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Abstract 
 

The Polymer Electrolyte Fuel Cell (PEFC) is well-poised to play a key role in 

the portfolio of future energy technologies for civil and military applications. 

Principally, the PEFC converts part of the chemical energy released during hydrogen-

oxidation and oxygen-reduction into electrical energy, generating water a bi-product. 

It is potentially a zero-emissions technology which can operate silently due to the 

absence of any moving parts, has quick start-up characteristics and can achieve high 

thermodynamic efficiency. In order to ensure that the PEFC emerges as a viable 

option for all applications, it is necessary to ensure that the technology is reliable, 

capable of delivering performance and cost-effective throughout its life-cycle. To 

achieve these objectives, a better fundamental understanding of the mechanisms of 

electrochemical transport in the PEFC is required than is presently available. 

 

The literature identifies that multi-component electrochemical transport within 

the PEFC plays a central role in fuel cell operation and longevity. Water transport is 

one of these. It is well-understood that excessive amounts of water within the porous 

electrodes of the cell can cause flooding, which impedes the supply of reactant gases. 

It is also well-understood that insufficient water can cause the polymer electrolyte 

membrane (PEM) to dehydrate, thereby reducing its proton conductivity. Both of 

these processes can undermine cell performance. Repetitive hydration cycles are also 

known to precipitate degradation mechanisms which can undermine reliability. 

However, the mechanisms of multi-component and potentially two-phase transport 

across the PEFC as a multi-layered assembly which includes the porous electrodes 

and the PEM are not understood as well: the mechanisms of contaminant transport, 

fuel crossover and liquid water infiltration particularly through the PEM are important 

examples. 

 

The modelling literature demonstrates that electrochemical transport in the 

PEFC is treated either through the use of dilute solution theory or concentrated 

solution theory. The modelling literature also demonstrates a wide spectrum in the 

application of modelling assumptions and the formulation of electrochemical 

equations to simulate transport in the different layers of the PEFC. This thesis 
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describes research aimed at reconciling the different modelling approaches and 

philosophies in the literature by developing and applying a unified mechanistic 

electrochemical treatment to describe multi-component, two-phase transport across 

the layers of the PEFC. 

 

The approach adopted here is first to construct a multi-component zero-

dimensional model for multi-component input gases which is merged with a multi-

layer PEFC model to correctly predict the boundary conditions in the gas channels 

based on the cross-flow of components through the cell. The model is validated using 

data from the open literature and applied to understand contaminant crossover from 

anode to cathode. The second step is to develop a unified mechanistic electrochemical 

treatment to describe multi-component transport across the layers of the PEFC: the 

general transport equation. This is central to the contribution of this thesis. It is 

theoretically validated by deriving the key transport equations used in the benchmark 

fuel cell modelling literature. It is then implemented with the multi-component input 

model developed previously and validated using data from the open literature. The 

model is subsequently applied to understand fuel crossover characteristics in the cell. 

The third and final step is to further-develop the application of the general transport 

equation to account for two-phase transport across the layers of the PEFC. The 

resulting model is validated against three different sets of data from the open literature 

and subsequently applied to understand the effects of PEM thickness, anode gas 

humidification, cell compression and PEM structural reinforcement on liquid 

infiltration and two-phase transport across the PEM.  

 

It is demonstrated that the general transport equation developed in this thesis 

establishes a backbone understanding of the modelling and simulation of transport 

across the layers of the PEFC. The study successfully reconciles the different 

modelling philosophies in the fuel cell literature. The progressive validation and 

application of the general transport equation demonstrates the potential to enhance the 

scientific understanding of factors affecting PEFC performance and demonstrates its 

value as a tool for computationally-based cell design, optimisation and diagnostics. 
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1 Introduction 

 

1.1 Basic Principles 

 

The Polymer Electrolyte Fuel Cell (PEFC) is an energy conversion device. It operates 

under the principle that a proportion of the chemical energy released by oxidising hydrogen 

and reducing oxygen to produce water can be harnessed as electrical energy. Because the 

release of electrical energy in a fuel cell is not dependant upon intermediate processes of 

thermal or mechanical energy conversion, it has the potential to achieve efficiencies in excess 

of the internal combustion engine. 

 

The PEFC is comprised of two non-consumable electrodes and a separating proton-

conducting polymer electrolyte membrane (PEM). The fuel – hydrogen – is supplied to the 

anode where it is oxidised to produce electrons and protons. The protons are conducted to the 

cathode through the PEM, while an external electrical circuit which connects the two 

electrodes conducts electrons to the cathode. The reductant – oxygen – is supplied 

simultaneously to the cathode where it is reduced to water by combining with the electrons 

and protons. The anode and cathode both contain catalysts to drive the oxidation and 

reduction processes respectively.  

 

Due to irreversible losses in the PEFC, a proportion of the chemical energy released 

from the reduction-oxidation (redox) reactions cannot be harnessed to do useful work. 

Irreversible losses occur mainly due to the slowness of reactions in the electrodes, limitations 

in the mass transport of reactant gases and due to finite resistances to ionic and protonic 

transport in the electron and proton conducting materials of the cell. The remainder of the 

chemical energy release is carried by the electrons in the external electrical circuit. The 

amount of energy carried by one mole of electrons gives rise to a cell voltage, while the rate 

at which the energy carriers move around the electrical circuit gives rise to an electrical 

current. The product of the cell voltage and the electrical current defines the useful amount of 

energy released per unit time in electrical form. 

 

For a hydrogen-fuelled PEFC, the overall reaction is; 
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OHOH 222
1

2 →+  (1-1) 

 

The hydrogen-oxidation reaction (HOR) that occurs in the anode is; 

 

−+
+→ eHH 222  (1-2) 

 

The oxygen reduction reaction (ORR) that occurs in the cathode is;  

 

OHOeH 222
122 →++

−+  (1-3) 

 

The principle processes are illustrated in Figure 1-1. 

 

 

Figure 1-1 Principle reduction-oxidation processes of a hydrogen-fuelled polymer 

electrolyte fuel cell 

 

The merits, limitations and applications of PEFC technology have been widely 

discussed in the literature [1,2,3]. In spite of tremendous scientific and engineering progress 

over the past couple of decades, fuel cell research remains highly geared towards identifying 

material designs, configurations and operating strategies for better performance, cost 

reduction and longevity. Due to the small length scales of a PEFC and the micro and nano-

scale features of its internal components, in-situ measurement can be formidable. As such, it 

can be advantageous to employ numerical models that can predict the internal 



1   Introduction 3

electrochemical state of a PEFC in detail and the species distributions within it based on cell 

configuration, material composition and operating conditions. In order to do so, it is 

necessary to have a structured understanding of multi-species, multi-phase electrochemical 

transport. 

 

The purpose of this thesis is to draw attention to the mechanisms of electrochemical 

transport in a PEFC. As will be discussed, the literature demonstrates a significant degree of 

diversity in the selection, manipulation and application of electrochemical theory to model 

transport within a PEFC, including its multiple layers. This can compound fuel cell 

development because it does not demonstrate clarity or consistency in the understanding of 

the internal transport. In order to truly understand internal electrochemical transport in a 

PEFC, its relationship with the physical properties of the fuel cell materials, infiltrating fluids 

and the thermodynamic conditions that the cell operates under, it is necessary to structure, 

demonstrate and apply a unifying mechanistic electrochemical theory.  

 

1.2 Objectives of the Current Research 

 

 The aim of the current research is to develop a universal electrochemical theory to 

describe the mechanisms of electrochemical transport in PEFCs which reconciles the 

benchmark modelling philosophies in the literature and demonstrably predicts single-phase 

and two-phase multi-component transport characteristics of a single-cell. The objectives of 

the current research are as follow: 

1. to establish an understanding of the existing theories and modelling philosophies for 

the PEFC as an electrochemical system; 

2. to formulate, numerically validate and apply a multi-component input model for the 

boundary conditions of a PEFC; 

3. to formulate and theoretically validate a universal treatment for multi-component 

electrochemical transport through the PEFC; 

4. to merge, numerically validate and apply (2) and (3) to study factors affecting single-

phase multi-component electrochemical transport through the PEFC via multi-layer 

simulations; 
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5. to formulate and numerically validate a universal treatment for two-phase multi-

component electrochemical transport through the PEFC based on (3) and merged with 

(2); 

6. to apply the above to study factors affecting two-phase water transport through the 

PEM via multi-layer PEFC simulations. 

 

It is anticipated that the knowledge generated from this research will improve the 

understanding of the different approaches to modelling transport across the PEFC, how they 

are fundamentally related and how they can be reconciled under a universal electrochemical 

theory which can be applied to potentially all layers of the PEFC. It is anticipated that the 

application of the universal theory developed in this thesis will progressively uncover the 

phenomenological processes that affect the transport mechanisms within the layers of the 

PEFC which are formidable to measure in-situ, as discussed, and not rigorously captured 

through existing modelling approaches.  

 

All numerical work for the current study will be carried out in the one-dimensional 

domain through the thickness of the cell where temperature gradients will be considered as 

having a negligible influence on transport [4]. In addition, the current study can be limited to 

non-reactive transport. However it is anticipated that the limitations of the numerical models 

developed in this research can be addressed in future work by interfacing the electrochemical 

model formulated in the current work with other highly-developed numerical tools such as 

computational fluid dynamics and lattice-Boltzmann modelling. 

 

1.3 Outline of Thesis 

 

Chapter 1: Introduction 

The first chapter of the thesis has provided a brief introduction to PEFC technology and 

discussed the aims, objectives and outline of this thesis. 

 

Chapter 2: The Polymer Electrolyte Fuel Cell 

The second chapter will provide a discussion on the individual components of the PEFC and 

will discuss important aspects in respect to the performance of the PEFC. In doing so, 
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fundamental concepts of fuel cell thermodynamics and irreversible voltage losses will be 

covered. 

 

Chapter 3: A Review of Practical Factors Governing the Performance of Polymer Electrolyte 

Fuel Cells 

The third chapter will provide an in-depth review of the factors that affect fuel cell 

performance and longevity and will provide an account of state-of-the-art technological 

developments that are enhancing the readiness of hydrogen-fuelled PEFCs for market 

adoption. 

 

Chapter 4: Mathematical Modelling of a Polymer Electrolyte Fuel Cell 

The fourth chapter will present and discuss the existing theories for molecular transport and 

electrode kinetics in the PEFC as an electrochemical system.  

 

Chapter 5: A Polymer Electrolyte Fuel Cell Model with Multi-Component  Input 

The fifth chapter will provide a complete single-phase model of the PEFC in one-dimension 

which fully accounts for multi-component input gases. The results obtained will be validated 

against data obtained from the open literature. The model will also be applied to simulate 

contaminant transport and its affect on cell performance. 

 

Chapter 6: A Universal Transport Equation from Fundamental Theory 

The sixth chapter will discuss the derivation of a single general transport equation (GTE) to 

describe electrochemical molecular transport through the layers of the PEFC. The 

electrochemical theory developed in this chapter will be theoretically validated by deriving 

all benchmark molecular transport equations employed in the PEFC modelling literature. The 

theory will then be translated into a single-phase one-dimensional multi-component model 

and numerically validated against data from the open literature. The model will also be 

applied to elucidate the operational factors that affect hydrogen crossover. 

 

Chapter 7: A Universal Approach to Multi-Layer Two-Phase Modelling through the General 

Transport Equation 

The seventh chapter will further-develop the universal theory developed in the previous 

chapter to model two-phase flow through the layers of the PEFC. The chapter will provide a 

description of how liquid water infiltration through porous and quasi-porous layers can be 
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modelled using the GTE as well as the effects of cell compression. The developed model will 

be translated into an object-oriented two-phase one-dimensional model and validated against 

data from the open literature.  

 

Chapter 8: Water Transport Studies  

The eighth chapter will present a parametric study to investigate the design and operational 

factors that can affect liquid water transport through the cell, the bi-modal water content of 

the PEM, and therefore PEFC performance. Factors considered include PEM thickness, 

anode humidification, PEM constraint and structural reinforcement. 

 

Chapter 9: Conclusions and Future Work 

The final chapter will outline the achievements and conclusions of this thesis and will 

provide suggestions for further work. 

 

1.4 References 

 

                                                
1  Sammes NM. Fuel Cell Technology: reaching towards commercialization, 2005 (Springer-Verlag, 
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4  Rowe A, Li X. Mathematical Modelling of Proton Exchange Membrane Fuel Cells. J. Power Sources, 
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2 The Polymer Electrolyte Fuel Cell 

 

The principal components that form the PEFC are two electrodes (anode and cathode) 

and a polymer electrolyte membrane (PEM). The electrodes typically contain at least two 

parts; a relatively thick (~ 250 µm) porous carbon-fibre based gas diffusion layer (GDL), 

which acts to distribute reactant gases and product water in and out of the cell while 

providing conductive pathways for the movement of electrons, and a relatively thin (~ 10 

µm) carbon-agglomerate based porous catalyst layer (CL) which serves as the reaction bed 

for the oxygen-reduction or hydrogen-oxidation processes. 

 

2.1 Components of the PEFC 

 

Figures 2-1 provides a description of the physical components of the cell and the 

potential configuration of a PEFC. A seven-layer assembly is shown which includes anode 

and cathode GDLs, CLs and a PEM. As commercial products, fuel cell layers can be 

supplied in a variety of pre-fabricated combinations. The catalyst coated membrane (CCM) is 

essentially a PEM coated with anode and cathode CLs. A two-layer gas diffusion electrode 

(GDE) is a GDL with a CL coating on one surface. A three-layer GDE contains an MPL 

between the GDL and CL. The membrane electrode assembly (MEA) is often a five-layer 

assembly consisting of anode and cathode GDLs, CLs and a PEM. A seven-layer MEA 

assembly contains both anode and cathode micro-porous layers (MPL). The MPL is used 

selectively to control hydration within the cell and therefore does not appear universally in 

all PEFCs. Figure 2-2 shows a PEFC with repeating components of a single-cell arranged in 

series. 
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Figure 2-1 The key regions and flows of a PEFC single-cell 

 

Figure 2-2 An illustration of a PEFC stack showing the bi-polar plate (BPP) and membrane 

electrode assemblies of a two-cell PEFC stack [1]. 

 

2.2 Cell Performance 

 

The performance of a PEFC is indicated by a polarisation curve. Conventionally, this 

shows the output cell voltage of a single cell as a function of current density, in Amps per 

square centimetre. Current density is obtained by normalising the total current drawn from 

the cell to the total footprint area of a cell. This allows the performance of different cells to 

be compared simultaneously without having to consider the actual footprint area of the cells. 

Multiplying current density with cell voltage yields power density, in W/cm
2
. What is 
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important is the nature of the cell voltage vs. current density relationship. In general, the 

output cell voltage deviates from a theoretical maximum potential as current density 

increases. The purpose of this section is to discuss the ideal output of the cell, the 

thermodynamic efficiency of a cell and the irreversible losses that typically characterise the 

polarisation curve. 

 

2.2.1 The Thermodynamic Equilibrium Potential 

 

Consider the following general reversible reaction, which takes place under a state of 

thermal, chemical and mechanical equilibrium; 

 

nNmMbBaA +↔+  (2-1) 

 

The change in free energy of the forward reaction is given by the Van’t Hoff isotherm [2]; 

 

[ ] [ ]

[ ] [ ]
ba

nm

BA

NM
RTKRTG lnln +−=∆  

(2-2) 

 

where  

R  = universal gas constant 

K   = equilibrium constant of the reaction at temperature T   

[ ]
x

X   = activity of species X  

 

The maximum electrical work max,elW  that can be obtained from the cell is equal to the 

change in free energy at temperature T  and can be related to the electromotive force of the 

reaction E  by; 

 

nFEWG el −==∆ max,  (2-3) 

 

where  

n  = number of moles of electrons 

F  = Faraday constant 
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Because by definition the reaction given by equation 2-1 occurs under a state of 

thermodynamic equilibrium, the electromotive force of the reaction E  is more commonly 

termed the thermodynamic equilibrium potential.  

 

At standard state (1 bar), the change in free energy can be defined as a function of  the 

equilibrium constant K  as follows [3]; 

 

KRTG ln0
−=∆  (2-4) 

 

The change in free energy at standard state 0G∆  can also be defined in terms of the 

electromotive force at standard-state, also known as the standard-state potential, 
0E ; 

 

00 nFEG −=∆  (2-5) 

 

Substituting equations 2-3 to 2-5 into 2-2 yields the general form of the Nernst Equation; 

 

[ ] [ ]

[ ] [ ]
nm

ba

NM

BA

nF

RT
EE ln0

+=  
(2-6) 

 

Therefore, for a given system where the reversible reaction given by equation 2-1 

occurs under a state of thermodynamic equilibrium, it is possible to determine the 

thermodynamic equilibrium potential of the forward reaction if the temperature of the system 

is known, if the activities of the reactants and products are known and if the standard-state 

potential is known. The thermodynamic equilibrium potential is established when the 

forward chemical process occurs at the same rate as the reverse reaction and therefore when 

there is no net charge being drawn from the cell. As such, the thermodynamic equilibrium 

potential is also commonly known as the open circuit potential, i.e., the electromotive force 

measured from a cell at zero current. 

 

The standard-state potential can be defined by revisiting the change in free energy of 

the forward reaction at standard-state. The change in free energy can be defined in terms of 

the change in enthalpy 0H∆  and entropy 0S∆  during the reaction at standard-state, such that 

0G∆  varies according to temperature T ; 
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0000 STHnFEG ∆−∆=−=∆  (2-7) 

 

The standard-state potential is defined using the standard temperature 0T  (25˚C) as [2]; 

 

( ) ( )
nF

S
TT

nF

G

nF

S
TTEE

0

0

0

0

0

0

0

0

0

0

0 ∆
−+

∆
−≈

∆
−+≈  

(2-8) 

 

Here, 0

0E , 0

0G∆  and 0

0S∆  are the standard-state potential, free energy change and change in 

entropy for the forward reaction given in equation 2-1 at standard temperature.  This 

condition is known as standard temperature and pressure (STP). Substituting equation 2-8 

into 2-6 yields; 

 

( )
[ ] [ ]

[ ] [ ]
nm

ba

NM

BA

nF

RT

nF

S
TT

nF

G
E ln

0

0

0

0

0
+

∆
−+

∆
−=  

(2-9) 

 

For a hydrogen-fuelled PEFC, the overall reaction involves 2 electrons, hence 2=n . 

The change in free energy and entropy at STP can be calculated using the figures provided in 

Table 2-1. 

 

 0

0G∆  0

0S∆  

 kJ/mol kJ/mol-K 

Gaseous Hydrogen (H2) 0 130.74 

Gaseous Oxygen (O2) 0 205.25 

Liquid Water (H2O) -237.35 70.12 

Table 2-1 Changes in free energy and entropy at standard temperature and pressure for 

hydrogen, oxygen and water [2,4] 

 

Assuming that the overall forward reaction of the PEFC can be given as 

OHOH 222 21 →+ , the change in free energy at STP can be calculated as; 

∑∑ ∆−∆=∆
reactants

0

0products

0

0

0

0 GGG  (2-10) 

 

kJ/mol  35.2370

0

0

0 −=∆=∆∴
water

GG  
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The cell potential at STP is therefore calculated as; 

 

V
nF

G
E  229.1

964842

1035.237 30

00

0 =
×

×
=

∆
−=  

 

Similarly, the change in entropy at STP can be calculated as; 

 

∑∑ ∆−∆=∆
reactants

0

0products

0

0

0

0 SSS  (2-11) 

 

K-kJ/mol 25.16310
2

25.205
74.13012.70 30

0 −=×







−−=∆∴ S  

 

such that 
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(2-12) 

 

Assuming that the activity of product water is equal to unity, that partial pressures can 

be defined in bar, i.e., 0ppa XX =  where 0p  is the standard pressure, and by substituting 

equations 2-11 and 2-12 into 2-9 the following form of the Nernst equation can be obtained; 
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where 

 

( )15.298108460.0229.1 30
−×−=

− TE  (2-13b) 

 

 

2.2.2 Thermodynamic Efficiency 

 

The efficiency of an energy conversion device is generally defined as the ratio 

between the energy delivered by the system and the energy put into the system. In the context 
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of heat engines, it is usually defined in thermodynamic terms, i.e., the mechanical work done 

by the system divided by the heat energy input to the system. The heat input corresponds to 

the heat energy released due to the exothermic reactions during combustion and commonly 

known as the calorific value or the enthalpy of formation, fH∆ . The Carnot limit shows that 

the maximum thermal efficiency of a heat engine is dependant solely on the temperatures of 

the high and low temperature zones and directly proportional to the temperature of the low 

temperature zone. 

 

H
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thermCarnot
T

T

H

W
−=

∆
= 1,η  

(2-14) 

 

where 

mechW  = mechanical work done 

fH∆  = enthalpy of formation 

CT  = temperature of the low temperature zone 

HT  = temperature of the high temperature zone 

 

For a PEFC, the efficiency is usually defined similarly in thermodynamic terms. The 

energy delivered by the PEFC is defined by the electrical energy output elecW  while the 

energy put into the system again corresponds to the heat energy that can be released if the 

fuel is combusted with an oxidant. This definition allows a relatively straightforward 

comparison of the PEFC with a heat engine because both efficiencies are defined relative to 

the amount of heat energy that is released when the fuel is burnt.  

 

f

elec
thermPEFC

H

W

∆
=,η  

(2-15) 

 

When hydrogen is burnt below 100°C, there is a release of what is known as the 

latent heat of condensation, i.e., the heat released when water vapour is converted into liquid 

water without a reduction in its temperature. As such, the higher heating value is commonly 

used for PEFC efficiency calculations, as they typically operate below 100°C. For the 

burning of hydrogen, the HHV is -285.84 kJ/mol. Using equations 2-13a and 2-7 it is 
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possible to determine the standard-state potential and the change in free energy of the PEFC 

for a range of temperatures. Using equation 2-15 it is then possible to determine the 

maximum thermodynamic efficiency of the PEFC over this range. Correspondingly, Figure 

2-5 compares the maximum thermodynamic efficiency of a PEFC using the HHV against the 

Carnot limit of a heat engine where the exhaust temperature is 45˚C. Generally speaking, 

Figure 2-5 demonstrates that the maximum thermodynamic efficiency of a heat engine 

according to the Carnot limit approaches that of a low-temperature PEFC (<100˚C) when the 

high temperature zone exceeds 200˚C (473 K).  

 

It is noteworthy from Figure 2-3 that the maximum thermal efficiency of the Carnot 

limit can exceed the thermal efficiency of a PEFC. Therefore, the PEFC does not always 

have a higher thermal efficiency than the Carnot limit. In addition, while Figure 2-3 suggests 

that operating at low temperatures can increase the maximum thermodynamic efficiency of 

the PEFC, two other issues have to be considered. First of all, it has to be noted that it can be 

more advantages to operate at higher temperatures as the waste heat is more useful (if the 

product water takes liquid form, it has already released the latent heat of condensation 

whereas water vapour contains more heat energy as it retains the latent heat of vaporisation). 

Second, it has to be noted that the voltage losses that occur when current is drawn from the 

cell can be greater at low temperatures and therefore it can be more practical to operate at 

higher temperatures. 

 

2.2.3 Irreversible Voltage Losses 

 

The useful amount of work, the electrical energy, is obtained from the PEFC only 

when a reasonably large current is drawn. Under such conditions, the cell potential decreases 

from its thermodynamic equilibrium potential because of irreversible losses. These losses are 

often referred to as polarisations, overpotentials or overvoltages. The cause of these losses  
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Figure 2-3 Maximum thermal efficiency of a hydrogen-fuelled low temperature PEFC and 

the Carnot limit of a heat engine with an exhaust temperature of 45˚C. 

 

include slow electrode kinetics, Ohmic resistances of the electrolyte, electrodes and leads, 

and mass transport limitations. 

 

Activation Losses 

 

At low current densities (1 – 100 mA/cm
2
) the activation losses mainly account for 

the irreversible voltage loss of a PEFC. Activation losses are attributed to the slowness of 

reactions occurring in the fuel cell electrodes, i.e., the catalyst layers. The anode kinetics are 

generally much faster than the cathode kinetics and therefore the cathode kinetics largely 

contributed to the overall activation loss.  

 

Activation losses can be reduced by increasing the temperature of the cell, increasing 

the electrochemical activity of the electrode with suitable catalysts and by increasing the 

electrochemically active surface area (EASA) of the electrodes. Activation losses can 

increase during the course of operation if the EASA reduces in the fuel cell catalyst layers. 

Other factors significantly affecting performance in the catalyst layers include its material 

composition and distribution, its geometric structure and the impurity content of the reactant 

feeds. Assuming that the anode overvoltage is small compared to that of the cathode, the 

activation loss can be described as follows using the general form of the Tafel equation: 
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J

J

nF

RT

c

act

0ln
α

η =  
(2-16) 

 

where 

J  = current density 

cα  = cathodic charge transfer coefficient 

 

The exchange current density 0J  corresponds to the rate at which hydrogen is oxidised and 

oxygen is reduced according to reversible reaction given by equation 2-1.  

 

Ohmic Losses 

 

At intermediate current densities (100 – 1000mA/cm2), the irreversible losses are 

dominated by Ohmic losses in the cell. Ohmic losses can be attributed to the ion conducting 

properties of the different elements of the cell. The PEM is the central proton conducting part 

of the cell, which connects the dispersion of electrolyte in the two catalyst layers. Resistance 

to the flow of protons in the PEM can significantly contribute towards the Ohmic loss of a 

cell. Resistance to the flow of electrons also contributes towards the Ohmic loss.  

 

The electron conducting parts of the PEFC have finite resistances that are dependant 

upon cell operating temperature and the compaction force applied to a cell. Charge transfer 

resistances at the anode and cathode electrode, as well as resistance contributions from any 

other components in a fuel cell, such as current collectors, all contribute to Ohmic losses. 

Ohmic losses can be expressed in terms of Ohms law: 

 

Jrohmic =η  (2-17) 

 

where r  is the total Ohmic resistance to charge transfer. 

 

Proton conductivity can be improved by improving the hydration of the membrane 

during operation, by decreasing the thickness of the membrane and improving the ionic 

conductivity of the membrane. Electrical conductivity can be improved by 



2   The Polymer Electrolyte Fuel Cell 17

selecting/designing components with materials that have high bulk electrical conductivities, 

and ensuring minimal surface corrosion and maintaining good electrical contact between 

electron-conducting components of the PEFC. 

 

Mass Transport (Concentration) Losses 

 

At high current densities (> 1000mA/cm2), mass transportation dominates the 

irreversible losses. Mass transport losses occur when there is a change in the concentration of 

a reactant gas on the surface of an electrode, which occurs at high current densities where the 

hydrogen oxidation and oxygen reduction rates correspondingly hasten. In order to maintain 

a current for a given potential, the supply of reacting species to the electrode surface has to 

be sustained. This sustains the electrolytic current due to the movement of ions through the 

membrane and therefore balances the electric current flowing in the external circuit. This 

movement cannot be increased indefinitely and a point must be reached where species react 

at the electrode as fast as they reach it. The amount of current obtained under such a 

circumstance is known as the limiting current. Mass transport losses can be caused by the 

slow diffusion of the gas phase through the porous regions, solution/dissolution of the 

reactants/products into/out of the electrolyte membrane, or diffusion of reactants/products 

into/out of the electrolyte to/from the electrochemical reaction site. Mass transportation 

losses can be estimated as; 

 









−=
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J

J

nF

RT
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(2-18) 

 

where lJ  is the limiting current density. 

 

The product water generated inside the PEFC forms at the cathode side and some of it 

is retained by the PEM, thereby enhancing its proton conductivity. Excess water has to be 

expelled from the cathode in order to prevent liquid water formation and accumulation, 

which can subsequently impede pathways for the transport of oxygen to the catalyst sites. At 

high current densities, the production of water correspondingly hastens. It can become 

difficult to remove the water from the cathode and can therefore begin to saturate the porous 
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electrodes. This can slow down the oxygen diffusion, causing a sharp drop in the oxygen 

concentration resulting in a drastic increase in the mass transport loss.  

 

Fuel Efficiency Losses 

 

As hydrogen passes through the anode GDL and enters the anode catalyst layer, it is 

possible for some of the hydrogen to permeate straight through the PEM, forgoing the 

electro-oxidation process. Consequently, it reacts directly with oxygen in the cathode catalyst 

layer and amounts to a proportion of spent fuel that does not contribute towards the electrical 

energy harnessed from the cell. This is described as an efficiency loss. Oxygen can also 

permeate the polymer membrane from the opposite direction through enlarged pores and 

directly react with hydrogen in the anode catalyst layer. Fuel efficiency losses are highly-

dependant on the structure and mechanical state of the PEM; thin PEMs and the formation of 

pinholes can cause high rates of fuel crossover.  

 

2.2.4 Polarisation Curve 

 

The overall cell output is given by subtracting three of the losses discussed in the 

preceding section from the open circuit potential of the cell: 
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(2-19) 

 

Typical parameters for the constants in equation 2-19 are given in Table 2-2. Figure 2-6 

demonstrates the typical form of a polarisation curve based on the parameters in Table 2-2. 

 

The thermodynamic efficiency of the PEFC when current is drawn from the cell can 

be calculated by assuming that the electrical work done by the cell can be equated to the free 

energy actually delivered by the cell based on the actual cell voltage; 

 

nFVGW actelec =∆−=  (2-20) 
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Equation 2-20 can be applied to 2-15 to determine the thermodynamic efficiency as a 

function of power density, as shown in Figure 2-7. It is noteworthy that the thermodynamic 

efficiency increases with decreasing load, unlike the internal combustion engine (ICE). 

Generally speaking, the PEFC maintains thermodynamic efficiency in the 40% ± 10% band, 

compared to an average of around 42% and 35% for state-of-the-art diesel and gasoline ICEs 

respectively. 

 

Parameter  Units Value 

Cell Potential at STP 0

0E  V 1.229 

Open Circuit Potential E  V 0.95 

Cell Temperature T  K 343 

Total area-specific cell Resistance r  Ohm-cm
2
 0.1 

Cell Footprint Area A  cm2 200 

Cathodic Charge Transfer Coefficient 
cα  - 0.5 

Exchange Current density 
0J  mA/cm2 0.067 

Limiting Current Density 
lJ  A/cm

2
 2.0 

Universal Gas Constant R  J/mol-K 8.3143 

Faraday Constant F  C/mol 96484 

Table 2-2 Constants for equation 2-19 

 

 

Figure 2-4 Basic polarisation curve of a PEFC 
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Figure 2-5 Thermodynamic efficiency of a PEFC as a function of electrical load and cell 

voltage. 
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3 A Review of Practical Factors Governing the 

Performance of Polymer Electrolyte Fuel Cells 

 

This chapter presents a comprehensive review that aims to provide a structured 

understanding of the practical factors that govern the performance of hydrogen-fuelled 

PEFCs by considering the underlying phenomenological mechanisms that can degrade cell 

performance and cause failure. As discussed in the preceding chapter, the performance of a 

PEFC is characterised by one of four loss mechanisms; (1) activation losses; (2) Ohmic 

losses; (3) mass transportation losses and; (4) fuel efficiency losses. Degradation mechanisms 

can contribute towards multiple loss mechanisms and can also lead on to the final form of 

user-detectable loss; (5) catastrophic cell failure. 

 

3.1 Introduction 

 

Research and development in PEFC technology to date has resulted in a vast array of 

materials, designs, manufacturing techniques and considerations for the different components 

of the cell [1,2,3]. These variations reflect the fact that there are a multitude of factors that 

govern the performance of the PEFC, all of which have some element of physical design or 

operation associated to it that can be altered to improve an aspect of cell performance.  

 

Differences in operating modes and general cell design according to application 

means that the impact of certain performance degradation and failure mechanisms are also 

likely to be different from application to application. Automotive fuel cells, for example, are 

likely to operate with neat hydrogen under load-following or load-levelled modes and be 

expected to withstand variations in environmental conditions, particularly in terms of 

temperature, pressure and atmospheric composition. In addition, they are also required to 

survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while 

undergoing as many as 30,000 startup/shutdown cycles [4]. PEFCs for stationary applications 

would not be subjected to as many startup/shutdown cycles, however, would be expected to 

survive 10,000 - 40,000 hrs of operation whilst maintaining a tolerance to fuel impurities in 

the reformate feed. The current review discusses factors that are potentially relevant to all 

types of applications, and covers all major hardware components in the PEFC. 
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3.2 Activation Losses 

 

3.2.1 Platinum Agglomeration 

 

In order to maximise the electrochemically active surface area (EASA) in the anodic 

and cathodic catalyst layers, the catalyst is applied as fine and widely dispersed nano-

particles on the surface of a supporting particle [5]. Typically, the catalyst is platinum or 

platinum alloyed with ruthenium or chromium for example, and the larger supporting particle 

is carbon-based. Recent studies have shown that within 2000 hrs of operation, it is possible 

for the metal catalyst to undergo morphological change in the form of catalytic 

agglomeration and/or ripening [6]. This leads on to a gradual decrease in the EASA. While 

this phenomenon is observed for both anode and cathode catalyst layers, it is usually the 

cathodic particles that undergo more extensive agglomeration. This is because the cathode 

can contain sufficient liquid water to facilitate primary corrosion [7]. Repetitive on/off load 

cycles for PEFCs can also cause platinum sintering; residual hydrogen can induce a high 

voltage equivalent to open-circuit voltage to the cathode, causing the sintering to occur [8]. 

This can be mitigated by purging the anode channel with air. Loss of EASA due to 

agglomeration has also been observed for un-humidified PEFCs operating at a higher 

temperature of 150°C in polybenzimidazole (PBI) membranes [9].  

 

3.2.2 Platinum Migration 

 

Another mechanism for the loss of EASA could be attributed to the movement of 

platinum. When the PEFC is operated through hydrogen-air open circuit to air-air open 

circuit, platinum can become soluble and could therefore infiltrate adjacent layers [10]. The 

corresponding loss of platinum can also compromise the EASA. Such phenomenon can also 

be accompanied by an apparent migration of platinum. Migration of metal catalyst particles 

in both the anode and cathode catalyst layers in PEFCs has been observed, moving towards 

the interface between the catalyst layer and the membrane [7]. Platinum migration from the 

cathode catalyst layer to the anode has also been observed in phosphoric acid fuel cells 

(PAFC) [11]. 
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3.2.3 Exposure to Sub-Zero Operating Conditions 

 

Exposure to sub-zero operating environments are also known to compromise the 

EASA. The repetitive freezing and melting of water in the catalyst layer is likely to deform 

the structure of the catalyst layers by increasing the pore size and reducing the EASA [12]. 

 

3.2.4 Atmospheric Contaminants 

 

The effects of reactant contamination and the leaching of contaminants can also 

significantly contribute towards increases in activation losses at the anode and the cathode; 

catalytic contamination can occur due to both air pollutants and fuel impurities. The presence 

of excess liquid water exacerbates the effects of contamination, which can act to transport 

leached impurities within the cell [13]. Impurities are thereby deposited on the catalyst sites, 

compromising the EASA on either electrode. 

 

Air impurities such as nitrogen dioxide (NO2), sulphur dioxide (SO2) and hydrogen 

sulfine (H2S) have been found to have a negative impact on cell performance due to their 

adsorption on platinum catalyst sites [14]. It has been reported that with low concentrations 

of NO2 and SO2, i.e., 0.4 and 0.5 ppm respectively, the effects of contamination on cell 

performance can be reversed if the cathode is subsequently fed with neat air [15]. For higher 

concentrations, i.e., 1-5ppm of either NO2 or SO2, cyclic voltammetry is required to fully 

recover the cathode [14,16]. Exposure to SO2 and H2S appear to lead on to the formation of 

two sulphur species, one of which adsorbs strongly on the platinum sites. In either case, 

cyclic voltammetry is required to oxidise the sulphur adsorbed [14]. 

 

3.2.5 Fuel Contaminants 

 

Operating PEFCs on a hydrocarbon reformate could expose the anode catalyst layer 

to CO in the concentration range of 10-100ppm [17]. Reformation of methane (CH4) for 

example, can yield a hydrogen-rich fuel feed with 80% H2 and 20% carbon dioxide and 

carbon monoxide in the mentioned concentrations [18]. The carbon dioxide can lead on to 

the formation of additional carbin monoxide in the anode catalyst layer either through a 
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reverse water-gas shift reaction or through the electro-reduction of carbon dioxide [18]. 

