised patch boundary, given two matching blocks.

A. Nealen and M. Alexa [35]

Nealen and Alexa proposed an adaptive and hybrid algorithm, in which the patches
are split and re-matched if the overlapping error between two patches increases
beyond a user defined mismatch error tolerance. For a quick calculation of
overlapping errors a Fast Fourier Transform (FFT) based approach was used. Using
larger patches for texture synthesis wherever possible assures the global structure of
the texture to be maintained. Any remaining errors in the overlap region of patches
were eliminated using a pixel-based re-synthesis approach. It was shown that the
proposed approach works well with most types of textures. However the algorithm
suffers from excess computational cost related problems due to multiple uses of

Fourier transforms and matching iterations.

V. Kwatra, A. Schodl and 1. Essa [36]

Kwatra et al. proposed an algorithm for image and video texture synthesis, in which
their approach is similar to previous approaches to copying a patch from a sample
image to an output image, and stitch them together along optimal seams. In their
approach, patch size is not chosen a priori, but instead a graph cut technique [37] is
used to determine the optimal patch region. This technique can be applicable to
structured, random and video texture, which produce good quality texture. This
algorithm [36] is further discussed in detail in this thesis, as it is one of the

benchmarks, and is extended in transform domain applications.

Transform Domain Texture Synthesis on Surfaces 20

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

M. Cohen, J. Shade, S.Hiller and O. Deussan [38]

Cohen et al. use principles of provably non-periodic tilings of the plane to generate
arbitrary amounts of non-repetitive texture. They used ‘Wang Tiles™ patches that are
squares whose edges are each assigned a colour value. Their tile generation procedure
randomly selects a set of base tiles from the input texture, one tile for each Wang Tile
edge colour, and constructs Wang Tiles by assembling the necessary 4-permutations
of the base tile set. For each 4-permutation. the overlap region is repaired by
performing a minimum-error boundary-cut (MEBC [25]). If the resulting Wang Tile
set is below a visual quality threshold (i.e. artefacts along the MEBC), a new base tile
set is selected and the assembly procedure is repeated (optimization). However as a

result of the random selection process, some diamond shaped artefacts may occur.

D. S. Wickramanayake, E .A. Edirisinghe and H. E. Bez [5, 12, 39, 40, |

Wickramanayake et al. proposed various techniques to synthesise texture using
Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) domains,
in which coefficient blocks are stitched together to form transform domain texture
synthesis. Their approaches were shown to produce good quality texture synthesis for
a wide range of textures, with higher speed and with added functionality that enables
its use in bandwidth adaptive, compressed domain, progressive texture synthesis
applications. In their work Wickramanayake et al. have discussed the issue of
computational speedup, in which one should attempt to use less amount of texture
related information within the synthesis process. However this may degrade the
quality of texture synthesis. To avoid this, the authors suggested considering the use

of only the visually significant information in the synthesis process.

The first algorithm proposed by Wickramanayake et al. introduced DWT based
texture synthesis [5, 12, 39|, where the main goal is to synthesise texture at a faster
rate by using minimum computational power and considering a multiresolution
approach. In this approach, coefficient blocks of the spatio-frequency components of
the input texture are efficiently stitched together in the synthesis process. They
proposed two methods; the first used a constant block size whilst the second used a

variable block based on an adaptive block splitting algorithm. The later method makes

Transform Domain Texture Synthesis on Surfaces 21

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

sure that the largest possible block that can capture global structure of the texture is
ultimately used in the synthesis process, while maintaining the mismatched error of

the overlapped boundaries below an error tolerance constant.

Wickramanayake et al. subsequently proposed a DCT [40] based, fast, texture
synthesis algorithm that minimises computational power by using the minimum
number of visually significant coefficients in the synthesis process. The authors
demonstrated that the use of only the visually significant coefficients in the texture
synthesis process leads to an increase in the quality of the synthesised texture, and
also a significant reduction of the cost of the computations required. To overcome the
artefacts at the boundary of patches the authors further proposed the use of a simple,
transform domain weighted edge blending algorithm that was demonstrated to work
well. Experimental results were provided to prove that their approach is applicable to

a wide range of textures of regular to stochastic nature.

Wickramanayake et al. finally extended their original ideas in DWT domain texture
synthesis by using an automatically generated threshold, which enabled the detection
of significant coefficients of each sub-band which are used to define patch matching
templates in the texture quilting process [5]. This extended approach was proven to
significantly improve texture quality and reduce computational cost as compared (o
the original DWT domain texture synthesis idea. This algorithm [31, 33] is further
discussed in detail within this thesis, as it is selected as one of the benchmarks to
evaluate the performance of the novel algorithms proposed in this thesis. In our work
this algorithm is further improved and later extended to enable its use in texture

synthesis on 3D surfaces.

2.2 TEXTURE SYNTHESIS ON ARBITRARY SURFACES

Many algorithms for texture synthesis of arbitrarily shaped 3D objects have been
proposed in the literature. These algorithms are generally more functionally
demanding (e.g. the practical need of specifying the direction of texture) and
computationally expensive due to the need of having to synthesise texture on non-
planar surfaces using non-regularly shaped patches. However despite many efforts,

producing a texture synthesis algorithm for arbitrarily shaped 3D objects which is fast,

Transform Domain Texture Synthesis on Surfaces 22

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

enables the synthesis of a wide range of texture types and has added functionality that
enables its efficient application in a wide practical area, still remains an open research

problem.

Texture synthesising approaches on arbitrarily shaped 3D surfaces can be generally
classified into two categories; 2.2.1 parametric model based approaches [note: this
category does not form a part of the thesis, but a review has been included merely for
completeness]. 2.2.2 Non-parametric model based approaches. The key algorithms

that represent these categories are reviewed below.

2.2.1 PARAMETRIC MODEL BASED APPROACHES ON SURFACES

Parametric model based texture synthesis approaches on surfaces can be further
classified into two sub-categories: Solid and Geometric texturing. These are described

below,

A. Solid Texturing

Solid texturing is defined as ‘colour variation throughout an entire 3D space’. It
means that the object can be “carved” in a solid block. A significant amount of
research has been carried out in this direction, which is presented under three further

categorisations below:

Procedural Solid Texturing: The first approach to solid texturing was proposed by
Gardner [42, 43] to define terrain, tree, water-stream, and cloud textures using
summation and multiplication of sine waves. Later Peachey [44] proposed solid
texturing approaches that extended some well-known 2D texture synthesis algorithms
to illustrate the synthesis of solid wood and granite texture onto surfaces. Perlin [45]
observed that most natural textures have a more or less random structure. Based on
this assumption Perlin introduced a solid noise and a turbulence function, which was
used to demonstrate the synthesis of marble, cloud and ocean waves textures.
However, the main drawback of all these approaches is the difficulty of determining
the function parameters, in order to obtain a desired kind of texture. Further the

experimental background often results in high computational cost.

Transform Domain Texture Synthesis on Surfaces 23

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

Analytical Solid Texturing: To overcome the problems of procedural texturing such
as the need for expert knowledge in determining the parameters and the computational
cost of experimentation, this approach is used to synthesise “automatically”. This
approach uses one or more 2D views (digitised photograph) of the desired texture.
The first method uses spectral analysis of texture, introduced by Ghazanfarpour et al.
[46] in order to obtain both a basis function and a perturbation function, which
showed many interesting results. However it failed because of high computational
time for noise filtering. This work which was further extended by Ghazanfarpour et al.
[47] had the observation that a single view is not sufficient to capture all the aspects
of solid texture. Dischler et al. [48] proposed a hybrid, spectral and spatial based
approach for processing 3D blocks. The main drawback of this approach is that it is
not able to deal with the structured model. Heeger and Bergen [49] proposed a
pyramid method for analyzing and synthesizing noisy 2D texture, as well as stochastic
solid texture. Their approach is based on psychophysical studies, which assume that
the human texture perception mechanism applies a bank of space localised filters to
pre-attentively discriminate texture fields. Therefore, the method allows one to
generate some types of synthetic textures having a close visual resemblance with
respect to the model. Beyond 2D texture they extend their work to a 3D white noise
block to synthesise texture. This approach can only be applied to a limited type of
texture, and also is computationally expensive due to the cost of analyzing the sample

texture.

Physical Simulation Approaches to Texturing: A further alternative attempt made
on solid texturing is to use a physical simulation, which means to simulate a process
based on a known science such as physical, chemical or biological. Unfortunately, the
research community has not carried out sufficient detailed investigations of this
approach. Buchanan [50] proposed a model to synthesise wood using a voxel based
approach, where a full model of a tree was shown, whereby wood texture was
obtained by carving in the tree trunk. Hirota et al. [51] generated patterns of *cracks’
using the voxel based approach. The object voxels are considered to be connected to
their neighbours by springs. A force is applied on these springs to deform the 3D
lattice. If the force exceeds yielding point the spring will tear and generate a crack
pattern. This method is applicable for the simulation of a wet cube of mud that

becomes dry. Turk [52] proposed texture synthesis based on reaction-diffusion. In his

Transform Domain Texture Synthesis on Surfaces 24

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

paper he showed how texture can be directly generated on the geometry of a surface.
He illustrated the synthesis of the cluster spots on leopards and web-like patterns on
giraffes. The major advantage of the physical approach is its closeness to reality and
production of very good quality results. However, the limitation is that a suitable
scientific model does not exist at all times. Further an expert’s knowledge is required
to generate a mathematical model for the texture. Thus simulations may be expensive

and time consuming.

B. Geometric Texturing

Geometric texturing consists of adding “real” third dimension information to a surface
in the form of “real™ apparent geometry. These approaches can be used to render
several complex 3D phenomena, such as fur, cotton, lawns which cannot be rendered
correctly by simple colour variation, because roughness is related to geometry. In
order to realistically simulate wrinkled surfaces, Blinn [53] introduced a normal
perturbation technique, known as bump mapping. This technique modifies the surface
of normal vectors and allows the geometric appearance to be retrieved. However, in
some cases, bump mapping remains insufficient because the surface is not “really”
deformed. Other methods presented by Cook [54] and Max [55] were proposed to
resolve the limitations of bump mapping. Cook [54] proposed a displacement
mapping method that consists of “really” displacing surface points along with their
normal points. Hence, all the problems of bump mapping can be resolved correctly
with higher computational costs. Max [55] proposed a less expensive method but
limited to self-shadow. However, even these extensions of bump mapping cannot
resolve the problem of a highly complex structured surface like cotton or fur.
Therefore, other kinds of approaches, closer to geometric modelling, appeared later in
the form of hypertextures by Perlin [56], and texel maps by Kajiya [57]. Texel
mapping and hypertexturing turn out to be particularly useful for “soft” (translucent)

features. However, these approaches are complex and extremely time consuming.

Another form of texture-mapping close to geometric modelling consists of directly
distributing small geometric elements on surfaces, such as for cellular textures by

Fleischer et al. [58] and macro structured textures by Dischler et al. [59].

Transform Domain Texture Synthesis on Surfaces 25

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

All of these 3D texturing approaches (displacement maps, hypertextures, texels,
cellular textures.) can be considered as “geometric” techniques, since they add some
“real” geometric components to the surfaces, these approaches are seldom used due to
high complexity, the time required for texture synthesis and the need for expert

knowledge which is often difficult to quantify.

222 NON PARAMETRIC MODEL BASED APPROACHES ON
SURFACES

Non-parametric model based approaches address some of the key limitations of
parametric model based approaches and thus find many practical applications. These
techniques can be divided into two categories, namely: pixel based approaches and

patch based approaches.

A. Pixel Based Approaches

L.-Y. Wei and M. Levoy [60]

Wei and Levoy proposed a texture synthesis algorithm for arbitrarily shaped surfaces,
based on their own 2D texture synthesis algorithm [26]. In this method each mesh
vertex initially establishes a local parameterization of a surrounding vertex.
Subsequently using this vertex as a centre, a small rectangular neighbourhood is
created. Finally a modified version of a planar texture synthesis algorithm [26] is used
for texturing the 3D surface. The modifications introduced include the replacement of
the scan-line neighbourhood search by a random neighbourhood search and the use of
rectangular parameterization with a tangent direction at each mesh vertex, coupled
with a scale factor derived from the mesh vertex. Taking a multi-resolution approach
to texture synthesis on 3D surfaces, Wei-Levoy extended Turk’s [61] ‘re-tiling
polygonal surface’ method to create a multi-resolution representation of vertices. The
proposed algorithm showed low texture discontinuity and low distortion for the
particular type of texture experimented. Wei and Levoy also mentioned that the
methods that were proposed for planar texture synthesis cannot be applied to general
surfaces and need to be changed for surface synthesis. A similar non-parametric

approach to texture synthesis on a 3D surface was previously proposed by Turk [52]

Transform Domain Texture Synthesis on Surfaces 26

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

in the paper titled, procedural texture synthesis. However this algorithm worked well

only for a limited class of textures and was thus practically limited.

G. Turk [62]

Turk demonstrated texture synthesis on a 3D surface using an extended version of
Wei-Levoy's 2D texture synthesis approach, popularly known as known as Turk’s
|61] ‘re-tiling polvgonal surface’ method. The approach is based on a method that
uses image pyramids. Turk proposed to use a mesh hierarchy to serve in place of such
pyramids. This approach is similar to the Wei-Levoy surface approach, yet has three
significant differences: 1) Turk used a user defined smooth vector field where as Wei-
Levoy used a random and symmetric vector field based on a relaxation algorithm. 2)
Turk used a sweeping order derived from the smooth vector field for vertex
transversal, whereas Wei-Levoy’s approach visited the mesh vertex in a random
order. 3) Turk used surface marching to construct the mesh neighbourhood, whilst
Wei-Levoy performed flattening and re-sampling of the mesh. Results of both

methods are comparable.

In this thesis we consider Turk’s algorithm above as a benchmark algorithm (see
chapter 4) that 1s used for performance evaluation of the proposed novel approaches to

surface texture synthesis.

L. Ying, A. Hertzmann, H. Biermann, and D. Zorin [63]

Ying et al.’s intentions were synthesis on a 3D surface. The authors proposed two
algorithms to handle a variety of different texture samples; one is a multi-scale
synthesis algorithm which is similar to that of Turk [62] and Wei-Levoy [60], i.e. to
synthesise texture directly on to the surface, as synthesising texture on a rectangle,
and then mapping on to a surface may lead to artefacts. Identifying the applicability of
most texture synthesis algorithms to a limited set of texture types, the authors
proposed an algorithm which generalised the texture Wei-Levoy [26], and the other is
a coherent synthesis algorithm based on Ashikhmin [27]. To use Wei-Levoy's multi-
resolution approach the authors have proposed to use a novel approach to ‘chart

sampling’. These charts are created from the surfaces by using the multi-resolution

Transform Domain Texture Synthesis on Surfaces 27

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

subdivision approach. The texture is first synthesised at a coarse-level using a “surface
marching’ algorithm [Note: In surface marching algorithm a grid of sample locations
is collected which corresponds to a grid of locations in the plane, using a tessellated
mesh representation of the surface. These grids are further used in a texture synthesis
process], and coarse-to-fine refinement is carried out subsequently. Another method is
a coherent synthesis run in a single pass over all samples, on the surface. This
approach also uses a ‘surface marching’ algorithm which collects a grid from the
sample location that corresponds to the grid location in the plane using a tessellated

mesh representation in order to synthesise texture as per Ashikhmin algorithm.,

This method has certain advantages over previous methods such as less memory
usage, faster speed and being able to support a variety of texture samples, which are
handled rather poorly by some multi-scale algorithms. Although this provides good
results, it inherits same drawbacks of Wei-Levoy's [26] and Ashikhmin’s [27]
algorithms as it is time consuming and applicable to a limited type of texture, such as

irregular and stochastic.

T. Xin . J. Zhang, L. Liu, X. Wang, B. Guo, and H-Y. Shum [64]

Tong et al. proposed a method for synthesising a bidirectional texture function on an

arbitrary surface. The bidirectional texture function (BTF) is described as texture

arising from both spatially-variant surfaces and surface meso-structures. Initially a so-

called texton analysis [64] is carried out on a sample BTF. Texton analysis consists of

three steps: 1) build 3D texton vocabulary, 2) assign texton labels to the pixels to get
the 2D texton map and 3) construct a surface texton space by calculating the dot-
product matrix, and discarding the appearance vectors. Afterwards, the surface is
synthesised based on a surface texton. To gain speed of operation the algorithm uses
Turk’s [61] “re-riling” method to achieve multi-resolution and K-coherence search, for
each candidate pixel. Later, the surface is rendered to BTF using the texton map,
computing the viewing and lighting conditions for each vertex in its local texture
coordinate. This algorithm provides good results, though having extremely slow
synthesis, rendering process and applicable to only those materials which can be

described by 3D textons.

Transform Domain Texture Synthesis on Surfaces 28

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

J. Zhang, K. Zhou, L. Velho, B.Guo, and H.-Y. Shum [65]

Zhang et al. proposed a method to show progressively variant textures (heterogeneous
texture synthesis) which can model local texture variations, the scale, orientation,
colour, and shape variations of a texture element. This approach is widely useful for
texturing animal skin onto models of animals as the texture surface and patterns
change according to the surface shape. They modelled progressively variant textures
in 2D and 3D, using a feature based wrapping and blending technique. Feature based
wrapping provides user control for shape variations of a texture element, whereas
feature based blending is used to blend texture to provide smooth transitions between
homogenous textures. To synthesise texture over a surface, they use a texton mask to
avoid the breaking of texture. The texton mask captures the most prominent texture
elements from a sample texture. This method is mostly based on user interaction to
create a texton mask, vector field and is also very lengthy, time consuming as well as
being an expensive process. Yelt it exhibits good quality progressive variants of an

animal 3D model.

S. Zelinka and M. Garland [66]

Zelinka and Garland extended their own 2D texture synthesis algorithm to 3D
surfaces [28]. These algorithms gained speed compared to pervious algorithms by one
or two orders of magnitude. The authors assigned an offset in texture space to every
edge of the mesh, by walking over each mesh vertex on the basis of a pre-computed
vertex ordering. Finally ensuring that each corner of a triangle received a texture
coordinate, one may optionally employ texture blending to improve quality at seams.
However, the results and a careful analysis indicate that the algorithm is best suited

for stochastic textures.

S. Lefebvr and H. Hoppe [67]

Lefebvre and Hoppe used appearance vectors for comparison within the synthesis
process. Appearance vectors that are built for this purpose contain non-local
information such as features and radiance-transfer data. Vector dimensionality is

reduced in order to create a new appearance-space exemplar to work in real time. This

Transform Domain Texture Synthesis on Surfaces 29

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

approach completely operates on the image space of the atlas domain. The
synthesising process is done from scratch for every frame, which allows the user to
interactively adjust all synthesis parameters, including randomness, direction of

texture, and feature scaling.

J. Han, K. Zhou, Li-Yi Wei, M. Gong, H. Bao, X. Zhang, and B. Guo [68]

Han et al. proposed to animate texture patterns over arbitrary 3D mesh surfaces. The
animation of the texture pattern is controlled by flow fields over the target mesh. The
texture synthesis approach is based on satisfying a MRF. The authors have used a
discrete solver which is inspired by the k-coherence search method [64]. This allows
interactive flow texture animation on a surface which avoids the blurry blending

problems. Fast flow animation is obtained using a GPU implementation.

J. Kopf [69]

Kopf proposed a method for solid texturing from 2D exemplar based texture synthesis
algorithms. Initially, they synthesise a solid 3D texture block using an exemplar based
2D texture optimization technique [69]. They have integrated a non-parametric texture
optimization approach with histogram matching. which is forced to retain the pattern
of 2D exemplar texture in to the 3D solids. This approach effectively models the
interior material of the 3D models, which means texture is not only on the surface, but
also throughout the entire volume occupied by a solid object. This approach has

applicability in applications such as scattering simulation and object breaking.

B. Patch Based Approaches

F. Neyret and M.-P Cani [70]

Neyret and Cani’s algorithms pre-compute the set of triangle texture samples that
match together along the border. The surface is tiled at the desired scale into curved
triangular areas in which these texture samples are mapped. Thus the surface is
synthesised with low distortion, no cracks nor singularities. Moreover this method

uses relatively small amounts of memory, since no global map needs to be stored.

Transform Domain Texture Synthesis on Surfaces 30

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

However the method is restricted to synthesising stochastic texture patterns. In
addition to this, sample texture is created by procedural texture synthesis or delicate
manual editing. Lastly, the resulting textured mesh is more complex than the initial
one, since the triangle of a mesh which crosses the limit of a texture tile is split during

the process.

E. Praun, A. Finkelstein, and H. Hoppe [71]

Praun et al.’s approach is based on a patch-pasting algorithm [31] and texture
mapping on 3D surfaces with a pre-computed vector field to direct irregular texture.
In their system, the user specifies a tangential vector over the surface, controlling
texture scale and orientation. A (possibly irregular) input texture sample is then
repeatedly pasted onto the surface by growing a surface patch. The surface patch is
parameterised in a texture space. The perceptibility of seams is reduced by applying
alpha-blending at edges of pasted patches. The parameterization is optimised (by
solving a sparse linear system) such that the vector field aligns with the frame of the
texture patch. The resulting model was rendered with a texture generated by pasting in
runtime-pasting (i.e. pasting texture during run-time). Later texture memory is
significantly lowered reducing the texture memory at the cost of rendering certain
faces, multiple times. This was extended trivially to bump maps, displacement maps,
and other surface appearance fields. Praun et al.’s placement of oriented texture
patches over an independent parameterization of a surface produces high-quality
texture synthesis when using many types of texture samples. Our observations of the
experimental results provided revealed that the algorithm fails when a texture sample
with a large pattern as compared to the surface shape, is being synthesised. The
algorithm is unable to capture low-frequency texture, without sacrificing high
frequency randomness. This algorithm also suffers from mismatching at patch

boundaries and is applicable to only a particular type of texture.
C. Soler, M.-P. Cani, and A. Angelidis [72]
Soler et al., showed how a mesh can be seamlessly textured with only the input

texture and a set of texture coordinates for each vertex. A hierarchy of face clusters

was set up for the input mesh and subsequently each cluster is flattened (if distortion

Transform Domain Texture Synthesis on Surfaces 31

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

1s too high, the cluster is subdivided for later processing). For each flattened cluster. a
texture patch in the sample texture which is a best match to an already textured
neighbour is found. Note that if the error due to texture discontinuities with the
existing neighbour is too high, the cluster is subdivided for later processing. In three
passes texture coordinates are mapped onto all polygons in the cluster. Unlike
previous methods, this method does not use a vector field, instead it lets texture
propagate itsell, irregularly. Further, similar to the Lapped Texture approach’s
runtime-pasting [71], the texture memory overhead for rendering is minimal.
Additionally, all faces are rendered only once. Soler et al.”s method is applicable to a
wide variety of textures and produces a quality synthesis process. However drawbacks
are that depending on the number of polygons in the surface it takes a few minutes,
and even up to tens of minutes for the synthesis to complete. Even then small artefacts

across patch boundaries still remain.

L. Wang, X. Gu, K. Mueller, and S.-T Yau [73]

Wang et al.’s algorithm is mainly based on global conformal parameterization of a
surface, which was originally introduced by Gu and Yahu [74]. It guarantees that the
shapes embodied in textures are preserved on the surface, without seams or cracks.
Moreover, the parameterization can segment the surface into patches, where each
patch is mapped to a planar rectangle. Wang et al. applied texture synthesis on a
conformal parameterised rectangle, where they proposed to use a multi-scale texture
synthesis method. This method is used to non-uniformly synthesise texture on a 2D
rectangle, considering the area stretching factor which is obtained from the conformal
factor. This means that the algorithm has control over the local scale of the texture.
This texture synthesis algorithm is similar to a previous algorithm that synthesises
texture by stitching texture patches together [31]. However Wang used a multi-scale
texture sample as input instead of a single sample. In order to obtain a multi-scale
sample the algorithm either enlarged or minimised the sample texture by using cubic
interpolation. The texture synthesis part of the proposed algorithm is simple. However
a significant amount of complexity is introduced by the parameterization adopted and

the specific multi-scale decomposition strategy used.

Transform Domain Texture Synthesis on Surfaces 32

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

S. Magda and D. Kriegman [117]

Magda and Kriegman separated the texture pre-processing stage from the synthesis
stage and defined the overall texture synthesis process as an independent two phase
process. Pre-processed texture was stored on a disk and later used when needed.
Although this is very slow, in many application scenarios it needs to be performed
only once. In the pre-processing of sample texture, sets of pixels whose
neighbourhoods have similar appearance are assigned the same texton label. Likewise
several neighbourhoods with different texton labels are created. This results in the
creation of a large feature vector that will eventually require a longer computation
time for processing. The information searching process is reduced by creating a
lookup table using the distance between every pair of textons. This texture synthesis
process is an extension to the well known image quilting algorithm, where stitching is
done between triangular rather than square patches. It has been shown that this texture
synthesis algorithm performs well for most of the texture types and visible seams can
be reduced by edge blending. However the pre-processing time can run from minutes

to a few tens of minutes.

C-W. Fuand L. M. Kang [118]

In this work the authors proposed a texture tiling mechanism, where a low distortion
conformal quad based map is created for the input surface. It produces proper tile
orientations on all quad faces, so that texture can be laid out on quads and mapped
back to the input surface accordingly. This algorithm provides an additional facility to
change texture patterns by referencing different tile sets. The synthesis algorithm is
based on the Image quilting approach [33], and therefore inherits all the drawbacks of
image quilting algorithms such as random selection of patches, expensive cost of
minimum boundary cut, somewhat limited applicability to isotropic textures and

computation cost, due to the need of generating pre-synthesis textures.

2.3 SURFACE REPRESENTATION

In parallel to the advancements of 3D texture synthesis algorithms, the ever evolving

requirements from industries, such as Games, Movie, Architecture, and

Transform Domain Texture Synthesis on Surfaces 33

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

Manufacturing has lead to the development of effective surface approximation
techniques to be used within computer aided representation/visualization of 3D
objects. In this regard, 3D object modelling can be defined as the process of

developing a mathematical, wireframe representation of any three-dimensional object.

3D models are created (by hand, algorithmically or scanned) by collecting 3D data
and form an essential part in 3D graphics. Today, 3D models are extensively used in a
variety of fields. For example, the medical industry uses detailed models of organs for
study and analysis purposes. The movie and video games industry uses 3D models as
characters and objects for animated and real-life motion pictures. The science sector
uses 3D data as highly detailed models such as chemical compounds, reactions etc.
The architecture industry uses these models to illustrate and visualise proposed
buildings and landscapes. The engineering community uses 3D models for designing
new devices, vehicles and structures as well as a host of other uses. In recent decades
the earth science community has started to construct 3D geological models as a

standard practice [123].

The 3D surface representation methods can be classified in a number of different
ways. In this thesis we classify them as 1) 3D scanner based and 2) Geometric surface

representation schemes.

2.3.1 3D Scanner Based Surface Representation Schemes

In the recent decade, 3D scanner based technology has been used to collect data from
real-world objects or the environment, in particular related to their shape and
appearance [124]. This data can be further used to construct digital, three dimensional
models which are useful for a wide variety of applications. These devices are used
extensively by the entertainment industry in the production of movies and video
games. Other common applications of this technology include industrial design,
reverse engineering and prototyping, and computer vision and documentation of
cultural artefacts. Many different technologies have been used to build these 3D
scanning devices. Each technology comes with its own limitations, advantages and
costs. It should be remembered that many limitations in terms of the kind of objects

that can be digitalised are still present, The basic purpose of a 3D scanner is to create

Transform Domain Texture Synthesis on Surfaces 34

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

a point cloud of geometric samples on to the surface of the object. These points can

then be used to extrapolate the shape of the object (a process called reconstruction). If

colour information is collected at each point, then the colours on the surface of the

subject can also be determined.

3D scanners are very similar to cameras. Like cameras, they have a cone-like field of

view and are only able to collect information about non-hidden surfaces [125].
Whereas a camera collects colour information, 3D scanners collect distance
information about the surfaces within the field of view. The “picture” that results from
a 3D scanner device describes the distance at each point in the picture of the surface.
If a spherical coordinate system is defined in which the scanner is at the origin and the
vector that projects out from the front of the scanner is ¢=0 and 6=0, then each point
in the picture is associated with a ¢ and 8. Together with the distance, which
corresponds to the r component, these spherical coordinates fully describe the three
dimensional position of each point in the picture, in a local coordinate system relative

to the scanner.

Due to the cone-like field of view a single scan will not produce a complete model
and hence multiple scans are required from many different directions, in order to
obtain complete 3D model data. These types of scans are to be done in a common
reference system, a process called alignment or registration, and then merged to
create a complete model. This whole process, ranging from the single range map to

the whole model. is usually known as the 3D scanning pipeline [76].

The 3D scanners can be sub divided into contact and non-contact types. Non-contact
3D scanners can be further divided into active scanners and passive scanners. There

are a variety of technologies that fall under each of these categories [77].

A. Contact

[n this scanner the 3D object is created using a physical touch sensor [Note: This
approach is used extensively in machining and manufacturing]. The disadvantage of
the approach is that it requires physical contact with the object being scanned. Thus
scanning activity might modify or damage the object. This fact is very significant

when scanning delicate or valuable objects such as historical artefacts. The other

Transform Domain Texture Synthesis on Surfaces 35

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

disadvantage is that they are relatively slow. Other examples are the hand driven

touch probes used to digitalise clay models in the computer animation industry.

B. Non-Contact
Non-Contact approach is where physical contact is not required with the object. This

approach is further classified into active and passive Non-Contact body scanning.

Non-Contact Active: An active scanner uses radiation or light to detect its reflection
in order to capture an object or environment. Possible types of emissions used

include light, ultrasound or x-ray, MMR. CT, MRI etc.

Non Contact Passive: These types of scanners do not emit radiation themselves, but
instead rely on detecting reflected ambient radiation. Most scanners of this type detect
visible light because it is a readily available in ambient radiation. Other types of
radiation, such as infrared could also be used. Passive methods can be very cheap.

because in most cases they do not need particular hardware.

C. Reconstruction

The point clouds resulting from 3D scanners are not used directly. Most of the
applications do not work with point clouds information, but instead they use
polygonal 3D models. The process of converting from point cloud into a polygonal
3D model is known as reconstruction. Reconstruction involves finding and connecting

adjacent points in the correct order to create a continuous surface.

2.3.2 Geometric Surface

In technical applications of 3D computer graphics, such as computer-aided design and
computer-aided manufacturing, surfaces are one way of representing objects. The
other ways are wireframes (lines and curves) and solids. Point clouds are also
sometimes used as temporary ways to represent an object, with the goal of using the

points to create one or more of the three permanent representations.

In mid 1960s Europe. French researchers pioneered work into complex 3D curves and

surface geometry computation. Citroen's de Casteljau made fundamental strides in

Transform Domain Texture Synthesis on Surfaces 36

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

computing complex 3D curve geometry|[126]. and Bézier published his breakthrough
research, incorporating some of de Casteljau's algorithms, in the late 1960s [126]. The
work of both de Casteljau and Bézier continues to be one of the foundations of 3D
geometric surface representation to the present time. The breakthrough insight was to
use control polygons (control point), a technique that was never used before. Instead
of defining a curve (or surface) through points on it, a control polygon utilises points
near it. Instead of changing the curve (surface) directly, one changes the control

polygon, and the curve (surface) follows in a very intuitive way.

Bézier's efforts were influenced by the knowledge of similar developments by
Citroen, but he proceeded in an independent manner. Bézier moved to polynomial
formulations of the initial concept and also extended it to higher degrees. The result
turned out to be identical to de Casteljau's curves, only the mathematics involved was
different. The most fundamental parametric curve forms are the Bézier curves. Some
later results include conditions for C joins between Bézier curves. After the ecarly
work of Gauss and Euler, parametric surfaces were well understood. The most
popular of all surface methods was to become the tensor product surface. It was first

introduced by C. de Boor for the case of bicubic spline interpolation [78].

Ferguson [79] used an array of bicubic patches which interpolated to a grid of data
points. A generalization. capable of interpolating a rectangular network of curves, was
devised by Gordon [80, 81] at General Motors; Rectangular surfaces are a map of a

rectangular domain into 3D.

De Boor's recursive B-spline evaluation was the natural generalization of the de
Casteljau algorithm. B-spline curves include Bézier curves as a proper subset and
soon became a core technique. A first B-spline-to-Bézier conversion was found by
Boehm [82]. Several algorithms were soon developed that simplified the
mathematical treatment of B-spline curves. The generalization of B-spline curves to
NURBS (Non-uniform rational B-splines has become the standard curve and surface
form). They offer a unified representation of spline and conic geometries: every conic

as well as every spline allows a piecewise rational polynomial representation.

Transform Domain Texture Synthesis on Surfaces 37

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

A special case of NURBS is given by rational Bézier curves. Even more specialised
are conic sections, or rational quadratic Bézier curves. Chaikin's [83] algorithm was
the starting point for the initial work on subdivision surfaces, Chaikin's algorithm can
be generalised to tensor product surfaces in a straightforward way. Such surfaces have
a rectilinear control mesh, and after analyzing the tensor product algorithm, Doo and
Sabin [84] reformulated it such that it could also be applied to control meshes of

arbitrary topology.

Catmull and Clark [85] first generalised Chaikin's algorithm to uniform cubic B-
spline curves and its tensor product counterpart. Then, they also reformulated it for
the case of control meshes of arbitrary topology. Both surface schemes yield smooth
(G1) surfaces. The Doo and Sabin surfaces have a piecewise biquadratic flavour. The
Catmull and Clark ones have a piecewise bicubic flavour. Subsequently, subdivision

surfaces gained more popularity, most notably in computer animation.

Hardware development in the 1980s made it possible to use the above technique. In
the 1990s it became possible to produce computer-generated special effects for

movies such as Jurassic Park, Toy story, Finding Nemo and Shrek [41] .

NURBS are nearly ubiquitous for computer-aided design (CAD), manufacturing
(CAM), and engineering (CAE) and are part of numerous standards used industry
wide, such as IGES, STEP, ACIS, and PHIGS [126]. They allow representation of
geometrical shapes in a compact form. They can be efficiently handled by computer
programs and yet allow for easy human interaction. NURBS surfaces are functions of
two parameters that map to a surface in a three-dimensional space. The shape of the

surface is determined by control points.

2.4 SUMMARY AND CONCLUSION

In section 2.1, we have reviewed some of the important algorithms out of many
approaches that were proposed to the research community to perform efficient texture
synthesis. We have seen that parametric model approaches, which marked the birth of
texture synthesis, are still being widely used in certain simulations of texture patterns

due to the advantages of being able to scale without any loss of quality, requirement

Transform Domain Texture Synthesis on Surfaces 38

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

of little memory space and ease of transmission. However, it has a disadvantage as it
is only applicable to a limited class of textures and requires expert knowledge for
texture modeling. It was discussed that further research in this area subsequently
introduced a new approach to the graphics community, i.e., non-parametric based
model approaches, which are fully dependent on real-world images as a texture
resource. It was shown that these approaches are applicable to a wide variety of
textures and is further divided into two categories, pixel and patch based. It was
shown that the pixel based category suffers from the requirement for lengthy
computations. As a solution, at present GPU’s are being used to accelerate the pixel
based synthesizing process. However, the use of the acceleration methods that attempt
to gain speed, does actually affect the quality. It was discussed that patch based
approaches are better due to large basic unit construction, which enables the ability to
capture the global structure of texture. It was further shown that amongst the patch
based approaches introduced so far, Kwatra et al.’s [36] and Wickramanayake et al.’s
[39] are the most successful due to their applicability to a large variety of texture
types and final texture synthesis quality. Kwatra's algorithm [36] has speed
constraints because of the use of an iterative texture synthesis procedure. As a result
the algorithm consumes more computational power compared to Wickramanayake et
al.’s [39]. Therefore Wickramanayake et al.’s [39] algorithm, was selected as one of
the benchmarks and has been identified as having potential for further improvement
and extension due to the following reasons; (a) the algorithm synthesises texture of
better quality (b) the speed of the synthesising process is high due to only considering
visually significant coefficients in the searching process (c) works well with most type
of textures and (d) applicable in compressed domain, due to the wavelet based multi-

resolution approach. This algorithm is discussed in detail in chapter 3.

Extensive experiments reveal that Wickramanayake et al.’s [39] algorithm is
somewhat limited and performs sub-optimally for certain types of texture (such as
regular textures). Further, the use of the simple weighted edge blending algorithm
causes a blurring effect, whereas the blending approach presented within Kwatra’s
[36] algorithm has been proved to perform optimally in patch blending. Due to the
positive features of some aspects of Kwatra's algorithm it has also been selected as a
benchmark (see chapter 3) and has been discussed in chapter 3. The proposed

improvement to [39] using the positive features of [36] is presented in chapter 5.

Transform Domain Texture Synthesis on Surfaces 39

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

In addition to the above, in section 2.2., we have looked at various algorithms that
enable texture synthesis on 3D surfaces. We have seen that 3D texture synthesis
algorithms are generally classified into two categories; 3D Parametric model based
approaches and the 3D Non-parametric model based approaches. It was noted that the
3D Parametric model based approaches purely depend on either mathematical
functions and biological or chemical processes. These 3D texture synthesis
approaches have been developed on the basis of similar 2D synthesis algorithms and
thus inherit the same drawbacks, i.e., the approaches often result in high
computational complexity, can be time consuming and are based on parametric

models which require expert knowledge.

Resolving the limitations of 3D parametric model based approaches, 3D Non-
parametric model based approaches has recently being proposed by researchers to
synthesise texture on a 3D surface. These techniques can be further divided into two
categories; pixel and patched based 3D approaches. It has been discussed that the
pixel based 3D approaches are in general applicable to only particular classes of
texture. In this thesis we have chosen Turk’s [62] algorithm as a third benchmark to
analyse 3D texture synthesis in the pixel domain, due to a number of reasons namely;
(1) simplicity (2) availability of code (3) applicability to a wide range of textures (4)
good quality of texture synthesis on a surface (see chapter 3). Most of the algorithms
that accelerate texture synthesis degrade the quality of the synthesised texture.
Therefore further research is required for better quality texture synthesis in real-time.
As developments in patch based 2D technique progressed, researchers have been
attracted to consider this approach to texture synthesis on 3D surfaces. The first
algorithm to this effect was proposed by Praun et al. [71] to show how easily a surface
can be rendered. However, this leads to other problems such as discontinuity,
distortion and boundary artefacts, which were attempted to be resolved later by Soler

et al. [72].

Although all the above methods produce good quality of texture, their application in
real-time remote visualisation or display is somewhat limited, due to the enormous
amount of information required, complexity of the computational processes and/or

lack of applicability to the synthesis of all types of texture. To overcome many of the

Transform Domain Texture Synthesis on Surfaces 40

CHAPTER 2 Literature Review: Texture Synthesis and 3D Surface Representation

above mentioned problems in this thesis we introduce a number of new algorithms

(see chapters 4, 6 and 7).

Section 2.3, introduced the evolution of 3D surface representation systems in
computer graphics driven by the demand in application domains such as medical,
architecture, movie and video animation. It was mentioned that the surface generation
is generally classified as scanner based surface generation or geometric surface
generation. It was said that the scanner based surface generation approaches are
extensively used in texture synthesis whereas geometric surface generation
approaches although being widely used by CAD/CAM systems, games and animation
applications has not been used in texture synthesis applications supported by limited
bandwidth. This observation has provided a key motivation for our work in this
direction. Geometric surface generation approaches nevertheless have several
functional advantages such as animation and compression abilities. The geometric
surface generation approaches and the mathematical concepts/theory behind such
approaches are described in detail in chapter 3. The application of texture synthesis
techniques on geometric surfaces will enhance realism of such surfaces extending the

benefits to the wider graphics community (see chapters 6 and 7).

Transform Domain Texture Synthesis on Surfaces 41

CHAPTER 3 Research Background

Chapter 3

Research Background

3.0 INTRODUCTION

The texture synthesis algorithms proposed in this thesis aim to overcome the
limitations of existing texture synthesis techniques, in order to perform effectively
within a limited bandwidth/channel at an optimised rate. This chapter introduces the
fundamental concepts/theories on which the proposed texture synthesis algorithms
have been developed. It further presents detailed information on existing texture
synthesis algorithms that have provided the inspiration for the novel algorithms that
are presented in this thesis. These are used as benchmark algorithms to compare the

performance of the proposed novel algorithms.

This chapter is divided into 5 sections. Section 3.1 provides the fundamental theory of
wavelets, wavelet families and their applications. In particular it provides details of
the multi-resolution Discrete Wavelet Transform (DWT) decomposition and analysis
of a texture image. Section 3.2 presents the Embedded Zerotree Wavelet (EZW)
concept that is popularly used in image compression, which is altered and used to
enable progressive functionalities of the proposed algorithms. Section 3.3 critically
reviews the benchmark algorithms to provide valuable insights into possible
directions for their further improvement. In addition this section builds up the design
specifications of the novel algorithms to be proposed in this thesis, via careful
analysis of the limitations of existing algorithms. Section 3.4 presents the theory of
Bézier surfaces, their formation and possible use in texture synthesis. Finally section

3.5 summarises and concludes the chapter.

Transform Domain Texture Synthesis on Surfaces 42

CHAPTER 3 Research Background

3.1 WAVELETS

Multi-resolution techniques have a long history in the field of computer graphics.
Recently these approaches have gained importance and interest through the
introduction of the mathematical framework of wavelets. Wavelets are efficient, easy
to implement and have a major impact on several areas of computer graphics
including image compression, and processing [88, 89] (using wavelet transform in
order to achieve high compression), Wavelet radiosity [90] (which uses wavelets for
global illumination), hierarchical modeling [91] (which uses wavelets to perform
common editing tasks). in volume rendering and processing [92,93] (where wavelets
are used for huge data set compression, and feature detection and enhancement),
multiresolution painting (which uses wavelets to create ‘infinite’ resolution paint
systems), image query approaches (which use a small number of the largest wavelet
coefficients of an image’s results in a perceptually useful signature for fast search and
retrieval) [94]. A complete overview of the wavelet based algorithms in the field of
computer graphics can be found in [95, 96], whereas details of their mathematical

definitions can be found in [97, 98].

The wavelet transform [99-101] was developed as an alternative approach to the Short
Time Fourier Transforms (STFT) in order to overcome the constant resolution
problem, and to provide a time-frequency representation of a non-stationary signal.
The wavelet transform uses multi-resolution techniques by which different
frequencies are analysed with different resolutions. The wavelet and STFT analysis is
done in a similar way i.e. its signal is multiplied with a wavelet function similar to the
window function in STFT, and then the transform is computed separately for the
different segments that are generated. However, there are two main differences
between STFT and Wavelets, 1) in wavelets the negative frequencies are computed.
2) In wavelets the width of the window is changed as the transform is computed for

every single spectral component.

3.1.1 The Continuous Wavelet Transform (CW'T)

The continuous wavelet transform is mathematically represented as follows:

Transform Domain Texture Synthesis on Surfaces 43

CHAPTER 3 Research Background

s

i

Where x (1) is a signal to be analysed and % (t) is the mother wavelet or basis

CWT (7.8) =

b t-T
[xt) @ G LS

function. As seen in the equation 3.1, the wavelet function (derived from mother
wavelets) is used in the transformation, which is a function of two variables T and S,
the translation (shifting) and scale parameters (dilation and compression),

respectively.

The mother wavelet is a prototype for generating the other window functions, which

acquire the desired characteristics associated with the mother wavelet. The translation

parameter 7 is related to the location of the window, as the window is shifted
through the signal. which corresponds to time information in the transform domain.
The scale parameter S is defined as | 1/frequency | and corresponds to the frequency
information. Scaling either dilates (expands) or compresses the signal. High scale
corresponds to the non detailed global view of the signal, whereas low scale
corresponds to the detailed view. Similarly, in term of frequency, low frequencies
(high scales) correspond to the global information of a signal and high frequencies

(low scales) correspond to detailed information of a pattern in the signal.
3.1.2 The Discrete Wavelet Transform (DWT)

The DWT provides sufficient information for both analysis and synthesis of a signal
(i.e. the continuous signal), but with less computation time. In 1976 the technique was
invented to decompose discrete time signals [99]. In DWT, the filtering technique is
used to obtain a time-scale representation of a digital signal, whereas in CWT it is
computed by changing the scale of the analysis window, shifting the window in time,

multiplying by the signal, and by integrating over all times.

In DWT, the filters of different cut-off frequencies are used to analyse the signal at a
different scale. The signals are analysed using a series of high pass and low pass
filters to generate high and low frequencies, respectively. Wavelets can be realized by

iteration of filters with rescaling. The filtering operations are applied on resolutions of

Transform Domain Texture Synthesis on Surfaces 44

CHAPTER 3 Research Background

the signal which measures the amount of detailed information in the signal. The scale
of the signal is determined by up-sampling and down-sampling (sub-sampling)
operations [99]. For example, subsampling by a factor of n reduces the number of
samples in the signal # times, whereas upsampling a signal by a factor of n increases

the number of samples in the signal by a factor of n.

Level 3

coefficients
elol |+ v2 Fo b} —{ v2 b
5 h o u2 Level2 d.[n]
’[g[n] > 2 } \ (0] = coefficients
| Level 1 9,[n]
x[n] » _’ coefficients

Figure 3.1 Wavelet decomposition tree

Figure 3.1 shows that DWT is computed by successive low-pass and high-pass
filtering of the discrete time-domain signal. This is known as the Mallat-tree
decomposition [102]. Its significance is in the manner it connects the continuous-time
multi-resolution to discrete-time filters. In the figure 3.1, the sequence x/n] is denoted
by the signal, where 7 is an integer. The low pass and high pass filters are denoted by
gln] and hin] respectively. At each level, the high pass filter produces detailed
information, d/n/, while the low pass filter associated with scaling the function

produces coarse approximations, afn/.

At each decomposition level, the half band filters produce signals spanning only half
the frequency band. This doubles the frequency resolution as the uncertainty in
frequency is eliminated by half. In accordance with Nyquist’s rule if the original
signal has a higher frequency of ®, which requires a sampling frequency of 2w
radians, then it now has a higher frequency of ®/2 radians. It can now be sampled at a
frequency of © radians thus discarding half of the samples with no loss of
information. This halves the time resolution as the entire signal is now represented by
only half the number of samples. Thus, while the half band low pass filtering removes
half of the frequencies and thus halves the resolution, the removal of every other

sample doubles the scale.

wn

Transform Domain Texture Synthesis on Surfaces 4

CHAPTER 3 Research Background

With this approach, high frequencies give a good time resolution, while low
frequencies give a good frequency resolution. The filtering and sampling process is
continued until the desired level is reached. The maximum number of levels depends
on the length of the signal. The DWT of the original signal is then obtained by
concatenating all the coefficients, afn] and dfn/, starting from the last level of

decomposition.
3.1.3 Wavelet Families

In the Wavelet Transformation, there are a number of basis functions that can be used
as the mother Wavelet. All wavelet functions generated from the mother wavelet are
used in the transformation through translation and scaling. It determines the
characteristics of the resulting Wavelet Transform. Therefore, the details of the
particular application should be taken into account and the appropriate mother wavelet

should be chosen in order to use the Wavelet Transform effectively.

1 1
1 4
i
[«]
a (]
e
-1
; gl 1 =t
4 o 1

1 "
Q 0.5 1 o | 2 y @0 2 2 1
(a) (b) (c) (d)
as
05 a8
04
5] 02
0
= 02
25 o 5 8 -6-4-2 0 2 4 8 8 _§g-§-4-202 48 8
(e) () (2)

Figure 3.2: Wavelel families (a) Haar (b) Daubechies4 (c) Coiflet! (d) Symlet2 (e)
Meyer () Morlet (g) Mexican Hat

Figure 3.2 illustrates some of the commonly used wavelet functions. The Haar
wavelet is one of the oldest and simplest wavelets. Therefore, any discussion of

wavelets starts with the Haar wavelet. Daubechies wavelets are the most popular

Transform Domain Texture Synthesis on Surfaces 46

CHAPTER 3 Research Background

wavelets. They represent the foundations of wavelet signal processing and are used in

numerous applications.

The Haar, Daubechies, Symlets and Coiflets are compactly supported orthogonal
wavelets. These wavelets along with Meyer wavelets are capable of perfect
reconstruction. The Meyer, Morlet and Mexican Hat wavelets are symmetric in shape.
The wavelets are chosen based on their shape and their ability to analyse the signal in

a particular application.

3.1.4 Discrete Wavelet Transform on a Image

Wavelet Analysis: A large amount of perceptual data is contained in texture images.
Therefore the number of bits required to represent/encode a texture image is high.
However a wide range of frequency components spread throughout the image. Some
of these frequency components have a highly significant effect, whilst others have a

very low significance in human observation.

According to the Heisenberg uncertainty principle. obtaining an exact time frequency
analysis of a signal is impossible. Simply, this principle states that one cannot know
the exact time-frequency representation of a signal, i.e. one cannot know what spectral
components exist at what instances of time. What one can know is the time intervals
in which a certain band of frequencies exist, which is a resolution problem. Although
the time and frequency resolution problems are results of a physical phenomenon, and
exist regardless of the transform used, it is possible to analyse any signal by using a
popular approach called multiresolution analysis (MRA). MRA, as implied by its
name, analyses the signal at different frequencies with different resolutions. It is
designed to give good time resolution and poor frequency resolution at high
frequencies, and good frequency resolution and poor time resolution at low

frequencies.

Images do not contain time varying information, instead they contain spatial
information. All the above mentioned concepts are applicable for spatial-frequency

relationships of images. MRA makes sense especially when the signal at hand has

Transform Domain Texture Synthesis on Surfaces 47

CHAPTER 3 Research Background

high frequency components for short durations and low frequency components for
long durations. Fortunately texture images are often of this type. The DWT provides a
compact multi-resolution representation of an image. It gives a signal representation
in correspondence to a narrow band, low frequency range, and some of the
coefficients represent short data lags corresponding to a wide band, high frequency
range. Using the concept of scale, data representing a continuous trade off between

space and frequency can be made available for further processing (see figure 3.3 (b)).

Implementation: The application of two-dimensional DWT to an image involves the
application of horizontal and vertical DWT filters over the image pixels. This
subdivides texture image into four sub-bands. The resulting sub-bands labelled LH,
HLI and HH] represent the finest scale wavelet coefficient whereas the sub-band
labelled LLI represents low-resolution coefficients. In order to obtain the next level of
wavelet sub-bands, the sub-band labelled LL/ is further decomposed and sampled
using the vertical and horizontal DWT filters. This process is repeated until the

required final decomposition is reached (see figure 3.3).

The texture synthesis process starts by applying 2D DWT (e.g. Haar Transform) on
the sample texture image. which is denoted as L. The process is defined

mathematically as follow,

(oo s d our D ann)= DWIU) (3.2)
(Lppo o L gz Dyn2)= DWI(L,) (3.3)
(Lo ys s s)= DWI(T5) (3.4)
(L Lrnsr Lopnse 1 Lt)= DWT(1y,) (3.5)

We generalise the notation used in equation (3.2)-(3.5) as [,,, where

pe{tL, HL LH HH} and € {0,1,2,.n} where p represent the sub-bands within each
decomposition level (LL-low resolution, LH-horizontal, HL- vertical, HH diagonal)
and / represents the decomposition level. DWT represents the forward discrete wavelet

transform.

Transform Domain Texture Synthesis on Surfaces 48

CHAPTER 3 Research Background

(a) (b)

Figure 3.3: The three level discrete wavelet decomposition on a sample texture image.

3.1.5 Inverse Discrete Wavelet Transform on a DWT Decomposed Image [12]

By inspecting the DWT sub-bands (figure 3.4), it is observed that the visibilities of
different frequency sub-bands are different. As a whole it increases along with
increasing frequency. The highest levels of sub-bands contain the most visually
significant data of an image. The inverse DWT is applied over an entire decomposed
wavelet coefficient in order to reconstruct the texture image (see figure 3.4 (a)).
Figure 3.4 shows various reconstructed texture images obtained by using different
combinations of low frequency sub-bands. Figure 3.4 (f) was reconstructed using 6%

of the wavelet coefficients.

Transform Domain Texture Synthesis on Surfaces 49

CHAPTER 3 Research Background

(e) (f)
Figure 3.4: Reconstruction of “Brick™ image using only 3rd level wavelet coefficient
information (a) Original texture image, reconstructed; (b) only LL3 and HH3 (c) LLL3

and LH3 (d) LL3 and HL3 (e) LL3, HL3 and LH3 (f) LL3, HL3, LH3 and HH3.

Transform Domain Texture Synthesis on Surfaces 50

CHAPTER 3 Research Background

3.2 EMBEDDED ZEROTREE WAVELET [103]

The Zerotrees of the wavelet coefficient concept was originally introduced by Shapiro
[103] for progressive encoding of images. which is also known as embedded coding.

[t was based on two observations on a DWT decomposed image, namely,

I. Natural images in general have a low pass spectrum. Therefore when an image
is wavelet transformed the energy in the sub-bands decreases as the scale
decreases, so the wavelet coefficients will, on average be smaller in the higher
subbands than in the lower subbands. This shows that progressive encoding is
a very natural choice for compressing wavelet transformed images, since the
higher subbands only add detail.

2. Large wavelet coefficients are visually more perceptually important/significant

than smaller wavelet coefficients.

These observations summarise to the fact that EZW provides a compact representation
of perceptually significant coefficients and therefore enables the multi-resolution
reconstruction capability of an image. The idea is to organise DWT coefficients of an
image (see figure 3.3 (b)) in a prioritised order of visual significance, depending on
their position and magnitude in the DWT decomposition and to subsequently encode
the ordered list of coefficients following an embedded coding algorithm. Within this
process if a wavelet coefficient is larger than a specific threshold (see egn. 3.0) itis
encoded (and removed from the image) and if it is smaller, it is left for the next pass.
When all the coefficients have been visited the threshold is lowered and the image is
scanned again to add more detail to the already encoded image. This process is

repeated until all the coefficients have been fully encoded.

In an embedded coding algorithm the encoder can terminate the encoding at any point
thereby allowing a target bit rate or target distortion metric to be met exactly. On the
other hand, given a bit stream, a decoder can cease decoding at any point in the bit
stream. Thus it is capable of producing exactly the same image that would have been
encoded at the bit rate corresponding to the truncated bit stream. EZW encoding does

not reaily compress anything but only reorders wavelet coefficients in such a way that

Transform Domain Texture Synthesis on Surfaces

CHAPTER 3 Research Background

they can be compressed very efficiently.

Within the research context of this thesis we are only interested in the re-ordering of
wavelet coefficients in the above mentioned prioritised manner, as we intend to use it

in making the texture information progressively available for synthesis.

An extension of the EZW idea lies with the visibility threshold equation, which gives
the minimum number of coefficients, distributed throughout all frequency bands,

which will result in the best possible visual quality. The threshold can be calculated as

2L]0g3 (Maxﬂ LL, (x,_y)‘))J
=
k (3.6)

where MAX() means the maximum coefficient value, k is a constant and LL,(x, v)

denotes a general coefficient in LLn sub-band. The mask is created for the coefficient
of sub-bands, which are larger than a given threshold and ignoring all others (i.e.
setting to zero). By applying an inverse DWT on the mask, the texture quality at a

given threshold can be generated.

Figure 3.5: shows the effect of selecting the threshold. The visual quality of figure
3.5 (b) uses only 3% of the coefficients which is better than figure 3.4 (f) which uses
6% of the coefficients. It is noticed that that threshold base coefficient selection
method outperforms the low frequency only selection for reconstruction as in section
3.1.5. Further experiments performed reveal that the optimum threshold is dependant

on the details contained in the texture.

Analysis: It has been shown that EZW provides flexibility of implementation, better
reconstruction and progressive encoding capability [103]. In this thesis the EZW
algorithm is used as an initial coefficient prioritisation procedure, to prioritise texture
image coefficients. The shortcoming of the technique used visually prioritizes
availability of coefficients to show the seamless progressive texture synthesis

capability on a surface (see chapter 4, 5, 6, and 7).

Transform Domain Texture Synthesis on Surfaces 52

CHAPTER 3 Research Background

(a) (b)

Figure 3.5: Effect of global threshold. (a) original images, (b) reconstructed images
with only 3% of information picked using EZW from all the bands and all three

levels.

3.3 THREE BENCHMARK ALGORITHMS FOR TEXTURE SYNTHESIS

This section introduces and critically reviews three texture synthesis algorithms that
are used as benchmarks to compare the performance of the novel algorithms presented
in this thesis. Amongst these, two are for texture synthesis on planar surfaces and one

is for texture synthesis of arbitrary surfaces.

3.3.1 BENCHMARK ALGORITHM 1: FAST, WAVELET TRANSFORM
DOMAIN TEXTURE SYNTHESIS (5, 12, 39]

This algorithm [5, 39] is an extension to the ‘fmage Quilting’ based texture synthesis
algorithm [33] originally proposed by Efros and Freeman (see following section A).
The basic idea of the algorithm is to create a large output texture from a given sample

texture image as follows:
A. Image quilting [33]
The Efros and Freeman’s algorithm can be summarized as follows:

¢ Go through the image to be synthesised in raster scan order in steps of one

block (minus the overlap). (See figure 3.6(a))

Transform Domain Texture Synthesis on Surfaces 53

CHAPTER 3 Research Background

e For every location, search the input texture for a set of blocks that satisfy the
overlap constraints (above and left) within some error tolerance. Randomly
pick one such block. (See figure 3.6 (b) & (c).)

¢ Consider the overlap region/surface between the chosen block and the
previously synthesised block. Find the minimum cost cutting path along this
surface and make that the boundary between the two blocks. Paste the block
onto the texture. (See figure 3.6(d).)

e Repeat the procedure.

The quality of match between the overlapping areas of two blocks is calculated in

terms of the Sum of Squared Error (SSE, i.e. the L2 norm), as follows:

"
SSE= X [I(p)y(p)l° (3.7)
pe O

Where /,(p) is the intensity value of the pixel p, O is the set representing all pixels

belonging to the overlap area of overlapping blocks, /; and /.

/ B” &B,"

B, B1 R B»

B4

(a) (b) (c) (d)

Figure 3.6: Pixel quilting algorithm- (a) pasting blocks in raster scan order (b)
randomly picking blocks from the sample (c) overlapping randomly picked block, 52

with already pasted block, B/. (d) Cutting through minimum error boundary.

The algorithm uses a 64 x 64 block size, and an overlap of 1/6" of the width of the
block. The block having the best matching overlap is selected from a randomly picked
up block from all the other blocks whose matching error is within 10%. This block
will be used to patch the output image at the location to the right of the previously
patched block. This process is continued until the whole output image is formed. In
selecting non-boundary type blocks (and the last column of blocks), the overlap
considered includes both the overlap with the block in front (as discussed above) and
the block above. The output image formed following the above procedure is then

subjected to a second stage in which each overlapping set of blocks is combined

Transform Domain Texture Synthesis on Surfaces 54

CHAPTER 3 Research Background

together along a line of best fit, i.e. by performing a minimum error boundary cut

(MEBC).

According to Wickramanayake et al. [12] the above algorithm cannot be used in a
real-time texture synthesis process due to its complexity. An exhaustive search for a
best match causes computational power to be wasted. A minimum boundary cutting
technique which is used in order to smoothen sudden changes in overlapping texture
is computationally expensive. In order to resolve these problems they introduced a

multi-resolution framework for the image quilting, discussed in the following section.

B. Multiresolution Image Quilting Algorithm

Wickramanayake et al.”s multi-resolution approach [12] starts by applying a 2D DWT
(e.g. Haar Transform) to the sample image. For example a three level decomposition
of the sample and output texture consists of ten sub-bands each (see figure 3.3). The
algorithm proposed is to synthesise each sub-band of the output texture by the
corresponding sub-band of the sample texture. The block size used for texture
synthesis is maintained constant at 2°x 2% where / is the number of decomposition

levels.

Initially the lowest resolution sub-band is synthesised. The synthesis starts with
randomly picking a block from the lowest resolution sub-band of the decomposed
input image, and placing it on the top left corner of the output coefficient image.
Subsequently blocks on other sub-bands, which correspond in location to the above
randomly picked block, are transferred to the top left hand corners of the associated

sub-bands (figure 3.7 (a) & (b)).

Once the first block has been randomly selected and transferred to the output
representation as discussed above, all possible blocks, of similar size from the input
sample image’s components are picked and matched, for a good overlap with the first

block. The matching procedure can be described as follows:

Transform Domain Texture Synthesis on Surfaces 55

CHAPTER 3 Research Background

i
iV

W /4
0,

o/

N

M
\

{1

\,
j_

(a) (b)
Figure 3.7: Construction of the output texture. (a) First random block (") and its best
match (7), (second block) is placed on the top left hand corner of the output texture
together with the corresponding coefficient blocks of the detailed components in all
three levels. (h) selection of the best match for the first block with its corresponding

coefficient blocks from the input texture.

By By

Brisia eBili.\l.}Zw aB;z'Hi-,‘.‘l.l'.i

Figure 3.8: The matching criteria [Note the notation used: LL3, HH3 -low resolution
and diagonal sub-bands of the 3" level of decomposition, respectively, 8B is the edge

zone of block B, B” is a block already synthesized and B is the block being matched. |

Transform Domain Texture Synthesis on Surfaces 56

CHAPTER 3 Research Background

In general, if BY;, y;; and B2) are two blocks to be matched, we say B' . .2 is the
best match for B’ ,; if the mean squared matching error d(B’) v/, B2 12) is
minimum for all possible blocks in the input sample where,
d(B° x11,B (x2.92)) = 2{58“1.:.3t.\1,\‘1.(f)-C?B‘u,_u\3.\‘2:(!')}3 (3.8)
ic aB
Where B is the edge zone of the block B, 2 (figure 3.8) and 7 is an element

(coefficient) within this edge zone.

In the proposed scheme the authors have computed the total matching error “d’ by
combining the matching errors of the blocks in its approximation sub-band, LL3. and
one other sub-band out of the three detailed sub-bands, LH3, HL3, HH3. Figure 3.8
illustrates the case where HH3 sub-band is used. In general, the decision to select a
combination between the matching errors (as described above) in the horizontal detail,
vertical detail, or diagonal detail sub-bands. is taken by comparing the energy levels
of these components [12]. Wickramanayake et al. claims that for most textures the
horizontal details contain more visually significant information than the vertical or
diagonal detail. Using further higher frequency sub-bands is avoided. in checking the
suitability of the candidate sample, as they may contain noise, which could be falsely

interpreted as important texture detail.

In combining the two overlap errors, i.e. the overlap error between the blocks in the
low-resolution component and the overlap error between the corresponding blocks in
the selected detail components (“diagonal” in the illustration of figure 3.8): we use the
sum of the squares errors (eq. 3.7) of the two components, as the matching criteria.
For example, if the diagonal detail is prominent then the comparison equation (3.9)
can be modified as below:

0 5 o p . . Arihi P ey
A(B” 1ty B ixzs2))= 2 ({OB” uyani i)-0B" tis a2 (i) +1 0B tipzirvi (i)- 0B upy say2 ()17)
ie o

(3.9)

Where dB,, is an edge zone of block B and 7 is an element (coefficient) within

plix,v)

the edge zone.

If more than one sub-band is used the equation can be modified accordingly. Once the

best matching block to the first block of the output image is found and located in the

Transform Domain Texture Synthesis on Surfaces 57

CHAPTER 3 Research Background

output images, the corresponding coefficient blocks from all detailed images of the
sample texture image are transferred to the appropriate components of the output
texture image (figure 3.7 (a) & (b)). This process is continued until the whole output
texture image is constructed in a three-level decomposed format. When constructing
blocks other than those which belong to the first row and first column of blocks, two
overlap areas, where the first corresponds to the overlap with the block in front and
the second corresponds to the overlap with the block above, need to be considered.
Finally an inverse DWT is performed on an output multi-resolution image to create

the output texture image.

The above wavelet transform domain extension to Efros’s algorithm proposed by
Wickramanayake et al. was proved to work with most types of sample texture.
However in a subsequent research effort [5] Wickramanayake et al. worked towards
minimizing computational complexity and generating comparatively better quality of

synthesised textures in their ‘zerotree wavelet based image quilting” algorithm.

C. Zerotree Wavelet Based Image Quilting [5]

In this algorithm Wickramanayake et al. further extended and improved their previous
work [12]. Instead of using all coefficients, an automatically generated threshold (see
section 3.2) was used to determine the significant coefficients of each sub-band to
define a matching template that is subsequently used in the texture quilting process.
The work shows that the use of a limited set of visually significant coefficients,
regardless of their level of resolution, not only reduces the computational cost, but

also results in a more realistic texture synthesis.

Analysis of Wavelet based Texture Synthesis:

The transform domain extensions to the original image quilting approach to texture
synthesis proposed by Wickramanayake et al. [5, 39] have various positive features
such as ease of implementation, resulting generally in better synthesised quality as
compared to Efros’s [33] original algorithm and the ability to be used in real-time, due

to the optimised transform domain search and the use of the multi-resolution

Transform Domain Texture Synthesis on Surfaces 58

CHAPTER 3 Research Background

approach. This algorithm can cater for the needs of many additional application
scenarios due to the added functionality that can handle computational and bandwidth

constraints.

After analysing the synthesis results of the above algorithms [5, 12], we have realized
that they may suffer from edge blending problems, when synthesizing certain texture
patterns. Wickramanayake et al. [12] used a simple weighted edge blending approach
to minimise computational complexity. However this simplistic blending approach
compromises the quality of sharp edges in the patch overlap areas of the synthesised
texture. In order to resolve this shortcoming, in chapter 5 we propose the replacement

of this simple approach by an optimised, transform domain patch quilting algorithm.

After further analysing Wickramanayake et al.’s algorithms, we have realized that
they can be extended to address texture synthesis on arbitrarily shaped 3D surfaces.
However the design and implementation of this extension is not straightforward. It is
noted that Wickramanayake et al.’s algorithm first builds the synthesised texture in a
multi-resolution format in the DWT domain and the final synthesised texture in the
pixel domain is obtained by an inverse DWT process. However, creating a
multiresolution decomposition of an arbitrarily shaped 3D surface is challenging. A
further challenge is the use of fixed size, square shaped patches in the texture
synthesis process, such as either, 32 x 32, 64 x 64, or 128 x 128. However, in general
3D surfaces are represented by triangular or quadrilateral meshes which are of
irregular shape and size. Hence, extending Wickramanayake et al.’s algorithm, which
assumes the blocks to be of a fixed, shape and size, to 3D texture synthesis is
infeasible. In chapters 6 and 7 we propose the modification and adaptation of
Wickramanayake et al.’s original DWT domain 2D texture synthesis ideas to 3D

texture synthesis.

3.3.2 BENCHMARK ALGORITHM 2: TEXTURE SYNTHESIS USING
GRAPH CUTS [36]

As mentioned earlier in chapter 2, this is the second algorithm (based on image

quilting) that is used in this thesis for benchmarking the novel texture synthesis

Transform Domain Texture Synthesis on Surfaces 59

CHAPTER 3 Research Background

algorithms to be proposed. However, instead of dynamic programming, a new patch
cutting approach is introduced by Kwatra et al. [36]. The initial patch stitching
method used is similar to the patch selection method of the Image Quilting (section
3.3.1.A) approach. The texture is synthesised by copying irregularly shaped patches
from the sample texture image into the output image. The output image is generated
by copying patches which must make two decisions for each patch: (1) where to
position the input texture relative to output texture (the offset of patch), and (2) to
compute an optimal (irregularly shaped) portion of the rectangle, and then only those
pixels are copied to the output image (figure 3.9). [Note that all the figures included in

this section are from Kwatra et al.”s [36] paper]

The above process is repeated iteratively to improve the quality of the synthesised

texture.
input texture affser | re‘l/’n ive placement of input texture)
_";""!Q‘- y :
. .
F A%. ;
e <
< T I
ki & ;* |
S nY e i
ey ; additional
seam {area of mput’ - patches
that 15 trans ferred 1o e —
outpul texture) output textun:

Figure 3.9: Image texture synthesis by placing small patches at various offsets
followed by the computation of a seam that enforces visual smoothness between the

existing pixels and the newly placed patch.

A. Patch Fitting using Graph Cuts

The texture synthesis process is based on copying an irregular shape of texture
patches from an input image to an output image. This process is performed in two
stages: (1) select the candidate patch by comparing the pixels that are already in the
output image, (2) select the optimal portion of the rectangular patch to be copied into
the output image. The process for optimal patch calculation is carried out by

following a graph cut algorithm as explained below.

Transform Domain Texture Synthesis on Surfaces 60

CHAPTER 3 Research Background

Referring to section 3.3.1.A, the first block (e.g.. 32 x 32 pixels) is placed randomly
and the subsequent block is placed partly overlapping with the previously placed
block of pixels. The overlap between the old and the new block is typically 4 to 8
pixels in width. The path is formulated by dynamic programming, which will

determine which patch pixels will contribute towards the overlapping region.

To cast this problem as a graph cut problem, a matching quality measure for a pixel
between a new and an old patch is required. The simplest quality measure is a
measure of the colour difference between pairs of pixels. Let s and t be two
neighbouring pixel positions in the overlapping region. Also assume at the position s,
A(s) and B (s) to be the pixel colours in the old and new patches respectively. The

matching quality cost M between the adjacent pixels s and ¢ is calculated as,

M(s,t. A, BY=lA(s)-B&) I+ ITA(n-B @Il (3.10)
Where Il - Il denotes an appropriate norm. This matching cost is used in the graphcut

algorithm to solve the patch finding problem.

Consider the graph shown in figure 3.10 (b) consisting of one node per pixel in the
overlap region. The arcs connecting any two adjacent pixel nodes s and r are labelled
with the matching quality cost M(s, ¢, A, B) (eq. 3.10). The nodes A and B represent
old and new patches. Finally an infinitely high cost arc is added between some pixels
spanning between nodes A or B. These are constrained arcs which insist that the
pixels to be selected come from a particular patch. In figure 3.10 (b) constrained
pixels 1, 2, 3 are to come from the old patch, and 7, 8, 9 must come from the new
patch. To find out from which patch each of the pixels 4, 5, and 6 should come from,
a minimum cost cut of the graph is calculated by using a so-called max-flow/min-cut
algorithm. In figure 3.10 the red line shows the minimum cut, and it means that pixel
4 will be copied from patch B, whereas pixels 5. and 6 will come from the old patch,

A.

Transform Domain Texture Synthesis on Surfaces 61

CHAPTER 3 Research Background

Pateh W Patch
A B

(a) (b)

Figure 3.10: (a) Schematic showing the overlapping region between two patches. (b)
Graph formulation of the seam finding problem. with the red line showing the
minimum cost cut [36].

B. Surrounded Regions

The above algorithm can be used further to place a new patch over a region where the
entire area has already been covered by pixels from the earlier patch placement step.
This is done to overwrite potentially visible seams with the new patch, and an
example of this is shown in figure 3.11. In this example the red line shows that the
resulting graph cut forms a closed loop, which defines the best irregular shape to be
copied into the output image.

Existing/ old—
Pixels | cut

Figure 3.11: (Left) Placing a patch surrounded by already filled pixels. Old seams
(green) are partially overwritten by the new patch (bordered in red). (Right) Graph
formulation of the problem. Constraint arcs to A force the border pixels to come from

the old image. Seam nodes and their arcs are not shown in this image for clarity [36].

C. Patch Placement & Matching

Three algorithms are used for selecting candidate patches based on the type of texture

being synthesised. In all these algorithms, the patch selection is restricted to

Transform Domain Texture Synthesis on Surfaces 62

CHAPTER 3 Research Background

previously unused offsets. The following are the three patch selection algorithms

used;

Random placement:

In this approach, the new patch, (the entire input image), is translated to a random
offset location. The graph cut algorithm selects a region of this patch to place into the
output image, and then this process is repeated. This is a direct application of Guo &
Shum’s [31] algorithm with graphcut based edge cutting. This method provides better
results for only a few stochastic textures. Therefore only the following two patch

placement methods are used in the general algorithm.

Entire patch matching:

This step, called the initialization step, starts by placing the sample at the top left hand
corner of the output representation. This involves searching for translations of the
input image that match well with the currently synthesised output. To account for
partial overlaps between the input and the output, they normalize the sum-of-squared
differences (SSD) cost with the area of the overlapping region. After calculating the
cost of translation ¢ of the input C(r) of all possible offsets, the following probability
distribution function (eq. 3.11) is used for selecting the best patch amongst them:

_ cle)
P(t)ce *o° 3.11)
Where ¢ is the standard deviation of pixel values in the input sample and & controls

the randomness parameter in the patch selection.

Sub-patch matching:

This is the step after the entire patch matching. A small sub-patch (which is smaller
than the input texture) in the output texture is initially picked. The selection is based
on the seam cost in the previous steps (figure 3.12 bottom left). Subsequently a search
is made for a sub-patch in the input texture that matches this output-sub-patch well.
Only those translations that allow a complete overlap of the input with the output-sub-
patch are considered. The cost of a translation of the input texture is again calculated
and a sub-patch is picked stochastically using a probability function similar to eqn.

311

Transform Domain Texture Synthesis on Surfaces 63

CHAPTER 3 Research Background

Analysis of Graphcut Algorithm:

With the initial straightforward implementation, the complexity of the graphcut
textures of Kwatra et al.’s [36] algorithm was O (n*). But a FFT based acceleration
technique [106, 107], which uses Summed Area Tables (SAT) and convolutions has
been subsequently adopted for reducing the complexity to O (n log n). However the
algorithm yet results in high synthesis time requirements. Due to the use of a whole
sample patch as the unit of construction in the synthesis, there can be mismatching
areas in the overlapped area leading to artefacts. Kwatra at el.’s algorithm uses several
refinement passes in order to minimise these artefacts which is a time consuming
process. In chapter 5 we introduce further improvements to Kwatra’s original ideas on

using graph-cuts for image quilting based texture synthesis.

Seam Boundaries

Sample Texture

>

Synthesized Texture
(Initialization)

Step 2 Step 3

' by 4 . W
Step 4 Step 5 N ¥
Synthesized Texture

B (After 5 steps of Refinement)

Figure 3.12: The process of synthesizing a larger texture from an example input
texture. After initialisation, new patch locations are found depending on the seam

costs within the refinement passes (bottom left).

Transform Domain Texture Synthesis on Surfaces 64

i A R i S

CHAPTER 3 Research Background

3.3.3 BENCHMARK ALGORITHM 3: TEXTURE SYNTHESIS ON
SURFACES [62]

This section discusses Turk’s algorithm popularly titled as, Texture Svnthesis on
Arbitrary Surfaces. Figure 3.13 illustrates the basic block diagram of Turk’s

algorithm,

Sample Texture Image 3Dsurface
Gaussian Pyramid Create hierarchy of

mesh points on surface

v v

Use the Gaussian pyramid to synthesise the mesh
points coarse-fine by using neighbourhood search

¢

Texture Synthesis on
a 3D object

Figure 3.13: Turk’s texture synthesis algorithm

This algorithm is based on the principles of texture synthesis on surfaces, independent
of parameterization and the use of the neighbourhood search. The method draws upon
texture synthesis methods that wuse image pyramids [49] for texture
decomposition/representation, and a mesh hierarchy to serve in place of a pyramidal
structure. Firstly a hierarchy of sample points from a low to high density are created

in a random order, over the given surface (figure 3.14 (a)). Using a point repulsion

method [52], the points are subsequently repulsed and separated from each other to
uniformly distribute over the surface. By connecting these points, a mesh is formed on
the surface. Likewise a hierarchy of meshes are created on the surface by adding
additional mesh points in stages, resembling an image pyramid representation.
Subsequently a user specified vector field that indicates the orientation of texture

patterns is created over the surface. Mesh vertices are sorted in such a manner that the

Transform Domain Texture Synthesis on Surfaces 63

CHAPTER 3 Research Background

vector field will be followed when visiting the points (see figure 3.14 (b)). Then for
each mesh vertex, a local parameterization of the surrounding vertices is established.
Using this parameterization a small rectangular neighbourhood with the vertex as the
centre is created (see figure 3.15). Each point is then scanned over the surface to
determine the colour. The colour of a particular point is established by examining the
colour of neighbouring points, and finding the best match to a similar pixel
neighbourhood in the given sample texture image. A coarse-to-fine refinement is done
on the mesh hierarchy to retain the pattern and to achieve good quality of texture on
the surface. A multi-level representation of the synthesised texture on the arbitrary

surface is finally generated as shown in figures, 3.14 (c), (d). (e). and (f).

(d)Level 2 (e)Level | (HLevel 0

Figure 3.14: Turk’s Method (a): dense points on surface (b): vector field creation on

the surface (¢) (d) (e) (f): multi-level texture synthesis

O @, O

(a) Full square (b) Wei-Levoy cauzal () Half «quare

Figure 3.15: Three different pixel neighbourhood searches.

Transform Domain Texture Synthesis on Surfaces 66

CHAPTER 3 Research Background

Pseudo code for the texture synthesis algorithm:

For each vertex v on mesh
C(v) = colour of random pixel from /

For each vertex v on mesh (ordered by S (v))
construct neighbourhood colours N(v)
smallest match = BIG
For each pixel (e, b) in [

construct neighbourhood colours M (a ,b)
new match = D (N(v), M(a ,b))
If (new match < smallest match)
smallest match = new match
Crssi=»0{a; b)
C(v) =Cley

Where C(v) colour at vertex v, N (v) neighbourhood colour at vertex v, M(a .b)

neighbourhood mask from /. 7 Input sample image, S(v) visiting order of vertices over

mesh.

Analysis of Turk’s Algorithm:

This algorithm is a combination and extension of various techniques such as 1)
neighbourhood matching technique, 2) TSVQ, 3) Interpolation for neighbourhood and
4) Gaussian based multiresolution representation of sample textures. Our detailed
experiments on ten different samples of texture proved that the algorithm works well
with irregular textures, confirming the conclusions made by Turk, in [62]. Further the
algorithm suffers from practical applicability to work in a limited bandwidth channel
due to the non-progressive nature of texture synthesis. In addition it cannot be used in
real-time, in particular due to the iterative approach being time consuming. In chapter
4 we propose an improvement to this algorithm that removes some of the above

shortcomings.

Transform Domain Texture Synthesis on Surfaces 67

CHAPTER 3 Research Background

3.4 GENERATION AND REPRESENTATION OF GEOMETRIC
SURFACES

As discussed in chapter 2, there are two ways to generate a 3D surface, 1) 3D Scanner
based surface generation and 2) Geometric surface generation. This part of the chapter
discusses geometric surface generation using polynomial parametric curves, which is
a type of curve used in geometric modeling. These curves are useful for
computational purposes. Thus their properties are discussed in detail. We further

discuss the extension of such curves to Bézier surfaces and detail their properties.

3.4.1 Bézier Curves [108]

The first method of generating Bézier curves was developed by P. Bézier, where
points on a curve were located via a weighted interpolation of control points, i.e.. a
limited set of specific points. Since Bézier's initial proposal several different ways of
interpolating control points of a 2D Bézier curve have been introduced. Although
these approaches differ algorithmically and in complexity, they generate the same set

of points on a given parametric curve.

Figure 3.16 illustrates the calculation of the cubic Bézier curve for four control points.

s P,

Figure 3.16: Bézier curve using four control points.

The contribution that each control point makes to a curve depends on a single
parameter, s, withO < s </ . As s varies along the curve each control point's
contribution varies as a function of s. In fact, each control point has a function which
controls its influence; these are known as the Bernstein basis functions. Figure 3.17
illustrates how the function for the first control point has a value of 1 when s = 0, and

decays to 0 as s approaches 1. This means that the first control point contributes 100%

Transform Domain Texture Synthesis on Surfaces 68

CHAPTER 3 Research Background

to the curve when the curve is very close to it, and that when the curve is far away, it
hardly contributes anything. The Bernstein basis function [127] cause Bézier curves to

pass through the starting and ending control points.

The Bernstein basis functions for n = 3 are plotted in figure 3.17 and illustrate the
control points’ influence on Bézier curves:

1

L
i

Figure 3.17: Bernstein basis functions forn =3

Given n+1 control points, Py, P;, P> ... and P, in space, the Bézier curve C (s) is

defined by,

Cls)= Zj:,JIJ,,_f(-S')R (3.12)
The n + [Bernstein basis polynomials of degree n are defined as

b (2] s (1-s)ni (3.13)
Where

"”3‘5 ! (3.14)

\i) (n—i)!

For a given value of s, a point C on a Bézier curve is defined as the sum of the four
control points, weighted by the value of the basis functions for that value of s:
The following are important Bézier curve properties:
. The degree of a Bézier curve defined by n+l control points is n:
In each basis function, the exponent of s is i + (n - i) = n. Therefore, the degree
of the curve is n.
2. Cf(s) passes through Py and P,: This is shown in the figure 3.16 above. The

curve passes through the first and the last control points.

Transform Domain Texture Synthesis on Surfaces 69

CHAPTER 3 Research Background

3. Non-negativity: All basis functions are non-negative.

4. Partition of Unity: The sum of the basis functions at a fixed s is 1. It is not
difficult to verify that the basis functions are the coefficients in the binomial
expansion of the expression | = (s+ (1 - s))". Hence, their sum is one.
Moreover, since they are nonnegative, we conclude that the value of any basis

function is in the range of 0 and 1.

3.4.2 Bézier Surfaces [109]

The Bézier patch (surface) is a surface extension of the Bézier curve. Whereas a curve
is a function of one variable and takes a sequence of control points, the patch is a
function of two variables with an array of control points. Most of the methods used
for Bézier patch generation are direct extensions of those used for Bézier curves. The
Bézier patch is the most commonly used surface representation in computer graphics.
Patches are eventually rendered as polygons. However as the polygons are generated
dynamically, faster machines end up with smoother models, the ultimate in

scalability.

A Bézier patch is specified by a number of control points and a tessellation factor to
determine smoothness (higher factor equals smoother surfaces). The patch is
constructed from an p+1 x m+1 array of control points [P

f0 < k<n, 0< j<m }(figure: 3.18).

Figure 3.18 n+1 x m+1 arrays of control points (n=3, m = 3)

Transform Domain Texture Synthesis on Surfaces 70

CHAPTER 3 Research Background

The resulting surface (see figure 3.19), is subsequently parameterised by two variables
using equation 3.15 as,

Pls,)= 20 obps($ by j(t)P ;. 0S 58S (3.15)

Where P, ;are the Bézier vectors.

Bezier Curve

Bézier Curve
P

0,3

Beézier Curve .
Bézier Curve

—i33

Figure 3.19: Resulting surface using n+1 x m+1 array of control points

It is easily seen that this is in the same general form as the Bézier Curve — with the
summations running over all the control points, and the bi-variate Bernstein

polynomials serving as the functions that blend the control points together. Note that

the uni-variate Bernstein polynomials are b, (1).b, (5).

Properties of a Bézier Patch

A Bézier patch has properties similar to those of a Bézier curve. These can be verified

directly from the patch defining equations.
1) If control points Pgy, Poy, Puo and P, are on a patch, all other control
points are on the patch only if the patch is planar.
2) The patch is continuous and partial derivatives of all orders exist and
are continuous.

3) The patch lies within the convex hull of its control points.

Transform Domain Texture Synthesis on Surfaces 71

CHAPTER 3 Research Background

3.4.3 Rational Bézier Surfaces

A homogeneous form of a parametric surface is referred to as a rational surface. The
rational parameterisation is a de-facto standard representation in computer graphics
allowing portability across applications and systems. In addition to possessing

desirable geometric properties, rational parameterisation:

— requires the evaluation of only polynomial functions,

— gives rise to a compact data-structure,

— facilitates interactive control of shape,

— is complete in the sense that approximation of any shape to a specified
tolerance & can be achieved, and exact parametrisation (i.e. 6= 0) is often

possible.

The bi-quadratic and bi-cubic type of patches depends on the number of control points
that are in use (9 points and 16 points, respectively). While higher order Bézier curves
are possible, they are not feasible for use in applications such as computer games due

to their computational complexity.

Rational parametrisations of surfaces comprise local atlases, or patches, of the form:

{8t) zf.-‘,;jzu f?n.k (s me.j (10 & 0< ra d
o 0< st 3.16
l'\»f;":f} b;r,k (§)bm.,f(4){U& J |))

where wy,;are the weights defining the specific shape of the smooth surface, v, ;are
the Bernstein vectors, b,,;(s), b, (1) are Bernstein polynomials. If all the weights are
non-zero this may be expressed as:

n.m . e
k, j=0 bn.k(“)bm.j(“)(’).(‘_,'i k.j
T 8, = n.m JOs st S] (3.17)
Z‘-v.."m’J bu.ﬁ' (s)bm, i (!)fU_t\-_j
where _ v ., are the Rational Bézier vertices.

'Vi.]
.

We have seen that the values of n and m determine the degree of the

parametrisation; if n = m = 2 the patch is said to be biquadratic and if n = m = 3 it is

Transform Domain Texture Synthesis on Surfaces 72

CHAPTER 3 Research Background

bi-cubic. In figure 3.20 we illustrate the case in which, given nine control points we

compute and draw the biquadratic surface patch defined by them.

(a) (b)
Figure3.20: (a) Green Colour: Biquadratic control polygon point, Red Colour: Smooth
surface mesh generated using the control polygon (b) Control polygon mesh (note that

9 control points generate 4 faces).