Carbon monoxide is problematic because it can adsorb onto platinum more strongly than 

hydrogen, which thereby compromises the EASA for hydrogen oxidation. The carbon 

monoxide in the fuel feed can also cross-over through the membrane to the cathode catalyst 

layer [19] and can also be present in air. Carbon monoxide contamination can therefore also 

compromise the EASA for oxygen reduction in the cathode catalyst layer, reducing cathode 

performance. Carbon monoxide coverage can be reduced if the platinum catalyst is alloyed 

with ruthenium (Ru) and tin (Sn) to give PtRu and Pt3Sn [20]. Other methods include 

ensuring that the saturated vapour pressure of the fuel feed is maintained during operation, by 

reducing the thickness of the catalyst layer [21], and by elevating the cell temperature from 

80°C to around 120°C, which improves the activity of the catalyst layer for hydrogen 

oxidation [22]. According to another method, oxygen could be bled into the hydrogen feed in 

order to oxidise carbon monoxide to carbon dioxide before it reaches the anode catalyst layer 

[23]. A more recent method includes the use of a ‘reconfiguration anode’, where a catalytic 

material which uses cobalt, iron and copper is applied to the gas-facing side of the anode gas 

diffusion layer to oxidise the carbon monoxide in the fuel feed before it permeates into the 

anode catalyst layer [24]. A comprehensive review of articles discussing PEFC 

contamination has been carried out by Cheng et al. [25].  

 

3.2.6 Carbon Corrosion 

 

Altering the structural composition and material use can improve the performance 

and stability of the catalyst layers. Nafion and catalyst distributions can be applied non-

uniformly to favourably maximise the proton transport and porosity in the opposing regions 

of greatest ion flux and gaseous flux respectively [26,27,28,29]. Catalytic supports can be 

favourably chosen for minimised oxidation rates. Carbon corrosion is a significant issue for 

fuel cells and can occur during fuel starvation, when there is only partial coverage of 

hydrogen on the catalyst sites and during localised flooding [30,31]. Such conditions can be 

induced or exacerbated during cyclic operation. If a single cell has insufficient fuel to support 

the current drawn, carbon can corrode to support the current above that provided by the fuel 

[30]. The standard potential for the corrosion of carbon is 0.207V. When the anode potential 

is below 0.207V, fuel is consumed to drive the current. When the anode potential rises above 

0.207V, carbon corrosion in the anode catalyst layer occurs to supply protons to support the 
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current [30]. Platinum agglomeration can also be instigated as a consequence of a loss of 

catalytic support during carbon corrosion [32]. The chemical equation for carbon corrosion is 

as follows [30]; 

 

−+
++=+ eHCOOHC 442 22  (3-1) 

 

It has been shown, for example, that while XC72 carbon black reacts more slowly 

than Black Pearls (BP) 2000, they both become less stable supports under humidified fuel 

cell operating conditions in comparison to dry conditions [33]. Whilst humidification is 

necessary for most PEFC designs to reduce the resistance to proton transfer in the polymer 

membrane, humidifying the cathodic reactant supply up to 60% will also improve catalytic 

activity due to its impact on the rate-determining step of the oxygen reduction reaction [34]. 

For low-temperature automotive PEFC stacks, for example, some level of humidification can 

be unavoidable. Graphitization of carbon supports is suggested as one method to improve 

thermal stability under such conditions if a high surface area for the supports can be 

maintained [33]. Operating under fixed current densities and flow rates can also avoid carbon 

corrosion [31]. One alternative to carbon-black supported platinum catalysts are multi-walled 

carbon nanotube supported platinum (Pt/CNT) catalysts, which through accelerated 

durability tests have shown that they are more resistant to platinum sintering. This is due to 

the stability of CNTs, which possess a higher resistance to electrochemical oxidation than 

carbon black [35]. 

 

3.2.7 Chemical Degradation of Silicone Seals 

 

Another reported form of catalytic contamination can be caused by the chemical 

degradation of sealing material used in the fuel cell stack. Typically, seals in fuel cell stacks 

are made of silicone and serve to avoid mixing of hydrogen and oxygen. The acidic character 

of the polymer electrolyte membrane along with the thermal stressing of the silicone seal can 

cause it to degrade chemically but without compromising its mechanical functionality [36]. 

The process is marked by yellow colouration. The products of the silicone reaction occur at 

both the anode and cathode side, but migrate towards the cathode due to the electric field. 

PFSA membranes have been found to be impermeable to the products, and so cause the 

products to accumulate in the catalyst layers. Schulze et al. reported that in the cathode 



3   Review of Practical Factors Governing PEFC Performance 26

catalyst layer the decomposition products react with catalyst to form particles containing 

silicone, oxygen and platinum [36]. 

 

3.3 Mass Transportation Losses 

 

3.3.1 Cell Flooding 

 

Impedance to the transport of reactants to the catalyst sites results in an increase of 

mass transportation losses. Impedance to reactant transport can manifest itself in several 

different ways, but compromise the porous network for gas permeation through the porous 

layers of the cell. The foremost contributor to the impedance to reactant transport occurs in 

the cathode side of the cell, due to the formation of liquid water which restricts the transport 

of oxygen. This compromises the partial pressure hence the local oxygen concentration on 

the cathode catalyst sites. It propagates from the cathode catalyst layer and can lead to 

flooding in the GDL and parts of the cathode reactant supply channel. Water management 

has therefore been the focus of a significant number of research groups and has resulted in a 

multitude of designs and operating strategies aimed at mitigating mass transportation losses. 

Liquid water in the flow fields can be carried away if the channel flow rates are sufficiently 

high. Pressure drops along straight sections and particularly around flow field bends however 

can lead to water accumulation, subsequently leading to the clogging-up of channels and 

therefore potentially cell shut-down [37]. 

 

Pressure drops along a single channel are governed by the physical characteristics of 

the channel and the physical characteristics of the fluid. The most relevant physical 

characteristics of the channel include the length and cross-sectional geometry of the channel, 

the number, closeness, abruptness and geometry of channel bends and the hydrophobicity of 

the BPP surface. The characteristics of the fluid are reflected by the Reynolds number (Re) 

[38,39]. Flows that have low Reynolds numbers (Re < 50) are mainly dominated by viscous 

forces and thereby susceptible to pressure losses induced by skin friction. Flows with higher 

Reynolds numbers, i.e., Re > 200, are susceptible to flow separation particularly when its 

direction is abruptly changed. Flow separation in the vicinity of sharp corners of flow field 

bends leads on to the formation of vortices, which also results in pressure losses. Vortices 
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can also form in the same manner in the vicinity of inlet manifolds [40]. The introduction of 

finite curvature ratios for 90° bends can assist in maintaining laminar flow [39]. In addition, 

in order to allow separating flows to become laminar again, it is necessary to optimise the 

length of the straight section immediately downstream of the bend.  

 

In the general case, pressure losses along single channels can be minimised if the 

overall flow field path length is kept short and if the number and abruptness of bends are 

minimised. Recent studies have highlighted that uniform flows with typically small pressure 

drops can be established particularly for flow fields with straight, parallel channels [41] and 

for serpentine channels that have shorter path lengths and larger numbers of multiple 

channels rather than longer path lengths and fewer channels within the same cell area [42]. 

Such measures can ensure that the channels remain pressurised along their entire lengths and 

reduce the chance of flooding whereby high upstream pressures and low downstream 

pressures are established causing liquid water to be pushed down and accumulate in 

downstream regions of the flow fields [43]. In general, liquid water has a tendency to 

accumulate in regions where the gas-phase flow becomes stagnant, particularly in abrupt 

180° bends often seen in serpentine flow fields [44,45,46]. 

 

Interdigitated flow fields could be used over conventional gas distributors to improve 

oxygen distribution to the cathode catalyst layer and water removal by adding forced 

convection to gas diffusion to drive transport in the porous layers [47]. Forced convection is 

induced by decoupling the direct path between inlet and exit flow fields on one or both sides 

of the bi-polar plate design. Under certain conditions, interdigitated flow fields can also yield 

reductions in fuel consumption rates without loss in performance compared to conventional 

flow field designs [48]. In the context of PEFC stacks, interdigitated flow fields can also 

induce unbalanced pressure drops between cells. The concept is still undergoing development 

[49,50,51,52,53,54,55, 56,57,58,59, 60,61].  

 

Counterflow configurations have shown that orienting the reactant flows to pass 

through opposite-sided inlets can allow for better internal humidification of the cell [62,63]. 

The high water content in the anode inlet feed can be used to humidify the membrane when 

water molecules are electro-osmotically dragged from the anode to the dry cathode by 

migrating protons, whereas the cathode inlet is adjacent to the drier anode exit feed which 

allows for membrane hydration through diffusion and convection, driven from the cathode 
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side. Counterflow configurations appear in automotive fuel cell stacks [64] and depending 

upon the operating strategy it can be possible to delay the onset of flooding.  

 

If water can be generated within the membrane for humidification, it could be 

possible to reduce the extent to which the inlet reactant gases need to be humidified. This 

could naturally suppress the onset of two-phase flow and cell flooding, and could assist in 

simplifying the system design. As such, the dispersion of platinum particles within the 

membrane has been explored [65,66]. Here, water would be generated within the membrane 

by virtue of the recombination of hydrogen and oxygen on catalyst sites. The concept 

therefore relies upon the permeation of hydrogen and oxygen through the membrane region. 

The limitation of this method is that the platinum dispersions are susceptible to forming 

electron-conducting networks that could cause short circuits [67]. Recent re-developments 

have focused on membranes consisting of one middle layer of Nafion containing dispersions 

of Pt/CNT with two outer layers of Nafion [67]. The entire membrane assembly can be as 

thin as 25 microns. Reported results show that up to 90% of the performance obtained with 

humidified reactants can be obtained by such self-humidifying membranes with dry reactants 

[67]. Another example is of silicone oxide-supported platinum catalyst dispersed within 

protected three-layer sulfonated poly(ether ether ketone) (SPEEK)/PTFE/Nafion matrix 

membranes [68]. At present, though, self-humidification is not a standard concept.  

 

Along with the literature reported above on the various means of mitigating mass 

transportation losses, numerous patents have been filed related to improved water 

management schemes [69,70,71,72,73,74]. 

 

3.3.2 Hydrophobicity of Porous Layers 

 

Liquid water transportation and removal can be facilitated by treating porous layers 

with hydrophobic material, commonly polytetrafluoroethylene (PTFE) or fluorinated 

ethylene propylene (FEP). The hydrophobicity of a surface is reflected through the contact 

angle that a water droplet makes on the surface of the material; a contact angle less than 90° 

reflects a hydrophilic surface, while that greater than 90° reflects a hydrophobic surface. 
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Water transport can be managed through the use of the MPL. Because it is highly 

hydrophobic, it can act to transport liquid water away from the cathode GDL in the direction 

of the anode via the membrane, thereby delaying flooding effects in the cathode and 

simultaneously hydrating the membrane layer [75,76,77,78,79]. The use of an MPL also 

lessens the sensitivity of the catalyst layer to flooding, allowing thinner catalyst layers to be 

used [80]. A bi-functional hydrophobic and hydrophilic porous structure can simultaneously 

facilitate both gas-phase and liquid-phase transport respectively. Such pore structures can be 

achieved with composite carbon black loaded  to around 0.5mg/cm
2
 with a PTFE content of 

30 wt.% [81]. 

 

The GDL is also usually treated with PTFE. A higher PTFE content can also help to 

preserve the porous structure of the GDL by increasing the material rigidity [82], however it 

can also compromise the electrical conductivity of the GDL [83] and excessive coating can 

lead to high levels of flooding [80]. Also, it has been shown that for GDLs that are made up 

of graphite fibres, the hydrophobic polymer tends to localise on the surface regions on 

treatment; large numbers of surface pores made by intersecting fibres will be blocked by thin 

polymer films, rendering the bulk of the interior less hydrophobic [84]. It has also been 

shown that the contact angle of treated GDLs can reduce with temperature [84].  

 

Mechanical and electrochemical degradation of PTFE in GDLs has also been reported 

[84,85]. Operating conditions that induce thermal cycles in the fuel cell stack which result in 

a loss of hydrophobicity can therefore make water removal more difficult. It can also cause 

the polymer to delaminate, thereby deteriorating the hydrophobic property of the GDL and 

compromising the ability to remove water with respect to operational life. It is arguable that 

the MPL, which has a comparable material composition to the GDL and is also porous in 

nature, is susceptible to the same degradation mechanisms. Damage to PTFE coatings can 

also be induced when GDLs are exposed to sub-zero operating conditions [86]. 

 

3.3.3 Ionomer Loading in Catalyst Layer 

 

The PFSA ionomer loading in the catalyst layer can also have an effect on the 

transport of reactants to active sites in the catalyst layer. The material is placed in the anode 

and cathode catalyst layers in order to provide pathways for proton transport [87,88]. Water 
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uptake in the polymer electrolyte material could cause it to correspondingly expand, thereby 

reducing the pore sizes in the catalyst layer [89] which impedes reactant supply. The effect is 

usually reversible since the polymer electrolyte material will also contract when the cell is 

not in operation, or when liquid water production reduces at lower operating cell current 

densities for example. Excessive ionomer loading for a given platinum loading will also 

inherently impede reactant supply; higher mass transportation losses have been reported due 

to the impedance to oxygen transportation in the catalyst layer [90]. Ionomer skins can also 

form on the outer surface of the catalyst layer of the completed MEA, however this can be 

limited to certain fabrication techniques [91]. In general, the fabrication processes for the 

catalyst layer such as spraying, painting rolling and screen printing all possess a limited 

degree of precision and ultimately therefore the degree of control over the composite 

structure of the fabricated MEA [92]. Navessin et al. reported that decreasing the ion 

exchange capacity (IEC) of the ionomer, which is the equivalent to increasing the equivalent 

weight (EW), results in an increase in hydropobicity, decrease in water content, increase in 

oxygen solubility and an increase in the ORR current. The EW reflects the ratio of the atomic 

weight of an element to the valence it assumes in a chemical compound. A low IEC (or high 

EW) could improve the cell performance by facilitating water management. 

 

3.3.4 Impedance to Transportation due to Ice Formation 

 

The effects of sub-zero operating conditions significantly influence mass 

transportation losses. The operating temperature of the cell has to be brought up to above 

freezing before ice formation completely fills the pores of the cathode catalyst layer [93]. 

The instantaneous effect of ice formation is to impede oxygen transport to the catalyst sites 

and can render entire cells inactive. Freezing conditions are known to weaken the MPL 

structurally to an extent that renders it prone to material loss from air flow through the GDL 

[94]. In practice, ice formation can occur in any region of the fuel cell where water resides 

and so it is important to remove excess water from the cell prior to start-up, and to operate 

the cell on start-up such that water generated in the cathode catalyst layer is not allowed to 

freeze. Gas-purging has been identified as a mechanism by which excess water can be 

removed [95]. In one reported method, gas-purging is done before the cell temperature falls 

below 0°C using dry gases such as nitrogen and oxygen for the anode and cathode 

respectively, optionally using 30% methanol or 35% ethylene glycol as antifreeze additives 
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[96]. Another reported method involves purging using gases with a limited degree of relative 

humidity to ensure that the provision of adequate water content in the proton conducting 

membrane is not completely compromised [97].  

 

3.3.5 Effects of Compaction on the GDL 

 

The porous structure and thickness of the GDL also influences two-phase water and 

reactant transport [98]. Reactant transport can be enhanced when the GDL porosity is in the 

region of around 0.3-0.6 [99,100] and liquid water removal to the gas channel can be 

enhanced with a linearly-graded porosity [99]. The use of thinner GDLs can also improve 

performance by allowing for greater liquid water mass transfer under steady-state conditions 

[99,101] and greater reactant mass transfer towards the catalyst layer [100]. The permeability 

of a GDL is another relevant parameter, which varies according to the carbon type [82]; 

woven and non-woven GDLs have exhibited slightly higher permeability than carbon fibre 

paper GDLs with similar solid volume fractions [102]. 

 

A fuel cell stack is held together by compacting together single cells. The 

corresponding compression can result a non-uniform pressure distribution across the active 

area of the cell, which can affect the structural properties of the GDL. Over-compression is 

argued to be a common occurrence in most fuel cells [103] which causes pores in the GDL to 

collapse, thereby reducing the porosity, increasing flooding [104] and reducing gas 

permeability [105]. The deforming over-compression can be less significant under channel 

regions and occurs mainly between mating surfaces that transmit compaction forces, for 

example land areas in the bi-polar plates and under rib areas where the cell is sealed with 

gasket material [105,106,107]. It has been observed that increased compression initially 

improves the performance of the cell by reducing the interfacial resistance between the bi-

polar plate and the GDL up to an optimal threshold, whereas further compression thereafter 

narrows the diffusion path for mass transfer from the gas channels to the catalyst layers 

[108,109]. The effects of stress due to over-compression are more pronounced at high current 

and low pressure [110]. Chang et al. [109] identified the threshold clamping pressure to be in 

the region of 0.5MPa. The damage to GDLs is manifested through a break-up of fibres and a 

deterioration of hydrophibic coating, thereby compromising the ability to remove water from 

the cell [111].  
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3.4 Ohmic Losses 

 

3.4.1 Resistance to Electron Transfer in the Bi-Polar Plate 

 

Both resistance to electron transfer and proton transfer contribute towards the overall 

Ohmic losses incurred in PEFCs. Elements of the cell where electron transfer occurs includes 

the carbon support in the catalyst layers, the GDL and the BPP. Proton transfer occurs in the 

polymer electrolyte matrix dispersed in the catalyst layers and the PEM.  

 

While the bipolar plate provides the bulk of the mechanical strength of the stack, it 

also serves as a current collector, as a thermally conductive medium to remove excess heat 

energy from single cells, and as a device to supply reactants and to remove water via flow 

fields on both faces of the plate. However, they must withstand the acidic and humid 

conditions within the stack. Corrosion is a significant issue for BPPs, which leads on to the 

loss of electrical conductivity. While the BPP must have high mechanical strength, low 

susceptibility to material dissolution, low susceptibility to the release of metal ions and high 

corrosion resistance, the bulk electrical conductivity must be high and the interfacial contact 

resistance (ICR) must be kept low [112]. As an indication, targets set for mechanical strength 

and electrical conductivity are 44.26 MPa and 100 S/cm respectively [113]. These attributes 

have to be achieved with materials and processes that are compatible with the concept of low 

cost and high volume manufacturability. As such, an array of different chemical 

compositions and synthesising processes have been investigated to identify how these 

requirements can be simultaneously met. 

 

Graphitic Bi-Polar Plates 

 

Graphite is conventionally regarded as the standard material for BPPs because of its 

high conductivity (300 S/cm) [113] and high corrosion resistance [114]. However, graphite 

BPPs are susceptible to fracturing due to shock and mechanical vibration, are permeable to 

gases and can be costly to machine in high volumes [112].  
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Stainless-Steel Bi-Polar Plates 

 

While corrosion-resistant metals have better mechanical properties and are cheaper to 

machine in high volumes than graphite plates, the chemical process that provides corrosion 

resistance can also compromise its electrical conductivity. Stainless steel (SS), for example, 

develops a chromium (III) oxide (Cr2O3) passivating layer on the surface which prevents the 

bulk metal from corrosion. This thin film however impedes electron transfer and therefore 

raises the ICR. The consequent Ohmic heating thereby compromises the electrical energy 

that can be harnessed from single cells. The bulk resistivity is however insignificant in 

relation to the surface resistance due to this film [115].  

 

Stainless steel is the standard alloy for metallic BPPs, and has the major constituents 

of iron (Fe), chromium (Cr) and nickel (Ni). There are mainly six relevant grades of SS for 

BPPs, distinguishable by their chemical compositions. These are provided in table 3-1.  

 

 Chromium (Cr) Nickel (Ni) 

SS316L 16.20 - 16.80 10.10 - 10.30 

SS317L 18.10 – 18.60 12.45 – 12.75 

SS904L 20.48 24.95 

SS349TM  23 14.5 

SS310 25 20 

AISI446 28.367 2.958 

Table 3-1 Grades of stainless steel according to composition by weight percentage [115] 

[116] [117] 

 

The conductivity of SS316 is, for example, around 51 S/cm [113]. It has been shown 

that those grades of SS with a higher content of chromium and nickel, SS904L for example, 

result in the formation of thinner passive oxide films with low ICR. Raising chromium 

content alone, however, can improve corrosion resistance and it is possible to attain a low 

ICR if a clean, stable and integral surface is developed [115,116,117,118,119]. The effect of 

chromium content on corrosion resistance is also evident in amorphous iron-based alloys 

such as Fe50Cr18Mo8Al2Y2C14B6 [120]. Amorphous alloys intrinsically possess high corrosion 

resistance and high strength (around 2GPa) due to the absence of defects such as grain 

boundaries and dislocations [120]. In addition, surface treatment of SS in the form of a 

selective dissolution processes can improve the metallurgical surface structure, ensuring that 
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it is defect-free, solid and integral [118]. Smoother surfaces can also result in reduced 

interfacial contact resistances.  

 

Coating of Stainless-Steel Substrate 

 

Corrosion resistance can be improved if stainless steel is coated as a substrate. When 

coated with titanium nitride (TiN), if coating defects such as micro-cracks and pinholes can 

be minimised, a higher corrosion resistance and electrical conductivity for SS316 can be 

achieved [121]. Stainless steel can also be coated with conducting polymers such as 

polypyrrole (PPY) and polyaniline (PANI) [122,123,124]. The interfacial contact resistance 

however is five times that of graphite at a compaction force of 200N/cm
2
, and reduced to 

one-two times that of graphite at 400N/cm2 [122]. The number of deposition cycles that the 

substrate is subjected to during the electro-polymerisation process dictates the thickness of 

the polymer film; the coating is known to degenerate with time, and coating compositions 

need to be modified in order to maintain the protective properties of the polymer surface 

[124]. SS304 coated with nitride layers using the physical vapour deposition (PVD) method 

has also been reported, which results in interfacial contact resistances less than that of 

uncoated SS904L [125]. Coating does generally however add to the cost of the final product 

[113]. 

 

Other forms of metallic bipolar plates include copper alloys such as C-17200 copper-

beryllium, which form electrically conductive oxides [126] and nickel-based alloys with 

lower amounts of [Fe + Cr], resulting in oxides with reduced ICR [125]. 

 

Moulded Bi-Polar Plates 

 

Injection and compression moulding as low-cost, high-volume manufacturing 

processes could arguably mitigate the high production costs associated with machined 

graphite and stainless steel bipolar plates. The process requires the synthesis of a mouldable 

compound. In general, polymer-based compounds can be susceptible to shrinkage after the 

moulding process and could warp with time. Also, inhomogeneous pre-mixing of the carbon-

polymer compound can give rise to the formation of polymer-rich boundaries in the mould, 
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compromising the electrical conductivity closer to the surface. Two reported compounds 

include carbon–polymer [127], for example graphite powder (80-60 wt.%) with vinyl ester 

(20-40 wt.%) [128], and Nylon-6 with SS316L alloy fibres [129]. The bulk conductivities of 

the resulting materials are 5-150 S/cm and 60 S/cm for the carbon-polymer [127] and Nylon-

6–SS316L compounds respectively. Commercially available carbon-based bi-polar plates 

and bi-polar plate materials include those based on phenolic resin and other polymers such as 

polyvinylidene difluoride (PVDF) and polypropylene (PP) [130,131,132,133]. The 

conductivity of these materials range from around 30 S/cm to 200 S/cm with flexural strength 

in the region of 40-50 MPa. Other compounds constituting of vinyl ester resin, graphite 

powder with organoclay have been reported with bulk conductivities in the region of 260-312 

S/cm [134]. The organoclay is prepared by ionic exchange of montmorillonite (MMT) with 

poly(oxypropylene)-backboned diamine intercalating agents. Higher MMT content improves 

flexural strength, impact strength and anticorrosive protection, but slightly reduces the 

electrical conductivity.  

 

3.4.2 Resistance to proton transfer in the Polymer Electrolyte Membrane 

 

Impurity Ions 

 

Resistance to proton transfer in the polymer electrolyte material is characterised by 

the interplay between absorbed water, cations and fixed charge ionic clusters of the 

membrane electrolyte. Cations in the form of foreign impurity ions can displace protons and 

enter the electrolyte membrane, decreasing the proton conductivity in proportion to the ionic 

charge of the cation [13]. Foreign ions reported in literature include the alkali metals Li+, 

Na
+
, K

+
, Rb

+
 and Cs

+
 [135,136,137,138,139,140,141], the alkaline earths Mg

2+
, Ca

2+
, Sr

2+
 

and Ba
2+

 [142,143,145], the transition elements Ag
+
, Ni

2+
, Mn

2+
, Cu

2+
, Zn

2+
, Cr

3+
, Fe

3+
 

[144,145,146,147], rare earths La
3+

 [145] and Al
3+

 [147], and ammonium derivatives RnNH4–

n
+ (where R = H, CH3, C2H5, C3H7, C4H9 and n = 1 to 4) [148,149]. Sources of impurity ions 

include impure gas feeds, corroded materials in the fuel cell stack or reactant supply system, 

i.e., transition metal ion contaminants such as Cu2+, Ni2+ and Fe3+ [144], fittings, tubing or 

indeed ions in the water or coolant supply [141].  
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As discussed, compromising the hydrated state of the membrane results in the loss of 

proton conductivity. Water transport through the cell governs how well the membrane is 

hydrated, and water transport itself is characterised by its diffusivity and its transfer 

coefficient in the different regions of the cell. For the general case of operation under 

uncontaminated conditions, the water content of the membrane decreases non-linearly 

through the membrane thickness towards the anode with increasing current density, thereby 

resulting in an decrease in proton conductivity. This reflects the rise in electro-osmotic drag 

with increasing current density, resulting in a comparably large amount of water moving 

away from the anode to the cathode in relation to that diffusing through the PFSA-based 

membrane from the cathode to the anode [17]. Membrane contamination can increase the 

non-uniformity in water content and decrease the overall water content profile. The literature 

reports that the penetration of impurity ions into the membrane induces; (1) a decrease in the 

diffusion coefficient of water, and; (2) an increase in the water-transfer coefficient [13]. 

 

The literature suggests that water can reside in the membrane in the form of one of 

three possible population groups [137]; (1) Henry or Flory-Huggins type populations where 

water molecules are sorbed by an ordinary dissolution mechanism; (2) Langmuir type 

populations where water molecules reside in a hydration layer around cations and sulfonic 

charge groups due to the strong interactions caused by hydrogen bonds, and; (3) water cluster 

populations. Water clusters can be distinguished from Langmuir-type populations and are 

known to become dominant populations when the water activity in the membrane is greater 

than around 0.6. Clustering can change depending upon the type of cation penetrating the 

membrane; it is known to increase in the order of Cs+ > Li+ > H+. Legras et al. reported that 

the water clusters compromise the mobility of water overall which correspondingly results in 

a decrease in water diffusivity [137]. Shi et al. reported that the replacement of protons by 

impurity ions can induce electro-static cross-linking of ionic domains or the formation of 

sulfonate salts, causing the membrane to contract and expel water [145]. This can also result 

in the loss of water diffusivity [13]. Kundu et al. reported that physical cross-linking of ionic 

domains alters the mechanical properties of the membrane, causing an increase in membrane 

stiffness [141]. Young’s Modulus is shown to increase by one order of magnitude with 

increasing ionic radius, in the order Ni
2+

 > Cu
2+

 > Na
+
 > K

+
. 

 

The transport of protons through the polymer electrolyte from the anode to the 

cathode is known to induce the aforementioned electro-osmotic drag flux [150]. For other 
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ions, the magnitude of each contributory transport mode depends upon the existence of 

hydrophilic and hydrophobic parts of the ion. Through the investigation of ammonium 

derivatives, Xie et al. reported that such ions with hydrophobic skeletons tended not to have 

peripherally bound water molecules and instead cause hydrodynamic pumping [149]. Other 

cations, including fully hydrophilic cations, with a high charge density and a high enthalpy of 

hydration tend to carry more water molecules during transport by the electro-osmotic drag, 

which increases with water content [142,149,151]. Overall this illustrates that while the 

transfer of protons across the polymer electrolyte material induces an electro-osmotic drag, 

overall water transfer can indeed be unfavourably magnified as water interacts with impurity 

ions. The duration over which the degradation is prolonged depends upon the concentration 

of the impurity ions [138] and the length of time that the impurity ions reside within the 

polymer electrolyte membrane. Impurities with large diameters can penetrate the membrane 

and induce a plugging effect, compromising hydration and thus proton conductivity [149]. 

Therefore in general, water transport due to the presence of impurity ions can indeed hasten 

membrane dehydration, and the adverse effect on membrane performance is exacerbated 

when the impurity ions are concentrated closer to the anode and cathode catalyst layers 

[152,153].  

 

Anisotropic Expansion 

 

The swelling phenomenon experienced in fuel cells that use PFSA-based materials 

due to the uptake of water can lead on to anisotropic expansion. Casciola et al. reported that 

through-plane conductivity could decay when such swelling occurs, precipitated by high 

operating temperatures (120°C) and high relative humidity (>90%) [154].  

 

Membrane expansion could be restrained by the compaction of the cell. However, it 

has already been argued that the stresses actually experienced in operating fuel cells are 

likely to be less than those required to sufficiently constrain the membrane [155]. 

Reinforcing the membrane structurally however provides a more robust method. Methods 

include dispersing PTFE fibrils within membranes (fibril content of 2.7 wt.%) [156], 

dispersing carbon nanotubes within Nafion membranes (CNT content of 1 wt.%) [157] and 

the use of porous, expanded PTFE sheets that are bonded with membrane resins on both sides 

[158,159,160]. A 50 micron thick membrane made of recast Nafion has a tensile strength of 
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22.08MPa. Dispersing 1 wt.% CNT within the membrane can increase this by 68.8% [157]. 

The use of a PTFE porous sheet for reinforcement can increase the tensile strength by 87.5% 

[157]. The dimensional change for recast Nafion in water at 80°C is 25% [159]. For Nafion 

reinforced with dispersed CNT, the dimensional change is decreased to 12.4% [157] and for 

PTFE reinforced Nafion this is decreased to 10% [159]. At 90% RH, expanded PTFE 

reinforcement can suppress in-plane dimensional change from 12% down to 2.5% [161]. 

 

3.5 Efficiency Losses and Catastrophic Cell Failure 

 

Loss of efficiency and catastrophic cell failure can be induced when the strength and 

stability of the fuel cell materials are degraded irreversibly by mechanical or chemical attack. 

Rigid elements such as the bipolar plate are susceptible to cracking under mechanical stress 

and vibration. Seals are susceptible to oxidation [162], which compromises its functionality 

and can therefore rupture.  

 

The electrolyte material has to survive under various cyclic loads and through 

chemically-induced structural degradation whilst serving its primary role as a proton 

conductor. Efficiency losses in the electrolyte membrane can result as an inherent 

consequence of employing thin membranes [163] or by in-situ membrane thinning, allowing 

hydrogen to diffuse through the electrolyte from anode to cathode. Membrane thinning 

largely reflects a loss of chemical structure, primarily induced by peroxide radical attack. 

Pinhole formation is a precursor to catastrophic cell failure, propagating from localised 

regions where temperature extremes exist which mechanically degrade the fuel cell materials. 

This includes regions exposed to thermal hot-spots or ice formation. The purpose of this 

section is to discuss the irreversible degradation mechanisms caused by mechanical and 

chemical attack. 

 

3.5.1 Mechanical attack 

 

The impedance to transport in the porous layers of the cell due to ice formation was 

discussed previously. It has also been reported that ice formation caused as a consequence of 

operation at sub-zero conditions down to -20°C can cause the catalyst layer to delaminate 
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from both the membrane and the gas diffusion layer [86]. The surface of the electrolyte 

membrane has also been observed to become rough at sub-zero conditions, leading to the 

formation of cracks and eventual pinholes [86].  

 

The formation of thermal hot-spots has also been reported in the literature, as 

instigated through different mechanisms [164,165]. Hottinen et al. reported that a significant 

portion of the heat generated under the channel sections of the bipolar plate has to flow in the 

in-plane direction [165]. This could result in the formation of hot-spots below the channel. 

The beginning of rib areas where current enters the GDL from the bipolar plate could also be 

regions of high Ohmic heating, giving rise to other hot-spots, and the effect of heat transfer 

can be magnified when superimposed with inhomogeneous compression. Stanic et al. [164] 

reported evidence of the formation of pinholes in regions where carbon fibres at the MEA-

GDL interface created spots of high compression, accelerating membrane creep. High 

reaction rates in the vicinity of highly compressed membrane regions can raise the amount of 

heat energy generated, and therefore the local temperature. Overall, the local strength of the 

membrane at these higher-temperature, high-compression hot-spots can reduce and so can 

cause the electrolyte membrane to collapse. Membrane durability is also affected by repeated 

swelling and contraction induced by variations in relative humidity (RH) [166]. Kusolgu et 

al. [167] investigated in-plane stresses caused by in-plane membrane swelling and found that 

swelling as a phenomenon can have a more dominant impact on fatigue stresses than 

clamping conditions or the membrane thickness. Thermal hotspots can also develop in 

regions where hydrogen and oxygen combine exothermically on platinum catalyst sites, 

causing a cycle of increasing crossover and continual propagation of pinholes [168]. In 

general, hygro-thermal stressing can significantly affect the durability of PFSA-based 

membranes [161, 169, 170, 171]. However dimensional change due to hygro-thermal 

stressing can be restrained by reinforcing PFSA membranes with expandable PTFE, as 

discussed [161]. 

 

It is possible that irregularities in the electrolyte membrane or MEA could be induced 

during manufacture. Ensuring the absence of contaminants and uniformity in the thickness of 

membrane batches depends upon quality control during the manufacturing process. Curtin et 

al. reported DuPont’s manufacturing techniques for PFSA membranes, which includes two 

inspection points for membrane film thickness and one inspection point for defects [172].  
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In general, greater control over manufacturing quality could be granted by adopting 

manufacturing processes and quality control practices that have become highly-developed in 

similar industries. Relevant examples include the recoding media, semiconductor, battery and 

photovoltaic industries [173] and well-established standards for manufacture and test 

[174,175,176].  

 

3.5.2 Chemical Attack 

 

Chemical attack in PFSA-based membrane can occur due to the presence of defects in 

the polymer group. The defects exist as groups in the polymer that can interact with active 

radicals, resulting in the chemical degeneration of the PFSA-based material. 

 

The PFSA polymer is synthesised from a copolymer of tetraflouroethylene (TFE) and 

perfluoro(4-methyl-3,6-dioxa-7-octene-1-sulfonyl fluoride) by chemically converting the 

pendant SO2F sulfonyl fluoride groups to sulfonic acid SO3H [172,177]. The SO3H is 

ionically bonded such that the end of the side chain contains an SO3
– and an H+ ion [5]. 

 

Formation of Defective End Groups 

 

End group defects can be generated during polymer synthesis as a consequence of 

chemical or mechanical processes; initiators, transfer agents, solvents or contaminants could 

induce defects during chemical processing, while ageing, heating or extrusion could also 

induce defects during the handling of the polymer [178]. Pianca et al. [178] identified the 

following end groups; carboxylic acid (–CF2–COOH), amide (–CF2–CONH2), perfluorovinyl 

(–CF2–CF=CF2), acyl fluoride (–CF2–COF), difluoromethyl (–CF2–CF2H) and ethyl (–CF2–

CH2–CH3). Alentiev et al. [179] identified other end groups including –CF2–CF=O and –

CF2–CF=O and residual C–H bonds in the main chain such as Rf–CFH-Rf´. It is primarily the 

H containing end groups that are of particular interest for PFSA membranes in fuel cell 

environments, which can undergo aggressive chemical attack in the presence of peroxide 

radicals at low relative humidity conditions and temperatures in excess of 90°C [172]. 
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Formation of Hydrogen Peroxide 
 

Hydrogen peroxide can be formed through three reported processes. The first occurs 

as a consequence of oxygen reduction at the cathode [180]; 

 

222 22 OHeHO →++
−+  (3-2) 

 

The second occurs as a consequence of oxygen crossover from the cathode to the anode, or 

when air is bleed to the anode side [180,181,182]; 

 

PtHHPt →+ 221  (3-3) 

 

222

*2 OHOH →+  (3-4) 

          

La Conti et al. identified the intermediate formation of hydroperoxy (HO2
●) [183];  

 

catalyst)alloy -Ptor Pt (on   22

•
→ HH  (3-5) 

 

••
→+ 22 HOOH  (3-6) 

 

222 OHHHO →+
+•

 (3-7) 

 

The third occurs due to the crossover of hydrogen from the anode to the cathode, making it 

possible for hydrogen peroxide to form in the cathode catalyst layer [184,185]. It has been 

reported that hydrogen peroxide formation can be hastened by the presence of chloride ions 

which act as site-blocking species, reducing the number of active sites for the ORR and 

reducing the number of pairs of platinum sites required to break the O-O bond [186]. 

Chloride anions can originate from the fuel cell catalyst synthesising process and can be 

present as a water contaminant in the humidified reactant supplies.  

 

Formation of Peroxide Radicals 

 

Highly-oxidative peroxide radicals can subsequently form from the decomposition of 

hydrogen peroxide and as active species can decompose PFSA-based membranes [177]. 