Many of the desirable geometric properties of rational representation, e.g. the convex
hull property and the existence of Bézier vertices, are lost if negative or zero weights
occur, hence in computer graphics and geometric modelling applications, positive
weight parametrisations are always preferred. For computational efficiency, low

degree parametrisations are desirable.

344 An Example: The parametrisation of Ring Dupin Cyclides by

trigonometric functions

Dupin cyclides may be defined implicitly as:
(Y242 +b? P -ax-cu) 4b?y =0 (3.18)

where the parameters a, b and ¢ satisfy ¢® =a’—b". The surfaces for which
¢ < it < a have found applications in geometric modelling (see [114] and [115]), and
are known as ringed cyclides. Ringed cyclides with ¢ = 0 are tori, and the ringed
cyclides may therefore be regarded as generalised tori. Figure 3.21 (a) shows a ringed
cyclide for which a = 6, b =432, (¢ = 2) and 1 = 3. Cyclides admit trigonometric
parametrisations which may be written as:

!
Ty ((}. ga)=

a-ccostlcos o

[u{('-n cos 0 cos gp)-t—b" cos @, b(u—,u cos rp).\ inf,blecos ()—y}.\‘in (p] (3.19)

Transform Domain Texture Synthesis on Surfaces 73

CHAPTER 3 Research Background

for 0 <@ <2m, O0<¢<2x. Figure 3.21 (b) shows the origins and directions of the

angular parameters, & and ¢, on the surface.

ta) thi

Figure 3.21: (a): The surface, (b): The trigonometric parametrisation 7, of the surface

A. The rational parametrisation induced from 7, [112]

This section will briefly introduce biquadratic parametrisation of a Dupin cyclide.

The restriction of the trigonometric parametrisation 7, to the boundary is defined by.
G,s0s0, Py SPS

is written as7, , and may be used to ‘induce’ rational parametrisations of the same

surface patch as that parametrised by 7, ,. In particular it may be used to induce bi-

quadratic rational Bézier representations (see [111] and [110]). The induction process
discussed in [110] produces a rational bi-quadratic patch, that parametrises the same

region of the surface as 7, ,, with weights, w;, 0<i,j <2, given by:

Woo = @ — CXygXp, Wy = AWy, = CXppXy, Wy = a—CXypXs,
Wy = AW)p —CX1pXg, W) =AW 1pW, = CX X, Wiy = AW,y — CX\pXs,
Wyy = a = CXyp Xy Wy = AW, — Xy Xy, Wa = Q= CXy5k5

(3.20)

Where
Wy, =cos(6, —6,)/2 w,, =cos(¢ —@,)/2
X,, = cos(é,) Xyp = COS(,)

X, =cos(6 +8,)/2 x,=cos(¢ +¢,)/2

Transform Domain Texture Synthesis on Surfaces 74

CHAPTER 3

Rescarch Background

X,, = cos(é,)

Yoo = sin(6,)

Y, =8in(6 +6,)/2

Y1 = Sin(8,)

Xy, = cos(g))
2y = sin(gy)
2y, = sin(g +¢,)/2

234 = sin(g)

Using the formulae for the weights (eq. 3.20). in [128] it has been proved that for any

cyclide (i.e.. for any a. b, (¢ > 0),), there exist 16, positive-weight, bi-quadratic

Bézier patches that parametrise the entire surface (see figure 3.22 and [112]). Further,

the 4-way symmetry of the cyclide can be exploited, enabling 12 of the 16 patches to

be determined, by vertex transformations, from the 4 patches defined by the following

angular displacements:

o ES;:}SR'
2

z

e ()=p<—

¢ 2

o Zcpen
&

N
]
{7 oy

o | N

SN
IA
)
IA
5

0

IA

v/

SR
IA

These 4 patches are shown, with their Bézier polygons, in Figure 3.22. These patches

parametrise Y4 of the surface. Their weights and the associated computations are given

in appendix A of the thesis. As) < ¢ < a. it is clear that all the patches have positive

weights. The Bézier vertices of the four patches are also given in the appendix A of

the thesis.

(a)

(b)

Figure 3.22: (a) % cyclide comprising 4 positive weight quadratic rational Bézier

patches (b) 16 patch NURBS representation obtained from % of a patch.

Transform Domain Texture Synthesis on Surfaces

CHAPTER 3 Research Background

A 16 Patch cyclide and a NURBS representation which is generated from the % patch
equation is used in our experiments. Note that different size patches can be created for
different models. In general the proposed algorithm supports any number of patches.

Similarly it can be designed for geometric shapes such as a sphere or a torus.

Analysis of Geometric Surface Generation Schemes:

The control points in space roughly indicate the shape of a desired surface. If the
surface is not up to our expectation, we can move the control points around. As one or
more control points are moved, the shape of the Bézier surface changes accordingly.
Texturing such a geometrically flexible surface representation gives further realism to
it as seen in chapter 1. Such geometric surfaces have wide applications in computer

animations, digital movies, and architecture.

It is noted that the surface mesh representation depicting an object’s shape, and
texture information depicting an object’s appearance. are both in uncompressed
format. Therefore a full representation (i.e. a textured 3D object) will require
excessive bandwidth for transmission and/or storage space. A solution to this problem
is to use a geometric surface representation where possible and to carry out
progressive texture synthesis in the transform domain. In chapter 6 and 7, we propose
a novel algorithm to progressively synthesise texture onto an arbitrarily shaped

geometric surface.

3.5 SUMMARY AND CONCLUSION

This chapter has introduced the basic concepts, which will be fundamental to the
understanding of the novel algorithms proposed in the rest of this thesis.
Fundamentals of DWT and the possible use of EZW concepts in wavelet coefficient
prioritisation have been explained. The chapter also introduced the three state-of-the
art texture synthesis algorithms that have been selected in this thesis for
benchmarking the performance of the novel algorithms to be proposed. Among these,

two are planar texture synthesis algorithms and one is a 3D surface texture synthesis

Transform Domain Texture Synthesis on Surfaces 76

CHAPTER 3 Research Background

algorithm. During the course of the research presented in this thesis, each of the
benchmark algorithms was implemented and critically analysed in order to identify
possible shortcomings. The novel algorithms presented in this thesis are
improvements and extensions to these benchmark algorithms and are introduced in

chapters 4, 5, 6 and 7.

The final section of this chapter further discussed the generation and representation of
geometric surface, where fundamental theory of Bézier curves and surfaces was
presented. Rational parametrisation of Bézier surfaces was finally discussed and
possible applications to the proposed novel texture synthesis algorithms have been

hinted at.

The analysis of the state-of-the art of texture synthesis algorithms revealed that all
algorithms have limitations with regards to their capability to synthesise a wide range
of texture patterns, and their ability to synthesise texture in real-time using a flexible,
progressive approach. Thus it was observed that regardless of the vast amount of
research carried out in this area, designing a fast. efficient and flexible texture

synthesis algorithm still remains an open research problem.

Transform Domain Texture Synthesis on Surfaces 77

iy -~ - P

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

Chapter 4

Progressive Texture Synthesis on Arbitrary Surface

4.0 INTRODUCTION

This chapter discusses in detail a novel algorithm that can be used in the creation of
progressively better quality texture on an arbitrary shaped surface of a 3D object. We
discuss that the algorithm has applications in video, movie, gaming and remote
vispalization applications [see section 4.3). It is an extension to the pixel domain
texture synthesis work of Turk et al. [62], “Texture Svnthesis on Surfaces’, the
fundamentals and principles of which were discussed in detail in chapter 3, section
3.3.3. The proposed extension addresses some shortcomings of the original algorithm
by Turk. namely, its limited ability to only generate a discrete number of resolution
levels of texture on a surface, generation of synthesis artefacts, particularly at lower
resolution levels and difficulty of being used in conjunction with bandwidth
constrained transmission media. The proposed approach meets the above challenges
by adopting a multi-resolution DWT domain, progressive texture synthesis procedure.
We show that the progressive nature of the proposed texture synthesis algorithm
enables the creation of infinite levels of intermediate texture qualities between any

two levels of quality supportable by Turk’s algorithm.

For clarity of presentation, this chapter is divided into several sections. Section 4.1

discusses the motivation behind this work; Section 4.2 discusses the proposed
algorithm, the benchmark algorithm and the underlying texture synthesis techniques
used: section 4.3 provides experimental results and a comprehensive analysis of the
performance of the proposed algorithm, whilst section 4.4 summarises and concludes

the chapter.

Transform Domain Texture Synthesis on Surfaces 78

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

4.1 MOTIVATION OF WORK

The motivation to the proposed work comes from the current demand for applications
requiring progressive texture synthesis on arbitrary shaped 3D surfaces. The
progressive texture synthesis provides a practical solution to the extensive use of
bandwidth in application domains that are supported by bandwidth limited
transmission media, such as remote visualisation, distributed/collaborative gaming
etc. The idea is to provide texture synthesis quality on-demand. The use of existing
texture synthesis algorithms on arbitrarily shaped 3D objects. such as the popular
Turk’s method (see section 3.3.3 for details) though attempting to provide a partial
solution to this problem is limited. This 1s due to the support of only a discrete
number of resolution levels that are determined by the distinct levels of the Gaussian
pyramidal decomposition of the sample texture. The intermediate quality generated in
the multi-level resolution is not visually appealing [see figure 4.4, though it retains
the pattern of texture. Therefore a texture synthesis approach that allows the creation
of an arbitrarily large number of texture resolutions between textures defined by two

given distinct levels of multi resolution decompositions should be sought.

4.2 PROPOSED APPROACH

To overcome the above mentioned limitation and to further improve Turk’s method’s
practical applicability, in this chapter we propose an extension that replaces the

pyramidal decomposition of a sample texture, by DWT decomposition.

Figure 4.1 illustrates the block diagram of the proposed algorithm. [Note: the
complete, progressive texture coding, transmission and synthesis process has been
illustrated.] The key additional steps used in the proposed approach as compared to
those used by Turk’s approach can be listed as follows (discussed in detail in chapter

3):

1) DWT to provide a compact multi-resolution representation of the sample
texture.
2) EZW algorithm to prioritize the wavelet coefficients according to their

perceptual significance.

Transform Domain Texture Synthesis on Surfaces 79

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

3) Architecture to support the integration of the proposed novel aspects into

Turk’s texture synthesis algorithm.

Sample Texture Image

Priority Turk’s algorithm
| Using Texture Synthesis on
EZW Surfaces

| Texture on
| Encode a 3D object
with EZW

Encode Image
Locations

Bandwidth constrained transmission media l

Decode texture Decode image 3D
image Location Surfaces

Turk Texture point
creation algorithm

Progressive texture synthesis on 3D surfaces

Figure 4.1: proposed progressive texture synthesis and transmission algorithm [Note:
sky blue colour represents elements of the proposed algorithm and orange colour is

Turk’s algorithms].

Transform Domain Texture Synthesis on Surfaces 80

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

A close inspection of figure 4.1 shows that it resembles the block diagram of Turk’s
algorithm [62], where the process of synthesizing texture is similar, though with two
important differences. Firstly, in our design, the Gaussian pyramid based texture
representation used by Turk is replaced by a DWT representation supported by an
EZW based coefficient prioritisation scheme as illustrated by the modules named,
‘DWT" and ‘Priority Using EZW’, in figure 4.1 and detailed in figure 4.2. EZW
provides the facility to prioritise the visually significant wavelet coefficients. This
ensures the seamless texture representation capability as against the discrete quality
level texture representation of Turk’s original algorithm. We have used the same
multi-level synthesis approach while synthesizing texture on to a surface which
produces the same quality results as Turk’s algorithm. In addition to this texture
encoding via EZW enables embedded texture decoding capability, allowing almost
any intermediate texture quality to be readily reconstructed/ made available at the

receiver depending on bandwidth constraints.

EZW

Based
loritisation

Scheme

64K Points
Figure 4.2: DWT and EZW based prioritisation scheme

Secondly in the proposed method, while synthesising texture using the modified (with
EZW) Turk’s method, we maintain a record of sample image locations from where
each 3D surface point is textured. However this incurs additional memory cost. These
are denoted as ‘point image locations’ (see figure 4.3) see module ‘Encode Image

Location’. These records are maintained for each representation of a 3D surface

Transform Domain Texture Synthesis on Surfaces 81

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

shape. In order to avoid any searching at the decoder end and enable direct texture
mapping from the received sample image, we propose the suitable encoding of the
‘point image locations’ and their transmission. We have adopted differential pulse
code modulation which provides an effective means of coding this high redundancy
information., However if one wishes texture synthesis to be carried out at the decoder
as well, this extra information will be redundant and thus need not to be transmitted.
We recommended that the decision on whether or not the ‘point image locations’ need
to be transmitted be taken depending on whether the bottle-neck is in the transmission

bandwidth or the receiver capability and texture quality required on the surface.

Figure 4.3: Single and multiple mappings of “point image locations’ between the

sample texture and 3D surface

At the receiver, all texture sample image information transmitted using EZW
encoding is decoded to generate the texture sample at seamless quality settings. As
more bits are received by the decoder, better quality textures are produced. At any
given instance of time and bit rate, using the re-generated texture sample image (i.e.
via EZW decoding of texture), and separately received (and decoded) point image
locations and the recovered 3D surface shape, the texture pixel value (colour) of each
3D point can be obtained. When the pixel values of all 3D points are obtained, the 3D
object will be completely textured with the corresponding instantaneous texture
quality at the given 3D surface representation level, i.e. number of vertex points
accuracy to which the 3D surface is defined at the given moment. When more bits
representing the texture information are received, the available texture quality at the
decoder improves and hence the accuracy of texture representation on the 3D surface

can be improved. Thus the process ensures a seamless quality texture synthesis

Transform Domain Texture Synthesis on Surfaces 82

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

capability on 3D surfaces.

4.3 EXPERIMENTAL RESULTS & ANALYSIS

In order to analyse the performance of the proposed algorithm experiments were
performed on a widely used set of texture samples and the 3D object bunny [62]. The
proposed algorithm is implemented and tested using C, C++, openGL, Linux. Figure
4.4 shows the results obtained from Turk’s algorithm, whereas figures 4.5, 4.6, and
4.7 illustrate the results obtained from our work which indicate the ability of the
proposed technique to synthesise texture at seamlessly different levels. The results
obtained are comparable. Our approach generates seamless texture on the surface (see
figure 4.5(a)-4.5(h)) as compared to figure 4.4. Although for practical reasons we
have limited the number of texture synthesis examples to eight, the proposed method
is capable of progressive texture transmission aimed at seamless texture mapping.
Note that our demonstration here is for a set of 256,000 (256K) points on the surface
of the Bunny. In general, the proposed algorithm is capable of providing any
intermediate texture level from texture-less to the quality of texture depicted in figure-

4.4 for 4K, 16K, 64K, 256K point accuracy of the surface representations.

Texture Sample 4K 16K 64K

Figure 4.4: Multi-resolution of Turk Algorithm

Transform Domain Texture Synthesis on Surfaces 83

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Susface

4.5(a)

Figure 4.5: Progressive texture synthesis on the bunny by the proposed algorithm using

texture sample-1 and 256 K points.

The nature of the design and implementation of the proposed design enables its use in
application domains where existing texture synthesis algorithms perform ineffectively

due to functional constraints. The following is a summary of applications that could

benefit from the specific progressive/ multi-resolution design of the proposed

algorithm.

Transform Domain Texture Synthesis on Surfaces a4

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

Figure 4.6: Progressive texture synthesis on the bunny by the proposed algorithm

using texture sample-2 and 256 K points

Progressive 3D texture transmission: Within a progressive transmission scenario,
data is transmitted according to visual and/or decoding significance, Special design of
the proposed texture synthesis algorithm allows DWT coefficient significance based
progressive creation, transmission and reconstruction of the synthesised texture.
Current applications such as video/movie on demand, onfine gaming and remote

visualisations are a few applications that would benefit from the above feature.

Compressed domain texture synthesis: Synthesizing a compressed output texture
with the use of a compressed original texture sample. This approach is useful in fast,

on demand, internet based applications such as gaming and medical visualisations.

Transform Domain Texture Synthesis on Surfaces 85

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

Figure 4.7: Progressive texture synthesis on the bunny by the proposed algorithm

using texture sample-3 and 256 K points.

44 LIMITATIONS

The proposed algorithm suffers from the following [imitations:
1) It inherits some drawbacks of Turk’s algorithm, e.g., applicable to limited
classes of texture.
2) The synthesised texture quality is dependent on the neighbourhood size and
user defined vector tields.
3) The time required to synthesise texture is relatively high and is dependent on

the number of hierarchical mesh points created on the surface, sample texture

Transform Domain Texture Synthesis on Surfaces 86

CHAPTER 4 Progressive Texture Synthesis on Arbitrary Surface

size and level of pyramid in coarse-to-fine refinement.
4y Extra memory and computation is required for encoding and decoding the

‘point image locations’.

In the subsequent chapters of this thesis we propose a number of novel, transform
domain, patch based texture synthesis approaches that can resolve the above

shortcomings.

4.5 SUMMARY AND CONCLUSION

In this chapter we have proposed a novel approach to progressively synthesizing
texture based on the representation and analysis of the texture sample in the DWT
domain. We have provided experimental results and a detailed analysis to highlight
the added functionality provided by the proposed scheme and its ability to perform
accurate, good quality progressive texture synthesis on 3D surfaces. We have shown
that the proposed method has the capability of synthesizing texture at seamlessly
different quality settings, a functionality which is not achievable via existing state-of-
the-art techniques. It has been proved that the use of visual prioritisation of
information in the sample image during texture synthesis allows the tasks to be carried
out at a higher speed at equivalent visual quality levels, as compared to the existing

techniques.

Transform Domain Texture Synthesis on Surfaces 87

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

Chapter 5

Max-Flow/Min-Cut Approach for Planar Texture
Synthesis

5.0 INTRODUCTION

In this chapter we propose a DWT domain design and implementation for the popular
max-flow/min-cut algorithm that is used to provide the optimal cutting path between
two matching patches in patch based planar texture synthesis. A coarse cutting path is
initially generated using the lowest resolution sub-band of the decomposed texture
image and subsequently the path is refined using the coefficients of the higher
resolution sub-bands. The Embedded Zero-tree Wavelet (EZW) concept has been
used to prioritise and use the wavelets coefficients according to their impact on visual
quality, thus optimising the visual quality at patch overlapping boundaries.
Throughout the algorithm design, we have given special consideration to minimizing
the computational cost. We have shown that the adaptation of the max-flow/min-cut
algorithm in the wavelet transform domain results in an efficient texture synthesis
algorithm that is capable of being used in conjunction with modern, band-width
adaptive applications. A set of regular to stochastic textures have been used to prove
the effectiveness of the proposed algorithm and to compare them with existing state-
of-the-art techniques. It should be noted that in the subsequent chapters we use this

algorithm in optimising the texture synthesis quality in patch overlapping areas.

For clarity of presentation, this chapter is divided into several sections. Section 5.1
gives motivation behind this work; Section 5.2 discuss the proposed algorithm,
benchmark algorithm and underlying techniques that are used; section 5.3 provides
the experimental results and analysis of the proposed work and section 5.4 will

summarise and conclude the chapter.

Transform Domain Texture Synthesis on Surfaces 88

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

5.1 MOTIVATION OF WORK

It was discussed that a number of key recent contributions to transform domain
texture synthesis have been made by Wickramanayake et al. [12, 39]. The authors
designed and implemented block based texture synthesis algorithms in transform
domain as a solution to the speed related problems in traditional patch based texture
synthesis approaches. In particular Shapiro’s EZW concept was used for limiting the
number of coefficients used in the texture synthesis process based on their visual

significance, thereby reducing the computational cost (see chapter 3, section 3.3.1).

[t has been shown that the original transform domain texture synthesis algorithms
proposed by Wickramanayake et al. perform well in synthesizing a wide range of
texture patterns at high operational speeds. However our detailed analysis indicated
that in synthesizing some regular and near-regular textures consisting of patterns with
sharp edges, the algorithms perform sub optimally. The main reason for this is the use
of the simple weighted edge blending technique that results in the blurring of edges.
Therefore to meet optimal results, one needs to explore further methods for resolving

patch boundary mismatches.

In [36], Kwatra et al. proposed the use of their popular graphcut technique of texture
synthesis that uses the max-flow/min-cut algorithm [37] to optimise the quality at
patch edges (see chapter 3, section 3.3.2). They demonstrated that the graph cut
algorithm is capable of better quality texture synthesis as compared to most other
patch/block based texture synthesis techniques that use simple edge blending
approaches. Note that the graph cut algorithm provides an optimum cut along which
the sum of pixel value differences is minimized. Hence extending the max-flow/min-
cut algorithm to the transform domain and its subsequent use in minimising edge
artefacts in transform domain patch based texture synthesis [12, 39] should provide a
plausible solution. It is noted that the quality of edges are measured subjectively

rather than using an objective metric.

Transform Domain Texture Synthesis on Surfaces 89

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

5.2 PROPOSED ALGORITHM

This section discusses design and implementation details of the proposed transform
domain max-flow/min-cut technique which is capable of enhancing the overall

synthesised texture quality in transform domain texture synthesis [5, 39].

The novel algorithm combines the merits of two algorithms that were discussed in
detail in chapter 3. They are:

) Benchmark Algorithm | - Multiresolution texture synthesis in wavelel
transform domain: limits the number of coefficients in the searching process
for best matching blocks, hence reduces the computational cost.

2) Benchmark Algorithm 2 - Graphcut Textures: Image and Video Synthesis

Using Graph Cuts: provide optimal seams at patch boundaries.

In [5, 39] a n level DWT is initially applied on the sample texture (see figure-5.1(a))
which results in a decomposed image. (See figure-5.1(b) where n=3 decomposition is

applied on sample images.)

Figure 5.1: (a) Sample Texture (b): n level decomposed sample image

The texture synthesis algorithm is required for patching blocks with seamless
boundaries. Once a block has been synthesised, searching for its best matching block
(to be patched as the subsequent block to be synthesised) is carried out by effectively
using the coefficients of the LLn and HH»n sub-bands [5, 39]. The coefficients in the

sub-bands can be prioritised according to their visual impact, providing the ability to

synthesise textures faster than traditional approaches.

Transform Domain Texture Synthesis on Surfaces 90

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

Once a matching pair of adjacent blocks is selected, their overlapping boundary
should be further refined to remove edge artefacts. In general, given the fact that a
certain amount of texture would have been already synthesised, synthesizing a new
block will require the consideration of an L-shaped boundary region. For clarity of
presentation we used two complete patch blocks and illustrated a typical overlapping

region in figure-5.2(a) and its transform domain representation in figure-5.2(b).

The idea of using the max-flow/min-cut algorithm is to make a cut in order to
minimise any potential seam artefact in the overlapping region. In the proposed
transform domain extension to the max-flow/min-cut algorithm, the process begins
with a sub-ordinate pass (see section 5.2.1) which gives an approximate cutting path.

This path is further refined using a subsequent refinement pass (see section 5.2.2).

Block A Block B Block A Block B

(a) (b)
Figure 5.2: (a) Pixel image of overlapping region for block A and B (b) Transform

domain of overlapping region for block A and B.

5.2.1 Sub-Ordinate Pass of Patch Fitting

The first step of the sub-ordinate pass is to cast the above problem into graphcut
problems. We measure the matching quality for wavelet coefficients of block A and
B. The simplest quality measure is the wavelets difference between the pair of
wavelet coefficients of the ‘difference block™ sub-bands. The ‘difference block” is the
coefficient difference between the transform domain overlapping blocks A and B as
illustrated in figure-5.3(a). For clarity of presentation and explanation, figure-5.3(b)

represents the “difference block” in the pixel domain.

Transform Domain Texture Synthesis on Surfaces 91

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

In our experiments, after a third level decomposition and difference. all ten sub-bands
are initially extracted. The max-flow/min-cut algorithm is then applied on the
overlapping region using the lowest resolution sub-bands, i.e. LL; bands to obtain the
sub-ordinate minimum cutting path. (see figure-5.4). The cutting path obtained will

run between the pairs of wavelet coefficients and is called the ‘primary cut’.

(a)

Figure 5.3: Difference Image

—

=5
LLn Cutting Path

Figure 5.4: Cut on Low Level Band (Note: LLn has been zoomed for clarity).

The magnitude of the wavelet coefficient in higher decomposed levels of the sub-
bands is high which will provide the more appropriate cut. Considering the ‘primary
cut’ as the minimum cutting path, it is then used to cut the sub-bands, HHs. LH3, HL;
Subsequently using inverse-DWT on sub-bands LL;, HHi;, LH;, HL; the sub-band
LL,is obtained (See figure 5.5.) For ease of reference, the cut obtained in the LL; sub-

band is named the “incorporated path’ (shown in red).

LY
. :"l"
L

LLn LHn
. =>
gt
=
HLn HHn LLn-1

Figure 5.5: LL> with incorporated cut (note: LLn, LLn-1 has been zoomed for

clarity).

Transform Domain Texture Synthesis on Surfaces 92

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

5.2.2 Refinement Pass of Patch Fitting

The primary cut is further refined by considering only the neighbouring wavelet
coefficients around it in the subsequent levels of inverse discrete wavelet transform
i.e. IDWT, starting from the incorporated path of LL,. This makes sure the primary
cut gets refined accurately and is influenced by a number of wavelet coefficients. In
practice this refinement process is continued through all the IDWT levels. It is noted
here that the process of refinement passes through all n levels of decomposition.

Therefore the number of refinement steps is n, i.e. n =3 in our experiments.

Figure-5.6 (al) illustrates that the incorporated cut in LL,_; is first refined by max-
flow/min-cut using neighbourhood coefficients (see figure-5.6 (a2)). This refined cut
is then incorporated into the three detailed sub-bands of the same resolution level. The
incorporated cut at level LL,.», i.e. LL; is obtained via inverse DWT of the four sub-

bands (see figure 5.5). The incorporated cut at level LL,; is illustrated in figure-5.6

(bl). This process is repeated through all the levels until the refined path at level LL;

o
(a2) Refined path

P

(full resolution) is obtained (see figure 5.6 (¢2)).

(bl) Incorporated path (b2) Refined path

(c1)Incorporated path (c2)Refined path

Figure 5.6: Refinement of primary cut using corresponding bands and neighbouring
coefficients.

Transform Domain Texture Synthesis on Surfaces 93

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

The cutting path produced by following the above process results in a minimum
cutting path for the final pixel domain overlapping block. The final blended quality

similar to that illustrated by figure 5.7 is obtained.

5.2.3 Feathering

Although the above approach produces an optimum seam, the resulting quality is
restricted by the quality of the original edge blocks. Therefore, it is likely that some
artefacts still remain after the application of the proposed approach. To address this
problem we have used the popular feathering [87] approach that uses suitable
weighting factors to combine those pixels at the seams. Feathering results in a further

improvement of the seam quality.

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

Experiments were carried out on a large database of commonly used texture samples
representing all textures on a texture spectrum [4] i.e. regular to stochastic. This
section discusses experimental results in detail. The proposed approach is

implemented in MATLAB.

Figure 5.8 illustrates a comparison between the edge blending approach used in
Wickramanayake et al. [5, 39] and our approach. To clearly illustrate the possible
improvements, a block selected for demonstration purposes above was one in which
the edge-blending algorithm would perform sub-optimally (note the artefacts at the

top and front rows of figure 5.8(a)).

Transform Domain Texture Synthesis on Surfaces 94

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

(a) Edge blending (b) Our algorithm

Figure 5.8: Comparison between edge blending and the proposed transform domain
max-flow/min-cut algorithm.

For a more comprehensive analysis we compare the results of our algorithm against
Kwatra et al. [36] pixel domain max-flow/min-cut algorithm and Wickramanayake et
al.[5, 39] transform domain edge-blending algorithm. The results clearly illustrate that
the proposed algorithm provides better visual quality at block edges as compared to
using the non-optimised edge-blending algorithm adopted by Wickramanayake et al.
Though the Wickramanayake et al. algorithms provide faster texture synthesis as
compared to the Kwatra et al. algorithm, it was stated previously that the simple edge-
blending approach adopted was non-optimum. However the Kwatra et al. algorithm is
based on the max-flow/min-cut algorithm, which is capable of providing the optimum
seam between two matching blocks in the pixel domain. Our extension of this
algorithm to the transform domain has enabled its application in Wickramanayake et
al.’s fast texture synthesis algorithm. The detailed experimental results show that the
proposed approach provides equivalent visual quality at block boundaries, at a much
lower computational cost, when compared to the pixel domain max-flow/ min-cut
algorithm adopted by Kwatra et al. [Note : The random selection of the initial block
removes the ability to reproduce the results of the above algorithm. This can be

resolved by selecting the first block to be specified.]

The texture synthesis results obtained for the ‘nut’ texture sample which can be
categorised as of type near-regular, when using our method, Wickramanayake et al.’s
and Kwatra et al.’s. algorithms, are illustrated in Figure-5.9. It is clear from the results

that the proposed approach provides an improved quality with less blurring at patch

Transform Domain Texture Synthesis on Surfaces 95

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

boundaries, as compared to that of Wickramanayake et al.’s algorithm. The results are

visually similar and comparable with the results of Kwatra’s algorithm.
NSO
ORI

00

7]
YO
(s
o ®

e P

&

;5

5
o4
Telol®
e

Kwatra et al. Proposed method

Figure 5.9: Comparison of synthesised texture qualities for the texture, ‘nut’

Figure-5.10 illustrates the texture synthesis results obtained for further eight different
texture samples, when using the proposed, Wickramanayake et al.[5, 39] and Kwatra
et al.’s[36] algorithms. Figure-5.10 (al, bl) are examples of sample textures or the
‘regular’ type. Carefully observing the results of texture synthesis obtained when

using the proposed technique illustrates that (see figure-5.10(a4, b4)) the proposed

technique performs subjectively better than Wickramanavake et al.’s (see figure-
5.10(a2, b2)) algorithm and performs similar to Kwatra et al.’s (see figure-5.10(a3

b3)) algorithm. Figure-5.10(cl, dl, el, f1) are sample textures of the category, ‘near-

Transform Domain Texture Synthesis on Surfaces 96

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

regular’, where the proposed algorithm (see figure-5.10(c4. d4, e4. f4)) performs
better than Wickramanayake et al.’s algorithm (see figure-5.10 (c2, d2, e2, {2)) and
similar to Kwatra et al.’s algorithm (see figure-5.10(c3, f3), and better than Kwatra
et al.’s algorithm (see figure-5.10(d3, e3)) in certain other cases. Note that the low
probability of an improved quality texture compared to Kwatra’s approach, when
using the proposed multi-resolution transform domain approach, exists due to the non-
consideration of noise and unnecessary texture detail in matching, when the proposed
approach is used. Figure-5.10(gl) irregular sample textures where the proposed
algorithm (see figure-5.10(g4) performs better than Wickramanayake et al.’s (see
Figure-5.10(g2)) and similar to Kwatra et al.’s (see figure-5.10(g3)) algorithms.
Figure-5.9(hl) are stochastic sample textures where the proposed algorithm (see
Figure-5.10(h4)) performs similar to Wickramanayake et al.(see figure-5.10(h2)) and

to Kwatra et al.”s (see figure-5.10(h3)) algorithms.

(al) Regular texture

(a3) Kwatra et al. (a4) our method

S Ja B ada A g

BE U UL U S W)

(b2) Wickramanayake et al. (b3)Kwatra et al. (b4) our method

Transform Domain Texture Synthesis on Surfaces 97

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

(d1) Near-regular texture

(c2) Wickramanayake et al. (¢3) Kwatra et al. (c4) our method

(d2) Wickramanayake et al. (d3) Kwatra et al. (d4) our method

(el) Near-regular texture (f1) Near-regular texture

Transform Domain Texture Synthesis on Surfaces 98

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

(f2) Wickrumanaynke et al. (f3) Kwatra et al. (f4) our method

(gl) Stochastic texture

(g2) Wickramanayake et al. (g4) our method

Transform Domain Texture Synthesis on Surfaces 99

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

(h2) Wickramanayake et al. (h3) Kwatra et al. (h4) our method

Figure 5.10: Comparing the results of the proposed, Kwatra et al.’s and

Wickramanayake et al.’s, algorithms.

The replacement of the edge-blending algorithm adopted by Wickramanayake et al. in
[5. 39] by the proposed transform domain max-tflow/min-cut algorithm, provides a
fully transform domain, fast texture synthesis algorithm (due to transform domain
analysis/synthesis, see [5,39] for quantitative timing comparisons) with optimum
quality at edges (due to max-flow/min-cut algorithm). Such a texture synthesis
algorithm has applications in many practical domains where existing algorithms
perform ineffectively due to functional constraints. Some examples of such

application areas are:

Compressed domain texture synthesis: Refers to the synthesis of a compressed
output texture with the use of a compressed original texture sample. This is a useful
feature in fast, on demand applications, with resource/device constraints such as

mobile and hand held devices.

Computer Games: Transform domain texture synthesis can be used in generating
rendered textures of surroundings, such as walls, background or foreground objects, in
which the quality of the rendered texture is kept to a minimum depending on its

required visual significance at any given time.

MPEG4: MPEG4 AFX uses Bézier surfaces to model and animate (describe smooth
motion) three dimensional objects. Transform domain texture synthesis approaches

can be easily adopted to provide progressive, surface rendering to these objects.

Transform Domain Texture Synthesis on Surfaces 100

CHAPTER 5 Max-Flow/Min-Cut Approach for 2D Texture Synthesis

It is noted that the current implementations of the proposed transform domain texture
synthesis algorithms are limited to a proof of concept that they can be fully utilised to

support the above applications if required.

5.4 SUMMARY AND CONCLUSION

In this chapter we have discussed transform domain extensions to the max-flow/min-
cut algorithm, popularly used in the edge enhancement of patch based texture
synthesis algorithms. We have provided experimental results and detailed analysis to
prove that the proposed technique is capable of being used to replace the simple non-
optimised edge-blending strategy adopted by Wickramanayake et al. in their
pioneering work of transform domain texture synthesis. thus further improving its

efficiency and extending its application.

In designing the proposed multi-resolution, transform domain extension to the max-
flow/min-cut framework, we have given special attention towards reducing
algorithmic complexity by introducing refinement passes and progressively improving

the visual quality at block edges.

Transform Domain Texture Synthesis on Surfaces 101

CHAPTER6 Texture Synthesis on Geometric Surlaces

Chapter 6

Texture Synthesis on Geometric Surfaces

6.0 INTRODUCTION

It has been shown that the existing 3D texture synthesis algorithms fail to deliver
effectively in application areas where a progressive texture rendering capability is
required. The novel algorithm proposed in this chapter provides a practical solution to
this challenge. The algorithm is an extension of the novel DWT based approach to
texture synthesis on planar surfaces, presented in chapter 5. In this chapter we
demonstrate the use of the proposed algorithm in progressive texturing of geomeltric
surfaces such as Ring Dupin Cyclides, Tori, Spheres, which are parametrised by
biquadratic rational Bézier patches. We provide experimental results to prove the
efficiency and effectiveness of the proposed approach, and demonstrate its use in

resource constrained domains.

For clarity of presentation this chapter is divided into several sections. Section 6.1
discusses the motivation behind the work. Section 6.2 presents the novel texture
synthesis algorithm on biquadratic rational Bézier patches. Section 6.3 extends the
fundamental ideas presented section 6.2 to support texture synthesis on a number of
selected geometric surfaces. Section 6.4 specifically discusses the proposed method of
embedding texture onto individual patches. Section 6.5 presents an EZW based
algorithm that enables progressive texturing of geometric surfaces. Section 6.6
provides experimental results and a comprehensive analysis that includes a
comparison of the proposed method’s performance with that of the existing state-of-

the-art techniques. Finally section 6.7 summarises and concludes the chapter.

Transform Domain Texture Synthesis on Surfaces 102

CHAPTERG Texture Synthesis on Geometric Surfaces

6.1 MOTIVATION

In patch based texture synthesis techniques, the use of a triangular or quadrilateral
mesh, results in seams at the edges. The size of triangles in a triangular mesh varies,
which makes prominent visual artefacts on the surface. Further to this, the graphical
object will use extensive bandwidth in transmission since the surface mesh
representation depicting the objects shape, and texture information depicting its
appearance, are in an uncompressed format. Therefore, their applicability in a
constrained bandwidth channel is limited. Further to this, animation and deformation
of triangular meshes are relatively difficult and costly. To overcome many of the
above problems, and to be used effectively in bandwidth-limited transmission media,
we propose a novel algorithm that enables fast progressive-texture synthesis on Bézier
patches. We show that it can be further extended and generalised for texture synthesis
on arbitrary shaped 3D surfaces, achieving faster synthesis rates and enhanced quality

as compared to that of the current state-of-the-art techniques.

6.2 TEXTURE SYNTHESIS ON BIQUADRATIC RATIONAL BEZIER
PATCHES

The underlying techniques used in this proposed work are as follows (see chapter 3
for details):
1) DWT provides a compact multi-resolution representation of the sample texture

(see section 3.1.4).

(o]

EZW prioritizes the wavelet coefficients according to their perceptual
significance (see section 3.2).
3) EZW can be used in adaptive systems which require dynamic quality/speed

adjustment (see section 3.2).

An overview of the operation of the fundamental unit of texture synthesis illustrated
in figure 6.1, can be given as follows: The sample texture is first decomposed using an
n-level DWT. A random decomposed block of this sample is initially picked.
converted into the pixel domain using an n-level IDWT procedure and subsequently

embedded as a starting, corner block of a patch of the surface. An overlap area of this

Transform Domain Texture Synthesis on Surfaces 103

CHAPTERG Texture Synthesis on Geometric Surfaces

block with the subsequent texture block to be synthesised is selected, and converted
into the DWT domain using an n-level forward DWT. The LL and HH bands of this
overlap area are then used to find a suitably matching block from the decomposed
sample texture image. The best matching block is subsequently converted back into
the pixel domain using an n-level IDWT and is placed adjacent to the previously
synthesised texture block. An edge-blending algorithm [116] is used to improve the
quality of the seam between the two adjacent blocks. The above process is continued

until the entire surface of the patch (i.e. small rectangular mesh) is textured.

i | Sample Texture Image

T l . [r Biquadratic Rational
L R P— Blerding || Béziex patches
n Level DWT i
| LL.& HH, Bands | Decomposed Image
— 1 v Part IT
Findhest' match | Pickup
location ™ DWT
‘ block
LL, & HH,, Bands Y Paste block on patch
IDWT using texture mapping
.| smLevelDWT || Cutblock ovetlap area

Figure 6.1: Texture synthesis on a single bi-quadratic rational Bézier patch.

The block diagram (figure 6.1) is divided into two parts. Part [shows the
decomposition of a texture image and extracting LLn and HHn sub-bands (explained
in detail in section 3.1.4). Referring to figure 6.1 Part II, Let B, ,, represent a general
square block of the decomposed sample image located at position (x, y) relative to the
sub-bands (p,)’s origin. [Note that in our experiments the size of the above block was

set to be 27" x 2°, where [(= 0, 1, 2).]. Initially we randomly pick a block, [£ J——_—

from the lowest resolution, (LL. n-1) sub-band of the decomposed sample image.

Subsequently by combining this block with the corresponding blocks of the other sub-

Transform Domain Texture Synthesis on Surfaces 104

CHAPTERG Texture Synthesis on Geometric Surfaces

bands and performing an n-IDWT the randomly selected block is obtained in the

original pixel domain, (ie. B,).
B, = IDWT(BLLH—I*BHLH—IIBLHM—IvBHHH i) (6.1)
B, = IDWT (BLLU Bro,Bruo, Bm—m) (6.2)

After randomly picking up the block as described above and converting it into its
pixel domain, the next stage is to map the texture block onto a Bézier patch (for
Bézier patch refer to section 3.4.2). The Bézier patches of the surface will be divided
into a quadrilateral mesh, where each mesh element is referred to as a surface
division. The above mentioned process randomly picked texture block is embedded to
surface division (see figure 6.6) by following the texture embedding method detailed
in section 6.4. This procedure is popularly known in the literature as fexture mapping.
Once the first, randomly selected block is mapped as above, an overlapping area of
this block (with the adjacent, potential block to be mapped) is selected to be used in
locating the next block from the sample texture to be mapped onto the patch. Note
that in our experiments this area was 8 pixels wide, and was selected from the left
end, bottom end or both above ends of the block (depending on the location of the

original texture block on the Bézier patch).

The overlap area is subsequently n-level decomposed (7=3 in our experiments) and
used to find a suitable match for the adjacent block from the decomposed sample
texture using minimum sum of squared-differences (see section 3.3.1 figure 3.8). To
speed up the block matching we only use all coefficients of the LLn and HHn sub-
bands for matching. In our experiment where #=3 and a sample texture size of 128 x
128 or 256 x 256 is used, out of the 16384 or 65536 possible coefficients, we only use
1/64 of total number coefficients in the sample texture. Therefore, the matching speed
is significantly enhanced. Although adjacent blocks on a Bézier patch are matched
using an overlapping area, block seam mismatches are likely to exist. However due to
the efficiency of matching in the DWT domain [39] these seam mismatches are
minimal as compared to using an alternative patch based texture synthesis technique
and are therefore easily eliminated using an edge-blending approach or max-

flow/min-cut approach [116. chapter 5]. The above process of block matching,

Transform Domain Texture Synthesis on Surfaces 105

CHAPTER®6 Texture Synthesis on Geometric Surfaces

selection and placement is continued until the texture of the entire patch is

synthesised.

6.3 TEXTURE SYNTHESIS ON A GEOMETRIC SURFACE

A high level block diagram of the proposed texture synthesis algorithm on a

geomelric surface is illustrated as in figure 6.2,

Geomettic < : Bi—quadratic.s :
Sutface Rational Parametrisation

=

Bezier
Patches /4

Graph Cut on | Synthesized
Patches Edge Geometric Suface

~
s SR

F W

Texture Synthesis
on Single Bezier Patch

Figure 6.2: Proposed block diagram for texture synthesis on geometric surface.

The geometric surface (a Ring Dupin Cyclide in our experiments) to be textured, is
first parametrised into a collection of Bézier patches (i.e. set of small rectangular
mesh) (see figure 3.2.2). Subsequently, texture is independently synthesised into
individual Bézier patches (see section 6.1). The texture synthesis techniques adopted
result in a seamless texturing within patches. Depending on whether or not seamlessly
progressive texture synthesis is required, the use of the EZW algorithm (see section
6.5) is considered for coefficient prioritisation/selection in forming the texture blocks
(see figure 6.1) of a Bézier patch. The Bézier patches are subsequently embedded into
the surface mesh representation obtained using the rational parametrisation approach
which was presented in section 3.4.4. The visibility of seams between Bézier patches
is then reduced using a minimum boundary cut technique, i.e. graph-cut (see section
6.3.1). Figure 6.1 illustrates the block diagram of the fundamental unit of the proposed

overall texture synthesis algorithm of figure 6.2, i.e. the block diagram depicting the

Transform Domain Texture Synthesis on Surfaces 106

CHAPTERG6 Texture Synthesis on Geometric Surfaces

detailed procedure adopted in texture synthesis on a single bi-quadratic rational Bézier

patch.