Transition metals such as Cu2+ and Fe2+ are known to be catalysts for the decomposition of 
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hydrogen peroxide [177] and can originating from piping tubes and tanks of fuel cell 

systems. The Haber-Weiss mechanism details the formation of reactive oxygen hydroxyl 

(HO
●
) and hydroperoxyl radicals for Fe

2+
 [177]; 
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Steps (3-8) and (3-10) result in the formation of hydroxyl and hydroperoxyl radicals, 

respectively. For bivalent transition metals in general (M2+), radical formation can be 

generalised by the following mechanism [183]; 

 

+−•+
++→+

32

22 MOHHOMOH  (3-13) 

 

OHHOHOOH 2222 +→+
••

 (3-14) 

 

Mechanism of Peroxide Attack on Defective End Groups 

 

Peroxide radicals in the presence of defective polymer end groups proceed to 

decompose the polymer structure. Curtin et al. detail the following three-step mechanism 

whereby hydroxyl radicals attack carboxylic acid end groups [172]; 

 

Step 1: Abstraction of hydrogen from an acid end group 

OHCOCFRHOCOOHCFR ff 2222 ++−→+−−
••  (3-15) 

 

Step 2: Reaction of perfluorocarbon radical with hydroxyl radical 

HFCOFROHCFRHOCFR fff +−→−→+−
••

22  (3-16) 
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Step 3: Hydrolysis of acid fluoride 

HFCOOHROHCOFR
ff

+−→+− 2  (3-17) 

 

The release of fluoride therefore reflects the decomposition of the PFSA membrane. 

Fluoride emission rates (FER) can be determined by sampling the fluoride content of water in 

the anode and cathode exhaust [187]. Assuming a zero-order reaction for the production of 

fluoride ions, it is possible to postulate the following relationship to determine the rate at 

which Nafion decomposed [188]; 

 

tM

M
r

NafionF

F
d

∆

∆
=

−

 
(3-18) 

 

where 
F

M∆   is the change in the amount of F– released in µmol, NafionFM
−

 is the total amount 

of F in the Nafion and t∆  is the timestep in hours. The literature demonstrates that the FER 

technique is being increasingly applied to determine ionomer degradation [181,187,188,189]. 

 

Effect of Membrane Degradation due to Peroxide Attack 

 

The effect of peroxide attack is to alter the membrane structure and the chemical 

properties of the PFSA membrane. Loss of sulfonic end groups results in the loss of proton 

conductivity, thereby increasing the Ohmic resistance. Continual membrane degradation due 

to peroxide radical attack and subsequent fluoride release results in membrane thinning. This 

increases the diffusion of oxygen and hydrogen in opposing directions from the cathode and 

anode respectively. Primarily, it is the crossover of hydrogen that increases because of the 

high effective diffusivity of hydrogen molecules [6].  

 

3.6 Summary 

 

The performance degradation, failure modes and the associated causes discussed in 

the above are summarised in Tables 3-2 and 3-3. Faults are listed according to the physical 

component of the PEFC assembly where they originate or reside. The information presented 
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in these tables have been used to construct a systematic set of fault trees for the PEFC, which 

has been reported elsewhere [190]. 

 

3.7 Conclusions 

 

The review given in this chapter provides a qualitative account of performance 

degradation and failure in hydrogen-fuelled PEFCs and discusses some of the state-of-the-art 

concepts aimed at overcoming these limitations. The purpose of the review is to establish a 

backbone understanding of the phenomenological processes that occur within the PEFC, how 

they are influenced through elements of design, manufacturing and operation and ultimately 

how they can affect the performance of the PEFC. The conclusions from this chapter are as 

follows; 

• Performance degradation or failure can occur as a consequence of gradual processes, 

where certain operating conditions or operating routines cause a systematic 

degradation of structural and electrokinetic properties of PEFC components. Latent 

flaws in component design and manufacture can also lead to performance degradation 

or failure. 

• The identified phenomenological processes that lead on to performance degradation 

can be organised in terms of potentially irreversible increases in activation losses, 

Ohmic losses, mass transportation losses and efficiency losses 

• The performance degradation and failure modes identified through the literature 

pertain to the following PEFC components: 

o PFSA-based membrane 

o Catalyst layer 

� Carbon support 

� PFSA-based ionomer matrix 

� Catalyst particles 

� Porous structure of the catalyst layer 

o Gas diffusion media 

� Hydrophobic treatment material in the GDL 

� Porous structure of the GDL 

o Bipolar Plate 

� Stainless Steel BPPs 
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� Polymer-based BPPs 

o Sealing material 

� Silicone-based seals 

• In reviewing the performance degradation and failure modes, twenty-two common 

faults can be identified 

• The twenty-two common faults are induced by forty-eight general causes. 

 

As mentioned, the review also discusses newer aspects of fuel cell design, manufacture and 

operation as remedial measures that limit performance degradation and failure. In terms of 

MEA development, there is emphasis on attaining high mechanical strength, dimensional 

stability and an understanding of the mechanisms that govern internal transport and water 

management. For BPP and GDL development there is emphasis on improving the 

homogeneity of multi-phase flows through channels and porous media and on establishing 

materials, material preparation, material treatment and fabrication processes for high 

mechanical strength, high electrical conductivity and low susceptibility to chemical attack. 

Manufacturing and quality control are also critical areas for PEFC development which 

depend on the adoption of scalable manufacturing processes and practices from similar 

established industries, establishing repeatable precision processes and by adopting quality 

control practices.  

 

The review demonstrates that internal electrochemical transport and water 

management in particular is a key phenomenological process that affects performance and 

longevity, and therefore cost. Understanding the mechanisms of electrochemical transport 

and how they can be theoretically simulated is therefore fundamental to fuel cell research and 

development. 
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Table 3-2 Summary of factors affecting activation, Ohmic and mass transportation losses 

Performance 

Loss Mechanism 
Fuel Cell Component Fault/Process Cause 

Increase of 

Activation Losses 

Platinum catalyst (1) Platinum agglomeration causing loss of EASA (1) Repetitive on/off load cycling 

(2) High voltage induce at cathode equivalent to OCV due to residual hydrogen 

(3) Loss of carbon support 

  (2) Platinum migration causing loss of catalyst material (4) Solubility of platinum when cell is operated through hydrogen-air open circuit 

to air-air open circuit 

  (3) Adsorption of atmospheric contaminants on platinum 

causing loss of EASA 

(5) Air impurities such as NO2, SO2 and H2S 

  (4) Adsorption of fuel impurities on platinum causing 

loss of EASA 

(6) Fuel impurities such as CO and CO2 

  (5) Loss of catalyst due to chemical attack and formation 

of silicone/oxygen/platinum particles 

(7) Chemical degradation of silicone sealant 

 Geometric structure of the catalyst 

layer 

(6) Deformation of catalyst structure by freezing and 

melting water, resulting in increased pore size and 

reduced EASA 

(8) Residual water in catalyst layers 

 

 Carbon support in catalyst layer (7) Corrosion of carbon to support the current above that 

provided by the fuel when the cell is supplied with 

insufficient fuel to support the current drawn 

(9) Fuel starvation 

(10) Partial coverage of hydrogen on catalyst sites 

(11) Localised flooding 

Increase of Mass 

Transportation 

Losses 

Porous and void regions of the 

cell; catalyst layers, GDLs, BPP 

flow fields 

(8) Flooding caused by the accumulation and 

condensation of water vapour to induce two-phase flow 

(12) Low flow rate of channel gases 

(13) Low pressure in gas flow channels 

(14) Flow-field geometry 

(15) Degradation of polymer electrolyte in catalyst layer due to impurity ions 

  (9) Loss of hydrophobicity in porous regions of the cell 

treated with hydrophobic material 

(16) Loss of material/material properties due to repeated thermal cycling / high 

operating temperature 

(17) Delamination caused by repeated thermal cycling 

(18) Damage to material caused by exposure to sub-zero conditions 

(19) Cell over-compression, impacting the GDL  

 Geometric structure of catalyst 

layer 

(10) Impedance to transport attributable to presence of 

ionomer 

(20) Ionomer expansion on water uptake causing pores to collapse  

(21) Excessive ionomer loading  

(22) Formation of ionomer skins on catalyst layers  

(23) Lack of control during MEA processing 

  (11) Impedance to transport attributable to ice formation (24) Presence of residual water from previous shut-down 

(25) Operation at sub-zero temperatures 

 GDL (12) Loss of porosity, increased flooding and reduced gas 

permeability 

(26) Over-compression and inhomogeneous compression, induced during cell 

assembly or by warping of moulded BPPs 
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Performance 

Loss Mechanism 
Fuel Cell Component Fault/Process Cause 

Increase of Ohmic 

Losses 

Stainless-steel BPP (13) Loss of surface electrical conductivity (27) Impedance to electron transfer due to passivating layer on SS surface  

 Coated stainless-steel BPP (-) Loss of surface electrical conductivity (28) Coating defects such as pinholes and micro-cracks when coated with TiN 

(29) Degradation of conductive coating 

(30) Degradation of conductive polymer coating 

 Injection-moulded BPP (14) Low electrical conductivity (31) Formation of polymer-rich boundary during injection-moulding process  

 Polymer Electrolyte Membrane (15) Loss of proton conductivity  (32) Loss of membrane hydration 

(33) Replacement of protons by impurity ions causing decrease in the water 

diffusion coefficient and increase in water transfer coefficient  

(34) Anisotropic swelling of membrane causing the water diffusion coefficient to 

decrease 

Increase of Efficiency 

Loss, potentially 

leading to 

Catastrophic Cell 

Failure 

Polymer electrolyte membrane (16) Formation of cracks and pinholes (35) Increased roughness of electrolyte membrane surface, inducing by sub-zero 

operating conditions 

(36) Mechanical stresses induced by thermal hotspots in regions of strong electrical 

contact (i.e., GDL and BPP shoulder), high compression, and high reaction rates 

(37) Defects during the manufacturing process 

(38) Peroxide and peroxide radical attack of polymer end groups 

(39 Repetitive swelling/contraction due to hygro-thermal stresses 

(40) Excessive pressure differential between anode and cathode gas supply 

Catastrophic Cell 

Failure 

GDL/catalyst layer/membrane (17) Delamination of layers (41)Thermal cycling including exposure to sub-zero conditions 

 Catalyst layer (18) Excessive adsorption of atmospheric and fuel 

impurities 

(42) Loss of tolerance to contaminants 

 BPP (19) Cracking (43) Inhomogeneous compression 

(44) Mechanical shock/vibration 

(45) Irregularities in cell/stack construction 

  (20) Warping (46) Low initial rigidity of polymer matrix 

 Seal (21) Gas leakage (47) Oxidation of seals 

 Polymer electrolyte membrane (22) Short circuit (48) Formation of electrical network due to mal-distribution of platinum within 

(self-humidifying) membrane 

Table 3-3 Summary of factors affecting efficiency losses and catastrophic cell failure 
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4 Mathematical Modelling of a PEFC 

 

In this chapter, the electrochemical theory that describes the processes of the PEFC 

are discussed in greater detail. The discussion is presented in three parts, first focusing on the 

central topic of mass transport, followed by Ohmic losses and finally electrode kinetics. 

 

4.1 Mass Transport 

 

Molecular transport is a key process that directly affects the irreversible losses in an 

operating fuel cell at practical operating current densities. Mass transport losses occur when 

the concentration of oxygen at the cathode catalyst site falls, particularly at high current 

densities. Ohmic losses occur when the water content of the PEM is below a matrix 

threshold, which causes the resistance to proton transport across it to increase. A clearer 

insight into the mechanics of phenomenological cell processes and therefore irreversible 

voltage losses can be obtained by considering and applying the theory of molecular transport 

in electrochemical systems. 

 

Mass transport can be broken down into two fundamental components: the thermo-

fluidic and electrochemical state within a confined system and the transport that occurs as a 

consequence. The two most rudimentary thermo-fluidic conditions that can induce transport 

are spatial pressure gradients and temperature gradients. As an electrochemical system, 

transport in the PEFC can also be induced by spatial concentration gradients and by an 

electric field.  

 

Molecular Diffusion 

 

The molecules of a given species within a defined enclosed system will distribute 

through random motion from a region of high concentration to a region of low concentration. 

This process is known as molecular diffusion, or simply diffusion. The diffusive flux can be 

defined as the net molecular flux of the species from the region of high concentration to the 

region of low concentration. For an open system, a reference volume can be taken which 
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travels at a reference velocity. Within this volume, if there is a concentration gradient of a 

constituent species, then there will be a net molecular flux of that species from the region of 

high concentration to the region of low concentration. If the velocity of the species is 

different to the reference velocity, then the molecules of the species are said to be diffusing 

and the diffusion velocity can be defined as the average velocity of the species with respect 

to the reference velocity.  

  

Convection 

 

In convective or viscous flux, the molecules surrounding a wall particle loose their 

initial relatively high velocity, causing them to slow down. This leads to a dampening effect 

that continues until the boundary layer reaches the same velocity as the wall particle. The 

convective flux itself corresponds to that portion of flow that occurs in the laminar regime, 

which is driven by a pressure gradient. Convective flow can occur in gas-phases and liquid-

phases. Since convection is a form of bulk flow, it does not have a tendency to separate 

constituent species of like-phase mixtures and so a mixture of different constituents in a 

single phase can be treated as a single phase.  

 

Knudsen Flux 

 

The Knudsen regime describes a type of flow that occurs when the likelihood of 

molecule-molecule collisions is low in relation to molecule-wall collisions. As such, 

molecules colliding off walls do not collide with other molecules. Therefore, the mean 

distance between two molecular collisions is much greater than the average distance between 

two neighbouring particles.  

 

Thermal Diffusion 

 

Thermal diffusion (also known as the Soret Effect) is the tendency of a mixture of 

two or more components of a fluid to separate as a result of a spatial temperature gradient. It 

is possible for the mixture to partially separate into components with the heavier larger 
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molecules concentrating at the lower temperature and lighter smaller molecules at the higher 

temperature as a result of thermal diffusion. The spatial temperature gradients that develop 

inside a working PEFC are usually not considered to be sufficiently large to induce molecular 

separation amongst the components of the fluids that infiltrate the cell. Thermal diffusion is 

therefore not explicitly considered in the current work. 

 

Electro-Osmotic Drag 

 

In a PEFC, electro-osmotic drag is the process by which water molecules are forcibly 

moved under an electric field through the polymer electrolyte. The process can be attributed 

to the interaction between the protons that migrate from the anode catalyst layer through to 

the cathode via the PEM and the water (a polar liquid) that infiltrates the solid polymer 

electrolyte. The interaction is commonly described as a drag process; a number of water 

molecules are said to be dragged per proton that migrates due to the electric field. 

 

4.1.1 Concentrated Solution Theory 

 

Concentrated solution theory can often be traced as the fundamental starting point for 

many of the key transport equations in the fuel cell modelling literature. For a multi-

component electrochemical system, it can be assumed that intermolecular transport is driven 

by a spatial gradient in electrochemical potential. The gradient in electrochemical potential 

itself reflects a spatial gradient of electric potential and chemical concentration. The flux 

equation for this type of system can be expressed as [1]: 

 

( )
ij

j

ijii vvKc −=∇ ∑µ  (4-1) 

 

where 

ic  = concentration of species i 

iµ∇  = gradient in electrochemical potential of species i 

ijK  = frictional coefficient of species pair i,j 
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iv  = velocity of species i 

 

The frictional coefficient accounts for the local concentrations of pairs of constituent species 

and the diffusion coefficient of the species pair; 
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(4-2) 

 

Substituting equation 4-2 into 4-1 yields 
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(4-3) 

 

The molar flux of a given species can be defined in terms of its concentration and velocity as: 

 

( )refiii vvcn −=&  (4-4) 

 

where the reference velocity accounts for the bulk fluid motion. 

 

Substituting equation 4-4 into the flux equation 4-3 yields; 
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(4-5) 

 

This is the common form of the flux equation for concentrated solution theory and forms the 

basis of a number of PEFC models [2,3,4,5]. It has been applied to model transport across the 

PEM by treating it as a ternary system composed of water, electrolyte and protons. In doing 

so, the electrochemical potential gradient can be expressed as; 
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(4-6) 
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The Stefan-Maxwell Equation 

 

For multi-component transport that does not involve species which have a positive or 

negative valance ( 0=iz ), the electrochemical potential gradient can be expressed as: 

 

i

i

i
c

c
RT

∇
=∇µ  

(4-7) 

 

Substituting into the flux equation yields 
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By the ideal gas law 

 

RT

p
cT =  

(4-9) 

 

Substituting equation 4-9 into 4-8 yields what is more commonly known as the Stefan-

Maxwell equation: 
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(4-10a) 

 

Using the identity Tii cyc =  and assuming that 0=∇ Tc , equation 4-10a can be rewritten in 

terms of mole fractions as: 
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(4-10b) 

 

The Stefan-Maxwell equation can be applied to simulate multi-component diffusion 

in a chemical system. When diffusion occurs in a porous medium such as the GDL or MPL, 

the binary diffusion coefficient of species pair ij has to be adjusted to account for its 
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tortuosity, porosity and pore saturation, particularly if liquid water can infiltrate its porous 

network. Generally speaking, therefore, ijD  is replaced with a recalculated value eff

ijD  such 

that ij

eff

ij DD < . The effective diffusivity can be calculated as: 

 

( )
m

ij

eff

ij sDD −= 1
τ

ε
 

(4-11) 

 

In the context of PEFC modelling, the Stefan-Maxwell equation can be applied to 

determine the distribution of oxygen through the cathodic porous layers (GDL, MPL) and 

through the pores of the cathodic catalyst layer. The Stefan-Maxwell equation can be applied 

to calculate the change in the concentration of a reactant through a porous medium as a 

function of thickness when the reactant is a part of a multi-component system and the flux 

rate of each species through the medium is known. Therefore, the Stefan-Maxwell equation 

is critical in characterising the effects of mass transport limitations. 

 

4.1.2 Dilute Solution Theory 

 

Dilute solution theory can be derived from concentrated solution theory. The 

fundamental difference between the two approaches is that it is assumed that for a dilute 

system, the concentration of the solvent is much greater than the concentration of the solutes. 

Consequently, each solvent species can be considered in relation to the solvent and not in 

relation to each other because solvent interactions are assumed to be insignificant. If the 

solute species is j then ji cc <<  and Tj cc ≈ . Hence, equation 4-5 can be expressed as 

 

jiij

ii

i vcD
RT

c
n +

∇
−=

µ
&  

(4-12) 

 

This is sometimes known as the diffusion equation in fuel cell modelling. Equation 4-12 can 

be applied to simulate the transport of water across the PEM. In this case, the velocity of the 

polymer electrolyte is zero ( )0=jv  and so equation 4-12 reduces to 
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ij

ii

i D
RT

c
n

µ∇
−=&  

(4-13) 

 

where ijD  becomes the diffusion coefficient of water in the polymer electrolyte and should 

take into account the fact that it can swell during water uptake. 

 

The Nernst-Planck Equation 

 

For the transport of a charged species through a solute according to dilute solution 

theory, equation 4-6 can be substituted into equation 4-12 to yield: 

 

jiiiji

ij

ii vccDFc
RT

D
zn +∇−∇−= φ&  

(4-14) 

 

The mobility of the species i can be defined as; 

 

RT

D
u

ij

i =  
(4- 15) 

 

which can be substituted into equation 4-14 to yield the Nernst-Planck equation: 

 

jiiijiiii vccDFcuzn +∇−∇−= φ&  (4-16) 

 

The Nernst-Planck equation therefore describes the transport of a solute species i in a 

solvent species j due to: 

• migration due to a gradient in electric potential 

• diffusion due to a gradient in the chemical concentration of species i 

• convection (due to a pressure gradient) 

 

Convection is not implicitly linked to a pressure gradient in equation 4-16. Bernardi 

and Verbrugge [6] apply equation 4-16 to model the transport of protons across the PEM by 

treating it as a liquid water and electrolyte membrane composite solvent. They assume that 

the electrolyte is uniformly hydrated, which as a general assumption could be plausible for 
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very thin membranes (<50 microns in this case). The convective flux becomes the superficial 

pore-water flux in the membrane that is driven by a hydraulic pressure gradient. Generally, 

this can be given by Darcy’s law: 

 

pv
p

j ∇−=
µ

κ
 

(4-17) 

 

However if it is assumed that the pore water velocity is also affected by the gradient in 

electric potential, then Darcy’s law has to be modified into a form that is known as Schlogl’s 

velocity equation [6]: 

 

pFczv
p

jjjj ∇−∇=
µ

κ
φ

µ

κ
φ

 
(4-18) 

 

Fick’s Law 

 

For the transport of a species that has no net charge, substitution of equation 4-7 into 

4-13 yields Fick’s law of diffusion: 

 

iiji cDn ∇−=&  (4-19) 

 

Here, ijD  becomes the diffusion coefficient of species i in the solute j, both of which by 

definition should be electro-neutral substances. Fick’s law is often used instead of the Stefan-

Maxwell equation for simplicity to describe multi-component transport across the GDL and 

the MPL; Ficks law forgoes the need to consider cross-species interactions. When applying 

Ficks law to model transport across a material that has a tortuous, porous network, the same 

considerations discussed previously regarding the use of eff

ijD  instead of ijD  would apply. 

4.1.3 Knudsen Fluxes 

 

Typically, Knudsen fluxes occur as free-molecular transport in porous structures 

where the characteristic pore radii are less than 10nm. As such, this type of flow can occur in 
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the catalyst layers of a PEFC. The Knudsen flux for a given species is calculated as a 

function of its concentration gradient, such that: 

 

i

K

i

K

i cDn ∇−=&  (4-20) 

 

The effective Knudsen diffusivity K

iD  accounts for the molar mass of the species i  and the 

geometry of the pore in which the Knudsen flux occurs. It can be calculated as [7]: 

 

i

K

K

i
M

RT
rD =  

(4-21) 

 

where  

Kr  = the Knudsen radius 

iM  = the molar mass of species i  

 

The total Knudsen flux for a multi-component system is calculated as: 

 

∑=

i

K

i

K

tot nn &  (4-22) 

 

Although Knudsen flux is a form of diffusive flux, it does not explicitly appear in 

concentrated solution theory or dilute solution theory and is therefore often appended on to 

the relevant flux equation for a given species i . 

 

4.1.4 Electro-Osmotic Drag 

 

The electro-osmotic drag flux indicates in molar terms the rate at which water 

molecules are dragged by protons that migrate due to an electric field from the anode catalyst 

layer through the PEM to the cathode catalyst layer. For water it can be defined as: 

 

wdragw
F

J
n ξ=,
&  

(4-23) 
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where 

wξ  = electro-osmotic drag coefficient of water 

 

The electro-osmotic drag coefficient varies according to the local hydration of the 

PEM and temperature, and usually determined by experimental means [8,9]. For Nafion, the 

drag coefficient is typically between 1.5 to 2.8 [9]. 

 

Water flux due to electro-osmotic drag can be accommodated for by appending 

equation 4-23 on to the end of the flux equation from either concentrated or dilute solution 

theory. In their standard forms as given above, neither concentrated or dilute solution theory 

explicitly account for electro-osmotic drag when applied to describe the transport of water in 

solid polymer electrolytes. 

 

4.1.5 Discussions on Mass Transport Processes across the PEM 

 

The discussions above highlight the standard electrochemical equations to 

mechanistically describe the different types of transport that occur in the PEFC. Diffusion 

and convection can potentially occur in all layers of the PEFC. Knudsen flux is likely to 

develop in structures where the characteristic pore radii are in the order of 10 nm, for 

example, the catalyst layers. Electro-osmotic drag occurs through electrolytic regions of the 

cell, which therefore includes the catalyst layer and PEM. 

 

The discussion demonstrates that there are largely two treatments that can be used to 

describing molecular transport in electrochemical systems; concentrated solution theory and 

dilute solution theory. As shown, the second can be obtained from the first if it is assumed 

that the concentration of the solute is much less than that of the solvent, i.e., the dilute 

solution assumption. For a multi-component concentrated system, concentrated solution 

theory can be applied. If it is assumed that cross-component interactions can be neglected 

according to the dilute solution assumption, dilute solution theory can be applied. In order to 

capture convection, Knudsen flux and electro-osmotic drag, it is necessary to introduce 

equations 4-17 or 4-18, 4-20 and 4-23 respectively into both concentrated and dilute solution 

theory. 
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4.2 Ohmic Resistance 

 

4.2.1 Resistance to the Flow of Electrons 

 

The total Ohmic resistance of a single cell is composed of two components; a 

resistance to the flow of electrons and a resistance to the flow of protons. Resistance to the 

flow of electrons is manifested in the electron-conducting parts of the cell, such as the 

catalyst layers, the carbon substrates of the GDL and MPL, and the bipolar plate. The 

compaction force applied to a PEFC assembly can force carbon fibrils within the GDL closer 

together, which can reduce the internal resistance to electron flow. Cell compaction can also 

decrease the contact resistance in the interface between electron-conducting layers (i.e., 

between the GDL and BPP, the MPL and the CL or the GDL and CL). Overall resistance to 

electron flow can be measured directly ex-situ as a function of compaction force for 

compressible layers and usually do not change in-situ according to the operating conditions 

of the cell. This is because the electron-conducting properties of the relevant materials such 

as carbon are unaffected by thermo-fluidic variables such as temperature, pressure and mass 

transport under fuel cell operating conditions. 

 

4.2.2 Resistance to the Flow of Protons 

 

The resistance to proton flow in the cell is characterised by two components; most 

significantly that which occurs across the proton-conducting PEM but also that which occurs 

in the polymer electrolyte in the catalyst layers. As such, the resistance to proton flow 

depends mainly upon the concentration of water across the PEM and can be calculated as 

 

∫=

memt

proton dzr
0

.
1

σ
 

(4-24) 

 

where 

σ  = proton conductivity of the PEM 

memt  = thickness of the PEM 
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It is possible to determine the proton conductivity of the PEM through ex-situ 

experimental tests based upon the uptake of water over a range of temperatures. As such, the 

experimental expression can be substituted directly into equation 4-24 where the proton 

conductivity becomes ( )T,λσ  and λ  is the water content per sulphonic side chain. 

 

A mechanistic description of resistance to the flow of protons across the PEM 

invokes a more detailed understanding of the diffusivity, concentration and convective 

velocity of protons. The movement of protons across the PEM is governed by Ohms law: 

 

φσ∇−=J  (4-25) 

 

Substituting 4-25 into 4-24 yields: 
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(4-26) 

 

The right hand side of equation 4-26 can be determined by recalling the form of the Nernst-

Planck equation as given by 4-14 and applying it to determine the transport of protons across 

the PEM: 

 

vccDFc
RT

D
zn

HHHH

H

HH ++++

+

++ +∇−∇−= φ&  
(4-27) 

 

where  

v  = the pore water velocity 

+
H

D  = the diffusion coefficient of protons in the PEM 

 

If the flow of electrolytic charge across the membrane is related to the current density, then 

the current density can be given by: 

 

++=
HH

nFzJ &  (4-28) 

 

Substituting equation 4-27 into 4-28 yields: 
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FvczcFDzcD
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(4-29) 

 

Given that +
H

z =1, equation 4-29 can be rearranged to give: 
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(4-30) 

 

Substituting 4-30 into 4-26 and integrating yields: 
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(4-31) 

 

4.2.3 Discussions on Modelling Resistance to the Flow of Protons 

across the PEM 

 

Because the PEM is at least a ternary system, the interaction of migration, diffusion 

and convection processes can have an overall affect on water content and distribution. The 

challenge in employing equation 4-31 is that it is does not capture how the three proton 

transport processes interact with the various forms of water transport in the membrane. 

Therefore, equation 4-24 is commonly applied with experimental expressions for 

conductivity determined from ex-situ tests instead, i.e., ( )T,λσ . The interaction between 

protons due to migration and water in the PEM can be simply accounted for by considering 

the electro-osmotic drag flux, which is a function of the experimental electro-osmotic drag 

coefficient and the distribution of water across the PEM simulated through dilute or 

concentrated solution theory.  

 

4.3 Electrode Kinetics 

 

Activation losses occur in the anode and the cathode catalyst layers. This section 

considers three techniques by which the catalyst layer can be modelled to estimate the 

activation losses. The first method calculates the overall activation overvoltage of both 
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catalyst layers combined, treating each as a thin interface. The two methods that 

subsequently follow, namely the macro-homogeneous and agglomerate methods, are 

macroscopic treatments where the catalyst layer is treated as a region of finite thickness.  

 

4.3.1 Thin Interface Model 

 

Butler-Volmer Kinetics 

 

Consider the following reaction which describes the reduction and oxidation 

processes for a reaction; 

 

−
+↔ eOxRed  (4-32) 

 

The rate of a reaction is the rate constant multiplied by the concentration of reactants raised 

to the orders of reaction, which is usually first order [10]. Therefore, the rates of the 

reduction and oxidation processes can be expressed in terms of an Arhennius equation such 

that; 

 

[ ] 






 ∆
−=

RT

G
cK Red

RedRedRed expυ  
(4-33) 

 

[ ] 






 ∆
−=

RT

G
cK Ox

OxOxOx expυ  
(4-34) 

 

where the subscripts ‘Red’ and ‘Ox’ refer to the reduction and oxidation processes 

respectively, RedK  and OxK  are the corresponding rate constants, [ ]Redc  and [ ]Oxc  are the 

concentrations of the reactant molecule and ions, and RedG∆  and OxG∆  are the activation 

energy change for the reduction and oxidation reactions respectively. In an irreversible 

system, there is no perceptible reaction at equilibrium. Current is generated only by the 

application of extra potential, the overpotential η . Therefore, the magnitude of RedG∆  and 

OxG∆  become 
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( ) ηαnFGG +∆=∆
0

RedRed  (4-35) 

 

( ) ( ) ηα nFGG −−∆=∆ 1
0

OxOx  (4-36) 

 

The overpotential serves two purposes; a proportion of it (a fraction given by α ) assists in 

the reduction process while the remaining slows down the oxidation process. The parameter 

α  in the theory of electrode kinetics is known as the charge transfer coefficient and ranges 

between 0 and 1. The rates of the reduction and oxidation processes now become; 
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(4-38) 

 

These can also be expressed in terms of the reduction and oxidation current densities as 

follows using Faradays law: 
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Therefore, 
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(4-42) 

 

The forms of equations 4-41 and 4-42 can be simplified to; 
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were the 0J  is the exchange current density. The net current density OxRed JJJ −=  is given 

by: 
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(4-45) 

 

The above equation is known as the Butler-Volmer equation. Because it is thought 

that only one electron can be transferred at a time, the expression strictly holds in the above 

form for processes involving a single electron. Reactions that involve multiple electron 

transfers, therefore, should be expressed as a number of one-electron reactions. Under such a 

circumstance, it is more rigorous to replace α  with Redα  and to replace ( )α−1  with Oxα  

because 1OxRed ≠+ αα  except for when 1=n ; 
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(4-46) 

 

The Tafel Equation 

 

In fuel cell modelling the overpotential at the anode electron is often neglected 

because it is usually at least an order of magnitude smaller than that of the overpotential at 

the cathode electrode. Amphlett et al. [11] suggest that the activation overvoltage for 

hydrogen oxidation at 298.15 K and at a current density of 0.11 A/cm2 is 0.009 V compared 

to 0.35 V for oxygen reduction. In addition, when considering the overpotential at the 

cathode electrode, the second term on the right hand side of equation 4-46 is insignificant 

compared to the first term. Therefore, the net current density produced by the cell can be 
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obtained from the following reduced Butler-Volmer equation, where the subscript ‘c’ refers 

to the reduction process at the cathode, 

 









−=

RT

nF
JJ c ηα

exp0  
(4-47) 

 

Based on the reduced Bulter-Volmer equation, the dependence of cathodic current density on 

overpotential is given by; 

 

RT

nF
JJ c ηα

−= 0lnln  
(4-48) 

 

For a large overpotential to the cathodic reaction, η  can be expressed by 
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Conversely, for a large overpotential to the anodic reaction, only the second term of equation 

4-49 is of significance, and 
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The two equations above are known as the Tafel equation, which can be generally expressed 

in the form 

 

Jed log+=η  (4-51) 

 

In general terms, therefore, the activation overvoltage can be given as follows; 
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The Thin Interface Treatment 

 

The thin interface treatment considers the activation overvoltage separately at both 

electrodes in terms of the exchange current density. The total activation overvoltage is then 

determined as the sum of the two components. The analysis starts by defining the exchange 

current density of the oxygen reduction process at the cathode using surface concentrations 

[12]; 
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where 
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(4-54) 

 

and where 

Bk  = Boltzmann constant 

S  = standard state of surface concentration 

h  = Planck constant 

++
γ  = transfer coefficient at the transition state 

++
∆ eF   = standard state free energy of activation from going directly from gas-state     

       and active electrode site to the activation complex of ionisation 

 

The transition state refers to a position from the electrode surface where an electrolyte 

species can become associated with either the electrolyte solution by gaining a positive 

charge to become +M  or can just as easily become associated with the metal of the electrode 

surface to become M . Substituting BK  into the exchange current density yields: 
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(4-55) 

 

Substituting the cathodic exchange current density into the Tafel equation for the cathode 

activation overpotential yields: 
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The law of electroneutrality requires that: 

 

∑ =+

i

iimm czcz 0  (4-57) 

 

where mmcz  is the total charge on the PEM and ∑
i

iicz  is the total charge on mobile species 

in the PEM. When there are no ionic contaminants permeating the PEM, protons are the only 

ionic species and the sulfonic end groups are the only charged membrane species. Given that 

mz  and iz  are both constants, being -1 and +1 respectively, yields im cc = . 

 

It can be assumed that the part of the PEM that is in closest contact with the cathode 

will have an approximately constant concentration of water and protons. It is as also assumed 

that all other terms will be constant apart from the surface concentration of oxygen at the 

catalyst layer, the current and the temperature. . Therefore, the constants in equation 4-56 can 

be grouped together and the cathodic activation overvoltage can be expressed in parametric 

form as; 
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For the anode, it is suggested that the process that controls the reaction rate is the 

chemisorption of hydrogen [12], i.e., the process whereby a valence bond is formed between 

a molecule of hydrogen and the surface of the catalyst-loaded anode. The exchange current 

density for strong chemisorption at the anode can be defined as: 
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where 
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(4-60) 

 

and where 

aαγ −= 1  

++
∆F   = standard-state free energy of activation for chemisorption 

cF∆   = standard-state free energy of chemisorption from gas state per mole of H2 

 

The exchange current density can therefore be expressed as 
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(4-61) 

 

Substituting the anodic exchange current density into the Tafel equation for the anodic 

overvoltage yields: 
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 (4-62) 

 

Because hydrogen is usually supplied neat to a PEFC or through a hydrogen-rich 

reformate feed with a mole fraction in excess of 0.7, it can be assumed that the variation in its 
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concentration for most low-pressure fuel cell applications is likely to be negligible. 

Therefore, the hydrogen concentration at the reaction sites for the above equation can be 

approximated as a constant, along with all other terms apart from temperature and current. In 

parametric form, therefore, the above equation can be expressed as 
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The total activation overvoltage is given by 

 

anodicactcathodicactact ,, ηηη +=  (4-64) 

 

such that 

( ) ( )JcTT Oact lnln 4
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where 

ac ,1,11 βββ +=  

ac ,2,22 βββ +=  

c,33 ββ =  

ac ,4,44 βββ +=  

 

Therefore, by using the thin interface treatment, it is possible to define the total 

activation overvoltage of a PEFC in parametric form. The parametric constants can be 

statistically evaluated from empirical analysis and applied to estimate the activation 
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overvoltage at a given current, temperature and predetermined oxygen concentration at the 

catalyst sites. 

 

4.3.2 The Macro-Homogeneous Model 

 

Fundamentally, macroscopic models such as the macro-homogeneous and 

agglomerate models consider the catalyst layer to be a matrix structure that contains three 

principal components; 

• a porous network for the supply of oxygen to the reaction sites and the removal of 

excess water; 

• a solid interconnected carbon-phase which serves as a network for the supply of 

electrons; 

• an electrolytic phase which provides a network for the supply of protons. 

The macro-homogeneous (MH) model considers the catalyst later to be a homogeneous 

phase and calculates its performance according to the bulk properties of the catalyst layer 

structure [13,14].  

 

It is possible for molecular diffusion, convection and Knudsen diffusion to occur 

within the catalyst layer. Two-phase flow can also propagate through the catalyst layer, 

particularly in the cathode catalyst layer due to the product water being formed there. For the 

current discussion, the simplest case is taken, where Fick’s law of diffusion is applied to 

describe material balance of oxygen; 
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where ( )zJ  is the local current density. Ohms law can be used to define the increase in 

phase potential in the solid and the electrolyte with respect to channel depth [13]: 
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The total activation overvoltage of the cathode catalyst layer can then be calculated with 

known boundary conditions. 

 

4.3.3 The Agglomerate Model 

 

The agglomerate model assumes that the catalyst layer can be approximately 

modelled as a collection of carbon-supported catalyst agglomerates that are coated by a thin 

layer of polymer electrolyte [15,16,17,18]. The agglomerates are all assumed to be identical 

in geometry and organised in an artificial manner.  

 

The agglomerate model was initially used by Iczkowski and Cutlip  to determine the 

performance of the cathode catalyst layer in a PAFC [19]. In general, like the macro-

homogeneous model, it is assumed that oxygen is reduced as it diffuses through the catalyst 

layer; 
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where 

2on  = diffusive flux of oxygen past any point in the catalyst layer (kmol/m
2
-s) 

Rn  = rate of reaction of oxygen per m3 of electrode at a given point (kmol/m3-s) 

 

First, oxygen diffuses into the catalyst layer, where it permeates through the porous network. 

The oxygen then dissolves in the outer layer of the film of electrolyte which covers the 

agglomerates. The dissolved oxygen then diffuses across the film and diffuses into the pores 

of the agglomerates. The rate of reaction per unit volume in the catalyst layer is calculated as  
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where 

a   = the area of the film per unit volume of the electrode 
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memOD ,2
 = the diffusion coefficient of oxygen in the electrolyte 

( )zpO2
 = the partial pressure of oxygen in the gas pores 

0

2Oc   = the solubility of oxygen in the electrolyte 

δ   = the thickness of the film 

ar   = the radius of the agglomerate 

 

Using identities for the concentration of dissolved oxygen at the surface of the agglomerate 

( )zrc aO ,
2

, the above equations can be equated and rearranged to yield an expression for the 

change in oxygen flux rate across the catalyst layer: 
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where the effectiveness factor for the diffusion and reaction of oxygen cς  can generally be 

defined as the actual reaction rate for a given quantity of catalytic agglomerates to the 

reaction rate if the oxygen concentration throughout it was the same as at the surface [20]. 

 

The rate constant can be defined in terms of the current density assuming that the only source 

of voltage loss is activation, ( )EJT : 

 

( )
0

, 222
4 OgasOO

T

e
cpFz

EJ
K =  

(4-71) 

 

where 

2Oz  = thickness of the catalyst layer 

gasOp ,2
 = partial pressure of oxygen in the gas stream 

 

Finally, ( )EJT  can be related to potential through the equation; 
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4.4.3 Discussions on the Fundamental Models for Electrode Kinetics 

 

The three types of models discussed above clearly have different applications and in 

terms of fuel cell modelling. The most pertinent difference between the thin interface and 

two macroscopic treatments is that former deals with the reaction kinetics in great detail but 

does not afford any consideration to structural aspects of the catalyst layer. Therefore, in 

terms of generating polarisation curves considering the dependence of activation overvoltage 

on parameters that are controllable from an operational point of view (i.e., cell temperature, 

air/oxygen supply pressure and composition, current density), the thin interface model can 

suffice. However, in order to elucidate certain effects of catalyst layer design on the reactive 

flow through it, macroscopic treatments would appear to be more relevant. 

 

Ridge et al. [21] took the same fundamental approach described for the agglomerate 

model described above, but also considered the transport of protons through the electrolyte 

phase by considering the Nernst-Planck equation and determined that proton transport 

limitations can have a large effect on electrode performance. It was also found that electrode 

performance can be improved by minimising the agglomerate radii. For a given catalytic 

loading, smaller agglomerates would have the effect of increasing the accessible surface area 

of the active sites. Broka and Ekdunge [22] found that the macro-homogeneous model can 

predict that thicker catalyst layers can induce higher overpotentials due to a corresponding 

increase in the barrier to mass transport and limited proton conductivity, while the 

agglomerate model predicts that the limiting current density is proportional to the total 

accessible surface area of the active sites, such that increasing the thickness of the later 

increases the limiting current. It is argued in the same work that the macro-homogeneous 

model does not simulate the polarisation as well as the agglomerate model in relation to 

experimental data.  

 

It is evident that the two different macroscopic modelling treatments can generate 

conflicting results, though the predictions of the agglomerate treatment do appear to follow 

predicted polarisation data more closely than the macro-homogeneous treatment.  However, 

it has to be acknowledged that not all of the requisite constants for either of the macroscopic 

treatments can be readily determined, and that neither inherently reflects the true 



4   Mathematical Modelling of a PEFC 84

heterogeneous nature of catalyst layer structures, which can influence the actual performance 

of the catalyst layer. 

 

For the purposes of the current research, the thin interface model is applied when 

required to determine the activation overvoltage of the cell. Reactive flow across the catalyst 

layer is not treated rigorously in the present work. It is assumed that the polymer electrolyte 

which penetrates the catalyst layer acts as an infinitely thin continuum to the PEM and 

therefore has the same water content in the electrolytic phase throughout its thickness as the 

PEM at the catalyst layer/PEM interface. In reality the total thickness of the catalyst layers 

could contribute towards 5% of the total thickness of a complete seven-layer assembly 

assuming that the total thickness of the assembly is ~ 500 µm 

(aGDL/aMPL/aCL/PEM/cCL/cMPL/cGDL). It is acknowledged that reactive flow 

simulation in electrochemical systems is a separate branch of fuel cell modelling and 

simulation that requires dedicated focus, which is beyond the scope of the current thesis. 

However, using the fundamental electrochemical theory discussed in this chapter, it is 

possible to construct the foundations of a simple fuel cell model that handles multi-

component inlet gases to the anode and cathode. 
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5 A Polymer Electrolyte Fuel Cell Model with Multi- 

Component Input 

 

Many models have been successfully developed over the last couple of decades to 

simulate the processes of the PEFC. One of the limitations of these models is that typically 

only two constituent species are considered in the dry pre-humidified anode and cathode inlet 

gases, namely oxygen and nitrogen for the cathode, and hydrogen and carbon dioxide for the 

anode. Another limitation is that they do not systematically consider the effects of cross-flow 

through the cell on the composition of gases in the channels as this in turn affects the 

boundary conditions during simulation. In order to extend the potential of theoretical studies 

and to bring PEFC simulation closer towards reality, in this chapter, a simple one-

dimensional steady-state, low temperature, isothermal, isobaric PEFC model is developed 

which accommodates multi-component inlet gases and accounts for the effect of cross-flow 

through the cell on the composition of gases in the channels. The model determines the actual 

cross-flow through the cell for a given set of cell conditions. The model is validated and 

applied to investigate the effects of carbon monoxide infiltration and crossover on the 

performance of the cathode catalyst layer. 

 

5.1 Introduction 

 

The critical element of a model is the founding theory, and for a PEFC this 

encompasses electrochemistry, thermodynamics, and fluid mechanics. While the founding 

theory for different models may well be common, the manipulation of the theory can lead to 

different systems of equations and different assumptions as discussed in the preceding 

chapter. In addition, models based largely on theory may consider the principal 

phenomenological processes but can also be difficult to solve with an abundance of 

parametric constants that are not necessarily easy to define. Alternatively, empirical models 

based upon experimental data could provide more accurate results within a certain operating 

range for specific cell designs, but would not necessarily be universal in applicability and 

may not reflect a full understanding of the processes involved. The intermediate solution 

would therefore lie in a semi-empirical model that identifies the key processes but uses 
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experimental results to assist in solving the key equations without over-computation. There 

are a number of key historical models that have been developed. 

 

Fuller and Newman [1] introduced concentrated solution theory to describe species 

flux in the membrane. Three species were considered in the model: polymer with acid end 

groups, hydrogen ions, and water. Mass transportation was considered in 1D across the cell, 

while thermal management was introduced in the transverse along-the-gas-channel direction 

via energy balance. Each channel gas was treated as a heat removal medium, and the effects 

of different thermal conductivities of these gases were analysed with respect to cell 

performance. It was found that the hydration of the membrane was sensitive to the rate of 

heat removal, such that low rates of heat removal, i.e., low thermal conductivity of channel 

gases, would result in poor cell performance.  

 

Bernardi and Verbrugge [2,3] developed a mathematical model which divided the cell 

into seven regions: gas flow channels, gas diffusers and catalyst layers for cathode and 

anode, and a membrane region in between. Species flux within these regions was described 

using dilute solution theory, where the Nernst-Planck equation was used to describe the flux 

due to migration, diffusion and convection. Cell operation was assumed to be isothermal, and 

gas-phase pressures were assumed to be constant due to the low gas-phase viscosity. Liquid-

phase pressures were assumed to be variable, and pressure gradients were introduced to the 

model via Schlogl’s velocity equation. The model assumed that the membrane was fully and 

uniformly hydrated. 

 

Springer et al. [4] developed a semi-empirical model. Dilute solution theory was used 

to described water flux in the membrane. The form of the flux equation employed however 

coupled the flux due to migration and diffusion as a function of the chemical potential of 

water. The cell was assumed to be isobaric and so pressure-driven convective fluxes were not 

considered. In the PEM, since water is produced in the cathode, the greatest concentration of 

water is likely to reside in the region of the PEM that is the closest to the cathode catalyst 

layer. Diffusion therefore is likely to occur through the PEM in the direction of the anode. 

However, because water molecules interact with protons which migrate from anode to 

cathode, water is also electro-osmotically dragged back to the cathode. This phenomenon 

was mathematically simulated in the model in part using experimental data. The fundamental 

argument presented by the model was that the counter-acting water fluxes caused a gradient 



5   A PEFC Model with Multi-Component Input 

 

88

in water content to build up across the membrane, such that the membrane was not always 

uniformly hydrated. This gradient from anode to cathode increased with respect to operating 

current density causing the membrane to loose its proton-conductivity, which increased the 

overall cell resistance and reduced the output cell voltage. 

 

Amphlett et al. [5] developed a different semi-empirical model using experimental 

performance data from the Ballard Mark IV fuel cell. The model assumed isobaric and 

isothermal operation. Electrode transport was described using the Stefan-Maxwell equation 

and the activation and Ohmic overvotlages were defined by applying linear regression to 

experimental data. Membrane transport was not mathematically modelled. However, the 

calculated polarisation curves correlated well with experimental results. 

 

One of the fundamental limitations among these benchmark models is that only up to 

two constituent species were considered in the dry pre-humidified anode and cathode inlet 

gases. This limitation extends to other computational models where multi-component 

transport is considered but restricted to the inclusion of oxygen, nitrogen and water in the 

inlet cathode feed after humidification [6,7]. This reflects only the ideal case. Tropospheric 

air would have at least ten constituents while reformed fuel supplies would typically contain 

carbon dioxide and carbon monoxide.  

 

Carbon monoxide is important since its molecules will, for example, adsorb more 

readily onto platinum-based catalyst sites than hydrogen. With its presence, the surface 

fraction available for hydrogen chemisorption is compromised [8,9,10,11,12]. 

Correspondingly, the activation energy increases for the hydrogen oxidation process, which 

increases the anodic activation overvoltage. Although it has received little attention, carbon 

monoxide is known to permeate the membrane and consequently degrade the performance of 

the cathode catalyst [13].  

 

In this research, an one-dimensional isothermal, steady-state PEFC model based on a 

number of key publications in the area has been developed. In the model, the fuel cell 

consists of five regions, as illustrated in Figure 5-1. Gas chambers for anode and cathode 

transport humidified fuel and air respectively and also remove unused gases and water. The 

catalyst is treated as an infinitely thin interfacial layer. The model introduces the capability to 

handle multi-component input gases and couples this with the multi-component diffusion 
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mechanism of the Stefan-Maxwell equation to describe gas transport in the electrodes. The 

mass transport model of the cell is completed by considering water transport in the 

membrane region. The transport processes in the two electrodes and the membrane were 

assumed to be simultaneous and inter-dependent. The transport of carbon monoxide across 

the cell from the anode inlet has been studied due to its impact on cell performance. The 

simulated overvoltages by the model are validated against experimental data obtained from 

the Ballard Mark IV fuel cell [5].  

 

 

Figure 5-1 Five regions of the polymer electrolyte fuel cell 

5.2 The Basic PEFC Model 

 

The current PEFC model can be divided into two parts; the basic model and the 

multi-species mass transportation model. The assumptions applied in developing the model 

are as follow: 

• the total pressures in the channels are constant and equal 

• both anode and cathode streams are saturated with water vapour at their given gas inlet 

temperatures 

• the fuel cell operates under isothermal steady-state conditions 

• the heat conduction by channel flows is negligible 
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• the gas mixtures behave as ideal gases 

• the water exists in vapour form 

• when the local water activity exceeds unity, the excess liquid water exists as small 

droplets of negligible volume 

• the diffusion coefficient of water in the membrane is a function of the water content 

• the water drag is a function of the local water content 

• there is zero crossover of hydrogen and oxygen across the membrane region 

• the only species that travels through the hydrated PEM are the protons due to electric 

field, water vapour due to diffusion and electro-osmotic drag, and potentially carbon 

monoxide due to diffusion  

• the concentration of water in the membrane is much less than the electrolyte 

concentration. 

 

5.2.1 Thermodynamic Equilibrium Potential and Irreversible Losses 

 

The thermodynamic equilibrium potential can be calculated using the Nernst 

equation, as derived in chapter 2, resulting in equation 2-13. In this chapter, it is assumed that 

activation ( actη ) and Ohmic  ( ohmη ) losses decrease the cell potential from its equilibrium 

potential when a reasonably large current is drawn up to a maximum of 1.0 A/cm2. 

 

Activation losses are described using the thin interface treatment described in chapter 

4. The total activation overvoltage is calculated using equation 4-65. It is assumed that the 

parametric coefficients in equation 4-65 can be treated as constants for a given fuel cell 

system and determined by applying linear regression to measured test data. As such, the total 

activation overvoltage for the Ballard Mark IV PEFC, can be expressed as [5]; 

 

[ ] [ ])ln(104.7)ln(000187.000312.09514.0 25

2

−−
×+−+−=

C

Oact cTjTTη  (5-1) 

 

The concentration of oxygen is defined by Henry’s law [5]; 
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The total drop in the cell potential due to Ohmic resistance consists of the combined 

resistance to electron and proton transport and defined by Ohm’s law in the model: 
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For the purpose of this chapter, the internal resistance is defined in terms of cell 

temperature and cell current based on the active cell area. It is assumed that this relationship 

can be determined again by applying linear regression to test data. As such, the following 

expression determined by Amplett et al. is adopted [5]; 

 

jTR  internal 55 100.8105.301605.0 −−
×+×−=  (5-4) 

 

5.2.2 Water Transport Model for the PEM 

 

The activation overvoltage is defined by the concentration of oxygen at the cathode to 

membrane interface, which is dependant upon the water flux in the electrodes and the 

membrane. While transport in the electrodes is dealt with later in section 5.3.3, consideration 

is given here to transport within the membrane region. 

 

By assuming the membrane mixture to be moderately dilute, the flux of a species i 

can be obtained as follows from equation 4-12; 

 

ijii
i

i cvc
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D
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(5-5) 

 

The first term explains that the gradient in chemical potential is the driving force behind 

migration and diffusion. The second term represents the convection due to the bulk motion of 

the solvent species. In the case of a membrane under isobaric conditions, it reduces to [4]; 
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The chemical potential can be defined in terms of absolute activity [14];3]; 

 

ii aRT ln=µ  (5-7) 

  

which leads to a definition of water flux due to diffusion in the membrane; 
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The spatial distribution of water across the PEM can often be expressed in terms of water 

content per charge site. Therefore, the diffusive flux of water can be described as 

 

'

)(ln
',

dz

d

d

ad
cDn WdiffW

λ

λ
−=&  

(5-9) 

 

The concentration parameter cw and laboratory coordinate z’ are not fixed to the 

membrane coordinates and need to be modified to prevent the need to track membrane 

swelling. It is possible to convert from the laboratory coordinate z’ to the dry membrane 

coordinate z using an extension parameter x  such that; 
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The concentration of water can also be defined as follows, noting that the density of the PEM 

will decrease when it is expanded; 
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Using the following mathematical identity: 
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it is possible to redefine the diffusive flux of water across the PEM as; 
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The term in the square bracket is the intra-diffusion coefficient of the water in the membrane 

and can be experimentally obtained as [4]; 
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The value of λ  at the boundary of a PEM can be determined using the local water vapour 

activity. At 30˚C (303 K), it has been experimental obtained as [4], 

 

32

303 0.3685.3981.17043.0 aaaK +−+=λ  (5-15) 

 

in which a  is the local water activity and is defined as the ratio of the local water partial 

pressure to the saturation vapour pressure. 

 

In addition to the diffusive water flux, there is a reverse water flux flowing in the 

membrane from anode to cathode due to electro-osmotic drag. It is therefore a function of the 

local water content and the flux of hydrogen ions. It can be related to the molar flux of 

hydrogen to the membrane I  as [4], 
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Therefore the net water flux across the membrane is the difference between the diffusive flux 

of water and the flux due to electro-osmotic drag, 
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To mathematically link the processes of water flux across electrodes to the process of 

net water flux across membrane, it is necessary to introduce the ratio of net water flux to 

molar hydrogen flux in the anode, A

Wα , into the model. Its value is determined through 

iteration and is not assumed or fixed a-priori. The correct value is obtained when the activity 

of water as a function of λ from equation 5-18 is equal to that determined at interface C2 

from the diffusion layer model, which will be discussed in section 5.3.3. This is a key feature 

of this model as it directly couples the composition and transportation of species in the anode 

and cathode sides of the cell and can vary according to the simulated operating conditions 

(temperature, current density, gas pressure, humidification) and design features of the cell 

(layer thicknesses, PEM equivalent weight). 

 

Rearranging equation 5-17 gives the water distribution in the membrane; 
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5.3 The Multi-Component Input Model 

 

Mass transportation characterises the availability of reactant gases at the catalyst sites 

and the transport of water in and out of the cell.  

5.3.1 Molar Flux of Oxidised, Reduced and Produced Species 

 

Consider the overall fuel cell reaction OHOH 222 2/1 ⇒+ . It consists of two 

electrode processes, the hydrogen oxidation in the active catalyst region of the anode 

−+
+⇒ eHH 222 , and the oxygen reduction process that takes place to produce water in 

catalyst region of the cathode OHeHO 22 222/1 ⇒++
−+ . 

 

It is assumed that hydrogen does not crossover through the membrane. Any hydrogen 

flux through the anode diffuser corresponds exactly to the amount of hydrogen required to 

induce a constant steady-state cell current density J  through the oxidation process. For the 

anode; 
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For the cathode, the oxygen flux also corresponds exactly to current flow with zero 

crossover; 
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A flux ratio of a species i  in the electrode E  denoted E

iα  is defined as the molar flux of 

species i  over the molar flux of oxygen or hydrogen for the cathode or anode denoted as n , 

respectively. 

 

E

n

E

iE

i
n

n

&

&
=α  

(5-21) 

 

 

Ideally, the rate at which water is generated, Gen

Wn& , at the cathode equals the molar 

flux of oxidised hydrogen. The water flux in the cathode is the sum of the water flux from the 

anode and the water generated by the cell reaction. Therefore, the fluxes of oxidized and 

reduced species as well as water fluxes can be related as; 
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The water flux ratio in the cathode can be related to that for the anode by: 

( )A

W

C

W αα +−= 12  (5-23) 

 

In the model, both inlet anode and cathode gas streams have been assumed to be 

saturated with water vapour at a given humidification temperature. The mole fractions of 

water in the anode and cathode inlet gas streams are given by; 
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The saturation vapour pressure of water is calculated as [4]; 
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When the dry inlet gases each with a species molar fraction of o

iy  are humidified with 

a mole fraction of water, INE

W
y

− , the dry mole fractions of the constituent species change, but 

their ratios relative to hydrogen or oxygen in the anode or cathode, respectively, remain the 

same, 
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Upon humidification, the new mole fractions still add up to unity for each electrode; 
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Rearranging equation 5-27 and substituting it into equation 5-26 yields the humidified mole 

fraction of a species after the gas is humidified is;  
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For a humidified gas, the ratio of molar flux equals the ratio of mole fractions of different 

species,  
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The water fluxes across the electrodes can then obtained as; 
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and for any other species, i ,  
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Stoichiometric ratios can be defined as the ratio of the oxidant or the reductant flux in 

the inlet to the flux of the oxidant or reductant required to support the current density J; 
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= &υ  for the cathode. The inlet flux of species i  

to the anode is, 
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and to the cathode 
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5.3.2 Channel Flows 

 

The inlet flux of a species to either anode or cathode is equal to the flux of that 

species through the channel and the flux of that species through the electrode. 
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Substituting equation 5-21 and equations 5-32 and 5-33 respectively into equation 5-34, 

gives the species flux in the anode as; 
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and in the cathode channel as; 
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The total flux in the channel is the sum of that for all species including water, plus the flux of 

any additional species through the PEM from the opposite electrode (OE); 
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In the current model, if an inert species is assumed not to permeate the membrane, the flux 

ratio of this species can be reduced to zero, i.e., 0=
A

iα  or 0=
C

iα , which reduces the 

additional flux from the opposite. 

 

The mole fraction of a species in the channel can be obtained as 
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5.3.3 Gas Transportation in the Electrode Diffusion Layer 

 

It is expected that a gradient in mole fraction across the electrode diffusion layer for 

all species exists. Diffusion in the diffusion layers is described by the Stefan-Maxwell 

equation in the model, 
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The species mole fraction at the electrode to membrane interface can be obtained by 

analytically integrating the equation across the electrode using channel mole fractions. The 
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pressure-diffusivity term for species pair i  and j  in the equation can be defined using the 

Slattery-Bird equation [15], 
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where 
ji

ji

ij
MM

MM
M

+
=

2
. ( ) 2

1

,,, jcicijc TTT =  and ( ) 2/1

,,, jcicijc ppp =  are the critical properties of 

the constituent species. In this model,. the pressure-diffusivity product is modified simply by 

the Bruggeman correction factor ∈  to account for the porosity and tortuosity of the 

electrodes in the model [4].  

 

5.3.4 Gas Transportation in the Membrane 

 

To simulate a gas species permeating through the membrane, it is assumed that a 

diffusive flux of the species across the membrane is driven by a concentration gradient and 

therefore modelled using Fick’s law of diffusion [16]. Carbon monoxide can have a serious 

degradation effect on the catalyst in an electrode. Its flux is simulated in the model using the 

binary diffusivity OHCOD
2−

 of carbon monoxide and water vapour. Applying equation 5-21 to 

Fick’s law, the flux ratio of carbon monoxide to hydrogen in the anode is given as; 
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The variable A

COα  is also refined via iteration. The correct value is obtained when the carbon 

monoxide mole fraction at cathode to membrane interface calculated from membrane side 

using equation 5-41 equals the carbon monoxide mole fraction calculated from cathode side 

using equation 5-39.  
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5.3.5 Semi-empirical Carbon Monoxide Degradation Effect 

 

Although it has received little attention, carbon moxide is known to permeate through 

the membrane and to consequently degrade the performance of the cathode catalyst layer 

[13]. Using the model of carbon monoxide transportation in the membrane, the effect on 

cathode performance is simulated in the model by using a carbon monoxide induced 

degradation factor, Θ  defined as 

 

pure

cathact

pois

cathact

pure

cathact

,

,,

η

ηη −
=Θ  

(5-42) 

 

where pure

cathact ,η  is the cathodic activation overvoltage with pure hydrogen, and pois

cathact ,η  is the 

activation overvoltage with carbon monoxide contamination. 

 

In a previous experimental study by Qi et al. [13], the cathode potential was measured 

using three different anode feeds; pure H2, 70% H2 30% CO2 with 10 ppm CO, and 70% H2 

30% CO2 with 50 ppm CO. The cathode potential reflects the sum of the thermodynamic 

equilibrium potential, the Ohmic overvoltage and the cathodic activation overvoltage. The 

thermodynamic equilibrium potential and the Ohmic overvoltage are not functions of carbon 

monoxide contamination. They can be calculated and taken away from the measured value to 

obtain the cathode activation overvoltage.  

 

The carbon monoxide induced degradation factor is assumed to be a linear function of 

the interfacial carbon monoxide concentration at any given current density. This is simply 

due to the fact that the experimental data covered two contaminated fuel feeds only. The first 

tested fuel was pure H2 and was only used to determine the cathodic activation overvoltage 

pure

cathact ,η . However, it cannot be used to determine the degradation factor. This is because the 

carbon dioxide contained in the fuel feed could have some degradation effect on cathode 

performance due to the water-gas shift reaction at the anode [17]. Such effect in the model is 

assumed to be constant for any given current density and independent of the carbon 

monoxide transport due to fuel feed carbon monoxide contamination. The relationship 

between the cathode-membrane interfacial carbon monoxide concentration and the 

degradation factor was modelled as; 
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2

0

−
′Η+Θ=Θ
C

COy  (5-43) 

 

where 0Θ  is the water-gas shift induced degradation factor, 2−
′
C

COy  is the carbon monoxide 

concentration at cathode to membrane interface in ppm, and H  is the gradient of the change 

in degradation factor with respect to the change in carbon monoxide interfacial 

concentration. 

 

The gradient H  is obtained from the experimental data [13]. It is found to be non-

linear with respect to current density as shown in Figure 5-2. The polynomial fit of equation 

5-44 was deduced. 

 

0430.01194.03956.02056.0 23
+−+−=Η JJJ  (5-44) 

 

For the straight-line relationship postulated in equation 5-43, the carbon monoxide 

degradation factor attributable to the water-gas shift reaction 0Θ  is derived from the 

published results [13] and shown in Figure 5-3. Again, it is found to be non-linear with 

respect to current density, and the polynomial fit is given in equation 5-45. 

 

11.06145.02495.11161.14551.0 234

0 +−+−=Θ JJJJ  (5-45) 

 

 

Figure 5-2 Third-order polynomial dependence of H  on current density, J  
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Figure 5-3 Fourth-order polynomial dependence of 0Θ  on current density, J  

 

The total activation overvoltage given by equation 5-1 includes both anode and 

cathode activation overvoltage, and cannot be decomposed into individual contributions. As 

such, the Tafel equation given by equation 5-46 was employed to solely simulate the cathode 

activation overvoltage with a pure H2 fuel feed, as derived in Chapter 4; 
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(5-46) 

 

where the exchange current density 0J  was estimated to be 0.8
 
mA/cm

2 
for the cell from the 

experimental data obtained by Qi et al. [13].  

 

For a 70% H2 30% CO2 pre-humidified fuel feed with any level of carbon monoxide 

contamination, the cathodic activation overvoltage is; 
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5.4 Results and Discussions 

 

5.4.1 Overvoltage 

 

Figure 5-4 shows a comparison of calculated cell voltage at varying current density 

with published experimental results obtained from the Ballard Mark IV [5]. The cell 

conditions during test and the inputs into the model were as follow; air with 21% of O2 and 

79% of N2, pure hydrogen fuel supply, 70˚C operating temperature, and 310 kPa operation 

pressure. The diffusivity correction factor was set to 0.3 and the thickness of both electrodes 

were set to 250 µm. Oxygen stoichiometry was set to 1.75, and hydrogen stoichiometry set to 

1.3. The membrane thickness was 180 µm, while the dry membrane density was assumed to 

be 1.98 g/cm
3
, and its equivalent weight 1100 g/mol. The active cell area was taken to be 

50.56 cm2. The results show that the model prediction agrees well with the experimental 

results. There is a slight overprediction at 0.4 and 0.5 A/cm2 which could be due to mass 

transport limits caused by liquid water accumulation, which is not covered in the current 

model. 

 

 

Figure 5-4 Simulated and measured fuel cell performance at 70˚C 

 

Figure 5-5 shows the measured and calculated effects of varying oxygen composition 

from 21% to 46% and 100% on the cell voltage. The results show that the cell voltage 

decreases as oxygen composition reduces. This is because the activation overvoltage, which 

is dominated by cell operation temperature, current density and oxygen concentration at the 
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membrane to cathode interface, decreases as the availability of oxygen in the supply 

increases. Such effect has been included in equation 5-1. 

 

 

Figure 5-5 Effect of varying oxygen composition on the fuel cell performance 

 

 Figure 5-6 shows the measured and calculated effects of different cell operation 

temperatures on the cell voltage as a function of current density. The figure shows that the 

cell voltage increases with temperature. The reason of such increase is largely due to the fact 

that both cell internal electric resistance and activation overvoltage are dependant on cell 

operation temperature as shown in equation 5-1 and 5-4, respectively. As cell operation 

temperature increases, both the internal resistance and the activation overvoltage decrease. 

 

 

Figure 5-6 Effects of varying temperature on the fuel cell performance; 55˚C (328 K), 70˚C 

(343 K) and 85˚C (358 K) 
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There is a noticeable discrepancy between simulated and measured results at the 

operation temperature of 85˚C; the simulated cell voltage is lower than the measured value. 

This may be due to the fact that a saturated inlet gas has been used in the model while during 

the test, the same condition may have been difficult to maintain at the high humidifying 

temperature [18]. The saturation, hence the relative humidity, has a significant influence 

towards interfacial oxygen mole fractions and cell activation overvoltage. Figure 5-7 shows 

the simulated interfacial oxygen mole fractions with 50% and 100% of saturating vapour 

pressure at 85˚C in the cathode inlet stream. It shows that the oxygen molar fraction at the 

cathode to membrane interface increases as humidity decreases. Figure 5-8 shows the 

calculated activation overvoltage as a function of current density with 50% and 100% of 

saturation pressure achieved at 85˚C. The figure shows that the absolute value of cell 

activation overvoltage increases as humidification increases. In other words, the effect of less 

humidification is to decrease the impact of activation overvoltage on the thermodynamic cell 

voltage. 

 

It is consequently possible to compare the simulated cell voltage under this condition 

to that obtained from test. Figure 5-9 shows the comparison between the measured and the 

recalculated overvoltage curve. Compared to the discrepancy in the previous result shown in 

Figure 5-6, the agreement at 50% saturation vapour pressure is noticeably better. 

 

 

Figure 5-7 Interfacial oxygen mole fractions with 50% and 100% saturation at 85˚C (358 K) 
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Figure 5-8 Activation overvoltage with 50% and 100% of saturation at 85˚C (358 K) 

 

 

Figure 5-9 Effect of oxygen mole fraction on the fuel cell voltage 

 

Figure 5-10 shows the effects of varying hydrogen composition, 65%, 81% and 100% 

on cell voltage. Similar to the effect of oxygen variation, the cell voltage decreases with 

hydrogen composition. This is due to two reasons. First, the thermodynamic equilibrium 

potential is modelled as a directly proportional function of the square of the hydrogen partial 

pressure. Correspondingly, any increase in the hydrogen inlet composition results in an 

increase of the thermodynamic equilibrium. This is because the hydrogen mole fraction 

gradient is positive through the electrode thickness leading to higher interfacial values.  
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Figure 5-10 Effects of varying hydrogen composition on the fuel cell performance 

 

 

As discussed in the preceding chapter, the total activation overvoltage is largely 

characterised by the cathodic oxygen reduction which is slower than the anodic hydrogen 

oxidation process. The relative insignificance of the anodic activation overvoltage due to fast 

electrode kinetics verifies the assumption of a constant anodic activation overvoltage, as 

implied in equation 5-1 for the current density range of interest in Figure 5-8. As such, an 

increase in the interracial hydrogen partial pressure induces no change in calculations from 

equation 5-1. 

 

5.4.2 Multi-Component Diffusion 

 

Experimental research on transient performance published by Moore et al. [20] 

indicated that atmospheric concentrations of contaminant gases can degrade the cell 

performance. Figure 5-11 shows the calculated cathode to membrane interfacial mole 

fractions at varying current density when the cathode inlet is supplied with dry atmospheric 

air which contains O2, N2, Ar, CO2, Ne, He, Kr, CH4, H2, and N2O. It shows that the multi-

component diffusion model has the potential to take any number of chemical constituents in 

the atmosphere into account simultaneously.  
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Figure 5-11 Interfacial air constituent mole fractions at cathode-membrane interface 

 

5.4.3 CO Crossover and Contamination 

 

Figure 5-12 shows the calculated cathode potential for fuel feeds with different inlet 

carbon monoxide concentrations and the experimental results obtained by Qi et al. [13]. Both 

experimental and simulated results were based on a thin 25 µm PEM. The anode catalyst was 

a platinum-ruthenium alloy applied with a loading of 0.6 mg/cm2. The cathode catalyst was 

pure platinum applied with a loading of 0.4 mg/cm2. The simulated and measured results 

agree well with pre-humidified fuel feeds of pure H2, H2 mixed with 30% CO2 and 10 ppm 

CO, and 50 ppm CO. Model predictions with high CO concentrations in the fuel feed are also 

presented in the figure. The cathode is supplied with pre-humidified air containing 21% O2 

and 79% N2. It shows the significant losses on the cathode potential with fuel feeds 

contaminated with high carbon monoxide concentrations. 

 

Figure 5-13 shows the flux ratio of CO to the H2 across the anode and PEM and 

current density. The results show that the flux ratio profile increases for all current densities 

with increasing carbon monoxide content in the inlet gas. This increases the interfacial 

carbon monoxide concentration at the cathode-membrane interface and results in the greater 

activation losses observed in Figure 5-12. In general, each curve in Figure 5-13 shows that 

the CO to H2 flux ratio decreases with increasing current density. 
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Figure 5-12 CO crossover effects on cathode potential; line: simulated; (   ) 0 ppm, 

measured; (     ) 10 ppm, measured; (    ) 50 ppm, measured. For uncontaminated feeds, the 

pre-humidified anode supply is neat H2. For contaminated feeds, the pre-humidified anode 

supply is 30% CO2/70% H2. 

 

 

Figure 5-13 CO to H2 flux ratio for inlet fuel feed CO concentrations of 10 ppm, 50 ppm and 

100 ppm. 

 

The experimental results obtained by Qi et al. [13] showed that the anode overvoltage 

was linear and relatively small in relation to the cathode potential. The cathode potential 

therefore closely characterises the cell potential. Oetjen et al. 2[18], for example, investigated 

the effect of carbon monoxide poisoning on the overall cell potential with H2 feeds 

contaminated up to 250 ppm of carbon monoxide. The experimental results for an anode 

loaded with platinum-ruthenium catalyst exhibited the similar linear current density to 
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overvoltage relationships above 0.2 A/cm2 as those presented in Figure 5-12. However, the 

overvoltages predicted by the model in Figure 5-12 are generally lower than the experimental 

results of Oetjen et al. This may partially be attributed to the differences in catalytic loading, 

fuel feed and oxidant supply. The cathode and anode catalysts loadings were 1 mg/cm
2
 of 

pure platinum and platinum-ruthenium, respectively. This is 150% and 67% higher than the 

catalyst loadings used in the experiments and cited by the model. In addition, Oetjen [2] et al. 

did not use fuel feeds containing carbon dioxide, and the cathode feed was pure oxygen. Both 

conditions would serve to increase the availability of hydrogen and oxygen at the anode and 

cathode catalyst sites, and therefore reduce the activation overvoltages. 

 

5.5 Conclusions 

 

A one-dimensional steady-state, low temperature, isothermal, isobaric PEFC model 

has been developed and applied in this chapter. The model accommodates multi-component 

diffusion in the porous electrodes and therefore offers the potential to further investigate 

effects of multi-component transport on cell performance. In this model: 

• channel flows were determined using mass balance and algebraic manipulation and 

derived from predefined initial inlet conditions. 

• electrode fluxes are determined by hydrogen oxidation and oxygen reduction with 

zero reactant crossover. 

• gas diffusion through the electrodes is modelled using the Stefan-Maxwell equation. 

• catalyst layers were considered as fine dispersion of platinum and platinum-

ruthenium at the cathode-membrane and anode-membrane interfaces.  

• electrode kinetics have been described using the Butler-Volmer equation. It is 

assumed that oxygen reduction and hydrogen chemisorption are the rate controlling 

steps for activation [15].  

• membrane transportation in the model considered the water flux in the membrane due 

to both diffusion and electro-osmotic drag due to proton migration based on the dilute 

solution treatment proposed by Springer et al. [4]. 

• semi-empirical expressions for activation and Ohmic losses developed by Amphlett et 

al. [5] have been adopted in the model to simulate the overvoltages. 
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• experimental results published by Qi et al. [13] were used to determine the change in 

cathodic activation overvoltage with carbon monoxide crossover across the 

membrane. 

 

The simulated results agree well with experimental results of the Ballard Mark IV 

fuel cell obtained by Amphlett et al. Model predictions for fuel feeds contaminated with 

carbon monoxide agree well with experimental results of Qi et al. [13]. The simulated results 

also showed that the current multi-component PEFC model has the potential to take all 

chemical constituents in the atmosphere into account simultaneously. The composition of the 

multi-component gases in each channel can be calculated based on the humidification 

temperature and the magnitude of the cross-flow that occurs within the cell. 

 

The theoretical framework is at present limited to simulating isobaric and isothermal 

conditions in a fuel cell. Transport equations based on concentrated solution theory and dilute 

solution theory are selectively applied in order to determine the distribution of species within 

the different layers of the PEFC. The next step is to focus on the fundamental modelling 

theory for electrochemical transport and attempt to demonstrate a common approach to 

characterise multi-component flows through the different layers of a PEFC. It is 

acknowledged that liquid water transport has not been systematically considered in the 

theoretical treatment thus far, but will be addressed later on in the thesis. 
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6 A Universal Modelling Framework from Fundamental 

Theory 

 

In this chapter, a mathematical multi-component modelling approach for PEFCs is 

presented based upon fundamental molecular theory. The aim of this chapter is to 

demonstrably reconcile the key transport equations used by the historically prominent PEFC 

models under a single simple universal mechanistic equation. The general transport equation 

developed here as such describes transport in concentrated solutions without further 

assumptions and explicitly accommodates multi-species electro-osmotic drag. The objective 

of the general transport equation is to universally simulate multi-species transport across 

PFSA and other types of PEMs such as high-temperature polybenzimidazole (PBI) 

membranes, as well as non-reactive porous fuel cell materials such as the GDL and MPL. To 

test the developed theory, simulated results are generated using widely available relations for 

lower-temperature PEFCs (< 120°C) in the literature. 