As individual Bézier patches are textured independently, it is likely that visible seam
boundaries exist between patches (see figure 6.3). In the following section we

describe the use of a minimum boundary cut technique to minimise these artefacts.

(a) (b)

Figure 6.3: Artefacts at Bézier patch edges.

6.3.1 Using a Modified Graphcut Technique to Improve Bézier Patch Seams

To remove the edge artefacts between Bézier patches (see figure 6.3) we use a
modified version of the popular Graphcut technique proposed in [36]. Its operations

can be explained as follows;

Patch selection and matching: The idea of this stage is to replace Bézier patch seam
regions, with visible straight-line artefacts, with matching regions from the sample
texture, which can be better blended with the non-seam region texture. To accomplish
this task a block of size 2*" x 2*' (/=3 in our experiments), which will be called an
edge block is first selected from the patch boundary (see figure 6.4(a)). It is noted that
seams are included within this edge block. Subsequently we apply an n-level (n=3)
DWT on the selected edge block to create a DWT decomposed edge block, The LLn
and the HHn sub-bands of the decomposed block is then used to search the
decomposed sample texture for the best matching block, which is found using block

matching criteria (see figure 6.4(b)). Once the best matching block is found (see

Transform Domain Texture Synthesis on Surfaces 107

CHAPTERG Texture Synthesis on Geometric Surfaces

Figure 6.4(b)) it can then be combined with the edge block using the graphcut
approach in the transform domain (see section 4.4.2) in order to minimise seam

artefacts. After this an n-level IDWT is performed to obtain a pixel block.

Graphcut Approach: Once the best match to the edge block is found as above, we
apply the graphcut technique of [36] which is capable of optimally replacing the seam
region of the edge block with regions from the best matching block (see section 4.4.1)
in order to provide an optimal minimisation of boundary artefacts (see Figure 6.4(c)).
We apply the Graphcut technique (see figure 6.5) in the transform domain to reduce
the algorithm complexity and to get the best possible seams. The above modified edge
block is finally embedded back in its original position in the Bézier patch seam area.
This process is continued for all edge blocks along the Bézier patch seams. The results
illustrated in figure 6.6 when compared to the results illustrated in figure 6.3 prove the

improved quality at Bézier patch seams.

(a)Artefact block (b) Best Block

Figure 6.4: Seam selection

Figure 6.5: The Graphcut approach

Transform Domain Texture Synthesis on Surfaces 108

CHAPTER6G Texture Synthesis on Geometric Surfaces

(a) (b)

Figure 6.6: Refined Bézier patch edges

Feathering: Although the graphcut approach produces an optimum seam, the
optimality is restricted by the quality of the original edge blocks. Therefore, it is likely
that some artefacts still remain after the application of the graphcut approach. To
address this problem we use the popular feathering [87] approach that uses suitable
weighting factors to combine those pixels at the seams. Feathering results in further

improvements of the seam quality.

6.4 EMBEDDING TEXTURE ON RATIONAL BEZIER PATCHES

To embed texture on Bézier patches, we use a modified version of the approach
proposed by Soucy et al. [119]. The modification required is due to the use of a
quadrilateral mesh in the proposed approach as against a triangular mesh in the
original approach of [119]. The texture of each quadrilateral in the original mesh is
obtained via direct mapping [119] from the corresponding quadrilateral in a texture
space. The texture space referred to above is created as a result of the block placement
and matching procedure on Bézier surfaces, described in detail in section 6.1. The
quadrilaterals in texture space that we use are rectangular in nature and are uniform in
size. It is further noted that the above texture embedding can be performed at
interactive (real-time) rates. In our experiments all surfaces are rendered at interactive
rates using 1024 x 1024 sample textures. The surface models are composed of

between 1,000 and 50,000 quadrilaterals.

Transform Domain Texture Synthesis on Surfaces 109

CHAPTERG Texture Synthesis on Geometric Surfaces

(a) Texture (b) Paramettisized () Embedded
EBlock Mesh Texture on IWesh

Figure 6.7: Texture Embedding

6.5 PROGRESSIVE TEXTURE SYNTHESIS ON A 3D SURFACE

In order to extend our idea further and improve its applicability, the concept of
zerotrees of wavelet coefficients is used for progressive encoding of images (see
section 3.2). This uses the EZW algorithm, where the initial coefficient prioritization
procedure is used to prioritise their use within the proposed texture synthesis
algorithm, where we have replaced the IDWT with the EZWIDWT module (see figure
6.1). The threshold can be calculated using the magnitude of wavelet coefficients of
the decomposed sample image (see eq 3.6). The visually prioritized availability of
coefficients and the subsequent embedded coding of the coefficients enable seamless

progressive texture synthesis capability on bi-quadratic rational patches.

6.6 EXPERIMENTAL RESULTS AND ANALYSIS

In order to analyse the performance of the proposed progressive texture synthesis
approach we use three different geometric surfaces namely, a Dupin Cyclide, a Sphere
and a Torus. We carried out efficient implementations of the proposed algorithms in
OpenGL and C++, following a number of iterative stages of program design and
implementation. A range of sample textures with different characteristics were used in
the experiments [4]. Figure 6.8 and figure 6.9 illustrate the results. Figure 6.8
compares our new patch based approach to the pixel based approach proposed by
Turk’s [62]. It is observed that the proposed approach results in a marginally
improved texture quality with no visible seams. However the new algorithm is
significantly faster than the previous pixel based approach. Our experiments revealed

that the previous approach takes approximately an average of 15 to 20 minutes for

Transform Domain Texture Synthesis on Surfaces 110

CHAPTERG6 Texture Synthesis on Geometric Surfaces

progressive texture synthesis, whereas our present approach takes only an average of

the order of five seconds for synthesizing identical 3D objects.

Figure 6.10 shows the effectiveness of the proposed algorithm in the progressive
texture synthesis domain. It is noted that the average time required to synthesise the

textures on the geometric surfaces was in the order of five seconds.

A closer analysis of the results illustrated in figure 6.10 reveals the following
important facts:

e By varying the threshold selected for DW'T coefficient selection, within the
EZW scheme, discrete seamless levels of output quality can be obtained. See
figure 6.10 (al to a4, bl to b4, ¢l to c4).

e It is observed that for most types of textures, 15% of the DWT coefficients
from the sample texture are sufficient for creating output textures of sufficient
visual quality. See figure 6.10 (a4, b4, and c4). For regular textures this
percentage can be significantly lower (5% in our experiments) figure 6.10
(a2).

e Itis observed that the seams are rarely visible.

Given the above observations, the proposed technique can be proved to be beneficial
in applications that require fast and accurate progressive texturing capabilities such as
distributive and collaborative gaming or low bandwidth transmission applications.
Although due to space limitations we have restricted the number of progressive
texture synthesis results illustrated in figure 6.10 to four distinct quality levels, the
proposed method is capable of progressive texture synthesis at seamlessly different
numbers of quality levels, and a large number of sample textures covering broad
statistical texture properties. Due to the flexibility of the extension of the Bézier patch
based rational parametrisation scheme, the proposed approach can be further extended
to efficient progressive texture synthesis on any arbitrarily shaped 3D object (see

chapter 7).

Transform Domain Texture Synthesis on Surfaces 111

CHAPTERG Texture Synthesis on Geometric Surfaces

Figure 6.8: (a): Benchmark algorithm (Turk’s, see chapter 4), (b) Our present patch
based algorithm.

6.7 SUMMARY AND CONCLUSION

In the proposed algorithm a rational parametrisation stage is initially used to represent
the surface as a collection of bi-quadratic Bézier patches, onto which the texture is
synthesised using a multiresolution DW'T approach. We have used the popular EZW
idea of prioritizing the DWT coefficients and subsequently embedding the coding in
order to introduce progressive texture synthesis. To minimise seam artefacts at the
block boundaries within patches, we have successfully used an alpha-blending
algorithm, whereas to minimise artefacts at seams between patches we have
successfully proposed and used a transform domain extension to the popular random
patch cutting algorithm. the ‘graph-cut approach’, followed by a further feathering
algorithm at the exact seam locations. We have provided results to show the
effectiveness of the overall surface parametrisation and texture synthesis algorithms.
Further experimental results have been provided to show the effectiveness of the
measures taken to minimise seam artefacts, and the flexibility and efficiency of the

progressive texturing capability of the proposed algorithm.

We have used a Dupin Cyclide [6, 15], a Sphere and a Torus as examples to
demonstrate texture synthesis as these surfaces are widely used in computer graphics
and in the development of a number of CAD tools. It is further noted that the
presented algorithm is the first attempt of progressive and non-progressive texture
synthesis on geometric surfaces generated using bi-quadratic rational Bézier

equations.

Transform Domain Texture Synthesis on Surfaces 112

CHAPTERG6 Texture Synthesis on Geometric Surfaces

(d) Near regular (e) Regular (D) Irregular

Transform Domain Texture Synthesis on Surfaces 113

CHAPTERG Texture Synthesis on Geometric Surfaces

(i) Irregular

(j) Stochastic (k) Irregular (1) Irregular

Figure 6.9: Texture synthesis on a Sphere, Torus and Cyclide

Transform Domain Texture Synthesis on Surfaces 114

CHAPTER6

Texture Synthesis on Geometric Surfaces

(ad)-all% coefficients (b4)-all% coefficients

(c) Near-stochastic

(c1)-3% coefficients

(c2)-5% coefficients

(c3)-15% coefficients

(c4)-all% coefficients

Figure 6.10: Progressive texture synthesis on a Cyclide

Transform Domain Texture Synthesis on Surfaces

115

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Chapter 7

Control Polygon Based Texture Synthesis on 3D

Surfaces

7.0 INTRODUCTION

In this chapter, we extend and generalise the algorithm proposed in chapter 6 to
enable texture synthesis on arbitrary shaped 3D geometric surfaces. In addition the
generalised approach presented in this chapter is supported by an interactive user
interface, which increases the speed and quality of texture synthesis due to the
introduction of number of additional features such as the ability to define user defined
vector fields indicating the direction of texture synthesis in a given locality, use of
control polygons and effective projection techniques. Further experimental results are
provided to illustrate the practical use of the proposed texture synthesis algorithm in

resource constrained application domains.

It is observed that the algorithm proposed in chapter 6 suffers from two limitations.
Firstly, no control is provided on the size of the texture pattern in relation to the
geometry of a surface; secondly, no control is provided over the direction of the
texture pattern to be synthesised on a surface as it is determined by the algorithm and
therefore out of the control of the user. To overcome these shortcomings, in this
chapter we propose a control polygon based texture synthesis algorithm on 3D
surfaces. In overcoming the first limitation above the algorithm has been developed
based on texture synthesis on control polygon (see section 7.1). Initially, we
demonstrate the use of the proposed algorithm for texturing a single Bézier patch and
two smoothly joined Bézier patches. This algorithm is later extended to overcome the
second limitation by enabling the definition of the texture direction on a 3D surface

(see section 7.2). We show that the proposed texture synthesis approach that uses

Transform Domain Texture Synthesis on Surfaces 116

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Bézier patches as the basic unit of texture synthesis allows the algorithm's general use
in texture synthesis on many arbitrary shaped surfaces. Section 7.3 briefly discusses
the texture mapping approach used. Section 7.4 provides the experimental results and
analysis of proposed work and finally section 7.5 summarises and concludes the

chapter.

7.1 A CONTROL POLYGON BASED TEXTURE SYNTHESIS ON BEZIER
PATCHES

This algorithm is designed to address the first problem i.e. to gain control over the
size of a texture pattern in relation to the shape of the geometry of a surface. The
algorithm is similar to the previous algorithm (chapter 6), but with two major
changes: First, texture is synthesised on control polygon faces, Second, a random
block size is used, which is of better fit to the size of the control polygon face (see

figure 7.2). The detail of this algorithm is discussed below.

7.1.1 Projecting a 3D Face on to a 2D Plane

To synthesise a texture on a face of the Bézier control polygon and to obtain a better
fit of texture, one needs to appropriately align and project the face onto the texture
space. The mapping between control polygon faces and planer polygons on the texture

space should be isometric, i.e. preserving both angle and distance.

The alignment and projection procedure is illustrated in figure 7.1. A given arbitrary
surface F; (P, Py, P3, Py) can be assumed to be comprised of two triangles i.e. 1= A
(P, P3, Py) and 1,=A (Py, Py, Py) (see figure 7.1 (a)), with the surface normals denoted
by Ny, No. The angle between the normal of each triangle and the normal of the 2D
plane to which it is to be projected is measured initially. Subsequently the vertices of
each triangle are rotated such that their normals are aligned with the normal of the 2D
texture space. Finally the adjusted vertices are projected on to the 2D texture space
(see figure 7.1 (b)) and the two triangles are then combined together carefully such
that no overlap occurs (note: additional displacement of vertices of the shared edges

of the two triangles may be required). In figure 7.1, the arbitrary Bézier surface, F; is

Transform Domain Texture Synthesis on Surfaces 117

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

rotated/aligned and projected as F'y (P'y, P2, P's, PYy) {see figure 7.1 (b)) on the 2D

texture space.

These faces are then moved to the texture space and arranged next to each other as
illustrated in figure 7.1 (b). Subsequently we assign the texture space coordinates to
the corresponding control polygon faces, We begin with an actual texture synthesis

process which is described in the following section.

My

131

P3"

(a) (b)

Figure 7.1: 3D faces to 2D faces

7.1.2 Texture Synthesis on a Control Polygon Mesh

Figure 7.2 illustrates the texture synthesis algorithm which is an extension of our
previously proposed work. The texture synthesis process starts similarly by applying

2D DWT (e.g. Haar Transform) on a sample texture image, denoted as Iy

The basic idea of the proposed algorithm is to synthesise texture on control polygons
of a given Bézier patch. Let B, represent a general polygonal block of a
decomposed sample image located at position (x, y) relative to the sub-bands (p, 1)s
origin. Initially we randomly pick block B;;,. ., from the sample texture image with
identical size and shape to that of the control polygon face. This randomly created
texture block is mapped to the control polygon surface shown in figure 7.2. [Note: the

details of the mapping process are described in the following section. |

Transform Domain Texture Synthesis on Surfaces 18

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

In locating the next block to be synthesised, we cut an 8 pixel wide template of pixels
along the edge of already synthesised, neighbouring blocks, we then apply a 3 level
DWT decomposition on the template block and extract low-resolution and diagonal
detail bands, which are used for searching in sample LL3 and HH3 bands. The best
overlap area is subsequently n-level decomposed (n=3 in our experiments), and used
to find a suitable match for the adjacent block from the decomposed sample texture,
by minimizing the L2 norm (see section 3.3.1.2 figure 3.8). The EZW algorithm can
be used if coefficient prioritisation is used to further reduce complexity and enhance

quality (see section 3.2).

Paste block of shape and size
of face on control polygon /

EZWIDWT
A

3" Levelled DWT

Best Match

LL3 and HH3 bands — Location
]

LL3 and HH3 band

Figure 7.2: Proposed block diagram for texture synthesis on a Bézier control polygon.

Transform Domain Texture Synthesis on Surfaces 119

CHAPTER 7 Control Polygon Based Texwre Synthesis on 3D Surfaces

Finally the overlap area of the best matching edge is blended with the overlap area on
the original block using weighted edge blending. The non-overlapping area of the
block is picked from the sample texture and subsequently appended to the synthesised
texture. This process will continue till all the faces of the control polygon are mapped.
In some cases we have considered two or more overlapping areas for finding the best
match. Once texture is synthesised we project it on to a smooth surface, as discussed

in the following section,
7.1.3 Texture Projection on to a Smooth Surface

In order to project texture from the control polygon to the smooth surface, initially we
calculate a length/distance between each of the control points of the control polygon,
using the standard distance formula between two control points in 3D space.
Subsequently depending on these distances and using the correspondence between
points, we calculate the relative location of projections of these points on the smooth
surface, parameterised by 0 <s,r</. We then decide on the area of projection from the

control polygonal mesh to the smooth surface.

For clarity of presentation the projection of texture on a single dimension (i.e. a
Bézier curve) can be presented as follows. Assume that curve ¢’ (figure 7.3) is
generated using four control points £, P, P35 Pyvia the use of the Bézier curve
equation 7.3. Further the lines, P; to P, P> to P; and P; to Py are assumed already
textured (see figure 7.3). We calculate the length between these control points, as say

I, I and /5 The total length /, , between the contro] points is calculated as the sum,

k
[“- = 21; (7.1)
i=l

Where /; is the distance between two adjacent control points, and k is the total number
of adjacent pairs of control points. We normalize all the control point lengths to a unit

length /; which is calculated as.

I

Transform Domain Texture Synthesis on Surfaces 120

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Once the parameterization of the curve has been completed as described above,
projecting the texture onto the curve becomes fairly straightforward. It was mentioned
that the texture on line segment P, to P> gets projected on to the smooth curve P, to

¢’> where ¢'> can be calculated using the Bézier curve equation 7.3 as;

, 2 bl Jaiv;
c‘,"(f;}_k Jm j;f} nj TA i ,f‘ 0< ’r%.f(<]
Z,i:r)bm.j('f'f‘.k)

(7.3)
where () are the weights defining the specific shape of the smooth surface, V; are
the Bernstein vectors and b, (s) is a Bernstein polynomial. The texture projection in

general is represented as follows:

Texture (¢'(s)) = Texture (p(s)) 0ss<1 (7.4)
Therefore in general a patch can be textured using the following equation,

Texture (smooth parch (1, 5)) = Texture (control polygon (1,.5)) 0<si1<1 (71.5)

£ (x2) T Fyxy.2)

P xy,z) 5xyz)
i 0 1

Figure 7.3: Basic projection approach
We used the above projection approach to project texture from the control polygon to
a given smooth surface. (see figure 7.4(a) and 7.4(b) tllustrates the mapping of texture

from the control polygons onto the smooth rational surface).

Note that the closer the control polygon is to the smooth surface representation, the

lesser will be the distortion in projection and vice —versa.

Transform Domain Texture Synthesis on Surfaces 121

CHAPTER 7 Controt Polygon Based Texture Synthesis on 3D Surfaces

Projection

(a) (b)
Figure 7.4: (a) Synthesised texture on the control polygon (b) Projection from control

Polygon to smooth surface.

7.1.4 Experimental Results and Analysis

In order to analyse the performance of the proposed algorithm. and to show that
arbitrarily shaped 3D surfaces can be rendered effectively, we have implemented the
proposed algorithm in OpenGL. C++. The operating system used was Windows XP
(Professional). A Pentium 4 CPU, 2.80 GHz was used with 2.00 GB RAM.

Experiments were performed on a diverse range of texture samples that include
regular, near-regular, irregular and stochastic (Lin et al., 2004) textures. Results
illustrated in figure 7.5 indicate the ability of the proposed technique to efficiently
map and synthesise texture on surfaces, with minimal artefacts. Furthermore, as
matching and searching is performed in the wavelet domain. the texture synthesis is
fast. Further experimentation revealed that the time required to synthesise these

textures is in the range of a few milliseconds.

To further extend the functionality of the proposed method. we have extended our
work to progressive texture synthesis on surfaces. We have preformed a wide range of
experiments (see figure 7.6 & 7.7) to show that texture can be synthesised at
seamlessly different levels of quality on surfaces, without consuming noticeable
processing time. Figure 7.6 (c) illustrates the synthesis of a stochastic texture of a
flower. It is evident from the results that only 10% of the information from the sample
texture is sufficient (o create a texture with sufficiently rough quality. By increasing
the percentage of coefficients further, the quality of the synthesised texture can be

seamlessly improved. Further experiments revealed that for this texture, 20% of the

Transform Domain Texture Synthesis on Surfaces 122

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

coefficients were sufficient to synthesise a texture visually equal to the texture that
can be synthesised when all coefficients are utilized. Progressive texture synthesis
gives the added advantage of being able to truncate a bit stream representing the
sample texture at any intermediate stage, still being able to synthesise texture at some

intermediate quality level.

To further illustrate the application of the proposed idea, we have extended our
approach to synthesizing texture on two smoothly joined rational Bézier surfaces.
shown in figure 7.7. Figures 7.7(al, bl, cl) to 7.7(a4, b4, c4) illustrate progressive
texture synthesis on this surface using three different types of texture. This proves that
the proposed technique can be extended to cover texture synthesis on many different
geometric topologies. The results in figure 7.7 further illustrate that when using
regular and near-regular texture samples, texture variations across patch boundaries

are smooth.

Transform Domain Texture Synthesis on Surfaces 123

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Ut §t becocnes batder to 1a
ound ftaelf, ar “this dafly
wving rootns,” 33 House De
mcribed it laat fall Hefo
Jthe lefta ringing questic
e years of Monics Lewn
fnd Tripp?™ That cow tec
Zalitical cormedian Al Fra
rxt phase of the stony will

near-regular near regular stochastic regular regular irregular

G DL S yri
Fftertis o g,
O a‘h.s:;ﬁ'_ﬂ.u'“u‘" 'immﬂ

pa e et S g
, il How ayed it by Seoman
; ,';’yﬂ‘""::fm«\‘-hlm"’lﬂlnh‘?:::'ﬂqﬁ.:.‘ R

f',;c-:":,;mpu; L0160 0 1010 M gy ettt e
”"::ﬁ'*""‘“"“"""h TR TR T rmh bl e}
Tt et Faowedan ALPaLivial comel comudin o] ch'.'::,:}P A
‘ot sy will the 3Ly Tt phuse of thast of the 501 hiune of toat st i T

(c) (d)

(e) (f)

Figure 7.5:Texture synthesis on a biquadratic surface

Transform Domain Texture Synthesis on Surfaces 124

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

(a4) 20% coefTicients (b4) 20% coefficients (c4) 20% coefficients
Figure7.6: Progressive texture synthesis on a biquadratic surface.

Transform Domain Texture Synthesis on Surfaces 125

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

s

7/‘ P

(d) Two smoothly
(a) regular (b) near-regular (c) regular) (e) Smooth Mesh
joined patches

- W W

g a3

!u p . gt

(al) 1% coefficients (aZ) 2% coefficients (a3) 6% coefficients (a4) ALL coefTicients

(bl) 2% coefficients (b2) 4% coefficients (b3) 6% coefficients (b4) ALL coefficients

(cl) 2% coefficients (¢2) 4% coefficients (c3) 6% coefficients (c4) ALL coefficients

Figure 7.7: Progressive texture on two, connected biquadratic surfaces

Transform Domain Texture Synthesis on Surfaces 126

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

7.2 A CONTROL POLYGON BASED TEXTURE SYNTHESIS ON BEZIER
3D MODELS

This algorithm is designed to address the second limitation i.e. to gain control over the
direction of a texture pattern over a surface and to provide the complete GUI for a
user in order to mark the vector direction on a given surface. The algorithm is an
extension of the previous algorithm (chapter 7.1) which includes all previous features.
The algorithm is further generalised to cover many surtace topologies. The details of

the algorithm can be discussed as follows:

7.2.1 An overview

The basic logical flow of the proposed algorithm is illustrated in figure 7.8. The
process begins with the reading of the Bézier control polygonal information from the
Bézier Patch Format file (see section 7.2.2) of the 3D surface. Subsequently the user
interactively marks the required texture directions on the control polygons in the form
of vectors (see section 7.2.3). All faces of the control polygons are then projected on
to a 2D plane (see section 7.1.1). The user defined vector fields representing the
expected texture directions along with the polygonal faces gets projected on to the 2D
plane (7.2.3). The first marked user defined vector is considered the anchor vector and
is used to initiate vector propagation (see section 7.2.4). It is noted that the time taken
for vector propagation depends on the time spent by the user in manually marking the

vector fields.

Once the above process has been completed, the texture synthesis commences, where
each of the Bézier control polygonal faces are synthesised (according to sections 7.1).
Finally, the synthesised textures on control polygons are projected back onto the
actual Bézier patches representing the 3D surface (section 7.1.3), thus completing the

texture synthesis process.

Transform Domain Texture Synthesis on Surfaces 127

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Read Bézier data and generate the object

ark user defi vectors i
Mark user defined vectors Project the

polygonal faces
Project vectors to the to the 2D plane.
2D plane

Propagate the user defined
vector on remaining 2D Faces

Rotate all polygonal faces as per propagated vector

'

Synthesise texture on control polygon

.

Project texture on to the Bézier surface
Figure 7.8: Logical flow of the proposed algorithm

The following sections provide further design and implementation details of each sub

process of the proposed texture synthesis approach.
7.2.2 Bézier Patch File Format[120]

The BPT file format is a very simple text file format. The first line contains the
information of the number of patches in the file. Each patch record is followed
immediately by the next, and consists of the following items: Two integers, u and v
representing the dimensions of the patch (e.g. 2, 2 for biquadratic and 3, 3 for a
bicubic patch); one control point per line, for u * v lines (e.g. 16 control points for the
bicubic and 9 for the biquadratic). The control points are four double values, separated
by spaces. The first three double values are x, y, z and fourth double value is the
weight. Control points move along the first dimension are specified first, then the
second. Therefore, for a "1, 2" patch, the first two would be the first edge, the next

two would be the centre, and the final two would be the far edge of the particular

Transform Domain Texture Synthesis on Surfaces 128

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Bézier patch. For ease of understanding, the format of the file can be summarised as
follows:
Example of file format:

<n - number of patches>

<up> <vp>

<Xp 0> <Y 0> <Zpp=> < W)=

<X 02 <Y1 0> <2 p>< W) >

LKXu- 102 <Yu-10= <Zy-1 0>< Wy | 0>

<X 12 <Y 1> <) 1>< W 1>
LKu-1v-12 <Yu-1yv- 12 <Zy- | v- 1< Wy v 1>
<> <Vy>
<> <V>
K-t v-12 <Yo-dv- 12 <Zy- v 12< Wil v 1>
The following (see figure 7.9) is an illustration of a rendered patch. For the given nine

control points, the biquadratic surface patch defined by them has been computed and

drawn.

4]

(a) (b)

Figure7.9: (a) Green Colour: Biquadratic control polygonal points, Red Colour: The

smooth surface mesh generated using control polygons (b) Control polygonal mesh

(note: for 9 control points, 4 faces are generated.).

Transform Domain Texture Synthesis on Surfaces 129

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

7.2.3 User Defined Tangential Vectors and their Propagation

This is the most frequently used approach in maintaining realism in 3D texture
synthesis. It allows the user to interactively specify texture directions (user defined
tangent vectors) on selected patches, which are (i.e. the directions) subsequently

propagated to provide the texture directions of all other patches defining the surface.

In our approach the user initially marks texture directions on a selected number of
faces (note: minimum of one face is required). The algorithm then considers one of
the marked faces (usually the one selected first) to be a ‘seed face’ and will select a

neighbouring non-marked face to commence vector propagation.

The vector 7, of a non marked face, ¢, is calculated as follows:

(7.6)

where 7, is the vector of the non-marked face (i.e. the field being calculated) and

¢ o SO 1

. represent the vector fields of the marked faces, from the k-connected
neighbourhood. (note: in our experiments, k = 8). Starting from a neighbouring block
of the seed face we use the above equation to propagate the texture field to cover all

non-marked faces of the 3D object.

Once 7, is obtained using equation 7.6, it may not be parallel to the face. Therefore
we project the vector field into the plane of the face, 7., , as follows:

T, =T %o, + T; . *a, (F7H)

where,

a,=bT,, a, =b,*T,, (7.8)
and b, b,are the face basis vectors i.e., they lie in the plane of the face. The vector

fields thus obtained are used for the appropriate rotation of the face after being

Transform Domain Texture Synthesis on Surfaces 130

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

projected onto the 2D plane, which is discussed in the next section. This results in

minimizing distortion at the patch boundaries.

7.2.4 Project 3D Face on to 2D Plane

To synthesise a texture on a Bézier surface, one needs to appropriately align and

project all faces onto the texture space, which is discussed in section 7.1.1.

The alignment and projection procedure is illustrated in figure 7.10. In figure 7.10, the
arbitrary Bézier surface, F, is rotated/aligned and projected as 'y (P'y, P, P'5, P'y) (see
figure 7.10 (b)) on the 2D texture space. In carrying out the above explained
projections, if a given Bézier polygon has been assigned a user defined vector field, it
is appropriately transferred to its projection in the texture space figure 7.10 (b)).
Subsequently following the vector field propagation procedure explained in section
7.2.3, the user defined, projected vector fields are propagated to obtain the vector
fields of all projected polygons. All projected faces are finally rotated so that their
vector fields (i.e. vectors that define their intended texture direction) are aligned with
the y-direction of the texture space (see figure 7.10 (c) and (d), i.e., F'; is rotated to
F"'y (P"y, P", P"3, P"y) in order to obtain a desired, realistic texture pattern on to the

surface.

These faces are then moved to the texture space and arranged next to each other as
illustrated in figure 7.10 (d). Subsequently we assign the texture space to the
corresponding control polygon faces. We begin with the actual texture synthesis

process which is described in the section 7.1.2.

Transform Domain Texture Synthesis on Surfaces 131

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Figure 7.10: 3D faces to 2D faces

User defined vector direction and propagation gives smooth flow of texture patterns
on a surface. However in general mismatches of texture direction on individual
patches may result in the formation of a seam in the patch overlapping area. To
overcome this problem, we have proposed a weighted blending function which
changes the blending parameter as the direction is changed. This is described in the

following section 7.2.5.

7.2.5 Weighted Edge Blending based on Direction

Blending in 2D texture synthesis is straightforward as compared to the 3D equivalent.
When blending texture in 3D, the direction of texture blending should be changed as
the direction of the synthesis process is changed. This is considered as a key

challenge.

Transform Domain Texture Synthesis on Surfaces 132

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Texture synthesis over 3D faces mostly depends on the user defined vector field and
propagation of vectors. For any quadrilateral face there are four directions of blending

(see figure 7.11).

Figure 7.11: Four direction of blending

Experiments have shown that obtaining a 100% accurate match as a neighbouring
face at all times is rare. Therefore some seams will appear along the patch edges if left
unprocessed. To improve blending and to avoid any artefacts, we have designed the

following weighted edge blending function.

The general idea of weighted edge blending is based on gradually reducing the
luminance contribution made by a neighbouring face to its seams, whilst moving
away to an adjoining face across seams. In our proposed algorithm weighted edge

blending is carried out in the pixel domain.

Let W represent an empirically defined matrix capable of performing weighted edge
blending in the pixel domain, via a matrix multiplication with the overlap area. [Note:
the top left hand corner coeftficient of W is a calculated value and is an approximation
to 0]. The size of W depends on the width of the overlap. In our experiment we have
assumed that the width of overlap is eight pixels and have therefore defined W to be

of size, w X w (w=width).

[0.0 0 0 0 0 0 0 4]
0 1/w §] 0 0 0 0 1]
4] 0 2/w 0 0 Q 0 0

' (7.9)
0 0 0 e () 0 0 0
W=

0 0 0 0 « 0 0 0
() () 0 0 0 e 0 0
0])] 0 0 0 (w-2)Iw 0

L@ o 0 000 0 (w=1)/w]

Transform Domain Texture Synthesis on Surfaces 133

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

Let the overlapping areas of two adjoining faces, i.e., the edge of the first face be
denoted by Edge,,,, and matched edge of the second face be denoted by Edge, .. The

resulting blended overlap area, Opjendoap an be represented by,

@)

vonioray = Edlge,,,, X W+ Edge, W) (7.10)

lolap 2olap

x(1

idenr

Where 7, is an identity matrix. Edge,

Tolap ¥

Edge,,,, are of size w x height.

Figure 7.12: Swap direction of blending

Figure 7.12 illustrates the blending of three matching patches. Let’s assume that all
faces have already been textured. When considering the blending of texture of patch
F) to that of patch F; we use Eq (7.10) as the blending function, where the area dy of
patch Fy overlaps the area ds of patch Fi. However when patching F» to F), the area
depicted ds overlaps the area depicted d4 of patch Fy In this situation it is important to

decide whether w should multiply Edge or Edge,,,, in eq. 7.10. This decision

totap
depends on the face which is to be overlapped, which is decided on the basis of
whether the pixel value of the inside edge of an already synthesised texture is to be
changed or to be maintained the same. If it is to be changed then we swap the

blending direction around and the equation changes to,

O:‘){c.’h.’m’rr,n = Edgeiniup X (I ident ~ W) g lfdgg_’uhqv xW (7.11)

This switch over helps in maintaining a smooth texture pattern on the surface. Further
the blending function gets swapped around as the blending direction changes, while

the surface is being synthesised. Figure 7.13(a) shows the texture synthesised on a

Transform Domain Texture Synthesis on Surfaces 134

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

surface without the use of blending and figure 7.13(b) shows the texture synthesised

3D object when weighted edge blending as described above, has been used.

Figure 7.13 (b): Texture with swap blending

7.3 Texture Mapping on Control Polygons

In our implementation we have adopted a strategy in which we initially create
propagating seed vector directions, which are subsequently used to smooth the surface
vector field. However alternatively a number of other surface vector field generation
techniques (Wei-Levoy [60]; Turk [62]: Ying et al., [63]) can be used to replace the
approach we have selected above. Once vector fields are assigned to all control
polygonal faces, we rotate all the faces according to their tangential vector field and
surface normal, thus placing all faces in the same 2D plane. Using a modified version
of Soucy et al.’s, 1996 [119] approach, (note: modified from using triangles to using
polygons) a texture map T is created. For each face of the control polygon, we
calculate the bounding box of the face and then map it to a corresponding face in 7 in
a compact form, i.e. with no space being wasted. The faces in T are textured using the
corresponding best matching block. The faces in T that we use are of non-uniform

size, which are a better fit to the shape and size. It is noted that the resulting texture

)
hn

Transform Domain Texture Synthesis on Surfaces 12

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

can be rendered on the control polygon surfaces at interactive rates. The images
illustrated in section-4 (See figure 7.14, 7.15 and 7.16) were rendered in this manner
using 256 x 256 textures. The models used in our experiments are composed of
smooth surfaces having between 1000 to 20000 faces, whereas the control polygons
used consisted of 100 faces to 400 faces (It can be further increased to an arbitrary

number of faces.) We have observed that these surfaces render at real-time rates.

74 EXPERIMENTAL RESULTS AND ANALYSIS

In order to analyse the performance of the proposed algorithm, and to show that
surfaces can be rendered effectively, we have implemented the proposed algorithms
using OpenGL. C, and C++. The operating system used was Windows

XP(Professtonal). A Pentium 4 CPU, 2.80 GHz was used with 2.00 GB RAM.

Experiments were performed on a diverse range of texture samples that include
regular, near-regular, irregular and stochastic {Lin | textures. Results illustrated in
figures 7.14, 7.15, 7.16 and 7.17 clearly indicate the ability of the proposed technique
to efficiently map texture with minimal visual artefacts on arbitrary shaped 3D
surfaces that include the Utah Teapot, Cup and a number of 3D geometric surfaces

such as a Cyclide, Torus and a Sphere.

In particular, figure 7.14 illustrates two examples each of texture synthesis on a 3D
surface (i.e. the Cup) for two regular textures. Note that each synthesis on the Cup
using a given texture relates to a different vector direction. The results illustrated
clearly demonstrate that visually appealing textures can be flexibly syathesised via the

use of a vector field, when using the proposed approach.

Figure 7.15 illustrates the complete cycle of the proposed texture synthesis process on

a Bézier surface. The associated stages are labelled in figure 7.15 (a)-(d).

Figures 7.16 and 7.17 respectively illustrate synthesis results of a wide variety of
texture samples on arbitrarily shaped and geometric, 3D surfaces. respectively [the
zoomed result is presented in Appendix B]. Tables 7.1 and 7.2 tabulate the number of

decomposition levels of the DWT that was used to generate the texture synthesis

Transform Domain Texture Synthesis on Surfaces 136

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

results for each 3D object. Note that it is efficient to use the appropriate number of
decomposition levels of DWT for different textures as the amount of detail required
for good quality texture synthesis differs from texture pattern type to type. For
example our experiments revealed that stochastic textures can be effectively
synthesised using the sub-bands of the 3" Jevel of DWT whereas irregular textures
require the sub-bands of the 2™ level of transform and near-regular, regular textures
require sub-bands of the 1™ level of transform (see tables, 7.1 and 7.2). However
further analysis of the results tabulated in Table 7.1 and 7.2 revealed that there is no
conclusive evidence between the regularity of texture and how many decomposition

levels should be used.

[rregular

Irregular

Figure 7.14 (a, b): Texture patterns synthesised over the 3D surface, Cup, which

depends on the direction of the marked tangential vector.

Transform Domain Texture Synthesis on Surfaces 137

CHAPTER 7 Control Polygon Based Texwre Synthesis on 3D Surfaces

The synthesis speed varies not only based on the number of patches that cover the 3D

shape but also on the nature of the texture sample.

Model Texture Pattern No of Patches Level n
Teapot Regular (figure 7.16 (a)) 32 2
Teapot Near-Stochastic (figure 7.16 (b)) 32 3
Teapot Irregular (figure 7.16 (c)) 32 2
Teapot Near Regular (figure 7.16 (d)) 32 i
Cup Irregular (figure 7.16 (e)) 26 2
Cup Stochastic (figure 7.16 (f)) 26 3
Cup Near-Stochastic (figure 7.16 (g)) 26 3
Cup Regular (figure 7.16 (h)) 26 2

Table 7.1: Arbitrary surface

Model Texture Pattern No of Level n
patches
Torus Near-Stochastic (figure 7.17 (a)) 16 3
Torus Irregular(figure 7.17 (b)) 16 2
Torus Irregular (figure 7.17 (¢)) 16 2
Torus Near-Stochastic (figure 7.17 (d)) [6 3
Cyclide Stochastic (figure 7.17 (e)) 16 3
Cyclide Irregular (figure 7.17 (f)) 16 2
Sphere Stochastic (figure 7.17 (g)) 8 3
Sphere Regular (figure 7.17 (h)) 8 2

Table 7.2: Geometric surface

To further extend the practical applicability of the proposed method, we have
extended our work to progressive texture synthesis on 3D surfaces. We have
performed a wide range of experiments. Figure 7.18 and 7.19 illustrate that using the

proposed approach, texture can be synthesised at seamlessly different levels of quality

on 3D surfaces. Figure 7.18 and 7.19 illustrate the synthesis of an irregular texture of

Transform Domain Texture Synthesis on Surfaces 138

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

an animal skin pattern on the Utah Teapot. It is evident from the results that only 20%
of information (i.e. DWT coefficients) from the sample texture is required to create
texture with sufficiently good quality, i.e. equivalent to which could be achieved when
using all of the texture information. It is observed that by increasing the percentage of
the coefficients used in texture synthesis, the quality of the texture can be seamlessly
improved. Due to space limitations we have restricted the number of discrete texture
results to eight, whereas the proposed method is capable of progressively synthesising
texture at seamlessly different number of levels. It should be noted that progressive
texture synthesis gives the added advantage of being able to truncate a bit stream
representing the sample texture at any intermediate stage still being able to synthesise
texture at some intermediate quality level. Further, the texture synthesis results on
arbitrarily shaped 3D objects prove that our technique can be extended to many

surface topologies.

7.5 SUMMARY AND CONCLUSION

This chapter presented a novel DWT based approach for synthesizing texture on a 3D
surface. which is made of an arbitrary surface defined using Bézier patches. The idea
is to achieve good quality progressive texture synthesis on 3D surfaces, without being
limited by its geometrical shape. None of the previously proposed algorithms have
investigated the use of Bézier surfaces for texture synthesis. In other words Bézier
surfaces have been widely overlooked by the texture synthesis community. However
Bézier surfaces have various positive properties such as, animation fiexibility and
compact representation of vertices, which required less storage and transmission
space. This is the first attempt taken to prove the feasibility of texture synthesis on
Bézier surface using control polygonal information. The proposed method has the
capability of synthesizing texture at seamlessly different quality settings. This
functionality is not possible via existing state-of-the art techniques. The texture
synthesis process is reliant on the user interaction, where the user sets few vector
fields on the control polygon of the Bézier patches. These set vectors are then used to
propagate texture all over the surface. The initial texture is synthesised on a control
polygon. The synthesised texture is then projected on a smooth surface. This approach

gives further gain in the processing texture on the surface.

Transform Domain Texture Synthesis on Surfaces 139

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

The use of visual prioritisation of information in the sample image during texture
synthesis allows the task to be carried out at a higher speed but at an equivalent visual
quality level. We show that the proposed approach is computationally efficient and
results in good quality texture synthesis. Further due the ability to prioritise visually
significant coefficients, we have discussed the proposed method’s possible use in
bandwidth-adaptive/compressed-domain applications such as remote visualization,
We have shown that the control polygon strategy used can be extended to cover

synthesizing texture on many 3D objects with arbitrary surface topologies.

We have used a Dupin Cyclide [6, 15], a Sphere and a Torus surface as examples to
demonstrate texture synthesis on geometric surfaces. These surfaces are widely used

in computer graphics and in the development of a number of CAD tools.

Transform Domain Texture Synthesis on Surfaces 140

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

(a) (b) (c) (d)
Figure 7.15: Complete cycle of the proposed texture synthesis process, (a) The sample

texture (b) User defined, marked vectors (c¢) Texture synthesis on the control
polygons of the 3D model (d) Smoothly projected texture on the actual surface

(b) Near-
Stochastic

—
B
fl Regular
'Y

/

e) Irregular

Regular

(g) Near-
ochastic

Transform Domain Texture Synthesis on Surfaces 141

CHAPTER 7

Control Polygon Based Texture Synthesis on 3D Surfaces

(a) Near
Stochastic

(c) lrregular

(e) Stochastic

(g) Stochastic

(d) Near
Stochastic

Figure 7.17: Texture synthesis on a Torus, Cyclide and a Sphere

Transform Domain Texture Synthesis on Surfaces

142

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

e 5 "*;*"f

(c) 7% Coefcients

(g) 18%Coetticients (h) All Coefficients
Figure 7.18: Progressive texture synthesis on the Teapot

Transform Domain Texture Synthesis on Surfaces 143

CHAPTER 7 Control Polygon Based Texture Synthesis on 3D Surfaces

(c) 7% Coefficients (d) 10% Coefficients

(e) 15% Coefficients () ALL% Coefficients

Figure 7.19: Progressive texture synthesis on the Teapot !

Transform Domain Texture Synthesis on Surfaces 144

CHAPTER 8 Conclusion and Future Research

Chapter &

Conclusion and Future Research

This chapter summarizes the key ideas presented in chapters 4, 5, 6 and 7, draws
conclusions and emphasizes the important contributions made by the research
presented in this thesis. It also gives an insight into possible future directions of
research, particularly with the intention of further extending the functionality and

efficiency of the proposed algorithms.