 

This chapter is presented in five parts. The introduction provides a review of the 

benchmark modelling philosophies and how they have been applied for PEFC development. 

The second part presents the newly-developed general transport equation from the theory of 

molecular transport. The third part establishes the direct links between the developed general 

transport equation and the key transport equations in the benchmark literature. The fourth 

part merges the multi-component input model described in the previous chapter and requisite 

closure relations with the general transport equation for multi-layer PEFC modelling. Finally, 

the model is applied for numerical validation and to examine the phenomenon of hydrogen 

crossover. 

 

6.1 Introduction 

 

The literature identifies three common modelling groups that can be classed 

according to the form of the transport equation applied to model the membrane region. First, 

we have the models based on the use of the Nernst-Planck equation to describe the transport 

of hydrogen ions in the membrane. To recall, this equation describes the flux of a single 
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species due to migration, diffusion and convection. An early example of this was in the 

model of Ridge et al. [1], although they excluded convective fluxes. The most significant use 

of the Nernst-Planck equation was made by Bernardi and Verbrugge (BV) a few years later 

[2,3]. Bernardi first presented a relatively simple study identifying the required operating 

conditions to achieve water balance [4]. Following work first focused on a 1D half-cell 

model comprising of cathode diffuser, catalyst layer and membrane region [2], and was 

subsequently extended to a complete 1D fuel cell model [3]. They also make use of the 

Nernst-Planck equation to model dissolved hydrogen and oxygen transport in the membrane 

region, and consider the effects of applying back-pressure on the cathode side to maintain 

water balance. Parallel two-phase flow was also considered, with the liquid-phase velocity in 

the membrane pores defined using Schlogl’s velocity equation. In their work however, they 

consider the membrane to be thin and assume it to be uniformly hydrated. In reality, 

competing water transport mechanisms would cause non-uniformity in the water distribution 

across the membrane region limiting the applicability of this type of model. Cross-

interactions between species are also neglected when using the Nernst-Planck equation. 

Incorporation of structural parameters however allowed their model to make significant 

predictions; they found that reactions across the cathode catalyst layer were likely to be non-

uniform, implying that cost-savings were possible by concentrating catalyst material closer 

towards the cathode gas diffuser. 

 

The Nernst-Planck approach has been adopted by Pisani et al. [5,6,7]. Initially they 

adopted the BV model and successfully improved the model predictions at higher current 

densities [5]; the initial BV models did not predict the polarisations at higher current 

densities caused by cathode flooding very well. Subsequent studies used the improved BV 

model to analyse the effect of the porous structure of the catalyst layer on cell performance 

[6], and later work focused on optimising the BV model for faster computation by 

eliminating non-linear terms [7].  

 

The NP-based BV models have also been adopted by Djilali et al. [8,9]. They 

developed the model to include the effects of heat transfer and included Knudsen diffusion in 

the electrodes [8]. This research group then used the BV model to conduct a 3D 

computational analysis of a section of the PEFC. Their model and other such models allowed 

the effects of geometric parameters of the gas diffusion layer on cell performance to be 

quantified [9]. 
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The publication of the half-cell BV model [2] coincided with the publication of 

another significant model presented by Springer et al. [10]. The Nernst-Planck equation is a 

derivative of Dilute Solution Theory (DST) as shown in chapter 4. Another form of DST 

given by equation 4-13 was used by Springer et al. [10] who applied it to describe in part the 

transport of water across the membrane, assuming that the gradient in chemical potential of 

water drives a diffusive flux of water across the membrane from cathode to anode. The 

commonality between the Nernst-Planck based BV models and the Springer et al. models is 

the fact that their key transport equations both belong to DST. The difference is that they 

both use the derivatives of DST to model the transport of different primary species; hydrogen 

ions for BV and water for Springer et al. [10]. Springer et al. modify the DST equation such 

that the gradient in the chemical potential of water is translated into a gradient in water 

content per membrane charge site, λ (i.e., per sulphonic end group). The other significant 

difference is the explicit inclusion of electro-osmotic water drag in the model of Springer et 

al.; an extra term is appended to account for the drag of water by hydrogen ions across the 

membrane from anode to cathode, as shown in chapter 4. The net result is a counter-

directional flux of dragged water and diffusing water in the membrane, setting up a non-

uniform water distribution across the membrane thickness. This forms the basis of many 

‘diffusion’ models.  

 

In 1993, Van Nguyen and White adopted the model of Springer et al. to simulate heat 

and mass transfer in 2D [11], acknowledging the counter-directional diffusive and drag 

fluxes of water across the membrane in 1D. They found that the back-diffusion of water 

across the cell from cathode to anode was insufficient to keep the membrane well hydrated 

and therefore optimally conductive, and consequently concluded that anode humidification 

was necessary under certain operating conditions. Similar studies were conducted by Okada 

et al. [12]. In later work, the basic diffusion-based transport equation 4-13 was modified to 

account for a pressure-driven convective water flux in the membrane [13]. By this point, the 

DST-derived diffusion term is reduced to Fick’s law and the appended convective term is 

simply Darcy’s law. The resulting transport equation can therefore be classed as being ‘semi-

composite’. Later modelling efforts by Van Nguyen et al. investigated the improvements in 

cell performance when interdigitated gas distributors were used to separate gas channels into 

inlet and exit channels and therefore to force flow though the porous electrodes [14]. 

Following work focused more on improving the modelling of liquid water and considering 

liquid water saturation explicitly [15]. These studies of Van Nguyen et al. have directly 
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influenced cell design by identifying the regions of the cell where flooding is most likely to 

occur first. 

 

The water diffusion and drag-based transport equation based on DST has commonly 

formed the basis of transient models [16,17,18]. Applications have attempted to address 

again the issues of thermal and water management [19]. The ‘semi-composite’ approach has 

also been widely used in the literature [20,21,22,23,24]. Kulikovsky [21] in particular 

considered the non-linear diffusion of water in the membrane, leading to the identification of 

co-existing dry and wet regions. Later work has been orientated around determining cell 

performance under co- and counter-flow configurations with two-phase water, 

acknowledging counter-flow configurations allow for better internal humidification under 

certain conditions [22,23]. 

 

A few years following the publication of the BV [2-4] and Springer et al. [10] 

models, Fuller and Newman presented an alternative model that used Concentrated Solution 

Theory (CST) to describe transport in the membrane [25]. This was based upon earlier work 

where it was illustrated that a multi-component form of CST could be used to describe the 

transport of a three-species system; water, hydrogen ions and electrolyte membrane [26]. 

Their model assumed that temperature can change along the length of the gas channel and 

illustrated that the rate of heat removal from the cell was critical in preventing membrane 

dehydration. A key aspect of their work was the application of CST to simultaneously model 

the transport of multiple species without decomposing the transport equation into 

independent constituents, as done by the DST treatments of BV [2,3] and Springer et al. [10], 

and their derivatives. Also, they illustrated that it was possible to model the membrane 

system without making the assumption that the system is dilute. 

 

The application of CST for fuel cell modelling has been developed over several lines. 

Janssen [27] used CST to model the effect of two-phase water transport in the electrodes on 

the electro-osmotic drag coefficient in the membrane. More recently, two-phase water 

transport in the membrane was modelled by Weber and Newman, accounting for both liquid 

and vapour phase water boundary conditions for the membrane [28,29,30]. In both the work 

of Janssen [27] and Weber and Newman [28-30], the expansion of the key transport 

equations yields frictional coefficients which account for interactions between species. These 

coefficients are related to water-phase dependant transport properties such as the electro-
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osmotic drag coefficient. While proving useful to predict the water flux in the membrane 

under two-phase conditions, the models are not able to predict H2 or oxygen crossover using 

CST without resorting to Fick’s Law. Indeed, Weber and Newman [29] illustrated that Fick’s 

law would be superimposed on to the CST-based two-phase water flux equations to define H2 

and O2 permeation through the membrane. This eludes the utility of the multi-component 

nature of CST. Meyers and Newman [31,32,33] however maintained the multi-component 

nature of CST to model the DMFC, for which fuel crossover is a significant issue.  

 

Other studies have also made use of CST. Wohr et al. [34] used it to develop a 

dynamic model with energy balance. They suggested several ways to improve membrane 

humidity as a result, including raising the humidifier temperature, increasing GDL porosity 

and GDL thickness, and finally suggested the use of cooling plates to improve heat removal. 

Futerko and Hsing applied forms of CST to model water transport in the membrane, focusing 

more on 2D effects [35,36]. They considered the effect of humidity on membrane resistance 

[35], and operation without reactant feed humidification [36]. Thampan et al. [37] developed 

a model with a similar approach to Janssen [27] and Weber and Newman [29], concentrating 

on the conductivity of the membrane at different operating temperatures when the membrane 

is in contact with water in either liquid or vapour phase.  

 

Other significant models that do not strictly pertain to the categorisations above are 

mentioned here. Eikerling et al. [38] proposed a model based on the assumption that water 

flux in the membrane is characterised by convection due to capillary pressure and electro-

osmotic drag. Key to their model was the use of pore-size distribution data to determine local 

conductivity and permeability. Meier et al. [39] also used the capillary pressure argument to 

propose a convective flux of water in the membrane and attributed it to causing the non-

uniform distribution of water across the membrane. Both these models make use of Darcys 

law to describe the convective water flux. Baschuk and Li [40] proposed a BV-based model 

that was orientated to defining equivalent resistances throughout the thickness of the cell. 

Finally we have the semi-empirical based models of Amphlett et al. [41,42]. As discussed, 

the activation and Ohmic overvoltages are defined initially in these models on a theoretical 

basis, with characteristic constants grouped and defined using experimental data. These 

models focus squarely on producing performance curves and exhibit generally good 

correlation with experimental data. These models provide quick cell performance predictions 

without applying a systematic treatment of cell-level transport phenomenon.  
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The above is by no means an exhaustive list of modelling efforts, but aims to identify 

the Nernst-Planck based BV approach [2,3], the diffusion-based approach of Springer et al. 

[10] and the CST-based approach of Newman et al. [25, 26, 28-33]. Further discussions into 

modelling approaches are given by Weber and Newman [43] and Wang [44]. 

 

The purpose of this work is to illustrate that all these three prominent modelling 

approaches can be related by a multi-species general transport equation, which can be applied 

to the layers of the PEFC to describe electrochemical transport. In this chapter, a general 

transport equation is derived and its validity is demonstrated by deriving all three key 

transport equations in literature (Dilute Solution-based Nernst-Planck, Dilute Solution-based 

diffusion equation and Concentrated Solution Theory). The general transport equation is then 

applied to a simple PEFC model. Calculated water content curves obtained using the general 

transport equation are compared to published data. Finally, the multi-species aspect of the 

model is used to predict hydrogen crossover through the membrane. 

 

6.2 Theoretical Study 

 

6.2.1 Driving Force Equation 

 

The common form of Concentrated Solution Theory can be traced back to the work of 

Hirschfelder et al. [45]. The total driving force of a general species i was defined as 
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(6-1) 

 

where  

in   = molecular concentration of species i 

im   = molecular mass of species i 

Tn  = total molecular concentration  

k  = Boltzman constant  

T   = local temperature  
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ρ   = total density  

iΛ  = diffusive flux affinity  

jX   = general molecular force acting on species j. 

 

The first term in the bracket of equation 6-1 reflects the flux due to diffusion; the 

second reflects convective flux due to a gradient in total pressure; the final term reflects the 

interactive flux that is induced because of external fields acting upon the other species in the 

multi-species system.  

 

Hirschfelder et al. [45] suggested that there are three physical contributors to the 

diffusive flux of a general species i; a gradient in electrochemical potential; a gradient in 

temperature and an additional general flux caused by an external field 
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where  

iµ∇   = the gradient in molecular electrochemical potential of the general species i  

iS   = the molecular entropy of the general species i.  

 

Substituting equation 6-2 into equation 6-1 yields 
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The molecular concentration of a general species i is defined as 
iAi cNn =
 
where ic  is 

the molar concentration, and AN  is the number of molecules per mol of substance, i.e., the 

Avagadro Number . The total molar concentration is defined as ATT Nnc /=

 

and the 

definition of the Boltzmann constant is ANRk /=

 

where R  is the universal gas constant.
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Since the above treatment considers particle-level properties, it is recast into more 

convenient molar terms by using the Avagadro number. Substitution of these definitions into 

equation 6-3 gives the total driving force term for a general species i; 
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This is the general driving force equation and accounts for the physical conditions 

that drive overall  intermolecular transport including effects due to  

• a gradient in electrochemical potential, composed of 

o a gradient in concentration, and 

o a gradient in electric potential 

• an overall temperature gradient 

• a gradient in total pressure 

• a force induced by an external field 

 

6.2.2 Molecular and Thermal Diffusion Equation 

 

From the same work of Hirshfelder et al. [45] it is possible to define the general 

driving force as being the sum of the forces driving molecular diffusion and thermal diffusion 
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where  

ijD   = diffusion coefficient of species i in species j 

iv   = velocity of species i  

Th

iD   = thermal diffusion coefficient of species i. 
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Equation 6-5 is converted from molecular values to molar values using iiimn ρ=  and 

iAi cNn = , giving 
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6.2.3 The General Transport Equation 

 

Equation 6-4 describes the physical conditions that induce molecular transport and 

equation 6-6 reflects the transport that occurs due to the physical drivers. Equating the two 

equations gives the general transport equation for concentrated solutions. 
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A species with zero valence can be affected by an external field, for example a field 

in electric potential set up by an electric current can cause a species with zero valence to be 

dragged by electro-osmosis due to the flux of hydrogen ions. 

 

The molar flux of a species i, in&  is defined as iii cvn =& . When 0=∇=∇ TP , equation 

6-7 can be simplified and rearranged to give;
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The first and last terms on the right hand side define diffusion and convection. The 

middle term is related to electro-osmotic drag flux. When considering the flux of water 

(species i) in the electrolytic membrane (species j) where the electrolyte experiences no drag, 

the electro-osmotic drag flux of water equates to 
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The electro-osmotic drag ratio iξ  is now introduced which is the number of molecules of 

species i dragged per hydrogen ion, i.e., 
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Since the velocity with which water is dragged is equal to the velocity of hydrogen ions that 

are transported due to the electric field, i.e., 
+

= Hdragw vv , , this gives; 
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Substitution of equation 6-11a,b into equation 6-9 and rearranging provides the general molar 

force in relation to the electro-osmotic drag ratio of any species i and of water as; 
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Generally, equation 6-12a,b can be applied equally to a multi-species concentrated 

system because; 

• it is derived from a general concentrated solution system 

• the electro-osmotic drag characteristics of species i alone in the membrane is 

dependant only upon its transport properties in the membrane (accounted for by 

memiD , ) and the magnitude of the hydrogen ion flux (accounted for by 
+Hn& ). The 

overall electro-osmotic drag induced flux for a species i including interactions 

with other electro-osmotically dragged species is accounted for by the 

∑
≠ij

jj
i Xc

M

ρ
 term in equation 6-7. 

• electro-osmotic drag is assumed to occur independently of temperature and 

pressure gradients 
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Using the derived expression for iX , the general transport equation, equation 6-7, for 

concentrated solutions becomes 
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6.3 Theoretical Validation 

 

In both key dilute solution models [2,3,10] and key concentrated solution model [26], 

1D temperature effects across the cell were neglected ( )0=∇T .  
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Also, none of these explicitly consider the effect of the overall pressure gradient, hence 

0=∇p . 

 

6.3.1 Dilute Solutions 

 

Fundamentally for a dilute solution the concentration of a general minor solute 

species i is assumed to be significantly lower than that of the solvent species  j, 
ji

cc <<  and 

Tj cc ≈ . Also, the solvent species experiences no drag, hence 0=jξ . By substituting these 

conditions into the equation 6-14 the general transport equation can be reduced to the 

following for the solute species i,  
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This is the key transport equation for dilute solutions which includes flux due to electro-

osmotic drag.  

 

Model of Springer et al. 

 

Springer et al. [10] consider the transport of water (solute species i) in the electrolyte 

membrane (solvent species j). Since the electrolytic membrane is static, 0=mv  and the 

general transport equation 6-15 can be rearranged to yield the net water flux across the 

membrane  
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where the first term on the right hand side describes diffusive flux and is consistent with 

equation 19 which appears in the work of Springer et al. [10]. The second term describes 

electro-osmotic drag flux and is consistent with equation 18 in that work. 

 

Model of Bernardi and Verbrugge 
 

In the BV models [2,3], the key transport equation is the Nernst-Planck equation and 

is applied to describe the transport of dissolved hydrogen ions (solute species i) in a bulk 

system consisting of water and electrolytic membrane (solvent species pair j) where 0=iξ . 

The electrochemical potential of a species is defined as [46] 
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where F  is the Faraday constant, iz  is the valence of species i and φ∇  is the gradient in 

electric potential (V.cm
-1

). Substitution into the dilute solution transport equation (6-15) 

yields the familiar Nernst-Planck equation 
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where 
j

v  becomes the pore-water velocity in the membrane, which is defined using 

Schlogl’s velocity equation 
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Here, 
φ

κ  and pκ  are the electrokinetic and absolute (hydraulic) permeabilities 

respectively and µ  is the viscosity (g.cm-1.s-1), not to be confused with the electrochemical 

potential and p∇  is specifically the hydraulic pressure gradient. 

 

6.3.2 Concentrated Solutions 

 

Newman stated that for a three-species system it is more rigorous to use concentrated 

solution theory to describe transport [46]. In the treatment of Weber and Newman [29], 

electro-osmotic drag is implicitly absorbed into frictional coefficients which are related to the 

diffusion coefficients ijD . Because of this treatment, which is based upon assumptions of 

marginal currents and marginal chemical potential gradients for water through the membrane, 

the explicit electro-osmotic drag terms in equation 6-14 reduce to zero 0=iξ . Consequently 

substitution into the general transport equation 6-14 leaves the common form of CST which 

is comparable to the Stefan-Maxwell equation 
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6.4 Model Development 

 

6.4.1  Governing Equations 

 

The validity of the general transport equation given by equation 6-14 can be 

examined by applying it to model multi-species transport in 1D across the PEFC. This is 

done in the context of an isothermal model. Equation 6-14 is applied directly to simulate 

electrochemical transport across the PEM. It is also applied to simulate transport across the 

GDL without deriving the Stefan-Maxwell equation. In doing so, the iξ  term reduces to zero 

as electro-osmotic drag does not occur in the GDL (all species have zero valence). The 

conditions in the channels of the cell are determined by the multi-component input model 

presented in the previous chapter. The assumptions of the new model are different to the 

previous model in the following aspects; 

1. the membrane region is characterised as a concentrated solution system with at least 

three constituent species; water, electrolyte membrane and protons 

2. the flux of any additional species can be treated as part of the concentrated solution 

system, without superimposing an independent flux equation based on Fick’s law 

3. the diffusion coefficient of protons in the concentrated solution system is characterised 

solely by its dissolution in water 

� diffusivity in the dry membrane is zero, i.e., 0
,

≅+
memH

D  

� diffusivity in the water contained in a humidified membrane is non-zero and given by 

the value determined by Bernardi and Verbrugge [3] scmD
wH

/105.4
25

,

−
×=+

 

4. for the four species system including hydrogen, the binary diffusion coefficient of the 

species pair of protons in hydrogen in the membrane region is negligible, 0
2,

≅+
HH

D  

5. Capillary forces in the electrodes are assumed to be negligible and water is assumed to 

exist in vapour form [47]. 

 

A summary of the key equations for the channel, electrode and membrane regions of 

the cell are given in Tables 6-1, 6-2 and 6-3 respectively. The conditions for the base case are 

given in Table 6-4. The base case reflects isobaric cell operation at 80˚C where it is assumed 

that both air and H2 feeds are fully humidified to the same temperature, with 3-species in the 

membrane system. The additional case given in Table 5 reflects a 4-species concentrated 
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solution system with the addition of hydrogen crossover. The memiD ,  diffusion coefficients 

should be regarded as the intra-diffusion coefficient of species i in the membrane.  

 

For the four component system, it is assumed that hydrogen crossover leads to the 

formation of additional water at the cathode catalyst site. Such reaction would produce only 

heat energy, and not both heat and electrical energy. From a transport perspective, the 

magnitude of water and oxygen fluxes in the cathode increases, which in the model is 

reflected by changes in the cathode flux ratios 
C

iα ; ( )XH

A

w

C

w ,2
12 ααα ++−=  and 

XH

C

O 2
1 αα += . Similarly, the hydrogen flux in the anode increases XH

A

H 22
1 αα += . 

 

To validate the model against experimental data, calculated hydrogen permeability 

coefficients for a four-species system are compared to calculations based on in-situ 

measurements of hydrogen crossover. The H2 permeability coefficients can be calculated as 
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where the flux rate of hydrogen crossover is calculated as 
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Table 6-1  Governing equations for channel model based on the multi-component input 

model in chapter 5 
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Table 6-2 Governing equations for electrode model 

 

   Reference 

Transport Equation 
[ ]














−+

−=







∇−∇

∑

∑

≠

+

v

memij mj

ji

mi

i

T

m

H

j

ij

ijT

jii

ii

DDc

c
nRT

vv
Dc

cc
RTp

M
c

, ,,

                                 
ξ

ρ

ρξ

ρ
µ

&

 

Equation 6-14 
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Table 6-3  Governing equations for membrane model 
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Table 6-4 Properties for base-case 3-species (water, electrolyte membrane, protons) 

concentrated solution membrane system 
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Table 6-5 Additional properties for 4-species (water, electrolyte membrane, protons, 

hydrogen) concentrated solution membrane system 
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6.4.2  Solution Procedure 

 

The diagram below illustrates the solution procedure applied to the overall model for 

the 4-species concentrated solution system in the membrane region. In the case of the 3-

species system, the procedure is simplified as 
2Hα  does not need to be determined. Each 

iterative step is repeated five times in order to determine the correct thickness of the 

expanded membrane. The differential transport equations in the three regions of the cell are 

solved using a Runge-Kutta algorithm.  

 

 

Figure 6-1 Simulation Flowchart 
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6.5 Results and Discussions 

 

6.5.1  Model Validation 

 

Model-to-Model Validation: 3-Species System 

 

The validity of the multi-species universal transport equation can be tested by 

comparing simulated water content curves for a 3-species concentrated solution to existing 

published results. Formation of water at the cathode sets up a concentration gradient across 

the membrane, allowing for molecular transport from cathode to anode. This is opposed by 

an electro-osmotic drag flux of water from anode to cathode. Because the electro-osmotic 

drag flux is directly proportional to current density, the water content at lower current 

densities is much more uniform. This was illustrated by Springer et al. [10]. Although their 

work only considered the flux of water in a dilute solution, the multi-species model presented 

here for concentrated solutions should principally predict the same phenomenon. 

 

Figure 6-2 shows simulated water content curves using equation 6-14 for the base 

condition at four different current densities. The model predicts a relatively uniform water 

distribution at 0.1 A/cm2, with a linear fall in water content from 14 molecules per charge site 

to 11 molecules per charge site. At 0.8 A/cm2, the water content profile becomes non-linear. 

At this current density the cathode has 14.8 water molecules per charge site whereas the 

anode is much drier with less than 3 molecules per charge site. 

 

The water content characteristics are generally consistent with the published results of 

Springer et al. [10]. The concentrated solution theory based approach of equation 6-14 

suggests larger gradients in water content than the dilution solution theory approach of 

equation 6-15 at higher current densities ( > 0.2 A/cm
2
). The difference is due to the dilute 

solution theory assumption that the concentration of any minor species is much less than that 

of the solute. As a consequence, a Tj cc  factor is missing in the key equation 6-15 for dilute 

solutions and assumed to be unity, whereas for concentrated solutions it would be less than 

unity. The effect is to reduce the dominance of ic  in the context of equation 6-15 particularly 
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at low water contents (λ < 6), thereby reducing the overall water content throughout the 

membrane at any position. Overall Figure 6-2 illustrates that the new approach correctly 

predicts the expected water content profiles at various current densities. 

 

 

Figure 6-2 Model-to-model validation: simulated membrane water content from the general 

transport equation (6-14), and from the work of Springer et al. [10] 

 

Model-to-Measurement Validation: 4-Species System 

 

The data of Cheng et al. [49] is employed in order to validate the model against 

experimental data. They measured the hydrogen crossover rate in a 4.4 cm2 experimental fuel 

cell employing a 50 µm thick PEM operated with fully humidified reactant supplies as 80, 

100 and 120˚C and anode back-pressures of 2.02 atm and 3.04 atm. In their work, the 

hydrogen permeability coefficient is calculated using equation 6-21 where the crossover 

current xI  is determined directly from the measurement. In the current work, the coefficient 

is calculated using equations 6-21 and 6-22. This is fundamentally similar to that employed 

by Cheng et al, but modified to be a function of the hydrogen crossover ratio, which is 

determined by the simulation. The hydrogen partial pressure can be calculated as a function 

of the anode back-pressure using; 
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The data in Table 6-6 compares the calculated hydrogen permeability coefficients 

obtained from the general transport equation to the experimental data [49]. Hydrogen 

diffusivities used in the calculation are given in Table 6-5. The calculated hydrogen 

permeability coefficients are generally within the same order of magnitude as the 

experimentally-derived values. Table 1 demonstrates that the hydrogen permeability 

coefficient increases with increasing humidification temperature. This observation can be 

confirmed from the work reported previously by Weber et al. [29]; their data fit suggests that 

for a PEM with a water volume fraction of 50%, raising the cell temperature from 80 to 

120˚C  will have the effect of increasing the hydrogen permeability coefficient  from 

4.52×10-11 to 9.36×10-11 mol/cm-atm-s. 

 

Humidification Temperature 

(˚C) 

Hydrogen Permeability Coefficient 

(mol/cm-atm-s) 

  Anode back-pressure 

  3.04 atm 2.02 atm 

80 Cheng et al 3.87E-11 3.71E-11 

 General Transport Equation 1.91E-12 1.15E-11 

100 Cheng et al 6.13E-11 5.24E-11 

 General Transport Equation 1.90E-11 6.38E-11 

120 Cheng et al 1.04E-10 1.08E-10 

 General Transport Equation 1.36E-10 4.23E-10 

Table 6-6 Experimental [49] and simulated hydrogen permeability coefficients for a 50 µm 

polymer electrolyte membrane 

 

6.5.2  Hydrogen Crossover: 4-Species System 

 

The use of thinner membranes in fuel cells can allow for better performance because 

the uniformity in water content is improved at all current densities. This owes to the shorter 

molecular transport path for water from cathode to anode and has the overall effect of 

increasing the proton conductivity of the membrane region [10,50]. With better internal 

humidification, the need to provide external humidification especially through the anode side 

can be somewhat mitigated [51]. On the same principal however, the shorter transport path 

exacerbates the phenomenon of crossover across the membrane. Due to its small molecular 
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diameter, hydrogen crossover is specifically an important issue in PEFCs. In general such 

crossover can be impeded by using thicker membranes [52]. The increase in crossover for 

thinner membranes amounts to unutilised fuel and so reduces the overall cell efficiency. The 

unused fuel corresponds to an equivalent crossover current density, and the target for future 

fuel cell vehicles for this is 5 mA/cm2 or less at 1 atm [53].  

 

To model crossover through the membrane, the conditions of Table 6-5 were applied 

in addition to the base conditions of Table 6-4 to simulate a four-component concentrated 

solution system in the membrane region. In the absence of suitable data in the literature, it 

was assumed that the electro-osmotic drag of hydrogen is negligible.  

 

Figures 6-3 and 6-4 show the relationship between membrane thickness and the net 

flux ratio of hydrogen across the membrane to oxidised hydrogen at 1 A/cm
2
 for 80˚C and 

110˚C; 1 A/cm
2
 is chosen because it is a typical operation point on the performance curve, 

and allows for easy translation into an equivalent current density II
A

XHX −
=

2
α , XX FIJ 2=  

and FIJ 2= . Hence, A

XH −2
α  should be 0.005 or less at 1 A/cm2 when operated at 1 atm. 

 

Figure 6-3 considers the crossover for different thickness at 1 atm. Large stacks (≥ 

10kW) are likely to operate at higher pressures, and this is considered in Figures 6-4 and 6-

5. Figure 6-3 illustrates that the flux ratio drops below 0.005 (crossover current density of 5 

mA/cm
2
) for membranes thicker than around 30 µm. The flux ratio can be reduced further 

below 0.001 (1 mA/cm2) for membranes thicker than 175 µm. 

 

Figure 6-4 shows the crossover for different membrane thicknesses when the cell is 

operated at 3 atm. For a cell operated at 80˚C, the results show that an increase in thickness 

from 25 µm to 50 µm yields a 60% drop in the net hydrogen crossover flux ratio and is 

equivalent to a reduction in the crossover current density of 21.2 mA/cm
2
. Increasing the 

thickness further by a factor of 3.5 from 50 µm to 175 µm yields a 72% drop in the net 

hydrogen crossover flux ratio, but the magnitude of the drop in the crossover current density 

is less, at 10.3 mA/cm2. The results also show that for the given base conditions, the crossover 

current density only drops below 5 mA/cm
2
 above 150 µm for operation at 80˚C.  
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Figure 6-3 Crossover dependence on dry membrane thickness at 1 atm 

 

Raising the operating temperature to 110˚C at the same inlet pressures of 3 atm 

induces an increase in crossover. The increase is relatively small for the thin 25 µm 

membrane at 7% and increases to 32% for a 225 µm membrane. The increase in crossover 

with temperature can be attributed to the dependence of the hydrogen diffusion coefficient on 

temperature. When 5.0=vf  in the membrane region, memHD ,2
 increases from 

scm /1007.2 26−
×  at 80˚C to scm /1098.6 25−

×  at 110˚C and WHD ,2
 increases from 0.641 

cm2/s at 353K to 0.776 cm2/s at 110˚C. Due to the increase in H2 crossover with temperature, 

the crossover current density only falls below 5 mA/cm2 when the thickness exceeds 175 µm. 

 

 

Figure 6-4 H2 Crossover dependence on dry membrane thickness at 3 atm at 80˚C (353 K) 

and 110˚C (383 K) 
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Figure 6-5 considers the crossover at all practical current densities for three typical 

membrane thicknesses. In general, operation at low current densities induces a high rate of 

hydrogen crossover. As current density increases, the crossover rate decays for all three 

membrane thicknesses considered. A similar phenomenon was observed in the previous 

chapter for carbon monoxide crossover through the membrane. The thinner membranes 

exhibit consistently higher H2 crossover with respect to current density. The H2 flux ratio 

drops below 0.05 after 80 mA/cm
2
 for the 175 µm membrane, 150 mA/cm

2
 for the 100 µm 

membrane and 300 mA/cm
2
 for the 50 µm membrane. At 1 A/cm

2
, the 175 µm membrane 

exhibits a reduction in the flux ratio below 0.005. The 100 µm membrane is still allowing a 

hydrogen crossover ratio of 0.007 and the 50 µm membrane allows double that at 0.014. 

 

6.6 Conclusions 

 

The literature identifies three prominent equations to model electrochemical transport 

across the cell; the Nernst-Planck equation [2,3]; the diffusion equation in terms of chemical 

potential with an appended term for electro-osmotic drag [10]; and the Stefan-Maxwell type 

equation from Concentrated Solution Theory [25,26]. The first two pertain to Dilute Solution  

 

 

Figure 6-5 H2 Crossover as function of current density for PEM thicknesses of 50, 100 and 

175 µm  
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Theory and are generally applicable for a solute species when its concentration is assumed to 

be much less than the solvent concentration. The third directly pertains to Concentrated 

Solution Theory. 

 

Using founding principals presented by Hirschfelder et al. [45], a general transport 

equation for concentrated solutions has been developed in this work which includes a term 

for flux due to external fields.  

 

In the context of a fuel cell membrane, it is argued that it is a field in electric potential 

which causes electro-osmotic drag of constituent species with zero valence due to the 

hydrogen ion flux that occurs across it. Relative to a constituent species with zero valence, 

the field in electric potential is effectively an external field, and on this basis is included in 

the general transport equation to model multi-species electro-osmotic drag.  

 

Theoretical validation has shown that the developed expression is consistent with all 

three existing key transport equations. This proves that the developed general transport 

equation can be reduced to the two forms of Dilute Solution Theory (Nernst-Planck equation 

[2,3] and the diffusion equation with explicit electro-osmotic drag [26]) for fuel cell 

membrane systems, and to the Stefan-Maxwell form of Concentrated Solution Theory 

[25,26]. Thus, the work in this chapter is the first to bridge the gap that exists between the 

different modelling philosophies for transport in the literature. 

 

In the context of a simple fuel cell model, the calculated results using the general 

transport equation for a three-species system (water, electrolyte membrane, protons) correctly 

predicts water content profiles that are consistent with published data. The calculated results 

predict that the water content is marginally less using the developed general transport 

equation in comparison to the results of Springer et al. obtained from Dilute Solution Theory 

[10]. This is attributed to the dilute solution assumption that Tmem cc ≈ . Overall, the 

consistency with the published data shows that the general transport equation correctly 

predicts the molecular transport of water including electro-osmotic drag flux. 

 

Calculated results for a simple 1D fuel cell with a four-component concentrated 

solution membrane system (water, electrolyte membrane, protons, hydrogen) give important 
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results in relation to the crossover of hydrogen across the PEM. The general trend shows an 

increase in crossover for thinner membranes, and for a fixed membrane thickness a higher 

crossover at lower current densities. 

 

The results show at 80˚C, 1 atm and 1 A/cm2, the nominal membrane thickness for 

less than 5 mA/cm2 equivalent crossover current density is 30 µm. At 3 atm and 80˚C, the 

nominal membrane thickness for the same equivalent crossover current density is about 150 

µm, and increases further to 175 µm at 110˚C. At 110˚C, the diffusion coefficient of 

hydrogen in the membrane and in water increases, facilitating a marginal increase in 

crossover for all membrane thicknesses. The simulation results also show that at 3 atm and 

80˚C, a 60% drop in crossover can be achieved by doubling the membrane thickness from 25 

µm to 50 µm at 80˚C. A further 72% drop is observed when increasing the membrane 

thickness further to 175 µm at the same temperature. Thin membranes exhibit consistently 

higher crossover at all practical current densities compared to thicker membranes. At least a 

50% decrease in crossover is achieved at all practical current densities when the membrane 

thickness is doubled from 50 to 100 µm. 

 

Finally the results for three different membrane thicknesses showed a significant 

reduction in crossover at all practical current densities for thicker membranes. The calculated 

results suggest that from the three thicknesses considered, the 175 µm membrane is the most 

likely to offer equivalent crossover current densities of 5 mA/cm2 or less in the practical 

operating range. 

 

Overall, it has been shown that the general transport equation, equation (6-14), can be 

used to model multi-species transport without the need to superimpose independent transport 

equations based on dilute solution relations such as Fick’s law. It has been shown that this 

can be done in multi-component form while being able to accommodate electro-osmotic drag 

flux explicitly. The next step is to apply the general transport equation to simulate two-phase 

electrochemical transport through the multiple layers of the PEFC. 
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7 A Universal Approach to Multi-Layer Two-Phase 

Modelling through the General Transport Equation 

 

A mathematical multi-layer, multi-species two-phase modelling framework for 

polymer electrolyte fuel cells (PEFCs) is presented in this chapter using the general transport 

equation. The general transport equation was developed in the previous chapter and applied 

to bridge the gap that exists between the benchmark modelling philosophies in the literature 

for transport across the PEFC. In this chapter, the general transport equation is applied with 

Darcy’s law to characterise water transport and water uptake through the porous and quasi-

porous layers of a PEFC under single- and two-phase operating conditions. The characteristic 

transport equations and available material properties from the literature are then translated 

into a single-cell fuel cell model which is implemented using the Object Modelling 

Technique (OMT). The PEFC model is applied to predict and validate the net water transport 

ratio and water content under a range of operating conditions. The numerical model exhibits 

good agreement with experimental data under both vapour- and liquid-equilibrated 

conditions.  

  

 This chapter is presented in five parts. The first provides a general review of the 

treatment of two-phase flow in the fuel cell modelling literature and a discussion of the key 

concepts. The second part presents the developed system of equations for multi-component 

two-phase flow based on the general transport equation and Darcy’s law. The third part 

discusses the auxiliary equations adopted to simulate two-phase transport while the fourth 

describes the structure of the model, programmed using the OMT concept. The fifth part 

presents the results of the model validation, which is carried out against data from three 

independent experimental test cases from the literature. 