In summary, the thesis presents five original contributions to the state-of-the-art in
texture synthesis. The first contribution was an extension to the pixel domain 2D
texture synthesis algorithms of Turk [62], so that it can be used for progressive texture
synthesis. The second contribution was an extension to Wickramanayake et al.’s patch
based, transform domain texture synthesis approach (35, 39]. In this effort the non-
optimal patch quilting approach adopted by Wickramanayake et al. was replaced by a
optimal, transform domain extension of the popular max-flow, min-cut graph-cut
algorithm[36] effectively exploited in pixel domain in Kwatra et al.’s texture
synthesis algorithms on planar (2D) surfaces [36]. It is noted that Turk’s,
Wickramanayake et al.”s and Kwatra’s texture synthesis algorithms have been used as
benchmarks to evaluate the performance of the proposed improvements and
extensions to the original algorithms. Further, the thesis reports a third original
contribution in the design and implementation of a modified and improved version of
Wickramanayake et al.’s transform domain texture synthesis idea in texture synthesis
on Bezier surfaces. It was noted that the texture synthesis on Bezier surfaces enables
the idea to be extended to texture synthesis on any geometric surface giving a
compact representation of surface texture and the flexibility of random surface shape
changes. With the fourth original contribution this work was further extended to
texture synthesis on meshes representing 3D geometric or arbitrarily shaped objects.

The final contribution concentrated on texture synthesis on control polygons that were

Transform Domain Texture Synthesis on Surfaces 145

CHAPTER 8 Conclusion and Future Research

subsequently matted into the smooth surfaces of the corresponding 3D objects. This

further implemented the means of specifying the direction of texture flow by a user.

Chapter 4 presents the first contribution in which G. Turk’s popular, pixel domain
texture synthesis algorithm was converted into a transform domain texture synthesis
algorithm that enables progressive texture synthesis. It was shown that the multi-
resolution DWT domain representation of the sample texture and the use of the so-
called EZW ideas in prioritisation of DWT coefficients enable effective progressive
texture synthesis. The novel algorithm was shown to be capable of synthesizing
textures of any progressive texture quality using a embedded bit stream that represents
the sample texture, as compared to the fixed number of pre-selected quality levels to
which the original Turk’s algorithm was limited. Further it was shown that a
perceptually equivalent level of output texture quality can be achieved using a lesser
amount of textual information (ie. a subset of perceptually important DWT
coefficients) resulting in a faster texture synthesis as compared to the original
algorithm. It was discussed that the progressive texture synthesis capability improves
the algorithm’s potential usability in remote visualization applications, due to the

flexible and effective use of bandwidth and required computational power.

Chapter 5 presents the second novel algorithm which was developed based on a
thorough analysis of advantages and disadvantages of Wickramanayake et al.’s [5. 39]
and Kwatra et al.”s [36] texture synthesis algorithms. The novel algorithm combined
the most efficient features of both algorithms; i.e. the fast, transform domain patch
matching process of Wickramanayake et al.’s algorithm and the optimal, graph cut
based patch quilting approach adopted by Kwatra et al. To enable the seamless use of
both algorithms within a single texture synthesis algorithm, the pixel domain graph-
cut approach originally adopted by Kwatra in patch quilting, was modified to be
effectively used within a multi-resolution DWT domain representation of texture.
Further the computationai complexity of the graph-cut approach was kept to a
minimum by using sub-ordinate and refinement stages in the synthesizing process.
The sub-ordinate stage introduces an initial cutting path which was subsequently
refined, by using neighbouring wavelet coefficients progressively, thereby reducing
algorithmic complexity. Experimental results and an in-depth analysis was provided

to justify that the proposed method produces better synthesised texture quality as

Transform Demain Texture Synthesis on Surfaces 146

CHAPTER 8 Conclusion and Future Research

compared to the method proposed in [5, 39] and provides similar or better quality

results compared to Kwatra et al.’s [36].

Chapter 6 presents the third novel algorithm which is essentially an extension of the
planar transform domain texture synthesis algorithm of chapter 5 into texture
synthesis on parameterised rational biquadratic patches. It was shown that this
algorithm was able to perform good quality texture synthesis at real-time rates.
Experimental results were provided to prove that the method was capable of fast
texture synthesis on geometric surfaces that can be represented by parameterised

rational biquadratic patches, e.g., Dupin Cyclides, Spheres and Toruses.

Finally chapter 7 presents the fourth and fifth novel contributions of the thesis. The
fourth contribution focused on a novel approach to texture synthesis on Bezier
patches. This algorithm overcame the limitations of the algorithm that was presented
in chapter 6, i.e. not having control over the size of texture pattern to be used in
synthesis thus extending its applicability to more practical domains. The underlying
texture synthesis process though somewhat similar to the algorithm of chapter 6 had
two major differences; 1) in the previous approach the texture block size is the same
in both the synthesis and embedding processes, where as in this case the block size is
picked randomly, 2) instead of synthesizing texture directly on to a surface. it is
synthesised on a control polygon. A random size block provides a better fit of a shape
as well as size of a control polygon face. which provides flexible control over a
texture pattern while being synthesised onto a surface. Further it was shown that
synthesizing onto a control polygon mesh optimises the synthesizing process. This
basic approach showed that texture can be efficiently synthesised onto a control
polygon, which can then be projected onto a smooth Bézier patch. The algorithm was
shown to provide a compact representation for texture as well as patches. It was
shown that the algorithm can be applied to a wide variety of texture patterns and
surfaces. Further the EZW algorithm was utilized to enable progressive texture

synthesis capabilities.

The fifth contribution of the thesis presented in Chapter 7, provided an interactive
GUI for texture synthesis on arbitrarily shaped surfaces. The underiying texture

synthesis approach adopted inherited all positive properties and functionalities of the

Transform Domain Texture Synthesis on Surfaces 147

CHAPTER 8 Conclusion and Future Research

| novel algorithms presented previously in the thesis. Further it provided added
; functionality in providing the user with the ability to define tangential vectors
l indicating required directions of texture synthesis on a given surface. Experimental
‘ results were presented on both arbitrary and geometric 3D surfaces, which showed the

flexibility and efficiency of the novel approach.

Therefore all objective stated in chapter | have been achieved. However there are

possibilities to further improve the contributions of this thesis.

In the implementation of the proposed algorithms we have not focused on software
optimization. This has made it difficult to quantify the speeds of the proposed
algorithms, Further our implementations of the state-of-the-art algorithms, which
have been used as benchmarks, have not been optimised. Therefore further work will
be required in software optimization, allowing a fair quantitative comparison of the

speed of all algorithms,

Work is now in progress on the use of hardware acceleration to further speed up the
proposed texture synthesis processes. The effective use of a GPU (Graphics
Processing Unit) will give further gains in the synthesizing process. In addition, we
are currently looking at extending the idea refated to rransform domain texture

synthesis to more complex NURBS surfaces,

The transform domain edge cutling techniques proposed in this thesis can be used for
many alternative applications such as, view morphing, image stitching, image
restoration etc. Furthermore, the texture synthesis methods discussed in this thesis,
and the results of the extensive experiments are useful in video texture synthesis

applications.

The use of the Bézier surfaces in texture synthesis provides additional functionality.
In particular, the use of the proposed texture synthesis approaches on antmated
surfaces needs to be further studied. Such a study should address the relationship
between the amount of movement in control points and the synthesised texture pattern
over a surface, in order to realistically animate the change of the texture pattern on an

animated surface. Further incorporating various motions on a control polygon will

Transform Domain Texture Synthesis on Surfaces 148

CHAPTER § Conclusion and Future Research

reflect the movement of the texture pattern on the surface. Further studies on
converting any given 3D model to a Bézier model requires to be done. Such a model

will enable simultaneous compression of the mesh and synthesised texture.

Further the proposed texture synthesis algorithms can be implemented within many
software tools such as 3D Max, Maya, CAD and even advanced modelling systems in

order to further extend their capabilities.

Transform Domain Texture Synthesis on Surfaces 149

References

References

[

(3]

(4]

(5]

(6]

171

8]

IEEE standard glossary of image processing and pattern recognition
& 3 J : ! &

terminology, standard 610.4, IEEE Press, New York, 1990.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley
Publications, 1993.

A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

W-C. Lin, I.LH. Hays, C. Wu, V. Kwatra, and Y. Liu, A Comparison Study of
Four Texture Synthesis Algorithms on Regular and Near-regular Textures.
Tech. report CMU-RI-TR-04-01, Robotics Institute, Carnegie Mellon

University, January, 2004.

D. S. Wickramanayake, E. A. Edirisinghe, and H. E. Bez, Zerotree Wavelet
Based Image Quilting for Fast Texture Synthesis, Proceedings of Pattern
Recognition and Image Analysis: Second Iberian Conference, [bPRIA 2005,
Estoril, Portugal, Part 1 , Springer Lecture Notes in Computer Science
(LNCS). vol. 3522 (2005). pp 384, ISSN: 0302-9743, ISBN: 3-540-26153-2,
June 7-9, 2005.

J. R. Bergen and B. lulesz, Rapid discrimination of visual patterns, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 13, no. 5, pp 857-863,
1983.

B. lulesz, Visual pattern discrimination, IRE transactions on Information

Theory, vol. 8, pp 84-92, 1962.

W. K. Pratt, O. D. Faugeras, and A. Gagalowicz, Visual discrimination of
stochastic texture fields, 1EEE Transactions on Systems, Man and

Cybernetics, vol. 8, pp 796-804, Nov. 1978,

Transform Domain Texture Synthesis on Surfuces 150

References

(10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Caelli, B. Julesz, and E. Gilbert, On perceptual analyzers underlying visual
texture discrimination: Part II, Biological Cybernetics, vol. 29, no. 4, pp
201-214, 1978.

B. Julesz, Textons, the elements of texture perception, and their interactions,

Nature, vol. 290, pp 91-97, Mar. 1981.

B. Julesz, A theory of preattentive texture discrimination based on first-order

statistics of textons, Biological Cybernetics, vol. 41, no. 2, pp 131-138, 1981.

D. S. Wickramanayake, Transform domain texture synthesis, PhD thesis,

Loughborough University, UK, October 2005.

J. M. Dischler and D. Ghazanfarpour, 4 Survey of 3D Texturing, Computers
and Graphics, vol. 25, no. 10, pp 135-151, January 2001,

A. Turing, The chemical basis of morphogenesis. Philosophical Transactions

of the Royal Society (B), pp 237-272, 1952.

J. Bard, 4 Model for Generating Aspects of Zebra and Other Mammalian
Coat Patterns, Journal of Theoretical Biology, vol. 93, no. 2, pp 363-385,
November 1981.

J. D. Murray, On Pattern Formation Mechanisms for Lepidopteran Wing
Patterns and Mammalian Coat Markings, Philosophical Transactions of the
Royal Society B, vol. 295, pp 473—496.

S. P. Worley, A cellular texture basis function, Proceeding of SIGGRAPH 96,
ACM SIGGRAPH, pp 291-294, August 1996.

K. Fleischer, D. Laidlaw, B. Currin, and A. Barr. Cellular texture generation.

Proc. of SIGGRAPH 95, pp 239-248, ISBN 0-201-84776-0. August 1995.

Transform Domain Texture Synthesis on Surfaces 151

References

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

W. Becket, and N. 1. Badler, Imperfection for realistic image synthesis.
Journal of Visualization and Computer Animation vol. 1, no. 1, pp 26-32,
August 1990.

G. Miller, Efficient algorithms for local and global accessibility shading. In
Computer Graphics Proceeding, ACM SIGGRAPH, pp 319-326, 1994,

P. Hanrahan, and W. Krueger, Reflection from layered surfaces due to
subsurface scattering. In Computer Graphics Proceedings, ACM
SIGGRAPH, pp 165-174, 1993.

D. J. Heeger and J. R. Bergen. Pyramid-Based texture analysis/synthesis. In
R. Cook, editor, SIGGRAPH 95 Conference Proceedings, pp 229-238. ACM
SIGGRAPH, AddisonWesley, August 1995.

J. S. De Bonet, Multiresolution sampling procedure for analysis and synthesis
of texture images, SIGGRAPH 97 Conference Proceeding, pp 361-368. ACM
SIGGRAPH, AddisonWesley, August 1997.

R. Paget and 1.D. Longstaff, Texture synthesis via a noncausal nonparametric
multiscale Markov random field. 1EEE Transactions on Image Processing,

7(6):925-931, June 1998.

A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In
International Conference on Computer Vision, volume 2, pp 1033-8, Sep
1999,

Li-Yi. Wei and M. Levoy, Fast Texture Synthesis Using Tree-Structured
Vector Quantization. In Proceedings of SIGGRAPH 2000, pp 479488, July
2000.

Transform Domain Texture Synthesis on Surfaces 152

References

(27]

(28]

[29]

[30]

[31]

[32]

[34]

[35]

M. Ashikhmin, Synthesizing Natural Textures, The proceedings of ACM
Symposium on Interactive 3D Graphics, Research Triangle Park,

NorthCarolina March 19-21, pp 217-226, 2001.

S. Zelinka and M. Garland, Real-Time Texture Synthesis with the Jump Map,
In Proceedings of the Thirteenth Eurographics Workshop on Rendering

Techniques, Eurographics Association, pp 99-104, 2002.

M. Tran and A. Datta. Synthesising textures using variable neighbourhood
searching. In Proc. 7th International Conference on Digital I[mage
Computing: Techniques and Applications, pp 643-652. CSRIO Publishing,
2003.

M. Sabha, P. Peers and P. Duwé, Texture Synthesis using Exact
Neighborhood Matching, Computer Graphics Forum, Volume 26, Number 2,

pp 131-142, June 2007.

Y. Q. Xu, B. N. Guo, and H. Y. Shum, Chaos Mosaic: Fast and Memory
Efficient Texture Synthesis, Technical Report-2000-32, April 2000.

L. Ling, C E Liu, Y. Xing, B. Guo, and H-Y. Shum. Real Time Texture
synthesis by patch based Sampling, ACM Transaction on Graphics, Vol 20,

No 3, pp 127-150, July 2001.

A. Efros and W. T. Freeman, Image Quilting for Texture Synthesis and
Transfer, Proceedings of SIGGRAPH 01, pp 341-6, Los Angeles, California,
August 2001.

R. Szeliski and H.-Y. Shum. Creating full view panoramic mosaics and
environment maps. Proceedings of SIGGRAPH 97, pp 251-258, August

1999.

A. Nealen and M. Alexa, Hybrid Texture Svynthesis. Proceedings of the

Transform Domain Texture Synthesis on Surfaces 153

References

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Eurographics Symposium on Rendering 2003, 14th Eurographics Workshop

on Rendering, pp 97-105, 2003.

V. Kwatra, A. Schodl, 1. Essa, G. Turk and A. Bobick, Graphcut Textures:
Image and Video Synthesis Using Graph Cuts. SIGGRAPH 2003 conference

proceeding, ACM Transactions on Graphics, vol. 22, no. 3, pp 277 286, 2003.

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization
via graph cuts. In International Conference on Computer Vision, 377-384,

1999,

M. Cohen, J. Shade, S.Hiller and O. Deussan, Wang Tile for image and
texture generatio, SIGGRAPH 2003 conference proceeding, vol. 22, no. 3, pp

287 — 294, July 2003.

D. S. Wickramanayake, E. A. Edirisinghe and H. E. Bez, Multiresolution
texture synthesis in wavelet transform domain, The Journal of Imaging
Science and Technology, Vol.50, no.1, pp 93-102, ISBN/ISSN:1062-3701,
January/February 2006.

D. S. Wickramanayake. E. A. Edirisinghe and H. E.Bez, Transform Domain
Texture Synthesis based on DCT, In PREP 2005 proceedings (Orals), pp 152-
153, March 2005.

D. Salomon, Curves and Surfaces for Computer Graphics, Published by
Birkhiiuser, ISBN 0387241965, 9780387241968, 2006.

G. Gardner, Simulation of natural scenes using textured quadric surfaces.
Computer Graphics, ACM Siggraph Annual Conference Series; vol. 18, no. 3,
pp 11-20, 1984.

G. Gardner, Visual simulation of elouds. Computer Graphics, ACM Siggraph
Annual Conference Series, vol. 19, no. 3, pp 297-303, 1985.

Transform Domain Texture Synthesis on Surfaces 154

References

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

D. Peachey, Solid texturing on complex surfaces. Computer Graphics, ACM

Siggraph Annual Conference Series, vol. 19, no. 3, pp 279-286, 1985.

K. Perlin, An image synthesizer. Computer Graphics, ACM Siggraph Annual
Conference Series, vol. 19, no. 3, pp 287-296. 1985.

D. Ghazanfarpour, I. M. Dischler, Spectral analysis for automatic 3-D texture

generation. Computers and Graphics, vol. 19, no. 3, pp 413-422, 1995.

D. Ghazanfarpour, J. M. Dischler, Generation of 3D texture using multiple
2D models analysis. Computer Graphics Forum (Eurographics 96), vol. 15,

no. 3, pp 311-323, 1996.

J. N. Dischler, D. Ghazanfarpour, and R. Freydier, Anisotropic solid texture
synthesis using orthogonal 2D views. Computer Graphics Forum, vol. 17, no.

3, pp 87- 95, 1998.

D. I. Heeger, J. R. Bergen. Pyramid-based texture analysis/ synthesis.
Computer Graphics, ACM Siggraph Annual Conference Series, vol 29, pp

229-38, 1995.

J. W. Buchanan. Simulating wood using a voxel approach.Computer Graphics

Forum, 17(3):103-112, Eurographics 1998.

K. Hirota, Y. Tanoue and T. Kaneko, Generation of crack patterns with a

physical model. The Visual Computer vol. 14, no.3, pp 126-137, 1998.
G. Turk. Generating textures on arbitrary surfaces using reaction diffusion.
Computer Graphics, ACM Siggraph Annual Conference Series 1991, vol . 25,

no. 4, pp 289-298, 1991.

J. F. Blinn. Simulation of wrinkled Surfaces, ACM SIGGRAPH, Annual

Transform Domain Texture Synthesis on Surfaces 155

References

[54]

(53]

[56]

(57]

(58]

[59]

(60]

161]

[62]

[63]

Conference proceeding, vol. 11, pp 286-292, 1978.

R. L. Cook, Shade trees. ACM SIGGRAPH, Annual Conference proceeding
vol 18, no. 3 pp 223-231, 1984.

N. Max, Horizon mapping: shadows for bump-mapped surfaces, The Visual

computer pp 109-117, 1988.

K. Perlin, Hypertextures, Computer Graphics 23(3), ACM Siggraph annual
Conference Series, pp 253-262, July 1989,

J. Kajiya and T. Kay, Rendering Fur with three dimensional texiures,
Computer Graphics, ACM Siggraph annual Conference Series, vol. 23, no. 3

pp 271-298 July 1989.

K.W Fleischer, D.H. Laidlaw, B. L. Currin and A. H. Barr, Cellular Texture
Generation, Computer Graphics, ACM Siggraph annual Conference Series,

vol. 29, pp 239-248, 1995.
J. M. Dischler and D. Ghazanfarpour, Interactive Image-Based Modeling of
Macrostructured Textures, [IEEE Computer Graphics and Applications, vol.

19, no. 1, pp 66-74, 1999.

L.-Y. Wei and M. Levoy, Texture synthesis over arbitrary manifold surfaces.

SIGGRAPH 2001, Computer Graphics Proceeding pp 355-360, 2001.

G. Turk, Re-tiling polygonal surfaces, ACM SIGGRAPH, pp 55-64, 1992.

G. Turk, Texture Synthesis on Surfaces, ACM SIGGRAPH. pp 347-354, 2001

L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, Texture and shape

syathesis on surfaces. In 12th Eurographics Workshop on Rendering, pp 301-

-312, June 25-27 2001.

Transform Domain Texture Synthesis on Surfaces 156

References

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

T. Xin, J. Zhang, L. Liu, X Wang, B. Guo and H-Y. Shum, Synrhesis of
Bidirectional Texture Functions on Arbitrary Surfaces, ACM SIGGRAPH,
pp 665-672, 2002.

J. Zhang, K. Zhou, L. Velho, B. Guo and H-Y. Shum, Svnthesis of
progressively-variant textures on arbitrary surfaces, ACM SIGGRAPH, pp
295-302. 2003.

S. Zelinka and M. Garland. Interactive Texture Synthesis on Surfaces Using

Jump Maps. Eurographics Symposivm on Rendering 2003, June 2003.

S. Lefebvre, H. Hoppe Appearance-Space Texture Synthesis, International
Conference on Computer Graphics and Interactive Techniques archive ACM

SIGGRAPH, pp 541 - 548, ISBN: 1-59593-364-6, 2006.

J. Han, K. Zhou, Li-Yi. Wei, M. Gong, H. Bao, X. Zhang and B. Guo, Fust
example-based surface texture synthesis via discrete optimization, Visual

Computer, vol. 22, pp 918-925, 2006.

J. Kopf, C-W. Fu, D. Cohen-Or, O. Deussen and T-T. Wong, Selid Texture
Synthesis from 2D Exemplars, ACM SIGGRAPH, pp 2:1-2:9, 2007.

F. Neyret and M-P. Cani, Pattern-based texturing revisited, Proceedings of

SIGGRAPH, pp 235-242, August 1999.

E. Praun, A. Finkelstein and H. Hoppe, Lapped Textures, Computer Graphics
Proceedings, pp 465-470, 2000.

C. Soler, M.-P. Cani and A. Angelidis, Hierarchical Pattern Mapping.
SIGGRAPH 2002, Conference Proceedings, pp 673680, 2002.

L. Wang, X. Gu, K. Mueller and S-T. Yau: Uniform texture synthesis and

Transform Domain Texture Synthesis on Surfaces 157

References

[74]

[75]

[76]

(771

[78]

(791

[80]

[81]

(82]

[83]

texture mapping using global Parameterization, ISSN: 0178-2789 (Paper),
vol. 21, Numbers 8-10, pp 801 — 810, Special Issues of Pacific Graphics,
2005.

X. Gu, S. T. Yahu. Global conformal surface parametrization, In proceeding
of Eurographic/SIGGRAPH Symposium on Geometry Processing, Aachen,

Germany, pp 127-137, 23-25 June 2003.

L. Piegl and W. Tiller: The NURBS Book, Springer-Verlag 1995-1997 (2nd
ed.y;

F. Bernardini and H. E. Rushmeier: The 3D Model Acquisition Pipeline.
Computer Graphics Forum 21(2): pp 149-172, 2002.

B. Curless. From Range Scans to 3D Models, ACM SIGGRAPH Computer
Graphics, vol. 33, no. 4, pp 38-41, Nov 2000.

C. de Boor. Bicubic spline interpolation. Journal of Maths and Physics, vol.

41, pp 212-218, 1962.

J. Ferguson. Multivariable curve interpolation. Journal of ACM, vol 11, no.

2, pp 221-228. 1964.

W. Gordon. Free-form surface interpolation through curve networks.

Technical Report GMR-921, General Motors Research Laboratories, 1969.

W. Gordon. Spline-blended surface interpolation through curve networks.

Journal of Mathematics and Mechanics, vol. 18, no. 10, pp 931-952, 1969.

W. Boehm, Cubic B-spline curves and surfaces in computer aided geometric

design. Computing, vol. 19, no. 1, pp 29-34, 1977.

G. Chaik, An algorithm for high speed curve generation. Computer Graphics

Transform Domain Texture Synthesis on Surfuces 158

References

[84]

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

and Image Processing, vol. 3, pp 346-349, 1974.

D. Doo and M. Sabin, Behaviour of recursive division surfaces near

extraordinary points. Computer Aided Design, vol. 10, no. 6, pp 356-360,

1978.

E. Catmull and J. Clark, Recursively generated B-spline surfaces on arbitrary
Y 8 I :]

topological meshes. Computer Aided Design, vol. 10, no. 6, pp 350-355,
1978.

R. Sedgewick. A logorithms in C part 5: Graph Algorithms. Addison-

Welsley. Reading, Massachusetts, 2001.

P.J. Burt, E. H. Adelson, A multiresolution spline with application to image

mosaics. ACM transactions 2, 217-236. ISSN: 0730-0301, 1983.

H. S. Malavar, Signal Processing with Lapped Transforms, Norwood, MA,
Artech House, 1992,

S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation, IEEE Trans. PAMI, vol. 11, no. 7. July 1989, pp
674-693.

S. Gortler, P. Schroder, M. Cohen and P. Hanrahan, Waveler Radiosiry,
Computer Graphics, Annual Conference Series SIGGRAPH 93, pp 221-230,
1993.

D. Berman, J. Bartell and D. Salesin, Multiresolution Painting and
Compositing, Computer Graphics, Annual Conference Series SIGGRAPH 94,
pp 85-90, 1994,

A. Finkelstein, D. Salesin, Multiresolution Curve, Computer Graphics,

Annual Conference Series SIGGRAPH 94, pp 261-268, 1994.

Transform Domain Texture Synthesis on Surfaces 159

References

(93]

[94]

(95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

M. Eck, T. DeRose, T .Duchamp, H. Hoppe, M. Lounsberry and W. Stuetzle,
Multiresolution Analysis of Arbitrary Meshes, Computer Graphics, Annual

Conference Series SIGGRAPH 95, pp 173-182, 1995.

C. Jacobs, A. Finkelstein and D. Salesin, Fast Multiresolution Image
Querving, Computer Graphics, Annual Conference Series SIGGRAPH 95.
pp 277-286, 1995.

E. I. Stollnitz, T. D. DeRose and D. H. Salesin, Wavelets for Computer
Graphics -Theory and Applications, Morgan Kaufmann Publishers Inc., San

Francisco. California, 1996.

P. Schroder, W. Sweldens. M. Cohen, T. DeRose and D. Salesin, Wavelets in
Computer Graphics, SIGGRAPH 96 Course Notes, 1996.

C. K. Chui, An Introduction to Wavelets, Academic Press Inc., Boston, MA

1992.

1. Daubechies, Ten Lectures on Wavelets, Vol. 61 of CBMS-NSF Regional

Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992,

hitp:/lengineering.rowan. edu/~polikar/WAVELETS/WTtutorial himl
The Wavelet Tutorial by Robi Polikar [Accessed 01/08/2007].

I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992.

G. Strang, Wavelet Transforms Versus Fourier Transforms, Bull. Amer.

Math. Soc. vol. 28, pp 288-305, 1993.

S. G Mallat, A theory of multiresolution signal decomposition: the wavele!
representation. 1EEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, no. 7, pp 674-693, 1989.

Transform Domain Texture Synthesis on Surfaces 160

References

[103]

[104]

(105

[106]

(107

[108]

[109]

[110]

(111]

[112]

J. M. Shapiro, Embedded Image Coding Using Zerotrees of Wavelet
Coefficient, IEEE Trans. Signal Processing, December, vol. 41, no.12, pp
3445-3462, 1993.

B. Waggener. Pulse Code Modulation Techniques, st ed., New York, NY:
Van Nostrand Reinhold. ISBN 0-442-01436-8.

L. Ford and D. Fulkerson, A Flow in Networks, Princeton University Press,

1962.

B. Griinbaum and G. C. Shepard, Tiling and patterns, W.H. Freeman and
company, New York, 1986.

E. V. DeNardo, Dynamic Programming: Models and Applications, Courier

Dover Publications, April 2003.

R. H. Bartels.,].C. Beatty, and B.A Barsky, Bézier Curves Ch. 10 in An
Introduction to Splines for Use in Computer Graphics and Geometric

Modelling. San Francisco, CA: Morgan Kaufmann, pp 211-245, 1998.

G. Farin, Curves and Surfaces for CAGD, 5th ed. published by Academic
Press. ISBN 1558607374,

H. E. Bez and T.J Wetzel. Induced rational parametrisations of special
curves. In International Journal of Computer Mathematics, vol. 80, no. 9, pp

1093-1109, 2003.
S. Foufou, L. Garnier, and M. I. Pratt. Conversion of dupin cyclide patches
into rational bi-quadratic bezier form. In Proc. of the IMA Mathematics of

Surfaces XI, pp 201-218, 2005.

H. E. Bez, Bounded domain, bi-quadratic rational parametrisations of Dupin

Transform Domain Texture Synthesis on Surfaces 161

References

(113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

cyclides, Report No. 1090, Dept of CS, Loughborough University, 2006.

D. Dutta, R. R. Martin, and M. J. Pratt. Cyclides in surface and solid
modeling. IEEE Computer Graphics and Applications. vol. 13, pp 5359, 1993.

R. Martin, J. de Pont, and T. Sharrock, Cyclide surfaces in computer aided
design, In Proceedings of the In Proceedings of the IMA Conference on the

Mathematics of Surfaces, 1986,

M. I. Pratt, Cvclides in computer aided geometric design, In Computer Aided

Geometric Design, vol. 7, pp 221-242, 1990.

R. Szeliski and H.-Y. Shum, Creating full view panoramic mosaics and

environment maps, In Proc. of SIGGRAPH 1997, pp 251-258, 1997,

S. Magda, D. Kriegman, Fast Texture synthesis on Arbitrary Meshes,
Proceedings of the 14th Eurographics workshop on Rendering vol. 44, pp 82 -

89, 2003.

C-W. Fu and M-K. Leung, Texture tiling on arbitrary topological surfaces, In
Proceedings of Eurographics Symposium on Rendering 2005, pp 99-104,
2005.

M. Soucy, G. Guy and R. Marc, A Texture-Mapping Approach for the
Compression of Colored 3D triangulations, The Visual Computer, vol. 12,

no. 10, pp 503-514, 1996.

hitp://www.holmes3d.net/graphics/roffview/tools/patchoff/index.html

[Accessed 20-Jan-2008].

D. M. Mount. ANN Programming Manual. University of Marvland, 1998.

P. F. Preparata, M. I. Shamos, Computational Geometry: An Introduction,

Transform Domain Texture Synthesis on Surfaces 162

References

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Springer-Verlag, ISBN 3-540-96131-3, 1985.

G. Ross, A. Willocks, Uncertainty in GIS and 3D modelling - approaches to
quantify and represent error in interpreted digital datasets, The 33rd

International Geology Congress, 2008.

R. B. Catalan, E. I. Perez and B. Z. Perez, Evaluation of 3D Scanners to
Develop Virtual Reality Applications, cerma, Electronics, Robotics and

Automotive Mechanics Conference (CERMA 2007), pp 551-556, 2007.

F. Bernardini, H. E. Rushmeier: The 3D Model Acquisition Pipeline. Comput,
Graph. Forum 21(2), pp 149-172, 2002.

G. Farin, A History of Curves and Surfaces in CAGD. In: Handbook of
CAGD., Elsevier, 2002.

S. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le calcul

des probabilities. Comm. Soc. Math. Kharkov 13, pp 1-2, 1912,

H.E.Bez, Bounded domain, bi-quadratic rational parametrisations of Dupin
cyelids, International Journal of Computer Mathematics, Vol. 85:7, pp 1097~

1111, 2008.

A. Treisman, Preattentive processing in vision, Computer Vision, Graphics

and Image Processing 31, pp 156-177, 1985.

Transform Domain Texture Synthesis on Surfaces 163

Appendix A

Appendix A

The weighted computed for the patches are given below (refer chapter 3, section

3.4.4)
Weight Computed as: First patch: 8, = 0.8, = 3,
0.oy=2
UWgg = a0 —¢, Uy = % g = 4,
ww = S, Wy = S5, w2 = S,
v a- vi
oy = > — — ot
u'z0 a, 21 732 22 a
Second patch: 6y =0.6=3, Go=3F.01 =7

Wog = d, oy = "'tg‘r . - oz = A+ 0,
V'-‘
- — 0 : - GtC — GFC
Wig = :-5 W = el he = V3
wag = d, o) :“3 Wy = .
Thirdpatch 8, = 2.6, =m, @p=0,¢) =%
Wop = Q, t'py = :3" . Woz = Q.
d+c a—+4< [
u = % e = - & U2 = ==
10 —j;- 11 e 12 v
i - - ——
U = Q@ + C. 'z ﬁz— w2 a.
Fourthpach #h= 3.0 =7, do=F.¢g1=7
g = @ Wi = = W = @
00 = & 1 = 73 a2 y
4 — 5 — a=c 2 o
iMp = —\.""2" IS B a.zc, 12 2!
u a, " = —, ! = 3 -
20 21 ﬂ' 22

Transform Domain Texture Synthesis on Surfaces

164

Appendix

. The Bézier vertices of the four patches

Lst patch Bézier vertex data

Bkl]
]

Ty

L
0

Wi

T
b 1
N

e—ayed?
e

ule—a)=4
A=

feadil]

Ieln
e

]|
i
LT

RatiT
Ty
1y

2nd patch Bézier vertex data

Itn
g
g

posh?
-
(petb)
-1
[14
=
o

]
b

Sle—puy

a

!: o
¥

o

oy =

Ty =
ZT?' -

gy =
iy =

rgy -

3rd patch Bézier vertex data

Fieo

wn
o
Wap

Ithp
sop

T

[~
s
piadoi b
S+t
pluse)-b?
a+e
ho-pt
b.a.lg:

avye

0

]

=

0

rim
nm

iy,

Yol
i
L1

gy
Iy

Ivug

dth patch Bézier vertex data

¥o
o
it

2ilgp

2thp
290

Tor =
. =
Ty =

vl =
vt
Tty

My =
vy =

vy =

2193
2y

gy

Ithy
Tty =
Ty =

xron
Eaat]

0

Wy =

T

Vo2

Ity =

gy =

e

2ty =

a

Transform Domain Texture Synthesis on Surfaces

165

Appendix B

Appendix B

Teapot

Transform Domain Texture Synthesis on Surfaces 166

Appendix

Transform Domain Texture Synthesis on Surfaces 167

Appendix

B

Appendix C

Publications

PROGRESSIVE TEXTURE SYNTHESIS ON 3D SURFACES

Rupesh N.Shet. Eran A.Edirisinghe. Helmut E.Bez
Department of Computer Science
Loughborough University, LE11 3TU
United Kingdom
R.Shet@ horo.ac.uk

ABSTRACT

In this paper we propose a novel approach to progressive
texture synthesis on 3D surfaces. The method is based on a
multiresolution DWT decomposition of a sample texture,
which is subsequently progressively transmitted and
utilised within a 3D texture synthesis process. We use the
Embedded Zerotree Wavelet (EZW) concept originally
proposed by Shapiro. in prioritising the DWT coefficients
in progressive texture transmission and synthesis. We
show that the proposed algorithm has applications in
bandwidth and processing power constrained application
domains, such as remote visualisation, streaming and in
computer games/animations.

KEYWORDS
Texture synthesis, progressive texture, discrete wavelet
transform, EZW, rendering

L INTRODUCTION

Texture synthesis on 2D/3D surfaces, enhances the realism
of virtual scenes. At present significant amount of research
is focussed on establishing virtual realism of arbitrary
shaped 3D surfaces. As a result a number of ‘image based’
texture synthesis algorithms have been proposed in the
past. A typical texture synthesis algorithm starts from a
sample image and attempts to produce a larger texture
with visual appearance similar to the sample by repeated
placement of micro patterns of texture elements on a
surface. It does this in a way that when perceived by an
observer, the synthesized texture appears to be generated
by the same underlying stochastic process. However all
texture synthesis algorithms are challenged by the high
statistical variability of textures involved in synthesis.
Thus a universal solution to texture synthesis yet remains
an open problem. Texturing arbitrary shaped 3D surfaces
which provide further challenges have attracted much
research interest in the recent pass due applications in
animated movie production, computer games and virtual
productions.

A major proportion of research in the area of texture
synthesis has focused on synthesizing texture on planner
surfaces. Recently a number of approaches have been
proposed for texture synthesis on 3D surfaces [1-8]. These

approaches can be broadly classified into two groups,
namely, patch based texture synthesis [1,2.3] and pixel
based texture synthesis [4-8]. The progressive texture
synthesis algorithm proposed in this paper belongs to the
latter category, i.e. pixel based texture synthesis. As the
name suggests the texture synthesis is performed
considering a pixel as the basic unit rather than a complete
patch. In [4] Wei & Levoy proposed a 2D texture
synthesis method based on tree structured vector
quantization and later extended it [5] to arbitrary surfaces
using Turk’s retiling algorithm for generating mesh
pyramids. Correspondingly Turk used a slightly different
approach to 3D texture synthesis [6] based on Wei &
Levoy's 2D algorithm. Ying 7] proposed two 3D texture
synthesis methods based on Wei & Levoy’s 2D algorithm
and Ashikhmin’s [8] algorithm. Her implementation
handled multi-resolution sub-division of surfaces and
performed well for highly structure patterns.

The motivation to our work comes from the
present requirements for progressive texture synthesis on
3D surfaces, which is a result of the extensive use of
bandwidth limited transmission media in modern
application domains such as remote visualisation,
distributed/collaborative gaming etc. To this extent, the
use of Greg Turk’s popular work on texture synthesis on
3D surfaces (see section 2.1 for details) is limited. due to
its ability to only synthesize textures at certain fixed
resolution levels determined by the pyramidal
decomposition of the sample texture. To overcome this
limitation and to further improve its applicability. in this
paper we propose a progressive texture synthesis method
that replaces the pyramidal decomposition of sample
texture adopted by Turk, by an EZW (embedded zero-tree
wavelet) decomposition, capable of prioritising the DWT
coefficients according to their visual significance. We
illustrate that the proposed novel algorithm is capable of
creating seamlessly varying quality levels of synthesized
texture on 3D surfaces.

For clarity of presentation the paper is organised
as follows: Section-2 introduces the reader to the basics of
Turk’s algorithm, i.e., texture synthesis on surfaces [6],
multiresolution DWT representation of texture and
Shapiro’s EZW algorithm [10] for DWT coefficient
prioritisation. Section-3 presents our proposed progressive

texture synthesis algorithm. Section- 4 provides
experimental results, their analysis and possible
application domains of the proposed algorithm. Finally,
Section-3 concludes, with an insight to possible
improvements and future variations.

2. THEORETICAL BACKGROUND

For the purpose of clarity and ease of reference we
summarise the methods/contents of [6], [10] and [11] in
this section. Hence readers who are familiar with these
concepts can forego reading this section.

2.1 Texture synthesis on surfaces

This algorithm is based on the principle of texture
synthesis on surfaces, independent of parameterization and
use of neighbourhood search [6]. The method draws upon
texture synthesis methods that uses image pyramids [9] for
texture decomposition/representation, but uses a mesh
hierarchy to serve in place of a pyramidal structure. Firstly
a hierarchy of user defined number of sample points from
a low to high density are created in a random order, over
the given surface (Figurel (a)). Using a point repulsion
method, the points are subsequently repulsed and
separated from each other to uniformly distribute over the
surface. By connecting these points, a mesh is formed on
the surface. Likewise a hierarchy of meshes are created on
the surface, resembling an image pyramid representation.
Subsequently a user specified vector field that indicates
the orientation of texture patterns is created over the
surface. Mesh vertices are sorted in such a manner that the
vector field will be followed when visiting the points (see
Figurel (b)). Then for each mesh vertex, a local
parameterization of the surrounding vertices is established.
Using this parameterization a small rectangular
neighbourhood with the vertex as the centre is created.
Each point is then scanned to determine the colour. The
colour of particular point is established by examining the
colour of neighbouring points, and finding the best match
to a similar pixel neighbourhood in the given sample
texture image. A multi-level representation of the
synthesised texture on the arbitrary surface is finally
generated as shown in Figures, 1 (¢), (d), (e), (f).

Note that in figure 1, (c), (d), (e) and (f), the
number of points on the surface are, 4K. 16K, 64K and
256K respectively. The limitation of Turk’s algorithm is
that at the above fixed resolutions of the surface shape, the
synthesized textures are also fixed in resolution. In other
words the surface texture on the ‘Bunny’ illustrated in
figure I(f) is fixed, i.e. the one illustrated. However in a
bandwidth constraint environment one would have been
forced to synthesize a lower quality texture as compared to
that of fig I1(f). In the proposed algorithm we provide an
effective means for providing this flexibility.

(e) Level-3

Figure 1: Turk's Method (a): Dense points on surface (b): Vector
field creation on the surface (¢) (d) (e) (f): Multi-level texture
synthesis

2.2 DWT representation of texture

Textured images contain a large amount of perceptual
data. Therefore the number of bits required to
represent/encode a texture image is high. However typical
images consist of a wide range of frequency components
spread throughout the human visual frequency band. Some
of theses frequency components have a significant effect
in human perception while some others have very low
significance. Fortunately texture images are often of this
type.

The Discrete Wavelet Transforms provide a
compact multi resolution representation of an image. It
gives a signal representation in correspondence to a
narrow band, low frequency range and some of the
coefficients represent short data lags corresponding to a
wide band, high frequency range. Using the concept of
scale, data representing a continuous trade off between
space and frequency can be made available for further
processing.

In our algorithm we use two-dimensional DWT.
To begin with, the texture image is subdivided in to four
sub-bands using horizontal and vertical DWT filters over
the image pixels. The resulting sub bands labeled LH;,

HL, and HH, represent the finest scale wavelet coefficient
where as the sub-band labeled LL, represents low
resolution coefficients. In order to obtain the next level of
wavelet sub-bands, the sub band labeled LL, is further
decomposed and sampled using the vertical and horizontal
DWT filters. This process is repeated until the required
final decomposition is reached (see figure 2). The
coefficients of the sub-bands are then prioritized using the
EZW algorithm presented next.

i
HL,

LH, [HH,
LH] HH]

Figure 2: Application of three level discrete wavelet
decomposition

2.3 Embedded Zerotree Wavelet (EZW) algorithm

The Zerotrees of wavelet coefficient concept was
originally introduced by Shapiro [10] in progressive
encoding of images. It is based on two important
observations:

. Natural images in general have a low pass
spectrum. Therefore when an image is wavelet
transformed the energy in the subbands decreases
as the scale decreases (low scale means high
resolution), so the wavelet coefficients will, on
average be smaller in the higher subbands than in
the lower subands.

Large wavelet coefficients are visually more
important than smaller wavelet coefficients.

[

EZW provides a compact representation of perceptually
significant coefficients and multi resolution construction
capability of an image. The idea is to organize DWT
coefficients of an image (see Figure 2) in a prioritised
order of visual significance, depending on their position
and magnitude in the DWT decomposition and to
subsequently encode the ordered list of coefficients
following an embedded coding algorithm. In an embedded
coding algorithm the encoder can terminate the encoding
at any point there by allowing a target bit rate or target
distortion metric to be met exactly. On the other hand,
given a bit stream, a decoder can cease decoding at any
point in the bit stream. Thus it is capable of producing
exactly the same image that would have been encoded at
the bit rate corresponding to the truncated bit stream.

In this paper we use the EZW algorithm’s initial
coefficient prioritisation procedure to prioritise their use

within Turk's algorithm. Due to space limitation we refer
readers interested in the detail of the EZW coefficient
prioritization algorithm to [10]. We show that the visually
prioritized availability of coefficients enables seamless
progressive texture synthesis capability in Turk’s
technique, as against its original capability of synthesizing
textures at only given discrete quality levels. This is the
main contribution of our present work.

3. PROGRESSIVE TEXTURE SYNTHESIS

Figure 3 illustrates the block diagram of the proposed
progressive texture synthesis algorithm on surfaces. [Note:
the complete. progressive texture coding, transmission and
synthesis process is illustrated].

Sample Texture Image 3Dsurface
DWT P1?:T|1t)-] lTurk "llgnl'lthll'l‘l E
Using ® Texture Synthesis on n
EZW Surfaces (o}
! ! v ;
d
Encode Texture i
withEZW E"[L”"l': Image il Synthesis n
ALcations ona 3[) o
l obiject
[Bandwidth constrained transmission media l =5
. D
Decode Decode image D &
texture image Location surface @
T 0
¢ d
sressive Textur ; i
Progressive Texture Turk Texture point

synthesis on 3D surfaces 1 :
synthesis on 3D surfaces creation algorithm

Figure 3: proposed progressive texture transmission algorithm

Note that figure 3 resembles the block diagram of Turk’s
algorithm [6], though with two important differences.
Firstly in our design, the Gaussian pyramid based texture
representation used by Turk is replaced by a DWT
representation supported by an EZW based coefficient
prioritisation scheme as illustrated by the modules named,
‘DWT” and ‘Priority Using EZW", in figure 3 and detailed
in figure 4. This ensures seamless texture representation
capability as against discrete quality level texture
representation of Turk’s original algorithm. In addition
texture encoding via EZW enables embedded texture
decoding capability allowing almost any intermediate
texture quality to be readily reconstructed/ made available
at the receiver depending on bandwidth constraints.

EZW

Based
prioritisation
Scheme

I (sample image)

64K Points

Figure 4: DWT and EZW based prioritisation scheme

Secondly in the proposed method, while synthesising
texture using the modified (with EZW) Turk’s method, we
maintain a record of sample image locations from where
each 3D surface point is textured (see section 2.1). These
are denoted as ‘point image locations” (see figure 5).
These records are maintained for each representation 3D
surface shape. In order to avoid any searching at the
decoder end and enable direct texture mapping from the
received sample image, we propose the suitable coding of
the ‘point image locations” and their transmission. We
have adopted differential pulse code modulation which
provides an effective means of coding this high
redundancy information. However if one wishes a texture
synthesis to be carried out at the decoder as well, this extra
information will be redundant and thus do not have to be
transmitted. We suggest that the decision on whether or
not the ‘point image locations’ needs to be transmitted to
be taken depending on whether the bottle-neck is in the
transmission bandwidth or the receiver capability.

XY

Figure 5: Single and multiple mappings of ‘point image
locations’ between the sample and 3D surface

At the receiver, all texture sample information
transmitted using EZW encoding is decoded to generate
the texture sample at seamless quality settings. As more
bits are received by the decoder better quality textures are

produced. At any given instance of time and bit rate, using
the re-generated texture sample image (i.e. via EZW
decoding of texture). and separately received (and
decoded) point image locations and the recovered 3D
surface shape, the texture pixel value (colour) of each 3D
point can be obtained. When the pixel values of all 3D
points are obtained the 3D object will be completely
textured with the corresponding instantaneous texture
quality at the given 3D surface representation level, i.e.
number of vertex points accuracy to which the 3D surface
is defined at the given moment. When more bits
representing the texture information are received, the
available texture quality at the decoder improves and
hence the accuracy of texture representation on the 3D
surface can be improved. Thus the process ensures
seamless quality texture synthesis capability on 3D
surfaces.

4. EXPERIMENTAL RESULTS & ANALYSIS

In order to analyse the performance of proposed algorithm
experiments were performed on a widely used set of test
texture samples and the 3D object bunny. The results
illustrated in figure 6 and 7 indicate the ability of the
proposed technique to synthesize texture at seamlessly
different levels (compare with figure 1). Although for
practical reasons we have limited the number of texture
synthesis examples to eight the proposed method is
capable of progressive texture transmission aimed at
seamless texture mapping. Note that our demonstration
here is for a set of 256,000 (256K) points on the surface of
the Bunny. In general, the proposed algorithm is capable
of providing any intermediate texture level from texture-
less to the quality of texture depicted in figure-1 for 4K,
16K, 64K, 256K point accuracy of the surface
representations.

Figure 6: Progressive texture synthesized on the bunny by
proposed algorithm using texture sample-1.

Figure 7: Progressive texture synthesized on the Bunny by
proposed algorithm using texture sample-2.

The nature of the design and implementation of the
proposed design enables its use in application domains
where existing texture synthesis algorithms perform
ineffectively due to functional constraints. The following
is a summary of applications that could benefit from the
specific progressive/ multi-resolution design of the
proposed algorithm.

Progressive 3D texture transmission: Within a
progressive transmission scenario, data is transmitted
according to visual and/or decoding significance. Special
design of the proposed texture synthesis algorithm allows
DWT coefficient significance based progressive creation,
transmission and reconstruction of the synthesized texture.

Texture mapping of progressively transmitted 3D
structures: MPEG4 AFX has standardised MESHGRID
for progressive transmission of 3D structure. Initially they
transmit data sufficient for a coarse representation of the
3D structure/object-shape. Our design can complement
this effort by texturing the progressive reconstructed
surface with a matching, minimal transmission of texture
data. [Note: progressive synthesis of texture has not been
standardized by MPEG-4 AFX as yet]. Thus. both the
structure as well as the texture can be refined
progressively with more data transmission.

Compressed domain texture synthesis: Synthesizing a
compressed output texture with the use of a compressed
original texture sample. This is useful in fast, on demand
applications.

5. CONCLUSION & FUTURE WORK

We have introduced a novel approach to texture synthesis
based on the representation and analysis of texture in the
DWT domain. We have provided experimental results
illustrating the methods functionality and advantages. The
proposed method has the capability of synthesizing texture
at seamlessly different quality settings, a functionality
which was not possible via existing state-of-the-art
techniques. The use of visual prioritisation of information
in the sample image during texture synthesis allow the
tasks to be carried out at a higher speed at equivalent
visual quality levels, as compared to other techniques.

We are currently in the process of extending our work
towards MESHGRID coding and algorithmic
optimisations. In particular the use of the proposed
algorithm as a means of providing progressive quality
texture to the already standardized progressive shape
coding with MESHGRID within MPEG-4 AFX, is being
considered.

ACKNOWLEDGMENTS

We wish to thank Greg Turk for providing his texture
synthesis on surface source code.

REFERENCES

[I] Neyret F., and Cani, M.P.. Pattern-based texturing
revisited, Proc. of SIGGRAPH 99, 235-242, 1999.

[2] Praun E., Finkelstein, A.. and Hoppe. H., Lapped
textures, Proceedings of SIGGRAPHO0, 465-470, 2000.
[3] Soucy, Marc,G Godin and Marc Rioux, A Texture-
Mapping Approach for the Compression of Colored 3D
triangulations, The Visual Computer,Vol.12, No.10,503~
514, 1996.

[4] Wei L.-Y.. and Levoy, M., Fast texture synthesis using
tree-structured vector quantization, Proc. of
SIGGRAPH2000, 479488, 2000 (July)

[5] Wei L.-Y.. and Levoy. M., Texture synthesis over
arbitrary manifold surface, Proceed. of SIGGRAPH2001,
355-360, 2001.

[6] Turk, G., Texture synthesis on surfaces, Proc. of
SIGGRAPH2001, 347-354, 2001(August).

[7] Ying, L., Hertzmann, A., Biermann H., and Zorin, D.,
2001, Textre and shape synthesis on surfaces.
Eurographics Rendering Workshop, 301-312, 2001.

[8] Ashikhmin, M., Synthesizing natural textures, ACM
Symp. on Interactive 3D Graphics (March), 217-226,
2001,

[9] Heeger, David J. and James R. Bergen, Pyramid-Based
Texture Analysis/Synthesis, Comp. Graphics Proc.,
Annual Conf. Series (SIGGRAPH 95), Aug., 229-238,
1995,

[10] J. M. Shapiro, Embedded Image Coding Using
Zerotrees of Wavelet Coefficient”, IEEE Trans. Signal
Processing, December, VOL 41(no.12), 3445-3462, 1993,
[11] Wickramanayake, D.S., Edirisinghe, E.A., Bez H.E.,
A wavelet based image quilting approach to fast,
multiresolution texture synthesis, Proc. of IEE VIE 2005.
93-100, 2005.

A Wavelets Based Max-Flow/Min-Cut Approach For Texture
Synthesis

Rupesh N. Shet*, Helmut E. Bez*, Eran A. Edirisinghe*

*Department of Computer Science.,
Loughborough University, UK

rupesh_shet

Keywords:DWT. Texture Synthesis, Max-Flow/Min-Cut,
Wavelets

Abstract

In this paper we have proposed a Discrete Wavelet Transform
(DWT) based multi-resolution max-flow/min-cut algorithm
that is able to provide the best possible minimum cutting path
in patch based texture synthesis. A coarse cutting path is
initially generated using the lowest resolution sub-band of the
DWT decomposition and subsequently refined using the
coefficients of the higher resolution sub-bands. The
Embedded Zero-tree Wavelet (EZW) concept has been used
to prioritise and use the DWT coefficients according to their
impact on visual quality, thus optimising the visual quality at
patch boundaries. Throughout the algorithm design, special
consideration has been given to minimizing the computational
cost. We have shown that the adaptation of max-flow/min-cut
in wavelet domain results in an efficient texture synthesis
algorithm that is capable of being used in conjunction with
modern, band-width adaptive applications. A set of regular to
stochastic test textures have been used to prove the
effectiveness of proposed algorithm and to compare them
with existing state-of-art techniques.

1 Introduction

Texture Synthesis has attracted significant research interest
due to its wide range of application areas, such as computer
graphics, games, animations and digital movies. As a result
many algorithms have been proposed up to date. These
algorithms are broadly classified in to two groups namely;
pixel based and patch based algorithms. Recently a new trend
of research in transform domain texture synthesis has been
commenced [12,13.14]. These approaches have applications
in the distributive and collaborative gaming and other
applications that use limited bandwidth channels, such as 3D
mobile graphics, where only a small amount of information is
used. The recent key contributions in transform domain
texture synthesis have been made by Wickramanayake et al.
[12,13.14]. These algorithms perform well in a large variety
of textures at high operational speeds. However in
synthesizing some regular and near-regular textures which
often possess sharp edges, due to the non-optimised weighted
edge blending technique used, patch boundaries show
blurring artefacts. As an effective solution to this

shortcoming, in this paper we have proposed a novel,
optimized technique for edge blending, based on the popular
max-flow/min-cut idea in graph theory [1,10]. It is similar to

?hotmail.com

the approach used by Kwatra et al. in their work of [7] and
improves the visual quality of edges obtainable by
Wickramanayake et al.’s recent transform domain texture
synthesis algorithms. This improvement enables the work of
[12,13] to be used in a much wider range of textures.

Initial work on texture synthesis commenced a decade ago.
However, Effro’s and Freeman's popular algorithm of [3] is
widely accepted as the seminal contribution to the current
state-of-the-art, pixel domain, texture synthesis algorithms.
The research in [3] introduced the use of block based texture
synthesis and a minimum boundary edge cutting (MBEC)
technique to optimize the quality at overlapping regions of
texture blocks. Since the publication of [3] many extensions
and improvements to it has been proposed in pixel domain
texture synthesis. The main drawback of Effro’s and
Freeman’'s work that attracted attention of [12,13] is the speed
of texture synthesis. Wickramanayake et al. implemented
block based texture synthesis in transform domain as a
solution to increasing the texture synthesis speed. In these
techniques Shapiro’s embedded zero-tree wavelets (EZW)
concept [11] is used for limiting the number of coefficients
used in the texture synthesis process, thereby reducing the
computational cost of texture synthesis. In addition a simple
weighted edge blending technique is used for artefact
reduction at block boundaries. The use of visually significant
coefficients in selecting blocks for synthesis enables the
matching blocks to be found with minimum computational
cost. However our detailed experiments revealed that the
simple, non-optimised, weighted edge blending technique
used to improve the quality at block edges needs
improvement, for the overall texture synthesis algorithm’s
best effectiveness in synthesising a wide variety of textures.
In [7]. Kwatra et al. proposed the use of their popular
graphcut technique of texture synthesis that uses max-
flow/min-cut algorithm [1,10] to optimise the quality at patch
edges. They demonstrated that the graph cut algorithm is
capable of better quality texture synthesis as compared to
most other patch/block based texture synthesis techniques,
such as [4,6,8]. To speed up the searching process, a FFT
based acceleration technique was adopted. It has been shown
that transform domain texture synthesis has the ability to
perform faster texture synthesis, as only a limited set of
transform coefficients can be used in synthesis [12,13].
Extending Kawtra’s algorithm directly to transform domain is
however very expensive due to repetitive iterations required
to refine the texture quality.

We have analyzed both Wickramanayake's [12,13] and
Kwatra's [7] algorithms and propose a novel algorithm which
combines the merits of both. We use transform domain
searching for best block selection in block patching (as in
[12.13]) and a novel transform domain max-flow/min-cut
technique for edge artefact reduction, which is a transform
domain extension to the max-flow/min-cut technique used in
Kwatra’s work of [7].

For clarity of presentation the paper is organised as follows:
Apart from this section which is an introduction to the
problem domain to be addressed, section-2 presents the
proposed novel algorithm in detail. Section-3
experimental results, their analysis and possible applications
of the proposed algorithm. Finally, Section-4 concludes, with
an insight to possible improvements and future variations.

provides

2 Methodology

This section provides design and implementation details of

the proposed transform domain max-flow/min-cut technique
which is capable of enhancing the overall synthesized texture
quality of [12,13].

In [12.13] a n level DWT is initially applied on the sample
texture (see Figure-1) which results in a DWT decomposed
image. (see Figure-2 where n=3 decomposition is applied on
sample image).

HL2| HH2

i

HL1

Figure 2: n level decomposed sample image

Texture synthesis requires patching blocks with seamless
boundaries. Once a block has been synthesized, searching for
it’s best matching block (to be patched as the subsequent
block to be synthesized) is carried out by effectively using the
coefficients of the LLn and HHn sub-bands [12,13]. The
coefficients in the sub-bands can be prioritised according to
their visual impact, providing the ability to synthesize
textures faster than traditional approaches.

Once a matching pair of adjacent blocks is selected their
overlapping boundary should be further refined to remove
edge artefacts. In general, given the fact that a certain amount
of texture would have been already synthesized, synthesizing
a new block will require the consideration of an L-shaped
boundary region. For clarity of presentation we have
illustrated a typical overlapping region in Figure-3 and its
transform domain representation in Figure-4.,

The idea of max-flow/min-cut algorithm is to make a cut in
the overlapping region that results in minimising any potential
seam artefact. In the proposed transform domain extension to
the max-flow min-cut algorithm, the process begins with a
sub-ordinate section 2.1) which
approximate cutting path. This path is further refined using a

pass (see gives an

subsequent refinement pass (see section 2.2).

Figure 4: Transform domain overlapping images
2.1 Sub-Ordinate Pass of Patch Fitting

The first step of the sub-ordinate pass is to generate the
‘difference block’, which is the difference between transform
domain overlapping blocks as illustrated in Figure-5(a). For
clarity of presentation and explanation, figure-5(b) represents
the ‘difference block” in pixel domain.

(a)

Figure 5: Difference Image

In our experiments, after a 3-level decomposition, all ten sub-
bands are initially extracted. The max-flow/min-cut algorithm
is then applied on the overlapping region using the lowesl
resolution sub-bands, i.e. LL; bands to obtain the sub-ordinate
cutting path. (see Figure-6). Readers who are interested in the
details of the max-flow/min-cut approach are referred to

11,5:7:10].
:'n". =3
[}

LLn Cutting Path

Figure6: Cut on Low Level Band (Note: LLn has been
zoomed for clarity).

The cutting path obtained using the sub-ordinate pass is called
the *primary cut’. Considering the “primary cut’ as the cutting
path, it is then used to cut the sub-bands, HH4, LHi HL;
Subsequently using inverse-DWT on sub-bands LL;, HHj,
LH:. HL; the sub-band LL, is obtained. (see Figure 7). For
ease of reference. the cut obtained in the LL; sub-band is
named the “incorporated path’.

g} o P %
' .
LLn LHn
Lgnts 5
h:"-'. :

HLn HHn LLn-{

Figure 7: LL,with incorporated cut (Note: LLa, LL#r-1 has
been zoomed for clarity).

2.2 Refinement Pass of Patch Fitting

The primary cut is further refined by considering only the
neighbouring coefficients around it in the subsequent levels of
inverse discrete wavelet transform i.e. IDWT, starting from
the incorporated path of LL, In practice this refinement
process is continued through all the IDWT levels. It is noted
here that the process of refinement passes through all » levels
of decomposition. Therefore the number of refinement steps
is i, 1.e. n =3 in our experiments.

Figure-8(al) illustrates that the incorporated cut in LL,; is
first refined by max-flow/min-cut using neighbourhood

coefficients (see Figure-8 (a2)). This refined cut is then
incorporated in to the three detailed sub-bands of the same
resolution level. The incorporated cut at level LL,», i.e. LL,
is obtained via inverse DWT of the four sub-bands (see Fig.
7). The incorporated cut at level LL, is illustrated in figure-
8(b1). This process is repeated through all the levels until the
refined path at level LLg (full resolution) is obtained (see Fig-
8(c2)).

F

I

(a2) Refined path

(b2) Refined path

(cDIncorporated path (c2)Refined path
Figure 8: Refinement of primary cut using corresponding
bands and neighbouring coefficients.

The cutting path produced by following the above process
results in a final blended quality similar to that illustrated by
figure 9.

Figure 9: Final blended block
2.3 Feathering

Although the max-flow/min-cut approach produces an
optimum seam, the resulting quality is restricted by the
quality of the original edge blocks. Therefore it is likely that
some artefacts still remain after the application of the max-
flow/min-cut approach. To address this problem we used the
popular feathering [2] approach that uses suitable weighting
factors to combine those pixels at the seams. Feathering
results in a further improvement of the seam quality.

3 Experimental Results and Analysis

Experiments were carried out on a large database of

commonly used test texture samples representing all textures

on texture spectrum [9] i.e. regular to stochastic. This section
discusses experimental results in details.

The Figure 10 illustrates a comparison between edge blending
approach used in [12,13] and the proposed approach. To
clearly illustrate the possible improvements, a block selected
for demonstration purposes above was one in which the edge-
blending algorithm would perform sub-optimally (note the
artefacts at the top and front rows of figure 10(a).

- .
(a)Edge blending (b)Our algorithm
Figure 10: Comparison between edge blending and proposed
transform domain max-flow/min-cut algorithm.

For a more comprehensive analysis we compare the results of
the proposed algorithm against Kwatra etal’s [7] pixel
domain max-flow, min-cut algorithm and Wickramanayake et
al’s [12.13] transform domain edge-blending algorithm. The
results clearly illustrate that the proposed algorithm provides
better visual quality at block edges as compared to using the
non-optimized edge-blending algorithm adopted by
Wickramanayake et al. Though the algorithms of [12,13]
provide faster texture synthesis as compared to Kwatra et al.’s
[7] algorithm, it was stated previously that the simple edge-
blending approach adopted was non-optimum. However
Kwatra et.al’s algorithm of [7] used the max-flow, min-cut
algorithm, which is capable of providing the optimum seam
between two matching blocks in the pixel domain. Our
extension of this algorithm to the transform domain has
enabled its application in Wickramanayake et. al’s fast texture
synthesis algorithm. The detailed experimental results show
that the proposed approach provides equivalent visual quality
at block boundaries, at a much lower computational cost,
when compared to the pixel domain max-flow, min-cut
algorithm adopted by Kwatra.

Figure-11 illustrates the texture synthesis results obtained for
9 texture samples of different nature, when using the
proposed, Wickramanayake et al’s [12,13] and Kwatra et al’s
[7] algorithms. Figure-11 (al, bl) are examples of regular
sample textures. Carefully observing the results of texture
synthesis obtained when using the proposed technique
illustrated in Figure-11(a3,b3)), we can conclude that the
proposed technique performs better than Wickramanayake et
al’s (see Figure-11(a2,b2)) and similar to Kwatra et.al’s (see
Figure-11(ad,b4)) algorithms. Figure-11(cl, dl, el, fl) are
near-regular sample texture where the proposed algorithm
(see Figure-11(c3,d3.e3.f3)) perform better than
Wickramanayake et.al’s algorithm (see Figure-
11(c2.d2,e2,f2)) and similar to Kwatra et.al’s algorithm (see

Figure-11(c4.f4) and better than Kwatra et.al’s algorithm (see
Figure-11(d4.e4)) in certain other cases. Note that the rare
possibility of an improved quality texture as compared to
Kawtra's approach, when using the proposed multi-
resolution, transform domain approach, exists due to the non-
consideration of noise and unnecessary texture details in
matching, when the proposed approach is used. Figure-11(gl,
hl) are irregular sample textures where the proposed
algorithm (see Figure-11(g3,h3)) performs better than
Wickramanayake et al’s (see Figure-11(g2,h2)) and similar to
Kwatra et.al's (see Figure-11(gd.h4)) algorithms. Figure-
11(i1) are stochastic sample texture where the proposed
algorithm (see Figure-11(i3)) perform similar to
Wickramanayake et al’s (see Figure-11(i2)) and to Kwatra et
al’s (see Figure-11(i4)) algorithms.

(a2) Wickramanayake et al.
g PR g B g

T %

> |

(bl) Regular

(b2) Wickramanayake et al.

T e T oW

(b3) our method‘

(b4)Kwatra et. al

sy

(cl) Near-regular (c2) Wickramanayake et al.

(d1) Near-regular

(d2) Wickramanayake et al.

(d3) our method (d4)Kwatra et. al

(h3) our method (h4)Kwatra et. al

(il) stochastic (i2) Wickramanayake et al.

(e4Kvatraet. o

== '. |
(f1) Near-regular (f2) Wickramana
3= |

e Bt e e et e e e

.\"“}fc ‘_3‘ al. (i3) our method (i4)Kwatra et. al

Figure 11: Comparison of proposed algorithms results with
Kwatra et.al’s and Wickramanayake et al’s algorithms.

The replacement of edge-blending algorithm adopted by
Wickramanayake et. al. in [12,13] by the proposed transform
= > domain max-flow, min-cut algorithm, provides a fast and
(£3) our method (f4)Kwatra et. al efficient, fully transform domain texture synthesis algorithm
with optimum quality at edges. Such a texture synthesis

e,

algorithm has applications in many practical domains where
existing algorithms perform ineffectively due to functional
constraints, Some examples of suc applications areas are:

Compressed domain texture synthesis: Refers to the
syntheses of a compressed output texture with use of a
compressed original texture sample. This is a useful feature in
fast, on demand applications, with resource/device constraints
such as mobile and hand held devices.

Computer Games: Transform domain texture synthesis can
be used in generating rendered textures of surroundings, such
as walls, background or foreground objects, in which the
quality of the rendered texture is kept minimum depending on
its required visual significance at any given time.

MPEG4: MPEG4 AFX uses Bézier surfaces to model and
animate (describe smooth motion) three dimensional objects.
Ttransform domain texture synthesis approaches can be easily
adopted to provide progressive, surface rendering to these
objects.

4 Conclusion

In this paper we have proposed a transform domain extension
to the max-flow/min-cut algorithm, popularly used in edge
enhancement of patch based texture synthesis algorithms. We
have provided experimental results and detailed analysis to
prove that proposed technique is capable of being used to
replace the simple non-optimised edge-blending strategy
adopted by Wickramanayake et al. in their pioneering work of
transform domain texture synthesis. thus further improving its
efficiency and extending it’s application.

In designing the proposed multi-resolution. transform domain
extension to the max-flow/min-cut framework, we have given
special attention toward reducing algorithmic complexity by
introducing refinement passes in progressively improving the
visual quality at block edges. We are currently looking at the
application of Wickramanayake et al’s transform domain
texture synthesis algorithm, enhanced by the proposed max-
flow, min-cut algorithm, to the texture synthesis of full,
arbitrarily shaped geometric surfaces.

Acknowledgement

Authors wish to thank Vivek Kwatra for providing valuable
discussions, the source code and sample textures used in his
original work.

References:

[1] Y. Boykov, O. Veksler and R. Zabih, * Fast
approximate energy minimization via graph cuts”
In [EEE transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 23, no. 11, pp.
1222-1239, 2001.

[2) P.J. Burt, E. H. Adelson “A multiresolution spline
with application to image mosaics”. ACM

transactions 2, 4 (12 1983), 217-236. ISSN: 0730-
0301.

[3]

(4]

(3]

(6]

(71

8]

(9]

[10]

(1]

[13]

[14]

A.Efros, W.T. Freeman, “Image quilting for texture
synthesis and transfer”. In Proc. of SIGGRAPH
2001, pp. 341-346.

A.Efros and T.Leung. “Texture synthesis by non-
parametric sampling”. International Conference for
Computer Vision, Vol. 2, September 1999, pp.
1033-1038

L. Ford and D. Fulkerson,” A Flow in Networks”
Princeton University Press . 1962

D.J.Heeger and J.R.Bergen. “Pyramid-Based
texture analysis/synthesis™. Proc. SIGGRAPH 95,
Aug. 1995, pp. 229-238

Vivek Kwatra . Arno Schodl , Irfan Essa . Greg
Turk and Aaron Bobick 2003, “Graphcut Textures:
Image and Video Synthesis Using Graph Cuts”,
ACM Transactions on Graphics, vol 22, 3 (2003),
pp 277 286. (SIGGRAPH 2003 proceedings).

L Ling, C E Liu, Ying Xing, Baining Guo, and
Heung-Yeung Shum. “Real Time Texture synthesis
by patch based Sampling” ACM Transaction on
Graphics, Vol 20, No 3, July 2001, pp.127-150

Wen- Cheieh Lin, James Hays, Chenyu Wu, Vivek
Kwatra, Yanxi Liu.” A comparison study of four
texture synthesis algorithm on near-regular
textures”. In Tech.Report CMU-RI-TR-04-01,
Robotics Institute, Carnegie Mellon University
(2004).

R. Sedgewick , A logorithms in C part 5: Graph
Algorithms.” Addison-Welsley, Reading,
Massachusetts. 2001

J. M. Shapiro, Embedded Image Coding Using
Zerotrees of Wavelet Coefficiem”, [EEE Trans.
Signal Processing, December, VOL 41(no.12),
3445-3462, 1993.

D.S Wickramanayake, E.A Edirisinghe, H.E. Bez.,
“Multiresolution texture synthesis in wavelet
transform domain™, The Journal of Imaging Science
and Technology, January/February 2006, Vol.50,
no.l, p93-102, ISBN/ISSN:1062-3701

D.S Wickramanayake, E.A.Edirisinghe, H.E. Bez,
“A wavelet based image quilting approach to fast,
multi-resolution texture synthesis”, IEE
International Conference on Visual Information
Engineering (VIE ~ 2005),(CP509), p.93-100,
Glasgow, UK, 4-6 April 2005, ISBN: 0 86341 5075

D.S Wickramanayake, E.A.Edirisinghe, H.E. Bez.,
“Transform Domain Texture Synthesis based on
DCT” In PREP 2005 proceedings,pages 152-153,
march 2005

PROGRESSIVE TEXTURE SYNTHESIS ON GEOMETRIC
SURFACES PARAMETRISED BY BI-QUADRATIC RATIONAL

BEZIER PATCHES

Rupesh N. Shet!, H. E. Bez, E. A. Edirisinghe!

I Department of Computer Science, Loughborough University, UK

Keywords:Texture Synthesis, Progressive Texture , Discrete

Wavelet Transform, EZW, Rendering

Abstract

Progressive texture synthesis can provide an added functional
advantage to existing texture synthesis algorithms, which
are time consuming and fail to deliver in some application
areas. To provide practical solutions to this challenge we
have previously proposed a Discrete Wavelet Transform
(DWT) based texture synthesis algorithm for 2D surfaces. In
this paper we propose the extension of this approach to 3D
progressive-texture synthesis. The proposed 3D progressive-
texture synthesis algorithm makes use of the EZW (Embedded
Zero-tree Wavelet) idea proposed by Shapiro, which is
capable of prioritising the coefficients of a DWT decomposed
image according Lo their visual significance. We demonstrate
the use of the proposed algorithm on progressive texturing
geometric surfaces such as Ring Dupin Cyclides, Toruses,
Spheres, parametrised by rational Bézier patches. We provide
experimental results to prove the effectiveness of the proposed
approach, when synthesising textures of regular, irregular and
stochastic nature, Further experimental results are provided
to illustrate the practical use of the proposed progressive
texture synthesis algorithm in resource constrained application
domains.

1 Introduction

Texturing surfaces is the key to enhancing the realism of
scenes, particularly in artificially created surfaces. As a
result, a number of “image based’ texture synthesis and texture
mapping algorithms have been proposed in the past decade.
However all texture synthesis algorithms are challenged by the
high statistical variability of textures involved in the synthesis.
Therefore texture synthesis continues to be an open problem
in computer graphics and has attracted much research interest
due to popular applications in animated movie production,
computer games, education, architecture, artwork and virtual
productions.

A major proportion of texture synthesis research has focused
on texture synthesis on planar surfaces. However, recently a
number of approaches have been proposed for texture synthesis
on 3D geometric and arbitrarily shaped surfaces (27, 24, 29, 2,
23, 13, 16, 20, 11, 10, 8, 18, 9]. Existing texture synthesis

approaches can be broadly classified into two groups, namely.
pixel based texture synthesis [26, 27, 24, 29, 2, 23, 9, 18]
approaches and patch based texture synthesis [13, 16, 20, 11,
10, 8] approaches.

Pixel based texture synthesis is performed considering a
pixel as the basic unit rather than a complete patch, where
as the focus of our current research is on patch based texture
synthesis. Patch based texture synthesis approaches attempt to
synthesis texture by copying selected regions of pixels from
a given sample texture and stitching them together. These
approaches overcome some of the limitations of pixel based
approaches as the techniques are relatively computationally
inexpensive. The early work of Neyret-cani [13] proposed
a technique that is based on pre-computed triangular texture
samples. However, good synthesis results were obtained only
for isotropic textures. Praun [16] introduced the lapped texture
synthesis technique where oriented texture patches are placed
in an overlapping fashion on a surface. However experiments
were limited to a specific class of texture. Soler [20] introduced
hierarchical texturing to overcome drawbacks of the previous
algorithms. The basic idea was to capture low-frequency
patterns while preserving high frequency randomness in
texture. The generalised idea is to pick up texture patches from
the sample image and map them onto the surface so that they
fit with their neighbours. The running time is closcly related
to the number of resulting patches, which depends on both the
mesh geometry and the texture sample. Sebastian et al [11]
proposed an algorithm that separated a texture pre-processing
step from an actual texture synthesis stage. Pre-processed
texture is stored and used when needed. Access of the stored
texture data is very slow and thus a look-up-table is used
to speed up memory access. In [10] Wang et al proposed
an algorithm based on global conformal parameterization of
surfaces, where the textures are preserved on surfaces without
seams or cracks. Moreover, the parameterization can segment
the surface into patches, where each patch is mapped to a
planar rectangle. The algorithm adopts a complex procedure in
parameterization, and in creating multi-scale samples, leading
to an increased computational cost in the synthesis process.
Chi-Wing Fu et al [8] proposed a texture tiling mechanism,
where a low distortion conformal quad based map is created
for the input surface. It produces proper tile orientations on
all quad faces so that texture can be laid out on quads and
mapped back to the input surface accordingly. This texture
synthesis algorithm is based on the Image quilting approach(1]

and therefore inherits all the drawbacks of image quilting

algorithms such as, random selection of patches, expensive

cost of minimum boundary cut, somewhat limited applicability

to isotropic textures and computation cost due to the need of
| generating pre-synthesis textures.

‘ All above texture synthesis techniques use a triangular mesh,
| which results in seams at edges.The size of triangles used
\ in meshes also varies, which makes prominent the visual
artefacts on the surface. Further to this, the graphical object
will use extensive bandwidth in transmission since the surface
mesh representation depicting the objects shape and texture
information depicting its appearance are in uncompressed
format. Therefore their applicability in constrained bandwidth
channels is limited. Further, animation and deformation
of triangular meshes is relatively difficult and costly. To
overcome many of the above problems and to be used
effectively in bandwidth limited transmission media, we
propose an algorithm that enables fast, progressive-texture
synthesis on bi-quadratic rational Bézier patches, allowing any
geometric surface that can be parametrised by such patches
to be completely textured. Within our present research, we
have used a Dupin Cyclide [6. 15), a Sphere and a Torus as
examples to demonstrate texture synthesis: these surfaces are
widely used in computer graphics and in the development of a
number of CAD tools. Tt is noted that the proposed are the first
attempts of progressive or non-progressive texture synthesis
on geometric surfaces generated using bi-quadratic rational
Bézier equations.

The remainder of the paper is organised as follows: sections-
2 and 3 summarise the fundamental theory of rational
parametrisation and introduce the reader to the parametrisation
of the surface of a Dupin cyclide(an example for study) by
bi-quadratic rational Bézier patches. Hence readers who
are familiar with these concepts can forego reading these
sections. Section-4 presents the proposed novel progressive
texture synthesis algorithm on surfaces along with detailed
discussions on the underlying techniques used, such as
multiresolution DWT representation of texture, texture
synthesis on a single Bézier patch, using a modified graph-cut
technique [25] to improve quality of seams between Bézier
patches and the use of Shapiro’s EZW algorithm [17] for DWT
coefficient prioritisation in providing progressive synthesis
of texture. Section-5 provides experimental results and their
analysis. Finally, Section-6 concludes, with an insight to
possible improvements and future variations.

2 Rational parametrisation

Rational parametrisation is a de-facto standard representation
in computer graphics and geometric modeling software,
allowing portability across applications and systems. In
addition to possessing desirable geometric properties, rational
parametrisation:

e requires the evaluation of only polynomial functions,

e gives rise to a compact data-structure, }

e facilitates interactive control and animation of shape, '

e is complete in the sense that approximation of any shape ’
to a specified tolerance o can be achieved, and exact l
parametrisation (i.e., & = 0) is often possible.

Rational parametrisations of surfaces comprise local atlases, or
patches. of the form:

=T, -
LA j=0 b k()b j (8)VF, J

'—(S, [) 72,00 ¥
Z}. !—(|{)fl .‘u“]bm ;("]W}. 7

D &<l

where wy. ; are the weights and v}, ; are the Bernstein vectors.
[f all the weights are non-zero this may be expressed as

n.m
k.j=0 n .k
T,

k=0 On.k ()b j (8)wr

i @ v
b)om, {800k Vs 0<st<l,

T8 L=

are the Bézier vertices. The values of n and

mo=2

where vy, ; = =

m determine the deuree of the parametrisation: if n -
the patch is said to be bi-quadratic and if n = m = 3 it is
bi-cubic.

Many of the desirable geometric properties of rational
representation, eg the convex hull property and the
existence of Bézier vertices. are lost if negative or zero
weights occur - hence, in computer graphics and geometric
modeling applications, positive weight parametrisations are
always preferred. For computational efficiency. low degree
parametrisations are desirable.

3 An Example: The parametrisation of Ring Dupin
Cyclides by trigonometric functions

Dupin cyclides may be defined implicitly as:

(22 +y2 + 22—

2+ b2)? — 4(ax — ap)? - ~lb2y: =0;

where the parameters a, b and ¢ satisfy ¢ = a® — 0%, The
surfaces for which ¢ < p < a have found application in ‘
geometic modelling, see [12] and [14], and are known as
ringed cyclides. Ringed cyclides with ¢ = 0 are torii , and |
the ringed cyclides may therefore be regarded as generalised
torii. Figure 1 (a) shows a ringed cyclide for which a = 6,
b= 4v2, (¢ = 2)and u = 3. Cyclides admit trigonometric

parametrisations which may be written as:

(e —acosfcos o) + b cosd

1
bla — pcos@)sind

Tull, @) = ——MMMMM
=) a — ccosflcosd

b(ccos @ — p)sing

for 0 < 0 < 27,0 < ¢ < 27 Figure 1 (b) shows the
origins and directions of the angular parameters, ¢ and ¢, on
the surface.

(a) (b)

Figure 1: (a): The surface, (b): The trigonometric

parametrisation 7, of the surface

3.1 The rational parametrisation induced from 7,

The restriction of the trigonometric parametrisation 7, to the
boundary defined by

O <0< onp<o<ao

is written as 7, and may be used to ‘induce’ rational
parametrisations of the same surface patch as that parametrised
by 7,.5. In particular it may be used to induce bi-quadratic
rational Bézier representations - see [7] and [3]. The induction
process discussed in [7] produces a rational bi-quadratic patch,
that parametrises the same region of the surface as 7, 5, with
weights, w;;, 0 < 4, j < 2, given by:

Won = @ — €LoaL0gs Wor = AWy — CX0HL 1oy
Woa = 0 — €Tpplay
Wiy = auwyg — € P1gLpe, Wi = AWy — CT19L 14, wiiere
Wiy = awyg — CXdae
Wiy = Q= CT2PT0s Wy = aAWygs — Croglls,
Wy = a— €Tl
wyg = cos(th —y)/2, w1 = cos(@r — ¢n)/2,

ros = cos(fy), Tos = cos(dp).
Tig = cos(fy + ”1) /2, Ty = cos(gy + o],.’"_).
rog = cos(t)), T2e = cos(d),
Yoo = Sill(ﬂ||]. 200 — h'ili(!,'?u).
ye = sin(fp +01)/2. z1 = sin(dg+ ¢1)/2,
Yo = sin(f), zp5 = sin(¢).

It follows from a little analysis of the formule for the weights
that, for any cyclide (i.e., for any a,b, (¢ > 0),pu), there
exist 16, positive-weight, bi-quadratic Bézier patches that
parametrise the entire surface. Further, the 4-way symmetry
of the cyclide can be exploited, enabling 12 of the 16 patches
to be determined, by vertex transformations, from the 4 patches
defined by the following angular displacements:

e 0<9p<30<0<E
%
e 0<$p<Z I<0<m

e f<p<mF<O<m

IA
S
IA
A
IA
IA
(S1E

These 4 patches are shown, with their Bézier polygons. in
Figure 2. These patches parametrise l: of the surface and their

(a) (h)

Figure 2: (a)%-cyclide comprising 4 positive weight quadratic
rational Bézier patches,(b) 16 patch NURBS representation
obtained from 11 patch

weights the computation of are given in the appendix of the
paper. As (0 < ¢ < a, it is clear that all the patches have
positive weights. The Bézier vertices of the four patches are
also given in the appendix of the paper.

A 16 Patches cyclide NURBS represenataion which is
generated from the l; patch equation are used in our proposed
algorithm. Note that different size of patches can be created for
different models. In general the proposed algorithm supports
any numebr of patches.

4 Proposed Texture Synthesis Algorithms

4.1 Overview of our approch

A high level block diagram of the proposed texture synthesis
algorithm can be illustrated as in Figure 3. The geometric

Bi-quadratics
Rational Parametnsation

Geomelnc
Suiface

Graph Cut on

Bazisr Patches Edge
Patches il
ng

T, 7
3 ff’

Synthesized
Geometric Surface

v

Figure 3: Proposed block diagram for texture synthesis on
geometric surfaces

surface (a ring Dupin Cyclide in our experiments) to be
textured, is first parametrised into a collection of Bézier
patches. Subsequently, following a procedure illustrated in
more detail in Figure 4, texture is independently synthesized
into individual Bézier patches (see section 4.2 and 4.3). The
texture synthesis techniques adopted results in a seamless

texturing within patches. Depending on whether or not
seamlessly progressive texture synthesis is required, the
use of the EZW algorithm (see section 4.6) is considered
for coefficient prioritisation/selection in forming the texture
blocks (see Figure 4) of a Bézier patch. The Bézier patches are
subsequently embedded into the surface mesh representation
obtained using the rational parametrisation approach presented
in section 2 and 3. The visibility of seams between Bézier
patches is then reduced using a minimum boundary cut
technique, i.e. graph-cut(see section 4.4). Figure 4 illustrates
the block diagram of the fundamental unit of the proposed
overall texture synthesis algorithm of Figure 3, i.e. the block
diagram depicting the detailed procedure adopted in texture
synthesis on a single bi-quadratic rational Bézier patch. An

Biquadratic Rational
Bézier patches

Paste block on patch
using textuze mapping

l Lly & HH, Bands I ‘—v

Cut black overlap area

n Level DWT

Figure 4: Texture synthesis on a single bi-quadratic rational
Bézier patch.

overview of the operation of the fundamental unit of texture
synthesis illustrated in Figure 4 can be given as follows: The
sample texture is first decomposed using a n-level DWT (see
section 4.2), A random decomposed block of this sample is
initially picked, converted into pixel domain using a n-level
IDWT procedure and subsequently embedded (see section
4.3) as a starting, corner block of a patch of the 3D surface
(i.e. Dupin Cyclide). An overlap area of this block with the
subsequent texture block to be synthesized is selected, and
converted into the DWT domain using a n-level forward DWT.
The LL and HH bands of this overlap area are then used to
find a suitably matching block from the decomposed sample
texture image (see section 4.2). The best matching block
is subsequently converted back into the pixel domain using
an n-level IDWT and is placed adjacent to the previously
synthesized texture block. A edge-blending algorithm [22]
is used to improve the quality of the seam between the two
adjacent blocks. The above process is continued until the

entire surface of the patch is textured. The operational details
of the main building blocks of figures 3
as follows:

and 4 can be provided

4.2 Multiresolution, Discrete Wavelet Transforms (DWT)
decomposition of the sample texture

Textured images contain a large amount of perceptual data.
Therefore the number of bits required to represent/encode a
texture image may be high. However typical images consist
of a wide range of frequency components spanning the
human visual frequency band. Some of theses frequency
components have a significant effect in human perception
while some others have very low significance. Fortunately
texture images are often of this type. The DWT, popularly used
in image compression to achieve signal compaction, provide a
compact multi resolution representation of an image. It gives
a signal representation/decomposition in correspondence to
a narrow band, low frequency range and a wide band, high
frequency range. Using the concept of scale, data representing
a continuous trade-off between space and frequency can be
made available for further processing. In our algorithm we
use a two-dimensional DWT to obtain a multi-resolution
decomposition of the texture sample.