 

7.1 Introduction 

 

 The different layers of a complete fuel cell assembly can be classed as being either 

porous or quasi-porous media. The gas diffusion layer (GDL), the micro-porous layer (MPL) 

and to an extent the catalyst layer (CL) can all be classed as porous media while the PEM can 
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be classed as a quasi-porous medium. The GDL, MPL and CL exihibit definite porous 

structures under dry or liquid-infiltrated conditions whereas the PEM is generally 

impermeable to bulk gas flow yet can behave like a porous material when liquid water 

infiltrates its polymer structure. Since two-phase conditions can potentially affect both types 

of media under fuel cell operating conditions, it is possible to consider two-phase transport as 

a common fundamental process that is theoretically governed by modes of diffusion, 

convection and in the case of the PEM by electro-osmotic drag. The physical differences 

between porous and quasi-porous media and the mechanisms by which two-phase flow can 

propagate within them are important and have to be considered as well to fully understand 

water transport in a PEFC.  

 

 A great deal of effort has already been spent to model transport phenomenon in 

PEFCs [1,2]. The earlier benchmark models developed around the early 1990’s focused 

mainly on establishing a fundamental understanding of the internal transport mechanisms in 

the GDLs and the PEM [3,4,5]. In essence, these models selectively modelled diffusion, 

convection or electro-osmotic drag as the main modes of water transport using forms of 

concentrated solution theory or dilute solution theory, as discussed in the previous chapter. 

These were single-phase models that did not rigorously account for the effect that the 

simultaneous presence of water vapour and liquid water can have on water transport across a 

layer, water uptake in the PEM and therefore cell performance. 

 

 Within a working cell, there are actually a multitude of interdependent 

phenomenological processes that occur which govern cell performance. Fuel cell models 

over the years have been developed and adapted accordingly but in doing so have had to 

apply simplifying assumptions and/or spatial limits to the modelling treatment. Without some 

of these assumptions, developers run the risk of creating models that are difficult to solve 

numerically, computationally expensive and therefore impractical to use for proper fuel cell 

development. However, the assumptions that are made and the way in which they are applied 

are quite often different and as such have resulted in a multitude of numerical models. The 

following brief review focuses on how two-phase transport has been handled in the fuel cell 

modelling literature and the underlying assumptions that have been made. Models for the 

porous media are discussed first (GDL, MPL, CL), followed by quasi-porous media (PEM). 
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 Fuel cell models explicitly dealing with two-phase transport phenomenon began to 

appear around the late 1990’s [1,2]. In modelling terms, the problem of two-phase transport 

was mainly prescribed to the cathode CL and the cathode GDL because of the fact that it is 

these regions where product water forms first and has to be removed from to prevent cell 

flooding. In order to model two-phase water transport in porous fuel cell media, it is assumed 

that the internal porous network can be approximately treated as a collection of non-

connected tortuous capillary tubes, where capillary-driven flow is governed by the difference 

between gas and liquid phase pressures. The principal modes of transport are still diffusion 

and convection but a material-specific relationship is also required to define the level of 

liquid-phase saturation within a pore as a function of the capillary pressure. 

 

 One prominent method that established a two-phase treatment based on the capillary-

tube scheme is now commonly known as the multi-phase mixture model, developed by Wang 

and co-workers [6,7,8,9,10,11,12,13]. The multi-phase mixture approach is based on 

conservation equations for mass, energy, charge, momentum and species, the latter two of 

which accommodate convection and single-species diffusion respectively through Darcy’s 

law and Fick’s law. The physical properties of the multi-phase flow infiltrating the porous 

medium such as density, concentration, velocity and viscosity are calculated based on the 

assumption that the flow can be treated as a chemical mixture. As such, the mixture 

properties and the effective diffusion coefficients are calculated based on the local level of 

saturation [7]. This method has been translated into a three-dimensional model and has 

progressively elucidated the potential effects of operating parameters on two-phase transport 

in porous fuel cell media such as reactant stoichiometry and humidification [10,13]. Other 

subsequent multi-dimensional models reported by Birgersson et al. [14] and Djilali and co-

workers [15,16] have been based on the same fundamental principals of mass, energy, 

charge, momentum and species conservation but treat the gas phase and liquid phase 

separately and describe multi-component diffusion for gas-phase transport in Stefan-Maxwell 

forms. Acosta et al. focused on the functional form of the capillary pressure-saturation 

relationship, noting a hysteresis in water retention characteristics of GDLs during drainage 

and imbibition [17]. Their multi-dimensional model treats gas and liquid phases separately, 

accounting for convection using an extended form of Darcy’s law and Fick’s law to describe 

diffusion for each gas component individually. 
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 Treatments based on Darcy’s law and Fick’s law appear elsewhere too. It is known 

through experimental studies that two-phase transport can occur as a transient phenomenon 

within a working cell; the level of saturation within a fuel cell GDL for example can change 

with respect to time under constant current conditions [18]. In order to model two-phase 

transients, Ziegler et al. focused on simulating cyclo-voltammograms and demonstrated that 

mass transport limitations can increase because of the time-dependant accumulation of water 

on the cathode side of a working cell [19]. Their modelling treatment is one-dimensional and 

multi-component diffusion and gas-phase pressure drops in the GDLs are neglected. Single-

component gas-phase diffusion and liquid-phase convection in the GDL are described using 

Fick’s law and Darcy’s law respectively.  

 

 Natarajan and Van Nguyen [20] and Nam and Kaviany [21] applied another approach 

to model two-phase transport. They assumed that liquid phase flow across the GDL is driven 

by a gradient in liquid saturation rather than the phase pressure gradient directly. This 

treatment is based on a previous modelling-based study of steam injection in dry porous 

media [22]. Here, Darcy’s law is modified to become a function of the gradient in liquid 

saturation. The capillary pressure-saturation relationship is translated into a differential form 

and applied through a capillary diffusivity term. Diffusion in vapour-phase is either modelled 

in single-component form using Fick’s law [21,27] or in multi-component form using the 

Stefan-Maxwell equation [20]. Mazumader and Cole [23,24] and Van Nguyen and co-

workers [25,26] have applied the concept of capillary-driven flow in multi-dimensional 

modelling frameworks based on the continuity equations by using an additional relationship 

for the conservation of liquid water. The method has also been adopted by McKay et al. to 

predict the transients of liquid water accumulation in the GDLs of a fuel cell stack for 

embedded real time control [27]. 

 

The relationship between liquid-phase saturation and capillary pressure is an 

important one for fuel cell modelling and varies from material to material. It depends upon a 

number of physical factors including the porosity of the material, its absolute permeability, 

the hydrophobicity of internal surfaces, internal pore radii, material compression and also the 

viscosity of the infiltrating fluid. Because this relationship was not defined in the past for 

porous fuel cell materials the Leverett J-function was often adopted, which was originally 

developed in petroleum engineering as a generic technique to characterise saturation in 

isotropic soil beds with uniform wettability [28]. In fact the Leverett-based approach has 
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been widely adopted in many of the two-phase models above and is still commonly applied 

because it is simple to use and provides a superficial indication of the level of saturation in 

the porous layers of a fuel cell. To address the lack of rigour in the Leverett-based approach 

for fuel cell modelling purposes, other semi-empirical fits have been developed in recent 

years for specific commercially-available porous fuel cell media [17,25,26,29,30]. These 

studies have focused more on understanding the physical characteristics of modern porous 

fuel cell layers [29], analysing the effect of the true functional form of the capillary pressure-

saturation relationship on two-phase transport [25,26] and the hysteresis during and drainage 

and imbibition [17,31]. GDLs are treated with polytetrafluoroethylene (PTFE) or fluorinated 

ethylene propylene (FEP) to ensure that its internal pores are hydrophobic, thereby 

mobilising any liquid water that enters or accumulates within it. However, the hysteresis 

demonstrates that the hydrophobising agent is heterogeneously dispersed within the GDL, 

leaving a porous network which is partially hydrophobic and partially hydrophilic. As such, 

once a GDL is infiltrated with liquid water it may not be easily removed from certain 

hydrophilic pores. On a similar note, experiment-based studies of commercial GDLs 

conducted by Van Nguyen and co-workers have concluded that low hydrophilic porosity is 

indeed a desirable property for high fuel cell performance [26] but that some hydrophilic 

porosity has to exist to effectively conduct liquid water away from regions that are already 

flooded [32]. Overall, these observations illustrate that internally the GDL can be a 

heterogeneous material with complex water transport characteristics. 

 

Modern fuel cells employ a bi-layer assembly on either side of the catalyst-coated 

membrane (CCM) which contains both the GDL and the MPL. Fundamentally, the MPL and 

GDL can have a common carbon-based substrate; the difference is that the MPL is usually 

treated with a higher level of  hydrophobising agent. In a working cell the MPL sits between 

the GDL and CL and can help control the direction in which liquid water within the cell is 

transported under certain operating conditions [11]. The MPL can therefore help improve cell 

performance by reducing the liquid water saturation in the cathode GDL [33]. In terms of 

modelling, because the MPL is a porous medium two-phase transport can be treated in the 

same manner as the GDL, but consideration has to be given to the fact that capillary flow will 

affect its saturation characteristics differently because its physical properties will be different.  

 

The treatment of the CL is complex because there are two phenomenological 

processes occurring simultaneously; potentially two-phase transport and electro-reduction in 
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the cathode CL or electro-oxidation in the anode CL. The detailed mathematical models that 

have been generated to consider these processes have usually focused on just the cathode side 

of the cell [26,34,35,36,37,38]. In multi-layer fuel cell models the CL is often treated as a 

thin interface. 

 

The PEM plays a central role in water transport and is also affected by two phase 

phenomenon. Most models assume that the PEM operates under a vapour-equilibrated mode 

and do not systematically consider the effect of liquid water coming into contact with a 

boundary. This treatment has not changed significantly in the modelling literature as evident 

in almost all multi-layer fuel cell models referenced above and others [39,40,41,42]. Water 

transport is predominantly modelled by adopting one of three equations; the Nernst-Planck 

equation as established by Verbrugge and co-workers, [4,43,44,45,46]; the diffusion equation 

in terms of chemical potential with an appended term for electro-osmotic drag, as established 

by Springer et al. [3]; and the multi-component Stefan-Maxwell equation as established by 

Fuller and Newman [5]. As discussed in the previous chapter, the first two pertain to dilute 

solution theory and are generally applicable for a solute species when its concentration is 

assumed to be much less than the solvent concentration, while the third directly pertains to 

concentrated solution theory. The most commonly adopted method is the dilute solution 

approach of Springer et al, while the dilute solute approach of Verbrugge and co-workers and 

the concentrated solution approach of Fuller and Newman appear much more rarely 

[47,48,49]. In practice, it is well understood that the charged end groups within the polymer 

electrolyte matrix hold up to a maximum of around 14 water molecules when equilibrated in 

water vapour. It is also known that if the PEM is equilibrated with liquid water the charged 

end groups can hold up to around 22 water molecules. This behaviour at unit activity is 

commonly attributed to Schroeder’s paradox [50,51]. In terms of modelling because liquid 

water in the PEM can affect all modes of transport and therefore the proton conductivity 

across it, it also needs to be considered. Generally, this has not been the case mainly because 

unlike the GDL and MPL, the PEM does not have a definite rigid porous structure and 

therefore difficult to structurally characterise and model using the conservation equations 

mentioned above or the dilute or concentrated solution theories in their standard forms. 

However, it has been proposed that the presence and infiltration of liquid water can forcibly 

create a pore network within the PEM, and this idea has formed the foundation of one 

notable modelling approach based on concentrated solution theory which departs from the 

traditional treatment of the PEM [52,53,54,55,56]. 
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Although the above review is not completely exhaustive, it provides a reasonable 

understanding of the mainstream modelling efforts in two-phase fuel cell simulation and the 

physical phenomenon that occur under two-phase conditions. What becomes clear, though, is 

that while each piece of work is fundamentally focused on describing two phase flow, the 

manner in which fundamental transport theory and experimentally-obtained relations are 

applied is not universally consistent. 

 

 The purpose of the current work is to apply the general transport equation (GTE) 

from fundamental transport theory to model two-phase flow in the porous and quasi-porous 

layers of the PEFC. In the previous chapter, the theoretical validity of the GTE was proven 

by deriving all the benchmark transport equations used in the modelling literature. The GTE 

was then translated into a simple single-phase model and simulated results were validated 

against published data. In the current study, the established understanding is extended by 

demonstrating a simple yet theoretically consistent method by which two-phase transport can 

be modelled in the porous and quasi-porous layers of the cell using the GTE. This common 

root has not been demonstrated in the literature to date. The theoretical framework is then 

translated into a working one-dimensional multi-layer, two-phase fuel cell model which 

incorporates recent semi-empirical data fits to characterise the physical properties of modern 

fuel cell materials. The model is applied in two parts. First, it is applied to simulate a set of 

experimental test cases; the modelling results are validated against experimental data to 

verify the predicted water transport and water uptake characteristics inside a working cell. 

Second, the model is applied to study the effects of PEM thickness, anode humidification and 

cell compression on liquid water infiltration, water transport and water uptake characteristics 

across the PEM when two-phase operating conditions are established inside the PEFC. The 

second part is presented in chapter 8. 

 

7.2 Theoretical Equations for Two-Phase Transport in Porous and 

Electrolytic Quasi-Porous Media 

 

 All the transport layers of a fuel cell can be treated as fundamentally being porous or 

quasi-porous. For both types of media, internal transport under two-phase conditions is in 

general a common phenomenological process and can therefore be treated as a common 
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process in modelling terms. As such, transport under two-phase conditions can be described 

for both types of fuel cell media using the GTE. This section focuses on deriving the 

functional form of the theoretical equations for two-phase-driven transport in porous and 

quasi-porous fuel cell media. 

 

7.2.1 The General Transport Equation 

 

 The GTE is taken from the previous study of PEFC transport mechanisms and 

derived from the molecular theory of gases and liquids as presented in chapter 6. It describes 

the movement of a species as part of a multi-species concentrated solution system due to the 

following modes of transport; 

• diffusion due to concentration gradients 

• convection due to pressure gradients 

• thermal diffusion due to temperature gradients 

• electro-osmotic drag due to an electric field 

In its generalised form, the GTE appears as follows; 
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 In the current modelling framework, the effects of temperature gradients are 

neglected ( )0=∇T , leading to the following reduced form of the GTE; 
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The second term of the left hand side of equation 7-2 accounts for electro-osmotic drag and 

does not occur in electro-neutral materials such as the GDL or MPL.  

 

Two indeterminate gradients appear in equation 7-2; first, the electrochemical 

potential gradient and second the phase pressure gradient. In order to solve the phase 
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pressure gradients, therefore, an additional relationship based on the fluid dynamics of the 

system is required, i.e., Darcy’s law: 
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(7-3) 

 

where  

κ   = absolute permeability of the material,  

Jk   = relative permeability pre-factor,  

Jµ   = viscosity of the fluid  

JP∇   = pressure gradient in the phase J .  

 

The following sub-sections describe how the GTE and Darcy’s law are applied to 

solve the two characteristic gradients for two-phase flow in porous and quasi-porous fuel cell 

media. 

 

7.2.2 Theoretical Equations for Two-Phase Transport in Porous Media 

 

Concentration gradients 

 

The electrochemical potential of a species can be defined as [57]; 

 

Substituting this into 7-2 for porous media where electro-osmotic drag does not occur 

( 0=iξ ) and assuming that the water vapour behaves as an ideal gas yields; 
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where the molar flux of species i  is defined as iii vcn =& . The total water flux across the cell 

can be related to the proton flux by; 
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It is assumed that water vapour travels along that proportion of the porous network of a given 

layer which is not saturated by liquid water. The local saturation, s , is calculated using the 

local capillary pressure: 

 

liqgascap PPP −=  (7-7) 

 

As such, it is assumed that the proportion of the total amount of water that travels through the 

porous network in vapour form can be determined by the fraction ( )s−1 , whereas that which 

occurs in liquid form through the saturated pores can be determined by s . The flux of water 

vapour can now be defined as 

 

( ) Evapw Isn α−= 1,  (7-8)
 

 

where αα =A    for anodic porous layers 

 ( )αα +−= 12C    for cathodic porous layers 

 

The density of the gas-phase mixture is calculated as; 
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Pressure Gradients 

 

Pressure gradients are accounted for using Darcys law, as given by equation 7-3. The 

relative permeability pre-factor Jk for liquid and gas phases respectively is calculated as; 
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The velocity of phase J  is converted to flux rates using JJJ cvn =&

 

which yields;  
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The flux of water vapour is calculated using equation 7-8 while that of liquid water is 

calculated as; 
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It is assumed that multi-component transport occurs in the vapour phase while water alone 

constitutes the liquid phase. 

 

7.2.3 Theoretical equations for two-phase flow in quasi-porous media 

 

Concentration gradients 

 

The general transport equation given by equation 7-2 can be applied for a three-

species polymer electrolyte system where water is the primary species i , and hydrogen ions 

and the solid polymer electrolyte respectively become the secondary species j . For such 

system, the GTE becomes: 
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Given that water within the PEM has no net charge, i.e., 0=wz , the electrochemical potential 

of water can be defined as follows using equation 7-4; 
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By grouping terms and noting that the flux of the membrane phase is zero, i.e., 0=memn&  
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Rearranging equation 7-15 to describe the net water flux across the PEM yields; 
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Equation 7-16 describes the total molar flux of water across the PEM. In the present 

state, 7-16 does not explicate the difference between water transport in vapour-equilibrated 

and liquid-equilibrated states. However, it is possible to postulate a physical model for the 

PEM system based on a previous treatment [52] in order to do this. 

 

The PEM is characterised by hydrophilic sulfonic acid sites which are tethered to a 

hydrophobic fluorocarbon backbone. The PEM essentially contains a myriad of these 

polymer chains and the resulting structure is often referred to as a polymer matrix. It is 

assumed that on the surface of the PEM, the polymer chains are orientated in a way that 

exposes the fluorocarbon backbone, resulting in a highly-hydrophobic surface.  

 

In the physical model, it is primarily assumed that the polymer matrix is quasi-porous 

in nature and contains internal hydrophobic pathways that can be forcibly expanded by 

capillary action. During initial hydration, it is assumed that water molecules become strongly 

associated to the charged end groups. As hydration continues, the charged end groups begin 

to form inverted micelles which contain water. As hydration continues further, these water 

clusters grow larger and synonymously create weak water networks between them in the 

collapsed hydrophobic pathways. When the boundaries of the PEM are in contact with 
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saturated water vapour, the individual channels between water clusters are well-established 

and definite.  

 

When liquid water comes into contact with one of the boundaries, it is assumed that 

the hydrophobic skin which initially covers the outer surface is forced to re-orientate, 

exposing the hydrophilic charged end groups instead. This can subsequently allow liquid 

water to infiltrate the PEM along the channels in the water network and depending upon the 

liquid pressure at the boundary can forcibly expand them via capillary action. As the liquid 

water infiltrates the PEM, the water clusters enlarge further. When all the boundaries of the 

PEM are in contact with liquid water, the water clusters enlarge to their maximum 

permissible thermodynamic states and all the initially-collapsed hydrophobic channels are 

forcibly expanded and completely filled with liquid water. 

 

According to the description above, there are as such two polar states that the PEM 

can operate under; firstly, a collapsed state where the PEM is equilibrated with water vapour 

and secondly a fully expanded state where the PEM is equilibrated with liquid water. It is 

possible for the PEM to equilibrate with water vapour and liquid water simultaneously, 

creating a transitional regime where a fraction of expandable pores are actually expanded. 

This may occur when the cathodic bondary is in contact with liquid water while the anodic 

boundary is not. Under this regime, it is possible for two transport modes to co-exist; a 

vapour-equilibrated transport mode in the collapsed region of the PEM, and a liquid-

equilibrated transport mode in the liquid-filled network of expanded pores within the PEM. 

In terms of water content, denoted λ, this transitional regime describes the increase of water 

content from its maximum value for a fully vapour-equilibrated state (around 14) to its fully 

liquid-equilibrated state (around 22).  

 

It is assumed that the magnitude of the capillary pressure in the expanded liquid-filled 

pore network is directly related to and therefore defines the fraction of pores that are actually 

expanded. The expanded pore fraction is denoted epfs . Conceptually, the pore expansion 

fraction is similar to saturation in the capillary pressure-saturation relationship for GDLs but 

with the notable difference that the pore expansion fraction represents the fraction of pores 

between water clusters which are initially collapsed that are forcibly expanded by infiltrating 
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liquid water whereas saturation represents the fraction of pre-existing open pores which 

become completely filled with the infiltrating liquid water. 

 

By assuming the physical model above, equation 7-16 can be recast to consist of two 

parts; one part relating to the vapour-equilibrated mode and the other to the liquid-

equilibrated mode. Assuming that the expanded pore fraction determines the proportion of 

flow occurring in liquid- and vapour-equilibrated networks in an identical manner to pore 

saturation in equations 7-8 and 7-12, and grouping coefficient terms for vapour-equilibrated 

and liquid-equilibrated phases yields;  
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The gradient in water content, where water content is defined as the number of water 

molecules per charge site is calculated as; 
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Pressure Gradients 

 

Pressure gradients across the quasi-porous PEM region can be calculated using 

Darcy’s law, as given in equation 7-9. The permeability pre-factor 
J

k  is calculated here 

differently as a function of the volume fraction of water that occupies the PEM, f . The 

general definition of the volume fraction of water in the PEM is; 
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where the partial molar volume of species i  is calculated as; 

 

In the case of the PEM, the density is taken as the dry value. Based on statistical arguments, 

the effective hydraulic permeability of the PEM is defined as [53] 
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where liqf  corresponds to the maximum liquid-phase water content; 
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It is assumed that 22max, =liqλ  based on literature values [58,59]. 
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7.3 Sub-Models for the Physical Properties of PEFC Media and 

Infiltrating Fluids 

  

The validity of the theoretical equations for two-phase transport described in the 

preceding section can be tested by applying them through a one-dimensional modelling 

framework for the PEFC. In the current work, this is done through an isothermal model 

which treats the fuel cell has having seven regions of potential interest. The anode and 

cathode sides of the cell can each contain a supply channel, a GDL and an MPL. The central 

layer is the PEM.  

 

The purpose of this section is to discuss the sub-models that are required to 

supplement the two-phase transport equations described in the preceding section. These sub-

models are mainly adopted from the literature and account for the operating conditions, the 

physical properties of the fuel cell layers and the physical properties of the working fluids 

that infiltrate the cell. 

The main assumptions of the current model are as follow; 

1. the fuel cell operates under steady-state conditions 

2. two-phase flow in the channel can be treated as mist flow 

3. thermal diffusion due to temperature gradients can be neglected 

4. gravitational effects on two-phase transport can be neglected 

5. the catalyst layers can be treated as a thin interface 

6. convective flow across the PEM only occurs in the intruding liquid water network 

 

Figure 7-1 illustrates the potential modelling domain; since the MPL is used 

selectively in practice, the modelling structure will treat the MPL as an optional layer. If the 

MPL is disregarded, interface A-2b or C-2b would disappear and interface A-2 or C-2 would 

represent the interface between the GDL and the PEM. The CL is shown in Figure 7-1 for 

illustration purposes. 

 

The composition of the reactant supplies to the anode and cathode channel regions of 

the cell are determined using the multi-species input model developed in chapter 5. The 

composition within each channel is determined as a function of reactant humidification 

temperature, dry gas composition, stoichiometry, the net water transport ratio and current 
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density. The model inherently accommodates conditions where one or neither of the inlet 

gases are partially/fully humidified.  

 

 

Figure 7-1 PEFC cell structure for the one-dimensional two-phase model 

 

7.3.1 Sub-models for the Inlet and Channel Regions 

 

The existing multi-species input model is improved in two regards. First, a simple 

thermodynamic sub-model is devised which calculates anode and cathode supply 

stoichiometries directly from the flow rates of the supply gases. This is useful for model 

validation/application purposes when flow rates are provided from experiment rather than 

stoichiometry. Second, another simple sub-model is devised to calculate the boundary 

pressures and concentrations of the gas-phase constituents for the side of the GDL that 

interfaces with the channel. The key equations are discussed in more detail in the appendix. 

 

7.3.2 Sub-models for the Porous Layers 

 

The equations given in Table 7-1 describe the local pressure-diffusivity product, 

viscosity, liquid phase saturation and compression effects in GDL and the MPL. Local values 

are calculated by taking into account the effective porosity of the layer and local level of 

saturation. It is assumed that the effective porosity depends upon the level of cell 

compression. 
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The pressure-diffusivity product is defined by the Slattery-Bird equation, as discussed 

in the previous chapter, but modified to account for the tortuosity of the porous network, its 

effective porosity and liquid saturation. The phase viscosity is required in equation 7-9 to 

calculate the phase pressure drop. The viscosity of water vapour and liquid water are 

calculated as functions of temperature, while that of air and hydrogen are taken as fixed 

values. The viscosity of the vapour-phase mixture is calculated using the mole fractions of 

the constituent species. 

 

Two-phase fuel cell models typically adopt the Leverett approach to macroscopically 

characterise the level of saturation in a porous diffusion layer as a function of the local 

capillary pressure using equation 7-7. For a given capillary pressure, it is possible to calculate 

the level of saturation using the standard Leverett J-function as given by equations 7-29 and 

7-30. While this method is readily adoptable, there are two main drawbacks to its use: (1) 

because of the stochastic nature and heterogeneous hydrophobicity of a GDL or MPL, it is 

difficult to obtain a meaningful contact angle for equation 7-29, and; (2) the local porosity 

and permeability are likely to change according to the compression pressure exerted onto the 

working cell. 

 

The current model includes a unified semi-empirical approach which is specifically 

developed for the PTFE-treated porous carbon paper fuel cell layers manufactured by SGL 

[60]. This method is based on the Leverett function, but modified to take into account key 

physical characteristics associated to fuel cell media, which are not experienced in soil bed 

systems such as the level of hydrophobic fill, the cell compression pressure and the 

compressed porosity of the material. In the current framework, the standard Leverett method 

is applied when the specific form of the capillary pressure-saturation relationship is unknown 

or undefined for the porous material in question, and the validated Leverett method is applied 

specifically when SGL-manufactured porous materials are used. 

 

The recent literature identifies a hysteresis in the capillary pressure-saturation 

relationship of GDLs during water drainage and imbibition [17,31,61], a phenomenon that 

has been encountered in petroleum engineering [62]. The experimental data suggests that the 

heterogeneous distribution of the hydrophobising agent through the porous layer creates 

hydrophilic and hydrophobic domains which result in different capillary pressure-saturation 

profiles according to whether water is being removed from or infiltrating in to the porous  
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Saturation vs. Capillary Pressure: Standard Leverett J-Function  
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Saturation vs. Capillary Pressure: Validated Leverett J-Function  
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Table 7-1 Key equations for the porous regions of the PEFC 

 



7   Two-Phase Modelling through the General Transport Equation 161

layer. While the current work does not make a distinction between water drainage or 

imbibition, it is anticipated that these newer profiles will be adopted into the current 

modelling framework in due course as more becomes clear about the phenomenon in fuel cell 

materials. 

 

As discussed previously, it is assumed that cell compression affects the porosity and 

the thickness of the porous layers. It is assumed that the change in thickness and porosity can 

be calculated using a common semi-empirical relationship as given by equation 7-34 where Y  

denotes either porosity ε  or layer thickness layert  and the substripts comp  and cu /  denote 

compressed and uncompressed states respectively. The compressive strain depends upon the 

specific structural properties of the porous layer in question and will therefore vary from 

material to material. In the current study, the relationship given by equation 7-35 is employed 

where C  is the compressive pressure with units of MPa. 

 

7.3.3 Sub-models for the Quasi-Porous Layers 

  

In the current treatment, the quasi-porous PEM is treated as a ternary system 

consisting of water, protons and polymer electrolyte where water transport can occur in 

liquid- or vapour-equilibrated networks. The equations given in Table 7-2 describe the 

physical properties of the quasi-porous ternary system including diffusivity, electro-osmotic 

drag, hydraulic permeability, viscosity, pore expansion, molar volumes, Ohmic resistance 

and proton conductivity. Compression effects on water uptake and dimensional changes are 

taken into account through the mechanical properties of the polymer electrolyte. 

 

In order to solve equation 7-17, the diffusion coefficient of water in the PEM must be 

known. The diffusion coefficient of water depends upon the water content of the PEM. For 

an unconstrained Nafion-based PEM system, the well-known experimentally-derived 

expression given by equation 7-36 is used [3]. For Nafion-based composite membranes there 

is a penalty to pay in the water diffusion coefficient because of the internal structural 

reinforcement. In essence, structurally reinforced membranes contain an inert matrix which is 

impregnated with Nafion. As such, the general form of the above equation applies but has to 

be modified by a pre-factor diffk  to account for the loss of diffusivity, where 

00.100.0 << diffk . This results in equation 7-37. The literature demonstrates a wide scatter in 
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the value of diffk  at all values of λ  [63] and an understanding of the dependence of diffk  on 

λ  has not been demonstrated yet. 

 

 The magnitude of the electro-osmotic drag coefficient is assumed to change 

according to whether the transport occurs in the liquid- or vapour- equilibrated network. For 

the vapour-equilibrated mode, the electro-osmotic drag coefficient is taken as unity. For the 

liquid-equilibrated mode, the temperature-dependency of 7-38 is adopted [53]. 

  

Hydraulic permeability and the viscosity of liquid water are required to calculate the 

hydraulic pressure gradient across the PEM. There is a scatter in the range of values for 

Nafion in the literature with respect to hydraulic permeability. Meier et al. calculate 2×10
-16

 

to 1.4×10
-15

 cm
2
 depending upon the local water content using experimental measurements 

[64,65]. Verburgge and Hill initially adopt a value of 1.58×10-13 cm2 [43] while Bernardi and 

Verbrugge later report a value of 1.8×10-14 cm2 based on a water-balance measurements [4]. 

The latter is adopted in the current model, which sits within the range of these values. The 

viscosity of liquid water is calculated simply using equation 7-27. 

 

 In order to determine the contribution of vapour- and liquid-equilibrated transport 

modes on the net water transport across the PEM as given in equation 7-17, it is necessary to 

calculate the fraction of pores in the PEM that are forcibly expanded by the intruding liquid 

water. In the adopted physical model for the quasi-porous PEM region, it is assumed that 

pore expansion is driven by capillary action when a boundary of the PEM comes into contact 

with liquid water [53]. For a given capillary pressure, it is possible to calculate the 

corresponding pore radius of the local capillary tube using the Young-Laplace equation, as 

given by equation 7-39. This radius represents a critical dimensional threshold; all pores with 

a radius larger than the critical radius will be collapsed whereas those with a smaller radius 

will be expanded and completely filled with liquid water. Using pore-size distribution data 

for Nafion measured using standard contact porosimetry [66,67] and assuming that the 

measured micropores correspond to the channels in the PEM, it is possible to calculate the 

fraction of channels that are expanded by liquid water using equation 7-40 [53]. 
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Diffusivity of water in polymer electrolyte; non-reinforced Nafion-based PEMs 
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Molar volume – free-swelling PEM  
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Local water content and  activity  
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Table 7-2   Key equations for the quasi-porous region of the PEFC 
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 In the case of a compressed PEFC, the effect of PEM constraint on the water uptake 

across the PEM is calculated based on the mechanical properties of the PEM. A full 

explanation of the assumptions adopted and equations applied for this mechanical sub-model 

is provided in the appendix. In the complete PEFC model, the manner in which the effect of 

compression on PEM thickness is accounted for requires some explanation. In the first 

instance, the model is allowed to calculate the water content at the anodic and cathodic 

boundaries assuming a free-swelling state. These boundary conditions are then modified 

according to the level of compression, which in return automatically modifies the 

intermediate water content profile within the PEM and also allows the actual thickness of the 

membrane to be calculated as a function of its free-swelling equivalent state. Because the 

calculation of PEM thickness requires the average water content across the membrane to be 

known, a small number of iterations have to be carried out within the quasi-porous layer sub-

model. The iterations allow the average water content to converge to a stable value, which 

corresponds to the actual thickness of the PEM.  

 

The proton conductivity for Nafion-based PEMs is calculated using percolation 

theory [68], as given by equation 7-44, where oσ  is the critical conductivity of Nafion and 

of  is the threshold volume fraction at which the insulator-to-conductor transition occurs 

[53]. It is assumed that the critical conductivity can be set to 0.5 S/cm [53] based on the 

measured conductivity of Nafion under vapour-equilibrated [69] and liquid-equilibrated 

conditions [70]. It is assumed that the insulator-to-conductor transition occurs in Nafion 

when 2=λ  which translates to 06.0=f  [53]. The activation energy aE  reflects the 

Arrhenius dependence of conductivity on temperature and assumed to equal 11 kJ/mol [53]. 

Equation 7-44 is applied with these parameters to calculate the local conductivity based on 

the local volume fraction of water and temperature. It is assumed that conductivity increases 

as a function of f until a second threshold for the volume fraction of water is reached. If 

more water is added beyond this point, the effect on improving the continuity of pathways for 

proton conduction across the PEM becomes negligible. The literature suggests that this 

second threshold occurs when 45.0=f  [53]. Therefore, for calculation purposes it is 

assumed that 45.0=f  when 45.0>f . In the case of structurally-reinforced PEMs that are 

impregnated with Nafion, it is assumed that equation 7-44 can be applied equally. 
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In order to translate the interfacial vapour pressures between the appropriate anode porous 

layer and the PEM for the quasi-porous layer model, a relationship is needed to calculate 

water content as a function of activity. An inverse relationship is also required to covert 

water content into activity to define the boundary pressures for the porous layers of the 

cathode side of the cell. Traditionally, these relationships have been derived from a semi-

empirical fit for data at 30˚C [58] first used by Springer et al. [3]. Since then other chemical 

models have been proposed in the modelling literature [53,70]. The chemical model of 

Weber and Newman is directly dependant on temperature [53] while the Brunauer-Emmett-

Teller (BET) approach of Thampan et al. is a function of the relative humidity at the CL-

PEM interface [70]. In the current model, the semi-empirical fit of Zawodzinski et al. [58] 

given by equation 7-45 and its rearranged form of 7-46 are applied because they capture the 

functional form and magnitude of the relationship relatively well and are simple to apply. 

 

7.4 Modelling Structure for a One-Dimensional Two-Phase PEFC 

Model 

 

The modelling framework for the single-cell, one-dimensional multi-phase fuel cell 

model is implemented using the object modelling technique (OMT) [71,72]. The modelling 

framework comprises of three repeating object-orientated models, namely; (a) the channel 

model: this includes the multi-species input model given in the appendix; (b) the porous layer 

model: this includes the transport equations 7-4 to 7-10 and the auxiliary equations in Table 

7-1, and (c) the quasi-porous layer model: this includes the transport equations 7-17 to 7-24 

and the auxiliary equations in Table 7-2. The object-orientated approach is adopted because it 

enables the modelling framework to be adaptable and much less sensitive to massive 

restructuring during further development. The approach also eliminates repeating lines of 

codes which describe fundamentally identical phenomenological processes that can reoccur 

in different parts of the physical system. The application of the general transport equation 

therefore inherently lends itself well to the OMT approach. From the users perspective, the 

OMT approach results in a much more intuitive modelling framework as well, where 

modelling elements correspond to physical components of the fuel cell and boundaries 

between elements reflect interfacial boundary conditions between physical components. 

 



7   Two-Phase Modelling through the General Transport Equation 166

The channel model is applied to determine the thermodynamic conditions in the gas 

supply channels and to determine the boundary conditions at interfaces A1 and C1. The 

model is therefore applied twice to simulate two objects; the anode and cathode gas channels. 

 

The porous layer model is applied to determine the concentration and phase pressure 

profiles through the thicknesses of the GDLs and MPLs. The model can be applied twice 

initially to simulate two objects; the anode and cathode GDLs. This provides the boundary 

conditions at interfaces A2 and C2. The model can then be applied once or twice more to 

simulate two more objects if they appear in the structure of the simulated cell; the anode 

and/or cathode MPL. Accordingly, this provides the boundary conditions at interfaces A2b 

and/or C2b. The differential equations in the porous layer model are solved by treating them 

as initial value problems using the Runge-Kutta scheme. 

 

The quasi-porous layer model is applied to determine the water content profile and 

the pressure profile of the intruding liquid phase through the PEM. Because the PEM is a 

non-repeating object in a single-cell, the quasi-porous layer model is applied once. The 

quasi-porous layer model is also solved as an initial value problem using the Runge-Kutta 

scheme from the anodic boundary to the cathodic boundary. 

 

Each fuel cell layer is discritised into fifty data points. The overall simulation iterates 

the net water flux across the cell until the end result at interface C2 or C2b from the quasi-

porous layer model for the PEM is the same as the end result at interface C2 or C2b from the 

porous layer model for the cathode GDL or MPL, again depending on whether or not the 

MPL is present. If two-phase conditions exist in the PEM, then convergence is judged by 

comparing liquid phase pressures at interface C2 or C2b. If single-phase conditions exist, 

then convergence is judged by comparing the PEM water content at interface C2 or C2b as 

obtained from the quasi-porous layer model to that calculated from the local activity from the 

porous layer model for the cathode. The general scheme is similar to that applied in the 

previous chapters and shown in Figure 7-2. 
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Figure 7-2 Simulation flowchart for the object-orientated single-cell, two-phase multi-layer 

one-dimensional PEFC model 
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7.5 Experimental Validation 

 

7.5.1 Net water transport per proton 

 

In order to validate the net water transport calculations of the model, eighteen test 

cases are taken from previously published experimental data for a Nafion-based single cell 

tested with E-TEK GDEs [49,54]. The active cell area is 50 cm
2
 and the porosity, tortuosity  

and uncompressed thickness of the gas diffusers are taken as 0.4, 7 and 250 µm respectively 

[49]. Four operating parameters and two parameters associated with the PEM are altered in 

the study; operating current density, cell temperature, relative humidity (RH) (anode supply 

and cathode supply), stoichiometry (anode supply and cathode supply), PEM thickness and 

PEM equivalent weight. The first sixteen results correspond to a cell operated with Nafion 

105 (equivalent weight of 1000 C/equiv. and dry thickness of 127.0 µm) and the remaining 

two to Nafion 112 (equivalent weight of 1100 C/equiv. and dry thickness of 50.8 µm). 