Texture synthesis commences with the application of a n-
level (n=3 is used in our experiments) 2D DWT (e.g. Haar
Transform) decomposition on the sample texture image,
Lsampte (see Figure 5). The application of a single level
2D DWT on the sample texture divides it into a set of four
component images, i.e. sub-bands, as illustrated in Figure 5.
This can be mathematically expressed as

(If,l'.”‘ If”,lh Il-Hﬁv IHHU) :I)”'Tq(]mnn;nh') (1)
Where Ippo.Turo. Iomo. Iippo are the image sub-
bands corresponding respectively to the low-resolution

approximation, vertical details, horizontal details and diagonal
details of the sample texture and DWT() represent the forward
discrete wavelet transform function. Similarly 27 level and
3" level decomposition are obtained by applying DWT to the
low-resolution sub-bands of previous decomposed level. This
can be mathematically represented as follows.

Teerv Tuers Iea dum) = DWT(IL1o) (2)

(3)
4

=DWT(I11)
DWT(ILn-1)

From the n-level decomposition above, we extract the lowest-
resolution and the corresponding diagonal detail band, i.e.
Tron-y and Iyypp—1. To simplify the use of notations, we
generalise the notation used in equations [1-4]as [pl where

pe(LLLHL.LH. HH)and!l € (0,1,2,....n — 1).

(Inpo, Thee, Inpo. Iams)

(Teens Lyens Town, Lipn) =

Once sample texture is multi-resolution DWT decomposed
as described above, the next step is the placement of texture
blocks from the sample texture on a Bézier patch that
represents a section of the surface of the geometric surface.

4.3 Texture synthesis of Bézier patches

Refer Figure 4 Part II, Let Bp[(_,_. y) represent a general square
block of the decomposed sample image located at position

Transforming the sample texture into a
image representation with three level

Figure 5:
multiresolution
decomposition.

(x, v) relative to the sub-bands (p. {)'s origin. [Note that in
our experiments we have set the size of the above block to
be 27! % 2°~! where /(= 0. 1.2)]. Initially we randomly
pick a block . By p,—1(r.) from the lowest resolution,(LL,
n-1) sub-band of decomposed sample image. Subsequently
by combining this block with the corresponding blocks of
the other sub-bands and performing an n-/DWT, the randomly
selected block is obtained in the original pixel domain, (i.e.
B3). as follows:

Brin-2=IDWT(Brin-1.Burn—1. Buun-1, Bunn-1)
(5)
Br = IDWT(Bpro, Buro. Bruo. Buao) (6)

After randomly picking up the block as described above and
converting it into its pixel domain, the next stage is to map
the texture block on to a Bézier patch of the 3D surface. It
is noted that by following the parametrisation procedure of
section 2, the Bézier patches of the surface will be divided
into a quadrilateral mesh, where each mesh element is referred
to as a surface division. The above mentioned randomly
picked texture block is embedded to surface division (see
Figure 10) by following the texture embedding method detailed
in section 4.5. This procedure is popularly known in literature
as texture mapping.

Once the first, randomly selected block is mapped as above,
an overlapping area of this block (with the adjacent, potential
block to be mapped), is selected to be used in locating the
next blocked from the sample texture to be mapped onto the
patch. Note that in our experiments this area was 8 pixels
wide, and was selected from the left end, bottom end or both
above ends of the block (depending on the location of the
original texture block on the Bézier patch). The overlap area
is subsequently n-level decomposed (n=3 in our experiments)
and used to find a suitable match for the adjacent block
from the decomposed sample texture using minimum sum
of squared-differences (see figure6). To speed up the block
matching we only use all coefficients of the LL, and HH,

sub-bands for matching. In our experiment where n=3 and a
sample texture size of 128 x 128 is used, out of the 16384
possible coefficients, we only use 256 coefficient i.e. 1/64 of
total number coefficient in the sample texture. Therefore the
maltching speed is significantly enhanced.

Although adjacent blocks on a Bézier patch are matched using
an overlapping area, block seam mismatches are likely to
exist. However due to the efficiency of matching in the DWT
domain|28] these seam mismatches are minimal as compared
to using an alternative patch based texture synthesis technique
and are therefore easily eliminated using an edge-blending
approach[22]. The above process of block matching, selection
By Bt

Daadix1 1) 5.-..;:(:;-._:-11

%

5]
CDdanay2)

B
0 sai0x12) 3B
ad 2L)

ab, val(xlp)
Figure 6: The matching criteria

and placement is continued until the texture of the entire patch
is synthesized. As individual Bézier patches are textured
independently, it is likely that visible seam boundaries exist
between patches (see Figure 7). In the following section we
describe the use of a minimum boundary cut technique to
minimise these artefacts.

(a) (b)

Figure 7: Artifacts at Bézier patch edges.

4.4 Using a modified graphcut technique to improve
Bézier patch seams

To remove the edge artefacts between Bézier patches (see
Figure 7) we use a modified version of the popular Graphcut

technique proposed in [25]. Its operation can be explained as
follows:

4.4.1 Edge block selection and matching

The idea of this stage is to replace B'ezier patch seam regions,
with visible straight line artefacts, with martching regions from
the sample texture, which can be better blended with the
non-seam region texture. To accomplish this task a block of
size 297" % 2°77 (/=3 in our experiments), which we be called
an edge block is first selected from the patch boundary (see
Figure 8(a)). It is noted that seams are included within this
edge block. Subsequently we apply an n-level (n=3) DWT on
the selected edge block to create a DWT decomposed edge
block. The LLn and the HHn sub-bands of the decomposed
block is then used to search the decomposed sample texture
for the best matching block is found using block matching
criteria (see Figure 6) . Once the best matching block is found
(see Figure 8(b)) then can be combined with the edge block
using the graphcut approach in transform domain (see section
4.4.2) 1o minimise seam artefacts. After an n-level IDWT is
performed to obtain a pixel block.

4.4.2 Graphcut Approach

Once the best match to the edge block is found as above,
we apply the graphcut technique of [25] which is capable of
optimally replacing the seam region of the edge block with
regions from the best matching block (see section 4.4.1) to
provide an optimal minimisation of boundary artefacts (see
Figure 8(c)). We apply Graphcut technique in transform
domain to reduce alogrithm complexsity and get best possible
seams. Readers who are interested in the details of the graphcut
approach are referred to [19, 25]. The above modificd edge
block is finally embedded back in its original position in the
Bézier patch seam area. This process is continued for all edge
blocks along the Bézier patch seams. The results illustrated in
Figure 9 when compared to the results illustrated in Figure 7
proves the improved quality at Bézier patch seams.

(a)Artifact block (b)Best Block (cJEmbcdded hlock

Figure 8: Seam selection

4.4.3 Feathering

Although the grapghcut approach produces an optimum seam,
the optimality is restricted by the quality of the original edge
blocks. Therefore it is likely that some artefacts still remain

(a)

Figure 9: Refined Bézier patch edges

after the application of the graphcut approach. To address this
problem we use the popular feathering [4] approach that uses
suitable weighting factors to combine those pixels at the seams.
Feathering results in a further improvement of the seam quality.

4.5 Embedding texture on Bézier patches

To embed texture on Bézier patches, we use a modified
version of the approach proposed by Soucy et al. [21]. The
modification required is due to the use ol a quadrilateral mesh
in the proposed approach as against a triangular mesh in the
original approach of [21]. The texture of each quadrilateral in
the original mesh is obtained via a direct mapping [21] from the
corresponding quadrilateral in texture space. The texture space
referred to above is created as a result of the block placement
and matching procedure on Bézier surfaces, described in detail
in section 4.3. The quadrilaterals in texture space that we use
are rectangle in nature and are uniform in size. It is noted
however that it is also possible to use quadrilaterals that are
a better fit to the mesh shape and size. Tt is further noted that
the above texture embedding can be performed at interactive
(real-time} rates. In our experiments all surfaces are rendered
at interactive rates using 1024 > 1024 sample textures. The
surface models are composed of between 1000 and 50,000
quadrilaterals.

(c) Embedded
Texture on Mesh

(&) Texture
Block

(b) Parametrisized
Mesh

Figure 10: Texture Embedding

4.6 Progressive texture on surfaces using Embedded
Zerotree Wavelet (EZW) algorithm

The Zerotrees of wavelet coefficient concept was originally
introduced by Shapiro [17] in progressive encoding of images.
[t is based on two important observations:

I. Natural images in general have a low pass spectrum.
Therefore when an image is wavelet transformed the
energy in the subbands decreases as the scale decreases
(low scale means high resolution), so the wavelet
coefficients will, on average be smaller in the higher
subbands than in the lower subbands.

2. Large wavelet coefficients are visually more important
than smaller wavelet coefficients.

EZW provides a compact representation of perceptually
significant coefficients and multiresolution construction
capability of an image. The idea is to organize DWT

coefficients of an image (see Figure 5) in a prioritized order of

visual significance, depending on their position and magnitude
in the DWT decomposition and to subsequently encode the
ordered list of coefficients following an embedded coding
algorithm. In an embedded coding algorithm the encoder can
terminate the encoding at any point there by allowing a target
bit rate or target distortion metric to be met exactly. On the
other hand. given a bit stream, a decoder can cease decoding
at any point in the bit stream. Thus it is capable of producing
exactly the same image that would have been encoded at the
bit rate corresponding 1o the truncated bit stream.

In this paper we used the EZW algorithm’s initial coefficient
prioritization procedure to prioritise their use within the
proposed texture synthesis algorithm where we have replaced
IDWT with EZWIDWT module(see Figure 4). and Equation 4
can be modified to:

Brin-o=EZWIDWT(BLin-1.Brin-1.

Biun 1. Buun -1, thershold) &)

The thershold can be calculated using the magnitude of
wavelet coefficents of the decomposed sample image. Duce
to space limitation we refer readers interested in the detail
of the EZW coefficient prioritization algorithm to [17]. We
show that the visually prioritized availability ol coelficients
and the subsequent embedded coding of the coefficients
enable seamless progressive texture synthesis capability
on bi-quadratic rational patches. This is an additional key
contribution of our present work.

5 Exprimental Results and Analysis

In order to analyse the performance of proposed progressive
texture synthesis approach on the surface of a Dupin Cyclide,
a Sphere and a Torus. We have carried out a careful and
cfficient implementation in OpenGL and C++. Experiments
were carried out using a range of sample textures, which can
be broadly classified as regular, near-regular, irregular, and
stochastic [5] in nature. Figure 12 and Figure 13 illustrate

the results. Figure 13 proves the effectiveness of the proposed
algorithm in the progressive texture synthesis domain. It is
noted that the time required to synthesise the textures on the
surface was in the order of five seconds.

A closer analysis of the results in Figure 13 reveals the
following important facts.

e By varying the threshold selected for DWT coefficient
selection, within the EZW scheme, discrete seamless
levels of output quality can be obtained see Figure 13 (al
to a5 and bl to b5).

e [t is observed that for most types of textures, 15% of the
DWT coefficients from sample texture are sufficient for
creating synthesis output textures on surface of sufficiem
visual quality see Figure 13(a4 and b4) . For regular
textures this percentage can be signilicantly lower (7% in
our experiments) Figure 13(a3).

e [t observe that seams are rarely visible.

Given the above observations, the proposed algorithm can
be proved to be beneficial in applications that require fast
and accurate progressive texturing capability such distributive
and collaborative gaming or low bandwidth transmission
application. Although due to space limitations we have
restricted the number of progressive texture synthesis results
illustrated in Figure 13 to five textures, and five different
quality levels, the proposed method is capable of progressive
texture synthesis at seamlessly different number of levels and
a large number of sample textures covering broad statistical
lexture properties. Due to the flexibility of the extension
of the Bézier patch based rational parametrisation scheme
the proposed approach can be [urther extended o elficient
progressive texture synthesis on many object shape.

Our algorithms suffer from two limitation, 1) No control over
shape of the geometry of the surface 2) No control over
direction of texture element on the surface as it is directed by
algorithm.

We have compared our progressive texture synthesis results
with similar pixel domain work of Shet et.al [18] for arbitrary
surfaces. In his approch he replaced gaussain pyramid
by a DWT pyramid and adpoted image pixel location for
encoding/decoding surface and texture. It is observed that
the surface texture quality and overall speed of our algorithm
is improved (see Figure 11). Shet et als. [18] apporach take
about 15 to 20 minute for progressive texture where as our
approch is in order ol five seconds.

(b)

Figure 11: (a): Shet et.al alogrithm , (b): Our alogrithm

’ -
% ¥
A Y TN Ty AT et
. A e
N Ty
g T3S

(a) Regular (b) Regular

L.

ﬂ"_

() Irregular

oond

(b) == stochastic (b1)-3% coeff

(i) Irregular

(b2)-5% coeff (b3)-7% coeff

() Irregular

(j) Stochastic
(b4)-15% coeff (b5)-all coeff

Figure 12: Texture synthesis on Sphere, Torus and Cyclide ~ Figure 13: Progressive texture synthesis on Cyclide and
Torus

6 Conclusions & Future Work

In this paper we have proposed a novel approach to texture
synthesis on geometric surfaces. A rational parametrisation
stage is initially used to represent the surface as a collection
of bi-quadratic Bezier patches onto which the texture is
synthesized using a multiresolution DWT approach. We
have used the popular EZW idea of prioritizing the DWT
coefficients and subsequent embedded coding to introduce
progressive texture synthesis. To minimize seam artifacts at the
block boundaries within patches, we have successfully used
an alpha-blending algorithm, whereas to minimize artifacts
at seams between patches we have successfully used the
popular random patch cutting algorithm in tarnsform domian,
graph-cut, followed by a further feathering algorithm at the
exact seams Jocations. We have provided results to show the
effectiveness of the overall surface parametrisation and texture
synthesis algorithms. Further experimental results have been
provided to prove the effectiveness of the measures taken to
minimize scam artifacts, and the flexibility and efficiency of
the progressive texturing capability of the proposed algorithm.
A number of possible application domains of the proposed
algorithm have been identified.

It is possible to show that the rational parametrisation strategy
used can be extended to cover many 3D objects with arbitrary
surface topology. Hence the proposed texture synthesis
approach can be used to progressively synthesize texture onto
3D surfaces with arbitrary shape. We are currently in the
process of generalizing the proposed algorithm to address the
above issues and to over come the limitaion i.e. control over
geometry of the surface and direction of texture elements.

References

[1]1 A.Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. In Proc. of SIGGRAPH 2001,
pages 341-346, 2001.

[2] M. Ashikhmin, Synthesizing natural textures. In ACM
Symp. on Interactive 3D Graphics, page 217226, 2001,

(3] H E. Bez and TJ Wetzel Induced rational
parametrisations of special curves. In International
Journal of Computer Mathematics, volume 80,9, pages
1093-1109, 2003.

[4] P. J. Burt and E. H. Adelson. A multiresolution spline
with application to image mosaics. ACM Transactions on
Graphics, 2(4):217-236, 12 1983. ISSN:0730-0301.

[5] Wen chieh. Lin, Hays James, Wu Chenyu, Kwatra Vivek,
and Liu Yanxi. A comparison study of four texture
synthesis algorithm on near-regular textures. In Tech.
Report CMU-RI-TR-04-01, Robotics Institute, Carnegie
Mellon University, 2004.

D. Dutta, R. R. Martin, and M. I. Pratt.

[6) Cyclides in

surface and solid modeling. [EEE Computer Graphics
and Applications, 13:5359, 1993.

[7] S. Foufou, L. Garnier, and M .J. Pratt. Conversion of
dupin cyclide patches into rational bi-quadratic bezier
form. In Proc. of the IMA Mathematics of Surfaces XI.
pages 201-218, 2005.

[8

Chi-Wing Fu and Leung Man-Kang. Texture tiling
on arbitrary topological surfaces. In Proceedings of
Ewrographics Symposium on Rendering 2005 (EGSR
2005), pages 99-104, 200s.

[9] Sylvain Lefebvre and Hugues Hoppe. Appearance-space
texture synthesis. ACM Trans. Graph., 25(3):541-548,
2006. ISSN:0730-0301.

[10] Wang Lujin, Gu Xianfeng, Mueller Klaus, and Yau
Shing-Tung. Uniform texture synthesis and texture
mapping using global parameterization. In Special Issues
of Pacific Graphics, ISSN:0178-2789, volume 21, pages
801-810, 2005.

[11] Sebastian Magda and David Kriegman. Fast texture
synthesis on arbitrary meshes. In Proc. of the [4th
Euragraphics workshop on Rendering, volume 44, pages

82-89, 2003.

[12

R. Martin, J. de Pont, and T. Sharrock. Cyclide surfaces
in computer aided design. In Proceedings of the IMA
Conference on the Mathematics of Surfaces. 1986,

[13] F Neyret and M. P. Cani. Pattern-based texturing
revisited. In Proc. of SIGGRAPH 1999, page 235242,

1999.

[14] M. J. Pratt. Cyclides in computer aided geometric design.
In Compuier Aided Geometric Design, volume 7, pages

221-242, 1990.

I15

o

M. J. Pratt. Cyclides in computer aided geometric design
ii. In Computer Aided Geometric Design, volume 12,
page 131152, 1995.

[16] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures.

In Proc. of SIGGRAPH 2000, page 465470, 2000.

[17] J. M. Shapiro. Embedded image coding using zerotrees
ol wavelet coelficient. [EEE Trans. Signal Processing,

41(12):3445-3462, 12 1993,

[18] Rupesh N. Shet, Eran A. Edirisinghe, and Helmut E.
Bez. Progressive texture synthesis on 3d surfaces.
In VIIP 2006 : In Proceedings of Sixth IASTED
international conference on Visualization, Imaging, and
Image Processing, pages 136-141, 2006, ISBN
Hardcopy:0-88986-598-1/CD:0-88986-600-7.

[19] Rupesh N. Shet, Eran A. Edirisinghe, and Helmut E.
Bez. A wavelets based max-flow/min-cut approch for
texture synthesis. In VIE2007: In Proceedings of
The 1EE International conference on Visual Information
Engineering: Convergence in Graphic and Vision, 2007.

ISBN CD 978-0-86341-830-3.

[20] C. Soler, M. Cani, and A. Angelidis. Hierarchical pattern ~ Third patch 6y = 5.0y =7, ¢p = 0,0 = 3
mapping. In Proc. of SIGGRAPH 2002, volume 21, pages

673-680, 2002, W = B W = g5 W2 = G
wyp = oty wy = gtc w2 = S
) .= \/i L] == A_] . 2 = ﬁt
[21] Soucy, Marc, G. Godin, and M. Rioux. A texture- Wopg = @+cC W = “\/‘_; Wos = Q.
mapping approach for the compression of colored 3d L o
triangulations. In The Visual Computer, volume 12, page Fourthpatch g = 5.0y =7 dg = 5,01 =7
503514, 1996. o
woyy = a, wpp = 73 o = a,
g ; . i = o T A= T
[22] R. Szeliski and H.-Y. Shum. Creating full view panoramic Wip = Tgx Wn 7 » W2 ok
mosaics and enviornment maps. In Proc. of SIGGRAPH way = @, Wy = % Wiz = G="16

1997, pages 251-258, 1997,
I'st patch Bézier vertex data
[23] Xin Tong, Zhang Jingdan, Liu Ligang, Wang Xi,

ple—n)+h*

Guo Baining, and Shum Heung-Yeung. Synthesis of . EHL = hkpe
bidirectional texture functions on arbitrary surfaces. In 'r:"‘ - :: % e
proc. of SIGGRAPH 2002, page 665 672, 2002. ’ ’ ; '
Yoo = 0 Yoy 0 Yo 0
[24] G. Turk. Texture synthesis on surfaces. In Proc. of yoo = i——— = :' s b
SIGGRAPH 2001, page 347354, 2001. ¥ R g = S5 e b
[25] Kwatra Vivek, Schdl Arno. Essa Irfan, Turk Greg, and :1:. :: :':) :‘.
Bobick Aaron. Graphcut textures: image and video Pk 0 wihy = i
synthesis using graph cuts. In Proc. of SIGGRAPH 2003, | . .
volume 22, pages 277-286, 2003, 2nd patch Bézier vertex data
Ty = % duy = -HEihdl : Tty
[26] L.-Y Weiand M. Levoy. Fast texture synthesis using tree- poyy = SEH) . o deast
structured vector quantization, In Proe. of SIGGRAPH oo = oy = K tigy = b
2000, page 479488, 2000.
Wy = 0 Yem = 0 o2 = 0
. : . yrw = b yoy = Haid yuig = Sl
[27] L.-Y Wei and M. Levoy. Texture synthesis over arbitrary = 5 iy bl o bakgn)
manifold surface. In Proc. of SIGGRAPH 2001, page S) ‘ a E
355360, 2001. gy = 2l = toa 0
Wy = ,‘—f =)1 = 0
[28] D. S. Wickramanayake, E. A. Edirisinghe. and H. E. Bez. g = 3 W = e = o
Multiresolution texture synthesis in wavelet transform 3rd paich Bézier vertex data
domain. The Journal of Imaging Science and Technology, : . "
50(1):93-102, 1 2006. ISBN / ISSN: 1062-3701. e T @ .
IUyy = o Ty = Ty
[29] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. o = BELE e = e C
Texture and shape synthesis on surfaces. In Eurographics yoa = A puy = e vz b
Rendering Workshop, page 301312, 2001. yrg = e yoy = den vz b
s 0 pon = 0 ez 0
i o = 0 g = - bt 202 byt
Appenaix e = 0 :1‘:: '—'%—' :m-__» "”A:‘; ~
Weight Computed as: First patch: fp = 0,0, = 5. ¢y = = 0 oy = —dehy) ztay e
0,61 =3 4th patch Bézier vertex data
Wopp = A4— G wog = —F&— Wwo2 = a, 400 [{%,_] Thor = " !:TI ‘ To2 J%
. a—c a rvn = £ rn = = T2
wio, = e WL = Tge Wl = V2 TUH = ‘% rey = H ¥ Tiaa
Wop = d, Wwey = Wy = @
T b W = :"—' Utz :'—“-‘
Second patch: 0y =0,0, =3, do=35. =7 :::.:. - :: :::1: & t".u'.. :::. . lT
wop = a, wpp = u\;{, Wy = a+ ¢, fr:m = '-‘“'—:Em f”” i ﬁu :e:..g - 1]
Wi = %=, wy = E, wp = &E, i S e e e T SIS 2
V2 2 2 2y = 2 —%—‘ Iy = 0
Wep = 4, Wy = ﬁ, Weg = .

CONTROL POLYGON BASED TEXTURE SYNTHESIS ON
BIQUADRATIC BEZIER RATIONAL SURFACES

Rupesh N. Shet, H. E. Bez, E. A, Edirisinghe
Department of Computer Science, Loughborough University, UK
R.Shet@lboro.ac.uk

Keywords: Texture synthesis Discrete Wavelet Transform (DWT). EZW, Rendering, Bézier surfaces.

Abstract: Existing texture synthesis algorithms fail to deliver effectively in application areas where progressive
rendering of texture is required. To provide a practical solution to this problem we propose a novel
algorithm for progressive-texture synthesis on surfaces, which makes use of the Embedded Zero-tree of

Wavelet (EZW) idea proposed by Shapiro et al.. 1993 which is capable of prioritising the coefficients of a
DWT decomposed image according to their visual significance. We demonstrate the use of the proposed
algorithm on texturing a single biquadratic surface and two smoothly joined biquadratic surfaces. It is
further shown that the proposed texture synthesis approach on Bézier patches allows the algorithm's general
use in texture synthesis on many common surface topologies and can be generalised for arbitrarily shaped
surfaces. We provide experimental results to prove the cffectiveness of the proposed approach, when
synthesising textures of regular, irregular and stochastic nature. Further experimental results are provided to
illustrate the practical use of the proposed texture synthesis algorithm in resource constrained application
domains.

1 INTRODUCTION on planner surfaces. Recently a number of

approaches have been proposed for texture synthesis
on surfaces. These texture synthesis approaches can
be broadly classified into two groups, namely, pixel
based (Wei & Levoy, 2000, 2001; Turk, 2001:Ying
et al., 2001: Ashikhmin et al., 2001; Tong et al.,
2002; Shet et al., 2006; Lefebvre and Hoppe, 2006)
and patch based (Neyret and Cani, 1999; Praun et
al., 2000; Soler et al., 2002; Sebastian et al., 2003:
Wang et al., 2005;: Wing Fu et al., 2005) approaches.
Pixel based approaches consider a pixel as the basic
unit in the synthesis process. Patch based approaches
are an alternative to pixel based approaches where
an attempt is made to synthesis texture by copying
selected regions of pixels from the sample texture
and stitching them together. This approach
overcomes the limitations of the pixel based
approaches, i.e. being limited to work with certain
types of textures and the lack of computational
speed. Neyret-Cani’s 1999, technique is based on
precomputed triangular texture samples which are
mapped non-periodically. However this method is
restricted to synthesising isotropic textures. In the
lapped texture technique proposed by Praun et al,
2000, the texture patches are first oriented and are
subsequently placed in an overlapping fashion on a

Texture synthesis provides a practical solution for
data acquisition and is often used to enhance realism
of artificially created scenes. As result, a number of
‘image based' texturing algorithms have been
proposed in the past decade. A typical texture
synthesis algorithm starts from a sample image and
attempts to produce a larger texture with a visual
appearance similar to the sample, by repeated
placement of micro patterns of texture elements. It
does this in a way that when perceived by an
observer, the synthesized texture appears to be
generated by the same underlying stochastic process.
However all texture synthesis algorithms are
challenged by the high statistical variability of
textures involved in synthesis. Thus a universal
solution to fast texture synthesis yet remains an open
problem. Texturing surfaces provides further
challenges and attracted much research interest in
the recent past due to applications in computer
graphics, animated movie production, computer
games, education, architecture, computer art and
virtual productions.

A major proportion of research in the area of
texture synthesis has focused on synthesizing texture

surface with a predefined vector field. The method
works for a limited set of textures. Soler et al., 2002
introduces hierarchical texturing to overcome
drawbacks of previous algorithm. The method is
capable of capturing low-frequency pattern while
preserving high frequency randomness in the
texture. The synthesis time may vary from few
minutes to few tens of minutes. Sebastian et al.,
2003 separated the texture pre-processing from
synthesis and proposed two independent phases. Pre-
processed texture is stored on a disk and used when
needed. This process is very slow but only needs to
be performed once. The pre-processing time vary
from minutes to a few tens of minutes. Further
storing the texture on a disk is essential. Wang et al.,
2005 algorithm is mainly based on global conformal
parameterization of surfaces. where the textures are
preserved on surfaces without seams or cracks. This
algorithm is simple for texture synthesis but
parameterization process adopted is time consuming
thereby slowing down the overall performance.
Wing Fu etal., 2005 introduced the concept of
Wang tiles. Initially a low distortion conformal map
is created from the input surface, which forms a
quad based geometry. The texture is then laid out on
quad surfaces, properly oriented and then mapped
back on to the surface. However this approach
inherits all drawbacks of the image quilting
algorithms,

All the above techniques are applied on irregular
shapes of triangular meshes, which results in seams
at edges. Size of triangles in the mesh also varies
which makes the visual artefacts on the surface,
prominent. Further to this. it will also use extensive
bandwidth in transmission media as triangular mesh
information and texture are in uncompressed format.
Further the animation of this triangular mesh is
difficult as they are rigid. To overcome many of the
above problems we have proposed to use NURBS, a
form of surface representation which helps to
compress a mesh and thus can be applied in
constrained bandwidth environments. NURBS also
provides additional facilities to animate the surface.

The inspiration of our work comes from the
present requirements for progressive texture
synthesis on surfaces, which results in extensive use
of transmission media with limited bandwidth for
modern application domains such as remote
visualisation, distributed/collaborative gaming etc.
Current texture synthesis algorithms on surfaces are
time consuming and fail to perform in

progressive/transform domain. To overcome this
problem we propose a progressive texture synthesis
algorithm

using multiresolution DWT

decomposition. coefficient prioritisation using EZW
(embedded zero-tree wavelet) algorithm and surface
representation using biquadratic rational surfaces
which is falls under patch base category. We prove
the proposed novel algorithm is capable of creating
seamlessly varying quality levels of synthesized
texture on surfaces. According to the authors
knowledge it is a first attempt that demonstrates
progressive texture synthesis on meshes, which
utilises control polygons generated from the
biquadratic Bézier equations. We show that the
proposed work can be generalised to any type of
arbitrary mesh.

For clarity of presentation the paper is organised
as follows Section-2 introduces the reader to the
research background and fundamentals. Section-3
presents the proposed algorithm, Section-4 provides
experimental results and a detailed analysis. Finally,
Section-5 concludes, with an insight to possible
improvements and future variations.

2 RESEARCH BACKGROUND

For the purpose of clarity and ease of reference we
have summarized the fundamental techniques used
for multiresolution representation of texture (DWT)
[Wickramanayake et al., 2005], DWT coefficient
prioritization (EZW) [Shapiro et al., 1993] and
surface parameterization (biquadratic rational
surfaces) in this section. Hence readers who are
familiar with these concepts can forgo reading this
section.

2.1 DWT Representation of Texture
Image

Textured images contain a Jarge amount of
perceptual data. Therefore the number of bits
required to represent/encode a texture image is high.
However typical images consist of a wide range of
frequency components spread throughout the human
visual frequency band. Some of theses frequency
components have a significant effect in human
perception while some others have very low
significance. Fortunately texture images are often of
this type. The Discrete Wavelet Transforms (DWT)
provide a compact multi resolution representation of
an image. It gives a signal representation in
correspondence to a narrow band, low frequency
range and some of the coefficients represent short
data lags corresponding to a wide band, high
frequency range. Using the concept of scale, data
representing a continuous trade off between space

and frequency can be made available for further
processing.

{a)

(c) (d)
Figurel: Transforming the sample texture into a multi-
resolution image representation. (a) Sample texture, (b)
single level decomposition (c) two level decomposition,
(d) three level decomposition.

In our algorithm we use two-dimensional DWT.
To begin with, the texture image is subdivided into
four sub-bands using horizontal and vertical DWT
filters over the image pixels. The resulting sub bands
labeled LHI, HL1 and HHI1 represent the finest
scale wavelet coefficient whereas the sub-band
labeled LL1 represents low resolution coefficients.
In order to obtain the next level of wavelet sub-
bands, the sub band labeled LLI1 is further
decomposed and sampled using the vertical and
horizontal DWT filters. This process is repeated
until the required final decomposition is reached (see
Figure 1). The coefficients of the subbands are then
used for speeding up searching process and
prioritized using the EZW algorithm presented nexi.
2.2 Embedded Zerotree = Wavelet

(EZW) Algorithm

The Zerotrees of wavelet coefficient concept was
originally introduced by Shapiro et al, 1993 in
progressive encoding of images. It is based on two
important observations:

I. Natural images in general have a low pass
spectrum. Therefore when an image is
wavelet transformed the energy in the
subbands decreases as the scale decreases
(low scale means high resolution), so the

wavelet coefficients will. on average be
smaller in the higher subbands than in the
lower subbands.

2. Large wavelet coefficients are visually more
important than smaller wavelet coefficients.

EZW provides a compact representation of
perceptually significant coefficients and multi
resolution construction capability of an image. The
idea is to organize DWT coefficients of an image
(see Figure 1) in a prioritized order of visual
significance, depending on their position and
magnitude in the DWT decomposition and to
subsequently encode the ordered list of coefficients
following an embedded coding algorithm. In an
embedded coding algorithm the encoder can
terminate the encoding at any point thereby allowing
a target bit rate or target distortion metric to be met
exactly. On the other hand, given a bit stream, a
decoder can cease decoding at any point in the bit
stream. Thus it is capable of producing exactly the
same image that would have been encoded at the bit
rate corresponding to the truncated bit stream.

In this paper we use the EZW algorithm’s initial
coefficient prioritization procedure to prioritize their
use within texture synthesis algorithm. Due to space
limitation we refer readers interested in the detail of
the EZW coefficient prioritization algorithm to
Shapiro et al., 1993. We show that the visually
prioritized availability of coefficients enables
seamless progressive texture synthesis capability on
biquadratic rational surface using control polygon.
This is the main contribution of our present work.

2.3 Biquadratics Bézier Surfaces

This section will briefly introduce biquadratic
surface patches and construction of simple surface
using them. For more details the readers are referred
to Bez H.E, 2006.

Rational parametrisation is a de-facto standard
representation in computer graphics and geometric
modelling software, allowing portability across
applications and systems. In addition to possessing
desirable geometric properties, rational
parametrisation

¢ requires the evaluation of only polynomial
functions,
¢ gives rise to a compact data-structure,
facilitates interactive control of shape,
¢ is complete in the sense that approximation
of any shape to a specified tolerance & can
be achieved. and exact parametrisation (i.e.
&=0) is often possible.

>

Rational parametrisations of surfaces comprise
local atlases, or patches, of the form:

o)b, sy,
Z':.":fub,” BV e i
Zx m:b»u ('r]buu ('\-J(f),c i

@, jare the weights and

ost) =

where Vv, are the

Bernstein vectors, [f all the weights are non-zero this

may be expressed as

2. S)@s v,
Y b b, S,

_vo are the Bézier vertices. The values of
(2]

O<s,p<l (22)

s 4=

where |

n and m determine the degree of the
parametrisation; if # = m = 2 the patch is said to be
biquadratic and if n = m = 3 it is bi-cubic.

With given nine control points we compute and
draw the biquadratic surface patch defined by them.
(see Figure 2)

(a) (b)

Figure2: (a) Green Colour: Biquadratic control polygon
point, Red Colour: Smooth surface mesh generated using
control polygon (b) Control polygon mesh (for 9 control
points generate 4 faces).

Many of the desirable geometric properties of
rational representation, e.g. the convex hull property
and the existence of bézier vertices, are lost if
negative or zero weights occur - hence, in computer
graphics and geometric modelling applications,
positive weight parametrisations are always
preferred. For computational efficiency, low degree
parametrisations are desirable.

3 PROPOSED METHDOLOGY

In this section we provide the design details of the
proposed texture synthesis algorithm.

3.1 Texture Synthesis on Control
Polygon

Figure 3 illustrates the basic block diagram of the
proposed algorithm. The texture synthesis process
starts by applying a n-level (n=3 used in our
experiments) 2D DWT (e.g. Haar Transform) on
sample texture image, which is denoted as L.
The application of single level 2D DWT on the
sample texture results in a set of component images
i.e. sub-bands, as follows:
Uut'lm;-lnn-lruu]: ‘,m!'r[f-ﬂ,.‘,;,f. J_'~‘\<""'

%

Paste block of shape and
size of face on control

polygon / EZWIDWT
A

3" Levejled DWT

-

Best Match

Location 4
LL3 and HH3 bands
| !
i 3

LL3 and HH3

T
=S

Find next best match

Figure 3: Proposed block diagram for texture synthesis on
biquadratic surfaces.

Where Tisdgrs Lupin Ty 206 the texture image

sub-bands corresponding respectively to low-
resolution approximation, vertical details, horizontal
details and diagonal details of sample texture.
Similarly 2™ level and 3" level decomposition are
obtained by applying DWT to the low-resolution
sub-bands of previous decomposition level. This can
be mathematically represented as follows.

[[U:'Itrr?'l.‘tf."[ﬁu:]: DW’!'{[”,)—I'.‘.ZD

i]u o Ly L s Inwl)= D"'W‘Uu:)' (3.3)

(I’lfunl'i”luo\'!”]nﬂ'IHH“-:): ”WT(IH,-]_'}"“
from n-level we extract low-resolution and diagonal
detil bands i.e. ; and ; .

We generalise the notation used in equation
(3.1-(3.6)as y where pe {LL,HL LH ,HH} and

/ e{{).I,B...n} where p represent the sub-bands

within each decomposition level (LL-low resolution,
L.H-horizontal, HL- vertical, HH diagonal) and /
represent the decomposition level. DWT represent
the forward discrete wavelet transform.

The basic idea of proposed algorithm is to
synthesise texture on control polygons of a given
surface. Let Bu... represent a general polygonal

block of decomposed sample image located at
position (x, y) relative to the sub-bands (p. [)'s
origin.

Initially we randomly pick block B..... from

the sample texture image with identical size and
shape to that of the control polygon face. This
randomly created texture block is mapped to the
control polygon surface shown in figure 3. [Note:
the details of the mapping process are described in
section 3.2.)

In locating the next block to be synthesized, we
cut a 8 pixel wide template of pixels along the edge
of already synthesized, neighbouring blocks, apply a
3 level DWT decomposition on the template block
and extract low-resolution and diagonal detail bands
which are used for searching in sample LL3 and
HH3 bands. Best matching block can be found by
minimizing the L2 norm., EZW algorithm can be
used if coefficient prioritisation is used to further
reduce complexity.

In general. if B, and B

pra2y2i o are two

randomly shaped blocks to be matched, we
say Zpisiyhis the best match for B
d(B B

plix2,¥2) |[:

plixlah peasn) is minimum for all

possible B , blocks, which is calculated as,

[By Byoofi) I
d#ﬂe._ﬁmh)zz { ai.ﬂ\.[h(_)_mﬂ A I!')
it | H By (i Bugoofi) ')
Where aBﬂ, an edge is zone of block B

plix.y)

and { is an element (coefficient) within the edge
Zone.

Finally the overlap area of the best matching
edge is blended with the overlap area on the original
block using alpha bending. The non-overlapping
area of the block is picked from the sample texture
and subsequently appended to the synthesized

texture. This process will continue till all the faces
of control polygon are mapped. In some cases we
have considered two or more overlapping areas for
finding the best match.

3.2 Texture Mapping on Control
Polygons
In our implementation initially we create

propagating seed vertex directions, which are then
used to smooth the surface vector field. However
alternatively a number of other surface vector field
techniques (Wei-Levoy, 2001; Turk 2002; Ying etal,
2001) can be used to replace the approach we have
selected above. Once vector fields are assigned to
all control polygon faces, we then rotate all the faces
according to tangential vector field and surface
normal, thus placing all faces in the same 2D plane.
Using a modified version of Soucy et al., 1996,
approach (Note: modified from using triangle to
using polygon) a texture map. T is created. For each
face of the control polygon. we map it to a
corresponding face in 7 in compact form, i.e. with
no space being wasted. The faces in T are textured
using the corresponding best matching block. The
faces in T that we use are of non-uniform size that
are a better fit to the shape and size. It is noted that
the resulting texture can be rendered on the control
polygon surfaces at interactive rates. The images
illustrated in Figure 4 were rendered in this manner
using 256 x 256 textures. The models used in our
experiments are composed of smooth surfaces
having between 100 to 1000 faces, whereas the
control polygons used consisted of 4 faces to 8 faces
(It can be further increase to n faces). We have
observed that these surfaces render at real-time rates.

3.3 Projection of Texture from Control
Polygons to Biquadratic Rational
Surfaces

Firstly we calculate the distance between control
points of the control polygon using the standard
distance formula between two points in 3D space.
Depending on these distances we calculate relative
location of projections of these points on the rational
surface, parameterised by 0<s,#<l. Using the

correspondence between points we then decide on
the area projection from control polygonal mesh to
the smooth surface. Figure 4(a) illustrates the texture
synthesized onto the control polygon using the
proposed algorithm and figure 4(b) illustrates the
mapped texture onto the smooth rational surface..

Figured: (a) Texture on control polygon (b) Projection
from control Polygon to smooth surface.

Note that closer the control polygon to the smooth
surface representation, lesser distortion in projection
will occur and vice —versa.

3.4 Progressive Texture Using EZW

In order to achieve progressive texture synthesis on
surfaces, we adopt Shapiro’s EZW idea in which
coefficient values with magnitudes above a given
threshold are considered significant. This threshold
(1) is calculated using equation (3.6) based on the
magnitude of wavelet coefficients of decomposed
sample image.
1= Plog (L)l fx ~ 36,

where MAX() means the maximum coefficient
value, K is a constant and L[, (wy) denotes a
general coefficient in [, sub-band. By only
considering the coefficients of sub-bands, which are
larger than the threshold and ignoring all others (i.e.
setting to zero), an inverse DWT is calculated to
produce the texture at a given progressive texture
quality. This can be expressed generally as:

BHr Blllr-'
(B,,,.)= EZWIDWT| B, Bun: | -(3.7)
thershold
The above equation can produce discrete quality
levels of texture depending on threshold or number
of coefficients need to be considered. Image quality
can be increased by decreasing the threshold and
vies-versa. Note that the function EZWIDWT above
represent an EZW constrained inverse discrete
wavelet transform. When progressive texture

synthesis is required we replace the normal texture
mapping process with the above EZW based
approach (see figure 5 & 6).

4 EXPERIMENTAL RESULTS &
ANALYSIS

In order to analyse the performance of proposed
algorithm and to show that surfaces can be rendered
effectively, we have implemented the proposed
algorithms in OpenGL, C++.

Experiment were performed on a diverse range
of texture samples that include regular. near-regular,
irregular and stochastic (Lin et al., 2004) textures.
Results illustrated in figure 5 indicate the ability of
proposed technique to efficiently map and
synthesized texture on surfaces, with minimal
artifacts. Further as matching and searching is
performed in wavelet domain, the texture synthesis
is fast. Textures illustrated in Figure 5 (a), (b), (c)
respectively belong to near-regular, regular, and
stochastic categories. Similar synthesized quality
levels are demonstrated for all three texture
categories. Further analysis revealed that the time
required 1o synthesize these texture is in the range of
few milliseconds.

To further extend the functionality of the
proposed method, we have extended our work to
progressive texture synthesis on surfaces. We have
preformed a wide range of experiments (see figure 6
& 7) to show that texture can be synthesized at
seamlessly different levels of quality on surfaces.,
without consuming noticeable processing time.
Figure 6 illustrates the synthesis of a stochastic
texture of a flower. It is evident from the results that
only 10% of information from sample texture is
sufficient to create a texture with sufficiently rough
quality. By increasing the percentage of coefficients
further, the quality of the synthesized texture can be
seamlessly improved. Further experiments revealed
that for this texture, 20% of coefficients was
sufficient to synthesize a texture visually equal to
the texture that can be synthesized when all
coefficients are utilized. Progressive texture
synthesis gives the added advantage of being able to
truncate a bit stream representing the sample texture
at any intermediate stage, still being able to
synthesize texture at some intermediate quality level.

To further illustrate the application of the
proposed idea, we have extended our approach to
synthesizing texture on two smoothly joined
biquadratic rational surfaces, shown in figure 7.
Figure 7(c) shows two smoothly join biquadratic
patches. Figure 7(d) to 7(k) illustrates progressive
texture synthesis on this surface. This proves that
our technique can be extended to the many
geometric topologies. Results in figure 7 further
illustrates using regular and near-regular texture

samples that texture variations across patch

boundaries are smooth.