 

The model is validated by comparing the simulated net water flux per proton to that 

calculated from experimental measurements for each test case. Since the net water flux ratio 

α is defined relative to the rate at which hydrogen is oxidised, the net water flux per proton is 

αβ 5.0= . Figure 7-3 compares the simulated and experimental values of the net water flux 

per proton. 

 

A positive value of β corresponds to net water flux in the direction of the cathode 

channel, whereas a negative value corresponds to net water flux in the direction of the anode 

channel. The results show that the model correctly predicts the direction of net water 

transport in all eighteen test cases. The results also show that in all test cases, the predicted 

net water transport from the model is in the same order of magnitude and within reasonable 

agreement of the experimental value. 

 

Cases 1, 2 and 9-16 demonstrate that with both supplies fully humidified, the net water 

transport occurs in the direction of the cathode. This holds true for both non-isobaric 

conditions as evident in cases 1 and 2 and isobaric conditions as evident in cases 9-16. By 

removing anode humidification, the net water flux switches direction and occurs in the 

direction of the anode, as evident in cases 3 and 4. If the cathode humidification is removed 
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Table 7-3 Test cases for model validation 

 

 

Figure 7-3 Comparison of simulated and experimental values of net water flux per proton for 

the 18 test cases 

 

instead, the net water flux continues to occur in the direction of the cathode, as evident in 

cases 5 and 6. Cases 7 and 8 show that when neither supply is humidified, the natural 

tendency is for the net water flux to occur in the direction of the anode. For these test 

conditions therefore the direction of net water flux across the Nafion 105 PEM is more 

sensitive to anode humidification than cathode humidification, applied pressure differentials, 

current density and hydrogen stoichiometry. Under the isobaric conditions of cases 17 and 18 

where the Nafion 112 PEM is used, the net water flux occurs in the direction of the anode 

even with both supplies fully humidified. This indicates that for the test conditions 
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considered, the net effect of water back-transport can be retarded when a thicker PEM with a 

longer transport path is used. 

 

7.5.2 Ohmic Resistance across the PEM 

 

 In addition to validating the net water transport per proton across the cell, it is also 

necessary to predict the water uptake across the PEM and the effect that this has on 

membrane performance. This is performed in two steps in the current study. The first step is 

presented here which focuses on validating the specific resistance across the PEM against 

experimental data under vapour-equilibrated conditions. The second step is presented in 

section 7.5.3 and focuses on the direct validation of water content per charge site across the 

PEM against experimental data obtained from magnetic resonance imaging (MRI) under 

vapour- and liquid-equilibrated conditions. 

  

For a given set of operating conditions, the model can determine the distribution of 

water across the membrane in terms of water content per charge site. By using equation 7-44, 

it is possible to translate this distribution into a profile of proton conductivity across the 

PEM. Conductivity can be inversed to give specific resistance ρρρρ, which has units Ohm-cm. 

 

  In the current study, we use the specific resistance profiles presented by Takaichi et 

al. [73] obtained for a 5cm
2
 active area PEFC with a 200 µm PEM, SGL-25BC based GDL 

and MPL assemblies and operated at 353K with 20% RH. Hydrogen and oxygen are fed to 

the anode and cathode sides of the cell respectively under ambient conditions both at a flow 

rate 0.2 slpm. The 200 µm PEM is fabricated with seven embedded Pt potential probes 

between eight 25.4 µm Nafion NRE211 PEMs, which is then hot-pressed to give a total 

thickness of 200 µm. The potential probes enable the specific resistance profile to be 

determined in-situ. The validation is carried out at four current densities under steady-state 

conditions; 0.2 mA/cm
2
, 0.1 A/cm

2
, 0.2 A/cm

2
 and 0.3 A/cm

2
. The results are presented in 

Figure 7-4. 

 

Figure 7-4 (a) shows that the model is able to reproduce the experimental results 

under these single-phase conditions. The results suggest that the specific resistance at the 

anode increases with current density, while that at the cathode decreases. Figure 7-4 (b) 
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shows the simulated water content profile across the PEM for the simulated profiles of 

specific resistance given in Figure 7-4 (a). These results show that the gradient in water 

content increases with increasing current density; at low current, the distribution in water 

content is generally uniform and linear. However, as current density increases, the anode side 

of the PEM dehydrates while the hydration at the cathode side increases. The water content is 

generally within the band of 3 to 5 water molecules per charge site, demonstrating that under 

these operating conditions the PEM operates well within the vapour-equilibrated limit of 14/ 

 

(a) 

     (b) 

 

Figure 7-4 (a) Specific resistance profile across the PEM for simulated (line) and measured 

(points) results at 0.2 mA/cm2 (♦), 0.1 A/cm2 (▲), 0.2 A/cm2 (●) and 0.3 A/cm2 (■); (b) 

simulated water content 
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7.5.3 Water Content across the PEM 

 

 The purpose of this sub-section is to validate the simulated water content per charge 

site across the PEM when liquid water infiltrates the PEM. This is done by using the water 

content profiles presented by Ikeda et al. [74] deduced from magnetic resonance imaging 

(MRI) scans of a 6cm
2
 active cell area PEFC operated at 70˚C and 0.2 A/cm

2
 with a 254 µm 

thick Nafion-1110 PEM and Toray GDLs. The flow rates of the hydrogen and oxygen supply  

gases are both set to 0.1 slpm at 1 bar. The relatively large thickness of the PEM is 

necessitated in part by the spatial resolution of the MRI system. The results are however 

relevant for the validation of the current modelling framework. Three levels of relative 

humidity (RH) for the supply gases are considered; 40%, 80% and 92%. These particular 

MRI-generated results were chosen because the operating conditions explicitly invoke 

vapour- and liquid-equilibrated water uptake across the PEM. The results are presented in 

Figure 7-5.  

 

 

Figure 7-5 Simulated and measured water content profiles as a function of non-dimensional 

PEM thickness for three levels of supply gas relative humidity; 92%, 80% and 40% [74]. 

  

Figure 7-5 demonstrates that for the test cases considered, the 40% and 80% RH 

states invoke vapour-equilibrated transport across the PEM, whereas the 92% RH state 

invokes vapour- and liquid-equilibrated transport. With 92% RH, the water content per 

charge site exceeds the vapour-equilibrated limit of 14 and approaches the liquid-equilibrated 

limit of 22. With 80% RH, the water content stays below the vapour-equilibrated limit 
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throughout the thickness of the PEM and confined to the range of 5-11 water molecules per 

charge site. With 40% RH, the water content profile is the flattest throughout the thickness of 

the PEM and limited to the range of 2-4 water molecules per charge site.  

 

 The simulated results show that the water content generally increases from the anodic 

boundary to the cathodic boundary. In the case of 92% RH, the simulated results suggest that 

the water content exceeds the vapour-equilibrated limit in the vicinity of the anodic boundary 

and reaches the liquid-equilibrated limit half-way through the PEM. From this point, the 

simulations suggest that all the pores of the PEM are forcibly expanded by the intruding 

liquid water right the way up to the cathodic boundary. In the case of 40% and 80% RH, the 

simulated results suggest a gradual increase in water content from the anodic boundary to the 

cathodic boundary. For all three test cases, the model correctly predicts the magnitude of the 

water content per charge site, and the predicted profiles in all three cases also follow the 

general trend captured by the MRI-based measurements. 

 

There is a noticeable discrepancy between the simulated and measured results in the 

final data point for the 92% and 80% RH cases. It is possible that these final points could 

occur as an artefact of the experimental setup and measurement system. The experimental 

and simulated results from the previous sub-section and Figure 6-2 also suggest that the 

water content should increase continuously through the PEM from the anodic boundary.  

 

It is noted that the measurement of water content profiles through in-situ techniques is 

generally an under-developed area of fuel cell science and engineering, as discussed by St-

Pierre [75]. In order to effectively validate fuel cell models, it is beneficial to augment cost-

effective in-situ measurement techniques by which reproducible water content profiles can be 

determined for experimental fuel cells that employ representative fuel cell materials. 

 

7.6 Conclusions 

 

 The literature identifies that the movement of water in the porous layers of a PEFC is 

described by forms of Fick’s law and Darcy’s law to describe diffusion and convection 

respectively. Diffusion is used to describe the effect of concentration gradients mainly on 

vapour phase transport while convection is mainly used to describe the effect of phase 
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pressure gradients on liquid and vapour phase transport. The local difference in phase 

pressures is used to define the local level of saturation in the porous medium using 

experimental capillary pressure-saturation curves. The literature also shows that water 

movement across the PEM is modelled primarily using dilute solution theory and 

occasionally using concentrated solution theory. The common underlying assumption is that 

transport across the PEM is mainly governed by a vapour-equilibrated state, but this does not 

consider the internal change in structure when the boundaries of the PEM come into contact 

with liquid water. 

 

 In the current work, a common fundamental modelling approach is presented based 

on the previously-developed general transport equation which is used with Darcy’s law to 

describe two-phase transport across both porous and quasi-porous layers of a PEFC. The 

purpose of the two-phase GTE treatment developed in the current work is to demonstrate a 

simple yet theoretically consistent and effective method to predict water uptake and transport 

through the different layers of the PEFC. 

 

The GDL and MPL are treated as porous but deformable structures with 

predetermined levels of hydrophobic fill material. The PEM is treated as a quasi-porous layer 

which contains internal channels that can be forcibly expanded by capillary action when a 

boundary comes into contact with liquid water. This quasi-porous treatment is based on a 

previously presented physical model and directly accounts for Schroeder’s paradox [52]. Cell 

compaction and membrane constraint are also explicitly modelled in the current framework; 

the compaction pressure is used to characterise the capillary pressure-saturation relationship 

for the porous layers and translated into a degree of constraint for the quasi-porous layer to 

characterise water uptake and transport across it relative to its free-swelling equivalent state. 

 

In the context of a simple object-orientated 1D two-phase fuel cell model, the 

calculated results using the GTE treatment are shown to be consistent with the 

experimentally-obtained net water flux data for 18 test cases published in the literature for an 

E-TEK/Nafion configured cell [49,54]. Calculated profiles of water content across the PEM 

under a range of current densities and RH conditions that induce vapour- and liquid-

equilibrated water uptake are also consistent with data measured for SGL/Nafion configured 

cells using embedded potential probes [73] and MRI scanning [74]. The agreement in 
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magnitude - and direction of flow in the validation of net water flux - between calculation 

and measurement confirms the validity of the two-phase GTE treatment. 

 

The current modelling framework successfully demonstrates that multi-component 

two-phase transport in the porous and quasi-porous layers of a PEFC can be effectively 

simulated using the GTE, which is derived directly from fundamental transport theory. The 

object-orientated modelling framework enables a ready assessment of the overall water 

transport and water uptake that occurs through the cell, and also allows a detailed look at the 

constituent transport modes. The theoretical technique therefore demonstrates the common 

nature of electrochemical transport in fuel cell materials and provides a fundamentally 

common mechanistic approach that can be readily applied in order to simulate it. 
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8 Water Transport Studies 

 

In this chapter, the electrochemical PEFC model developed in chapter 7 is applied to 

investigate a number of practical factors that affect water transport across the PEM in a 

PEFC. The effects of PEM thickness, anode humidification and PEM constraint on two-

phase water transport for a cell with a non-reinforced PEM are investigated. The effect of 

structural reinforcement within the PEM on water transport is also investigated.  

 

8.1 Introduction 

 

To test the mechanistic equations developed in chapters five and six, the models 

generated therewith were applied to simulate transport characteristics across the PEFC under 

vapour-phase conditions. However, water transport characteristics across the cell are likely to 

change when the operating conditions and cell configuration invoke two-phase conditions at 

the cathodic PEM boundary and single-phase conditions at the anodic PEM boundary. This is 

a commonly-observed phenomenon in operational fuel cells. The aim of this chapter is to 

generate a basic understanding of how water distributes within the non-reinforced PEM 

under these conditions and how the distribution relates to the underlying transport processes 

using the two-phase model developed in chapter seven. Three rudimentary parameters are 

considered individually in the two-phase study initially; PEM thickness, anode 

humidification and cell compression. The study then holistically considers the effect of all 

three parameters on the Ohmic resistance of the PEM.  

 

The final part of this chapter focuses on structurally-reinforced membranes and aims 

to elucidate the effect that structural reinforcement has on water transport. The model is 

applied to simulate measured data points for resistance across the polymer electrolyte, which 

are obtained using electrochemical impedance spectroscopy (EIS). For each simulated data 

point, the model reveals the magnitude of the underlying transport mechanisms and the water 

content, which is collected and discussed. 
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8.2 Non-Reinforced Membranes 

 

To carry out water transport studies for a PEFC with a non-reinforced PEM, a number 

of simulations were run to determine a general set of representative fuel cell operating 

conditions where two-phase transport within the layers of the cell can be achieved without 

completely flooding the cathodic porous layers. These parameters are summarised in Table 

8-1. These parameters were used for all simulations in this chapter unless stated otherwise. 

 

Parameter Value 

Anode supply conditions 

Anode inlet pressure 1 bar 

H2 supply flow rate 0.5 slpm 

Anode RH 0% 

Cathode supply conditions 

Cathode inlet pressure 1.5 bar 

Air supply flow rate 0.5 slpm 

Air humidification temperature 363.15 K 

Cathode RH 100% 

Cell Parameters 

Active cell area 25cm
2
 

Cell temperature 333.15 K 

Cell compression 0 MPa 

GDL Properties – Anode and Cathode [1] 

GDL porosity 0.9 

GDL thickness 300 µm 

GDL tortuosity 1.5 

GDL PTFE content 5% 

GDL permeability 1×10
-8

 cm
2
 

MPL Properties – Anode and Cathode [1,2] 

MPL porosity 0.4 

MPL thickness 25 µm 

MPL tortuosity 1.5 

MPL PTFE content 23% 

MPL permeability 1×10
-9

 cm
2
 

Table 8-1 Base operating conditions & material properties used in the PEFC model for the 

water transport studies, unless otherwise stated. 
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8.2.1 PEM Thickness 

 

 The PEM is characterised by two fundamental properties that can be set through 

material selection, namely the equivalent weight and the thickness of the PEM. Early PEFCs 

commonly employed Nafion 117 which has an equivalent weight of 1100 g/mol and 

thickness of 7 mils (178 µm). However modern PEMs are typically much thinner and can be 

structurally reinforced. Examples include Gore-18 and Gore-25 which have 18 and 25 µm 

thicknesses respectively. Non-reinforced membranes include DuPont-manufactured Nafion 

1135, NRE-211 and NRE-212 which have 89, 25 and 51 µm thicknesses respectively. The 

equivalent weight of the reinforced membranes is typically 950 g/mol whereas the non-

reinforced membranes have the same equivalent weight as Nafion 117. The structural 

reinforcement can limit the diffusivity of water across the polymer electrolyte, which affects 

net water transport. This will be investigated separately in section 8.3. This sub-section will 

focus on the effects of PEM thickness at an equivalent weight of 1100 g/mol. 

  

The transition towards thinner PEMs has occurred because the thinness of the PEM 

can enhance its hydration and therefore its proton conductivity under working fuel cell 

conditions, as shown by single-phase simulations [3]. The precise effect that the thickness of 

the PEM has on two-phase transport across it is relatively less well-defined. The effect of 

five PEM thicknesses are considered in the current study; 25.4, 36.8, 50.8, 63.5 and 76.2 µm. 

 

Figure 8-1 shows the expanded thickness of the unconstrained PEM according to the 

simulated water uptake. Figure 8-1 also shows that in all five cases, the thickness of the free-

swelling PEM increases by over 10% of its original value. The percentage expansion falls as 

a function of PEM thickness suggesting that the thinner membranes are most susceptible to 

dimensional change as a consequence of water uptake for the simulated conditions. For the 

conditions given in Table 8-1, the anodic porous layers do not experience liquid phase 

transport; however, the cathodic porous layers do which results in a liquid phase boundary 

pressure at the cathodic PEM interface. The single phase boundary conditions at the anode 

interface and two phase boundary condition at the cathode interface result in a transitional 

regime across the PEM where both vapour- and liquid- equilibrated networks co-exist. Figure 

8-2 shows the water content profile across the PEM while Figure 8-3 shows the liquid 

pressure and corresponding pore expansion profiles. 
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Figure 8-1 Expanded membrane thickness and percentage change in thickness as a function 

of the original thickness for five simulated PEM thicknesses 

 

Figure 8-2 shows that for all five cases the water content through the PEM increases 

above 14 water molecules per charge site. Because of the single-phase boundary conditions 

at the anode, the local water content at this interface is well below 14 for all cases. In the case 

of the 25.4 µm PEM, the interfacial water content approaches 10. From Figure 8-2, it can be 

seen that the λ=14 limit is reached within a short distance from the anodic boundary in the 

thinner PEMs. The liquid phase therefore penetrates a greater proportion of its thickness from 

the cathode interface than in the thicker PEMs, as evident in Figure 8-3 (a).  

 

Figure 8-3 (b) shows the pore expansion that results from the intrusion of the liquid 

phase. For the boundary conditions considered here, the pore expansion occurs gradually, 

increasing steadily from zero where the vapour-only regime ends towards unity at the 

cathodic PEM boundary. The actual depth of liquid penetration is between 14 µm and 17 µm 

for all five cases as shown in Figure 8-4 which indicates that the thickness of the PEM does 

not significantly control the absolute depth of liquid water intrusion. 
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Figure 8-2 Water content profile as a function of non-dimensional position along the 

expanded PEM thickness for the five different PEM thicknesses 

 

(a)  

 

(b) 

Figure 8-3 Liquid intrusion profiles for five different PEM thicknesses as a function of non-

dimensional position along the expanded PEM thickness. (a) Liquid pressure; (b) pore 

expansion profile. Note that the x-axis starts at 0.4. 
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Figure 8-4 Depth of liquid water penetration from cathodic PEM boundary for five PEM 

thicknesses. 

 

Figure 8-5 shows the direction and magnitude of the net water transport per proton, 

β , across the PEM and Figure 8-6 resolves the vapour and gas phase components of net 

water transport within the PEM as a function of thickness for the five thicknesses considered. 

The components of net water transport per proton in the vapour- and liquid- equilibrated 

networks can be calculated as; 

 

( ) ( )
2

11
α

ββ epfepfvap ss −=−=  
(8-1) 

2

α
ββ epfepfliq ss ==  

(8-2) 

 

The calculated results given in Figure 8-5 show that for the simulated conditions, the net 

water flux occurs in the direction of the anode and is mainly dominated by vapour phase 

transport. It should be noted that the magnitude of the average vapour and liquid phase 

components of net water flux do not reflect the continuous flow of water in their respective 

phases from one boundary of the PEM to the other, but the thickness-averaged fluxes that 

occurs in the collapsed and expanded regions of the PEM. Figure 8-5 indicates that the 

contribution of liquid phase flow generally remains unchanged as the thickness of the PEM is 

increased and that its average flux always occurs in the direction of the cathode.  
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Figure 8-5 Net water transport per proton and average vapour and liquid phase components 

for five PEM thicknesses  

 

Figure 8-6 shows that in all five cases, there is a steady vapour-phase flux across the 

PEM in the regions where there is no liquid water intrusion and no corresponding liquid 

phase flux. However, in the regions where liquid water does intrude the PEM, both vapour 

and liquid phase fluxes change non-linearly in the shape of two opposing arcs. The liquid 

phase flux increases from zero heading in the direction of the cathode, peaks, and then 

decreases. The vapour phase flux increases in magnitude from the steady-state value for the 

vapour-only regime heading in the direction of the anode, peaks and then decreases. In the 

case of the thinner PEMs, because the relative depth of liquid infiltration is greater, the bi-

modal non-linear transport develops at a much closer distance to the anode than in the case of 

the thicker PEMs where it is retarded towards the cathode. In order to understand the nature 

of the non-linearity, attention has to be turned to the underlying phenomenological transport 

processes. 
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Figure 8-6 Water flux per proton as a function of non-dimensional position along PEM 

thickness. Grey - liquid phase;  black – vapour. (♦) 25.4 µm; (+) 38.1 µm; (■) 50.8 µm; (●) 

63.5 µm; (▲) 76.2 µm. 

 

Theoretically, the general transport equation given in equation (7-15) can be resolved into 

six components of net water transport, namely that due to proton movement, convection and 

diffusion each in liquid phase and vapour phases. The magnitude of each component can be 

derived as: 
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 and by definition 

JdiffJconvJHJ ,,, ββββ ++=
+

 (8-6) 
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where J  denotes phase. The water flux due to proton movement occurs as a combination of 

proton diffusion and electro-osmotic proton flux due to the electric field. The net water 

transport per proton flux is defined as; 

 

∑∑ += liqvap ,mode,mode βββ  (8-7) 

 

Based on these parameters, it is possible to resolve the liquid and vapour curves for the 25.4 

µm PEM given in Figure 8-6 into constituent parts. Figure 8-7 shows the corresponding 

water transport curves as a function of PEM thickness fraction. Convection in the vapour-

equilibrated network is assumed to be negligible according to the assumptions of the model, 

and so 0, =vapconvβ .  

 

From the results in Figure 8-7 it becomes immediately evident that water transport 

across the PEM is mainly dominated by its diffusion through the PEM and its interaction 

with proton movement. Along the first 50% of the thickness of the PEM, water transport is 

dominated by diffusion and proton-induced flux in the vapour-equilibrated network in the 

absence of liquid water infiltration. The diffusive flux occurs in the direction of the anodic 

boundary where there is less water than the cathode boundary, as evident in Figure 8-2. The 

proton flux occurs in the opposite direction, which causes the proton-induced water flux in 

the vapour-equilibrated network to occur in the direction of the cathode as well. From these 

two transport modes, it is the diffusive flux which is greater in magnitude and therefore 

results in a net water flux in the direction of the anode. Along the latter 50% of the thickness 

of the PEM, both vapour- and liquid-equilibrated transport modes occur, which results in 

additional diffusive and a proton-induced water flux in the liquid-equilibrated network. As 

the infiltration of liquid water and the pore expansion increases towards the cathodic 

boundary, the magnitude of the fluxes in the vapour-equilibrated networks tail-off, while the 

liquid phase fluxes in the liquid-equilibrated networks become more dominant and increase 

in magnitude. These characteristics explain the non-linear nature of the liquid and vapour 

components of the net water flux described in Figure 8-6. In an identical manner to the 

vapour phase fluxes, the liquid phase diffusive flux occurs in the direction of the anode, 

whereas the proton-induced flux occurs in the direction of the cathode. The interesting 

observation here for liquid phase transport is that it is the proton-induced flux which 

marginally dominates over the diffusive flux and results in an average liquid phase flux that 
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occurs in the direction of the cathodic boundary, as indicated by Figure 8-5. This can be 

attributed to equation 7-45 which reflects the fact that the electro-osmotic drag coefficient in 

a liquid-infiltrated region will be higher than in the collapsed regions. These basic 

characteristics are generally true for the remaining four membrane thicknesses as well, and so 

do not need to be discussed individually. 

 

 

Figure 8-7 Vapour and liquid phase components of net water transport as a function of 

position along PEM thickness for the 25.4 µm PEM case. 

 

 Figure 8-8 confirms that the gradient in water content throughout the thickness of the 

PEM is greatest in the thinner membranes, which invokes a large diffusive component of net 

water transport towards the anode, particularly in the dominant vapour-equilibrated network 

as observed in Figure 8-5 – Figure 8-7. As the thickness increases, the gradient in water 

content reduces, which will reduce the diffusive component of net water transport for both 

phases. Interestingly, for the five thicknesses considered the gradient in water content in 

general increases quite suddenly in the liquid-infiltrated region. The large consequent 

diffusive flux created towards the anode in the liquid phase as shown in Figure 8-7 is 

however not sufficient to overcome the proton induced flux in the opposite direction.  
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Figure 8-8 PEM water content profile as a function of the non-dimensional membrane 

position for five PEM thicknesses. The gradient in water content 'λ  is defined as the local 

change in water molecules per charge site divided by the length increment in µm. 

 

8.2.2 Anode Humidification 

 

 One way of improving the hydration of the PEM from the anodic boundary is to 

humidify the fuel supply, although there is a system-level penalty to be paid for the increased 

complexity. Although the implications of anode humidification on water uptake has been 

well defined for single-phase vapour-equilibrated conditions, it is less well defined for when 

liquid water intrudes the PEM. Figure 8-9(a) shows the calculated water content as a function 

of PEM thickness fraction for the five thicknesses considered in the previous subsection; all 

operating conditions are the same as those given in Table 8-1 apart from the anode RH which 

is now set to 100%. Compared to Figure 8-2, it is evident that fuel humidification directly 

improves the hydration of the PEM from the anodic boundary. In the case of the 25.4 µm 

PEM, the water content at the anodic boundary has increased from around 10 water 

molecules per charge site to 13. In the case of the 76.2 µm PEM, the water content at the 

same interface has increased from above 2 molecules per charge site to around 6. Figure 8-

9(b) shows that the additional humidity affects the liquid water network in the PEM. 

Compared to Figure 8-3, it can be seen that the liquid network intrudes a much larger 
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proportion of the membrane thickness. For the 25.4 µm PEM, the liquid water network now 

intrudes around 85% of its thickness and over 35% in the case of the 76.2 µm PEM. 

 

(a) 

(b) 

Figure 8-9 Liquid intrusion profiles for five different PEM thicknesses as a function of non-

dimensional position along the expanded PEM thickness. (a) Water content; (b) liquid 

intrusion pressure profile.  

 

Figure 8-10 shows the net water flux per proton across the PEM for each of the five 

cases, and the constituent average parts in vapour- and liquid- equilibrated networks. The 

results here are different to those in Figure 8-5. The average water transport per proton in the 

liquid network occurs in the direction of the anodic boundary, as observed previously. 

However, with the addition of anode humidification, the average vapour phase transport 

occurs in the direction of the cathodic boundary. This can be explained by Figure 8-11, 
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which shows the diffusion and proton-induced components of the vapour-equilibrated flux 

for the 38.1 µm PEM. The results suggest that with anode humidification, because the PEM 

is inherently better hydrated, the magnitude of the drag component induced by proton flux 

towards the cathodic boundary is greater relative to the magnitude of the diffusive 

component in the opposite direction. The net vapour phase component is therefore positive. 

The exception to this observation is the 25.4 µm PEM, which suggests a dependence on 

membrane thickness.  

 

For the 25.4 µm PEM, Figure 8-11 (a) shows that the proton-induced flux is greater 

than the diffusive flux in the vapour-only region closest to the anode. However, the proton-

induced vapour phase flux decreases in magnitude more abruptly than the diffusive vapour 

phase flux as liquid infiltration increases towards the cathode. Overall, therefore, the 

diffusive flux dominates in the vapour-equilibrated network and results in a net vapour phase 

flux occurring in the direction of the anode, as shown in Figure 8-10. The proton-induced 

flux is continuously greater in magnitude than the diffusive flux in the liquid-equilibrated 

network, which explains the observation of Figure 8-10 and results in a large net liquid-phase 

flux occurring in the direction of the cathode. 

 

 

 

Figure 8-10 Net water transport per proton and average vapour and liquid phase components 

for five PEM thicknesses. Anode and cathode supplies are saturated 
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(a) 

 

(b) 

Figure 8-11 Vapour and liquid phase components of net water transport as a function of 

position along PEM thickness with both fuel supplies fully humidified. (a) 25.4 µm case; (b) 

38.1 µm case. 

 

8.2.3 PEM Constraint 

 

 Operational fuel cells are typically compressed to minimise reactant leaks from the 

peripheries and to ensure good contact between the electron-conducting layers of the cell. In 

an unconstrained state, the PEM has a natural tendency to swell with water uptake. If the 

compressive force applied to the cell is sufficiently high, the PEM may also become 

physically compressed under certain operating conditions. If on the other hand the 
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compressive force is relatively low, it may allow the PEM to swell and may subsequently 

impart a compressive force onto the adjacent layers of the cell. By limiting the natural 

tendency of the PEM to swell, there is a reduction in the amount of water that the polymer 

end groups can hold. This may affect water management strategies and could affect cell 

performance. The purpose of this part of the study therefore is to examine what role 

membrane constraint has on net water transport and water uptake when the PEM is subjected 

to two-phase conditions at the cathodic boundary. 

  

Figure 8-12 (a) shows the effects of compression on the thickness of the 25.4 µm 

PEM. In the unconstrained state, the thickness of the PEM increases by over 15% of its dry-

state value. However, as constraint is increased, the expansion is curtailed. The point of zero 

dimensional change occurs in this case when the degree of constraint is just above 0.4. In the 

fully constrained state, the thickness of the PEM is reduced by around 25% of its dry-state 

value. The effect on the average water content is shown in Figure 8-12 (b). Figure 8-12b 

shows the average water content within the PEM and also the average water content within 

the PEM normalised to the thickness of the free-swelling PEM. The average water content 

within the PEM increases with constraint, suggesting that compression causes water 

molecules to become packed much closer together. However, when normalised to the 

thickness of the free-swelling PEM, the results confirm that the PEM holds much less water 

when it is compressed than when it swells freely, as would be reasonably expected. Relative 

to the free-swelling PEM which holds 14.6 molecules per charge site, a fully constrained 

PEM holds 10.6 molecules per charge site. The effect on net water transport is shown in 

Figure 8-12c. The average water content is calculated relative to the thickness of the free-

swelling PEM. The results show that the average water content drops with increasing 

constraint from a free-swelling value of 14.6 to a fully constrained value of 10.6. The net 

water transport occurs in the direction of the anodic boundary regardless of constraint, but its 

magnitude marginally increases with respect to increasing constraint. Considering the 

average vapour- and liquid-equilibrated transport components of net water transport shows 

that both diverge with constraint. The liquid-equilibrated component increases in magnitude 

in the direction of the cathodic boundary with increasing constraint and the vapour-

equilibrated component also increases in magnitude but in the direction of the anodic 

boundary. These changes in water transport are attributed to the effect of constraint on the 

thickness of the PEM. A reduction in overall thickness causes the gradient in water content 
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and extent of liquid infiltration within the PEM to increase causing the diffusive and electro-

osmotic drag components to increase respectively.  

 

 

           (a) 

     (b) 

 (c) 

Figure 8-12 Compression effects on PEM thickness, water content and water transport; (a) 

change in PEM thickness as a function of degree of constraint; (b) change in average water 

content; (c) water flux profiles. 
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Figure 8-13 (a) shows the superficial gradient in water content as a function of constraint, 

calculated as;  

 

cmem

bCbA

t ,

22 −−
−

=∇
λλ

λ  
(8-8) 

 

(a) 

   (b) 

Figure 8-13 Effect of PEM constraint on PEM water content and liquid infiltration. (a) 

Superficial gradient in water content as a function of degree of constraint; (b) liquid network 

intrusion pressure as a function of non-dimensional PEM thickness for different degrees of 

constraint. 
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The gradient increases with constraint, which allows the magnitude of the diffusive 

component of net water transport to increase. Because the diffusive flux is more dominant in 

the vapour phase, it causes the vapour component of net water transport to increase in 

magnitude with constraint, as shown in Figure 8-12(c). Figure 8-13 (b) shows the intrusion 

pressure of the liquid water network for different levels of constraint. The results suggest that 

greater constraint allows the liquid water network to penetrate a greater proportion of the 

thickness of the PEM. As a result, the increase in local water content allows more water to be 

electro-osmotically dragged back to the cathode. This causes the liquid component of net 

water transport to increase with constraint as shown in Figure 8-12(b) because the water flux 

due electro-osmotic drag is most dominant in the liquid phase. 

 

8.2.4 Parameter Effects on PEM Resistance 

 

 It is possible to generate a holistic understanding of the combined effects of PEM 

thickness, compression and anode humidification by considering the resistance across the 

PEM. The proton conductivity at each mesh point across the PEM can be calculated using 

equation 7-44 as a function of the local volume fraction of water, which itself is calculated as 

a function of the local water content using equation 7-19. The resistance across the 

constrained PEM is then calculated as [3]; 

 

∫ ⋅=

consmemt

proton
dzr

,

0

1

σ
 

(8-9) 

 

In this part of the study, all five thicknesses are considered with increasing degrees of 

constraint and three states of inlet humidification. All other conditions are kept the same as 

those given in Table 8-1. The following three states are considered in Figure 8-14 (a) – (c): 

• Figure 8-14 (a): anode saturated to 60°C, cathode saturated to 90°C 

• Figure 8-14 (b): anode dry, cathode saturated to 90°C 

• Figure 8-14 (c): anode dry, cathode saturated to 60°C 

The first two states ensure a partial pressure of liquid water at the cathodic interface. The 

third state ensures that water only exists in vapour phase at the cathodic interface. 
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Figure 8-14 (a) shows that by humidifying both supplies and by ensuring that the 

cathodic boundary of the PEM is in contact with liquid water, the Ohmic resistance of the 

PEM can be kept generally lower than 0.1 Ohm-cm
2
. Figure 8-14 (b) shows that by removing 

the anode humidification, the Ohmic resistance increases. For the thicker membranes, the 

effect is more drastic but generally speaking the Ohmic resistance is well below 1 Ohm-cm2. 

Figure 8-14 (c) shows that by removing the anode humidification and by reducing the 

saturation temperature of the cathode supply from 90°C by 30°C - thereby invoking a 

vapour-equilibrated only transport mode - the Ohmic resistance increases furthermore and 

can be well above 1 Ohm-cm
2
 in the thicker membranes. Figure 8-14 (a) – (c) also show that 

for all the cases considered, it is the thinnest membranes have the least Ohmic resistance. 

Overall, the results suggest that the liquid water at the cathodic boundary can help to reduce 

the resistance across the PEM. The simulated phenomenon can be attributed to the increase 

in local water content that occurs throughout the thickness of the PEM when liquid water 

intrudes the PEM from the cathode boundary, and results in a corresponding increase in local 

conductivity. 

 

Another observation from all three graphs in Figure 8-14 is that the resistance of the 

PEM decreases with increasing membrane constraint. Referring back to the previous 

discussion on membrane constraint, it has been established that by constraining the 

membrane, the PEM will hold less water than its free-swelling equivalent state and also that 

by increasing constraint the PEM is less likely to expand beyond its dry state and more likely 

to shrink in thickness. The results of Figure 8-14 suggest that the decrease in water content 

with respect to constraint is less severe than the simultaneous decrease in thickness. This 

means that the net effect of membrane constraint is to tighten the distribution of water 

clusters within it because even though the water content drops slightly, the overall volume of 

the PEM decreases more substantially and causes the volume fraction of water to increase. 

This is shown in Figure 8-12b. Consequently under these conditions, it is feasible for the 

pathways for proton conduction to improve because the charged end groups are packed 

closer together. These results are consistent with discussions in the literature [4]. 

 

From a molecular viewpoint, it is well known that proton movement can be orientated 

by two mechanisms, namely vehicular transport and Grottus hopping [5,6]. In the first of 

these, it is assumed that protons bind with water to form hydronium complexes (H3O
+) which 

diffuse as molecular ions down a concentration gradient [7]. In the second, it is assumed that 
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the protons essentially hop from one water molecule to the other independently without 

relying upon water as a vehicle. In both of these mechanism, there is a clear dependence on 

the local water content and the closeness of water clusters throughout the PEM. Based on the 

dependence of conductivity on the volume fraction of water the modelling results suggest 

that the net proton transport mechanism is improved particularly when liquid water infiltrates 

the PEM. The results have already shown that depending upon the thickness of the PEM, the 

infiltration of liquid water can indeed increase the water content markedly. The results also 

suggest that by constraining the membrane, there is an effect on the arrangement of the 

hydrophilic domains within the PEM whereby water clusters are forced closer together even 

though the total amount of water that the PEM holds can be forcibly reduced. Membrane 

constraint therefore also appears to improve the net proton transport mechanism. In 

conclusion, therefore, the best scenario for proton conductivity appears to be in a regime 

where liquid water is allowed to infiltrate the PEM in order to proliferate local water content, 

and which is also constrained in order to tighten the distribution of water clusters within it. 

The modelling results suggest that this can be achieved with a thin PEM which is constrained 

and operated with a cathodic boundary that is in contact with liquid water.  

 

There are a number of clear limitations to this conclusion. First, it has to be 

acknowledged that the repeated infiltration and expulsion of liquid water in and out of the 

PEM could hasten the onset of performance degradation and cell failure as discussed in 

Chapter 3. Figure 8-1 would suggest that this is especially true for thin PEMs which are most 

prone to aggressive dimensional change. Second, it also has to be acknowledged that the 

thickness of the PEM limits the rate of fuel and contaminant crossover as shown in Chapters 

5 and 6 respectively, although both are also inversely proportional to current density. Third, 

the liquid water at the cathodic boundary has to be established without flooding the porous 

layers. Although the flooding of porous layers has not been explored explicitly in the current 

study, it can be controlled by the physical parameters of the GDL and MPL. 
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(a) 

 

(b) 

 

(c) 

Figure 8-14 Resistance maps for different levels of constraint and PEM thicknesses. (a) 

anode saturated to 333.15 K and cathode saturated to 363.15K (P(liq) > 0 at the cathode); (b) 

dry anode and cathode saturated to 363.15 K (P(liq) > 0 at the cathode); (c) dry anode, 

cathode saturated to 333.15 K (P(liq) = 0 at the cathode) 

 

8.3 Structurally-Reinforced Membranes 

 

 Structurally-reinforced PEMs are being increasingly used in modern PEFCs. As 

discussed in the preceding chapter, these membranes contain an inert matrix which is 

impregnated with polymer electrolyte in order to achieve electrochemical and mechanical 

properties that the polymer electrolyte cannot provide on its own. The two predominant 

characteristics that are sought are: 

 i.  low shrinkage upon hydration 
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 ii. high mechanical strength 

These properties ensure dimensional stability and therefore durability under PEFC operation 

conditions. It is the inert matrix - which is typically based on PTFE - that provides the 

structural reinforcement. The PTFE can take the form of a porous sheet (20-30% wt.% 

reinforcement), an embedded yarn (10 wt. % reinforcement) or as a fibril dispersion (2-5 wt. 

%). The reinforcement can allow the thickness of structurally-reinforced membranes to be as 

low as 5 – 20 µm [8]. While the literature demonstrates that structurally reinforced 

membranes can exhibit a life-time that is one order of magnitude longer than non-reinforced 

membrane of comparable thickness [9], what is not so clear is the effect that reinforcement 

has on water transport characteristics. Ye and Wang [10] determined the transport properties 

of water through structurally-reinforced membranes and noted the following based on high-

frequency response measurements: 

1. electro-osmotic drag coefficient: the drag coefficient held a value of around 

1.07 over a large relative humidity range between 40% and 95% 

2. diffusion coefficient: the diffusion coefficient of water was likely to be 

anywhere between a factor of 0.1 and 0.9 of that for a non-reinforced Nafion 

membrane over a large range of water contents (it was inferred that 

measurements were carried between 4 and 15 water molecules per charge 

site). 

The electro-osmotic drag coefficient is consistent with that measured for Nafion (preceding 

section) for vapour equilibrated conditions. This therefore suggests that the reinforcement 

does not affect the mechanism by which water is dragged due to proton migration. The 

diffusivity of water, however, is clearly affected. One possible mechanism could be the 

hydrophobic nature of the PTFE, which may be limiting the mobility of water molecules 

within the PEM and therefore restricting its diffusivity. The purpose of this investigation is to 

simulate and understand the measured proton conductivity of a PEFC employing a 

structurally-reinforced PEM over a range of operating conditions. 
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8.3.1 Experimental 

 

Materials 

 

For the purposes of the current study, an 18 µm structurally-reinforced PEM which is 

coated with anode and cathode catalyst (SR-CCM) is employed with an equivalent weight of 

950 g/mol, dry density of 2 g/cm
3
 and footprint of 193.67 cm

2
. Two sets of results are 

considered in the present study to reveal the characteristic behaviour of the SR-CCM. In the 

first case (case 1), two standard GDL-MPL assemblies were employed on both sides of the 

SR-CCM; characteristic properties are estimated from the literature [1,11]. The standard 

material contains a carbon-paper GDL with a bulk porosity of 0.9, nominal thickness of 300 

µm and PTFE content of 5 wt%. The bulk porosity of the MPL is 0.4 and has a nominal 

thickness of 25 µm and PTFE content of 40 wt %. In the second case (case 2), the standard 

GDL-MPL assembly employed for the cathode is replaced with a similar GDL-MPL 

assembly that contains no PTFE in the GDL.  

 

Experimental Setup 

 

A single-cell fixture with a serpentine flow channel was used as the test cell. A 

bespoke system with digital mass flow controllers, data acquisition and an RBL-100-300-

2000 programmable load bank was used for gas supply, humidity control and electronic load 

control. An Autolab 302N frequency response analyser and potentiostat were used for in-situ 

proton conductivity measurements based on electrochemical impedance spectroscopy (EIS). 

Zview software (Scribner Associates, Inc.) was used to analyse the collected AC impedance 

data. 

 

Experimental Procedure 

 

The compaction pressure applied to the cell is 1.5 MPa. Figure 20 provides the flow 

rates and equivalent calculated stoichiometries of the anode and cathode as a function of 

current density when operated with humidified hydrogen and dry air respectively. The 
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cathode is operated open-ended while the anode is dead-ended and purged periodically to 

remove any condensate in the anode flow fields. The anode inlet pressure is set to 1.5 bar 

while the cathode inlet pressure is increased from around 1.0 bar to around 1.1 bar with 

current density. The EIS measurements are taken from the cell over a range of operating 

current densities (0.5 – 0.9 A/cm2). It is assumed that the x-intercept on the Nyquist plot of 

the PEFC frequency response reflects the total resistance of the cell, i.e., the sum of 

resistance to the flow of protons and electrons. The resistance to the flow of electrons in the 

electron-conducting parts of the cell such as the end plates and carbon substrate porous layers 

were measured ex-situ (at nominal thicknesses where appropriate) and determined to be 42 

mΩ-cm2 for the standard case and 40 mΩ-cm2 for the second case. It is assumed that these 

values are not likely to change in-situ and therefore assumed to be constant. Subtracting these 

figures from the measured x-intercept gives the value of Ohmic resistance to proton flow, 

which is characterised primarily by the proton conductivity of the PEM. This is likely to 

change in-situ due to the operating conditions of the cell and the water uptake that occurs as a 

result. In this investigation, the resulting resistance of the PEM is simulated using the model 

developed in the previous chapter. 

 

 

Figure 8-15 Applied anode (♦) and cathode (■) flow rates in standard litres per minute 

(black) and calculated stoichiometries (grey) 

 

8.3.2 Results and Discussion 

 

In order to investigate the effect of SR-CCMs on water transport, the diffusivity 

scaling factor in the PEFC model is tuned until the simulated resistance to proton flow 
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predicted by the model agrees with that obtained from measurement. In doing so, each 

current density is simulated turn-by-turn using the measured boundary conditions of the 

channel gases (flow rates, pressures, inlet gas temperatures), and the average cell temperature 

which is estimated from the measured inlet and outlet temperatures of both anode and 

cathode supplies. Figure 8-16 shows the membrane resistance from measurement, the 

simulated membrane resistance and the tuned diffusivity scaling factor for both test cases. 

Interestingly, the tuned values for the scaling factor result in an almost straight-line 

relationship with current density intersecting the origin for both test cases yet generate very 

close correlations between the simulated and measured membrane resistance, which have a 

non-linear dependence on current density. The simulations suggest that for test conditions 

considered, the diffusivity scaling factor lies in the range of 0.02 – 0.4. 

 

 

Figure 8-16 Membrane resistance and tuned diffusivity scaling factor as a function of current 

density. (     ) measured case 1 (aGDL/cGDL: 5/5 wt. % PTFE); (    ) measured case 2 

(aGDL/cGDL: 5/0 wt.% PTFE); (           ) simulated values. 

 

Figure 8-17 shows the simulated thickness-averaged water content curves which 

correspond to the results of Figure 8-16. The results show that the water content is initially 

low for both cases but rises sharply and peaks in the 0.2 – 0.25 A/cm
2
 band. This results in 

the initial fall in membrane resistance observed in Figure 8-16. Thereafter, the water content 

gradually falls, which results in the high membrane resistance observed in Figure 8-16 for 

both cases up to 0.9 A/cm2. The low initial water content can be explained by the drying 

effect that is caused by the high initial stoichiometries of the cathode supplies, noting that the 

cathode gas is supplied dry. This causes the cell to loose the small amounts of moisture 
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generated in the form of product water in the cathode catalyst layer. As the stoichiometry 

settles to around 2 for both supplies after 0.2 A/cm
2
, the subsequent changes in water content 

are less abrupt. 

 

 

Figure 8-17 Simulated thickness-averaged water content as a function of current density for 

case 1 and case 2 as a function of current density. 

 

Figure 8-18 shows the electro-osmotic drag and diffusive components of net water 

flux across the PEM. Figure 8-18(a) shows that the electro-osmotic drag component 

increases in almost direct proportion to current density. Figure 8-18(b) however shows that 

the diffusive component has a non-linear dependence on current density. The initial diffusive 

flux is high in magnitude, which demonstrates that the concentration gradient is sufficiently 

high to drive transport across the PEM from the cathodic boundary to the drier anodic 

boundary even though the scaling factor is limiting the diffusion coefficient. Because the 

stoichiometry of the cathode supply is high up to 0.25 A/cm2, the drying effect begins to 

limits the concentration of water at the cathodic PEM boundary and therefore reduces the 

diffusive flux. As current density increases to 0.9 A/cm
2
, the production of water increases 

while the cathode stoichiometry decreases, which has the net effect of increasing the 

concentration of water at the cathodic PEM boundary. This has the effect of increasing the 

water content gradient across the PEM and therefore increases the magnitude of the diffusive 

flux. Overall, therefore, the non-linearities observed in Figure 8-16 – Figure 8-18 occur as a 

result of the operational setup in terms of reactant supply and the subsequent effect on 

membrane hydration.  
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(a) 

(b) 

(c) 

Figure 8-18 (a) Electro-osmotic drag (b) and diffusive components of (c) net water flux  

across the PEM as a function of current density. Test case 1 (♦); test case 2 (■). 
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What remains to be explained is the difference in the tuned diffusivity scaling factor 

between cases 1 and 2 which appears to enhance both electro-osmotic and diffusive fluxes 

across the PEM, as shown in Figure 8-16. In order to explain this, attention is turned to 

Figure 8-19 which shows the calculated membrane thickness for each case. The results show 

that the highly-constrained PEMs do not undergo aggressive dimensional change. For both 

cases the simulations suggest that the change in thickness between the two cases is around 

0.1% of the nominal thickness of 18 microns. However, the results reveal that from the two 

cases, it is the second which allows the greatest amount of expansion; case 1 allows a 1.7% 

expansion whereas case 2 allows a 1.8% expansion. This marginal difference can be 

attributed to the difference in PTFE contents in the cathode GDLs. For case 2, there is no 

PTFE in the cathode GDL which appears to allow slightly more expansion than for case 1 

where the cathode GDL is arguably more rigid due to the 5 %wt. PTFE content. The results 

therefore suggest that the diffusivity scaling factor may have a dependence upon the 

compressed state of the SR-CCM. Even though the difference in expansion is only 0.1% of 

the nominal thickness, the effect on the scaling factor is more profound; at 0.9 A/cm
2
 the 

diffusivity scaling factor is limited to 0.3 for case 1 whereas it increases to 0.4 for case 2. 

Therefore, because the water is more mobile in case 2, the magnitude of its diffusive flux 

ratio is greater in magnitude than case 1 (in the direction of the anode from the cathode). This 

improves the hydration of the PEM but also allows a slight increase in the electro-osmotic 

drag (in the opposite direction from anode side to cathode side).  

 

Interestingly, Figure 8-18(b) suggests that it is the diffusive flux that is greater in 

magnitude than the electro-osmotic drag flux under the test cases considered, bearing in mind 

that the cathode supply is at a lower pressure than the dead-ended anode supply. The results 

suggest that the structural reinforcement that naturally curtails the diffusive flux and limits 

the water content of the PEM also therefore retards the amount of water that can be electro-

osmotically dragged back. Therefore water is allowed to travel in the direction of the anode, 

which may assist in delaying the onset of mass transport limitations due to cathode flooding. 

This phenomenon could be inherent to most low-pressure applications of SR-CCMs in 

PEFCs. 

 



8   Water Transport Studies 208

 

Figure 8-19 Change in PEM thickness as functions of current density. (♦) Case 1; (■) case 2. 

 

8.4 Conclusions 

 

The multi-layer 1D two-phase fuel cell model developed in Chapter 8 has been 

applied to examine water transport and water uptake characteristics through the PEM when 

the cathodic PEM boundary is in contact with liquid water. The conclusions are: 

 

1. The effect of PEM thickness - The simulated results show that for a given set of operating 

conditions, the depth of liquid water penetration from the cathodic boundary is largely 

unaffected by the thickness of the PEM when unconstrained. The results show that the net 

water flux per proton in the liquid network of the PEM also remains largely unaffected by the 

thickness of the PEM, but that the same does not hold true for transport in the vapour-

equilibrated mode. The magnitude of the net water flux in the vapour-equilibrated mode 

decreases with increasing PEM thickness, suggesting that a longer transport path can retard 

the vapour-phase transport across the PEM. Overall, therefore, net water transport decreases 

in magnitude with PEM thickness. The results from this first set of simulations where the 

anode gas is supplied dry also show for all simulated thicknesses that the diffusive water flux 

dominates over the proton-induced flux in the vapour phase, but that the proton-induced flux 

dominates over the diffusive flux in the liquid phase.  

 

2. The effects of anode inlet gas humidification - The results suggest that by humidifying 

the anode supply, the hydration of the anode side of the PEM improves and can also allow a 
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more extensive liquid water network to form which reaches deeper towards the anodic side of 

the PEM from the cathodic boundary. The results also suggest that the proton-induced water 

flux in vapour- and liquid-equilibrated networks are greater in magnitude than the diffusive 

components because of the increased water content throughout the thickness of the PEM, 

which causes the net water transport to occur in the direction of the cathode for the thicker 

membranes. However, the results also suggest that the effect of electro-osmotic drag flux in 

the vapour region can be sensitive to the thinness of the PEM and the depth of liquid water 

penetration.  

 

3. The effects of cell compression on membrane constraint - The results demonstrate that 

PEM constraint can easily restrict its water content relative to its free-swelling state and can 

also be accompanied by a decrease in the thickness of the PEM. If the change in thickness 

with constraint is more severe than the change in water content, the gradient in water content 

can indeed increase, which can hasten both liquid and vapour phase transport. However, for 

the test conditions considered, a substantial change in net water transport was not observed. 

The results also suggest that PEM constraint can cause water molecules to become packed 

closer together. The results also demonstrate that cell compression may allow the liquid 

water network to infiltrate deeper into the polymer matrix from the cathodic boundary 

towards the anodic boundary.  

 

4. Combined effects of PEM thickness, humidification and compression - For the simulated 

conditions, the results suggest that low Ohmic resistance can be achieved for thin membranes 

which are operated in a constrained state and with a cathodic boundary that is in contact with 

liquid water. The limitation of this conclusion is that reducing the thickness of the PEM will 

cause a greater crossover of hydrogen, as shown in chapter 6. 

 

5. Effects of structurally-reinforced membranes - The experimental results obtained from 

in-situ impedance data and simulation suggest that for a highly-compressed PEFC, the 

diffusivity scaling factor for structurally reinforced membranes can be as low as 0.02 – 0.4 

(i.e., the diffusivity of water in a structurally-reinforced PEM could be less than 40% of that 

typically measured in an non-reinforced PEM such as Nafion). The results suggest that the 

diffusivity scaling factor depends upon the compressed state of the PEFC and the structural 

rigidity of surrounding layers. For the two test cases considered in the current study where 

the PEFC is operated in a highly-compressed state, the results from simulation show that the 



8   Water Transport Studies 210

SR-CCM will still tend to swell but that its change in thickness is limited to less than 2%. 

The simulated results however suggest that the constrained state of the PEM has an effect on 

the diffusivity scaling factor; a 0.1% difference in the change in thickness allows the 

maximum diffusivity scaling factor at 0.9 A/cm2 to increase from 0.3 to 0.4. 
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9 Conclusions and Future Work 

 

The aim of this thesis was to develop a universal electrochemical theory to describe 

the mechanisms of electrochemical transport in PEFCs, which reconciles the benchmark 

modelling philosophies in the literature and demonstrably predicts single-phase and two-

phase flow phenomenon. It is known that electrochemical transport is influenced by cell 

configuration, material composition and operating conditions in a fuel cell and therefore   

governs fuel cell performance, cost and longevity. As such, the development and application 

of the general transport equation in this thesis has established a means of understanding the 

mechanisms of electrochemical transport in porous and quasi-porous layers in the PEFC.  

 

This study is the first to provide a structured understanding of how transport across all 

porous and quasi-porous layers of the PEFC can be mechanistically modelled and 

demonstrates a common fundamental approach for both porous and quasi-porous 

electrochemical systems. The verification of simulated predictions with experimental data 

establishes confidence in the described information provided by the general transport 

equation. It is therefore believed that the verified modelling framework can be used directly 

to support the design process of PEFCs.  

 

9.1 Conclusions 

 

The following principal conclusions can been drawn from the thesis. 

 

Fundamental Concepts:  

• The fundamental concepts of fuel cell performance and the factors that affect 

thermodynamic efficiency have been described in the early part of this thesis.  

• A thorough review of the practical factors that affect the performance of the PEFC 

has also been presented, which provides a comprehensive understanding of the 

technical challenges and state-of-the-art concepts for PEFC technology and the 

significance of electrochemical transport.  
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• The review identified that the PEFC is susceptible to twenty-two common faults 

which can be induced by forty-eight general causes. These twenty-two common faults 

can pertain to the PEM, CL, GDL, BPP and sealing material.  

• The review has been used to construct a system of fault trees for the PEFC which 

provides a valuable insight into the mechanisms by which modes of performance 

degradation can propagate and result in significant performance loss (through 

increases in activation, mass transport, Ohmic or efficiency losses) or cell failure [1]. 

• The review identifies that electrochemical transport and water management in 

particular is crucial to understanding how PEFC technology can be designed for 

performance, longevity and cost. 

 

Benchmark Modelling Techniques:  

• The benchmark modelling approaches for electrochemical transport in the fuel cell 

modelling literature have been described, including how they have been applied to 

simulate transport across the various layers of the cell. The discussion identifies dilute 

solution theory and concentrated solution theory as the main modelling branches for 

transport in porous and quasi-porous layers. 

• The theory of electrode kinetics has also been discussed and a semi-empirical 

approach based on the thin interface assumption has been developed to describe the 

processes that occur in the anode and cathode catalyst layers. 

 

Multi-Layer Modelling with Multi-Species Input:  

• The modelling work carried out in this thesis began with the development of a multi-

species input model which is demonstrably coupled to a one-dimensional modelling 

framework based on dilute solution theory.  

• The multi-species input model establishes the capability to handle multi-component 

input gases and directly couples the boundary conditions in the supply channels with 

the cross-flow that occurs through the PEFC. The composition of the reactant supply 

gases in the channels of the PEFC is calculated based on the initial dry gas 

composition, stoichiometry, pressure and relative humidity of the supply gases, the 

cell operating current density and fluid cross-flow through the cell. 

• The model has been implemented and validated against experimental data for the 

Ballard Mark IV PEFC in the open literature. 
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• The model has been applied to simulate the effect of CO poisoning in the cathode 

catalyst layer due to contamination in the anode supply. The simulation results 

confirm that when a PEFC is operated on a 30% carbon dioxide / 70% hydrogen fuel 

supply with up to 50 ppm carbon monoxide, the crossover of CO across the PEM can 

reduce the cathode potential at 1 A/cm2 by up to 15%. The results also show that by 

increasing the CO content of the fuel supply from 10 ppm to 100 ppm, there is a 

corresponding increase in the rate of CO crossover by one order of magnitude for all 

current densities tested (0 to 1 A/cm
2
). 

 

Fundamental Theory of Electrochemical Transport in PEFCs:  

• This thesis has considered how the fundamental theory of molecular transport can be 

applied to simulate multi-component flow through PEFC media; the underlying 

philosophy has focused on establishing a unifying mechanistic treatment for multi-

component electrochemical transport across the multi-layer PEFC, initially paying 

attention to single-phase systems and then two-phase systems.  

• In Chapter 6 a general transport equation has been developed from the molecular 

theory of gases and liquids [2] and can account for thermal diffusion, molecular 

diffusion, convection and electro-osmotic drag in multi-species form in porous and 

potentially quasi-porous media.  

• The theoretical validity of the general transport equation has been proven by deriving 

the key transport equations in the literature developed by Bernardi et al., Springer et 

al., and Newman et al.  

• The general transport equation can be merged with the multi-component input model 

as described in Chapter 5 to study the factors affecting single-phase multi-component 

electrochemical transport though the PEM.  

• The numerical validity of the general transport equation has thus been proven by 

simulating a PEFC in 1D with a three-species PEM system (water, electrolyte, 

protons) under single-phase conditions. The numerical validity has been demonstrated 

by comparing the generated results against benchmark water content curves published 

in the open literature. The results show that for simulations based on dilute solution 

theory, a Tj cc  factor is inherently assumed to be equal to unity, which consequently 

leads to an over-prediction in the spatial concentration distribution of a species. This 
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is most noticeable at current densities exceeding 0.5 A/cm
2
 for the test cases 

considered. 

• The application of the general transport equation through a multi-layer 1D model in 

Chapter 6 has elucidated the dependence of hydrogen crossover on the thickness of 

the PEM, cell operating temperature and current density. The results reveal that at 

80°C, 1 atm reactant supply pressure and 1 A/cm
2
, the nominal membrane thickness 

for less than 5 mA/cm
2
 equivalent crossover current density is 30 µm. 

• The relationship between hydrogen crossover with current density identified in this 

thesis has been used recently to explain fluoride release rates measured in chemically 

degraded operational PEFCs by other researchers [3,4,5]. 

 

The Mechanisms of Two-Phase Transport in PEM Fuel Cells 

• The final part of the thesis has extended the application of the GTE to model two-

phase multi-component flow through a multi-layer PEFC. It has been demonstrated 

that the general transport equation developed in Chapter 6 can been applied with 

Darcy’s law to simulate two-phase flow through the porous (GDL, MPL) and quasi-

porous layers (PEM) of a PEFC. Multi-component input gases can be handled using a 

modified form of the multi-component input model developed in Chapter 5. 

• It has been demonstrated that liquid infiltration in porous layers can be accounted for 

by employing the standard and validated Leverett J-functions. To account for liquid 

infiltration in the quasi-porous layer and therefore Schroeder’s paradox, a physical 

model described elsewhere has been adopted [6]. The model assumes that liquid 

water can forcibly create a liquid network through the partially hydrophobic and 

partially hydrophilic PEM when it comes into contact with a boundary. 

• The modelling treatment has considered the porous layers of the PEFC such as the 

GDL and MPL to be compressible under fuel cell compaction forces. It is shown that 

compression effects on the PEM can be handled using a mechanical sub-model which 

calculates the water uptake profile across the membrane based on its compressed 

thickness and thermodynamic boundary conditions. 

• The model can be implemented using the object-oriented modelling technique, which 

enhances the usability and adaptability of the code for future work.  

• Simulation results have been validated against experimental water transport and water 

uptake data for both single- and two-phase operating conditions from the open 
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literature [7,8,9,10]. The model confirms the measurements taken from water balance 

tests, specific resistance profiles across the PEM from embedded probe tests and 

water content profiles obtained through MRI scanning. 

• The results show that the thickness of the PEM, anode gas humidification and cell 

constraint can all contribute towards reducing the resistance to proton transport by 

allowing liquid water to penetrate a greater proportion of its thickness, thereby 

improving proton conductivity. 

 

9.2 Future Work 

 

The modelling work presented here represents a significant step towards 

representative simulations of the complete PEFC under a range of design and operating 

conditions. The results presented in this thesis demonstrates the capability of the present 

modelling framework to provide insights to physical processes occurring within a fuel cell. It 

is anticipated that the macroscopic treatment developed in the thesis is one modelling tool 

that can interface with a range of capabilities in order to establish a comprehensive PEFC 

development system for the purposes of PEFC design, in-situ characterisation and 

diagnostics. The following provides a discussion of future work in order to exploit the work 

of this thesis. 

 

The current macroscopic modelling framework is implemented through a one-

dimensional treatment. This allows the bulk processes across all relevant layers of the PEFC 

to be considered in a single simulation, accounting for cross-flow through the PEM by 

treating it as an electrochemical system. Fundamentally, because the porous and quasi-porous 

layers of the PEFC exhibit complex collapsible structural characteristics, it is difficult to 

capture the behaviour that occurs within them comprehensively using multi-dimensional 

approaches based on computational fluid dynamics (CFD) or the lattice Boltzmann (LB) 

technique, for example, in isolation. Therefore, the modelling work described in this thesis 

serves a purpose that is not rigorously satisfied by such approaches. However, in doing so, 

the current modelling framework is reduced to a one-dimensional treatment which neglects to 

consider the macroscopic channel effects in the reactant supply channels and the inlet and 

exit manifolds of the PEFC. In addition, it does not elucidate how multi-component and 

potentially multi-phase flow propagates through the actual heterogeneous three-dimensional 
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porous structures of the PEFC. The overall solution therefore lies in harnessing the relative 

merits of all three approaches in order to comprehensively simulate both macroscopic and 

microscopic processes occurring within the PEFC. 

 

9.2.1 Microscopic Modelling 

 

The lattice-Boltzmann (LB) modelling technique is a statistical method that can 

simulate multi-species, multi-phase and reactive flows through a pre-defined model of a 

three-dimensional porous structure with prescribed surface properties. It has the potential to 

simulate the precise movement of gas components and liquid water through representative 

geometric models of heterogeneous porous structures in the PEFC such as the GDL, MPL 

and CL. However, in order for the LB model to work correctly the physical boundary 

conditions at opposing faces of the three-dimensional structural model of a given PEFC layer 

have to be specified, which are impossible to measure experimentally. These boundary 

conditions (phase pressures and partial pressures of gas constituents at layer interfaces, flow 

rates through individual layers) can be generated by the theoretical treatment developed in 

this thesis. 

 

To date, a multi-dimensional LB model has been specifically developed and applied 

with representative three-dimensional digital models of a carbon-paper GDL obtained from 

X-ray computed micro-tomography in order to validate the simulated gas-phase permeability 

through its porous structure [11]. The next step is to apply representative fuel cell boundary 

conditions between fuel cell layers from the model described in chapter 7 to simulate multi-

species transport through the porous structure of the GDL. Figure 9-1 is an initial single-

phase LB simulation of oxygen infiltration through a carbon paper cathode GDL as part of a 

multi-component mixture comprised additionally of nitrogen and water vapour. The 

simulation is carried out using boundary conditions generated directly by the model 

presented in chapter 7. 
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(a) 

 

(b) 

Figure 9-1 Single-phase multi-component Lattice Boltzmann simulation of oxygen 

permeation through a carbon paper GDL; (a) X-ray tomography model of a carbon paper 

GDL; (b) simulated infiltration of oxygen using boundary conditions from the model 

presented in chapter 7 
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9.2.2 Macroscopic Modelling 

 

Computational Fluid Dynamics 

 

CFD modelling is a powerful tool that can predict the behaviour of laminar and non-

laminar flows through complex three-dimensional geometries such as bipolar plate channels, 

fuel cell inlet manifolds and exit manifolds. Existing CFD codes readily deal with multi-

phase flows and heat transfer, which as discussed can both be dominant factors in the 

performance of operational PEFC systems. 

 

As discussed in Chapter 3, as the partial pressure of water exceeds the saturation 

vapour pressure for a given temperature in the channels of the cells, water vapour will start to 

condense. Subsequent flooding will have an impact on the planar current density distribution 

across the cell hence cell performance. In addition, planar temperature differences can also 

develop across the footprint area of a cell, depending on the heat generated due to electrical 

loses, the thermal conductivity of the hardware components of the PEFC and the thermal 

conductivity of the coolant and reactant supplies. All of these factors can affect heat loss to 

cooling environments. If as a result the local cell temperature is excessively high, water in 

the cell will evaporate leading to membrane dehydration. This results in a drop in local 

current density and therefore cell performance. 

 

In order to locally resolve the cross-flow through the compressible porous and quasi-

porous layers of the PEFC as a function of the local thermo-fluidic conditions in the 

channels, it is possible to interface the model described in Chapter 7 with a multi-phase 

three-dimensional CFD treatment that accounts for heat transfer. CFD models cannot readily 

predict the cross-flow through the PEFC and have to fix the net water flux ratio a-priori 

[12,13]. They do not consider two-phase effects on the performance of the PEM or 

compression effects either [14]. By combining models, however, a comprehensive 

assessment of cell configuration and design can be carried out to determine how performance 

in operational fuel cells can be sustained in spite of the development of planar non-uniform 

two-phase transport and thermal gradients. 
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Figure 9-2 demonstrates the principal of multi-scale modelling based on the GTE, LB 

and CFD techniques discussed above. The LB model is used to determine bulk properties of 

the visualised PEFC material sample, which in the first instance are supplied to the GTE and 

CFD models. Existing CFD models can determine the distribution of reactants in the flow 

fields of the anode and cathode bi-polar plates. The GTE model determines the phase 

pressures and boundary conditions between layers within the PEFC, which can be supplied 

back to the LB model to visualise how the flow actually behaves within the porous structure 

of the material (i.e., the GDL, MPL or CL) under representative fuel cell operating 

conditions. This therefore provides vital information about the porous structure which can 

assist the next iteration of material design.  

 

 

Figure 9-2 Multi-Scale PEFC Modelling 

 

The Hardy-Cross Method 

 

Implementation of numerical techniques based on CFD often result in 

computationally-intensive models that require days or weeks to generate results. It can be 

more advantageous to strategically employ less computationally-intensive models at 

difference stages of cell/stack development which may not be as highly-accurate as CFD 

models, but able to generate a qualitative and quantitative assessment of macroscopic fuel 

cell performance in terms of flow field configuration in a relatively short space of time. 
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In previous work which is not presented here [15], a pseudo two dimensional flow 

network approach has been developed to determine the pressure losses within a fuel cell 

stack using the Hardy-Cross method [16] and empirical relations for pressure drops along 

straight sections, bends and junctions for joining and separating flows [17,18,19]. The Hardy-

Cross technique was originally designed to predict pressure losses around pipe networks with 

distributed sink and source points for civil engineering problems. However, the previous 

research demonstrated the feasibility to link the model developed in Chapter 6 with the 

Hardy-Cross method for fuel cell engineering at stack-level; the Hardy-Cross method can 

predict the pressure loss around the anode and cathode flow networks, which comprise of 

inlet and exit manifolds that are connected by channel sections of variable geometry and 

configuration, and multiple sink and source terms for cross-flow through the cell. The single-

cell model is applied to determine the amount of cross-flow between the two networks based 

on the channel conditions predicted by the flow network model.  

 

The Hardy-Cross method simplifies the flow network into a one-dimensional network 

with prescribed cross-sectional geometries and sub-models to determine the pressure drop 

around bends depending on bend geometry. Preliminary results from the study demonstrated 

the ability to solve the pressure trace of a 25-cell stack within 25 minutes [15]. 

 

 Figure 9-3 illustrates preliminary results obtained by the Hardy-Cross method with 

the single-phase model developed in chapter 5. The resulting model is applied to simulate a 

25-cell stack with a footprint area of 35.5 cm2 and bipolar plates with single-serpentine flow 

fields of 1mm by 1mm cross-sectional geometry. For the simulation, the gas supply pressures 

are set to 2 bar and the cell is operated at 80°C at 0.5A/cm
2
. The results in figures 9-3 (a) and 

(b) suggest a pressure drop of 350 Pa and 50 Pa respectively along the length of the cathode 

and anode inlet manifolds respectively and 31 kP and 6 kPa pressure rises in the respective 

exit manifolds. Figures 9-3 (c) and (d) demonstrate the ability to simulate cell-to-cell 

variations in cross-flow through the cell and stoichiometric conditions as a function of the 

pressure drop along the anode and cathode flow fields within the stack. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9-3 Simulated pressure drops in a 25-cell stack using the Hardy-Cross method and the 

single-phase electrochemical transport model developed in chapter 6; (a) inlet manifolds; (b) 

exit manifolds; (c) cell-to-cell net water flux ratio; (d) cell-to-cell stoichiometry. 
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A Appendices 
 

A.1  Sub-models for the Inlet and Channel Regions of a PEFC 

 

Calculation of electrode stoichiometry 

 

Using the dry mole fraction of the inlet gas o

iy , the concentration of species i can be 

calculated through the ideal gas law as; 
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where p  is the inlet pressure in Pascal and T  is the temperature of the heated gas in Kelvin. 

The molar flow of species i supplied to the electrode in the un-humidified state in mol/s can 

then be calculated as; 
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where inEv
−

 is the volumetric flow rate of the un-humidified gas supplied to the electrode, 

i.e., air to the cathode or neat hydrogen to the anode. The reactant flux through the 

channel/GDL interface is; 

 

n

IA
N cE

i =
−1&  

(A-3) 

 

where cA  is the active area of the cell and n  is equal to either 1 or 2 for anode or cathode 

supplies respectively. Finally, the electrode stoichiometry can be calculated as; 

 

1

in

−

−

=
E

i

E

i

i
N

N

&

&

υ  
(A-4) 

 



A   Appendices 224

The molar flow rates in mol/cm
2
-s are then calculated as; 
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Phase Pressures at the channel-GDL surface interface 

 

In order to determine the transport across the GDL, the phase pressures and 

concentrations of the gas-phase constituents are required for the boundary of the GDL that 

interfaces with the channel. It is assumed in the current study that liquid water in the 

channels is entrained in the gas in the form of small droplets. Using the previously developed 

multi-component channel model described in chapter 5, the boundary pressures at the 

channel-GDL interface can be calculated as follows; 

 

channelgasgas pyp =  (A-7) 

gaschannelliq pPp −=  (A-8) 

 

where the gas-phase mole fraction is calculated as; 
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In Equation (A-10), wx  is determined from the multi-component input model. The 

gas-phase concentration of species i for the GDL boundary is calculated as;  
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and for water calculated as; 
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The concentration of liquid water can be calculated as; 
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(A-14) 

 

 

A.2  Key equations for the effects of cell compression on the water 
uptake and thickness of the quasi-porous PEM 

 

It is assumed that cell compression has an equivalent effect of constraining the 

membrane. The polymer electrolyte membrane contains charged hydrophilic end groups that 

have a strong affinity to water. This affinity causes water clusters to form around the end 

groups, which enlarge and cause the polymer chains to spread out. The total volume of the 

polymer system therefore increases with water uptake. 

 

When a membrane is constrained, the affinity between the hydrophilic end groups 

and water still remains, but the energy required to deform the polymer matrix increases. As 

such, the water clusters that form around the end groups play a limited role in pushing out the 

polymer chains and instead become nested closer together.  

 

In the current modelling framework, we adopt an existing approach to evaluate the 

water content of a constrained membrane as a function of its equivalent free-swelling state 

[1]: 
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(A-15) 

 

where the total free volume of the membrane system fsV  is calculated as using equation 7-48 

and the total constrained volume consV  is calculated as; 
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( ) fswmemcons VVV λχ−+= 1  (A-16) 

 

In the current study, the volumetric compression ratio fscons VV  is also used to 

recalculate the constrained thickness of the PEM as a function of its free-swelling value using 

 

( ) 3/1

, fsconsmemconsmem VVtt =  (A-17) 

 

The bulk modulus of the membrane system, G , can be expressed as [2]: 

 

( )ν213 −
=

E
G  

(A-18) 

 

where ν  is the Poisson ratio. For an incompressible material, the Poissons ratio is 0.5. Choi 

et al. accordingly assumed a value of 0.5 in their study [3] however the more recent 

experimental observations of Solasi et al. suggest a value of 0.4 [4]. The latter is therefore 

applied in the current model. The Youngs Modulus E  for Nafion below the glass transition 

temperature is calculated as [1]: 
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(A-19) 

 

The Youngs Modulus for structurally reinforced membranes is estimated as 500 MPa [5]. 

 

In the current modelling framework, the degree of constraint χ  is defined relative to the 

maximum compressive pressure applicable to the working cell; 

 

maxC

C
=χ  

(A-20) 

 

In the current work, 6.1max =C  MPa. 
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For the initial assumption of a free-swelling membrane, the thickness of the 

membrane is calculated as a function of the average water content across it [1]; 
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(A-21) 

 

where the maximum dimensional change x  is dependant upon the type of PEM. For Nafion, 

the value is taken as 0.360 [6]. The literature suggests that for structurally reinforced 

membranes the dimensional change is around 20% that of non-reinforced membranes [5]. As 

such, it is assumed that the dimensional change for reinforced membranes is a maximum of 

0.072. Because the average water content of the membrane is initially unknown, a series of 

iterations have to be carried out in order to converge on the proper value of PEM thickness. 

The modelling work in chapter 5 determined that five iterations are sufficient and this 

conclusion is directly applied to the current model. 
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