(a) near-regular B

~ (b) regular

(c) stochastic

Figure 5: Texture synthesis on biquadratic surface

5 CONCLUSIONS

We have introduced a novel DWT based approach to
synthesizing, texture and progressive texture, on
biguadratic surfaces. We have presented the methods
and algorithms in detail along with possible
applications and advantages. The proposed method
has the capability of synthesizing texture at
seamlessly different quality settings, a functionality
which is not possible via existing state-of —the art
techniques.

The use of visual prioritisation of information in
the sample image during texture synthesis allows the
task to be carried out at a higher speed but at an

equivalent visual quality level. We show that the
proposed approach is computationally efficient,
results in good quality texture synthesis, and is
applicable in bandwidth-adaptive/compressed-
domain applications such as remote visualization.
We have shown that the control polygon strategy
used can be extended to cover synthesizing texture
on many 3D objects with arbitrary surface topology.
We are currently in the process of generalizing the
proposed algorithm to address this issue.

a2-5% coefficients

ad- ALL coefficients

Figure 6: Stochastic progressive texture on biquadratic
surface.

~
|h: u--ul i

(a) ncar-rcgular

(¢) smoothly joint mesh

) 4

v
l
|
|

} i (d)-1% L(KIIILILIII\ (C) "‘?quIIL:Lm\

TY

(g) \Ll untlluuu\

(f‘)—b‘r’r coefficients

‘ (_]) ~6% coefficients

k) ALL coefficiems |

Figure 7: Progressive texture on two-joined biquadratic
surface.

REFERENCES

Ashikhmin, M., Synthesizing natural textures, ACM
Symp. on Interactive 3D Graphics (March), 217~
226, 2001.

Bez H.E.. Bounded domain, bi-quadratic rational
parametrisations of Dupin cyclides, Report No.
1090, 2006, Dept of CS, Loughborough University.

Chi-Wing Fu and Man-Kang Leung Texture Tiling on
Arbitrary Topological Surfaces in Proceedings of
Eurographics Symposium on Rendering 2005
(EGSR 2005), Germany,2005, pp. 99-104.

C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical
Pattern Mapping Proceedings of Siggraph 2002, vol.
21, no. 3, pp. 673-680, 2002

Heeger, David J. and James R. Bergen, Pyramid-Based
Texture Analysis/Synthesis, [In proceeding of
SIGGRAPH 95, Aug., 229-238, 1995.

J. M. Shapiro, Embedded Image Coding Using Zerotrees
of Wavelet Coefficient”, [EEE Trans. Signal
Processing, December, VOL 41(no.12), 3445-3462,
1993,

Lujin Wang, Xianfeng Gu. Klaus Mueller, Shing-Tung
Yau: Uniform texture synthesis and texture mapping
using global Parameterization,, Volume 21, Numbers
8-10, September 20035, Pages: 801 - 810 Special
Issues of Pacific Graphics 2003.

Neyret F., and Cani, M.P., Pattern-based texturing
revisited, Proc. of SIGGRAPH 99, 235-242, 1999,
Praun E. Finkelstein, A.. and Hoppe. H., Lapped
textures, Proceedings of SIGGRAPH 00, 465-470),
Rupesh N, Shet, Eran A. Edirisinghe, and Helmut E.
Bez. Progressive texture synthesis on 3D surfaces.
In Proceedings of VIIPO6 Sixth international

conference, pages 136-141, 2006.

Soucy. Marc, Guy Godin and Mare Rioux, A Texture-
Mapping Approach for the Compression of Colored
3D triangulations, The Visual Computer, Vol. 12.
No. 10, 1996, pp. 503-514

Sebastian Magda. David Kriegman, Fast Texture
synthesis on Arbitrary meshes, Proceedings of the
I4th Eurographics workshop on Rendering Vol. 44,
pp: 82 - 89,2003

Sylvain Lefebvre and Hugues Hoppe. Appearance-space
texture synthesis. ACM Trans, Graph.. 25(3):541-
548, 2006. ISSN:0730-0301.

Tong Xin . lingdan Zhang, Ligang Liu, Xi Wang,
Baining Guo, Heung- Yeung Shum, Synthesis of
Bidirectional Texture Functions on Arbitrary
Surfaces, SIGGRAPH 2002, Pages: 665 — 672

Turk. G., Texture synthesis on surfaces, Proc. Of
SIGGRAPH2001, 347-354, 2001(August).

Wickramanayake, D.S., Edirisinghe, E.A., Bez H.E.,
Multiresolution texture synthesis in wavelet
transform domain, The Joumal of Imaging Science
and Technology 2005.50(1):93-102, | 2006.

Wei L.-Y., and Levoy, M., Fast texture synthesis using
tree-structured vector quantization, Proc. of
SIGGRAPH 2002, 479488,

Wei L.-Y., and Levoy, M., Texture synthesis over
arbitrary manifold surface, Proceed of SIGGRAPH
2001, 355-360, 2001.

Wen-chieh Lin, James Hays, Chenyu Wu, Vivek
Kwatra, Yanxi Liu, A comparison study of four
texture synthesis algorithm on near-regular textures.
Tech. Report CMU-RI-TR-04-01, Robotics Institute,
Carnegie Mellon University, 2004. Also appeared in
Poster Session SIGGRAPH, August 2004.

Ying. L., Hertzmann, A., Biermann H., and Zorin, D.,
2001, Texwre and shape synthesis on surfaces,
Eurographics Rendering Workshop, 301-312, 2001.

Texture Synthesis on Arbitrarily Shaped Surfaces
Using Bézier Control Polygons

Rupesh N. Shet', Helmut E. Bez', Eran A, Edirisinghe’
'Department of Computer Science,
Loughborough University, UK

LA Edivisinehe @ [boro.ac.uk

Abstract

This paper presents a novel algorithm for the texture synthesis of arbitrarily shaped surfaces. The texture is initially
synthesized onto control polygons using a patch based. multi-resolution. progressive. Discrete Wavelet Transform
(DWT) domain texture synthesis algorithm and is subsequently projected onto the arbitrarily shaped. smooth, surface of
the given object. which has been represented by Bezier patches, The algorithm has a unique combination of several
features that enables its practical use in application scenarios in which existing texture synthesis algorithms fail to
deliver. The DWT domain multi-resolution texture synthesis algorithm adopted, supported by the popular Embedded
Zerotree Wavelet (EZW) based coefficient prioritization scheme allows fast, multi-resolution, progressive transmission
and synthesis capability of texture. The data efficient. Bezier representation of the surfaces to which the texture is
projected, results in the possibility of surface animation. The control polygon based texture projection approach enables
a flexible approach to texture synthesis of complexly shaped 3D objects. Further the algorithm allows the user definition
of vector fields depicting the preferred direction of texture propagation at a given location of the surface. We provide
experimental results synthesizing rextures of different nature on arbitrarily shaped surfaces of a number of 3D objects. It
is shown that efficient, flexible, seamless texture synthesis is possible with most patterns of texture.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics|: Picuure/lmage Generation

display algorithm; 1.3.7 [Computer Graphics].: 3D Graphic and Realism: Texture: J.6 |Computer Graphics]: CAD

1. Introduction

During the past decade the use of user defined vector
fields to indicate the texture direction in synthesizing
texture on 3D models have gained widespread popularity
particularly due to the demands in application areas such as
digital cinema creation and 3D computer games. Thus
novel approaches to designing vector fields and efficient
algorithms for synthesizing texture on 2D/3D surfaces have
attracted much attention from the research community.
Therefore efficient solutions to both research challenges
are vital in achieving good quality texture production on
surfaces. Whilst the texture direction can enhance
perceived texture quality and thus realism, efficient texture
synthesis algorithms enable quick and accurate texturing of
surfaces.

A survey of existing approaches to patch based texture
synthesis (see section 2) reveals that most of the proposed
algorithms use irregular shapes and sizes of triangular
meshes, which often result in seams at patch boundaries.
Further the varying nature of the size of triangles defining
the mesh, results in additional costs in searching for
matching texture patches and in their subsequent blending.
In addition the inability of representing triangular meshes
and the related texture patches in a progressively refined
manner, limits their use in applications utilising bandwidth
constraint transmission media for data transmission, such

as the internet and mobile communication channels.
Further the animations of textred surfaces are difficult as
they are rigidly defined. Overcoming the above limitations
of the existing approaches. in this paper we propose the use
of Bézier polygons and an associated progressive. patch
based texture synthesis approach.

The paper is organised as follows: Apart from this
section which introduces the reader to the problem domain.
sections-2 provides an overview of literature. Section-3
presents the proposed texture synthesis algorithm in
particular providing details of the underlying techniques
used, such as basics of multiresolution DWT representation
of texture, texture synthesis on Bézier control polygons.
using weighted edge blending technique to improve quality
of seams between Bézier polygonal faces and the use of
Shapiro’s EZW algorithm [Sha93| for DWT coefficient
prioritisation in providing progressive synthesis of texture.
Section-4 provides experimental results and their analysis.
Finally, Section-5 concludes, with an insight to possible
improvements and future variations.

2. Related Work

A number approaches have been proposed in literature for
texture synthesis on 3D surfaces. Two important objectives
of these approaches have been the avoidance of patch
boundary artifacts and the minimization of unrealistic

stretching and distortion of the texture pattern, once
synthesized on a given surface. These approaches |[WLOI,
Tur01, YHBZ01, AshO1, TIL*02, NC99, PFH00, SCA02,
MKD3, LXKST05. FMKO5. SEB06. LH06) can be broadly
classified into two groups. namely, pixel based texture
synthesis algorithms [WL00, WLOI. TurOl, YHBZOI,
Ash0D1, TIL_02, SEB06, LH06) and patch based texture
synthesis approaches [NC99, PFH00, SCA02, MKO03,
LXKSTO05. FMKO5|. The patch based texture synthesis
algorithms have the inherent advantage of being faster and
being able to more easily maintain the original texture
properties, as compared to pixel based approaches. The
focus of our current research is on a novel approach to
patch based texture synthesis that aims to avoid a number
of limitations of existing patch based texture synthesis
approaches (see section 1), Hence only patch based texture
synthesis approaches are reviewed in this section.

Patch based texture synthesis approaches attempt to
synthesis texture by copying selected regions of pixels
from a given sample texture and stitching them together.
These approaches overcome some of the limitations of
pixel based approaches as the techniques are applicable to
any generic texture and are relatively computationally
inexpensive. The early work of Neyret and Cani proposed a
technique that is based on pre-computed triangular texture
samples. However. good synthesis results were obtained
only for isotropic textures [NC99]. Praun introduced the
lapped texture synthesis technique where oriented texture
patches are placed in an overlapping tashion on a surface.
However experiments were limited to a specific class of
texture [PFHO0]. Soler introduced hierarchical texturing to
overcome drawbacks of previous algorithms. The basic
idea was to capture low frequency patterns while
preserving high frequency randomness in texture, The
generalised idea is to pick up texture patches from the
sample image and map them onto the surface so that they
can fit with their neighbours. Although the resulting texture
often contains some seams at patch edges. the author
demonstrated that the seams can be further reduced by
locally readjusting texture coordinates at patch boundaries.
The running time is closely related to the number of
resulting patches, which depends on both the mesh
geometry and the texture sample [SCA02]. Sebastian et al
proposed an aigorithm that separated a texture pre-
processing step from the actual texture synthesis stage. Pre-
processed texture is stored and used when needed. Since
the access of the stored texture data can be slow a lookup
table is used to speed up memory access [MKO3]. Wang et
al proposed an algorithm based on global conformal
parameterization of surfaces, where the texwres are
preserved on surfaces without seams or cracks. Moreover,
the parameterization can segment the surface into patches,
where each patch is mapped to a planar rectangle. This
method is used to synthesize texture on a 2D rectangle.
However non-uniformity of synthesized texture is a
shortcoming of the method as a result of vsing an area
stretching factor which is obtained from the conformal
factor. The algorithm adopts a complex procedure in
parameterization, and in creating multi-scale samples,
leading to an increased computational cost in the synthesis
process [LXKSTOS]. Chi-Wing Fu et al proposed a texture
tiling mechanism, where a low distortion conformal quad

based map is created for the input surface. It produces
proper tile orientations on all quad faces so that the texture
can be laid out on quads and mapped back to the input
surface accordingly. This texture synthesis algorithm is
based on the image quilting approach of [AFO1] and
therefore inherits all the drawbacks of traditional image
quilting algorithms such as random selection of patches.
expensive cost of minimum boundary cut, somewhat
limited applicability to isotropic textures and computation
cost due to the need of generating pre-synthesis textures
[FMKO5].

To overcome some of the shortcomings of the existing
patch based texture synthesis approaches. we propose to
use a geometric surface representation, namely the Bézier
polygons. We show that the use of Bezier polygons enables
the progressive compression of the surface representation
mesh, thus extending the method’s applicability to texture
synthesis applications utilising bandwidth and resource
constrained transmission media for data transmission.
Further the use of the geometric surface based approach
provides additional benefits such as the ease of surface
animation. In addition the proposed approach uses Discreet
Wavelet Transform (DWT) domain texture representation
guided by user defined vector fields that enable progressive
and realistic refinement of texture on surfaces. We show
that the ransform domain texture representation
considerably increases the synthesis speed. We further
discuss that the use of Bézier polygons in surface
representation enables high data compression possibility of
3D mesh models and increases the overall texture synthesis
speed. Finally we point out that the abovementioned
special features extend the proposed methods applicability
in distributed and/or collaborative gaming and in digital
movie application domains.

The following section introduces the proposed
approach giving particular attention to design and practical
details.

3. Proposed Algorithm

For the purpose of clarity the explanations are organized
into separate sections as follows:

3.1. An overview

The basic logical flow of the proposed algorithm is
Hlustrated in Figure). The process begins with the reading
of the Bézier control polygonal information from the
Bézier Patch file (see section 3.2) of the 3D surface.
Subsequently the user interactively marks the required
texture directions on the control polygons in the form of
vectors (see section 3.3). All faces of the control polygons
are then projected on to a 2D plane (see section 3.4). In
other words the user defined vector fields representing the
expected texture directions along with the polygonal faces
gets projected on to the 2D plane. The first marked user
defined vector is considered the anchor vector and is used
10 initiate vector propagation (see section 3.3). It is noted
that the time taken for vector propagation depends on the
time spent by the user in manually marking the vector
fields.

Once the above process has been completed, the texture
synthesis commences, where the texture of each Bézier
polygon is synthesized (see sections 3.5, 3.6, 3.7). Finally,
the synthesized textures on control polygons are projected
back on to the actual Bézier patches representing the 3D
surface, thus completing the texture synthesis process (see
section 3.8).

Read Bézier data and
generate the object

/N

M fined
Mark user de Project the
vectors

polygonal
l faces to the

) 2D plane.
Project vectors (o
the 2D plane

Propagate the user
define vector on
remaining 2D Faces

Rotate all polygonal faces
as ner nronagated vector

.

Synthesize texture on control polygon

Project texture on to the Bézier surface

Figure 1: Logical flow of the proposed algorithms

The following sections provide further design and
implementation details of each sub process of the proposed
texture synthesis approach.

3.2. Parametrisation of Bézier Patches

The process begins with the reading of the file that contains
the vertex data of the Bézier control polygons (i.e. the
coordinates of the Bezier vertices / green dots in figure 2).
Each Bezier patch is subsequently parametrised to form a
smooth surface defining a part of the surface of the 3D
object.

The process of parametrisation of a single Bezier patch
can be summarized as follows (for more details readers are
referred to [Bez06]): Given a Bezier patch, 7 . we first use
the vertex data of the nine control points to parametrise the
surface (see Figure 2) as,

(a)

Figure2: (a) Green Colour: Control polygon points of a
Biquadratic surface. Red Colour: Smooth surface mesh
generated using the control polygon (b) Control polygon
mesh (note: for 9 control points 4 faces are defined).

2reobui Dby $ vy,
Z:.I:lubr: ﬁ(!)bm;(g)(UL‘;

tst)= pD<st <!, (3.1)

where @ are the weights defining the specific shape of the

smooth surface, y , are the Bernstein vectors and

b..(1)s b, ($) are a Bernstein polynomial caleulated
as follows:

ny . ;
b= | @ (d-u)Pt @)

If all the weights are non-zero this may be expressed as,

2 abia(Vb, (5B Y,

st)= , DSst8l (3.2)

nan

TR ubul(I)bm ;(ol "a)l o

where _v., are the Bézier vertices. The values of n and
)

m determine the degree of the parametrisation; if n = m =2
the patch is said to be biquadratic and if n = m = 3 it is said
to be bi-cubic. Within the context our present research we
have assumed a biquadratic parametrisation.

Subsequent to the parametrisation of the Bezier
patches, user input/intervention is sought for defining the
tangential vectors representing the texture directions on
control polygons. This is discussed in detail in the
subsequent section.

3.3. User Defined Tangential Vectors and their
Propagation

The most frequently used approach in maintaining realism
in 3D texture synthesis is to allow the user to interactively
specify texture directions (user defined tangential vectors)
on selected patches, which are (i.e. the directions)
subsequently propagated to provide the texture directions
of all other patches defining the surface.

In our approach the user initially marks texture
directions on a selected number of faces (note: minimum of
one face is required). The algorithm then considers one of
the marked faces (usually the one selected first) to be a
‘seed face’ and will select a neighbouring non-marked face
to commence vector propagation.

The vector field) of a non marked face. ¢, is

calculated as follows:

T, =

= |~

!
5. T (3.3)
i=l

where T’ is the vector field of the non-marked face (i.e.

the field being caleulated) and 7 . T, .. T, represent
the vector fields of the face’s. n-connected neighbourhood.
(note: in our experiments #=9), Starting from a neighboring
block of the seed face we use the above equation to
propagate the texture field to cover all non-marked faces of
the 3D object.

Once T, is obtained using equation 3.3, it may well
be placed outside the face. Therefore we move the vector

field so that it will be restricted within the face, T, as

follows:

T, =0 Nty T Ty (3.4)
where,

a-=beF,. &, =b,*T. (3.5)

and bl 2 b: are the face basis vectors.

The vector fields thus obtained are used for the
appropriate rotation of the face before being projected to
the 2D plane (see section 3.4). This results in minimizing
distortion at the patch boundaries.

3.4. Project 3D Face on to 2D Plane

To synthesize a texture on a face of the Bézier control
polygon, one needs to appropriately align and project the
face onto the texture space. The mapping between control
polygon faces and planer polygons on the texture space
should be isometric, i.e.. persevering both angle and
distance.

The alignment and projection procedure is illustrated
in figure 3. A given arbitrary surface F, (P, P,, P, P3) can
be assumed to be comprised of two triangles i.e. 1,= A (Py,

Pi. Py) and 1:=A (P;, Py, Py) (See Figure 3 (a)), with the
surface normals denoted by N;, N.. The angle between the
normal of each triangle and normal of the 2D plane to
which it is to be projected is measured initially.
Subsequently the vertices of each triangle are rotated such
that their normals are aligned with the normal of the 2D
texture space. Finally the adjusted vertices are projected on
to the 2D texture space (see Figure 3 (b)) and the two
triangles are then combined together (see Figure 3 (d))
carefully such that no overlap occurs (note: additional
displacement of vertices of the shared edges of the two
triangles may be required). In figure 3, the arbitrary Bezier
surface, Fy is rotated/aligned and projected as F'; (P, P,
P'5. P'y) (See Figure 3 (b)) on the 2D texture space.

In carrying out the above explained projections, if a
given Bezier polygon has been assigned a wser defined
vector field, it is appropriately transferred to its projection
in the texture space. Subsequently following the vector
field propagation procedure explained in section 3.3, the
user defined. projected vector fields are propagated to
obtain the vector fields of all projected polygons. All
projected faces are finally rotated so that their vector fields
(i.e. vectors that define their intended texture direction) are
aligned with the y-direction of the texture space (see Figure
3 (c) and (d), i.e., F, is rotated to F", (P"}, P",, P"3, P"4)) in
order to obtain a desired, realistic texture pattern on
surface,

These faces are then moved to the texture space and
arranged next to each other as illustrated in Figure 3 (d).
Subsequently we assign the texture space to the
corresponding control polygon taces. Then we begin with
the actual texture synthesis process which is described in
the next section.

(a) (b)

(c)

(d)

Figure 3: 3D faces 1o 2D faces
3.5. Texture Synthesis on Control Polygons

3.5.1 Texture Synthesis Approach

Figure 4 illustrates the block dingram of the texture
synthesis process on a control polygon. The texture
synthesis process starts by applying a n-level (n=1.2.3 used
in our experiments) 2D DWT (e.g. Haar Transform) on
sample texture image, which is denoted as 1., The
application of single level 2D DWT on the sample texture
results in a set of component images i.e. sub-bands, as
follows:

(FriBaneT e Tl BT Tget) (26

Where T [y ey e the texture image sub-

bands corresponding respectively to low-resolution
approximation. vertical details, horizontal details and
diagonal details of sample texture. Similarly 2" Jevel and
3" level decompositions are obtained by applying DWT to
the low-resolution sub-bands of previous decomposition

level, This can be mathematically represented as follows.,

'[.‘t."lm:'Iur."!rm.')= DWI{ Itrr) (3.7)
(1,, :'lm-‘!m-'!mt‘r' DWT(]n:} (3.8)
(lu.u:'lm.-- ‘!mu‘"mr‘--)= DWT{ ln,—’ (3.9)

from n-level we extract low-resolution and diagonal detail
bands ie. and T

We generalize the notation used in equation (3.6)-

(3.10) as [where]JE{LL.HL.LH.HH} and

le {().1.2...11} where p represents the sub-bands within
each decomposition level (LL-low resolution, LH-
horizontal, HL- vertical, HH diagonal) and / represent the
decomposition level. DWT represent the forward discrete
wavelet transform.

The basic idea of proposed algorithm is to synthesize
texture on control polygons of a given surface. Let Bliats

represent a general polygonal block of decomposed sample
image located at position (x, y) relative to the sub-bands (p,
1)'s origin.

Paste block of shape and
size of face on control
polygon/ EZWIDWT

1

Sample Texture

3" Levelled DWT Image

. . Best Match
Ae Location v
LL3 and HH3 bands

!]
»
L.LL3 and HH3 band

f

Find next best match

Figure 4: Proposed block diagram for texture synthesis on
control polveon surfaces.

Initially we randomly pick block B, from the

sample texture image with identical size and shape to that
of the control polygon face. This randomly created texture
block is mapped to the control polygon surface shown in
figure 4. [Note: the details of the mapping process are
described in section 3.7.]

In locating the next block to be synthesized, we cut a
8 pixel wide template of pixels along the edge of already
synthesized. neighboring blocks. apply a 3 level DWT
decomposition on the template block and extract low-
resolution and diagonal detail bands which are used for
searching in sample LL3 and HH3 bands. Best matching
block can be found by minimizing the L2 norm.

To speed up the block matching we only use all
coefficients of the LLn and HHn sub-bands for matching.
In our experiment where n=3 and a sample texture size of
256 x 256 is used, out of the 63536 possible coefficients,
we only use 1024 coefficient i.e. 1/64 of total number
coefficient in the sample texture. Therefore the matching
speed is significantly enhanced. In order to achieve good
quality on surface these approach is not always applicable
all the time. Depends on the texture pattern these
coefficients can be increases or decreases. EZW algorithm
can be used for the coefficient prioritisation to further
reduce complexity.

In eeneral, it Buwsy and Bz are two randomly
4 3

shaped blocks to be matched, we say B,-n «Lyh is the best

match forB,.lu.n:» if ‘“Bp.'ul.»lp!Bpn.:.|:|) is

minimum for all possible Bp[blocks, which is calculated

as.

d(B B

S fldB,, (ji-dB,, (i j)F HdB, (iidB, (LDF] (300

Where BB,,, an edge is zone of block B and £, j is

plix. st
an element (coefficient) within the edge zone.
Finally the overlap area of the best matching edge is
blended with the overlapped area of the original block
using weighted edge bending (see section 3.5.2 for more
details). The non-overlapping area of the block is picked
from the sample texture and subsequently appended to the
synthesized texture. This process is continued till all the
faces of control polygon are mapped. In some cases we
have considered two or more overlapping areas for finding
the best match. The possibility of having three or four
edges is rare.
352 Directional Weighted Edge Blending
Performing texture blending within 2D texture synthesis is
much simpler as compared to performing it within 3D
texture synthesis. The changes that occur in the direction of
texture blending when the direction of texture synthesis
changes is considered a key challenge that needs to be
faced. Texture synthesis over 3D faces mostly depend on a
user defines vector field and propagation of vectors. For
any quadrilateral face there are four direction of blending
(see figure 4).

Figure 5: Four direction of blending

It is observed that to obtain a perfect match between
two neighbouring faces, is rare. Therefore tovminimize the
effects of artifacts at seams of patches, edge blending can
be carried out. To this effect we propose the use of a pixel
domain, weighted edge blending function. The general idea
of weighted edge blending is based on gradually reducing
the luminance contribution made by a neighbouring face to
its seam. while moving away to the adjoining face across
the seam. The

Let W represent an empirically defined matrix capable
of performing weighted edge blending in the pixel domain.
via matrix multiplication with the overlap area. Note: The
size of W is depended on the width of the overfap. In our
experiments we have assumed a width of overlap of eight
pixels and have therefore defined W to be of size w x w
(w=widtf).

0 I/ w o 0O o 0] (/]
] 0 2/w 0 0 0 /]]
] 0 0 s 00 0 [
W= i1l
(/] 0 0 e 0 0 o
(/] 0 0 00 e 0 0
@ (1] g 000 (w=2)/w 7]
n oo 0 000 (7] {w=J)/w

Note that the overlap area of the two adjoining faces

by Edge,,, an Edge, The resulting

olap 2olap

blended overlap area. Opnip can be represented by.

are denoted

()hj,ui.fnfrql = Edﬂ"i.m.p x'W Ed&’":..u,p X igeny - W)

(342
where /, is an identity matrix. Note that Edge,,,, and
Edge,,,, are of size w x height.

Figure 6: Swap direction of blending

Assume that F, is already a textured face. Therefore
when texturing F; we use Eq (3.12) as the blending
function, where dy is overlapped on d; and blended. When
texturing F, _dsis overlapped with d; In the above case it is
important to decide whether w should multiply Edge,,,,

or Edge,

ol - 118 decided on basis of whether the pixel
value of the inside edge of afready synthesized textured to
undergo a change or would remain same. If it is to change
then we swap the blending direction around and equation

can be rewritten as follows:

0 -W) + Edge,,,, xW

=Ed-’s'('r.m.,, X (Tigm 2olap
{(3.13)

blendolup

The above blending approach helps in keeping the blended
surface smooth. i.e. artifact free.

3.6. Projection of Texture on to a Smooth Surface

In order to project texture from the control polygon to the
smooth surface, initially we calculate a length/distance
between each of the control points of the contral polygzon.
using the standard distance formula between two control
points in 3D space. Subsequently depending on these
distances and using the correspondence between points, we
calculate the relative location of projections of these points
on the smooth surface, parameterized by 0 < 5,1 < /. We

then decide on the area of projection from the control
polygonal mesh to the smooth surface.

For clarity of presentation the projection of texture on a
single dimension (i.e. a Bezier curve) can be presented as
follows: Assume that curve ¢’ (see Figure 7) is generated
using four control points Py, Py, Py, Pyvia the use of the
Bézier curve equation 3.16. Further the lines, Py to P2, P
to P and P4 to P, are assumed already textured (see Figure
7). We calculate the length between these control points, as
say I;. [, and [; The total length [, between the control

points is calculated as the sum,

k
lrx = 2li (3.14)
i=l
Where [, is the distance between two adjacent control
points, and & is the total number of adjacent pairs of control
points. We normalize all the control point lengths to a unif
length I,-L which is calculated as.
k
. /
Iry = I 2 (3.15)
T i=i

Once the parameterization of the curve has been
completed as described above, projecting the texture on to
the curve becomes fairly straightforward. It was mentioned
that the texture on line segment P to P, gets projected on
to the smooth curve P, to P*; where P*; can be calculated
using the following Bezier curve equation, as:

" - P
E}:n’lhﬂl.j(‘,}' & ““;‘ j

Pl)= 0sly, s1, (3.16)

m .
z;:{)bun_}f ‘rl &

where oy are the weights defining the specific shape of

the smooth surface. » ,are the Bernstein vectors and

by, j(s) is a Bemstein polynomial. The texture

projection in general is represented as follows:
Texture (¢'(s)) = Texture (p(s)) 0<s </ (3.17)

Therefore in general a patch can be textured using the
following equation,

Texture (smooth patch (1, 5)) =
Texture (control polygon (1s)) 0<s,t<]

(3.18)

P(xy7) 1. P.(xy,z)

RGoy.z) P (xy.2)
0 1

Figure 7: Basic projection approach

We used the above projection approach to project texture
from the control polygon to a given smooth surface.
(Figure 8(a) and 8(b) illustrates the mapping of texture
from the control polygons onto the smooth rational
surface).

Note that the closer the control polygon is to the smooth
surface representation, lesser distortion in projection will
occur and vice —versa.

Projection

(a) (b)

Figure 8: (a) Texture on control polygon (b) Projection

from control Polvgon to smooth surface.

3.7. Progressive Texture Synthesis

In order to achieve progressive nature of texture synthesis
on surfaces, we adopted Shapiro’s EZW idea |Sha93]
which is based on the observation that larger wavelet
coefficients are more visually important than smaller
coefficients. In our work we have assumed that wavelet
coefficient values with magnitudes above a given threshold
are considered significant. The threshold provides the
minimum number coefficient for the best possible
perceptual quality. This threshold (1) is calculated using
equation (3.19) based on the magnitude of wavelet
coefficients of decomposed sample image.

¢ = pllog b (LLEM [_ 3 1)

where MAX() means the maximum coefficient value, K is a
constant and LL,,(.-.;-] denotes a general coefficient in

LL.sub-band. A mask is created for the coefficients of

sub-bands, which are larger than the threshold and ignoring
all others (i.e. setting to zero). This results in perceptually
significant frequency components being protected and used
in the matching. Finally an inverse DWT is applied on to
the masked sub-band decomposition, obtaining the
resulting texture in the pixel domain. This can be expressed
generally as:

(B I 1):: EZWIDWT (BU‘-‘- B Lidn B Hin BJMu)= (3.20)

The above equation can produce discrete quality
levels of texture depending on threshold or number of
coefficients needed to be considered. Image quality can be
increased by decreasing the threshold ie. the K constant
and vies-versa. Note that the function EZWIDWT above
represent an EZW constrained inverse discrete wavelet
transform. When progressive texture synthesis is required
we replace the normal texture mapping process with the
above EZW based approach (see figure 12).

3.8. Texture Mapping Approach

In our implementation initially we create so-called,
propagating seed vector directions, which are then used to
smoothen the surface vector field. However alternatively a
number of other surface vector field techniques (Wei-
Levoy, 2001; Turk 2002; Ying etal, 2001) can be used to
replace the approach we have selected above. Once vector
fields are assigned to all control polygon faces, we then
rotate all the faces according to tangential vector field and
surface normal, thus placing all faces in the same 2D plane.
Using a modified version of Soucy et al.. 1996, approach
(Note: modified from using triangle to using polygon) a
texture map. T is created, For each face of the control
polygon, we calculate the bounding box of the face and
then map it to a corresponding face in 7 in compact form,
i.e. with no space being wasted. The faces in T are textured
using the corresponding best matching block. The faces in
T that we use are of non-uniform size that are a better fit to
the shape and size. It is noted that the resulting texture can
be rendered on the control polygon surfaces at interactive
rates. The images illustrated in section-4 (See figure 9, 10
and 11) were rendered in this manner using 256 x 256
textures. The models used in our experiments are
composed of smooth surfaces having between 1000 to
20000 faces, whereas the control polygons used consisted
of 100 faces to 400 faces (It can be further increase to n
faces). We have observed that these surfaces render at real-
time rates.

4. Experimental Result and Analysis

In order to analyse the performance of proposed algorithm
and to show that surfaces can be rendered effectively. we
have implemented the proposed algorithms using OpenGL.,
Ca+.

Experiments were performed on a diverse range of
texture samples that include regular, near-regular, irregular
and stochastic [Lin | textures. Results illustrated in figures
9, 10, 11 and 12 indicate the ability of proposed technique
to efficiently map on to arbitrary surfaces such Utah

Teapot, Cup and geometric surfaces such as, Cyclide,
Torus and Sphere with minimal visual artifact.

Figure 9 illustrates the complete cycle of the proposed
texture synthesis process on Bézier surfaces. Figures 10
and 11 show a wide variety of texture samples being
textured on surfaces. Table-1 illustrates the level of
transform used to generate the result. We have used
different levels of wavelet transforms for different
textures, such as the stochastic texture can be synthesize
using 3" level of transform where as regular, irregular
texture can synthesized in 2" level of transform and near
regular texture on 1™ level of transform. Synthesizing speed
is varies it depends on the pattern of texture and number of
patches, The Table | and 2 shows the summary of texture
patterns and wavelet transform used for the result shown in
Figure 10 and 11.

Model | Texture Pattern No of | Level
Patches | n
Teapot | Regular 32 2
Teapot | Near-Stochastic 32 3
Teapot | Irregular 32 2
Teapot | Near Regular 32 |
Cup Irregular 26 2
Cup Stochastic 26 3
Cup Near-Stochastic 26 3
[Cup Regular | 26 7

Tablel: Arbitrary surface

Model | Texture Pattern No of | Level
Patches | n
Torus Near-Stochastic 16 3
Torus Irregular 16 2
Torus Irregular 16 2
Torus Near-Stochastic 16 3
Cyclide | Stochastic 16 3
Cyclide | Irregular 16 2
Sphere | Stochastic 8 3
Sphere | Regular 8 2

TableZ: Geometric surface

To further extend the functionality of proposed
method, we have extended our work to progressive texture
synthesis on surfaces. We have performed a wide range of
experiments. Figures 12 and 13 shows that texture can be
synthesized at seamlessly different levels of quality on
surfaces; Figure 12 and 13 illustrates the synthesis of
irregular texture of animal skin on Utah teapot. It is evident
from the result that 2% of information from sample texture
is sufficient to create texture with sufficiently rough
quality. By increasing the percentage of coefficient, the
quality of the texture can be seamlessly improved. Further
experiments reveal that 20% of coefficients was sufficient
to synthesise a texture visually equal to the texture that can
be synthesized when all coefficient are utilized. Due to
space limitation we have restricted the number of discrete
texture results to eight, where as the proposed method is
capable to of progressively synthesis texture at seamlessly
different number of levels. Progressive texture synthesis

give the added advantage of being able to truncate a bit
stream representing the sample texture at any intermediate
stage still being able to synthesize ftexture at some
intermediate quality level. The results prove that our
technique can be extended to many surface topologies.

5. Conclusion and Future Work

We have introduced a novel wavelet based searching
approach 1o synthesize texture and progressive texture, on
Bézier surfaces. We have presented the methods and
algorithms in detail along with possible applications and
advantages. The proposed method has the capability of
synthesizing texture at seamlessly different quality settings.
a functionality which is not possible via existing state-of —
the art techniques.

The use of visual prioritisation of information in the
sample image during texture synthesis allows the task to be
carried out at a higher speed but at an equivalent visual
quality level. We show that the proposed approach is
computationally efficient, results in good quality texture
synthesis, and is applicable in bandwidth limited channel
applications such as remote visualization. We have shown
that the control polygon strategy used can be extended to
cover synthesizing texture on many 3D objects with
arbitrary surface topology.

The popular Wang tile approach for synthesizing
texture on surfaces can be pluged-in to our approach of
synthesizing texture with minor modification. In future this
can be easily pluged-in to OPENGL rendering

Acknowledgements

We would like to thank Rvan Holmes for providing details
of the BPT format and models through his website. Further
we would like to thank Vivek Kwatra for providing texture
samples through his website.

References

[AshO1] ASHIKHMIN M.: Synthesizing natural textures.
In ACM Symp. on Interactive 3D Graphics (2001),pp.
217-226.

[BA83] BURT P. J.. ADELSON E. H.: A multiresolution
spline with application to image mosaics. ACM TOG
2,4(12 1983), 217-236. ISSN:0730-0301.

| Bez06] BEZ H. E.: Bounded domain, bi-quadratic rational
parametrisations of dupin cyclides. In Research
Report No. 1090, Department of Computer Science.
Loughborough University (2006).

[CLIC*04] CHIEH. LIN W., JAMES H.. CHENYU W.,
VIVEK K., YANXI L.: A comparison study of four
texture synthesis algorithm on near-regular textures,
In Tech. Report CMU-RI-TR-04-01, Robotics
Institute, Carnegie Mellon University (2004).

[DMPxx] DUTTA D.. MARTIN R. R., PRATT M. J.
Cyclides in surface and solid modeling. [EEE
Computer Graphics and Applications 13,

(EFOI] EFROS A., FREEMAN W. T.: Image quilting for
texture synthesis and transfer. In Proc. of SIGGRAPH
2001 (2001), pp. 341-346.

|FGPO5] FOUFOU S., GARNIER L., PRATT M. l.:
Conversion of dupin cyclide patches into rational
Biquadratic bezier form. In Proc. of the IMA
Mathematics of Surfaces X1 (2005), pp. 201-218.

[FMKO5] FU C.-W., MAN-KANG L.: Texture tiling on
arbitrary topological surfaces. In Proceedings of
Eurographic Symposium on Rendering 2005 (EGSR
2005} (2005}, pp. 99-104.

|LHO6| Lefebvre S. and Hoppe H. Appearance-space
texture synthesis. ACM Trans. Graph.. 25(3):541-
548. 2006. ISSN:0730-0301.

[LXKSTO5] LUJIN W. XIANFENG G.. KLAUS M.,
SHING-TUNG Y.: Uniform texture synthesis and
texture mapping using global parameterization. In
Special Issues of Pacific Graphics, ISSN:"a0178-
2789 (2005). vol. 21, pp. 801-810.

IMdPS86] MARTIN R.. DE PONT J.. SHARROCK T.:
Cyclide surfaces in computer aided design. In
Proceedings of the IMA Conference on the
Mathematics of Surfaces (1986).

IMKO03] MAGDA S.. KRIEGMAN D.: Fast texture
synthesis on arbitrary meshes. In Proc. of the 14th
Eurographics workshop on rendering (2003), vol. 44,
pp. 82-89.

[NC99] NEYRET F., CANI M. P.: Pattern-based texturing
revisited. In Proc. of SIGGRAPH 1999 (1999), p.
235- 242,

[PFHOO] PRAUN E., FINKELSTEIN A., HOPPE H.
Lapped textures. In Proc. of SIGGRAPH 2000
(2000), p. 465- 470.

[Pra90] PRATT M. J.: Cyclides in computer aided
geometric design. fn Computer Aided Geometric
Design (1990), vol. 7, pp. 221-242,

[Pra95] PRATT M. J.: Cyclides in computer aided
geometric design [l. In Computer Aided Geometric
Design (1995), vol. 12, p. 131- 152,

[SCA02] SOLER C.. CANI M., ANGELIDIS A.:
Hierarchical pattern mapping. In Proc. of SIGGRAPH
2002 (2002). vol. 21, pp. 673-680.

|SEBO6]Shet R. N., Edirisinghe E.A., and Bez H.E.
Progressive texture synthesis on 3d surfaces. In VIIP
2006: In Proceedings of Sixth IASTED international
conference on Visualization, Imaging, and Image
Processing, pages 136141, 2006. ISBN Hardcopy:0-
88986-598-1/CD:0-88986-600-7.

|SEBO7]Shet R. N., Edirisinghe E.A., and Bez H. A
wavelets based max-flow/min-cut approach for
texture synthesis. In VIE2007: in Proceedings of the
IET International conference on Visual Information
Engineering: Convergence in Graphic and Vision,
2007. ISBN CD 978-0-86341-830-3.

[SEBO7]Shet R. N.. Edirisinghe E.A., and Bez H,
Progressive Texture Synthesis on Geometric Surfaces
Parametrised by Bi-Quadratic Rational Bezier
Patches, in the Proc. of CVMPO7: 4th European
Conference on Visual Media Production, November
2007, ISBN CD 978-0-86341-843-3.

[Sha93] SHAPIRO J. M.: Embedded image coding using
zerotrees of wavelet coefficient. IEEE Trans. Signal
Processing 41, 12 (12 1993), 3445-3462.

{SMGR96] SOUCY., MARC, GODIN G., RIOUX M. A
texture-mapping approach for the compression of
colored 3d triangulations. In The Visual Computer
(1996), vol. 12, p. 503- 514,

[$S97] SZELISKI R., SHUM H.-Y.: Creating full view
panoramic mosaics and environment maps. In Proc.
of SIGGRAPH 1997 (1997), pp. 251-258.

[TIL*02] TONG X.. JINGDAN Z.. LIGANG L.. XI W.,
BAINING G., HEUNG-YEUNG S.: Synthesis of
bidirectional texture functions on arbitrary surfaces.
In proc. of SIGGRAPH 2002 (2002), p. 665 "U 672.

[Tur01] TURK G.: Texture synthesis on surfaces. In Proc.
of SIGGRAPH 2001 (2001), p. 347- 354.

[VAI¥03] VIVEK K.. ARNO S.. IRFAN E.. GREG T..
AARON B.: Graphcut textures: image and video
synthesis using graph cuts. In Proc. of SIGGRAPH
2003 (2003). vol. 22, pp. 277-286. submitted to
EUROGRAPHICS 2007.

[WEB06] WICKRAMANAYAKE D. S.. EDIRISINGHE
E. A., BEZ H. E.: Multiresolution texture synthesis in
wavelet transform domain. The Jowrnal of Imaging
Science and Technology 50. 1 (1 2006), 93-102.
ISBN /ISSN: 1062-3701.

[WL0O] WEL L.-Y., LEVOY M.: Fast texture synthesis
using tree-structured vector quantization. In Proc. of
SIGGRAPH 2000 (2000), p. 479- 488.

[WLOI] WEI L.-Y.. LEVOY M.: Texture synthesis over
arbitrary manifold surface. /n Proc. of SIGGRAPH
2001 (2001), p. 355- 360,

[YHBZO01] YING L., HERTZMANN A., BIERMANN H.,
ZORIN D.: Texture and shape synthesis on surfaces,
In Eurographics Rendering Workshop (2001), p. 301-
312.

Figure 9: A complete cycle of the proposed texture synthesis
process ’

Near -Regular

(g) Near-
Stochastic

Figure 10: Texture synthesis on the Teapot and Cup

PRI
. L]

S ="a® P
e A
- .)
-0)
. =

{ O =
' —_
‘l“.“‘ um

(a) Near
Stochastic

(d) Near
Stochastic

C) lrregul

(

() trregular

(e) Stochastic

aular

(h) Re

and a Sphere

Figure 11: Texture synthesis on a Torus, Cyclide

15% Coefficients 20% Coefficients

Figure 13: Nlustrating progressive texture synthesis on the Teapot

